xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
33 #include "llvm/CodeGen/CodeGenCommonISel.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/RuntimeLibcalls.h"
47 #include "llvm/CodeGen/SelectionDAG.h"
48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
49 #include "llvm/CodeGen/StackMaps.h"
50 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
51 #include "llvm/CodeGen/TargetFrameLowering.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetOpcodes.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/WinEHFuncInfo.h"
57 #include "llvm/IR/Argument.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/CallingConv.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/ConstantRange.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfo.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/EHPersonalities.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GetElementPtrTypeIterator.h"
73 #include "llvm/IR/InlineAsm.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instructions.h"
76 #include "llvm/IR/IntrinsicInst.h"
77 #include "llvm/IR/Intrinsics.h"
78 #include "llvm/IR/IntrinsicsAArch64.h"
79 #include "llvm/IR/IntrinsicsAMDGPU.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Statepoint.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/Support/AtomicOrdering.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CommandLine.h"
94 #include "llvm/Support/Compiler.h"
95 #include "llvm/Support/Debug.h"
96 #include "llvm/Support/MathExtras.h"
97 #include "llvm/Support/raw_ostream.h"
98 #include "llvm/Target/TargetIntrinsicInfo.h"
99 #include "llvm/Target/TargetMachine.h"
100 #include "llvm/Target/TargetOptions.h"
101 #include "llvm/TargetParser/Triple.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <cstddef>
104 #include <iterator>
105 #include <limits>
106 #include <optional>
107 #include <tuple>
108 
109 using namespace llvm;
110 using namespace PatternMatch;
111 using namespace SwitchCG;
112 
113 #define DEBUG_TYPE "isel"
114 
115 /// LimitFloatPrecision - Generate low-precision inline sequences for
116 /// some float libcalls (6, 8 or 12 bits).
117 static unsigned LimitFloatPrecision;
118 
119 static cl::opt<bool>
120     InsertAssertAlign("insert-assert-align", cl::init(true),
121                       cl::desc("Insert the experimental `assertalign` node."),
122                       cl::ReallyHidden);
123 
124 static cl::opt<unsigned, true>
125     LimitFPPrecision("limit-float-precision",
126                      cl::desc("Generate low-precision inline sequences "
127                               "for some float libcalls"),
128                      cl::location(LimitFloatPrecision), cl::Hidden,
129                      cl::init(0));
130 
131 static cl::opt<unsigned> SwitchPeelThreshold(
132     "switch-peel-threshold", cl::Hidden, cl::init(66),
133     cl::desc("Set the case probability threshold for peeling the case from a "
134              "switch statement. A value greater than 100 will void this "
135              "optimization"));
136 
137 // Limit the width of DAG chains. This is important in general to prevent
138 // DAG-based analysis from blowing up. For example, alias analysis and
139 // load clustering may not complete in reasonable time. It is difficult to
140 // recognize and avoid this situation within each individual analysis, and
141 // future analyses are likely to have the same behavior. Limiting DAG width is
142 // the safe approach and will be especially important with global DAGs.
143 //
144 // MaxParallelChains default is arbitrarily high to avoid affecting
145 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
146 // sequence over this should have been converted to llvm.memcpy by the
147 // frontend. It is easy to induce this behavior with .ll code such as:
148 // %buffer = alloca [4096 x i8]
149 // %data = load [4096 x i8]* %argPtr
150 // store [4096 x i8] %data, [4096 x i8]* %buffer
151 static const unsigned MaxParallelChains = 64;
152 
153 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
154                                       const SDValue *Parts, unsigned NumParts,
155                                       MVT PartVT, EVT ValueVT, const Value *V,
156                                       SDValue InChain,
157                                       std::optional<CallingConv::ID> CC);
158 
159 /// getCopyFromParts - Create a value that contains the specified legal parts
160 /// combined into the value they represent.  If the parts combine to a type
161 /// larger than ValueVT then AssertOp can be used to specify whether the extra
162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
163 /// (ISD::AssertSext).
164 static SDValue
165 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
166                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
167                  SDValue InChain,
168                  std::optional<CallingConv::ID> CC = std::nullopt,
169                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
170   // Let the target assemble the parts if it wants to
171   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
172   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
173                                                    PartVT, ValueVT, CC))
174     return Val;
175 
176   if (ValueVT.isVector())
177     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
178                                   InChain, CC);
179 
180   assert(NumParts > 0 && "No parts to assemble!");
181   SDValue Val = Parts[0];
182 
183   if (NumParts > 1) {
184     // Assemble the value from multiple parts.
185     if (ValueVT.isInteger()) {
186       unsigned PartBits = PartVT.getSizeInBits();
187       unsigned ValueBits = ValueVT.getSizeInBits();
188 
189       // Assemble the power of 2 part.
190       unsigned RoundParts = llvm::bit_floor(NumParts);
191       unsigned RoundBits = PartBits * RoundParts;
192       EVT RoundVT = RoundBits == ValueBits ?
193         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
194       SDValue Lo, Hi;
195 
196       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
197 
198       if (RoundParts > 2) {
199         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
200                               InChain);
201         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
202                               PartVT, HalfVT, V, InChain);
203       } else {
204         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
205         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
206       }
207 
208       if (DAG.getDataLayout().isBigEndian())
209         std::swap(Lo, Hi);
210 
211       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
212 
213       if (RoundParts < NumParts) {
214         // Assemble the trailing non-power-of-2 part.
215         unsigned OddParts = NumParts - RoundParts;
216         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
217         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
218                               OddVT, V, InChain, CC);
219 
220         // Combine the round and odd parts.
221         Lo = Val;
222         if (DAG.getDataLayout().isBigEndian())
223           std::swap(Lo, Hi);
224         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
225         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
226         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
227                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
228                                          TLI.getShiftAmountTy(
229                                              TotalVT, DAG.getDataLayout())));
230         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
232       }
233     } else if (PartVT.isFloatingPoint()) {
234       // FP split into multiple FP parts (for ppcf128)
235       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236              "Unexpected split");
237       SDValue Lo, Hi;
238       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241         std::swap(Lo, Hi);
242       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243     } else {
244       // FP split into integer parts (soft fp)
245       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246              !PartVT.isVector() && "Unexpected split");
247       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
249                              InChain, CC);
250     }
251   }
252 
253   // There is now one part, held in Val.  Correct it to match ValueVT.
254   // PartEVT is the type of the register class that holds the value.
255   // ValueVT is the type of the inline asm operation.
256   EVT PartEVT = Val.getValueType();
257 
258   if (PartEVT == ValueVT)
259     return Val;
260 
261   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
262       ValueVT.bitsLT(PartEVT)) {
263     // For an FP value in an integer part, we need to truncate to the right
264     // width first.
265     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
266     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
267   }
268 
269   // Handle types that have the same size.
270   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
271     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
272 
273   // Handle types with different sizes.
274   if (PartEVT.isInteger() && ValueVT.isInteger()) {
275     if (ValueVT.bitsLT(PartEVT)) {
276       // For a truncate, see if we have any information to
277       // indicate whether the truncated bits will always be
278       // zero or sign-extension.
279       if (AssertOp)
280         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
281                           DAG.getValueType(ValueVT));
282       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
283     }
284     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
285   }
286 
287   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
288     // FP_ROUND's are always exact here.
289     if (ValueVT.bitsLT(Val.getValueType())) {
290 
291       SDValue NoChange =
292           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
293 
294       if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
295               llvm::Attribute::StrictFP)) {
296         return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
297                            DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
298                            NoChange);
299       }
300 
301       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
302     }
303 
304     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
305   }
306 
307   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
308   // then truncating.
309   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
310       ValueVT.bitsLT(PartEVT)) {
311     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
312     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
313   }
314 
315   report_fatal_error("Unknown mismatch in getCopyFromParts!");
316 }
317 
318 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
319                                               const Twine &ErrMsg) {
320   const Instruction *I = dyn_cast_or_null<Instruction>(V);
321   if (!V)
322     return Ctx.emitError(ErrMsg);
323 
324   const char *AsmError = ", possible invalid constraint for vector type";
325   if (const CallInst *CI = dyn_cast<CallInst>(I))
326     if (CI->isInlineAsm())
327       return Ctx.emitError(I, ErrMsg + AsmError);
328 
329   return Ctx.emitError(I, ErrMsg);
330 }
331 
332 /// getCopyFromPartsVector - Create a value that contains the specified legal
333 /// parts combined into the value they represent.  If the parts combine to a
334 /// type larger than ValueVT then AssertOp can be used to specify whether the
335 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
336 /// ValueVT (ISD::AssertSext).
337 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
338                                       const SDValue *Parts, unsigned NumParts,
339                                       MVT PartVT, EVT ValueVT, const Value *V,
340                                       SDValue InChain,
341                                       std::optional<CallingConv::ID> CallConv) {
342   assert(ValueVT.isVector() && "Not a vector value");
343   assert(NumParts > 0 && "No parts to assemble!");
344   const bool IsABIRegCopy = CallConv.has_value();
345 
346   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
347   SDValue Val = Parts[0];
348 
349   // Handle a multi-element vector.
350   if (NumParts > 1) {
351     EVT IntermediateVT;
352     MVT RegisterVT;
353     unsigned NumIntermediates;
354     unsigned NumRegs;
355 
356     if (IsABIRegCopy) {
357       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
358           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
359           NumIntermediates, RegisterVT);
360     } else {
361       NumRegs =
362           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
363                                      NumIntermediates, RegisterVT);
364     }
365 
366     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
367     NumParts = NumRegs; // Silence a compiler warning.
368     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
369     assert(RegisterVT.getSizeInBits() ==
370            Parts[0].getSimpleValueType().getSizeInBits() &&
371            "Part type sizes don't match!");
372 
373     // Assemble the parts into intermediate operands.
374     SmallVector<SDValue, 8> Ops(NumIntermediates);
375     if (NumIntermediates == NumParts) {
376       // If the register was not expanded, truncate or copy the value,
377       // as appropriate.
378       for (unsigned i = 0; i != NumParts; ++i)
379         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
380                                   V, InChain, CallConv);
381     } else if (NumParts > 0) {
382       // If the intermediate type was expanded, build the intermediate
383       // operands from the parts.
384       assert(NumParts % NumIntermediates == 0 &&
385              "Must expand into a divisible number of parts!");
386       unsigned Factor = NumParts / NumIntermediates;
387       for (unsigned i = 0; i != NumIntermediates; ++i)
388         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
389                                   IntermediateVT, V, InChain, CallConv);
390     }
391 
392     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
393     // intermediate operands.
394     EVT BuiltVectorTy =
395         IntermediateVT.isVector()
396             ? EVT::getVectorVT(
397                   *DAG.getContext(), IntermediateVT.getScalarType(),
398                   IntermediateVT.getVectorElementCount() * NumParts)
399             : EVT::getVectorVT(*DAG.getContext(),
400                                IntermediateVT.getScalarType(),
401                                NumIntermediates);
402     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
403                                                 : ISD::BUILD_VECTOR,
404                       DL, BuiltVectorTy, Ops);
405   }
406 
407   // There is now one part, held in Val.  Correct it to match ValueVT.
408   EVT PartEVT = Val.getValueType();
409 
410   if (PartEVT == ValueVT)
411     return Val;
412 
413   if (PartEVT.isVector()) {
414     // Vector/Vector bitcast.
415     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
416       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
417 
418     // If the parts vector has more elements than the value vector, then we
419     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
420     // Extract the elements we want.
421     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
422       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
423               ValueVT.getVectorElementCount().getKnownMinValue()) &&
424              (PartEVT.getVectorElementCount().isScalable() ==
425               ValueVT.getVectorElementCount().isScalable()) &&
426              "Cannot narrow, it would be a lossy transformation");
427       PartEVT =
428           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
429                            ValueVT.getVectorElementCount());
430       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
431                         DAG.getVectorIdxConstant(0, DL));
432       if (PartEVT == ValueVT)
433         return Val;
434       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
435         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
436 
437       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
438       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
439         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
440     }
441 
442     // Promoted vector extract
443     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
444   }
445 
446   // Trivial bitcast if the types are the same size and the destination
447   // vector type is legal.
448   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
449       TLI.isTypeLegal(ValueVT))
450     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
451 
452   if (ValueVT.getVectorNumElements() != 1) {
453      // Certain ABIs require that vectors are passed as integers. For vectors
454      // are the same size, this is an obvious bitcast.
455      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
456        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
457      } else if (ValueVT.bitsLT(PartEVT)) {
458        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
459        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
460        // Drop the extra bits.
461        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
462        return DAG.getBitcast(ValueVT, Val);
463      }
464 
465      diagnosePossiblyInvalidConstraint(
466          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
467      return DAG.getUNDEF(ValueVT);
468   }
469 
470   // Handle cases such as i8 -> <1 x i1>
471   EVT ValueSVT = ValueVT.getVectorElementType();
472   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
473     unsigned ValueSize = ValueSVT.getSizeInBits();
474     if (ValueSize == PartEVT.getSizeInBits()) {
475       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
476     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
477       // It's possible a scalar floating point type gets softened to integer and
478       // then promoted to a larger integer. If PartEVT is the larger integer
479       // we need to truncate it and then bitcast to the FP type.
480       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
481       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
482       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
483       Val = DAG.getBitcast(ValueSVT, Val);
484     } else {
485       Val = ValueVT.isFloatingPoint()
486                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
487                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
488     }
489   }
490 
491   return DAG.getBuildVector(ValueVT, DL, Val);
492 }
493 
494 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
495                                  SDValue Val, SDValue *Parts, unsigned NumParts,
496                                  MVT PartVT, const Value *V,
497                                  std::optional<CallingConv::ID> CallConv);
498 
499 /// getCopyToParts - Create a series of nodes that contain the specified value
500 /// split into legal parts.  If the parts contain more bits than Val, then, for
501 /// integers, ExtendKind can be used to specify how to generate the extra bits.
502 static void
503 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
504                unsigned NumParts, MVT PartVT, const Value *V,
505                std::optional<CallingConv::ID> CallConv = std::nullopt,
506                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
507   // Let the target split the parts if it wants to
508   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
509   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
510                                       CallConv))
511     return;
512   EVT ValueVT = Val.getValueType();
513 
514   // Handle the vector case separately.
515   if (ValueVT.isVector())
516     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
517                                 CallConv);
518 
519   unsigned OrigNumParts = NumParts;
520   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
521          "Copying to an illegal type!");
522 
523   if (NumParts == 0)
524     return;
525 
526   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
527   EVT PartEVT = PartVT;
528   if (PartEVT == ValueVT) {
529     assert(NumParts == 1 && "No-op copy with multiple parts!");
530     Parts[0] = Val;
531     return;
532   }
533 
534   unsigned PartBits = PartVT.getSizeInBits();
535   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
536     // If the parts cover more bits than the value has, promote the value.
537     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
538       assert(NumParts == 1 && "Do not know what to promote to!");
539       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
540     } else {
541       if (ValueVT.isFloatingPoint()) {
542         // FP values need to be bitcast, then extended if they are being put
543         // into a larger container.
544         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
545         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
546       }
547       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
548              ValueVT.isInteger() &&
549              "Unknown mismatch!");
550       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
551       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
552       if (PartVT == MVT::x86mmx)
553         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
554     }
555   } else if (PartBits == ValueVT.getSizeInBits()) {
556     // Different types of the same size.
557     assert(NumParts == 1 && PartEVT != ValueVT);
558     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
559   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
560     // If the parts cover less bits than value has, truncate the value.
561     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
562            ValueVT.isInteger() &&
563            "Unknown mismatch!");
564     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
565     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
566     if (PartVT == MVT::x86mmx)
567       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
568   }
569 
570   // The value may have changed - recompute ValueVT.
571   ValueVT = Val.getValueType();
572   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
573          "Failed to tile the value with PartVT!");
574 
575   if (NumParts == 1) {
576     if (PartEVT != ValueVT) {
577       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
578                                         "scalar-to-vector conversion failed");
579       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
580     }
581 
582     Parts[0] = Val;
583     return;
584   }
585 
586   // Expand the value into multiple parts.
587   if (NumParts & (NumParts - 1)) {
588     // The number of parts is not a power of 2.  Split off and copy the tail.
589     assert(PartVT.isInteger() && ValueVT.isInteger() &&
590            "Do not know what to expand to!");
591     unsigned RoundParts = llvm::bit_floor(NumParts);
592     unsigned RoundBits = RoundParts * PartBits;
593     unsigned OddParts = NumParts - RoundParts;
594     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
595       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
596 
597     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
598                    CallConv);
599 
600     if (DAG.getDataLayout().isBigEndian())
601       // The odd parts were reversed by getCopyToParts - unreverse them.
602       std::reverse(Parts + RoundParts, Parts + NumParts);
603 
604     NumParts = RoundParts;
605     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
606     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
607   }
608 
609   // The number of parts is a power of 2.  Repeatedly bisect the value using
610   // EXTRACT_ELEMENT.
611   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
612                          EVT::getIntegerVT(*DAG.getContext(),
613                                            ValueVT.getSizeInBits()),
614                          Val);
615 
616   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
617     for (unsigned i = 0; i < NumParts; i += StepSize) {
618       unsigned ThisBits = StepSize * PartBits / 2;
619       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
620       SDValue &Part0 = Parts[i];
621       SDValue &Part1 = Parts[i+StepSize/2];
622 
623       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
624                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
625       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
626                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
627 
628       if (ThisBits == PartBits && ThisVT != PartVT) {
629         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
630         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
631       }
632     }
633   }
634 
635   if (DAG.getDataLayout().isBigEndian())
636     std::reverse(Parts, Parts + OrigNumParts);
637 }
638 
639 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
640                                      const SDLoc &DL, EVT PartVT) {
641   if (!PartVT.isVector())
642     return SDValue();
643 
644   EVT ValueVT = Val.getValueType();
645   EVT PartEVT = PartVT.getVectorElementType();
646   EVT ValueEVT = ValueVT.getVectorElementType();
647   ElementCount PartNumElts = PartVT.getVectorElementCount();
648   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
649 
650   // We only support widening vectors with equivalent element types and
651   // fixed/scalable properties. If a target needs to widen a fixed-length type
652   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
653   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
654       PartNumElts.isScalable() != ValueNumElts.isScalable())
655     return SDValue();
656 
657   // Have a try for bf16 because some targets share its ABI with fp16.
658   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
659     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
660            "Cannot widen to illegal type");
661     Val = DAG.getNode(ISD::BITCAST, DL,
662                       ValueVT.changeVectorElementType(MVT::f16), Val);
663   } else if (PartEVT != ValueEVT) {
664     return SDValue();
665   }
666 
667   // Widening a scalable vector to another scalable vector is done by inserting
668   // the vector into a larger undef one.
669   if (PartNumElts.isScalable())
670     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
671                        Val, DAG.getVectorIdxConstant(0, DL));
672 
673   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
674   // undef elements.
675   SmallVector<SDValue, 16> Ops;
676   DAG.ExtractVectorElements(Val, Ops);
677   SDValue EltUndef = DAG.getUNDEF(PartEVT);
678   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
679 
680   // FIXME: Use CONCAT for 2x -> 4x.
681   return DAG.getBuildVector(PartVT, DL, Ops);
682 }
683 
684 /// getCopyToPartsVector - Create a series of nodes that contain the specified
685 /// value split into legal parts.
686 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
687                                  SDValue Val, SDValue *Parts, unsigned NumParts,
688                                  MVT PartVT, const Value *V,
689                                  std::optional<CallingConv::ID> CallConv) {
690   EVT ValueVT = Val.getValueType();
691   assert(ValueVT.isVector() && "Not a vector");
692   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
693   const bool IsABIRegCopy = CallConv.has_value();
694 
695   if (NumParts == 1) {
696     EVT PartEVT = PartVT;
697     if (PartEVT == ValueVT) {
698       // Nothing to do.
699     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
700       // Bitconvert vector->vector case.
701       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
702     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
703       Val = Widened;
704     } else if (PartVT.isVector() &&
705                PartEVT.getVectorElementType().bitsGE(
706                    ValueVT.getVectorElementType()) &&
707                PartEVT.getVectorElementCount() ==
708                    ValueVT.getVectorElementCount()) {
709 
710       // Promoted vector extract
711       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
712     } else if (PartEVT.isVector() &&
713                PartEVT.getVectorElementType() !=
714                    ValueVT.getVectorElementType() &&
715                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
716                    TargetLowering::TypeWidenVector) {
717       // Combination of widening and promotion.
718       EVT WidenVT =
719           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
720                            PartVT.getVectorElementCount());
721       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
722       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
723     } else {
724       // Don't extract an integer from a float vector. This can happen if the
725       // FP type gets softened to integer and then promoted. The promotion
726       // prevents it from being picked up by the earlier bitcast case.
727       if (ValueVT.getVectorElementCount().isScalar() &&
728           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
729         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
730                           DAG.getVectorIdxConstant(0, DL));
731       } else {
732         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
733         assert(PartVT.getFixedSizeInBits() > ValueSize &&
734                "lossy conversion of vector to scalar type");
735         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
736         Val = DAG.getBitcast(IntermediateType, Val);
737         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
738       }
739     }
740 
741     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
742     Parts[0] = Val;
743     return;
744   }
745 
746   // Handle a multi-element vector.
747   EVT IntermediateVT;
748   MVT RegisterVT;
749   unsigned NumIntermediates;
750   unsigned NumRegs;
751   if (IsABIRegCopy) {
752     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
753         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
754         RegisterVT);
755   } else {
756     NumRegs =
757         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
758                                    NumIntermediates, RegisterVT);
759   }
760 
761   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
762   NumParts = NumRegs; // Silence a compiler warning.
763   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
764 
765   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
766          "Mixing scalable and fixed vectors when copying in parts");
767 
768   std::optional<ElementCount> DestEltCnt;
769 
770   if (IntermediateVT.isVector())
771     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
772   else
773     DestEltCnt = ElementCount::getFixed(NumIntermediates);
774 
775   EVT BuiltVectorTy = EVT::getVectorVT(
776       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
777 
778   if (ValueVT == BuiltVectorTy) {
779     // Nothing to do.
780   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
781     // Bitconvert vector->vector case.
782     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
783   } else {
784     if (BuiltVectorTy.getVectorElementType().bitsGT(
785             ValueVT.getVectorElementType())) {
786       // Integer promotion.
787       ValueVT = EVT::getVectorVT(*DAG.getContext(),
788                                  BuiltVectorTy.getVectorElementType(),
789                                  ValueVT.getVectorElementCount());
790       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
791     }
792 
793     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
794       Val = Widened;
795     }
796   }
797 
798   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
799 
800   // Split the vector into intermediate operands.
801   SmallVector<SDValue, 8> Ops(NumIntermediates);
802   for (unsigned i = 0; i != NumIntermediates; ++i) {
803     if (IntermediateVT.isVector()) {
804       // This does something sensible for scalable vectors - see the
805       // definition of EXTRACT_SUBVECTOR for further details.
806       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
807       Ops[i] =
808           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
809                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
810     } else {
811       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
812                            DAG.getVectorIdxConstant(i, DL));
813     }
814   }
815 
816   // Split the intermediate operands into legal parts.
817   if (NumParts == NumIntermediates) {
818     // If the register was not expanded, promote or copy the value,
819     // as appropriate.
820     for (unsigned i = 0; i != NumParts; ++i)
821       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
822   } else if (NumParts > 0) {
823     // If the intermediate type was expanded, split each the value into
824     // legal parts.
825     assert(NumIntermediates != 0 && "division by zero");
826     assert(NumParts % NumIntermediates == 0 &&
827            "Must expand into a divisible number of parts!");
828     unsigned Factor = NumParts / NumIntermediates;
829     for (unsigned i = 0; i != NumIntermediates; ++i)
830       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
831                      CallConv);
832   }
833 }
834 
835 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
836                            EVT valuevt, std::optional<CallingConv::ID> CC)
837     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
838       RegCount(1, regs.size()), CallConv(CC) {}
839 
840 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
841                            const DataLayout &DL, unsigned Reg, Type *Ty,
842                            std::optional<CallingConv::ID> CC) {
843   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
844 
845   CallConv = CC;
846 
847   for (EVT ValueVT : ValueVTs) {
848     unsigned NumRegs =
849         isABIMangled()
850             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
851             : TLI.getNumRegisters(Context, ValueVT);
852     MVT RegisterVT =
853         isABIMangled()
854             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
855             : TLI.getRegisterType(Context, ValueVT);
856     for (unsigned i = 0; i != NumRegs; ++i)
857       Regs.push_back(Reg + i);
858     RegVTs.push_back(RegisterVT);
859     RegCount.push_back(NumRegs);
860     Reg += NumRegs;
861   }
862 }
863 
864 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
865                                       FunctionLoweringInfo &FuncInfo,
866                                       const SDLoc &dl, SDValue &Chain,
867                                       SDValue *Glue, const Value *V) const {
868   // A Value with type {} or [0 x %t] needs no registers.
869   if (ValueVTs.empty())
870     return SDValue();
871 
872   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
873 
874   // Assemble the legal parts into the final values.
875   SmallVector<SDValue, 4> Values(ValueVTs.size());
876   SmallVector<SDValue, 8> Parts;
877   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
878     // Copy the legal parts from the registers.
879     EVT ValueVT = ValueVTs[Value];
880     unsigned NumRegs = RegCount[Value];
881     MVT RegisterVT = isABIMangled()
882                          ? TLI.getRegisterTypeForCallingConv(
883                                *DAG.getContext(), *CallConv, RegVTs[Value])
884                          : RegVTs[Value];
885 
886     Parts.resize(NumRegs);
887     for (unsigned i = 0; i != NumRegs; ++i) {
888       SDValue P;
889       if (!Glue) {
890         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
891       } else {
892         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
893         *Glue = P.getValue(2);
894       }
895 
896       Chain = P.getValue(1);
897       Parts[i] = P;
898 
899       // If the source register was virtual and if we know something about it,
900       // add an assert node.
901       if (!Register::isVirtualRegister(Regs[Part + i]) ||
902           !RegisterVT.isInteger())
903         continue;
904 
905       const FunctionLoweringInfo::LiveOutInfo *LOI =
906         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
907       if (!LOI)
908         continue;
909 
910       unsigned RegSize = RegisterVT.getScalarSizeInBits();
911       unsigned NumSignBits = LOI->NumSignBits;
912       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
913 
914       if (NumZeroBits == RegSize) {
915         // The current value is a zero.
916         // Explicitly express that as it would be easier for
917         // optimizations to kick in.
918         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
919         continue;
920       }
921 
922       // FIXME: We capture more information than the dag can represent.  For
923       // now, just use the tightest assertzext/assertsext possible.
924       bool isSExt;
925       EVT FromVT(MVT::Other);
926       if (NumZeroBits) {
927         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
928         isSExt = false;
929       } else if (NumSignBits > 1) {
930         FromVT =
931             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
932         isSExt = true;
933       } else {
934         continue;
935       }
936       // Add an assertion node.
937       assert(FromVT != MVT::Other);
938       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
939                              RegisterVT, P, DAG.getValueType(FromVT));
940     }
941 
942     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
943                                      RegisterVT, ValueVT, V, Chain, CallConv);
944     Part += NumRegs;
945     Parts.clear();
946   }
947 
948   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
949 }
950 
951 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
952                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
953                                  const Value *V,
954                                  ISD::NodeType PreferredExtendType) const {
955   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
956   ISD::NodeType ExtendKind = PreferredExtendType;
957 
958   // Get the list of the values's legal parts.
959   unsigned NumRegs = Regs.size();
960   SmallVector<SDValue, 8> Parts(NumRegs);
961   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
962     unsigned NumParts = RegCount[Value];
963 
964     MVT RegisterVT = isABIMangled()
965                          ? TLI.getRegisterTypeForCallingConv(
966                                *DAG.getContext(), *CallConv, RegVTs[Value])
967                          : RegVTs[Value];
968 
969     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
970       ExtendKind = ISD::ZERO_EXTEND;
971 
972     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
973                    NumParts, RegisterVT, V, CallConv, ExtendKind);
974     Part += NumParts;
975   }
976 
977   // Copy the parts into the registers.
978   SmallVector<SDValue, 8> Chains(NumRegs);
979   for (unsigned i = 0; i != NumRegs; ++i) {
980     SDValue Part;
981     if (!Glue) {
982       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
983     } else {
984       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
985       *Glue = Part.getValue(1);
986     }
987 
988     Chains[i] = Part.getValue(0);
989   }
990 
991   if (NumRegs == 1 || Glue)
992     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
993     // flagged to it. That is the CopyToReg nodes and the user are considered
994     // a single scheduling unit. If we create a TokenFactor and return it as
995     // chain, then the TokenFactor is both a predecessor (operand) of the
996     // user as well as a successor (the TF operands are flagged to the user).
997     // c1, f1 = CopyToReg
998     // c2, f2 = CopyToReg
999     // c3     = TokenFactor c1, c2
1000     // ...
1001     //        = op c3, ..., f2
1002     Chain = Chains[NumRegs-1];
1003   else
1004     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1005 }
1006 
1007 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching,
1008                                         unsigned MatchingIdx, const SDLoc &dl,
1009                                         SelectionDAG &DAG,
1010                                         std::vector<SDValue> &Ops) const {
1011   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1012 
1013   InlineAsm::Flag Flag(Code, Regs.size());
1014   if (HasMatching)
1015     Flag.setMatchingOp(MatchingIdx);
1016   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1017     // Put the register class of the virtual registers in the flag word.  That
1018     // way, later passes can recompute register class constraints for inline
1019     // assembly as well as normal instructions.
1020     // Don't do this for tied operands that can use the regclass information
1021     // from the def.
1022     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1023     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1024     Flag.setRegClass(RC->getID());
1025   }
1026 
1027   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1028   Ops.push_back(Res);
1029 
1030   if (Code == InlineAsm::Kind::Clobber) {
1031     // Clobbers should always have a 1:1 mapping with registers, and may
1032     // reference registers that have illegal (e.g. vector) types. Hence, we
1033     // shouldn't try to apply any sort of splitting logic to them.
1034     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1035            "No 1:1 mapping from clobbers to regs?");
1036     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1037     (void)SP;
1038     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1039       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1040       assert(
1041           (Regs[I] != SP ||
1042            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1043           "If we clobbered the stack pointer, MFI should know about it.");
1044     }
1045     return;
1046   }
1047 
1048   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1049     MVT RegisterVT = RegVTs[Value];
1050     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1051                                            RegisterVT);
1052     for (unsigned i = 0; i != NumRegs; ++i) {
1053       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1054       unsigned TheReg = Regs[Reg++];
1055       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1056     }
1057   }
1058 }
1059 
1060 SmallVector<std::pair<unsigned, TypeSize>, 4>
1061 RegsForValue::getRegsAndSizes() const {
1062   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1063   unsigned I = 0;
1064   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1065     unsigned RegCount = std::get<0>(CountAndVT);
1066     MVT RegisterVT = std::get<1>(CountAndVT);
1067     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1068     for (unsigned E = I + RegCount; I != E; ++I)
1069       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1070   }
1071   return OutVec;
1072 }
1073 
1074 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1075                                AssumptionCache *ac,
1076                                const TargetLibraryInfo *li) {
1077   AA = aa;
1078   AC = ac;
1079   GFI = gfi;
1080   LibInfo = li;
1081   Context = DAG.getContext();
1082   LPadToCallSiteMap.clear();
1083   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1084   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1085       *DAG.getMachineFunction().getFunction().getParent());
1086 }
1087 
1088 void SelectionDAGBuilder::clear() {
1089   NodeMap.clear();
1090   UnusedArgNodeMap.clear();
1091   PendingLoads.clear();
1092   PendingExports.clear();
1093   PendingConstrainedFP.clear();
1094   PendingConstrainedFPStrict.clear();
1095   CurInst = nullptr;
1096   HasTailCall = false;
1097   SDNodeOrder = LowestSDNodeOrder;
1098   StatepointLowering.clear();
1099 }
1100 
1101 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1102   DanglingDebugInfoMap.clear();
1103 }
1104 
1105 // Update DAG root to include dependencies on Pending chains.
1106 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1107   SDValue Root = DAG.getRoot();
1108 
1109   if (Pending.empty())
1110     return Root;
1111 
1112   // Add current root to PendingChains, unless we already indirectly
1113   // depend on it.
1114   if (Root.getOpcode() != ISD::EntryToken) {
1115     unsigned i = 0, e = Pending.size();
1116     for (; i != e; ++i) {
1117       assert(Pending[i].getNode()->getNumOperands() > 1);
1118       if (Pending[i].getNode()->getOperand(0) == Root)
1119         break;  // Don't add the root if we already indirectly depend on it.
1120     }
1121 
1122     if (i == e)
1123       Pending.push_back(Root);
1124   }
1125 
1126   if (Pending.size() == 1)
1127     Root = Pending[0];
1128   else
1129     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1130 
1131   DAG.setRoot(Root);
1132   Pending.clear();
1133   return Root;
1134 }
1135 
1136 SDValue SelectionDAGBuilder::getMemoryRoot() {
1137   return updateRoot(PendingLoads);
1138 }
1139 
1140 SDValue SelectionDAGBuilder::getRoot() {
1141   // Chain up all pending constrained intrinsics together with all
1142   // pending loads, by simply appending them to PendingLoads and
1143   // then calling getMemoryRoot().
1144   PendingLoads.reserve(PendingLoads.size() +
1145                        PendingConstrainedFP.size() +
1146                        PendingConstrainedFPStrict.size());
1147   PendingLoads.append(PendingConstrainedFP.begin(),
1148                       PendingConstrainedFP.end());
1149   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1150                       PendingConstrainedFPStrict.end());
1151   PendingConstrainedFP.clear();
1152   PendingConstrainedFPStrict.clear();
1153   return getMemoryRoot();
1154 }
1155 
1156 SDValue SelectionDAGBuilder::getControlRoot() {
1157   // We need to emit pending fpexcept.strict constrained intrinsics,
1158   // so append them to the PendingExports list.
1159   PendingExports.append(PendingConstrainedFPStrict.begin(),
1160                         PendingConstrainedFPStrict.end());
1161   PendingConstrainedFPStrict.clear();
1162   return updateRoot(PendingExports);
1163 }
1164 
1165 void SelectionDAGBuilder::handleDebugDeclare(Value *Address,
1166                                              DILocalVariable *Variable,
1167                                              DIExpression *Expression,
1168                                              DebugLoc DL) {
1169   assert(Variable && "Missing variable");
1170 
1171   // Check if address has undef value.
1172   if (!Address || isa<UndefValue>(Address) ||
1173       (Address->use_empty() && !isa<Argument>(Address))) {
1174     LLVM_DEBUG(
1175         dbgs()
1176         << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1177     return;
1178   }
1179 
1180   bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1181 
1182   SDValue &N = NodeMap[Address];
1183   if (!N.getNode() && isa<Argument>(Address))
1184     // Check unused arguments map.
1185     N = UnusedArgNodeMap[Address];
1186   SDDbgValue *SDV;
1187   if (N.getNode()) {
1188     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1189       Address = BCI->getOperand(0);
1190     // Parameters are handled specially.
1191     auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1192     if (IsParameter && FINode) {
1193       // Byval parameter. We have a frame index at this point.
1194       SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1195                                       /*IsIndirect*/ true, DL, SDNodeOrder);
1196     } else if (isa<Argument>(Address)) {
1197       // Address is an argument, so try to emit its dbg value using
1198       // virtual register info from the FuncInfo.ValueMap.
1199       EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1200                                FuncArgumentDbgValueKind::Declare, N);
1201       return;
1202     } else {
1203       SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1204                             true, DL, SDNodeOrder);
1205     }
1206     DAG.AddDbgValue(SDV, IsParameter);
1207   } else {
1208     // If Address is an argument then try to emit its dbg value using
1209     // virtual register info from the FuncInfo.ValueMap.
1210     if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1211                                   FuncArgumentDbgValueKind::Declare, N)) {
1212       LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1213                         << " (could not emit func-arg dbg_value)\n");
1214     }
1215   }
1216   return;
1217 }
1218 
1219 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) {
1220   // Add SDDbgValue nodes for any var locs here. Do so before updating
1221   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1222   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1223     // Add SDDbgValue nodes for any var locs here. Do so before updating
1224     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1225     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1226          It != End; ++It) {
1227       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1228       dropDanglingDebugInfo(Var, It->Expr);
1229       if (It->Values.isKillLocation(It->Expr)) {
1230         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1231         continue;
1232       }
1233       SmallVector<Value *> Values(It->Values.location_ops());
1234       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1235                             It->Values.hasArgList())) {
1236         SmallVector<Value *, 4> Vals;
1237         for (Value *V : It->Values.location_ops())
1238           Vals.push_back(V);
1239         addDanglingDebugInfo(Vals,
1240                              FnVarLocs->getDILocalVariable(It->VariableID),
1241                              It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1242       }
1243     }
1244     // We must early-exit here to prevent any DPValues from being emitted below,
1245     // as we have just emitted the debug values resulting from assignment
1246     // tracking analysis, making any existing DPValues redundant (and probably
1247     // less correct).
1248     return;
1249   }
1250 
1251   // Is there is any debug-info attached to this instruction, in the form of
1252   // DPValue non-instruction debug-info records.
1253   for (DPValue &DPV : I.getDbgValueRange()) {
1254     DILocalVariable *Variable = DPV.getVariable();
1255     DIExpression *Expression = DPV.getExpression();
1256     dropDanglingDebugInfo(Variable, Expression);
1257 
1258     if (DPV.getType() == DPValue::LocationType::Declare) {
1259       if (FuncInfo.PreprocessedDPVDeclares.contains(&DPV))
1260         continue;
1261       LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DPV
1262                         << "\n");
1263       handleDebugDeclare(DPV.getVariableLocationOp(0), Variable, Expression,
1264                          DPV.getDebugLoc());
1265       continue;
1266     }
1267 
1268     // A DPValue with no locations is a kill location.
1269     SmallVector<Value *, 4> Values(DPV.location_ops());
1270     if (Values.empty()) {
1271       handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(),
1272                            SDNodeOrder);
1273       continue;
1274     }
1275 
1276     // A DPValue with an undef or absent location is also a kill location.
1277     if (llvm::any_of(Values,
1278                      [](Value *V) { return !V || isa<UndefValue>(V); })) {
1279       handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(),
1280                            SDNodeOrder);
1281       continue;
1282     }
1283 
1284     bool IsVariadic = DPV.hasArgList();
1285     if (!handleDebugValue(Values, Variable, Expression, DPV.getDebugLoc(),
1286                           SDNodeOrder, IsVariadic)) {
1287       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1288                            DPV.getDebugLoc(), SDNodeOrder);
1289     }
1290   }
1291 }
1292 
1293 void SelectionDAGBuilder::visit(const Instruction &I) {
1294   visitDbgInfo(I);
1295 
1296   // Set up outgoing PHI node register values before emitting the terminator.
1297   if (I.isTerminator()) {
1298     HandlePHINodesInSuccessorBlocks(I.getParent());
1299   }
1300 
1301   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1302   if (!isa<DbgInfoIntrinsic>(I))
1303     ++SDNodeOrder;
1304 
1305   CurInst = &I;
1306 
1307   // Set inserted listener only if required.
1308   bool NodeInserted = false;
1309   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1310   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1311   if (PCSectionsMD) {
1312     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1313         DAG, [&](SDNode *) { NodeInserted = true; });
1314   }
1315 
1316   visit(I.getOpcode(), I);
1317 
1318   if (!I.isTerminator() && !HasTailCall &&
1319       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1320     CopyToExportRegsIfNeeded(&I);
1321 
1322   // Handle metadata.
1323   if (PCSectionsMD) {
1324     auto It = NodeMap.find(&I);
1325     if (It != NodeMap.end()) {
1326       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1327     } else if (NodeInserted) {
1328       // This should not happen; if it does, don't let it go unnoticed so we can
1329       // fix it. Relevant visit*() function is probably missing a setValue().
1330       errs() << "warning: loosing !pcsections metadata ["
1331              << I.getModule()->getName() << "]\n";
1332       LLVM_DEBUG(I.dump());
1333       assert(false);
1334     }
1335   }
1336 
1337   CurInst = nullptr;
1338 }
1339 
1340 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1341   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1342 }
1343 
1344 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1345   // Note: this doesn't use InstVisitor, because it has to work with
1346   // ConstantExpr's in addition to instructions.
1347   switch (Opcode) {
1348   default: llvm_unreachable("Unknown instruction type encountered!");
1349     // Build the switch statement using the Instruction.def file.
1350 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1351     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1352 #include "llvm/IR/Instruction.def"
1353   }
1354 }
1355 
1356 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1357                                             DILocalVariable *Variable,
1358                                             DebugLoc DL, unsigned Order,
1359                                             SmallVectorImpl<Value *> &Values,
1360                                             DIExpression *Expression) {
1361   // For variadic dbg_values we will now insert an undef.
1362   // FIXME: We can potentially recover these!
1363   SmallVector<SDDbgOperand, 2> Locs;
1364   for (const Value *V : Values) {
1365     auto *Undef = UndefValue::get(V->getType());
1366     Locs.push_back(SDDbgOperand::fromConst(Undef));
1367   }
1368   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1369                                         /*IsIndirect=*/false, DL, Order,
1370                                         /*IsVariadic=*/true);
1371   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1372   return true;
1373 }
1374 
1375 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values,
1376                                                DILocalVariable *Var,
1377                                                DIExpression *Expr,
1378                                                bool IsVariadic, DebugLoc DL,
1379                                                unsigned Order) {
1380   if (IsVariadic) {
1381     handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1382     return;
1383   }
1384   // TODO: Dangling debug info will eventually either be resolved or produce
1385   // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1386   // between the original dbg.value location and its resolved DBG_VALUE,
1387   // which we should ideally fill with an extra Undef DBG_VALUE.
1388   assert(Values.size() == 1);
1389   DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1390 }
1391 
1392 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1393                                                 const DIExpression *Expr) {
1394   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1395     DIVariable *DanglingVariable = DDI.getVariable();
1396     DIExpression *DanglingExpr = DDI.getExpression();
1397     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1398       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1399                         << printDDI(nullptr, DDI) << "\n");
1400       return true;
1401     }
1402     return false;
1403   };
1404 
1405   for (auto &DDIMI : DanglingDebugInfoMap) {
1406     DanglingDebugInfoVector &DDIV = DDIMI.second;
1407 
1408     // If debug info is to be dropped, run it through final checks to see
1409     // whether it can be salvaged.
1410     for (auto &DDI : DDIV)
1411       if (isMatchingDbgValue(DDI))
1412         salvageUnresolvedDbgValue(DDIMI.first, DDI);
1413 
1414     erase_if(DDIV, isMatchingDbgValue);
1415   }
1416 }
1417 
1418 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1419 // generate the debug data structures now that we've seen its definition.
1420 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1421                                                    SDValue Val) {
1422   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1423   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1424     return;
1425 
1426   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1427   for (auto &DDI : DDIV) {
1428     DebugLoc DL = DDI.getDebugLoc();
1429     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1430     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1431     DILocalVariable *Variable = DDI.getVariable();
1432     DIExpression *Expr = DDI.getExpression();
1433     assert(Variable->isValidLocationForIntrinsic(DL) &&
1434            "Expected inlined-at fields to agree");
1435     SDDbgValue *SDV;
1436     if (Val.getNode()) {
1437       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1438       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1439       // we couldn't resolve it directly when examining the DbgValue intrinsic
1440       // in the first place we should not be more successful here). Unless we
1441       // have some test case that prove this to be correct we should avoid
1442       // calling EmitFuncArgumentDbgValue here.
1443       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1444                                     FuncArgumentDbgValueKind::Value, Val)) {
1445         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1446                           << printDDI(V, DDI) << "\n");
1447         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1448         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1449         // inserted after the definition of Val when emitting the instructions
1450         // after ISel. An alternative could be to teach
1451         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1452         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1453                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1454                    << ValSDNodeOrder << "\n");
1455         SDV = getDbgValue(Val, Variable, Expr, DL,
1456                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1457         DAG.AddDbgValue(SDV, false);
1458       } else
1459         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1460                           << printDDI(V, DDI)
1461                           << " in EmitFuncArgumentDbgValue\n");
1462     } else {
1463       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1464                         << "\n");
1465       auto Undef = UndefValue::get(V->getType());
1466       auto SDV =
1467           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1468       DAG.AddDbgValue(SDV, false);
1469     }
1470   }
1471   DDIV.clear();
1472 }
1473 
1474 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V,
1475                                                     DanglingDebugInfo &DDI) {
1476   // TODO: For the variadic implementation, instead of only checking the fail
1477   // state of `handleDebugValue`, we need know specifically which values were
1478   // invalid, so that we attempt to salvage only those values when processing
1479   // a DIArgList.
1480   const Value *OrigV = V;
1481   DILocalVariable *Var = DDI.getVariable();
1482   DIExpression *Expr = DDI.getExpression();
1483   DebugLoc DL = DDI.getDebugLoc();
1484   unsigned SDOrder = DDI.getSDNodeOrder();
1485 
1486   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1487   // that DW_OP_stack_value is desired.
1488   bool StackValue = true;
1489 
1490   // Can this Value can be encoded without any further work?
1491   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1492     return;
1493 
1494   // Attempt to salvage back through as many instructions as possible. Bail if
1495   // a non-instruction is seen, such as a constant expression or global
1496   // variable. FIXME: Further work could recover those too.
1497   while (isa<Instruction>(V)) {
1498     const Instruction &VAsInst = *cast<const Instruction>(V);
1499     // Temporary "0", awaiting real implementation.
1500     SmallVector<uint64_t, 16> Ops;
1501     SmallVector<Value *, 4> AdditionalValues;
1502     V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1503                              Expr->getNumLocationOperands(), Ops,
1504                              AdditionalValues);
1505     // If we cannot salvage any further, and haven't yet found a suitable debug
1506     // expression, bail out.
1507     if (!V)
1508       break;
1509 
1510     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1511     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1512     // here for variadic dbg_values, remove that condition.
1513     if (!AdditionalValues.empty())
1514       break;
1515 
1516     // New value and expr now represent this debuginfo.
1517     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1518 
1519     // Some kind of simplification occurred: check whether the operand of the
1520     // salvaged debug expression can be encoded in this DAG.
1521     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1522       LLVM_DEBUG(
1523           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1524                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1525       return;
1526     }
1527   }
1528 
1529   // This was the final opportunity to salvage this debug information, and it
1530   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1531   // any earlier variable location.
1532   assert(OrigV && "V shouldn't be null");
1533   auto *Undef = UndefValue::get(OrigV->getType());
1534   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1535   DAG.AddDbgValue(SDV, false);
1536   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  "
1537                     << printDDI(OrigV, DDI) << "\n");
1538 }
1539 
1540 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1541                                                DIExpression *Expr,
1542                                                DebugLoc DbgLoc,
1543                                                unsigned Order) {
1544   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1545   DIExpression *NewExpr =
1546       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1547   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1548                    /*IsVariadic*/ false);
1549 }
1550 
1551 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1552                                            DILocalVariable *Var,
1553                                            DIExpression *Expr, DebugLoc DbgLoc,
1554                                            unsigned Order, bool IsVariadic) {
1555   if (Values.empty())
1556     return true;
1557 
1558   // Filter EntryValue locations out early.
1559   if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1560     return true;
1561 
1562   SmallVector<SDDbgOperand> LocationOps;
1563   SmallVector<SDNode *> Dependencies;
1564   for (const Value *V : Values) {
1565     // Constant value.
1566     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1567         isa<ConstantPointerNull>(V)) {
1568       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1569       continue;
1570     }
1571 
1572     // Look through IntToPtr constants.
1573     if (auto *CE = dyn_cast<ConstantExpr>(V))
1574       if (CE->getOpcode() == Instruction::IntToPtr) {
1575         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1576         continue;
1577       }
1578 
1579     // If the Value is a frame index, we can create a FrameIndex debug value
1580     // without relying on the DAG at all.
1581     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1582       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1583       if (SI != FuncInfo.StaticAllocaMap.end()) {
1584         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1585         continue;
1586       }
1587     }
1588 
1589     // Do not use getValue() in here; we don't want to generate code at
1590     // this point if it hasn't been done yet.
1591     SDValue N = NodeMap[V];
1592     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1593       N = UnusedArgNodeMap[V];
1594     if (N.getNode()) {
1595       // Only emit func arg dbg value for non-variadic dbg.values for now.
1596       if (!IsVariadic &&
1597           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1598                                    FuncArgumentDbgValueKind::Value, N))
1599         return true;
1600       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1601         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1602         // describe stack slot locations.
1603         //
1604         // Consider "int x = 0; int *px = &x;". There are two kinds of
1605         // interesting debug values here after optimization:
1606         //
1607         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1608         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1609         //
1610         // Both describe the direct values of their associated variables.
1611         Dependencies.push_back(N.getNode());
1612         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1613         continue;
1614       }
1615       LocationOps.emplace_back(
1616           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1617       continue;
1618     }
1619 
1620     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1621     // Special rules apply for the first dbg.values of parameter variables in a
1622     // function. Identify them by the fact they reference Argument Values, that
1623     // they're parameters, and they are parameters of the current function. We
1624     // need to let them dangle until they get an SDNode.
1625     bool IsParamOfFunc =
1626         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1627     if (IsParamOfFunc)
1628       return false;
1629 
1630     // The value is not used in this block yet (or it would have an SDNode).
1631     // We still want the value to appear for the user if possible -- if it has
1632     // an associated VReg, we can refer to that instead.
1633     auto VMI = FuncInfo.ValueMap.find(V);
1634     if (VMI != FuncInfo.ValueMap.end()) {
1635       unsigned Reg = VMI->second;
1636       // If this is a PHI node, it may be split up into several MI PHI nodes
1637       // (in FunctionLoweringInfo::set).
1638       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1639                        V->getType(), std::nullopt);
1640       if (RFV.occupiesMultipleRegs()) {
1641         // FIXME: We could potentially support variadic dbg_values here.
1642         if (IsVariadic)
1643           return false;
1644         unsigned Offset = 0;
1645         unsigned BitsToDescribe = 0;
1646         if (auto VarSize = Var->getSizeInBits())
1647           BitsToDescribe = *VarSize;
1648         if (auto Fragment = Expr->getFragmentInfo())
1649           BitsToDescribe = Fragment->SizeInBits;
1650         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1651           // Bail out if all bits are described already.
1652           if (Offset >= BitsToDescribe)
1653             break;
1654           // TODO: handle scalable vectors.
1655           unsigned RegisterSize = RegAndSize.second;
1656           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1657                                       ? BitsToDescribe - Offset
1658                                       : RegisterSize;
1659           auto FragmentExpr = DIExpression::createFragmentExpression(
1660               Expr, Offset, FragmentSize);
1661           if (!FragmentExpr)
1662             continue;
1663           SDDbgValue *SDV = DAG.getVRegDbgValue(
1664               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1665           DAG.AddDbgValue(SDV, false);
1666           Offset += RegisterSize;
1667         }
1668         return true;
1669       }
1670       // We can use simple vreg locations for variadic dbg_values as well.
1671       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1672       continue;
1673     }
1674     // We failed to create a SDDbgOperand for V.
1675     return false;
1676   }
1677 
1678   // We have created a SDDbgOperand for each Value in Values.
1679   // Should use Order instead of SDNodeOrder?
1680   assert(!LocationOps.empty());
1681   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1682                                         /*IsIndirect=*/false, DbgLoc,
1683                                         SDNodeOrder, IsVariadic);
1684   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1685   return true;
1686 }
1687 
1688 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1689   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1690   for (auto &Pair : DanglingDebugInfoMap)
1691     for (auto &DDI : Pair.second)
1692       salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1693   clearDanglingDebugInfo();
1694 }
1695 
1696 /// getCopyFromRegs - If there was virtual register allocated for the value V
1697 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1698 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1699   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1700   SDValue Result;
1701 
1702   if (It != FuncInfo.ValueMap.end()) {
1703     Register InReg = It->second;
1704 
1705     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1706                      DAG.getDataLayout(), InReg, Ty,
1707                      std::nullopt); // This is not an ABI copy.
1708     SDValue Chain = DAG.getEntryNode();
1709     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1710                                  V);
1711     resolveDanglingDebugInfo(V, Result);
1712   }
1713 
1714   return Result;
1715 }
1716 
1717 /// getValue - Return an SDValue for the given Value.
1718 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1719   // If we already have an SDValue for this value, use it. It's important
1720   // to do this first, so that we don't create a CopyFromReg if we already
1721   // have a regular SDValue.
1722   SDValue &N = NodeMap[V];
1723   if (N.getNode()) return N;
1724 
1725   // If there's a virtual register allocated and initialized for this
1726   // value, use it.
1727   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1728     return copyFromReg;
1729 
1730   // Otherwise create a new SDValue and remember it.
1731   SDValue Val = getValueImpl(V);
1732   NodeMap[V] = Val;
1733   resolveDanglingDebugInfo(V, Val);
1734   return Val;
1735 }
1736 
1737 /// getNonRegisterValue - Return an SDValue for the given Value, but
1738 /// don't look in FuncInfo.ValueMap for a virtual register.
1739 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1740   // If we already have an SDValue for this value, use it.
1741   SDValue &N = NodeMap[V];
1742   if (N.getNode()) {
1743     if (isIntOrFPConstant(N)) {
1744       // Remove the debug location from the node as the node is about to be used
1745       // in a location which may differ from the original debug location.  This
1746       // is relevant to Constant and ConstantFP nodes because they can appear
1747       // as constant expressions inside PHI nodes.
1748       N->setDebugLoc(DebugLoc());
1749     }
1750     return N;
1751   }
1752 
1753   // Otherwise create a new SDValue and remember it.
1754   SDValue Val = getValueImpl(V);
1755   NodeMap[V] = Val;
1756   resolveDanglingDebugInfo(V, Val);
1757   return Val;
1758 }
1759 
1760 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1761 /// Create an SDValue for the given value.
1762 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1763   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1764 
1765   if (const Constant *C = dyn_cast<Constant>(V)) {
1766     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1767 
1768     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1769       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1770 
1771     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1772       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1773 
1774     if (isa<ConstantPointerNull>(C)) {
1775       unsigned AS = V->getType()->getPointerAddressSpace();
1776       return DAG.getConstant(0, getCurSDLoc(),
1777                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1778     }
1779 
1780     if (match(C, m_VScale()))
1781       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1782 
1783     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1784       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1785 
1786     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1787       return DAG.getUNDEF(VT);
1788 
1789     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1790       visit(CE->getOpcode(), *CE);
1791       SDValue N1 = NodeMap[V];
1792       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1793       return N1;
1794     }
1795 
1796     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1797       SmallVector<SDValue, 4> Constants;
1798       for (const Use &U : C->operands()) {
1799         SDNode *Val = getValue(U).getNode();
1800         // If the operand is an empty aggregate, there are no values.
1801         if (!Val) continue;
1802         // Add each leaf value from the operand to the Constants list
1803         // to form a flattened list of all the values.
1804         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1805           Constants.push_back(SDValue(Val, i));
1806       }
1807 
1808       return DAG.getMergeValues(Constants, getCurSDLoc());
1809     }
1810 
1811     if (const ConstantDataSequential *CDS =
1812           dyn_cast<ConstantDataSequential>(C)) {
1813       SmallVector<SDValue, 4> Ops;
1814       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1815         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1816         // Add each leaf value from the operand to the Constants list
1817         // to form a flattened list of all the values.
1818         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1819           Ops.push_back(SDValue(Val, i));
1820       }
1821 
1822       if (isa<ArrayType>(CDS->getType()))
1823         return DAG.getMergeValues(Ops, getCurSDLoc());
1824       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1825     }
1826 
1827     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1828       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1829              "Unknown struct or array constant!");
1830 
1831       SmallVector<EVT, 4> ValueVTs;
1832       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1833       unsigned NumElts = ValueVTs.size();
1834       if (NumElts == 0)
1835         return SDValue(); // empty struct
1836       SmallVector<SDValue, 4> Constants(NumElts);
1837       for (unsigned i = 0; i != NumElts; ++i) {
1838         EVT EltVT = ValueVTs[i];
1839         if (isa<UndefValue>(C))
1840           Constants[i] = DAG.getUNDEF(EltVT);
1841         else if (EltVT.isFloatingPoint())
1842           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1843         else
1844           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1845       }
1846 
1847       return DAG.getMergeValues(Constants, getCurSDLoc());
1848     }
1849 
1850     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1851       return DAG.getBlockAddress(BA, VT);
1852 
1853     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1854       return getValue(Equiv->getGlobalValue());
1855 
1856     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1857       return getValue(NC->getGlobalValue());
1858 
1859     if (VT == MVT::aarch64svcount) {
1860       assert(C->isNullValue() && "Can only zero this target type!");
1861       return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1862                          DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1863     }
1864 
1865     VectorType *VecTy = cast<VectorType>(V->getType());
1866 
1867     // Now that we know the number and type of the elements, get that number of
1868     // elements into the Ops array based on what kind of constant it is.
1869     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1870       SmallVector<SDValue, 16> Ops;
1871       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1872       for (unsigned i = 0; i != NumElements; ++i)
1873         Ops.push_back(getValue(CV->getOperand(i)));
1874 
1875       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1876     }
1877 
1878     if (isa<ConstantAggregateZero>(C)) {
1879       EVT EltVT =
1880           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1881 
1882       SDValue Op;
1883       if (EltVT.isFloatingPoint())
1884         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1885       else
1886         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1887 
1888       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1889     }
1890 
1891     llvm_unreachable("Unknown vector constant");
1892   }
1893 
1894   // If this is a static alloca, generate it as the frameindex instead of
1895   // computation.
1896   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1897     DenseMap<const AllocaInst*, int>::iterator SI =
1898       FuncInfo.StaticAllocaMap.find(AI);
1899     if (SI != FuncInfo.StaticAllocaMap.end())
1900       return DAG.getFrameIndex(
1901           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1902   }
1903 
1904   // If this is an instruction which fast-isel has deferred, select it now.
1905   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1906     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1907 
1908     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1909                      Inst->getType(), std::nullopt);
1910     SDValue Chain = DAG.getEntryNode();
1911     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1912   }
1913 
1914   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1915     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1916 
1917   if (const auto *BB = dyn_cast<BasicBlock>(V))
1918     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1919 
1920   llvm_unreachable("Can't get register for value!");
1921 }
1922 
1923 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1924   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1925   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1926   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1927   bool IsSEH = isAsynchronousEHPersonality(Pers);
1928   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1929   if (!IsSEH)
1930     CatchPadMBB->setIsEHScopeEntry();
1931   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1932   if (IsMSVCCXX || IsCoreCLR)
1933     CatchPadMBB->setIsEHFuncletEntry();
1934 }
1935 
1936 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1937   // Update machine-CFG edge.
1938   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1939   FuncInfo.MBB->addSuccessor(TargetMBB);
1940   TargetMBB->setIsEHCatchretTarget(true);
1941   DAG.getMachineFunction().setHasEHCatchret(true);
1942 
1943   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1944   bool IsSEH = isAsynchronousEHPersonality(Pers);
1945   if (IsSEH) {
1946     // If this is not a fall-through branch or optimizations are switched off,
1947     // emit the branch.
1948     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1949         TM.getOptLevel() == CodeGenOptLevel::None)
1950       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1951                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1952     return;
1953   }
1954 
1955   // Figure out the funclet membership for the catchret's successor.
1956   // This will be used by the FuncletLayout pass to determine how to order the
1957   // BB's.
1958   // A 'catchret' returns to the outer scope's color.
1959   Value *ParentPad = I.getCatchSwitchParentPad();
1960   const BasicBlock *SuccessorColor;
1961   if (isa<ConstantTokenNone>(ParentPad))
1962     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1963   else
1964     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1965   assert(SuccessorColor && "No parent funclet for catchret!");
1966   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1967   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1968 
1969   // Create the terminator node.
1970   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1971                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1972                             DAG.getBasicBlock(SuccessorColorMBB));
1973   DAG.setRoot(Ret);
1974 }
1975 
1976 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1977   // Don't emit any special code for the cleanuppad instruction. It just marks
1978   // the start of an EH scope/funclet.
1979   FuncInfo.MBB->setIsEHScopeEntry();
1980   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1981   if (Pers != EHPersonality::Wasm_CXX) {
1982     FuncInfo.MBB->setIsEHFuncletEntry();
1983     FuncInfo.MBB->setIsCleanupFuncletEntry();
1984   }
1985 }
1986 
1987 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1988 // not match, it is OK to add only the first unwind destination catchpad to the
1989 // successors, because there will be at least one invoke instruction within the
1990 // catch scope that points to the next unwind destination, if one exists, so
1991 // CFGSort cannot mess up with BB sorting order.
1992 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1993 // call within them, and catchpads only consisting of 'catch (...)' have a
1994 // '__cxa_end_catch' call within them, both of which generate invokes in case
1995 // the next unwind destination exists, i.e., the next unwind destination is not
1996 // the caller.)
1997 //
1998 // Having at most one EH pad successor is also simpler and helps later
1999 // transformations.
2000 //
2001 // For example,
2002 // current:
2003 //   invoke void @foo to ... unwind label %catch.dispatch
2004 // catch.dispatch:
2005 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
2006 // catch.start:
2007 //   ...
2008 //   ... in this BB or some other child BB dominated by this BB there will be an
2009 //   invoke that points to 'next' BB as an unwind destination
2010 //
2011 // next: ; We don't need to add this to 'current' BB's successor
2012 //   ...
2013 static void findWasmUnwindDestinations(
2014     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2015     BranchProbability Prob,
2016     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2017         &UnwindDests) {
2018   while (EHPadBB) {
2019     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2020     if (isa<CleanupPadInst>(Pad)) {
2021       // Stop on cleanup pads.
2022       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2023       UnwindDests.back().first->setIsEHScopeEntry();
2024       break;
2025     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2026       // Add the catchpad handlers to the possible destinations. We don't
2027       // continue to the unwind destination of the catchswitch for wasm.
2028       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2029         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2030         UnwindDests.back().first->setIsEHScopeEntry();
2031       }
2032       break;
2033     } else {
2034       continue;
2035     }
2036   }
2037 }
2038 
2039 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
2040 /// many places it could ultimately go. In the IR, we have a single unwind
2041 /// destination, but in the machine CFG, we enumerate all the possible blocks.
2042 /// This function skips over imaginary basic blocks that hold catchswitch
2043 /// instructions, and finds all the "real" machine
2044 /// basic block destinations. As those destinations may not be successors of
2045 /// EHPadBB, here we also calculate the edge probability to those destinations.
2046 /// The passed-in Prob is the edge probability to EHPadBB.
2047 static void findUnwindDestinations(
2048     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2049     BranchProbability Prob,
2050     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2051         &UnwindDests) {
2052   EHPersonality Personality =
2053     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2054   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2055   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2056   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2057   bool IsSEH = isAsynchronousEHPersonality(Personality);
2058 
2059   if (IsWasmCXX) {
2060     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
2061     assert(UnwindDests.size() <= 1 &&
2062            "There should be at most one unwind destination for wasm");
2063     return;
2064   }
2065 
2066   while (EHPadBB) {
2067     const Instruction *Pad = EHPadBB->getFirstNonPHI();
2068     BasicBlock *NewEHPadBB = nullptr;
2069     if (isa<LandingPadInst>(Pad)) {
2070       // Stop on landingpads. They are not funclets.
2071       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2072       break;
2073     } else if (isa<CleanupPadInst>(Pad)) {
2074       // Stop on cleanup pads. Cleanups are always funclet entries for all known
2075       // personalities.
2076       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
2077       UnwindDests.back().first->setIsEHScopeEntry();
2078       UnwindDests.back().first->setIsEHFuncletEntry();
2079       break;
2080     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2081       // Add the catchpad handlers to the possible destinations.
2082       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2083         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
2084         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2085         if (IsMSVCCXX || IsCoreCLR)
2086           UnwindDests.back().first->setIsEHFuncletEntry();
2087         if (!IsSEH)
2088           UnwindDests.back().first->setIsEHScopeEntry();
2089       }
2090       NewEHPadBB = CatchSwitch->getUnwindDest();
2091     } else {
2092       continue;
2093     }
2094 
2095     BranchProbabilityInfo *BPI = FuncInfo.BPI;
2096     if (BPI && NewEHPadBB)
2097       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2098     EHPadBB = NewEHPadBB;
2099   }
2100 }
2101 
2102 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2103   // Update successor info.
2104   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2105   auto UnwindDest = I.getUnwindDest();
2106   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2107   BranchProbability UnwindDestProb =
2108       (BPI && UnwindDest)
2109           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2110           : BranchProbability::getZero();
2111   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2112   for (auto &UnwindDest : UnwindDests) {
2113     UnwindDest.first->setIsEHPad();
2114     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2115   }
2116   FuncInfo.MBB->normalizeSuccProbs();
2117 
2118   // Create the terminator node.
2119   SDValue Ret =
2120       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
2121   DAG.setRoot(Ret);
2122 }
2123 
2124 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2125   report_fatal_error("visitCatchSwitch not yet implemented!");
2126 }
2127 
2128 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2129   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2130   auto &DL = DAG.getDataLayout();
2131   SDValue Chain = getControlRoot();
2132   SmallVector<ISD::OutputArg, 8> Outs;
2133   SmallVector<SDValue, 8> OutVals;
2134 
2135   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2136   // lower
2137   //
2138   //   %val = call <ty> @llvm.experimental.deoptimize()
2139   //   ret <ty> %val
2140   //
2141   // differently.
2142   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2143     LowerDeoptimizingReturn();
2144     return;
2145   }
2146 
2147   if (!FuncInfo.CanLowerReturn) {
2148     unsigned DemoteReg = FuncInfo.DemoteRegister;
2149     const Function *F = I.getParent()->getParent();
2150 
2151     // Emit a store of the return value through the virtual register.
2152     // Leave Outs empty so that LowerReturn won't try to load return
2153     // registers the usual way.
2154     SmallVector<EVT, 1> PtrValueVTs;
2155     ComputeValueVTs(TLI, DL,
2156                     PointerType::get(F->getContext(),
2157                                      DAG.getDataLayout().getAllocaAddrSpace()),
2158                     PtrValueVTs);
2159 
2160     SDValue RetPtr =
2161         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2162     SDValue RetOp = getValue(I.getOperand(0));
2163 
2164     SmallVector<EVT, 4> ValueVTs, MemVTs;
2165     SmallVector<uint64_t, 4> Offsets;
2166     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2167                     &Offsets, 0);
2168     unsigned NumValues = ValueVTs.size();
2169 
2170     SmallVector<SDValue, 4> Chains(NumValues);
2171     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2172     for (unsigned i = 0; i != NumValues; ++i) {
2173       // An aggregate return value cannot wrap around the address space, so
2174       // offsets to its parts don't wrap either.
2175       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2176                                            TypeSize::getFixed(Offsets[i]));
2177 
2178       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2179       if (MemVTs[i] != ValueVTs[i])
2180         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2181       Chains[i] = DAG.getStore(
2182           Chain, getCurSDLoc(), Val,
2183           // FIXME: better loc info would be nice.
2184           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2185           commonAlignment(BaseAlign, Offsets[i]));
2186     }
2187 
2188     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2189                         MVT::Other, Chains);
2190   } else if (I.getNumOperands() != 0) {
2191     SmallVector<EVT, 4> ValueVTs;
2192     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2193     unsigned NumValues = ValueVTs.size();
2194     if (NumValues) {
2195       SDValue RetOp = getValue(I.getOperand(0));
2196 
2197       const Function *F = I.getParent()->getParent();
2198 
2199       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2200           I.getOperand(0)->getType(), F->getCallingConv(),
2201           /*IsVarArg*/ false, DL);
2202 
2203       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2204       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2205         ExtendKind = ISD::SIGN_EXTEND;
2206       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2207         ExtendKind = ISD::ZERO_EXTEND;
2208 
2209       LLVMContext &Context = F->getContext();
2210       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2211 
2212       for (unsigned j = 0; j != NumValues; ++j) {
2213         EVT VT = ValueVTs[j];
2214 
2215         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2216           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2217 
2218         CallingConv::ID CC = F->getCallingConv();
2219 
2220         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2221         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2222         SmallVector<SDValue, 4> Parts(NumParts);
2223         getCopyToParts(DAG, getCurSDLoc(),
2224                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2225                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2226 
2227         // 'inreg' on function refers to return value
2228         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2229         if (RetInReg)
2230           Flags.setInReg();
2231 
2232         if (I.getOperand(0)->getType()->isPointerTy()) {
2233           Flags.setPointer();
2234           Flags.setPointerAddrSpace(
2235               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2236         }
2237 
2238         if (NeedsRegBlock) {
2239           Flags.setInConsecutiveRegs();
2240           if (j == NumValues - 1)
2241             Flags.setInConsecutiveRegsLast();
2242         }
2243 
2244         // Propagate extension type if any
2245         if (ExtendKind == ISD::SIGN_EXTEND)
2246           Flags.setSExt();
2247         else if (ExtendKind == ISD::ZERO_EXTEND)
2248           Flags.setZExt();
2249 
2250         for (unsigned i = 0; i < NumParts; ++i) {
2251           Outs.push_back(ISD::OutputArg(Flags,
2252                                         Parts[i].getValueType().getSimpleVT(),
2253                                         VT, /*isfixed=*/true, 0, 0));
2254           OutVals.push_back(Parts[i]);
2255         }
2256       }
2257     }
2258   }
2259 
2260   // Push in swifterror virtual register as the last element of Outs. This makes
2261   // sure swifterror virtual register will be returned in the swifterror
2262   // physical register.
2263   const Function *F = I.getParent()->getParent();
2264   if (TLI.supportSwiftError() &&
2265       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2266     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2267     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2268     Flags.setSwiftError();
2269     Outs.push_back(ISD::OutputArg(
2270         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2271         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2272     // Create SDNode for the swifterror virtual register.
2273     OutVals.push_back(
2274         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2275                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2276                         EVT(TLI.getPointerTy(DL))));
2277   }
2278 
2279   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2280   CallingConv::ID CallConv =
2281     DAG.getMachineFunction().getFunction().getCallingConv();
2282   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2283       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2284 
2285   // Verify that the target's LowerReturn behaved as expected.
2286   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2287          "LowerReturn didn't return a valid chain!");
2288 
2289   // Update the DAG with the new chain value resulting from return lowering.
2290   DAG.setRoot(Chain);
2291 }
2292 
2293 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2294 /// created for it, emit nodes to copy the value into the virtual
2295 /// registers.
2296 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2297   // Skip empty types
2298   if (V->getType()->isEmptyTy())
2299     return;
2300 
2301   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2302   if (VMI != FuncInfo.ValueMap.end()) {
2303     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2304            "Unused value assigned virtual registers!");
2305     CopyValueToVirtualRegister(V, VMI->second);
2306   }
2307 }
2308 
2309 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2310 /// the current basic block, add it to ValueMap now so that we'll get a
2311 /// CopyTo/FromReg.
2312 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2313   // No need to export constants.
2314   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2315 
2316   // Already exported?
2317   if (FuncInfo.isExportedInst(V)) return;
2318 
2319   Register Reg = FuncInfo.InitializeRegForValue(V);
2320   CopyValueToVirtualRegister(V, Reg);
2321 }
2322 
2323 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2324                                                      const BasicBlock *FromBB) {
2325   // The operands of the setcc have to be in this block.  We don't know
2326   // how to export them from some other block.
2327   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2328     // Can export from current BB.
2329     if (VI->getParent() == FromBB)
2330       return true;
2331 
2332     // Is already exported, noop.
2333     return FuncInfo.isExportedInst(V);
2334   }
2335 
2336   // If this is an argument, we can export it if the BB is the entry block or
2337   // if it is already exported.
2338   if (isa<Argument>(V)) {
2339     if (FromBB->isEntryBlock())
2340       return true;
2341 
2342     // Otherwise, can only export this if it is already exported.
2343     return FuncInfo.isExportedInst(V);
2344   }
2345 
2346   // Otherwise, constants can always be exported.
2347   return true;
2348 }
2349 
2350 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2351 BranchProbability
2352 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2353                                         const MachineBasicBlock *Dst) const {
2354   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2355   const BasicBlock *SrcBB = Src->getBasicBlock();
2356   const BasicBlock *DstBB = Dst->getBasicBlock();
2357   if (!BPI) {
2358     // If BPI is not available, set the default probability as 1 / N, where N is
2359     // the number of successors.
2360     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2361     return BranchProbability(1, SuccSize);
2362   }
2363   return BPI->getEdgeProbability(SrcBB, DstBB);
2364 }
2365 
2366 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2367                                                MachineBasicBlock *Dst,
2368                                                BranchProbability Prob) {
2369   if (!FuncInfo.BPI)
2370     Src->addSuccessorWithoutProb(Dst);
2371   else {
2372     if (Prob.isUnknown())
2373       Prob = getEdgeProbability(Src, Dst);
2374     Src->addSuccessor(Dst, Prob);
2375   }
2376 }
2377 
2378 static bool InBlock(const Value *V, const BasicBlock *BB) {
2379   if (const Instruction *I = dyn_cast<Instruction>(V))
2380     return I->getParent() == BB;
2381   return true;
2382 }
2383 
2384 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2385 /// This function emits a branch and is used at the leaves of an OR or an
2386 /// AND operator tree.
2387 void
2388 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2389                                                   MachineBasicBlock *TBB,
2390                                                   MachineBasicBlock *FBB,
2391                                                   MachineBasicBlock *CurBB,
2392                                                   MachineBasicBlock *SwitchBB,
2393                                                   BranchProbability TProb,
2394                                                   BranchProbability FProb,
2395                                                   bool InvertCond) {
2396   const BasicBlock *BB = CurBB->getBasicBlock();
2397 
2398   // If the leaf of the tree is a comparison, merge the condition into
2399   // the caseblock.
2400   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2401     // The operands of the cmp have to be in this block.  We don't know
2402     // how to export them from some other block.  If this is the first block
2403     // of the sequence, no exporting is needed.
2404     if (CurBB == SwitchBB ||
2405         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2406          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2407       ISD::CondCode Condition;
2408       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2409         ICmpInst::Predicate Pred =
2410             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2411         Condition = getICmpCondCode(Pred);
2412       } else {
2413         const FCmpInst *FC = cast<FCmpInst>(Cond);
2414         FCmpInst::Predicate Pred =
2415             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2416         Condition = getFCmpCondCode(Pred);
2417         if (TM.Options.NoNaNsFPMath)
2418           Condition = getFCmpCodeWithoutNaN(Condition);
2419       }
2420 
2421       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2422                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2423       SL->SwitchCases.push_back(CB);
2424       return;
2425     }
2426   }
2427 
2428   // Create a CaseBlock record representing this branch.
2429   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2430   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2431                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2432   SL->SwitchCases.push_back(CB);
2433 }
2434 
2435 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2436                                                MachineBasicBlock *TBB,
2437                                                MachineBasicBlock *FBB,
2438                                                MachineBasicBlock *CurBB,
2439                                                MachineBasicBlock *SwitchBB,
2440                                                Instruction::BinaryOps Opc,
2441                                                BranchProbability TProb,
2442                                                BranchProbability FProb,
2443                                                bool InvertCond) {
2444   // Skip over not part of the tree and remember to invert op and operands at
2445   // next level.
2446   Value *NotCond;
2447   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2448       InBlock(NotCond, CurBB->getBasicBlock())) {
2449     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2450                          !InvertCond);
2451     return;
2452   }
2453 
2454   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2455   const Value *BOpOp0, *BOpOp1;
2456   // Compute the effective opcode for Cond, taking into account whether it needs
2457   // to be inverted, e.g.
2458   //   and (not (or A, B)), C
2459   // gets lowered as
2460   //   and (and (not A, not B), C)
2461   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2462   if (BOp) {
2463     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2464                ? Instruction::And
2465                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2466                       ? Instruction::Or
2467                       : (Instruction::BinaryOps)0);
2468     if (InvertCond) {
2469       if (BOpc == Instruction::And)
2470         BOpc = Instruction::Or;
2471       else if (BOpc == Instruction::Or)
2472         BOpc = Instruction::And;
2473     }
2474   }
2475 
2476   // If this node is not part of the or/and tree, emit it as a branch.
2477   // Note that all nodes in the tree should have same opcode.
2478   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2479   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2480       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2481       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2482     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2483                                  TProb, FProb, InvertCond);
2484     return;
2485   }
2486 
2487   //  Create TmpBB after CurBB.
2488   MachineFunction::iterator BBI(CurBB);
2489   MachineFunction &MF = DAG.getMachineFunction();
2490   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2491   CurBB->getParent()->insert(++BBI, TmpBB);
2492 
2493   if (Opc == Instruction::Or) {
2494     // Codegen X | Y as:
2495     // BB1:
2496     //   jmp_if_X TBB
2497     //   jmp TmpBB
2498     // TmpBB:
2499     //   jmp_if_Y TBB
2500     //   jmp FBB
2501     //
2502 
2503     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2504     // The requirement is that
2505     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2506     //     = TrueProb for original BB.
2507     // Assuming the original probabilities are A and B, one choice is to set
2508     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2509     // A/(1+B) and 2B/(1+B). This choice assumes that
2510     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2511     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2512     // TmpBB, but the math is more complicated.
2513 
2514     auto NewTrueProb = TProb / 2;
2515     auto NewFalseProb = TProb / 2 + FProb;
2516     // Emit the LHS condition.
2517     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2518                          NewFalseProb, InvertCond);
2519 
2520     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2521     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2522     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2523     // Emit the RHS condition into TmpBB.
2524     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2525                          Probs[1], InvertCond);
2526   } else {
2527     assert(Opc == Instruction::And && "Unknown merge op!");
2528     // Codegen X & Y as:
2529     // BB1:
2530     //   jmp_if_X TmpBB
2531     //   jmp FBB
2532     // TmpBB:
2533     //   jmp_if_Y TBB
2534     //   jmp FBB
2535     //
2536     //  This requires creation of TmpBB after CurBB.
2537 
2538     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2539     // The requirement is that
2540     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2541     //     = FalseProb for original BB.
2542     // Assuming the original probabilities are A and B, one choice is to set
2543     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2544     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2545     // TrueProb for BB1 * FalseProb for TmpBB.
2546 
2547     auto NewTrueProb = TProb + FProb / 2;
2548     auto NewFalseProb = FProb / 2;
2549     // Emit the LHS condition.
2550     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2551                          NewFalseProb, InvertCond);
2552 
2553     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2554     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2555     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2556     // Emit the RHS condition into TmpBB.
2557     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2558                          Probs[1], InvertCond);
2559   }
2560 }
2561 
2562 /// If the set of cases should be emitted as a series of branches, return true.
2563 /// If we should emit this as a bunch of and/or'd together conditions, return
2564 /// false.
2565 bool
2566 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2567   if (Cases.size() != 2) return true;
2568 
2569   // If this is two comparisons of the same values or'd or and'd together, they
2570   // will get folded into a single comparison, so don't emit two blocks.
2571   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2572        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2573       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2574        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2575     return false;
2576   }
2577 
2578   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2579   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2580   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2581       Cases[0].CC == Cases[1].CC &&
2582       isa<Constant>(Cases[0].CmpRHS) &&
2583       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2584     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2585       return false;
2586     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2587       return false;
2588   }
2589 
2590   return true;
2591 }
2592 
2593 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2594   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2595 
2596   // Update machine-CFG edges.
2597   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2598 
2599   if (I.isUnconditional()) {
2600     // Update machine-CFG edges.
2601     BrMBB->addSuccessor(Succ0MBB);
2602 
2603     // If this is not a fall-through branch or optimizations are switched off,
2604     // emit the branch.
2605     if (Succ0MBB != NextBlock(BrMBB) ||
2606         TM.getOptLevel() == CodeGenOptLevel::None) {
2607       auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2608                             getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2609       setValue(&I, Br);
2610       DAG.setRoot(Br);
2611     }
2612 
2613     return;
2614   }
2615 
2616   // If this condition is one of the special cases we handle, do special stuff
2617   // now.
2618   const Value *CondVal = I.getCondition();
2619   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2620 
2621   // If this is a series of conditions that are or'd or and'd together, emit
2622   // this as a sequence of branches instead of setcc's with and/or operations.
2623   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2624   // unpredictable branches, and vector extracts because those jumps are likely
2625   // expensive for any target), this should improve performance.
2626   // For example, instead of something like:
2627   //     cmp A, B
2628   //     C = seteq
2629   //     cmp D, E
2630   //     F = setle
2631   //     or C, F
2632   //     jnz foo
2633   // Emit:
2634   //     cmp A, B
2635   //     je foo
2636   //     cmp D, E
2637   //     jle foo
2638   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2639   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2640       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2641     Value *Vec;
2642     const Value *BOp0, *BOp1;
2643     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2644     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2645       Opcode = Instruction::And;
2646     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2647       Opcode = Instruction::Or;
2648 
2649     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2650                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2651       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2652                            getEdgeProbability(BrMBB, Succ0MBB),
2653                            getEdgeProbability(BrMBB, Succ1MBB),
2654                            /*InvertCond=*/false);
2655       // If the compares in later blocks need to use values not currently
2656       // exported from this block, export them now.  This block should always
2657       // be the first entry.
2658       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2659 
2660       // Allow some cases to be rejected.
2661       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2662         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2663           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2664           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2665         }
2666 
2667         // Emit the branch for this block.
2668         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2669         SL->SwitchCases.erase(SL->SwitchCases.begin());
2670         return;
2671       }
2672 
2673       // Okay, we decided not to do this, remove any inserted MBB's and clear
2674       // SwitchCases.
2675       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2676         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2677 
2678       SL->SwitchCases.clear();
2679     }
2680   }
2681 
2682   // Create a CaseBlock record representing this branch.
2683   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2684                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2685 
2686   // Use visitSwitchCase to actually insert the fast branch sequence for this
2687   // cond branch.
2688   visitSwitchCase(CB, BrMBB);
2689 }
2690 
2691 /// visitSwitchCase - Emits the necessary code to represent a single node in
2692 /// the binary search tree resulting from lowering a switch instruction.
2693 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2694                                           MachineBasicBlock *SwitchBB) {
2695   SDValue Cond;
2696   SDValue CondLHS = getValue(CB.CmpLHS);
2697   SDLoc dl = CB.DL;
2698 
2699   if (CB.CC == ISD::SETTRUE) {
2700     // Branch or fall through to TrueBB.
2701     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2702     SwitchBB->normalizeSuccProbs();
2703     if (CB.TrueBB != NextBlock(SwitchBB)) {
2704       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2705                               DAG.getBasicBlock(CB.TrueBB)));
2706     }
2707     return;
2708   }
2709 
2710   auto &TLI = DAG.getTargetLoweringInfo();
2711   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2712 
2713   // Build the setcc now.
2714   if (!CB.CmpMHS) {
2715     // Fold "(X == true)" to X and "(X == false)" to !X to
2716     // handle common cases produced by branch lowering.
2717     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2718         CB.CC == ISD::SETEQ)
2719       Cond = CondLHS;
2720     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2721              CB.CC == ISD::SETEQ) {
2722       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2723       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2724     } else {
2725       SDValue CondRHS = getValue(CB.CmpRHS);
2726 
2727       // If a pointer's DAG type is larger than its memory type then the DAG
2728       // values are zero-extended. This breaks signed comparisons so truncate
2729       // back to the underlying type before doing the compare.
2730       if (CondLHS.getValueType() != MemVT) {
2731         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2732         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2733       }
2734       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2735     }
2736   } else {
2737     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2738 
2739     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2740     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2741 
2742     SDValue CmpOp = getValue(CB.CmpMHS);
2743     EVT VT = CmpOp.getValueType();
2744 
2745     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2746       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2747                           ISD::SETLE);
2748     } else {
2749       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2750                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2751       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2752                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2753     }
2754   }
2755 
2756   // Update successor info
2757   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2758   // TrueBB and FalseBB are always different unless the incoming IR is
2759   // degenerate. This only happens when running llc on weird IR.
2760   if (CB.TrueBB != CB.FalseBB)
2761     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2762   SwitchBB->normalizeSuccProbs();
2763 
2764   // If the lhs block is the next block, invert the condition so that we can
2765   // fall through to the lhs instead of the rhs block.
2766   if (CB.TrueBB == NextBlock(SwitchBB)) {
2767     std::swap(CB.TrueBB, CB.FalseBB);
2768     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2769     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2770   }
2771 
2772   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2773                                MVT::Other, getControlRoot(), Cond,
2774                                DAG.getBasicBlock(CB.TrueBB));
2775 
2776   setValue(CurInst, BrCond);
2777 
2778   // Insert the false branch. Do this even if it's a fall through branch,
2779   // this makes it easier to do DAG optimizations which require inverting
2780   // the branch condition.
2781   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2782                        DAG.getBasicBlock(CB.FalseBB));
2783 
2784   DAG.setRoot(BrCond);
2785 }
2786 
2787 /// visitJumpTable - Emit JumpTable node in the current MBB
2788 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2789   // Emit the code for the jump table
2790   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2791   assert(JT.Reg != -1U && "Should lower JT Header first!");
2792   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2793   SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
2794   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2795   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
2796                                     Index.getValue(1), Table, Index);
2797   DAG.setRoot(BrJumpTable);
2798 }
2799 
2800 /// visitJumpTableHeader - This function emits necessary code to produce index
2801 /// in the JumpTable from switch case.
2802 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2803                                                JumpTableHeader &JTH,
2804                                                MachineBasicBlock *SwitchBB) {
2805   assert(JT.SL && "Should set SDLoc for SelectionDAG!");
2806   const SDLoc &dl = *JT.SL;
2807 
2808   // Subtract the lowest switch case value from the value being switched on.
2809   SDValue SwitchOp = getValue(JTH.SValue);
2810   EVT VT = SwitchOp.getValueType();
2811   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2812                             DAG.getConstant(JTH.First, dl, VT));
2813 
2814   // The SDNode we just created, which holds the value being switched on minus
2815   // the smallest case value, needs to be copied to a virtual register so it
2816   // can be used as an index into the jump table in a subsequent basic block.
2817   // This value may be smaller or larger than the target's pointer type, and
2818   // therefore require extension or truncating.
2819   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2820   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2821 
2822   unsigned JumpTableReg =
2823       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2824   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2825                                     JumpTableReg, SwitchOp);
2826   JT.Reg = JumpTableReg;
2827 
2828   if (!JTH.FallthroughUnreachable) {
2829     // Emit the range check for the jump table, and branch to the default block
2830     // for the switch statement if the value being switched on exceeds the
2831     // largest case in the switch.
2832     SDValue CMP = DAG.getSetCC(
2833         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2834                                    Sub.getValueType()),
2835         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2836 
2837     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2838                                  MVT::Other, CopyTo, CMP,
2839                                  DAG.getBasicBlock(JT.Default));
2840 
2841     // Avoid emitting unnecessary branches to the next block.
2842     if (JT.MBB != NextBlock(SwitchBB))
2843       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2844                            DAG.getBasicBlock(JT.MBB));
2845 
2846     DAG.setRoot(BrCond);
2847   } else {
2848     // Avoid emitting unnecessary branches to the next block.
2849     if (JT.MBB != NextBlock(SwitchBB))
2850       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2851                               DAG.getBasicBlock(JT.MBB)));
2852     else
2853       DAG.setRoot(CopyTo);
2854   }
2855 }
2856 
2857 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2858 /// variable if there exists one.
2859 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2860                                  SDValue &Chain) {
2861   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2862   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2863   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2864   MachineFunction &MF = DAG.getMachineFunction();
2865   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2866   MachineSDNode *Node =
2867       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2868   if (Global) {
2869     MachinePointerInfo MPInfo(Global);
2870     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2871                  MachineMemOperand::MODereferenceable;
2872     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2873         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2874     DAG.setNodeMemRefs(Node, {MemRef});
2875   }
2876   if (PtrTy != PtrMemTy)
2877     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2878   return SDValue(Node, 0);
2879 }
2880 
2881 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2882 /// tail spliced into a stack protector check success bb.
2883 ///
2884 /// For a high level explanation of how this fits into the stack protector
2885 /// generation see the comment on the declaration of class
2886 /// StackProtectorDescriptor.
2887 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2888                                                   MachineBasicBlock *ParentBB) {
2889 
2890   // First create the loads to the guard/stack slot for the comparison.
2891   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2892   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2893   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2894 
2895   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2896   int FI = MFI.getStackProtectorIndex();
2897 
2898   SDValue Guard;
2899   SDLoc dl = getCurSDLoc();
2900   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2901   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2902   Align Align =
2903       DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0));
2904 
2905   // Generate code to load the content of the guard slot.
2906   SDValue GuardVal = DAG.getLoad(
2907       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2908       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2909       MachineMemOperand::MOVolatile);
2910 
2911   if (TLI.useStackGuardXorFP())
2912     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2913 
2914   // Retrieve guard check function, nullptr if instrumentation is inlined.
2915   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2916     // The target provides a guard check function to validate the guard value.
2917     // Generate a call to that function with the content of the guard slot as
2918     // argument.
2919     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2920     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2921 
2922     TargetLowering::ArgListTy Args;
2923     TargetLowering::ArgListEntry Entry;
2924     Entry.Node = GuardVal;
2925     Entry.Ty = FnTy->getParamType(0);
2926     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2927       Entry.IsInReg = true;
2928     Args.push_back(Entry);
2929 
2930     TargetLowering::CallLoweringInfo CLI(DAG);
2931     CLI.setDebugLoc(getCurSDLoc())
2932         .setChain(DAG.getEntryNode())
2933         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2934                    getValue(GuardCheckFn), std::move(Args));
2935 
2936     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2937     DAG.setRoot(Result.second);
2938     return;
2939   }
2940 
2941   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2942   // Otherwise, emit a volatile load to retrieve the stack guard value.
2943   SDValue Chain = DAG.getEntryNode();
2944   if (TLI.useLoadStackGuardNode()) {
2945     Guard = getLoadStackGuard(DAG, dl, Chain);
2946   } else {
2947     const Value *IRGuard = TLI.getSDagStackGuard(M);
2948     SDValue GuardPtr = getValue(IRGuard);
2949 
2950     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2951                         MachinePointerInfo(IRGuard, 0), Align,
2952                         MachineMemOperand::MOVolatile);
2953   }
2954 
2955   // Perform the comparison via a getsetcc.
2956   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2957                                                         *DAG.getContext(),
2958                                                         Guard.getValueType()),
2959                              Guard, GuardVal, ISD::SETNE);
2960 
2961   // If the guard/stackslot do not equal, branch to failure MBB.
2962   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2963                                MVT::Other, GuardVal.getOperand(0),
2964                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2965   // Otherwise branch to success MBB.
2966   SDValue Br = DAG.getNode(ISD::BR, dl,
2967                            MVT::Other, BrCond,
2968                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2969 
2970   DAG.setRoot(Br);
2971 }
2972 
2973 /// Codegen the failure basic block for a stack protector check.
2974 ///
2975 /// A failure stack protector machine basic block consists simply of a call to
2976 /// __stack_chk_fail().
2977 ///
2978 /// For a high level explanation of how this fits into the stack protector
2979 /// generation see the comment on the declaration of class
2980 /// StackProtectorDescriptor.
2981 void
2982 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2983   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2984   TargetLowering::MakeLibCallOptions CallOptions;
2985   CallOptions.setDiscardResult(true);
2986   SDValue Chain =
2987       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2988                       std::nullopt, CallOptions, getCurSDLoc())
2989           .second;
2990   // On PS4/PS5, the "return address" must still be within the calling
2991   // function, even if it's at the very end, so emit an explicit TRAP here.
2992   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2993   if (TM.getTargetTriple().isPS())
2994     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2995   // WebAssembly needs an unreachable instruction after a non-returning call,
2996   // because the function return type can be different from __stack_chk_fail's
2997   // return type (void).
2998   if (TM.getTargetTriple().isWasm())
2999     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3000 
3001   DAG.setRoot(Chain);
3002 }
3003 
3004 /// visitBitTestHeader - This function emits necessary code to produce value
3005 /// suitable for "bit tests"
3006 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
3007                                              MachineBasicBlock *SwitchBB) {
3008   SDLoc dl = getCurSDLoc();
3009 
3010   // Subtract the minimum value.
3011   SDValue SwitchOp = getValue(B.SValue);
3012   EVT VT = SwitchOp.getValueType();
3013   SDValue RangeSub =
3014       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3015 
3016   // Determine the type of the test operands.
3017   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3018   bool UsePtrType = false;
3019   if (!TLI.isTypeLegal(VT)) {
3020     UsePtrType = true;
3021   } else {
3022     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
3023       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
3024         // Switch table case range are encoded into series of masks.
3025         // Just use pointer type, it's guaranteed to fit.
3026         UsePtrType = true;
3027         break;
3028       }
3029   }
3030   SDValue Sub = RangeSub;
3031   if (UsePtrType) {
3032     VT = TLI.getPointerTy(DAG.getDataLayout());
3033     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3034   }
3035 
3036   B.RegVT = VT.getSimpleVT();
3037   B.Reg = FuncInfo.CreateReg(B.RegVT);
3038   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3039 
3040   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3041 
3042   if (!B.FallthroughUnreachable)
3043     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3044   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3045   SwitchBB->normalizeSuccProbs();
3046 
3047   SDValue Root = CopyTo;
3048   if (!B.FallthroughUnreachable) {
3049     // Conditional branch to the default block.
3050     SDValue RangeCmp = DAG.getSetCC(dl,
3051         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3052                                RangeSub.getValueType()),
3053         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3054         ISD::SETUGT);
3055 
3056     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3057                        DAG.getBasicBlock(B.Default));
3058   }
3059 
3060   // Avoid emitting unnecessary branches to the next block.
3061   if (MBB != NextBlock(SwitchBB))
3062     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3063 
3064   DAG.setRoot(Root);
3065 }
3066 
3067 /// visitBitTestCase - this function produces one "bit test"
3068 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
3069                                            MachineBasicBlock* NextMBB,
3070                                            BranchProbability BranchProbToNext,
3071                                            unsigned Reg,
3072                                            BitTestCase &B,
3073                                            MachineBasicBlock *SwitchBB) {
3074   SDLoc dl = getCurSDLoc();
3075   MVT VT = BB.RegVT;
3076   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3077   SDValue Cmp;
3078   unsigned PopCount = llvm::popcount(B.Mask);
3079   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3080   if (PopCount == 1) {
3081     // Testing for a single bit; just compare the shift count with what it
3082     // would need to be to shift a 1 bit in that position.
3083     Cmp = DAG.getSetCC(
3084         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3085         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3086         ISD::SETEQ);
3087   } else if (PopCount == BB.Range) {
3088     // There is only one zero bit in the range, test for it directly.
3089     Cmp = DAG.getSetCC(
3090         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3091         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3092   } else {
3093     // Make desired shift
3094     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3095                                     DAG.getConstant(1, dl, VT), ShiftOp);
3096 
3097     // Emit bit tests and jumps
3098     SDValue AndOp = DAG.getNode(ISD::AND, dl,
3099                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3100     Cmp = DAG.getSetCC(
3101         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3102         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3103   }
3104 
3105   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3106   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3107   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3108   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3109   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3110   // one as they are relative probabilities (and thus work more like weights),
3111   // and hence we need to normalize them to let the sum of them become one.
3112   SwitchBB->normalizeSuccProbs();
3113 
3114   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3115                               MVT::Other, getControlRoot(),
3116                               Cmp, DAG.getBasicBlock(B.TargetBB));
3117 
3118   // Avoid emitting unnecessary branches to the next block.
3119   if (NextMBB != NextBlock(SwitchBB))
3120     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3121                         DAG.getBasicBlock(NextMBB));
3122 
3123   DAG.setRoot(BrAnd);
3124 }
3125 
3126 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3127   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3128 
3129   // Retrieve successors. Look through artificial IR level blocks like
3130   // catchswitch for successors.
3131   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
3132   const BasicBlock *EHPadBB = I.getSuccessor(1);
3133   MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB];
3134 
3135   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3136   // have to do anything here to lower funclet bundles.
3137   assert(!I.hasOperandBundlesOtherThan(
3138              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3139               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3140               LLVMContext::OB_cfguardtarget,
3141               LLVMContext::OB_clang_arc_attachedcall}) &&
3142          "Cannot lower invokes with arbitrary operand bundles yet!");
3143 
3144   const Value *Callee(I.getCalledOperand());
3145   const Function *Fn = dyn_cast<Function>(Callee);
3146   if (isa<InlineAsm>(Callee))
3147     visitInlineAsm(I, EHPadBB);
3148   else if (Fn && Fn->isIntrinsic()) {
3149     switch (Fn->getIntrinsicID()) {
3150     default:
3151       llvm_unreachable("Cannot invoke this intrinsic");
3152     case Intrinsic::donothing:
3153       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3154     case Intrinsic::seh_try_begin:
3155     case Intrinsic::seh_scope_begin:
3156     case Intrinsic::seh_try_end:
3157     case Intrinsic::seh_scope_end:
3158       if (EHPadMBB)
3159           // a block referenced by EH table
3160           // so dtor-funclet not removed by opts
3161           EHPadMBB->setMachineBlockAddressTaken();
3162       break;
3163     case Intrinsic::experimental_patchpoint_void:
3164     case Intrinsic::experimental_patchpoint_i64:
3165       visitPatchpoint(I, EHPadBB);
3166       break;
3167     case Intrinsic::experimental_gc_statepoint:
3168       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3169       break;
3170     case Intrinsic::wasm_rethrow: {
3171       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3172       // special because it can be invoked, so we manually lower it to a DAG
3173       // node here.
3174       SmallVector<SDValue, 8> Ops;
3175       Ops.push_back(getRoot()); // inchain
3176       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3177       Ops.push_back(
3178           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3179                                 TLI.getPointerTy(DAG.getDataLayout())));
3180       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3181       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3182       break;
3183     }
3184     }
3185   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3186     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3187     // Eventually we will support lowering the @llvm.experimental.deoptimize
3188     // intrinsic, and right now there are no plans to support other intrinsics
3189     // with deopt state.
3190     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3191   } else {
3192     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3193   }
3194 
3195   // If the value of the invoke is used outside of its defining block, make it
3196   // available as a virtual register.
3197   // We already took care of the exported value for the statepoint instruction
3198   // during call to the LowerStatepoint.
3199   if (!isa<GCStatepointInst>(I)) {
3200     CopyToExportRegsIfNeeded(&I);
3201   }
3202 
3203   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3204   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3205   BranchProbability EHPadBBProb =
3206       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3207           : BranchProbability::getZero();
3208   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3209 
3210   // Update successor info.
3211   addSuccessorWithProb(InvokeMBB, Return);
3212   for (auto &UnwindDest : UnwindDests) {
3213     UnwindDest.first->setIsEHPad();
3214     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3215   }
3216   InvokeMBB->normalizeSuccProbs();
3217 
3218   // Drop into normal successor.
3219   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3220                           DAG.getBasicBlock(Return)));
3221 }
3222 
3223 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3224   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3225 
3226   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3227   // have to do anything here to lower funclet bundles.
3228   assert(!I.hasOperandBundlesOtherThan(
3229              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3230          "Cannot lower callbrs with arbitrary operand bundles yet!");
3231 
3232   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3233   visitInlineAsm(I);
3234   CopyToExportRegsIfNeeded(&I);
3235 
3236   // Retrieve successors.
3237   SmallPtrSet<BasicBlock *, 8> Dests;
3238   Dests.insert(I.getDefaultDest());
3239   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3240 
3241   // Update successor info.
3242   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3243   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3244     BasicBlock *Dest = I.getIndirectDest(i);
3245     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3246     Target->setIsInlineAsmBrIndirectTarget();
3247     Target->setMachineBlockAddressTaken();
3248     Target->setLabelMustBeEmitted();
3249     // Don't add duplicate machine successors.
3250     if (Dests.insert(Dest).second)
3251       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3252   }
3253   CallBrMBB->normalizeSuccProbs();
3254 
3255   // Drop into default successor.
3256   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3257                           MVT::Other, getControlRoot(),
3258                           DAG.getBasicBlock(Return)));
3259 }
3260 
3261 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3262   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3263 }
3264 
3265 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3266   assert(FuncInfo.MBB->isEHPad() &&
3267          "Call to landingpad not in landing pad!");
3268 
3269   // If there aren't registers to copy the values into (e.g., during SjLj
3270   // exceptions), then don't bother to create these DAG nodes.
3271   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3272   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3273   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3274       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3275     return;
3276 
3277   // If landingpad's return type is token type, we don't create DAG nodes
3278   // for its exception pointer and selector value. The extraction of exception
3279   // pointer or selector value from token type landingpads is not currently
3280   // supported.
3281   if (LP.getType()->isTokenTy())
3282     return;
3283 
3284   SmallVector<EVT, 2> ValueVTs;
3285   SDLoc dl = getCurSDLoc();
3286   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3287   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3288 
3289   // Get the two live-in registers as SDValues. The physregs have already been
3290   // copied into virtual registers.
3291   SDValue Ops[2];
3292   if (FuncInfo.ExceptionPointerVirtReg) {
3293     Ops[0] = DAG.getZExtOrTrunc(
3294         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3295                            FuncInfo.ExceptionPointerVirtReg,
3296                            TLI.getPointerTy(DAG.getDataLayout())),
3297         dl, ValueVTs[0]);
3298   } else {
3299     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3300   }
3301   Ops[1] = DAG.getZExtOrTrunc(
3302       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3303                          FuncInfo.ExceptionSelectorVirtReg,
3304                          TLI.getPointerTy(DAG.getDataLayout())),
3305       dl, ValueVTs[1]);
3306 
3307   // Merge into one.
3308   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3309                             DAG.getVTList(ValueVTs), Ops);
3310   setValue(&LP, Res);
3311 }
3312 
3313 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3314                                            MachineBasicBlock *Last) {
3315   // Update JTCases.
3316   for (JumpTableBlock &JTB : SL->JTCases)
3317     if (JTB.first.HeaderBB == First)
3318       JTB.first.HeaderBB = Last;
3319 
3320   // Update BitTestCases.
3321   for (BitTestBlock &BTB : SL->BitTestCases)
3322     if (BTB.Parent == First)
3323       BTB.Parent = Last;
3324 }
3325 
3326 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3327   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3328 
3329   // Update machine-CFG edges with unique successors.
3330   SmallSet<BasicBlock*, 32> Done;
3331   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3332     BasicBlock *BB = I.getSuccessor(i);
3333     bool Inserted = Done.insert(BB).second;
3334     if (!Inserted)
3335         continue;
3336 
3337     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3338     addSuccessorWithProb(IndirectBrMBB, Succ);
3339   }
3340   IndirectBrMBB->normalizeSuccProbs();
3341 
3342   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3343                           MVT::Other, getControlRoot(),
3344                           getValue(I.getAddress())));
3345 }
3346 
3347 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3348   if (!DAG.getTarget().Options.TrapUnreachable)
3349     return;
3350 
3351   // We may be able to ignore unreachable behind a noreturn call.
3352   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3353     if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) {
3354       if (Call->doesNotReturn())
3355         return;
3356     }
3357   }
3358 
3359   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3360 }
3361 
3362 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3363   SDNodeFlags Flags;
3364   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3365     Flags.copyFMF(*FPOp);
3366 
3367   SDValue Op = getValue(I.getOperand(0));
3368   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3369                                     Op, Flags);
3370   setValue(&I, UnNodeValue);
3371 }
3372 
3373 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3374   SDNodeFlags Flags;
3375   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3376     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3377     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3378   }
3379   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3380     Flags.setExact(ExactOp->isExact());
3381   if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3382     Flags.setDisjoint(DisjointOp->isDisjoint());
3383   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3384     Flags.copyFMF(*FPOp);
3385 
3386   SDValue Op1 = getValue(I.getOperand(0));
3387   SDValue Op2 = getValue(I.getOperand(1));
3388   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3389                                      Op1, Op2, Flags);
3390   setValue(&I, BinNodeValue);
3391 }
3392 
3393 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3394   SDValue Op1 = getValue(I.getOperand(0));
3395   SDValue Op2 = getValue(I.getOperand(1));
3396 
3397   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3398       Op1.getValueType(), DAG.getDataLayout());
3399 
3400   // Coerce the shift amount to the right type if we can. This exposes the
3401   // truncate or zext to optimization early.
3402   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3403     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3404            "Unexpected shift type");
3405     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3406   }
3407 
3408   bool nuw = false;
3409   bool nsw = false;
3410   bool exact = false;
3411 
3412   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3413 
3414     if (const OverflowingBinaryOperator *OFBinOp =
3415             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3416       nuw = OFBinOp->hasNoUnsignedWrap();
3417       nsw = OFBinOp->hasNoSignedWrap();
3418     }
3419     if (const PossiblyExactOperator *ExactOp =
3420             dyn_cast<const PossiblyExactOperator>(&I))
3421       exact = ExactOp->isExact();
3422   }
3423   SDNodeFlags Flags;
3424   Flags.setExact(exact);
3425   Flags.setNoSignedWrap(nsw);
3426   Flags.setNoUnsignedWrap(nuw);
3427   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3428                             Flags);
3429   setValue(&I, Res);
3430 }
3431 
3432 void SelectionDAGBuilder::visitSDiv(const User &I) {
3433   SDValue Op1 = getValue(I.getOperand(0));
3434   SDValue Op2 = getValue(I.getOperand(1));
3435 
3436   SDNodeFlags Flags;
3437   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3438                  cast<PossiblyExactOperator>(&I)->isExact());
3439   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3440                            Op2, Flags));
3441 }
3442 
3443 void SelectionDAGBuilder::visitICmp(const User &I) {
3444   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3445   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3446     predicate = IC->getPredicate();
3447   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3448     predicate = ICmpInst::Predicate(IC->getPredicate());
3449   SDValue Op1 = getValue(I.getOperand(0));
3450   SDValue Op2 = getValue(I.getOperand(1));
3451   ISD::CondCode Opcode = getICmpCondCode(predicate);
3452 
3453   auto &TLI = DAG.getTargetLoweringInfo();
3454   EVT MemVT =
3455       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3456 
3457   // If a pointer's DAG type is larger than its memory type then the DAG values
3458   // are zero-extended. This breaks signed comparisons so truncate back to the
3459   // underlying type before doing the compare.
3460   if (Op1.getValueType() != MemVT) {
3461     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3462     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3463   }
3464 
3465   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3466                                                         I.getType());
3467   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3468 }
3469 
3470 void SelectionDAGBuilder::visitFCmp(const User &I) {
3471   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3472   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3473     predicate = FC->getPredicate();
3474   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3475     predicate = FCmpInst::Predicate(FC->getPredicate());
3476   SDValue Op1 = getValue(I.getOperand(0));
3477   SDValue Op2 = getValue(I.getOperand(1));
3478 
3479   ISD::CondCode Condition = getFCmpCondCode(predicate);
3480   auto *FPMO = cast<FPMathOperator>(&I);
3481   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3482     Condition = getFCmpCodeWithoutNaN(Condition);
3483 
3484   SDNodeFlags Flags;
3485   Flags.copyFMF(*FPMO);
3486   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3487 
3488   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3489                                                         I.getType());
3490   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3491 }
3492 
3493 // Check if the condition of the select has one use or two users that are both
3494 // selects with the same condition.
3495 static bool hasOnlySelectUsers(const Value *Cond) {
3496   return llvm::all_of(Cond->users(), [](const Value *V) {
3497     return isa<SelectInst>(V);
3498   });
3499 }
3500 
3501 void SelectionDAGBuilder::visitSelect(const User &I) {
3502   SmallVector<EVT, 4> ValueVTs;
3503   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3504                   ValueVTs);
3505   unsigned NumValues = ValueVTs.size();
3506   if (NumValues == 0) return;
3507 
3508   SmallVector<SDValue, 4> Values(NumValues);
3509   SDValue Cond     = getValue(I.getOperand(0));
3510   SDValue LHSVal   = getValue(I.getOperand(1));
3511   SDValue RHSVal   = getValue(I.getOperand(2));
3512   SmallVector<SDValue, 1> BaseOps(1, Cond);
3513   ISD::NodeType OpCode =
3514       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3515 
3516   bool IsUnaryAbs = false;
3517   bool Negate = false;
3518 
3519   SDNodeFlags Flags;
3520   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3521     Flags.copyFMF(*FPOp);
3522 
3523   Flags.setUnpredictable(
3524       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3525 
3526   // Min/max matching is only viable if all output VTs are the same.
3527   if (all_equal(ValueVTs)) {
3528     EVT VT = ValueVTs[0];
3529     LLVMContext &Ctx = *DAG.getContext();
3530     auto &TLI = DAG.getTargetLoweringInfo();
3531 
3532     // We care about the legality of the operation after it has been type
3533     // legalized.
3534     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3535       VT = TLI.getTypeToTransformTo(Ctx, VT);
3536 
3537     // If the vselect is legal, assume we want to leave this as a vector setcc +
3538     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3539     // min/max is legal on the scalar type.
3540     bool UseScalarMinMax = VT.isVector() &&
3541       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3542 
3543     // ValueTracking's select pattern matching does not account for -0.0,
3544     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3545     // -0.0 is less than +0.0.
3546     Value *LHS, *RHS;
3547     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3548     ISD::NodeType Opc = ISD::DELETED_NODE;
3549     switch (SPR.Flavor) {
3550     case SPF_UMAX:    Opc = ISD::UMAX; break;
3551     case SPF_UMIN:    Opc = ISD::UMIN; break;
3552     case SPF_SMAX:    Opc = ISD::SMAX; break;
3553     case SPF_SMIN:    Opc = ISD::SMIN; break;
3554     case SPF_FMINNUM:
3555       switch (SPR.NaNBehavior) {
3556       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3557       case SPNB_RETURNS_NAN: break;
3558       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3559       case SPNB_RETURNS_ANY:
3560         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3561             (UseScalarMinMax &&
3562              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3563           Opc = ISD::FMINNUM;
3564         break;
3565       }
3566       break;
3567     case SPF_FMAXNUM:
3568       switch (SPR.NaNBehavior) {
3569       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3570       case SPNB_RETURNS_NAN: break;
3571       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3572       case SPNB_RETURNS_ANY:
3573         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3574             (UseScalarMinMax &&
3575              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3576           Opc = ISD::FMAXNUM;
3577         break;
3578       }
3579       break;
3580     case SPF_NABS:
3581       Negate = true;
3582       [[fallthrough]];
3583     case SPF_ABS:
3584       IsUnaryAbs = true;
3585       Opc = ISD::ABS;
3586       break;
3587     default: break;
3588     }
3589 
3590     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3591         (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) ||
3592          (UseScalarMinMax &&
3593           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3594         // If the underlying comparison instruction is used by any other
3595         // instruction, the consumed instructions won't be destroyed, so it is
3596         // not profitable to convert to a min/max.
3597         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3598       OpCode = Opc;
3599       LHSVal = getValue(LHS);
3600       RHSVal = getValue(RHS);
3601       BaseOps.clear();
3602     }
3603 
3604     if (IsUnaryAbs) {
3605       OpCode = Opc;
3606       LHSVal = getValue(LHS);
3607       BaseOps.clear();
3608     }
3609   }
3610 
3611   if (IsUnaryAbs) {
3612     for (unsigned i = 0; i != NumValues; ++i) {
3613       SDLoc dl = getCurSDLoc();
3614       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3615       Values[i] =
3616           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3617       if (Negate)
3618         Values[i] = DAG.getNegative(Values[i], dl, VT);
3619     }
3620   } else {
3621     for (unsigned i = 0; i != NumValues; ++i) {
3622       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3623       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3624       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3625       Values[i] = DAG.getNode(
3626           OpCode, getCurSDLoc(),
3627           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3628     }
3629   }
3630 
3631   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3632                            DAG.getVTList(ValueVTs), Values));
3633 }
3634 
3635 void SelectionDAGBuilder::visitTrunc(const User &I) {
3636   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3637   SDValue N = getValue(I.getOperand(0));
3638   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3639                                                         I.getType());
3640   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3641 }
3642 
3643 void SelectionDAGBuilder::visitZExt(const User &I) {
3644   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3645   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3646   SDValue N = getValue(I.getOperand(0));
3647   auto &TLI = DAG.getTargetLoweringInfo();
3648   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3649 
3650   SDNodeFlags Flags;
3651   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3652     Flags.setNonNeg(PNI->hasNonNeg());
3653 
3654   // Eagerly use nonneg information to canonicalize towards sign_extend if
3655   // that is the target's preference.
3656   // TODO: Let the target do this later.
3657   if (Flags.hasNonNeg() &&
3658       TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3659     setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3660     return;
3661   }
3662 
3663   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3664 }
3665 
3666 void SelectionDAGBuilder::visitSExt(const User &I) {
3667   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3668   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3669   SDValue N = getValue(I.getOperand(0));
3670   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3671                                                         I.getType());
3672   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3673 }
3674 
3675 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3676   // FPTrunc is never a no-op cast, no need to check
3677   SDValue N = getValue(I.getOperand(0));
3678   SDLoc dl = getCurSDLoc();
3679   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3680   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3681   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3682                            DAG.getTargetConstant(
3683                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3684 }
3685 
3686 void SelectionDAGBuilder::visitFPExt(const User &I) {
3687   // FPExt is never a no-op cast, no need to check
3688   SDValue N = getValue(I.getOperand(0));
3689   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3690                                                         I.getType());
3691   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3692 }
3693 
3694 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3695   // FPToUI is never a no-op cast, no need to check
3696   SDValue N = getValue(I.getOperand(0));
3697   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3698                                                         I.getType());
3699   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3700 }
3701 
3702 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3703   // FPToSI is never a no-op cast, no need to check
3704   SDValue N = getValue(I.getOperand(0));
3705   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3706                                                         I.getType());
3707   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3708 }
3709 
3710 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3711   // UIToFP is never a no-op cast, no need to check
3712   SDValue N = getValue(I.getOperand(0));
3713   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3714                                                         I.getType());
3715   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3716 }
3717 
3718 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3719   // SIToFP is never a no-op cast, no need to check
3720   SDValue N = getValue(I.getOperand(0));
3721   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3722                                                         I.getType());
3723   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3724 }
3725 
3726 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3727   // What to do depends on the size of the integer and the size of the pointer.
3728   // We can either truncate, zero extend, or no-op, accordingly.
3729   SDValue N = getValue(I.getOperand(0));
3730   auto &TLI = DAG.getTargetLoweringInfo();
3731   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3732                                                         I.getType());
3733   EVT PtrMemVT =
3734       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3735   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3736   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3737   setValue(&I, N);
3738 }
3739 
3740 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3741   // What to do depends on the size of the integer and the size of the pointer.
3742   // We can either truncate, zero extend, or no-op, accordingly.
3743   SDValue N = getValue(I.getOperand(0));
3744   auto &TLI = DAG.getTargetLoweringInfo();
3745   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3746   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3747   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3748   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3749   setValue(&I, N);
3750 }
3751 
3752 void SelectionDAGBuilder::visitBitCast(const User &I) {
3753   SDValue N = getValue(I.getOperand(0));
3754   SDLoc dl = getCurSDLoc();
3755   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3756                                                         I.getType());
3757 
3758   // BitCast assures us that source and destination are the same size so this is
3759   // either a BITCAST or a no-op.
3760   if (DestVT != N.getValueType())
3761     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3762                              DestVT, N)); // convert types.
3763   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3764   // might fold any kind of constant expression to an integer constant and that
3765   // is not what we are looking for. Only recognize a bitcast of a genuine
3766   // constant integer as an opaque constant.
3767   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3768     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3769                                  /*isOpaque*/true));
3770   else
3771     setValue(&I, N);            // noop cast.
3772 }
3773 
3774 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3775   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3776   const Value *SV = I.getOperand(0);
3777   SDValue N = getValue(SV);
3778   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3779 
3780   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3781   unsigned DestAS = I.getType()->getPointerAddressSpace();
3782 
3783   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3784     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3785 
3786   setValue(&I, N);
3787 }
3788 
3789 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3790   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3791   SDValue InVec = getValue(I.getOperand(0));
3792   SDValue InVal = getValue(I.getOperand(1));
3793   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3794                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3795   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3796                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3797                            InVec, InVal, InIdx));
3798 }
3799 
3800 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3801   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3802   SDValue InVec = getValue(I.getOperand(0));
3803   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3804                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3805   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3806                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3807                            InVec, InIdx));
3808 }
3809 
3810 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3811   SDValue Src1 = getValue(I.getOperand(0));
3812   SDValue Src2 = getValue(I.getOperand(1));
3813   ArrayRef<int> Mask;
3814   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3815     Mask = SVI->getShuffleMask();
3816   else
3817     Mask = cast<ConstantExpr>(I).getShuffleMask();
3818   SDLoc DL = getCurSDLoc();
3819   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3820   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3821   EVT SrcVT = Src1.getValueType();
3822 
3823   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3824       VT.isScalableVector()) {
3825     // Canonical splat form of first element of first input vector.
3826     SDValue FirstElt =
3827         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3828                     DAG.getVectorIdxConstant(0, DL));
3829     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3830     return;
3831   }
3832 
3833   // For now, we only handle splats for scalable vectors.
3834   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3835   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3836   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3837 
3838   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3839   unsigned MaskNumElts = Mask.size();
3840 
3841   if (SrcNumElts == MaskNumElts) {
3842     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3843     return;
3844   }
3845 
3846   // Normalize the shuffle vector since mask and vector length don't match.
3847   if (SrcNumElts < MaskNumElts) {
3848     // Mask is longer than the source vectors. We can use concatenate vector to
3849     // make the mask and vectors lengths match.
3850 
3851     if (MaskNumElts % SrcNumElts == 0) {
3852       // Mask length is a multiple of the source vector length.
3853       // Check if the shuffle is some kind of concatenation of the input
3854       // vectors.
3855       unsigned NumConcat = MaskNumElts / SrcNumElts;
3856       bool IsConcat = true;
3857       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3858       for (unsigned i = 0; i != MaskNumElts; ++i) {
3859         int Idx = Mask[i];
3860         if (Idx < 0)
3861           continue;
3862         // Ensure the indices in each SrcVT sized piece are sequential and that
3863         // the same source is used for the whole piece.
3864         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3865             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3866              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3867           IsConcat = false;
3868           break;
3869         }
3870         // Remember which source this index came from.
3871         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3872       }
3873 
3874       // The shuffle is concatenating multiple vectors together. Just emit
3875       // a CONCAT_VECTORS operation.
3876       if (IsConcat) {
3877         SmallVector<SDValue, 8> ConcatOps;
3878         for (auto Src : ConcatSrcs) {
3879           if (Src < 0)
3880             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3881           else if (Src == 0)
3882             ConcatOps.push_back(Src1);
3883           else
3884             ConcatOps.push_back(Src2);
3885         }
3886         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3887         return;
3888       }
3889     }
3890 
3891     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3892     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3893     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3894                                     PaddedMaskNumElts);
3895 
3896     // Pad both vectors with undefs to make them the same length as the mask.
3897     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3898 
3899     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3900     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3901     MOps1[0] = Src1;
3902     MOps2[0] = Src2;
3903 
3904     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3905     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3906 
3907     // Readjust mask for new input vector length.
3908     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3909     for (unsigned i = 0; i != MaskNumElts; ++i) {
3910       int Idx = Mask[i];
3911       if (Idx >= (int)SrcNumElts)
3912         Idx -= SrcNumElts - PaddedMaskNumElts;
3913       MappedOps[i] = Idx;
3914     }
3915 
3916     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3917 
3918     // If the concatenated vector was padded, extract a subvector with the
3919     // correct number of elements.
3920     if (MaskNumElts != PaddedMaskNumElts)
3921       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3922                            DAG.getVectorIdxConstant(0, DL));
3923 
3924     setValue(&I, Result);
3925     return;
3926   }
3927 
3928   if (SrcNumElts > MaskNumElts) {
3929     // Analyze the access pattern of the vector to see if we can extract
3930     // two subvectors and do the shuffle.
3931     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3932     bool CanExtract = true;
3933     for (int Idx : Mask) {
3934       unsigned Input = 0;
3935       if (Idx < 0)
3936         continue;
3937 
3938       if (Idx >= (int)SrcNumElts) {
3939         Input = 1;
3940         Idx -= SrcNumElts;
3941       }
3942 
3943       // If all the indices come from the same MaskNumElts sized portion of
3944       // the sources we can use extract. Also make sure the extract wouldn't
3945       // extract past the end of the source.
3946       int NewStartIdx = alignDown(Idx, MaskNumElts);
3947       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3948           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3949         CanExtract = false;
3950       // Make sure we always update StartIdx as we use it to track if all
3951       // elements are undef.
3952       StartIdx[Input] = NewStartIdx;
3953     }
3954 
3955     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3956       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3957       return;
3958     }
3959     if (CanExtract) {
3960       // Extract appropriate subvector and generate a vector shuffle
3961       for (unsigned Input = 0; Input < 2; ++Input) {
3962         SDValue &Src = Input == 0 ? Src1 : Src2;
3963         if (StartIdx[Input] < 0)
3964           Src = DAG.getUNDEF(VT);
3965         else {
3966           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3967                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3968         }
3969       }
3970 
3971       // Calculate new mask.
3972       SmallVector<int, 8> MappedOps(Mask);
3973       for (int &Idx : MappedOps) {
3974         if (Idx >= (int)SrcNumElts)
3975           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3976         else if (Idx >= 0)
3977           Idx -= StartIdx[0];
3978       }
3979 
3980       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3981       return;
3982     }
3983   }
3984 
3985   // We can't use either concat vectors or extract subvectors so fall back to
3986   // replacing the shuffle with extract and build vector.
3987   // to insert and build vector.
3988   EVT EltVT = VT.getVectorElementType();
3989   SmallVector<SDValue,8> Ops;
3990   for (int Idx : Mask) {
3991     SDValue Res;
3992 
3993     if (Idx < 0) {
3994       Res = DAG.getUNDEF(EltVT);
3995     } else {
3996       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3997       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3998 
3999       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4000                         DAG.getVectorIdxConstant(Idx, DL));
4001     }
4002 
4003     Ops.push_back(Res);
4004   }
4005 
4006   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4007 }
4008 
4009 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4010   ArrayRef<unsigned> Indices = I.getIndices();
4011   const Value *Op0 = I.getOperand(0);
4012   const Value *Op1 = I.getOperand(1);
4013   Type *AggTy = I.getType();
4014   Type *ValTy = Op1->getType();
4015   bool IntoUndef = isa<UndefValue>(Op0);
4016   bool FromUndef = isa<UndefValue>(Op1);
4017 
4018   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4019 
4020   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4021   SmallVector<EVT, 4> AggValueVTs;
4022   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4023   SmallVector<EVT, 4> ValValueVTs;
4024   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4025 
4026   unsigned NumAggValues = AggValueVTs.size();
4027   unsigned NumValValues = ValValueVTs.size();
4028   SmallVector<SDValue, 4> Values(NumAggValues);
4029 
4030   // Ignore an insertvalue that produces an empty object
4031   if (!NumAggValues) {
4032     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4033     return;
4034   }
4035 
4036   SDValue Agg = getValue(Op0);
4037   unsigned i = 0;
4038   // Copy the beginning value(s) from the original aggregate.
4039   for (; i != LinearIndex; ++i)
4040     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4041                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4042   // Copy values from the inserted value(s).
4043   if (NumValValues) {
4044     SDValue Val = getValue(Op1);
4045     for (; i != LinearIndex + NumValValues; ++i)
4046       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4047                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4048   }
4049   // Copy remaining value(s) from the original aggregate.
4050   for (; i != NumAggValues; ++i)
4051     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4052                 SDValue(Agg.getNode(), Agg.getResNo() + i);
4053 
4054   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4055                            DAG.getVTList(AggValueVTs), Values));
4056 }
4057 
4058 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4059   ArrayRef<unsigned> Indices = I.getIndices();
4060   const Value *Op0 = I.getOperand(0);
4061   Type *AggTy = Op0->getType();
4062   Type *ValTy = I.getType();
4063   bool OutOfUndef = isa<UndefValue>(Op0);
4064 
4065   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4066 
4067   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4068   SmallVector<EVT, 4> ValValueVTs;
4069   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4070 
4071   unsigned NumValValues = ValValueVTs.size();
4072 
4073   // Ignore a extractvalue that produces an empty object
4074   if (!NumValValues) {
4075     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4076     return;
4077   }
4078 
4079   SmallVector<SDValue, 4> Values(NumValValues);
4080 
4081   SDValue Agg = getValue(Op0);
4082   // Copy out the selected value(s).
4083   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4084     Values[i - LinearIndex] =
4085       OutOfUndef ?
4086         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4087         SDValue(Agg.getNode(), Agg.getResNo() + i);
4088 
4089   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
4090                            DAG.getVTList(ValValueVTs), Values));
4091 }
4092 
4093 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4094   Value *Op0 = I.getOperand(0);
4095   // Note that the pointer operand may be a vector of pointers. Take the scalar
4096   // element which holds a pointer.
4097   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4098   SDValue N = getValue(Op0);
4099   SDLoc dl = getCurSDLoc();
4100   auto &TLI = DAG.getTargetLoweringInfo();
4101 
4102   // Normalize Vector GEP - all scalar operands should be converted to the
4103   // splat vector.
4104   bool IsVectorGEP = I.getType()->isVectorTy();
4105   ElementCount VectorElementCount =
4106       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4107                   : ElementCount::getFixed(0);
4108 
4109   if (IsVectorGEP && !N.getValueType().isVector()) {
4110     LLVMContext &Context = *DAG.getContext();
4111     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
4112     N = DAG.getSplat(VT, dl, N);
4113   }
4114 
4115   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
4116        GTI != E; ++GTI) {
4117     const Value *Idx = GTI.getOperand();
4118     if (StructType *StTy = GTI.getStructTypeOrNull()) {
4119       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4120       if (Field) {
4121         // N = N + Offset
4122         uint64_t Offset =
4123             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4124 
4125         // In an inbounds GEP with an offset that is nonnegative even when
4126         // interpreted as signed, assume there is no unsigned overflow.
4127         SDNodeFlags Flags;
4128         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
4129           Flags.setNoUnsignedWrap(true);
4130 
4131         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
4132                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
4133       }
4134     } else {
4135       // IdxSize is the width of the arithmetic according to IR semantics.
4136       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4137       // (and fix up the result later).
4138       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4139       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4140       TypeSize ElementSize =
4141           GTI.getSequentialElementStride(DAG.getDataLayout());
4142       // We intentionally mask away the high bits here; ElementSize may not
4143       // fit in IdxTy.
4144       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4145       bool ElementScalable = ElementSize.isScalable();
4146 
4147       // If this is a scalar constant or a splat vector of constants,
4148       // handle it quickly.
4149       const auto *C = dyn_cast<Constant>(Idx);
4150       if (C && isa<VectorType>(C->getType()))
4151         C = C->getSplatValue();
4152 
4153       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4154       if (CI && CI->isZero())
4155         continue;
4156       if (CI && !ElementScalable) {
4157         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4158         LLVMContext &Context = *DAG.getContext();
4159         SDValue OffsVal;
4160         if (IsVectorGEP)
4161           OffsVal = DAG.getConstant(
4162               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4163         else
4164           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4165 
4166         // In an inbounds GEP with an offset that is nonnegative even when
4167         // interpreted as signed, assume there is no unsigned overflow.
4168         SDNodeFlags Flags;
4169         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
4170           Flags.setNoUnsignedWrap(true);
4171 
4172         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4173 
4174         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4175         continue;
4176       }
4177 
4178       // N = N + Idx * ElementMul;
4179       SDValue IdxN = getValue(Idx);
4180 
4181       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4182         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4183                                   VectorElementCount);
4184         IdxN = DAG.getSplat(VT, dl, IdxN);
4185       }
4186 
4187       // If the index is smaller or larger than intptr_t, truncate or extend
4188       // it.
4189       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4190 
4191       if (ElementScalable) {
4192         EVT VScaleTy = N.getValueType().getScalarType();
4193         SDValue VScale = DAG.getNode(
4194             ISD::VSCALE, dl, VScaleTy,
4195             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4196         if (IsVectorGEP)
4197           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4198         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4199       } else {
4200         // If this is a multiply by a power of two, turn it into a shl
4201         // immediately.  This is a very common case.
4202         if (ElementMul != 1) {
4203           if (ElementMul.isPowerOf2()) {
4204             unsigned Amt = ElementMul.logBase2();
4205             IdxN = DAG.getNode(ISD::SHL, dl,
4206                                N.getValueType(), IdxN,
4207                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4208           } else {
4209             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4210                                             IdxN.getValueType());
4211             IdxN = DAG.getNode(ISD::MUL, dl,
4212                                N.getValueType(), IdxN, Scale);
4213           }
4214         }
4215       }
4216 
4217       N = DAG.getNode(ISD::ADD, dl,
4218                       N.getValueType(), N, IdxN);
4219     }
4220   }
4221 
4222   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4223   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4224   if (IsVectorGEP) {
4225     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4226     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4227   }
4228 
4229   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4230     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4231 
4232   setValue(&I, N);
4233 }
4234 
4235 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4236   // If this is a fixed sized alloca in the entry block of the function,
4237   // allocate it statically on the stack.
4238   if (FuncInfo.StaticAllocaMap.count(&I))
4239     return;   // getValue will auto-populate this.
4240 
4241   SDLoc dl = getCurSDLoc();
4242   Type *Ty = I.getAllocatedType();
4243   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4244   auto &DL = DAG.getDataLayout();
4245   TypeSize TySize = DL.getTypeAllocSize(Ty);
4246   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4247 
4248   SDValue AllocSize = getValue(I.getArraySize());
4249 
4250   EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4251   if (AllocSize.getValueType() != IntPtr)
4252     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4253 
4254   if (TySize.isScalable())
4255     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4256                             DAG.getVScale(dl, IntPtr,
4257                                           APInt(IntPtr.getScalarSizeInBits(),
4258                                                 TySize.getKnownMinValue())));
4259   else {
4260     SDValue TySizeValue =
4261         DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64));
4262     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4263                             DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr));
4264   }
4265 
4266   // Handle alignment.  If the requested alignment is less than or equal to
4267   // the stack alignment, ignore it.  If the size is greater than or equal to
4268   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4269   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4270   if (*Alignment <= StackAlign)
4271     Alignment = std::nullopt;
4272 
4273   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4274   // Round the size of the allocation up to the stack alignment size
4275   // by add SA-1 to the size. This doesn't overflow because we're computing
4276   // an address inside an alloca.
4277   SDNodeFlags Flags;
4278   Flags.setNoUnsignedWrap(true);
4279   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4280                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4281 
4282   // Mask out the low bits for alignment purposes.
4283   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4284                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4285 
4286   SDValue Ops[] = {
4287       getRoot(), AllocSize,
4288       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4289   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4290   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4291   setValue(&I, DSA);
4292   DAG.setRoot(DSA.getValue(1));
4293 
4294   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4295 }
4296 
4297 static const MDNode *getRangeMetadata(const Instruction &I) {
4298   // If !noundef is not present, then !range violation results in a poison
4299   // value rather than immediate undefined behavior. In theory, transferring
4300   // these annotations to SDAG is fine, but in practice there are key SDAG
4301   // transforms that are known not to be poison-safe, such as folding logical
4302   // and/or to bitwise and/or. For now, only transfer !range if !noundef is
4303   // also present.
4304   if (!I.hasMetadata(LLVMContext::MD_noundef))
4305     return nullptr;
4306   return I.getMetadata(LLVMContext::MD_range);
4307 }
4308 
4309 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4310   if (I.isAtomic())
4311     return visitAtomicLoad(I);
4312 
4313   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4314   const Value *SV = I.getOperand(0);
4315   if (TLI.supportSwiftError()) {
4316     // Swifterror values can come from either a function parameter with
4317     // swifterror attribute or an alloca with swifterror attribute.
4318     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4319       if (Arg->hasSwiftErrorAttr())
4320         return visitLoadFromSwiftError(I);
4321     }
4322 
4323     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4324       if (Alloca->isSwiftError())
4325         return visitLoadFromSwiftError(I);
4326     }
4327   }
4328 
4329   SDValue Ptr = getValue(SV);
4330 
4331   Type *Ty = I.getType();
4332   SmallVector<EVT, 4> ValueVTs, MemVTs;
4333   SmallVector<TypeSize, 4> Offsets;
4334   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets, 0);
4335   unsigned NumValues = ValueVTs.size();
4336   if (NumValues == 0)
4337     return;
4338 
4339   Align Alignment = I.getAlign();
4340   AAMDNodes AAInfo = I.getAAMetadata();
4341   const MDNode *Ranges = getRangeMetadata(I);
4342   bool isVolatile = I.isVolatile();
4343   MachineMemOperand::Flags MMOFlags =
4344       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4345 
4346   SDValue Root;
4347   bool ConstantMemory = false;
4348   if (isVolatile)
4349     // Serialize volatile loads with other side effects.
4350     Root = getRoot();
4351   else if (NumValues > MaxParallelChains)
4352     Root = getMemoryRoot();
4353   else if (AA &&
4354            AA->pointsToConstantMemory(MemoryLocation(
4355                SV,
4356                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4357                AAInfo))) {
4358     // Do not serialize (non-volatile) loads of constant memory with anything.
4359     Root = DAG.getEntryNode();
4360     ConstantMemory = true;
4361     MMOFlags |= MachineMemOperand::MOInvariant;
4362   } else {
4363     // Do not serialize non-volatile loads against each other.
4364     Root = DAG.getRoot();
4365   }
4366 
4367   SDLoc dl = getCurSDLoc();
4368 
4369   if (isVolatile)
4370     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4371 
4372   SmallVector<SDValue, 4> Values(NumValues);
4373   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4374 
4375   unsigned ChainI = 0;
4376   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4377     // Serializing loads here may result in excessive register pressure, and
4378     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4379     // could recover a bit by hoisting nodes upward in the chain by recognizing
4380     // they are side-effect free or do not alias. The optimizer should really
4381     // avoid this case by converting large object/array copies to llvm.memcpy
4382     // (MaxParallelChains should always remain as failsafe).
4383     if (ChainI == MaxParallelChains) {
4384       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4385       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4386                                   ArrayRef(Chains.data(), ChainI));
4387       Root = Chain;
4388       ChainI = 0;
4389     }
4390 
4391     // TODO: MachinePointerInfo only supports a fixed length offset.
4392     MachinePointerInfo PtrInfo =
4393         !Offsets[i].isScalable() || Offsets[i].isZero()
4394             ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4395             : MachinePointerInfo();
4396 
4397     SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4398     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4399                             MMOFlags, AAInfo, Ranges);
4400     Chains[ChainI] = L.getValue(1);
4401 
4402     if (MemVTs[i] != ValueVTs[i])
4403       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4404 
4405     Values[i] = L;
4406   }
4407 
4408   if (!ConstantMemory) {
4409     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4410                                 ArrayRef(Chains.data(), ChainI));
4411     if (isVolatile)
4412       DAG.setRoot(Chain);
4413     else
4414       PendingLoads.push_back(Chain);
4415   }
4416 
4417   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4418                            DAG.getVTList(ValueVTs), Values));
4419 }
4420 
4421 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4422   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4423          "call visitStoreToSwiftError when backend supports swifterror");
4424 
4425   SmallVector<EVT, 4> ValueVTs;
4426   SmallVector<uint64_t, 4> Offsets;
4427   const Value *SrcV = I.getOperand(0);
4428   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4429                   SrcV->getType(), ValueVTs, &Offsets, 0);
4430   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4431          "expect a single EVT for swifterror");
4432 
4433   SDValue Src = getValue(SrcV);
4434   // Create a virtual register, then update the virtual register.
4435   Register VReg =
4436       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4437   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4438   // Chain can be getRoot or getControlRoot.
4439   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4440                                       SDValue(Src.getNode(), Src.getResNo()));
4441   DAG.setRoot(CopyNode);
4442 }
4443 
4444 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4445   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4446          "call visitLoadFromSwiftError when backend supports swifterror");
4447 
4448   assert(!I.isVolatile() &&
4449          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4450          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4451          "Support volatile, non temporal, invariant for load_from_swift_error");
4452 
4453   const Value *SV = I.getOperand(0);
4454   Type *Ty = I.getType();
4455   assert(
4456       (!AA ||
4457        !AA->pointsToConstantMemory(MemoryLocation(
4458            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4459            I.getAAMetadata()))) &&
4460       "load_from_swift_error should not be constant memory");
4461 
4462   SmallVector<EVT, 4> ValueVTs;
4463   SmallVector<uint64_t, 4> Offsets;
4464   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4465                   ValueVTs, &Offsets, 0);
4466   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4467          "expect a single EVT for swifterror");
4468 
4469   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4470   SDValue L = DAG.getCopyFromReg(
4471       getRoot(), getCurSDLoc(),
4472       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4473 
4474   setValue(&I, L);
4475 }
4476 
4477 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4478   if (I.isAtomic())
4479     return visitAtomicStore(I);
4480 
4481   const Value *SrcV = I.getOperand(0);
4482   const Value *PtrV = I.getOperand(1);
4483 
4484   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4485   if (TLI.supportSwiftError()) {
4486     // Swifterror values can come from either a function parameter with
4487     // swifterror attribute or an alloca with swifterror attribute.
4488     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4489       if (Arg->hasSwiftErrorAttr())
4490         return visitStoreToSwiftError(I);
4491     }
4492 
4493     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4494       if (Alloca->isSwiftError())
4495         return visitStoreToSwiftError(I);
4496     }
4497   }
4498 
4499   SmallVector<EVT, 4> ValueVTs, MemVTs;
4500   SmallVector<TypeSize, 4> Offsets;
4501   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4502                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets, 0);
4503   unsigned NumValues = ValueVTs.size();
4504   if (NumValues == 0)
4505     return;
4506 
4507   // Get the lowered operands. Note that we do this after
4508   // checking if NumResults is zero, because with zero results
4509   // the operands won't have values in the map.
4510   SDValue Src = getValue(SrcV);
4511   SDValue Ptr = getValue(PtrV);
4512 
4513   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4514   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4515   SDLoc dl = getCurSDLoc();
4516   Align Alignment = I.getAlign();
4517   AAMDNodes AAInfo = I.getAAMetadata();
4518 
4519   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4520 
4521   unsigned ChainI = 0;
4522   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4523     // See visitLoad comments.
4524     if (ChainI == MaxParallelChains) {
4525       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4526                                   ArrayRef(Chains.data(), ChainI));
4527       Root = Chain;
4528       ChainI = 0;
4529     }
4530 
4531     // TODO: MachinePointerInfo only supports a fixed length offset.
4532     MachinePointerInfo PtrInfo =
4533         !Offsets[i].isScalable() || Offsets[i].isZero()
4534             ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4535             : MachinePointerInfo();
4536 
4537     SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4538     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4539     if (MemVTs[i] != ValueVTs[i])
4540       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4541     SDValue St =
4542         DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4543     Chains[ChainI] = St;
4544   }
4545 
4546   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4547                                   ArrayRef(Chains.data(), ChainI));
4548   setValue(&I, StoreNode);
4549   DAG.setRoot(StoreNode);
4550 }
4551 
4552 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4553                                            bool IsCompressing) {
4554   SDLoc sdl = getCurSDLoc();
4555 
4556   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4557                                MaybeAlign &Alignment) {
4558     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4559     Src0 = I.getArgOperand(0);
4560     Ptr = I.getArgOperand(1);
4561     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4562     Mask = I.getArgOperand(3);
4563   };
4564   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4565                                     MaybeAlign &Alignment) {
4566     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4567     Src0 = I.getArgOperand(0);
4568     Ptr = I.getArgOperand(1);
4569     Mask = I.getArgOperand(2);
4570     Alignment = std::nullopt;
4571   };
4572 
4573   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4574   MaybeAlign Alignment;
4575   if (IsCompressing)
4576     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4577   else
4578     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4579 
4580   SDValue Ptr = getValue(PtrOperand);
4581   SDValue Src0 = getValue(Src0Operand);
4582   SDValue Mask = getValue(MaskOperand);
4583   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4584 
4585   EVT VT = Src0.getValueType();
4586   if (!Alignment)
4587     Alignment = DAG.getEVTAlign(VT);
4588 
4589   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4590       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4591       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4592   SDValue StoreNode =
4593       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4594                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4595   DAG.setRoot(StoreNode);
4596   setValue(&I, StoreNode);
4597 }
4598 
4599 // Get a uniform base for the Gather/Scatter intrinsic.
4600 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4601 // We try to represent it as a base pointer + vector of indices.
4602 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4603 // The first operand of the GEP may be a single pointer or a vector of pointers
4604 // Example:
4605 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4606 //  or
4607 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4608 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4609 //
4610 // When the first GEP operand is a single pointer - it is the uniform base we
4611 // are looking for. If first operand of the GEP is a splat vector - we
4612 // extract the splat value and use it as a uniform base.
4613 // In all other cases the function returns 'false'.
4614 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4615                            ISD::MemIndexType &IndexType, SDValue &Scale,
4616                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4617                            uint64_t ElemSize) {
4618   SelectionDAG& DAG = SDB->DAG;
4619   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4620   const DataLayout &DL = DAG.getDataLayout();
4621 
4622   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4623 
4624   // Handle splat constant pointer.
4625   if (auto *C = dyn_cast<Constant>(Ptr)) {
4626     C = C->getSplatValue();
4627     if (!C)
4628       return false;
4629 
4630     Base = SDB->getValue(C);
4631 
4632     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4633     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4634     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4635     IndexType = ISD::SIGNED_SCALED;
4636     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4637     return true;
4638   }
4639 
4640   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4641   if (!GEP || GEP->getParent() != CurBB)
4642     return false;
4643 
4644   if (GEP->getNumOperands() != 2)
4645     return false;
4646 
4647   const Value *BasePtr = GEP->getPointerOperand();
4648   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4649 
4650   // Make sure the base is scalar and the index is a vector.
4651   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4652     return false;
4653 
4654   TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4655   if (ScaleVal.isScalable())
4656     return false;
4657 
4658   // Target may not support the required addressing mode.
4659   if (ScaleVal != 1 &&
4660       !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4661     return false;
4662 
4663   Base = SDB->getValue(BasePtr);
4664   Index = SDB->getValue(IndexVal);
4665   IndexType = ISD::SIGNED_SCALED;
4666 
4667   Scale =
4668       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4669   return true;
4670 }
4671 
4672 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4673   SDLoc sdl = getCurSDLoc();
4674 
4675   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4676   const Value *Ptr = I.getArgOperand(1);
4677   SDValue Src0 = getValue(I.getArgOperand(0));
4678   SDValue Mask = getValue(I.getArgOperand(3));
4679   EVT VT = Src0.getValueType();
4680   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4681                         ->getMaybeAlignValue()
4682                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4683   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4684 
4685   SDValue Base;
4686   SDValue Index;
4687   ISD::MemIndexType IndexType;
4688   SDValue Scale;
4689   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4690                                     I.getParent(), VT.getScalarStoreSize());
4691 
4692   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4693   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4694       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4695       // TODO: Make MachineMemOperands aware of scalable
4696       // vectors.
4697       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4698   if (!UniformBase) {
4699     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4700     Index = getValue(Ptr);
4701     IndexType = ISD::SIGNED_SCALED;
4702     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4703   }
4704 
4705   EVT IdxVT = Index.getValueType();
4706   EVT EltTy = IdxVT.getVectorElementType();
4707   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4708     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4709     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4710   }
4711 
4712   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4713   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4714                                          Ops, MMO, IndexType, false);
4715   DAG.setRoot(Scatter);
4716   setValue(&I, Scatter);
4717 }
4718 
4719 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4720   SDLoc sdl = getCurSDLoc();
4721 
4722   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4723                               MaybeAlign &Alignment) {
4724     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4725     Ptr = I.getArgOperand(0);
4726     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4727     Mask = I.getArgOperand(2);
4728     Src0 = I.getArgOperand(3);
4729   };
4730   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4731                                  MaybeAlign &Alignment) {
4732     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4733     Ptr = I.getArgOperand(0);
4734     Alignment = std::nullopt;
4735     Mask = I.getArgOperand(1);
4736     Src0 = I.getArgOperand(2);
4737   };
4738 
4739   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4740   MaybeAlign Alignment;
4741   if (IsExpanding)
4742     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4743   else
4744     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4745 
4746   SDValue Ptr = getValue(PtrOperand);
4747   SDValue Src0 = getValue(Src0Operand);
4748   SDValue Mask = getValue(MaskOperand);
4749   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4750 
4751   EVT VT = Src0.getValueType();
4752   if (!Alignment)
4753     Alignment = DAG.getEVTAlign(VT);
4754 
4755   AAMDNodes AAInfo = I.getAAMetadata();
4756   const MDNode *Ranges = getRangeMetadata(I);
4757 
4758   // Do not serialize masked loads of constant memory with anything.
4759   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4760   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4761 
4762   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4763 
4764   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4765       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4766       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4767 
4768   SDValue Load =
4769       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4770                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4771   if (AddToChain)
4772     PendingLoads.push_back(Load.getValue(1));
4773   setValue(&I, Load);
4774 }
4775 
4776 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4777   SDLoc sdl = getCurSDLoc();
4778 
4779   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4780   const Value *Ptr = I.getArgOperand(0);
4781   SDValue Src0 = getValue(I.getArgOperand(3));
4782   SDValue Mask = getValue(I.getArgOperand(2));
4783 
4784   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4785   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4786   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4787                         ->getMaybeAlignValue()
4788                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4789 
4790   const MDNode *Ranges = getRangeMetadata(I);
4791 
4792   SDValue Root = DAG.getRoot();
4793   SDValue Base;
4794   SDValue Index;
4795   ISD::MemIndexType IndexType;
4796   SDValue Scale;
4797   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4798                                     I.getParent(), VT.getScalarStoreSize());
4799   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4800   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4801       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4802       // TODO: Make MachineMemOperands aware of scalable
4803       // vectors.
4804       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4805 
4806   if (!UniformBase) {
4807     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4808     Index = getValue(Ptr);
4809     IndexType = ISD::SIGNED_SCALED;
4810     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4811   }
4812 
4813   EVT IdxVT = Index.getValueType();
4814   EVT EltTy = IdxVT.getVectorElementType();
4815   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4816     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4817     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4818   }
4819 
4820   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4821   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4822                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4823 
4824   PendingLoads.push_back(Gather.getValue(1));
4825   setValue(&I, Gather);
4826 }
4827 
4828 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4829   SDLoc dl = getCurSDLoc();
4830   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4831   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4832   SyncScope::ID SSID = I.getSyncScopeID();
4833 
4834   SDValue InChain = getRoot();
4835 
4836   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4837   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4838 
4839   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4840   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4841 
4842   MachineFunction &MF = DAG.getMachineFunction();
4843   MachineMemOperand *MMO = MF.getMachineMemOperand(
4844       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4845       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4846       FailureOrdering);
4847 
4848   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4849                                    dl, MemVT, VTs, InChain,
4850                                    getValue(I.getPointerOperand()),
4851                                    getValue(I.getCompareOperand()),
4852                                    getValue(I.getNewValOperand()), MMO);
4853 
4854   SDValue OutChain = L.getValue(2);
4855 
4856   setValue(&I, L);
4857   DAG.setRoot(OutChain);
4858 }
4859 
4860 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4861   SDLoc dl = getCurSDLoc();
4862   ISD::NodeType NT;
4863   switch (I.getOperation()) {
4864   default: llvm_unreachable("Unknown atomicrmw operation");
4865   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4866   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4867   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4868   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4869   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4870   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4871   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4872   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4873   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4874   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4875   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4876   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4877   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4878   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4879   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4880   case AtomicRMWInst::UIncWrap:
4881     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
4882     break;
4883   case AtomicRMWInst::UDecWrap:
4884     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
4885     break;
4886   }
4887   AtomicOrdering Ordering = I.getOrdering();
4888   SyncScope::ID SSID = I.getSyncScopeID();
4889 
4890   SDValue InChain = getRoot();
4891 
4892   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4893   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4894   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4895 
4896   MachineFunction &MF = DAG.getMachineFunction();
4897   MachineMemOperand *MMO = MF.getMachineMemOperand(
4898       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4899       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4900 
4901   SDValue L =
4902     DAG.getAtomic(NT, dl, MemVT, InChain,
4903                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4904                   MMO);
4905 
4906   SDValue OutChain = L.getValue(1);
4907 
4908   setValue(&I, L);
4909   DAG.setRoot(OutChain);
4910 }
4911 
4912 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4913   SDLoc dl = getCurSDLoc();
4914   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4915   SDValue Ops[3];
4916   Ops[0] = getRoot();
4917   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4918                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4919   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4920                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4921   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4922   setValue(&I, N);
4923   DAG.setRoot(N);
4924 }
4925 
4926 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4927   SDLoc dl = getCurSDLoc();
4928   AtomicOrdering Order = I.getOrdering();
4929   SyncScope::ID SSID = I.getSyncScopeID();
4930 
4931   SDValue InChain = getRoot();
4932 
4933   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4934   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4935   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4936 
4937   if (!TLI.supportsUnalignedAtomics() &&
4938       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4939     report_fatal_error("Cannot generate unaligned atomic load");
4940 
4941   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4942 
4943   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4944       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4945       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4946 
4947   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4948 
4949   SDValue Ptr = getValue(I.getPointerOperand());
4950   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4951                             Ptr, MMO);
4952 
4953   SDValue OutChain = L.getValue(1);
4954   if (MemVT != VT)
4955     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4956 
4957   setValue(&I, L);
4958   DAG.setRoot(OutChain);
4959 }
4960 
4961 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4962   SDLoc dl = getCurSDLoc();
4963 
4964   AtomicOrdering Ordering = I.getOrdering();
4965   SyncScope::ID SSID = I.getSyncScopeID();
4966 
4967   SDValue InChain = getRoot();
4968 
4969   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4970   EVT MemVT =
4971       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4972 
4973   if (!TLI.supportsUnalignedAtomics() &&
4974       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4975     report_fatal_error("Cannot generate unaligned atomic store");
4976 
4977   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4978 
4979   MachineFunction &MF = DAG.getMachineFunction();
4980   MachineMemOperand *MMO = MF.getMachineMemOperand(
4981       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4982       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4983 
4984   SDValue Val = getValue(I.getValueOperand());
4985   if (Val.getValueType() != MemVT)
4986     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4987   SDValue Ptr = getValue(I.getPointerOperand());
4988 
4989   SDValue OutChain =
4990       DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
4991 
4992   setValue(&I, OutChain);
4993   DAG.setRoot(OutChain);
4994 }
4995 
4996 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4997 /// node.
4998 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4999                                                unsigned Intrinsic) {
5000   // Ignore the callsite's attributes. A specific call site may be marked with
5001   // readnone, but the lowering code will expect the chain based on the
5002   // definition.
5003   const Function *F = I.getCalledFunction();
5004   bool HasChain = !F->doesNotAccessMemory();
5005   bool OnlyLoad = HasChain && F->onlyReadsMemory();
5006 
5007   // Build the operand list.
5008   SmallVector<SDValue, 8> Ops;
5009   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
5010     if (OnlyLoad) {
5011       // We don't need to serialize loads against other loads.
5012       Ops.push_back(DAG.getRoot());
5013     } else {
5014       Ops.push_back(getRoot());
5015     }
5016   }
5017 
5018   // Info is set by getTgtMemIntrinsic
5019   TargetLowering::IntrinsicInfo Info;
5020   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5021   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
5022                                                DAG.getMachineFunction(),
5023                                                Intrinsic);
5024 
5025   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5026   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
5027       Info.opc == ISD::INTRINSIC_W_CHAIN)
5028     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
5029                                         TLI.getPointerTy(DAG.getDataLayout())));
5030 
5031   // Add all operands of the call to the operand list.
5032   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5033     const Value *Arg = I.getArgOperand(i);
5034     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5035       Ops.push_back(getValue(Arg));
5036       continue;
5037     }
5038 
5039     // Use TargetConstant instead of a regular constant for immarg.
5040     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5041     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5042       assert(CI->getBitWidth() <= 64 &&
5043              "large intrinsic immediates not handled");
5044       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5045     } else {
5046       Ops.push_back(
5047           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5048     }
5049   }
5050 
5051   SmallVector<EVT, 4> ValueVTs;
5052   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5053 
5054   if (HasChain)
5055     ValueVTs.push_back(MVT::Other);
5056 
5057   SDVTList VTs = DAG.getVTList(ValueVTs);
5058 
5059   // Propagate fast-math-flags from IR to node(s).
5060   SDNodeFlags Flags;
5061   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5062     Flags.copyFMF(*FPMO);
5063   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5064 
5065   // Create the node.
5066   SDValue Result;
5067   // In some cases, custom collection of operands from CallInst I may be needed.
5068   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
5069   if (IsTgtIntrinsic) {
5070     // This is target intrinsic that touches memory
5071     //
5072     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5073     //       didn't yield anything useful.
5074     MachinePointerInfo MPI;
5075     if (Info.ptrVal)
5076       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5077     else if (Info.fallbackAddressSpace)
5078       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5079     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
5080                                      Info.memVT, MPI, Info.align, Info.flags,
5081                                      Info.size, I.getAAMetadata());
5082   } else if (!HasChain) {
5083     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5084   } else if (!I.getType()->isVoidTy()) {
5085     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5086   } else {
5087     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5088   }
5089 
5090   if (HasChain) {
5091     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
5092     if (OnlyLoad)
5093       PendingLoads.push_back(Chain);
5094     else
5095       DAG.setRoot(Chain);
5096   }
5097 
5098   if (!I.getType()->isVoidTy()) {
5099     if (!isa<VectorType>(I.getType()))
5100       Result = lowerRangeToAssertZExt(DAG, I, Result);
5101 
5102     MaybeAlign Alignment = I.getRetAlign();
5103 
5104     // Insert `assertalign` node if there's an alignment.
5105     if (InsertAssertAlign && Alignment) {
5106       Result =
5107           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5108     }
5109 
5110     setValue(&I, Result);
5111   }
5112 }
5113 
5114 /// GetSignificand - Get the significand and build it into a floating-point
5115 /// number with exponent of 1:
5116 ///
5117 ///   Op = (Op & 0x007fffff) | 0x3f800000;
5118 ///
5119 /// where Op is the hexadecimal representation of floating point value.
5120 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5121   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5122                            DAG.getConstant(0x007fffff, dl, MVT::i32));
5123   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5124                            DAG.getConstant(0x3f800000, dl, MVT::i32));
5125   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5126 }
5127 
5128 /// GetExponent - Get the exponent:
5129 ///
5130 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5131 ///
5132 /// where Op is the hexadecimal representation of floating point value.
5133 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5134                            const TargetLowering &TLI, const SDLoc &dl) {
5135   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5136                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5137   SDValue t1 = DAG.getNode(
5138       ISD::SRL, dl, MVT::i32, t0,
5139       DAG.getConstant(23, dl,
5140                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5141   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5142                            DAG.getConstant(127, dl, MVT::i32));
5143   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5144 }
5145 
5146 /// getF32Constant - Get 32-bit floating point constant.
5147 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5148                               const SDLoc &dl) {
5149   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5150                            MVT::f32);
5151 }
5152 
5153 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5154                                        SelectionDAG &DAG) {
5155   // TODO: What fast-math-flags should be set on the floating-point nodes?
5156 
5157   //   IntegerPartOfX = ((int32_t)(t0);
5158   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5159 
5160   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5161   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5162   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5163 
5164   //   IntegerPartOfX <<= 23;
5165   IntegerPartOfX =
5166       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5167                   DAG.getConstant(23, dl,
5168                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5169                                       MVT::i32, DAG.getDataLayout())));
5170 
5171   SDValue TwoToFractionalPartOfX;
5172   if (LimitFloatPrecision <= 6) {
5173     // For floating-point precision of 6:
5174     //
5175     //   TwoToFractionalPartOfX =
5176     //     0.997535578f +
5177     //       (0.735607626f + 0.252464424f * x) * x;
5178     //
5179     // error 0.0144103317, which is 6 bits
5180     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5181                              getF32Constant(DAG, 0x3e814304, dl));
5182     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5183                              getF32Constant(DAG, 0x3f3c50c8, dl));
5184     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5185     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5186                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5187   } else if (LimitFloatPrecision <= 12) {
5188     // For floating-point precision of 12:
5189     //
5190     //   TwoToFractionalPartOfX =
5191     //     0.999892986f +
5192     //       (0.696457318f +
5193     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5194     //
5195     // error 0.000107046256, which is 13 to 14 bits
5196     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5197                              getF32Constant(DAG, 0x3da235e3, dl));
5198     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5199                              getF32Constant(DAG, 0x3e65b8f3, dl));
5200     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5201     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5202                              getF32Constant(DAG, 0x3f324b07, dl));
5203     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5204     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5205                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5206   } else { // LimitFloatPrecision <= 18
5207     // For floating-point precision of 18:
5208     //
5209     //   TwoToFractionalPartOfX =
5210     //     0.999999982f +
5211     //       (0.693148872f +
5212     //         (0.240227044f +
5213     //           (0.554906021e-1f +
5214     //             (0.961591928e-2f +
5215     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5216     // error 2.47208000*10^(-7), which is better than 18 bits
5217     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5218                              getF32Constant(DAG, 0x3924b03e, dl));
5219     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5220                              getF32Constant(DAG, 0x3ab24b87, dl));
5221     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5222     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5223                              getF32Constant(DAG, 0x3c1d8c17, dl));
5224     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5225     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5226                              getF32Constant(DAG, 0x3d634a1d, dl));
5227     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5228     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5229                              getF32Constant(DAG, 0x3e75fe14, dl));
5230     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5231     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5232                               getF32Constant(DAG, 0x3f317234, dl));
5233     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5234     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5235                                          getF32Constant(DAG, 0x3f800000, dl));
5236   }
5237 
5238   // Add the exponent into the result in integer domain.
5239   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5240   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5241                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5242 }
5243 
5244 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5245 /// limited-precision mode.
5246 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5247                          const TargetLowering &TLI, SDNodeFlags Flags) {
5248   if (Op.getValueType() == MVT::f32 &&
5249       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5250 
5251     // Put the exponent in the right bit position for later addition to the
5252     // final result:
5253     //
5254     // t0 = Op * log2(e)
5255 
5256     // TODO: What fast-math-flags should be set here?
5257     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5258                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5259     return getLimitedPrecisionExp2(t0, dl, DAG);
5260   }
5261 
5262   // No special expansion.
5263   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5264 }
5265 
5266 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5267 /// limited-precision mode.
5268 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5269                          const TargetLowering &TLI, SDNodeFlags Flags) {
5270   // TODO: What fast-math-flags should be set on the floating-point nodes?
5271 
5272   if (Op.getValueType() == MVT::f32 &&
5273       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5274     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5275 
5276     // Scale the exponent by log(2).
5277     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5278     SDValue LogOfExponent =
5279         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5280                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5281 
5282     // Get the significand and build it into a floating-point number with
5283     // exponent of 1.
5284     SDValue X = GetSignificand(DAG, Op1, dl);
5285 
5286     SDValue LogOfMantissa;
5287     if (LimitFloatPrecision <= 6) {
5288       // For floating-point precision of 6:
5289       //
5290       //   LogofMantissa =
5291       //     -1.1609546f +
5292       //       (1.4034025f - 0.23903021f * x) * x;
5293       //
5294       // error 0.0034276066, which is better than 8 bits
5295       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5296                                getF32Constant(DAG, 0xbe74c456, dl));
5297       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5298                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5299       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5300       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5301                                   getF32Constant(DAG, 0x3f949a29, dl));
5302     } else if (LimitFloatPrecision <= 12) {
5303       // For floating-point precision of 12:
5304       //
5305       //   LogOfMantissa =
5306       //     -1.7417939f +
5307       //       (2.8212026f +
5308       //         (-1.4699568f +
5309       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5310       //
5311       // error 0.000061011436, which is 14 bits
5312       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5313                                getF32Constant(DAG, 0xbd67b6d6, dl));
5314       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5315                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5316       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5317       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5318                                getF32Constant(DAG, 0x3fbc278b, dl));
5319       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5320       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5321                                getF32Constant(DAG, 0x40348e95, dl));
5322       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5323       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5324                                   getF32Constant(DAG, 0x3fdef31a, dl));
5325     } else { // LimitFloatPrecision <= 18
5326       // For floating-point precision of 18:
5327       //
5328       //   LogOfMantissa =
5329       //     -2.1072184f +
5330       //       (4.2372794f +
5331       //         (-3.7029485f +
5332       //           (2.2781945f +
5333       //             (-0.87823314f +
5334       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5335       //
5336       // error 0.0000023660568, which is better than 18 bits
5337       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5338                                getF32Constant(DAG, 0xbc91e5ac, dl));
5339       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5340                                getF32Constant(DAG, 0x3e4350aa, dl));
5341       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5342       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5343                                getF32Constant(DAG, 0x3f60d3e3, dl));
5344       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5345       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5346                                getF32Constant(DAG, 0x4011cdf0, dl));
5347       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5348       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5349                                getF32Constant(DAG, 0x406cfd1c, dl));
5350       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5351       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5352                                getF32Constant(DAG, 0x408797cb, dl));
5353       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5354       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5355                                   getF32Constant(DAG, 0x4006dcab, dl));
5356     }
5357 
5358     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5359   }
5360 
5361   // No special expansion.
5362   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5363 }
5364 
5365 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5366 /// limited-precision mode.
5367 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5368                           const TargetLowering &TLI, SDNodeFlags Flags) {
5369   // TODO: What fast-math-flags should be set on the floating-point nodes?
5370 
5371   if (Op.getValueType() == MVT::f32 &&
5372       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5373     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5374 
5375     // Get the exponent.
5376     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5377 
5378     // Get the significand and build it into a floating-point number with
5379     // exponent of 1.
5380     SDValue X = GetSignificand(DAG, Op1, dl);
5381 
5382     // Different possible minimax approximations of significand in
5383     // floating-point for various degrees of accuracy over [1,2].
5384     SDValue Log2ofMantissa;
5385     if (LimitFloatPrecision <= 6) {
5386       // For floating-point precision of 6:
5387       //
5388       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5389       //
5390       // error 0.0049451742, which is more than 7 bits
5391       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5392                                getF32Constant(DAG, 0xbeb08fe0, dl));
5393       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5394                                getF32Constant(DAG, 0x40019463, dl));
5395       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5396       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5397                                    getF32Constant(DAG, 0x3fd6633d, dl));
5398     } else if (LimitFloatPrecision <= 12) {
5399       // For floating-point precision of 12:
5400       //
5401       //   Log2ofMantissa =
5402       //     -2.51285454f +
5403       //       (4.07009056f +
5404       //         (-2.12067489f +
5405       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5406       //
5407       // error 0.0000876136000, which is better than 13 bits
5408       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5409                                getF32Constant(DAG, 0xbda7262e, dl));
5410       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5411                                getF32Constant(DAG, 0x3f25280b, dl));
5412       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5413       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5414                                getF32Constant(DAG, 0x4007b923, dl));
5415       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5416       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5417                                getF32Constant(DAG, 0x40823e2f, dl));
5418       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5419       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5420                                    getF32Constant(DAG, 0x4020d29c, dl));
5421     } else { // LimitFloatPrecision <= 18
5422       // For floating-point precision of 18:
5423       //
5424       //   Log2ofMantissa =
5425       //     -3.0400495f +
5426       //       (6.1129976f +
5427       //         (-5.3420409f +
5428       //           (3.2865683f +
5429       //             (-1.2669343f +
5430       //               (0.27515199f -
5431       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5432       //
5433       // error 0.0000018516, which is better than 18 bits
5434       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5435                                getF32Constant(DAG, 0xbcd2769e, dl));
5436       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5437                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5438       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5439       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5440                                getF32Constant(DAG, 0x3fa22ae7, dl));
5441       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5442       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5443                                getF32Constant(DAG, 0x40525723, dl));
5444       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5445       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5446                                getF32Constant(DAG, 0x40aaf200, dl));
5447       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5448       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5449                                getF32Constant(DAG, 0x40c39dad, dl));
5450       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5451       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5452                                    getF32Constant(DAG, 0x4042902c, dl));
5453     }
5454 
5455     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5456   }
5457 
5458   // No special expansion.
5459   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5460 }
5461 
5462 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5463 /// limited-precision mode.
5464 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5465                            const TargetLowering &TLI, SDNodeFlags Flags) {
5466   // TODO: What fast-math-flags should be set on the floating-point nodes?
5467 
5468   if (Op.getValueType() == MVT::f32 &&
5469       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5470     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5471 
5472     // Scale the exponent by log10(2) [0.30102999f].
5473     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5474     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5475                                         getF32Constant(DAG, 0x3e9a209a, dl));
5476 
5477     // Get the significand and build it into a floating-point number with
5478     // exponent of 1.
5479     SDValue X = GetSignificand(DAG, Op1, dl);
5480 
5481     SDValue Log10ofMantissa;
5482     if (LimitFloatPrecision <= 6) {
5483       // For floating-point precision of 6:
5484       //
5485       //   Log10ofMantissa =
5486       //     -0.50419619f +
5487       //       (0.60948995f - 0.10380950f * x) * x;
5488       //
5489       // error 0.0014886165, which is 6 bits
5490       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5491                                getF32Constant(DAG, 0xbdd49a13, dl));
5492       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5493                                getF32Constant(DAG, 0x3f1c0789, dl));
5494       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5495       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5496                                     getF32Constant(DAG, 0x3f011300, dl));
5497     } else if (LimitFloatPrecision <= 12) {
5498       // For floating-point precision of 12:
5499       //
5500       //   Log10ofMantissa =
5501       //     -0.64831180f +
5502       //       (0.91751397f +
5503       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5504       //
5505       // error 0.00019228036, which is better than 12 bits
5506       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5507                                getF32Constant(DAG, 0x3d431f31, dl));
5508       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5509                                getF32Constant(DAG, 0x3ea21fb2, dl));
5510       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5511       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5512                                getF32Constant(DAG, 0x3f6ae232, dl));
5513       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5514       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5515                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5516     } else { // LimitFloatPrecision <= 18
5517       // For floating-point precision of 18:
5518       //
5519       //   Log10ofMantissa =
5520       //     -0.84299375f +
5521       //       (1.5327582f +
5522       //         (-1.0688956f +
5523       //           (0.49102474f +
5524       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5525       //
5526       // error 0.0000037995730, which is better than 18 bits
5527       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5528                                getF32Constant(DAG, 0x3c5d51ce, dl));
5529       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5530                                getF32Constant(DAG, 0x3e00685a, dl));
5531       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5532       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5533                                getF32Constant(DAG, 0x3efb6798, dl));
5534       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5535       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5536                                getF32Constant(DAG, 0x3f88d192, dl));
5537       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5538       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5539                                getF32Constant(DAG, 0x3fc4316c, dl));
5540       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5541       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5542                                     getF32Constant(DAG, 0x3f57ce70, dl));
5543     }
5544 
5545     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5546   }
5547 
5548   // No special expansion.
5549   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5550 }
5551 
5552 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5553 /// limited-precision mode.
5554 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5555                           const TargetLowering &TLI, SDNodeFlags Flags) {
5556   if (Op.getValueType() == MVT::f32 &&
5557       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5558     return getLimitedPrecisionExp2(Op, dl, DAG);
5559 
5560   // No special expansion.
5561   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5562 }
5563 
5564 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5565 /// limited-precision mode with x == 10.0f.
5566 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5567                          SelectionDAG &DAG, const TargetLowering &TLI,
5568                          SDNodeFlags Flags) {
5569   bool IsExp10 = false;
5570   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5571       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5572     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5573       APFloat Ten(10.0f);
5574       IsExp10 = LHSC->isExactlyValue(Ten);
5575     }
5576   }
5577 
5578   // TODO: What fast-math-flags should be set on the FMUL node?
5579   if (IsExp10) {
5580     // Put the exponent in the right bit position for later addition to the
5581     // final result:
5582     //
5583     //   #define LOG2OF10 3.3219281f
5584     //   t0 = Op * LOG2OF10;
5585     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5586                              getF32Constant(DAG, 0x40549a78, dl));
5587     return getLimitedPrecisionExp2(t0, dl, DAG);
5588   }
5589 
5590   // No special expansion.
5591   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5592 }
5593 
5594 /// ExpandPowI - Expand a llvm.powi intrinsic.
5595 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5596                           SelectionDAG &DAG) {
5597   // If RHS is a constant, we can expand this out to a multiplication tree if
5598   // it's beneficial on the target, otherwise we end up lowering to a call to
5599   // __powidf2 (for example).
5600   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5601     unsigned Val = RHSC->getSExtValue();
5602 
5603     // powi(x, 0) -> 1.0
5604     if (Val == 0)
5605       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5606 
5607     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5608             Val, DAG.shouldOptForSize())) {
5609       // Get the exponent as a positive value.
5610       if ((int)Val < 0)
5611         Val = -Val;
5612       // We use the simple binary decomposition method to generate the multiply
5613       // sequence.  There are more optimal ways to do this (for example,
5614       // powi(x,15) generates one more multiply than it should), but this has
5615       // the benefit of being both really simple and much better than a libcall.
5616       SDValue Res; // Logically starts equal to 1.0
5617       SDValue CurSquare = LHS;
5618       // TODO: Intrinsics should have fast-math-flags that propagate to these
5619       // nodes.
5620       while (Val) {
5621         if (Val & 1) {
5622           if (Res.getNode())
5623             Res =
5624                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5625           else
5626             Res = CurSquare; // 1.0*CurSquare.
5627         }
5628 
5629         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5630                                 CurSquare, CurSquare);
5631         Val >>= 1;
5632       }
5633 
5634       // If the original was negative, invert the result, producing 1/(x*x*x).
5635       if (RHSC->getSExtValue() < 0)
5636         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5637                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5638       return Res;
5639     }
5640   }
5641 
5642   // Otherwise, expand to a libcall.
5643   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5644 }
5645 
5646 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5647                             SDValue LHS, SDValue RHS, SDValue Scale,
5648                             SelectionDAG &DAG, const TargetLowering &TLI) {
5649   EVT VT = LHS.getValueType();
5650   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5651   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5652   LLVMContext &Ctx = *DAG.getContext();
5653 
5654   // If the type is legal but the operation isn't, this node might survive all
5655   // the way to operation legalization. If we end up there and we do not have
5656   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5657   // node.
5658 
5659   // Coax the legalizer into expanding the node during type legalization instead
5660   // by bumping the size by one bit. This will force it to Promote, enabling the
5661   // early expansion and avoiding the need to expand later.
5662 
5663   // We don't have to do this if Scale is 0; that can always be expanded, unless
5664   // it's a saturating signed operation. Those can experience true integer
5665   // division overflow, a case which we must avoid.
5666 
5667   // FIXME: We wouldn't have to do this (or any of the early
5668   // expansion/promotion) if it was possible to expand a libcall of an
5669   // illegal type during operation legalization. But it's not, so things
5670   // get a bit hacky.
5671   unsigned ScaleInt = Scale->getAsZExtVal();
5672   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5673       (TLI.isTypeLegal(VT) ||
5674        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5675     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5676         Opcode, VT, ScaleInt);
5677     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5678       EVT PromVT;
5679       if (VT.isScalarInteger())
5680         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5681       else if (VT.isVector()) {
5682         PromVT = VT.getVectorElementType();
5683         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5684         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5685       } else
5686         llvm_unreachable("Wrong VT for DIVFIX?");
5687       LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5688       RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5689       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5690       // For saturating operations, we need to shift up the LHS to get the
5691       // proper saturation width, and then shift down again afterwards.
5692       if (Saturating)
5693         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5694                           DAG.getConstant(1, DL, ShiftTy));
5695       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5696       if (Saturating)
5697         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5698                           DAG.getConstant(1, DL, ShiftTy));
5699       return DAG.getZExtOrTrunc(Res, DL, VT);
5700     }
5701   }
5702 
5703   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5704 }
5705 
5706 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5707 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5708 static void
5709 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5710                      const SDValue &N) {
5711   switch (N.getOpcode()) {
5712   case ISD::CopyFromReg: {
5713     SDValue Op = N.getOperand(1);
5714     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5715                       Op.getValueType().getSizeInBits());
5716     return;
5717   }
5718   case ISD::BITCAST:
5719   case ISD::AssertZext:
5720   case ISD::AssertSext:
5721   case ISD::TRUNCATE:
5722     getUnderlyingArgRegs(Regs, N.getOperand(0));
5723     return;
5724   case ISD::BUILD_PAIR:
5725   case ISD::BUILD_VECTOR:
5726   case ISD::CONCAT_VECTORS:
5727     for (SDValue Op : N->op_values())
5728       getUnderlyingArgRegs(Regs, Op);
5729     return;
5730   default:
5731     return;
5732   }
5733 }
5734 
5735 /// If the DbgValueInst is a dbg_value of a function argument, create the
5736 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5737 /// instruction selection, they will be inserted to the entry BB.
5738 /// We don't currently support this for variadic dbg_values, as they shouldn't
5739 /// appear for function arguments or in the prologue.
5740 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5741     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5742     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5743   const Argument *Arg = dyn_cast<Argument>(V);
5744   if (!Arg)
5745     return false;
5746 
5747   MachineFunction &MF = DAG.getMachineFunction();
5748   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5749 
5750   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5751   // we've been asked to pursue.
5752   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5753                               bool Indirect) {
5754     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5755       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5756       // pointing at the VReg, which will be patched up later.
5757       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5758       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5759           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5760           /* isKill */ false, /* isDead */ false,
5761           /* isUndef */ false, /* isEarlyClobber */ false,
5762           /* SubReg */ 0, /* isDebug */ true)});
5763 
5764       auto *NewDIExpr = FragExpr;
5765       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5766       // the DIExpression.
5767       if (Indirect)
5768         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5769       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5770       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5771       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5772     } else {
5773       // Create a completely standard DBG_VALUE.
5774       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5775       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5776     }
5777   };
5778 
5779   if (Kind == FuncArgumentDbgValueKind::Value) {
5780     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5781     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5782     // the entry block.
5783     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5784     if (!IsInEntryBlock)
5785       return false;
5786 
5787     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5788     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5789     // variable that also is a param.
5790     //
5791     // Although, if we are at the top of the entry block already, we can still
5792     // emit using ArgDbgValue. This might catch some situations when the
5793     // dbg.value refers to an argument that isn't used in the entry block, so
5794     // any CopyToReg node would be optimized out and the only way to express
5795     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5796     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5797     // we should only emit as ArgDbgValue if the Variable is an argument to the
5798     // current function, and the dbg.value intrinsic is found in the entry
5799     // block.
5800     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5801         !DL->getInlinedAt();
5802     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5803     if (!IsInPrologue && !VariableIsFunctionInputArg)
5804       return false;
5805 
5806     // Here we assume that a function argument on IR level only can be used to
5807     // describe one input parameter on source level. If we for example have
5808     // source code like this
5809     //
5810     //    struct A { long x, y; };
5811     //    void foo(struct A a, long b) {
5812     //      ...
5813     //      b = a.x;
5814     //      ...
5815     //    }
5816     //
5817     // and IR like this
5818     //
5819     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5820     //  entry:
5821     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5822     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5823     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5824     //    ...
5825     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5826     //    ...
5827     //
5828     // then the last dbg.value is describing a parameter "b" using a value that
5829     // is an argument. But since we already has used %a1 to describe a parameter
5830     // we should not handle that last dbg.value here (that would result in an
5831     // incorrect hoisting of the DBG_VALUE to the function entry).
5832     // Notice that we allow one dbg.value per IR level argument, to accommodate
5833     // for the situation with fragments above.
5834     if (VariableIsFunctionInputArg) {
5835       unsigned ArgNo = Arg->getArgNo();
5836       if (ArgNo >= FuncInfo.DescribedArgs.size())
5837         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5838       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5839         return false;
5840       FuncInfo.DescribedArgs.set(ArgNo);
5841     }
5842   }
5843 
5844   bool IsIndirect = false;
5845   std::optional<MachineOperand> Op;
5846   // Some arguments' frame index is recorded during argument lowering.
5847   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5848   if (FI != std::numeric_limits<int>::max())
5849     Op = MachineOperand::CreateFI(FI);
5850 
5851   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5852   if (!Op && N.getNode()) {
5853     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5854     Register Reg;
5855     if (ArgRegsAndSizes.size() == 1)
5856       Reg = ArgRegsAndSizes.front().first;
5857 
5858     if (Reg && Reg.isVirtual()) {
5859       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5860       Register PR = RegInfo.getLiveInPhysReg(Reg);
5861       if (PR)
5862         Reg = PR;
5863     }
5864     if (Reg) {
5865       Op = MachineOperand::CreateReg(Reg, false);
5866       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5867     }
5868   }
5869 
5870   if (!Op && N.getNode()) {
5871     // Check if frame index is available.
5872     SDValue LCandidate = peekThroughBitcasts(N);
5873     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5874       if (FrameIndexSDNode *FINode =
5875           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5876         Op = MachineOperand::CreateFI(FINode->getIndex());
5877   }
5878 
5879   if (!Op) {
5880     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5881     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5882                                          SplitRegs) {
5883       unsigned Offset = 0;
5884       for (const auto &RegAndSize : SplitRegs) {
5885         // If the expression is already a fragment, the current register
5886         // offset+size might extend beyond the fragment. In this case, only
5887         // the register bits that are inside the fragment are relevant.
5888         int RegFragmentSizeInBits = RegAndSize.second;
5889         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5890           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5891           // The register is entirely outside the expression fragment,
5892           // so is irrelevant for debug info.
5893           if (Offset >= ExprFragmentSizeInBits)
5894             break;
5895           // The register is partially outside the expression fragment, only
5896           // the low bits within the fragment are relevant for debug info.
5897           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5898             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5899           }
5900         }
5901 
5902         auto FragmentExpr = DIExpression::createFragmentExpression(
5903             Expr, Offset, RegFragmentSizeInBits);
5904         Offset += RegAndSize.second;
5905         // If a valid fragment expression cannot be created, the variable's
5906         // correct value cannot be determined and so it is set as Undef.
5907         if (!FragmentExpr) {
5908           SDDbgValue *SDV = DAG.getConstantDbgValue(
5909               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5910           DAG.AddDbgValue(SDV, false);
5911           continue;
5912         }
5913         MachineInstr *NewMI =
5914             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5915                              Kind != FuncArgumentDbgValueKind::Value);
5916         FuncInfo.ArgDbgValues.push_back(NewMI);
5917       }
5918     };
5919 
5920     // Check if ValueMap has reg number.
5921     DenseMap<const Value *, Register>::const_iterator
5922       VMI = FuncInfo.ValueMap.find(V);
5923     if (VMI != FuncInfo.ValueMap.end()) {
5924       const auto &TLI = DAG.getTargetLoweringInfo();
5925       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5926                        V->getType(), std::nullopt);
5927       if (RFV.occupiesMultipleRegs()) {
5928         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5929         return true;
5930       }
5931 
5932       Op = MachineOperand::CreateReg(VMI->second, false);
5933       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5934     } else if (ArgRegsAndSizes.size() > 1) {
5935       // This was split due to the calling convention, and no virtual register
5936       // mapping exists for the value.
5937       splitMultiRegDbgValue(ArgRegsAndSizes);
5938       return true;
5939     }
5940   }
5941 
5942   if (!Op)
5943     return false;
5944 
5945   assert(Variable->isValidLocationForIntrinsic(DL) &&
5946          "Expected inlined-at fields to agree");
5947   MachineInstr *NewMI = nullptr;
5948 
5949   if (Op->isReg())
5950     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5951   else
5952     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5953                     Variable, Expr);
5954 
5955   // Otherwise, use ArgDbgValues.
5956   FuncInfo.ArgDbgValues.push_back(NewMI);
5957   return true;
5958 }
5959 
5960 /// Return the appropriate SDDbgValue based on N.
5961 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5962                                              DILocalVariable *Variable,
5963                                              DIExpression *Expr,
5964                                              const DebugLoc &dl,
5965                                              unsigned DbgSDNodeOrder) {
5966   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5967     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5968     // stack slot locations.
5969     //
5970     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5971     // debug values here after optimization:
5972     //
5973     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5974     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5975     //
5976     // Both describe the direct values of their associated variables.
5977     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5978                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5979   }
5980   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5981                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5982 }
5983 
5984 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5985   switch (Intrinsic) {
5986   case Intrinsic::smul_fix:
5987     return ISD::SMULFIX;
5988   case Intrinsic::umul_fix:
5989     return ISD::UMULFIX;
5990   case Intrinsic::smul_fix_sat:
5991     return ISD::SMULFIXSAT;
5992   case Intrinsic::umul_fix_sat:
5993     return ISD::UMULFIXSAT;
5994   case Intrinsic::sdiv_fix:
5995     return ISD::SDIVFIX;
5996   case Intrinsic::udiv_fix:
5997     return ISD::UDIVFIX;
5998   case Intrinsic::sdiv_fix_sat:
5999     return ISD::SDIVFIXSAT;
6000   case Intrinsic::udiv_fix_sat:
6001     return ISD::UDIVFIXSAT;
6002   default:
6003     llvm_unreachable("Unhandled fixed point intrinsic");
6004   }
6005 }
6006 
6007 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
6008                                            const char *FunctionName) {
6009   assert(FunctionName && "FunctionName must not be nullptr");
6010   SDValue Callee = DAG.getExternalSymbol(
6011       FunctionName,
6012       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6013   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
6014 }
6015 
6016 /// Given a @llvm.call.preallocated.setup, return the corresponding
6017 /// preallocated call.
6018 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6019   assert(cast<CallBase>(PreallocatedSetup)
6020                  ->getCalledFunction()
6021                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6022          "expected call_preallocated_setup Value");
6023   for (const auto *U : PreallocatedSetup->users()) {
6024     auto *UseCall = cast<CallBase>(U);
6025     const Function *Fn = UseCall->getCalledFunction();
6026     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6027       return UseCall;
6028     }
6029   }
6030   llvm_unreachable("expected corresponding call to preallocated setup/arg");
6031 }
6032 
6033 /// If DI is a debug value with an EntryValue expression, lower it using the
6034 /// corresponding physical register of the associated Argument value
6035 /// (guaranteed to exist by the verifier).
6036 bool SelectionDAGBuilder::visitEntryValueDbgValue(
6037     ArrayRef<const Value *> Values, DILocalVariable *Variable,
6038     DIExpression *Expr, DebugLoc DbgLoc) {
6039   if (!Expr->isEntryValue() || !hasSingleElement(Values))
6040     return false;
6041 
6042   // These properties are guaranteed by the verifier.
6043   const Argument *Arg = cast<Argument>(Values[0]);
6044   assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6045 
6046   auto ArgIt = FuncInfo.ValueMap.find(Arg);
6047   if (ArgIt == FuncInfo.ValueMap.end()) {
6048     LLVM_DEBUG(
6049         dbgs() << "Dropping dbg.value: expression is entry_value but "
6050                   "couldn't find an associated register for the Argument\n");
6051     return true;
6052   }
6053   Register ArgVReg = ArgIt->getSecond();
6054 
6055   for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6056     if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6057       SDDbgValue *SDV = DAG.getVRegDbgValue(
6058           Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6059       DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6060       return true;
6061     }
6062   LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6063                        "couldn't find a physical register\n");
6064   return true;
6065 }
6066 
6067 /// Lower the call to the specified intrinsic function.
6068 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6069                                              unsigned Intrinsic) {
6070   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6071   SDLoc sdl = getCurSDLoc();
6072   DebugLoc dl = getCurDebugLoc();
6073   SDValue Res;
6074 
6075   SDNodeFlags Flags;
6076   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6077     Flags.copyFMF(*FPOp);
6078 
6079   switch (Intrinsic) {
6080   default:
6081     // By default, turn this into a target intrinsic node.
6082     visitTargetIntrinsic(I, Intrinsic);
6083     return;
6084   case Intrinsic::vscale: {
6085     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6086     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6087     return;
6088   }
6089   case Intrinsic::vastart:  visitVAStart(I); return;
6090   case Intrinsic::vaend:    visitVAEnd(I); return;
6091   case Intrinsic::vacopy:   visitVACopy(I); return;
6092   case Intrinsic::returnaddress:
6093     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6094                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6095                              getValue(I.getArgOperand(0))));
6096     return;
6097   case Intrinsic::addressofreturnaddress:
6098     setValue(&I,
6099              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6100                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6101     return;
6102   case Intrinsic::sponentry:
6103     setValue(&I,
6104              DAG.getNode(ISD::SPONENTRY, sdl,
6105                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
6106     return;
6107   case Intrinsic::frameaddress:
6108     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6109                              TLI.getFrameIndexTy(DAG.getDataLayout()),
6110                              getValue(I.getArgOperand(0))));
6111     return;
6112   case Intrinsic::read_volatile_register:
6113   case Intrinsic::read_register: {
6114     Value *Reg = I.getArgOperand(0);
6115     SDValue Chain = getRoot();
6116     SDValue RegName =
6117         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6118     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6119     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6120       DAG.getVTList(VT, MVT::Other), Chain, RegName);
6121     setValue(&I, Res);
6122     DAG.setRoot(Res.getValue(1));
6123     return;
6124   }
6125   case Intrinsic::write_register: {
6126     Value *Reg = I.getArgOperand(0);
6127     Value *RegValue = I.getArgOperand(1);
6128     SDValue Chain = getRoot();
6129     SDValue RegName =
6130         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6131     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6132                             RegName, getValue(RegValue)));
6133     return;
6134   }
6135   case Intrinsic::memcpy: {
6136     const auto &MCI = cast<MemCpyInst>(I);
6137     SDValue Op1 = getValue(I.getArgOperand(0));
6138     SDValue Op2 = getValue(I.getArgOperand(1));
6139     SDValue Op3 = getValue(I.getArgOperand(2));
6140     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6141     Align DstAlign = MCI.getDestAlign().valueOrOne();
6142     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6143     Align Alignment = std::min(DstAlign, SrcAlign);
6144     bool isVol = MCI.isVolatile();
6145     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6146     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6147     // node.
6148     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6149     SDValue MC = DAG.getMemcpy(
6150         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6151         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
6152         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6153     updateDAGForMaybeTailCall(MC);
6154     return;
6155   }
6156   case Intrinsic::memcpy_inline: {
6157     const auto &MCI = cast<MemCpyInlineInst>(I);
6158     SDValue Dst = getValue(I.getArgOperand(0));
6159     SDValue Src = getValue(I.getArgOperand(1));
6160     SDValue Size = getValue(I.getArgOperand(2));
6161     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6162     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6163     Align DstAlign = MCI.getDestAlign().valueOrOne();
6164     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6165     Align Alignment = std::min(DstAlign, SrcAlign);
6166     bool isVol = MCI.isVolatile();
6167     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6168     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6169     // node.
6170     SDValue MC = DAG.getMemcpy(
6171         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6172         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
6173         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6174     updateDAGForMaybeTailCall(MC);
6175     return;
6176   }
6177   case Intrinsic::memset: {
6178     const auto &MSI = cast<MemSetInst>(I);
6179     SDValue Op1 = getValue(I.getArgOperand(0));
6180     SDValue Op2 = getValue(I.getArgOperand(1));
6181     SDValue Op3 = getValue(I.getArgOperand(2));
6182     // @llvm.memset defines 0 and 1 to both mean no alignment.
6183     Align Alignment = MSI.getDestAlign().valueOrOne();
6184     bool isVol = MSI.isVolatile();
6185     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6186     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6187     SDValue MS = DAG.getMemset(
6188         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6189         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6190     updateDAGForMaybeTailCall(MS);
6191     return;
6192   }
6193   case Intrinsic::memset_inline: {
6194     const auto &MSII = cast<MemSetInlineInst>(I);
6195     SDValue Dst = getValue(I.getArgOperand(0));
6196     SDValue Value = getValue(I.getArgOperand(1));
6197     SDValue Size = getValue(I.getArgOperand(2));
6198     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6199     // @llvm.memset defines 0 and 1 to both mean no alignment.
6200     Align DstAlign = MSII.getDestAlign().valueOrOne();
6201     bool isVol = MSII.isVolatile();
6202     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6203     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6204     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6205                                /* AlwaysInline */ true, isTC,
6206                                MachinePointerInfo(I.getArgOperand(0)),
6207                                I.getAAMetadata());
6208     updateDAGForMaybeTailCall(MC);
6209     return;
6210   }
6211   case Intrinsic::memmove: {
6212     const auto &MMI = cast<MemMoveInst>(I);
6213     SDValue Op1 = getValue(I.getArgOperand(0));
6214     SDValue Op2 = getValue(I.getArgOperand(1));
6215     SDValue Op3 = getValue(I.getArgOperand(2));
6216     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6217     Align DstAlign = MMI.getDestAlign().valueOrOne();
6218     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6219     Align Alignment = std::min(DstAlign, SrcAlign);
6220     bool isVol = MMI.isVolatile();
6221     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6222     // FIXME: Support passing different dest/src alignments to the memmove DAG
6223     // node.
6224     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6225     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6226                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6227                                 MachinePointerInfo(I.getArgOperand(1)),
6228                                 I.getAAMetadata(), AA);
6229     updateDAGForMaybeTailCall(MM);
6230     return;
6231   }
6232   case Intrinsic::memcpy_element_unordered_atomic: {
6233     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6234     SDValue Dst = getValue(MI.getRawDest());
6235     SDValue Src = getValue(MI.getRawSource());
6236     SDValue Length = getValue(MI.getLength());
6237 
6238     Type *LengthTy = MI.getLength()->getType();
6239     unsigned ElemSz = MI.getElementSizeInBytes();
6240     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6241     SDValue MC =
6242         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6243                             isTC, MachinePointerInfo(MI.getRawDest()),
6244                             MachinePointerInfo(MI.getRawSource()));
6245     updateDAGForMaybeTailCall(MC);
6246     return;
6247   }
6248   case Intrinsic::memmove_element_unordered_atomic: {
6249     auto &MI = cast<AtomicMemMoveInst>(I);
6250     SDValue Dst = getValue(MI.getRawDest());
6251     SDValue Src = getValue(MI.getRawSource());
6252     SDValue Length = getValue(MI.getLength());
6253 
6254     Type *LengthTy = MI.getLength()->getType();
6255     unsigned ElemSz = MI.getElementSizeInBytes();
6256     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6257     SDValue MC =
6258         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6259                              isTC, MachinePointerInfo(MI.getRawDest()),
6260                              MachinePointerInfo(MI.getRawSource()));
6261     updateDAGForMaybeTailCall(MC);
6262     return;
6263   }
6264   case Intrinsic::memset_element_unordered_atomic: {
6265     auto &MI = cast<AtomicMemSetInst>(I);
6266     SDValue Dst = getValue(MI.getRawDest());
6267     SDValue Val = getValue(MI.getValue());
6268     SDValue Length = getValue(MI.getLength());
6269 
6270     Type *LengthTy = MI.getLength()->getType();
6271     unsigned ElemSz = MI.getElementSizeInBytes();
6272     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6273     SDValue MC =
6274         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6275                             isTC, MachinePointerInfo(MI.getRawDest()));
6276     updateDAGForMaybeTailCall(MC);
6277     return;
6278   }
6279   case Intrinsic::call_preallocated_setup: {
6280     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6281     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6282     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6283                               getRoot(), SrcValue);
6284     setValue(&I, Res);
6285     DAG.setRoot(Res);
6286     return;
6287   }
6288   case Intrinsic::call_preallocated_arg: {
6289     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6290     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6291     SDValue Ops[3];
6292     Ops[0] = getRoot();
6293     Ops[1] = SrcValue;
6294     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6295                                    MVT::i32); // arg index
6296     SDValue Res = DAG.getNode(
6297         ISD::PREALLOCATED_ARG, sdl,
6298         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6299     setValue(&I, Res);
6300     DAG.setRoot(Res.getValue(1));
6301     return;
6302   }
6303   case Intrinsic::dbg_declare: {
6304     const auto &DI = cast<DbgDeclareInst>(I);
6305     // Debug intrinsics are handled separately in assignment tracking mode.
6306     // Some intrinsics are handled right after Argument lowering.
6307     if (AssignmentTrackingEnabled ||
6308         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6309       return;
6310     LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n");
6311     DILocalVariable *Variable = DI.getVariable();
6312     DIExpression *Expression = DI.getExpression();
6313     dropDanglingDebugInfo(Variable, Expression);
6314     // Assume dbg.declare can not currently use DIArgList, i.e.
6315     // it is non-variadic.
6316     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6317     handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression,
6318                        DI.getDebugLoc());
6319     return;
6320   }
6321   case Intrinsic::dbg_label: {
6322     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6323     DILabel *Label = DI.getLabel();
6324     assert(Label && "Missing label");
6325 
6326     SDDbgLabel *SDV;
6327     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6328     DAG.AddDbgLabel(SDV);
6329     return;
6330   }
6331   case Intrinsic::dbg_assign: {
6332     // Debug intrinsics are handled seperately in assignment tracking mode.
6333     if (AssignmentTrackingEnabled)
6334       return;
6335     // If assignment tracking hasn't been enabled then fall through and treat
6336     // the dbg.assign as a dbg.value.
6337     [[fallthrough]];
6338   }
6339   case Intrinsic::dbg_value: {
6340     // Debug intrinsics are handled seperately in assignment tracking mode.
6341     if (AssignmentTrackingEnabled)
6342       return;
6343     const DbgValueInst &DI = cast<DbgValueInst>(I);
6344     assert(DI.getVariable() && "Missing variable");
6345 
6346     DILocalVariable *Variable = DI.getVariable();
6347     DIExpression *Expression = DI.getExpression();
6348     dropDanglingDebugInfo(Variable, Expression);
6349 
6350     if (DI.isKillLocation()) {
6351       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6352       return;
6353     }
6354 
6355     SmallVector<Value *, 4> Values(DI.getValues());
6356     if (Values.empty())
6357       return;
6358 
6359     bool IsVariadic = DI.hasArgList();
6360     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6361                           SDNodeOrder, IsVariadic))
6362       addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
6363                            DI.getDebugLoc(), SDNodeOrder);
6364     return;
6365   }
6366 
6367   case Intrinsic::eh_typeid_for: {
6368     // Find the type id for the given typeinfo.
6369     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6370     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6371     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6372     setValue(&I, Res);
6373     return;
6374   }
6375 
6376   case Intrinsic::eh_return_i32:
6377   case Intrinsic::eh_return_i64:
6378     DAG.getMachineFunction().setCallsEHReturn(true);
6379     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6380                             MVT::Other,
6381                             getControlRoot(),
6382                             getValue(I.getArgOperand(0)),
6383                             getValue(I.getArgOperand(1))));
6384     return;
6385   case Intrinsic::eh_unwind_init:
6386     DAG.getMachineFunction().setCallsUnwindInit(true);
6387     return;
6388   case Intrinsic::eh_dwarf_cfa:
6389     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6390                              TLI.getPointerTy(DAG.getDataLayout()),
6391                              getValue(I.getArgOperand(0))));
6392     return;
6393   case Intrinsic::eh_sjlj_callsite: {
6394     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6395     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6396     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6397 
6398     MMI.setCurrentCallSite(CI->getZExtValue());
6399     return;
6400   }
6401   case Intrinsic::eh_sjlj_functioncontext: {
6402     // Get and store the index of the function context.
6403     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6404     AllocaInst *FnCtx =
6405       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6406     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6407     MFI.setFunctionContextIndex(FI);
6408     return;
6409   }
6410   case Intrinsic::eh_sjlj_setjmp: {
6411     SDValue Ops[2];
6412     Ops[0] = getRoot();
6413     Ops[1] = getValue(I.getArgOperand(0));
6414     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6415                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6416     setValue(&I, Op.getValue(0));
6417     DAG.setRoot(Op.getValue(1));
6418     return;
6419   }
6420   case Intrinsic::eh_sjlj_longjmp:
6421     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6422                             getRoot(), getValue(I.getArgOperand(0))));
6423     return;
6424   case Intrinsic::eh_sjlj_setup_dispatch:
6425     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6426                             getRoot()));
6427     return;
6428   case Intrinsic::masked_gather:
6429     visitMaskedGather(I);
6430     return;
6431   case Intrinsic::masked_load:
6432     visitMaskedLoad(I);
6433     return;
6434   case Intrinsic::masked_scatter:
6435     visitMaskedScatter(I);
6436     return;
6437   case Intrinsic::masked_store:
6438     visitMaskedStore(I);
6439     return;
6440   case Intrinsic::masked_expandload:
6441     visitMaskedLoad(I, true /* IsExpanding */);
6442     return;
6443   case Intrinsic::masked_compressstore:
6444     visitMaskedStore(I, true /* IsCompressing */);
6445     return;
6446   case Intrinsic::powi:
6447     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6448                             getValue(I.getArgOperand(1)), DAG));
6449     return;
6450   case Intrinsic::log:
6451     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6452     return;
6453   case Intrinsic::log2:
6454     setValue(&I,
6455              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6456     return;
6457   case Intrinsic::log10:
6458     setValue(&I,
6459              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6460     return;
6461   case Intrinsic::exp:
6462     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6463     return;
6464   case Intrinsic::exp2:
6465     setValue(&I,
6466              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6467     return;
6468   case Intrinsic::pow:
6469     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6470                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6471     return;
6472   case Intrinsic::sqrt:
6473   case Intrinsic::fabs:
6474   case Intrinsic::sin:
6475   case Intrinsic::cos:
6476   case Intrinsic::exp10:
6477   case Intrinsic::floor:
6478   case Intrinsic::ceil:
6479   case Intrinsic::trunc:
6480   case Intrinsic::rint:
6481   case Intrinsic::nearbyint:
6482   case Intrinsic::round:
6483   case Intrinsic::roundeven:
6484   case Intrinsic::canonicalize: {
6485     unsigned Opcode;
6486     switch (Intrinsic) {
6487     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6488     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6489     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6490     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6491     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6492     case Intrinsic::exp10:     Opcode = ISD::FEXP10;     break;
6493     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6494     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6495     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6496     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6497     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6498     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6499     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6500     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6501     }
6502 
6503     setValue(&I, DAG.getNode(Opcode, sdl,
6504                              getValue(I.getArgOperand(0)).getValueType(),
6505                              getValue(I.getArgOperand(0)), Flags));
6506     return;
6507   }
6508   case Intrinsic::lround:
6509   case Intrinsic::llround:
6510   case Intrinsic::lrint:
6511   case Intrinsic::llrint: {
6512     unsigned Opcode;
6513     switch (Intrinsic) {
6514     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6515     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6516     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6517     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6518     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6519     }
6520 
6521     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6522     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6523                              getValue(I.getArgOperand(0))));
6524     return;
6525   }
6526   case Intrinsic::minnum:
6527     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6528                              getValue(I.getArgOperand(0)).getValueType(),
6529                              getValue(I.getArgOperand(0)),
6530                              getValue(I.getArgOperand(1)), Flags));
6531     return;
6532   case Intrinsic::maxnum:
6533     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6534                              getValue(I.getArgOperand(0)).getValueType(),
6535                              getValue(I.getArgOperand(0)),
6536                              getValue(I.getArgOperand(1)), Flags));
6537     return;
6538   case Intrinsic::minimum:
6539     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6540                              getValue(I.getArgOperand(0)).getValueType(),
6541                              getValue(I.getArgOperand(0)),
6542                              getValue(I.getArgOperand(1)), Flags));
6543     return;
6544   case Intrinsic::maximum:
6545     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6546                              getValue(I.getArgOperand(0)).getValueType(),
6547                              getValue(I.getArgOperand(0)),
6548                              getValue(I.getArgOperand(1)), Flags));
6549     return;
6550   case Intrinsic::copysign:
6551     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6552                              getValue(I.getArgOperand(0)).getValueType(),
6553                              getValue(I.getArgOperand(0)),
6554                              getValue(I.getArgOperand(1)), Flags));
6555     return;
6556   case Intrinsic::ldexp:
6557     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6558                              getValue(I.getArgOperand(0)).getValueType(),
6559                              getValue(I.getArgOperand(0)),
6560                              getValue(I.getArgOperand(1)), Flags));
6561     return;
6562   case Intrinsic::frexp: {
6563     SmallVector<EVT, 2> ValueVTs;
6564     ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6565     SDVTList VTs = DAG.getVTList(ValueVTs);
6566     setValue(&I,
6567              DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0))));
6568     return;
6569   }
6570   case Intrinsic::arithmetic_fence: {
6571     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6572                              getValue(I.getArgOperand(0)).getValueType(),
6573                              getValue(I.getArgOperand(0)), Flags));
6574     return;
6575   }
6576   case Intrinsic::fma:
6577     setValue(&I, DAG.getNode(
6578                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6579                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6580                      getValue(I.getArgOperand(2)), Flags));
6581     return;
6582 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6583   case Intrinsic::INTRINSIC:
6584 #include "llvm/IR/ConstrainedOps.def"
6585     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6586     return;
6587 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6588 #include "llvm/IR/VPIntrinsics.def"
6589     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6590     return;
6591   case Intrinsic::fptrunc_round: {
6592     // Get the last argument, the metadata and convert it to an integer in the
6593     // call
6594     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6595     std::optional<RoundingMode> RoundMode =
6596         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6597 
6598     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6599 
6600     // Propagate fast-math-flags from IR to node(s).
6601     SDNodeFlags Flags;
6602     Flags.copyFMF(*cast<FPMathOperator>(&I));
6603     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6604 
6605     SDValue Result;
6606     Result = DAG.getNode(
6607         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6608         DAG.getTargetConstant((int)*RoundMode, sdl,
6609                               TLI.getPointerTy(DAG.getDataLayout())));
6610     setValue(&I, Result);
6611 
6612     return;
6613   }
6614   case Intrinsic::fmuladd: {
6615     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6616     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6617         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6618       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6619                                getValue(I.getArgOperand(0)).getValueType(),
6620                                getValue(I.getArgOperand(0)),
6621                                getValue(I.getArgOperand(1)),
6622                                getValue(I.getArgOperand(2)), Flags));
6623     } else {
6624       // TODO: Intrinsic calls should have fast-math-flags.
6625       SDValue Mul = DAG.getNode(
6626           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6627           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6628       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6629                                 getValue(I.getArgOperand(0)).getValueType(),
6630                                 Mul, getValue(I.getArgOperand(2)), Flags);
6631       setValue(&I, Add);
6632     }
6633     return;
6634   }
6635   case Intrinsic::convert_to_fp16:
6636     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6637                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6638                                          getValue(I.getArgOperand(0)),
6639                                          DAG.getTargetConstant(0, sdl,
6640                                                                MVT::i32))));
6641     return;
6642   case Intrinsic::convert_from_fp16:
6643     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6644                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6645                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6646                                          getValue(I.getArgOperand(0)))));
6647     return;
6648   case Intrinsic::fptosi_sat: {
6649     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6650     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6651                              getValue(I.getArgOperand(0)),
6652                              DAG.getValueType(VT.getScalarType())));
6653     return;
6654   }
6655   case Intrinsic::fptoui_sat: {
6656     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6657     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6658                              getValue(I.getArgOperand(0)),
6659                              DAG.getValueType(VT.getScalarType())));
6660     return;
6661   }
6662   case Intrinsic::set_rounding:
6663     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6664                       {getRoot(), getValue(I.getArgOperand(0))});
6665     setValue(&I, Res);
6666     DAG.setRoot(Res.getValue(0));
6667     return;
6668   case Intrinsic::is_fpclass: {
6669     const DataLayout DLayout = DAG.getDataLayout();
6670     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6671     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6672     FPClassTest Test = static_cast<FPClassTest>(
6673         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
6674     MachineFunction &MF = DAG.getMachineFunction();
6675     const Function &F = MF.getFunction();
6676     SDValue Op = getValue(I.getArgOperand(0));
6677     SDNodeFlags Flags;
6678     Flags.setNoFPExcept(
6679         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6680     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6681     // expansion can use illegal types. Making expansion early allows
6682     // legalizing these types prior to selection.
6683     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6684       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6685       setValue(&I, Result);
6686       return;
6687     }
6688 
6689     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6690     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6691     setValue(&I, V);
6692     return;
6693   }
6694   case Intrinsic::get_fpenv: {
6695     const DataLayout DLayout = DAG.getDataLayout();
6696     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
6697     Align TempAlign = DAG.getEVTAlign(EnvVT);
6698     SDValue Chain = getRoot();
6699     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
6700     // and temporary storage in stack.
6701     if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
6702       Res = DAG.getNode(
6703           ISD::GET_FPENV, sdl,
6704           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6705                         MVT::Other),
6706           Chain);
6707     } else {
6708       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6709       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6710       auto MPI =
6711           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6712       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6713           MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize,
6714           TempAlign);
6715       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6716       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
6717     }
6718     setValue(&I, Res);
6719     DAG.setRoot(Res.getValue(1));
6720     return;
6721   }
6722   case Intrinsic::set_fpenv: {
6723     const DataLayout DLayout = DAG.getDataLayout();
6724     SDValue Env = getValue(I.getArgOperand(0));
6725     EVT EnvVT = Env.getValueType();
6726     Align TempAlign = DAG.getEVTAlign(EnvVT);
6727     SDValue Chain = getRoot();
6728     // If SET_FPENV is custom or legal, use it. Otherwise use loading
6729     // environment from memory.
6730     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
6731       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
6732     } else {
6733       // Allocate space in stack, copy environment bits into it and use this
6734       // memory in SET_FPENV_MEM.
6735       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6736       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6737       auto MPI =
6738           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6739       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
6740                            MachineMemOperand::MOStore);
6741       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6742           MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize,
6743           TempAlign);
6744       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6745     }
6746     DAG.setRoot(Chain);
6747     return;
6748   }
6749   case Intrinsic::reset_fpenv:
6750     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
6751     return;
6752   case Intrinsic::get_fpmode:
6753     Res = DAG.getNode(
6754         ISD::GET_FPMODE, sdl,
6755         DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6756                       MVT::Other),
6757         DAG.getRoot());
6758     setValue(&I, Res);
6759     DAG.setRoot(Res.getValue(1));
6760     return;
6761   case Intrinsic::set_fpmode:
6762     Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
6763                       getValue(I.getArgOperand(0)));
6764     DAG.setRoot(Res);
6765     return;
6766   case Intrinsic::reset_fpmode: {
6767     Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
6768     DAG.setRoot(Res);
6769     return;
6770   }
6771   case Intrinsic::pcmarker: {
6772     SDValue Tmp = getValue(I.getArgOperand(0));
6773     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6774     return;
6775   }
6776   case Intrinsic::readcyclecounter: {
6777     SDValue Op = getRoot();
6778     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6779                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6780     setValue(&I, Res);
6781     DAG.setRoot(Res.getValue(1));
6782     return;
6783   }
6784   case Intrinsic::bitreverse:
6785     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6786                              getValue(I.getArgOperand(0)).getValueType(),
6787                              getValue(I.getArgOperand(0))));
6788     return;
6789   case Intrinsic::bswap:
6790     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6791                              getValue(I.getArgOperand(0)).getValueType(),
6792                              getValue(I.getArgOperand(0))));
6793     return;
6794   case Intrinsic::cttz: {
6795     SDValue Arg = getValue(I.getArgOperand(0));
6796     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6797     EVT Ty = Arg.getValueType();
6798     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6799                              sdl, Ty, Arg));
6800     return;
6801   }
6802   case Intrinsic::ctlz: {
6803     SDValue Arg = getValue(I.getArgOperand(0));
6804     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6805     EVT Ty = Arg.getValueType();
6806     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6807                              sdl, Ty, Arg));
6808     return;
6809   }
6810   case Intrinsic::ctpop: {
6811     SDValue Arg = getValue(I.getArgOperand(0));
6812     EVT Ty = Arg.getValueType();
6813     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6814     return;
6815   }
6816   case Intrinsic::fshl:
6817   case Intrinsic::fshr: {
6818     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6819     SDValue X = getValue(I.getArgOperand(0));
6820     SDValue Y = getValue(I.getArgOperand(1));
6821     SDValue Z = getValue(I.getArgOperand(2));
6822     EVT VT = X.getValueType();
6823 
6824     if (X == Y) {
6825       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6826       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6827     } else {
6828       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6829       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6830     }
6831     return;
6832   }
6833   case Intrinsic::sadd_sat: {
6834     SDValue Op1 = getValue(I.getArgOperand(0));
6835     SDValue Op2 = getValue(I.getArgOperand(1));
6836     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6837     return;
6838   }
6839   case Intrinsic::uadd_sat: {
6840     SDValue Op1 = getValue(I.getArgOperand(0));
6841     SDValue Op2 = getValue(I.getArgOperand(1));
6842     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6843     return;
6844   }
6845   case Intrinsic::ssub_sat: {
6846     SDValue Op1 = getValue(I.getArgOperand(0));
6847     SDValue Op2 = getValue(I.getArgOperand(1));
6848     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6849     return;
6850   }
6851   case Intrinsic::usub_sat: {
6852     SDValue Op1 = getValue(I.getArgOperand(0));
6853     SDValue Op2 = getValue(I.getArgOperand(1));
6854     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6855     return;
6856   }
6857   case Intrinsic::sshl_sat: {
6858     SDValue Op1 = getValue(I.getArgOperand(0));
6859     SDValue Op2 = getValue(I.getArgOperand(1));
6860     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6861     return;
6862   }
6863   case Intrinsic::ushl_sat: {
6864     SDValue Op1 = getValue(I.getArgOperand(0));
6865     SDValue Op2 = getValue(I.getArgOperand(1));
6866     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6867     return;
6868   }
6869   case Intrinsic::smul_fix:
6870   case Intrinsic::umul_fix:
6871   case Intrinsic::smul_fix_sat:
6872   case Intrinsic::umul_fix_sat: {
6873     SDValue Op1 = getValue(I.getArgOperand(0));
6874     SDValue Op2 = getValue(I.getArgOperand(1));
6875     SDValue Op3 = getValue(I.getArgOperand(2));
6876     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6877                              Op1.getValueType(), Op1, Op2, Op3));
6878     return;
6879   }
6880   case Intrinsic::sdiv_fix:
6881   case Intrinsic::udiv_fix:
6882   case Intrinsic::sdiv_fix_sat:
6883   case Intrinsic::udiv_fix_sat: {
6884     SDValue Op1 = getValue(I.getArgOperand(0));
6885     SDValue Op2 = getValue(I.getArgOperand(1));
6886     SDValue Op3 = getValue(I.getArgOperand(2));
6887     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6888                               Op1, Op2, Op3, DAG, TLI));
6889     return;
6890   }
6891   case Intrinsic::smax: {
6892     SDValue Op1 = getValue(I.getArgOperand(0));
6893     SDValue Op2 = getValue(I.getArgOperand(1));
6894     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6895     return;
6896   }
6897   case Intrinsic::smin: {
6898     SDValue Op1 = getValue(I.getArgOperand(0));
6899     SDValue Op2 = getValue(I.getArgOperand(1));
6900     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6901     return;
6902   }
6903   case Intrinsic::umax: {
6904     SDValue Op1 = getValue(I.getArgOperand(0));
6905     SDValue Op2 = getValue(I.getArgOperand(1));
6906     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6907     return;
6908   }
6909   case Intrinsic::umin: {
6910     SDValue Op1 = getValue(I.getArgOperand(0));
6911     SDValue Op2 = getValue(I.getArgOperand(1));
6912     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6913     return;
6914   }
6915   case Intrinsic::abs: {
6916     // TODO: Preserve "int min is poison" arg in SDAG?
6917     SDValue Op1 = getValue(I.getArgOperand(0));
6918     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6919     return;
6920   }
6921   case Intrinsic::stacksave: {
6922     SDValue Op = getRoot();
6923     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6924     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6925     setValue(&I, Res);
6926     DAG.setRoot(Res.getValue(1));
6927     return;
6928   }
6929   case Intrinsic::stackrestore:
6930     Res = getValue(I.getArgOperand(0));
6931     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6932     return;
6933   case Intrinsic::get_dynamic_area_offset: {
6934     SDValue Op = getRoot();
6935     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6936     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6937     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6938     // target.
6939     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6940       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6941                          " intrinsic!");
6942     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6943                       Op);
6944     DAG.setRoot(Op);
6945     setValue(&I, Res);
6946     return;
6947   }
6948   case Intrinsic::stackguard: {
6949     MachineFunction &MF = DAG.getMachineFunction();
6950     const Module &M = *MF.getFunction().getParent();
6951     SDValue Chain = getRoot();
6952     if (TLI.useLoadStackGuardNode()) {
6953       Res = getLoadStackGuard(DAG, sdl, Chain);
6954     } else {
6955       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6956       const Value *Global = TLI.getSDagStackGuard(M);
6957       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6958       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6959                         MachinePointerInfo(Global, 0), Align,
6960                         MachineMemOperand::MOVolatile);
6961     }
6962     if (TLI.useStackGuardXorFP())
6963       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6964     DAG.setRoot(Chain);
6965     setValue(&I, Res);
6966     return;
6967   }
6968   case Intrinsic::stackprotector: {
6969     // Emit code into the DAG to store the stack guard onto the stack.
6970     MachineFunction &MF = DAG.getMachineFunction();
6971     MachineFrameInfo &MFI = MF.getFrameInfo();
6972     SDValue Src, Chain = getRoot();
6973 
6974     if (TLI.useLoadStackGuardNode())
6975       Src = getLoadStackGuard(DAG, sdl, Chain);
6976     else
6977       Src = getValue(I.getArgOperand(0));   // The guard's value.
6978 
6979     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6980 
6981     int FI = FuncInfo.StaticAllocaMap[Slot];
6982     MFI.setStackProtectorIndex(FI);
6983     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6984 
6985     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6986 
6987     // Store the stack protector onto the stack.
6988     Res = DAG.getStore(
6989         Chain, sdl, Src, FIN,
6990         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6991         MaybeAlign(), MachineMemOperand::MOVolatile);
6992     setValue(&I, Res);
6993     DAG.setRoot(Res);
6994     return;
6995   }
6996   case Intrinsic::objectsize:
6997     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6998 
6999   case Intrinsic::is_constant:
7000     llvm_unreachable("llvm.is.constant.* should have been lowered already");
7001 
7002   case Intrinsic::annotation:
7003   case Intrinsic::ptr_annotation:
7004   case Intrinsic::launder_invariant_group:
7005   case Intrinsic::strip_invariant_group:
7006     // Drop the intrinsic, but forward the value
7007     setValue(&I, getValue(I.getOperand(0)));
7008     return;
7009 
7010   case Intrinsic::assume:
7011   case Intrinsic::experimental_noalias_scope_decl:
7012   case Intrinsic::var_annotation:
7013   case Intrinsic::sideeffect:
7014     // Discard annotate attributes, noalias scope declarations, assumptions, and
7015     // artificial side-effects.
7016     return;
7017 
7018   case Intrinsic::codeview_annotation: {
7019     // Emit a label associated with this metadata.
7020     MachineFunction &MF = DAG.getMachineFunction();
7021     MCSymbol *Label =
7022         MF.getMMI().getContext().createTempSymbol("annotation", true);
7023     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7024     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7025     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7026     DAG.setRoot(Res);
7027     return;
7028   }
7029 
7030   case Intrinsic::init_trampoline: {
7031     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7032 
7033     SDValue Ops[6];
7034     Ops[0] = getRoot();
7035     Ops[1] = getValue(I.getArgOperand(0));
7036     Ops[2] = getValue(I.getArgOperand(1));
7037     Ops[3] = getValue(I.getArgOperand(2));
7038     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7039     Ops[5] = DAG.getSrcValue(F);
7040 
7041     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7042 
7043     DAG.setRoot(Res);
7044     return;
7045   }
7046   case Intrinsic::adjust_trampoline:
7047     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7048                              TLI.getPointerTy(DAG.getDataLayout()),
7049                              getValue(I.getArgOperand(0))));
7050     return;
7051   case Intrinsic::gcroot: {
7052     assert(DAG.getMachineFunction().getFunction().hasGC() &&
7053            "only valid in functions with gc specified, enforced by Verifier");
7054     assert(GFI && "implied by previous");
7055     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7056     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7057 
7058     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7059     GFI->addStackRoot(FI->getIndex(), TypeMap);
7060     return;
7061   }
7062   case Intrinsic::gcread:
7063   case Intrinsic::gcwrite:
7064     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7065   case Intrinsic::get_rounding:
7066     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7067     setValue(&I, Res);
7068     DAG.setRoot(Res.getValue(1));
7069     return;
7070 
7071   case Intrinsic::expect:
7072     // Just replace __builtin_expect(exp, c) with EXP.
7073     setValue(&I, getValue(I.getArgOperand(0)));
7074     return;
7075 
7076   case Intrinsic::ubsantrap:
7077   case Intrinsic::debugtrap:
7078   case Intrinsic::trap: {
7079     StringRef TrapFuncName =
7080         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7081     if (TrapFuncName.empty()) {
7082       switch (Intrinsic) {
7083       case Intrinsic::trap:
7084         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7085         break;
7086       case Intrinsic::debugtrap:
7087         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7088         break;
7089       case Intrinsic::ubsantrap:
7090         DAG.setRoot(DAG.getNode(
7091             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7092             DAG.getTargetConstant(
7093                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7094                 MVT::i32)));
7095         break;
7096       default: llvm_unreachable("unknown trap intrinsic");
7097       }
7098       return;
7099     }
7100     TargetLowering::ArgListTy Args;
7101     if (Intrinsic == Intrinsic::ubsantrap) {
7102       Args.push_back(TargetLoweringBase::ArgListEntry());
7103       Args[0].Val = I.getArgOperand(0);
7104       Args[0].Node = getValue(Args[0].Val);
7105       Args[0].Ty = Args[0].Val->getType();
7106     }
7107 
7108     TargetLowering::CallLoweringInfo CLI(DAG);
7109     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7110         CallingConv::C, I.getType(),
7111         DAG.getExternalSymbol(TrapFuncName.data(),
7112                               TLI.getPointerTy(DAG.getDataLayout())),
7113         std::move(Args));
7114 
7115     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7116     DAG.setRoot(Result.second);
7117     return;
7118   }
7119 
7120   case Intrinsic::uadd_with_overflow:
7121   case Intrinsic::sadd_with_overflow:
7122   case Intrinsic::usub_with_overflow:
7123   case Intrinsic::ssub_with_overflow:
7124   case Intrinsic::umul_with_overflow:
7125   case Intrinsic::smul_with_overflow: {
7126     ISD::NodeType Op;
7127     switch (Intrinsic) {
7128     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7129     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7130     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7131     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7132     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7133     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7134     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7135     }
7136     SDValue Op1 = getValue(I.getArgOperand(0));
7137     SDValue Op2 = getValue(I.getArgOperand(1));
7138 
7139     EVT ResultVT = Op1.getValueType();
7140     EVT OverflowVT = MVT::i1;
7141     if (ResultVT.isVector())
7142       OverflowVT = EVT::getVectorVT(
7143           *Context, OverflowVT, ResultVT.getVectorElementCount());
7144 
7145     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7146     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7147     return;
7148   }
7149   case Intrinsic::prefetch: {
7150     SDValue Ops[5];
7151     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7152     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7153     Ops[0] = DAG.getRoot();
7154     Ops[1] = getValue(I.getArgOperand(0));
7155     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7156                                    MVT::i32);
7157     Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7158                                    MVT::i32);
7159     Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7160                                    MVT::i32);
7161     SDValue Result = DAG.getMemIntrinsicNode(
7162         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7163         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7164         /* align */ std::nullopt, Flags);
7165 
7166     // Chain the prefetch in parallel with any pending loads, to stay out of
7167     // the way of later optimizations.
7168     PendingLoads.push_back(Result);
7169     Result = getRoot();
7170     DAG.setRoot(Result);
7171     return;
7172   }
7173   case Intrinsic::lifetime_start:
7174   case Intrinsic::lifetime_end: {
7175     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7176     // Stack coloring is not enabled in O0, discard region information.
7177     if (TM.getOptLevel() == CodeGenOptLevel::None)
7178       return;
7179 
7180     const int64_t ObjectSize =
7181         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7182     Value *const ObjectPtr = I.getArgOperand(1);
7183     SmallVector<const Value *, 4> Allocas;
7184     getUnderlyingObjects(ObjectPtr, Allocas);
7185 
7186     for (const Value *Alloca : Allocas) {
7187       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7188 
7189       // Could not find an Alloca.
7190       if (!LifetimeObject)
7191         continue;
7192 
7193       // First check that the Alloca is static, otherwise it won't have a
7194       // valid frame index.
7195       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7196       if (SI == FuncInfo.StaticAllocaMap.end())
7197         return;
7198 
7199       const int FrameIndex = SI->second;
7200       int64_t Offset;
7201       if (GetPointerBaseWithConstantOffset(
7202               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7203         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7204       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7205                                 Offset);
7206       DAG.setRoot(Res);
7207     }
7208     return;
7209   }
7210   case Intrinsic::pseudoprobe: {
7211     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7212     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7213     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7214     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7215     DAG.setRoot(Res);
7216     return;
7217   }
7218   case Intrinsic::invariant_start:
7219     // Discard region information.
7220     setValue(&I,
7221              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7222     return;
7223   case Intrinsic::invariant_end:
7224     // Discard region information.
7225     return;
7226   case Intrinsic::clear_cache:
7227     /// FunctionName may be null.
7228     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
7229       lowerCallToExternalSymbol(I, FunctionName);
7230     return;
7231   case Intrinsic::donothing:
7232   case Intrinsic::seh_try_begin:
7233   case Intrinsic::seh_scope_begin:
7234   case Intrinsic::seh_try_end:
7235   case Intrinsic::seh_scope_end:
7236     // ignore
7237     return;
7238   case Intrinsic::experimental_stackmap:
7239     visitStackmap(I);
7240     return;
7241   case Intrinsic::experimental_patchpoint_void:
7242   case Intrinsic::experimental_patchpoint_i64:
7243     visitPatchpoint(I);
7244     return;
7245   case Intrinsic::experimental_gc_statepoint:
7246     LowerStatepoint(cast<GCStatepointInst>(I));
7247     return;
7248   case Intrinsic::experimental_gc_result:
7249     visitGCResult(cast<GCResultInst>(I));
7250     return;
7251   case Intrinsic::experimental_gc_relocate:
7252     visitGCRelocate(cast<GCRelocateInst>(I));
7253     return;
7254   case Intrinsic::instrprof_cover:
7255     llvm_unreachable("instrprof failed to lower a cover");
7256   case Intrinsic::instrprof_increment:
7257     llvm_unreachable("instrprof failed to lower an increment");
7258   case Intrinsic::instrprof_timestamp:
7259     llvm_unreachable("instrprof failed to lower a timestamp");
7260   case Intrinsic::instrprof_value_profile:
7261     llvm_unreachable("instrprof failed to lower a value profiling call");
7262   case Intrinsic::instrprof_mcdc_parameters:
7263     llvm_unreachable("instrprof failed to lower mcdc parameters");
7264   case Intrinsic::instrprof_mcdc_tvbitmap_update:
7265     llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7266   case Intrinsic::instrprof_mcdc_condbitmap_update:
7267     llvm_unreachable("instrprof failed to lower an mcdc condbitmap update");
7268   case Intrinsic::localescape: {
7269     MachineFunction &MF = DAG.getMachineFunction();
7270     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7271 
7272     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7273     // is the same on all targets.
7274     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7275       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7276       if (isa<ConstantPointerNull>(Arg))
7277         continue; // Skip null pointers. They represent a hole in index space.
7278       AllocaInst *Slot = cast<AllocaInst>(Arg);
7279       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7280              "can only escape static allocas");
7281       int FI = FuncInfo.StaticAllocaMap[Slot];
7282       MCSymbol *FrameAllocSym =
7283           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7284               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7285       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7286               TII->get(TargetOpcode::LOCAL_ESCAPE))
7287           .addSym(FrameAllocSym)
7288           .addFrameIndex(FI);
7289     }
7290 
7291     return;
7292   }
7293 
7294   case Intrinsic::localrecover: {
7295     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7296     MachineFunction &MF = DAG.getMachineFunction();
7297 
7298     // Get the symbol that defines the frame offset.
7299     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7300     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7301     unsigned IdxVal =
7302         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7303     MCSymbol *FrameAllocSym =
7304         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7305             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7306 
7307     Value *FP = I.getArgOperand(1);
7308     SDValue FPVal = getValue(FP);
7309     EVT PtrVT = FPVal.getValueType();
7310 
7311     // Create a MCSymbol for the label to avoid any target lowering
7312     // that would make this PC relative.
7313     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7314     SDValue OffsetVal =
7315         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7316 
7317     // Add the offset to the FP.
7318     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7319     setValue(&I, Add);
7320 
7321     return;
7322   }
7323 
7324   case Intrinsic::eh_exceptionpointer:
7325   case Intrinsic::eh_exceptioncode: {
7326     // Get the exception pointer vreg, copy from it, and resize it to fit.
7327     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7328     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7329     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7330     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7331     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7332     if (Intrinsic == Intrinsic::eh_exceptioncode)
7333       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7334     setValue(&I, N);
7335     return;
7336   }
7337   case Intrinsic::xray_customevent: {
7338     // Here we want to make sure that the intrinsic behaves as if it has a
7339     // specific calling convention.
7340     const auto &Triple = DAG.getTarget().getTargetTriple();
7341     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7342       return;
7343 
7344     SmallVector<SDValue, 8> Ops;
7345 
7346     // We want to say that we always want the arguments in registers.
7347     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7348     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7349     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7350     SDValue Chain = getRoot();
7351     Ops.push_back(LogEntryVal);
7352     Ops.push_back(StrSizeVal);
7353     Ops.push_back(Chain);
7354 
7355     // We need to enforce the calling convention for the callsite, so that
7356     // argument ordering is enforced correctly, and that register allocation can
7357     // see that some registers may be assumed clobbered and have to preserve
7358     // them across calls to the intrinsic.
7359     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7360                                            sdl, NodeTys, Ops);
7361     SDValue patchableNode = SDValue(MN, 0);
7362     DAG.setRoot(patchableNode);
7363     setValue(&I, patchableNode);
7364     return;
7365   }
7366   case Intrinsic::xray_typedevent: {
7367     // Here we want to make sure that the intrinsic behaves as if it has a
7368     // specific calling convention.
7369     const auto &Triple = DAG.getTarget().getTargetTriple();
7370     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7371       return;
7372 
7373     SmallVector<SDValue, 8> Ops;
7374 
7375     // We want to say that we always want the arguments in registers.
7376     // It's unclear to me how manipulating the selection DAG here forces callers
7377     // to provide arguments in registers instead of on the stack.
7378     SDValue LogTypeId = getValue(I.getArgOperand(0));
7379     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7380     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7381     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7382     SDValue Chain = getRoot();
7383     Ops.push_back(LogTypeId);
7384     Ops.push_back(LogEntryVal);
7385     Ops.push_back(StrSizeVal);
7386     Ops.push_back(Chain);
7387 
7388     // We need to enforce the calling convention for the callsite, so that
7389     // argument ordering is enforced correctly, and that register allocation can
7390     // see that some registers may be assumed clobbered and have to preserve
7391     // them across calls to the intrinsic.
7392     MachineSDNode *MN = DAG.getMachineNode(
7393         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7394     SDValue patchableNode = SDValue(MN, 0);
7395     DAG.setRoot(patchableNode);
7396     setValue(&I, patchableNode);
7397     return;
7398   }
7399   case Intrinsic::experimental_deoptimize:
7400     LowerDeoptimizeCall(&I);
7401     return;
7402   case Intrinsic::experimental_stepvector:
7403     visitStepVector(I);
7404     return;
7405   case Intrinsic::vector_reduce_fadd:
7406   case Intrinsic::vector_reduce_fmul:
7407   case Intrinsic::vector_reduce_add:
7408   case Intrinsic::vector_reduce_mul:
7409   case Intrinsic::vector_reduce_and:
7410   case Intrinsic::vector_reduce_or:
7411   case Intrinsic::vector_reduce_xor:
7412   case Intrinsic::vector_reduce_smax:
7413   case Intrinsic::vector_reduce_smin:
7414   case Intrinsic::vector_reduce_umax:
7415   case Intrinsic::vector_reduce_umin:
7416   case Intrinsic::vector_reduce_fmax:
7417   case Intrinsic::vector_reduce_fmin:
7418   case Intrinsic::vector_reduce_fmaximum:
7419   case Intrinsic::vector_reduce_fminimum:
7420     visitVectorReduce(I, Intrinsic);
7421     return;
7422 
7423   case Intrinsic::icall_branch_funnel: {
7424     SmallVector<SDValue, 16> Ops;
7425     Ops.push_back(getValue(I.getArgOperand(0)));
7426 
7427     int64_t Offset;
7428     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7429         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7430     if (!Base)
7431       report_fatal_error(
7432           "llvm.icall.branch.funnel operand must be a GlobalValue");
7433     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7434 
7435     struct BranchFunnelTarget {
7436       int64_t Offset;
7437       SDValue Target;
7438     };
7439     SmallVector<BranchFunnelTarget, 8> Targets;
7440 
7441     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7442       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7443           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7444       if (ElemBase != Base)
7445         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7446                            "to the same GlobalValue");
7447 
7448       SDValue Val = getValue(I.getArgOperand(Op + 1));
7449       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7450       if (!GA)
7451         report_fatal_error(
7452             "llvm.icall.branch.funnel operand must be a GlobalValue");
7453       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7454                                      GA->getGlobal(), sdl, Val.getValueType(),
7455                                      GA->getOffset())});
7456     }
7457     llvm::sort(Targets,
7458                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7459                  return T1.Offset < T2.Offset;
7460                });
7461 
7462     for (auto &T : Targets) {
7463       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7464       Ops.push_back(T.Target);
7465     }
7466 
7467     Ops.push_back(DAG.getRoot()); // Chain
7468     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7469                                  MVT::Other, Ops),
7470               0);
7471     DAG.setRoot(N);
7472     setValue(&I, N);
7473     HasTailCall = true;
7474     return;
7475   }
7476 
7477   case Intrinsic::wasm_landingpad_index:
7478     // Information this intrinsic contained has been transferred to
7479     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7480     // delete it now.
7481     return;
7482 
7483   case Intrinsic::aarch64_settag:
7484   case Intrinsic::aarch64_settag_zero: {
7485     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7486     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7487     SDValue Val = TSI.EmitTargetCodeForSetTag(
7488         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7489         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7490         ZeroMemory);
7491     DAG.setRoot(Val);
7492     setValue(&I, Val);
7493     return;
7494   }
7495   case Intrinsic::amdgcn_cs_chain: {
7496     assert(I.arg_size() == 5 && "Additional args not supported yet");
7497     assert(cast<ConstantInt>(I.getOperand(4))->isZero() &&
7498            "Non-zero flags not supported yet");
7499 
7500     // At this point we don't care if it's amdgpu_cs_chain or
7501     // amdgpu_cs_chain_preserve.
7502     CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain;
7503 
7504     Type *RetTy = I.getType();
7505     assert(RetTy->isVoidTy() && "Should not return");
7506 
7507     SDValue Callee = getValue(I.getOperand(0));
7508 
7509     // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
7510     // We'll also tack the value of the EXEC mask at the end.
7511     TargetLowering::ArgListTy Args;
7512     Args.reserve(3);
7513 
7514     for (unsigned Idx : {2, 3, 1}) {
7515       TargetLowering::ArgListEntry Arg;
7516       Arg.Node = getValue(I.getOperand(Idx));
7517       Arg.Ty = I.getOperand(Idx)->getType();
7518       Arg.setAttributes(&I, Idx);
7519       Args.push_back(Arg);
7520     }
7521 
7522     assert(Args[0].IsInReg && "SGPR args should be marked inreg");
7523     assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
7524     Args[2].IsInReg = true; // EXEC should be inreg
7525 
7526     TargetLowering::CallLoweringInfo CLI(DAG);
7527     CLI.setDebugLoc(getCurSDLoc())
7528         .setChain(getRoot())
7529         .setCallee(CC, RetTy, Callee, std::move(Args))
7530         .setNoReturn(true)
7531         .setTailCall(true)
7532         .setConvergent(I.isConvergent());
7533     CLI.CB = &I;
7534     std::pair<SDValue, SDValue> Result =
7535         lowerInvokable(CLI, /*EHPadBB*/ nullptr);
7536     (void)Result;
7537     assert(!Result.first.getNode() && !Result.second.getNode() &&
7538            "Should've lowered as tail call");
7539 
7540     HasTailCall = true;
7541     return;
7542   }
7543   case Intrinsic::ptrmask: {
7544     SDValue Ptr = getValue(I.getOperand(0));
7545     SDValue Mask = getValue(I.getOperand(1));
7546 
7547     EVT PtrVT = Ptr.getValueType();
7548     assert(PtrVT == Mask.getValueType() &&
7549            "Pointers with different index type are not supported by SDAG");
7550     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
7551     return;
7552   }
7553   case Intrinsic::threadlocal_address: {
7554     setValue(&I, getValue(I.getOperand(0)));
7555     return;
7556   }
7557   case Intrinsic::get_active_lane_mask: {
7558     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7559     SDValue Index = getValue(I.getOperand(0));
7560     EVT ElementVT = Index.getValueType();
7561 
7562     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7563       visitTargetIntrinsic(I, Intrinsic);
7564       return;
7565     }
7566 
7567     SDValue TripCount = getValue(I.getOperand(1));
7568     EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
7569                                  CCVT.getVectorElementCount());
7570 
7571     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7572     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7573     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7574     SDValue VectorInduction = DAG.getNode(
7575         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7576     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7577                                  VectorTripCount, ISD::CondCode::SETULT);
7578     setValue(&I, SetCC);
7579     return;
7580   }
7581   case Intrinsic::experimental_get_vector_length: {
7582     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7583            "Expected positive VF");
7584     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7585     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7586 
7587     SDValue Count = getValue(I.getOperand(0));
7588     EVT CountVT = Count.getValueType();
7589 
7590     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7591       visitTargetIntrinsic(I, Intrinsic);
7592       return;
7593     }
7594 
7595     // Expand to a umin between the trip count and the maximum elements the type
7596     // can hold.
7597     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7598 
7599     // Extend the trip count to at least the result VT.
7600     if (CountVT.bitsLT(VT)) {
7601       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7602       CountVT = VT;
7603     }
7604 
7605     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7606                                          ElementCount::get(VF, IsScalable));
7607 
7608     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7609     // Clip to the result type if needed.
7610     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7611 
7612     setValue(&I, Trunc);
7613     return;
7614   }
7615   case Intrinsic::experimental_cttz_elts: {
7616     auto DL = getCurSDLoc();
7617     SDValue Op = getValue(I.getOperand(0));
7618     EVT OpVT = Op.getValueType();
7619 
7620     if (!TLI.shouldExpandCttzElements(OpVT)) {
7621       visitTargetIntrinsic(I, Intrinsic);
7622       return;
7623     }
7624 
7625     if (OpVT.getScalarType() != MVT::i1) {
7626       // Compare the input vector elements to zero & use to count trailing zeros
7627       SDValue AllZero = DAG.getConstant(0, DL, OpVT);
7628       OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
7629                               OpVT.getVectorElementCount());
7630       Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
7631     }
7632 
7633     // Find the smallest "sensible" element type to use for the expansion.
7634     ConstantRange CR(
7635         APInt(64, OpVT.getVectorElementCount().getKnownMinValue()));
7636     if (OpVT.isScalableVT())
7637       CR = CR.umul_sat(getVScaleRange(I.getCaller(), 64));
7638 
7639     // If the zero-is-poison flag is set, we can assume the upper limit
7640     // of the result is VF-1.
7641     if (!cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero())
7642       CR = CR.subtract(APInt(64, 1));
7643 
7644     unsigned EltWidth = I.getType()->getScalarSizeInBits();
7645     EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits());
7646     EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8);
7647 
7648     MVT NewEltTy = MVT::getIntegerVT(EltWidth);
7649 
7650     // Create the new vector type & get the vector length
7651     EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
7652                                  OpVT.getVectorElementCount());
7653 
7654     SDValue VL =
7655         DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
7656 
7657     SDValue StepVec = DAG.getStepVector(DL, NewVT);
7658     SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
7659     SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
7660     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
7661     SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
7662     SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
7663     SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
7664 
7665     EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7666     SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
7667 
7668     setValue(&I, Ret);
7669     return;
7670   }
7671   case Intrinsic::vector_insert: {
7672     SDValue Vec = getValue(I.getOperand(0));
7673     SDValue SubVec = getValue(I.getOperand(1));
7674     SDValue Index = getValue(I.getOperand(2));
7675 
7676     // The intrinsic's index type is i64, but the SDNode requires an index type
7677     // suitable for the target. Convert the index as required.
7678     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7679     if (Index.getValueType() != VectorIdxTy)
7680       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
7681 
7682     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7683     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7684                              Index));
7685     return;
7686   }
7687   case Intrinsic::vector_extract: {
7688     SDValue Vec = getValue(I.getOperand(0));
7689     SDValue Index = getValue(I.getOperand(1));
7690     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7691 
7692     // The intrinsic's index type is i64, but the SDNode requires an index type
7693     // suitable for the target. Convert the index as required.
7694     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7695     if (Index.getValueType() != VectorIdxTy)
7696       Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
7697 
7698     setValue(&I,
7699              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7700     return;
7701   }
7702   case Intrinsic::experimental_vector_reverse:
7703     visitVectorReverse(I);
7704     return;
7705   case Intrinsic::experimental_vector_splice:
7706     visitVectorSplice(I);
7707     return;
7708   case Intrinsic::callbr_landingpad:
7709     visitCallBrLandingPad(I);
7710     return;
7711   case Intrinsic::experimental_vector_interleave2:
7712     visitVectorInterleave(I);
7713     return;
7714   case Intrinsic::experimental_vector_deinterleave2:
7715     visitVectorDeinterleave(I);
7716     return;
7717   }
7718 }
7719 
7720 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7721     const ConstrainedFPIntrinsic &FPI) {
7722   SDLoc sdl = getCurSDLoc();
7723 
7724   // We do not need to serialize constrained FP intrinsics against
7725   // each other or against (nonvolatile) loads, so they can be
7726   // chained like loads.
7727   SDValue Chain = DAG.getRoot();
7728   SmallVector<SDValue, 4> Opers;
7729   Opers.push_back(Chain);
7730   if (FPI.isUnaryOp()) {
7731     Opers.push_back(getValue(FPI.getArgOperand(0)));
7732   } else if (FPI.isTernaryOp()) {
7733     Opers.push_back(getValue(FPI.getArgOperand(0)));
7734     Opers.push_back(getValue(FPI.getArgOperand(1)));
7735     Opers.push_back(getValue(FPI.getArgOperand(2)));
7736   } else {
7737     Opers.push_back(getValue(FPI.getArgOperand(0)));
7738     Opers.push_back(getValue(FPI.getArgOperand(1)));
7739   }
7740 
7741   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7742     assert(Result.getNode()->getNumValues() == 2);
7743 
7744     // Push node to the appropriate list so that future instructions can be
7745     // chained up correctly.
7746     SDValue OutChain = Result.getValue(1);
7747     switch (EB) {
7748     case fp::ExceptionBehavior::ebIgnore:
7749       // The only reason why ebIgnore nodes still need to be chained is that
7750       // they might depend on the current rounding mode, and therefore must
7751       // not be moved across instruction that may change that mode.
7752       [[fallthrough]];
7753     case fp::ExceptionBehavior::ebMayTrap:
7754       // These must not be moved across calls or instructions that may change
7755       // floating-point exception masks.
7756       PendingConstrainedFP.push_back(OutChain);
7757       break;
7758     case fp::ExceptionBehavior::ebStrict:
7759       // These must not be moved across calls or instructions that may change
7760       // floating-point exception masks or read floating-point exception flags.
7761       // In addition, they cannot be optimized out even if unused.
7762       PendingConstrainedFPStrict.push_back(OutChain);
7763       break;
7764     }
7765   };
7766 
7767   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7768   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7769   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7770   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7771 
7772   SDNodeFlags Flags;
7773   if (EB == fp::ExceptionBehavior::ebIgnore)
7774     Flags.setNoFPExcept(true);
7775 
7776   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7777     Flags.copyFMF(*FPOp);
7778 
7779   unsigned Opcode;
7780   switch (FPI.getIntrinsicID()) {
7781   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7782 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7783   case Intrinsic::INTRINSIC:                                                   \
7784     Opcode = ISD::STRICT_##DAGN;                                               \
7785     break;
7786 #include "llvm/IR/ConstrainedOps.def"
7787   case Intrinsic::experimental_constrained_fmuladd: {
7788     Opcode = ISD::STRICT_FMA;
7789     // Break fmuladd into fmul and fadd.
7790     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7791         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7792       Opers.pop_back();
7793       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7794       pushOutChain(Mul, EB);
7795       Opcode = ISD::STRICT_FADD;
7796       Opers.clear();
7797       Opers.push_back(Mul.getValue(1));
7798       Opers.push_back(Mul.getValue(0));
7799       Opers.push_back(getValue(FPI.getArgOperand(2)));
7800     }
7801     break;
7802   }
7803   }
7804 
7805   // A few strict DAG nodes carry additional operands that are not
7806   // set up by the default code above.
7807   switch (Opcode) {
7808   default: break;
7809   case ISD::STRICT_FP_ROUND:
7810     Opers.push_back(
7811         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7812     break;
7813   case ISD::STRICT_FSETCC:
7814   case ISD::STRICT_FSETCCS: {
7815     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7816     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7817     if (TM.Options.NoNaNsFPMath)
7818       Condition = getFCmpCodeWithoutNaN(Condition);
7819     Opers.push_back(DAG.getCondCode(Condition));
7820     break;
7821   }
7822   }
7823 
7824   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7825   pushOutChain(Result, EB);
7826 
7827   SDValue FPResult = Result.getValue(0);
7828   setValue(&FPI, FPResult);
7829 }
7830 
7831 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7832   std::optional<unsigned> ResOPC;
7833   switch (VPIntrin.getIntrinsicID()) {
7834   case Intrinsic::vp_ctlz: {
7835     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7836     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
7837     break;
7838   }
7839   case Intrinsic::vp_cttz: {
7840     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7841     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
7842     break;
7843   }
7844 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7845   case Intrinsic::VPID:                                                        \
7846     ResOPC = ISD::VPSD;                                                        \
7847     break;
7848 #include "llvm/IR/VPIntrinsics.def"
7849   }
7850 
7851   if (!ResOPC)
7852     llvm_unreachable(
7853         "Inconsistency: no SDNode available for this VPIntrinsic!");
7854 
7855   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7856       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7857     if (VPIntrin.getFastMathFlags().allowReassoc())
7858       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7859                                                 : ISD::VP_REDUCE_FMUL;
7860   }
7861 
7862   return *ResOPC;
7863 }
7864 
7865 void SelectionDAGBuilder::visitVPLoad(
7866     const VPIntrinsic &VPIntrin, EVT VT,
7867     const SmallVectorImpl<SDValue> &OpValues) {
7868   SDLoc DL = getCurSDLoc();
7869   Value *PtrOperand = VPIntrin.getArgOperand(0);
7870   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7871   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7872   const MDNode *Ranges = getRangeMetadata(VPIntrin);
7873   SDValue LD;
7874   // Do not serialize variable-length loads of constant memory with
7875   // anything.
7876   if (!Alignment)
7877     Alignment = DAG.getEVTAlign(VT);
7878   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7879   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7880   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7881   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7882       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7883       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7884   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7885                      MMO, false /*IsExpanding */);
7886   if (AddToChain)
7887     PendingLoads.push_back(LD.getValue(1));
7888   setValue(&VPIntrin, LD);
7889 }
7890 
7891 void SelectionDAGBuilder::visitVPGather(
7892     const VPIntrinsic &VPIntrin, EVT VT,
7893     const SmallVectorImpl<SDValue> &OpValues) {
7894   SDLoc DL = getCurSDLoc();
7895   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7896   Value *PtrOperand = VPIntrin.getArgOperand(0);
7897   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7898   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7899   const MDNode *Ranges = getRangeMetadata(VPIntrin);
7900   SDValue LD;
7901   if (!Alignment)
7902     Alignment = DAG.getEVTAlign(VT.getScalarType());
7903   unsigned AS =
7904     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7905   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7906      MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7907      MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7908   SDValue Base, Index, Scale;
7909   ISD::MemIndexType IndexType;
7910   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7911                                     this, VPIntrin.getParent(),
7912                                     VT.getScalarStoreSize());
7913   if (!UniformBase) {
7914     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7915     Index = getValue(PtrOperand);
7916     IndexType = ISD::SIGNED_SCALED;
7917     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7918   }
7919   EVT IdxVT = Index.getValueType();
7920   EVT EltTy = IdxVT.getVectorElementType();
7921   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7922     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7923     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7924   }
7925   LD = DAG.getGatherVP(
7926       DAG.getVTList(VT, MVT::Other), VT, DL,
7927       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7928       IndexType);
7929   PendingLoads.push_back(LD.getValue(1));
7930   setValue(&VPIntrin, LD);
7931 }
7932 
7933 void SelectionDAGBuilder::visitVPStore(
7934     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7935   SDLoc DL = getCurSDLoc();
7936   Value *PtrOperand = VPIntrin.getArgOperand(1);
7937   EVT VT = OpValues[0].getValueType();
7938   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7939   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7940   SDValue ST;
7941   if (!Alignment)
7942     Alignment = DAG.getEVTAlign(VT);
7943   SDValue Ptr = OpValues[1];
7944   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7945   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7946       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7947       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7948   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7949                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7950                       /* IsTruncating */ false, /*IsCompressing*/ false);
7951   DAG.setRoot(ST);
7952   setValue(&VPIntrin, ST);
7953 }
7954 
7955 void SelectionDAGBuilder::visitVPScatter(
7956     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7957   SDLoc DL = getCurSDLoc();
7958   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7959   Value *PtrOperand = VPIntrin.getArgOperand(1);
7960   EVT VT = OpValues[0].getValueType();
7961   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7962   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7963   SDValue ST;
7964   if (!Alignment)
7965     Alignment = DAG.getEVTAlign(VT.getScalarType());
7966   unsigned AS =
7967       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7968   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7969       MachinePointerInfo(AS), MachineMemOperand::MOStore,
7970       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7971   SDValue Base, Index, Scale;
7972   ISD::MemIndexType IndexType;
7973   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7974                                     this, VPIntrin.getParent(),
7975                                     VT.getScalarStoreSize());
7976   if (!UniformBase) {
7977     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7978     Index = getValue(PtrOperand);
7979     IndexType = ISD::SIGNED_SCALED;
7980     Scale =
7981       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7982   }
7983   EVT IdxVT = Index.getValueType();
7984   EVT EltTy = IdxVT.getVectorElementType();
7985   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7986     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7987     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7988   }
7989   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7990                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7991                          OpValues[2], OpValues[3]},
7992                         MMO, IndexType);
7993   DAG.setRoot(ST);
7994   setValue(&VPIntrin, ST);
7995 }
7996 
7997 void SelectionDAGBuilder::visitVPStridedLoad(
7998     const VPIntrinsic &VPIntrin, EVT VT,
7999     const SmallVectorImpl<SDValue> &OpValues) {
8000   SDLoc DL = getCurSDLoc();
8001   Value *PtrOperand = VPIntrin.getArgOperand(0);
8002   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8003   if (!Alignment)
8004     Alignment = DAG.getEVTAlign(VT.getScalarType());
8005   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8006   const MDNode *Ranges = getRangeMetadata(VPIntrin);
8007   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8008   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
8009   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8010   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8011       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8012       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
8013 
8014   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8015                                     OpValues[2], OpValues[3], MMO,
8016                                     false /*IsExpanding*/);
8017 
8018   if (AddToChain)
8019     PendingLoads.push_back(LD.getValue(1));
8020   setValue(&VPIntrin, LD);
8021 }
8022 
8023 void SelectionDAGBuilder::visitVPStridedStore(
8024     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8025   SDLoc DL = getCurSDLoc();
8026   Value *PtrOperand = VPIntrin.getArgOperand(1);
8027   EVT VT = OpValues[0].getValueType();
8028   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8029   if (!Alignment)
8030     Alignment = DAG.getEVTAlign(VT.getScalarType());
8031   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8032   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8033       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
8034       MemoryLocation::UnknownSize, *Alignment, AAInfo);
8035 
8036   SDValue ST = DAG.getStridedStoreVP(
8037       getMemoryRoot(), DL, OpValues[0], OpValues[1],
8038       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8039       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8040       /*IsCompressing*/ false);
8041 
8042   DAG.setRoot(ST);
8043   setValue(&VPIntrin, ST);
8044 }
8045 
8046 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8047   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8048   SDLoc DL = getCurSDLoc();
8049 
8050   ISD::CondCode Condition;
8051   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
8052   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8053   if (IsFP) {
8054     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8055     // flags, but calls that don't return floating-point types can't be
8056     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8057     Condition = getFCmpCondCode(CondCode);
8058     if (TM.Options.NoNaNsFPMath)
8059       Condition = getFCmpCodeWithoutNaN(Condition);
8060   } else {
8061     Condition = getICmpCondCode(CondCode);
8062   }
8063 
8064   SDValue Op1 = getValue(VPIntrin.getOperand(0));
8065   SDValue Op2 = getValue(VPIntrin.getOperand(1));
8066   // #2 is the condition code
8067   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8068   SDValue EVL = getValue(VPIntrin.getOperand(4));
8069   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8070   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8071          "Unexpected target EVL type");
8072   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8073 
8074   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8075                                                         VPIntrin.getType());
8076   setValue(&VPIntrin,
8077            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8078 }
8079 
8080 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8081     const VPIntrinsic &VPIntrin) {
8082   SDLoc DL = getCurSDLoc();
8083   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8084 
8085   auto IID = VPIntrin.getIntrinsicID();
8086 
8087   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8088     return visitVPCmp(*CmpI);
8089 
8090   SmallVector<EVT, 4> ValueVTs;
8091   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8092   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8093   SDVTList VTs = DAG.getVTList(ValueVTs);
8094 
8095   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8096 
8097   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8098   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8099          "Unexpected target EVL type");
8100 
8101   // Request operands.
8102   SmallVector<SDValue, 7> OpValues;
8103   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8104     auto Op = getValue(VPIntrin.getArgOperand(I));
8105     if (I == EVLParamPos)
8106       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8107     OpValues.push_back(Op);
8108   }
8109 
8110   switch (Opcode) {
8111   default: {
8112     SDNodeFlags SDFlags;
8113     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8114       SDFlags.copyFMF(*FPMO);
8115     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8116     setValue(&VPIntrin, Result);
8117     break;
8118   }
8119   case ISD::VP_LOAD:
8120     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8121     break;
8122   case ISD::VP_GATHER:
8123     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8124     break;
8125   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8126     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8127     break;
8128   case ISD::VP_STORE:
8129     visitVPStore(VPIntrin, OpValues);
8130     break;
8131   case ISD::VP_SCATTER:
8132     visitVPScatter(VPIntrin, OpValues);
8133     break;
8134   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8135     visitVPStridedStore(VPIntrin, OpValues);
8136     break;
8137   case ISD::VP_FMULADD: {
8138     assert(OpValues.size() == 5 && "Unexpected number of operands");
8139     SDNodeFlags SDFlags;
8140     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8141       SDFlags.copyFMF(*FPMO);
8142     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8143         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8144       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8145     } else {
8146       SDValue Mul = DAG.getNode(
8147           ISD::VP_FMUL, DL, VTs,
8148           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8149       SDValue Add =
8150           DAG.getNode(ISD::VP_FADD, DL, VTs,
8151                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8152       setValue(&VPIntrin, Add);
8153     }
8154     break;
8155   }
8156   case ISD::VP_IS_FPCLASS: {
8157     const DataLayout DLayout = DAG.getDataLayout();
8158     EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8159     auto Constant = OpValues[1]->getAsZExtVal();
8160     SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8161     SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8162                             {OpValues[0], Check, OpValues[2], OpValues[3]});
8163     setValue(&VPIntrin, V);
8164     return;
8165   }
8166   case ISD::VP_INTTOPTR: {
8167     SDValue N = OpValues[0];
8168     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8169     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8170     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8171                                OpValues[2]);
8172     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8173                              OpValues[2]);
8174     setValue(&VPIntrin, N);
8175     break;
8176   }
8177   case ISD::VP_PTRTOINT: {
8178     SDValue N = OpValues[0];
8179     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8180                                                           VPIntrin.getType());
8181     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8182                                        VPIntrin.getOperand(0)->getType());
8183     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8184                                OpValues[2]);
8185     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8186                              OpValues[2]);
8187     setValue(&VPIntrin, N);
8188     break;
8189   }
8190   case ISD::VP_ABS:
8191   case ISD::VP_CTLZ:
8192   case ISD::VP_CTLZ_ZERO_UNDEF:
8193   case ISD::VP_CTTZ:
8194   case ISD::VP_CTTZ_ZERO_UNDEF: {
8195     SDValue Result =
8196         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8197     setValue(&VPIntrin, Result);
8198     break;
8199   }
8200   }
8201 }
8202 
8203 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8204                                           const BasicBlock *EHPadBB,
8205                                           MCSymbol *&BeginLabel) {
8206   MachineFunction &MF = DAG.getMachineFunction();
8207   MachineModuleInfo &MMI = MF.getMMI();
8208 
8209   // Insert a label before the invoke call to mark the try range.  This can be
8210   // used to detect deletion of the invoke via the MachineModuleInfo.
8211   BeginLabel = MMI.getContext().createTempSymbol();
8212 
8213   // For SjLj, keep track of which landing pads go with which invokes
8214   // so as to maintain the ordering of pads in the LSDA.
8215   unsigned CallSiteIndex = MMI.getCurrentCallSite();
8216   if (CallSiteIndex) {
8217     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8218     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
8219 
8220     // Now that the call site is handled, stop tracking it.
8221     MMI.setCurrentCallSite(0);
8222   }
8223 
8224   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
8225 }
8226 
8227 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
8228                                         const BasicBlock *EHPadBB,
8229                                         MCSymbol *BeginLabel) {
8230   assert(BeginLabel && "BeginLabel should've been set");
8231 
8232   MachineFunction &MF = DAG.getMachineFunction();
8233   MachineModuleInfo &MMI = MF.getMMI();
8234 
8235   // Insert a label at the end of the invoke call to mark the try range.  This
8236   // can be used to detect deletion of the invoke via the MachineModuleInfo.
8237   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
8238   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8239 
8240   // Inform MachineModuleInfo of range.
8241   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8242   // There is a platform (e.g. wasm) that uses funclet style IR but does not
8243   // actually use outlined funclets and their LSDA info style.
8244   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8245     assert(II && "II should've been set");
8246     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8247     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8248   } else if (!isScopedEHPersonality(Pers)) {
8249     assert(EHPadBB);
8250     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
8251   }
8252 
8253   return Chain;
8254 }
8255 
8256 std::pair<SDValue, SDValue>
8257 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8258                                     const BasicBlock *EHPadBB) {
8259   MCSymbol *BeginLabel = nullptr;
8260 
8261   if (EHPadBB) {
8262     // Both PendingLoads and PendingExports must be flushed here;
8263     // this call might not return.
8264     (void)getRoot();
8265     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8266     CLI.setChain(getRoot());
8267   }
8268 
8269   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8270   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8271 
8272   assert((CLI.IsTailCall || Result.second.getNode()) &&
8273          "Non-null chain expected with non-tail call!");
8274   assert((Result.second.getNode() || !Result.first.getNode()) &&
8275          "Null value expected with tail call!");
8276 
8277   if (!Result.second.getNode()) {
8278     // As a special case, a null chain means that a tail call has been emitted
8279     // and the DAG root is already updated.
8280     HasTailCall = true;
8281 
8282     // Since there's no actual continuation from this block, nothing can be
8283     // relying on us setting vregs for them.
8284     PendingExports.clear();
8285   } else {
8286     DAG.setRoot(Result.second);
8287   }
8288 
8289   if (EHPadBB) {
8290     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8291                            BeginLabel));
8292   }
8293 
8294   return Result;
8295 }
8296 
8297 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8298                                       bool isTailCall,
8299                                       bool isMustTailCall,
8300                                       const BasicBlock *EHPadBB) {
8301   auto &DL = DAG.getDataLayout();
8302   FunctionType *FTy = CB.getFunctionType();
8303   Type *RetTy = CB.getType();
8304 
8305   TargetLowering::ArgListTy Args;
8306   Args.reserve(CB.arg_size());
8307 
8308   const Value *SwiftErrorVal = nullptr;
8309   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8310 
8311   if (isTailCall) {
8312     // Avoid emitting tail calls in functions with the disable-tail-calls
8313     // attribute.
8314     auto *Caller = CB.getParent()->getParent();
8315     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8316         "true" && !isMustTailCall)
8317       isTailCall = false;
8318 
8319     // We can't tail call inside a function with a swifterror argument. Lowering
8320     // does not support this yet. It would have to move into the swifterror
8321     // register before the call.
8322     if (TLI.supportSwiftError() &&
8323         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8324       isTailCall = false;
8325   }
8326 
8327   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8328     TargetLowering::ArgListEntry Entry;
8329     const Value *V = *I;
8330 
8331     // Skip empty types
8332     if (V->getType()->isEmptyTy())
8333       continue;
8334 
8335     SDValue ArgNode = getValue(V);
8336     Entry.Node = ArgNode; Entry.Ty = V->getType();
8337 
8338     Entry.setAttributes(&CB, I - CB.arg_begin());
8339 
8340     // Use swifterror virtual register as input to the call.
8341     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8342       SwiftErrorVal = V;
8343       // We find the virtual register for the actual swifterror argument.
8344       // Instead of using the Value, we use the virtual register instead.
8345       Entry.Node =
8346           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8347                           EVT(TLI.getPointerTy(DL)));
8348     }
8349 
8350     Args.push_back(Entry);
8351 
8352     // If we have an explicit sret argument that is an Instruction, (i.e., it
8353     // might point to function-local memory), we can't meaningfully tail-call.
8354     if (Entry.IsSRet && isa<Instruction>(V))
8355       isTailCall = false;
8356   }
8357 
8358   // If call site has a cfguardtarget operand bundle, create and add an
8359   // additional ArgListEntry.
8360   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8361     TargetLowering::ArgListEntry Entry;
8362     Value *V = Bundle->Inputs[0];
8363     SDValue ArgNode = getValue(V);
8364     Entry.Node = ArgNode;
8365     Entry.Ty = V->getType();
8366     Entry.IsCFGuardTarget = true;
8367     Args.push_back(Entry);
8368   }
8369 
8370   // Check if target-independent constraints permit a tail call here.
8371   // Target-dependent constraints are checked within TLI->LowerCallTo.
8372   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8373     isTailCall = false;
8374 
8375   // Disable tail calls if there is an swifterror argument. Targets have not
8376   // been updated to support tail calls.
8377   if (TLI.supportSwiftError() && SwiftErrorVal)
8378     isTailCall = false;
8379 
8380   ConstantInt *CFIType = nullptr;
8381   if (CB.isIndirectCall()) {
8382     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8383       if (!TLI.supportKCFIBundles())
8384         report_fatal_error(
8385             "Target doesn't support calls with kcfi operand bundles.");
8386       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8387       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8388     }
8389   }
8390 
8391   TargetLowering::CallLoweringInfo CLI(DAG);
8392   CLI.setDebugLoc(getCurSDLoc())
8393       .setChain(getRoot())
8394       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8395       .setTailCall(isTailCall)
8396       .setConvergent(CB.isConvergent())
8397       .setIsPreallocated(
8398           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8399       .setCFIType(CFIType);
8400   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8401 
8402   if (Result.first.getNode()) {
8403     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8404     setValue(&CB, Result.first);
8405   }
8406 
8407   // The last element of CLI.InVals has the SDValue for swifterror return.
8408   // Here we copy it to a virtual register and update SwiftErrorMap for
8409   // book-keeping.
8410   if (SwiftErrorVal && TLI.supportSwiftError()) {
8411     // Get the last element of InVals.
8412     SDValue Src = CLI.InVals.back();
8413     Register VReg =
8414         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8415     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8416     DAG.setRoot(CopyNode);
8417   }
8418 }
8419 
8420 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8421                              SelectionDAGBuilder &Builder) {
8422   // Check to see if this load can be trivially constant folded, e.g. if the
8423   // input is from a string literal.
8424   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8425     // Cast pointer to the type we really want to load.
8426     Type *LoadTy =
8427         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8428     if (LoadVT.isVector())
8429       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8430 
8431     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8432                                          PointerType::getUnqual(LoadTy));
8433 
8434     if (const Constant *LoadCst =
8435             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8436                                          LoadTy, Builder.DAG.getDataLayout()))
8437       return Builder.getValue(LoadCst);
8438   }
8439 
8440   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8441   // still constant memory, the input chain can be the entry node.
8442   SDValue Root;
8443   bool ConstantMemory = false;
8444 
8445   // Do not serialize (non-volatile) loads of constant memory with anything.
8446   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8447     Root = Builder.DAG.getEntryNode();
8448     ConstantMemory = true;
8449   } else {
8450     // Do not serialize non-volatile loads against each other.
8451     Root = Builder.DAG.getRoot();
8452   }
8453 
8454   SDValue Ptr = Builder.getValue(PtrVal);
8455   SDValue LoadVal =
8456       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8457                           MachinePointerInfo(PtrVal), Align(1));
8458 
8459   if (!ConstantMemory)
8460     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8461   return LoadVal;
8462 }
8463 
8464 /// Record the value for an instruction that produces an integer result,
8465 /// converting the type where necessary.
8466 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8467                                                   SDValue Value,
8468                                                   bool IsSigned) {
8469   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8470                                                     I.getType(), true);
8471   Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8472   setValue(&I, Value);
8473 }
8474 
8475 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8476 /// true and lower it. Otherwise return false, and it will be lowered like a
8477 /// normal call.
8478 /// The caller already checked that \p I calls the appropriate LibFunc with a
8479 /// correct prototype.
8480 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8481   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8482   const Value *Size = I.getArgOperand(2);
8483   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8484   if (CSize && CSize->getZExtValue() == 0) {
8485     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8486                                                           I.getType(), true);
8487     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8488     return true;
8489   }
8490 
8491   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8492   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8493       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8494       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8495   if (Res.first.getNode()) {
8496     processIntegerCallValue(I, Res.first, true);
8497     PendingLoads.push_back(Res.second);
8498     return true;
8499   }
8500 
8501   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8502   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8503   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8504     return false;
8505 
8506   // If the target has a fast compare for the given size, it will return a
8507   // preferred load type for that size. Require that the load VT is legal and
8508   // that the target supports unaligned loads of that type. Otherwise, return
8509   // INVALID.
8510   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8511     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8512     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8513     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8514       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8515       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8516       // TODO: Check alignment of src and dest ptrs.
8517       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8518       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8519       if (!TLI.isTypeLegal(LVT) ||
8520           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8521           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8522         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8523     }
8524 
8525     return LVT;
8526   };
8527 
8528   // This turns into unaligned loads. We only do this if the target natively
8529   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8530   // we'll only produce a small number of byte loads.
8531   MVT LoadVT;
8532   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8533   switch (NumBitsToCompare) {
8534   default:
8535     return false;
8536   case 16:
8537     LoadVT = MVT::i16;
8538     break;
8539   case 32:
8540     LoadVT = MVT::i32;
8541     break;
8542   case 64:
8543   case 128:
8544   case 256:
8545     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8546     break;
8547   }
8548 
8549   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8550     return false;
8551 
8552   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8553   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8554 
8555   // Bitcast to a wide integer type if the loads are vectors.
8556   if (LoadVT.isVector()) {
8557     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8558     LoadL = DAG.getBitcast(CmpVT, LoadL);
8559     LoadR = DAG.getBitcast(CmpVT, LoadR);
8560   }
8561 
8562   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8563   processIntegerCallValue(I, Cmp, false);
8564   return true;
8565 }
8566 
8567 /// See if we can lower a memchr call into an optimized form. If so, return
8568 /// true and lower it. Otherwise return false, and it will be lowered like a
8569 /// normal call.
8570 /// The caller already checked that \p I calls the appropriate LibFunc with a
8571 /// correct prototype.
8572 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8573   const Value *Src = I.getArgOperand(0);
8574   const Value *Char = I.getArgOperand(1);
8575   const Value *Length = I.getArgOperand(2);
8576 
8577   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8578   std::pair<SDValue, SDValue> Res =
8579     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8580                                 getValue(Src), getValue(Char), getValue(Length),
8581                                 MachinePointerInfo(Src));
8582   if (Res.first.getNode()) {
8583     setValue(&I, Res.first);
8584     PendingLoads.push_back(Res.second);
8585     return true;
8586   }
8587 
8588   return false;
8589 }
8590 
8591 /// See if we can lower a mempcpy call into an optimized form. If so, return
8592 /// true and lower it. Otherwise return false, and it will be lowered like a
8593 /// normal call.
8594 /// The caller already checked that \p I calls the appropriate LibFunc with a
8595 /// correct prototype.
8596 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8597   SDValue Dst = getValue(I.getArgOperand(0));
8598   SDValue Src = getValue(I.getArgOperand(1));
8599   SDValue Size = getValue(I.getArgOperand(2));
8600 
8601   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8602   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8603   // DAG::getMemcpy needs Alignment to be defined.
8604   Align Alignment = std::min(DstAlign, SrcAlign);
8605 
8606   SDLoc sdl = getCurSDLoc();
8607 
8608   // In the mempcpy context we need to pass in a false value for isTailCall
8609   // because the return pointer needs to be adjusted by the size of
8610   // the copied memory.
8611   SDValue Root = getMemoryRoot();
8612   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false,
8613                              /*isTailCall=*/false,
8614                              MachinePointerInfo(I.getArgOperand(0)),
8615                              MachinePointerInfo(I.getArgOperand(1)),
8616                              I.getAAMetadata());
8617   assert(MC.getNode() != nullptr &&
8618          "** memcpy should not be lowered as TailCall in mempcpy context **");
8619   DAG.setRoot(MC);
8620 
8621   // Check if Size needs to be truncated or extended.
8622   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8623 
8624   // Adjust return pointer to point just past the last dst byte.
8625   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8626                                     Dst, Size);
8627   setValue(&I, DstPlusSize);
8628   return true;
8629 }
8630 
8631 /// See if we can lower a strcpy call into an optimized form.  If so, return
8632 /// true and lower it, otherwise return false and it will be lowered like a
8633 /// normal call.
8634 /// The caller already checked that \p I calls the appropriate LibFunc with a
8635 /// correct prototype.
8636 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8637   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8638 
8639   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8640   std::pair<SDValue, SDValue> Res =
8641     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8642                                 getValue(Arg0), getValue(Arg1),
8643                                 MachinePointerInfo(Arg0),
8644                                 MachinePointerInfo(Arg1), isStpcpy);
8645   if (Res.first.getNode()) {
8646     setValue(&I, Res.first);
8647     DAG.setRoot(Res.second);
8648     return true;
8649   }
8650 
8651   return false;
8652 }
8653 
8654 /// See if we can lower a strcmp call into an optimized form.  If so, return
8655 /// true and lower it, otherwise return false and it will be lowered like a
8656 /// normal call.
8657 /// The caller already checked that \p I calls the appropriate LibFunc with a
8658 /// correct prototype.
8659 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8660   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8661 
8662   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8663   std::pair<SDValue, SDValue> Res =
8664     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8665                                 getValue(Arg0), getValue(Arg1),
8666                                 MachinePointerInfo(Arg0),
8667                                 MachinePointerInfo(Arg1));
8668   if (Res.first.getNode()) {
8669     processIntegerCallValue(I, Res.first, true);
8670     PendingLoads.push_back(Res.second);
8671     return true;
8672   }
8673 
8674   return false;
8675 }
8676 
8677 /// See if we can lower a strlen call into an optimized form.  If so, return
8678 /// true and lower it, otherwise return false and it will be lowered like a
8679 /// normal call.
8680 /// The caller already checked that \p I calls the appropriate LibFunc with a
8681 /// correct prototype.
8682 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8683   const Value *Arg0 = I.getArgOperand(0);
8684 
8685   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8686   std::pair<SDValue, SDValue> Res =
8687     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8688                                 getValue(Arg0), MachinePointerInfo(Arg0));
8689   if (Res.first.getNode()) {
8690     processIntegerCallValue(I, Res.first, false);
8691     PendingLoads.push_back(Res.second);
8692     return true;
8693   }
8694 
8695   return false;
8696 }
8697 
8698 /// See if we can lower a strnlen call into an optimized form.  If so, return
8699 /// true and lower it, otherwise return false and it will be lowered like a
8700 /// normal call.
8701 /// The caller already checked that \p I calls the appropriate LibFunc with a
8702 /// correct prototype.
8703 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8704   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8705 
8706   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8707   std::pair<SDValue, SDValue> Res =
8708     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8709                                  getValue(Arg0), getValue(Arg1),
8710                                  MachinePointerInfo(Arg0));
8711   if (Res.first.getNode()) {
8712     processIntegerCallValue(I, Res.first, false);
8713     PendingLoads.push_back(Res.second);
8714     return true;
8715   }
8716 
8717   return false;
8718 }
8719 
8720 /// See if we can lower a unary floating-point operation into an SDNode with
8721 /// the specified Opcode.  If so, return true and lower it, otherwise return
8722 /// false and it will be lowered like a normal call.
8723 /// The caller already checked that \p I calls the appropriate LibFunc with a
8724 /// correct prototype.
8725 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8726                                               unsigned Opcode) {
8727   // We already checked this call's prototype; verify it doesn't modify errno.
8728   if (!I.onlyReadsMemory())
8729     return false;
8730 
8731   SDNodeFlags Flags;
8732   Flags.copyFMF(cast<FPMathOperator>(I));
8733 
8734   SDValue Tmp = getValue(I.getArgOperand(0));
8735   setValue(&I,
8736            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8737   return true;
8738 }
8739 
8740 /// See if we can lower a binary floating-point operation into an SDNode with
8741 /// the specified Opcode. If so, return true and lower it. Otherwise return
8742 /// false, and it will be lowered like a normal call.
8743 /// The caller already checked that \p I calls the appropriate LibFunc with a
8744 /// correct prototype.
8745 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8746                                                unsigned Opcode) {
8747   // We already checked this call's prototype; verify it doesn't modify errno.
8748   if (!I.onlyReadsMemory())
8749     return false;
8750 
8751   SDNodeFlags Flags;
8752   Flags.copyFMF(cast<FPMathOperator>(I));
8753 
8754   SDValue Tmp0 = getValue(I.getArgOperand(0));
8755   SDValue Tmp1 = getValue(I.getArgOperand(1));
8756   EVT VT = Tmp0.getValueType();
8757   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8758   return true;
8759 }
8760 
8761 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8762   // Handle inline assembly differently.
8763   if (I.isInlineAsm()) {
8764     visitInlineAsm(I);
8765     return;
8766   }
8767 
8768   diagnoseDontCall(I);
8769 
8770   if (Function *F = I.getCalledFunction()) {
8771     if (F->isDeclaration()) {
8772       // Is this an LLVM intrinsic or a target-specific intrinsic?
8773       unsigned IID = F->getIntrinsicID();
8774       if (!IID)
8775         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8776           IID = II->getIntrinsicID(F);
8777 
8778       if (IID) {
8779         visitIntrinsicCall(I, IID);
8780         return;
8781       }
8782     }
8783 
8784     // Check for well-known libc/libm calls.  If the function is internal, it
8785     // can't be a library call.  Don't do the check if marked as nobuiltin for
8786     // some reason or the call site requires strict floating point semantics.
8787     LibFunc Func;
8788     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8789         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8790         LibInfo->hasOptimizedCodeGen(Func)) {
8791       switch (Func) {
8792       default: break;
8793       case LibFunc_bcmp:
8794         if (visitMemCmpBCmpCall(I))
8795           return;
8796         break;
8797       case LibFunc_copysign:
8798       case LibFunc_copysignf:
8799       case LibFunc_copysignl:
8800         // We already checked this call's prototype; verify it doesn't modify
8801         // errno.
8802         if (I.onlyReadsMemory()) {
8803           SDValue LHS = getValue(I.getArgOperand(0));
8804           SDValue RHS = getValue(I.getArgOperand(1));
8805           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8806                                    LHS.getValueType(), LHS, RHS));
8807           return;
8808         }
8809         break;
8810       case LibFunc_fabs:
8811       case LibFunc_fabsf:
8812       case LibFunc_fabsl:
8813         if (visitUnaryFloatCall(I, ISD::FABS))
8814           return;
8815         break;
8816       case LibFunc_fmin:
8817       case LibFunc_fminf:
8818       case LibFunc_fminl:
8819         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8820           return;
8821         break;
8822       case LibFunc_fmax:
8823       case LibFunc_fmaxf:
8824       case LibFunc_fmaxl:
8825         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8826           return;
8827         break;
8828       case LibFunc_sin:
8829       case LibFunc_sinf:
8830       case LibFunc_sinl:
8831         if (visitUnaryFloatCall(I, ISD::FSIN))
8832           return;
8833         break;
8834       case LibFunc_cos:
8835       case LibFunc_cosf:
8836       case LibFunc_cosl:
8837         if (visitUnaryFloatCall(I, ISD::FCOS))
8838           return;
8839         break;
8840       case LibFunc_sqrt:
8841       case LibFunc_sqrtf:
8842       case LibFunc_sqrtl:
8843       case LibFunc_sqrt_finite:
8844       case LibFunc_sqrtf_finite:
8845       case LibFunc_sqrtl_finite:
8846         if (visitUnaryFloatCall(I, ISD::FSQRT))
8847           return;
8848         break;
8849       case LibFunc_floor:
8850       case LibFunc_floorf:
8851       case LibFunc_floorl:
8852         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8853           return;
8854         break;
8855       case LibFunc_nearbyint:
8856       case LibFunc_nearbyintf:
8857       case LibFunc_nearbyintl:
8858         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8859           return;
8860         break;
8861       case LibFunc_ceil:
8862       case LibFunc_ceilf:
8863       case LibFunc_ceill:
8864         if (visitUnaryFloatCall(I, ISD::FCEIL))
8865           return;
8866         break;
8867       case LibFunc_rint:
8868       case LibFunc_rintf:
8869       case LibFunc_rintl:
8870         if (visitUnaryFloatCall(I, ISD::FRINT))
8871           return;
8872         break;
8873       case LibFunc_round:
8874       case LibFunc_roundf:
8875       case LibFunc_roundl:
8876         if (visitUnaryFloatCall(I, ISD::FROUND))
8877           return;
8878         break;
8879       case LibFunc_trunc:
8880       case LibFunc_truncf:
8881       case LibFunc_truncl:
8882         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8883           return;
8884         break;
8885       case LibFunc_log2:
8886       case LibFunc_log2f:
8887       case LibFunc_log2l:
8888         if (visitUnaryFloatCall(I, ISD::FLOG2))
8889           return;
8890         break;
8891       case LibFunc_exp2:
8892       case LibFunc_exp2f:
8893       case LibFunc_exp2l:
8894         if (visitUnaryFloatCall(I, ISD::FEXP2))
8895           return;
8896         break;
8897       case LibFunc_exp10:
8898       case LibFunc_exp10f:
8899       case LibFunc_exp10l:
8900         if (visitUnaryFloatCall(I, ISD::FEXP10))
8901           return;
8902         break;
8903       case LibFunc_ldexp:
8904       case LibFunc_ldexpf:
8905       case LibFunc_ldexpl:
8906         if (visitBinaryFloatCall(I, ISD::FLDEXP))
8907           return;
8908         break;
8909       case LibFunc_memcmp:
8910         if (visitMemCmpBCmpCall(I))
8911           return;
8912         break;
8913       case LibFunc_mempcpy:
8914         if (visitMemPCpyCall(I))
8915           return;
8916         break;
8917       case LibFunc_memchr:
8918         if (visitMemChrCall(I))
8919           return;
8920         break;
8921       case LibFunc_strcpy:
8922         if (visitStrCpyCall(I, false))
8923           return;
8924         break;
8925       case LibFunc_stpcpy:
8926         if (visitStrCpyCall(I, true))
8927           return;
8928         break;
8929       case LibFunc_strcmp:
8930         if (visitStrCmpCall(I))
8931           return;
8932         break;
8933       case LibFunc_strlen:
8934         if (visitStrLenCall(I))
8935           return;
8936         break;
8937       case LibFunc_strnlen:
8938         if (visitStrNLenCall(I))
8939           return;
8940         break;
8941       }
8942     }
8943   }
8944 
8945   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8946   // have to do anything here to lower funclet bundles.
8947   // CFGuardTarget bundles are lowered in LowerCallTo.
8948   assert(!I.hasOperandBundlesOtherThan(
8949              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8950               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8951               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
8952          "Cannot lower calls with arbitrary operand bundles!");
8953 
8954   SDValue Callee = getValue(I.getCalledOperand());
8955 
8956   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8957     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8958   else
8959     // Check if we can potentially perform a tail call. More detailed checking
8960     // is be done within LowerCallTo, after more information about the call is
8961     // known.
8962     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8963 }
8964 
8965 namespace {
8966 
8967 /// AsmOperandInfo - This contains information for each constraint that we are
8968 /// lowering.
8969 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8970 public:
8971   /// CallOperand - If this is the result output operand or a clobber
8972   /// this is null, otherwise it is the incoming operand to the CallInst.
8973   /// This gets modified as the asm is processed.
8974   SDValue CallOperand;
8975 
8976   /// AssignedRegs - If this is a register or register class operand, this
8977   /// contains the set of register corresponding to the operand.
8978   RegsForValue AssignedRegs;
8979 
8980   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8981     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8982   }
8983 
8984   /// Whether or not this operand accesses memory
8985   bool hasMemory(const TargetLowering &TLI) const {
8986     // Indirect operand accesses access memory.
8987     if (isIndirect)
8988       return true;
8989 
8990     for (const auto &Code : Codes)
8991       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8992         return true;
8993 
8994     return false;
8995   }
8996 };
8997 
8998 
8999 } // end anonymous namespace
9000 
9001 /// Make sure that the output operand \p OpInfo and its corresponding input
9002 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9003 /// out).
9004 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9005                                SDISelAsmOperandInfo &MatchingOpInfo,
9006                                SelectionDAG &DAG) {
9007   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9008     return;
9009 
9010   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
9011   const auto &TLI = DAG.getTargetLoweringInfo();
9012 
9013   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9014       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9015                                        OpInfo.ConstraintVT);
9016   std::pair<unsigned, const TargetRegisterClass *> InputRC =
9017       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9018                                        MatchingOpInfo.ConstraintVT);
9019   if ((OpInfo.ConstraintVT.isInteger() !=
9020        MatchingOpInfo.ConstraintVT.isInteger()) ||
9021       (MatchRC.second != InputRC.second)) {
9022     // FIXME: error out in a more elegant fashion
9023     report_fatal_error("Unsupported asm: input constraint"
9024                        " with a matching output constraint of"
9025                        " incompatible type!");
9026   }
9027   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9028 }
9029 
9030 /// Get a direct memory input to behave well as an indirect operand.
9031 /// This may introduce stores, hence the need for a \p Chain.
9032 /// \return The (possibly updated) chain.
9033 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9034                                         SDISelAsmOperandInfo &OpInfo,
9035                                         SelectionDAG &DAG) {
9036   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9037 
9038   // If we don't have an indirect input, put it in the constpool if we can,
9039   // otherwise spill it to a stack slot.
9040   // TODO: This isn't quite right. We need to handle these according to
9041   // the addressing mode that the constraint wants. Also, this may take
9042   // an additional register for the computation and we don't want that
9043   // either.
9044 
9045   // If the operand is a float, integer, or vector constant, spill to a
9046   // constant pool entry to get its address.
9047   const Value *OpVal = OpInfo.CallOperandVal;
9048   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9049       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
9050     OpInfo.CallOperand = DAG.getConstantPool(
9051         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9052     return Chain;
9053   }
9054 
9055   // Otherwise, create a stack slot and emit a store to it before the asm.
9056   Type *Ty = OpVal->getType();
9057   auto &DL = DAG.getDataLayout();
9058   uint64_t TySize = DL.getTypeAllocSize(Ty);
9059   MachineFunction &MF = DAG.getMachineFunction();
9060   int SSFI = MF.getFrameInfo().CreateStackObject(
9061       TySize, DL.getPrefTypeAlign(Ty), false);
9062   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9063   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9064                             MachinePointerInfo::getFixedStack(MF, SSFI),
9065                             TLI.getMemValueType(DL, Ty));
9066   OpInfo.CallOperand = StackSlot;
9067 
9068   return Chain;
9069 }
9070 
9071 /// GetRegistersForValue - Assign registers (virtual or physical) for the
9072 /// specified operand.  We prefer to assign virtual registers, to allow the
9073 /// register allocator to handle the assignment process.  However, if the asm
9074 /// uses features that we can't model on machineinstrs, we have SDISel do the
9075 /// allocation.  This produces generally horrible, but correct, code.
9076 ///
9077 ///   OpInfo describes the operand
9078 ///   RefOpInfo describes the matching operand if any, the operand otherwise
9079 static std::optional<unsigned>
9080 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
9081                      SDISelAsmOperandInfo &OpInfo,
9082                      SDISelAsmOperandInfo &RefOpInfo) {
9083   LLVMContext &Context = *DAG.getContext();
9084   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9085 
9086   MachineFunction &MF = DAG.getMachineFunction();
9087   SmallVector<unsigned, 4> Regs;
9088   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9089 
9090   // No work to do for memory/address operands.
9091   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9092       OpInfo.ConstraintType == TargetLowering::C_Address)
9093     return std::nullopt;
9094 
9095   // If this is a constraint for a single physreg, or a constraint for a
9096   // register class, find it.
9097   unsigned AssignedReg;
9098   const TargetRegisterClass *RC;
9099   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9100       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9101   // RC is unset only on failure. Return immediately.
9102   if (!RC)
9103     return std::nullopt;
9104 
9105   // Get the actual register value type.  This is important, because the user
9106   // may have asked for (e.g.) the AX register in i32 type.  We need to
9107   // remember that AX is actually i16 to get the right extension.
9108   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9109 
9110   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9111     // If this is an FP operand in an integer register (or visa versa), or more
9112     // generally if the operand value disagrees with the register class we plan
9113     // to stick it in, fix the operand type.
9114     //
9115     // If this is an input value, the bitcast to the new type is done now.
9116     // Bitcast for output value is done at the end of visitInlineAsm().
9117     if ((OpInfo.Type == InlineAsm::isOutput ||
9118          OpInfo.Type == InlineAsm::isInput) &&
9119         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9120       // Try to convert to the first EVT that the reg class contains.  If the
9121       // types are identical size, use a bitcast to convert (e.g. two differing
9122       // vector types).  Note: output bitcast is done at the end of
9123       // visitInlineAsm().
9124       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9125         // Exclude indirect inputs while they are unsupported because the code
9126         // to perform the load is missing and thus OpInfo.CallOperand still
9127         // refers to the input address rather than the pointed-to value.
9128         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9129           OpInfo.CallOperand =
9130               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9131         OpInfo.ConstraintVT = RegVT;
9132         // If the operand is an FP value and we want it in integer registers,
9133         // use the corresponding integer type. This turns an f64 value into
9134         // i64, which can be passed with two i32 values on a 32-bit machine.
9135       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9136         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
9137         if (OpInfo.Type == InlineAsm::isInput)
9138           OpInfo.CallOperand =
9139               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
9140         OpInfo.ConstraintVT = VT;
9141       }
9142     }
9143   }
9144 
9145   // No need to allocate a matching input constraint since the constraint it's
9146   // matching to has already been allocated.
9147   if (OpInfo.isMatchingInputConstraint())
9148     return std::nullopt;
9149 
9150   EVT ValueVT = OpInfo.ConstraintVT;
9151   if (OpInfo.ConstraintVT == MVT::Other)
9152     ValueVT = RegVT;
9153 
9154   // Initialize NumRegs.
9155   unsigned NumRegs = 1;
9156   if (OpInfo.ConstraintVT != MVT::Other)
9157     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
9158 
9159   // If this is a constraint for a specific physical register, like {r17},
9160   // assign it now.
9161 
9162   // If this associated to a specific register, initialize iterator to correct
9163   // place. If virtual, make sure we have enough registers
9164 
9165   // Initialize iterator if necessary
9166   TargetRegisterClass::iterator I = RC->begin();
9167   MachineRegisterInfo &RegInfo = MF.getRegInfo();
9168 
9169   // Do not check for single registers.
9170   if (AssignedReg) {
9171     I = std::find(I, RC->end(), AssignedReg);
9172     if (I == RC->end()) {
9173       // RC does not contain the selected register, which indicates a
9174       // mismatch between the register and the required type/bitwidth.
9175       return {AssignedReg};
9176     }
9177   }
9178 
9179   for (; NumRegs; --NumRegs, ++I) {
9180     assert(I != RC->end() && "Ran out of registers to allocate!");
9181     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
9182     Regs.push_back(R);
9183   }
9184 
9185   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
9186   return std::nullopt;
9187 }
9188 
9189 static unsigned
9190 findMatchingInlineAsmOperand(unsigned OperandNo,
9191                              const std::vector<SDValue> &AsmNodeOperands) {
9192   // Scan until we find the definition we already emitted of this operand.
9193   unsigned CurOp = InlineAsm::Op_FirstOperand;
9194   for (; OperandNo; --OperandNo) {
9195     // Advance to the next operand.
9196     unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
9197     const InlineAsm::Flag F(OpFlag);
9198     assert(
9199         (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
9200         "Skipped past definitions?");
9201     CurOp += F.getNumOperandRegisters() + 1;
9202   }
9203   return CurOp;
9204 }
9205 
9206 namespace {
9207 
9208 class ExtraFlags {
9209   unsigned Flags = 0;
9210 
9211 public:
9212   explicit ExtraFlags(const CallBase &Call) {
9213     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9214     if (IA->hasSideEffects())
9215       Flags |= InlineAsm::Extra_HasSideEffects;
9216     if (IA->isAlignStack())
9217       Flags |= InlineAsm::Extra_IsAlignStack;
9218     if (Call.isConvergent())
9219       Flags |= InlineAsm::Extra_IsConvergent;
9220     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
9221   }
9222 
9223   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
9224     // Ideally, we would only check against memory constraints.  However, the
9225     // meaning of an Other constraint can be target-specific and we can't easily
9226     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
9227     // for Other constraints as well.
9228     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9229         OpInfo.ConstraintType == TargetLowering::C_Other) {
9230       if (OpInfo.Type == InlineAsm::isInput)
9231         Flags |= InlineAsm::Extra_MayLoad;
9232       else if (OpInfo.Type == InlineAsm::isOutput)
9233         Flags |= InlineAsm::Extra_MayStore;
9234       else if (OpInfo.Type == InlineAsm::isClobber)
9235         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
9236     }
9237   }
9238 
9239   unsigned get() const { return Flags; }
9240 };
9241 
9242 } // end anonymous namespace
9243 
9244 static bool isFunction(SDValue Op) {
9245   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9246     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9247       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9248 
9249       // In normal "call dllimport func" instruction (non-inlineasm) it force
9250       // indirect access by specifing call opcode. And usually specially print
9251       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9252       // not do in this way now. (In fact, this is similar with "Data Access"
9253       // action). So here we ignore dllimport function.
9254       if (Fn && !Fn->hasDLLImportStorageClass())
9255         return true;
9256     }
9257   }
9258   return false;
9259 }
9260 
9261 /// visitInlineAsm - Handle a call to an InlineAsm object.
9262 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9263                                          const BasicBlock *EHPadBB) {
9264   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9265 
9266   /// ConstraintOperands - Information about all of the constraints.
9267   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9268 
9269   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9270   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9271       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9272 
9273   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9274   // AsmDialect, MayLoad, MayStore).
9275   bool HasSideEffect = IA->hasSideEffects();
9276   ExtraFlags ExtraInfo(Call);
9277 
9278   for (auto &T : TargetConstraints) {
9279     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9280     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9281 
9282     if (OpInfo.CallOperandVal)
9283       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9284 
9285     if (!HasSideEffect)
9286       HasSideEffect = OpInfo.hasMemory(TLI);
9287 
9288     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9289     // FIXME: Could we compute this on OpInfo rather than T?
9290 
9291     // Compute the constraint code and ConstraintType to use.
9292     TLI.ComputeConstraintToUse(T, SDValue());
9293 
9294     if (T.ConstraintType == TargetLowering::C_Immediate &&
9295         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9296       // We've delayed emitting a diagnostic like the "n" constraint because
9297       // inlining could cause an integer showing up.
9298       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9299                                           "' expects an integer constant "
9300                                           "expression");
9301 
9302     ExtraInfo.update(T);
9303   }
9304 
9305   // We won't need to flush pending loads if this asm doesn't touch
9306   // memory and is nonvolatile.
9307   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9308 
9309   bool EmitEHLabels = isa<InvokeInst>(Call);
9310   if (EmitEHLabels) {
9311     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9312   }
9313   bool IsCallBr = isa<CallBrInst>(Call);
9314 
9315   if (IsCallBr || EmitEHLabels) {
9316     // If this is a callbr or invoke we need to flush pending exports since
9317     // inlineasm_br and invoke are terminators.
9318     // We need to do this before nodes are glued to the inlineasm_br node.
9319     Chain = getControlRoot();
9320   }
9321 
9322   MCSymbol *BeginLabel = nullptr;
9323   if (EmitEHLabels) {
9324     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9325   }
9326 
9327   int OpNo = -1;
9328   SmallVector<StringRef> AsmStrs;
9329   IA->collectAsmStrs(AsmStrs);
9330 
9331   // Second pass over the constraints: compute which constraint option to use.
9332   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9333     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9334       OpNo++;
9335 
9336     // If this is an output operand with a matching input operand, look up the
9337     // matching input. If their types mismatch, e.g. one is an integer, the
9338     // other is floating point, or their sizes are different, flag it as an
9339     // error.
9340     if (OpInfo.hasMatchingInput()) {
9341       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9342       patchMatchingInput(OpInfo, Input, DAG);
9343     }
9344 
9345     // Compute the constraint code and ConstraintType to use.
9346     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9347 
9348     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9349          OpInfo.Type == InlineAsm::isClobber) ||
9350         OpInfo.ConstraintType == TargetLowering::C_Address)
9351       continue;
9352 
9353     // In Linux PIC model, there are 4 cases about value/label addressing:
9354     //
9355     // 1: Function call or Label jmp inside the module.
9356     // 2: Data access (such as global variable, static variable) inside module.
9357     // 3: Function call or Label jmp outside the module.
9358     // 4: Data access (such as global variable) outside the module.
9359     //
9360     // Due to current llvm inline asm architecture designed to not "recognize"
9361     // the asm code, there are quite troubles for us to treat mem addressing
9362     // differently for same value/adress used in different instuctions.
9363     // For example, in pic model, call a func may in plt way or direclty
9364     // pc-related, but lea/mov a function adress may use got.
9365     //
9366     // Here we try to "recognize" function call for the case 1 and case 3 in
9367     // inline asm. And try to adjust the constraint for them.
9368     //
9369     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9370     // label, so here we don't handle jmp function label now, but we need to
9371     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9372     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9373         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9374         TM.getCodeModel() != CodeModel::Large) {
9375       OpInfo.isIndirect = false;
9376       OpInfo.ConstraintType = TargetLowering::C_Address;
9377     }
9378 
9379     // If this is a memory input, and if the operand is not indirect, do what we
9380     // need to provide an address for the memory input.
9381     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9382         !OpInfo.isIndirect) {
9383       assert((OpInfo.isMultipleAlternative ||
9384               (OpInfo.Type == InlineAsm::isInput)) &&
9385              "Can only indirectify direct input operands!");
9386 
9387       // Memory operands really want the address of the value.
9388       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9389 
9390       // There is no longer a Value* corresponding to this operand.
9391       OpInfo.CallOperandVal = nullptr;
9392 
9393       // It is now an indirect operand.
9394       OpInfo.isIndirect = true;
9395     }
9396 
9397   }
9398 
9399   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9400   std::vector<SDValue> AsmNodeOperands;
9401   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9402   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9403       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9404 
9405   // If we have a !srcloc metadata node associated with it, we want to attach
9406   // this to the ultimately generated inline asm machineinstr.  To do this, we
9407   // pass in the third operand as this (potentially null) inline asm MDNode.
9408   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9409   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9410 
9411   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9412   // bits as operand 3.
9413   AsmNodeOperands.push_back(DAG.getTargetConstant(
9414       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9415 
9416   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9417   // this, assign virtual and physical registers for inputs and otput.
9418   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9419     // Assign Registers.
9420     SDISelAsmOperandInfo &RefOpInfo =
9421         OpInfo.isMatchingInputConstraint()
9422             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9423             : OpInfo;
9424     const auto RegError =
9425         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9426     if (RegError) {
9427       const MachineFunction &MF = DAG.getMachineFunction();
9428       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9429       const char *RegName = TRI.getName(*RegError);
9430       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9431                                    "' allocated for constraint '" +
9432                                    Twine(OpInfo.ConstraintCode) +
9433                                    "' does not match required type");
9434       return;
9435     }
9436 
9437     auto DetectWriteToReservedRegister = [&]() {
9438       const MachineFunction &MF = DAG.getMachineFunction();
9439       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9440       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9441         if (Register::isPhysicalRegister(Reg) &&
9442             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9443           const char *RegName = TRI.getName(Reg);
9444           emitInlineAsmError(Call, "write to reserved register '" +
9445                                        Twine(RegName) + "'");
9446           return true;
9447         }
9448       }
9449       return false;
9450     };
9451     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9452             (OpInfo.Type == InlineAsm::isInput &&
9453              !OpInfo.isMatchingInputConstraint())) &&
9454            "Only address as input operand is allowed.");
9455 
9456     switch (OpInfo.Type) {
9457     case InlineAsm::isOutput:
9458       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9459         const InlineAsm::ConstraintCode ConstraintID =
9460             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9461         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9462                "Failed to convert memory constraint code to constraint id.");
9463 
9464         // Add information to the INLINEASM node to know about this output.
9465         InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
9466         OpFlags.setMemConstraint(ConstraintID);
9467         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9468                                                         MVT::i32));
9469         AsmNodeOperands.push_back(OpInfo.CallOperand);
9470       } else {
9471         // Otherwise, this outputs to a register (directly for C_Register /
9472         // C_RegisterClass, and a target-defined fashion for
9473         // C_Immediate/C_Other). Find a register that we can use.
9474         if (OpInfo.AssignedRegs.Regs.empty()) {
9475           emitInlineAsmError(
9476               Call, "couldn't allocate output register for constraint '" +
9477                         Twine(OpInfo.ConstraintCode) + "'");
9478           return;
9479         }
9480 
9481         if (DetectWriteToReservedRegister())
9482           return;
9483 
9484         // Add information to the INLINEASM node to know that this register is
9485         // set.
9486         OpInfo.AssignedRegs.AddInlineAsmOperands(
9487             OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
9488                                   : InlineAsm::Kind::RegDef,
9489             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9490       }
9491       break;
9492 
9493     case InlineAsm::isInput:
9494     case InlineAsm::isLabel: {
9495       SDValue InOperandVal = OpInfo.CallOperand;
9496 
9497       if (OpInfo.isMatchingInputConstraint()) {
9498         // If this is required to match an output register we have already set,
9499         // just use its register.
9500         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9501                                                   AsmNodeOperands);
9502         InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
9503         if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
9504           if (OpInfo.isIndirect) {
9505             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9506             emitInlineAsmError(Call, "inline asm not supported yet: "
9507                                      "don't know how to handle tied "
9508                                      "indirect register inputs");
9509             return;
9510           }
9511 
9512           SmallVector<unsigned, 4> Regs;
9513           MachineFunction &MF = DAG.getMachineFunction();
9514           MachineRegisterInfo &MRI = MF.getRegInfo();
9515           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9516           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9517           Register TiedReg = R->getReg();
9518           MVT RegVT = R->getSimpleValueType(0);
9519           const TargetRegisterClass *RC =
9520               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9521               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9522                                       : TRI.getMinimalPhysRegClass(TiedReg);
9523           for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
9524             Regs.push_back(MRI.createVirtualRegister(RC));
9525 
9526           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9527 
9528           SDLoc dl = getCurSDLoc();
9529           // Use the produced MatchedRegs object to
9530           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
9531           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
9532                                            OpInfo.getMatchedOperand(), dl, DAG,
9533                                            AsmNodeOperands);
9534           break;
9535         }
9536 
9537         assert(Flag.isMemKind() && "Unknown matching constraint!");
9538         assert(Flag.getNumOperandRegisters() == 1 &&
9539                "Unexpected number of operands");
9540         // Add information to the INLINEASM node to know about this input.
9541         // See InlineAsm.h isUseOperandTiedToDef.
9542         Flag.clearMemConstraint();
9543         Flag.setMatchingOp(OpInfo.getMatchedOperand());
9544         AsmNodeOperands.push_back(DAG.getTargetConstant(
9545             Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9546         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9547         break;
9548       }
9549 
9550       // Treat indirect 'X' constraint as memory.
9551       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9552           OpInfo.isIndirect)
9553         OpInfo.ConstraintType = TargetLowering::C_Memory;
9554 
9555       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9556           OpInfo.ConstraintType == TargetLowering::C_Other) {
9557         std::vector<SDValue> Ops;
9558         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9559                                           Ops, DAG);
9560         if (Ops.empty()) {
9561           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9562             if (isa<ConstantSDNode>(InOperandVal)) {
9563               emitInlineAsmError(Call, "value out of range for constraint '" +
9564                                            Twine(OpInfo.ConstraintCode) + "'");
9565               return;
9566             }
9567 
9568           emitInlineAsmError(Call,
9569                              "invalid operand for inline asm constraint '" +
9570                                  Twine(OpInfo.ConstraintCode) + "'");
9571           return;
9572         }
9573 
9574         // Add information to the INLINEASM node to know about this input.
9575         InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
9576         AsmNodeOperands.push_back(DAG.getTargetConstant(
9577             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9578         llvm::append_range(AsmNodeOperands, Ops);
9579         break;
9580       }
9581 
9582       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9583         assert((OpInfo.isIndirect ||
9584                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9585                "Operand must be indirect to be a mem!");
9586         assert(InOperandVal.getValueType() ==
9587                    TLI.getPointerTy(DAG.getDataLayout()) &&
9588                "Memory operands expect pointer values");
9589 
9590         const InlineAsm::ConstraintCode ConstraintID =
9591             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9592         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9593                "Failed to convert memory constraint code to constraint id.");
9594 
9595         // Add information to the INLINEASM node to know about this input.
9596         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9597         ResOpType.setMemConstraint(ConstraintID);
9598         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9599                                                         getCurSDLoc(),
9600                                                         MVT::i32));
9601         AsmNodeOperands.push_back(InOperandVal);
9602         break;
9603       }
9604 
9605       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9606         const InlineAsm::ConstraintCode ConstraintID =
9607             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9608         assert(ConstraintID != InlineAsm::ConstraintCode::Unknown &&
9609                "Failed to convert memory constraint code to constraint id.");
9610 
9611         InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
9612 
9613         SDValue AsmOp = InOperandVal;
9614         if (isFunction(InOperandVal)) {
9615           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9616           ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
9617           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9618                                              InOperandVal.getValueType(),
9619                                              GA->getOffset());
9620         }
9621 
9622         // Add information to the INLINEASM node to know about this input.
9623         ResOpType.setMemConstraint(ConstraintID);
9624 
9625         AsmNodeOperands.push_back(
9626             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9627 
9628         AsmNodeOperands.push_back(AsmOp);
9629         break;
9630       }
9631 
9632       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9633               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9634              "Unknown constraint type!");
9635 
9636       // TODO: Support this.
9637       if (OpInfo.isIndirect) {
9638         emitInlineAsmError(
9639             Call, "Don't know how to handle indirect register inputs yet "
9640                   "for constraint '" +
9641                       Twine(OpInfo.ConstraintCode) + "'");
9642         return;
9643       }
9644 
9645       // Copy the input into the appropriate registers.
9646       if (OpInfo.AssignedRegs.Regs.empty()) {
9647         emitInlineAsmError(Call,
9648                            "couldn't allocate input reg for constraint '" +
9649                                Twine(OpInfo.ConstraintCode) + "'");
9650         return;
9651       }
9652 
9653       if (DetectWriteToReservedRegister())
9654         return;
9655 
9656       SDLoc dl = getCurSDLoc();
9657 
9658       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
9659                                         &Call);
9660 
9661       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
9662                                                0, dl, DAG, AsmNodeOperands);
9663       break;
9664     }
9665     case InlineAsm::isClobber:
9666       // Add the clobbered value to the operand list, so that the register
9667       // allocator is aware that the physreg got clobbered.
9668       if (!OpInfo.AssignedRegs.Regs.empty())
9669         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber,
9670                                                  false, 0, getCurSDLoc(), DAG,
9671                                                  AsmNodeOperands);
9672       break;
9673     }
9674   }
9675 
9676   // Finish up input operands.  Set the input chain and add the flag last.
9677   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9678   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
9679 
9680   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9681   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9682                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9683   Glue = Chain.getValue(1);
9684 
9685   // Do additional work to generate outputs.
9686 
9687   SmallVector<EVT, 1> ResultVTs;
9688   SmallVector<SDValue, 1> ResultValues;
9689   SmallVector<SDValue, 8> OutChains;
9690 
9691   llvm::Type *CallResultType = Call.getType();
9692   ArrayRef<Type *> ResultTypes;
9693   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9694     ResultTypes = StructResult->elements();
9695   else if (!CallResultType->isVoidTy())
9696     ResultTypes = ArrayRef(CallResultType);
9697 
9698   auto CurResultType = ResultTypes.begin();
9699   auto handleRegAssign = [&](SDValue V) {
9700     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9701     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9702     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9703     ++CurResultType;
9704     // If the type of the inline asm call site return value is different but has
9705     // same size as the type of the asm output bitcast it.  One example of this
9706     // is for vectors with different width / number of elements.  This can
9707     // happen for register classes that can contain multiple different value
9708     // types.  The preg or vreg allocated may not have the same VT as was
9709     // expected.
9710     //
9711     // This can also happen for a return value that disagrees with the register
9712     // class it is put in, eg. a double in a general-purpose register on a
9713     // 32-bit machine.
9714     if (ResultVT != V.getValueType() &&
9715         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9716       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9717     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9718              V.getValueType().isInteger()) {
9719       // If a result value was tied to an input value, the computed result
9720       // may have a wider width than the expected result.  Extract the
9721       // relevant portion.
9722       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9723     }
9724     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9725     ResultVTs.push_back(ResultVT);
9726     ResultValues.push_back(V);
9727   };
9728 
9729   // Deal with output operands.
9730   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9731     if (OpInfo.Type == InlineAsm::isOutput) {
9732       SDValue Val;
9733       // Skip trivial output operands.
9734       if (OpInfo.AssignedRegs.Regs.empty())
9735         continue;
9736 
9737       switch (OpInfo.ConstraintType) {
9738       case TargetLowering::C_Register:
9739       case TargetLowering::C_RegisterClass:
9740         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9741                                                   Chain, &Glue, &Call);
9742         break;
9743       case TargetLowering::C_Immediate:
9744       case TargetLowering::C_Other:
9745         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
9746                                               OpInfo, DAG);
9747         break;
9748       case TargetLowering::C_Memory:
9749         break; // Already handled.
9750       case TargetLowering::C_Address:
9751         break; // Silence warning.
9752       case TargetLowering::C_Unknown:
9753         assert(false && "Unexpected unknown constraint");
9754       }
9755 
9756       // Indirect output manifest as stores. Record output chains.
9757       if (OpInfo.isIndirect) {
9758         const Value *Ptr = OpInfo.CallOperandVal;
9759         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9760         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9761                                      MachinePointerInfo(Ptr));
9762         OutChains.push_back(Store);
9763       } else {
9764         // generate CopyFromRegs to associated registers.
9765         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9766         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9767           for (const SDValue &V : Val->op_values())
9768             handleRegAssign(V);
9769         } else
9770           handleRegAssign(Val);
9771       }
9772     }
9773   }
9774 
9775   // Set results.
9776   if (!ResultValues.empty()) {
9777     assert(CurResultType == ResultTypes.end() &&
9778            "Mismatch in number of ResultTypes");
9779     assert(ResultValues.size() == ResultTypes.size() &&
9780            "Mismatch in number of output operands in asm result");
9781 
9782     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9783                             DAG.getVTList(ResultVTs), ResultValues);
9784     setValue(&Call, V);
9785   }
9786 
9787   // Collect store chains.
9788   if (!OutChains.empty())
9789     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9790 
9791   if (EmitEHLabels) {
9792     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9793   }
9794 
9795   // Only Update Root if inline assembly has a memory effect.
9796   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9797       EmitEHLabels)
9798     DAG.setRoot(Chain);
9799 }
9800 
9801 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9802                                              const Twine &Message) {
9803   LLVMContext &Ctx = *DAG.getContext();
9804   Ctx.emitError(&Call, Message);
9805 
9806   // Make sure we leave the DAG in a valid state
9807   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9808   SmallVector<EVT, 1> ValueVTs;
9809   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9810 
9811   if (ValueVTs.empty())
9812     return;
9813 
9814   SmallVector<SDValue, 1> Ops;
9815   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9816     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9817 
9818   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9819 }
9820 
9821 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9822   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9823                           MVT::Other, getRoot(),
9824                           getValue(I.getArgOperand(0)),
9825                           DAG.getSrcValue(I.getArgOperand(0))));
9826 }
9827 
9828 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9829   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9830   const DataLayout &DL = DAG.getDataLayout();
9831   SDValue V = DAG.getVAArg(
9832       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9833       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9834       DL.getABITypeAlign(I.getType()).value());
9835   DAG.setRoot(V.getValue(1));
9836 
9837   if (I.getType()->isPointerTy())
9838     V = DAG.getPtrExtOrTrunc(
9839         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9840   setValue(&I, V);
9841 }
9842 
9843 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9844   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9845                           MVT::Other, getRoot(),
9846                           getValue(I.getArgOperand(0)),
9847                           DAG.getSrcValue(I.getArgOperand(0))));
9848 }
9849 
9850 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9851   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9852                           MVT::Other, getRoot(),
9853                           getValue(I.getArgOperand(0)),
9854                           getValue(I.getArgOperand(1)),
9855                           DAG.getSrcValue(I.getArgOperand(0)),
9856                           DAG.getSrcValue(I.getArgOperand(1))));
9857 }
9858 
9859 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9860                                                     const Instruction &I,
9861                                                     SDValue Op) {
9862   const MDNode *Range = getRangeMetadata(I);
9863   if (!Range)
9864     return Op;
9865 
9866   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9867   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9868     return Op;
9869 
9870   APInt Lo = CR.getUnsignedMin();
9871   if (!Lo.isMinValue())
9872     return Op;
9873 
9874   APInt Hi = CR.getUnsignedMax();
9875   unsigned Bits = std::max(Hi.getActiveBits(),
9876                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9877 
9878   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9879 
9880   SDLoc SL = getCurSDLoc();
9881 
9882   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9883                              DAG.getValueType(SmallVT));
9884   unsigned NumVals = Op.getNode()->getNumValues();
9885   if (NumVals == 1)
9886     return ZExt;
9887 
9888   SmallVector<SDValue, 4> Ops;
9889 
9890   Ops.push_back(ZExt);
9891   for (unsigned I = 1; I != NumVals; ++I)
9892     Ops.push_back(Op.getValue(I));
9893 
9894   return DAG.getMergeValues(Ops, SL);
9895 }
9896 
9897 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9898 /// the call being lowered.
9899 ///
9900 /// This is a helper for lowering intrinsics that follow a target calling
9901 /// convention or require stack pointer adjustment. Only a subset of the
9902 /// intrinsic's operands need to participate in the calling convention.
9903 void SelectionDAGBuilder::populateCallLoweringInfo(
9904     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9905     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9906     AttributeSet RetAttrs, bool IsPatchPoint) {
9907   TargetLowering::ArgListTy Args;
9908   Args.reserve(NumArgs);
9909 
9910   // Populate the argument list.
9911   // Attributes for args start at offset 1, after the return attribute.
9912   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9913        ArgI != ArgE; ++ArgI) {
9914     const Value *V = Call->getOperand(ArgI);
9915 
9916     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9917 
9918     TargetLowering::ArgListEntry Entry;
9919     Entry.Node = getValue(V);
9920     Entry.Ty = V->getType();
9921     Entry.setAttributes(Call, ArgI);
9922     Args.push_back(Entry);
9923   }
9924 
9925   CLI.setDebugLoc(getCurSDLoc())
9926       .setChain(getRoot())
9927       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
9928                  RetAttrs)
9929       .setDiscardResult(Call->use_empty())
9930       .setIsPatchPoint(IsPatchPoint)
9931       .setIsPreallocated(
9932           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9933 }
9934 
9935 /// Add a stack map intrinsic call's live variable operands to a stackmap
9936 /// or patchpoint target node's operand list.
9937 ///
9938 /// Constants are converted to TargetConstants purely as an optimization to
9939 /// avoid constant materialization and register allocation.
9940 ///
9941 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9942 /// generate addess computation nodes, and so FinalizeISel can convert the
9943 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9944 /// address materialization and register allocation, but may also be required
9945 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9946 /// alloca in the entry block, then the runtime may assume that the alloca's
9947 /// StackMap location can be read immediately after compilation and that the
9948 /// location is valid at any point during execution (this is similar to the
9949 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9950 /// only available in a register, then the runtime would need to trap when
9951 /// execution reaches the StackMap in order to read the alloca's location.
9952 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9953                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9954                                 SelectionDAGBuilder &Builder) {
9955   SelectionDAG &DAG = Builder.DAG;
9956   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9957     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9958 
9959     // Things on the stack are pointer-typed, meaning that they are already
9960     // legal and can be emitted directly to target nodes.
9961     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9962       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9963     } else {
9964       // Otherwise emit a target independent node to be legalised.
9965       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9966     }
9967   }
9968 }
9969 
9970 /// Lower llvm.experimental.stackmap.
9971 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9972   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9973   //                                  [live variables...])
9974 
9975   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9976 
9977   SDValue Chain, InGlue, Callee;
9978   SmallVector<SDValue, 32> Ops;
9979 
9980   SDLoc DL = getCurSDLoc();
9981   Callee = getValue(CI.getCalledOperand());
9982 
9983   // The stackmap intrinsic only records the live variables (the arguments
9984   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9985   // intrinsic, this won't be lowered to a function call. This means we don't
9986   // have to worry about calling conventions and target specific lowering code.
9987   // Instead we perform the call lowering right here.
9988   //
9989   // chain, flag = CALLSEQ_START(chain, 0, 0)
9990   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9991   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9992   //
9993   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9994   InGlue = Chain.getValue(1);
9995 
9996   // Add the STACKMAP operands, starting with DAG house-keeping.
9997   Ops.push_back(Chain);
9998   Ops.push_back(InGlue);
9999 
10000   // Add the <id>, <numShadowBytes> operands.
10001   //
10002   // These do not require legalisation, and can be emitted directly to target
10003   // constant nodes.
10004   SDValue ID = getValue(CI.getArgOperand(0));
10005   assert(ID.getValueType() == MVT::i64);
10006   SDValue IDConst =
10007       DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10008   Ops.push_back(IDConst);
10009 
10010   SDValue Shad = getValue(CI.getArgOperand(1));
10011   assert(Shad.getValueType() == MVT::i32);
10012   SDValue ShadConst =
10013       DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10014   Ops.push_back(ShadConst);
10015 
10016   // Add the live variables.
10017   addStackMapLiveVars(CI, 2, DL, Ops, *this);
10018 
10019   // Create the STACKMAP node.
10020   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10021   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10022   InGlue = Chain.getValue(1);
10023 
10024   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10025 
10026   // Stackmaps don't generate values, so nothing goes into the NodeMap.
10027 
10028   // Set the root to the target-lowered call chain.
10029   DAG.setRoot(Chain);
10030 
10031   // Inform the Frame Information that we have a stackmap in this function.
10032   FuncInfo.MF->getFrameInfo().setHasStackMap();
10033 }
10034 
10035 /// Lower llvm.experimental.patchpoint directly to its target opcode.
10036 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10037                                           const BasicBlock *EHPadBB) {
10038   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
10039   //                                                 i32 <numBytes>,
10040   //                                                 i8* <target>,
10041   //                                                 i32 <numArgs>,
10042   //                                                 [Args...],
10043   //                                                 [live variables...])
10044 
10045   CallingConv::ID CC = CB.getCallingConv();
10046   bool IsAnyRegCC = CC == CallingConv::AnyReg;
10047   bool HasDef = !CB.getType()->isVoidTy();
10048   SDLoc dl = getCurSDLoc();
10049   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
10050 
10051   // Handle immediate and symbolic callees.
10052   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10053     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10054                                    /*isTarget=*/true);
10055   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10056     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10057                                          SDLoc(SymbolicCallee),
10058                                          SymbolicCallee->getValueType(0));
10059 
10060   // Get the real number of arguments participating in the call <numArgs>
10061   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
10062   unsigned NumArgs = NArgVal->getAsZExtVal();
10063 
10064   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10065   // Intrinsics include all meta-operands up to but not including CC.
10066   unsigned NumMetaOpers = PatchPointOpers::CCPos;
10067   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10068          "Not enough arguments provided to the patchpoint intrinsic");
10069 
10070   // For AnyRegCC the arguments are lowered later on manually.
10071   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10072   Type *ReturnTy =
10073       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10074 
10075   TargetLowering::CallLoweringInfo CLI(DAG);
10076   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10077                            ReturnTy, CB.getAttributes().getRetAttrs(), true);
10078   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10079 
10080   SDNode *CallEnd = Result.second.getNode();
10081   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10082     CallEnd = CallEnd->getOperand(0).getNode();
10083 
10084   /// Get a call instruction from the call sequence chain.
10085   /// Tail calls are not allowed.
10086   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10087          "Expected a callseq node.");
10088   SDNode *Call = CallEnd->getOperand(0).getNode();
10089   bool HasGlue = Call->getGluedNode();
10090 
10091   // Replace the target specific call node with the patchable intrinsic.
10092   SmallVector<SDValue, 8> Ops;
10093 
10094   // Push the chain.
10095   Ops.push_back(*(Call->op_begin()));
10096 
10097   // Optionally, push the glue (if any).
10098   if (HasGlue)
10099     Ops.push_back(*(Call->op_end() - 1));
10100 
10101   // Push the register mask info.
10102   if (HasGlue)
10103     Ops.push_back(*(Call->op_end() - 2));
10104   else
10105     Ops.push_back(*(Call->op_end() - 1));
10106 
10107   // Add the <id> and <numBytes> constants.
10108   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
10109   Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10110   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
10111   Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10112 
10113   // Add the callee.
10114   Ops.push_back(Callee);
10115 
10116   // Adjust <numArgs> to account for any arguments that have been passed on the
10117   // stack instead.
10118   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
10119   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
10120   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10121   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10122 
10123   // Add the calling convention
10124   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
10125 
10126   // Add the arguments we omitted previously. The register allocator should
10127   // place these in any free register.
10128   if (IsAnyRegCC)
10129     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
10130       Ops.push_back(getValue(CB.getArgOperand(i)));
10131 
10132   // Push the arguments from the call instruction.
10133   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
10134   Ops.append(Call->op_begin() + 2, e);
10135 
10136   // Push live variables for the stack map.
10137   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
10138 
10139   SDVTList NodeTys;
10140   if (IsAnyRegCC && HasDef) {
10141     // Create the return types based on the intrinsic definition
10142     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10143     SmallVector<EVT, 3> ValueVTs;
10144     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
10145     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
10146 
10147     // There is always a chain and a glue type at the end
10148     ValueVTs.push_back(MVT::Other);
10149     ValueVTs.push_back(MVT::Glue);
10150     NodeTys = DAG.getVTList(ValueVTs);
10151   } else
10152     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10153 
10154   // Replace the target specific call node with a PATCHPOINT node.
10155   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
10156 
10157   // Update the NodeMap.
10158   if (HasDef) {
10159     if (IsAnyRegCC)
10160       setValue(&CB, SDValue(PPV.getNode(), 0));
10161     else
10162       setValue(&CB, Result.first);
10163   }
10164 
10165   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
10166   // call sequence. Furthermore the location of the chain and glue can change
10167   // when the AnyReg calling convention is used and the intrinsic returns a
10168   // value.
10169   if (IsAnyRegCC && HasDef) {
10170     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
10171     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
10172     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
10173   } else
10174     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
10175   DAG.DeleteNode(Call);
10176 
10177   // Inform the Frame Information that we have a patchpoint in this function.
10178   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
10179 }
10180 
10181 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
10182                                             unsigned Intrinsic) {
10183   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10184   SDValue Op1 = getValue(I.getArgOperand(0));
10185   SDValue Op2;
10186   if (I.arg_size() > 1)
10187     Op2 = getValue(I.getArgOperand(1));
10188   SDLoc dl = getCurSDLoc();
10189   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
10190   SDValue Res;
10191   SDNodeFlags SDFlags;
10192   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
10193     SDFlags.copyFMF(*FPMO);
10194 
10195   switch (Intrinsic) {
10196   case Intrinsic::vector_reduce_fadd:
10197     if (SDFlags.hasAllowReassociation())
10198       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
10199                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
10200                         SDFlags);
10201     else
10202       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
10203     break;
10204   case Intrinsic::vector_reduce_fmul:
10205     if (SDFlags.hasAllowReassociation())
10206       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
10207                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
10208                         SDFlags);
10209     else
10210       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
10211     break;
10212   case Intrinsic::vector_reduce_add:
10213     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
10214     break;
10215   case Intrinsic::vector_reduce_mul:
10216     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
10217     break;
10218   case Intrinsic::vector_reduce_and:
10219     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
10220     break;
10221   case Intrinsic::vector_reduce_or:
10222     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
10223     break;
10224   case Intrinsic::vector_reduce_xor:
10225     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
10226     break;
10227   case Intrinsic::vector_reduce_smax:
10228     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
10229     break;
10230   case Intrinsic::vector_reduce_smin:
10231     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10232     break;
10233   case Intrinsic::vector_reduce_umax:
10234     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10235     break;
10236   case Intrinsic::vector_reduce_umin:
10237     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10238     break;
10239   case Intrinsic::vector_reduce_fmax:
10240     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10241     break;
10242   case Intrinsic::vector_reduce_fmin:
10243     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10244     break;
10245   case Intrinsic::vector_reduce_fmaximum:
10246     Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10247     break;
10248   case Intrinsic::vector_reduce_fminimum:
10249     Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10250     break;
10251   default:
10252     llvm_unreachable("Unhandled vector reduce intrinsic");
10253   }
10254   setValue(&I, Res);
10255 }
10256 
10257 /// Returns an AttributeList representing the attributes applied to the return
10258 /// value of the given call.
10259 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10260   SmallVector<Attribute::AttrKind, 2> Attrs;
10261   if (CLI.RetSExt)
10262     Attrs.push_back(Attribute::SExt);
10263   if (CLI.RetZExt)
10264     Attrs.push_back(Attribute::ZExt);
10265   if (CLI.IsInReg)
10266     Attrs.push_back(Attribute::InReg);
10267 
10268   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10269                             Attrs);
10270 }
10271 
10272 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10273 /// implementation, which just calls LowerCall.
10274 /// FIXME: When all targets are
10275 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10276 std::pair<SDValue, SDValue>
10277 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10278   // Handle the incoming return values from the call.
10279   CLI.Ins.clear();
10280   Type *OrigRetTy = CLI.RetTy;
10281   SmallVector<EVT, 4> RetTys;
10282   SmallVector<uint64_t, 4> Offsets;
10283   auto &DL = CLI.DAG.getDataLayout();
10284   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0);
10285 
10286   if (CLI.IsPostTypeLegalization) {
10287     // If we are lowering a libcall after legalization, split the return type.
10288     SmallVector<EVT, 4> OldRetTys;
10289     SmallVector<uint64_t, 4> OldOffsets;
10290     RetTys.swap(OldRetTys);
10291     Offsets.swap(OldOffsets);
10292 
10293     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10294       EVT RetVT = OldRetTys[i];
10295       uint64_t Offset = OldOffsets[i];
10296       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10297       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10298       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10299       RetTys.append(NumRegs, RegisterVT);
10300       for (unsigned j = 0; j != NumRegs; ++j)
10301         Offsets.push_back(Offset + j * RegisterVTByteSZ);
10302     }
10303   }
10304 
10305   SmallVector<ISD::OutputArg, 4> Outs;
10306   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10307 
10308   bool CanLowerReturn =
10309       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10310                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10311 
10312   SDValue DemoteStackSlot;
10313   int DemoteStackIdx = -100;
10314   if (!CanLowerReturn) {
10315     // FIXME: equivalent assert?
10316     // assert(!CS.hasInAllocaArgument() &&
10317     //        "sret demotion is incompatible with inalloca");
10318     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10319     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10320     MachineFunction &MF = CLI.DAG.getMachineFunction();
10321     DemoteStackIdx =
10322         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10323     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10324                                               DL.getAllocaAddrSpace());
10325 
10326     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10327     ArgListEntry Entry;
10328     Entry.Node = DemoteStackSlot;
10329     Entry.Ty = StackSlotPtrType;
10330     Entry.IsSExt = false;
10331     Entry.IsZExt = false;
10332     Entry.IsInReg = false;
10333     Entry.IsSRet = true;
10334     Entry.IsNest = false;
10335     Entry.IsByVal = false;
10336     Entry.IsByRef = false;
10337     Entry.IsReturned = false;
10338     Entry.IsSwiftSelf = false;
10339     Entry.IsSwiftAsync = false;
10340     Entry.IsSwiftError = false;
10341     Entry.IsCFGuardTarget = false;
10342     Entry.Alignment = Alignment;
10343     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10344     CLI.NumFixedArgs += 1;
10345     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10346     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10347 
10348     // sret demotion isn't compatible with tail-calls, since the sret argument
10349     // points into the callers stack frame.
10350     CLI.IsTailCall = false;
10351   } else {
10352     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10353         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10354     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10355       ISD::ArgFlagsTy Flags;
10356       if (NeedsRegBlock) {
10357         Flags.setInConsecutiveRegs();
10358         if (I == RetTys.size() - 1)
10359           Flags.setInConsecutiveRegsLast();
10360       }
10361       EVT VT = RetTys[I];
10362       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10363                                                      CLI.CallConv, VT);
10364       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10365                                                        CLI.CallConv, VT);
10366       for (unsigned i = 0; i != NumRegs; ++i) {
10367         ISD::InputArg MyFlags;
10368         MyFlags.Flags = Flags;
10369         MyFlags.VT = RegisterVT;
10370         MyFlags.ArgVT = VT;
10371         MyFlags.Used = CLI.IsReturnValueUsed;
10372         if (CLI.RetTy->isPointerTy()) {
10373           MyFlags.Flags.setPointer();
10374           MyFlags.Flags.setPointerAddrSpace(
10375               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10376         }
10377         if (CLI.RetSExt)
10378           MyFlags.Flags.setSExt();
10379         if (CLI.RetZExt)
10380           MyFlags.Flags.setZExt();
10381         if (CLI.IsInReg)
10382           MyFlags.Flags.setInReg();
10383         CLI.Ins.push_back(MyFlags);
10384       }
10385     }
10386   }
10387 
10388   // We push in swifterror return as the last element of CLI.Ins.
10389   ArgListTy &Args = CLI.getArgs();
10390   if (supportSwiftError()) {
10391     for (const ArgListEntry &Arg : Args) {
10392       if (Arg.IsSwiftError) {
10393         ISD::InputArg MyFlags;
10394         MyFlags.VT = getPointerTy(DL);
10395         MyFlags.ArgVT = EVT(getPointerTy(DL));
10396         MyFlags.Flags.setSwiftError();
10397         CLI.Ins.push_back(MyFlags);
10398       }
10399     }
10400   }
10401 
10402   // Handle all of the outgoing arguments.
10403   CLI.Outs.clear();
10404   CLI.OutVals.clear();
10405   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10406     SmallVector<EVT, 4> ValueVTs;
10407     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10408     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10409     Type *FinalType = Args[i].Ty;
10410     if (Args[i].IsByVal)
10411       FinalType = Args[i].IndirectType;
10412     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10413         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10414     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10415          ++Value) {
10416       EVT VT = ValueVTs[Value];
10417       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10418       SDValue Op = SDValue(Args[i].Node.getNode(),
10419                            Args[i].Node.getResNo() + Value);
10420       ISD::ArgFlagsTy Flags;
10421 
10422       // Certain targets (such as MIPS), may have a different ABI alignment
10423       // for a type depending on the context. Give the target a chance to
10424       // specify the alignment it wants.
10425       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10426       Flags.setOrigAlign(OriginalAlignment);
10427 
10428       if (Args[i].Ty->isPointerTy()) {
10429         Flags.setPointer();
10430         Flags.setPointerAddrSpace(
10431             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10432       }
10433       if (Args[i].IsZExt)
10434         Flags.setZExt();
10435       if (Args[i].IsSExt)
10436         Flags.setSExt();
10437       if (Args[i].IsInReg) {
10438         // If we are using vectorcall calling convention, a structure that is
10439         // passed InReg - is surely an HVA
10440         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10441             isa<StructType>(FinalType)) {
10442           // The first value of a structure is marked
10443           if (0 == Value)
10444             Flags.setHvaStart();
10445           Flags.setHva();
10446         }
10447         // Set InReg Flag
10448         Flags.setInReg();
10449       }
10450       if (Args[i].IsSRet)
10451         Flags.setSRet();
10452       if (Args[i].IsSwiftSelf)
10453         Flags.setSwiftSelf();
10454       if (Args[i].IsSwiftAsync)
10455         Flags.setSwiftAsync();
10456       if (Args[i].IsSwiftError)
10457         Flags.setSwiftError();
10458       if (Args[i].IsCFGuardTarget)
10459         Flags.setCFGuardTarget();
10460       if (Args[i].IsByVal)
10461         Flags.setByVal();
10462       if (Args[i].IsByRef)
10463         Flags.setByRef();
10464       if (Args[i].IsPreallocated) {
10465         Flags.setPreallocated();
10466         // Set the byval flag for CCAssignFn callbacks that don't know about
10467         // preallocated.  This way we can know how many bytes we should've
10468         // allocated and how many bytes a callee cleanup function will pop.  If
10469         // we port preallocated to more targets, we'll have to add custom
10470         // preallocated handling in the various CC lowering callbacks.
10471         Flags.setByVal();
10472       }
10473       if (Args[i].IsInAlloca) {
10474         Flags.setInAlloca();
10475         // Set the byval flag for CCAssignFn callbacks that don't know about
10476         // inalloca.  This way we can know how many bytes we should've allocated
10477         // and how many bytes a callee cleanup function will pop.  If we port
10478         // inalloca to more targets, we'll have to add custom inalloca handling
10479         // in the various CC lowering callbacks.
10480         Flags.setByVal();
10481       }
10482       Align MemAlign;
10483       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10484         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10485         Flags.setByValSize(FrameSize);
10486 
10487         // info is not there but there are cases it cannot get right.
10488         if (auto MA = Args[i].Alignment)
10489           MemAlign = *MA;
10490         else
10491           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10492       } else if (auto MA = Args[i].Alignment) {
10493         MemAlign = *MA;
10494       } else {
10495         MemAlign = OriginalAlignment;
10496       }
10497       Flags.setMemAlign(MemAlign);
10498       if (Args[i].IsNest)
10499         Flags.setNest();
10500       if (NeedsRegBlock)
10501         Flags.setInConsecutiveRegs();
10502 
10503       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10504                                                  CLI.CallConv, VT);
10505       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10506                                                         CLI.CallConv, VT);
10507       SmallVector<SDValue, 4> Parts(NumParts);
10508       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10509 
10510       if (Args[i].IsSExt)
10511         ExtendKind = ISD::SIGN_EXTEND;
10512       else if (Args[i].IsZExt)
10513         ExtendKind = ISD::ZERO_EXTEND;
10514 
10515       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10516       // for now.
10517       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10518           CanLowerReturn) {
10519         assert((CLI.RetTy == Args[i].Ty ||
10520                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10521                  CLI.RetTy->getPointerAddressSpace() ==
10522                      Args[i].Ty->getPointerAddressSpace())) &&
10523                RetTys.size() == NumValues && "unexpected use of 'returned'");
10524         // Before passing 'returned' to the target lowering code, ensure that
10525         // either the register MVT and the actual EVT are the same size or that
10526         // the return value and argument are extended in the same way; in these
10527         // cases it's safe to pass the argument register value unchanged as the
10528         // return register value (although it's at the target's option whether
10529         // to do so)
10530         // TODO: allow code generation to take advantage of partially preserved
10531         // registers rather than clobbering the entire register when the
10532         // parameter extension method is not compatible with the return
10533         // extension method
10534         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10535             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10536              CLI.RetZExt == Args[i].IsZExt))
10537           Flags.setReturned();
10538       }
10539 
10540       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10541                      CLI.CallConv, ExtendKind);
10542 
10543       for (unsigned j = 0; j != NumParts; ++j) {
10544         // if it isn't first piece, alignment must be 1
10545         // For scalable vectors the scalable part is currently handled
10546         // by individual targets, so we just use the known minimum size here.
10547         ISD::OutputArg MyFlags(
10548             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10549             i < CLI.NumFixedArgs, i,
10550             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10551         if (NumParts > 1 && j == 0)
10552           MyFlags.Flags.setSplit();
10553         else if (j != 0) {
10554           MyFlags.Flags.setOrigAlign(Align(1));
10555           if (j == NumParts - 1)
10556             MyFlags.Flags.setSplitEnd();
10557         }
10558 
10559         CLI.Outs.push_back(MyFlags);
10560         CLI.OutVals.push_back(Parts[j]);
10561       }
10562 
10563       if (NeedsRegBlock && Value == NumValues - 1)
10564         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10565     }
10566   }
10567 
10568   SmallVector<SDValue, 4> InVals;
10569   CLI.Chain = LowerCall(CLI, InVals);
10570 
10571   // Update CLI.InVals to use outside of this function.
10572   CLI.InVals = InVals;
10573 
10574   // Verify that the target's LowerCall behaved as expected.
10575   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10576          "LowerCall didn't return a valid chain!");
10577   assert((!CLI.IsTailCall || InVals.empty()) &&
10578          "LowerCall emitted a return value for a tail call!");
10579   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10580          "LowerCall didn't emit the correct number of values!");
10581 
10582   // For a tail call, the return value is merely live-out and there aren't
10583   // any nodes in the DAG representing it. Return a special value to
10584   // indicate that a tail call has been emitted and no more Instructions
10585   // should be processed in the current block.
10586   if (CLI.IsTailCall) {
10587     CLI.DAG.setRoot(CLI.Chain);
10588     return std::make_pair(SDValue(), SDValue());
10589   }
10590 
10591 #ifndef NDEBUG
10592   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10593     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10594     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10595            "LowerCall emitted a value with the wrong type!");
10596   }
10597 #endif
10598 
10599   SmallVector<SDValue, 4> ReturnValues;
10600   if (!CanLowerReturn) {
10601     // The instruction result is the result of loading from the
10602     // hidden sret parameter.
10603     SmallVector<EVT, 1> PVTs;
10604     Type *PtrRetTy =
10605         PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
10606 
10607     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10608     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10609     EVT PtrVT = PVTs[0];
10610 
10611     unsigned NumValues = RetTys.size();
10612     ReturnValues.resize(NumValues);
10613     SmallVector<SDValue, 4> Chains(NumValues);
10614 
10615     // An aggregate return value cannot wrap around the address space, so
10616     // offsets to its parts don't wrap either.
10617     SDNodeFlags Flags;
10618     Flags.setNoUnsignedWrap(true);
10619 
10620     MachineFunction &MF = CLI.DAG.getMachineFunction();
10621     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10622     for (unsigned i = 0; i < NumValues; ++i) {
10623       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10624                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10625                                                         PtrVT), Flags);
10626       SDValue L = CLI.DAG.getLoad(
10627           RetTys[i], CLI.DL, CLI.Chain, Add,
10628           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10629                                             DemoteStackIdx, Offsets[i]),
10630           HiddenSRetAlign);
10631       ReturnValues[i] = L;
10632       Chains[i] = L.getValue(1);
10633     }
10634 
10635     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10636   } else {
10637     // Collect the legal value parts into potentially illegal values
10638     // that correspond to the original function's return values.
10639     std::optional<ISD::NodeType> AssertOp;
10640     if (CLI.RetSExt)
10641       AssertOp = ISD::AssertSext;
10642     else if (CLI.RetZExt)
10643       AssertOp = ISD::AssertZext;
10644     unsigned CurReg = 0;
10645     for (EVT VT : RetTys) {
10646       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10647                                                      CLI.CallConv, VT);
10648       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10649                                                        CLI.CallConv, VT);
10650 
10651       ReturnValues.push_back(getCopyFromParts(
10652           CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
10653           CLI.Chain, CLI.CallConv, AssertOp));
10654       CurReg += NumRegs;
10655     }
10656 
10657     // For a function returning void, there is no return value. We can't create
10658     // such a node, so we just return a null return value in that case. In
10659     // that case, nothing will actually look at the value.
10660     if (ReturnValues.empty())
10661       return std::make_pair(SDValue(), CLI.Chain);
10662   }
10663 
10664   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10665                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10666   return std::make_pair(Res, CLI.Chain);
10667 }
10668 
10669 /// Places new result values for the node in Results (their number
10670 /// and types must exactly match those of the original return values of
10671 /// the node), or leaves Results empty, which indicates that the node is not
10672 /// to be custom lowered after all.
10673 void TargetLowering::LowerOperationWrapper(SDNode *N,
10674                                            SmallVectorImpl<SDValue> &Results,
10675                                            SelectionDAG &DAG) const {
10676   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10677 
10678   if (!Res.getNode())
10679     return;
10680 
10681   // If the original node has one result, take the return value from
10682   // LowerOperation as is. It might not be result number 0.
10683   if (N->getNumValues() == 1) {
10684     Results.push_back(Res);
10685     return;
10686   }
10687 
10688   // If the original node has multiple results, then the return node should
10689   // have the same number of results.
10690   assert((N->getNumValues() == Res->getNumValues()) &&
10691       "Lowering returned the wrong number of results!");
10692 
10693   // Places new result values base on N result number.
10694   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10695     Results.push_back(Res.getValue(I));
10696 }
10697 
10698 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10699   llvm_unreachable("LowerOperation not implemented for this target!");
10700 }
10701 
10702 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10703                                                      unsigned Reg,
10704                                                      ISD::NodeType ExtendType) {
10705   SDValue Op = getNonRegisterValue(V);
10706   assert((Op.getOpcode() != ISD::CopyFromReg ||
10707           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10708          "Copy from a reg to the same reg!");
10709   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10710 
10711   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10712   // If this is an InlineAsm we have to match the registers required, not the
10713   // notional registers required by the type.
10714 
10715   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10716                    std::nullopt); // This is not an ABI copy.
10717   SDValue Chain = DAG.getEntryNode();
10718 
10719   if (ExtendType == ISD::ANY_EXTEND) {
10720     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10721     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10722       ExtendType = PreferredExtendIt->second;
10723   }
10724   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10725   PendingExports.push_back(Chain);
10726 }
10727 
10728 #include "llvm/CodeGen/SelectionDAGISel.h"
10729 
10730 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10731 /// entry block, return true.  This includes arguments used by switches, since
10732 /// the switch may expand into multiple basic blocks.
10733 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10734   // With FastISel active, we may be splitting blocks, so force creation
10735   // of virtual registers for all non-dead arguments.
10736   if (FastISel)
10737     return A->use_empty();
10738 
10739   const BasicBlock &Entry = A->getParent()->front();
10740   for (const User *U : A->users())
10741     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10742       return false;  // Use not in entry block.
10743 
10744   return true;
10745 }
10746 
10747 using ArgCopyElisionMapTy =
10748     DenseMap<const Argument *,
10749              std::pair<const AllocaInst *, const StoreInst *>>;
10750 
10751 /// Scan the entry block of the function in FuncInfo for arguments that look
10752 /// like copies into a local alloca. Record any copied arguments in
10753 /// ArgCopyElisionCandidates.
10754 static void
10755 findArgumentCopyElisionCandidates(const DataLayout &DL,
10756                                   FunctionLoweringInfo *FuncInfo,
10757                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10758   // Record the state of every static alloca used in the entry block. Argument
10759   // allocas are all used in the entry block, so we need approximately as many
10760   // entries as we have arguments.
10761   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10762   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10763   unsigned NumArgs = FuncInfo->Fn->arg_size();
10764   StaticAllocas.reserve(NumArgs * 2);
10765 
10766   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10767     if (!V)
10768       return nullptr;
10769     V = V->stripPointerCasts();
10770     const auto *AI = dyn_cast<AllocaInst>(V);
10771     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10772       return nullptr;
10773     auto Iter = StaticAllocas.insert({AI, Unknown});
10774     return &Iter.first->second;
10775   };
10776 
10777   // Look for stores of arguments to static allocas. Look through bitcasts and
10778   // GEPs to handle type coercions, as long as the alloca is fully initialized
10779   // by the store. Any non-store use of an alloca escapes it and any subsequent
10780   // unanalyzed store might write it.
10781   // FIXME: Handle structs initialized with multiple stores.
10782   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10783     // Look for stores, and handle non-store uses conservatively.
10784     const auto *SI = dyn_cast<StoreInst>(&I);
10785     if (!SI) {
10786       // We will look through cast uses, so ignore them completely.
10787       if (I.isCast())
10788         continue;
10789       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10790       // to allocas.
10791       if (I.isDebugOrPseudoInst())
10792         continue;
10793       // This is an unknown instruction. Assume it escapes or writes to all
10794       // static alloca operands.
10795       for (const Use &U : I.operands()) {
10796         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10797           *Info = StaticAllocaInfo::Clobbered;
10798       }
10799       continue;
10800     }
10801 
10802     // If the stored value is a static alloca, mark it as escaped.
10803     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10804       *Info = StaticAllocaInfo::Clobbered;
10805 
10806     // Check if the destination is a static alloca.
10807     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10808     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10809     if (!Info)
10810       continue;
10811     const AllocaInst *AI = cast<AllocaInst>(Dst);
10812 
10813     // Skip allocas that have been initialized or clobbered.
10814     if (*Info != StaticAllocaInfo::Unknown)
10815       continue;
10816 
10817     // Check if the stored value is an argument, and that this store fully
10818     // initializes the alloca.
10819     // If the argument type has padding bits we can't directly forward a pointer
10820     // as the upper bits may contain garbage.
10821     // Don't elide copies from the same argument twice.
10822     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10823     const auto *Arg = dyn_cast<Argument>(Val);
10824     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10825         Arg->getType()->isEmptyTy() ||
10826         DL.getTypeStoreSize(Arg->getType()) !=
10827             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10828         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10829         ArgCopyElisionCandidates.count(Arg)) {
10830       *Info = StaticAllocaInfo::Clobbered;
10831       continue;
10832     }
10833 
10834     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10835                       << '\n');
10836 
10837     // Mark this alloca and store for argument copy elision.
10838     *Info = StaticAllocaInfo::Elidable;
10839     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10840 
10841     // Stop scanning if we've seen all arguments. This will happen early in -O0
10842     // builds, which is useful, because -O0 builds have large entry blocks and
10843     // many allocas.
10844     if (ArgCopyElisionCandidates.size() == NumArgs)
10845       break;
10846   }
10847 }
10848 
10849 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10850 /// ArgVal is a load from a suitable fixed stack object.
10851 static void tryToElideArgumentCopy(
10852     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10853     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10854     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10855     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10856     ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
10857   // Check if this is a load from a fixed stack object.
10858   auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
10859   if (!LNode)
10860     return;
10861   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10862   if (!FINode)
10863     return;
10864 
10865   // Check that the fixed stack object is the right size and alignment.
10866   // Look at the alignment that the user wrote on the alloca instead of looking
10867   // at the stack object.
10868   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10869   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10870   const AllocaInst *AI = ArgCopyIter->second.first;
10871   int FixedIndex = FINode->getIndex();
10872   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10873   int OldIndex = AllocaIndex;
10874   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10875   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10876     LLVM_DEBUG(
10877         dbgs() << "  argument copy elision failed due to bad fixed stack "
10878                   "object size\n");
10879     return;
10880   }
10881   Align RequiredAlignment = AI->getAlign();
10882   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10883     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10884                          "greater than stack argument alignment ("
10885                       << DebugStr(RequiredAlignment) << " vs "
10886                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10887     return;
10888   }
10889 
10890   // Perform the elision. Delete the old stack object and replace its only use
10891   // in the variable info map. Mark the stack object as mutable and aliased.
10892   LLVM_DEBUG({
10893     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10894            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10895            << '\n';
10896   });
10897   MFI.RemoveStackObject(OldIndex);
10898   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10899   MFI.setIsAliasedObjectIndex(FixedIndex, true);
10900   AllocaIndex = FixedIndex;
10901   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10902   for (SDValue ArgVal : ArgVals)
10903     Chains.push_back(ArgVal.getValue(1));
10904 
10905   // Avoid emitting code for the store implementing the copy.
10906   const StoreInst *SI = ArgCopyIter->second.second;
10907   ElidedArgCopyInstrs.insert(SI);
10908 
10909   // Check for uses of the argument again so that we can avoid exporting ArgVal
10910   // if it is't used by anything other than the store.
10911   for (const Value *U : Arg.users()) {
10912     if (U != SI) {
10913       ArgHasUses = true;
10914       break;
10915     }
10916   }
10917 }
10918 
10919 void SelectionDAGISel::LowerArguments(const Function &F) {
10920   SelectionDAG &DAG = SDB->DAG;
10921   SDLoc dl = SDB->getCurSDLoc();
10922   const DataLayout &DL = DAG.getDataLayout();
10923   SmallVector<ISD::InputArg, 16> Ins;
10924 
10925   // In Naked functions we aren't going to save any registers.
10926   if (F.hasFnAttribute(Attribute::Naked))
10927     return;
10928 
10929   if (!FuncInfo->CanLowerReturn) {
10930     // Put in an sret pointer parameter before all the other parameters.
10931     SmallVector<EVT, 1> ValueVTs;
10932     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10933                     PointerType::get(F.getContext(),
10934                                      DAG.getDataLayout().getAllocaAddrSpace()),
10935                     ValueVTs);
10936 
10937     // NOTE: Assuming that a pointer will never break down to more than one VT
10938     // or one register.
10939     ISD::ArgFlagsTy Flags;
10940     Flags.setSRet();
10941     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10942     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10943                          ISD::InputArg::NoArgIndex, 0);
10944     Ins.push_back(RetArg);
10945   }
10946 
10947   // Look for stores of arguments to static allocas. Mark such arguments with a
10948   // flag to ask the target to give us the memory location of that argument if
10949   // available.
10950   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10951   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10952                                     ArgCopyElisionCandidates);
10953 
10954   // Set up the incoming argument description vector.
10955   for (const Argument &Arg : F.args()) {
10956     unsigned ArgNo = Arg.getArgNo();
10957     SmallVector<EVT, 4> ValueVTs;
10958     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10959     bool isArgValueUsed = !Arg.use_empty();
10960     unsigned PartBase = 0;
10961     Type *FinalType = Arg.getType();
10962     if (Arg.hasAttribute(Attribute::ByVal))
10963       FinalType = Arg.getParamByValType();
10964     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10965         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10966     for (unsigned Value = 0, NumValues = ValueVTs.size();
10967          Value != NumValues; ++Value) {
10968       EVT VT = ValueVTs[Value];
10969       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10970       ISD::ArgFlagsTy Flags;
10971 
10972 
10973       if (Arg.getType()->isPointerTy()) {
10974         Flags.setPointer();
10975         Flags.setPointerAddrSpace(
10976             cast<PointerType>(Arg.getType())->getAddressSpace());
10977       }
10978       if (Arg.hasAttribute(Attribute::ZExt))
10979         Flags.setZExt();
10980       if (Arg.hasAttribute(Attribute::SExt))
10981         Flags.setSExt();
10982       if (Arg.hasAttribute(Attribute::InReg)) {
10983         // If we are using vectorcall calling convention, a structure that is
10984         // passed InReg - is surely an HVA
10985         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10986             isa<StructType>(Arg.getType())) {
10987           // The first value of a structure is marked
10988           if (0 == Value)
10989             Flags.setHvaStart();
10990           Flags.setHva();
10991         }
10992         // Set InReg Flag
10993         Flags.setInReg();
10994       }
10995       if (Arg.hasAttribute(Attribute::StructRet))
10996         Flags.setSRet();
10997       if (Arg.hasAttribute(Attribute::SwiftSelf))
10998         Flags.setSwiftSelf();
10999       if (Arg.hasAttribute(Attribute::SwiftAsync))
11000         Flags.setSwiftAsync();
11001       if (Arg.hasAttribute(Attribute::SwiftError))
11002         Flags.setSwiftError();
11003       if (Arg.hasAttribute(Attribute::ByVal))
11004         Flags.setByVal();
11005       if (Arg.hasAttribute(Attribute::ByRef))
11006         Flags.setByRef();
11007       if (Arg.hasAttribute(Attribute::InAlloca)) {
11008         Flags.setInAlloca();
11009         // Set the byval flag for CCAssignFn callbacks that don't know about
11010         // inalloca.  This way we can know how many bytes we should've allocated
11011         // and how many bytes a callee cleanup function will pop.  If we port
11012         // inalloca to more targets, we'll have to add custom inalloca handling
11013         // in the various CC lowering callbacks.
11014         Flags.setByVal();
11015       }
11016       if (Arg.hasAttribute(Attribute::Preallocated)) {
11017         Flags.setPreallocated();
11018         // Set the byval flag for CCAssignFn callbacks that don't know about
11019         // preallocated.  This way we can know how many bytes we should've
11020         // allocated and how many bytes a callee cleanup function will pop.  If
11021         // we port preallocated to more targets, we'll have to add custom
11022         // preallocated handling in the various CC lowering callbacks.
11023         Flags.setByVal();
11024       }
11025 
11026       // Certain targets (such as MIPS), may have a different ABI alignment
11027       // for a type depending on the context. Give the target a chance to
11028       // specify the alignment it wants.
11029       const Align OriginalAlignment(
11030           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11031       Flags.setOrigAlign(OriginalAlignment);
11032 
11033       Align MemAlign;
11034       Type *ArgMemTy = nullptr;
11035       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11036           Flags.isByRef()) {
11037         if (!ArgMemTy)
11038           ArgMemTy = Arg.getPointeeInMemoryValueType();
11039 
11040         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11041 
11042         // For in-memory arguments, size and alignment should be passed from FE.
11043         // BE will guess if this info is not there but there are cases it cannot
11044         // get right.
11045         if (auto ParamAlign = Arg.getParamStackAlign())
11046           MemAlign = *ParamAlign;
11047         else if ((ParamAlign = Arg.getParamAlign()))
11048           MemAlign = *ParamAlign;
11049         else
11050           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
11051         if (Flags.isByRef())
11052           Flags.setByRefSize(MemSize);
11053         else
11054           Flags.setByValSize(MemSize);
11055       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11056         MemAlign = *ParamAlign;
11057       } else {
11058         MemAlign = OriginalAlignment;
11059       }
11060       Flags.setMemAlign(MemAlign);
11061 
11062       if (Arg.hasAttribute(Attribute::Nest))
11063         Flags.setNest();
11064       if (NeedsRegBlock)
11065         Flags.setInConsecutiveRegs();
11066       if (ArgCopyElisionCandidates.count(&Arg))
11067         Flags.setCopyElisionCandidate();
11068       if (Arg.hasAttribute(Attribute::Returned))
11069         Flags.setReturned();
11070 
11071       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11072           *CurDAG->getContext(), F.getCallingConv(), VT);
11073       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11074           *CurDAG->getContext(), F.getCallingConv(), VT);
11075       for (unsigned i = 0; i != NumRegs; ++i) {
11076         // For scalable vectors, use the minimum size; individual targets
11077         // are responsible for handling scalable vector arguments and
11078         // return values.
11079         ISD::InputArg MyFlags(
11080             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
11081             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
11082         if (NumRegs > 1 && i == 0)
11083           MyFlags.Flags.setSplit();
11084         // if it isn't first piece, alignment must be 1
11085         else if (i > 0) {
11086           MyFlags.Flags.setOrigAlign(Align(1));
11087           if (i == NumRegs - 1)
11088             MyFlags.Flags.setSplitEnd();
11089         }
11090         Ins.push_back(MyFlags);
11091       }
11092       if (NeedsRegBlock && Value == NumValues - 1)
11093         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11094       PartBase += VT.getStoreSize().getKnownMinValue();
11095     }
11096   }
11097 
11098   // Call the target to set up the argument values.
11099   SmallVector<SDValue, 8> InVals;
11100   SDValue NewRoot = TLI->LowerFormalArguments(
11101       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11102 
11103   // Verify that the target's LowerFormalArguments behaved as expected.
11104   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11105          "LowerFormalArguments didn't return a valid chain!");
11106   assert(InVals.size() == Ins.size() &&
11107          "LowerFormalArguments didn't emit the correct number of values!");
11108   LLVM_DEBUG({
11109     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11110       assert(InVals[i].getNode() &&
11111              "LowerFormalArguments emitted a null value!");
11112       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11113              "LowerFormalArguments emitted a value with the wrong type!");
11114     }
11115   });
11116 
11117   // Update the DAG with the new chain value resulting from argument lowering.
11118   DAG.setRoot(NewRoot);
11119 
11120   // Set up the argument values.
11121   unsigned i = 0;
11122   if (!FuncInfo->CanLowerReturn) {
11123     // Create a virtual register for the sret pointer, and put in a copy
11124     // from the sret argument into it.
11125     SmallVector<EVT, 1> ValueVTs;
11126     ComputeValueVTs(*TLI, DAG.getDataLayout(),
11127                     PointerType::get(F.getContext(),
11128                                      DAG.getDataLayout().getAllocaAddrSpace()),
11129                     ValueVTs);
11130     MVT VT = ValueVTs[0].getSimpleVT();
11131     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11132     std::optional<ISD::NodeType> AssertOp;
11133     SDValue ArgValue =
11134         getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
11135                          F.getCallingConv(), AssertOp);
11136 
11137     MachineFunction& MF = SDB->DAG.getMachineFunction();
11138     MachineRegisterInfo& RegInfo = MF.getRegInfo();
11139     Register SRetReg =
11140         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
11141     FuncInfo->DemoteRegister = SRetReg;
11142     NewRoot =
11143         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
11144     DAG.setRoot(NewRoot);
11145 
11146     // i indexes lowered arguments.  Bump it past the hidden sret argument.
11147     ++i;
11148   }
11149 
11150   SmallVector<SDValue, 4> Chains;
11151   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11152   for (const Argument &Arg : F.args()) {
11153     SmallVector<SDValue, 4> ArgValues;
11154     SmallVector<EVT, 4> ValueVTs;
11155     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
11156     unsigned NumValues = ValueVTs.size();
11157     if (NumValues == 0)
11158       continue;
11159 
11160     bool ArgHasUses = !Arg.use_empty();
11161 
11162     // Elide the copying store if the target loaded this argument from a
11163     // suitable fixed stack object.
11164     if (Ins[i].Flags.isCopyElisionCandidate()) {
11165       unsigned NumParts = 0;
11166       for (EVT VT : ValueVTs)
11167         NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
11168                                                        F.getCallingConv(), VT);
11169 
11170       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
11171                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
11172                              ArrayRef(&InVals[i], NumParts), ArgHasUses);
11173     }
11174 
11175     // If this argument is unused then remember its value. It is used to generate
11176     // debugging information.
11177     bool isSwiftErrorArg =
11178         TLI->supportSwiftError() &&
11179         Arg.hasAttribute(Attribute::SwiftError);
11180     if (!ArgHasUses && !isSwiftErrorArg) {
11181       SDB->setUnusedArgValue(&Arg, InVals[i]);
11182 
11183       // Also remember any frame index for use in FastISel.
11184       if (FrameIndexSDNode *FI =
11185           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
11186         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11187     }
11188 
11189     for (unsigned Val = 0; Val != NumValues; ++Val) {
11190       EVT VT = ValueVTs[Val];
11191       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
11192                                                       F.getCallingConv(), VT);
11193       unsigned NumParts = TLI->getNumRegistersForCallingConv(
11194           *CurDAG->getContext(), F.getCallingConv(), VT);
11195 
11196       // Even an apparent 'unused' swifterror argument needs to be returned. So
11197       // we do generate a copy for it that can be used on return from the
11198       // function.
11199       if (ArgHasUses || isSwiftErrorArg) {
11200         std::optional<ISD::NodeType> AssertOp;
11201         if (Arg.hasAttribute(Attribute::SExt))
11202           AssertOp = ISD::AssertSext;
11203         else if (Arg.hasAttribute(Attribute::ZExt))
11204           AssertOp = ISD::AssertZext;
11205 
11206         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
11207                                              PartVT, VT, nullptr, NewRoot,
11208                                              F.getCallingConv(), AssertOp));
11209       }
11210 
11211       i += NumParts;
11212     }
11213 
11214     // We don't need to do anything else for unused arguments.
11215     if (ArgValues.empty())
11216       continue;
11217 
11218     // Note down frame index.
11219     if (FrameIndexSDNode *FI =
11220         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
11221       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11222 
11223     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
11224                                      SDB->getCurSDLoc());
11225 
11226     SDB->setValue(&Arg, Res);
11227     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
11228       // We want to associate the argument with the frame index, among
11229       // involved operands, that correspond to the lowest address. The
11230       // getCopyFromParts function, called earlier, is swapping the order of
11231       // the operands to BUILD_PAIR depending on endianness. The result of
11232       // that swapping is that the least significant bits of the argument will
11233       // be in the first operand of the BUILD_PAIR node, and the most
11234       // significant bits will be in the second operand.
11235       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11236       if (LoadSDNode *LNode =
11237           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11238         if (FrameIndexSDNode *FI =
11239             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11240           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11241     }
11242 
11243     // Analyses past this point are naive and don't expect an assertion.
11244     if (Res.getOpcode() == ISD::AssertZext)
11245       Res = Res.getOperand(0);
11246 
11247     // Update the SwiftErrorVRegDefMap.
11248     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11249       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11250       if (Register::isVirtualRegister(Reg))
11251         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11252                                    Reg);
11253     }
11254 
11255     // If this argument is live outside of the entry block, insert a copy from
11256     // wherever we got it to the vreg that other BB's will reference it as.
11257     if (Res.getOpcode() == ISD::CopyFromReg) {
11258       // If we can, though, try to skip creating an unnecessary vreg.
11259       // FIXME: This isn't very clean... it would be nice to make this more
11260       // general.
11261       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11262       if (Register::isVirtualRegister(Reg)) {
11263         FuncInfo->ValueMap[&Arg] = Reg;
11264         continue;
11265       }
11266     }
11267     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11268       FuncInfo->InitializeRegForValue(&Arg);
11269       SDB->CopyToExportRegsIfNeeded(&Arg);
11270     }
11271   }
11272 
11273   if (!Chains.empty()) {
11274     Chains.push_back(NewRoot);
11275     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11276   }
11277 
11278   DAG.setRoot(NewRoot);
11279 
11280   assert(i == InVals.size() && "Argument register count mismatch!");
11281 
11282   // If any argument copy elisions occurred and we have debug info, update the
11283   // stale frame indices used in the dbg.declare variable info table.
11284   if (!ArgCopyElisionFrameIndexMap.empty()) {
11285     for (MachineFunction::VariableDbgInfo &VI :
11286          MF->getInStackSlotVariableDbgInfo()) {
11287       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11288       if (I != ArgCopyElisionFrameIndexMap.end())
11289         VI.updateStackSlot(I->second);
11290     }
11291   }
11292 
11293   // Finally, if the target has anything special to do, allow it to do so.
11294   emitFunctionEntryCode();
11295 }
11296 
11297 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11298 /// ensure constants are generated when needed.  Remember the virtual registers
11299 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11300 /// directly add them, because expansion might result in multiple MBB's for one
11301 /// BB.  As such, the start of the BB might correspond to a different MBB than
11302 /// the end.
11303 void
11304 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11305   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11306 
11307   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11308 
11309   // Check PHI nodes in successors that expect a value to be available from this
11310   // block.
11311   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11312     if (!isa<PHINode>(SuccBB->begin())) continue;
11313     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
11314 
11315     // If this terminator has multiple identical successors (common for
11316     // switches), only handle each succ once.
11317     if (!SuccsHandled.insert(SuccMBB).second)
11318       continue;
11319 
11320     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11321 
11322     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11323     // nodes and Machine PHI nodes, but the incoming operands have not been
11324     // emitted yet.
11325     for (const PHINode &PN : SuccBB->phis()) {
11326       // Ignore dead phi's.
11327       if (PN.use_empty())
11328         continue;
11329 
11330       // Skip empty types
11331       if (PN.getType()->isEmptyTy())
11332         continue;
11333 
11334       unsigned Reg;
11335       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11336 
11337       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11338         unsigned &RegOut = ConstantsOut[C];
11339         if (RegOut == 0) {
11340           RegOut = FuncInfo.CreateRegs(C);
11341           // We need to zero/sign extend ConstantInt phi operands to match
11342           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11343           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11344           if (auto *CI = dyn_cast<ConstantInt>(C))
11345             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11346                                                     : ISD::ZERO_EXTEND;
11347           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11348         }
11349         Reg = RegOut;
11350       } else {
11351         DenseMap<const Value *, Register>::iterator I =
11352           FuncInfo.ValueMap.find(PHIOp);
11353         if (I != FuncInfo.ValueMap.end())
11354           Reg = I->second;
11355         else {
11356           assert(isa<AllocaInst>(PHIOp) &&
11357                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11358                  "Didn't codegen value into a register!??");
11359           Reg = FuncInfo.CreateRegs(PHIOp);
11360           CopyValueToVirtualRegister(PHIOp, Reg);
11361         }
11362       }
11363 
11364       // Remember that this register needs to added to the machine PHI node as
11365       // the input for this MBB.
11366       SmallVector<EVT, 4> ValueVTs;
11367       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11368       for (EVT VT : ValueVTs) {
11369         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11370         for (unsigned i = 0; i != NumRegisters; ++i)
11371           FuncInfo.PHINodesToUpdate.push_back(
11372               std::make_pair(&*MBBI++, Reg + i));
11373         Reg += NumRegisters;
11374       }
11375     }
11376   }
11377 
11378   ConstantsOut.clear();
11379 }
11380 
11381 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11382   MachineFunction::iterator I(MBB);
11383   if (++I == FuncInfo.MF->end())
11384     return nullptr;
11385   return &*I;
11386 }
11387 
11388 /// During lowering new call nodes can be created (such as memset, etc.).
11389 /// Those will become new roots of the current DAG, but complications arise
11390 /// when they are tail calls. In such cases, the call lowering will update
11391 /// the root, but the builder still needs to know that a tail call has been
11392 /// lowered in order to avoid generating an additional return.
11393 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11394   // If the node is null, we do have a tail call.
11395   if (MaybeTC.getNode() != nullptr)
11396     DAG.setRoot(MaybeTC);
11397   else
11398     HasTailCall = true;
11399 }
11400 
11401 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11402                                         MachineBasicBlock *SwitchMBB,
11403                                         MachineBasicBlock *DefaultMBB) {
11404   MachineFunction *CurMF = FuncInfo.MF;
11405   MachineBasicBlock *NextMBB = nullptr;
11406   MachineFunction::iterator BBI(W.MBB);
11407   if (++BBI != FuncInfo.MF->end())
11408     NextMBB = &*BBI;
11409 
11410   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11411 
11412   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11413 
11414   if (Size == 2 && W.MBB == SwitchMBB) {
11415     // If any two of the cases has the same destination, and if one value
11416     // is the same as the other, but has one bit unset that the other has set,
11417     // use bit manipulation to do two compares at once.  For example:
11418     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11419     // TODO: This could be extended to merge any 2 cases in switches with 3
11420     // cases.
11421     // TODO: Handle cases where W.CaseBB != SwitchBB.
11422     CaseCluster &Small = *W.FirstCluster;
11423     CaseCluster &Big = *W.LastCluster;
11424 
11425     if (Small.Low == Small.High && Big.Low == Big.High &&
11426         Small.MBB == Big.MBB) {
11427       const APInt &SmallValue = Small.Low->getValue();
11428       const APInt &BigValue = Big.Low->getValue();
11429 
11430       // Check that there is only one bit different.
11431       APInt CommonBit = BigValue ^ SmallValue;
11432       if (CommonBit.isPowerOf2()) {
11433         SDValue CondLHS = getValue(Cond);
11434         EVT VT = CondLHS.getValueType();
11435         SDLoc DL = getCurSDLoc();
11436 
11437         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11438                                  DAG.getConstant(CommonBit, DL, VT));
11439         SDValue Cond = DAG.getSetCC(
11440             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11441             ISD::SETEQ);
11442 
11443         // Update successor info.
11444         // Both Small and Big will jump to Small.BB, so we sum up the
11445         // probabilities.
11446         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11447         if (BPI)
11448           addSuccessorWithProb(
11449               SwitchMBB, DefaultMBB,
11450               // The default destination is the first successor in IR.
11451               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11452         else
11453           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11454 
11455         // Insert the true branch.
11456         SDValue BrCond =
11457             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11458                         DAG.getBasicBlock(Small.MBB));
11459         // Insert the false branch.
11460         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11461                              DAG.getBasicBlock(DefaultMBB));
11462 
11463         DAG.setRoot(BrCond);
11464         return;
11465       }
11466     }
11467   }
11468 
11469   if (TM.getOptLevel() != CodeGenOptLevel::None) {
11470     // Here, we order cases by probability so the most likely case will be
11471     // checked first. However, two clusters can have the same probability in
11472     // which case their relative ordering is non-deterministic. So we use Low
11473     // as a tie-breaker as clusters are guaranteed to never overlap.
11474     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11475                [](const CaseCluster &a, const CaseCluster &b) {
11476       return a.Prob != b.Prob ?
11477              a.Prob > b.Prob :
11478              a.Low->getValue().slt(b.Low->getValue());
11479     });
11480 
11481     // Rearrange the case blocks so that the last one falls through if possible
11482     // without changing the order of probabilities.
11483     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11484       --I;
11485       if (I->Prob > W.LastCluster->Prob)
11486         break;
11487       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11488         std::swap(*I, *W.LastCluster);
11489         break;
11490       }
11491     }
11492   }
11493 
11494   // Compute total probability.
11495   BranchProbability DefaultProb = W.DefaultProb;
11496   BranchProbability UnhandledProbs = DefaultProb;
11497   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11498     UnhandledProbs += I->Prob;
11499 
11500   MachineBasicBlock *CurMBB = W.MBB;
11501   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11502     bool FallthroughUnreachable = false;
11503     MachineBasicBlock *Fallthrough;
11504     if (I == W.LastCluster) {
11505       // For the last cluster, fall through to the default destination.
11506       Fallthrough = DefaultMBB;
11507       FallthroughUnreachable = isa<UnreachableInst>(
11508           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11509     } else {
11510       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11511       CurMF->insert(BBI, Fallthrough);
11512       // Put Cond in a virtual register to make it available from the new blocks.
11513       ExportFromCurrentBlock(Cond);
11514     }
11515     UnhandledProbs -= I->Prob;
11516 
11517     switch (I->Kind) {
11518       case CC_JumpTable: {
11519         // FIXME: Optimize away range check based on pivot comparisons.
11520         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11521         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11522 
11523         // The jump block hasn't been inserted yet; insert it here.
11524         MachineBasicBlock *JumpMBB = JT->MBB;
11525         CurMF->insert(BBI, JumpMBB);
11526 
11527         auto JumpProb = I->Prob;
11528         auto FallthroughProb = UnhandledProbs;
11529 
11530         // If the default statement is a target of the jump table, we evenly
11531         // distribute the default probability to successors of CurMBB. Also
11532         // update the probability on the edge from JumpMBB to Fallthrough.
11533         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11534                                               SE = JumpMBB->succ_end();
11535              SI != SE; ++SI) {
11536           if (*SI == DefaultMBB) {
11537             JumpProb += DefaultProb / 2;
11538             FallthroughProb -= DefaultProb / 2;
11539             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11540             JumpMBB->normalizeSuccProbs();
11541             break;
11542           }
11543         }
11544 
11545         // If the default clause is unreachable, propagate that knowledge into
11546         // JTH->FallthroughUnreachable which will use it to suppress the range
11547         // check.
11548         //
11549         // However, don't do this if we're doing branch target enforcement,
11550         // because a table branch _without_ a range check can be a tempting JOP
11551         // gadget - out-of-bounds inputs that are impossible in correct
11552         // execution become possible again if an attacker can influence the
11553         // control flow. So if an attacker doesn't already have a BTI bypass
11554         // available, we don't want them to be able to get one out of this
11555         // table branch.
11556         if (FallthroughUnreachable) {
11557           Function &CurFunc = CurMF->getFunction();
11558           bool HasBranchTargetEnforcement = false;
11559           if (CurFunc.hasFnAttribute("branch-target-enforcement")) {
11560             HasBranchTargetEnforcement =
11561                 CurFunc.getFnAttribute("branch-target-enforcement")
11562                     .getValueAsBool();
11563           } else {
11564             HasBranchTargetEnforcement =
11565                 CurMF->getMMI().getModule()->getModuleFlag(
11566                     "branch-target-enforcement");
11567           }
11568           if (!HasBranchTargetEnforcement)
11569             JTH->FallthroughUnreachable = true;
11570         }
11571 
11572         if (!JTH->FallthroughUnreachable)
11573           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11574         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11575         CurMBB->normalizeSuccProbs();
11576 
11577         // The jump table header will be inserted in our current block, do the
11578         // range check, and fall through to our fallthrough block.
11579         JTH->HeaderBB = CurMBB;
11580         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11581 
11582         // If we're in the right place, emit the jump table header right now.
11583         if (CurMBB == SwitchMBB) {
11584           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11585           JTH->Emitted = true;
11586         }
11587         break;
11588       }
11589       case CC_BitTests: {
11590         // FIXME: Optimize away range check based on pivot comparisons.
11591         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11592 
11593         // The bit test blocks haven't been inserted yet; insert them here.
11594         for (BitTestCase &BTC : BTB->Cases)
11595           CurMF->insert(BBI, BTC.ThisBB);
11596 
11597         // Fill in fields of the BitTestBlock.
11598         BTB->Parent = CurMBB;
11599         BTB->Default = Fallthrough;
11600 
11601         BTB->DefaultProb = UnhandledProbs;
11602         // If the cases in bit test don't form a contiguous range, we evenly
11603         // distribute the probability on the edge to Fallthrough to two
11604         // successors of CurMBB.
11605         if (!BTB->ContiguousRange) {
11606           BTB->Prob += DefaultProb / 2;
11607           BTB->DefaultProb -= DefaultProb / 2;
11608         }
11609 
11610         if (FallthroughUnreachable)
11611           BTB->FallthroughUnreachable = true;
11612 
11613         // If we're in the right place, emit the bit test header right now.
11614         if (CurMBB == SwitchMBB) {
11615           visitBitTestHeader(*BTB, SwitchMBB);
11616           BTB->Emitted = true;
11617         }
11618         break;
11619       }
11620       case CC_Range: {
11621         const Value *RHS, *LHS, *MHS;
11622         ISD::CondCode CC;
11623         if (I->Low == I->High) {
11624           // Check Cond == I->Low.
11625           CC = ISD::SETEQ;
11626           LHS = Cond;
11627           RHS=I->Low;
11628           MHS = nullptr;
11629         } else {
11630           // Check I->Low <= Cond <= I->High.
11631           CC = ISD::SETLE;
11632           LHS = I->Low;
11633           MHS = Cond;
11634           RHS = I->High;
11635         }
11636 
11637         // If Fallthrough is unreachable, fold away the comparison.
11638         if (FallthroughUnreachable)
11639           CC = ISD::SETTRUE;
11640 
11641         // The false probability is the sum of all unhandled cases.
11642         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11643                      getCurSDLoc(), I->Prob, UnhandledProbs);
11644 
11645         if (CurMBB == SwitchMBB)
11646           visitSwitchCase(CB, SwitchMBB);
11647         else
11648           SL->SwitchCases.push_back(CB);
11649 
11650         break;
11651       }
11652     }
11653     CurMBB = Fallthrough;
11654   }
11655 }
11656 
11657 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11658                                         const SwitchWorkListItem &W,
11659                                         Value *Cond,
11660                                         MachineBasicBlock *SwitchMBB) {
11661   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11662          "Clusters not sorted?");
11663   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11664 
11665   auto [LastLeft, FirstRight, LeftProb, RightProb] =
11666       SL->computeSplitWorkItemInfo(W);
11667 
11668   // Use the first element on the right as pivot since we will make less-than
11669   // comparisons against it.
11670   CaseClusterIt PivotCluster = FirstRight;
11671   assert(PivotCluster > W.FirstCluster);
11672   assert(PivotCluster <= W.LastCluster);
11673 
11674   CaseClusterIt FirstLeft = W.FirstCluster;
11675   CaseClusterIt LastRight = W.LastCluster;
11676 
11677   const ConstantInt *Pivot = PivotCluster->Low;
11678 
11679   // New blocks will be inserted immediately after the current one.
11680   MachineFunction::iterator BBI(W.MBB);
11681   ++BBI;
11682 
11683   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11684   // we can branch to its destination directly if it's squeezed exactly in
11685   // between the known lower bound and Pivot - 1.
11686   MachineBasicBlock *LeftMBB;
11687   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11688       FirstLeft->Low == W.GE &&
11689       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11690     LeftMBB = FirstLeft->MBB;
11691   } else {
11692     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11693     FuncInfo.MF->insert(BBI, LeftMBB);
11694     WorkList.push_back(
11695         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11696     // Put Cond in a virtual register to make it available from the new blocks.
11697     ExportFromCurrentBlock(Cond);
11698   }
11699 
11700   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11701   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11702   // directly if RHS.High equals the current upper bound.
11703   MachineBasicBlock *RightMBB;
11704   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11705       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11706     RightMBB = FirstRight->MBB;
11707   } else {
11708     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11709     FuncInfo.MF->insert(BBI, RightMBB);
11710     WorkList.push_back(
11711         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11712     // Put Cond in a virtual register to make it available from the new blocks.
11713     ExportFromCurrentBlock(Cond);
11714   }
11715 
11716   // Create the CaseBlock record that will be used to lower the branch.
11717   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11718                getCurSDLoc(), LeftProb, RightProb);
11719 
11720   if (W.MBB == SwitchMBB)
11721     visitSwitchCase(CB, SwitchMBB);
11722   else
11723     SL->SwitchCases.push_back(CB);
11724 }
11725 
11726 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11727 // from the swith statement.
11728 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11729                                             BranchProbability PeeledCaseProb) {
11730   if (PeeledCaseProb == BranchProbability::getOne())
11731     return BranchProbability::getZero();
11732   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11733 
11734   uint32_t Numerator = CaseProb.getNumerator();
11735   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11736   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11737 }
11738 
11739 // Try to peel the top probability case if it exceeds the threshold.
11740 // Return current MachineBasicBlock for the switch statement if the peeling
11741 // does not occur.
11742 // If the peeling is performed, return the newly created MachineBasicBlock
11743 // for the peeled switch statement. Also update Clusters to remove the peeled
11744 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11745 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11746     const SwitchInst &SI, CaseClusterVector &Clusters,
11747     BranchProbability &PeeledCaseProb) {
11748   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11749   // Don't perform if there is only one cluster or optimizing for size.
11750   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11751       TM.getOptLevel() == CodeGenOptLevel::None ||
11752       SwitchMBB->getParent()->getFunction().hasMinSize())
11753     return SwitchMBB;
11754 
11755   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11756   unsigned PeeledCaseIndex = 0;
11757   bool SwitchPeeled = false;
11758   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11759     CaseCluster &CC = Clusters[Index];
11760     if (CC.Prob < TopCaseProb)
11761       continue;
11762     TopCaseProb = CC.Prob;
11763     PeeledCaseIndex = Index;
11764     SwitchPeeled = true;
11765   }
11766   if (!SwitchPeeled)
11767     return SwitchMBB;
11768 
11769   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11770                     << TopCaseProb << "\n");
11771 
11772   // Record the MBB for the peeled switch statement.
11773   MachineFunction::iterator BBI(SwitchMBB);
11774   ++BBI;
11775   MachineBasicBlock *PeeledSwitchMBB =
11776       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11777   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11778 
11779   ExportFromCurrentBlock(SI.getCondition());
11780   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11781   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11782                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11783   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11784 
11785   Clusters.erase(PeeledCaseIt);
11786   for (CaseCluster &CC : Clusters) {
11787     LLVM_DEBUG(
11788         dbgs() << "Scale the probablity for one cluster, before scaling: "
11789                << CC.Prob << "\n");
11790     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11791     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11792   }
11793   PeeledCaseProb = TopCaseProb;
11794   return PeeledSwitchMBB;
11795 }
11796 
11797 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11798   // Extract cases from the switch.
11799   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11800   CaseClusterVector Clusters;
11801   Clusters.reserve(SI.getNumCases());
11802   for (auto I : SI.cases()) {
11803     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11804     const ConstantInt *CaseVal = I.getCaseValue();
11805     BranchProbability Prob =
11806         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11807             : BranchProbability(1, SI.getNumCases() + 1);
11808     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11809   }
11810 
11811   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11812 
11813   // Cluster adjacent cases with the same destination. We do this at all
11814   // optimization levels because it's cheap to do and will make codegen faster
11815   // if there are many clusters.
11816   sortAndRangeify(Clusters);
11817 
11818   // The branch probablity of the peeled case.
11819   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11820   MachineBasicBlock *PeeledSwitchMBB =
11821       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11822 
11823   // If there is only the default destination, jump there directly.
11824   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11825   if (Clusters.empty()) {
11826     assert(PeeledSwitchMBB == SwitchMBB);
11827     SwitchMBB->addSuccessor(DefaultMBB);
11828     if (DefaultMBB != NextBlock(SwitchMBB)) {
11829       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11830                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11831     }
11832     return;
11833   }
11834 
11835   SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
11836                      DAG.getBFI());
11837   SL->findBitTestClusters(Clusters, &SI);
11838 
11839   LLVM_DEBUG({
11840     dbgs() << "Case clusters: ";
11841     for (const CaseCluster &C : Clusters) {
11842       if (C.Kind == CC_JumpTable)
11843         dbgs() << "JT:";
11844       if (C.Kind == CC_BitTests)
11845         dbgs() << "BT:";
11846 
11847       C.Low->getValue().print(dbgs(), true);
11848       if (C.Low != C.High) {
11849         dbgs() << '-';
11850         C.High->getValue().print(dbgs(), true);
11851       }
11852       dbgs() << ' ';
11853     }
11854     dbgs() << '\n';
11855   });
11856 
11857   assert(!Clusters.empty());
11858   SwitchWorkList WorkList;
11859   CaseClusterIt First = Clusters.begin();
11860   CaseClusterIt Last = Clusters.end() - 1;
11861   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11862   // Scale the branchprobability for DefaultMBB if the peel occurs and
11863   // DefaultMBB is not replaced.
11864   if (PeeledCaseProb != BranchProbability::getZero() &&
11865       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11866     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11867   WorkList.push_back(
11868       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11869 
11870   while (!WorkList.empty()) {
11871     SwitchWorkListItem W = WorkList.pop_back_val();
11872     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11873 
11874     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
11875         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11876       // For optimized builds, lower large range as a balanced binary tree.
11877       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11878       continue;
11879     }
11880 
11881     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11882   }
11883 }
11884 
11885 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11886   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11887   auto DL = getCurSDLoc();
11888   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11889   setValue(&I, DAG.getStepVector(DL, ResultVT));
11890 }
11891 
11892 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11893   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11894   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11895 
11896   SDLoc DL = getCurSDLoc();
11897   SDValue V = getValue(I.getOperand(0));
11898   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11899 
11900   if (VT.isScalableVector()) {
11901     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11902     return;
11903   }
11904 
11905   // Use VECTOR_SHUFFLE for the fixed-length vector
11906   // to maintain existing behavior.
11907   SmallVector<int, 8> Mask;
11908   unsigned NumElts = VT.getVectorMinNumElements();
11909   for (unsigned i = 0; i != NumElts; ++i)
11910     Mask.push_back(NumElts - 1 - i);
11911 
11912   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11913 }
11914 
11915 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
11916   auto DL = getCurSDLoc();
11917   SDValue InVec = getValue(I.getOperand(0));
11918   EVT OutVT =
11919       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
11920 
11921   unsigned OutNumElts = OutVT.getVectorMinNumElements();
11922 
11923   // ISD Node needs the input vectors split into two equal parts
11924   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11925                            DAG.getVectorIdxConstant(0, DL));
11926   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11927                            DAG.getVectorIdxConstant(OutNumElts, DL));
11928 
11929   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11930   // legalisation and combines.
11931   if (OutVT.isFixedLengthVector()) {
11932     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11933                                         createStrideMask(0, 2, OutNumElts));
11934     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11935                                        createStrideMask(1, 2, OutNumElts));
11936     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
11937     setValue(&I, Res);
11938     return;
11939   }
11940 
11941   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
11942                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
11943   setValue(&I, Res);
11944 }
11945 
11946 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
11947   auto DL = getCurSDLoc();
11948   EVT InVT = getValue(I.getOperand(0)).getValueType();
11949   SDValue InVec0 = getValue(I.getOperand(0));
11950   SDValue InVec1 = getValue(I.getOperand(1));
11951   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11952   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11953 
11954   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11955   // legalisation and combines.
11956   if (OutVT.isFixedLengthVector()) {
11957     unsigned NumElts = InVT.getVectorMinNumElements();
11958     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
11959     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
11960                                       createInterleaveMask(NumElts, 2)));
11961     return;
11962   }
11963 
11964   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
11965                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
11966   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
11967                     Res.getValue(1));
11968   setValue(&I, Res);
11969 }
11970 
11971 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11972   SmallVector<EVT, 4> ValueVTs;
11973   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11974                   ValueVTs);
11975   unsigned NumValues = ValueVTs.size();
11976   if (NumValues == 0) return;
11977 
11978   SmallVector<SDValue, 4> Values(NumValues);
11979   SDValue Op = getValue(I.getOperand(0));
11980 
11981   for (unsigned i = 0; i != NumValues; ++i)
11982     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11983                             SDValue(Op.getNode(), Op.getResNo() + i));
11984 
11985   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11986                            DAG.getVTList(ValueVTs), Values));
11987 }
11988 
11989 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11990   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11991   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11992 
11993   SDLoc DL = getCurSDLoc();
11994   SDValue V1 = getValue(I.getOperand(0));
11995   SDValue V2 = getValue(I.getOperand(1));
11996   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11997 
11998   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11999   if (VT.isScalableVector()) {
12000     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
12001     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
12002                              DAG.getConstant(Imm, DL, IdxVT)));
12003     return;
12004   }
12005 
12006   unsigned NumElts = VT.getVectorNumElements();
12007 
12008   uint64_t Idx = (NumElts + Imm) % NumElts;
12009 
12010   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12011   SmallVector<int, 8> Mask;
12012   for (unsigned i = 0; i < NumElts; ++i)
12013     Mask.push_back(Idx + i);
12014   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12015 }
12016 
12017 // Consider the following MIR after SelectionDAG, which produces output in
12018 // phyregs in the first case or virtregs in the second case.
12019 //
12020 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12021 // %5:gr32 = COPY $ebx
12022 // %6:gr32 = COPY $edx
12023 // %1:gr32 = COPY %6:gr32
12024 // %0:gr32 = COPY %5:gr32
12025 //
12026 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12027 // %1:gr32 = COPY %6:gr32
12028 // %0:gr32 = COPY %5:gr32
12029 //
12030 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
12031 // Given %1, we'd like to return $edx in the first case and %6 in the second.
12032 //
12033 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12034 // to a single virtreg (such as %0). The remaining outputs monotonically
12035 // increase in virtreg number from there. If a callbr has no outputs, then it
12036 // should not have a corresponding callbr landingpad; in fact, the callbr
12037 // landingpad would not even be able to refer to such a callbr.
12038 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
12039   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12040   // There is definitely at least one copy.
12041   assert(MI->getOpcode() == TargetOpcode::COPY &&
12042          "start of copy chain MUST be COPY");
12043   Reg = MI->getOperand(1).getReg();
12044   MI = MRI.def_begin(Reg)->getParent();
12045   // There may be an optional second copy.
12046   if (MI->getOpcode() == TargetOpcode::COPY) {
12047     assert(Reg.isVirtual() && "expected COPY of virtual register");
12048     Reg = MI->getOperand(1).getReg();
12049     assert(Reg.isPhysical() && "expected COPY of physical register");
12050     MI = MRI.def_begin(Reg)->getParent();
12051   }
12052   // The start of the chain must be an INLINEASM_BR.
12053   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12054          "end of copy chain MUST be INLINEASM_BR");
12055   return Reg;
12056 }
12057 
12058 // We must do this walk rather than the simpler
12059 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12060 // otherwise we will end up with copies of virtregs only valid along direct
12061 // edges.
12062 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12063   SmallVector<EVT, 8> ResultVTs;
12064   SmallVector<SDValue, 8> ResultValues;
12065   const auto *CBR =
12066       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12067 
12068   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12069   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12070   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12071 
12072   unsigned InitialDef = FuncInfo.ValueMap[CBR];
12073   SDValue Chain = DAG.getRoot();
12074 
12075   // Re-parse the asm constraints string.
12076   TargetLowering::AsmOperandInfoVector TargetConstraints =
12077       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12078   for (auto &T : TargetConstraints) {
12079     SDISelAsmOperandInfo OpInfo(T);
12080     if (OpInfo.Type != InlineAsm::isOutput)
12081       continue;
12082 
12083     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12084     // individual constraint.
12085     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12086 
12087     switch (OpInfo.ConstraintType) {
12088     case TargetLowering::C_Register:
12089     case TargetLowering::C_RegisterClass: {
12090       // Fill in OpInfo.AssignedRegs.Regs.
12091       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12092 
12093       // getRegistersForValue may produce 1 to many registers based on whether
12094       // the OpInfo.ConstraintVT is legal on the target or not.
12095       for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) {
12096         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12097         if (Register::isPhysicalRegister(OriginalDef))
12098           FuncInfo.MBB->addLiveIn(OriginalDef);
12099         // Update the assigned registers to use the original defs.
12100         OpInfo.AssignedRegs.Regs[i] = OriginalDef;
12101       }
12102 
12103       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12104           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12105       ResultValues.push_back(V);
12106       ResultVTs.push_back(OpInfo.ConstraintVT);
12107       break;
12108     }
12109     case TargetLowering::C_Other: {
12110       SDValue Flag;
12111       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
12112                                                   OpInfo, DAG);
12113       ++InitialDef;
12114       ResultValues.push_back(V);
12115       ResultVTs.push_back(OpInfo.ConstraintVT);
12116       break;
12117     }
12118     default:
12119       break;
12120     }
12121   }
12122   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
12123                           DAG.getVTList(ResultVTs), ResultValues);
12124   setValue(&I, V);
12125 }
12126