xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 47e073941f4e7ca6e9bde3fa65abbfcfed6bfa2b)
1  //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This implements routines for translating from LLVM IR into SelectionDAG IR.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "SelectionDAGBuilder.h"
14  #include "SDNodeDbgValue.h"
15  #include "llvm/ADT/APFloat.h"
16  #include "llvm/ADT/APInt.h"
17  #include "llvm/ADT/BitVector.h"
18  #include "llvm/ADT/STLExtras.h"
19  #include "llvm/ADT/SmallPtrSet.h"
20  #include "llvm/ADT/SmallSet.h"
21  #include "llvm/ADT/StringRef.h"
22  #include "llvm/ADT/Twine.h"
23  #include "llvm/Analysis/AliasAnalysis.h"
24  #include "llvm/Analysis/BranchProbabilityInfo.h"
25  #include "llvm/Analysis/ConstantFolding.h"
26  #include "llvm/Analysis/Loads.h"
27  #include "llvm/Analysis/MemoryLocation.h"
28  #include "llvm/Analysis/TargetLibraryInfo.h"
29  #include "llvm/Analysis/ValueTracking.h"
30  #include "llvm/Analysis/VectorUtils.h"
31  #include "llvm/CodeGen/Analysis.h"
32  #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
33  #include "llvm/CodeGen/CodeGenCommonISel.h"
34  #include "llvm/CodeGen/FunctionLoweringInfo.h"
35  #include "llvm/CodeGen/GCMetadata.h"
36  #include "llvm/CodeGen/ISDOpcodes.h"
37  #include "llvm/CodeGen/MachineBasicBlock.h"
38  #include "llvm/CodeGen/MachineFrameInfo.h"
39  #include "llvm/CodeGen/MachineFunction.h"
40  #include "llvm/CodeGen/MachineInstrBuilder.h"
41  #include "llvm/CodeGen/MachineInstrBundleIterator.h"
42  #include "llvm/CodeGen/MachineMemOperand.h"
43  #include "llvm/CodeGen/MachineModuleInfo.h"
44  #include "llvm/CodeGen/MachineOperand.h"
45  #include "llvm/CodeGen/MachineRegisterInfo.h"
46  #include "llvm/CodeGen/RuntimeLibcalls.h"
47  #include "llvm/CodeGen/SelectionDAG.h"
48  #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
49  #include "llvm/CodeGen/StackMaps.h"
50  #include "llvm/CodeGen/SwiftErrorValueTracking.h"
51  #include "llvm/CodeGen/TargetFrameLowering.h"
52  #include "llvm/CodeGen/TargetInstrInfo.h"
53  #include "llvm/CodeGen/TargetOpcodes.h"
54  #include "llvm/CodeGen/TargetRegisterInfo.h"
55  #include "llvm/CodeGen/TargetSubtargetInfo.h"
56  #include "llvm/CodeGen/WinEHFuncInfo.h"
57  #include "llvm/IR/Argument.h"
58  #include "llvm/IR/Attributes.h"
59  #include "llvm/IR/BasicBlock.h"
60  #include "llvm/IR/CFG.h"
61  #include "llvm/IR/CallingConv.h"
62  #include "llvm/IR/Constant.h"
63  #include "llvm/IR/ConstantRange.h"
64  #include "llvm/IR/Constants.h"
65  #include "llvm/IR/DataLayout.h"
66  #include "llvm/IR/DebugInfo.h"
67  #include "llvm/IR/DebugInfoMetadata.h"
68  #include "llvm/IR/DerivedTypes.h"
69  #include "llvm/IR/DiagnosticInfo.h"
70  #include "llvm/IR/EHPersonalities.h"
71  #include "llvm/IR/Function.h"
72  #include "llvm/IR/GetElementPtrTypeIterator.h"
73  #include "llvm/IR/InlineAsm.h"
74  #include "llvm/IR/InstrTypes.h"
75  #include "llvm/IR/Instructions.h"
76  #include "llvm/IR/IntrinsicInst.h"
77  #include "llvm/IR/Intrinsics.h"
78  #include "llvm/IR/IntrinsicsAArch64.h"
79  #include "llvm/IR/IntrinsicsWebAssembly.h"
80  #include "llvm/IR/LLVMContext.h"
81  #include "llvm/IR/Metadata.h"
82  #include "llvm/IR/Module.h"
83  #include "llvm/IR/Operator.h"
84  #include "llvm/IR/PatternMatch.h"
85  #include "llvm/IR/Statepoint.h"
86  #include "llvm/IR/Type.h"
87  #include "llvm/IR/User.h"
88  #include "llvm/IR/Value.h"
89  #include "llvm/MC/MCContext.h"
90  #include "llvm/Support/AtomicOrdering.h"
91  #include "llvm/Support/Casting.h"
92  #include "llvm/Support/CommandLine.h"
93  #include "llvm/Support/Compiler.h"
94  #include "llvm/Support/Debug.h"
95  #include "llvm/Support/MathExtras.h"
96  #include "llvm/Support/raw_ostream.h"
97  #include "llvm/Target/TargetIntrinsicInfo.h"
98  #include "llvm/Target/TargetMachine.h"
99  #include "llvm/Target/TargetOptions.h"
100  #include "llvm/TargetParser/Triple.h"
101  #include "llvm/Transforms/Utils/Local.h"
102  #include <cstddef>
103  #include <iterator>
104  #include <limits>
105  #include <optional>
106  #include <tuple>
107  
108  using namespace llvm;
109  using namespace PatternMatch;
110  using namespace SwitchCG;
111  
112  #define DEBUG_TYPE "isel"
113  
114  /// LimitFloatPrecision - Generate low-precision inline sequences for
115  /// some float libcalls (6, 8 or 12 bits).
116  static unsigned LimitFloatPrecision;
117  
118  static cl::opt<bool>
119      InsertAssertAlign("insert-assert-align", cl::init(true),
120                        cl::desc("Insert the experimental `assertalign` node."),
121                        cl::ReallyHidden);
122  
123  static cl::opt<unsigned, true>
124      LimitFPPrecision("limit-float-precision",
125                       cl::desc("Generate low-precision inline sequences "
126                                "for some float libcalls"),
127                       cl::location(LimitFloatPrecision), cl::Hidden,
128                       cl::init(0));
129  
130  static cl::opt<unsigned> SwitchPeelThreshold(
131      "switch-peel-threshold", cl::Hidden, cl::init(66),
132      cl::desc("Set the case probability threshold for peeling the case from a "
133               "switch statement. A value greater than 100 will void this "
134               "optimization"));
135  
136  // Limit the width of DAG chains. This is important in general to prevent
137  // DAG-based analysis from blowing up. For example, alias analysis and
138  // load clustering may not complete in reasonable time. It is difficult to
139  // recognize and avoid this situation within each individual analysis, and
140  // future analyses are likely to have the same behavior. Limiting DAG width is
141  // the safe approach and will be especially important with global DAGs.
142  //
143  // MaxParallelChains default is arbitrarily high to avoid affecting
144  // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
145  // sequence over this should have been converted to llvm.memcpy by the
146  // frontend. It is easy to induce this behavior with .ll code such as:
147  // %buffer = alloca [4096 x i8]
148  // %data = load [4096 x i8]* %argPtr
149  // store [4096 x i8] %data, [4096 x i8]* %buffer
150  static const unsigned MaxParallelChains = 64;
151  
152  static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
153                                        const SDValue *Parts, unsigned NumParts,
154                                        MVT PartVT, EVT ValueVT, const Value *V,
155                                        std::optional<CallingConv::ID> CC);
156  
157  /// getCopyFromParts - Create a value that contains the specified legal parts
158  /// combined into the value they represent.  If the parts combine to a type
159  /// larger than ValueVT then AssertOp can be used to specify whether the extra
160  /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
161  /// (ISD::AssertSext).
162  static SDValue
163  getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
164                   unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
165                   std::optional<CallingConv::ID> CC = std::nullopt,
166                   std::optional<ISD::NodeType> AssertOp = std::nullopt) {
167    // Let the target assemble the parts if it wants to
168    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
169    if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
170                                                     PartVT, ValueVT, CC))
171      return Val;
172  
173    if (ValueVT.isVector())
174      return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
175                                    CC);
176  
177    assert(NumParts > 0 && "No parts to assemble!");
178    SDValue Val = Parts[0];
179  
180    if (NumParts > 1) {
181      // Assemble the value from multiple parts.
182      if (ValueVT.isInteger()) {
183        unsigned PartBits = PartVT.getSizeInBits();
184        unsigned ValueBits = ValueVT.getSizeInBits();
185  
186        // Assemble the power of 2 part.
187        unsigned RoundParts = llvm::bit_floor(NumParts);
188        unsigned RoundBits = PartBits * RoundParts;
189        EVT RoundVT = RoundBits == ValueBits ?
190          ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
191        SDValue Lo, Hi;
192  
193        EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
194  
195        if (RoundParts > 2) {
196          Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
197                                PartVT, HalfVT, V);
198          Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
199                                RoundParts / 2, PartVT, HalfVT, V);
200        } else {
201          Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
202          Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
203        }
204  
205        if (DAG.getDataLayout().isBigEndian())
206          std::swap(Lo, Hi);
207  
208        Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
209  
210        if (RoundParts < NumParts) {
211          // Assemble the trailing non-power-of-2 part.
212          unsigned OddParts = NumParts - RoundParts;
213          EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
214          Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
215                                OddVT, V, CC);
216  
217          // Combine the round and odd parts.
218          Lo = Val;
219          if (DAG.getDataLayout().isBigEndian())
220            std::swap(Lo, Hi);
221          EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
222          Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
223          Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
224                           DAG.getConstant(Lo.getValueSizeInBits(), DL,
225                                           TLI.getShiftAmountTy(
226                                               TotalVT, DAG.getDataLayout())));
227          Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
228          Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
229        }
230      } else if (PartVT.isFloatingPoint()) {
231        // FP split into multiple FP parts (for ppcf128)
232        assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
233               "Unexpected split");
234        SDValue Lo, Hi;
235        Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
236        Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
237        if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
238          std::swap(Lo, Hi);
239        Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
240      } else {
241        // FP split into integer parts (soft fp)
242        assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
243               !PartVT.isVector() && "Unexpected split");
244        EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
245        Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
246      }
247    }
248  
249    // There is now one part, held in Val.  Correct it to match ValueVT.
250    // PartEVT is the type of the register class that holds the value.
251    // ValueVT is the type of the inline asm operation.
252    EVT PartEVT = Val.getValueType();
253  
254    if (PartEVT == ValueVT)
255      return Val;
256  
257    if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
258        ValueVT.bitsLT(PartEVT)) {
259      // For an FP value in an integer part, we need to truncate to the right
260      // width first.
261      PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
262      Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
263    }
264  
265    // Handle types that have the same size.
266    if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
267      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
268  
269    // Handle types with different sizes.
270    if (PartEVT.isInteger() && ValueVT.isInteger()) {
271      if (ValueVT.bitsLT(PartEVT)) {
272        // For a truncate, see if we have any information to
273        // indicate whether the truncated bits will always be
274        // zero or sign-extension.
275        if (AssertOp)
276          Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
277                            DAG.getValueType(ValueVT));
278        return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
279      }
280      return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
281    }
282  
283    if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
284      // FP_ROUND's are always exact here.
285      if (ValueVT.bitsLT(Val.getValueType()))
286        return DAG.getNode(
287            ISD::FP_ROUND, DL, ValueVT, Val,
288            DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
289  
290      return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
291    }
292  
293    // Handle MMX to a narrower integer type by bitcasting MMX to integer and
294    // then truncating.
295    if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
296        ValueVT.bitsLT(PartEVT)) {
297      Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
298      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
299    }
300  
301    report_fatal_error("Unknown mismatch in getCopyFromParts!");
302  }
303  
304  static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
305                                                const Twine &ErrMsg) {
306    const Instruction *I = dyn_cast_or_null<Instruction>(V);
307    if (!V)
308      return Ctx.emitError(ErrMsg);
309  
310    const char *AsmError = ", possible invalid constraint for vector type";
311    if (const CallInst *CI = dyn_cast<CallInst>(I))
312      if (CI->isInlineAsm())
313        return Ctx.emitError(I, ErrMsg + AsmError);
314  
315    return Ctx.emitError(I, ErrMsg);
316  }
317  
318  /// getCopyFromPartsVector - Create a value that contains the specified legal
319  /// parts combined into the value they represent.  If the parts combine to a
320  /// type larger than ValueVT then AssertOp can be used to specify whether the
321  /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
322  /// ValueVT (ISD::AssertSext).
323  static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
324                                        const SDValue *Parts, unsigned NumParts,
325                                        MVT PartVT, EVT ValueVT, const Value *V,
326                                        std::optional<CallingConv::ID> CallConv) {
327    assert(ValueVT.isVector() && "Not a vector value");
328    assert(NumParts > 0 && "No parts to assemble!");
329    const bool IsABIRegCopy = CallConv.has_value();
330  
331    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
332    SDValue Val = Parts[0];
333  
334    // Handle a multi-element vector.
335    if (NumParts > 1) {
336      EVT IntermediateVT;
337      MVT RegisterVT;
338      unsigned NumIntermediates;
339      unsigned NumRegs;
340  
341      if (IsABIRegCopy) {
342        NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
343            *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
344            NumIntermediates, RegisterVT);
345      } else {
346        NumRegs =
347            TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
348                                       NumIntermediates, RegisterVT);
349      }
350  
351      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
352      NumParts = NumRegs; // Silence a compiler warning.
353      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
354      assert(RegisterVT.getSizeInBits() ==
355             Parts[0].getSimpleValueType().getSizeInBits() &&
356             "Part type sizes don't match!");
357  
358      // Assemble the parts into intermediate operands.
359      SmallVector<SDValue, 8> Ops(NumIntermediates);
360      if (NumIntermediates == NumParts) {
361        // If the register was not expanded, truncate or copy the value,
362        // as appropriate.
363        for (unsigned i = 0; i != NumParts; ++i)
364          Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
365                                    PartVT, IntermediateVT, V, CallConv);
366      } else if (NumParts > 0) {
367        // If the intermediate type was expanded, build the intermediate
368        // operands from the parts.
369        assert(NumParts % NumIntermediates == 0 &&
370               "Must expand into a divisible number of parts!");
371        unsigned Factor = NumParts / NumIntermediates;
372        for (unsigned i = 0; i != NumIntermediates; ++i)
373          Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
374                                    PartVT, IntermediateVT, V, CallConv);
375      }
376  
377      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
378      // intermediate operands.
379      EVT BuiltVectorTy =
380          IntermediateVT.isVector()
381              ? EVT::getVectorVT(
382                    *DAG.getContext(), IntermediateVT.getScalarType(),
383                    IntermediateVT.getVectorElementCount() * NumParts)
384              : EVT::getVectorVT(*DAG.getContext(),
385                                 IntermediateVT.getScalarType(),
386                                 NumIntermediates);
387      Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
388                                                  : ISD::BUILD_VECTOR,
389                        DL, BuiltVectorTy, Ops);
390    }
391  
392    // There is now one part, held in Val.  Correct it to match ValueVT.
393    EVT PartEVT = Val.getValueType();
394  
395    if (PartEVT == ValueVT)
396      return Val;
397  
398    if (PartEVT.isVector()) {
399      // Vector/Vector bitcast.
400      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
401        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
402  
403      // If the parts vector has more elements than the value vector, then we
404      // have a vector widening case (e.g. <2 x float> -> <4 x float>).
405      // Extract the elements we want.
406      if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
407        assert((PartEVT.getVectorElementCount().getKnownMinValue() >
408                ValueVT.getVectorElementCount().getKnownMinValue()) &&
409               (PartEVT.getVectorElementCount().isScalable() ==
410                ValueVT.getVectorElementCount().isScalable()) &&
411               "Cannot narrow, it would be a lossy transformation");
412        PartEVT =
413            EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
414                             ValueVT.getVectorElementCount());
415        Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
416                          DAG.getVectorIdxConstant(0, DL));
417        if (PartEVT == ValueVT)
418          return Val;
419        if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
420          return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
421  
422        // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
423        if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
424          return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
425      }
426  
427      // Promoted vector extract
428      return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
429    }
430  
431    // Trivial bitcast if the types are the same size and the destination
432    // vector type is legal.
433    if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
434        TLI.isTypeLegal(ValueVT))
435      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
436  
437    if (ValueVT.getVectorNumElements() != 1) {
438       // Certain ABIs require that vectors are passed as integers. For vectors
439       // are the same size, this is an obvious bitcast.
440       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
441         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
442       } else if (ValueVT.bitsLT(PartEVT)) {
443         const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
444         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
445         // Drop the extra bits.
446         Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
447         return DAG.getBitcast(ValueVT, Val);
448       }
449  
450       diagnosePossiblyInvalidConstraint(
451           *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
452       return DAG.getUNDEF(ValueVT);
453    }
454  
455    // Handle cases such as i8 -> <1 x i1>
456    EVT ValueSVT = ValueVT.getVectorElementType();
457    if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
458      unsigned ValueSize = ValueSVT.getSizeInBits();
459      if (ValueSize == PartEVT.getSizeInBits()) {
460        Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
461      } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
462        // It's possible a scalar floating point type gets softened to integer and
463        // then promoted to a larger integer. If PartEVT is the larger integer
464        // we need to truncate it and then bitcast to the FP type.
465        assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
466        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
467        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
468        Val = DAG.getBitcast(ValueSVT, Val);
469      } else {
470        Val = ValueVT.isFloatingPoint()
471                  ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
472                  : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
473      }
474    }
475  
476    return DAG.getBuildVector(ValueVT, DL, Val);
477  }
478  
479  static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
480                                   SDValue Val, SDValue *Parts, unsigned NumParts,
481                                   MVT PartVT, const Value *V,
482                                   std::optional<CallingConv::ID> CallConv);
483  
484  /// getCopyToParts - Create a series of nodes that contain the specified value
485  /// split into legal parts.  If the parts contain more bits than Val, then, for
486  /// integers, ExtendKind can be used to specify how to generate the extra bits.
487  static void
488  getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
489                 unsigned NumParts, MVT PartVT, const Value *V,
490                 std::optional<CallingConv::ID> CallConv = std::nullopt,
491                 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
492    // Let the target split the parts if it wants to
493    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
494    if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
495                                        CallConv))
496      return;
497    EVT ValueVT = Val.getValueType();
498  
499    // Handle the vector case separately.
500    if (ValueVT.isVector())
501      return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
502                                  CallConv);
503  
504    unsigned OrigNumParts = NumParts;
505    assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
506           "Copying to an illegal type!");
507  
508    if (NumParts == 0)
509      return;
510  
511    assert(!ValueVT.isVector() && "Vector case handled elsewhere");
512    EVT PartEVT = PartVT;
513    if (PartEVT == ValueVT) {
514      assert(NumParts == 1 && "No-op copy with multiple parts!");
515      Parts[0] = Val;
516      return;
517    }
518  
519    unsigned PartBits = PartVT.getSizeInBits();
520    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
521      // If the parts cover more bits than the value has, promote the value.
522      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
523        assert(NumParts == 1 && "Do not know what to promote to!");
524        Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
525      } else {
526        if (ValueVT.isFloatingPoint()) {
527          // FP values need to be bitcast, then extended if they are being put
528          // into a larger container.
529          ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
530          Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
531        }
532        assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
533               ValueVT.isInteger() &&
534               "Unknown mismatch!");
535        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
536        Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
537        if (PartVT == MVT::x86mmx)
538          Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539      }
540    } else if (PartBits == ValueVT.getSizeInBits()) {
541      // Different types of the same size.
542      assert(NumParts == 1 && PartEVT != ValueVT);
543      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
544    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
545      // If the parts cover less bits than value has, truncate the value.
546      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
547             ValueVT.isInteger() &&
548             "Unknown mismatch!");
549      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
550      Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
551      if (PartVT == MVT::x86mmx)
552        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
553    }
554  
555    // The value may have changed - recompute ValueVT.
556    ValueVT = Val.getValueType();
557    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
558           "Failed to tile the value with PartVT!");
559  
560    if (NumParts == 1) {
561      if (PartEVT != ValueVT) {
562        diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
563                                          "scalar-to-vector conversion failed");
564        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
565      }
566  
567      Parts[0] = Val;
568      return;
569    }
570  
571    // Expand the value into multiple parts.
572    if (NumParts & (NumParts - 1)) {
573      // The number of parts is not a power of 2.  Split off and copy the tail.
574      assert(PartVT.isInteger() && ValueVT.isInteger() &&
575             "Do not know what to expand to!");
576      unsigned RoundParts = llvm::bit_floor(NumParts);
577      unsigned RoundBits = RoundParts * PartBits;
578      unsigned OddParts = NumParts - RoundParts;
579      SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
580        DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
581  
582      getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
583                     CallConv);
584  
585      if (DAG.getDataLayout().isBigEndian())
586        // The odd parts were reversed by getCopyToParts - unreverse them.
587        std::reverse(Parts + RoundParts, Parts + NumParts);
588  
589      NumParts = RoundParts;
590      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
591      Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
592    }
593  
594    // The number of parts is a power of 2.  Repeatedly bisect the value using
595    // EXTRACT_ELEMENT.
596    Parts[0] = DAG.getNode(ISD::BITCAST, DL,
597                           EVT::getIntegerVT(*DAG.getContext(),
598                                             ValueVT.getSizeInBits()),
599                           Val);
600  
601    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
602      for (unsigned i = 0; i < NumParts; i += StepSize) {
603        unsigned ThisBits = StepSize * PartBits / 2;
604        EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
605        SDValue &Part0 = Parts[i];
606        SDValue &Part1 = Parts[i+StepSize/2];
607  
608        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
609                            ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
610        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
611                            ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
612  
613        if (ThisBits == PartBits && ThisVT != PartVT) {
614          Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
615          Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
616        }
617      }
618    }
619  
620    if (DAG.getDataLayout().isBigEndian())
621      std::reverse(Parts, Parts + OrigNumParts);
622  }
623  
624  static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
625                                       const SDLoc &DL, EVT PartVT) {
626    if (!PartVT.isVector())
627      return SDValue();
628  
629    EVT ValueVT = Val.getValueType();
630    EVT PartEVT = PartVT.getVectorElementType();
631    EVT ValueEVT = ValueVT.getVectorElementType();
632    ElementCount PartNumElts = PartVT.getVectorElementCount();
633    ElementCount ValueNumElts = ValueVT.getVectorElementCount();
634  
635    // We only support widening vectors with equivalent element types and
636    // fixed/scalable properties. If a target needs to widen a fixed-length type
637    // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
638    if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
639        PartNumElts.isScalable() != ValueNumElts.isScalable())
640      return SDValue();
641  
642    // Have a try for bf16 because some targets share its ABI with fp16.
643    if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
644      assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
645             "Cannot widen to illegal type");
646      Val = DAG.getNode(ISD::BITCAST, DL,
647                        ValueVT.changeVectorElementType(MVT::f16), Val);
648    } else if (PartEVT != ValueEVT) {
649      return SDValue();
650    }
651  
652    // Widening a scalable vector to another scalable vector is done by inserting
653    // the vector into a larger undef one.
654    if (PartNumElts.isScalable())
655      return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
656                         Val, DAG.getVectorIdxConstant(0, DL));
657  
658    // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
659    // undef elements.
660    SmallVector<SDValue, 16> Ops;
661    DAG.ExtractVectorElements(Val, Ops);
662    SDValue EltUndef = DAG.getUNDEF(PartEVT);
663    Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
664  
665    // FIXME: Use CONCAT for 2x -> 4x.
666    return DAG.getBuildVector(PartVT, DL, Ops);
667  }
668  
669  /// getCopyToPartsVector - Create a series of nodes that contain the specified
670  /// value split into legal parts.
671  static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
672                                   SDValue Val, SDValue *Parts, unsigned NumParts,
673                                   MVT PartVT, const Value *V,
674                                   std::optional<CallingConv::ID> CallConv) {
675    EVT ValueVT = Val.getValueType();
676    assert(ValueVT.isVector() && "Not a vector");
677    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
678    const bool IsABIRegCopy = CallConv.has_value();
679  
680    if (NumParts == 1) {
681      EVT PartEVT = PartVT;
682      if (PartEVT == ValueVT) {
683        // Nothing to do.
684      } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
685        // Bitconvert vector->vector case.
686        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
687      } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
688        Val = Widened;
689      } else if (PartVT.isVector() &&
690                 PartEVT.getVectorElementType().bitsGE(
691                     ValueVT.getVectorElementType()) &&
692                 PartEVT.getVectorElementCount() ==
693                     ValueVT.getVectorElementCount()) {
694  
695        // Promoted vector extract
696        Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
697      } else if (PartEVT.isVector() &&
698                 PartEVT.getVectorElementType() !=
699                     ValueVT.getVectorElementType() &&
700                 TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
701                     TargetLowering::TypeWidenVector) {
702        // Combination of widening and promotion.
703        EVT WidenVT =
704            EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
705                             PartVT.getVectorElementCount());
706        SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
707        Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
708      } else {
709        // Don't extract an integer from a float vector. This can happen if the
710        // FP type gets softened to integer and then promoted. The promotion
711        // prevents it from being picked up by the earlier bitcast case.
712        if (ValueVT.getVectorElementCount().isScalar() &&
713            (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
714          Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
715                            DAG.getVectorIdxConstant(0, DL));
716        } else {
717          uint64_t ValueSize = ValueVT.getFixedSizeInBits();
718          assert(PartVT.getFixedSizeInBits() > ValueSize &&
719                 "lossy conversion of vector to scalar type");
720          EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
721          Val = DAG.getBitcast(IntermediateType, Val);
722          Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
723        }
724      }
725  
726      assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
727      Parts[0] = Val;
728      return;
729    }
730  
731    // Handle a multi-element vector.
732    EVT IntermediateVT;
733    MVT RegisterVT;
734    unsigned NumIntermediates;
735    unsigned NumRegs;
736    if (IsABIRegCopy) {
737      NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
738          *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
739          RegisterVT);
740    } else {
741      NumRegs =
742          TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
743                                     NumIntermediates, RegisterVT);
744    }
745  
746    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
747    NumParts = NumRegs; // Silence a compiler warning.
748    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
749  
750    assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
751           "Mixing scalable and fixed vectors when copying in parts");
752  
753    std::optional<ElementCount> DestEltCnt;
754  
755    if (IntermediateVT.isVector())
756      DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
757    else
758      DestEltCnt = ElementCount::getFixed(NumIntermediates);
759  
760    EVT BuiltVectorTy = EVT::getVectorVT(
761        *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
762  
763    if (ValueVT == BuiltVectorTy) {
764      // Nothing to do.
765    } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
766      // Bitconvert vector->vector case.
767      Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
768    } else {
769      if (BuiltVectorTy.getVectorElementType().bitsGT(
770              ValueVT.getVectorElementType())) {
771        // Integer promotion.
772        ValueVT = EVT::getVectorVT(*DAG.getContext(),
773                                   BuiltVectorTy.getVectorElementType(),
774                                   ValueVT.getVectorElementCount());
775        Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
776      }
777  
778      if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
779        Val = Widened;
780      }
781    }
782  
783    assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
784  
785    // Split the vector into intermediate operands.
786    SmallVector<SDValue, 8> Ops(NumIntermediates);
787    for (unsigned i = 0; i != NumIntermediates; ++i) {
788      if (IntermediateVT.isVector()) {
789        // This does something sensible for scalable vectors - see the
790        // definition of EXTRACT_SUBVECTOR for further details.
791        unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
792        Ops[i] =
793            DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
794                        DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
795      } else {
796        Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
797                             DAG.getVectorIdxConstant(i, DL));
798      }
799    }
800  
801    // Split the intermediate operands into legal parts.
802    if (NumParts == NumIntermediates) {
803      // If the register was not expanded, promote or copy the value,
804      // as appropriate.
805      for (unsigned i = 0; i != NumParts; ++i)
806        getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
807    } else if (NumParts > 0) {
808      // If the intermediate type was expanded, split each the value into
809      // legal parts.
810      assert(NumIntermediates != 0 && "division by zero");
811      assert(NumParts % NumIntermediates == 0 &&
812             "Must expand into a divisible number of parts!");
813      unsigned Factor = NumParts / NumIntermediates;
814      for (unsigned i = 0; i != NumIntermediates; ++i)
815        getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
816                       CallConv);
817    }
818  }
819  
820  RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
821                             EVT valuevt, std::optional<CallingConv::ID> CC)
822      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
823        RegCount(1, regs.size()), CallConv(CC) {}
824  
825  RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
826                             const DataLayout &DL, unsigned Reg, Type *Ty,
827                             std::optional<CallingConv::ID> CC) {
828    ComputeValueVTs(TLI, DL, Ty, ValueVTs);
829  
830    CallConv = CC;
831  
832    for (EVT ValueVT : ValueVTs) {
833      unsigned NumRegs =
834          isABIMangled()
835              ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
836              : TLI.getNumRegisters(Context, ValueVT);
837      MVT RegisterVT =
838          isABIMangled()
839              ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
840              : TLI.getRegisterType(Context, ValueVT);
841      for (unsigned i = 0; i != NumRegs; ++i)
842        Regs.push_back(Reg + i);
843      RegVTs.push_back(RegisterVT);
844      RegCount.push_back(NumRegs);
845      Reg += NumRegs;
846    }
847  }
848  
849  SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
850                                        FunctionLoweringInfo &FuncInfo,
851                                        const SDLoc &dl, SDValue &Chain,
852                                        SDValue *Glue, const Value *V) const {
853    // A Value with type {} or [0 x %t] needs no registers.
854    if (ValueVTs.empty())
855      return SDValue();
856  
857    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
858  
859    // Assemble the legal parts into the final values.
860    SmallVector<SDValue, 4> Values(ValueVTs.size());
861    SmallVector<SDValue, 8> Parts;
862    for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
863      // Copy the legal parts from the registers.
864      EVT ValueVT = ValueVTs[Value];
865      unsigned NumRegs = RegCount[Value];
866      MVT RegisterVT = isABIMangled()
867                           ? TLI.getRegisterTypeForCallingConv(
868                                 *DAG.getContext(), *CallConv, RegVTs[Value])
869                           : RegVTs[Value];
870  
871      Parts.resize(NumRegs);
872      for (unsigned i = 0; i != NumRegs; ++i) {
873        SDValue P;
874        if (!Glue) {
875          P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
876        } else {
877          P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
878          *Glue = P.getValue(2);
879        }
880  
881        Chain = P.getValue(1);
882        Parts[i] = P;
883  
884        // If the source register was virtual and if we know something about it,
885        // add an assert node.
886        if (!Register::isVirtualRegister(Regs[Part + i]) ||
887            !RegisterVT.isInteger())
888          continue;
889  
890        const FunctionLoweringInfo::LiveOutInfo *LOI =
891          FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
892        if (!LOI)
893          continue;
894  
895        unsigned RegSize = RegisterVT.getScalarSizeInBits();
896        unsigned NumSignBits = LOI->NumSignBits;
897        unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
898  
899        if (NumZeroBits == RegSize) {
900          // The current value is a zero.
901          // Explicitly express that as it would be easier for
902          // optimizations to kick in.
903          Parts[i] = DAG.getConstant(0, dl, RegisterVT);
904          continue;
905        }
906  
907        // FIXME: We capture more information than the dag can represent.  For
908        // now, just use the tightest assertzext/assertsext possible.
909        bool isSExt;
910        EVT FromVT(MVT::Other);
911        if (NumZeroBits) {
912          FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
913          isSExt = false;
914        } else if (NumSignBits > 1) {
915          FromVT =
916              EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
917          isSExt = true;
918        } else {
919          continue;
920        }
921        // Add an assertion node.
922        assert(FromVT != MVT::Other);
923        Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
924                               RegisterVT, P, DAG.getValueType(FromVT));
925      }
926  
927      Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
928                                       RegisterVT, ValueVT, V, CallConv);
929      Part += NumRegs;
930      Parts.clear();
931    }
932  
933    return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
934  }
935  
936  void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
937                                   const SDLoc &dl, SDValue &Chain, SDValue *Glue,
938                                   const Value *V,
939                                   ISD::NodeType PreferredExtendType) const {
940    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
941    ISD::NodeType ExtendKind = PreferredExtendType;
942  
943    // Get the list of the values's legal parts.
944    unsigned NumRegs = Regs.size();
945    SmallVector<SDValue, 8> Parts(NumRegs);
946    for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
947      unsigned NumParts = RegCount[Value];
948  
949      MVT RegisterVT = isABIMangled()
950                           ? TLI.getRegisterTypeForCallingConv(
951                                 *DAG.getContext(), *CallConv, RegVTs[Value])
952                           : RegVTs[Value];
953  
954      if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
955        ExtendKind = ISD::ZERO_EXTEND;
956  
957      getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
958                     NumParts, RegisterVT, V, CallConv, ExtendKind);
959      Part += NumParts;
960    }
961  
962    // Copy the parts into the registers.
963    SmallVector<SDValue, 8> Chains(NumRegs);
964    for (unsigned i = 0; i != NumRegs; ++i) {
965      SDValue Part;
966      if (!Glue) {
967        Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
968      } else {
969        Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
970        *Glue = Part.getValue(1);
971      }
972  
973      Chains[i] = Part.getValue(0);
974    }
975  
976    if (NumRegs == 1 || Glue)
977      // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
978      // flagged to it. That is the CopyToReg nodes and the user are considered
979      // a single scheduling unit. If we create a TokenFactor and return it as
980      // chain, then the TokenFactor is both a predecessor (operand) of the
981      // user as well as a successor (the TF operands are flagged to the user).
982      // c1, f1 = CopyToReg
983      // c2, f2 = CopyToReg
984      // c3     = TokenFactor c1, c2
985      // ...
986      //        = op c3, ..., f2
987      Chain = Chains[NumRegs-1];
988    else
989      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
990  }
991  
992  void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
993                                          unsigned MatchingIdx, const SDLoc &dl,
994                                          SelectionDAG &DAG,
995                                          std::vector<SDValue> &Ops) const {
996    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
997  
998    unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
999    if (HasMatching)
1000      Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
1001    else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1002      // Put the register class of the virtual registers in the flag word.  That
1003      // way, later passes can recompute register class constraints for inline
1004      // assembly as well as normal instructions.
1005      // Don't do this for tied operands that can use the regclass information
1006      // from the def.
1007      const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1008      const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1009      Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
1010    }
1011  
1012    SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1013    Ops.push_back(Res);
1014  
1015    if (Code == InlineAsm::Kind_Clobber) {
1016      // Clobbers should always have a 1:1 mapping with registers, and may
1017      // reference registers that have illegal (e.g. vector) types. Hence, we
1018      // shouldn't try to apply any sort of splitting logic to them.
1019      assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1020             "No 1:1 mapping from clobbers to regs?");
1021      Register SP = TLI.getStackPointerRegisterToSaveRestore();
1022      (void)SP;
1023      for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1024        Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1025        assert(
1026            (Regs[I] != SP ||
1027             DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1028            "If we clobbered the stack pointer, MFI should know about it.");
1029      }
1030      return;
1031    }
1032  
1033    for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1034      MVT RegisterVT = RegVTs[Value];
1035      unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1036                                             RegisterVT);
1037      for (unsigned i = 0; i != NumRegs; ++i) {
1038        assert(Reg < Regs.size() && "Mismatch in # registers expected");
1039        unsigned TheReg = Regs[Reg++];
1040        Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1041      }
1042    }
1043  }
1044  
1045  SmallVector<std::pair<unsigned, TypeSize>, 4>
1046  RegsForValue::getRegsAndSizes() const {
1047    SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1048    unsigned I = 0;
1049    for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1050      unsigned RegCount = std::get<0>(CountAndVT);
1051      MVT RegisterVT = std::get<1>(CountAndVT);
1052      TypeSize RegisterSize = RegisterVT.getSizeInBits();
1053      for (unsigned E = I + RegCount; I != E; ++I)
1054        OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1055    }
1056    return OutVec;
1057  }
1058  
1059  void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1060                                 AssumptionCache *ac,
1061                                 const TargetLibraryInfo *li) {
1062    AA = aa;
1063    AC = ac;
1064    GFI = gfi;
1065    LibInfo = li;
1066    Context = DAG.getContext();
1067    LPadToCallSiteMap.clear();
1068    SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1069    AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1070        *DAG.getMachineFunction().getFunction().getParent());
1071  }
1072  
1073  void SelectionDAGBuilder::clear() {
1074    NodeMap.clear();
1075    UnusedArgNodeMap.clear();
1076    PendingLoads.clear();
1077    PendingExports.clear();
1078    PendingConstrainedFP.clear();
1079    PendingConstrainedFPStrict.clear();
1080    CurInst = nullptr;
1081    HasTailCall = false;
1082    SDNodeOrder = LowestSDNodeOrder;
1083    StatepointLowering.clear();
1084  }
1085  
1086  void SelectionDAGBuilder::clearDanglingDebugInfo() {
1087    DanglingDebugInfoMap.clear();
1088  }
1089  
1090  // Update DAG root to include dependencies on Pending chains.
1091  SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1092    SDValue Root = DAG.getRoot();
1093  
1094    if (Pending.empty())
1095      return Root;
1096  
1097    // Add current root to PendingChains, unless we already indirectly
1098    // depend on it.
1099    if (Root.getOpcode() != ISD::EntryToken) {
1100      unsigned i = 0, e = Pending.size();
1101      for (; i != e; ++i) {
1102        assert(Pending[i].getNode()->getNumOperands() > 1);
1103        if (Pending[i].getNode()->getOperand(0) == Root)
1104          break;  // Don't add the root if we already indirectly depend on it.
1105      }
1106  
1107      if (i == e)
1108        Pending.push_back(Root);
1109    }
1110  
1111    if (Pending.size() == 1)
1112      Root = Pending[0];
1113    else
1114      Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1115  
1116    DAG.setRoot(Root);
1117    Pending.clear();
1118    return Root;
1119  }
1120  
1121  SDValue SelectionDAGBuilder::getMemoryRoot() {
1122    return updateRoot(PendingLoads);
1123  }
1124  
1125  SDValue SelectionDAGBuilder::getRoot() {
1126    // Chain up all pending constrained intrinsics together with all
1127    // pending loads, by simply appending them to PendingLoads and
1128    // then calling getMemoryRoot().
1129    PendingLoads.reserve(PendingLoads.size() +
1130                         PendingConstrainedFP.size() +
1131                         PendingConstrainedFPStrict.size());
1132    PendingLoads.append(PendingConstrainedFP.begin(),
1133                        PendingConstrainedFP.end());
1134    PendingLoads.append(PendingConstrainedFPStrict.begin(),
1135                        PendingConstrainedFPStrict.end());
1136    PendingConstrainedFP.clear();
1137    PendingConstrainedFPStrict.clear();
1138    return getMemoryRoot();
1139  }
1140  
1141  SDValue SelectionDAGBuilder::getControlRoot() {
1142    // We need to emit pending fpexcept.strict constrained intrinsics,
1143    // so append them to the PendingExports list.
1144    PendingExports.append(PendingConstrainedFPStrict.begin(),
1145                          PendingConstrainedFPStrict.end());
1146    PendingConstrainedFPStrict.clear();
1147    return updateRoot(PendingExports);
1148  }
1149  
1150  void SelectionDAGBuilder::visit(const Instruction &I) {
1151    // Set up outgoing PHI node register values before emitting the terminator.
1152    if (I.isTerminator()) {
1153      HandlePHINodesInSuccessorBlocks(I.getParent());
1154    }
1155  
1156    // Add SDDbgValue nodes for any var locs here. Do so before updating
1157    // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1158    if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1159      // Add SDDbgValue nodes for any var locs here. Do so before updating
1160      // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1161      for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1162           It != End; ++It) {
1163        auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1164        dropDanglingDebugInfo(Var, It->Expr);
1165        if (It->Values.isKillLocation(It->Expr)) {
1166          handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1167          continue;
1168        }
1169        SmallVector<Value *> Values(It->Values.location_ops());
1170        if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1171                              It->Values.hasArgList()))
1172          addDanglingDebugInfo(It, SDNodeOrder);
1173      }
1174    }
1175  
1176    // Increase the SDNodeOrder if dealing with a non-debug instruction.
1177    if (!isa<DbgInfoIntrinsic>(I))
1178      ++SDNodeOrder;
1179  
1180    CurInst = &I;
1181  
1182    // Set inserted listener only if required.
1183    bool NodeInserted = false;
1184    std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1185    MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1186    if (PCSectionsMD) {
1187      InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1188          DAG, [&](SDNode *) { NodeInserted = true; });
1189    }
1190  
1191    visit(I.getOpcode(), I);
1192  
1193    if (!I.isTerminator() && !HasTailCall &&
1194        !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1195      CopyToExportRegsIfNeeded(&I);
1196  
1197    // Handle metadata.
1198    if (PCSectionsMD) {
1199      auto It = NodeMap.find(&I);
1200      if (It != NodeMap.end()) {
1201        DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1202      } else if (NodeInserted) {
1203        // This should not happen; if it does, don't let it go unnoticed so we can
1204        // fix it. Relevant visit*() function is probably missing a setValue().
1205        errs() << "warning: loosing !pcsections metadata ["
1206               << I.getModule()->getName() << "]\n";
1207        LLVM_DEBUG(I.dump());
1208        assert(false);
1209      }
1210    }
1211  
1212    CurInst = nullptr;
1213  }
1214  
1215  void SelectionDAGBuilder::visitPHI(const PHINode &) {
1216    llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1217  }
1218  
1219  void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1220    // Note: this doesn't use InstVisitor, because it has to work with
1221    // ConstantExpr's in addition to instructions.
1222    switch (Opcode) {
1223    default: llvm_unreachable("Unknown instruction type encountered!");
1224      // Build the switch statement using the Instruction.def file.
1225  #define HANDLE_INST(NUM, OPCODE, CLASS) \
1226      case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1227  #include "llvm/IR/Instruction.def"
1228    }
1229  }
1230  
1231  static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1232                                              DILocalVariable *Variable,
1233                                              DebugLoc DL, unsigned Order,
1234                                              RawLocationWrapper Values,
1235                                              DIExpression *Expression) {
1236    if (!Values.hasArgList())
1237      return false;
1238    // For variadic dbg_values we will now insert an undef.
1239    // FIXME: We can potentially recover these!
1240    SmallVector<SDDbgOperand, 2> Locs;
1241    for (const Value *V : Values.location_ops()) {
1242      auto *Undef = UndefValue::get(V->getType());
1243      Locs.push_back(SDDbgOperand::fromConst(Undef));
1244    }
1245    SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1246                                          /*IsIndirect=*/false, DL, Order,
1247                                          /*IsVariadic=*/true);
1248    DAG.AddDbgValue(SDV, /*isParameter=*/false);
1249    return true;
1250  }
1251  
1252  void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc,
1253                                                 unsigned Order) {
1254    if (!handleDanglingVariadicDebugInfo(
1255            DAG,
1256            const_cast<DILocalVariable *>(DAG.getFunctionVarLocs()
1257                                              ->getVariable(VarLoc->VariableID)
1258                                              .getVariable()),
1259            VarLoc->DL, Order, VarLoc->Values, VarLoc->Expr)) {
1260      DanglingDebugInfoMap[VarLoc->Values.getVariableLocationOp(0)].emplace_back(
1261          VarLoc, Order);
1262    }
1263  }
1264  
1265  void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1266                                                 unsigned Order) {
1267    // We treat variadic dbg_values differently at this stage.
1268    if (!handleDanglingVariadicDebugInfo(
1269            DAG, DI->getVariable(), DI->getDebugLoc(), Order,
1270            DI->getWrappedLocation(), DI->getExpression())) {
1271      // TODO: Dangling debug info will eventually either be resolved or produce
1272      // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1273      // between the original dbg.value location and its resolved DBG_VALUE,
1274      // which we should ideally fill with an extra Undef DBG_VALUE.
1275      assert(DI->getNumVariableLocationOps() == 1 &&
1276             "DbgValueInst without an ArgList should have a single location "
1277             "operand.");
1278      DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order);
1279    }
1280  }
1281  
1282  void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1283                                                  const DIExpression *Expr) {
1284    auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1285      DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs());
1286      DIExpression *DanglingExpr = DDI.getExpression();
1287      if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1288        LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI)
1289                          << "\n");
1290        return true;
1291      }
1292      return false;
1293    };
1294  
1295    for (auto &DDIMI : DanglingDebugInfoMap) {
1296      DanglingDebugInfoVector &DDIV = DDIMI.second;
1297  
1298      // If debug info is to be dropped, run it through final checks to see
1299      // whether it can be salvaged.
1300      for (auto &DDI : DDIV)
1301        if (isMatchingDbgValue(DDI))
1302          salvageUnresolvedDbgValue(DDI);
1303  
1304      erase_if(DDIV, isMatchingDbgValue);
1305    }
1306  }
1307  
1308  // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1309  // generate the debug data structures now that we've seen its definition.
1310  void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1311                                                     SDValue Val) {
1312    auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1313    if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1314      return;
1315  
1316    DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1317    for (auto &DDI : DDIV) {
1318      DebugLoc DL = DDI.getDebugLoc();
1319      unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1320      unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1321      DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs());
1322      DIExpression *Expr = DDI.getExpression();
1323      assert(Variable->isValidLocationForIntrinsic(DL) &&
1324             "Expected inlined-at fields to agree");
1325      SDDbgValue *SDV;
1326      if (Val.getNode()) {
1327        // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1328        // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1329        // we couldn't resolve it directly when examining the DbgValue intrinsic
1330        // in the first place we should not be more successful here). Unless we
1331        // have some test case that prove this to be correct we should avoid
1332        // calling EmitFuncArgumentDbgValue here.
1333        if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1334                                      FuncArgumentDbgValueKind::Value, Val)) {
1335          LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI)
1336                            << "\n");
1337          LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1338          // Increase the SDNodeOrder for the DbgValue here to make sure it is
1339          // inserted after the definition of Val when emitting the instructions
1340          // after ISel. An alternative could be to teach
1341          // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1342          LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1343                     << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1344                     << ValSDNodeOrder << "\n");
1345          SDV = getDbgValue(Val, Variable, Expr, DL,
1346                            std::max(DbgSDNodeOrder, ValSDNodeOrder));
1347          DAG.AddDbgValue(SDV, false);
1348        } else
1349          LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1350                            << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n");
1351      } else {
1352        LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n");
1353        auto Undef = UndefValue::get(V->getType());
1354        auto SDV =
1355            DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1356        DAG.AddDbgValue(SDV, false);
1357      }
1358    }
1359    DDIV.clear();
1360  }
1361  
1362  void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1363    // TODO: For the variadic implementation, instead of only checking the fail
1364    // state of `handleDebugValue`, we need know specifically which values were
1365    // invalid, so that we attempt to salvage only those values when processing
1366    // a DIArgList.
1367    Value *V = DDI.getVariableLocationOp(0);
1368    Value *OrigV = V;
1369    DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs());
1370    DIExpression *Expr = DDI.getExpression();
1371    DebugLoc DL = DDI.getDebugLoc();
1372    unsigned SDOrder = DDI.getSDNodeOrder();
1373  
1374    // Currently we consider only dbg.value intrinsics -- we tell the salvager
1375    // that DW_OP_stack_value is desired.
1376    bool StackValue = true;
1377  
1378    // Can this Value can be encoded without any further work?
1379    if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1380      return;
1381  
1382    // Attempt to salvage back through as many instructions as possible. Bail if
1383    // a non-instruction is seen, such as a constant expression or global
1384    // variable. FIXME: Further work could recover those too.
1385    while (isa<Instruction>(V)) {
1386      Instruction &VAsInst = *cast<Instruction>(V);
1387      // Temporary "0", awaiting real implementation.
1388      SmallVector<uint64_t, 16> Ops;
1389      SmallVector<Value *, 4> AdditionalValues;
1390      V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1391                               AdditionalValues);
1392      // If we cannot salvage any further, and haven't yet found a suitable debug
1393      // expression, bail out.
1394      if (!V)
1395        break;
1396  
1397      // TODO: If AdditionalValues isn't empty, then the salvage can only be
1398      // represented with a DBG_VALUE_LIST, so we give up. When we have support
1399      // here for variadic dbg_values, remove that condition.
1400      if (!AdditionalValues.empty())
1401        break;
1402  
1403      // New value and expr now represent this debuginfo.
1404      Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1405  
1406      // Some kind of simplification occurred: check whether the operand of the
1407      // salvaged debug expression can be encoded in this DAG.
1408      if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1409        LLVM_DEBUG(
1410            dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1411                   << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1412        return;
1413      }
1414    }
1415  
1416    // This was the final opportunity to salvage this debug information, and it
1417    // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1418    // any earlier variable location.
1419    assert(OrigV && "V shouldn't be null");
1420    auto *Undef = UndefValue::get(OrigV->getType());
1421    auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1422    DAG.AddDbgValue(SDV, false);
1423    LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << printDDI(DDI)
1424                      << "\n");
1425  }
1426  
1427  void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1428                                                 DIExpression *Expr,
1429                                                 DebugLoc DbgLoc,
1430                                                 unsigned Order) {
1431    Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1432    DIExpression *NewExpr =
1433        const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1434    handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1435                     /*IsVariadic*/ false);
1436  }
1437  
1438  bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1439                                             DILocalVariable *Var,
1440                                             DIExpression *Expr, DebugLoc DbgLoc,
1441                                             unsigned Order, bool IsVariadic) {
1442    if (Values.empty())
1443      return true;
1444    SmallVector<SDDbgOperand> LocationOps;
1445    SmallVector<SDNode *> Dependencies;
1446    for (const Value *V : Values) {
1447      // Constant value.
1448      if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1449          isa<ConstantPointerNull>(V)) {
1450        LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1451        continue;
1452      }
1453  
1454      // Look through IntToPtr constants.
1455      if (auto *CE = dyn_cast<ConstantExpr>(V))
1456        if (CE->getOpcode() == Instruction::IntToPtr) {
1457          LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1458          continue;
1459        }
1460  
1461      // If the Value is a frame index, we can create a FrameIndex debug value
1462      // without relying on the DAG at all.
1463      if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1464        auto SI = FuncInfo.StaticAllocaMap.find(AI);
1465        if (SI != FuncInfo.StaticAllocaMap.end()) {
1466          LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1467          continue;
1468        }
1469      }
1470  
1471      // Do not use getValue() in here; we don't want to generate code at
1472      // this point if it hasn't been done yet.
1473      SDValue N = NodeMap[V];
1474      if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1475        N = UnusedArgNodeMap[V];
1476      if (N.getNode()) {
1477        // Only emit func arg dbg value for non-variadic dbg.values for now.
1478        if (!IsVariadic &&
1479            EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1480                                     FuncArgumentDbgValueKind::Value, N))
1481          return true;
1482        if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1483          // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1484          // describe stack slot locations.
1485          //
1486          // Consider "int x = 0; int *px = &x;". There are two kinds of
1487          // interesting debug values here after optimization:
1488          //
1489          //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1490          //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1491          //
1492          // Both describe the direct values of their associated variables.
1493          Dependencies.push_back(N.getNode());
1494          LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1495          continue;
1496        }
1497        LocationOps.emplace_back(
1498            SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1499        continue;
1500      }
1501  
1502      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1503      // Special rules apply for the first dbg.values of parameter variables in a
1504      // function. Identify them by the fact they reference Argument Values, that
1505      // they're parameters, and they are parameters of the current function. We
1506      // need to let them dangle until they get an SDNode.
1507      bool IsParamOfFunc =
1508          isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1509      if (IsParamOfFunc)
1510        return false;
1511  
1512      // The value is not used in this block yet (or it would have an SDNode).
1513      // We still want the value to appear for the user if possible -- if it has
1514      // an associated VReg, we can refer to that instead.
1515      auto VMI = FuncInfo.ValueMap.find(V);
1516      if (VMI != FuncInfo.ValueMap.end()) {
1517        unsigned Reg = VMI->second;
1518        // If this is a PHI node, it may be split up into several MI PHI nodes
1519        // (in FunctionLoweringInfo::set).
1520        RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1521                         V->getType(), std::nullopt);
1522        if (RFV.occupiesMultipleRegs()) {
1523          // FIXME: We could potentially support variadic dbg_values here.
1524          if (IsVariadic)
1525            return false;
1526          unsigned Offset = 0;
1527          unsigned BitsToDescribe = 0;
1528          if (auto VarSize = Var->getSizeInBits())
1529            BitsToDescribe = *VarSize;
1530          if (auto Fragment = Expr->getFragmentInfo())
1531            BitsToDescribe = Fragment->SizeInBits;
1532          for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1533            // Bail out if all bits are described already.
1534            if (Offset >= BitsToDescribe)
1535              break;
1536            // TODO: handle scalable vectors.
1537            unsigned RegisterSize = RegAndSize.second;
1538            unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1539                                        ? BitsToDescribe - Offset
1540                                        : RegisterSize;
1541            auto FragmentExpr = DIExpression::createFragmentExpression(
1542                Expr, Offset, FragmentSize);
1543            if (!FragmentExpr)
1544              continue;
1545            SDDbgValue *SDV = DAG.getVRegDbgValue(
1546                Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1547            DAG.AddDbgValue(SDV, false);
1548            Offset += RegisterSize;
1549          }
1550          return true;
1551        }
1552        // We can use simple vreg locations for variadic dbg_values as well.
1553        LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1554        continue;
1555      }
1556      // We failed to create a SDDbgOperand for V.
1557      return false;
1558    }
1559  
1560    // We have created a SDDbgOperand for each Value in Values.
1561    // Should use Order instead of SDNodeOrder?
1562    assert(!LocationOps.empty());
1563    SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1564                                          /*IsIndirect=*/false, DbgLoc,
1565                                          SDNodeOrder, IsVariadic);
1566    DAG.AddDbgValue(SDV, /*isParameter=*/false);
1567    return true;
1568  }
1569  
1570  void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1571    // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1572    for (auto &Pair : DanglingDebugInfoMap)
1573      for (auto &DDI : Pair.second)
1574        salvageUnresolvedDbgValue(DDI);
1575    clearDanglingDebugInfo();
1576  }
1577  
1578  /// getCopyFromRegs - If there was virtual register allocated for the value V
1579  /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1580  SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1581    DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1582    SDValue Result;
1583  
1584    if (It != FuncInfo.ValueMap.end()) {
1585      Register InReg = It->second;
1586  
1587      RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1588                       DAG.getDataLayout(), InReg, Ty,
1589                       std::nullopt); // This is not an ABI copy.
1590      SDValue Chain = DAG.getEntryNode();
1591      Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1592                                   V);
1593      resolveDanglingDebugInfo(V, Result);
1594    }
1595  
1596    return Result;
1597  }
1598  
1599  /// getValue - Return an SDValue for the given Value.
1600  SDValue SelectionDAGBuilder::getValue(const Value *V) {
1601    // If we already have an SDValue for this value, use it. It's important
1602    // to do this first, so that we don't create a CopyFromReg if we already
1603    // have a regular SDValue.
1604    SDValue &N = NodeMap[V];
1605    if (N.getNode()) return N;
1606  
1607    // If there's a virtual register allocated and initialized for this
1608    // value, use it.
1609    if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1610      return copyFromReg;
1611  
1612    // Otherwise create a new SDValue and remember it.
1613    SDValue Val = getValueImpl(V);
1614    NodeMap[V] = Val;
1615    resolveDanglingDebugInfo(V, Val);
1616    return Val;
1617  }
1618  
1619  /// getNonRegisterValue - Return an SDValue for the given Value, but
1620  /// don't look in FuncInfo.ValueMap for a virtual register.
1621  SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1622    // If we already have an SDValue for this value, use it.
1623    SDValue &N = NodeMap[V];
1624    if (N.getNode()) {
1625      if (isIntOrFPConstant(N)) {
1626        // Remove the debug location from the node as the node is about to be used
1627        // in a location which may differ from the original debug location.  This
1628        // is relevant to Constant and ConstantFP nodes because they can appear
1629        // as constant expressions inside PHI nodes.
1630        N->setDebugLoc(DebugLoc());
1631      }
1632      return N;
1633    }
1634  
1635    // Otherwise create a new SDValue and remember it.
1636    SDValue Val = getValueImpl(V);
1637    NodeMap[V] = Val;
1638    resolveDanglingDebugInfo(V, Val);
1639    return Val;
1640  }
1641  
1642  /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1643  /// Create an SDValue for the given value.
1644  SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1645    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1646  
1647    if (const Constant *C = dyn_cast<Constant>(V)) {
1648      EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1649  
1650      if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1651        return DAG.getConstant(*CI, getCurSDLoc(), VT);
1652  
1653      if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1654        return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1655  
1656      if (isa<ConstantPointerNull>(C)) {
1657        unsigned AS = V->getType()->getPointerAddressSpace();
1658        return DAG.getConstant(0, getCurSDLoc(),
1659                               TLI.getPointerTy(DAG.getDataLayout(), AS));
1660      }
1661  
1662      if (match(C, m_VScale()))
1663        return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1664  
1665      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1666        return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1667  
1668      if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1669        return DAG.getUNDEF(VT);
1670  
1671      if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1672        visit(CE->getOpcode(), *CE);
1673        SDValue N1 = NodeMap[V];
1674        assert(N1.getNode() && "visit didn't populate the NodeMap!");
1675        return N1;
1676      }
1677  
1678      if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1679        SmallVector<SDValue, 4> Constants;
1680        for (const Use &U : C->operands()) {
1681          SDNode *Val = getValue(U).getNode();
1682          // If the operand is an empty aggregate, there are no values.
1683          if (!Val) continue;
1684          // Add each leaf value from the operand to the Constants list
1685          // to form a flattened list of all the values.
1686          for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1687            Constants.push_back(SDValue(Val, i));
1688        }
1689  
1690        return DAG.getMergeValues(Constants, getCurSDLoc());
1691      }
1692  
1693      if (const ConstantDataSequential *CDS =
1694            dyn_cast<ConstantDataSequential>(C)) {
1695        SmallVector<SDValue, 4> Ops;
1696        for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1697          SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1698          // Add each leaf value from the operand to the Constants list
1699          // to form a flattened list of all the values.
1700          for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1701            Ops.push_back(SDValue(Val, i));
1702        }
1703  
1704        if (isa<ArrayType>(CDS->getType()))
1705          return DAG.getMergeValues(Ops, getCurSDLoc());
1706        return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1707      }
1708  
1709      if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1710        assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1711               "Unknown struct or array constant!");
1712  
1713        SmallVector<EVT, 4> ValueVTs;
1714        ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1715        unsigned NumElts = ValueVTs.size();
1716        if (NumElts == 0)
1717          return SDValue(); // empty struct
1718        SmallVector<SDValue, 4> Constants(NumElts);
1719        for (unsigned i = 0; i != NumElts; ++i) {
1720          EVT EltVT = ValueVTs[i];
1721          if (isa<UndefValue>(C))
1722            Constants[i] = DAG.getUNDEF(EltVT);
1723          else if (EltVT.isFloatingPoint())
1724            Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1725          else
1726            Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1727        }
1728  
1729        return DAG.getMergeValues(Constants, getCurSDLoc());
1730      }
1731  
1732      if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1733        return DAG.getBlockAddress(BA, VT);
1734  
1735      if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1736        return getValue(Equiv->getGlobalValue());
1737  
1738      if (const auto *NC = dyn_cast<NoCFIValue>(C))
1739        return getValue(NC->getGlobalValue());
1740  
1741      VectorType *VecTy = cast<VectorType>(V->getType());
1742  
1743      // Now that we know the number and type of the elements, get that number of
1744      // elements into the Ops array based on what kind of constant it is.
1745      if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1746        SmallVector<SDValue, 16> Ops;
1747        unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1748        for (unsigned i = 0; i != NumElements; ++i)
1749          Ops.push_back(getValue(CV->getOperand(i)));
1750  
1751        return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1752      }
1753  
1754      if (isa<ConstantAggregateZero>(C)) {
1755        EVT EltVT =
1756            TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1757  
1758        SDValue Op;
1759        if (EltVT.isFloatingPoint())
1760          Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1761        else
1762          Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1763  
1764        return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1765      }
1766  
1767      llvm_unreachable("Unknown vector constant");
1768    }
1769  
1770    // If this is a static alloca, generate it as the frameindex instead of
1771    // computation.
1772    if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1773      DenseMap<const AllocaInst*, int>::iterator SI =
1774        FuncInfo.StaticAllocaMap.find(AI);
1775      if (SI != FuncInfo.StaticAllocaMap.end())
1776        return DAG.getFrameIndex(
1777            SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1778    }
1779  
1780    // If this is an instruction which fast-isel has deferred, select it now.
1781    if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1782      Register InReg = FuncInfo.InitializeRegForValue(Inst);
1783  
1784      RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1785                       Inst->getType(), std::nullopt);
1786      SDValue Chain = DAG.getEntryNode();
1787      return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1788    }
1789  
1790    if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1791      return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1792  
1793    if (const auto *BB = dyn_cast<BasicBlock>(V))
1794      return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1795  
1796    llvm_unreachable("Can't get register for value!");
1797  }
1798  
1799  void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1800    auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1801    bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1802    bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1803    bool IsSEH = isAsynchronousEHPersonality(Pers);
1804    MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1805    if (!IsSEH)
1806      CatchPadMBB->setIsEHScopeEntry();
1807    // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1808    if (IsMSVCCXX || IsCoreCLR)
1809      CatchPadMBB->setIsEHFuncletEntry();
1810  }
1811  
1812  void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1813    // Update machine-CFG edge.
1814    MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1815    FuncInfo.MBB->addSuccessor(TargetMBB);
1816    TargetMBB->setIsEHCatchretTarget(true);
1817    DAG.getMachineFunction().setHasEHCatchret(true);
1818  
1819    auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1820    bool IsSEH = isAsynchronousEHPersonality(Pers);
1821    if (IsSEH) {
1822      // If this is not a fall-through branch or optimizations are switched off,
1823      // emit the branch.
1824      if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1825          TM.getOptLevel() == CodeGenOpt::None)
1826        DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1827                                getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1828      return;
1829    }
1830  
1831    // Figure out the funclet membership for the catchret's successor.
1832    // This will be used by the FuncletLayout pass to determine how to order the
1833    // BB's.
1834    // A 'catchret' returns to the outer scope's color.
1835    Value *ParentPad = I.getCatchSwitchParentPad();
1836    const BasicBlock *SuccessorColor;
1837    if (isa<ConstantTokenNone>(ParentPad))
1838      SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1839    else
1840      SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1841    assert(SuccessorColor && "No parent funclet for catchret!");
1842    MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1843    assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1844  
1845    // Create the terminator node.
1846    SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1847                              getControlRoot(), DAG.getBasicBlock(TargetMBB),
1848                              DAG.getBasicBlock(SuccessorColorMBB));
1849    DAG.setRoot(Ret);
1850  }
1851  
1852  void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1853    // Don't emit any special code for the cleanuppad instruction. It just marks
1854    // the start of an EH scope/funclet.
1855    FuncInfo.MBB->setIsEHScopeEntry();
1856    auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1857    if (Pers != EHPersonality::Wasm_CXX) {
1858      FuncInfo.MBB->setIsEHFuncletEntry();
1859      FuncInfo.MBB->setIsCleanupFuncletEntry();
1860    }
1861  }
1862  
1863  // In wasm EH, even though a catchpad may not catch an exception if a tag does
1864  // not match, it is OK to add only the first unwind destination catchpad to the
1865  // successors, because there will be at least one invoke instruction within the
1866  // catch scope that points to the next unwind destination, if one exists, so
1867  // CFGSort cannot mess up with BB sorting order.
1868  // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1869  // call within them, and catchpads only consisting of 'catch (...)' have a
1870  // '__cxa_end_catch' call within them, both of which generate invokes in case
1871  // the next unwind destination exists, i.e., the next unwind destination is not
1872  // the caller.)
1873  //
1874  // Having at most one EH pad successor is also simpler and helps later
1875  // transformations.
1876  //
1877  // For example,
1878  // current:
1879  //   invoke void @foo to ... unwind label %catch.dispatch
1880  // catch.dispatch:
1881  //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1882  // catch.start:
1883  //   ...
1884  //   ... in this BB or some other child BB dominated by this BB there will be an
1885  //   invoke that points to 'next' BB as an unwind destination
1886  //
1887  // next: ; We don't need to add this to 'current' BB's successor
1888  //   ...
1889  static void findWasmUnwindDestinations(
1890      FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1891      BranchProbability Prob,
1892      SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1893          &UnwindDests) {
1894    while (EHPadBB) {
1895      const Instruction *Pad = EHPadBB->getFirstNonPHI();
1896      if (isa<CleanupPadInst>(Pad)) {
1897        // Stop on cleanup pads.
1898        UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1899        UnwindDests.back().first->setIsEHScopeEntry();
1900        break;
1901      } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1902        // Add the catchpad handlers to the possible destinations. We don't
1903        // continue to the unwind destination of the catchswitch for wasm.
1904        for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1905          UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1906          UnwindDests.back().first->setIsEHScopeEntry();
1907        }
1908        break;
1909      } else {
1910        continue;
1911      }
1912    }
1913  }
1914  
1915  /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1916  /// many places it could ultimately go. In the IR, we have a single unwind
1917  /// destination, but in the machine CFG, we enumerate all the possible blocks.
1918  /// This function skips over imaginary basic blocks that hold catchswitch
1919  /// instructions, and finds all the "real" machine
1920  /// basic block destinations. As those destinations may not be successors of
1921  /// EHPadBB, here we also calculate the edge probability to those destinations.
1922  /// The passed-in Prob is the edge probability to EHPadBB.
1923  static void findUnwindDestinations(
1924      FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1925      BranchProbability Prob,
1926      SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1927          &UnwindDests) {
1928    EHPersonality Personality =
1929      classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1930    bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1931    bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1932    bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1933    bool IsSEH = isAsynchronousEHPersonality(Personality);
1934  
1935    if (IsWasmCXX) {
1936      findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1937      assert(UnwindDests.size() <= 1 &&
1938             "There should be at most one unwind destination for wasm");
1939      return;
1940    }
1941  
1942    while (EHPadBB) {
1943      const Instruction *Pad = EHPadBB->getFirstNonPHI();
1944      BasicBlock *NewEHPadBB = nullptr;
1945      if (isa<LandingPadInst>(Pad)) {
1946        // Stop on landingpads. They are not funclets.
1947        UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1948        break;
1949      } else if (isa<CleanupPadInst>(Pad)) {
1950        // Stop on cleanup pads. Cleanups are always funclet entries for all known
1951        // personalities.
1952        UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1953        UnwindDests.back().first->setIsEHScopeEntry();
1954        UnwindDests.back().first->setIsEHFuncletEntry();
1955        break;
1956      } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1957        // Add the catchpad handlers to the possible destinations.
1958        for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1959          UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1960          // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1961          if (IsMSVCCXX || IsCoreCLR)
1962            UnwindDests.back().first->setIsEHFuncletEntry();
1963          if (!IsSEH)
1964            UnwindDests.back().first->setIsEHScopeEntry();
1965        }
1966        NewEHPadBB = CatchSwitch->getUnwindDest();
1967      } else {
1968        continue;
1969      }
1970  
1971      BranchProbabilityInfo *BPI = FuncInfo.BPI;
1972      if (BPI && NewEHPadBB)
1973        Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1974      EHPadBB = NewEHPadBB;
1975    }
1976  }
1977  
1978  void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1979    // Update successor info.
1980    SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1981    auto UnwindDest = I.getUnwindDest();
1982    BranchProbabilityInfo *BPI = FuncInfo.BPI;
1983    BranchProbability UnwindDestProb =
1984        (BPI && UnwindDest)
1985            ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1986            : BranchProbability::getZero();
1987    findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1988    for (auto &UnwindDest : UnwindDests) {
1989      UnwindDest.first->setIsEHPad();
1990      addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1991    }
1992    FuncInfo.MBB->normalizeSuccProbs();
1993  
1994    // Create the terminator node.
1995    SDValue Ret =
1996        DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1997    DAG.setRoot(Ret);
1998  }
1999  
2000  void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2001    report_fatal_error("visitCatchSwitch not yet implemented!");
2002  }
2003  
2004  void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2005    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2006    auto &DL = DAG.getDataLayout();
2007    SDValue Chain = getControlRoot();
2008    SmallVector<ISD::OutputArg, 8> Outs;
2009    SmallVector<SDValue, 8> OutVals;
2010  
2011    // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2012    // lower
2013    //
2014    //   %val = call <ty> @llvm.experimental.deoptimize()
2015    //   ret <ty> %val
2016    //
2017    // differently.
2018    if (I.getParent()->getTerminatingDeoptimizeCall()) {
2019      LowerDeoptimizingReturn();
2020      return;
2021    }
2022  
2023    if (!FuncInfo.CanLowerReturn) {
2024      unsigned DemoteReg = FuncInfo.DemoteRegister;
2025      const Function *F = I.getParent()->getParent();
2026  
2027      // Emit a store of the return value through the virtual register.
2028      // Leave Outs empty so that LowerReturn won't try to load return
2029      // registers the usual way.
2030      SmallVector<EVT, 1> PtrValueVTs;
2031      ComputeValueVTs(TLI, DL,
2032                      PointerType::get(F->getContext(),
2033                                       DAG.getDataLayout().getAllocaAddrSpace()),
2034                      PtrValueVTs);
2035  
2036      SDValue RetPtr =
2037          DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2038      SDValue RetOp = getValue(I.getOperand(0));
2039  
2040      SmallVector<EVT, 4> ValueVTs, MemVTs;
2041      SmallVector<uint64_t, 4> Offsets;
2042      ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2043                      &Offsets, 0);
2044      unsigned NumValues = ValueVTs.size();
2045  
2046      SmallVector<SDValue, 4> Chains(NumValues);
2047      Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2048      for (unsigned i = 0; i != NumValues; ++i) {
2049        // An aggregate return value cannot wrap around the address space, so
2050        // offsets to its parts don't wrap either.
2051        SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2052                                             TypeSize::Fixed(Offsets[i]));
2053  
2054        SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2055        if (MemVTs[i] != ValueVTs[i])
2056          Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2057        Chains[i] = DAG.getStore(
2058            Chain, getCurSDLoc(), Val,
2059            // FIXME: better loc info would be nice.
2060            Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2061            commonAlignment(BaseAlign, Offsets[i]));
2062      }
2063  
2064      Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2065                          MVT::Other, Chains);
2066    } else if (I.getNumOperands() != 0) {
2067      SmallVector<EVT, 4> ValueVTs;
2068      ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2069      unsigned NumValues = ValueVTs.size();
2070      if (NumValues) {
2071        SDValue RetOp = getValue(I.getOperand(0));
2072  
2073        const Function *F = I.getParent()->getParent();
2074  
2075        bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2076            I.getOperand(0)->getType(), F->getCallingConv(),
2077            /*IsVarArg*/ false, DL);
2078  
2079        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2080        if (F->getAttributes().hasRetAttr(Attribute::SExt))
2081          ExtendKind = ISD::SIGN_EXTEND;
2082        else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2083          ExtendKind = ISD::ZERO_EXTEND;
2084  
2085        LLVMContext &Context = F->getContext();
2086        bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2087  
2088        for (unsigned j = 0; j != NumValues; ++j) {
2089          EVT VT = ValueVTs[j];
2090  
2091          if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2092            VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2093  
2094          CallingConv::ID CC = F->getCallingConv();
2095  
2096          unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2097          MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2098          SmallVector<SDValue, 4> Parts(NumParts);
2099          getCopyToParts(DAG, getCurSDLoc(),
2100                         SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2101                         &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2102  
2103          // 'inreg' on function refers to return value
2104          ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2105          if (RetInReg)
2106            Flags.setInReg();
2107  
2108          if (I.getOperand(0)->getType()->isPointerTy()) {
2109            Flags.setPointer();
2110            Flags.setPointerAddrSpace(
2111                cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2112          }
2113  
2114          if (NeedsRegBlock) {
2115            Flags.setInConsecutiveRegs();
2116            if (j == NumValues - 1)
2117              Flags.setInConsecutiveRegsLast();
2118          }
2119  
2120          // Propagate extension type if any
2121          if (ExtendKind == ISD::SIGN_EXTEND)
2122            Flags.setSExt();
2123          else if (ExtendKind == ISD::ZERO_EXTEND)
2124            Flags.setZExt();
2125  
2126          for (unsigned i = 0; i < NumParts; ++i) {
2127            Outs.push_back(ISD::OutputArg(Flags,
2128                                          Parts[i].getValueType().getSimpleVT(),
2129                                          VT, /*isfixed=*/true, 0, 0));
2130            OutVals.push_back(Parts[i]);
2131          }
2132        }
2133      }
2134    }
2135  
2136    // Push in swifterror virtual register as the last element of Outs. This makes
2137    // sure swifterror virtual register will be returned in the swifterror
2138    // physical register.
2139    const Function *F = I.getParent()->getParent();
2140    if (TLI.supportSwiftError() &&
2141        F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2142      assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2143      ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2144      Flags.setSwiftError();
2145      Outs.push_back(ISD::OutputArg(
2146          Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2147          /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2148      // Create SDNode for the swifterror virtual register.
2149      OutVals.push_back(
2150          DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2151                              &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2152                          EVT(TLI.getPointerTy(DL))));
2153    }
2154  
2155    bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2156    CallingConv::ID CallConv =
2157      DAG.getMachineFunction().getFunction().getCallingConv();
2158    Chain = DAG.getTargetLoweringInfo().LowerReturn(
2159        Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2160  
2161    // Verify that the target's LowerReturn behaved as expected.
2162    assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2163           "LowerReturn didn't return a valid chain!");
2164  
2165    // Update the DAG with the new chain value resulting from return lowering.
2166    DAG.setRoot(Chain);
2167  }
2168  
2169  /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2170  /// created for it, emit nodes to copy the value into the virtual
2171  /// registers.
2172  void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2173    // Skip empty types
2174    if (V->getType()->isEmptyTy())
2175      return;
2176  
2177    DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2178    if (VMI != FuncInfo.ValueMap.end()) {
2179      assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2180             "Unused value assigned virtual registers!");
2181      CopyValueToVirtualRegister(V, VMI->second);
2182    }
2183  }
2184  
2185  /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2186  /// the current basic block, add it to ValueMap now so that we'll get a
2187  /// CopyTo/FromReg.
2188  void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2189    // No need to export constants.
2190    if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2191  
2192    // Already exported?
2193    if (FuncInfo.isExportedInst(V)) return;
2194  
2195    Register Reg = FuncInfo.InitializeRegForValue(V);
2196    CopyValueToVirtualRegister(V, Reg);
2197  }
2198  
2199  bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2200                                                       const BasicBlock *FromBB) {
2201    // The operands of the setcc have to be in this block.  We don't know
2202    // how to export them from some other block.
2203    if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2204      // Can export from current BB.
2205      if (VI->getParent() == FromBB)
2206        return true;
2207  
2208      // Is already exported, noop.
2209      return FuncInfo.isExportedInst(V);
2210    }
2211  
2212    // If this is an argument, we can export it if the BB is the entry block or
2213    // if it is already exported.
2214    if (isa<Argument>(V)) {
2215      if (FromBB->isEntryBlock())
2216        return true;
2217  
2218      // Otherwise, can only export this if it is already exported.
2219      return FuncInfo.isExportedInst(V);
2220    }
2221  
2222    // Otherwise, constants can always be exported.
2223    return true;
2224  }
2225  
2226  /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2227  BranchProbability
2228  SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2229                                          const MachineBasicBlock *Dst) const {
2230    BranchProbabilityInfo *BPI = FuncInfo.BPI;
2231    const BasicBlock *SrcBB = Src->getBasicBlock();
2232    const BasicBlock *DstBB = Dst->getBasicBlock();
2233    if (!BPI) {
2234      // If BPI is not available, set the default probability as 1 / N, where N is
2235      // the number of successors.
2236      auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2237      return BranchProbability(1, SuccSize);
2238    }
2239    return BPI->getEdgeProbability(SrcBB, DstBB);
2240  }
2241  
2242  void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2243                                                 MachineBasicBlock *Dst,
2244                                                 BranchProbability Prob) {
2245    if (!FuncInfo.BPI)
2246      Src->addSuccessorWithoutProb(Dst);
2247    else {
2248      if (Prob.isUnknown())
2249        Prob = getEdgeProbability(Src, Dst);
2250      Src->addSuccessor(Dst, Prob);
2251    }
2252  }
2253  
2254  static bool InBlock(const Value *V, const BasicBlock *BB) {
2255    if (const Instruction *I = dyn_cast<Instruction>(V))
2256      return I->getParent() == BB;
2257    return true;
2258  }
2259  
2260  /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2261  /// This function emits a branch and is used at the leaves of an OR or an
2262  /// AND operator tree.
2263  void
2264  SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2265                                                    MachineBasicBlock *TBB,
2266                                                    MachineBasicBlock *FBB,
2267                                                    MachineBasicBlock *CurBB,
2268                                                    MachineBasicBlock *SwitchBB,
2269                                                    BranchProbability TProb,
2270                                                    BranchProbability FProb,
2271                                                    bool InvertCond) {
2272    const BasicBlock *BB = CurBB->getBasicBlock();
2273  
2274    // If the leaf of the tree is a comparison, merge the condition into
2275    // the caseblock.
2276    if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2277      // The operands of the cmp have to be in this block.  We don't know
2278      // how to export them from some other block.  If this is the first block
2279      // of the sequence, no exporting is needed.
2280      if (CurBB == SwitchBB ||
2281          (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2282           isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2283        ISD::CondCode Condition;
2284        if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2285          ICmpInst::Predicate Pred =
2286              InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2287          Condition = getICmpCondCode(Pred);
2288        } else {
2289          const FCmpInst *FC = cast<FCmpInst>(Cond);
2290          FCmpInst::Predicate Pred =
2291              InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2292          Condition = getFCmpCondCode(Pred);
2293          if (TM.Options.NoNaNsFPMath)
2294            Condition = getFCmpCodeWithoutNaN(Condition);
2295        }
2296  
2297        CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2298                     TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2299        SL->SwitchCases.push_back(CB);
2300        return;
2301      }
2302    }
2303  
2304    // Create a CaseBlock record representing this branch.
2305    ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2306    CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2307                 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2308    SL->SwitchCases.push_back(CB);
2309  }
2310  
2311  void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2312                                                 MachineBasicBlock *TBB,
2313                                                 MachineBasicBlock *FBB,
2314                                                 MachineBasicBlock *CurBB,
2315                                                 MachineBasicBlock *SwitchBB,
2316                                                 Instruction::BinaryOps Opc,
2317                                                 BranchProbability TProb,
2318                                                 BranchProbability FProb,
2319                                                 bool InvertCond) {
2320    // Skip over not part of the tree and remember to invert op and operands at
2321    // next level.
2322    Value *NotCond;
2323    if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2324        InBlock(NotCond, CurBB->getBasicBlock())) {
2325      FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2326                           !InvertCond);
2327      return;
2328    }
2329  
2330    const Instruction *BOp = dyn_cast<Instruction>(Cond);
2331    const Value *BOpOp0, *BOpOp1;
2332    // Compute the effective opcode for Cond, taking into account whether it needs
2333    // to be inverted, e.g.
2334    //   and (not (or A, B)), C
2335    // gets lowered as
2336    //   and (and (not A, not B), C)
2337    Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2338    if (BOp) {
2339      BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2340                 ? Instruction::And
2341                 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2342                        ? Instruction::Or
2343                        : (Instruction::BinaryOps)0);
2344      if (InvertCond) {
2345        if (BOpc == Instruction::And)
2346          BOpc = Instruction::Or;
2347        else if (BOpc == Instruction::Or)
2348          BOpc = Instruction::And;
2349      }
2350    }
2351  
2352    // If this node is not part of the or/and tree, emit it as a branch.
2353    // Note that all nodes in the tree should have same opcode.
2354    bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2355    if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2356        !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2357        !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2358      EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2359                                   TProb, FProb, InvertCond);
2360      return;
2361    }
2362  
2363    //  Create TmpBB after CurBB.
2364    MachineFunction::iterator BBI(CurBB);
2365    MachineFunction &MF = DAG.getMachineFunction();
2366    MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2367    CurBB->getParent()->insert(++BBI, TmpBB);
2368  
2369    if (Opc == Instruction::Or) {
2370      // Codegen X | Y as:
2371      // BB1:
2372      //   jmp_if_X TBB
2373      //   jmp TmpBB
2374      // TmpBB:
2375      //   jmp_if_Y TBB
2376      //   jmp FBB
2377      //
2378  
2379      // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2380      // The requirement is that
2381      //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2382      //     = TrueProb for original BB.
2383      // Assuming the original probabilities are A and B, one choice is to set
2384      // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2385      // A/(1+B) and 2B/(1+B). This choice assumes that
2386      //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2387      // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2388      // TmpBB, but the math is more complicated.
2389  
2390      auto NewTrueProb = TProb / 2;
2391      auto NewFalseProb = TProb / 2 + FProb;
2392      // Emit the LHS condition.
2393      FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2394                           NewFalseProb, InvertCond);
2395  
2396      // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2397      SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2398      BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2399      // Emit the RHS condition into TmpBB.
2400      FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2401                           Probs[1], InvertCond);
2402    } else {
2403      assert(Opc == Instruction::And && "Unknown merge op!");
2404      // Codegen X & Y as:
2405      // BB1:
2406      //   jmp_if_X TmpBB
2407      //   jmp FBB
2408      // TmpBB:
2409      //   jmp_if_Y TBB
2410      //   jmp FBB
2411      //
2412      //  This requires creation of TmpBB after CurBB.
2413  
2414      // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2415      // The requirement is that
2416      //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2417      //     = FalseProb for original BB.
2418      // Assuming the original probabilities are A and B, one choice is to set
2419      // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2420      // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2421      // TrueProb for BB1 * FalseProb for TmpBB.
2422  
2423      auto NewTrueProb = TProb + FProb / 2;
2424      auto NewFalseProb = FProb / 2;
2425      // Emit the LHS condition.
2426      FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2427                           NewFalseProb, InvertCond);
2428  
2429      // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2430      SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2431      BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2432      // Emit the RHS condition into TmpBB.
2433      FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2434                           Probs[1], InvertCond);
2435    }
2436  }
2437  
2438  /// If the set of cases should be emitted as a series of branches, return true.
2439  /// If we should emit this as a bunch of and/or'd together conditions, return
2440  /// false.
2441  bool
2442  SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2443    if (Cases.size() != 2) return true;
2444  
2445    // If this is two comparisons of the same values or'd or and'd together, they
2446    // will get folded into a single comparison, so don't emit two blocks.
2447    if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2448         Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2449        (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2450         Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2451      return false;
2452    }
2453  
2454    // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2455    // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2456    if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2457        Cases[0].CC == Cases[1].CC &&
2458        isa<Constant>(Cases[0].CmpRHS) &&
2459        cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2460      if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2461        return false;
2462      if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2463        return false;
2464    }
2465  
2466    return true;
2467  }
2468  
2469  void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2470    MachineBasicBlock *BrMBB = FuncInfo.MBB;
2471  
2472    // Update machine-CFG edges.
2473    MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2474  
2475    if (I.isUnconditional()) {
2476      // Update machine-CFG edges.
2477      BrMBB->addSuccessor(Succ0MBB);
2478  
2479      // If this is not a fall-through branch or optimizations are switched off,
2480      // emit the branch.
2481      if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) {
2482        auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2483                              getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2484        setValue(&I, Br);
2485        DAG.setRoot(Br);
2486      }
2487  
2488      return;
2489    }
2490  
2491    // If this condition is one of the special cases we handle, do special stuff
2492    // now.
2493    const Value *CondVal = I.getCondition();
2494    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2495  
2496    // If this is a series of conditions that are or'd or and'd together, emit
2497    // this as a sequence of branches instead of setcc's with and/or operations.
2498    // As long as jumps are not expensive (exceptions for multi-use logic ops,
2499    // unpredictable branches, and vector extracts because those jumps are likely
2500    // expensive for any target), this should improve performance.
2501    // For example, instead of something like:
2502    //     cmp A, B
2503    //     C = seteq
2504    //     cmp D, E
2505    //     F = setle
2506    //     or C, F
2507    //     jnz foo
2508    // Emit:
2509    //     cmp A, B
2510    //     je foo
2511    //     cmp D, E
2512    //     jle foo
2513    const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2514    if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2515        BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2516      Value *Vec;
2517      const Value *BOp0, *BOp1;
2518      Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2519      if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2520        Opcode = Instruction::And;
2521      else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2522        Opcode = Instruction::Or;
2523  
2524      if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2525                      match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2526        FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2527                             getEdgeProbability(BrMBB, Succ0MBB),
2528                             getEdgeProbability(BrMBB, Succ1MBB),
2529                             /*InvertCond=*/false);
2530        // If the compares in later blocks need to use values not currently
2531        // exported from this block, export them now.  This block should always
2532        // be the first entry.
2533        assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2534  
2535        // Allow some cases to be rejected.
2536        if (ShouldEmitAsBranches(SL->SwitchCases)) {
2537          for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2538            ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2539            ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2540          }
2541  
2542          // Emit the branch for this block.
2543          visitSwitchCase(SL->SwitchCases[0], BrMBB);
2544          SL->SwitchCases.erase(SL->SwitchCases.begin());
2545          return;
2546        }
2547  
2548        // Okay, we decided not to do this, remove any inserted MBB's and clear
2549        // SwitchCases.
2550        for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2551          FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2552  
2553        SL->SwitchCases.clear();
2554      }
2555    }
2556  
2557    // Create a CaseBlock record representing this branch.
2558    CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2559                 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2560  
2561    // Use visitSwitchCase to actually insert the fast branch sequence for this
2562    // cond branch.
2563    visitSwitchCase(CB, BrMBB);
2564  }
2565  
2566  /// visitSwitchCase - Emits the necessary code to represent a single node in
2567  /// the binary search tree resulting from lowering a switch instruction.
2568  void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2569                                            MachineBasicBlock *SwitchBB) {
2570    SDValue Cond;
2571    SDValue CondLHS = getValue(CB.CmpLHS);
2572    SDLoc dl = CB.DL;
2573  
2574    if (CB.CC == ISD::SETTRUE) {
2575      // Branch or fall through to TrueBB.
2576      addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2577      SwitchBB->normalizeSuccProbs();
2578      if (CB.TrueBB != NextBlock(SwitchBB)) {
2579        DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2580                                DAG.getBasicBlock(CB.TrueBB)));
2581      }
2582      return;
2583    }
2584  
2585    auto &TLI = DAG.getTargetLoweringInfo();
2586    EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2587  
2588    // Build the setcc now.
2589    if (!CB.CmpMHS) {
2590      // Fold "(X == true)" to X and "(X == false)" to !X to
2591      // handle common cases produced by branch lowering.
2592      if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2593          CB.CC == ISD::SETEQ)
2594        Cond = CondLHS;
2595      else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2596               CB.CC == ISD::SETEQ) {
2597        SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2598        Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2599      } else {
2600        SDValue CondRHS = getValue(CB.CmpRHS);
2601  
2602        // If a pointer's DAG type is larger than its memory type then the DAG
2603        // values are zero-extended. This breaks signed comparisons so truncate
2604        // back to the underlying type before doing the compare.
2605        if (CondLHS.getValueType() != MemVT) {
2606          CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2607          CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2608        }
2609        Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2610      }
2611    } else {
2612      assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2613  
2614      const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2615      const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2616  
2617      SDValue CmpOp = getValue(CB.CmpMHS);
2618      EVT VT = CmpOp.getValueType();
2619  
2620      if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2621        Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2622                            ISD::SETLE);
2623      } else {
2624        SDValue SUB = DAG.getNode(ISD::SUB, dl,
2625                                  VT, CmpOp, DAG.getConstant(Low, dl, VT));
2626        Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2627                            DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2628      }
2629    }
2630  
2631    // Update successor info
2632    addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2633    // TrueBB and FalseBB are always different unless the incoming IR is
2634    // degenerate. This only happens when running llc on weird IR.
2635    if (CB.TrueBB != CB.FalseBB)
2636      addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2637    SwitchBB->normalizeSuccProbs();
2638  
2639    // If the lhs block is the next block, invert the condition so that we can
2640    // fall through to the lhs instead of the rhs block.
2641    if (CB.TrueBB == NextBlock(SwitchBB)) {
2642      std::swap(CB.TrueBB, CB.FalseBB);
2643      SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2644      Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2645    }
2646  
2647    SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2648                                 MVT::Other, getControlRoot(), Cond,
2649                                 DAG.getBasicBlock(CB.TrueBB));
2650  
2651    setValue(CurInst, BrCond);
2652  
2653    // Insert the false branch. Do this even if it's a fall through branch,
2654    // this makes it easier to do DAG optimizations which require inverting
2655    // the branch condition.
2656    BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2657                         DAG.getBasicBlock(CB.FalseBB));
2658  
2659    DAG.setRoot(BrCond);
2660  }
2661  
2662  /// visitJumpTable - Emit JumpTable node in the current MBB
2663  void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2664    // Emit the code for the jump table
2665    assert(JT.Reg != -1U && "Should lower JT Header first!");
2666    EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2667    SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2668                                       JT.Reg, PTy);
2669    SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2670    SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2671                                      MVT::Other, Index.getValue(1),
2672                                      Table, Index);
2673    DAG.setRoot(BrJumpTable);
2674  }
2675  
2676  /// visitJumpTableHeader - This function emits necessary code to produce index
2677  /// in the JumpTable from switch case.
2678  void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2679                                                 JumpTableHeader &JTH,
2680                                                 MachineBasicBlock *SwitchBB) {
2681    SDLoc dl = getCurSDLoc();
2682  
2683    // Subtract the lowest switch case value from the value being switched on.
2684    SDValue SwitchOp = getValue(JTH.SValue);
2685    EVT VT = SwitchOp.getValueType();
2686    SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2687                              DAG.getConstant(JTH.First, dl, VT));
2688  
2689    // The SDNode we just created, which holds the value being switched on minus
2690    // the smallest case value, needs to be copied to a virtual register so it
2691    // can be used as an index into the jump table in a subsequent basic block.
2692    // This value may be smaller or larger than the target's pointer type, and
2693    // therefore require extension or truncating.
2694    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2695    SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2696  
2697    unsigned JumpTableReg =
2698        FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2699    SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2700                                      JumpTableReg, SwitchOp);
2701    JT.Reg = JumpTableReg;
2702  
2703    if (!JTH.FallthroughUnreachable) {
2704      // Emit the range check for the jump table, and branch to the default block
2705      // for the switch statement if the value being switched on exceeds the
2706      // largest case in the switch.
2707      SDValue CMP = DAG.getSetCC(
2708          dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2709                                     Sub.getValueType()),
2710          Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2711  
2712      SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2713                                   MVT::Other, CopyTo, CMP,
2714                                   DAG.getBasicBlock(JT.Default));
2715  
2716      // Avoid emitting unnecessary branches to the next block.
2717      if (JT.MBB != NextBlock(SwitchBB))
2718        BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2719                             DAG.getBasicBlock(JT.MBB));
2720  
2721      DAG.setRoot(BrCond);
2722    } else {
2723      // Avoid emitting unnecessary branches to the next block.
2724      if (JT.MBB != NextBlock(SwitchBB))
2725        DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2726                                DAG.getBasicBlock(JT.MBB)));
2727      else
2728        DAG.setRoot(CopyTo);
2729    }
2730  }
2731  
2732  /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2733  /// variable if there exists one.
2734  static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2735                                   SDValue &Chain) {
2736    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2737    EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2738    EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2739    MachineFunction &MF = DAG.getMachineFunction();
2740    Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2741    MachineSDNode *Node =
2742        DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2743    if (Global) {
2744      MachinePointerInfo MPInfo(Global);
2745      auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2746                   MachineMemOperand::MODereferenceable;
2747      MachineMemOperand *MemRef = MF.getMachineMemOperand(
2748          MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2749      DAG.setNodeMemRefs(Node, {MemRef});
2750    }
2751    if (PtrTy != PtrMemTy)
2752      return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2753    return SDValue(Node, 0);
2754  }
2755  
2756  /// Codegen a new tail for a stack protector check ParentMBB which has had its
2757  /// tail spliced into a stack protector check success bb.
2758  ///
2759  /// For a high level explanation of how this fits into the stack protector
2760  /// generation see the comment on the declaration of class
2761  /// StackProtectorDescriptor.
2762  void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2763                                                    MachineBasicBlock *ParentBB) {
2764  
2765    // First create the loads to the guard/stack slot for the comparison.
2766    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2767    EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2768    EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2769  
2770    MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2771    int FI = MFI.getStackProtectorIndex();
2772  
2773    SDValue Guard;
2774    SDLoc dl = getCurSDLoc();
2775    SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2776    const Module &M = *ParentBB->getParent()->getFunction().getParent();
2777    Align Align =
2778        DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2779  
2780    // Generate code to load the content of the guard slot.
2781    SDValue GuardVal = DAG.getLoad(
2782        PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2783        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2784        MachineMemOperand::MOVolatile);
2785  
2786    if (TLI.useStackGuardXorFP())
2787      GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2788  
2789    // Retrieve guard check function, nullptr if instrumentation is inlined.
2790    if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2791      // The target provides a guard check function to validate the guard value.
2792      // Generate a call to that function with the content of the guard slot as
2793      // argument.
2794      FunctionType *FnTy = GuardCheckFn->getFunctionType();
2795      assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2796  
2797      TargetLowering::ArgListTy Args;
2798      TargetLowering::ArgListEntry Entry;
2799      Entry.Node = GuardVal;
2800      Entry.Ty = FnTy->getParamType(0);
2801      if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2802        Entry.IsInReg = true;
2803      Args.push_back(Entry);
2804  
2805      TargetLowering::CallLoweringInfo CLI(DAG);
2806      CLI.setDebugLoc(getCurSDLoc())
2807          .setChain(DAG.getEntryNode())
2808          .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2809                     getValue(GuardCheckFn), std::move(Args));
2810  
2811      std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2812      DAG.setRoot(Result.second);
2813      return;
2814    }
2815  
2816    // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2817    // Otherwise, emit a volatile load to retrieve the stack guard value.
2818    SDValue Chain = DAG.getEntryNode();
2819    if (TLI.useLoadStackGuardNode()) {
2820      Guard = getLoadStackGuard(DAG, dl, Chain);
2821    } else {
2822      const Value *IRGuard = TLI.getSDagStackGuard(M);
2823      SDValue GuardPtr = getValue(IRGuard);
2824  
2825      Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2826                          MachinePointerInfo(IRGuard, 0), Align,
2827                          MachineMemOperand::MOVolatile);
2828    }
2829  
2830    // Perform the comparison via a getsetcc.
2831    SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2832                                                          *DAG.getContext(),
2833                                                          Guard.getValueType()),
2834                               Guard, GuardVal, ISD::SETNE);
2835  
2836    // If the guard/stackslot do not equal, branch to failure MBB.
2837    SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2838                                 MVT::Other, GuardVal.getOperand(0),
2839                                 Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2840    // Otherwise branch to success MBB.
2841    SDValue Br = DAG.getNode(ISD::BR, dl,
2842                             MVT::Other, BrCond,
2843                             DAG.getBasicBlock(SPD.getSuccessMBB()));
2844  
2845    DAG.setRoot(Br);
2846  }
2847  
2848  /// Codegen the failure basic block for a stack protector check.
2849  ///
2850  /// A failure stack protector machine basic block consists simply of a call to
2851  /// __stack_chk_fail().
2852  ///
2853  /// For a high level explanation of how this fits into the stack protector
2854  /// generation see the comment on the declaration of class
2855  /// StackProtectorDescriptor.
2856  void
2857  SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2858    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2859    TargetLowering::MakeLibCallOptions CallOptions;
2860    CallOptions.setDiscardResult(true);
2861    SDValue Chain =
2862        TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2863                        std::nullopt, CallOptions, getCurSDLoc())
2864            .second;
2865    // On PS4/PS5, the "return address" must still be within the calling
2866    // function, even if it's at the very end, so emit an explicit TRAP here.
2867    // Passing 'true' for doesNotReturn above won't generate the trap for us.
2868    if (TM.getTargetTriple().isPS())
2869      Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2870    // WebAssembly needs an unreachable instruction after a non-returning call,
2871    // because the function return type can be different from __stack_chk_fail's
2872    // return type (void).
2873    if (TM.getTargetTriple().isWasm())
2874      Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2875  
2876    DAG.setRoot(Chain);
2877  }
2878  
2879  /// visitBitTestHeader - This function emits necessary code to produce value
2880  /// suitable for "bit tests"
2881  void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2882                                               MachineBasicBlock *SwitchBB) {
2883    SDLoc dl = getCurSDLoc();
2884  
2885    // Subtract the minimum value.
2886    SDValue SwitchOp = getValue(B.SValue);
2887    EVT VT = SwitchOp.getValueType();
2888    SDValue RangeSub =
2889        DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2890  
2891    // Determine the type of the test operands.
2892    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2893    bool UsePtrType = false;
2894    if (!TLI.isTypeLegal(VT)) {
2895      UsePtrType = true;
2896    } else {
2897      for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2898        if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2899          // Switch table case range are encoded into series of masks.
2900          // Just use pointer type, it's guaranteed to fit.
2901          UsePtrType = true;
2902          break;
2903        }
2904    }
2905    SDValue Sub = RangeSub;
2906    if (UsePtrType) {
2907      VT = TLI.getPointerTy(DAG.getDataLayout());
2908      Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2909    }
2910  
2911    B.RegVT = VT.getSimpleVT();
2912    B.Reg = FuncInfo.CreateReg(B.RegVT);
2913    SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2914  
2915    MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2916  
2917    if (!B.FallthroughUnreachable)
2918      addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2919    addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2920    SwitchBB->normalizeSuccProbs();
2921  
2922    SDValue Root = CopyTo;
2923    if (!B.FallthroughUnreachable) {
2924      // Conditional branch to the default block.
2925      SDValue RangeCmp = DAG.getSetCC(dl,
2926          TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2927                                 RangeSub.getValueType()),
2928          RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2929          ISD::SETUGT);
2930  
2931      Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2932                         DAG.getBasicBlock(B.Default));
2933    }
2934  
2935    // Avoid emitting unnecessary branches to the next block.
2936    if (MBB != NextBlock(SwitchBB))
2937      Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2938  
2939    DAG.setRoot(Root);
2940  }
2941  
2942  /// visitBitTestCase - this function produces one "bit test"
2943  void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2944                                             MachineBasicBlock* NextMBB,
2945                                             BranchProbability BranchProbToNext,
2946                                             unsigned Reg,
2947                                             BitTestCase &B,
2948                                             MachineBasicBlock *SwitchBB) {
2949    SDLoc dl = getCurSDLoc();
2950    MVT VT = BB.RegVT;
2951    SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2952    SDValue Cmp;
2953    unsigned PopCount = llvm::popcount(B.Mask);
2954    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2955    if (PopCount == 1) {
2956      // Testing for a single bit; just compare the shift count with what it
2957      // would need to be to shift a 1 bit in that position.
2958      Cmp = DAG.getSetCC(
2959          dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2960          ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
2961          ISD::SETEQ);
2962    } else if (PopCount == BB.Range) {
2963      // There is only one zero bit in the range, test for it directly.
2964      Cmp = DAG.getSetCC(
2965          dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2966          ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
2967    } else {
2968      // Make desired shift
2969      SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2970                                      DAG.getConstant(1, dl, VT), ShiftOp);
2971  
2972      // Emit bit tests and jumps
2973      SDValue AndOp = DAG.getNode(ISD::AND, dl,
2974                                  VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2975      Cmp = DAG.getSetCC(
2976          dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2977          AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2978    }
2979  
2980    // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2981    addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2982    // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2983    addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2984    // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2985    // one as they are relative probabilities (and thus work more like weights),
2986    // and hence we need to normalize them to let the sum of them become one.
2987    SwitchBB->normalizeSuccProbs();
2988  
2989    SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2990                                MVT::Other, getControlRoot(),
2991                                Cmp, DAG.getBasicBlock(B.TargetBB));
2992  
2993    // Avoid emitting unnecessary branches to the next block.
2994    if (NextMBB != NextBlock(SwitchBB))
2995      BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2996                          DAG.getBasicBlock(NextMBB));
2997  
2998    DAG.setRoot(BrAnd);
2999  }
3000  
3001  void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3002    MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3003  
3004    // Retrieve successors. Look through artificial IR level blocks like
3005    // catchswitch for successors.
3006    MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
3007    const BasicBlock *EHPadBB = I.getSuccessor(1);
3008    MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB];
3009  
3010    // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3011    // have to do anything here to lower funclet bundles.
3012    assert(!I.hasOperandBundlesOtherThan(
3013               {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3014                LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3015                LLVMContext::OB_cfguardtarget,
3016                LLVMContext::OB_clang_arc_attachedcall}) &&
3017           "Cannot lower invokes with arbitrary operand bundles yet!");
3018  
3019    const Value *Callee(I.getCalledOperand());
3020    const Function *Fn = dyn_cast<Function>(Callee);
3021    if (isa<InlineAsm>(Callee))
3022      visitInlineAsm(I, EHPadBB);
3023    else if (Fn && Fn->isIntrinsic()) {
3024      switch (Fn->getIntrinsicID()) {
3025      default:
3026        llvm_unreachable("Cannot invoke this intrinsic");
3027      case Intrinsic::donothing:
3028        // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3029      case Intrinsic::seh_try_begin:
3030      case Intrinsic::seh_scope_begin:
3031      case Intrinsic::seh_try_end:
3032      case Intrinsic::seh_scope_end:
3033        if (EHPadMBB)
3034            // a block referenced by EH table
3035            // so dtor-funclet not removed by opts
3036            EHPadMBB->setMachineBlockAddressTaken();
3037        break;
3038      case Intrinsic::experimental_patchpoint_void:
3039      case Intrinsic::experimental_patchpoint_i64:
3040        visitPatchpoint(I, EHPadBB);
3041        break;
3042      case Intrinsic::experimental_gc_statepoint:
3043        LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3044        break;
3045      case Intrinsic::wasm_rethrow: {
3046        // This is usually done in visitTargetIntrinsic, but this intrinsic is
3047        // special because it can be invoked, so we manually lower it to a DAG
3048        // node here.
3049        SmallVector<SDValue, 8> Ops;
3050        Ops.push_back(getRoot()); // inchain
3051        const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3052        Ops.push_back(
3053            DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3054                                  TLI.getPointerTy(DAG.getDataLayout())));
3055        SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3056        DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3057        break;
3058      }
3059      }
3060    } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3061      // Currently we do not lower any intrinsic calls with deopt operand bundles.
3062      // Eventually we will support lowering the @llvm.experimental.deoptimize
3063      // intrinsic, and right now there are no plans to support other intrinsics
3064      // with deopt state.
3065      LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3066    } else {
3067      LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3068    }
3069  
3070    // If the value of the invoke is used outside of its defining block, make it
3071    // available as a virtual register.
3072    // We already took care of the exported value for the statepoint instruction
3073    // during call to the LowerStatepoint.
3074    if (!isa<GCStatepointInst>(I)) {
3075      CopyToExportRegsIfNeeded(&I);
3076    }
3077  
3078    SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3079    BranchProbabilityInfo *BPI = FuncInfo.BPI;
3080    BranchProbability EHPadBBProb =
3081        BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3082            : BranchProbability::getZero();
3083    findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3084  
3085    // Update successor info.
3086    addSuccessorWithProb(InvokeMBB, Return);
3087    for (auto &UnwindDest : UnwindDests) {
3088      UnwindDest.first->setIsEHPad();
3089      addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3090    }
3091    InvokeMBB->normalizeSuccProbs();
3092  
3093    // Drop into normal successor.
3094    DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3095                            DAG.getBasicBlock(Return)));
3096  }
3097  
3098  void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3099    MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3100  
3101    // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3102    // have to do anything here to lower funclet bundles.
3103    assert(!I.hasOperandBundlesOtherThan(
3104               {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3105           "Cannot lower callbrs with arbitrary operand bundles yet!");
3106  
3107    assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3108    visitInlineAsm(I);
3109    CopyToExportRegsIfNeeded(&I);
3110  
3111    // Retrieve successors.
3112    SmallPtrSet<BasicBlock *, 8> Dests;
3113    Dests.insert(I.getDefaultDest());
3114    MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3115  
3116    // Update successor info.
3117    addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3118    for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3119      BasicBlock *Dest = I.getIndirectDest(i);
3120      MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3121      Target->setIsInlineAsmBrIndirectTarget();
3122      Target->setMachineBlockAddressTaken();
3123      Target->setLabelMustBeEmitted();
3124      // Don't add duplicate machine successors.
3125      if (Dests.insert(Dest).second)
3126        addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3127    }
3128    CallBrMBB->normalizeSuccProbs();
3129  
3130    // Drop into default successor.
3131    DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3132                            MVT::Other, getControlRoot(),
3133                            DAG.getBasicBlock(Return)));
3134  }
3135  
3136  void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3137    llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3138  }
3139  
3140  void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3141    assert(FuncInfo.MBB->isEHPad() &&
3142           "Call to landingpad not in landing pad!");
3143  
3144    // If there aren't registers to copy the values into (e.g., during SjLj
3145    // exceptions), then don't bother to create these DAG nodes.
3146    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3147    const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3148    if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3149        TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3150      return;
3151  
3152    // If landingpad's return type is token type, we don't create DAG nodes
3153    // for its exception pointer and selector value. The extraction of exception
3154    // pointer or selector value from token type landingpads is not currently
3155    // supported.
3156    if (LP.getType()->isTokenTy())
3157      return;
3158  
3159    SmallVector<EVT, 2> ValueVTs;
3160    SDLoc dl = getCurSDLoc();
3161    ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3162    assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3163  
3164    // Get the two live-in registers as SDValues. The physregs have already been
3165    // copied into virtual registers.
3166    SDValue Ops[2];
3167    if (FuncInfo.ExceptionPointerVirtReg) {
3168      Ops[0] = DAG.getZExtOrTrunc(
3169          DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3170                             FuncInfo.ExceptionPointerVirtReg,
3171                             TLI.getPointerTy(DAG.getDataLayout())),
3172          dl, ValueVTs[0]);
3173    } else {
3174      Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3175    }
3176    Ops[1] = DAG.getZExtOrTrunc(
3177        DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3178                           FuncInfo.ExceptionSelectorVirtReg,
3179                           TLI.getPointerTy(DAG.getDataLayout())),
3180        dl, ValueVTs[1]);
3181  
3182    // Merge into one.
3183    SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3184                              DAG.getVTList(ValueVTs), Ops);
3185    setValue(&LP, Res);
3186  }
3187  
3188  void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3189                                             MachineBasicBlock *Last) {
3190    // Update JTCases.
3191    for (JumpTableBlock &JTB : SL->JTCases)
3192      if (JTB.first.HeaderBB == First)
3193        JTB.first.HeaderBB = Last;
3194  
3195    // Update BitTestCases.
3196    for (BitTestBlock &BTB : SL->BitTestCases)
3197      if (BTB.Parent == First)
3198        BTB.Parent = Last;
3199  }
3200  
3201  void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3202    MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3203  
3204    // Update machine-CFG edges with unique successors.
3205    SmallSet<BasicBlock*, 32> Done;
3206    for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3207      BasicBlock *BB = I.getSuccessor(i);
3208      bool Inserted = Done.insert(BB).second;
3209      if (!Inserted)
3210          continue;
3211  
3212      MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3213      addSuccessorWithProb(IndirectBrMBB, Succ);
3214    }
3215    IndirectBrMBB->normalizeSuccProbs();
3216  
3217    DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3218                            MVT::Other, getControlRoot(),
3219                            getValue(I.getAddress())));
3220  }
3221  
3222  void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3223    if (!DAG.getTarget().Options.TrapUnreachable)
3224      return;
3225  
3226    // We may be able to ignore unreachable behind a noreturn call.
3227    if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3228      const BasicBlock &BB = *I.getParent();
3229      if (&I != &BB.front()) {
3230        BasicBlock::const_iterator PredI =
3231          std::prev(BasicBlock::const_iterator(&I));
3232        if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3233          if (Call->doesNotReturn())
3234            return;
3235        }
3236      }
3237    }
3238  
3239    DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3240  }
3241  
3242  void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3243    SDNodeFlags Flags;
3244    if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3245      Flags.copyFMF(*FPOp);
3246  
3247    SDValue Op = getValue(I.getOperand(0));
3248    SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3249                                      Op, Flags);
3250    setValue(&I, UnNodeValue);
3251  }
3252  
3253  void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3254    SDNodeFlags Flags;
3255    if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3256      Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3257      Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3258    }
3259    if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3260      Flags.setExact(ExactOp->isExact());
3261    if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3262      Flags.copyFMF(*FPOp);
3263  
3264    SDValue Op1 = getValue(I.getOperand(0));
3265    SDValue Op2 = getValue(I.getOperand(1));
3266    SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3267                                       Op1, Op2, Flags);
3268    setValue(&I, BinNodeValue);
3269  }
3270  
3271  void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3272    SDValue Op1 = getValue(I.getOperand(0));
3273    SDValue Op2 = getValue(I.getOperand(1));
3274  
3275    EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3276        Op1.getValueType(), DAG.getDataLayout());
3277  
3278    // Coerce the shift amount to the right type if we can. This exposes the
3279    // truncate or zext to optimization early.
3280    if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3281      assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3282             "Unexpected shift type");
3283      Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3284    }
3285  
3286    bool nuw = false;
3287    bool nsw = false;
3288    bool exact = false;
3289  
3290    if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3291  
3292      if (const OverflowingBinaryOperator *OFBinOp =
3293              dyn_cast<const OverflowingBinaryOperator>(&I)) {
3294        nuw = OFBinOp->hasNoUnsignedWrap();
3295        nsw = OFBinOp->hasNoSignedWrap();
3296      }
3297      if (const PossiblyExactOperator *ExactOp =
3298              dyn_cast<const PossiblyExactOperator>(&I))
3299        exact = ExactOp->isExact();
3300    }
3301    SDNodeFlags Flags;
3302    Flags.setExact(exact);
3303    Flags.setNoSignedWrap(nsw);
3304    Flags.setNoUnsignedWrap(nuw);
3305    SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3306                              Flags);
3307    setValue(&I, Res);
3308  }
3309  
3310  void SelectionDAGBuilder::visitSDiv(const User &I) {
3311    SDValue Op1 = getValue(I.getOperand(0));
3312    SDValue Op2 = getValue(I.getOperand(1));
3313  
3314    SDNodeFlags Flags;
3315    Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3316                   cast<PossiblyExactOperator>(&I)->isExact());
3317    setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3318                             Op2, Flags));
3319  }
3320  
3321  void SelectionDAGBuilder::visitICmp(const User &I) {
3322    ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3323    if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3324      predicate = IC->getPredicate();
3325    else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3326      predicate = ICmpInst::Predicate(IC->getPredicate());
3327    SDValue Op1 = getValue(I.getOperand(0));
3328    SDValue Op2 = getValue(I.getOperand(1));
3329    ISD::CondCode Opcode = getICmpCondCode(predicate);
3330  
3331    auto &TLI = DAG.getTargetLoweringInfo();
3332    EVT MemVT =
3333        TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3334  
3335    // If a pointer's DAG type is larger than its memory type then the DAG values
3336    // are zero-extended. This breaks signed comparisons so truncate back to the
3337    // underlying type before doing the compare.
3338    if (Op1.getValueType() != MemVT) {
3339      Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3340      Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3341    }
3342  
3343    EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3344                                                          I.getType());
3345    setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3346  }
3347  
3348  void SelectionDAGBuilder::visitFCmp(const User &I) {
3349    FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3350    if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3351      predicate = FC->getPredicate();
3352    else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3353      predicate = FCmpInst::Predicate(FC->getPredicate());
3354    SDValue Op1 = getValue(I.getOperand(0));
3355    SDValue Op2 = getValue(I.getOperand(1));
3356  
3357    ISD::CondCode Condition = getFCmpCondCode(predicate);
3358    auto *FPMO = cast<FPMathOperator>(&I);
3359    if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3360      Condition = getFCmpCodeWithoutNaN(Condition);
3361  
3362    SDNodeFlags Flags;
3363    Flags.copyFMF(*FPMO);
3364    SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3365  
3366    EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3367                                                          I.getType());
3368    setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3369  }
3370  
3371  // Check if the condition of the select has one use or two users that are both
3372  // selects with the same condition.
3373  static bool hasOnlySelectUsers(const Value *Cond) {
3374    return llvm::all_of(Cond->users(), [](const Value *V) {
3375      return isa<SelectInst>(V);
3376    });
3377  }
3378  
3379  void SelectionDAGBuilder::visitSelect(const User &I) {
3380    SmallVector<EVT, 4> ValueVTs;
3381    ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3382                    ValueVTs);
3383    unsigned NumValues = ValueVTs.size();
3384    if (NumValues == 0) return;
3385  
3386    SmallVector<SDValue, 4> Values(NumValues);
3387    SDValue Cond     = getValue(I.getOperand(0));
3388    SDValue LHSVal   = getValue(I.getOperand(1));
3389    SDValue RHSVal   = getValue(I.getOperand(2));
3390    SmallVector<SDValue, 1> BaseOps(1, Cond);
3391    ISD::NodeType OpCode =
3392        Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3393  
3394    bool IsUnaryAbs = false;
3395    bool Negate = false;
3396  
3397    SDNodeFlags Flags;
3398    if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3399      Flags.copyFMF(*FPOp);
3400  
3401    Flags.setUnpredictable(
3402        cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3403  
3404    // Min/max matching is only viable if all output VTs are the same.
3405    if (all_equal(ValueVTs)) {
3406      EVT VT = ValueVTs[0];
3407      LLVMContext &Ctx = *DAG.getContext();
3408      auto &TLI = DAG.getTargetLoweringInfo();
3409  
3410      // We care about the legality of the operation after it has been type
3411      // legalized.
3412      while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3413        VT = TLI.getTypeToTransformTo(Ctx, VT);
3414  
3415      // If the vselect is legal, assume we want to leave this as a vector setcc +
3416      // vselect. Otherwise, if this is going to be scalarized, we want to see if
3417      // min/max is legal on the scalar type.
3418      bool UseScalarMinMax = VT.isVector() &&
3419        !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3420  
3421      // ValueTracking's select pattern matching does not account for -0.0,
3422      // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3423      // -0.0 is less than +0.0.
3424      Value *LHS, *RHS;
3425      auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3426      ISD::NodeType Opc = ISD::DELETED_NODE;
3427      switch (SPR.Flavor) {
3428      case SPF_UMAX:    Opc = ISD::UMAX; break;
3429      case SPF_UMIN:    Opc = ISD::UMIN; break;
3430      case SPF_SMAX:    Opc = ISD::SMAX; break;
3431      case SPF_SMIN:    Opc = ISD::SMIN; break;
3432      case SPF_FMINNUM:
3433        switch (SPR.NaNBehavior) {
3434        case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3435        case SPNB_RETURNS_NAN: break;
3436        case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3437        case SPNB_RETURNS_ANY:
3438          if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3439              (UseScalarMinMax &&
3440               TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3441            Opc = ISD::FMINNUM;
3442          break;
3443        }
3444        break;
3445      case SPF_FMAXNUM:
3446        switch (SPR.NaNBehavior) {
3447        case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3448        case SPNB_RETURNS_NAN: break;
3449        case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3450        case SPNB_RETURNS_ANY:
3451          if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3452              (UseScalarMinMax &&
3453               TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3454            Opc = ISD::FMAXNUM;
3455          break;
3456        }
3457        break;
3458      case SPF_NABS:
3459        Negate = true;
3460        [[fallthrough]];
3461      case SPF_ABS:
3462        IsUnaryAbs = true;
3463        Opc = ISD::ABS;
3464        break;
3465      default: break;
3466      }
3467  
3468      if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3469          (TLI.isOperationLegalOrCustom(Opc, VT) ||
3470           (UseScalarMinMax &&
3471            TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3472          // If the underlying comparison instruction is used by any other
3473          // instruction, the consumed instructions won't be destroyed, so it is
3474          // not profitable to convert to a min/max.
3475          hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3476        OpCode = Opc;
3477        LHSVal = getValue(LHS);
3478        RHSVal = getValue(RHS);
3479        BaseOps.clear();
3480      }
3481  
3482      if (IsUnaryAbs) {
3483        OpCode = Opc;
3484        LHSVal = getValue(LHS);
3485        BaseOps.clear();
3486      }
3487    }
3488  
3489    if (IsUnaryAbs) {
3490      for (unsigned i = 0; i != NumValues; ++i) {
3491        SDLoc dl = getCurSDLoc();
3492        EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3493        Values[i] =
3494            DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3495        if (Negate)
3496          Values[i] = DAG.getNegative(Values[i], dl, VT);
3497      }
3498    } else {
3499      for (unsigned i = 0; i != NumValues; ++i) {
3500        SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3501        Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3502        Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3503        Values[i] = DAG.getNode(
3504            OpCode, getCurSDLoc(),
3505            LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3506      }
3507    }
3508  
3509    setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3510                             DAG.getVTList(ValueVTs), Values));
3511  }
3512  
3513  void SelectionDAGBuilder::visitTrunc(const User &I) {
3514    // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3515    SDValue N = getValue(I.getOperand(0));
3516    EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3517                                                          I.getType());
3518    setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3519  }
3520  
3521  void SelectionDAGBuilder::visitZExt(const User &I) {
3522    // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3523    // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3524    SDValue N = getValue(I.getOperand(0));
3525    EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3526                                                          I.getType());
3527    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3528  }
3529  
3530  void SelectionDAGBuilder::visitSExt(const User &I) {
3531    // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3532    // SExt also can't be a cast to bool for same reason. So, nothing much to do
3533    SDValue N = getValue(I.getOperand(0));
3534    EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3535                                                          I.getType());
3536    setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3537  }
3538  
3539  void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3540    // FPTrunc is never a no-op cast, no need to check
3541    SDValue N = getValue(I.getOperand(0));
3542    SDLoc dl = getCurSDLoc();
3543    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3544    EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3545    setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3546                             DAG.getTargetConstant(
3547                                 0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3548  }
3549  
3550  void SelectionDAGBuilder::visitFPExt(const User &I) {
3551    // FPExt is never a no-op cast, no need to check
3552    SDValue N = getValue(I.getOperand(0));
3553    EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3554                                                          I.getType());
3555    setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3556  }
3557  
3558  void SelectionDAGBuilder::visitFPToUI(const User &I) {
3559    // FPToUI is never a no-op cast, no need to check
3560    SDValue N = getValue(I.getOperand(0));
3561    EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3562                                                          I.getType());
3563    setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3564  }
3565  
3566  void SelectionDAGBuilder::visitFPToSI(const User &I) {
3567    // FPToSI is never a no-op cast, no need to check
3568    SDValue N = getValue(I.getOperand(0));
3569    EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3570                                                          I.getType());
3571    setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3572  }
3573  
3574  void SelectionDAGBuilder::visitUIToFP(const User &I) {
3575    // UIToFP is never a no-op cast, no need to check
3576    SDValue N = getValue(I.getOperand(0));
3577    EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3578                                                          I.getType());
3579    setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3580  }
3581  
3582  void SelectionDAGBuilder::visitSIToFP(const User &I) {
3583    // SIToFP is never a no-op cast, no need to check
3584    SDValue N = getValue(I.getOperand(0));
3585    EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3586                                                          I.getType());
3587    setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3588  }
3589  
3590  void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3591    // What to do depends on the size of the integer and the size of the pointer.
3592    // We can either truncate, zero extend, or no-op, accordingly.
3593    SDValue N = getValue(I.getOperand(0));
3594    auto &TLI = DAG.getTargetLoweringInfo();
3595    EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3596                                                          I.getType());
3597    EVT PtrMemVT =
3598        TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3599    N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3600    N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3601    setValue(&I, N);
3602  }
3603  
3604  void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3605    // What to do depends on the size of the integer and the size of the pointer.
3606    // We can either truncate, zero extend, or no-op, accordingly.
3607    SDValue N = getValue(I.getOperand(0));
3608    auto &TLI = DAG.getTargetLoweringInfo();
3609    EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3610    EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3611    N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3612    N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3613    setValue(&I, N);
3614  }
3615  
3616  void SelectionDAGBuilder::visitBitCast(const User &I) {
3617    SDValue N = getValue(I.getOperand(0));
3618    SDLoc dl = getCurSDLoc();
3619    EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3620                                                          I.getType());
3621  
3622    // BitCast assures us that source and destination are the same size so this is
3623    // either a BITCAST or a no-op.
3624    if (DestVT != N.getValueType())
3625      setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3626                               DestVT, N)); // convert types.
3627    // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3628    // might fold any kind of constant expression to an integer constant and that
3629    // is not what we are looking for. Only recognize a bitcast of a genuine
3630    // constant integer as an opaque constant.
3631    else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3632      setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3633                                   /*isOpaque*/true));
3634    else
3635      setValue(&I, N);            // noop cast.
3636  }
3637  
3638  void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3639    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3640    const Value *SV = I.getOperand(0);
3641    SDValue N = getValue(SV);
3642    EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3643  
3644    unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3645    unsigned DestAS = I.getType()->getPointerAddressSpace();
3646  
3647    if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3648      N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3649  
3650    setValue(&I, N);
3651  }
3652  
3653  void SelectionDAGBuilder::visitInsertElement(const User &I) {
3654    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3655    SDValue InVec = getValue(I.getOperand(0));
3656    SDValue InVal = getValue(I.getOperand(1));
3657    SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3658                                       TLI.getVectorIdxTy(DAG.getDataLayout()));
3659    setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3660                             TLI.getValueType(DAG.getDataLayout(), I.getType()),
3661                             InVec, InVal, InIdx));
3662  }
3663  
3664  void SelectionDAGBuilder::visitExtractElement(const User &I) {
3665    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3666    SDValue InVec = getValue(I.getOperand(0));
3667    SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3668                                       TLI.getVectorIdxTy(DAG.getDataLayout()));
3669    setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3670                             TLI.getValueType(DAG.getDataLayout(), I.getType()),
3671                             InVec, InIdx));
3672  }
3673  
3674  void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3675    SDValue Src1 = getValue(I.getOperand(0));
3676    SDValue Src2 = getValue(I.getOperand(1));
3677    ArrayRef<int> Mask;
3678    if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3679      Mask = SVI->getShuffleMask();
3680    else
3681      Mask = cast<ConstantExpr>(I).getShuffleMask();
3682    SDLoc DL = getCurSDLoc();
3683    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3684    EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3685    EVT SrcVT = Src1.getValueType();
3686  
3687    if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3688        VT.isScalableVector()) {
3689      // Canonical splat form of first element of first input vector.
3690      SDValue FirstElt =
3691          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3692                      DAG.getVectorIdxConstant(0, DL));
3693      setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3694      return;
3695    }
3696  
3697    // For now, we only handle splats for scalable vectors.
3698    // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3699    // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3700    assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3701  
3702    unsigned SrcNumElts = SrcVT.getVectorNumElements();
3703    unsigned MaskNumElts = Mask.size();
3704  
3705    if (SrcNumElts == MaskNumElts) {
3706      setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3707      return;
3708    }
3709  
3710    // Normalize the shuffle vector since mask and vector length don't match.
3711    if (SrcNumElts < MaskNumElts) {
3712      // Mask is longer than the source vectors. We can use concatenate vector to
3713      // make the mask and vectors lengths match.
3714  
3715      if (MaskNumElts % SrcNumElts == 0) {
3716        // Mask length is a multiple of the source vector length.
3717        // Check if the shuffle is some kind of concatenation of the input
3718        // vectors.
3719        unsigned NumConcat = MaskNumElts / SrcNumElts;
3720        bool IsConcat = true;
3721        SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3722        for (unsigned i = 0; i != MaskNumElts; ++i) {
3723          int Idx = Mask[i];
3724          if (Idx < 0)
3725            continue;
3726          // Ensure the indices in each SrcVT sized piece are sequential and that
3727          // the same source is used for the whole piece.
3728          if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3729              (ConcatSrcs[i / SrcNumElts] >= 0 &&
3730               ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3731            IsConcat = false;
3732            break;
3733          }
3734          // Remember which source this index came from.
3735          ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3736        }
3737  
3738        // The shuffle is concatenating multiple vectors together. Just emit
3739        // a CONCAT_VECTORS operation.
3740        if (IsConcat) {
3741          SmallVector<SDValue, 8> ConcatOps;
3742          for (auto Src : ConcatSrcs) {
3743            if (Src < 0)
3744              ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3745            else if (Src == 0)
3746              ConcatOps.push_back(Src1);
3747            else
3748              ConcatOps.push_back(Src2);
3749          }
3750          setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3751          return;
3752        }
3753      }
3754  
3755      unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3756      unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3757      EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3758                                      PaddedMaskNumElts);
3759  
3760      // Pad both vectors with undefs to make them the same length as the mask.
3761      SDValue UndefVal = DAG.getUNDEF(SrcVT);
3762  
3763      SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3764      SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3765      MOps1[0] = Src1;
3766      MOps2[0] = Src2;
3767  
3768      Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3769      Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3770  
3771      // Readjust mask for new input vector length.
3772      SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3773      for (unsigned i = 0; i != MaskNumElts; ++i) {
3774        int Idx = Mask[i];
3775        if (Idx >= (int)SrcNumElts)
3776          Idx -= SrcNumElts - PaddedMaskNumElts;
3777        MappedOps[i] = Idx;
3778      }
3779  
3780      SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3781  
3782      // If the concatenated vector was padded, extract a subvector with the
3783      // correct number of elements.
3784      if (MaskNumElts != PaddedMaskNumElts)
3785        Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3786                             DAG.getVectorIdxConstant(0, DL));
3787  
3788      setValue(&I, Result);
3789      return;
3790    }
3791  
3792    if (SrcNumElts > MaskNumElts) {
3793      // Analyze the access pattern of the vector to see if we can extract
3794      // two subvectors and do the shuffle.
3795      int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3796      bool CanExtract = true;
3797      for (int Idx : Mask) {
3798        unsigned Input = 0;
3799        if (Idx < 0)
3800          continue;
3801  
3802        if (Idx >= (int)SrcNumElts) {
3803          Input = 1;
3804          Idx -= SrcNumElts;
3805        }
3806  
3807        // If all the indices come from the same MaskNumElts sized portion of
3808        // the sources we can use extract. Also make sure the extract wouldn't
3809        // extract past the end of the source.
3810        int NewStartIdx = alignDown(Idx, MaskNumElts);
3811        if (NewStartIdx + MaskNumElts > SrcNumElts ||
3812            (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3813          CanExtract = false;
3814        // Make sure we always update StartIdx as we use it to track if all
3815        // elements are undef.
3816        StartIdx[Input] = NewStartIdx;
3817      }
3818  
3819      if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3820        setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3821        return;
3822      }
3823      if (CanExtract) {
3824        // Extract appropriate subvector and generate a vector shuffle
3825        for (unsigned Input = 0; Input < 2; ++Input) {
3826          SDValue &Src = Input == 0 ? Src1 : Src2;
3827          if (StartIdx[Input] < 0)
3828            Src = DAG.getUNDEF(VT);
3829          else {
3830            Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3831                              DAG.getVectorIdxConstant(StartIdx[Input], DL));
3832          }
3833        }
3834  
3835        // Calculate new mask.
3836        SmallVector<int, 8> MappedOps(Mask);
3837        for (int &Idx : MappedOps) {
3838          if (Idx >= (int)SrcNumElts)
3839            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3840          else if (Idx >= 0)
3841            Idx -= StartIdx[0];
3842        }
3843  
3844        setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3845        return;
3846      }
3847    }
3848  
3849    // We can't use either concat vectors or extract subvectors so fall back to
3850    // replacing the shuffle with extract and build vector.
3851    // to insert and build vector.
3852    EVT EltVT = VT.getVectorElementType();
3853    SmallVector<SDValue,8> Ops;
3854    for (int Idx : Mask) {
3855      SDValue Res;
3856  
3857      if (Idx < 0) {
3858        Res = DAG.getUNDEF(EltVT);
3859      } else {
3860        SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3861        if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3862  
3863        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3864                          DAG.getVectorIdxConstant(Idx, DL));
3865      }
3866  
3867      Ops.push_back(Res);
3868    }
3869  
3870    setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3871  }
3872  
3873  void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3874    ArrayRef<unsigned> Indices = I.getIndices();
3875    const Value *Op0 = I.getOperand(0);
3876    const Value *Op1 = I.getOperand(1);
3877    Type *AggTy = I.getType();
3878    Type *ValTy = Op1->getType();
3879    bool IntoUndef = isa<UndefValue>(Op0);
3880    bool FromUndef = isa<UndefValue>(Op1);
3881  
3882    unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3883  
3884    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3885    SmallVector<EVT, 4> AggValueVTs;
3886    ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3887    SmallVector<EVT, 4> ValValueVTs;
3888    ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3889  
3890    unsigned NumAggValues = AggValueVTs.size();
3891    unsigned NumValValues = ValValueVTs.size();
3892    SmallVector<SDValue, 4> Values(NumAggValues);
3893  
3894    // Ignore an insertvalue that produces an empty object
3895    if (!NumAggValues) {
3896      setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3897      return;
3898    }
3899  
3900    SDValue Agg = getValue(Op0);
3901    unsigned i = 0;
3902    // Copy the beginning value(s) from the original aggregate.
3903    for (; i != LinearIndex; ++i)
3904      Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3905                  SDValue(Agg.getNode(), Agg.getResNo() + i);
3906    // Copy values from the inserted value(s).
3907    if (NumValValues) {
3908      SDValue Val = getValue(Op1);
3909      for (; i != LinearIndex + NumValValues; ++i)
3910        Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3911                    SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3912    }
3913    // Copy remaining value(s) from the original aggregate.
3914    for (; i != NumAggValues; ++i)
3915      Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3916                  SDValue(Agg.getNode(), Agg.getResNo() + i);
3917  
3918    setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3919                             DAG.getVTList(AggValueVTs), Values));
3920  }
3921  
3922  void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3923    ArrayRef<unsigned> Indices = I.getIndices();
3924    const Value *Op0 = I.getOperand(0);
3925    Type *AggTy = Op0->getType();
3926    Type *ValTy = I.getType();
3927    bool OutOfUndef = isa<UndefValue>(Op0);
3928  
3929    unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3930  
3931    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3932    SmallVector<EVT, 4> ValValueVTs;
3933    ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3934  
3935    unsigned NumValValues = ValValueVTs.size();
3936  
3937    // Ignore a extractvalue that produces an empty object
3938    if (!NumValValues) {
3939      setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3940      return;
3941    }
3942  
3943    SmallVector<SDValue, 4> Values(NumValValues);
3944  
3945    SDValue Agg = getValue(Op0);
3946    // Copy out the selected value(s).
3947    for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3948      Values[i - LinearIndex] =
3949        OutOfUndef ?
3950          DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3951          SDValue(Agg.getNode(), Agg.getResNo() + i);
3952  
3953    setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3954                             DAG.getVTList(ValValueVTs), Values));
3955  }
3956  
3957  void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3958    Value *Op0 = I.getOperand(0);
3959    // Note that the pointer operand may be a vector of pointers. Take the scalar
3960    // element which holds a pointer.
3961    unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3962    SDValue N = getValue(Op0);
3963    SDLoc dl = getCurSDLoc();
3964    auto &TLI = DAG.getTargetLoweringInfo();
3965  
3966    // Normalize Vector GEP - all scalar operands should be converted to the
3967    // splat vector.
3968    bool IsVectorGEP = I.getType()->isVectorTy();
3969    ElementCount VectorElementCount =
3970        IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3971                    : ElementCount::getFixed(0);
3972  
3973    if (IsVectorGEP && !N.getValueType().isVector()) {
3974      LLVMContext &Context = *DAG.getContext();
3975      EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3976      N = DAG.getSplat(VT, dl, N);
3977    }
3978  
3979    for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3980         GTI != E; ++GTI) {
3981      const Value *Idx = GTI.getOperand();
3982      if (StructType *StTy = GTI.getStructTypeOrNull()) {
3983        unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3984        if (Field) {
3985          // N = N + Offset
3986          uint64_t Offset =
3987              DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3988  
3989          // In an inbounds GEP with an offset that is nonnegative even when
3990          // interpreted as signed, assume there is no unsigned overflow.
3991          SDNodeFlags Flags;
3992          if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3993            Flags.setNoUnsignedWrap(true);
3994  
3995          N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3996                          DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3997        }
3998      } else {
3999        // IdxSize is the width of the arithmetic according to IR semantics.
4000        // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4001        // (and fix up the result later).
4002        unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4003        MVT IdxTy = MVT::getIntegerVT(IdxSize);
4004        TypeSize ElementSize =
4005            DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
4006        // We intentionally mask away the high bits here; ElementSize may not
4007        // fit in IdxTy.
4008        APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4009        bool ElementScalable = ElementSize.isScalable();
4010  
4011        // If this is a scalar constant or a splat vector of constants,
4012        // handle it quickly.
4013        const auto *C = dyn_cast<Constant>(Idx);
4014        if (C && isa<VectorType>(C->getType()))
4015          C = C->getSplatValue();
4016  
4017        const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4018        if (CI && CI->isZero())
4019          continue;
4020        if (CI && !ElementScalable) {
4021          APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4022          LLVMContext &Context = *DAG.getContext();
4023          SDValue OffsVal;
4024          if (IsVectorGEP)
4025            OffsVal = DAG.getConstant(
4026                Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4027          else
4028            OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4029  
4030          // In an inbounds GEP with an offset that is nonnegative even when
4031          // interpreted as signed, assume there is no unsigned overflow.
4032          SDNodeFlags Flags;
4033          if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
4034            Flags.setNoUnsignedWrap(true);
4035  
4036          OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4037  
4038          N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4039          continue;
4040        }
4041  
4042        // N = N + Idx * ElementMul;
4043        SDValue IdxN = getValue(Idx);
4044  
4045        if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4046          EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4047                                    VectorElementCount);
4048          IdxN = DAG.getSplat(VT, dl, IdxN);
4049        }
4050  
4051        // If the index is smaller or larger than intptr_t, truncate or extend
4052        // it.
4053        IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4054  
4055        if (ElementScalable) {
4056          EVT VScaleTy = N.getValueType().getScalarType();
4057          SDValue VScale = DAG.getNode(
4058              ISD::VSCALE, dl, VScaleTy,
4059              DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4060          if (IsVectorGEP)
4061            VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4062          IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4063        } else {
4064          // If this is a multiply by a power of two, turn it into a shl
4065          // immediately.  This is a very common case.
4066          if (ElementMul != 1) {
4067            if (ElementMul.isPowerOf2()) {
4068              unsigned Amt = ElementMul.logBase2();
4069              IdxN = DAG.getNode(ISD::SHL, dl,
4070                                 N.getValueType(), IdxN,
4071                                 DAG.getConstant(Amt, dl, IdxN.getValueType()));
4072            } else {
4073              SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4074                                              IdxN.getValueType());
4075              IdxN = DAG.getNode(ISD::MUL, dl,
4076                                 N.getValueType(), IdxN, Scale);
4077            }
4078          }
4079        }
4080  
4081        N = DAG.getNode(ISD::ADD, dl,
4082                        N.getValueType(), N, IdxN);
4083      }
4084    }
4085  
4086    MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4087    MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4088    if (IsVectorGEP) {
4089      PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4090      PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4091    }
4092  
4093    if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4094      N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4095  
4096    setValue(&I, N);
4097  }
4098  
4099  void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4100    // If this is a fixed sized alloca in the entry block of the function,
4101    // allocate it statically on the stack.
4102    if (FuncInfo.StaticAllocaMap.count(&I))
4103      return;   // getValue will auto-populate this.
4104  
4105    SDLoc dl = getCurSDLoc();
4106    Type *Ty = I.getAllocatedType();
4107    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4108    auto &DL = DAG.getDataLayout();
4109    TypeSize TySize = DL.getTypeAllocSize(Ty);
4110    MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4111  
4112    SDValue AllocSize = getValue(I.getArraySize());
4113  
4114    EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace());
4115    if (AllocSize.getValueType() != IntPtr)
4116      AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4117  
4118    if (TySize.isScalable())
4119      AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4120                              DAG.getVScale(dl, IntPtr,
4121                                            APInt(IntPtr.getScalarSizeInBits(),
4122                                                  TySize.getKnownMinValue())));
4123    else
4124      AllocSize =
4125          DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4126                      DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4127  
4128    // Handle alignment.  If the requested alignment is less than or equal to
4129    // the stack alignment, ignore it.  If the size is greater than or equal to
4130    // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4131    Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4132    if (*Alignment <= StackAlign)
4133      Alignment = std::nullopt;
4134  
4135    const uint64_t StackAlignMask = StackAlign.value() - 1U;
4136    // Round the size of the allocation up to the stack alignment size
4137    // by add SA-1 to the size. This doesn't overflow because we're computing
4138    // an address inside an alloca.
4139    SDNodeFlags Flags;
4140    Flags.setNoUnsignedWrap(true);
4141    AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4142                            DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4143  
4144    // Mask out the low bits for alignment purposes.
4145    AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4146                            DAG.getConstant(~StackAlignMask, dl, IntPtr));
4147  
4148    SDValue Ops[] = {
4149        getRoot(), AllocSize,
4150        DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4151    SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4152    SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4153    setValue(&I, DSA);
4154    DAG.setRoot(DSA.getValue(1));
4155  
4156    assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4157  }
4158  
4159  static const MDNode *getRangeMetadata(const Instruction &I) {
4160    // If !noundef is not present, then !range violation results in a poison
4161    // value rather than immediate undefined behavior. In theory, transferring
4162    // these annotations to SDAG is fine, but in practice there are key SDAG
4163    // transforms that are known not to be poison-safe, such as folding logical
4164    // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4165    // also present.
4166    if (!I.hasMetadata(LLVMContext::MD_noundef))
4167      return nullptr;
4168    return I.getMetadata(LLVMContext::MD_range);
4169  }
4170  
4171  void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4172    if (I.isAtomic())
4173      return visitAtomicLoad(I);
4174  
4175    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4176    const Value *SV = I.getOperand(0);
4177    if (TLI.supportSwiftError()) {
4178      // Swifterror values can come from either a function parameter with
4179      // swifterror attribute or an alloca with swifterror attribute.
4180      if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4181        if (Arg->hasSwiftErrorAttr())
4182          return visitLoadFromSwiftError(I);
4183      }
4184  
4185      if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4186        if (Alloca->isSwiftError())
4187          return visitLoadFromSwiftError(I);
4188      }
4189    }
4190  
4191    SDValue Ptr = getValue(SV);
4192  
4193    Type *Ty = I.getType();
4194    SmallVector<EVT, 4> ValueVTs, MemVTs;
4195    SmallVector<TypeSize, 4> Offsets;
4196    ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets, 0);
4197    unsigned NumValues = ValueVTs.size();
4198    if (NumValues == 0)
4199      return;
4200  
4201    Align Alignment = I.getAlign();
4202    AAMDNodes AAInfo = I.getAAMetadata();
4203    const MDNode *Ranges = getRangeMetadata(I);
4204    bool isVolatile = I.isVolatile();
4205    MachineMemOperand::Flags MMOFlags =
4206        TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4207  
4208    SDValue Root;
4209    bool ConstantMemory = false;
4210    if (isVolatile)
4211      // Serialize volatile loads with other side effects.
4212      Root = getRoot();
4213    else if (NumValues > MaxParallelChains)
4214      Root = getMemoryRoot();
4215    else if (AA &&
4216             AA->pointsToConstantMemory(MemoryLocation(
4217                 SV,
4218                 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4219                 AAInfo))) {
4220      // Do not serialize (non-volatile) loads of constant memory with anything.
4221      Root = DAG.getEntryNode();
4222      ConstantMemory = true;
4223      MMOFlags |= MachineMemOperand::MOInvariant;
4224    } else {
4225      // Do not serialize non-volatile loads against each other.
4226      Root = DAG.getRoot();
4227    }
4228  
4229    SDLoc dl = getCurSDLoc();
4230  
4231    if (isVolatile)
4232      Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4233  
4234    SmallVector<SDValue, 4> Values(NumValues);
4235    SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4236  
4237    unsigned ChainI = 0;
4238    for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4239      // Serializing loads here may result in excessive register pressure, and
4240      // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4241      // could recover a bit by hoisting nodes upward in the chain by recognizing
4242      // they are side-effect free or do not alias. The optimizer should really
4243      // avoid this case by converting large object/array copies to llvm.memcpy
4244      // (MaxParallelChains should always remain as failsafe).
4245      if (ChainI == MaxParallelChains) {
4246        assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4247        SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4248                                    ArrayRef(Chains.data(), ChainI));
4249        Root = Chain;
4250        ChainI = 0;
4251      }
4252  
4253      // TODO: MachinePointerInfo only supports a fixed length offset.
4254      MachinePointerInfo PtrInfo =
4255          !Offsets[i].isScalable() || Offsets[i].isZero()
4256              ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4257              : MachinePointerInfo();
4258  
4259      SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4260      SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4261                              MMOFlags, AAInfo, Ranges);
4262      Chains[ChainI] = L.getValue(1);
4263  
4264      if (MemVTs[i] != ValueVTs[i])
4265        L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4266  
4267      Values[i] = L;
4268    }
4269  
4270    if (!ConstantMemory) {
4271      SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4272                                  ArrayRef(Chains.data(), ChainI));
4273      if (isVolatile)
4274        DAG.setRoot(Chain);
4275      else
4276        PendingLoads.push_back(Chain);
4277    }
4278  
4279    setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4280                             DAG.getVTList(ValueVTs), Values));
4281  }
4282  
4283  void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4284    assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4285           "call visitStoreToSwiftError when backend supports swifterror");
4286  
4287    SmallVector<EVT, 4> ValueVTs;
4288    SmallVector<uint64_t, 4> Offsets;
4289    const Value *SrcV = I.getOperand(0);
4290    ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4291                    SrcV->getType(), ValueVTs, &Offsets, 0);
4292    assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4293           "expect a single EVT for swifterror");
4294  
4295    SDValue Src = getValue(SrcV);
4296    // Create a virtual register, then update the virtual register.
4297    Register VReg =
4298        SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4299    // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4300    // Chain can be getRoot or getControlRoot.
4301    SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4302                                        SDValue(Src.getNode(), Src.getResNo()));
4303    DAG.setRoot(CopyNode);
4304  }
4305  
4306  void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4307    assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4308           "call visitLoadFromSwiftError when backend supports swifterror");
4309  
4310    assert(!I.isVolatile() &&
4311           !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4312           !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4313           "Support volatile, non temporal, invariant for load_from_swift_error");
4314  
4315    const Value *SV = I.getOperand(0);
4316    Type *Ty = I.getType();
4317    assert(
4318        (!AA ||
4319         !AA->pointsToConstantMemory(MemoryLocation(
4320             SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4321             I.getAAMetadata()))) &&
4322        "load_from_swift_error should not be constant memory");
4323  
4324    SmallVector<EVT, 4> ValueVTs;
4325    SmallVector<uint64_t, 4> Offsets;
4326    ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4327                    ValueVTs, &Offsets, 0);
4328    assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4329           "expect a single EVT for swifterror");
4330  
4331    // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4332    SDValue L = DAG.getCopyFromReg(
4333        getRoot(), getCurSDLoc(),
4334        SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4335  
4336    setValue(&I, L);
4337  }
4338  
4339  void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4340    if (I.isAtomic())
4341      return visitAtomicStore(I);
4342  
4343    const Value *SrcV = I.getOperand(0);
4344    const Value *PtrV = I.getOperand(1);
4345  
4346    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4347    if (TLI.supportSwiftError()) {
4348      // Swifterror values can come from either a function parameter with
4349      // swifterror attribute or an alloca with swifterror attribute.
4350      if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4351        if (Arg->hasSwiftErrorAttr())
4352          return visitStoreToSwiftError(I);
4353      }
4354  
4355      if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4356        if (Alloca->isSwiftError())
4357          return visitStoreToSwiftError(I);
4358      }
4359    }
4360  
4361    SmallVector<EVT, 4> ValueVTs, MemVTs;
4362    SmallVector<TypeSize, 4> Offsets;
4363    ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4364                    SrcV->getType(), ValueVTs, &MemVTs, &Offsets, 0);
4365    unsigned NumValues = ValueVTs.size();
4366    if (NumValues == 0)
4367      return;
4368  
4369    // Get the lowered operands. Note that we do this after
4370    // checking if NumResults is zero, because with zero results
4371    // the operands won't have values in the map.
4372    SDValue Src = getValue(SrcV);
4373    SDValue Ptr = getValue(PtrV);
4374  
4375    SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4376    SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4377    SDLoc dl = getCurSDLoc();
4378    Align Alignment = I.getAlign();
4379    AAMDNodes AAInfo = I.getAAMetadata();
4380  
4381    auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4382  
4383    unsigned ChainI = 0;
4384    for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4385      // See visitLoad comments.
4386      if (ChainI == MaxParallelChains) {
4387        SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4388                                    ArrayRef(Chains.data(), ChainI));
4389        Root = Chain;
4390        ChainI = 0;
4391      }
4392  
4393      // TODO: MachinePointerInfo only supports a fixed length offset.
4394      MachinePointerInfo PtrInfo =
4395          !Offsets[i].isScalable() || Offsets[i].isZero()
4396              ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4397              : MachinePointerInfo();
4398  
4399      SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4400      SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4401      if (MemVTs[i] != ValueVTs[i])
4402        Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4403      SDValue St =
4404          DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4405      Chains[ChainI] = St;
4406    }
4407  
4408    SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4409                                    ArrayRef(Chains.data(), ChainI));
4410    setValue(&I, StoreNode);
4411    DAG.setRoot(StoreNode);
4412  }
4413  
4414  void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4415                                             bool IsCompressing) {
4416    SDLoc sdl = getCurSDLoc();
4417  
4418    auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4419                                 MaybeAlign &Alignment) {
4420      // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4421      Src0 = I.getArgOperand(0);
4422      Ptr = I.getArgOperand(1);
4423      Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4424      Mask = I.getArgOperand(3);
4425    };
4426    auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4427                                      MaybeAlign &Alignment) {
4428      // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4429      Src0 = I.getArgOperand(0);
4430      Ptr = I.getArgOperand(1);
4431      Mask = I.getArgOperand(2);
4432      Alignment = std::nullopt;
4433    };
4434  
4435    Value  *PtrOperand, *MaskOperand, *Src0Operand;
4436    MaybeAlign Alignment;
4437    if (IsCompressing)
4438      getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4439    else
4440      getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4441  
4442    SDValue Ptr = getValue(PtrOperand);
4443    SDValue Src0 = getValue(Src0Operand);
4444    SDValue Mask = getValue(MaskOperand);
4445    SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4446  
4447    EVT VT = Src0.getValueType();
4448    if (!Alignment)
4449      Alignment = DAG.getEVTAlign(VT);
4450  
4451    MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4452        MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4453        MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4454    SDValue StoreNode =
4455        DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4456                           ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4457    DAG.setRoot(StoreNode);
4458    setValue(&I, StoreNode);
4459  }
4460  
4461  // Get a uniform base for the Gather/Scatter intrinsic.
4462  // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4463  // We try to represent it as a base pointer + vector of indices.
4464  // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4465  // The first operand of the GEP may be a single pointer or a vector of pointers
4466  // Example:
4467  //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4468  //  or
4469  //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4470  // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4471  //
4472  // When the first GEP operand is a single pointer - it is the uniform base we
4473  // are looking for. If first operand of the GEP is a splat vector - we
4474  // extract the splat value and use it as a uniform base.
4475  // In all other cases the function returns 'false'.
4476  static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4477                             ISD::MemIndexType &IndexType, SDValue &Scale,
4478                             SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4479                             uint64_t ElemSize) {
4480    SelectionDAG& DAG = SDB->DAG;
4481    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4482    const DataLayout &DL = DAG.getDataLayout();
4483  
4484    assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4485  
4486    // Handle splat constant pointer.
4487    if (auto *C = dyn_cast<Constant>(Ptr)) {
4488      C = C->getSplatValue();
4489      if (!C)
4490        return false;
4491  
4492      Base = SDB->getValue(C);
4493  
4494      ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4495      EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4496      Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4497      IndexType = ISD::SIGNED_SCALED;
4498      Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4499      return true;
4500    }
4501  
4502    const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4503    if (!GEP || GEP->getParent() != CurBB)
4504      return false;
4505  
4506    if (GEP->getNumOperands() != 2)
4507      return false;
4508  
4509    const Value *BasePtr = GEP->getPointerOperand();
4510    const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4511  
4512    // Make sure the base is scalar and the index is a vector.
4513    if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4514      return false;
4515  
4516    TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4517    if (ScaleVal.isScalable())
4518      return false;
4519  
4520    // Target may not support the required addressing mode.
4521    if (ScaleVal != 1 &&
4522        !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4523      return false;
4524  
4525    Base = SDB->getValue(BasePtr);
4526    Index = SDB->getValue(IndexVal);
4527    IndexType = ISD::SIGNED_SCALED;
4528  
4529    Scale =
4530        DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4531    return true;
4532  }
4533  
4534  void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4535    SDLoc sdl = getCurSDLoc();
4536  
4537    // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4538    const Value *Ptr = I.getArgOperand(1);
4539    SDValue Src0 = getValue(I.getArgOperand(0));
4540    SDValue Mask = getValue(I.getArgOperand(3));
4541    EVT VT = Src0.getValueType();
4542    Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4543                          ->getMaybeAlignValue()
4544                          .value_or(DAG.getEVTAlign(VT.getScalarType()));
4545    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4546  
4547    SDValue Base;
4548    SDValue Index;
4549    ISD::MemIndexType IndexType;
4550    SDValue Scale;
4551    bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4552                                      I.getParent(), VT.getScalarStoreSize());
4553  
4554    unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4555    MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4556        MachinePointerInfo(AS), MachineMemOperand::MOStore,
4557        // TODO: Make MachineMemOperands aware of scalable
4558        // vectors.
4559        MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4560    if (!UniformBase) {
4561      Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4562      Index = getValue(Ptr);
4563      IndexType = ISD::SIGNED_SCALED;
4564      Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4565    }
4566  
4567    EVT IdxVT = Index.getValueType();
4568    EVT EltTy = IdxVT.getVectorElementType();
4569    if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4570      EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4571      Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4572    }
4573  
4574    SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4575    SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4576                                           Ops, MMO, IndexType, false);
4577    DAG.setRoot(Scatter);
4578    setValue(&I, Scatter);
4579  }
4580  
4581  void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4582    SDLoc sdl = getCurSDLoc();
4583  
4584    auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4585                                MaybeAlign &Alignment) {
4586      // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4587      Ptr = I.getArgOperand(0);
4588      Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4589      Mask = I.getArgOperand(2);
4590      Src0 = I.getArgOperand(3);
4591    };
4592    auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4593                                   MaybeAlign &Alignment) {
4594      // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4595      Ptr = I.getArgOperand(0);
4596      Alignment = std::nullopt;
4597      Mask = I.getArgOperand(1);
4598      Src0 = I.getArgOperand(2);
4599    };
4600  
4601    Value  *PtrOperand, *MaskOperand, *Src0Operand;
4602    MaybeAlign Alignment;
4603    if (IsExpanding)
4604      getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4605    else
4606      getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4607  
4608    SDValue Ptr = getValue(PtrOperand);
4609    SDValue Src0 = getValue(Src0Operand);
4610    SDValue Mask = getValue(MaskOperand);
4611    SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4612  
4613    EVT VT = Src0.getValueType();
4614    if (!Alignment)
4615      Alignment = DAG.getEVTAlign(VT);
4616  
4617    AAMDNodes AAInfo = I.getAAMetadata();
4618    const MDNode *Ranges = getRangeMetadata(I);
4619  
4620    // Do not serialize masked loads of constant memory with anything.
4621    MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4622    bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4623  
4624    SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4625  
4626    MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4627        MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4628        MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4629  
4630    SDValue Load =
4631        DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4632                          ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4633    if (AddToChain)
4634      PendingLoads.push_back(Load.getValue(1));
4635    setValue(&I, Load);
4636  }
4637  
4638  void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4639    SDLoc sdl = getCurSDLoc();
4640  
4641    // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4642    const Value *Ptr = I.getArgOperand(0);
4643    SDValue Src0 = getValue(I.getArgOperand(3));
4644    SDValue Mask = getValue(I.getArgOperand(2));
4645  
4646    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4647    EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4648    Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4649                          ->getMaybeAlignValue()
4650                          .value_or(DAG.getEVTAlign(VT.getScalarType()));
4651  
4652    const MDNode *Ranges = getRangeMetadata(I);
4653  
4654    SDValue Root = DAG.getRoot();
4655    SDValue Base;
4656    SDValue Index;
4657    ISD::MemIndexType IndexType;
4658    SDValue Scale;
4659    bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4660                                      I.getParent(), VT.getScalarStoreSize());
4661    unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4662    MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4663        MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4664        // TODO: Make MachineMemOperands aware of scalable
4665        // vectors.
4666        MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4667  
4668    if (!UniformBase) {
4669      Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4670      Index = getValue(Ptr);
4671      IndexType = ISD::SIGNED_SCALED;
4672      Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4673    }
4674  
4675    EVT IdxVT = Index.getValueType();
4676    EVT EltTy = IdxVT.getVectorElementType();
4677    if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4678      EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4679      Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4680    }
4681  
4682    SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4683    SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4684                                         Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4685  
4686    PendingLoads.push_back(Gather.getValue(1));
4687    setValue(&I, Gather);
4688  }
4689  
4690  void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4691    SDLoc dl = getCurSDLoc();
4692    AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4693    AtomicOrdering FailureOrdering = I.getFailureOrdering();
4694    SyncScope::ID SSID = I.getSyncScopeID();
4695  
4696    SDValue InChain = getRoot();
4697  
4698    MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4699    SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4700  
4701    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4702    auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4703  
4704    MachineFunction &MF = DAG.getMachineFunction();
4705    MachineMemOperand *MMO = MF.getMachineMemOperand(
4706        MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4707        DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4708        FailureOrdering);
4709  
4710    SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4711                                     dl, MemVT, VTs, InChain,
4712                                     getValue(I.getPointerOperand()),
4713                                     getValue(I.getCompareOperand()),
4714                                     getValue(I.getNewValOperand()), MMO);
4715  
4716    SDValue OutChain = L.getValue(2);
4717  
4718    setValue(&I, L);
4719    DAG.setRoot(OutChain);
4720  }
4721  
4722  void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4723    SDLoc dl = getCurSDLoc();
4724    ISD::NodeType NT;
4725    switch (I.getOperation()) {
4726    default: llvm_unreachable("Unknown atomicrmw operation");
4727    case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4728    case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4729    case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4730    case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4731    case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4732    case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4733    case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4734    case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4735    case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4736    case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4737    case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4738    case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4739    case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4740    case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4741    case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4742    case AtomicRMWInst::UIncWrap:
4743      NT = ISD::ATOMIC_LOAD_UINC_WRAP;
4744      break;
4745    case AtomicRMWInst::UDecWrap:
4746      NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
4747      break;
4748    }
4749    AtomicOrdering Ordering = I.getOrdering();
4750    SyncScope::ID SSID = I.getSyncScopeID();
4751  
4752    SDValue InChain = getRoot();
4753  
4754    auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4755    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4756    auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4757  
4758    MachineFunction &MF = DAG.getMachineFunction();
4759    MachineMemOperand *MMO = MF.getMachineMemOperand(
4760        MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4761        DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4762  
4763    SDValue L =
4764      DAG.getAtomic(NT, dl, MemVT, InChain,
4765                    getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4766                    MMO);
4767  
4768    SDValue OutChain = L.getValue(1);
4769  
4770    setValue(&I, L);
4771    DAG.setRoot(OutChain);
4772  }
4773  
4774  void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4775    SDLoc dl = getCurSDLoc();
4776    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4777    SDValue Ops[3];
4778    Ops[0] = getRoot();
4779    Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4780                                   TLI.getFenceOperandTy(DAG.getDataLayout()));
4781    Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4782                                   TLI.getFenceOperandTy(DAG.getDataLayout()));
4783    SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4784    setValue(&I, N);
4785    DAG.setRoot(N);
4786  }
4787  
4788  void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4789    SDLoc dl = getCurSDLoc();
4790    AtomicOrdering Order = I.getOrdering();
4791    SyncScope::ID SSID = I.getSyncScopeID();
4792  
4793    SDValue InChain = getRoot();
4794  
4795    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4796    EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4797    EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4798  
4799    if (!TLI.supportsUnalignedAtomics() &&
4800        I.getAlign().value() < MemVT.getSizeInBits() / 8)
4801      report_fatal_error("Cannot generate unaligned atomic load");
4802  
4803    auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4804  
4805    MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4806        MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4807        I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4808  
4809    InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4810  
4811    SDValue Ptr = getValue(I.getPointerOperand());
4812  
4813    if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4814      // TODO: Once this is better exercised by tests, it should be merged with
4815      // the normal path for loads to prevent future divergence.
4816      SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4817      if (MemVT != VT)
4818        L = DAG.getPtrExtOrTrunc(L, dl, VT);
4819  
4820      setValue(&I, L);
4821      SDValue OutChain = L.getValue(1);
4822      if (!I.isUnordered())
4823        DAG.setRoot(OutChain);
4824      else
4825        PendingLoads.push_back(OutChain);
4826      return;
4827    }
4828  
4829    SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4830                              Ptr, MMO);
4831  
4832    SDValue OutChain = L.getValue(1);
4833    if (MemVT != VT)
4834      L = DAG.getPtrExtOrTrunc(L, dl, VT);
4835  
4836    setValue(&I, L);
4837    DAG.setRoot(OutChain);
4838  }
4839  
4840  void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4841    SDLoc dl = getCurSDLoc();
4842  
4843    AtomicOrdering Ordering = I.getOrdering();
4844    SyncScope::ID SSID = I.getSyncScopeID();
4845  
4846    SDValue InChain = getRoot();
4847  
4848    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4849    EVT MemVT =
4850        TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4851  
4852    if (!TLI.supportsUnalignedAtomics() &&
4853        I.getAlign().value() < MemVT.getSizeInBits() / 8)
4854      report_fatal_error("Cannot generate unaligned atomic store");
4855  
4856    auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4857  
4858    MachineFunction &MF = DAG.getMachineFunction();
4859    MachineMemOperand *MMO = MF.getMachineMemOperand(
4860        MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4861        I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4862  
4863    SDValue Val = getValue(I.getValueOperand());
4864    if (Val.getValueType() != MemVT)
4865      Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4866    SDValue Ptr = getValue(I.getPointerOperand());
4867  
4868    if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4869      // TODO: Once this is better exercised by tests, it should be merged with
4870      // the normal path for stores to prevent future divergence.
4871      SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4872      setValue(&I, S);
4873      DAG.setRoot(S);
4874      return;
4875    }
4876    SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4877                                     Ptr, Val, MMO);
4878  
4879    setValue(&I, OutChain);
4880    DAG.setRoot(OutChain);
4881  }
4882  
4883  /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4884  /// node.
4885  void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4886                                                 unsigned Intrinsic) {
4887    // Ignore the callsite's attributes. A specific call site may be marked with
4888    // readnone, but the lowering code will expect the chain based on the
4889    // definition.
4890    const Function *F = I.getCalledFunction();
4891    bool HasChain = !F->doesNotAccessMemory();
4892    bool OnlyLoad = HasChain && F->onlyReadsMemory();
4893  
4894    // Build the operand list.
4895    SmallVector<SDValue, 8> Ops;
4896    if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4897      if (OnlyLoad) {
4898        // We don't need to serialize loads against other loads.
4899        Ops.push_back(DAG.getRoot());
4900      } else {
4901        Ops.push_back(getRoot());
4902      }
4903    }
4904  
4905    // Info is set by getTgtMemIntrinsic
4906    TargetLowering::IntrinsicInfo Info;
4907    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4908    bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4909                                                 DAG.getMachineFunction(),
4910                                                 Intrinsic);
4911  
4912    // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4913    if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4914        Info.opc == ISD::INTRINSIC_W_CHAIN)
4915      Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4916                                          TLI.getPointerTy(DAG.getDataLayout())));
4917  
4918    // Add all operands of the call to the operand list.
4919    for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4920      const Value *Arg = I.getArgOperand(i);
4921      if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4922        Ops.push_back(getValue(Arg));
4923        continue;
4924      }
4925  
4926      // Use TargetConstant instead of a regular constant for immarg.
4927      EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4928      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4929        assert(CI->getBitWidth() <= 64 &&
4930               "large intrinsic immediates not handled");
4931        Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4932      } else {
4933        Ops.push_back(
4934            DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4935      }
4936    }
4937  
4938    SmallVector<EVT, 4> ValueVTs;
4939    ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4940  
4941    if (HasChain)
4942      ValueVTs.push_back(MVT::Other);
4943  
4944    SDVTList VTs = DAG.getVTList(ValueVTs);
4945  
4946    // Propagate fast-math-flags from IR to node(s).
4947    SDNodeFlags Flags;
4948    if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4949      Flags.copyFMF(*FPMO);
4950    SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4951  
4952    // Create the node.
4953    SDValue Result;
4954    // In some cases, custom collection of operands from CallInst I may be needed.
4955    TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
4956    if (IsTgtIntrinsic) {
4957      // This is target intrinsic that touches memory
4958      //
4959      // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
4960      //       didn't yield anything useful.
4961      MachinePointerInfo MPI;
4962      if (Info.ptrVal)
4963        MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
4964      else if (Info.fallbackAddressSpace)
4965        MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
4966      Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
4967                                       Info.memVT, MPI, Info.align, Info.flags,
4968                                       Info.size, I.getAAMetadata());
4969    } else if (!HasChain) {
4970      Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4971    } else if (!I.getType()->isVoidTy()) {
4972      Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4973    } else {
4974      Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4975    }
4976  
4977    if (HasChain) {
4978      SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4979      if (OnlyLoad)
4980        PendingLoads.push_back(Chain);
4981      else
4982        DAG.setRoot(Chain);
4983    }
4984  
4985    if (!I.getType()->isVoidTy()) {
4986      if (!isa<VectorType>(I.getType()))
4987        Result = lowerRangeToAssertZExt(DAG, I, Result);
4988  
4989      MaybeAlign Alignment = I.getRetAlign();
4990  
4991      // Insert `assertalign` node if there's an alignment.
4992      if (InsertAssertAlign && Alignment) {
4993        Result =
4994            DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4995      }
4996  
4997      setValue(&I, Result);
4998    }
4999  }
5000  
5001  /// GetSignificand - Get the significand and build it into a floating-point
5002  /// number with exponent of 1:
5003  ///
5004  ///   Op = (Op & 0x007fffff) | 0x3f800000;
5005  ///
5006  /// where Op is the hexadecimal representation of floating point value.
5007  static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5008    SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5009                             DAG.getConstant(0x007fffff, dl, MVT::i32));
5010    SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5011                             DAG.getConstant(0x3f800000, dl, MVT::i32));
5012    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5013  }
5014  
5015  /// GetExponent - Get the exponent:
5016  ///
5017  ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5018  ///
5019  /// where Op is the hexadecimal representation of floating point value.
5020  static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5021                             const TargetLowering &TLI, const SDLoc &dl) {
5022    SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5023                             DAG.getConstant(0x7f800000, dl, MVT::i32));
5024    SDValue t1 = DAG.getNode(
5025        ISD::SRL, dl, MVT::i32, t0,
5026        DAG.getConstant(23, dl,
5027                        TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5028    SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5029                             DAG.getConstant(127, dl, MVT::i32));
5030    return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5031  }
5032  
5033  /// getF32Constant - Get 32-bit floating point constant.
5034  static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5035                                const SDLoc &dl) {
5036    return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5037                             MVT::f32);
5038  }
5039  
5040  static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5041                                         SelectionDAG &DAG) {
5042    // TODO: What fast-math-flags should be set on the floating-point nodes?
5043  
5044    //   IntegerPartOfX = ((int32_t)(t0);
5045    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5046  
5047    //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5048    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5049    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5050  
5051    //   IntegerPartOfX <<= 23;
5052    IntegerPartOfX =
5053        DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5054                    DAG.getConstant(23, dl,
5055                                    DAG.getTargetLoweringInfo().getShiftAmountTy(
5056                                        MVT::i32, DAG.getDataLayout())));
5057  
5058    SDValue TwoToFractionalPartOfX;
5059    if (LimitFloatPrecision <= 6) {
5060      // For floating-point precision of 6:
5061      //
5062      //   TwoToFractionalPartOfX =
5063      //     0.997535578f +
5064      //       (0.735607626f + 0.252464424f * x) * x;
5065      //
5066      // error 0.0144103317, which is 6 bits
5067      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5068                               getF32Constant(DAG, 0x3e814304, dl));
5069      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5070                               getF32Constant(DAG, 0x3f3c50c8, dl));
5071      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5072      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5073                                           getF32Constant(DAG, 0x3f7f5e7e, dl));
5074    } else if (LimitFloatPrecision <= 12) {
5075      // For floating-point precision of 12:
5076      //
5077      //   TwoToFractionalPartOfX =
5078      //     0.999892986f +
5079      //       (0.696457318f +
5080      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5081      //
5082      // error 0.000107046256, which is 13 to 14 bits
5083      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5084                               getF32Constant(DAG, 0x3da235e3, dl));
5085      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5086                               getF32Constant(DAG, 0x3e65b8f3, dl));
5087      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5088      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5089                               getF32Constant(DAG, 0x3f324b07, dl));
5090      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5091      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5092                                           getF32Constant(DAG, 0x3f7ff8fd, dl));
5093    } else { // LimitFloatPrecision <= 18
5094      // For floating-point precision of 18:
5095      //
5096      //   TwoToFractionalPartOfX =
5097      //     0.999999982f +
5098      //       (0.693148872f +
5099      //         (0.240227044f +
5100      //           (0.554906021e-1f +
5101      //             (0.961591928e-2f +
5102      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5103      // error 2.47208000*10^(-7), which is better than 18 bits
5104      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5105                               getF32Constant(DAG, 0x3924b03e, dl));
5106      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5107                               getF32Constant(DAG, 0x3ab24b87, dl));
5108      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5109      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5110                               getF32Constant(DAG, 0x3c1d8c17, dl));
5111      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5112      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5113                               getF32Constant(DAG, 0x3d634a1d, dl));
5114      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5115      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5116                               getF32Constant(DAG, 0x3e75fe14, dl));
5117      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5118      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5119                                getF32Constant(DAG, 0x3f317234, dl));
5120      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5121      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5122                                           getF32Constant(DAG, 0x3f800000, dl));
5123    }
5124  
5125    // Add the exponent into the result in integer domain.
5126    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5127    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5128                       DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5129  }
5130  
5131  /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5132  /// limited-precision mode.
5133  static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5134                           const TargetLowering &TLI, SDNodeFlags Flags) {
5135    if (Op.getValueType() == MVT::f32 &&
5136        LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5137  
5138      // Put the exponent in the right bit position for later addition to the
5139      // final result:
5140      //
5141      // t0 = Op * log2(e)
5142  
5143      // TODO: What fast-math-flags should be set here?
5144      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5145                               DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5146      return getLimitedPrecisionExp2(t0, dl, DAG);
5147    }
5148  
5149    // No special expansion.
5150    return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5151  }
5152  
5153  /// expandLog - Lower a log intrinsic. Handles the special sequences for
5154  /// limited-precision mode.
5155  static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5156                           const TargetLowering &TLI, SDNodeFlags Flags) {
5157    // TODO: What fast-math-flags should be set on the floating-point nodes?
5158  
5159    if (Op.getValueType() == MVT::f32 &&
5160        LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5161      SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5162  
5163      // Scale the exponent by log(2).
5164      SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5165      SDValue LogOfExponent =
5166          DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5167                      DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5168  
5169      // Get the significand and build it into a floating-point number with
5170      // exponent of 1.
5171      SDValue X = GetSignificand(DAG, Op1, dl);
5172  
5173      SDValue LogOfMantissa;
5174      if (LimitFloatPrecision <= 6) {
5175        // For floating-point precision of 6:
5176        //
5177        //   LogofMantissa =
5178        //     -1.1609546f +
5179        //       (1.4034025f - 0.23903021f * x) * x;
5180        //
5181        // error 0.0034276066, which is better than 8 bits
5182        SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5183                                 getF32Constant(DAG, 0xbe74c456, dl));
5184        SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5185                                 getF32Constant(DAG, 0x3fb3a2b1, dl));
5186        SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5187        LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5188                                    getF32Constant(DAG, 0x3f949a29, dl));
5189      } else if (LimitFloatPrecision <= 12) {
5190        // For floating-point precision of 12:
5191        //
5192        //   LogOfMantissa =
5193        //     -1.7417939f +
5194        //       (2.8212026f +
5195        //         (-1.4699568f +
5196        //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5197        //
5198        // error 0.000061011436, which is 14 bits
5199        SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5200                                 getF32Constant(DAG, 0xbd67b6d6, dl));
5201        SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5202                                 getF32Constant(DAG, 0x3ee4f4b8, dl));
5203        SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5204        SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5205                                 getF32Constant(DAG, 0x3fbc278b, dl));
5206        SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5207        SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5208                                 getF32Constant(DAG, 0x40348e95, dl));
5209        SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5210        LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5211                                    getF32Constant(DAG, 0x3fdef31a, dl));
5212      } else { // LimitFloatPrecision <= 18
5213        // For floating-point precision of 18:
5214        //
5215        //   LogOfMantissa =
5216        //     -2.1072184f +
5217        //       (4.2372794f +
5218        //         (-3.7029485f +
5219        //           (2.2781945f +
5220        //             (-0.87823314f +
5221        //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5222        //
5223        // error 0.0000023660568, which is better than 18 bits
5224        SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5225                                 getF32Constant(DAG, 0xbc91e5ac, dl));
5226        SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5227                                 getF32Constant(DAG, 0x3e4350aa, dl));
5228        SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5229        SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5230                                 getF32Constant(DAG, 0x3f60d3e3, dl));
5231        SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5232        SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5233                                 getF32Constant(DAG, 0x4011cdf0, dl));
5234        SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5235        SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5236                                 getF32Constant(DAG, 0x406cfd1c, dl));
5237        SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5238        SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5239                                 getF32Constant(DAG, 0x408797cb, dl));
5240        SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5241        LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5242                                    getF32Constant(DAG, 0x4006dcab, dl));
5243      }
5244  
5245      return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5246    }
5247  
5248    // No special expansion.
5249    return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5250  }
5251  
5252  /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5253  /// limited-precision mode.
5254  static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5255                            const TargetLowering &TLI, SDNodeFlags Flags) {
5256    // TODO: What fast-math-flags should be set on the floating-point nodes?
5257  
5258    if (Op.getValueType() == MVT::f32 &&
5259        LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5260      SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5261  
5262      // Get the exponent.
5263      SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5264  
5265      // Get the significand and build it into a floating-point number with
5266      // exponent of 1.
5267      SDValue X = GetSignificand(DAG, Op1, dl);
5268  
5269      // Different possible minimax approximations of significand in
5270      // floating-point for various degrees of accuracy over [1,2].
5271      SDValue Log2ofMantissa;
5272      if (LimitFloatPrecision <= 6) {
5273        // For floating-point precision of 6:
5274        //
5275        //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5276        //
5277        // error 0.0049451742, which is more than 7 bits
5278        SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5279                                 getF32Constant(DAG, 0xbeb08fe0, dl));
5280        SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5281                                 getF32Constant(DAG, 0x40019463, dl));
5282        SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5283        Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5284                                     getF32Constant(DAG, 0x3fd6633d, dl));
5285      } else if (LimitFloatPrecision <= 12) {
5286        // For floating-point precision of 12:
5287        //
5288        //   Log2ofMantissa =
5289        //     -2.51285454f +
5290        //       (4.07009056f +
5291        //         (-2.12067489f +
5292        //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5293        //
5294        // error 0.0000876136000, which is better than 13 bits
5295        SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5296                                 getF32Constant(DAG, 0xbda7262e, dl));
5297        SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5298                                 getF32Constant(DAG, 0x3f25280b, dl));
5299        SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5300        SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5301                                 getF32Constant(DAG, 0x4007b923, dl));
5302        SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5303        SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5304                                 getF32Constant(DAG, 0x40823e2f, dl));
5305        SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5306        Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5307                                     getF32Constant(DAG, 0x4020d29c, dl));
5308      } else { // LimitFloatPrecision <= 18
5309        // For floating-point precision of 18:
5310        //
5311        //   Log2ofMantissa =
5312        //     -3.0400495f +
5313        //       (6.1129976f +
5314        //         (-5.3420409f +
5315        //           (3.2865683f +
5316        //             (-1.2669343f +
5317        //               (0.27515199f -
5318        //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5319        //
5320        // error 0.0000018516, which is better than 18 bits
5321        SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5322                                 getF32Constant(DAG, 0xbcd2769e, dl));
5323        SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5324                                 getF32Constant(DAG, 0x3e8ce0b9, dl));
5325        SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5326        SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5327                                 getF32Constant(DAG, 0x3fa22ae7, dl));
5328        SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5329        SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5330                                 getF32Constant(DAG, 0x40525723, dl));
5331        SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5332        SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5333                                 getF32Constant(DAG, 0x40aaf200, dl));
5334        SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5335        SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5336                                 getF32Constant(DAG, 0x40c39dad, dl));
5337        SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5338        Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5339                                     getF32Constant(DAG, 0x4042902c, dl));
5340      }
5341  
5342      return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5343    }
5344  
5345    // No special expansion.
5346    return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5347  }
5348  
5349  /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5350  /// limited-precision mode.
5351  static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5352                             const TargetLowering &TLI, SDNodeFlags Flags) {
5353    // TODO: What fast-math-flags should be set on the floating-point nodes?
5354  
5355    if (Op.getValueType() == MVT::f32 &&
5356        LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5357      SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5358  
5359      // Scale the exponent by log10(2) [0.30102999f].
5360      SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5361      SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5362                                          getF32Constant(DAG, 0x3e9a209a, dl));
5363  
5364      // Get the significand and build it into a floating-point number with
5365      // exponent of 1.
5366      SDValue X = GetSignificand(DAG, Op1, dl);
5367  
5368      SDValue Log10ofMantissa;
5369      if (LimitFloatPrecision <= 6) {
5370        // For floating-point precision of 6:
5371        //
5372        //   Log10ofMantissa =
5373        //     -0.50419619f +
5374        //       (0.60948995f - 0.10380950f * x) * x;
5375        //
5376        // error 0.0014886165, which is 6 bits
5377        SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5378                                 getF32Constant(DAG, 0xbdd49a13, dl));
5379        SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5380                                 getF32Constant(DAG, 0x3f1c0789, dl));
5381        SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5382        Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5383                                      getF32Constant(DAG, 0x3f011300, dl));
5384      } else if (LimitFloatPrecision <= 12) {
5385        // For floating-point precision of 12:
5386        //
5387        //   Log10ofMantissa =
5388        //     -0.64831180f +
5389        //       (0.91751397f +
5390        //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5391        //
5392        // error 0.00019228036, which is better than 12 bits
5393        SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5394                                 getF32Constant(DAG, 0x3d431f31, dl));
5395        SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5396                                 getF32Constant(DAG, 0x3ea21fb2, dl));
5397        SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5398        SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5399                                 getF32Constant(DAG, 0x3f6ae232, dl));
5400        SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5401        Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5402                                      getF32Constant(DAG, 0x3f25f7c3, dl));
5403      } else { // LimitFloatPrecision <= 18
5404        // For floating-point precision of 18:
5405        //
5406        //   Log10ofMantissa =
5407        //     -0.84299375f +
5408        //       (1.5327582f +
5409        //         (-1.0688956f +
5410        //           (0.49102474f +
5411        //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5412        //
5413        // error 0.0000037995730, which is better than 18 bits
5414        SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5415                                 getF32Constant(DAG, 0x3c5d51ce, dl));
5416        SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5417                                 getF32Constant(DAG, 0x3e00685a, dl));
5418        SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5419        SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5420                                 getF32Constant(DAG, 0x3efb6798, dl));
5421        SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5422        SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5423                                 getF32Constant(DAG, 0x3f88d192, dl));
5424        SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5425        SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5426                                 getF32Constant(DAG, 0x3fc4316c, dl));
5427        SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5428        Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5429                                      getF32Constant(DAG, 0x3f57ce70, dl));
5430      }
5431  
5432      return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5433    }
5434  
5435    // No special expansion.
5436    return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5437  }
5438  
5439  /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5440  /// limited-precision mode.
5441  static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5442                            const TargetLowering &TLI, SDNodeFlags Flags) {
5443    if (Op.getValueType() == MVT::f32 &&
5444        LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5445      return getLimitedPrecisionExp2(Op, dl, DAG);
5446  
5447    // No special expansion.
5448    return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5449  }
5450  
5451  /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5452  /// limited-precision mode with x == 10.0f.
5453  static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5454                           SelectionDAG &DAG, const TargetLowering &TLI,
5455                           SDNodeFlags Flags) {
5456    bool IsExp10 = false;
5457    if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5458        LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5459      if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5460        APFloat Ten(10.0f);
5461        IsExp10 = LHSC->isExactlyValue(Ten);
5462      }
5463    }
5464  
5465    // TODO: What fast-math-flags should be set on the FMUL node?
5466    if (IsExp10) {
5467      // Put the exponent in the right bit position for later addition to the
5468      // final result:
5469      //
5470      //   #define LOG2OF10 3.3219281f
5471      //   t0 = Op * LOG2OF10;
5472      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5473                               getF32Constant(DAG, 0x40549a78, dl));
5474      return getLimitedPrecisionExp2(t0, dl, DAG);
5475    }
5476  
5477    // No special expansion.
5478    return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5479  }
5480  
5481  /// ExpandPowI - Expand a llvm.powi intrinsic.
5482  static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5483                            SelectionDAG &DAG) {
5484    // If RHS is a constant, we can expand this out to a multiplication tree if
5485    // it's beneficial on the target, otherwise we end up lowering to a call to
5486    // __powidf2 (for example).
5487    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5488      unsigned Val = RHSC->getSExtValue();
5489  
5490      // powi(x, 0) -> 1.0
5491      if (Val == 0)
5492        return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5493  
5494      if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5495              Val, DAG.shouldOptForSize())) {
5496        // Get the exponent as a positive value.
5497        if ((int)Val < 0)
5498          Val = -Val;
5499        // We use the simple binary decomposition method to generate the multiply
5500        // sequence.  There are more optimal ways to do this (for example,
5501        // powi(x,15) generates one more multiply than it should), but this has
5502        // the benefit of being both really simple and much better than a libcall.
5503        SDValue Res; // Logically starts equal to 1.0
5504        SDValue CurSquare = LHS;
5505        // TODO: Intrinsics should have fast-math-flags that propagate to these
5506        // nodes.
5507        while (Val) {
5508          if (Val & 1) {
5509            if (Res.getNode())
5510              Res =
5511                  DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5512            else
5513              Res = CurSquare; // 1.0*CurSquare.
5514          }
5515  
5516          CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5517                                  CurSquare, CurSquare);
5518          Val >>= 1;
5519        }
5520  
5521        // If the original was negative, invert the result, producing 1/(x*x*x).
5522        if (RHSC->getSExtValue() < 0)
5523          Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5524                            DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5525        return Res;
5526      }
5527    }
5528  
5529    // Otherwise, expand to a libcall.
5530    return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5531  }
5532  
5533  static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5534                              SDValue LHS, SDValue RHS, SDValue Scale,
5535                              SelectionDAG &DAG, const TargetLowering &TLI) {
5536    EVT VT = LHS.getValueType();
5537    bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5538    bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5539    LLVMContext &Ctx = *DAG.getContext();
5540  
5541    // If the type is legal but the operation isn't, this node might survive all
5542    // the way to operation legalization. If we end up there and we do not have
5543    // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5544    // node.
5545  
5546    // Coax the legalizer into expanding the node during type legalization instead
5547    // by bumping the size by one bit. This will force it to Promote, enabling the
5548    // early expansion and avoiding the need to expand later.
5549  
5550    // We don't have to do this if Scale is 0; that can always be expanded, unless
5551    // it's a saturating signed operation. Those can experience true integer
5552    // division overflow, a case which we must avoid.
5553  
5554    // FIXME: We wouldn't have to do this (or any of the early
5555    // expansion/promotion) if it was possible to expand a libcall of an
5556    // illegal type during operation legalization. But it's not, so things
5557    // get a bit hacky.
5558    unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5559    if ((ScaleInt > 0 || (Saturating && Signed)) &&
5560        (TLI.isTypeLegal(VT) ||
5561         (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5562      TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5563          Opcode, VT, ScaleInt);
5564      if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5565        EVT PromVT;
5566        if (VT.isScalarInteger())
5567          PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5568        else if (VT.isVector()) {
5569          PromVT = VT.getVectorElementType();
5570          PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5571          PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5572        } else
5573          llvm_unreachable("Wrong VT for DIVFIX?");
5574        LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5575        RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5576        EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5577        // For saturating operations, we need to shift up the LHS to get the
5578        // proper saturation width, and then shift down again afterwards.
5579        if (Saturating)
5580          LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5581                            DAG.getConstant(1, DL, ShiftTy));
5582        SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5583        if (Saturating)
5584          Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5585                            DAG.getConstant(1, DL, ShiftTy));
5586        return DAG.getZExtOrTrunc(Res, DL, VT);
5587      }
5588    }
5589  
5590    return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5591  }
5592  
5593  // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5594  // bitcasted, or split argument. Returns a list of <Register, size in bits>
5595  static void
5596  getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5597                       const SDValue &N) {
5598    switch (N.getOpcode()) {
5599    case ISD::CopyFromReg: {
5600      SDValue Op = N.getOperand(1);
5601      Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5602                        Op.getValueType().getSizeInBits());
5603      return;
5604    }
5605    case ISD::BITCAST:
5606    case ISD::AssertZext:
5607    case ISD::AssertSext:
5608    case ISD::TRUNCATE:
5609      getUnderlyingArgRegs(Regs, N.getOperand(0));
5610      return;
5611    case ISD::BUILD_PAIR:
5612    case ISD::BUILD_VECTOR:
5613    case ISD::CONCAT_VECTORS:
5614      for (SDValue Op : N->op_values())
5615        getUnderlyingArgRegs(Regs, Op);
5616      return;
5617    default:
5618      return;
5619    }
5620  }
5621  
5622  /// If the DbgValueInst is a dbg_value of a function argument, create the
5623  /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5624  /// instruction selection, they will be inserted to the entry BB.
5625  /// We don't currently support this for variadic dbg_values, as they shouldn't
5626  /// appear for function arguments or in the prologue.
5627  bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5628      const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5629      DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5630    const Argument *Arg = dyn_cast<Argument>(V);
5631    if (!Arg)
5632      return false;
5633  
5634    MachineFunction &MF = DAG.getMachineFunction();
5635    const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5636  
5637    // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5638    // we've been asked to pursue.
5639    auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5640                                bool Indirect) {
5641      if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5642        // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5643        // pointing at the VReg, which will be patched up later.
5644        auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5645        SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5646            /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5647            /* isKill */ false, /* isDead */ false,
5648            /* isUndef */ false, /* isEarlyClobber */ false,
5649            /* SubReg */ 0, /* isDebug */ true)});
5650  
5651        auto *NewDIExpr = FragExpr;
5652        // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5653        // the DIExpression.
5654        if (Indirect)
5655          NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5656        SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5657        NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5658        return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5659      } else {
5660        // Create a completely standard DBG_VALUE.
5661        auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5662        return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5663      }
5664    };
5665  
5666    if (Kind == FuncArgumentDbgValueKind::Value) {
5667      // ArgDbgValues are hoisted to the beginning of the entry block. So we
5668      // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5669      // the entry block.
5670      bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5671      if (!IsInEntryBlock)
5672        return false;
5673  
5674      // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5675      // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5676      // variable that also is a param.
5677      //
5678      // Although, if we are at the top of the entry block already, we can still
5679      // emit using ArgDbgValue. This might catch some situations when the
5680      // dbg.value refers to an argument that isn't used in the entry block, so
5681      // any CopyToReg node would be optimized out and the only way to express
5682      // this DBG_VALUE is by using the physical reg (or FI) as done in this
5683      // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5684      // we should only emit as ArgDbgValue if the Variable is an argument to the
5685      // current function, and the dbg.value intrinsic is found in the entry
5686      // block.
5687      bool VariableIsFunctionInputArg = Variable->isParameter() &&
5688          !DL->getInlinedAt();
5689      bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5690      if (!IsInPrologue && !VariableIsFunctionInputArg)
5691        return false;
5692  
5693      // Here we assume that a function argument on IR level only can be used to
5694      // describe one input parameter on source level. If we for example have
5695      // source code like this
5696      //
5697      //    struct A { long x, y; };
5698      //    void foo(struct A a, long b) {
5699      //      ...
5700      //      b = a.x;
5701      //      ...
5702      //    }
5703      //
5704      // and IR like this
5705      //
5706      //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5707      //  entry:
5708      //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5709      //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5710      //    call void @llvm.dbg.value(metadata i32 %b, "b",
5711      //    ...
5712      //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5713      //    ...
5714      //
5715      // then the last dbg.value is describing a parameter "b" using a value that
5716      // is an argument. But since we already has used %a1 to describe a parameter
5717      // we should not handle that last dbg.value here (that would result in an
5718      // incorrect hoisting of the DBG_VALUE to the function entry).
5719      // Notice that we allow one dbg.value per IR level argument, to accommodate
5720      // for the situation with fragments above.
5721      if (VariableIsFunctionInputArg) {
5722        unsigned ArgNo = Arg->getArgNo();
5723        if (ArgNo >= FuncInfo.DescribedArgs.size())
5724          FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5725        else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5726          return false;
5727        FuncInfo.DescribedArgs.set(ArgNo);
5728      }
5729    }
5730  
5731    bool IsIndirect = false;
5732    std::optional<MachineOperand> Op;
5733    // Some arguments' frame index is recorded during argument lowering.
5734    int FI = FuncInfo.getArgumentFrameIndex(Arg);
5735    if (FI != std::numeric_limits<int>::max())
5736      Op = MachineOperand::CreateFI(FI);
5737  
5738    SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5739    if (!Op && N.getNode()) {
5740      getUnderlyingArgRegs(ArgRegsAndSizes, N);
5741      Register Reg;
5742      if (ArgRegsAndSizes.size() == 1)
5743        Reg = ArgRegsAndSizes.front().first;
5744  
5745      if (Reg && Reg.isVirtual()) {
5746        MachineRegisterInfo &RegInfo = MF.getRegInfo();
5747        Register PR = RegInfo.getLiveInPhysReg(Reg);
5748        if (PR)
5749          Reg = PR;
5750      }
5751      if (Reg) {
5752        Op = MachineOperand::CreateReg(Reg, false);
5753        IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5754      }
5755    }
5756  
5757    if (!Op && N.getNode()) {
5758      // Check if frame index is available.
5759      SDValue LCandidate = peekThroughBitcasts(N);
5760      if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5761        if (FrameIndexSDNode *FINode =
5762            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5763          Op = MachineOperand::CreateFI(FINode->getIndex());
5764    }
5765  
5766    if (!Op) {
5767      // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5768      auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5769                                           SplitRegs) {
5770        unsigned Offset = 0;
5771        for (const auto &RegAndSize : SplitRegs) {
5772          // If the expression is already a fragment, the current register
5773          // offset+size might extend beyond the fragment. In this case, only
5774          // the register bits that are inside the fragment are relevant.
5775          int RegFragmentSizeInBits = RegAndSize.second;
5776          if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5777            uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5778            // The register is entirely outside the expression fragment,
5779            // so is irrelevant for debug info.
5780            if (Offset >= ExprFragmentSizeInBits)
5781              break;
5782            // The register is partially outside the expression fragment, only
5783            // the low bits within the fragment are relevant for debug info.
5784            if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5785              RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5786            }
5787          }
5788  
5789          auto FragmentExpr = DIExpression::createFragmentExpression(
5790              Expr, Offset, RegFragmentSizeInBits);
5791          Offset += RegAndSize.second;
5792          // If a valid fragment expression cannot be created, the variable's
5793          // correct value cannot be determined and so it is set as Undef.
5794          if (!FragmentExpr) {
5795            SDDbgValue *SDV = DAG.getConstantDbgValue(
5796                Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5797            DAG.AddDbgValue(SDV, false);
5798            continue;
5799          }
5800          MachineInstr *NewMI =
5801              MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5802                               Kind != FuncArgumentDbgValueKind::Value);
5803          FuncInfo.ArgDbgValues.push_back(NewMI);
5804        }
5805      };
5806  
5807      // Check if ValueMap has reg number.
5808      DenseMap<const Value *, Register>::const_iterator
5809        VMI = FuncInfo.ValueMap.find(V);
5810      if (VMI != FuncInfo.ValueMap.end()) {
5811        const auto &TLI = DAG.getTargetLoweringInfo();
5812        RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5813                         V->getType(), std::nullopt);
5814        if (RFV.occupiesMultipleRegs()) {
5815          splitMultiRegDbgValue(RFV.getRegsAndSizes());
5816          return true;
5817        }
5818  
5819        Op = MachineOperand::CreateReg(VMI->second, false);
5820        IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5821      } else if (ArgRegsAndSizes.size() > 1) {
5822        // This was split due to the calling convention, and no virtual register
5823        // mapping exists for the value.
5824        splitMultiRegDbgValue(ArgRegsAndSizes);
5825        return true;
5826      }
5827    }
5828  
5829    if (!Op)
5830      return false;
5831  
5832    // If the expression refers to the entry value of an Argument, use the
5833    // corresponding livein physical register. As per the Verifier, this is only
5834    // allowed for swiftasync Arguments.
5835    if (Op->isReg() && Expr->isEntryValue()) {
5836      assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
5837      auto OpReg = Op->getReg();
5838      for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
5839        if (OpReg == VirtReg || OpReg == PhysReg) {
5840          SDDbgValue *SDV = DAG.getVRegDbgValue(
5841              Variable, Expr, PhysReg,
5842              Kind != FuncArgumentDbgValueKind::Value /*is indirect*/, DL,
5843              SDNodeOrder);
5844          DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
5845          return true;
5846        }
5847      LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
5848                           "couldn't find a physical register\n");
5849      return true;
5850    }
5851  
5852    assert(Variable->isValidLocationForIntrinsic(DL) &&
5853           "Expected inlined-at fields to agree");
5854    MachineInstr *NewMI = nullptr;
5855  
5856    if (Op->isReg())
5857      NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5858    else
5859      NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5860                      Variable, Expr);
5861  
5862    // Otherwise, use ArgDbgValues.
5863    FuncInfo.ArgDbgValues.push_back(NewMI);
5864    return true;
5865  }
5866  
5867  /// Return the appropriate SDDbgValue based on N.
5868  SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5869                                               DILocalVariable *Variable,
5870                                               DIExpression *Expr,
5871                                               const DebugLoc &dl,
5872                                               unsigned DbgSDNodeOrder) {
5873    if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5874      // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5875      // stack slot locations.
5876      //
5877      // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5878      // debug values here after optimization:
5879      //
5880      //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5881      //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5882      //
5883      // Both describe the direct values of their associated variables.
5884      return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5885                                       /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5886    }
5887    return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5888                           /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5889  }
5890  
5891  static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5892    switch (Intrinsic) {
5893    case Intrinsic::smul_fix:
5894      return ISD::SMULFIX;
5895    case Intrinsic::umul_fix:
5896      return ISD::UMULFIX;
5897    case Intrinsic::smul_fix_sat:
5898      return ISD::SMULFIXSAT;
5899    case Intrinsic::umul_fix_sat:
5900      return ISD::UMULFIXSAT;
5901    case Intrinsic::sdiv_fix:
5902      return ISD::SDIVFIX;
5903    case Intrinsic::udiv_fix:
5904      return ISD::UDIVFIX;
5905    case Intrinsic::sdiv_fix_sat:
5906      return ISD::SDIVFIXSAT;
5907    case Intrinsic::udiv_fix_sat:
5908      return ISD::UDIVFIXSAT;
5909    default:
5910      llvm_unreachable("Unhandled fixed point intrinsic");
5911    }
5912  }
5913  
5914  void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5915                                             const char *FunctionName) {
5916    assert(FunctionName && "FunctionName must not be nullptr");
5917    SDValue Callee = DAG.getExternalSymbol(
5918        FunctionName,
5919        DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5920    LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5921  }
5922  
5923  /// Given a @llvm.call.preallocated.setup, return the corresponding
5924  /// preallocated call.
5925  static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5926    assert(cast<CallBase>(PreallocatedSetup)
5927                   ->getCalledFunction()
5928                   ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5929           "expected call_preallocated_setup Value");
5930    for (const auto *U : PreallocatedSetup->users()) {
5931      auto *UseCall = cast<CallBase>(U);
5932      const Function *Fn = UseCall->getCalledFunction();
5933      if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5934        return UseCall;
5935      }
5936    }
5937    llvm_unreachable("expected corresponding call to preallocated setup/arg");
5938  }
5939  
5940  /// Lower the call to the specified intrinsic function.
5941  void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5942                                               unsigned Intrinsic) {
5943    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5944    SDLoc sdl = getCurSDLoc();
5945    DebugLoc dl = getCurDebugLoc();
5946    SDValue Res;
5947  
5948    SDNodeFlags Flags;
5949    if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5950      Flags.copyFMF(*FPOp);
5951  
5952    switch (Intrinsic) {
5953    default:
5954      // By default, turn this into a target intrinsic node.
5955      visitTargetIntrinsic(I, Intrinsic);
5956      return;
5957    case Intrinsic::vscale: {
5958      EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5959      setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5960      return;
5961    }
5962    case Intrinsic::vastart:  visitVAStart(I); return;
5963    case Intrinsic::vaend:    visitVAEnd(I); return;
5964    case Intrinsic::vacopy:   visitVACopy(I); return;
5965    case Intrinsic::returnaddress:
5966      setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5967                               TLI.getValueType(DAG.getDataLayout(), I.getType()),
5968                               getValue(I.getArgOperand(0))));
5969      return;
5970    case Intrinsic::addressofreturnaddress:
5971      setValue(&I,
5972               DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5973                           TLI.getValueType(DAG.getDataLayout(), I.getType())));
5974      return;
5975    case Intrinsic::sponentry:
5976      setValue(&I,
5977               DAG.getNode(ISD::SPONENTRY, sdl,
5978                           TLI.getValueType(DAG.getDataLayout(), I.getType())));
5979      return;
5980    case Intrinsic::frameaddress:
5981      setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5982                               TLI.getFrameIndexTy(DAG.getDataLayout()),
5983                               getValue(I.getArgOperand(0))));
5984      return;
5985    case Intrinsic::read_volatile_register:
5986    case Intrinsic::read_register: {
5987      Value *Reg = I.getArgOperand(0);
5988      SDValue Chain = getRoot();
5989      SDValue RegName =
5990          DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5991      EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5992      Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5993        DAG.getVTList(VT, MVT::Other), Chain, RegName);
5994      setValue(&I, Res);
5995      DAG.setRoot(Res.getValue(1));
5996      return;
5997    }
5998    case Intrinsic::write_register: {
5999      Value *Reg = I.getArgOperand(0);
6000      Value *RegValue = I.getArgOperand(1);
6001      SDValue Chain = getRoot();
6002      SDValue RegName =
6003          DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6004      DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6005                              RegName, getValue(RegValue)));
6006      return;
6007    }
6008    case Intrinsic::memcpy: {
6009      const auto &MCI = cast<MemCpyInst>(I);
6010      SDValue Op1 = getValue(I.getArgOperand(0));
6011      SDValue Op2 = getValue(I.getArgOperand(1));
6012      SDValue Op3 = getValue(I.getArgOperand(2));
6013      // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6014      Align DstAlign = MCI.getDestAlign().valueOrOne();
6015      Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6016      Align Alignment = std::min(DstAlign, SrcAlign);
6017      bool isVol = MCI.isVolatile();
6018      bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6019      // FIXME: Support passing different dest/src alignments to the memcpy DAG
6020      // node.
6021      SDValue Root = isVol ? getRoot() : getMemoryRoot();
6022      SDValue MC = DAG.getMemcpy(
6023          Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6024          /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
6025          MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6026      updateDAGForMaybeTailCall(MC);
6027      return;
6028    }
6029    case Intrinsic::memcpy_inline: {
6030      const auto &MCI = cast<MemCpyInlineInst>(I);
6031      SDValue Dst = getValue(I.getArgOperand(0));
6032      SDValue Src = getValue(I.getArgOperand(1));
6033      SDValue Size = getValue(I.getArgOperand(2));
6034      assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6035      // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6036      Align DstAlign = MCI.getDestAlign().valueOrOne();
6037      Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6038      Align Alignment = std::min(DstAlign, SrcAlign);
6039      bool isVol = MCI.isVolatile();
6040      bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6041      // FIXME: Support passing different dest/src alignments to the memcpy DAG
6042      // node.
6043      SDValue MC = DAG.getMemcpy(
6044          getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6045          /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
6046          MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6047      updateDAGForMaybeTailCall(MC);
6048      return;
6049    }
6050    case Intrinsic::memset: {
6051      const auto &MSI = cast<MemSetInst>(I);
6052      SDValue Op1 = getValue(I.getArgOperand(0));
6053      SDValue Op2 = getValue(I.getArgOperand(1));
6054      SDValue Op3 = getValue(I.getArgOperand(2));
6055      // @llvm.memset defines 0 and 1 to both mean no alignment.
6056      Align Alignment = MSI.getDestAlign().valueOrOne();
6057      bool isVol = MSI.isVolatile();
6058      bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6059      SDValue Root = isVol ? getRoot() : getMemoryRoot();
6060      SDValue MS = DAG.getMemset(
6061          Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6062          isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6063      updateDAGForMaybeTailCall(MS);
6064      return;
6065    }
6066    case Intrinsic::memset_inline: {
6067      const auto &MSII = cast<MemSetInlineInst>(I);
6068      SDValue Dst = getValue(I.getArgOperand(0));
6069      SDValue Value = getValue(I.getArgOperand(1));
6070      SDValue Size = getValue(I.getArgOperand(2));
6071      assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6072      // @llvm.memset defines 0 and 1 to both mean no alignment.
6073      Align DstAlign = MSII.getDestAlign().valueOrOne();
6074      bool isVol = MSII.isVolatile();
6075      bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6076      SDValue Root = isVol ? getRoot() : getMemoryRoot();
6077      SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6078                                 /* AlwaysInline */ true, isTC,
6079                                 MachinePointerInfo(I.getArgOperand(0)),
6080                                 I.getAAMetadata());
6081      updateDAGForMaybeTailCall(MC);
6082      return;
6083    }
6084    case Intrinsic::memmove: {
6085      const auto &MMI = cast<MemMoveInst>(I);
6086      SDValue Op1 = getValue(I.getArgOperand(0));
6087      SDValue Op2 = getValue(I.getArgOperand(1));
6088      SDValue Op3 = getValue(I.getArgOperand(2));
6089      // @llvm.memmove defines 0 and 1 to both mean no alignment.
6090      Align DstAlign = MMI.getDestAlign().valueOrOne();
6091      Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6092      Align Alignment = std::min(DstAlign, SrcAlign);
6093      bool isVol = MMI.isVolatile();
6094      bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6095      // FIXME: Support passing different dest/src alignments to the memmove DAG
6096      // node.
6097      SDValue Root = isVol ? getRoot() : getMemoryRoot();
6098      SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6099                                  isTC, MachinePointerInfo(I.getArgOperand(0)),
6100                                  MachinePointerInfo(I.getArgOperand(1)),
6101                                  I.getAAMetadata(), AA);
6102      updateDAGForMaybeTailCall(MM);
6103      return;
6104    }
6105    case Intrinsic::memcpy_element_unordered_atomic: {
6106      const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6107      SDValue Dst = getValue(MI.getRawDest());
6108      SDValue Src = getValue(MI.getRawSource());
6109      SDValue Length = getValue(MI.getLength());
6110  
6111      Type *LengthTy = MI.getLength()->getType();
6112      unsigned ElemSz = MI.getElementSizeInBytes();
6113      bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6114      SDValue MC =
6115          DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6116                              isTC, MachinePointerInfo(MI.getRawDest()),
6117                              MachinePointerInfo(MI.getRawSource()));
6118      updateDAGForMaybeTailCall(MC);
6119      return;
6120    }
6121    case Intrinsic::memmove_element_unordered_atomic: {
6122      auto &MI = cast<AtomicMemMoveInst>(I);
6123      SDValue Dst = getValue(MI.getRawDest());
6124      SDValue Src = getValue(MI.getRawSource());
6125      SDValue Length = getValue(MI.getLength());
6126  
6127      Type *LengthTy = MI.getLength()->getType();
6128      unsigned ElemSz = MI.getElementSizeInBytes();
6129      bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6130      SDValue MC =
6131          DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6132                               isTC, MachinePointerInfo(MI.getRawDest()),
6133                               MachinePointerInfo(MI.getRawSource()));
6134      updateDAGForMaybeTailCall(MC);
6135      return;
6136    }
6137    case Intrinsic::memset_element_unordered_atomic: {
6138      auto &MI = cast<AtomicMemSetInst>(I);
6139      SDValue Dst = getValue(MI.getRawDest());
6140      SDValue Val = getValue(MI.getValue());
6141      SDValue Length = getValue(MI.getLength());
6142  
6143      Type *LengthTy = MI.getLength()->getType();
6144      unsigned ElemSz = MI.getElementSizeInBytes();
6145      bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6146      SDValue MC =
6147          DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6148                              isTC, MachinePointerInfo(MI.getRawDest()));
6149      updateDAGForMaybeTailCall(MC);
6150      return;
6151    }
6152    case Intrinsic::call_preallocated_setup: {
6153      const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6154      SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6155      SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6156                                getRoot(), SrcValue);
6157      setValue(&I, Res);
6158      DAG.setRoot(Res);
6159      return;
6160    }
6161    case Intrinsic::call_preallocated_arg: {
6162      const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6163      SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6164      SDValue Ops[3];
6165      Ops[0] = getRoot();
6166      Ops[1] = SrcValue;
6167      Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6168                                     MVT::i32); // arg index
6169      SDValue Res = DAG.getNode(
6170          ISD::PREALLOCATED_ARG, sdl,
6171          DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6172      setValue(&I, Res);
6173      DAG.setRoot(Res.getValue(1));
6174      return;
6175    }
6176    case Intrinsic::dbg_declare: {
6177      const auto &DI = cast<DbgDeclareInst>(I);
6178      // Debug intrinsics are handled separately in assignment tracking mode.
6179      // Some intrinsics are handled right after Argument lowering.
6180      if (AssignmentTrackingEnabled ||
6181          FuncInfo.PreprocessedDbgDeclares.count(&DI))
6182        return;
6183      // Assume dbg.declare can not currently use DIArgList, i.e.
6184      // it is non-variadic.
6185      assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6186      DILocalVariable *Variable = DI.getVariable();
6187      DIExpression *Expression = DI.getExpression();
6188      dropDanglingDebugInfo(Variable, Expression);
6189      assert(Variable && "Missing variable");
6190      LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6191                        << "\n");
6192      // Check if address has undef value.
6193      const Value *Address = DI.getVariableLocationOp(0);
6194      if (!Address || isa<UndefValue>(Address) ||
6195          (Address->use_empty() && !isa<Argument>(Address))) {
6196        LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6197                          << " (bad/undef/unused-arg address)\n");
6198        return;
6199      }
6200  
6201      bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6202  
6203      SDValue &N = NodeMap[Address];
6204      if (!N.getNode() && isa<Argument>(Address))
6205        // Check unused arguments map.
6206        N = UnusedArgNodeMap[Address];
6207      SDDbgValue *SDV;
6208      if (N.getNode()) {
6209        if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6210          Address = BCI->getOperand(0);
6211        // Parameters are handled specially.
6212        auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6213        if (isParameter && FINode) {
6214          // Byval parameter. We have a frame index at this point.
6215          SDV =
6216              DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6217                                        /*IsIndirect*/ true, dl, SDNodeOrder);
6218        } else if (isa<Argument>(Address)) {
6219          // Address is an argument, so try to emit its dbg value using
6220          // virtual register info from the FuncInfo.ValueMap.
6221          EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6222                                   FuncArgumentDbgValueKind::Declare, N);
6223          return;
6224        } else {
6225          SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6226                                true, dl, SDNodeOrder);
6227        }
6228        DAG.AddDbgValue(SDV, isParameter);
6229      } else {
6230        // If Address is an argument then try to emit its dbg value using
6231        // virtual register info from the FuncInfo.ValueMap.
6232        if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6233                                      FuncArgumentDbgValueKind::Declare, N)) {
6234          LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6235                            << " (could not emit func-arg dbg_value)\n");
6236        }
6237      }
6238      return;
6239    }
6240    case Intrinsic::dbg_label: {
6241      const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6242      DILabel *Label = DI.getLabel();
6243      assert(Label && "Missing label");
6244  
6245      SDDbgLabel *SDV;
6246      SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6247      DAG.AddDbgLabel(SDV);
6248      return;
6249    }
6250    case Intrinsic::dbg_assign: {
6251      // Debug intrinsics are handled seperately in assignment tracking mode.
6252      if (AssignmentTrackingEnabled)
6253        return;
6254      // If assignment tracking hasn't been enabled then fall through and treat
6255      // the dbg.assign as a dbg.value.
6256      [[fallthrough]];
6257    }
6258    case Intrinsic::dbg_value: {
6259      // Debug intrinsics are handled seperately in assignment tracking mode.
6260      if (AssignmentTrackingEnabled)
6261        return;
6262      const DbgValueInst &DI = cast<DbgValueInst>(I);
6263      assert(DI.getVariable() && "Missing variable");
6264  
6265      DILocalVariable *Variable = DI.getVariable();
6266      DIExpression *Expression = DI.getExpression();
6267      dropDanglingDebugInfo(Variable, Expression);
6268  
6269      if (DI.isKillLocation()) {
6270        handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6271        return;
6272      }
6273  
6274      SmallVector<Value *, 4> Values(DI.getValues());
6275      if (Values.empty())
6276        return;
6277  
6278      bool IsVariadic = DI.hasArgList();
6279      if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6280                            SDNodeOrder, IsVariadic))
6281        addDanglingDebugInfo(&DI, SDNodeOrder);
6282      return;
6283    }
6284  
6285    case Intrinsic::eh_typeid_for: {
6286      // Find the type id for the given typeinfo.
6287      GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6288      unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6289      Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6290      setValue(&I, Res);
6291      return;
6292    }
6293  
6294    case Intrinsic::eh_return_i32:
6295    case Intrinsic::eh_return_i64:
6296      DAG.getMachineFunction().setCallsEHReturn(true);
6297      DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6298                              MVT::Other,
6299                              getControlRoot(),
6300                              getValue(I.getArgOperand(0)),
6301                              getValue(I.getArgOperand(1))));
6302      return;
6303    case Intrinsic::eh_unwind_init:
6304      DAG.getMachineFunction().setCallsUnwindInit(true);
6305      return;
6306    case Intrinsic::eh_dwarf_cfa:
6307      setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6308                               TLI.getPointerTy(DAG.getDataLayout()),
6309                               getValue(I.getArgOperand(0))));
6310      return;
6311    case Intrinsic::eh_sjlj_callsite: {
6312      MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6313      ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6314      assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6315  
6316      MMI.setCurrentCallSite(CI->getZExtValue());
6317      return;
6318    }
6319    case Intrinsic::eh_sjlj_functioncontext: {
6320      // Get and store the index of the function context.
6321      MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6322      AllocaInst *FnCtx =
6323        cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6324      int FI = FuncInfo.StaticAllocaMap[FnCtx];
6325      MFI.setFunctionContextIndex(FI);
6326      return;
6327    }
6328    case Intrinsic::eh_sjlj_setjmp: {
6329      SDValue Ops[2];
6330      Ops[0] = getRoot();
6331      Ops[1] = getValue(I.getArgOperand(0));
6332      SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6333                               DAG.getVTList(MVT::i32, MVT::Other), Ops);
6334      setValue(&I, Op.getValue(0));
6335      DAG.setRoot(Op.getValue(1));
6336      return;
6337    }
6338    case Intrinsic::eh_sjlj_longjmp:
6339      DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6340                              getRoot(), getValue(I.getArgOperand(0))));
6341      return;
6342    case Intrinsic::eh_sjlj_setup_dispatch:
6343      DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6344                              getRoot()));
6345      return;
6346    case Intrinsic::masked_gather:
6347      visitMaskedGather(I);
6348      return;
6349    case Intrinsic::masked_load:
6350      visitMaskedLoad(I);
6351      return;
6352    case Intrinsic::masked_scatter:
6353      visitMaskedScatter(I);
6354      return;
6355    case Intrinsic::masked_store:
6356      visitMaskedStore(I);
6357      return;
6358    case Intrinsic::masked_expandload:
6359      visitMaskedLoad(I, true /* IsExpanding */);
6360      return;
6361    case Intrinsic::masked_compressstore:
6362      visitMaskedStore(I, true /* IsCompressing */);
6363      return;
6364    case Intrinsic::powi:
6365      setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6366                              getValue(I.getArgOperand(1)), DAG));
6367      return;
6368    case Intrinsic::log:
6369      setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6370      return;
6371    case Intrinsic::log2:
6372      setValue(&I,
6373               expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6374      return;
6375    case Intrinsic::log10:
6376      setValue(&I,
6377               expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6378      return;
6379    case Intrinsic::exp:
6380      setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6381      return;
6382    case Intrinsic::exp2:
6383      setValue(&I,
6384               expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6385      return;
6386    case Intrinsic::pow:
6387      setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6388                             getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6389      return;
6390    case Intrinsic::sqrt:
6391    case Intrinsic::fabs:
6392    case Intrinsic::sin:
6393    case Intrinsic::cos:
6394    case Intrinsic::floor:
6395    case Intrinsic::ceil:
6396    case Intrinsic::trunc:
6397    case Intrinsic::rint:
6398    case Intrinsic::nearbyint:
6399    case Intrinsic::round:
6400    case Intrinsic::roundeven:
6401    case Intrinsic::canonicalize: {
6402      unsigned Opcode;
6403      switch (Intrinsic) {
6404      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6405      case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6406      case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6407      case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6408      case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6409      case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6410      case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6411      case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6412      case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6413      case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6414      case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6415      case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6416      case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6417      }
6418  
6419      setValue(&I, DAG.getNode(Opcode, sdl,
6420                               getValue(I.getArgOperand(0)).getValueType(),
6421                               getValue(I.getArgOperand(0)), Flags));
6422      return;
6423    }
6424    case Intrinsic::lround:
6425    case Intrinsic::llround:
6426    case Intrinsic::lrint:
6427    case Intrinsic::llrint: {
6428      unsigned Opcode;
6429      switch (Intrinsic) {
6430      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6431      case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6432      case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6433      case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6434      case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6435      }
6436  
6437      EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6438      setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6439                               getValue(I.getArgOperand(0))));
6440      return;
6441    }
6442    case Intrinsic::minnum:
6443      setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6444                               getValue(I.getArgOperand(0)).getValueType(),
6445                               getValue(I.getArgOperand(0)),
6446                               getValue(I.getArgOperand(1)), Flags));
6447      return;
6448    case Intrinsic::maxnum:
6449      setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6450                               getValue(I.getArgOperand(0)).getValueType(),
6451                               getValue(I.getArgOperand(0)),
6452                               getValue(I.getArgOperand(1)), Flags));
6453      return;
6454    case Intrinsic::minimum:
6455      setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6456                               getValue(I.getArgOperand(0)).getValueType(),
6457                               getValue(I.getArgOperand(0)),
6458                               getValue(I.getArgOperand(1)), Flags));
6459      return;
6460    case Intrinsic::maximum:
6461      setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6462                               getValue(I.getArgOperand(0)).getValueType(),
6463                               getValue(I.getArgOperand(0)),
6464                               getValue(I.getArgOperand(1)), Flags));
6465      return;
6466    case Intrinsic::copysign:
6467      setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6468                               getValue(I.getArgOperand(0)).getValueType(),
6469                               getValue(I.getArgOperand(0)),
6470                               getValue(I.getArgOperand(1)), Flags));
6471      return;
6472    case Intrinsic::ldexp:
6473      setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6474                               getValue(I.getArgOperand(0)).getValueType(),
6475                               getValue(I.getArgOperand(0)),
6476                               getValue(I.getArgOperand(1)), Flags));
6477      return;
6478    case Intrinsic::frexp: {
6479      SmallVector<EVT, 2> ValueVTs;
6480      ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6481      SDVTList VTs = DAG.getVTList(ValueVTs);
6482      setValue(&I,
6483               DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0))));
6484      return;
6485    }
6486    case Intrinsic::arithmetic_fence: {
6487      setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6488                               getValue(I.getArgOperand(0)).getValueType(),
6489                               getValue(I.getArgOperand(0)), Flags));
6490      return;
6491    }
6492    case Intrinsic::fma:
6493      setValue(&I, DAG.getNode(
6494                       ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6495                       getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6496                       getValue(I.getArgOperand(2)), Flags));
6497      return;
6498  #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6499    case Intrinsic::INTRINSIC:
6500  #include "llvm/IR/ConstrainedOps.def"
6501      visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6502      return;
6503  #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6504  #include "llvm/IR/VPIntrinsics.def"
6505      visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6506      return;
6507    case Intrinsic::fptrunc_round: {
6508      // Get the last argument, the metadata and convert it to an integer in the
6509      // call
6510      Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6511      std::optional<RoundingMode> RoundMode =
6512          convertStrToRoundingMode(cast<MDString>(MD)->getString());
6513  
6514      EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6515  
6516      // Propagate fast-math-flags from IR to node(s).
6517      SDNodeFlags Flags;
6518      Flags.copyFMF(*cast<FPMathOperator>(&I));
6519      SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6520  
6521      SDValue Result;
6522      Result = DAG.getNode(
6523          ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6524          DAG.getTargetConstant((int)*RoundMode, sdl,
6525                                TLI.getPointerTy(DAG.getDataLayout())));
6526      setValue(&I, Result);
6527  
6528      return;
6529    }
6530    case Intrinsic::fmuladd: {
6531      EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6532      if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6533          TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6534        setValue(&I, DAG.getNode(ISD::FMA, sdl,
6535                                 getValue(I.getArgOperand(0)).getValueType(),
6536                                 getValue(I.getArgOperand(0)),
6537                                 getValue(I.getArgOperand(1)),
6538                                 getValue(I.getArgOperand(2)), Flags));
6539      } else {
6540        // TODO: Intrinsic calls should have fast-math-flags.
6541        SDValue Mul = DAG.getNode(
6542            ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6543            getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6544        SDValue Add = DAG.getNode(ISD::FADD, sdl,
6545                                  getValue(I.getArgOperand(0)).getValueType(),
6546                                  Mul, getValue(I.getArgOperand(2)), Flags);
6547        setValue(&I, Add);
6548      }
6549      return;
6550    }
6551    case Intrinsic::convert_to_fp16:
6552      setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6553                               DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6554                                           getValue(I.getArgOperand(0)),
6555                                           DAG.getTargetConstant(0, sdl,
6556                                                                 MVT::i32))));
6557      return;
6558    case Intrinsic::convert_from_fp16:
6559      setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6560                               TLI.getValueType(DAG.getDataLayout(), I.getType()),
6561                               DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6562                                           getValue(I.getArgOperand(0)))));
6563      return;
6564    case Intrinsic::fptosi_sat: {
6565      EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6566      setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6567                               getValue(I.getArgOperand(0)),
6568                               DAG.getValueType(VT.getScalarType())));
6569      return;
6570    }
6571    case Intrinsic::fptoui_sat: {
6572      EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6573      setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6574                               getValue(I.getArgOperand(0)),
6575                               DAG.getValueType(VT.getScalarType())));
6576      return;
6577    }
6578    case Intrinsic::set_rounding:
6579      Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6580                        {getRoot(), getValue(I.getArgOperand(0))});
6581      setValue(&I, Res);
6582      DAG.setRoot(Res.getValue(0));
6583      return;
6584    case Intrinsic::is_fpclass: {
6585      const DataLayout DLayout = DAG.getDataLayout();
6586      EVT DestVT = TLI.getValueType(DLayout, I.getType());
6587      EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6588      FPClassTest Test = static_cast<FPClassTest>(
6589          cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
6590      MachineFunction &MF = DAG.getMachineFunction();
6591      const Function &F = MF.getFunction();
6592      SDValue Op = getValue(I.getArgOperand(0));
6593      SDNodeFlags Flags;
6594      Flags.setNoFPExcept(
6595          !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6596      // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6597      // expansion can use illegal types. Making expansion early allows
6598      // legalizing these types prior to selection.
6599      if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6600        SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6601        setValue(&I, Result);
6602        return;
6603      }
6604  
6605      SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6606      SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6607      setValue(&I, V);
6608      return;
6609    }
6610    case Intrinsic::get_fpenv: {
6611      const DataLayout DLayout = DAG.getDataLayout();
6612      EVT EnvVT = TLI.getValueType(DLayout, I.getType());
6613      Align TempAlign = DAG.getEVTAlign(EnvVT);
6614      SDValue Chain = getRoot();
6615      // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
6616      // and temporary storage in stack.
6617      if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
6618        Res = DAG.getNode(
6619            ISD::GET_FPENV, sdl,
6620            DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6621                          MVT::Other),
6622            Chain);
6623      } else {
6624        SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6625        int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6626        auto MPI =
6627            MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6628        MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6629            MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize,
6630            TempAlign);
6631        Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6632        Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
6633      }
6634      setValue(&I, Res);
6635      DAG.setRoot(Res.getValue(1));
6636      return;
6637    }
6638    case Intrinsic::set_fpenv: {
6639      const DataLayout DLayout = DAG.getDataLayout();
6640      SDValue Env = getValue(I.getArgOperand(0));
6641      EVT EnvVT = Env.getValueType();
6642      Align TempAlign = DAG.getEVTAlign(EnvVT);
6643      SDValue Chain = getRoot();
6644      // If SET_FPENV is custom or legal, use it. Otherwise use loading
6645      // environment from memory.
6646      if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
6647        Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
6648      } else {
6649        // Allocate space in stack, copy environment bits into it and use this
6650        // memory in SET_FPENV_MEM.
6651        SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6652        int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6653        auto MPI =
6654            MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6655        Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
6656                             MachineMemOperand::MOStore);
6657        MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6658            MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize,
6659            TempAlign);
6660        Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6661      }
6662      DAG.setRoot(Chain);
6663      return;
6664    }
6665    case Intrinsic::reset_fpenv:
6666      DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
6667      return;
6668    case Intrinsic::pcmarker: {
6669      SDValue Tmp = getValue(I.getArgOperand(0));
6670      DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6671      return;
6672    }
6673    case Intrinsic::readcyclecounter: {
6674      SDValue Op = getRoot();
6675      Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6676                        DAG.getVTList(MVT::i64, MVT::Other), Op);
6677      setValue(&I, Res);
6678      DAG.setRoot(Res.getValue(1));
6679      return;
6680    }
6681    case Intrinsic::bitreverse:
6682      setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6683                               getValue(I.getArgOperand(0)).getValueType(),
6684                               getValue(I.getArgOperand(0))));
6685      return;
6686    case Intrinsic::bswap:
6687      setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6688                               getValue(I.getArgOperand(0)).getValueType(),
6689                               getValue(I.getArgOperand(0))));
6690      return;
6691    case Intrinsic::cttz: {
6692      SDValue Arg = getValue(I.getArgOperand(0));
6693      ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6694      EVT Ty = Arg.getValueType();
6695      setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6696                               sdl, Ty, Arg));
6697      return;
6698    }
6699    case Intrinsic::ctlz: {
6700      SDValue Arg = getValue(I.getArgOperand(0));
6701      ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6702      EVT Ty = Arg.getValueType();
6703      setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6704                               sdl, Ty, Arg));
6705      return;
6706    }
6707    case Intrinsic::ctpop: {
6708      SDValue Arg = getValue(I.getArgOperand(0));
6709      EVT Ty = Arg.getValueType();
6710      setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6711      return;
6712    }
6713    case Intrinsic::fshl:
6714    case Intrinsic::fshr: {
6715      bool IsFSHL = Intrinsic == Intrinsic::fshl;
6716      SDValue X = getValue(I.getArgOperand(0));
6717      SDValue Y = getValue(I.getArgOperand(1));
6718      SDValue Z = getValue(I.getArgOperand(2));
6719      EVT VT = X.getValueType();
6720  
6721      if (X == Y) {
6722        auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6723        setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6724      } else {
6725        auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6726        setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6727      }
6728      return;
6729    }
6730    case Intrinsic::sadd_sat: {
6731      SDValue Op1 = getValue(I.getArgOperand(0));
6732      SDValue Op2 = getValue(I.getArgOperand(1));
6733      setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6734      return;
6735    }
6736    case Intrinsic::uadd_sat: {
6737      SDValue Op1 = getValue(I.getArgOperand(0));
6738      SDValue Op2 = getValue(I.getArgOperand(1));
6739      setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6740      return;
6741    }
6742    case Intrinsic::ssub_sat: {
6743      SDValue Op1 = getValue(I.getArgOperand(0));
6744      SDValue Op2 = getValue(I.getArgOperand(1));
6745      setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6746      return;
6747    }
6748    case Intrinsic::usub_sat: {
6749      SDValue Op1 = getValue(I.getArgOperand(0));
6750      SDValue Op2 = getValue(I.getArgOperand(1));
6751      setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6752      return;
6753    }
6754    case Intrinsic::sshl_sat: {
6755      SDValue Op1 = getValue(I.getArgOperand(0));
6756      SDValue Op2 = getValue(I.getArgOperand(1));
6757      setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6758      return;
6759    }
6760    case Intrinsic::ushl_sat: {
6761      SDValue Op1 = getValue(I.getArgOperand(0));
6762      SDValue Op2 = getValue(I.getArgOperand(1));
6763      setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6764      return;
6765    }
6766    case Intrinsic::smul_fix:
6767    case Intrinsic::umul_fix:
6768    case Intrinsic::smul_fix_sat:
6769    case Intrinsic::umul_fix_sat: {
6770      SDValue Op1 = getValue(I.getArgOperand(0));
6771      SDValue Op2 = getValue(I.getArgOperand(1));
6772      SDValue Op3 = getValue(I.getArgOperand(2));
6773      setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6774                               Op1.getValueType(), Op1, Op2, Op3));
6775      return;
6776    }
6777    case Intrinsic::sdiv_fix:
6778    case Intrinsic::udiv_fix:
6779    case Intrinsic::sdiv_fix_sat:
6780    case Intrinsic::udiv_fix_sat: {
6781      SDValue Op1 = getValue(I.getArgOperand(0));
6782      SDValue Op2 = getValue(I.getArgOperand(1));
6783      SDValue Op3 = getValue(I.getArgOperand(2));
6784      setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6785                                Op1, Op2, Op3, DAG, TLI));
6786      return;
6787    }
6788    case Intrinsic::smax: {
6789      SDValue Op1 = getValue(I.getArgOperand(0));
6790      SDValue Op2 = getValue(I.getArgOperand(1));
6791      setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6792      return;
6793    }
6794    case Intrinsic::smin: {
6795      SDValue Op1 = getValue(I.getArgOperand(0));
6796      SDValue Op2 = getValue(I.getArgOperand(1));
6797      setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6798      return;
6799    }
6800    case Intrinsic::umax: {
6801      SDValue Op1 = getValue(I.getArgOperand(0));
6802      SDValue Op2 = getValue(I.getArgOperand(1));
6803      setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6804      return;
6805    }
6806    case Intrinsic::umin: {
6807      SDValue Op1 = getValue(I.getArgOperand(0));
6808      SDValue Op2 = getValue(I.getArgOperand(1));
6809      setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6810      return;
6811    }
6812    case Intrinsic::abs: {
6813      // TODO: Preserve "int min is poison" arg in SDAG?
6814      SDValue Op1 = getValue(I.getArgOperand(0));
6815      setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6816      return;
6817    }
6818    case Intrinsic::stacksave: {
6819      SDValue Op = getRoot();
6820      EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6821      Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6822      setValue(&I, Res);
6823      DAG.setRoot(Res.getValue(1));
6824      return;
6825    }
6826    case Intrinsic::stackrestore:
6827      Res = getValue(I.getArgOperand(0));
6828      DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6829      return;
6830    case Intrinsic::get_dynamic_area_offset: {
6831      SDValue Op = getRoot();
6832      EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6833      EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6834      // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6835      // target.
6836      if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6837        report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6838                           " intrinsic!");
6839      Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6840                        Op);
6841      DAG.setRoot(Op);
6842      setValue(&I, Res);
6843      return;
6844    }
6845    case Intrinsic::stackguard: {
6846      MachineFunction &MF = DAG.getMachineFunction();
6847      const Module &M = *MF.getFunction().getParent();
6848      SDValue Chain = getRoot();
6849      if (TLI.useLoadStackGuardNode()) {
6850        Res = getLoadStackGuard(DAG, sdl, Chain);
6851      } else {
6852        EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6853        const Value *Global = TLI.getSDagStackGuard(M);
6854        Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6855        Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6856                          MachinePointerInfo(Global, 0), Align,
6857                          MachineMemOperand::MOVolatile);
6858      }
6859      if (TLI.useStackGuardXorFP())
6860        Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6861      DAG.setRoot(Chain);
6862      setValue(&I, Res);
6863      return;
6864    }
6865    case Intrinsic::stackprotector: {
6866      // Emit code into the DAG to store the stack guard onto the stack.
6867      MachineFunction &MF = DAG.getMachineFunction();
6868      MachineFrameInfo &MFI = MF.getFrameInfo();
6869      SDValue Src, Chain = getRoot();
6870  
6871      if (TLI.useLoadStackGuardNode())
6872        Src = getLoadStackGuard(DAG, sdl, Chain);
6873      else
6874        Src = getValue(I.getArgOperand(0));   // The guard's value.
6875  
6876      AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6877  
6878      int FI = FuncInfo.StaticAllocaMap[Slot];
6879      MFI.setStackProtectorIndex(FI);
6880      EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6881  
6882      SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6883  
6884      // Store the stack protector onto the stack.
6885      Res = DAG.getStore(
6886          Chain, sdl, Src, FIN,
6887          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6888          MaybeAlign(), MachineMemOperand::MOVolatile);
6889      setValue(&I, Res);
6890      DAG.setRoot(Res);
6891      return;
6892    }
6893    case Intrinsic::objectsize:
6894      llvm_unreachable("llvm.objectsize.* should have been lowered already");
6895  
6896    case Intrinsic::is_constant:
6897      llvm_unreachable("llvm.is.constant.* should have been lowered already");
6898  
6899    case Intrinsic::annotation:
6900    case Intrinsic::ptr_annotation:
6901    case Intrinsic::launder_invariant_group:
6902    case Intrinsic::strip_invariant_group:
6903      // Drop the intrinsic, but forward the value
6904      setValue(&I, getValue(I.getOperand(0)));
6905      return;
6906  
6907    case Intrinsic::assume:
6908    case Intrinsic::experimental_noalias_scope_decl:
6909    case Intrinsic::var_annotation:
6910    case Intrinsic::sideeffect:
6911      // Discard annotate attributes, noalias scope declarations, assumptions, and
6912      // artificial side-effects.
6913      return;
6914  
6915    case Intrinsic::codeview_annotation: {
6916      // Emit a label associated with this metadata.
6917      MachineFunction &MF = DAG.getMachineFunction();
6918      MCSymbol *Label =
6919          MF.getMMI().getContext().createTempSymbol("annotation", true);
6920      Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6921      MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6922      Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6923      DAG.setRoot(Res);
6924      return;
6925    }
6926  
6927    case Intrinsic::init_trampoline: {
6928      const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6929  
6930      SDValue Ops[6];
6931      Ops[0] = getRoot();
6932      Ops[1] = getValue(I.getArgOperand(0));
6933      Ops[2] = getValue(I.getArgOperand(1));
6934      Ops[3] = getValue(I.getArgOperand(2));
6935      Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6936      Ops[5] = DAG.getSrcValue(F);
6937  
6938      Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6939  
6940      DAG.setRoot(Res);
6941      return;
6942    }
6943    case Intrinsic::adjust_trampoline:
6944      setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6945                               TLI.getPointerTy(DAG.getDataLayout()),
6946                               getValue(I.getArgOperand(0))));
6947      return;
6948    case Intrinsic::gcroot: {
6949      assert(DAG.getMachineFunction().getFunction().hasGC() &&
6950             "only valid in functions with gc specified, enforced by Verifier");
6951      assert(GFI && "implied by previous");
6952      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6953      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6954  
6955      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6956      GFI->addStackRoot(FI->getIndex(), TypeMap);
6957      return;
6958    }
6959    case Intrinsic::gcread:
6960    case Intrinsic::gcwrite:
6961      llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6962    case Intrinsic::get_rounding:
6963      Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
6964      setValue(&I, Res);
6965      DAG.setRoot(Res.getValue(1));
6966      return;
6967  
6968    case Intrinsic::expect:
6969      // Just replace __builtin_expect(exp, c) with EXP.
6970      setValue(&I, getValue(I.getArgOperand(0)));
6971      return;
6972  
6973    case Intrinsic::ubsantrap:
6974    case Intrinsic::debugtrap:
6975    case Intrinsic::trap: {
6976      StringRef TrapFuncName =
6977          I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6978      if (TrapFuncName.empty()) {
6979        switch (Intrinsic) {
6980        case Intrinsic::trap:
6981          DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6982          break;
6983        case Intrinsic::debugtrap:
6984          DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6985          break;
6986        case Intrinsic::ubsantrap:
6987          DAG.setRoot(DAG.getNode(
6988              ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6989              DAG.getTargetConstant(
6990                  cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6991                  MVT::i32)));
6992          break;
6993        default: llvm_unreachable("unknown trap intrinsic");
6994        }
6995        return;
6996      }
6997      TargetLowering::ArgListTy Args;
6998      if (Intrinsic == Intrinsic::ubsantrap) {
6999        Args.push_back(TargetLoweringBase::ArgListEntry());
7000        Args[0].Val = I.getArgOperand(0);
7001        Args[0].Node = getValue(Args[0].Val);
7002        Args[0].Ty = Args[0].Val->getType();
7003      }
7004  
7005      TargetLowering::CallLoweringInfo CLI(DAG);
7006      CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7007          CallingConv::C, I.getType(),
7008          DAG.getExternalSymbol(TrapFuncName.data(),
7009                                TLI.getPointerTy(DAG.getDataLayout())),
7010          std::move(Args));
7011  
7012      std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7013      DAG.setRoot(Result.second);
7014      return;
7015    }
7016  
7017    case Intrinsic::uadd_with_overflow:
7018    case Intrinsic::sadd_with_overflow:
7019    case Intrinsic::usub_with_overflow:
7020    case Intrinsic::ssub_with_overflow:
7021    case Intrinsic::umul_with_overflow:
7022    case Intrinsic::smul_with_overflow: {
7023      ISD::NodeType Op;
7024      switch (Intrinsic) {
7025      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7026      case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7027      case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7028      case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7029      case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7030      case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7031      case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7032      }
7033      SDValue Op1 = getValue(I.getArgOperand(0));
7034      SDValue Op2 = getValue(I.getArgOperand(1));
7035  
7036      EVT ResultVT = Op1.getValueType();
7037      EVT OverflowVT = MVT::i1;
7038      if (ResultVT.isVector())
7039        OverflowVT = EVT::getVectorVT(
7040            *Context, OverflowVT, ResultVT.getVectorElementCount());
7041  
7042      SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7043      setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7044      return;
7045    }
7046    case Intrinsic::prefetch: {
7047      SDValue Ops[5];
7048      unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7049      auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7050      Ops[0] = DAG.getRoot();
7051      Ops[1] = getValue(I.getArgOperand(0));
7052      Ops[2] = getValue(I.getArgOperand(1));
7053      Ops[3] = getValue(I.getArgOperand(2));
7054      Ops[4] = getValue(I.getArgOperand(3));
7055      SDValue Result = DAG.getMemIntrinsicNode(
7056          ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7057          EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7058          /* align */ std::nullopt, Flags);
7059  
7060      // Chain the prefetch in parallell with any pending loads, to stay out of
7061      // the way of later optimizations.
7062      PendingLoads.push_back(Result);
7063      Result = getRoot();
7064      DAG.setRoot(Result);
7065      return;
7066    }
7067    case Intrinsic::lifetime_start:
7068    case Intrinsic::lifetime_end: {
7069      bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7070      // Stack coloring is not enabled in O0, discard region information.
7071      if (TM.getOptLevel() == CodeGenOpt::None)
7072        return;
7073  
7074      const int64_t ObjectSize =
7075          cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7076      Value *const ObjectPtr = I.getArgOperand(1);
7077      SmallVector<const Value *, 4> Allocas;
7078      getUnderlyingObjects(ObjectPtr, Allocas);
7079  
7080      for (const Value *Alloca : Allocas) {
7081        const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7082  
7083        // Could not find an Alloca.
7084        if (!LifetimeObject)
7085          continue;
7086  
7087        // First check that the Alloca is static, otherwise it won't have a
7088        // valid frame index.
7089        auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7090        if (SI == FuncInfo.StaticAllocaMap.end())
7091          return;
7092  
7093        const int FrameIndex = SI->second;
7094        int64_t Offset;
7095        if (GetPointerBaseWithConstantOffset(
7096                ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7097          Offset = -1; // Cannot determine offset from alloca to lifetime object.
7098        Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7099                                  Offset);
7100        DAG.setRoot(Res);
7101      }
7102      return;
7103    }
7104    case Intrinsic::pseudoprobe: {
7105      auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7106      auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7107      auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7108      Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7109      DAG.setRoot(Res);
7110      return;
7111    }
7112    case Intrinsic::invariant_start:
7113      // Discard region information.
7114      setValue(&I,
7115               DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7116      return;
7117    case Intrinsic::invariant_end:
7118      // Discard region information.
7119      return;
7120    case Intrinsic::clear_cache:
7121      /// FunctionName may be null.
7122      if (const char *FunctionName = TLI.getClearCacheBuiltinName())
7123        lowerCallToExternalSymbol(I, FunctionName);
7124      return;
7125    case Intrinsic::donothing:
7126    case Intrinsic::seh_try_begin:
7127    case Intrinsic::seh_scope_begin:
7128    case Intrinsic::seh_try_end:
7129    case Intrinsic::seh_scope_end:
7130      // ignore
7131      return;
7132    case Intrinsic::experimental_stackmap:
7133      visitStackmap(I);
7134      return;
7135    case Intrinsic::experimental_patchpoint_void:
7136    case Intrinsic::experimental_patchpoint_i64:
7137      visitPatchpoint(I);
7138      return;
7139    case Intrinsic::experimental_gc_statepoint:
7140      LowerStatepoint(cast<GCStatepointInst>(I));
7141      return;
7142    case Intrinsic::experimental_gc_result:
7143      visitGCResult(cast<GCResultInst>(I));
7144      return;
7145    case Intrinsic::experimental_gc_relocate:
7146      visitGCRelocate(cast<GCRelocateInst>(I));
7147      return;
7148    case Intrinsic::instrprof_cover:
7149      llvm_unreachable("instrprof failed to lower a cover");
7150    case Intrinsic::instrprof_increment:
7151      llvm_unreachable("instrprof failed to lower an increment");
7152    case Intrinsic::instrprof_timestamp:
7153      llvm_unreachable("instrprof failed to lower a timestamp");
7154    case Intrinsic::instrprof_value_profile:
7155      llvm_unreachable("instrprof failed to lower a value profiling call");
7156    case Intrinsic::localescape: {
7157      MachineFunction &MF = DAG.getMachineFunction();
7158      const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7159  
7160      // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7161      // is the same on all targets.
7162      for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7163        Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7164        if (isa<ConstantPointerNull>(Arg))
7165          continue; // Skip null pointers. They represent a hole in index space.
7166        AllocaInst *Slot = cast<AllocaInst>(Arg);
7167        assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7168               "can only escape static allocas");
7169        int FI = FuncInfo.StaticAllocaMap[Slot];
7170        MCSymbol *FrameAllocSym =
7171            MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7172                GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7173        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7174                TII->get(TargetOpcode::LOCAL_ESCAPE))
7175            .addSym(FrameAllocSym)
7176            .addFrameIndex(FI);
7177      }
7178  
7179      return;
7180    }
7181  
7182    case Intrinsic::localrecover: {
7183      // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7184      MachineFunction &MF = DAG.getMachineFunction();
7185  
7186      // Get the symbol that defines the frame offset.
7187      auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7188      auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7189      unsigned IdxVal =
7190          unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7191      MCSymbol *FrameAllocSym =
7192          MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7193              GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7194  
7195      Value *FP = I.getArgOperand(1);
7196      SDValue FPVal = getValue(FP);
7197      EVT PtrVT = FPVal.getValueType();
7198  
7199      // Create a MCSymbol for the label to avoid any target lowering
7200      // that would make this PC relative.
7201      SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7202      SDValue OffsetVal =
7203          DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7204  
7205      // Add the offset to the FP.
7206      SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7207      setValue(&I, Add);
7208  
7209      return;
7210    }
7211  
7212    case Intrinsic::eh_exceptionpointer:
7213    case Intrinsic::eh_exceptioncode: {
7214      // Get the exception pointer vreg, copy from it, and resize it to fit.
7215      const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7216      MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7217      const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7218      unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7219      SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7220      if (Intrinsic == Intrinsic::eh_exceptioncode)
7221        N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7222      setValue(&I, N);
7223      return;
7224    }
7225    case Intrinsic::xray_customevent: {
7226      // Here we want to make sure that the intrinsic behaves as if it has a
7227      // specific calling convention.
7228      const auto &Triple = DAG.getTarget().getTargetTriple();
7229      if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7230        return;
7231  
7232      SmallVector<SDValue, 8> Ops;
7233  
7234      // We want to say that we always want the arguments in registers.
7235      SDValue LogEntryVal = getValue(I.getArgOperand(0));
7236      SDValue StrSizeVal = getValue(I.getArgOperand(1));
7237      SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7238      SDValue Chain = getRoot();
7239      Ops.push_back(LogEntryVal);
7240      Ops.push_back(StrSizeVal);
7241      Ops.push_back(Chain);
7242  
7243      // We need to enforce the calling convention for the callsite, so that
7244      // argument ordering is enforced correctly, and that register allocation can
7245      // see that some registers may be assumed clobbered and have to preserve
7246      // them across calls to the intrinsic.
7247      MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7248                                             sdl, NodeTys, Ops);
7249      SDValue patchableNode = SDValue(MN, 0);
7250      DAG.setRoot(patchableNode);
7251      setValue(&I, patchableNode);
7252      return;
7253    }
7254    case Intrinsic::xray_typedevent: {
7255      // Here we want to make sure that the intrinsic behaves as if it has a
7256      // specific calling convention.
7257      const auto &Triple = DAG.getTarget().getTargetTriple();
7258      if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7259        return;
7260  
7261      SmallVector<SDValue, 8> Ops;
7262  
7263      // We want to say that we always want the arguments in registers.
7264      // It's unclear to me how manipulating the selection DAG here forces callers
7265      // to provide arguments in registers instead of on the stack.
7266      SDValue LogTypeId = getValue(I.getArgOperand(0));
7267      SDValue LogEntryVal = getValue(I.getArgOperand(1));
7268      SDValue StrSizeVal = getValue(I.getArgOperand(2));
7269      SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7270      SDValue Chain = getRoot();
7271      Ops.push_back(LogTypeId);
7272      Ops.push_back(LogEntryVal);
7273      Ops.push_back(StrSizeVal);
7274      Ops.push_back(Chain);
7275  
7276      // We need to enforce the calling convention for the callsite, so that
7277      // argument ordering is enforced correctly, and that register allocation can
7278      // see that some registers may be assumed clobbered and have to preserve
7279      // them across calls to the intrinsic.
7280      MachineSDNode *MN = DAG.getMachineNode(
7281          TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7282      SDValue patchableNode = SDValue(MN, 0);
7283      DAG.setRoot(patchableNode);
7284      setValue(&I, patchableNode);
7285      return;
7286    }
7287    case Intrinsic::experimental_deoptimize:
7288      LowerDeoptimizeCall(&I);
7289      return;
7290    case Intrinsic::experimental_stepvector:
7291      visitStepVector(I);
7292      return;
7293    case Intrinsic::vector_reduce_fadd:
7294    case Intrinsic::vector_reduce_fmul:
7295    case Intrinsic::vector_reduce_add:
7296    case Intrinsic::vector_reduce_mul:
7297    case Intrinsic::vector_reduce_and:
7298    case Intrinsic::vector_reduce_or:
7299    case Intrinsic::vector_reduce_xor:
7300    case Intrinsic::vector_reduce_smax:
7301    case Intrinsic::vector_reduce_smin:
7302    case Intrinsic::vector_reduce_umax:
7303    case Intrinsic::vector_reduce_umin:
7304    case Intrinsic::vector_reduce_fmax:
7305    case Intrinsic::vector_reduce_fmin:
7306    case Intrinsic::vector_reduce_fmaximum:
7307    case Intrinsic::vector_reduce_fminimum:
7308      visitVectorReduce(I, Intrinsic);
7309      return;
7310  
7311    case Intrinsic::icall_branch_funnel: {
7312      SmallVector<SDValue, 16> Ops;
7313      Ops.push_back(getValue(I.getArgOperand(0)));
7314  
7315      int64_t Offset;
7316      auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7317          I.getArgOperand(1), Offset, DAG.getDataLayout()));
7318      if (!Base)
7319        report_fatal_error(
7320            "llvm.icall.branch.funnel operand must be a GlobalValue");
7321      Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7322  
7323      struct BranchFunnelTarget {
7324        int64_t Offset;
7325        SDValue Target;
7326      };
7327      SmallVector<BranchFunnelTarget, 8> Targets;
7328  
7329      for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7330        auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7331            I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7332        if (ElemBase != Base)
7333          report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7334                             "to the same GlobalValue");
7335  
7336        SDValue Val = getValue(I.getArgOperand(Op + 1));
7337        auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7338        if (!GA)
7339          report_fatal_error(
7340              "llvm.icall.branch.funnel operand must be a GlobalValue");
7341        Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7342                                       GA->getGlobal(), sdl, Val.getValueType(),
7343                                       GA->getOffset())});
7344      }
7345      llvm::sort(Targets,
7346                 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7347                   return T1.Offset < T2.Offset;
7348                 });
7349  
7350      for (auto &T : Targets) {
7351        Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7352        Ops.push_back(T.Target);
7353      }
7354  
7355      Ops.push_back(DAG.getRoot()); // Chain
7356      SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7357                                   MVT::Other, Ops),
7358                0);
7359      DAG.setRoot(N);
7360      setValue(&I, N);
7361      HasTailCall = true;
7362      return;
7363    }
7364  
7365    case Intrinsic::wasm_landingpad_index:
7366      // Information this intrinsic contained has been transferred to
7367      // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7368      // delete it now.
7369      return;
7370  
7371    case Intrinsic::aarch64_settag:
7372    case Intrinsic::aarch64_settag_zero: {
7373      const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7374      bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7375      SDValue Val = TSI.EmitTargetCodeForSetTag(
7376          DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7377          getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7378          ZeroMemory);
7379      DAG.setRoot(Val);
7380      setValue(&I, Val);
7381      return;
7382    }
7383    case Intrinsic::ptrmask: {
7384      SDValue Ptr = getValue(I.getOperand(0));
7385      SDValue Const = getValue(I.getOperand(1));
7386  
7387      EVT PtrVT = Ptr.getValueType();
7388      setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7389                               DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7390      return;
7391    }
7392    case Intrinsic::threadlocal_address: {
7393      setValue(&I, getValue(I.getOperand(0)));
7394      return;
7395    }
7396    case Intrinsic::get_active_lane_mask: {
7397      EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7398      SDValue Index = getValue(I.getOperand(0));
7399      EVT ElementVT = Index.getValueType();
7400  
7401      if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7402        visitTargetIntrinsic(I, Intrinsic);
7403        return;
7404      }
7405  
7406      SDValue TripCount = getValue(I.getOperand(1));
7407      EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
7408                                   CCVT.getVectorElementCount());
7409  
7410      SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7411      SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7412      SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7413      SDValue VectorInduction = DAG.getNode(
7414          ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7415      SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7416                                   VectorTripCount, ISD::CondCode::SETULT);
7417      setValue(&I, SetCC);
7418      return;
7419    }
7420    case Intrinsic::experimental_get_vector_length: {
7421      assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7422             "Expected positive VF");
7423      unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7424      bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7425  
7426      SDValue Count = getValue(I.getOperand(0));
7427      EVT CountVT = Count.getValueType();
7428  
7429      if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7430        visitTargetIntrinsic(I, Intrinsic);
7431        return;
7432      }
7433  
7434      // Expand to a umin between the trip count and the maximum elements the type
7435      // can hold.
7436      EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7437  
7438      // Extend the trip count to at least the result VT.
7439      if (CountVT.bitsLT(VT)) {
7440        Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7441        CountVT = VT;
7442      }
7443  
7444      SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7445                                           ElementCount::get(VF, IsScalable));
7446  
7447      SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7448      // Clip to the result type if needed.
7449      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7450  
7451      setValue(&I, Trunc);
7452      return;
7453    }
7454    case Intrinsic::vector_insert: {
7455      SDValue Vec = getValue(I.getOperand(0));
7456      SDValue SubVec = getValue(I.getOperand(1));
7457      SDValue Index = getValue(I.getOperand(2));
7458  
7459      // The intrinsic's index type is i64, but the SDNode requires an index type
7460      // suitable for the target. Convert the index as required.
7461      MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7462      if (Index.getValueType() != VectorIdxTy)
7463        Index = DAG.getVectorIdxConstant(
7464            cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7465  
7466      EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7467      setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7468                               Index));
7469      return;
7470    }
7471    case Intrinsic::vector_extract: {
7472      SDValue Vec = getValue(I.getOperand(0));
7473      SDValue Index = getValue(I.getOperand(1));
7474      EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7475  
7476      // The intrinsic's index type is i64, but the SDNode requires an index type
7477      // suitable for the target. Convert the index as required.
7478      MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7479      if (Index.getValueType() != VectorIdxTy)
7480        Index = DAG.getVectorIdxConstant(
7481            cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7482  
7483      setValue(&I,
7484               DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7485      return;
7486    }
7487    case Intrinsic::experimental_vector_reverse:
7488      visitVectorReverse(I);
7489      return;
7490    case Intrinsic::experimental_vector_splice:
7491      visitVectorSplice(I);
7492      return;
7493    case Intrinsic::callbr_landingpad:
7494      visitCallBrLandingPad(I);
7495      return;
7496    case Intrinsic::experimental_vector_interleave2:
7497      visitVectorInterleave(I);
7498      return;
7499    case Intrinsic::experimental_vector_deinterleave2:
7500      visitVectorDeinterleave(I);
7501      return;
7502    }
7503  }
7504  
7505  void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7506      const ConstrainedFPIntrinsic &FPI) {
7507    SDLoc sdl = getCurSDLoc();
7508  
7509    // We do not need to serialize constrained FP intrinsics against
7510    // each other or against (nonvolatile) loads, so they can be
7511    // chained like loads.
7512    SDValue Chain = DAG.getRoot();
7513    SmallVector<SDValue, 4> Opers;
7514    Opers.push_back(Chain);
7515    if (FPI.isUnaryOp()) {
7516      Opers.push_back(getValue(FPI.getArgOperand(0)));
7517    } else if (FPI.isTernaryOp()) {
7518      Opers.push_back(getValue(FPI.getArgOperand(0)));
7519      Opers.push_back(getValue(FPI.getArgOperand(1)));
7520      Opers.push_back(getValue(FPI.getArgOperand(2)));
7521    } else {
7522      Opers.push_back(getValue(FPI.getArgOperand(0)));
7523      Opers.push_back(getValue(FPI.getArgOperand(1)));
7524    }
7525  
7526    auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7527      assert(Result.getNode()->getNumValues() == 2);
7528  
7529      // Push node to the appropriate list so that future instructions can be
7530      // chained up correctly.
7531      SDValue OutChain = Result.getValue(1);
7532      switch (EB) {
7533      case fp::ExceptionBehavior::ebIgnore:
7534        // The only reason why ebIgnore nodes still need to be chained is that
7535        // they might depend on the current rounding mode, and therefore must
7536        // not be moved across instruction that may change that mode.
7537        [[fallthrough]];
7538      case fp::ExceptionBehavior::ebMayTrap:
7539        // These must not be moved across calls or instructions that may change
7540        // floating-point exception masks.
7541        PendingConstrainedFP.push_back(OutChain);
7542        break;
7543      case fp::ExceptionBehavior::ebStrict:
7544        // These must not be moved across calls or instructions that may change
7545        // floating-point exception masks or read floating-point exception flags.
7546        // In addition, they cannot be optimized out even if unused.
7547        PendingConstrainedFPStrict.push_back(OutChain);
7548        break;
7549      }
7550    };
7551  
7552    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7553    EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7554    SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7555    fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7556  
7557    SDNodeFlags Flags;
7558    if (EB == fp::ExceptionBehavior::ebIgnore)
7559      Flags.setNoFPExcept(true);
7560  
7561    if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7562      Flags.copyFMF(*FPOp);
7563  
7564    unsigned Opcode;
7565    switch (FPI.getIntrinsicID()) {
7566    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7567  #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7568    case Intrinsic::INTRINSIC:                                                   \
7569      Opcode = ISD::STRICT_##DAGN;                                               \
7570      break;
7571  #include "llvm/IR/ConstrainedOps.def"
7572    case Intrinsic::experimental_constrained_fmuladd: {
7573      Opcode = ISD::STRICT_FMA;
7574      // Break fmuladd into fmul and fadd.
7575      if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7576          !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7577        Opers.pop_back();
7578        SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7579        pushOutChain(Mul, EB);
7580        Opcode = ISD::STRICT_FADD;
7581        Opers.clear();
7582        Opers.push_back(Mul.getValue(1));
7583        Opers.push_back(Mul.getValue(0));
7584        Opers.push_back(getValue(FPI.getArgOperand(2)));
7585      }
7586      break;
7587    }
7588    }
7589  
7590    // A few strict DAG nodes carry additional operands that are not
7591    // set up by the default code above.
7592    switch (Opcode) {
7593    default: break;
7594    case ISD::STRICT_FP_ROUND:
7595      Opers.push_back(
7596          DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7597      break;
7598    case ISD::STRICT_FSETCC:
7599    case ISD::STRICT_FSETCCS: {
7600      auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7601      ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7602      if (TM.Options.NoNaNsFPMath)
7603        Condition = getFCmpCodeWithoutNaN(Condition);
7604      Opers.push_back(DAG.getCondCode(Condition));
7605      break;
7606    }
7607    }
7608  
7609    SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7610    pushOutChain(Result, EB);
7611  
7612    SDValue FPResult = Result.getValue(0);
7613    setValue(&FPI, FPResult);
7614  }
7615  
7616  static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7617    std::optional<unsigned> ResOPC;
7618    switch (VPIntrin.getIntrinsicID()) {
7619    case Intrinsic::vp_ctlz: {
7620      bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7621      ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
7622      break;
7623    }
7624    case Intrinsic::vp_cttz: {
7625      bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7626      ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
7627      break;
7628    }
7629  #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7630    case Intrinsic::VPID:                                                        \
7631      ResOPC = ISD::VPSD;                                                        \
7632      break;
7633  #include "llvm/IR/VPIntrinsics.def"
7634    }
7635  
7636    if (!ResOPC)
7637      llvm_unreachable(
7638          "Inconsistency: no SDNode available for this VPIntrinsic!");
7639  
7640    if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7641        *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7642      if (VPIntrin.getFastMathFlags().allowReassoc())
7643        return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7644                                                  : ISD::VP_REDUCE_FMUL;
7645    }
7646  
7647    return *ResOPC;
7648  }
7649  
7650  void SelectionDAGBuilder::visitVPLoad(
7651      const VPIntrinsic &VPIntrin, EVT VT,
7652      const SmallVectorImpl<SDValue> &OpValues) {
7653    SDLoc DL = getCurSDLoc();
7654    Value *PtrOperand = VPIntrin.getArgOperand(0);
7655    MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7656    AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7657    const MDNode *Ranges = getRangeMetadata(VPIntrin);
7658    SDValue LD;
7659    // Do not serialize variable-length loads of constant memory with
7660    // anything.
7661    if (!Alignment)
7662      Alignment = DAG.getEVTAlign(VT);
7663    MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7664    bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7665    SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7666    MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7667        MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7668        MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7669    LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7670                       MMO, false /*IsExpanding */);
7671    if (AddToChain)
7672      PendingLoads.push_back(LD.getValue(1));
7673    setValue(&VPIntrin, LD);
7674  }
7675  
7676  void SelectionDAGBuilder::visitVPGather(
7677      const VPIntrinsic &VPIntrin, EVT VT,
7678      const SmallVectorImpl<SDValue> &OpValues) {
7679    SDLoc DL = getCurSDLoc();
7680    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7681    Value *PtrOperand = VPIntrin.getArgOperand(0);
7682    MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7683    AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7684    const MDNode *Ranges = getRangeMetadata(VPIntrin);
7685    SDValue LD;
7686    if (!Alignment)
7687      Alignment = DAG.getEVTAlign(VT.getScalarType());
7688    unsigned AS =
7689      PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7690    MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7691       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7692       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7693    SDValue Base, Index, Scale;
7694    ISD::MemIndexType IndexType;
7695    bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7696                                      this, VPIntrin.getParent(),
7697                                      VT.getScalarStoreSize());
7698    if (!UniformBase) {
7699      Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7700      Index = getValue(PtrOperand);
7701      IndexType = ISD::SIGNED_SCALED;
7702      Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7703    }
7704    EVT IdxVT = Index.getValueType();
7705    EVT EltTy = IdxVT.getVectorElementType();
7706    if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7707      EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7708      Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7709    }
7710    LD = DAG.getGatherVP(
7711        DAG.getVTList(VT, MVT::Other), VT, DL,
7712        {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7713        IndexType);
7714    PendingLoads.push_back(LD.getValue(1));
7715    setValue(&VPIntrin, LD);
7716  }
7717  
7718  void SelectionDAGBuilder::visitVPStore(
7719      const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7720    SDLoc DL = getCurSDLoc();
7721    Value *PtrOperand = VPIntrin.getArgOperand(1);
7722    EVT VT = OpValues[0].getValueType();
7723    MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7724    AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7725    SDValue ST;
7726    if (!Alignment)
7727      Alignment = DAG.getEVTAlign(VT);
7728    SDValue Ptr = OpValues[1];
7729    SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7730    MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7731        MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7732        MemoryLocation::UnknownSize, *Alignment, AAInfo);
7733    ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7734                        OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7735                        /* IsTruncating */ false, /*IsCompressing*/ false);
7736    DAG.setRoot(ST);
7737    setValue(&VPIntrin, ST);
7738  }
7739  
7740  void SelectionDAGBuilder::visitVPScatter(
7741      const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7742    SDLoc DL = getCurSDLoc();
7743    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7744    Value *PtrOperand = VPIntrin.getArgOperand(1);
7745    EVT VT = OpValues[0].getValueType();
7746    MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7747    AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7748    SDValue ST;
7749    if (!Alignment)
7750      Alignment = DAG.getEVTAlign(VT.getScalarType());
7751    unsigned AS =
7752        PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7753    MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7754        MachinePointerInfo(AS), MachineMemOperand::MOStore,
7755        MemoryLocation::UnknownSize, *Alignment, AAInfo);
7756    SDValue Base, Index, Scale;
7757    ISD::MemIndexType IndexType;
7758    bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7759                                      this, VPIntrin.getParent(),
7760                                      VT.getScalarStoreSize());
7761    if (!UniformBase) {
7762      Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7763      Index = getValue(PtrOperand);
7764      IndexType = ISD::SIGNED_SCALED;
7765      Scale =
7766        DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7767    }
7768    EVT IdxVT = Index.getValueType();
7769    EVT EltTy = IdxVT.getVectorElementType();
7770    if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7771      EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7772      Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7773    }
7774    ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7775                          {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7776                           OpValues[2], OpValues[3]},
7777                          MMO, IndexType);
7778    DAG.setRoot(ST);
7779    setValue(&VPIntrin, ST);
7780  }
7781  
7782  void SelectionDAGBuilder::visitVPStridedLoad(
7783      const VPIntrinsic &VPIntrin, EVT VT,
7784      const SmallVectorImpl<SDValue> &OpValues) {
7785    SDLoc DL = getCurSDLoc();
7786    Value *PtrOperand = VPIntrin.getArgOperand(0);
7787    MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7788    if (!Alignment)
7789      Alignment = DAG.getEVTAlign(VT.getScalarType());
7790    AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7791    const MDNode *Ranges = getRangeMetadata(VPIntrin);
7792    MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7793    bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7794    SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7795    MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7796        MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7797        MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7798  
7799    SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7800                                      OpValues[2], OpValues[3], MMO,
7801                                      false /*IsExpanding*/);
7802  
7803    if (AddToChain)
7804      PendingLoads.push_back(LD.getValue(1));
7805    setValue(&VPIntrin, LD);
7806  }
7807  
7808  void SelectionDAGBuilder::visitVPStridedStore(
7809      const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7810    SDLoc DL = getCurSDLoc();
7811    Value *PtrOperand = VPIntrin.getArgOperand(1);
7812    EVT VT = OpValues[0].getValueType();
7813    MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7814    if (!Alignment)
7815      Alignment = DAG.getEVTAlign(VT.getScalarType());
7816    AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7817    MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7818        MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7819        MemoryLocation::UnknownSize, *Alignment, AAInfo);
7820  
7821    SDValue ST = DAG.getStridedStoreVP(
7822        getMemoryRoot(), DL, OpValues[0], OpValues[1],
7823        DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7824        OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7825        /*IsCompressing*/ false);
7826  
7827    DAG.setRoot(ST);
7828    setValue(&VPIntrin, ST);
7829  }
7830  
7831  void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7832    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7833    SDLoc DL = getCurSDLoc();
7834  
7835    ISD::CondCode Condition;
7836    CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7837    bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7838    if (IsFP) {
7839      // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7840      // flags, but calls that don't return floating-point types can't be
7841      // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7842      Condition = getFCmpCondCode(CondCode);
7843      if (TM.Options.NoNaNsFPMath)
7844        Condition = getFCmpCodeWithoutNaN(Condition);
7845    } else {
7846      Condition = getICmpCondCode(CondCode);
7847    }
7848  
7849    SDValue Op1 = getValue(VPIntrin.getOperand(0));
7850    SDValue Op2 = getValue(VPIntrin.getOperand(1));
7851    // #2 is the condition code
7852    SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7853    SDValue EVL = getValue(VPIntrin.getOperand(4));
7854    MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7855    assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7856           "Unexpected target EVL type");
7857    EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7858  
7859    EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7860                                                          VPIntrin.getType());
7861    setValue(&VPIntrin,
7862             DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7863  }
7864  
7865  void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7866      const VPIntrinsic &VPIntrin) {
7867    SDLoc DL = getCurSDLoc();
7868    unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7869  
7870    auto IID = VPIntrin.getIntrinsicID();
7871  
7872    if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7873      return visitVPCmp(*CmpI);
7874  
7875    SmallVector<EVT, 4> ValueVTs;
7876    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7877    ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7878    SDVTList VTs = DAG.getVTList(ValueVTs);
7879  
7880    auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7881  
7882    MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7883    assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7884           "Unexpected target EVL type");
7885  
7886    // Request operands.
7887    SmallVector<SDValue, 7> OpValues;
7888    for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7889      auto Op = getValue(VPIntrin.getArgOperand(I));
7890      if (I == EVLParamPos)
7891        Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7892      OpValues.push_back(Op);
7893    }
7894  
7895    switch (Opcode) {
7896    default: {
7897      SDNodeFlags SDFlags;
7898      if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7899        SDFlags.copyFMF(*FPMO);
7900      SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7901      setValue(&VPIntrin, Result);
7902      break;
7903    }
7904    case ISD::VP_LOAD:
7905      visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
7906      break;
7907    case ISD::VP_GATHER:
7908      visitVPGather(VPIntrin, ValueVTs[0], OpValues);
7909      break;
7910    case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7911      visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7912      break;
7913    case ISD::VP_STORE:
7914      visitVPStore(VPIntrin, OpValues);
7915      break;
7916    case ISD::VP_SCATTER:
7917      visitVPScatter(VPIntrin, OpValues);
7918      break;
7919    case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7920      visitVPStridedStore(VPIntrin, OpValues);
7921      break;
7922    case ISD::VP_FMULADD: {
7923      assert(OpValues.size() == 5 && "Unexpected number of operands");
7924      SDNodeFlags SDFlags;
7925      if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7926        SDFlags.copyFMF(*FPMO);
7927      if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7928          TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
7929        setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
7930      } else {
7931        SDValue Mul = DAG.getNode(
7932            ISD::VP_FMUL, DL, VTs,
7933            {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
7934        SDValue Add =
7935            DAG.getNode(ISD::VP_FADD, DL, VTs,
7936                        {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
7937        setValue(&VPIntrin, Add);
7938      }
7939      break;
7940    }
7941    case ISD::VP_INTTOPTR: {
7942      SDValue N = OpValues[0];
7943      EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
7944      EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
7945      N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7946                                 OpValues[2]);
7947      N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7948                               OpValues[2]);
7949      setValue(&VPIntrin, N);
7950      break;
7951    }
7952    case ISD::VP_PTRTOINT: {
7953      SDValue N = OpValues[0];
7954      EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7955                                                            VPIntrin.getType());
7956      EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
7957                                         VPIntrin.getOperand(0)->getType());
7958      N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7959                                 OpValues[2]);
7960      N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7961                               OpValues[2]);
7962      setValue(&VPIntrin, N);
7963      break;
7964    }
7965    case ISD::VP_ABS:
7966    case ISD::VP_CTLZ:
7967    case ISD::VP_CTLZ_ZERO_UNDEF:
7968    case ISD::VP_CTTZ:
7969    case ISD::VP_CTTZ_ZERO_UNDEF: {
7970      SDValue Result =
7971          DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
7972      setValue(&VPIntrin, Result);
7973      break;
7974    }
7975    }
7976  }
7977  
7978  SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7979                                            const BasicBlock *EHPadBB,
7980                                            MCSymbol *&BeginLabel) {
7981    MachineFunction &MF = DAG.getMachineFunction();
7982    MachineModuleInfo &MMI = MF.getMMI();
7983  
7984    // Insert a label before the invoke call to mark the try range.  This can be
7985    // used to detect deletion of the invoke via the MachineModuleInfo.
7986    BeginLabel = MMI.getContext().createTempSymbol();
7987  
7988    // For SjLj, keep track of which landing pads go with which invokes
7989    // so as to maintain the ordering of pads in the LSDA.
7990    unsigned CallSiteIndex = MMI.getCurrentCallSite();
7991    if (CallSiteIndex) {
7992      MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7993      LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7994  
7995      // Now that the call site is handled, stop tracking it.
7996      MMI.setCurrentCallSite(0);
7997    }
7998  
7999    return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8000  }
8001  
8002  SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8003                                          const BasicBlock *EHPadBB,
8004                                          MCSymbol *BeginLabel) {
8005    assert(BeginLabel && "BeginLabel should've been set");
8006  
8007    MachineFunction &MF = DAG.getMachineFunction();
8008    MachineModuleInfo &MMI = MF.getMMI();
8009  
8010    // Insert a label at the end of the invoke call to mark the try range.  This
8011    // can be used to detect deletion of the invoke via the MachineModuleInfo.
8012    MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
8013    Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8014  
8015    // Inform MachineModuleInfo of range.
8016    auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8017    // There is a platform (e.g. wasm) that uses funclet style IR but does not
8018    // actually use outlined funclets and their LSDA info style.
8019    if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8020      assert(II && "II should've been set");
8021      WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8022      EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8023    } else if (!isScopedEHPersonality(Pers)) {
8024      assert(EHPadBB);
8025      MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
8026    }
8027  
8028    return Chain;
8029  }
8030  
8031  std::pair<SDValue, SDValue>
8032  SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8033                                      const BasicBlock *EHPadBB) {
8034    MCSymbol *BeginLabel = nullptr;
8035  
8036    if (EHPadBB) {
8037      // Both PendingLoads and PendingExports must be flushed here;
8038      // this call might not return.
8039      (void)getRoot();
8040      DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8041      CLI.setChain(getRoot());
8042    }
8043  
8044    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8045    std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8046  
8047    assert((CLI.IsTailCall || Result.second.getNode()) &&
8048           "Non-null chain expected with non-tail call!");
8049    assert((Result.second.getNode() || !Result.first.getNode()) &&
8050           "Null value expected with tail call!");
8051  
8052    if (!Result.second.getNode()) {
8053      // As a special case, a null chain means that a tail call has been emitted
8054      // and the DAG root is already updated.
8055      HasTailCall = true;
8056  
8057      // Since there's no actual continuation from this block, nothing can be
8058      // relying on us setting vregs for them.
8059      PendingExports.clear();
8060    } else {
8061      DAG.setRoot(Result.second);
8062    }
8063  
8064    if (EHPadBB) {
8065      DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8066                             BeginLabel));
8067    }
8068  
8069    return Result;
8070  }
8071  
8072  void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8073                                        bool isTailCall,
8074                                        bool isMustTailCall,
8075                                        const BasicBlock *EHPadBB) {
8076    auto &DL = DAG.getDataLayout();
8077    FunctionType *FTy = CB.getFunctionType();
8078    Type *RetTy = CB.getType();
8079  
8080    TargetLowering::ArgListTy Args;
8081    Args.reserve(CB.arg_size());
8082  
8083    const Value *SwiftErrorVal = nullptr;
8084    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8085  
8086    if (isTailCall) {
8087      // Avoid emitting tail calls in functions with the disable-tail-calls
8088      // attribute.
8089      auto *Caller = CB.getParent()->getParent();
8090      if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8091          "true" && !isMustTailCall)
8092        isTailCall = false;
8093  
8094      // We can't tail call inside a function with a swifterror argument. Lowering
8095      // does not support this yet. It would have to move into the swifterror
8096      // register before the call.
8097      if (TLI.supportSwiftError() &&
8098          Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8099        isTailCall = false;
8100    }
8101  
8102    for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8103      TargetLowering::ArgListEntry Entry;
8104      const Value *V = *I;
8105  
8106      // Skip empty types
8107      if (V->getType()->isEmptyTy())
8108        continue;
8109  
8110      SDValue ArgNode = getValue(V);
8111      Entry.Node = ArgNode; Entry.Ty = V->getType();
8112  
8113      Entry.setAttributes(&CB, I - CB.arg_begin());
8114  
8115      // Use swifterror virtual register as input to the call.
8116      if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8117        SwiftErrorVal = V;
8118        // We find the virtual register for the actual swifterror argument.
8119        // Instead of using the Value, we use the virtual register instead.
8120        Entry.Node =
8121            DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8122                            EVT(TLI.getPointerTy(DL)));
8123      }
8124  
8125      Args.push_back(Entry);
8126  
8127      // If we have an explicit sret argument that is an Instruction, (i.e., it
8128      // might point to function-local memory), we can't meaningfully tail-call.
8129      if (Entry.IsSRet && isa<Instruction>(V))
8130        isTailCall = false;
8131    }
8132  
8133    // If call site has a cfguardtarget operand bundle, create and add an
8134    // additional ArgListEntry.
8135    if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8136      TargetLowering::ArgListEntry Entry;
8137      Value *V = Bundle->Inputs[0];
8138      SDValue ArgNode = getValue(V);
8139      Entry.Node = ArgNode;
8140      Entry.Ty = V->getType();
8141      Entry.IsCFGuardTarget = true;
8142      Args.push_back(Entry);
8143    }
8144  
8145    // Check if target-independent constraints permit a tail call here.
8146    // Target-dependent constraints are checked within TLI->LowerCallTo.
8147    if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8148      isTailCall = false;
8149  
8150    // Disable tail calls if there is an swifterror argument. Targets have not
8151    // been updated to support tail calls.
8152    if (TLI.supportSwiftError() && SwiftErrorVal)
8153      isTailCall = false;
8154  
8155    ConstantInt *CFIType = nullptr;
8156    if (CB.isIndirectCall()) {
8157      if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8158        if (!TLI.supportKCFIBundles())
8159          report_fatal_error(
8160              "Target doesn't support calls with kcfi operand bundles.");
8161        CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8162        assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8163      }
8164    }
8165  
8166    TargetLowering::CallLoweringInfo CLI(DAG);
8167    CLI.setDebugLoc(getCurSDLoc())
8168        .setChain(getRoot())
8169        .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8170        .setTailCall(isTailCall)
8171        .setConvergent(CB.isConvergent())
8172        .setIsPreallocated(
8173            CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8174        .setCFIType(CFIType);
8175    std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8176  
8177    if (Result.first.getNode()) {
8178      Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8179      setValue(&CB, Result.first);
8180    }
8181  
8182    // The last element of CLI.InVals has the SDValue for swifterror return.
8183    // Here we copy it to a virtual register and update SwiftErrorMap for
8184    // book-keeping.
8185    if (SwiftErrorVal && TLI.supportSwiftError()) {
8186      // Get the last element of InVals.
8187      SDValue Src = CLI.InVals.back();
8188      Register VReg =
8189          SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8190      SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8191      DAG.setRoot(CopyNode);
8192    }
8193  }
8194  
8195  static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8196                               SelectionDAGBuilder &Builder) {
8197    // Check to see if this load can be trivially constant folded, e.g. if the
8198    // input is from a string literal.
8199    if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8200      // Cast pointer to the type we really want to load.
8201      Type *LoadTy =
8202          Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8203      if (LoadVT.isVector())
8204        LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8205  
8206      LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8207                                           PointerType::getUnqual(LoadTy));
8208  
8209      if (const Constant *LoadCst =
8210              ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8211                                           LoadTy, Builder.DAG.getDataLayout()))
8212        return Builder.getValue(LoadCst);
8213    }
8214  
8215    // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8216    // still constant memory, the input chain can be the entry node.
8217    SDValue Root;
8218    bool ConstantMemory = false;
8219  
8220    // Do not serialize (non-volatile) loads of constant memory with anything.
8221    if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8222      Root = Builder.DAG.getEntryNode();
8223      ConstantMemory = true;
8224    } else {
8225      // Do not serialize non-volatile loads against each other.
8226      Root = Builder.DAG.getRoot();
8227    }
8228  
8229    SDValue Ptr = Builder.getValue(PtrVal);
8230    SDValue LoadVal =
8231        Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8232                            MachinePointerInfo(PtrVal), Align(1));
8233  
8234    if (!ConstantMemory)
8235      Builder.PendingLoads.push_back(LoadVal.getValue(1));
8236    return LoadVal;
8237  }
8238  
8239  /// Record the value for an instruction that produces an integer result,
8240  /// converting the type where necessary.
8241  void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8242                                                    SDValue Value,
8243                                                    bool IsSigned) {
8244    EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8245                                                      I.getType(), true);
8246    Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8247    setValue(&I, Value);
8248  }
8249  
8250  /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8251  /// true and lower it. Otherwise return false, and it will be lowered like a
8252  /// normal call.
8253  /// The caller already checked that \p I calls the appropriate LibFunc with a
8254  /// correct prototype.
8255  bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8256    const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8257    const Value *Size = I.getArgOperand(2);
8258    const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8259    if (CSize && CSize->getZExtValue() == 0) {
8260      EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8261                                                            I.getType(), true);
8262      setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8263      return true;
8264    }
8265  
8266    const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8267    std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8268        DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8269        getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8270    if (Res.first.getNode()) {
8271      processIntegerCallValue(I, Res.first, true);
8272      PendingLoads.push_back(Res.second);
8273      return true;
8274    }
8275  
8276    // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8277    // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8278    if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8279      return false;
8280  
8281    // If the target has a fast compare for the given size, it will return a
8282    // preferred load type for that size. Require that the load VT is legal and
8283    // that the target supports unaligned loads of that type. Otherwise, return
8284    // INVALID.
8285    auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8286      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8287      MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8288      if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8289        // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8290        // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8291        // TODO: Check alignment of src and dest ptrs.
8292        unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8293        unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8294        if (!TLI.isTypeLegal(LVT) ||
8295            !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8296            !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8297          LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8298      }
8299  
8300      return LVT;
8301    };
8302  
8303    // This turns into unaligned loads. We only do this if the target natively
8304    // supports the MVT we'll be loading or if it is small enough (<= 4) that
8305    // we'll only produce a small number of byte loads.
8306    MVT LoadVT;
8307    unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8308    switch (NumBitsToCompare) {
8309    default:
8310      return false;
8311    case 16:
8312      LoadVT = MVT::i16;
8313      break;
8314    case 32:
8315      LoadVT = MVT::i32;
8316      break;
8317    case 64:
8318    case 128:
8319    case 256:
8320      LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8321      break;
8322    }
8323  
8324    if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8325      return false;
8326  
8327    SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8328    SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8329  
8330    // Bitcast to a wide integer type if the loads are vectors.
8331    if (LoadVT.isVector()) {
8332      EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8333      LoadL = DAG.getBitcast(CmpVT, LoadL);
8334      LoadR = DAG.getBitcast(CmpVT, LoadR);
8335    }
8336  
8337    SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8338    processIntegerCallValue(I, Cmp, false);
8339    return true;
8340  }
8341  
8342  /// See if we can lower a memchr call into an optimized form. If so, return
8343  /// true and lower it. Otherwise return false, and it will be lowered like a
8344  /// normal call.
8345  /// The caller already checked that \p I calls the appropriate LibFunc with a
8346  /// correct prototype.
8347  bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8348    const Value *Src = I.getArgOperand(0);
8349    const Value *Char = I.getArgOperand(1);
8350    const Value *Length = I.getArgOperand(2);
8351  
8352    const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8353    std::pair<SDValue, SDValue> Res =
8354      TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8355                                  getValue(Src), getValue(Char), getValue(Length),
8356                                  MachinePointerInfo(Src));
8357    if (Res.first.getNode()) {
8358      setValue(&I, Res.first);
8359      PendingLoads.push_back(Res.second);
8360      return true;
8361    }
8362  
8363    return false;
8364  }
8365  
8366  /// See if we can lower a mempcpy call into an optimized form. If so, return
8367  /// true and lower it. Otherwise return false, and it will be lowered like a
8368  /// normal call.
8369  /// The caller already checked that \p I calls the appropriate LibFunc with a
8370  /// correct prototype.
8371  bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8372    SDValue Dst = getValue(I.getArgOperand(0));
8373    SDValue Src = getValue(I.getArgOperand(1));
8374    SDValue Size = getValue(I.getArgOperand(2));
8375  
8376    Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8377    Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8378    // DAG::getMemcpy needs Alignment to be defined.
8379    Align Alignment = std::min(DstAlign, SrcAlign);
8380  
8381    SDLoc sdl = getCurSDLoc();
8382  
8383    // In the mempcpy context we need to pass in a false value for isTailCall
8384    // because the return pointer needs to be adjusted by the size of
8385    // the copied memory.
8386    SDValue Root = getMemoryRoot();
8387    SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false,
8388                               /*isTailCall=*/false,
8389                               MachinePointerInfo(I.getArgOperand(0)),
8390                               MachinePointerInfo(I.getArgOperand(1)),
8391                               I.getAAMetadata());
8392    assert(MC.getNode() != nullptr &&
8393           "** memcpy should not be lowered as TailCall in mempcpy context **");
8394    DAG.setRoot(MC);
8395  
8396    // Check if Size needs to be truncated or extended.
8397    Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8398  
8399    // Adjust return pointer to point just past the last dst byte.
8400    SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8401                                      Dst, Size);
8402    setValue(&I, DstPlusSize);
8403    return true;
8404  }
8405  
8406  /// See if we can lower a strcpy call into an optimized form.  If so, return
8407  /// true and lower it, otherwise return false and it will be lowered like a
8408  /// normal call.
8409  /// The caller already checked that \p I calls the appropriate LibFunc with a
8410  /// correct prototype.
8411  bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8412    const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8413  
8414    const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8415    std::pair<SDValue, SDValue> Res =
8416      TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8417                                  getValue(Arg0), getValue(Arg1),
8418                                  MachinePointerInfo(Arg0),
8419                                  MachinePointerInfo(Arg1), isStpcpy);
8420    if (Res.first.getNode()) {
8421      setValue(&I, Res.first);
8422      DAG.setRoot(Res.second);
8423      return true;
8424    }
8425  
8426    return false;
8427  }
8428  
8429  /// See if we can lower a strcmp call into an optimized form.  If so, return
8430  /// true and lower it, otherwise return false and it will be lowered like a
8431  /// normal call.
8432  /// The caller already checked that \p I calls the appropriate LibFunc with a
8433  /// correct prototype.
8434  bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8435    const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8436  
8437    const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8438    std::pair<SDValue, SDValue> Res =
8439      TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8440                                  getValue(Arg0), getValue(Arg1),
8441                                  MachinePointerInfo(Arg0),
8442                                  MachinePointerInfo(Arg1));
8443    if (Res.first.getNode()) {
8444      processIntegerCallValue(I, Res.first, true);
8445      PendingLoads.push_back(Res.second);
8446      return true;
8447    }
8448  
8449    return false;
8450  }
8451  
8452  /// See if we can lower a strlen call into an optimized form.  If so, return
8453  /// true and lower it, otherwise return false and it will be lowered like a
8454  /// normal call.
8455  /// The caller already checked that \p I calls the appropriate LibFunc with a
8456  /// correct prototype.
8457  bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8458    const Value *Arg0 = I.getArgOperand(0);
8459  
8460    const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8461    std::pair<SDValue, SDValue> Res =
8462      TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8463                                  getValue(Arg0), MachinePointerInfo(Arg0));
8464    if (Res.first.getNode()) {
8465      processIntegerCallValue(I, Res.first, false);
8466      PendingLoads.push_back(Res.second);
8467      return true;
8468    }
8469  
8470    return false;
8471  }
8472  
8473  /// See if we can lower a strnlen call into an optimized form.  If so, return
8474  /// true and lower it, otherwise return false and it will be lowered like a
8475  /// normal call.
8476  /// The caller already checked that \p I calls the appropriate LibFunc with a
8477  /// correct prototype.
8478  bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8479    const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8480  
8481    const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8482    std::pair<SDValue, SDValue> Res =
8483      TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8484                                   getValue(Arg0), getValue(Arg1),
8485                                   MachinePointerInfo(Arg0));
8486    if (Res.first.getNode()) {
8487      processIntegerCallValue(I, Res.first, false);
8488      PendingLoads.push_back(Res.second);
8489      return true;
8490    }
8491  
8492    return false;
8493  }
8494  
8495  /// See if we can lower a unary floating-point operation into an SDNode with
8496  /// the specified Opcode.  If so, return true and lower it, otherwise return
8497  /// false and it will be lowered like a normal call.
8498  /// The caller already checked that \p I calls the appropriate LibFunc with a
8499  /// correct prototype.
8500  bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8501                                                unsigned Opcode) {
8502    // We already checked this call's prototype; verify it doesn't modify errno.
8503    if (!I.onlyReadsMemory())
8504      return false;
8505  
8506    SDNodeFlags Flags;
8507    Flags.copyFMF(cast<FPMathOperator>(I));
8508  
8509    SDValue Tmp = getValue(I.getArgOperand(0));
8510    setValue(&I,
8511             DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8512    return true;
8513  }
8514  
8515  /// See if we can lower a binary floating-point operation into an SDNode with
8516  /// the specified Opcode. If so, return true and lower it. Otherwise return
8517  /// false, and it will be lowered like a normal call.
8518  /// The caller already checked that \p I calls the appropriate LibFunc with a
8519  /// correct prototype.
8520  bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8521                                                 unsigned Opcode) {
8522    // We already checked this call's prototype; verify it doesn't modify errno.
8523    if (!I.onlyReadsMemory())
8524      return false;
8525  
8526    SDNodeFlags Flags;
8527    Flags.copyFMF(cast<FPMathOperator>(I));
8528  
8529    SDValue Tmp0 = getValue(I.getArgOperand(0));
8530    SDValue Tmp1 = getValue(I.getArgOperand(1));
8531    EVT VT = Tmp0.getValueType();
8532    setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8533    return true;
8534  }
8535  
8536  void SelectionDAGBuilder::visitCall(const CallInst &I) {
8537    // Handle inline assembly differently.
8538    if (I.isInlineAsm()) {
8539      visitInlineAsm(I);
8540      return;
8541    }
8542  
8543    diagnoseDontCall(I);
8544  
8545    if (Function *F = I.getCalledFunction()) {
8546      if (F->isDeclaration()) {
8547        // Is this an LLVM intrinsic or a target-specific intrinsic?
8548        unsigned IID = F->getIntrinsicID();
8549        if (!IID)
8550          if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8551            IID = II->getIntrinsicID(F);
8552  
8553        if (IID) {
8554          visitIntrinsicCall(I, IID);
8555          return;
8556        }
8557      }
8558  
8559      // Check for well-known libc/libm calls.  If the function is internal, it
8560      // can't be a library call.  Don't do the check if marked as nobuiltin for
8561      // some reason or the call site requires strict floating point semantics.
8562      LibFunc Func;
8563      if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8564          F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8565          LibInfo->hasOptimizedCodeGen(Func)) {
8566        switch (Func) {
8567        default: break;
8568        case LibFunc_bcmp:
8569          if (visitMemCmpBCmpCall(I))
8570            return;
8571          break;
8572        case LibFunc_copysign:
8573        case LibFunc_copysignf:
8574        case LibFunc_copysignl:
8575          // We already checked this call's prototype; verify it doesn't modify
8576          // errno.
8577          if (I.onlyReadsMemory()) {
8578            SDValue LHS = getValue(I.getArgOperand(0));
8579            SDValue RHS = getValue(I.getArgOperand(1));
8580            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8581                                     LHS.getValueType(), LHS, RHS));
8582            return;
8583          }
8584          break;
8585        case LibFunc_fabs:
8586        case LibFunc_fabsf:
8587        case LibFunc_fabsl:
8588          if (visitUnaryFloatCall(I, ISD::FABS))
8589            return;
8590          break;
8591        case LibFunc_fmin:
8592        case LibFunc_fminf:
8593        case LibFunc_fminl:
8594          if (visitBinaryFloatCall(I, ISD::FMINNUM))
8595            return;
8596          break;
8597        case LibFunc_fmax:
8598        case LibFunc_fmaxf:
8599        case LibFunc_fmaxl:
8600          if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8601            return;
8602          break;
8603        case LibFunc_sin:
8604        case LibFunc_sinf:
8605        case LibFunc_sinl:
8606          if (visitUnaryFloatCall(I, ISD::FSIN))
8607            return;
8608          break;
8609        case LibFunc_cos:
8610        case LibFunc_cosf:
8611        case LibFunc_cosl:
8612          if (visitUnaryFloatCall(I, ISD::FCOS))
8613            return;
8614          break;
8615        case LibFunc_sqrt:
8616        case LibFunc_sqrtf:
8617        case LibFunc_sqrtl:
8618        case LibFunc_sqrt_finite:
8619        case LibFunc_sqrtf_finite:
8620        case LibFunc_sqrtl_finite:
8621          if (visitUnaryFloatCall(I, ISD::FSQRT))
8622            return;
8623          break;
8624        case LibFunc_floor:
8625        case LibFunc_floorf:
8626        case LibFunc_floorl:
8627          if (visitUnaryFloatCall(I, ISD::FFLOOR))
8628            return;
8629          break;
8630        case LibFunc_nearbyint:
8631        case LibFunc_nearbyintf:
8632        case LibFunc_nearbyintl:
8633          if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8634            return;
8635          break;
8636        case LibFunc_ceil:
8637        case LibFunc_ceilf:
8638        case LibFunc_ceill:
8639          if (visitUnaryFloatCall(I, ISD::FCEIL))
8640            return;
8641          break;
8642        case LibFunc_rint:
8643        case LibFunc_rintf:
8644        case LibFunc_rintl:
8645          if (visitUnaryFloatCall(I, ISD::FRINT))
8646            return;
8647          break;
8648        case LibFunc_round:
8649        case LibFunc_roundf:
8650        case LibFunc_roundl:
8651          if (visitUnaryFloatCall(I, ISD::FROUND))
8652            return;
8653          break;
8654        case LibFunc_trunc:
8655        case LibFunc_truncf:
8656        case LibFunc_truncl:
8657          if (visitUnaryFloatCall(I, ISD::FTRUNC))
8658            return;
8659          break;
8660        case LibFunc_log2:
8661        case LibFunc_log2f:
8662        case LibFunc_log2l:
8663          if (visitUnaryFloatCall(I, ISD::FLOG2))
8664            return;
8665          break;
8666        case LibFunc_exp2:
8667        case LibFunc_exp2f:
8668        case LibFunc_exp2l:
8669          if (visitUnaryFloatCall(I, ISD::FEXP2))
8670            return;
8671          break;
8672        case LibFunc_ldexp:
8673        case LibFunc_ldexpf:
8674        case LibFunc_ldexpl:
8675          if (visitBinaryFloatCall(I, ISD::FLDEXP))
8676            return;
8677          break;
8678        case LibFunc_memcmp:
8679          if (visitMemCmpBCmpCall(I))
8680            return;
8681          break;
8682        case LibFunc_mempcpy:
8683          if (visitMemPCpyCall(I))
8684            return;
8685          break;
8686        case LibFunc_memchr:
8687          if (visitMemChrCall(I))
8688            return;
8689          break;
8690        case LibFunc_strcpy:
8691          if (visitStrCpyCall(I, false))
8692            return;
8693          break;
8694        case LibFunc_stpcpy:
8695          if (visitStrCpyCall(I, true))
8696            return;
8697          break;
8698        case LibFunc_strcmp:
8699          if (visitStrCmpCall(I))
8700            return;
8701          break;
8702        case LibFunc_strlen:
8703          if (visitStrLenCall(I))
8704            return;
8705          break;
8706        case LibFunc_strnlen:
8707          if (visitStrNLenCall(I))
8708            return;
8709          break;
8710        }
8711      }
8712    }
8713  
8714    // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8715    // have to do anything here to lower funclet bundles.
8716    // CFGuardTarget bundles are lowered in LowerCallTo.
8717    assert(!I.hasOperandBundlesOtherThan(
8718               {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8719                LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8720                LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
8721           "Cannot lower calls with arbitrary operand bundles!");
8722  
8723    SDValue Callee = getValue(I.getCalledOperand());
8724  
8725    if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8726      LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8727    else
8728      // Check if we can potentially perform a tail call. More detailed checking
8729      // is be done within LowerCallTo, after more information about the call is
8730      // known.
8731      LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8732  }
8733  
8734  namespace {
8735  
8736  /// AsmOperandInfo - This contains information for each constraint that we are
8737  /// lowering.
8738  class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8739  public:
8740    /// CallOperand - If this is the result output operand or a clobber
8741    /// this is null, otherwise it is the incoming operand to the CallInst.
8742    /// This gets modified as the asm is processed.
8743    SDValue CallOperand;
8744  
8745    /// AssignedRegs - If this is a register or register class operand, this
8746    /// contains the set of register corresponding to the operand.
8747    RegsForValue AssignedRegs;
8748  
8749    explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8750      : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8751    }
8752  
8753    /// Whether or not this operand accesses memory
8754    bool hasMemory(const TargetLowering &TLI) const {
8755      // Indirect operand accesses access memory.
8756      if (isIndirect)
8757        return true;
8758  
8759      for (const auto &Code : Codes)
8760        if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8761          return true;
8762  
8763      return false;
8764    }
8765  };
8766  
8767  
8768  } // end anonymous namespace
8769  
8770  /// Make sure that the output operand \p OpInfo and its corresponding input
8771  /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8772  /// out).
8773  static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8774                                 SDISelAsmOperandInfo &MatchingOpInfo,
8775                                 SelectionDAG &DAG) {
8776    if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8777      return;
8778  
8779    const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8780    const auto &TLI = DAG.getTargetLoweringInfo();
8781  
8782    std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8783        TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8784                                         OpInfo.ConstraintVT);
8785    std::pair<unsigned, const TargetRegisterClass *> InputRC =
8786        TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8787                                         MatchingOpInfo.ConstraintVT);
8788    if ((OpInfo.ConstraintVT.isInteger() !=
8789         MatchingOpInfo.ConstraintVT.isInteger()) ||
8790        (MatchRC.second != InputRC.second)) {
8791      // FIXME: error out in a more elegant fashion
8792      report_fatal_error("Unsupported asm: input constraint"
8793                         " with a matching output constraint of"
8794                         " incompatible type!");
8795    }
8796    MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8797  }
8798  
8799  /// Get a direct memory input to behave well as an indirect operand.
8800  /// This may introduce stores, hence the need for a \p Chain.
8801  /// \return The (possibly updated) chain.
8802  static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8803                                          SDISelAsmOperandInfo &OpInfo,
8804                                          SelectionDAG &DAG) {
8805    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8806  
8807    // If we don't have an indirect input, put it in the constpool if we can,
8808    // otherwise spill it to a stack slot.
8809    // TODO: This isn't quite right. We need to handle these according to
8810    // the addressing mode that the constraint wants. Also, this may take
8811    // an additional register for the computation and we don't want that
8812    // either.
8813  
8814    // If the operand is a float, integer, or vector constant, spill to a
8815    // constant pool entry to get its address.
8816    const Value *OpVal = OpInfo.CallOperandVal;
8817    if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8818        isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8819      OpInfo.CallOperand = DAG.getConstantPool(
8820          cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8821      return Chain;
8822    }
8823  
8824    // Otherwise, create a stack slot and emit a store to it before the asm.
8825    Type *Ty = OpVal->getType();
8826    auto &DL = DAG.getDataLayout();
8827    uint64_t TySize = DL.getTypeAllocSize(Ty);
8828    MachineFunction &MF = DAG.getMachineFunction();
8829    int SSFI = MF.getFrameInfo().CreateStackObject(
8830        TySize, DL.getPrefTypeAlign(Ty), false);
8831    SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8832    Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8833                              MachinePointerInfo::getFixedStack(MF, SSFI),
8834                              TLI.getMemValueType(DL, Ty));
8835    OpInfo.CallOperand = StackSlot;
8836  
8837    return Chain;
8838  }
8839  
8840  /// GetRegistersForValue - Assign registers (virtual or physical) for the
8841  /// specified operand.  We prefer to assign virtual registers, to allow the
8842  /// register allocator to handle the assignment process.  However, if the asm
8843  /// uses features that we can't model on machineinstrs, we have SDISel do the
8844  /// allocation.  This produces generally horrible, but correct, code.
8845  ///
8846  ///   OpInfo describes the operand
8847  ///   RefOpInfo describes the matching operand if any, the operand otherwise
8848  static std::optional<unsigned>
8849  getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8850                       SDISelAsmOperandInfo &OpInfo,
8851                       SDISelAsmOperandInfo &RefOpInfo) {
8852    LLVMContext &Context = *DAG.getContext();
8853    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8854  
8855    MachineFunction &MF = DAG.getMachineFunction();
8856    SmallVector<unsigned, 4> Regs;
8857    const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8858  
8859    // No work to do for memory/address operands.
8860    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8861        OpInfo.ConstraintType == TargetLowering::C_Address)
8862      return std::nullopt;
8863  
8864    // If this is a constraint for a single physreg, or a constraint for a
8865    // register class, find it.
8866    unsigned AssignedReg;
8867    const TargetRegisterClass *RC;
8868    std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8869        &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8870    // RC is unset only on failure. Return immediately.
8871    if (!RC)
8872      return std::nullopt;
8873  
8874    // Get the actual register value type.  This is important, because the user
8875    // may have asked for (e.g.) the AX register in i32 type.  We need to
8876    // remember that AX is actually i16 to get the right extension.
8877    const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8878  
8879    if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8880      // If this is an FP operand in an integer register (or visa versa), or more
8881      // generally if the operand value disagrees with the register class we plan
8882      // to stick it in, fix the operand type.
8883      //
8884      // If this is an input value, the bitcast to the new type is done now.
8885      // Bitcast for output value is done at the end of visitInlineAsm().
8886      if ((OpInfo.Type == InlineAsm::isOutput ||
8887           OpInfo.Type == InlineAsm::isInput) &&
8888          !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8889        // Try to convert to the first EVT that the reg class contains.  If the
8890        // types are identical size, use a bitcast to convert (e.g. two differing
8891        // vector types).  Note: output bitcast is done at the end of
8892        // visitInlineAsm().
8893        if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8894          // Exclude indirect inputs while they are unsupported because the code
8895          // to perform the load is missing and thus OpInfo.CallOperand still
8896          // refers to the input address rather than the pointed-to value.
8897          if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8898            OpInfo.CallOperand =
8899                DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8900          OpInfo.ConstraintVT = RegVT;
8901          // If the operand is an FP value and we want it in integer registers,
8902          // use the corresponding integer type. This turns an f64 value into
8903          // i64, which can be passed with two i32 values on a 32-bit machine.
8904        } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8905          MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8906          if (OpInfo.Type == InlineAsm::isInput)
8907            OpInfo.CallOperand =
8908                DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8909          OpInfo.ConstraintVT = VT;
8910        }
8911      }
8912    }
8913  
8914    // No need to allocate a matching input constraint since the constraint it's
8915    // matching to has already been allocated.
8916    if (OpInfo.isMatchingInputConstraint())
8917      return std::nullopt;
8918  
8919    EVT ValueVT = OpInfo.ConstraintVT;
8920    if (OpInfo.ConstraintVT == MVT::Other)
8921      ValueVT = RegVT;
8922  
8923    // Initialize NumRegs.
8924    unsigned NumRegs = 1;
8925    if (OpInfo.ConstraintVT != MVT::Other)
8926      NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8927  
8928    // If this is a constraint for a specific physical register, like {r17},
8929    // assign it now.
8930  
8931    // If this associated to a specific register, initialize iterator to correct
8932    // place. If virtual, make sure we have enough registers
8933  
8934    // Initialize iterator if necessary
8935    TargetRegisterClass::iterator I = RC->begin();
8936    MachineRegisterInfo &RegInfo = MF.getRegInfo();
8937  
8938    // Do not check for single registers.
8939    if (AssignedReg) {
8940      I = std::find(I, RC->end(), AssignedReg);
8941      if (I == RC->end()) {
8942        // RC does not contain the selected register, which indicates a
8943        // mismatch between the register and the required type/bitwidth.
8944        return {AssignedReg};
8945      }
8946    }
8947  
8948    for (; NumRegs; --NumRegs, ++I) {
8949      assert(I != RC->end() && "Ran out of registers to allocate!");
8950      Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8951      Regs.push_back(R);
8952    }
8953  
8954    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8955    return std::nullopt;
8956  }
8957  
8958  static unsigned
8959  findMatchingInlineAsmOperand(unsigned OperandNo,
8960                               const std::vector<SDValue> &AsmNodeOperands) {
8961    // Scan until we find the definition we already emitted of this operand.
8962    unsigned CurOp = InlineAsm::Op_FirstOperand;
8963    for (; OperandNo; --OperandNo) {
8964      // Advance to the next operand.
8965      unsigned OpFlag =
8966          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8967      assert((InlineAsm::isRegDefKind(OpFlag) ||
8968              InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8969              InlineAsm::isMemKind(OpFlag)) &&
8970             "Skipped past definitions?");
8971      CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8972    }
8973    return CurOp;
8974  }
8975  
8976  namespace {
8977  
8978  class ExtraFlags {
8979    unsigned Flags = 0;
8980  
8981  public:
8982    explicit ExtraFlags(const CallBase &Call) {
8983      const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8984      if (IA->hasSideEffects())
8985        Flags |= InlineAsm::Extra_HasSideEffects;
8986      if (IA->isAlignStack())
8987        Flags |= InlineAsm::Extra_IsAlignStack;
8988      if (Call.isConvergent())
8989        Flags |= InlineAsm::Extra_IsConvergent;
8990      Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8991    }
8992  
8993    void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8994      // Ideally, we would only check against memory constraints.  However, the
8995      // meaning of an Other constraint can be target-specific and we can't easily
8996      // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8997      // for Other constraints as well.
8998      if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8999          OpInfo.ConstraintType == TargetLowering::C_Other) {
9000        if (OpInfo.Type == InlineAsm::isInput)
9001          Flags |= InlineAsm::Extra_MayLoad;
9002        else if (OpInfo.Type == InlineAsm::isOutput)
9003          Flags |= InlineAsm::Extra_MayStore;
9004        else if (OpInfo.Type == InlineAsm::isClobber)
9005          Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
9006      }
9007    }
9008  
9009    unsigned get() const { return Flags; }
9010  };
9011  
9012  } // end anonymous namespace
9013  
9014  static bool isFunction(SDValue Op) {
9015    if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9016      if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9017        auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9018  
9019        // In normal "call dllimport func" instruction (non-inlineasm) it force
9020        // indirect access by specifing call opcode. And usually specially print
9021        // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9022        // not do in this way now. (In fact, this is similar with "Data Access"
9023        // action). So here we ignore dllimport function.
9024        if (Fn && !Fn->hasDLLImportStorageClass())
9025          return true;
9026      }
9027    }
9028    return false;
9029  }
9030  
9031  /// visitInlineAsm - Handle a call to an InlineAsm object.
9032  void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9033                                           const BasicBlock *EHPadBB) {
9034    const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9035  
9036    /// ConstraintOperands - Information about all of the constraints.
9037    SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9038  
9039    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9040    TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9041        DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9042  
9043    // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9044    // AsmDialect, MayLoad, MayStore).
9045    bool HasSideEffect = IA->hasSideEffects();
9046    ExtraFlags ExtraInfo(Call);
9047  
9048    for (auto &T : TargetConstraints) {
9049      ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9050      SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9051  
9052      if (OpInfo.CallOperandVal)
9053        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9054  
9055      if (!HasSideEffect)
9056        HasSideEffect = OpInfo.hasMemory(TLI);
9057  
9058      // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9059      // FIXME: Could we compute this on OpInfo rather than T?
9060  
9061      // Compute the constraint code and ConstraintType to use.
9062      TLI.ComputeConstraintToUse(T, SDValue());
9063  
9064      if (T.ConstraintType == TargetLowering::C_Immediate &&
9065          OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9066        // We've delayed emitting a diagnostic like the "n" constraint because
9067        // inlining could cause an integer showing up.
9068        return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9069                                            "' expects an integer constant "
9070                                            "expression");
9071  
9072      ExtraInfo.update(T);
9073    }
9074  
9075    // We won't need to flush pending loads if this asm doesn't touch
9076    // memory and is nonvolatile.
9077    SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9078  
9079    bool EmitEHLabels = isa<InvokeInst>(Call);
9080    if (EmitEHLabels) {
9081      assert(EHPadBB && "InvokeInst must have an EHPadBB");
9082    }
9083    bool IsCallBr = isa<CallBrInst>(Call);
9084  
9085    if (IsCallBr || EmitEHLabels) {
9086      // If this is a callbr or invoke we need to flush pending exports since
9087      // inlineasm_br and invoke are terminators.
9088      // We need to do this before nodes are glued to the inlineasm_br node.
9089      Chain = getControlRoot();
9090    }
9091  
9092    MCSymbol *BeginLabel = nullptr;
9093    if (EmitEHLabels) {
9094      Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9095    }
9096  
9097    int OpNo = -1;
9098    SmallVector<StringRef> AsmStrs;
9099    IA->collectAsmStrs(AsmStrs);
9100  
9101    // Second pass over the constraints: compute which constraint option to use.
9102    for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9103      if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9104        OpNo++;
9105  
9106      // If this is an output operand with a matching input operand, look up the
9107      // matching input. If their types mismatch, e.g. one is an integer, the
9108      // other is floating point, or their sizes are different, flag it as an
9109      // error.
9110      if (OpInfo.hasMatchingInput()) {
9111        SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9112        patchMatchingInput(OpInfo, Input, DAG);
9113      }
9114  
9115      // Compute the constraint code and ConstraintType to use.
9116      TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9117  
9118      if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9119           OpInfo.Type == InlineAsm::isClobber) ||
9120          OpInfo.ConstraintType == TargetLowering::C_Address)
9121        continue;
9122  
9123      // In Linux PIC model, there are 4 cases about value/label addressing:
9124      //
9125      // 1: Function call or Label jmp inside the module.
9126      // 2: Data access (such as global variable, static variable) inside module.
9127      // 3: Function call or Label jmp outside the module.
9128      // 4: Data access (such as global variable) outside the module.
9129      //
9130      // Due to current llvm inline asm architecture designed to not "recognize"
9131      // the asm code, there are quite troubles for us to treat mem addressing
9132      // differently for same value/adress used in different instuctions.
9133      // For example, in pic model, call a func may in plt way or direclty
9134      // pc-related, but lea/mov a function adress may use got.
9135      //
9136      // Here we try to "recognize" function call for the case 1 and case 3 in
9137      // inline asm. And try to adjust the constraint for them.
9138      //
9139      // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9140      // label, so here we don't handle jmp function label now, but we need to
9141      // enhance it (especilly in PIC model) if we meet meaningful requirements.
9142      if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9143          TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9144          TM.getCodeModel() != CodeModel::Large) {
9145        OpInfo.isIndirect = false;
9146        OpInfo.ConstraintType = TargetLowering::C_Address;
9147      }
9148  
9149      // If this is a memory input, and if the operand is not indirect, do what we
9150      // need to provide an address for the memory input.
9151      if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9152          !OpInfo.isIndirect) {
9153        assert((OpInfo.isMultipleAlternative ||
9154                (OpInfo.Type == InlineAsm::isInput)) &&
9155               "Can only indirectify direct input operands!");
9156  
9157        // Memory operands really want the address of the value.
9158        Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9159  
9160        // There is no longer a Value* corresponding to this operand.
9161        OpInfo.CallOperandVal = nullptr;
9162  
9163        // It is now an indirect operand.
9164        OpInfo.isIndirect = true;
9165      }
9166  
9167    }
9168  
9169    // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9170    std::vector<SDValue> AsmNodeOperands;
9171    AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9172    AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9173        IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9174  
9175    // If we have a !srcloc metadata node associated with it, we want to attach
9176    // this to the ultimately generated inline asm machineinstr.  To do this, we
9177    // pass in the third operand as this (potentially null) inline asm MDNode.
9178    const MDNode *SrcLoc = Call.getMetadata("srcloc");
9179    AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9180  
9181    // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9182    // bits as operand 3.
9183    AsmNodeOperands.push_back(DAG.getTargetConstant(
9184        ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9185  
9186    // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9187    // this, assign virtual and physical registers for inputs and otput.
9188    for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9189      // Assign Registers.
9190      SDISelAsmOperandInfo &RefOpInfo =
9191          OpInfo.isMatchingInputConstraint()
9192              ? ConstraintOperands[OpInfo.getMatchedOperand()]
9193              : OpInfo;
9194      const auto RegError =
9195          getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9196      if (RegError) {
9197        const MachineFunction &MF = DAG.getMachineFunction();
9198        const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9199        const char *RegName = TRI.getName(*RegError);
9200        emitInlineAsmError(Call, "register '" + Twine(RegName) +
9201                                     "' allocated for constraint '" +
9202                                     Twine(OpInfo.ConstraintCode) +
9203                                     "' does not match required type");
9204        return;
9205      }
9206  
9207      auto DetectWriteToReservedRegister = [&]() {
9208        const MachineFunction &MF = DAG.getMachineFunction();
9209        const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9210        for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9211          if (Register::isPhysicalRegister(Reg) &&
9212              TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9213            const char *RegName = TRI.getName(Reg);
9214            emitInlineAsmError(Call, "write to reserved register '" +
9215                                         Twine(RegName) + "'");
9216            return true;
9217          }
9218        }
9219        return false;
9220      };
9221      assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9222              (OpInfo.Type == InlineAsm::isInput &&
9223               !OpInfo.isMatchingInputConstraint())) &&
9224             "Only address as input operand is allowed.");
9225  
9226      switch (OpInfo.Type) {
9227      case InlineAsm::isOutput:
9228        if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9229          unsigned ConstraintID =
9230              TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9231          assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9232                 "Failed to convert memory constraint code to constraint id.");
9233  
9234          // Add information to the INLINEASM node to know about this output.
9235          unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9236          OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
9237          AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9238                                                          MVT::i32));
9239          AsmNodeOperands.push_back(OpInfo.CallOperand);
9240        } else {
9241          // Otherwise, this outputs to a register (directly for C_Register /
9242          // C_RegisterClass, and a target-defined fashion for
9243          // C_Immediate/C_Other). Find a register that we can use.
9244          if (OpInfo.AssignedRegs.Regs.empty()) {
9245            emitInlineAsmError(
9246                Call, "couldn't allocate output register for constraint '" +
9247                          Twine(OpInfo.ConstraintCode) + "'");
9248            return;
9249          }
9250  
9251          if (DetectWriteToReservedRegister())
9252            return;
9253  
9254          // Add information to the INLINEASM node to know that this register is
9255          // set.
9256          OpInfo.AssignedRegs.AddInlineAsmOperands(
9257              OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
9258                                    : InlineAsm::Kind_RegDef,
9259              false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9260        }
9261        break;
9262  
9263      case InlineAsm::isInput:
9264      case InlineAsm::isLabel: {
9265        SDValue InOperandVal = OpInfo.CallOperand;
9266  
9267        if (OpInfo.isMatchingInputConstraint()) {
9268          // If this is required to match an output register we have already set,
9269          // just use its register.
9270          auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9271                                                    AsmNodeOperands);
9272          unsigned OpFlag =
9273            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
9274          if (InlineAsm::isRegDefKind(OpFlag) ||
9275              InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
9276            // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
9277            if (OpInfo.isIndirect) {
9278              // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9279              emitInlineAsmError(Call, "inline asm not supported yet: "
9280                                       "don't know how to handle tied "
9281                                       "indirect register inputs");
9282              return;
9283            }
9284  
9285            SmallVector<unsigned, 4> Regs;
9286            MachineFunction &MF = DAG.getMachineFunction();
9287            MachineRegisterInfo &MRI = MF.getRegInfo();
9288            const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9289            auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9290            Register TiedReg = R->getReg();
9291            MVT RegVT = R->getSimpleValueType(0);
9292            const TargetRegisterClass *RC =
9293                TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9294                : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9295                                        : TRI.getMinimalPhysRegClass(TiedReg);
9296            unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
9297            for (unsigned i = 0; i != NumRegs; ++i)
9298              Regs.push_back(MRI.createVirtualRegister(RC));
9299  
9300            RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9301  
9302            SDLoc dl = getCurSDLoc();
9303            // Use the produced MatchedRegs object to
9304            MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
9305            MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
9306                                             true, OpInfo.getMatchedOperand(), dl,
9307                                             DAG, AsmNodeOperands);
9308            break;
9309          }
9310  
9311          assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
9312          assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
9313                 "Unexpected number of operands");
9314          // Add information to the INLINEASM node to know about this input.
9315          // See InlineAsm.h isUseOperandTiedToDef.
9316          OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
9317          OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
9318                                                      OpInfo.getMatchedOperand());
9319          AsmNodeOperands.push_back(DAG.getTargetConstant(
9320              OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9321          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9322          break;
9323        }
9324  
9325        // Treat indirect 'X' constraint as memory.
9326        if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9327            OpInfo.isIndirect)
9328          OpInfo.ConstraintType = TargetLowering::C_Memory;
9329  
9330        if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9331            OpInfo.ConstraintType == TargetLowering::C_Other) {
9332          std::vector<SDValue> Ops;
9333          TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9334                                            Ops, DAG);
9335          if (Ops.empty()) {
9336            if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9337              if (isa<ConstantSDNode>(InOperandVal)) {
9338                emitInlineAsmError(Call, "value out of range for constraint '" +
9339                                             Twine(OpInfo.ConstraintCode) + "'");
9340                return;
9341              }
9342  
9343            emitInlineAsmError(Call,
9344                               "invalid operand for inline asm constraint '" +
9345                                   Twine(OpInfo.ConstraintCode) + "'");
9346            return;
9347          }
9348  
9349          // Add information to the INLINEASM node to know about this input.
9350          unsigned ResOpType =
9351            InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
9352          AsmNodeOperands.push_back(DAG.getTargetConstant(
9353              ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9354          llvm::append_range(AsmNodeOperands, Ops);
9355          break;
9356        }
9357  
9358        if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9359          assert((OpInfo.isIndirect ||
9360                  OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9361                 "Operand must be indirect to be a mem!");
9362          assert(InOperandVal.getValueType() ==
9363                     TLI.getPointerTy(DAG.getDataLayout()) &&
9364                 "Memory operands expect pointer values");
9365  
9366          unsigned ConstraintID =
9367              TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9368          assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9369                 "Failed to convert memory constraint code to constraint id.");
9370  
9371          // Add information to the INLINEASM node to know about this input.
9372          unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9373          ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9374          AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9375                                                          getCurSDLoc(),
9376                                                          MVT::i32));
9377          AsmNodeOperands.push_back(InOperandVal);
9378          break;
9379        }
9380  
9381        if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9382          unsigned ConstraintID =
9383              TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9384          assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9385                 "Failed to convert memory constraint code to constraint id.");
9386  
9387          unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9388  
9389          SDValue AsmOp = InOperandVal;
9390          if (isFunction(InOperandVal)) {
9391            auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9392            ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1);
9393            AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9394                                               InOperandVal.getValueType(),
9395                                               GA->getOffset());
9396          }
9397  
9398          // Add information to the INLINEASM node to know about this input.
9399          ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9400  
9401          AsmNodeOperands.push_back(
9402              DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9403  
9404          AsmNodeOperands.push_back(AsmOp);
9405          break;
9406        }
9407  
9408        assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9409                OpInfo.ConstraintType == TargetLowering::C_Register) &&
9410               "Unknown constraint type!");
9411  
9412        // TODO: Support this.
9413        if (OpInfo.isIndirect) {
9414          emitInlineAsmError(
9415              Call, "Don't know how to handle indirect register inputs yet "
9416                    "for constraint '" +
9417                        Twine(OpInfo.ConstraintCode) + "'");
9418          return;
9419        }
9420  
9421        // Copy the input into the appropriate registers.
9422        if (OpInfo.AssignedRegs.Regs.empty()) {
9423          emitInlineAsmError(Call,
9424                             "couldn't allocate input reg for constraint '" +
9425                                 Twine(OpInfo.ConstraintCode) + "'");
9426          return;
9427        }
9428  
9429        if (DetectWriteToReservedRegister())
9430          return;
9431  
9432        SDLoc dl = getCurSDLoc();
9433  
9434        OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
9435                                          &Call);
9436  
9437        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9438                                                 dl, DAG, AsmNodeOperands);
9439        break;
9440      }
9441      case InlineAsm::isClobber:
9442        // Add the clobbered value to the operand list, so that the register
9443        // allocator is aware that the physreg got clobbered.
9444        if (!OpInfo.AssignedRegs.Regs.empty())
9445          OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9446                                                   false, 0, getCurSDLoc(), DAG,
9447                                                   AsmNodeOperands);
9448        break;
9449      }
9450    }
9451  
9452    // Finish up input operands.  Set the input chain and add the flag last.
9453    AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9454    if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
9455  
9456    unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9457    Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9458                        DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9459    Glue = Chain.getValue(1);
9460  
9461    // Do additional work to generate outputs.
9462  
9463    SmallVector<EVT, 1> ResultVTs;
9464    SmallVector<SDValue, 1> ResultValues;
9465    SmallVector<SDValue, 8> OutChains;
9466  
9467    llvm::Type *CallResultType = Call.getType();
9468    ArrayRef<Type *> ResultTypes;
9469    if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9470      ResultTypes = StructResult->elements();
9471    else if (!CallResultType->isVoidTy())
9472      ResultTypes = ArrayRef(CallResultType);
9473  
9474    auto CurResultType = ResultTypes.begin();
9475    auto handleRegAssign = [&](SDValue V) {
9476      assert(CurResultType != ResultTypes.end() && "Unexpected value");
9477      assert((*CurResultType)->isSized() && "Unexpected unsized type");
9478      EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9479      ++CurResultType;
9480      // If the type of the inline asm call site return value is different but has
9481      // same size as the type of the asm output bitcast it.  One example of this
9482      // is for vectors with different width / number of elements.  This can
9483      // happen for register classes that can contain multiple different value
9484      // types.  The preg or vreg allocated may not have the same VT as was
9485      // expected.
9486      //
9487      // This can also happen for a return value that disagrees with the register
9488      // class it is put in, eg. a double in a general-purpose register on a
9489      // 32-bit machine.
9490      if (ResultVT != V.getValueType() &&
9491          ResultVT.getSizeInBits() == V.getValueSizeInBits())
9492        V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9493      else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9494               V.getValueType().isInteger()) {
9495        // If a result value was tied to an input value, the computed result
9496        // may have a wider width than the expected result.  Extract the
9497        // relevant portion.
9498        V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9499      }
9500      assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9501      ResultVTs.push_back(ResultVT);
9502      ResultValues.push_back(V);
9503    };
9504  
9505    // Deal with output operands.
9506    for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9507      if (OpInfo.Type == InlineAsm::isOutput) {
9508        SDValue Val;
9509        // Skip trivial output operands.
9510        if (OpInfo.AssignedRegs.Regs.empty())
9511          continue;
9512  
9513        switch (OpInfo.ConstraintType) {
9514        case TargetLowering::C_Register:
9515        case TargetLowering::C_RegisterClass:
9516          Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9517                                                    Chain, &Glue, &Call);
9518          break;
9519        case TargetLowering::C_Immediate:
9520        case TargetLowering::C_Other:
9521          Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
9522                                                OpInfo, DAG);
9523          break;
9524        case TargetLowering::C_Memory:
9525          break; // Already handled.
9526        case TargetLowering::C_Address:
9527          break; // Silence warning.
9528        case TargetLowering::C_Unknown:
9529          assert(false && "Unexpected unknown constraint");
9530        }
9531  
9532        // Indirect output manifest as stores. Record output chains.
9533        if (OpInfo.isIndirect) {
9534          const Value *Ptr = OpInfo.CallOperandVal;
9535          assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9536          SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9537                                       MachinePointerInfo(Ptr));
9538          OutChains.push_back(Store);
9539        } else {
9540          // generate CopyFromRegs to associated registers.
9541          assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9542          if (Val.getOpcode() == ISD::MERGE_VALUES) {
9543            for (const SDValue &V : Val->op_values())
9544              handleRegAssign(V);
9545          } else
9546            handleRegAssign(Val);
9547        }
9548      }
9549    }
9550  
9551    // Set results.
9552    if (!ResultValues.empty()) {
9553      assert(CurResultType == ResultTypes.end() &&
9554             "Mismatch in number of ResultTypes");
9555      assert(ResultValues.size() == ResultTypes.size() &&
9556             "Mismatch in number of output operands in asm result");
9557  
9558      SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9559                              DAG.getVTList(ResultVTs), ResultValues);
9560      setValue(&Call, V);
9561    }
9562  
9563    // Collect store chains.
9564    if (!OutChains.empty())
9565      Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9566  
9567    if (EmitEHLabels) {
9568      Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9569    }
9570  
9571    // Only Update Root if inline assembly has a memory effect.
9572    if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9573        EmitEHLabels)
9574      DAG.setRoot(Chain);
9575  }
9576  
9577  void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9578                                               const Twine &Message) {
9579    LLVMContext &Ctx = *DAG.getContext();
9580    Ctx.emitError(&Call, Message);
9581  
9582    // Make sure we leave the DAG in a valid state
9583    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9584    SmallVector<EVT, 1> ValueVTs;
9585    ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9586  
9587    if (ValueVTs.empty())
9588      return;
9589  
9590    SmallVector<SDValue, 1> Ops;
9591    for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9592      Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9593  
9594    setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9595  }
9596  
9597  void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9598    DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9599                            MVT::Other, getRoot(),
9600                            getValue(I.getArgOperand(0)),
9601                            DAG.getSrcValue(I.getArgOperand(0))));
9602  }
9603  
9604  void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9605    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9606    const DataLayout &DL = DAG.getDataLayout();
9607    SDValue V = DAG.getVAArg(
9608        TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9609        getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9610        DL.getABITypeAlign(I.getType()).value());
9611    DAG.setRoot(V.getValue(1));
9612  
9613    if (I.getType()->isPointerTy())
9614      V = DAG.getPtrExtOrTrunc(
9615          V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9616    setValue(&I, V);
9617  }
9618  
9619  void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9620    DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9621                            MVT::Other, getRoot(),
9622                            getValue(I.getArgOperand(0)),
9623                            DAG.getSrcValue(I.getArgOperand(0))));
9624  }
9625  
9626  void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9627    DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9628                            MVT::Other, getRoot(),
9629                            getValue(I.getArgOperand(0)),
9630                            getValue(I.getArgOperand(1)),
9631                            DAG.getSrcValue(I.getArgOperand(0)),
9632                            DAG.getSrcValue(I.getArgOperand(1))));
9633  }
9634  
9635  SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9636                                                      const Instruction &I,
9637                                                      SDValue Op) {
9638    const MDNode *Range = getRangeMetadata(I);
9639    if (!Range)
9640      return Op;
9641  
9642    ConstantRange CR = getConstantRangeFromMetadata(*Range);
9643    if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9644      return Op;
9645  
9646    APInt Lo = CR.getUnsignedMin();
9647    if (!Lo.isMinValue())
9648      return Op;
9649  
9650    APInt Hi = CR.getUnsignedMax();
9651    unsigned Bits = std::max(Hi.getActiveBits(),
9652                             static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9653  
9654    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9655  
9656    SDLoc SL = getCurSDLoc();
9657  
9658    SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9659                               DAG.getValueType(SmallVT));
9660    unsigned NumVals = Op.getNode()->getNumValues();
9661    if (NumVals == 1)
9662      return ZExt;
9663  
9664    SmallVector<SDValue, 4> Ops;
9665  
9666    Ops.push_back(ZExt);
9667    for (unsigned I = 1; I != NumVals; ++I)
9668      Ops.push_back(Op.getValue(I));
9669  
9670    return DAG.getMergeValues(Ops, SL);
9671  }
9672  
9673  /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9674  /// the call being lowered.
9675  ///
9676  /// This is a helper for lowering intrinsics that follow a target calling
9677  /// convention or require stack pointer adjustment. Only a subset of the
9678  /// intrinsic's operands need to participate in the calling convention.
9679  void SelectionDAGBuilder::populateCallLoweringInfo(
9680      TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9681      unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9682      bool IsPatchPoint) {
9683    TargetLowering::ArgListTy Args;
9684    Args.reserve(NumArgs);
9685  
9686    // Populate the argument list.
9687    // Attributes for args start at offset 1, after the return attribute.
9688    for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9689         ArgI != ArgE; ++ArgI) {
9690      const Value *V = Call->getOperand(ArgI);
9691  
9692      assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9693  
9694      TargetLowering::ArgListEntry Entry;
9695      Entry.Node = getValue(V);
9696      Entry.Ty = V->getType();
9697      Entry.setAttributes(Call, ArgI);
9698      Args.push_back(Entry);
9699    }
9700  
9701    CLI.setDebugLoc(getCurSDLoc())
9702        .setChain(getRoot())
9703        .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9704        .setDiscardResult(Call->use_empty())
9705        .setIsPatchPoint(IsPatchPoint)
9706        .setIsPreallocated(
9707            Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9708  }
9709  
9710  /// Add a stack map intrinsic call's live variable operands to a stackmap
9711  /// or patchpoint target node's operand list.
9712  ///
9713  /// Constants are converted to TargetConstants purely as an optimization to
9714  /// avoid constant materialization and register allocation.
9715  ///
9716  /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9717  /// generate addess computation nodes, and so FinalizeISel can convert the
9718  /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9719  /// address materialization and register allocation, but may also be required
9720  /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9721  /// alloca in the entry block, then the runtime may assume that the alloca's
9722  /// StackMap location can be read immediately after compilation and that the
9723  /// location is valid at any point during execution (this is similar to the
9724  /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9725  /// only available in a register, then the runtime would need to trap when
9726  /// execution reaches the StackMap in order to read the alloca's location.
9727  static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9728                                  const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9729                                  SelectionDAGBuilder &Builder) {
9730    SelectionDAG &DAG = Builder.DAG;
9731    for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9732      SDValue Op = Builder.getValue(Call.getArgOperand(I));
9733  
9734      // Things on the stack are pointer-typed, meaning that they are already
9735      // legal and can be emitted directly to target nodes.
9736      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9737        Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9738      } else {
9739        // Otherwise emit a target independent node to be legalised.
9740        Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9741      }
9742    }
9743  }
9744  
9745  /// Lower llvm.experimental.stackmap.
9746  void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9747    // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9748    //                                  [live variables...])
9749  
9750    assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9751  
9752    SDValue Chain, InGlue, Callee;
9753    SmallVector<SDValue, 32> Ops;
9754  
9755    SDLoc DL = getCurSDLoc();
9756    Callee = getValue(CI.getCalledOperand());
9757  
9758    // The stackmap intrinsic only records the live variables (the arguments
9759    // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9760    // intrinsic, this won't be lowered to a function call. This means we don't
9761    // have to worry about calling conventions and target specific lowering code.
9762    // Instead we perform the call lowering right here.
9763    //
9764    // chain, flag = CALLSEQ_START(chain, 0, 0)
9765    // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9766    // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9767    //
9768    Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9769    InGlue = Chain.getValue(1);
9770  
9771    // Add the STACKMAP operands, starting with DAG house-keeping.
9772    Ops.push_back(Chain);
9773    Ops.push_back(InGlue);
9774  
9775    // Add the <id>, <numShadowBytes> operands.
9776    //
9777    // These do not require legalisation, and can be emitted directly to target
9778    // constant nodes.
9779    SDValue ID = getValue(CI.getArgOperand(0));
9780    assert(ID.getValueType() == MVT::i64);
9781    SDValue IDConst = DAG.getTargetConstant(
9782        cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9783    Ops.push_back(IDConst);
9784  
9785    SDValue Shad = getValue(CI.getArgOperand(1));
9786    assert(Shad.getValueType() == MVT::i32);
9787    SDValue ShadConst = DAG.getTargetConstant(
9788        cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9789    Ops.push_back(ShadConst);
9790  
9791    // Add the live variables.
9792    addStackMapLiveVars(CI, 2, DL, Ops, *this);
9793  
9794    // Create the STACKMAP node.
9795    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9796    Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
9797    InGlue = Chain.getValue(1);
9798  
9799    Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
9800  
9801    // Stackmaps don't generate values, so nothing goes into the NodeMap.
9802  
9803    // Set the root to the target-lowered call chain.
9804    DAG.setRoot(Chain);
9805  
9806    // Inform the Frame Information that we have a stackmap in this function.
9807    FuncInfo.MF->getFrameInfo().setHasStackMap();
9808  }
9809  
9810  /// Lower llvm.experimental.patchpoint directly to its target opcode.
9811  void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9812                                            const BasicBlock *EHPadBB) {
9813    // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9814    //                                                 i32 <numBytes>,
9815    //                                                 i8* <target>,
9816    //                                                 i32 <numArgs>,
9817    //                                                 [Args...],
9818    //                                                 [live variables...])
9819  
9820    CallingConv::ID CC = CB.getCallingConv();
9821    bool IsAnyRegCC = CC == CallingConv::AnyReg;
9822    bool HasDef = !CB.getType()->isVoidTy();
9823    SDLoc dl = getCurSDLoc();
9824    SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9825  
9826    // Handle immediate and symbolic callees.
9827    if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9828      Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9829                                     /*isTarget=*/true);
9830    else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9831      Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9832                                           SDLoc(SymbolicCallee),
9833                                           SymbolicCallee->getValueType(0));
9834  
9835    // Get the real number of arguments participating in the call <numArgs>
9836    SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9837    unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9838  
9839    // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9840    // Intrinsics include all meta-operands up to but not including CC.
9841    unsigned NumMetaOpers = PatchPointOpers::CCPos;
9842    assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9843           "Not enough arguments provided to the patchpoint intrinsic");
9844  
9845    // For AnyRegCC the arguments are lowered later on manually.
9846    unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9847    Type *ReturnTy =
9848        IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9849  
9850    TargetLowering::CallLoweringInfo CLI(DAG);
9851    populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9852                             ReturnTy, true);
9853    std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9854  
9855    SDNode *CallEnd = Result.second.getNode();
9856    if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9857      CallEnd = CallEnd->getOperand(0).getNode();
9858  
9859    /// Get a call instruction from the call sequence chain.
9860    /// Tail calls are not allowed.
9861    assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9862           "Expected a callseq node.");
9863    SDNode *Call = CallEnd->getOperand(0).getNode();
9864    bool HasGlue = Call->getGluedNode();
9865  
9866    // Replace the target specific call node with the patchable intrinsic.
9867    SmallVector<SDValue, 8> Ops;
9868  
9869    // Push the chain.
9870    Ops.push_back(*(Call->op_begin()));
9871  
9872    // Optionally, push the glue (if any).
9873    if (HasGlue)
9874      Ops.push_back(*(Call->op_end() - 1));
9875  
9876    // Push the register mask info.
9877    if (HasGlue)
9878      Ops.push_back(*(Call->op_end() - 2));
9879    else
9880      Ops.push_back(*(Call->op_end() - 1));
9881  
9882    // Add the <id> and <numBytes> constants.
9883    SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9884    Ops.push_back(DAG.getTargetConstant(
9885                    cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9886    SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9887    Ops.push_back(DAG.getTargetConstant(
9888                    cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9889                    MVT::i32));
9890  
9891    // Add the callee.
9892    Ops.push_back(Callee);
9893  
9894    // Adjust <numArgs> to account for any arguments that have been passed on the
9895    // stack instead.
9896    // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9897    unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9898    NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9899    Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9900  
9901    // Add the calling convention
9902    Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9903  
9904    // Add the arguments we omitted previously. The register allocator should
9905    // place these in any free register.
9906    if (IsAnyRegCC)
9907      for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9908        Ops.push_back(getValue(CB.getArgOperand(i)));
9909  
9910    // Push the arguments from the call instruction.
9911    SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9912    Ops.append(Call->op_begin() + 2, e);
9913  
9914    // Push live variables for the stack map.
9915    addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9916  
9917    SDVTList NodeTys;
9918    if (IsAnyRegCC && HasDef) {
9919      // Create the return types based on the intrinsic definition
9920      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9921      SmallVector<EVT, 3> ValueVTs;
9922      ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9923      assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9924  
9925      // There is always a chain and a glue type at the end
9926      ValueVTs.push_back(MVT::Other);
9927      ValueVTs.push_back(MVT::Glue);
9928      NodeTys = DAG.getVTList(ValueVTs);
9929    } else
9930      NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9931  
9932    // Replace the target specific call node with a PATCHPOINT node.
9933    SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
9934  
9935    // Update the NodeMap.
9936    if (HasDef) {
9937      if (IsAnyRegCC)
9938        setValue(&CB, SDValue(PPV.getNode(), 0));
9939      else
9940        setValue(&CB, Result.first);
9941    }
9942  
9943    // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9944    // call sequence. Furthermore the location of the chain and glue can change
9945    // when the AnyReg calling convention is used and the intrinsic returns a
9946    // value.
9947    if (IsAnyRegCC && HasDef) {
9948      SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9949      SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
9950      DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9951    } else
9952      DAG.ReplaceAllUsesWith(Call, PPV.getNode());
9953    DAG.DeleteNode(Call);
9954  
9955    // Inform the Frame Information that we have a patchpoint in this function.
9956    FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9957  }
9958  
9959  void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9960                                              unsigned Intrinsic) {
9961    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9962    SDValue Op1 = getValue(I.getArgOperand(0));
9963    SDValue Op2;
9964    if (I.arg_size() > 1)
9965      Op2 = getValue(I.getArgOperand(1));
9966    SDLoc dl = getCurSDLoc();
9967    EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9968    SDValue Res;
9969    SDNodeFlags SDFlags;
9970    if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9971      SDFlags.copyFMF(*FPMO);
9972  
9973    switch (Intrinsic) {
9974    case Intrinsic::vector_reduce_fadd:
9975      if (SDFlags.hasAllowReassociation())
9976        Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9977                          DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9978                          SDFlags);
9979      else
9980        Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9981      break;
9982    case Intrinsic::vector_reduce_fmul:
9983      if (SDFlags.hasAllowReassociation())
9984        Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9985                          DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9986                          SDFlags);
9987      else
9988        Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9989      break;
9990    case Intrinsic::vector_reduce_add:
9991      Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9992      break;
9993    case Intrinsic::vector_reduce_mul:
9994      Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9995      break;
9996    case Intrinsic::vector_reduce_and:
9997      Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9998      break;
9999    case Intrinsic::vector_reduce_or:
10000      Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10001      break;
10002    case Intrinsic::vector_reduce_xor:
10003      Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10004      break;
10005    case Intrinsic::vector_reduce_smax:
10006      Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10007      break;
10008    case Intrinsic::vector_reduce_smin:
10009      Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10010      break;
10011    case Intrinsic::vector_reduce_umax:
10012      Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10013      break;
10014    case Intrinsic::vector_reduce_umin:
10015      Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10016      break;
10017    case Intrinsic::vector_reduce_fmax:
10018      Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10019      break;
10020    case Intrinsic::vector_reduce_fmin:
10021      Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10022      break;
10023    case Intrinsic::vector_reduce_fmaximum:
10024      Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10025      break;
10026    case Intrinsic::vector_reduce_fminimum:
10027      Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10028      break;
10029    default:
10030      llvm_unreachable("Unhandled vector reduce intrinsic");
10031    }
10032    setValue(&I, Res);
10033  }
10034  
10035  /// Returns an AttributeList representing the attributes applied to the return
10036  /// value of the given call.
10037  static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10038    SmallVector<Attribute::AttrKind, 2> Attrs;
10039    if (CLI.RetSExt)
10040      Attrs.push_back(Attribute::SExt);
10041    if (CLI.RetZExt)
10042      Attrs.push_back(Attribute::ZExt);
10043    if (CLI.IsInReg)
10044      Attrs.push_back(Attribute::InReg);
10045  
10046    return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10047                              Attrs);
10048  }
10049  
10050  /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10051  /// implementation, which just calls LowerCall.
10052  /// FIXME: When all targets are
10053  /// migrated to using LowerCall, this hook should be integrated into SDISel.
10054  std::pair<SDValue, SDValue>
10055  TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10056    // Handle the incoming return values from the call.
10057    CLI.Ins.clear();
10058    Type *OrigRetTy = CLI.RetTy;
10059    SmallVector<EVT, 4> RetTys;
10060    SmallVector<uint64_t, 4> Offsets;
10061    auto &DL = CLI.DAG.getDataLayout();
10062    ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0);
10063  
10064    if (CLI.IsPostTypeLegalization) {
10065      // If we are lowering a libcall after legalization, split the return type.
10066      SmallVector<EVT, 4> OldRetTys;
10067      SmallVector<uint64_t, 4> OldOffsets;
10068      RetTys.swap(OldRetTys);
10069      Offsets.swap(OldOffsets);
10070  
10071      for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10072        EVT RetVT = OldRetTys[i];
10073        uint64_t Offset = OldOffsets[i];
10074        MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10075        unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10076        unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10077        RetTys.append(NumRegs, RegisterVT);
10078        for (unsigned j = 0; j != NumRegs; ++j)
10079          Offsets.push_back(Offset + j * RegisterVTByteSZ);
10080      }
10081    }
10082  
10083    SmallVector<ISD::OutputArg, 4> Outs;
10084    GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10085  
10086    bool CanLowerReturn =
10087        this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10088                             CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10089  
10090    SDValue DemoteStackSlot;
10091    int DemoteStackIdx = -100;
10092    if (!CanLowerReturn) {
10093      // FIXME: equivalent assert?
10094      // assert(!CS.hasInAllocaArgument() &&
10095      //        "sret demotion is incompatible with inalloca");
10096      uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10097      Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10098      MachineFunction &MF = CLI.DAG.getMachineFunction();
10099      DemoteStackIdx =
10100          MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10101      Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10102                                                DL.getAllocaAddrSpace());
10103  
10104      DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10105      ArgListEntry Entry;
10106      Entry.Node = DemoteStackSlot;
10107      Entry.Ty = StackSlotPtrType;
10108      Entry.IsSExt = false;
10109      Entry.IsZExt = false;
10110      Entry.IsInReg = false;
10111      Entry.IsSRet = true;
10112      Entry.IsNest = false;
10113      Entry.IsByVal = false;
10114      Entry.IsByRef = false;
10115      Entry.IsReturned = false;
10116      Entry.IsSwiftSelf = false;
10117      Entry.IsSwiftAsync = false;
10118      Entry.IsSwiftError = false;
10119      Entry.IsCFGuardTarget = false;
10120      Entry.Alignment = Alignment;
10121      CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10122      CLI.NumFixedArgs += 1;
10123      CLI.getArgs()[0].IndirectType = CLI.RetTy;
10124      CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10125  
10126      // sret demotion isn't compatible with tail-calls, since the sret argument
10127      // points into the callers stack frame.
10128      CLI.IsTailCall = false;
10129    } else {
10130      bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10131          CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10132      for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10133        ISD::ArgFlagsTy Flags;
10134        if (NeedsRegBlock) {
10135          Flags.setInConsecutiveRegs();
10136          if (I == RetTys.size() - 1)
10137            Flags.setInConsecutiveRegsLast();
10138        }
10139        EVT VT = RetTys[I];
10140        MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10141                                                       CLI.CallConv, VT);
10142        unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10143                                                         CLI.CallConv, VT);
10144        for (unsigned i = 0; i != NumRegs; ++i) {
10145          ISD::InputArg MyFlags;
10146          MyFlags.Flags = Flags;
10147          MyFlags.VT = RegisterVT;
10148          MyFlags.ArgVT = VT;
10149          MyFlags.Used = CLI.IsReturnValueUsed;
10150          if (CLI.RetTy->isPointerTy()) {
10151            MyFlags.Flags.setPointer();
10152            MyFlags.Flags.setPointerAddrSpace(
10153                cast<PointerType>(CLI.RetTy)->getAddressSpace());
10154          }
10155          if (CLI.RetSExt)
10156            MyFlags.Flags.setSExt();
10157          if (CLI.RetZExt)
10158            MyFlags.Flags.setZExt();
10159          if (CLI.IsInReg)
10160            MyFlags.Flags.setInReg();
10161          CLI.Ins.push_back(MyFlags);
10162        }
10163      }
10164    }
10165  
10166    // We push in swifterror return as the last element of CLI.Ins.
10167    ArgListTy &Args = CLI.getArgs();
10168    if (supportSwiftError()) {
10169      for (const ArgListEntry &Arg : Args) {
10170        if (Arg.IsSwiftError) {
10171          ISD::InputArg MyFlags;
10172          MyFlags.VT = getPointerTy(DL);
10173          MyFlags.ArgVT = EVT(getPointerTy(DL));
10174          MyFlags.Flags.setSwiftError();
10175          CLI.Ins.push_back(MyFlags);
10176        }
10177      }
10178    }
10179  
10180    // Handle all of the outgoing arguments.
10181    CLI.Outs.clear();
10182    CLI.OutVals.clear();
10183    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10184      SmallVector<EVT, 4> ValueVTs;
10185      ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10186      // FIXME: Split arguments if CLI.IsPostTypeLegalization
10187      Type *FinalType = Args[i].Ty;
10188      if (Args[i].IsByVal)
10189        FinalType = Args[i].IndirectType;
10190      bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10191          FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10192      for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10193           ++Value) {
10194        EVT VT = ValueVTs[Value];
10195        Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10196        SDValue Op = SDValue(Args[i].Node.getNode(),
10197                             Args[i].Node.getResNo() + Value);
10198        ISD::ArgFlagsTy Flags;
10199  
10200        // Certain targets (such as MIPS), may have a different ABI alignment
10201        // for a type depending on the context. Give the target a chance to
10202        // specify the alignment it wants.
10203        const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10204        Flags.setOrigAlign(OriginalAlignment);
10205  
10206        if (Args[i].Ty->isPointerTy()) {
10207          Flags.setPointer();
10208          Flags.setPointerAddrSpace(
10209              cast<PointerType>(Args[i].Ty)->getAddressSpace());
10210        }
10211        if (Args[i].IsZExt)
10212          Flags.setZExt();
10213        if (Args[i].IsSExt)
10214          Flags.setSExt();
10215        if (Args[i].IsInReg) {
10216          // If we are using vectorcall calling convention, a structure that is
10217          // passed InReg - is surely an HVA
10218          if (CLI.CallConv == CallingConv::X86_VectorCall &&
10219              isa<StructType>(FinalType)) {
10220            // The first value of a structure is marked
10221            if (0 == Value)
10222              Flags.setHvaStart();
10223            Flags.setHva();
10224          }
10225          // Set InReg Flag
10226          Flags.setInReg();
10227        }
10228        if (Args[i].IsSRet)
10229          Flags.setSRet();
10230        if (Args[i].IsSwiftSelf)
10231          Flags.setSwiftSelf();
10232        if (Args[i].IsSwiftAsync)
10233          Flags.setSwiftAsync();
10234        if (Args[i].IsSwiftError)
10235          Flags.setSwiftError();
10236        if (Args[i].IsCFGuardTarget)
10237          Flags.setCFGuardTarget();
10238        if (Args[i].IsByVal)
10239          Flags.setByVal();
10240        if (Args[i].IsByRef)
10241          Flags.setByRef();
10242        if (Args[i].IsPreallocated) {
10243          Flags.setPreallocated();
10244          // Set the byval flag for CCAssignFn callbacks that don't know about
10245          // preallocated.  This way we can know how many bytes we should've
10246          // allocated and how many bytes a callee cleanup function will pop.  If
10247          // we port preallocated to more targets, we'll have to add custom
10248          // preallocated handling in the various CC lowering callbacks.
10249          Flags.setByVal();
10250        }
10251        if (Args[i].IsInAlloca) {
10252          Flags.setInAlloca();
10253          // Set the byval flag for CCAssignFn callbacks that don't know about
10254          // inalloca.  This way we can know how many bytes we should've allocated
10255          // and how many bytes a callee cleanup function will pop.  If we port
10256          // inalloca to more targets, we'll have to add custom inalloca handling
10257          // in the various CC lowering callbacks.
10258          Flags.setByVal();
10259        }
10260        Align MemAlign;
10261        if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10262          unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10263          Flags.setByValSize(FrameSize);
10264  
10265          // info is not there but there are cases it cannot get right.
10266          if (auto MA = Args[i].Alignment)
10267            MemAlign = *MA;
10268          else
10269            MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10270        } else if (auto MA = Args[i].Alignment) {
10271          MemAlign = *MA;
10272        } else {
10273          MemAlign = OriginalAlignment;
10274        }
10275        Flags.setMemAlign(MemAlign);
10276        if (Args[i].IsNest)
10277          Flags.setNest();
10278        if (NeedsRegBlock)
10279          Flags.setInConsecutiveRegs();
10280  
10281        MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10282                                                   CLI.CallConv, VT);
10283        unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10284                                                          CLI.CallConv, VT);
10285        SmallVector<SDValue, 4> Parts(NumParts);
10286        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10287  
10288        if (Args[i].IsSExt)
10289          ExtendKind = ISD::SIGN_EXTEND;
10290        else if (Args[i].IsZExt)
10291          ExtendKind = ISD::ZERO_EXTEND;
10292  
10293        // Conservatively only handle 'returned' on non-vectors that can be lowered,
10294        // for now.
10295        if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10296            CanLowerReturn) {
10297          assert((CLI.RetTy == Args[i].Ty ||
10298                  (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10299                   CLI.RetTy->getPointerAddressSpace() ==
10300                       Args[i].Ty->getPointerAddressSpace())) &&
10301                 RetTys.size() == NumValues && "unexpected use of 'returned'");
10302          // Before passing 'returned' to the target lowering code, ensure that
10303          // either the register MVT and the actual EVT are the same size or that
10304          // the return value and argument are extended in the same way; in these
10305          // cases it's safe to pass the argument register value unchanged as the
10306          // return register value (although it's at the target's option whether
10307          // to do so)
10308          // TODO: allow code generation to take advantage of partially preserved
10309          // registers rather than clobbering the entire register when the
10310          // parameter extension method is not compatible with the return
10311          // extension method
10312          if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10313              (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10314               CLI.RetZExt == Args[i].IsZExt))
10315            Flags.setReturned();
10316        }
10317  
10318        getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10319                       CLI.CallConv, ExtendKind);
10320  
10321        for (unsigned j = 0; j != NumParts; ++j) {
10322          // if it isn't first piece, alignment must be 1
10323          // For scalable vectors the scalable part is currently handled
10324          // by individual targets, so we just use the known minimum size here.
10325          ISD::OutputArg MyFlags(
10326              Flags, Parts[j].getValueType().getSimpleVT(), VT,
10327              i < CLI.NumFixedArgs, i,
10328              j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10329          if (NumParts > 1 && j == 0)
10330            MyFlags.Flags.setSplit();
10331          else if (j != 0) {
10332            MyFlags.Flags.setOrigAlign(Align(1));
10333            if (j == NumParts - 1)
10334              MyFlags.Flags.setSplitEnd();
10335          }
10336  
10337          CLI.Outs.push_back(MyFlags);
10338          CLI.OutVals.push_back(Parts[j]);
10339        }
10340  
10341        if (NeedsRegBlock && Value == NumValues - 1)
10342          CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10343      }
10344    }
10345  
10346    SmallVector<SDValue, 4> InVals;
10347    CLI.Chain = LowerCall(CLI, InVals);
10348  
10349    // Update CLI.InVals to use outside of this function.
10350    CLI.InVals = InVals;
10351  
10352    // Verify that the target's LowerCall behaved as expected.
10353    assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10354           "LowerCall didn't return a valid chain!");
10355    assert((!CLI.IsTailCall || InVals.empty()) &&
10356           "LowerCall emitted a return value for a tail call!");
10357    assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10358           "LowerCall didn't emit the correct number of values!");
10359  
10360    // For a tail call, the return value is merely live-out and there aren't
10361    // any nodes in the DAG representing it. Return a special value to
10362    // indicate that a tail call has been emitted and no more Instructions
10363    // should be processed in the current block.
10364    if (CLI.IsTailCall) {
10365      CLI.DAG.setRoot(CLI.Chain);
10366      return std::make_pair(SDValue(), SDValue());
10367    }
10368  
10369  #ifndef NDEBUG
10370    for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10371      assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10372      assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10373             "LowerCall emitted a value with the wrong type!");
10374    }
10375  #endif
10376  
10377    SmallVector<SDValue, 4> ReturnValues;
10378    if (!CanLowerReturn) {
10379      // The instruction result is the result of loading from the
10380      // hidden sret parameter.
10381      SmallVector<EVT, 1> PVTs;
10382      Type *PtrRetTy =
10383          PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
10384  
10385      ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10386      assert(PVTs.size() == 1 && "Pointers should fit in one register");
10387      EVT PtrVT = PVTs[0];
10388  
10389      unsigned NumValues = RetTys.size();
10390      ReturnValues.resize(NumValues);
10391      SmallVector<SDValue, 4> Chains(NumValues);
10392  
10393      // An aggregate return value cannot wrap around the address space, so
10394      // offsets to its parts don't wrap either.
10395      SDNodeFlags Flags;
10396      Flags.setNoUnsignedWrap(true);
10397  
10398      MachineFunction &MF = CLI.DAG.getMachineFunction();
10399      Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10400      for (unsigned i = 0; i < NumValues; ++i) {
10401        SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10402                                      CLI.DAG.getConstant(Offsets[i], CLI.DL,
10403                                                          PtrVT), Flags);
10404        SDValue L = CLI.DAG.getLoad(
10405            RetTys[i], CLI.DL, CLI.Chain, Add,
10406            MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10407                                              DemoteStackIdx, Offsets[i]),
10408            HiddenSRetAlign);
10409        ReturnValues[i] = L;
10410        Chains[i] = L.getValue(1);
10411      }
10412  
10413      CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10414    } else {
10415      // Collect the legal value parts into potentially illegal values
10416      // that correspond to the original function's return values.
10417      std::optional<ISD::NodeType> AssertOp;
10418      if (CLI.RetSExt)
10419        AssertOp = ISD::AssertSext;
10420      else if (CLI.RetZExt)
10421        AssertOp = ISD::AssertZext;
10422      unsigned CurReg = 0;
10423      for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10424        EVT VT = RetTys[I];
10425        MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10426                                                       CLI.CallConv, VT);
10427        unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10428                                                         CLI.CallConv, VT);
10429  
10430        ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10431                                                NumRegs, RegisterVT, VT, nullptr,
10432                                                CLI.CallConv, AssertOp));
10433        CurReg += NumRegs;
10434      }
10435  
10436      // For a function returning void, there is no return value. We can't create
10437      // such a node, so we just return a null return value in that case. In
10438      // that case, nothing will actually look at the value.
10439      if (ReturnValues.empty())
10440        return std::make_pair(SDValue(), CLI.Chain);
10441    }
10442  
10443    SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10444                                  CLI.DAG.getVTList(RetTys), ReturnValues);
10445    return std::make_pair(Res, CLI.Chain);
10446  }
10447  
10448  /// Places new result values for the node in Results (their number
10449  /// and types must exactly match those of the original return values of
10450  /// the node), or leaves Results empty, which indicates that the node is not
10451  /// to be custom lowered after all.
10452  void TargetLowering::LowerOperationWrapper(SDNode *N,
10453                                             SmallVectorImpl<SDValue> &Results,
10454                                             SelectionDAG &DAG) const {
10455    SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10456  
10457    if (!Res.getNode())
10458      return;
10459  
10460    // If the original node has one result, take the return value from
10461    // LowerOperation as is. It might not be result number 0.
10462    if (N->getNumValues() == 1) {
10463      Results.push_back(Res);
10464      return;
10465    }
10466  
10467    // If the original node has multiple results, then the return node should
10468    // have the same number of results.
10469    assert((N->getNumValues() == Res->getNumValues()) &&
10470        "Lowering returned the wrong number of results!");
10471  
10472    // Places new result values base on N result number.
10473    for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10474      Results.push_back(Res.getValue(I));
10475  }
10476  
10477  SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10478    llvm_unreachable("LowerOperation not implemented for this target!");
10479  }
10480  
10481  void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10482                                                       unsigned Reg,
10483                                                       ISD::NodeType ExtendType) {
10484    SDValue Op = getNonRegisterValue(V);
10485    assert((Op.getOpcode() != ISD::CopyFromReg ||
10486            cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10487           "Copy from a reg to the same reg!");
10488    assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10489  
10490    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10491    // If this is an InlineAsm we have to match the registers required, not the
10492    // notional registers required by the type.
10493  
10494    RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10495                     std::nullopt); // This is not an ABI copy.
10496    SDValue Chain = DAG.getEntryNode();
10497  
10498    if (ExtendType == ISD::ANY_EXTEND) {
10499      auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10500      if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10501        ExtendType = PreferredExtendIt->second;
10502    }
10503    RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10504    PendingExports.push_back(Chain);
10505  }
10506  
10507  #include "llvm/CodeGen/SelectionDAGISel.h"
10508  
10509  /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10510  /// entry block, return true.  This includes arguments used by switches, since
10511  /// the switch may expand into multiple basic blocks.
10512  static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10513    // With FastISel active, we may be splitting blocks, so force creation
10514    // of virtual registers for all non-dead arguments.
10515    if (FastISel)
10516      return A->use_empty();
10517  
10518    const BasicBlock &Entry = A->getParent()->front();
10519    for (const User *U : A->users())
10520      if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10521        return false;  // Use not in entry block.
10522  
10523    return true;
10524  }
10525  
10526  using ArgCopyElisionMapTy =
10527      DenseMap<const Argument *,
10528               std::pair<const AllocaInst *, const StoreInst *>>;
10529  
10530  /// Scan the entry block of the function in FuncInfo for arguments that look
10531  /// like copies into a local alloca. Record any copied arguments in
10532  /// ArgCopyElisionCandidates.
10533  static void
10534  findArgumentCopyElisionCandidates(const DataLayout &DL,
10535                                    FunctionLoweringInfo *FuncInfo,
10536                                    ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10537    // Record the state of every static alloca used in the entry block. Argument
10538    // allocas are all used in the entry block, so we need approximately as many
10539    // entries as we have arguments.
10540    enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10541    SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10542    unsigned NumArgs = FuncInfo->Fn->arg_size();
10543    StaticAllocas.reserve(NumArgs * 2);
10544  
10545    auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10546      if (!V)
10547        return nullptr;
10548      V = V->stripPointerCasts();
10549      const auto *AI = dyn_cast<AllocaInst>(V);
10550      if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10551        return nullptr;
10552      auto Iter = StaticAllocas.insert({AI, Unknown});
10553      return &Iter.first->second;
10554    };
10555  
10556    // Look for stores of arguments to static allocas. Look through bitcasts and
10557    // GEPs to handle type coercions, as long as the alloca is fully initialized
10558    // by the store. Any non-store use of an alloca escapes it and any subsequent
10559    // unanalyzed store might write it.
10560    // FIXME: Handle structs initialized with multiple stores.
10561    for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10562      // Look for stores, and handle non-store uses conservatively.
10563      const auto *SI = dyn_cast<StoreInst>(&I);
10564      if (!SI) {
10565        // We will look through cast uses, so ignore them completely.
10566        if (I.isCast())
10567          continue;
10568        // Ignore debug info and pseudo op intrinsics, they don't escape or store
10569        // to allocas.
10570        if (I.isDebugOrPseudoInst())
10571          continue;
10572        // This is an unknown instruction. Assume it escapes or writes to all
10573        // static alloca operands.
10574        for (const Use &U : I.operands()) {
10575          if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10576            *Info = StaticAllocaInfo::Clobbered;
10577        }
10578        continue;
10579      }
10580  
10581      // If the stored value is a static alloca, mark it as escaped.
10582      if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10583        *Info = StaticAllocaInfo::Clobbered;
10584  
10585      // Check if the destination is a static alloca.
10586      const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10587      StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10588      if (!Info)
10589        continue;
10590      const AllocaInst *AI = cast<AllocaInst>(Dst);
10591  
10592      // Skip allocas that have been initialized or clobbered.
10593      if (*Info != StaticAllocaInfo::Unknown)
10594        continue;
10595  
10596      // Check if the stored value is an argument, and that this store fully
10597      // initializes the alloca.
10598      // If the argument type has padding bits we can't directly forward a pointer
10599      // as the upper bits may contain garbage.
10600      // Don't elide copies from the same argument twice.
10601      const Value *Val = SI->getValueOperand()->stripPointerCasts();
10602      const auto *Arg = dyn_cast<Argument>(Val);
10603      if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10604          Arg->getType()->isEmptyTy() ||
10605          DL.getTypeStoreSize(Arg->getType()) !=
10606              DL.getTypeAllocSize(AI->getAllocatedType()) ||
10607          !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10608          ArgCopyElisionCandidates.count(Arg)) {
10609        *Info = StaticAllocaInfo::Clobbered;
10610        continue;
10611      }
10612  
10613      LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10614                        << '\n');
10615  
10616      // Mark this alloca and store for argument copy elision.
10617      *Info = StaticAllocaInfo::Elidable;
10618      ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10619  
10620      // Stop scanning if we've seen all arguments. This will happen early in -O0
10621      // builds, which is useful, because -O0 builds have large entry blocks and
10622      // many allocas.
10623      if (ArgCopyElisionCandidates.size() == NumArgs)
10624        break;
10625    }
10626  }
10627  
10628  /// Try to elide argument copies from memory into a local alloca. Succeeds if
10629  /// ArgVal is a load from a suitable fixed stack object.
10630  static void tryToElideArgumentCopy(
10631      FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10632      DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10633      SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10634      ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10635      ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
10636    // Check if this is a load from a fixed stack object.
10637    auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
10638    if (!LNode)
10639      return;
10640    auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10641    if (!FINode)
10642      return;
10643  
10644    // Check that the fixed stack object is the right size and alignment.
10645    // Look at the alignment that the user wrote on the alloca instead of looking
10646    // at the stack object.
10647    auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10648    assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10649    const AllocaInst *AI = ArgCopyIter->second.first;
10650    int FixedIndex = FINode->getIndex();
10651    int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10652    int OldIndex = AllocaIndex;
10653    MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10654    if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10655      LLVM_DEBUG(
10656          dbgs() << "  argument copy elision failed due to bad fixed stack "
10657                    "object size\n");
10658      return;
10659    }
10660    Align RequiredAlignment = AI->getAlign();
10661    if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10662      LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10663                           "greater than stack argument alignment ("
10664                        << DebugStr(RequiredAlignment) << " vs "
10665                        << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10666      return;
10667    }
10668  
10669    // Perform the elision. Delete the old stack object and replace its only use
10670    // in the variable info map. Mark the stack object as mutable.
10671    LLVM_DEBUG({
10672      dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10673             << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10674             << '\n';
10675    });
10676    MFI.RemoveStackObject(OldIndex);
10677    MFI.setIsImmutableObjectIndex(FixedIndex, false);
10678    AllocaIndex = FixedIndex;
10679    ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10680    for (SDValue ArgVal : ArgVals)
10681      Chains.push_back(ArgVal.getValue(1));
10682  
10683    // Avoid emitting code for the store implementing the copy.
10684    const StoreInst *SI = ArgCopyIter->second.second;
10685    ElidedArgCopyInstrs.insert(SI);
10686  
10687    // Check for uses of the argument again so that we can avoid exporting ArgVal
10688    // if it is't used by anything other than the store.
10689    for (const Value *U : Arg.users()) {
10690      if (U != SI) {
10691        ArgHasUses = true;
10692        break;
10693      }
10694    }
10695  }
10696  
10697  void SelectionDAGISel::LowerArguments(const Function &F) {
10698    SelectionDAG &DAG = SDB->DAG;
10699    SDLoc dl = SDB->getCurSDLoc();
10700    const DataLayout &DL = DAG.getDataLayout();
10701    SmallVector<ISD::InputArg, 16> Ins;
10702  
10703    // In Naked functions we aren't going to save any registers.
10704    if (F.hasFnAttribute(Attribute::Naked))
10705      return;
10706  
10707    if (!FuncInfo->CanLowerReturn) {
10708      // Put in an sret pointer parameter before all the other parameters.
10709      SmallVector<EVT, 1> ValueVTs;
10710      ComputeValueVTs(*TLI, DAG.getDataLayout(),
10711                      PointerType::get(F.getContext(),
10712                                       DAG.getDataLayout().getAllocaAddrSpace()),
10713                      ValueVTs);
10714  
10715      // NOTE: Assuming that a pointer will never break down to more than one VT
10716      // or one register.
10717      ISD::ArgFlagsTy Flags;
10718      Flags.setSRet();
10719      MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10720      ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10721                           ISD::InputArg::NoArgIndex, 0);
10722      Ins.push_back(RetArg);
10723    }
10724  
10725    // Look for stores of arguments to static allocas. Mark such arguments with a
10726    // flag to ask the target to give us the memory location of that argument if
10727    // available.
10728    ArgCopyElisionMapTy ArgCopyElisionCandidates;
10729    findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10730                                      ArgCopyElisionCandidates);
10731  
10732    // Set up the incoming argument description vector.
10733    for (const Argument &Arg : F.args()) {
10734      unsigned ArgNo = Arg.getArgNo();
10735      SmallVector<EVT, 4> ValueVTs;
10736      ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10737      bool isArgValueUsed = !Arg.use_empty();
10738      unsigned PartBase = 0;
10739      Type *FinalType = Arg.getType();
10740      if (Arg.hasAttribute(Attribute::ByVal))
10741        FinalType = Arg.getParamByValType();
10742      bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10743          FinalType, F.getCallingConv(), F.isVarArg(), DL);
10744      for (unsigned Value = 0, NumValues = ValueVTs.size();
10745           Value != NumValues; ++Value) {
10746        EVT VT = ValueVTs[Value];
10747        Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10748        ISD::ArgFlagsTy Flags;
10749  
10750  
10751        if (Arg.getType()->isPointerTy()) {
10752          Flags.setPointer();
10753          Flags.setPointerAddrSpace(
10754              cast<PointerType>(Arg.getType())->getAddressSpace());
10755        }
10756        if (Arg.hasAttribute(Attribute::ZExt))
10757          Flags.setZExt();
10758        if (Arg.hasAttribute(Attribute::SExt))
10759          Flags.setSExt();
10760        if (Arg.hasAttribute(Attribute::InReg)) {
10761          // If we are using vectorcall calling convention, a structure that is
10762          // passed InReg - is surely an HVA
10763          if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10764              isa<StructType>(Arg.getType())) {
10765            // The first value of a structure is marked
10766            if (0 == Value)
10767              Flags.setHvaStart();
10768            Flags.setHva();
10769          }
10770          // Set InReg Flag
10771          Flags.setInReg();
10772        }
10773        if (Arg.hasAttribute(Attribute::StructRet))
10774          Flags.setSRet();
10775        if (Arg.hasAttribute(Attribute::SwiftSelf))
10776          Flags.setSwiftSelf();
10777        if (Arg.hasAttribute(Attribute::SwiftAsync))
10778          Flags.setSwiftAsync();
10779        if (Arg.hasAttribute(Attribute::SwiftError))
10780          Flags.setSwiftError();
10781        if (Arg.hasAttribute(Attribute::ByVal))
10782          Flags.setByVal();
10783        if (Arg.hasAttribute(Attribute::ByRef))
10784          Flags.setByRef();
10785        if (Arg.hasAttribute(Attribute::InAlloca)) {
10786          Flags.setInAlloca();
10787          // Set the byval flag for CCAssignFn callbacks that don't know about
10788          // inalloca.  This way we can know how many bytes we should've allocated
10789          // and how many bytes a callee cleanup function will pop.  If we port
10790          // inalloca to more targets, we'll have to add custom inalloca handling
10791          // in the various CC lowering callbacks.
10792          Flags.setByVal();
10793        }
10794        if (Arg.hasAttribute(Attribute::Preallocated)) {
10795          Flags.setPreallocated();
10796          // Set the byval flag for CCAssignFn callbacks that don't know about
10797          // preallocated.  This way we can know how many bytes we should've
10798          // allocated and how many bytes a callee cleanup function will pop.  If
10799          // we port preallocated to more targets, we'll have to add custom
10800          // preallocated handling in the various CC lowering callbacks.
10801          Flags.setByVal();
10802        }
10803  
10804        // Certain targets (such as MIPS), may have a different ABI alignment
10805        // for a type depending on the context. Give the target a chance to
10806        // specify the alignment it wants.
10807        const Align OriginalAlignment(
10808            TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10809        Flags.setOrigAlign(OriginalAlignment);
10810  
10811        Align MemAlign;
10812        Type *ArgMemTy = nullptr;
10813        if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10814            Flags.isByRef()) {
10815          if (!ArgMemTy)
10816            ArgMemTy = Arg.getPointeeInMemoryValueType();
10817  
10818          uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10819  
10820          // For in-memory arguments, size and alignment should be passed from FE.
10821          // BE will guess if this info is not there but there are cases it cannot
10822          // get right.
10823          if (auto ParamAlign = Arg.getParamStackAlign())
10824            MemAlign = *ParamAlign;
10825          else if ((ParamAlign = Arg.getParamAlign()))
10826            MemAlign = *ParamAlign;
10827          else
10828            MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10829          if (Flags.isByRef())
10830            Flags.setByRefSize(MemSize);
10831          else
10832            Flags.setByValSize(MemSize);
10833        } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10834          MemAlign = *ParamAlign;
10835        } else {
10836          MemAlign = OriginalAlignment;
10837        }
10838        Flags.setMemAlign(MemAlign);
10839  
10840        if (Arg.hasAttribute(Attribute::Nest))
10841          Flags.setNest();
10842        if (NeedsRegBlock)
10843          Flags.setInConsecutiveRegs();
10844        if (ArgCopyElisionCandidates.count(&Arg))
10845          Flags.setCopyElisionCandidate();
10846        if (Arg.hasAttribute(Attribute::Returned))
10847          Flags.setReturned();
10848  
10849        MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10850            *CurDAG->getContext(), F.getCallingConv(), VT);
10851        unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10852            *CurDAG->getContext(), F.getCallingConv(), VT);
10853        for (unsigned i = 0; i != NumRegs; ++i) {
10854          // For scalable vectors, use the minimum size; individual targets
10855          // are responsible for handling scalable vector arguments and
10856          // return values.
10857          ISD::InputArg MyFlags(
10858              Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
10859              PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
10860          if (NumRegs > 1 && i == 0)
10861            MyFlags.Flags.setSplit();
10862          // if it isn't first piece, alignment must be 1
10863          else if (i > 0) {
10864            MyFlags.Flags.setOrigAlign(Align(1));
10865            if (i == NumRegs - 1)
10866              MyFlags.Flags.setSplitEnd();
10867          }
10868          Ins.push_back(MyFlags);
10869        }
10870        if (NeedsRegBlock && Value == NumValues - 1)
10871          Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10872        PartBase += VT.getStoreSize().getKnownMinValue();
10873      }
10874    }
10875  
10876    // Call the target to set up the argument values.
10877    SmallVector<SDValue, 8> InVals;
10878    SDValue NewRoot = TLI->LowerFormalArguments(
10879        DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10880  
10881    // Verify that the target's LowerFormalArguments behaved as expected.
10882    assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10883           "LowerFormalArguments didn't return a valid chain!");
10884    assert(InVals.size() == Ins.size() &&
10885           "LowerFormalArguments didn't emit the correct number of values!");
10886    LLVM_DEBUG({
10887      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10888        assert(InVals[i].getNode() &&
10889               "LowerFormalArguments emitted a null value!");
10890        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10891               "LowerFormalArguments emitted a value with the wrong type!");
10892      }
10893    });
10894  
10895    // Update the DAG with the new chain value resulting from argument lowering.
10896    DAG.setRoot(NewRoot);
10897  
10898    // Set up the argument values.
10899    unsigned i = 0;
10900    if (!FuncInfo->CanLowerReturn) {
10901      // Create a virtual register for the sret pointer, and put in a copy
10902      // from the sret argument into it.
10903      SmallVector<EVT, 1> ValueVTs;
10904      ComputeValueVTs(*TLI, DAG.getDataLayout(),
10905                      PointerType::get(F.getContext(),
10906                                       DAG.getDataLayout().getAllocaAddrSpace()),
10907                      ValueVTs);
10908      MVT VT = ValueVTs[0].getSimpleVT();
10909      MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10910      std::optional<ISD::NodeType> AssertOp;
10911      SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10912                                          nullptr, F.getCallingConv(), AssertOp);
10913  
10914      MachineFunction& MF = SDB->DAG.getMachineFunction();
10915      MachineRegisterInfo& RegInfo = MF.getRegInfo();
10916      Register SRetReg =
10917          RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10918      FuncInfo->DemoteRegister = SRetReg;
10919      NewRoot =
10920          SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10921      DAG.setRoot(NewRoot);
10922  
10923      // i indexes lowered arguments.  Bump it past the hidden sret argument.
10924      ++i;
10925    }
10926  
10927    SmallVector<SDValue, 4> Chains;
10928    DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10929    for (const Argument &Arg : F.args()) {
10930      SmallVector<SDValue, 4> ArgValues;
10931      SmallVector<EVT, 4> ValueVTs;
10932      ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10933      unsigned NumValues = ValueVTs.size();
10934      if (NumValues == 0)
10935        continue;
10936  
10937      bool ArgHasUses = !Arg.use_empty();
10938  
10939      // Elide the copying store if the target loaded this argument from a
10940      // suitable fixed stack object.
10941      if (Ins[i].Flags.isCopyElisionCandidate()) {
10942        unsigned NumParts = 0;
10943        for (EVT VT : ValueVTs)
10944          NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
10945                                                         F.getCallingConv(), VT);
10946  
10947        tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10948                               ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10949                               ArrayRef(&InVals[i], NumParts), ArgHasUses);
10950      }
10951  
10952      // If this argument is unused then remember its value. It is used to generate
10953      // debugging information.
10954      bool isSwiftErrorArg =
10955          TLI->supportSwiftError() &&
10956          Arg.hasAttribute(Attribute::SwiftError);
10957      if (!ArgHasUses && !isSwiftErrorArg) {
10958        SDB->setUnusedArgValue(&Arg, InVals[i]);
10959  
10960        // Also remember any frame index for use in FastISel.
10961        if (FrameIndexSDNode *FI =
10962            dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10963          FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10964      }
10965  
10966      for (unsigned Val = 0; Val != NumValues; ++Val) {
10967        EVT VT = ValueVTs[Val];
10968        MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10969                                                        F.getCallingConv(), VT);
10970        unsigned NumParts = TLI->getNumRegistersForCallingConv(
10971            *CurDAG->getContext(), F.getCallingConv(), VT);
10972  
10973        // Even an apparent 'unused' swifterror argument needs to be returned. So
10974        // we do generate a copy for it that can be used on return from the
10975        // function.
10976        if (ArgHasUses || isSwiftErrorArg) {
10977          std::optional<ISD::NodeType> AssertOp;
10978          if (Arg.hasAttribute(Attribute::SExt))
10979            AssertOp = ISD::AssertSext;
10980          else if (Arg.hasAttribute(Attribute::ZExt))
10981            AssertOp = ISD::AssertZext;
10982  
10983          ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10984                                               PartVT, VT, nullptr,
10985                                               F.getCallingConv(), AssertOp));
10986        }
10987  
10988        i += NumParts;
10989      }
10990  
10991      // We don't need to do anything else for unused arguments.
10992      if (ArgValues.empty())
10993        continue;
10994  
10995      // Note down frame index.
10996      if (FrameIndexSDNode *FI =
10997          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10998        FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10999  
11000      SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
11001                                       SDB->getCurSDLoc());
11002  
11003      SDB->setValue(&Arg, Res);
11004      if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
11005        // We want to associate the argument with the frame index, among
11006        // involved operands, that correspond to the lowest address. The
11007        // getCopyFromParts function, called earlier, is swapping the order of
11008        // the operands to BUILD_PAIR depending on endianness. The result of
11009        // that swapping is that the least significant bits of the argument will
11010        // be in the first operand of the BUILD_PAIR node, and the most
11011        // significant bits will be in the second operand.
11012        unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11013        if (LoadSDNode *LNode =
11014            dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11015          if (FrameIndexSDNode *FI =
11016              dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11017            FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11018      }
11019  
11020      // Analyses past this point are naive and don't expect an assertion.
11021      if (Res.getOpcode() == ISD::AssertZext)
11022        Res = Res.getOperand(0);
11023  
11024      // Update the SwiftErrorVRegDefMap.
11025      if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11026        unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11027        if (Register::isVirtualRegister(Reg))
11028          SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11029                                     Reg);
11030      }
11031  
11032      // If this argument is live outside of the entry block, insert a copy from
11033      // wherever we got it to the vreg that other BB's will reference it as.
11034      if (Res.getOpcode() == ISD::CopyFromReg) {
11035        // If we can, though, try to skip creating an unnecessary vreg.
11036        // FIXME: This isn't very clean... it would be nice to make this more
11037        // general.
11038        unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11039        if (Register::isVirtualRegister(Reg)) {
11040          FuncInfo->ValueMap[&Arg] = Reg;
11041          continue;
11042        }
11043      }
11044      if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11045        FuncInfo->InitializeRegForValue(&Arg);
11046        SDB->CopyToExportRegsIfNeeded(&Arg);
11047      }
11048    }
11049  
11050    if (!Chains.empty()) {
11051      Chains.push_back(NewRoot);
11052      NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11053    }
11054  
11055    DAG.setRoot(NewRoot);
11056  
11057    assert(i == InVals.size() && "Argument register count mismatch!");
11058  
11059    // If any argument copy elisions occurred and we have debug info, update the
11060    // stale frame indices used in the dbg.declare variable info table.
11061    if (!ArgCopyElisionFrameIndexMap.empty()) {
11062      for (MachineFunction::VariableDbgInfo &VI :
11063           MF->getInStackSlotVariableDbgInfo()) {
11064        auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11065        if (I != ArgCopyElisionFrameIndexMap.end())
11066          VI.updateStackSlot(I->second);
11067      }
11068    }
11069  
11070    // Finally, if the target has anything special to do, allow it to do so.
11071    emitFunctionEntryCode();
11072  }
11073  
11074  /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11075  /// ensure constants are generated when needed.  Remember the virtual registers
11076  /// that need to be added to the Machine PHI nodes as input.  We cannot just
11077  /// directly add them, because expansion might result in multiple MBB's for one
11078  /// BB.  As such, the start of the BB might correspond to a different MBB than
11079  /// the end.
11080  void
11081  SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11082    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11083  
11084    SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11085  
11086    // Check PHI nodes in successors that expect a value to be available from this
11087    // block.
11088    for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11089      if (!isa<PHINode>(SuccBB->begin())) continue;
11090      MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
11091  
11092      // If this terminator has multiple identical successors (common for
11093      // switches), only handle each succ once.
11094      if (!SuccsHandled.insert(SuccMBB).second)
11095        continue;
11096  
11097      MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11098  
11099      // At this point we know that there is a 1-1 correspondence between LLVM PHI
11100      // nodes and Machine PHI nodes, but the incoming operands have not been
11101      // emitted yet.
11102      for (const PHINode &PN : SuccBB->phis()) {
11103        // Ignore dead phi's.
11104        if (PN.use_empty())
11105          continue;
11106  
11107        // Skip empty types
11108        if (PN.getType()->isEmptyTy())
11109          continue;
11110  
11111        unsigned Reg;
11112        const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11113  
11114        if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11115          unsigned &RegOut = ConstantsOut[C];
11116          if (RegOut == 0) {
11117            RegOut = FuncInfo.CreateRegs(C);
11118            // We need to zero/sign extend ConstantInt phi operands to match
11119            // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11120            ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11121            if (auto *CI = dyn_cast<ConstantInt>(C))
11122              ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11123                                                      : ISD::ZERO_EXTEND;
11124            CopyValueToVirtualRegister(C, RegOut, ExtendType);
11125          }
11126          Reg = RegOut;
11127        } else {
11128          DenseMap<const Value *, Register>::iterator I =
11129            FuncInfo.ValueMap.find(PHIOp);
11130          if (I != FuncInfo.ValueMap.end())
11131            Reg = I->second;
11132          else {
11133            assert(isa<AllocaInst>(PHIOp) &&
11134                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11135                   "Didn't codegen value into a register!??");
11136            Reg = FuncInfo.CreateRegs(PHIOp);
11137            CopyValueToVirtualRegister(PHIOp, Reg);
11138          }
11139        }
11140  
11141        // Remember that this register needs to added to the machine PHI node as
11142        // the input for this MBB.
11143        SmallVector<EVT, 4> ValueVTs;
11144        ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11145        for (EVT VT : ValueVTs) {
11146          const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11147          for (unsigned i = 0; i != NumRegisters; ++i)
11148            FuncInfo.PHINodesToUpdate.push_back(
11149                std::make_pair(&*MBBI++, Reg + i));
11150          Reg += NumRegisters;
11151        }
11152      }
11153    }
11154  
11155    ConstantsOut.clear();
11156  }
11157  
11158  MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11159    MachineFunction::iterator I(MBB);
11160    if (++I == FuncInfo.MF->end())
11161      return nullptr;
11162    return &*I;
11163  }
11164  
11165  /// During lowering new call nodes can be created (such as memset, etc.).
11166  /// Those will become new roots of the current DAG, but complications arise
11167  /// when they are tail calls. In such cases, the call lowering will update
11168  /// the root, but the builder still needs to know that a tail call has been
11169  /// lowered in order to avoid generating an additional return.
11170  void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11171    // If the node is null, we do have a tail call.
11172    if (MaybeTC.getNode() != nullptr)
11173      DAG.setRoot(MaybeTC);
11174    else
11175      HasTailCall = true;
11176  }
11177  
11178  void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11179                                          MachineBasicBlock *SwitchMBB,
11180                                          MachineBasicBlock *DefaultMBB) {
11181    MachineFunction *CurMF = FuncInfo.MF;
11182    MachineBasicBlock *NextMBB = nullptr;
11183    MachineFunction::iterator BBI(W.MBB);
11184    if (++BBI != FuncInfo.MF->end())
11185      NextMBB = &*BBI;
11186  
11187    unsigned Size = W.LastCluster - W.FirstCluster + 1;
11188  
11189    BranchProbabilityInfo *BPI = FuncInfo.BPI;
11190  
11191    if (Size == 2 && W.MBB == SwitchMBB) {
11192      // If any two of the cases has the same destination, and if one value
11193      // is the same as the other, but has one bit unset that the other has set,
11194      // use bit manipulation to do two compares at once.  For example:
11195      // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11196      // TODO: This could be extended to merge any 2 cases in switches with 3
11197      // cases.
11198      // TODO: Handle cases where W.CaseBB != SwitchBB.
11199      CaseCluster &Small = *W.FirstCluster;
11200      CaseCluster &Big = *W.LastCluster;
11201  
11202      if (Small.Low == Small.High && Big.Low == Big.High &&
11203          Small.MBB == Big.MBB) {
11204        const APInt &SmallValue = Small.Low->getValue();
11205        const APInt &BigValue = Big.Low->getValue();
11206  
11207        // Check that there is only one bit different.
11208        APInt CommonBit = BigValue ^ SmallValue;
11209        if (CommonBit.isPowerOf2()) {
11210          SDValue CondLHS = getValue(Cond);
11211          EVT VT = CondLHS.getValueType();
11212          SDLoc DL = getCurSDLoc();
11213  
11214          SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11215                                   DAG.getConstant(CommonBit, DL, VT));
11216          SDValue Cond = DAG.getSetCC(
11217              DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11218              ISD::SETEQ);
11219  
11220          // Update successor info.
11221          // Both Small and Big will jump to Small.BB, so we sum up the
11222          // probabilities.
11223          addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11224          if (BPI)
11225            addSuccessorWithProb(
11226                SwitchMBB, DefaultMBB,
11227                // The default destination is the first successor in IR.
11228                BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11229          else
11230            addSuccessorWithProb(SwitchMBB, DefaultMBB);
11231  
11232          // Insert the true branch.
11233          SDValue BrCond =
11234              DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11235                          DAG.getBasicBlock(Small.MBB));
11236          // Insert the false branch.
11237          BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11238                               DAG.getBasicBlock(DefaultMBB));
11239  
11240          DAG.setRoot(BrCond);
11241          return;
11242        }
11243      }
11244    }
11245  
11246    if (TM.getOptLevel() != CodeGenOpt::None) {
11247      // Here, we order cases by probability so the most likely case will be
11248      // checked first. However, two clusters can have the same probability in
11249      // which case their relative ordering is non-deterministic. So we use Low
11250      // as a tie-breaker as clusters are guaranteed to never overlap.
11251      llvm::sort(W.FirstCluster, W.LastCluster + 1,
11252                 [](const CaseCluster &a, const CaseCluster &b) {
11253        return a.Prob != b.Prob ?
11254               a.Prob > b.Prob :
11255               a.Low->getValue().slt(b.Low->getValue());
11256      });
11257  
11258      // Rearrange the case blocks so that the last one falls through if possible
11259      // without changing the order of probabilities.
11260      for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11261        --I;
11262        if (I->Prob > W.LastCluster->Prob)
11263          break;
11264        if (I->Kind == CC_Range && I->MBB == NextMBB) {
11265          std::swap(*I, *W.LastCluster);
11266          break;
11267        }
11268      }
11269    }
11270  
11271    // Compute total probability.
11272    BranchProbability DefaultProb = W.DefaultProb;
11273    BranchProbability UnhandledProbs = DefaultProb;
11274    for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11275      UnhandledProbs += I->Prob;
11276  
11277    MachineBasicBlock *CurMBB = W.MBB;
11278    for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11279      bool FallthroughUnreachable = false;
11280      MachineBasicBlock *Fallthrough;
11281      if (I == W.LastCluster) {
11282        // For the last cluster, fall through to the default destination.
11283        Fallthrough = DefaultMBB;
11284        FallthroughUnreachable = isa<UnreachableInst>(
11285            DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11286      } else {
11287        Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11288        CurMF->insert(BBI, Fallthrough);
11289        // Put Cond in a virtual register to make it available from the new blocks.
11290        ExportFromCurrentBlock(Cond);
11291      }
11292      UnhandledProbs -= I->Prob;
11293  
11294      switch (I->Kind) {
11295        case CC_JumpTable: {
11296          // FIXME: Optimize away range check based on pivot comparisons.
11297          JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11298          SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11299  
11300          // The jump block hasn't been inserted yet; insert it here.
11301          MachineBasicBlock *JumpMBB = JT->MBB;
11302          CurMF->insert(BBI, JumpMBB);
11303  
11304          auto JumpProb = I->Prob;
11305          auto FallthroughProb = UnhandledProbs;
11306  
11307          // If the default statement is a target of the jump table, we evenly
11308          // distribute the default probability to successors of CurMBB. Also
11309          // update the probability on the edge from JumpMBB to Fallthrough.
11310          for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11311                                                SE = JumpMBB->succ_end();
11312               SI != SE; ++SI) {
11313            if (*SI == DefaultMBB) {
11314              JumpProb += DefaultProb / 2;
11315              FallthroughProb -= DefaultProb / 2;
11316              JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11317              JumpMBB->normalizeSuccProbs();
11318              break;
11319            }
11320          }
11321  
11322          // If the default clause is unreachable, propagate that knowledge into
11323          // JTH->FallthroughUnreachable which will use it to suppress the range
11324          // check.
11325          //
11326          // However, don't do this if we're doing branch target enforcement,
11327          // because a table branch _without_ a range check can be a tempting JOP
11328          // gadget - out-of-bounds inputs that are impossible in correct
11329          // execution become possible again if an attacker can influence the
11330          // control flow. So if an attacker doesn't already have a BTI bypass
11331          // available, we don't want them to be able to get one out of this
11332          // table branch.
11333          if (FallthroughUnreachable) {
11334            Function &CurFunc = CurMF->getFunction();
11335            bool HasBranchTargetEnforcement = false;
11336            if (CurFunc.hasFnAttribute("branch-target-enforcement")) {
11337              HasBranchTargetEnforcement =
11338                  CurFunc.getFnAttribute("branch-target-enforcement")
11339                      .getValueAsBool();
11340            } else {
11341              HasBranchTargetEnforcement =
11342                  CurMF->getMMI().getModule()->getModuleFlag(
11343                      "branch-target-enforcement");
11344            }
11345            if (!HasBranchTargetEnforcement)
11346              JTH->FallthroughUnreachable = true;
11347          }
11348  
11349          if (!JTH->FallthroughUnreachable)
11350            addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11351          addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11352          CurMBB->normalizeSuccProbs();
11353  
11354          // The jump table header will be inserted in our current block, do the
11355          // range check, and fall through to our fallthrough block.
11356          JTH->HeaderBB = CurMBB;
11357          JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11358  
11359          // If we're in the right place, emit the jump table header right now.
11360          if (CurMBB == SwitchMBB) {
11361            visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11362            JTH->Emitted = true;
11363          }
11364          break;
11365        }
11366        case CC_BitTests: {
11367          // FIXME: Optimize away range check based on pivot comparisons.
11368          BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11369  
11370          // The bit test blocks haven't been inserted yet; insert them here.
11371          for (BitTestCase &BTC : BTB->Cases)
11372            CurMF->insert(BBI, BTC.ThisBB);
11373  
11374          // Fill in fields of the BitTestBlock.
11375          BTB->Parent = CurMBB;
11376          BTB->Default = Fallthrough;
11377  
11378          BTB->DefaultProb = UnhandledProbs;
11379          // If the cases in bit test don't form a contiguous range, we evenly
11380          // distribute the probability on the edge to Fallthrough to two
11381          // successors of CurMBB.
11382          if (!BTB->ContiguousRange) {
11383            BTB->Prob += DefaultProb / 2;
11384            BTB->DefaultProb -= DefaultProb / 2;
11385          }
11386  
11387          if (FallthroughUnreachable)
11388            BTB->FallthroughUnreachable = true;
11389  
11390          // If we're in the right place, emit the bit test header right now.
11391          if (CurMBB == SwitchMBB) {
11392            visitBitTestHeader(*BTB, SwitchMBB);
11393            BTB->Emitted = true;
11394          }
11395          break;
11396        }
11397        case CC_Range: {
11398          const Value *RHS, *LHS, *MHS;
11399          ISD::CondCode CC;
11400          if (I->Low == I->High) {
11401            // Check Cond == I->Low.
11402            CC = ISD::SETEQ;
11403            LHS = Cond;
11404            RHS=I->Low;
11405            MHS = nullptr;
11406          } else {
11407            // Check I->Low <= Cond <= I->High.
11408            CC = ISD::SETLE;
11409            LHS = I->Low;
11410            MHS = Cond;
11411            RHS = I->High;
11412          }
11413  
11414          // If Fallthrough is unreachable, fold away the comparison.
11415          if (FallthroughUnreachable)
11416            CC = ISD::SETTRUE;
11417  
11418          // The false probability is the sum of all unhandled cases.
11419          CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11420                       getCurSDLoc(), I->Prob, UnhandledProbs);
11421  
11422          if (CurMBB == SwitchMBB)
11423            visitSwitchCase(CB, SwitchMBB);
11424          else
11425            SL->SwitchCases.push_back(CB);
11426  
11427          break;
11428        }
11429      }
11430      CurMBB = Fallthrough;
11431    }
11432  }
11433  
11434  unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11435                                                CaseClusterIt First,
11436                                                CaseClusterIt Last) {
11437    return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11438      if (X.Prob != CC.Prob)
11439        return X.Prob > CC.Prob;
11440  
11441      // Ties are broken by comparing the case value.
11442      return X.Low->getValue().slt(CC.Low->getValue());
11443    });
11444  }
11445  
11446  void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11447                                          const SwitchWorkListItem &W,
11448                                          Value *Cond,
11449                                          MachineBasicBlock *SwitchMBB) {
11450    assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11451           "Clusters not sorted?");
11452  
11453    assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11454  
11455    // Balance the tree based on branch probabilities to create a near-optimal (in
11456    // terms of search time given key frequency) binary search tree. See e.g. Kurt
11457    // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11458    CaseClusterIt LastLeft = W.FirstCluster;
11459    CaseClusterIt FirstRight = W.LastCluster;
11460    auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11461    auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11462  
11463    // Move LastLeft and FirstRight towards each other from opposite directions to
11464    // find a partitioning of the clusters which balances the probability on both
11465    // sides. If LeftProb and RightProb are equal, alternate which side is
11466    // taken to ensure 0-probability nodes are distributed evenly.
11467    unsigned I = 0;
11468    while (LastLeft + 1 < FirstRight) {
11469      if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11470        LeftProb += (++LastLeft)->Prob;
11471      else
11472        RightProb += (--FirstRight)->Prob;
11473      I++;
11474    }
11475  
11476    while (true) {
11477      // Our binary search tree differs from a typical BST in that ours can have up
11478      // to three values in each leaf. The pivot selection above doesn't take that
11479      // into account, which means the tree might require more nodes and be less
11480      // efficient. We compensate for this here.
11481  
11482      unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11483      unsigned NumRight = W.LastCluster - FirstRight + 1;
11484  
11485      if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11486        // If one side has less than 3 clusters, and the other has more than 3,
11487        // consider taking a cluster from the other side.
11488  
11489        if (NumLeft < NumRight) {
11490          // Consider moving the first cluster on the right to the left side.
11491          CaseCluster &CC = *FirstRight;
11492          unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11493          unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11494          if (LeftSideRank <= RightSideRank) {
11495            // Moving the cluster to the left does not demote it.
11496            ++LastLeft;
11497            ++FirstRight;
11498            continue;
11499          }
11500        } else {
11501          assert(NumRight < NumLeft);
11502          // Consider moving the last element on the left to the right side.
11503          CaseCluster &CC = *LastLeft;
11504          unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11505          unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11506          if (RightSideRank <= LeftSideRank) {
11507            // Moving the cluster to the right does not demot it.
11508            --LastLeft;
11509            --FirstRight;
11510            continue;
11511          }
11512        }
11513      }
11514      break;
11515    }
11516  
11517    assert(LastLeft + 1 == FirstRight);
11518    assert(LastLeft >= W.FirstCluster);
11519    assert(FirstRight <= W.LastCluster);
11520  
11521    // Use the first element on the right as pivot since we will make less-than
11522    // comparisons against it.
11523    CaseClusterIt PivotCluster = FirstRight;
11524    assert(PivotCluster > W.FirstCluster);
11525    assert(PivotCluster <= W.LastCluster);
11526  
11527    CaseClusterIt FirstLeft = W.FirstCluster;
11528    CaseClusterIt LastRight = W.LastCluster;
11529  
11530    const ConstantInt *Pivot = PivotCluster->Low;
11531  
11532    // New blocks will be inserted immediately after the current one.
11533    MachineFunction::iterator BBI(W.MBB);
11534    ++BBI;
11535  
11536    // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11537    // we can branch to its destination directly if it's squeezed exactly in
11538    // between the known lower bound and Pivot - 1.
11539    MachineBasicBlock *LeftMBB;
11540    if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11541        FirstLeft->Low == W.GE &&
11542        (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11543      LeftMBB = FirstLeft->MBB;
11544    } else {
11545      LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11546      FuncInfo.MF->insert(BBI, LeftMBB);
11547      WorkList.push_back(
11548          {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11549      // Put Cond in a virtual register to make it available from the new blocks.
11550      ExportFromCurrentBlock(Cond);
11551    }
11552  
11553    // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11554    // single cluster, RHS.Low == Pivot, and we can branch to its destination
11555    // directly if RHS.High equals the current upper bound.
11556    MachineBasicBlock *RightMBB;
11557    if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11558        W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11559      RightMBB = FirstRight->MBB;
11560    } else {
11561      RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11562      FuncInfo.MF->insert(BBI, RightMBB);
11563      WorkList.push_back(
11564          {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11565      // Put Cond in a virtual register to make it available from the new blocks.
11566      ExportFromCurrentBlock(Cond);
11567    }
11568  
11569    // Create the CaseBlock record that will be used to lower the branch.
11570    CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11571                 getCurSDLoc(), LeftProb, RightProb);
11572  
11573    if (W.MBB == SwitchMBB)
11574      visitSwitchCase(CB, SwitchMBB);
11575    else
11576      SL->SwitchCases.push_back(CB);
11577  }
11578  
11579  // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11580  // from the swith statement.
11581  static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11582                                              BranchProbability PeeledCaseProb) {
11583    if (PeeledCaseProb == BranchProbability::getOne())
11584      return BranchProbability::getZero();
11585    BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11586  
11587    uint32_t Numerator = CaseProb.getNumerator();
11588    uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11589    return BranchProbability(Numerator, std::max(Numerator, Denominator));
11590  }
11591  
11592  // Try to peel the top probability case if it exceeds the threshold.
11593  // Return current MachineBasicBlock for the switch statement if the peeling
11594  // does not occur.
11595  // If the peeling is performed, return the newly created MachineBasicBlock
11596  // for the peeled switch statement. Also update Clusters to remove the peeled
11597  // case. PeeledCaseProb is the BranchProbability for the peeled case.
11598  MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11599      const SwitchInst &SI, CaseClusterVector &Clusters,
11600      BranchProbability &PeeledCaseProb) {
11601    MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11602    // Don't perform if there is only one cluster or optimizing for size.
11603    if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11604        TM.getOptLevel() == CodeGenOpt::None ||
11605        SwitchMBB->getParent()->getFunction().hasMinSize())
11606      return SwitchMBB;
11607  
11608    BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11609    unsigned PeeledCaseIndex = 0;
11610    bool SwitchPeeled = false;
11611    for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11612      CaseCluster &CC = Clusters[Index];
11613      if (CC.Prob < TopCaseProb)
11614        continue;
11615      TopCaseProb = CC.Prob;
11616      PeeledCaseIndex = Index;
11617      SwitchPeeled = true;
11618    }
11619    if (!SwitchPeeled)
11620      return SwitchMBB;
11621  
11622    LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11623                      << TopCaseProb << "\n");
11624  
11625    // Record the MBB for the peeled switch statement.
11626    MachineFunction::iterator BBI(SwitchMBB);
11627    ++BBI;
11628    MachineBasicBlock *PeeledSwitchMBB =
11629        FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11630    FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11631  
11632    ExportFromCurrentBlock(SI.getCondition());
11633    auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11634    SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11635                            nullptr,   nullptr,      TopCaseProb.getCompl()};
11636    lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11637  
11638    Clusters.erase(PeeledCaseIt);
11639    for (CaseCluster &CC : Clusters) {
11640      LLVM_DEBUG(
11641          dbgs() << "Scale the probablity for one cluster, before scaling: "
11642                 << CC.Prob << "\n");
11643      CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11644      LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11645    }
11646    PeeledCaseProb = TopCaseProb;
11647    return PeeledSwitchMBB;
11648  }
11649  
11650  void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11651    // Extract cases from the switch.
11652    BranchProbabilityInfo *BPI = FuncInfo.BPI;
11653    CaseClusterVector Clusters;
11654    Clusters.reserve(SI.getNumCases());
11655    for (auto I : SI.cases()) {
11656      MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11657      const ConstantInt *CaseVal = I.getCaseValue();
11658      BranchProbability Prob =
11659          BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11660              : BranchProbability(1, SI.getNumCases() + 1);
11661      Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11662    }
11663  
11664    MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11665  
11666    // Cluster adjacent cases with the same destination. We do this at all
11667    // optimization levels because it's cheap to do and will make codegen faster
11668    // if there are many clusters.
11669    sortAndRangeify(Clusters);
11670  
11671    // The branch probablity of the peeled case.
11672    BranchProbability PeeledCaseProb = BranchProbability::getZero();
11673    MachineBasicBlock *PeeledSwitchMBB =
11674        peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11675  
11676    // If there is only the default destination, jump there directly.
11677    MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11678    if (Clusters.empty()) {
11679      assert(PeeledSwitchMBB == SwitchMBB);
11680      SwitchMBB->addSuccessor(DefaultMBB);
11681      if (DefaultMBB != NextBlock(SwitchMBB)) {
11682        DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11683                                getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11684      }
11685      return;
11686    }
11687  
11688    SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11689    SL->findBitTestClusters(Clusters, &SI);
11690  
11691    LLVM_DEBUG({
11692      dbgs() << "Case clusters: ";
11693      for (const CaseCluster &C : Clusters) {
11694        if (C.Kind == CC_JumpTable)
11695          dbgs() << "JT:";
11696        if (C.Kind == CC_BitTests)
11697          dbgs() << "BT:";
11698  
11699        C.Low->getValue().print(dbgs(), true);
11700        if (C.Low != C.High) {
11701          dbgs() << '-';
11702          C.High->getValue().print(dbgs(), true);
11703        }
11704        dbgs() << ' ';
11705      }
11706      dbgs() << '\n';
11707    });
11708  
11709    assert(!Clusters.empty());
11710    SwitchWorkList WorkList;
11711    CaseClusterIt First = Clusters.begin();
11712    CaseClusterIt Last = Clusters.end() - 1;
11713    auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11714    // Scale the branchprobability for DefaultMBB if the peel occurs and
11715    // DefaultMBB is not replaced.
11716    if (PeeledCaseProb != BranchProbability::getZero() &&
11717        DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11718      DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11719    WorkList.push_back(
11720        {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11721  
11722    while (!WorkList.empty()) {
11723      SwitchWorkListItem W = WorkList.pop_back_val();
11724      unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11725  
11726      if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11727          !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11728        // For optimized builds, lower large range as a balanced binary tree.
11729        splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11730        continue;
11731      }
11732  
11733      lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11734    }
11735  }
11736  
11737  void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11738    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11739    auto DL = getCurSDLoc();
11740    EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11741    setValue(&I, DAG.getStepVector(DL, ResultVT));
11742  }
11743  
11744  void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11745    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11746    EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11747  
11748    SDLoc DL = getCurSDLoc();
11749    SDValue V = getValue(I.getOperand(0));
11750    assert(VT == V.getValueType() && "Malformed vector.reverse!");
11751  
11752    if (VT.isScalableVector()) {
11753      setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11754      return;
11755    }
11756  
11757    // Use VECTOR_SHUFFLE for the fixed-length vector
11758    // to maintain existing behavior.
11759    SmallVector<int, 8> Mask;
11760    unsigned NumElts = VT.getVectorMinNumElements();
11761    for (unsigned i = 0; i != NumElts; ++i)
11762      Mask.push_back(NumElts - 1 - i);
11763  
11764    setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11765  }
11766  
11767  void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
11768    auto DL = getCurSDLoc();
11769    SDValue InVec = getValue(I.getOperand(0));
11770    EVT OutVT =
11771        InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
11772  
11773    unsigned OutNumElts = OutVT.getVectorMinNumElements();
11774  
11775    // ISD Node needs the input vectors split into two equal parts
11776    SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11777                             DAG.getVectorIdxConstant(0, DL));
11778    SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11779                             DAG.getVectorIdxConstant(OutNumElts, DL));
11780  
11781    // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11782    // legalisation and combines.
11783    if (OutVT.isFixedLengthVector()) {
11784      SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11785                                          createStrideMask(0, 2, OutNumElts));
11786      SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11787                                         createStrideMask(1, 2, OutNumElts));
11788      SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
11789      setValue(&I, Res);
11790      return;
11791    }
11792  
11793    SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
11794                              DAG.getVTList(OutVT, OutVT), Lo, Hi);
11795    setValue(&I, Res);
11796  }
11797  
11798  void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
11799    auto DL = getCurSDLoc();
11800    EVT InVT = getValue(I.getOperand(0)).getValueType();
11801    SDValue InVec0 = getValue(I.getOperand(0));
11802    SDValue InVec1 = getValue(I.getOperand(1));
11803    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11804    EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11805  
11806    // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11807    // legalisation and combines.
11808    if (OutVT.isFixedLengthVector()) {
11809      unsigned NumElts = InVT.getVectorMinNumElements();
11810      SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
11811      setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
11812                                        createInterleaveMask(NumElts, 2)));
11813      return;
11814    }
11815  
11816    SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
11817                              DAG.getVTList(InVT, InVT), InVec0, InVec1);
11818    Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
11819                      Res.getValue(1));
11820    setValue(&I, Res);
11821  }
11822  
11823  void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11824    SmallVector<EVT, 4> ValueVTs;
11825    ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11826                    ValueVTs);
11827    unsigned NumValues = ValueVTs.size();
11828    if (NumValues == 0) return;
11829  
11830    SmallVector<SDValue, 4> Values(NumValues);
11831    SDValue Op = getValue(I.getOperand(0));
11832  
11833    for (unsigned i = 0; i != NumValues; ++i)
11834      Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11835                              SDValue(Op.getNode(), Op.getResNo() + i));
11836  
11837    setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11838                             DAG.getVTList(ValueVTs), Values));
11839  }
11840  
11841  void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11842    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11843    EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11844  
11845    SDLoc DL = getCurSDLoc();
11846    SDValue V1 = getValue(I.getOperand(0));
11847    SDValue V2 = getValue(I.getOperand(1));
11848    int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11849  
11850    // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11851    if (VT.isScalableVector()) {
11852      MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11853      setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11854                               DAG.getConstant(Imm, DL, IdxVT)));
11855      return;
11856    }
11857  
11858    unsigned NumElts = VT.getVectorNumElements();
11859  
11860    uint64_t Idx = (NumElts + Imm) % NumElts;
11861  
11862    // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11863    SmallVector<int, 8> Mask;
11864    for (unsigned i = 0; i < NumElts; ++i)
11865      Mask.push_back(Idx + i);
11866    setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11867  }
11868  
11869  // Consider the following MIR after SelectionDAG, which produces output in
11870  // phyregs in the first case or virtregs in the second case.
11871  //
11872  // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
11873  // %5:gr32 = COPY $ebx
11874  // %6:gr32 = COPY $edx
11875  // %1:gr32 = COPY %6:gr32
11876  // %0:gr32 = COPY %5:gr32
11877  //
11878  // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
11879  // %1:gr32 = COPY %6:gr32
11880  // %0:gr32 = COPY %5:gr32
11881  //
11882  // Given %0, we'd like to return $ebx in the first case and %5 in the second.
11883  // Given %1, we'd like to return $edx in the first case and %6 in the second.
11884  //
11885  // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
11886  // to a single virtreg (such as %0). The remaining outputs monotonically
11887  // increase in virtreg number from there. If a callbr has no outputs, then it
11888  // should not have a corresponding callbr landingpad; in fact, the callbr
11889  // landingpad would not even be able to refer to such a callbr.
11890  static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
11891    MachineInstr *MI = MRI.def_begin(Reg)->getParent();
11892    // There is definitely at least one copy.
11893    assert(MI->getOpcode() == TargetOpcode::COPY &&
11894           "start of copy chain MUST be COPY");
11895    Reg = MI->getOperand(1).getReg();
11896    MI = MRI.def_begin(Reg)->getParent();
11897    // There may be an optional second copy.
11898    if (MI->getOpcode() == TargetOpcode::COPY) {
11899      assert(Reg.isVirtual() && "expected COPY of virtual register");
11900      Reg = MI->getOperand(1).getReg();
11901      assert(Reg.isPhysical() && "expected COPY of physical register");
11902      MI = MRI.def_begin(Reg)->getParent();
11903    }
11904    // The start of the chain must be an INLINEASM_BR.
11905    assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
11906           "end of copy chain MUST be INLINEASM_BR");
11907    return Reg;
11908  }
11909  
11910  // We must do this walk rather than the simpler
11911  //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
11912  // otherwise we will end up with copies of virtregs only valid along direct
11913  // edges.
11914  void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
11915    SmallVector<EVT, 8> ResultVTs;
11916    SmallVector<SDValue, 8> ResultValues;
11917    const auto *CBR =
11918        cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
11919  
11920    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11921    const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
11922    MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11923  
11924    unsigned InitialDef = FuncInfo.ValueMap[CBR];
11925    SDValue Chain = DAG.getRoot();
11926  
11927    // Re-parse the asm constraints string.
11928    TargetLowering::AsmOperandInfoVector TargetConstraints =
11929        TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
11930    for (auto &T : TargetConstraints) {
11931      SDISelAsmOperandInfo OpInfo(T);
11932      if (OpInfo.Type != InlineAsm::isOutput)
11933        continue;
11934  
11935      // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
11936      // individual constraint.
11937      TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
11938  
11939      switch (OpInfo.ConstraintType) {
11940      case TargetLowering::C_Register:
11941      case TargetLowering::C_RegisterClass: {
11942        // Fill in OpInfo.AssignedRegs.Regs.
11943        getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
11944  
11945        // getRegistersForValue may produce 1 to many registers based on whether
11946        // the OpInfo.ConstraintVT is legal on the target or not.
11947        for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) {
11948          Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
11949          if (Register::isPhysicalRegister(OriginalDef))
11950            FuncInfo.MBB->addLiveIn(OriginalDef);
11951          // Update the assigned registers to use the original defs.
11952          OpInfo.AssignedRegs.Regs[i] = OriginalDef;
11953        }
11954  
11955        SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
11956            DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
11957        ResultValues.push_back(V);
11958        ResultVTs.push_back(OpInfo.ConstraintVT);
11959        break;
11960      }
11961      case TargetLowering::C_Other: {
11962        SDValue Flag;
11963        SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
11964                                                    OpInfo, DAG);
11965        ++InitialDef;
11966        ResultValues.push_back(V);
11967        ResultVTs.push_back(OpInfo.ConstraintVT);
11968        break;
11969      }
11970      default:
11971        break;
11972      }
11973    }
11974    SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11975                            DAG.getVTList(ResultVTs), ResultValues);
11976    setValue(&I, V);
11977  }
11978