1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 33 #include "llvm/CodeGen/CodeGenCommonISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCMetadata.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/RuntimeLibcalls.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfo.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/DiagnosticInfo.h" 70 #include "llvm/IR/EHPersonalities.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/Intrinsics.h" 78 #include "llvm/IR/IntrinsicsAArch64.h" 79 #include "llvm/IR/IntrinsicsAMDGPU.h" 80 #include "llvm/IR/IntrinsicsWebAssembly.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Statepoint.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/MC/MCContext.h" 91 #include "llvm/Support/AtomicOrdering.h" 92 #include "llvm/Support/Casting.h" 93 #include "llvm/Support/CommandLine.h" 94 #include "llvm/Support/Compiler.h" 95 #include "llvm/Support/Debug.h" 96 #include "llvm/Support/MathExtras.h" 97 #include "llvm/Support/raw_ostream.h" 98 #include "llvm/Target/TargetIntrinsicInfo.h" 99 #include "llvm/Target/TargetMachine.h" 100 #include "llvm/Target/TargetOptions.h" 101 #include "llvm/TargetParser/Triple.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <cstddef> 104 #include <iterator> 105 #include <limits> 106 #include <optional> 107 #include <tuple> 108 109 using namespace llvm; 110 using namespace PatternMatch; 111 using namespace SwitchCG; 112 113 #define DEBUG_TYPE "isel" 114 115 /// LimitFloatPrecision - Generate low-precision inline sequences for 116 /// some float libcalls (6, 8 or 12 bits). 117 static unsigned LimitFloatPrecision; 118 119 static cl::opt<bool> 120 InsertAssertAlign("insert-assert-align", cl::init(true), 121 cl::desc("Insert the experimental `assertalign` node."), 122 cl::ReallyHidden); 123 124 static cl::opt<unsigned, true> 125 LimitFPPrecision("limit-float-precision", 126 cl::desc("Generate low-precision inline sequences " 127 "for some float libcalls"), 128 cl::location(LimitFloatPrecision), cl::Hidden, 129 cl::init(0)); 130 131 static cl::opt<unsigned> SwitchPeelThreshold( 132 "switch-peel-threshold", cl::Hidden, cl::init(66), 133 cl::desc("Set the case probability threshold for peeling the case from a " 134 "switch statement. A value greater than 100 will void this " 135 "optimization")); 136 137 // Limit the width of DAG chains. This is important in general to prevent 138 // DAG-based analysis from blowing up. For example, alias analysis and 139 // load clustering may not complete in reasonable time. It is difficult to 140 // recognize and avoid this situation within each individual analysis, and 141 // future analyses are likely to have the same behavior. Limiting DAG width is 142 // the safe approach and will be especially important with global DAGs. 143 // 144 // MaxParallelChains default is arbitrarily high to avoid affecting 145 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 146 // sequence over this should have been converted to llvm.memcpy by the 147 // frontend. It is easy to induce this behavior with .ll code such as: 148 // %buffer = alloca [4096 x i8] 149 // %data = load [4096 x i8]* %argPtr 150 // store [4096 x i8] %data, [4096 x i8]* %buffer 151 static const unsigned MaxParallelChains = 64; 152 153 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 154 const SDValue *Parts, unsigned NumParts, 155 MVT PartVT, EVT ValueVT, const Value *V, 156 SDValue InChain, 157 std::optional<CallingConv::ID> CC); 158 159 /// getCopyFromParts - Create a value that contains the specified legal parts 160 /// combined into the value they represent. If the parts combine to a type 161 /// larger than ValueVT then AssertOp can be used to specify whether the extra 162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 163 /// (ISD::AssertSext). 164 static SDValue 165 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 166 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 167 SDValue InChain, 168 std::optional<CallingConv::ID> CC = std::nullopt, 169 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 170 // Let the target assemble the parts if it wants to 171 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 172 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 173 PartVT, ValueVT, CC)) 174 return Val; 175 176 if (ValueVT.isVector()) 177 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 178 InChain, CC); 179 180 assert(NumParts > 0 && "No parts to assemble!"); 181 SDValue Val = Parts[0]; 182 183 if (NumParts > 1) { 184 // Assemble the value from multiple parts. 185 if (ValueVT.isInteger()) { 186 unsigned PartBits = PartVT.getSizeInBits(); 187 unsigned ValueBits = ValueVT.getSizeInBits(); 188 189 // Assemble the power of 2 part. 190 unsigned RoundParts = llvm::bit_floor(NumParts); 191 unsigned RoundBits = PartBits * RoundParts; 192 EVT RoundVT = RoundBits == ValueBits ? 193 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 194 SDValue Lo, Hi; 195 196 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 197 198 if (RoundParts > 2) { 199 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V, 200 InChain); 201 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, 202 PartVT, HalfVT, V, InChain); 203 } else { 204 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 205 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 206 } 207 208 if (DAG.getDataLayout().isBigEndian()) 209 std::swap(Lo, Hi); 210 211 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 212 213 if (RoundParts < NumParts) { 214 // Assemble the trailing non-power-of-2 part. 215 unsigned OddParts = NumParts - RoundParts; 216 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 217 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 218 OddVT, V, InChain, CC); 219 220 // Combine the round and odd parts. 221 Lo = Val; 222 if (DAG.getDataLayout().isBigEndian()) 223 std::swap(Lo, Hi); 224 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 225 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 226 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 227 DAG.getConstant(Lo.getValueSizeInBits(), DL, 228 TLI.getShiftAmountTy( 229 TotalVT, DAG.getDataLayout()))); 230 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 231 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 232 } 233 } else if (PartVT.isFloatingPoint()) { 234 // FP split into multiple FP parts (for ppcf128) 235 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 236 "Unexpected split"); 237 SDValue Lo, Hi; 238 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 239 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 240 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 241 std::swap(Lo, Hi); 242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 243 } else { 244 // FP split into integer parts (soft fp) 245 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 246 !PartVT.isVector() && "Unexpected split"); 247 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 248 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, 249 InChain, CC); 250 } 251 } 252 253 // There is now one part, held in Val. Correct it to match ValueVT. 254 // PartEVT is the type of the register class that holds the value. 255 // ValueVT is the type of the inline asm operation. 256 EVT PartEVT = Val.getValueType(); 257 258 if (PartEVT == ValueVT) 259 return Val; 260 261 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 262 ValueVT.bitsLT(PartEVT)) { 263 // For an FP value in an integer part, we need to truncate to the right 264 // width first. 265 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 266 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 267 } 268 269 // Handle types that have the same size. 270 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 271 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 272 273 // Handle types with different sizes. 274 if (PartEVT.isInteger() && ValueVT.isInteger()) { 275 if (ValueVT.bitsLT(PartEVT)) { 276 // For a truncate, see if we have any information to 277 // indicate whether the truncated bits will always be 278 // zero or sign-extension. 279 if (AssertOp) 280 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 281 DAG.getValueType(ValueVT)); 282 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 283 } 284 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 285 } 286 287 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 288 // FP_ROUND's are always exact here. 289 if (ValueVT.bitsLT(Val.getValueType())) { 290 291 SDValue NoChange = 292 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 293 294 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr( 295 llvm::Attribute::StrictFP)) { 296 return DAG.getNode(ISD::STRICT_FP_ROUND, DL, 297 DAG.getVTList(ValueVT, MVT::Other), InChain, Val, 298 NoChange); 299 } 300 301 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange); 302 } 303 304 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 305 } 306 307 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 308 // then truncating. 309 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 310 ValueVT.bitsLT(PartEVT)) { 311 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 312 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 313 } 314 315 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 316 } 317 318 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 319 const Twine &ErrMsg) { 320 const Instruction *I = dyn_cast_or_null<Instruction>(V); 321 if (!V) 322 return Ctx.emitError(ErrMsg); 323 324 const char *AsmError = ", possible invalid constraint for vector type"; 325 if (const CallInst *CI = dyn_cast<CallInst>(I)) 326 if (CI->isInlineAsm()) 327 return Ctx.emitError(I, ErrMsg + AsmError); 328 329 return Ctx.emitError(I, ErrMsg); 330 } 331 332 /// getCopyFromPartsVector - Create a value that contains the specified legal 333 /// parts combined into the value they represent. If the parts combine to a 334 /// type larger than ValueVT then AssertOp can be used to specify whether the 335 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 336 /// ValueVT (ISD::AssertSext). 337 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 338 const SDValue *Parts, unsigned NumParts, 339 MVT PartVT, EVT ValueVT, const Value *V, 340 SDValue InChain, 341 std::optional<CallingConv::ID> CallConv) { 342 assert(ValueVT.isVector() && "Not a vector value"); 343 assert(NumParts > 0 && "No parts to assemble!"); 344 const bool IsABIRegCopy = CallConv.has_value(); 345 346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 347 SDValue Val = Parts[0]; 348 349 // Handle a multi-element vector. 350 if (NumParts > 1) { 351 EVT IntermediateVT; 352 MVT RegisterVT; 353 unsigned NumIntermediates; 354 unsigned NumRegs; 355 356 if (IsABIRegCopy) { 357 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 358 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 359 NumIntermediates, RegisterVT); 360 } else { 361 NumRegs = 362 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 363 NumIntermediates, RegisterVT); 364 } 365 366 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 367 NumParts = NumRegs; // Silence a compiler warning. 368 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 369 assert(RegisterVT.getSizeInBits() == 370 Parts[0].getSimpleValueType().getSizeInBits() && 371 "Part type sizes don't match!"); 372 373 // Assemble the parts into intermediate operands. 374 SmallVector<SDValue, 8> Ops(NumIntermediates); 375 if (NumIntermediates == NumParts) { 376 // If the register was not expanded, truncate or copy the value, 377 // as appropriate. 378 for (unsigned i = 0; i != NumParts; ++i) 379 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, 380 V, InChain, CallConv); 381 } else if (NumParts > 0) { 382 // If the intermediate type was expanded, build the intermediate 383 // operands from the parts. 384 assert(NumParts % NumIntermediates == 0 && 385 "Must expand into a divisible number of parts!"); 386 unsigned Factor = NumParts / NumIntermediates; 387 for (unsigned i = 0; i != NumIntermediates; ++i) 388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, 389 IntermediateVT, V, InChain, CallConv); 390 } 391 392 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 393 // intermediate operands. 394 EVT BuiltVectorTy = 395 IntermediateVT.isVector() 396 ? EVT::getVectorVT( 397 *DAG.getContext(), IntermediateVT.getScalarType(), 398 IntermediateVT.getVectorElementCount() * NumParts) 399 : EVT::getVectorVT(*DAG.getContext(), 400 IntermediateVT.getScalarType(), 401 NumIntermediates); 402 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 403 : ISD::BUILD_VECTOR, 404 DL, BuiltVectorTy, Ops); 405 } 406 407 // There is now one part, held in Val. Correct it to match ValueVT. 408 EVT PartEVT = Val.getValueType(); 409 410 if (PartEVT == ValueVT) 411 return Val; 412 413 if (PartEVT.isVector()) { 414 // Vector/Vector bitcast. 415 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 416 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 417 418 // If the parts vector has more elements than the value vector, then we 419 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 420 // Extract the elements we want. 421 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 422 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 423 ValueVT.getVectorElementCount().getKnownMinValue()) && 424 (PartEVT.getVectorElementCount().isScalable() == 425 ValueVT.getVectorElementCount().isScalable()) && 426 "Cannot narrow, it would be a lossy transformation"); 427 PartEVT = 428 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 429 ValueVT.getVectorElementCount()); 430 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 431 DAG.getVectorIdxConstant(0, DL)); 432 if (PartEVT == ValueVT) 433 return Val; 434 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 435 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 436 437 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 438 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 439 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 440 } 441 442 // Promoted vector extract 443 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 444 } 445 446 // Trivial bitcast if the types are the same size and the destination 447 // vector type is legal. 448 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 449 TLI.isTypeLegal(ValueVT)) 450 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 451 452 if (ValueVT.getVectorNumElements() != 1) { 453 // Certain ABIs require that vectors are passed as integers. For vectors 454 // are the same size, this is an obvious bitcast. 455 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 456 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 457 } else if (ValueVT.bitsLT(PartEVT)) { 458 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 459 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 460 // Drop the extra bits. 461 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 462 return DAG.getBitcast(ValueVT, Val); 463 } 464 465 diagnosePossiblyInvalidConstraint( 466 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 467 return DAG.getUNDEF(ValueVT); 468 } 469 470 // Handle cases such as i8 -> <1 x i1> 471 EVT ValueSVT = ValueVT.getVectorElementType(); 472 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 473 unsigned ValueSize = ValueSVT.getSizeInBits(); 474 if (ValueSize == PartEVT.getSizeInBits()) { 475 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 476 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 477 // It's possible a scalar floating point type gets softened to integer and 478 // then promoted to a larger integer. If PartEVT is the larger integer 479 // we need to truncate it and then bitcast to the FP type. 480 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 481 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 482 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 483 Val = DAG.getBitcast(ValueSVT, Val); 484 } else { 485 Val = ValueVT.isFloatingPoint() 486 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 487 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 488 } 489 } 490 491 return DAG.getBuildVector(ValueVT, DL, Val); 492 } 493 494 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 495 SDValue Val, SDValue *Parts, unsigned NumParts, 496 MVT PartVT, const Value *V, 497 std::optional<CallingConv::ID> CallConv); 498 499 /// getCopyToParts - Create a series of nodes that contain the specified value 500 /// split into legal parts. If the parts contain more bits than Val, then, for 501 /// integers, ExtendKind can be used to specify how to generate the extra bits. 502 static void 503 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 504 unsigned NumParts, MVT PartVT, const Value *V, 505 std::optional<CallingConv::ID> CallConv = std::nullopt, 506 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 507 // Let the target split the parts if it wants to 508 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 509 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 510 CallConv)) 511 return; 512 EVT ValueVT = Val.getValueType(); 513 514 // Handle the vector case separately. 515 if (ValueVT.isVector()) 516 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 517 CallConv); 518 519 unsigned OrigNumParts = NumParts; 520 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 521 "Copying to an illegal type!"); 522 523 if (NumParts == 0) 524 return; 525 526 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 527 EVT PartEVT = PartVT; 528 if (PartEVT == ValueVT) { 529 assert(NumParts == 1 && "No-op copy with multiple parts!"); 530 Parts[0] = Val; 531 return; 532 } 533 534 unsigned PartBits = PartVT.getSizeInBits(); 535 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 536 // If the parts cover more bits than the value has, promote the value. 537 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 538 assert(NumParts == 1 && "Do not know what to promote to!"); 539 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 540 } else { 541 if (ValueVT.isFloatingPoint()) { 542 // FP values need to be bitcast, then extended if they are being put 543 // into a larger container. 544 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 545 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 546 } 547 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 548 ValueVT.isInteger() && 549 "Unknown mismatch!"); 550 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 551 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 552 if (PartVT == MVT::x86mmx) 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } 555 } else if (PartBits == ValueVT.getSizeInBits()) { 556 // Different types of the same size. 557 assert(NumParts == 1 && PartEVT != ValueVT); 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 560 // If the parts cover less bits than value has, truncate the value. 561 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 562 ValueVT.isInteger() && 563 "Unknown mismatch!"); 564 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 565 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 566 if (PartVT == MVT::x86mmx) 567 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 568 } 569 570 // The value may have changed - recompute ValueVT. 571 ValueVT = Val.getValueType(); 572 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 573 "Failed to tile the value with PartVT!"); 574 575 if (NumParts == 1) { 576 if (PartEVT != ValueVT) { 577 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 578 "scalar-to-vector conversion failed"); 579 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 580 } 581 582 Parts[0] = Val; 583 return; 584 } 585 586 // Expand the value into multiple parts. 587 if (NumParts & (NumParts - 1)) { 588 // The number of parts is not a power of 2. Split off and copy the tail. 589 assert(PartVT.isInteger() && ValueVT.isInteger() && 590 "Do not know what to expand to!"); 591 unsigned RoundParts = llvm::bit_floor(NumParts); 592 unsigned RoundBits = RoundParts * PartBits; 593 unsigned OddParts = NumParts - RoundParts; 594 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 595 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 596 597 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 598 CallConv); 599 600 if (DAG.getDataLayout().isBigEndian()) 601 // The odd parts were reversed by getCopyToParts - unreverse them. 602 std::reverse(Parts + RoundParts, Parts + NumParts); 603 604 NumParts = RoundParts; 605 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 606 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 607 } 608 609 // The number of parts is a power of 2. Repeatedly bisect the value using 610 // EXTRACT_ELEMENT. 611 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 612 EVT::getIntegerVT(*DAG.getContext(), 613 ValueVT.getSizeInBits()), 614 Val); 615 616 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 617 for (unsigned i = 0; i < NumParts; i += StepSize) { 618 unsigned ThisBits = StepSize * PartBits / 2; 619 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 620 SDValue &Part0 = Parts[i]; 621 SDValue &Part1 = Parts[i+StepSize/2]; 622 623 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 624 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 625 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 626 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 627 628 if (ThisBits == PartBits && ThisVT != PartVT) { 629 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 630 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 631 } 632 } 633 } 634 635 if (DAG.getDataLayout().isBigEndian()) 636 std::reverse(Parts, Parts + OrigNumParts); 637 } 638 639 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 640 const SDLoc &DL, EVT PartVT) { 641 if (!PartVT.isVector()) 642 return SDValue(); 643 644 EVT ValueVT = Val.getValueType(); 645 EVT PartEVT = PartVT.getVectorElementType(); 646 EVT ValueEVT = ValueVT.getVectorElementType(); 647 ElementCount PartNumElts = PartVT.getVectorElementCount(); 648 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 649 650 // We only support widening vectors with equivalent element types and 651 // fixed/scalable properties. If a target needs to widen a fixed-length type 652 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 653 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 654 PartNumElts.isScalable() != ValueNumElts.isScalable()) 655 return SDValue(); 656 657 // Have a try for bf16 because some targets share its ABI with fp16. 658 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 659 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 660 "Cannot widen to illegal type"); 661 Val = DAG.getNode(ISD::BITCAST, DL, 662 ValueVT.changeVectorElementType(MVT::f16), Val); 663 } else if (PartEVT != ValueEVT) { 664 return SDValue(); 665 } 666 667 // Widening a scalable vector to another scalable vector is done by inserting 668 // the vector into a larger undef one. 669 if (PartNumElts.isScalable()) 670 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 671 Val, DAG.getVectorIdxConstant(0, DL)); 672 673 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 674 // undef elements. 675 SmallVector<SDValue, 16> Ops; 676 DAG.ExtractVectorElements(Val, Ops); 677 SDValue EltUndef = DAG.getUNDEF(PartEVT); 678 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 679 680 // FIXME: Use CONCAT for 2x -> 4x. 681 return DAG.getBuildVector(PartVT, DL, Ops); 682 } 683 684 /// getCopyToPartsVector - Create a series of nodes that contain the specified 685 /// value split into legal parts. 686 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 687 SDValue Val, SDValue *Parts, unsigned NumParts, 688 MVT PartVT, const Value *V, 689 std::optional<CallingConv::ID> CallConv) { 690 EVT ValueVT = Val.getValueType(); 691 assert(ValueVT.isVector() && "Not a vector"); 692 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 693 const bool IsABIRegCopy = CallConv.has_value(); 694 695 if (NumParts == 1) { 696 EVT PartEVT = PartVT; 697 if (PartEVT == ValueVT) { 698 // Nothing to do. 699 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 700 // Bitconvert vector->vector case. 701 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 702 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 703 Val = Widened; 704 } else if (PartVT.isVector() && 705 PartEVT.getVectorElementType().bitsGE( 706 ValueVT.getVectorElementType()) && 707 PartEVT.getVectorElementCount() == 708 ValueVT.getVectorElementCount()) { 709 710 // Promoted vector extract 711 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 712 } else if (PartEVT.isVector() && 713 PartEVT.getVectorElementType() != 714 ValueVT.getVectorElementType() && 715 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 716 TargetLowering::TypeWidenVector) { 717 // Combination of widening and promotion. 718 EVT WidenVT = 719 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 720 PartVT.getVectorElementCount()); 721 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 722 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 723 } else { 724 // Don't extract an integer from a float vector. This can happen if the 725 // FP type gets softened to integer and then promoted. The promotion 726 // prevents it from being picked up by the earlier bitcast case. 727 if (ValueVT.getVectorElementCount().isScalar() && 728 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 729 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 730 DAG.getVectorIdxConstant(0, DL)); 731 } else { 732 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 733 assert(PartVT.getFixedSizeInBits() > ValueSize && 734 "lossy conversion of vector to scalar type"); 735 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 736 Val = DAG.getBitcast(IntermediateType, Val); 737 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 738 } 739 } 740 741 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 742 Parts[0] = Val; 743 return; 744 } 745 746 // Handle a multi-element vector. 747 EVT IntermediateVT; 748 MVT RegisterVT; 749 unsigned NumIntermediates; 750 unsigned NumRegs; 751 if (IsABIRegCopy) { 752 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 753 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 754 RegisterVT); 755 } else { 756 NumRegs = 757 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 758 NumIntermediates, RegisterVT); 759 } 760 761 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 762 NumParts = NumRegs; // Silence a compiler warning. 763 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 764 765 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 766 "Mixing scalable and fixed vectors when copying in parts"); 767 768 std::optional<ElementCount> DestEltCnt; 769 770 if (IntermediateVT.isVector()) 771 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 772 else 773 DestEltCnt = ElementCount::getFixed(NumIntermediates); 774 775 EVT BuiltVectorTy = EVT::getVectorVT( 776 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 777 778 if (ValueVT == BuiltVectorTy) { 779 // Nothing to do. 780 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 781 // Bitconvert vector->vector case. 782 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 783 } else { 784 if (BuiltVectorTy.getVectorElementType().bitsGT( 785 ValueVT.getVectorElementType())) { 786 // Integer promotion. 787 ValueVT = EVT::getVectorVT(*DAG.getContext(), 788 BuiltVectorTy.getVectorElementType(), 789 ValueVT.getVectorElementCount()); 790 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 791 } 792 793 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 794 Val = Widened; 795 } 796 } 797 798 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 799 800 // Split the vector into intermediate operands. 801 SmallVector<SDValue, 8> Ops(NumIntermediates); 802 for (unsigned i = 0; i != NumIntermediates; ++i) { 803 if (IntermediateVT.isVector()) { 804 // This does something sensible for scalable vectors - see the 805 // definition of EXTRACT_SUBVECTOR for further details. 806 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 807 Ops[i] = 808 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 809 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 810 } else { 811 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 812 DAG.getVectorIdxConstant(i, DL)); 813 } 814 } 815 816 // Split the intermediate operands into legal parts. 817 if (NumParts == NumIntermediates) { 818 // If the register was not expanded, promote or copy the value, 819 // as appropriate. 820 for (unsigned i = 0; i != NumParts; ++i) 821 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 822 } else if (NumParts > 0) { 823 // If the intermediate type was expanded, split each the value into 824 // legal parts. 825 assert(NumIntermediates != 0 && "division by zero"); 826 assert(NumParts % NumIntermediates == 0 && 827 "Must expand into a divisible number of parts!"); 828 unsigned Factor = NumParts / NumIntermediates; 829 for (unsigned i = 0; i != NumIntermediates; ++i) 830 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 831 CallConv); 832 } 833 } 834 835 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 836 EVT valuevt, std::optional<CallingConv::ID> CC) 837 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 838 RegCount(1, regs.size()), CallConv(CC) {} 839 840 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 841 const DataLayout &DL, unsigned Reg, Type *Ty, 842 std::optional<CallingConv::ID> CC) { 843 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 844 845 CallConv = CC; 846 847 for (EVT ValueVT : ValueVTs) { 848 unsigned NumRegs = 849 isABIMangled() 850 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 851 : TLI.getNumRegisters(Context, ValueVT); 852 MVT RegisterVT = 853 isABIMangled() 854 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 855 : TLI.getRegisterType(Context, ValueVT); 856 for (unsigned i = 0; i != NumRegs; ++i) 857 Regs.push_back(Reg + i); 858 RegVTs.push_back(RegisterVT); 859 RegCount.push_back(NumRegs); 860 Reg += NumRegs; 861 } 862 } 863 864 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 865 FunctionLoweringInfo &FuncInfo, 866 const SDLoc &dl, SDValue &Chain, 867 SDValue *Glue, const Value *V) const { 868 // A Value with type {} or [0 x %t] needs no registers. 869 if (ValueVTs.empty()) 870 return SDValue(); 871 872 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 873 874 // Assemble the legal parts into the final values. 875 SmallVector<SDValue, 4> Values(ValueVTs.size()); 876 SmallVector<SDValue, 8> Parts; 877 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 878 // Copy the legal parts from the registers. 879 EVT ValueVT = ValueVTs[Value]; 880 unsigned NumRegs = RegCount[Value]; 881 MVT RegisterVT = isABIMangled() 882 ? TLI.getRegisterTypeForCallingConv( 883 *DAG.getContext(), *CallConv, RegVTs[Value]) 884 : RegVTs[Value]; 885 886 Parts.resize(NumRegs); 887 for (unsigned i = 0; i != NumRegs; ++i) { 888 SDValue P; 889 if (!Glue) { 890 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 891 } else { 892 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 893 *Glue = P.getValue(2); 894 } 895 896 Chain = P.getValue(1); 897 Parts[i] = P; 898 899 // If the source register was virtual and if we know something about it, 900 // add an assert node. 901 if (!Register::isVirtualRegister(Regs[Part + i]) || 902 !RegisterVT.isInteger()) 903 continue; 904 905 const FunctionLoweringInfo::LiveOutInfo *LOI = 906 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 907 if (!LOI) 908 continue; 909 910 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 911 unsigned NumSignBits = LOI->NumSignBits; 912 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 913 914 if (NumZeroBits == RegSize) { 915 // The current value is a zero. 916 // Explicitly express that as it would be easier for 917 // optimizations to kick in. 918 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 919 continue; 920 } 921 922 // FIXME: We capture more information than the dag can represent. For 923 // now, just use the tightest assertzext/assertsext possible. 924 bool isSExt; 925 EVT FromVT(MVT::Other); 926 if (NumZeroBits) { 927 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 928 isSExt = false; 929 } else if (NumSignBits > 1) { 930 FromVT = 931 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 932 isSExt = true; 933 } else { 934 continue; 935 } 936 // Add an assertion node. 937 assert(FromVT != MVT::Other); 938 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 939 RegisterVT, P, DAG.getValueType(FromVT)); 940 } 941 942 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 943 RegisterVT, ValueVT, V, Chain, CallConv); 944 Part += NumRegs; 945 Parts.clear(); 946 } 947 948 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 949 } 950 951 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 952 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 953 const Value *V, 954 ISD::NodeType PreferredExtendType) const { 955 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 956 ISD::NodeType ExtendKind = PreferredExtendType; 957 958 // Get the list of the values's legal parts. 959 unsigned NumRegs = Regs.size(); 960 SmallVector<SDValue, 8> Parts(NumRegs); 961 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 962 unsigned NumParts = RegCount[Value]; 963 964 MVT RegisterVT = isABIMangled() 965 ? TLI.getRegisterTypeForCallingConv( 966 *DAG.getContext(), *CallConv, RegVTs[Value]) 967 : RegVTs[Value]; 968 969 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 970 ExtendKind = ISD::ZERO_EXTEND; 971 972 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 973 NumParts, RegisterVT, V, CallConv, ExtendKind); 974 Part += NumParts; 975 } 976 977 // Copy the parts into the registers. 978 SmallVector<SDValue, 8> Chains(NumRegs); 979 for (unsigned i = 0; i != NumRegs; ++i) { 980 SDValue Part; 981 if (!Glue) { 982 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 983 } else { 984 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 985 *Glue = Part.getValue(1); 986 } 987 988 Chains[i] = Part.getValue(0); 989 } 990 991 if (NumRegs == 1 || Glue) 992 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 993 // flagged to it. That is the CopyToReg nodes and the user are considered 994 // a single scheduling unit. If we create a TokenFactor and return it as 995 // chain, then the TokenFactor is both a predecessor (operand) of the 996 // user as well as a successor (the TF operands are flagged to the user). 997 // c1, f1 = CopyToReg 998 // c2, f2 = CopyToReg 999 // c3 = TokenFactor c1, c2 1000 // ... 1001 // = op c3, ..., f2 1002 Chain = Chains[NumRegs-1]; 1003 else 1004 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 1005 } 1006 1007 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 1008 unsigned MatchingIdx, const SDLoc &dl, 1009 SelectionDAG &DAG, 1010 std::vector<SDValue> &Ops) const { 1011 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1012 1013 InlineAsm::Flag Flag(Code, Regs.size()); 1014 if (HasMatching) 1015 Flag.setMatchingOp(MatchingIdx); 1016 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1017 // Put the register class of the virtual registers in the flag word. That 1018 // way, later passes can recompute register class constraints for inline 1019 // assembly as well as normal instructions. 1020 // Don't do this for tied operands that can use the regclass information 1021 // from the def. 1022 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1023 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1024 Flag.setRegClass(RC->getID()); 1025 } 1026 1027 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1028 Ops.push_back(Res); 1029 1030 if (Code == InlineAsm::Kind::Clobber) { 1031 // Clobbers should always have a 1:1 mapping with registers, and may 1032 // reference registers that have illegal (e.g. vector) types. Hence, we 1033 // shouldn't try to apply any sort of splitting logic to them. 1034 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1035 "No 1:1 mapping from clobbers to regs?"); 1036 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1037 (void)SP; 1038 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1039 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1040 assert( 1041 (Regs[I] != SP || 1042 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1043 "If we clobbered the stack pointer, MFI should know about it."); 1044 } 1045 return; 1046 } 1047 1048 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1049 MVT RegisterVT = RegVTs[Value]; 1050 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1051 RegisterVT); 1052 for (unsigned i = 0; i != NumRegs; ++i) { 1053 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1054 unsigned TheReg = Regs[Reg++]; 1055 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1056 } 1057 } 1058 } 1059 1060 SmallVector<std::pair<unsigned, TypeSize>, 4> 1061 RegsForValue::getRegsAndSizes() const { 1062 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1063 unsigned I = 0; 1064 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1065 unsigned RegCount = std::get<0>(CountAndVT); 1066 MVT RegisterVT = std::get<1>(CountAndVT); 1067 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1068 for (unsigned E = I + RegCount; I != E; ++I) 1069 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1070 } 1071 return OutVec; 1072 } 1073 1074 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1075 AssumptionCache *ac, 1076 const TargetLibraryInfo *li) { 1077 AA = aa; 1078 AC = ac; 1079 GFI = gfi; 1080 LibInfo = li; 1081 Context = DAG.getContext(); 1082 LPadToCallSiteMap.clear(); 1083 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1084 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1085 *DAG.getMachineFunction().getFunction().getParent()); 1086 } 1087 1088 void SelectionDAGBuilder::clear() { 1089 NodeMap.clear(); 1090 UnusedArgNodeMap.clear(); 1091 PendingLoads.clear(); 1092 PendingExports.clear(); 1093 PendingConstrainedFP.clear(); 1094 PendingConstrainedFPStrict.clear(); 1095 CurInst = nullptr; 1096 HasTailCall = false; 1097 SDNodeOrder = LowestSDNodeOrder; 1098 StatepointLowering.clear(); 1099 } 1100 1101 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1102 DanglingDebugInfoMap.clear(); 1103 } 1104 1105 // Update DAG root to include dependencies on Pending chains. 1106 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1107 SDValue Root = DAG.getRoot(); 1108 1109 if (Pending.empty()) 1110 return Root; 1111 1112 // Add current root to PendingChains, unless we already indirectly 1113 // depend on it. 1114 if (Root.getOpcode() != ISD::EntryToken) { 1115 unsigned i = 0, e = Pending.size(); 1116 for (; i != e; ++i) { 1117 assert(Pending[i].getNode()->getNumOperands() > 1); 1118 if (Pending[i].getNode()->getOperand(0) == Root) 1119 break; // Don't add the root if we already indirectly depend on it. 1120 } 1121 1122 if (i == e) 1123 Pending.push_back(Root); 1124 } 1125 1126 if (Pending.size() == 1) 1127 Root = Pending[0]; 1128 else 1129 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1130 1131 DAG.setRoot(Root); 1132 Pending.clear(); 1133 return Root; 1134 } 1135 1136 SDValue SelectionDAGBuilder::getMemoryRoot() { 1137 return updateRoot(PendingLoads); 1138 } 1139 1140 SDValue SelectionDAGBuilder::getRoot() { 1141 // Chain up all pending constrained intrinsics together with all 1142 // pending loads, by simply appending them to PendingLoads and 1143 // then calling getMemoryRoot(). 1144 PendingLoads.reserve(PendingLoads.size() + 1145 PendingConstrainedFP.size() + 1146 PendingConstrainedFPStrict.size()); 1147 PendingLoads.append(PendingConstrainedFP.begin(), 1148 PendingConstrainedFP.end()); 1149 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1150 PendingConstrainedFPStrict.end()); 1151 PendingConstrainedFP.clear(); 1152 PendingConstrainedFPStrict.clear(); 1153 return getMemoryRoot(); 1154 } 1155 1156 SDValue SelectionDAGBuilder::getControlRoot() { 1157 // We need to emit pending fpexcept.strict constrained intrinsics, 1158 // so append them to the PendingExports list. 1159 PendingExports.append(PendingConstrainedFPStrict.begin(), 1160 PendingConstrainedFPStrict.end()); 1161 PendingConstrainedFPStrict.clear(); 1162 return updateRoot(PendingExports); 1163 } 1164 1165 void SelectionDAGBuilder::handleDebugDeclare(Value *Address, 1166 DILocalVariable *Variable, 1167 DIExpression *Expression, 1168 DebugLoc DL) { 1169 assert(Variable && "Missing variable"); 1170 1171 // Check if address has undef value. 1172 if (!Address || isa<UndefValue>(Address) || 1173 (Address->use_empty() && !isa<Argument>(Address))) { 1174 LLVM_DEBUG( 1175 dbgs() 1176 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n"); 1177 return; 1178 } 1179 1180 bool IsParameter = Variable->isParameter() || isa<Argument>(Address); 1181 1182 SDValue &N = NodeMap[Address]; 1183 if (!N.getNode() && isa<Argument>(Address)) 1184 // Check unused arguments map. 1185 N = UnusedArgNodeMap[Address]; 1186 SDDbgValue *SDV; 1187 if (N.getNode()) { 1188 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 1189 Address = BCI->getOperand(0); 1190 // Parameters are handled specially. 1191 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 1192 if (IsParameter && FINode) { 1193 // Byval parameter. We have a frame index at this point. 1194 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 1195 /*IsIndirect*/ true, DL, SDNodeOrder); 1196 } else if (isa<Argument>(Address)) { 1197 // Address is an argument, so try to emit its dbg value using 1198 // virtual register info from the FuncInfo.ValueMap. 1199 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1200 FuncArgumentDbgValueKind::Declare, N); 1201 return; 1202 } else { 1203 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 1204 true, DL, SDNodeOrder); 1205 } 1206 DAG.AddDbgValue(SDV, IsParameter); 1207 } else { 1208 // If Address is an argument then try to emit its dbg value using 1209 // virtual register info from the FuncInfo.ValueMap. 1210 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1211 FuncArgumentDbgValueKind::Declare, N)) { 1212 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info" 1213 << " (could not emit func-arg dbg_value)\n"); 1214 } 1215 } 1216 return; 1217 } 1218 1219 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) { 1220 // Add SDDbgValue nodes for any var locs here. Do so before updating 1221 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1222 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1223 // Add SDDbgValue nodes for any var locs here. Do so before updating 1224 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1225 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1226 It != End; ++It) { 1227 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1228 dropDanglingDebugInfo(Var, It->Expr); 1229 if (It->Values.isKillLocation(It->Expr)) { 1230 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1231 continue; 1232 } 1233 SmallVector<Value *> Values(It->Values.location_ops()); 1234 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1235 It->Values.hasArgList())) { 1236 SmallVector<Value *, 4> Vals; 1237 for (Value *V : It->Values.location_ops()) 1238 Vals.push_back(V); 1239 addDanglingDebugInfo(Vals, 1240 FnVarLocs->getDILocalVariable(It->VariableID), 1241 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder); 1242 } 1243 } 1244 // We must early-exit here to prevent any DPValues from being emitted below, 1245 // as we have just emitted the debug values resulting from assignment 1246 // tracking analysis, making any existing DPValues redundant (and probably 1247 // less correct). 1248 return; 1249 } 1250 1251 // Is there is any debug-info attached to this instruction, in the form of 1252 // DPValue non-instruction debug-info records. 1253 for (DPValue &DPV : I.getDbgValueRange()) { 1254 DILocalVariable *Variable = DPV.getVariable(); 1255 DIExpression *Expression = DPV.getExpression(); 1256 dropDanglingDebugInfo(Variable, Expression); 1257 1258 if (DPV.getType() == DPValue::LocationType::Declare) { 1259 if (FuncInfo.PreprocessedDPVDeclares.contains(&DPV)) 1260 continue; 1261 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DPV 1262 << "\n"); 1263 handleDebugDeclare(DPV.getVariableLocationOp(0), Variable, Expression, 1264 DPV.getDebugLoc()); 1265 continue; 1266 } 1267 1268 // A DPValue with no locations is a kill location. 1269 SmallVector<Value *, 4> Values(DPV.location_ops()); 1270 if (Values.empty()) { 1271 handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(), 1272 SDNodeOrder); 1273 continue; 1274 } 1275 1276 // A DPValue with an undef or absent location is also a kill location. 1277 if (llvm::any_of(Values, 1278 [](Value *V) { return !V || isa<UndefValue>(V); })) { 1279 handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(), 1280 SDNodeOrder); 1281 continue; 1282 } 1283 1284 bool IsVariadic = DPV.hasArgList(); 1285 if (!handleDebugValue(Values, Variable, Expression, DPV.getDebugLoc(), 1286 SDNodeOrder, IsVariadic)) { 1287 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 1288 DPV.getDebugLoc(), SDNodeOrder); 1289 } 1290 } 1291 } 1292 1293 void SelectionDAGBuilder::visit(const Instruction &I) { 1294 visitDbgInfo(I); 1295 1296 // Set up outgoing PHI node register values before emitting the terminator. 1297 if (I.isTerminator()) { 1298 HandlePHINodesInSuccessorBlocks(I.getParent()); 1299 } 1300 1301 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1302 if (!isa<DbgInfoIntrinsic>(I)) 1303 ++SDNodeOrder; 1304 1305 CurInst = &I; 1306 1307 // Set inserted listener only if required. 1308 bool NodeInserted = false; 1309 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1310 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1311 if (PCSectionsMD) { 1312 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1313 DAG, [&](SDNode *) { NodeInserted = true; }); 1314 } 1315 1316 visit(I.getOpcode(), I); 1317 1318 if (!I.isTerminator() && !HasTailCall && 1319 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1320 CopyToExportRegsIfNeeded(&I); 1321 1322 // Handle metadata. 1323 if (PCSectionsMD) { 1324 auto It = NodeMap.find(&I); 1325 if (It != NodeMap.end()) { 1326 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1327 } else if (NodeInserted) { 1328 // This should not happen; if it does, don't let it go unnoticed so we can 1329 // fix it. Relevant visit*() function is probably missing a setValue(). 1330 errs() << "warning: loosing !pcsections metadata [" 1331 << I.getModule()->getName() << "]\n"; 1332 LLVM_DEBUG(I.dump()); 1333 assert(false); 1334 } 1335 } 1336 1337 CurInst = nullptr; 1338 } 1339 1340 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1341 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1342 } 1343 1344 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1345 // Note: this doesn't use InstVisitor, because it has to work with 1346 // ConstantExpr's in addition to instructions. 1347 switch (Opcode) { 1348 default: llvm_unreachable("Unknown instruction type encountered!"); 1349 // Build the switch statement using the Instruction.def file. 1350 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1351 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1352 #include "llvm/IR/Instruction.def" 1353 } 1354 } 1355 1356 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1357 DILocalVariable *Variable, 1358 DebugLoc DL, unsigned Order, 1359 SmallVectorImpl<Value *> &Values, 1360 DIExpression *Expression) { 1361 // For variadic dbg_values we will now insert an undef. 1362 // FIXME: We can potentially recover these! 1363 SmallVector<SDDbgOperand, 2> Locs; 1364 for (const Value *V : Values) { 1365 auto *Undef = UndefValue::get(V->getType()); 1366 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1367 } 1368 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1369 /*IsIndirect=*/false, DL, Order, 1370 /*IsVariadic=*/true); 1371 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1372 return true; 1373 } 1374 1375 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values, 1376 DILocalVariable *Var, 1377 DIExpression *Expr, 1378 bool IsVariadic, DebugLoc DL, 1379 unsigned Order) { 1380 if (IsVariadic) { 1381 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr); 1382 return; 1383 } 1384 // TODO: Dangling debug info will eventually either be resolved or produce 1385 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1386 // between the original dbg.value location and its resolved DBG_VALUE, 1387 // which we should ideally fill with an extra Undef DBG_VALUE. 1388 assert(Values.size() == 1); 1389 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order); 1390 } 1391 1392 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1393 const DIExpression *Expr) { 1394 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1395 DIVariable *DanglingVariable = DDI.getVariable(); 1396 DIExpression *DanglingExpr = DDI.getExpression(); 1397 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1398 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " 1399 << printDDI(nullptr, DDI) << "\n"); 1400 return true; 1401 } 1402 return false; 1403 }; 1404 1405 for (auto &DDIMI : DanglingDebugInfoMap) { 1406 DanglingDebugInfoVector &DDIV = DDIMI.second; 1407 1408 // If debug info is to be dropped, run it through final checks to see 1409 // whether it can be salvaged. 1410 for (auto &DDI : DDIV) 1411 if (isMatchingDbgValue(DDI)) 1412 salvageUnresolvedDbgValue(DDIMI.first, DDI); 1413 1414 erase_if(DDIV, isMatchingDbgValue); 1415 } 1416 } 1417 1418 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1419 // generate the debug data structures now that we've seen its definition. 1420 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1421 SDValue Val) { 1422 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1423 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1424 return; 1425 1426 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1427 for (auto &DDI : DDIV) { 1428 DebugLoc DL = DDI.getDebugLoc(); 1429 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1430 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1431 DILocalVariable *Variable = DDI.getVariable(); 1432 DIExpression *Expr = DDI.getExpression(); 1433 assert(Variable->isValidLocationForIntrinsic(DL) && 1434 "Expected inlined-at fields to agree"); 1435 SDDbgValue *SDV; 1436 if (Val.getNode()) { 1437 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1438 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1439 // we couldn't resolve it directly when examining the DbgValue intrinsic 1440 // in the first place we should not be more successful here). Unless we 1441 // have some test case that prove this to be correct we should avoid 1442 // calling EmitFuncArgumentDbgValue here. 1443 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1444 FuncArgumentDbgValueKind::Value, Val)) { 1445 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " 1446 << printDDI(V, DDI) << "\n"); 1447 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1448 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1449 // inserted after the definition of Val when emitting the instructions 1450 // after ISel. An alternative could be to teach 1451 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1452 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1453 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1454 << ValSDNodeOrder << "\n"); 1455 SDV = getDbgValue(Val, Variable, Expr, DL, 1456 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1457 DAG.AddDbgValue(SDV, false); 1458 } else 1459 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1460 << printDDI(V, DDI) 1461 << " in EmitFuncArgumentDbgValue\n"); 1462 } else { 1463 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI) 1464 << "\n"); 1465 auto Undef = UndefValue::get(V->getType()); 1466 auto SDV = 1467 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1468 DAG.AddDbgValue(SDV, false); 1469 } 1470 } 1471 DDIV.clear(); 1472 } 1473 1474 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V, 1475 DanglingDebugInfo &DDI) { 1476 // TODO: For the variadic implementation, instead of only checking the fail 1477 // state of `handleDebugValue`, we need know specifically which values were 1478 // invalid, so that we attempt to salvage only those values when processing 1479 // a DIArgList. 1480 const Value *OrigV = V; 1481 DILocalVariable *Var = DDI.getVariable(); 1482 DIExpression *Expr = DDI.getExpression(); 1483 DebugLoc DL = DDI.getDebugLoc(); 1484 unsigned SDOrder = DDI.getSDNodeOrder(); 1485 1486 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1487 // that DW_OP_stack_value is desired. 1488 bool StackValue = true; 1489 1490 // Can this Value can be encoded without any further work? 1491 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1492 return; 1493 1494 // Attempt to salvage back through as many instructions as possible. Bail if 1495 // a non-instruction is seen, such as a constant expression or global 1496 // variable. FIXME: Further work could recover those too. 1497 while (isa<Instruction>(V)) { 1498 const Instruction &VAsInst = *cast<const Instruction>(V); 1499 // Temporary "0", awaiting real implementation. 1500 SmallVector<uint64_t, 16> Ops; 1501 SmallVector<Value *, 4> AdditionalValues; 1502 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst), 1503 Expr->getNumLocationOperands(), Ops, 1504 AdditionalValues); 1505 // If we cannot salvage any further, and haven't yet found a suitable debug 1506 // expression, bail out. 1507 if (!V) 1508 break; 1509 1510 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1511 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1512 // here for variadic dbg_values, remove that condition. 1513 if (!AdditionalValues.empty()) 1514 break; 1515 1516 // New value and expr now represent this debuginfo. 1517 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1518 1519 // Some kind of simplification occurred: check whether the operand of the 1520 // salvaged debug expression can be encoded in this DAG. 1521 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1522 LLVM_DEBUG( 1523 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1524 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1525 return; 1526 } 1527 } 1528 1529 // This was the final opportunity to salvage this debug information, and it 1530 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1531 // any earlier variable location. 1532 assert(OrigV && "V shouldn't be null"); 1533 auto *Undef = UndefValue::get(OrigV->getType()); 1534 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1535 DAG.AddDbgValue(SDV, false); 1536 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " 1537 << printDDI(OrigV, DDI) << "\n"); 1538 } 1539 1540 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1541 DIExpression *Expr, 1542 DebugLoc DbgLoc, 1543 unsigned Order) { 1544 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1545 DIExpression *NewExpr = 1546 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1547 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1548 /*IsVariadic*/ false); 1549 } 1550 1551 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1552 DILocalVariable *Var, 1553 DIExpression *Expr, DebugLoc DbgLoc, 1554 unsigned Order, bool IsVariadic) { 1555 if (Values.empty()) 1556 return true; 1557 1558 // Filter EntryValue locations out early. 1559 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc)) 1560 return true; 1561 1562 SmallVector<SDDbgOperand> LocationOps; 1563 SmallVector<SDNode *> Dependencies; 1564 for (const Value *V : Values) { 1565 // Constant value. 1566 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1567 isa<ConstantPointerNull>(V)) { 1568 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1569 continue; 1570 } 1571 1572 // Look through IntToPtr constants. 1573 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1574 if (CE->getOpcode() == Instruction::IntToPtr) { 1575 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1576 continue; 1577 } 1578 1579 // If the Value is a frame index, we can create a FrameIndex debug value 1580 // without relying on the DAG at all. 1581 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1582 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1583 if (SI != FuncInfo.StaticAllocaMap.end()) { 1584 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1585 continue; 1586 } 1587 } 1588 1589 // Do not use getValue() in here; we don't want to generate code at 1590 // this point if it hasn't been done yet. 1591 SDValue N = NodeMap[V]; 1592 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1593 N = UnusedArgNodeMap[V]; 1594 if (N.getNode()) { 1595 // Only emit func arg dbg value for non-variadic dbg.values for now. 1596 if (!IsVariadic && 1597 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1598 FuncArgumentDbgValueKind::Value, N)) 1599 return true; 1600 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1601 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1602 // describe stack slot locations. 1603 // 1604 // Consider "int x = 0; int *px = &x;". There are two kinds of 1605 // interesting debug values here after optimization: 1606 // 1607 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1608 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1609 // 1610 // Both describe the direct values of their associated variables. 1611 Dependencies.push_back(N.getNode()); 1612 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1613 continue; 1614 } 1615 LocationOps.emplace_back( 1616 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1617 continue; 1618 } 1619 1620 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1621 // Special rules apply for the first dbg.values of parameter variables in a 1622 // function. Identify them by the fact they reference Argument Values, that 1623 // they're parameters, and they are parameters of the current function. We 1624 // need to let them dangle until they get an SDNode. 1625 bool IsParamOfFunc = 1626 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1627 if (IsParamOfFunc) 1628 return false; 1629 1630 // The value is not used in this block yet (or it would have an SDNode). 1631 // We still want the value to appear for the user if possible -- if it has 1632 // an associated VReg, we can refer to that instead. 1633 auto VMI = FuncInfo.ValueMap.find(V); 1634 if (VMI != FuncInfo.ValueMap.end()) { 1635 unsigned Reg = VMI->second; 1636 // If this is a PHI node, it may be split up into several MI PHI nodes 1637 // (in FunctionLoweringInfo::set). 1638 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1639 V->getType(), std::nullopt); 1640 if (RFV.occupiesMultipleRegs()) { 1641 // FIXME: We could potentially support variadic dbg_values here. 1642 if (IsVariadic) 1643 return false; 1644 unsigned Offset = 0; 1645 unsigned BitsToDescribe = 0; 1646 if (auto VarSize = Var->getSizeInBits()) 1647 BitsToDescribe = *VarSize; 1648 if (auto Fragment = Expr->getFragmentInfo()) 1649 BitsToDescribe = Fragment->SizeInBits; 1650 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1651 // Bail out if all bits are described already. 1652 if (Offset >= BitsToDescribe) 1653 break; 1654 // TODO: handle scalable vectors. 1655 unsigned RegisterSize = RegAndSize.second; 1656 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1657 ? BitsToDescribe - Offset 1658 : RegisterSize; 1659 auto FragmentExpr = DIExpression::createFragmentExpression( 1660 Expr, Offset, FragmentSize); 1661 if (!FragmentExpr) 1662 continue; 1663 SDDbgValue *SDV = DAG.getVRegDbgValue( 1664 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1665 DAG.AddDbgValue(SDV, false); 1666 Offset += RegisterSize; 1667 } 1668 return true; 1669 } 1670 // We can use simple vreg locations for variadic dbg_values as well. 1671 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1672 continue; 1673 } 1674 // We failed to create a SDDbgOperand for V. 1675 return false; 1676 } 1677 1678 // We have created a SDDbgOperand for each Value in Values. 1679 // Should use Order instead of SDNodeOrder? 1680 assert(!LocationOps.empty()); 1681 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1682 /*IsIndirect=*/false, DbgLoc, 1683 SDNodeOrder, IsVariadic); 1684 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1685 return true; 1686 } 1687 1688 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1689 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1690 for (auto &Pair : DanglingDebugInfoMap) 1691 for (auto &DDI : Pair.second) 1692 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI); 1693 clearDanglingDebugInfo(); 1694 } 1695 1696 /// getCopyFromRegs - If there was virtual register allocated for the value V 1697 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1698 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1699 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1700 SDValue Result; 1701 1702 if (It != FuncInfo.ValueMap.end()) { 1703 Register InReg = It->second; 1704 1705 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1706 DAG.getDataLayout(), InReg, Ty, 1707 std::nullopt); // This is not an ABI copy. 1708 SDValue Chain = DAG.getEntryNode(); 1709 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1710 V); 1711 resolveDanglingDebugInfo(V, Result); 1712 } 1713 1714 return Result; 1715 } 1716 1717 /// getValue - Return an SDValue for the given Value. 1718 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1719 // If we already have an SDValue for this value, use it. It's important 1720 // to do this first, so that we don't create a CopyFromReg if we already 1721 // have a regular SDValue. 1722 SDValue &N = NodeMap[V]; 1723 if (N.getNode()) return N; 1724 1725 // If there's a virtual register allocated and initialized for this 1726 // value, use it. 1727 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1728 return copyFromReg; 1729 1730 // Otherwise create a new SDValue and remember it. 1731 SDValue Val = getValueImpl(V); 1732 NodeMap[V] = Val; 1733 resolveDanglingDebugInfo(V, Val); 1734 return Val; 1735 } 1736 1737 /// getNonRegisterValue - Return an SDValue for the given Value, but 1738 /// don't look in FuncInfo.ValueMap for a virtual register. 1739 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1740 // If we already have an SDValue for this value, use it. 1741 SDValue &N = NodeMap[V]; 1742 if (N.getNode()) { 1743 if (isIntOrFPConstant(N)) { 1744 // Remove the debug location from the node as the node is about to be used 1745 // in a location which may differ from the original debug location. This 1746 // is relevant to Constant and ConstantFP nodes because they can appear 1747 // as constant expressions inside PHI nodes. 1748 N->setDebugLoc(DebugLoc()); 1749 } 1750 return N; 1751 } 1752 1753 // Otherwise create a new SDValue and remember it. 1754 SDValue Val = getValueImpl(V); 1755 NodeMap[V] = Val; 1756 resolveDanglingDebugInfo(V, Val); 1757 return Val; 1758 } 1759 1760 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1761 /// Create an SDValue for the given value. 1762 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1763 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1764 1765 if (const Constant *C = dyn_cast<Constant>(V)) { 1766 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1767 1768 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1769 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1770 1771 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1772 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1773 1774 if (isa<ConstantPointerNull>(C)) { 1775 unsigned AS = V->getType()->getPointerAddressSpace(); 1776 return DAG.getConstant(0, getCurSDLoc(), 1777 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1778 } 1779 1780 if (match(C, m_VScale())) 1781 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1782 1783 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1784 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1785 1786 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1787 return DAG.getUNDEF(VT); 1788 1789 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1790 visit(CE->getOpcode(), *CE); 1791 SDValue N1 = NodeMap[V]; 1792 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1793 return N1; 1794 } 1795 1796 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1797 SmallVector<SDValue, 4> Constants; 1798 for (const Use &U : C->operands()) { 1799 SDNode *Val = getValue(U).getNode(); 1800 // If the operand is an empty aggregate, there are no values. 1801 if (!Val) continue; 1802 // Add each leaf value from the operand to the Constants list 1803 // to form a flattened list of all the values. 1804 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1805 Constants.push_back(SDValue(Val, i)); 1806 } 1807 1808 return DAG.getMergeValues(Constants, getCurSDLoc()); 1809 } 1810 1811 if (const ConstantDataSequential *CDS = 1812 dyn_cast<ConstantDataSequential>(C)) { 1813 SmallVector<SDValue, 4> Ops; 1814 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1815 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1816 // Add each leaf value from the operand to the Constants list 1817 // to form a flattened list of all the values. 1818 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1819 Ops.push_back(SDValue(Val, i)); 1820 } 1821 1822 if (isa<ArrayType>(CDS->getType())) 1823 return DAG.getMergeValues(Ops, getCurSDLoc()); 1824 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1825 } 1826 1827 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1828 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1829 "Unknown struct or array constant!"); 1830 1831 SmallVector<EVT, 4> ValueVTs; 1832 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1833 unsigned NumElts = ValueVTs.size(); 1834 if (NumElts == 0) 1835 return SDValue(); // empty struct 1836 SmallVector<SDValue, 4> Constants(NumElts); 1837 for (unsigned i = 0; i != NumElts; ++i) { 1838 EVT EltVT = ValueVTs[i]; 1839 if (isa<UndefValue>(C)) 1840 Constants[i] = DAG.getUNDEF(EltVT); 1841 else if (EltVT.isFloatingPoint()) 1842 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1843 else 1844 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1845 } 1846 1847 return DAG.getMergeValues(Constants, getCurSDLoc()); 1848 } 1849 1850 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1851 return DAG.getBlockAddress(BA, VT); 1852 1853 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1854 return getValue(Equiv->getGlobalValue()); 1855 1856 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1857 return getValue(NC->getGlobalValue()); 1858 1859 if (VT == MVT::aarch64svcount) { 1860 assert(C->isNullValue() && "Can only zero this target type!"); 1861 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1862 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1863 } 1864 1865 VectorType *VecTy = cast<VectorType>(V->getType()); 1866 1867 // Now that we know the number and type of the elements, get that number of 1868 // elements into the Ops array based on what kind of constant it is. 1869 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1870 SmallVector<SDValue, 16> Ops; 1871 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1872 for (unsigned i = 0; i != NumElements; ++i) 1873 Ops.push_back(getValue(CV->getOperand(i))); 1874 1875 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1876 } 1877 1878 if (isa<ConstantAggregateZero>(C)) { 1879 EVT EltVT = 1880 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1881 1882 SDValue Op; 1883 if (EltVT.isFloatingPoint()) 1884 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1885 else 1886 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1887 1888 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1889 } 1890 1891 llvm_unreachable("Unknown vector constant"); 1892 } 1893 1894 // If this is a static alloca, generate it as the frameindex instead of 1895 // computation. 1896 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1897 DenseMap<const AllocaInst*, int>::iterator SI = 1898 FuncInfo.StaticAllocaMap.find(AI); 1899 if (SI != FuncInfo.StaticAllocaMap.end()) 1900 return DAG.getFrameIndex( 1901 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1902 } 1903 1904 // If this is an instruction which fast-isel has deferred, select it now. 1905 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1906 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1907 1908 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1909 Inst->getType(), std::nullopt); 1910 SDValue Chain = DAG.getEntryNode(); 1911 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1912 } 1913 1914 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1915 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1916 1917 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1918 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1919 1920 llvm_unreachable("Can't get register for value!"); 1921 } 1922 1923 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1924 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1925 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1926 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1927 bool IsSEH = isAsynchronousEHPersonality(Pers); 1928 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1929 if (!IsSEH) 1930 CatchPadMBB->setIsEHScopeEntry(); 1931 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1932 if (IsMSVCCXX || IsCoreCLR) 1933 CatchPadMBB->setIsEHFuncletEntry(); 1934 } 1935 1936 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1937 // Update machine-CFG edge. 1938 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1939 FuncInfo.MBB->addSuccessor(TargetMBB); 1940 TargetMBB->setIsEHCatchretTarget(true); 1941 DAG.getMachineFunction().setHasEHCatchret(true); 1942 1943 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1944 bool IsSEH = isAsynchronousEHPersonality(Pers); 1945 if (IsSEH) { 1946 // If this is not a fall-through branch or optimizations are switched off, 1947 // emit the branch. 1948 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1949 TM.getOptLevel() == CodeGenOptLevel::None) 1950 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1951 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1952 return; 1953 } 1954 1955 // Figure out the funclet membership for the catchret's successor. 1956 // This will be used by the FuncletLayout pass to determine how to order the 1957 // BB's. 1958 // A 'catchret' returns to the outer scope's color. 1959 Value *ParentPad = I.getCatchSwitchParentPad(); 1960 const BasicBlock *SuccessorColor; 1961 if (isa<ConstantTokenNone>(ParentPad)) 1962 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1963 else 1964 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1965 assert(SuccessorColor && "No parent funclet for catchret!"); 1966 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1967 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1968 1969 // Create the terminator node. 1970 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1971 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1972 DAG.getBasicBlock(SuccessorColorMBB)); 1973 DAG.setRoot(Ret); 1974 } 1975 1976 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1977 // Don't emit any special code for the cleanuppad instruction. It just marks 1978 // the start of an EH scope/funclet. 1979 FuncInfo.MBB->setIsEHScopeEntry(); 1980 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1981 if (Pers != EHPersonality::Wasm_CXX) { 1982 FuncInfo.MBB->setIsEHFuncletEntry(); 1983 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1984 } 1985 } 1986 1987 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1988 // not match, it is OK to add only the first unwind destination catchpad to the 1989 // successors, because there will be at least one invoke instruction within the 1990 // catch scope that points to the next unwind destination, if one exists, so 1991 // CFGSort cannot mess up with BB sorting order. 1992 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1993 // call within them, and catchpads only consisting of 'catch (...)' have a 1994 // '__cxa_end_catch' call within them, both of which generate invokes in case 1995 // the next unwind destination exists, i.e., the next unwind destination is not 1996 // the caller.) 1997 // 1998 // Having at most one EH pad successor is also simpler and helps later 1999 // transformations. 2000 // 2001 // For example, 2002 // current: 2003 // invoke void @foo to ... unwind label %catch.dispatch 2004 // catch.dispatch: 2005 // %0 = catchswitch within ... [label %catch.start] unwind label %next 2006 // catch.start: 2007 // ... 2008 // ... in this BB or some other child BB dominated by this BB there will be an 2009 // invoke that points to 'next' BB as an unwind destination 2010 // 2011 // next: ; We don't need to add this to 'current' BB's successor 2012 // ... 2013 static void findWasmUnwindDestinations( 2014 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2015 BranchProbability Prob, 2016 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2017 &UnwindDests) { 2018 while (EHPadBB) { 2019 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2020 if (isa<CleanupPadInst>(Pad)) { 2021 // Stop on cleanup pads. 2022 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2023 UnwindDests.back().first->setIsEHScopeEntry(); 2024 break; 2025 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2026 // Add the catchpad handlers to the possible destinations. We don't 2027 // continue to the unwind destination of the catchswitch for wasm. 2028 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2029 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2030 UnwindDests.back().first->setIsEHScopeEntry(); 2031 } 2032 break; 2033 } else { 2034 continue; 2035 } 2036 } 2037 } 2038 2039 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 2040 /// many places it could ultimately go. In the IR, we have a single unwind 2041 /// destination, but in the machine CFG, we enumerate all the possible blocks. 2042 /// This function skips over imaginary basic blocks that hold catchswitch 2043 /// instructions, and finds all the "real" machine 2044 /// basic block destinations. As those destinations may not be successors of 2045 /// EHPadBB, here we also calculate the edge probability to those destinations. 2046 /// The passed-in Prob is the edge probability to EHPadBB. 2047 static void findUnwindDestinations( 2048 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2049 BranchProbability Prob, 2050 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2051 &UnwindDests) { 2052 EHPersonality Personality = 2053 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2054 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2055 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2056 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2057 bool IsSEH = isAsynchronousEHPersonality(Personality); 2058 2059 if (IsWasmCXX) { 2060 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 2061 assert(UnwindDests.size() <= 1 && 2062 "There should be at most one unwind destination for wasm"); 2063 return; 2064 } 2065 2066 while (EHPadBB) { 2067 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2068 BasicBlock *NewEHPadBB = nullptr; 2069 if (isa<LandingPadInst>(Pad)) { 2070 // Stop on landingpads. They are not funclets. 2071 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2072 break; 2073 } else if (isa<CleanupPadInst>(Pad)) { 2074 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2075 // personalities. 2076 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2077 UnwindDests.back().first->setIsEHScopeEntry(); 2078 UnwindDests.back().first->setIsEHFuncletEntry(); 2079 break; 2080 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2081 // Add the catchpad handlers to the possible destinations. 2082 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2083 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2084 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2085 if (IsMSVCCXX || IsCoreCLR) 2086 UnwindDests.back().first->setIsEHFuncletEntry(); 2087 if (!IsSEH) 2088 UnwindDests.back().first->setIsEHScopeEntry(); 2089 } 2090 NewEHPadBB = CatchSwitch->getUnwindDest(); 2091 } else { 2092 continue; 2093 } 2094 2095 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2096 if (BPI && NewEHPadBB) 2097 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2098 EHPadBB = NewEHPadBB; 2099 } 2100 } 2101 2102 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 2103 // Update successor info. 2104 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2105 auto UnwindDest = I.getUnwindDest(); 2106 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2107 BranchProbability UnwindDestProb = 2108 (BPI && UnwindDest) 2109 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 2110 : BranchProbability::getZero(); 2111 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 2112 for (auto &UnwindDest : UnwindDests) { 2113 UnwindDest.first->setIsEHPad(); 2114 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 2115 } 2116 FuncInfo.MBB->normalizeSuccProbs(); 2117 2118 // Create the terminator node. 2119 SDValue Ret = 2120 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2121 DAG.setRoot(Ret); 2122 } 2123 2124 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2125 report_fatal_error("visitCatchSwitch not yet implemented!"); 2126 } 2127 2128 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2129 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2130 auto &DL = DAG.getDataLayout(); 2131 SDValue Chain = getControlRoot(); 2132 SmallVector<ISD::OutputArg, 8> Outs; 2133 SmallVector<SDValue, 8> OutVals; 2134 2135 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2136 // lower 2137 // 2138 // %val = call <ty> @llvm.experimental.deoptimize() 2139 // ret <ty> %val 2140 // 2141 // differently. 2142 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2143 LowerDeoptimizingReturn(); 2144 return; 2145 } 2146 2147 if (!FuncInfo.CanLowerReturn) { 2148 unsigned DemoteReg = FuncInfo.DemoteRegister; 2149 const Function *F = I.getParent()->getParent(); 2150 2151 // Emit a store of the return value through the virtual register. 2152 // Leave Outs empty so that LowerReturn won't try to load return 2153 // registers the usual way. 2154 SmallVector<EVT, 1> PtrValueVTs; 2155 ComputeValueVTs(TLI, DL, 2156 PointerType::get(F->getContext(), 2157 DAG.getDataLayout().getAllocaAddrSpace()), 2158 PtrValueVTs); 2159 2160 SDValue RetPtr = 2161 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2162 SDValue RetOp = getValue(I.getOperand(0)); 2163 2164 SmallVector<EVT, 4> ValueVTs, MemVTs; 2165 SmallVector<uint64_t, 4> Offsets; 2166 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2167 &Offsets, 0); 2168 unsigned NumValues = ValueVTs.size(); 2169 2170 SmallVector<SDValue, 4> Chains(NumValues); 2171 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2172 for (unsigned i = 0; i != NumValues; ++i) { 2173 // An aggregate return value cannot wrap around the address space, so 2174 // offsets to its parts don't wrap either. 2175 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2176 TypeSize::getFixed(Offsets[i])); 2177 2178 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2179 if (MemVTs[i] != ValueVTs[i]) 2180 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2181 Chains[i] = DAG.getStore( 2182 Chain, getCurSDLoc(), Val, 2183 // FIXME: better loc info would be nice. 2184 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2185 commonAlignment(BaseAlign, Offsets[i])); 2186 } 2187 2188 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2189 MVT::Other, Chains); 2190 } else if (I.getNumOperands() != 0) { 2191 SmallVector<EVT, 4> ValueVTs; 2192 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2193 unsigned NumValues = ValueVTs.size(); 2194 if (NumValues) { 2195 SDValue RetOp = getValue(I.getOperand(0)); 2196 2197 const Function *F = I.getParent()->getParent(); 2198 2199 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2200 I.getOperand(0)->getType(), F->getCallingConv(), 2201 /*IsVarArg*/ false, DL); 2202 2203 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2204 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2205 ExtendKind = ISD::SIGN_EXTEND; 2206 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2207 ExtendKind = ISD::ZERO_EXTEND; 2208 2209 LLVMContext &Context = F->getContext(); 2210 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2211 2212 for (unsigned j = 0; j != NumValues; ++j) { 2213 EVT VT = ValueVTs[j]; 2214 2215 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2216 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2217 2218 CallingConv::ID CC = F->getCallingConv(); 2219 2220 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2221 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2222 SmallVector<SDValue, 4> Parts(NumParts); 2223 getCopyToParts(DAG, getCurSDLoc(), 2224 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2225 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2226 2227 // 'inreg' on function refers to return value 2228 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2229 if (RetInReg) 2230 Flags.setInReg(); 2231 2232 if (I.getOperand(0)->getType()->isPointerTy()) { 2233 Flags.setPointer(); 2234 Flags.setPointerAddrSpace( 2235 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2236 } 2237 2238 if (NeedsRegBlock) { 2239 Flags.setInConsecutiveRegs(); 2240 if (j == NumValues - 1) 2241 Flags.setInConsecutiveRegsLast(); 2242 } 2243 2244 // Propagate extension type if any 2245 if (ExtendKind == ISD::SIGN_EXTEND) 2246 Flags.setSExt(); 2247 else if (ExtendKind == ISD::ZERO_EXTEND) 2248 Flags.setZExt(); 2249 2250 for (unsigned i = 0; i < NumParts; ++i) { 2251 Outs.push_back(ISD::OutputArg(Flags, 2252 Parts[i].getValueType().getSimpleVT(), 2253 VT, /*isfixed=*/true, 0, 0)); 2254 OutVals.push_back(Parts[i]); 2255 } 2256 } 2257 } 2258 } 2259 2260 // Push in swifterror virtual register as the last element of Outs. This makes 2261 // sure swifterror virtual register will be returned in the swifterror 2262 // physical register. 2263 const Function *F = I.getParent()->getParent(); 2264 if (TLI.supportSwiftError() && 2265 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2266 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2267 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2268 Flags.setSwiftError(); 2269 Outs.push_back(ISD::OutputArg( 2270 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2271 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2272 // Create SDNode for the swifterror virtual register. 2273 OutVals.push_back( 2274 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2275 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2276 EVT(TLI.getPointerTy(DL)))); 2277 } 2278 2279 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2280 CallingConv::ID CallConv = 2281 DAG.getMachineFunction().getFunction().getCallingConv(); 2282 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2283 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2284 2285 // Verify that the target's LowerReturn behaved as expected. 2286 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2287 "LowerReturn didn't return a valid chain!"); 2288 2289 // Update the DAG with the new chain value resulting from return lowering. 2290 DAG.setRoot(Chain); 2291 } 2292 2293 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2294 /// created for it, emit nodes to copy the value into the virtual 2295 /// registers. 2296 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2297 // Skip empty types 2298 if (V->getType()->isEmptyTy()) 2299 return; 2300 2301 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2302 if (VMI != FuncInfo.ValueMap.end()) { 2303 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2304 "Unused value assigned virtual registers!"); 2305 CopyValueToVirtualRegister(V, VMI->second); 2306 } 2307 } 2308 2309 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2310 /// the current basic block, add it to ValueMap now so that we'll get a 2311 /// CopyTo/FromReg. 2312 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2313 // No need to export constants. 2314 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2315 2316 // Already exported? 2317 if (FuncInfo.isExportedInst(V)) return; 2318 2319 Register Reg = FuncInfo.InitializeRegForValue(V); 2320 CopyValueToVirtualRegister(V, Reg); 2321 } 2322 2323 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2324 const BasicBlock *FromBB) { 2325 // The operands of the setcc have to be in this block. We don't know 2326 // how to export them from some other block. 2327 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2328 // Can export from current BB. 2329 if (VI->getParent() == FromBB) 2330 return true; 2331 2332 // Is already exported, noop. 2333 return FuncInfo.isExportedInst(V); 2334 } 2335 2336 // If this is an argument, we can export it if the BB is the entry block or 2337 // if it is already exported. 2338 if (isa<Argument>(V)) { 2339 if (FromBB->isEntryBlock()) 2340 return true; 2341 2342 // Otherwise, can only export this if it is already exported. 2343 return FuncInfo.isExportedInst(V); 2344 } 2345 2346 // Otherwise, constants can always be exported. 2347 return true; 2348 } 2349 2350 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2351 BranchProbability 2352 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2353 const MachineBasicBlock *Dst) const { 2354 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2355 const BasicBlock *SrcBB = Src->getBasicBlock(); 2356 const BasicBlock *DstBB = Dst->getBasicBlock(); 2357 if (!BPI) { 2358 // If BPI is not available, set the default probability as 1 / N, where N is 2359 // the number of successors. 2360 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2361 return BranchProbability(1, SuccSize); 2362 } 2363 return BPI->getEdgeProbability(SrcBB, DstBB); 2364 } 2365 2366 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2367 MachineBasicBlock *Dst, 2368 BranchProbability Prob) { 2369 if (!FuncInfo.BPI) 2370 Src->addSuccessorWithoutProb(Dst); 2371 else { 2372 if (Prob.isUnknown()) 2373 Prob = getEdgeProbability(Src, Dst); 2374 Src->addSuccessor(Dst, Prob); 2375 } 2376 } 2377 2378 static bool InBlock(const Value *V, const BasicBlock *BB) { 2379 if (const Instruction *I = dyn_cast<Instruction>(V)) 2380 return I->getParent() == BB; 2381 return true; 2382 } 2383 2384 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2385 /// This function emits a branch and is used at the leaves of an OR or an 2386 /// AND operator tree. 2387 void 2388 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2389 MachineBasicBlock *TBB, 2390 MachineBasicBlock *FBB, 2391 MachineBasicBlock *CurBB, 2392 MachineBasicBlock *SwitchBB, 2393 BranchProbability TProb, 2394 BranchProbability FProb, 2395 bool InvertCond) { 2396 const BasicBlock *BB = CurBB->getBasicBlock(); 2397 2398 // If the leaf of the tree is a comparison, merge the condition into 2399 // the caseblock. 2400 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2401 // The operands of the cmp have to be in this block. We don't know 2402 // how to export them from some other block. If this is the first block 2403 // of the sequence, no exporting is needed. 2404 if (CurBB == SwitchBB || 2405 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2406 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2407 ISD::CondCode Condition; 2408 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2409 ICmpInst::Predicate Pred = 2410 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2411 Condition = getICmpCondCode(Pred); 2412 } else { 2413 const FCmpInst *FC = cast<FCmpInst>(Cond); 2414 FCmpInst::Predicate Pred = 2415 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2416 Condition = getFCmpCondCode(Pred); 2417 if (TM.Options.NoNaNsFPMath) 2418 Condition = getFCmpCodeWithoutNaN(Condition); 2419 } 2420 2421 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2422 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2423 SL->SwitchCases.push_back(CB); 2424 return; 2425 } 2426 } 2427 2428 // Create a CaseBlock record representing this branch. 2429 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2430 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2431 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2432 SL->SwitchCases.push_back(CB); 2433 } 2434 2435 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2436 MachineBasicBlock *TBB, 2437 MachineBasicBlock *FBB, 2438 MachineBasicBlock *CurBB, 2439 MachineBasicBlock *SwitchBB, 2440 Instruction::BinaryOps Opc, 2441 BranchProbability TProb, 2442 BranchProbability FProb, 2443 bool InvertCond) { 2444 // Skip over not part of the tree and remember to invert op and operands at 2445 // next level. 2446 Value *NotCond; 2447 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2448 InBlock(NotCond, CurBB->getBasicBlock())) { 2449 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2450 !InvertCond); 2451 return; 2452 } 2453 2454 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2455 const Value *BOpOp0, *BOpOp1; 2456 // Compute the effective opcode for Cond, taking into account whether it needs 2457 // to be inverted, e.g. 2458 // and (not (or A, B)), C 2459 // gets lowered as 2460 // and (and (not A, not B), C) 2461 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2462 if (BOp) { 2463 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2464 ? Instruction::And 2465 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2466 ? Instruction::Or 2467 : (Instruction::BinaryOps)0); 2468 if (InvertCond) { 2469 if (BOpc == Instruction::And) 2470 BOpc = Instruction::Or; 2471 else if (BOpc == Instruction::Or) 2472 BOpc = Instruction::And; 2473 } 2474 } 2475 2476 // If this node is not part of the or/and tree, emit it as a branch. 2477 // Note that all nodes in the tree should have same opcode. 2478 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2479 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2480 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2481 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2482 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2483 TProb, FProb, InvertCond); 2484 return; 2485 } 2486 2487 // Create TmpBB after CurBB. 2488 MachineFunction::iterator BBI(CurBB); 2489 MachineFunction &MF = DAG.getMachineFunction(); 2490 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2491 CurBB->getParent()->insert(++BBI, TmpBB); 2492 2493 if (Opc == Instruction::Or) { 2494 // Codegen X | Y as: 2495 // BB1: 2496 // jmp_if_X TBB 2497 // jmp TmpBB 2498 // TmpBB: 2499 // jmp_if_Y TBB 2500 // jmp FBB 2501 // 2502 2503 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2504 // The requirement is that 2505 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2506 // = TrueProb for original BB. 2507 // Assuming the original probabilities are A and B, one choice is to set 2508 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2509 // A/(1+B) and 2B/(1+B). This choice assumes that 2510 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2511 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2512 // TmpBB, but the math is more complicated. 2513 2514 auto NewTrueProb = TProb / 2; 2515 auto NewFalseProb = TProb / 2 + FProb; 2516 // Emit the LHS condition. 2517 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2518 NewFalseProb, InvertCond); 2519 2520 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2521 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2522 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2523 // Emit the RHS condition into TmpBB. 2524 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2525 Probs[1], InvertCond); 2526 } else { 2527 assert(Opc == Instruction::And && "Unknown merge op!"); 2528 // Codegen X & Y as: 2529 // BB1: 2530 // jmp_if_X TmpBB 2531 // jmp FBB 2532 // TmpBB: 2533 // jmp_if_Y TBB 2534 // jmp FBB 2535 // 2536 // This requires creation of TmpBB after CurBB. 2537 2538 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2539 // The requirement is that 2540 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2541 // = FalseProb for original BB. 2542 // Assuming the original probabilities are A and B, one choice is to set 2543 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2544 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2545 // TrueProb for BB1 * FalseProb for TmpBB. 2546 2547 auto NewTrueProb = TProb + FProb / 2; 2548 auto NewFalseProb = FProb / 2; 2549 // Emit the LHS condition. 2550 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2551 NewFalseProb, InvertCond); 2552 2553 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2554 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2555 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2556 // Emit the RHS condition into TmpBB. 2557 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2558 Probs[1], InvertCond); 2559 } 2560 } 2561 2562 /// If the set of cases should be emitted as a series of branches, return true. 2563 /// If we should emit this as a bunch of and/or'd together conditions, return 2564 /// false. 2565 bool 2566 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2567 if (Cases.size() != 2) return true; 2568 2569 // If this is two comparisons of the same values or'd or and'd together, they 2570 // will get folded into a single comparison, so don't emit two blocks. 2571 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2572 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2573 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2574 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2575 return false; 2576 } 2577 2578 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2579 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2580 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2581 Cases[0].CC == Cases[1].CC && 2582 isa<Constant>(Cases[0].CmpRHS) && 2583 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2584 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2585 return false; 2586 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2587 return false; 2588 } 2589 2590 return true; 2591 } 2592 2593 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2594 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2595 2596 // Update machine-CFG edges. 2597 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2598 2599 if (I.isUnconditional()) { 2600 // Update machine-CFG edges. 2601 BrMBB->addSuccessor(Succ0MBB); 2602 2603 // If this is not a fall-through branch or optimizations are switched off, 2604 // emit the branch. 2605 if (Succ0MBB != NextBlock(BrMBB) || 2606 TM.getOptLevel() == CodeGenOptLevel::None) { 2607 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2608 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2609 setValue(&I, Br); 2610 DAG.setRoot(Br); 2611 } 2612 2613 return; 2614 } 2615 2616 // If this condition is one of the special cases we handle, do special stuff 2617 // now. 2618 const Value *CondVal = I.getCondition(); 2619 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2620 2621 // If this is a series of conditions that are or'd or and'd together, emit 2622 // this as a sequence of branches instead of setcc's with and/or operations. 2623 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2624 // unpredictable branches, and vector extracts because those jumps are likely 2625 // expensive for any target), this should improve performance. 2626 // For example, instead of something like: 2627 // cmp A, B 2628 // C = seteq 2629 // cmp D, E 2630 // F = setle 2631 // or C, F 2632 // jnz foo 2633 // Emit: 2634 // cmp A, B 2635 // je foo 2636 // cmp D, E 2637 // jle foo 2638 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2639 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2640 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2641 Value *Vec; 2642 const Value *BOp0, *BOp1; 2643 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2644 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2645 Opcode = Instruction::And; 2646 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2647 Opcode = Instruction::Or; 2648 2649 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2650 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2651 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2652 getEdgeProbability(BrMBB, Succ0MBB), 2653 getEdgeProbability(BrMBB, Succ1MBB), 2654 /*InvertCond=*/false); 2655 // If the compares in later blocks need to use values not currently 2656 // exported from this block, export them now. This block should always 2657 // be the first entry. 2658 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2659 2660 // Allow some cases to be rejected. 2661 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2662 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2663 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2664 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2665 } 2666 2667 // Emit the branch for this block. 2668 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2669 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2670 return; 2671 } 2672 2673 // Okay, we decided not to do this, remove any inserted MBB's and clear 2674 // SwitchCases. 2675 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2676 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2677 2678 SL->SwitchCases.clear(); 2679 } 2680 } 2681 2682 // Create a CaseBlock record representing this branch. 2683 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2684 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2685 2686 // Use visitSwitchCase to actually insert the fast branch sequence for this 2687 // cond branch. 2688 visitSwitchCase(CB, BrMBB); 2689 } 2690 2691 /// visitSwitchCase - Emits the necessary code to represent a single node in 2692 /// the binary search tree resulting from lowering a switch instruction. 2693 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2694 MachineBasicBlock *SwitchBB) { 2695 SDValue Cond; 2696 SDValue CondLHS = getValue(CB.CmpLHS); 2697 SDLoc dl = CB.DL; 2698 2699 if (CB.CC == ISD::SETTRUE) { 2700 // Branch or fall through to TrueBB. 2701 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2702 SwitchBB->normalizeSuccProbs(); 2703 if (CB.TrueBB != NextBlock(SwitchBB)) { 2704 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2705 DAG.getBasicBlock(CB.TrueBB))); 2706 } 2707 return; 2708 } 2709 2710 auto &TLI = DAG.getTargetLoweringInfo(); 2711 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2712 2713 // Build the setcc now. 2714 if (!CB.CmpMHS) { 2715 // Fold "(X == true)" to X and "(X == false)" to !X to 2716 // handle common cases produced by branch lowering. 2717 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2718 CB.CC == ISD::SETEQ) 2719 Cond = CondLHS; 2720 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2721 CB.CC == ISD::SETEQ) { 2722 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2723 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2724 } else { 2725 SDValue CondRHS = getValue(CB.CmpRHS); 2726 2727 // If a pointer's DAG type is larger than its memory type then the DAG 2728 // values are zero-extended. This breaks signed comparisons so truncate 2729 // back to the underlying type before doing the compare. 2730 if (CondLHS.getValueType() != MemVT) { 2731 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2732 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2733 } 2734 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2735 } 2736 } else { 2737 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2738 2739 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2740 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2741 2742 SDValue CmpOp = getValue(CB.CmpMHS); 2743 EVT VT = CmpOp.getValueType(); 2744 2745 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2746 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2747 ISD::SETLE); 2748 } else { 2749 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2750 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2751 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2752 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2753 } 2754 } 2755 2756 // Update successor info 2757 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2758 // TrueBB and FalseBB are always different unless the incoming IR is 2759 // degenerate. This only happens when running llc on weird IR. 2760 if (CB.TrueBB != CB.FalseBB) 2761 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2762 SwitchBB->normalizeSuccProbs(); 2763 2764 // If the lhs block is the next block, invert the condition so that we can 2765 // fall through to the lhs instead of the rhs block. 2766 if (CB.TrueBB == NextBlock(SwitchBB)) { 2767 std::swap(CB.TrueBB, CB.FalseBB); 2768 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2769 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2770 } 2771 2772 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2773 MVT::Other, getControlRoot(), Cond, 2774 DAG.getBasicBlock(CB.TrueBB)); 2775 2776 setValue(CurInst, BrCond); 2777 2778 // Insert the false branch. Do this even if it's a fall through branch, 2779 // this makes it easier to do DAG optimizations which require inverting 2780 // the branch condition. 2781 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2782 DAG.getBasicBlock(CB.FalseBB)); 2783 2784 DAG.setRoot(BrCond); 2785 } 2786 2787 /// visitJumpTable - Emit JumpTable node in the current MBB 2788 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2789 // Emit the code for the jump table 2790 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2791 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2792 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2793 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2794 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2795 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2796 Index.getValue(1), Table, Index); 2797 DAG.setRoot(BrJumpTable); 2798 } 2799 2800 /// visitJumpTableHeader - This function emits necessary code to produce index 2801 /// in the JumpTable from switch case. 2802 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2803 JumpTableHeader &JTH, 2804 MachineBasicBlock *SwitchBB) { 2805 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2806 const SDLoc &dl = *JT.SL; 2807 2808 // Subtract the lowest switch case value from the value being switched on. 2809 SDValue SwitchOp = getValue(JTH.SValue); 2810 EVT VT = SwitchOp.getValueType(); 2811 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2812 DAG.getConstant(JTH.First, dl, VT)); 2813 2814 // The SDNode we just created, which holds the value being switched on minus 2815 // the smallest case value, needs to be copied to a virtual register so it 2816 // can be used as an index into the jump table in a subsequent basic block. 2817 // This value may be smaller or larger than the target's pointer type, and 2818 // therefore require extension or truncating. 2819 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2820 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2821 2822 unsigned JumpTableReg = 2823 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2824 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2825 JumpTableReg, SwitchOp); 2826 JT.Reg = JumpTableReg; 2827 2828 if (!JTH.FallthroughUnreachable) { 2829 // Emit the range check for the jump table, and branch to the default block 2830 // for the switch statement if the value being switched on exceeds the 2831 // largest case in the switch. 2832 SDValue CMP = DAG.getSetCC( 2833 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2834 Sub.getValueType()), 2835 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2836 2837 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2838 MVT::Other, CopyTo, CMP, 2839 DAG.getBasicBlock(JT.Default)); 2840 2841 // Avoid emitting unnecessary branches to the next block. 2842 if (JT.MBB != NextBlock(SwitchBB)) 2843 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2844 DAG.getBasicBlock(JT.MBB)); 2845 2846 DAG.setRoot(BrCond); 2847 } else { 2848 // Avoid emitting unnecessary branches to the next block. 2849 if (JT.MBB != NextBlock(SwitchBB)) 2850 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2851 DAG.getBasicBlock(JT.MBB))); 2852 else 2853 DAG.setRoot(CopyTo); 2854 } 2855 } 2856 2857 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2858 /// variable if there exists one. 2859 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2860 SDValue &Chain) { 2861 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2862 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2863 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2864 MachineFunction &MF = DAG.getMachineFunction(); 2865 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2866 MachineSDNode *Node = 2867 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2868 if (Global) { 2869 MachinePointerInfo MPInfo(Global); 2870 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2871 MachineMemOperand::MODereferenceable; 2872 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2873 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2874 DAG.setNodeMemRefs(Node, {MemRef}); 2875 } 2876 if (PtrTy != PtrMemTy) 2877 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2878 return SDValue(Node, 0); 2879 } 2880 2881 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2882 /// tail spliced into a stack protector check success bb. 2883 /// 2884 /// For a high level explanation of how this fits into the stack protector 2885 /// generation see the comment on the declaration of class 2886 /// StackProtectorDescriptor. 2887 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2888 MachineBasicBlock *ParentBB) { 2889 2890 // First create the loads to the guard/stack slot for the comparison. 2891 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2892 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2893 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2894 2895 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2896 int FI = MFI.getStackProtectorIndex(); 2897 2898 SDValue Guard; 2899 SDLoc dl = getCurSDLoc(); 2900 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2901 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2902 Align Align = 2903 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 2904 2905 // Generate code to load the content of the guard slot. 2906 SDValue GuardVal = DAG.getLoad( 2907 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2908 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2909 MachineMemOperand::MOVolatile); 2910 2911 if (TLI.useStackGuardXorFP()) 2912 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2913 2914 // Retrieve guard check function, nullptr if instrumentation is inlined. 2915 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2916 // The target provides a guard check function to validate the guard value. 2917 // Generate a call to that function with the content of the guard slot as 2918 // argument. 2919 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2920 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2921 2922 TargetLowering::ArgListTy Args; 2923 TargetLowering::ArgListEntry Entry; 2924 Entry.Node = GuardVal; 2925 Entry.Ty = FnTy->getParamType(0); 2926 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2927 Entry.IsInReg = true; 2928 Args.push_back(Entry); 2929 2930 TargetLowering::CallLoweringInfo CLI(DAG); 2931 CLI.setDebugLoc(getCurSDLoc()) 2932 .setChain(DAG.getEntryNode()) 2933 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2934 getValue(GuardCheckFn), std::move(Args)); 2935 2936 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2937 DAG.setRoot(Result.second); 2938 return; 2939 } 2940 2941 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2942 // Otherwise, emit a volatile load to retrieve the stack guard value. 2943 SDValue Chain = DAG.getEntryNode(); 2944 if (TLI.useLoadStackGuardNode()) { 2945 Guard = getLoadStackGuard(DAG, dl, Chain); 2946 } else { 2947 const Value *IRGuard = TLI.getSDagStackGuard(M); 2948 SDValue GuardPtr = getValue(IRGuard); 2949 2950 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2951 MachinePointerInfo(IRGuard, 0), Align, 2952 MachineMemOperand::MOVolatile); 2953 } 2954 2955 // Perform the comparison via a getsetcc. 2956 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2957 *DAG.getContext(), 2958 Guard.getValueType()), 2959 Guard, GuardVal, ISD::SETNE); 2960 2961 // If the guard/stackslot do not equal, branch to failure MBB. 2962 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2963 MVT::Other, GuardVal.getOperand(0), 2964 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2965 // Otherwise branch to success MBB. 2966 SDValue Br = DAG.getNode(ISD::BR, dl, 2967 MVT::Other, BrCond, 2968 DAG.getBasicBlock(SPD.getSuccessMBB())); 2969 2970 DAG.setRoot(Br); 2971 } 2972 2973 /// Codegen the failure basic block for a stack protector check. 2974 /// 2975 /// A failure stack protector machine basic block consists simply of a call to 2976 /// __stack_chk_fail(). 2977 /// 2978 /// For a high level explanation of how this fits into the stack protector 2979 /// generation see the comment on the declaration of class 2980 /// StackProtectorDescriptor. 2981 void 2982 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2983 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2984 TargetLowering::MakeLibCallOptions CallOptions; 2985 CallOptions.setDiscardResult(true); 2986 SDValue Chain = 2987 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2988 std::nullopt, CallOptions, getCurSDLoc()) 2989 .second; 2990 // On PS4/PS5, the "return address" must still be within the calling 2991 // function, even if it's at the very end, so emit an explicit TRAP here. 2992 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2993 if (TM.getTargetTriple().isPS()) 2994 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2995 // WebAssembly needs an unreachable instruction after a non-returning call, 2996 // because the function return type can be different from __stack_chk_fail's 2997 // return type (void). 2998 if (TM.getTargetTriple().isWasm()) 2999 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3000 3001 DAG.setRoot(Chain); 3002 } 3003 3004 /// visitBitTestHeader - This function emits necessary code to produce value 3005 /// suitable for "bit tests" 3006 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 3007 MachineBasicBlock *SwitchBB) { 3008 SDLoc dl = getCurSDLoc(); 3009 3010 // Subtract the minimum value. 3011 SDValue SwitchOp = getValue(B.SValue); 3012 EVT VT = SwitchOp.getValueType(); 3013 SDValue RangeSub = 3014 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 3015 3016 // Determine the type of the test operands. 3017 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3018 bool UsePtrType = false; 3019 if (!TLI.isTypeLegal(VT)) { 3020 UsePtrType = true; 3021 } else { 3022 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 3023 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 3024 // Switch table case range are encoded into series of masks. 3025 // Just use pointer type, it's guaranteed to fit. 3026 UsePtrType = true; 3027 break; 3028 } 3029 } 3030 SDValue Sub = RangeSub; 3031 if (UsePtrType) { 3032 VT = TLI.getPointerTy(DAG.getDataLayout()); 3033 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 3034 } 3035 3036 B.RegVT = VT.getSimpleVT(); 3037 B.Reg = FuncInfo.CreateReg(B.RegVT); 3038 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 3039 3040 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 3041 3042 if (!B.FallthroughUnreachable) 3043 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 3044 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 3045 SwitchBB->normalizeSuccProbs(); 3046 3047 SDValue Root = CopyTo; 3048 if (!B.FallthroughUnreachable) { 3049 // Conditional branch to the default block. 3050 SDValue RangeCmp = DAG.getSetCC(dl, 3051 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3052 RangeSub.getValueType()), 3053 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 3054 ISD::SETUGT); 3055 3056 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 3057 DAG.getBasicBlock(B.Default)); 3058 } 3059 3060 // Avoid emitting unnecessary branches to the next block. 3061 if (MBB != NextBlock(SwitchBB)) 3062 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 3063 3064 DAG.setRoot(Root); 3065 } 3066 3067 /// visitBitTestCase - this function produces one "bit test" 3068 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 3069 MachineBasicBlock* NextMBB, 3070 BranchProbability BranchProbToNext, 3071 unsigned Reg, 3072 BitTestCase &B, 3073 MachineBasicBlock *SwitchBB) { 3074 SDLoc dl = getCurSDLoc(); 3075 MVT VT = BB.RegVT; 3076 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 3077 SDValue Cmp; 3078 unsigned PopCount = llvm::popcount(B.Mask); 3079 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3080 if (PopCount == 1) { 3081 // Testing for a single bit; just compare the shift count with what it 3082 // would need to be to shift a 1 bit in that position. 3083 Cmp = DAG.getSetCC( 3084 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3085 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 3086 ISD::SETEQ); 3087 } else if (PopCount == BB.Range) { 3088 // There is only one zero bit in the range, test for it directly. 3089 Cmp = DAG.getSetCC( 3090 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3091 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 3092 } else { 3093 // Make desired shift 3094 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 3095 DAG.getConstant(1, dl, VT), ShiftOp); 3096 3097 // Emit bit tests and jumps 3098 SDValue AndOp = DAG.getNode(ISD::AND, dl, 3099 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 3100 Cmp = DAG.getSetCC( 3101 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3102 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 3103 } 3104 3105 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 3106 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 3107 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 3108 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 3109 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 3110 // one as they are relative probabilities (and thus work more like weights), 3111 // and hence we need to normalize them to let the sum of them become one. 3112 SwitchBB->normalizeSuccProbs(); 3113 3114 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 3115 MVT::Other, getControlRoot(), 3116 Cmp, DAG.getBasicBlock(B.TargetBB)); 3117 3118 // Avoid emitting unnecessary branches to the next block. 3119 if (NextMBB != NextBlock(SwitchBB)) 3120 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3121 DAG.getBasicBlock(NextMBB)); 3122 3123 DAG.setRoot(BrAnd); 3124 } 3125 3126 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3127 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3128 3129 // Retrieve successors. Look through artificial IR level blocks like 3130 // catchswitch for successors. 3131 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3132 const BasicBlock *EHPadBB = I.getSuccessor(1); 3133 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3134 3135 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3136 // have to do anything here to lower funclet bundles. 3137 assert(!I.hasOperandBundlesOtherThan( 3138 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3139 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3140 LLVMContext::OB_cfguardtarget, 3141 LLVMContext::OB_clang_arc_attachedcall}) && 3142 "Cannot lower invokes with arbitrary operand bundles yet!"); 3143 3144 const Value *Callee(I.getCalledOperand()); 3145 const Function *Fn = dyn_cast<Function>(Callee); 3146 if (isa<InlineAsm>(Callee)) 3147 visitInlineAsm(I, EHPadBB); 3148 else if (Fn && Fn->isIntrinsic()) { 3149 switch (Fn->getIntrinsicID()) { 3150 default: 3151 llvm_unreachable("Cannot invoke this intrinsic"); 3152 case Intrinsic::donothing: 3153 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3154 case Intrinsic::seh_try_begin: 3155 case Intrinsic::seh_scope_begin: 3156 case Intrinsic::seh_try_end: 3157 case Intrinsic::seh_scope_end: 3158 if (EHPadMBB) 3159 // a block referenced by EH table 3160 // so dtor-funclet not removed by opts 3161 EHPadMBB->setMachineBlockAddressTaken(); 3162 break; 3163 case Intrinsic::experimental_patchpoint_void: 3164 case Intrinsic::experimental_patchpoint_i64: 3165 visitPatchpoint(I, EHPadBB); 3166 break; 3167 case Intrinsic::experimental_gc_statepoint: 3168 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3169 break; 3170 case Intrinsic::wasm_rethrow: { 3171 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3172 // special because it can be invoked, so we manually lower it to a DAG 3173 // node here. 3174 SmallVector<SDValue, 8> Ops; 3175 Ops.push_back(getRoot()); // inchain 3176 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3177 Ops.push_back( 3178 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3179 TLI.getPointerTy(DAG.getDataLayout()))); 3180 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3181 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3182 break; 3183 } 3184 } 3185 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 3186 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3187 // Eventually we will support lowering the @llvm.experimental.deoptimize 3188 // intrinsic, and right now there are no plans to support other intrinsics 3189 // with deopt state. 3190 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3191 } else { 3192 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3193 } 3194 3195 // If the value of the invoke is used outside of its defining block, make it 3196 // available as a virtual register. 3197 // We already took care of the exported value for the statepoint instruction 3198 // during call to the LowerStatepoint. 3199 if (!isa<GCStatepointInst>(I)) { 3200 CopyToExportRegsIfNeeded(&I); 3201 } 3202 3203 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3204 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3205 BranchProbability EHPadBBProb = 3206 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3207 : BranchProbability::getZero(); 3208 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3209 3210 // Update successor info. 3211 addSuccessorWithProb(InvokeMBB, Return); 3212 for (auto &UnwindDest : UnwindDests) { 3213 UnwindDest.first->setIsEHPad(); 3214 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3215 } 3216 InvokeMBB->normalizeSuccProbs(); 3217 3218 // Drop into normal successor. 3219 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3220 DAG.getBasicBlock(Return))); 3221 } 3222 3223 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3224 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3225 3226 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3227 // have to do anything here to lower funclet bundles. 3228 assert(!I.hasOperandBundlesOtherThan( 3229 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3230 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3231 3232 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3233 visitInlineAsm(I); 3234 CopyToExportRegsIfNeeded(&I); 3235 3236 // Retrieve successors. 3237 SmallPtrSet<BasicBlock *, 8> Dests; 3238 Dests.insert(I.getDefaultDest()); 3239 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3240 3241 // Update successor info. 3242 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3243 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3244 BasicBlock *Dest = I.getIndirectDest(i); 3245 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3246 Target->setIsInlineAsmBrIndirectTarget(); 3247 Target->setMachineBlockAddressTaken(); 3248 Target->setLabelMustBeEmitted(); 3249 // Don't add duplicate machine successors. 3250 if (Dests.insert(Dest).second) 3251 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3252 } 3253 CallBrMBB->normalizeSuccProbs(); 3254 3255 // Drop into default successor. 3256 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3257 MVT::Other, getControlRoot(), 3258 DAG.getBasicBlock(Return))); 3259 } 3260 3261 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3262 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3263 } 3264 3265 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3266 assert(FuncInfo.MBB->isEHPad() && 3267 "Call to landingpad not in landing pad!"); 3268 3269 // If there aren't registers to copy the values into (e.g., during SjLj 3270 // exceptions), then don't bother to create these DAG nodes. 3271 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3272 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3273 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3274 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3275 return; 3276 3277 // If landingpad's return type is token type, we don't create DAG nodes 3278 // for its exception pointer and selector value. The extraction of exception 3279 // pointer or selector value from token type landingpads is not currently 3280 // supported. 3281 if (LP.getType()->isTokenTy()) 3282 return; 3283 3284 SmallVector<EVT, 2> ValueVTs; 3285 SDLoc dl = getCurSDLoc(); 3286 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3287 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3288 3289 // Get the two live-in registers as SDValues. The physregs have already been 3290 // copied into virtual registers. 3291 SDValue Ops[2]; 3292 if (FuncInfo.ExceptionPointerVirtReg) { 3293 Ops[0] = DAG.getZExtOrTrunc( 3294 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3295 FuncInfo.ExceptionPointerVirtReg, 3296 TLI.getPointerTy(DAG.getDataLayout())), 3297 dl, ValueVTs[0]); 3298 } else { 3299 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3300 } 3301 Ops[1] = DAG.getZExtOrTrunc( 3302 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3303 FuncInfo.ExceptionSelectorVirtReg, 3304 TLI.getPointerTy(DAG.getDataLayout())), 3305 dl, ValueVTs[1]); 3306 3307 // Merge into one. 3308 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3309 DAG.getVTList(ValueVTs), Ops); 3310 setValue(&LP, Res); 3311 } 3312 3313 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3314 MachineBasicBlock *Last) { 3315 // Update JTCases. 3316 for (JumpTableBlock &JTB : SL->JTCases) 3317 if (JTB.first.HeaderBB == First) 3318 JTB.first.HeaderBB = Last; 3319 3320 // Update BitTestCases. 3321 for (BitTestBlock &BTB : SL->BitTestCases) 3322 if (BTB.Parent == First) 3323 BTB.Parent = Last; 3324 } 3325 3326 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3327 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3328 3329 // Update machine-CFG edges with unique successors. 3330 SmallSet<BasicBlock*, 32> Done; 3331 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3332 BasicBlock *BB = I.getSuccessor(i); 3333 bool Inserted = Done.insert(BB).second; 3334 if (!Inserted) 3335 continue; 3336 3337 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3338 addSuccessorWithProb(IndirectBrMBB, Succ); 3339 } 3340 IndirectBrMBB->normalizeSuccProbs(); 3341 3342 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3343 MVT::Other, getControlRoot(), 3344 getValue(I.getAddress()))); 3345 } 3346 3347 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3348 if (!DAG.getTarget().Options.TrapUnreachable) 3349 return; 3350 3351 // We may be able to ignore unreachable behind a noreturn call. 3352 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3353 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) { 3354 if (Call->doesNotReturn()) 3355 return; 3356 } 3357 } 3358 3359 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3360 } 3361 3362 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3363 SDNodeFlags Flags; 3364 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3365 Flags.copyFMF(*FPOp); 3366 3367 SDValue Op = getValue(I.getOperand(0)); 3368 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3369 Op, Flags); 3370 setValue(&I, UnNodeValue); 3371 } 3372 3373 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3374 SDNodeFlags Flags; 3375 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3376 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3377 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3378 } 3379 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3380 Flags.setExact(ExactOp->isExact()); 3381 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I)) 3382 Flags.setDisjoint(DisjointOp->isDisjoint()); 3383 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3384 Flags.copyFMF(*FPOp); 3385 3386 SDValue Op1 = getValue(I.getOperand(0)); 3387 SDValue Op2 = getValue(I.getOperand(1)); 3388 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3389 Op1, Op2, Flags); 3390 setValue(&I, BinNodeValue); 3391 } 3392 3393 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3394 SDValue Op1 = getValue(I.getOperand(0)); 3395 SDValue Op2 = getValue(I.getOperand(1)); 3396 3397 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3398 Op1.getValueType(), DAG.getDataLayout()); 3399 3400 // Coerce the shift amount to the right type if we can. This exposes the 3401 // truncate or zext to optimization early. 3402 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3403 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3404 "Unexpected shift type"); 3405 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3406 } 3407 3408 bool nuw = false; 3409 bool nsw = false; 3410 bool exact = false; 3411 3412 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3413 3414 if (const OverflowingBinaryOperator *OFBinOp = 3415 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3416 nuw = OFBinOp->hasNoUnsignedWrap(); 3417 nsw = OFBinOp->hasNoSignedWrap(); 3418 } 3419 if (const PossiblyExactOperator *ExactOp = 3420 dyn_cast<const PossiblyExactOperator>(&I)) 3421 exact = ExactOp->isExact(); 3422 } 3423 SDNodeFlags Flags; 3424 Flags.setExact(exact); 3425 Flags.setNoSignedWrap(nsw); 3426 Flags.setNoUnsignedWrap(nuw); 3427 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3428 Flags); 3429 setValue(&I, Res); 3430 } 3431 3432 void SelectionDAGBuilder::visitSDiv(const User &I) { 3433 SDValue Op1 = getValue(I.getOperand(0)); 3434 SDValue Op2 = getValue(I.getOperand(1)); 3435 3436 SDNodeFlags Flags; 3437 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3438 cast<PossiblyExactOperator>(&I)->isExact()); 3439 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3440 Op2, Flags)); 3441 } 3442 3443 void SelectionDAGBuilder::visitICmp(const User &I) { 3444 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3445 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3446 predicate = IC->getPredicate(); 3447 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3448 predicate = ICmpInst::Predicate(IC->getPredicate()); 3449 SDValue Op1 = getValue(I.getOperand(0)); 3450 SDValue Op2 = getValue(I.getOperand(1)); 3451 ISD::CondCode Opcode = getICmpCondCode(predicate); 3452 3453 auto &TLI = DAG.getTargetLoweringInfo(); 3454 EVT MemVT = 3455 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3456 3457 // If a pointer's DAG type is larger than its memory type then the DAG values 3458 // are zero-extended. This breaks signed comparisons so truncate back to the 3459 // underlying type before doing the compare. 3460 if (Op1.getValueType() != MemVT) { 3461 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3462 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3463 } 3464 3465 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3466 I.getType()); 3467 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3468 } 3469 3470 void SelectionDAGBuilder::visitFCmp(const User &I) { 3471 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3472 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3473 predicate = FC->getPredicate(); 3474 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3475 predicate = FCmpInst::Predicate(FC->getPredicate()); 3476 SDValue Op1 = getValue(I.getOperand(0)); 3477 SDValue Op2 = getValue(I.getOperand(1)); 3478 3479 ISD::CondCode Condition = getFCmpCondCode(predicate); 3480 auto *FPMO = cast<FPMathOperator>(&I); 3481 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3482 Condition = getFCmpCodeWithoutNaN(Condition); 3483 3484 SDNodeFlags Flags; 3485 Flags.copyFMF(*FPMO); 3486 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3487 3488 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3489 I.getType()); 3490 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3491 } 3492 3493 // Check if the condition of the select has one use or two users that are both 3494 // selects with the same condition. 3495 static bool hasOnlySelectUsers(const Value *Cond) { 3496 return llvm::all_of(Cond->users(), [](const Value *V) { 3497 return isa<SelectInst>(V); 3498 }); 3499 } 3500 3501 void SelectionDAGBuilder::visitSelect(const User &I) { 3502 SmallVector<EVT, 4> ValueVTs; 3503 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3504 ValueVTs); 3505 unsigned NumValues = ValueVTs.size(); 3506 if (NumValues == 0) return; 3507 3508 SmallVector<SDValue, 4> Values(NumValues); 3509 SDValue Cond = getValue(I.getOperand(0)); 3510 SDValue LHSVal = getValue(I.getOperand(1)); 3511 SDValue RHSVal = getValue(I.getOperand(2)); 3512 SmallVector<SDValue, 1> BaseOps(1, Cond); 3513 ISD::NodeType OpCode = 3514 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3515 3516 bool IsUnaryAbs = false; 3517 bool Negate = false; 3518 3519 SDNodeFlags Flags; 3520 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3521 Flags.copyFMF(*FPOp); 3522 3523 Flags.setUnpredictable( 3524 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3525 3526 // Min/max matching is only viable if all output VTs are the same. 3527 if (all_equal(ValueVTs)) { 3528 EVT VT = ValueVTs[0]; 3529 LLVMContext &Ctx = *DAG.getContext(); 3530 auto &TLI = DAG.getTargetLoweringInfo(); 3531 3532 // We care about the legality of the operation after it has been type 3533 // legalized. 3534 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3535 VT = TLI.getTypeToTransformTo(Ctx, VT); 3536 3537 // If the vselect is legal, assume we want to leave this as a vector setcc + 3538 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3539 // min/max is legal on the scalar type. 3540 bool UseScalarMinMax = VT.isVector() && 3541 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3542 3543 // ValueTracking's select pattern matching does not account for -0.0, 3544 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3545 // -0.0 is less than +0.0. 3546 Value *LHS, *RHS; 3547 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3548 ISD::NodeType Opc = ISD::DELETED_NODE; 3549 switch (SPR.Flavor) { 3550 case SPF_UMAX: Opc = ISD::UMAX; break; 3551 case SPF_UMIN: Opc = ISD::UMIN; break; 3552 case SPF_SMAX: Opc = ISD::SMAX; break; 3553 case SPF_SMIN: Opc = ISD::SMIN; break; 3554 case SPF_FMINNUM: 3555 switch (SPR.NaNBehavior) { 3556 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3557 case SPNB_RETURNS_NAN: break; 3558 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3559 case SPNB_RETURNS_ANY: 3560 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3561 (UseScalarMinMax && 3562 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3563 Opc = ISD::FMINNUM; 3564 break; 3565 } 3566 break; 3567 case SPF_FMAXNUM: 3568 switch (SPR.NaNBehavior) { 3569 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3570 case SPNB_RETURNS_NAN: break; 3571 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3572 case SPNB_RETURNS_ANY: 3573 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3574 (UseScalarMinMax && 3575 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3576 Opc = ISD::FMAXNUM; 3577 break; 3578 } 3579 break; 3580 case SPF_NABS: 3581 Negate = true; 3582 [[fallthrough]]; 3583 case SPF_ABS: 3584 IsUnaryAbs = true; 3585 Opc = ISD::ABS; 3586 break; 3587 default: break; 3588 } 3589 3590 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3591 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3592 (UseScalarMinMax && 3593 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3594 // If the underlying comparison instruction is used by any other 3595 // instruction, the consumed instructions won't be destroyed, so it is 3596 // not profitable to convert to a min/max. 3597 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3598 OpCode = Opc; 3599 LHSVal = getValue(LHS); 3600 RHSVal = getValue(RHS); 3601 BaseOps.clear(); 3602 } 3603 3604 if (IsUnaryAbs) { 3605 OpCode = Opc; 3606 LHSVal = getValue(LHS); 3607 BaseOps.clear(); 3608 } 3609 } 3610 3611 if (IsUnaryAbs) { 3612 for (unsigned i = 0; i != NumValues; ++i) { 3613 SDLoc dl = getCurSDLoc(); 3614 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3615 Values[i] = 3616 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3617 if (Negate) 3618 Values[i] = DAG.getNegative(Values[i], dl, VT); 3619 } 3620 } else { 3621 for (unsigned i = 0; i != NumValues; ++i) { 3622 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3623 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3624 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3625 Values[i] = DAG.getNode( 3626 OpCode, getCurSDLoc(), 3627 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3628 } 3629 } 3630 3631 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3632 DAG.getVTList(ValueVTs), Values)); 3633 } 3634 3635 void SelectionDAGBuilder::visitTrunc(const User &I) { 3636 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3637 SDValue N = getValue(I.getOperand(0)); 3638 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3639 I.getType()); 3640 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3641 } 3642 3643 void SelectionDAGBuilder::visitZExt(const User &I) { 3644 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3645 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3646 SDValue N = getValue(I.getOperand(0)); 3647 auto &TLI = DAG.getTargetLoweringInfo(); 3648 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3649 3650 SDNodeFlags Flags; 3651 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3652 Flags.setNonNeg(PNI->hasNonNeg()); 3653 3654 // Eagerly use nonneg information to canonicalize towards sign_extend if 3655 // that is the target's preference. 3656 // TODO: Let the target do this later. 3657 if (Flags.hasNonNeg() && 3658 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3659 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3660 return; 3661 } 3662 3663 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3664 } 3665 3666 void SelectionDAGBuilder::visitSExt(const User &I) { 3667 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3668 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3669 SDValue N = getValue(I.getOperand(0)); 3670 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3671 I.getType()); 3672 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3673 } 3674 3675 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3676 // FPTrunc is never a no-op cast, no need to check 3677 SDValue N = getValue(I.getOperand(0)); 3678 SDLoc dl = getCurSDLoc(); 3679 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3680 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3681 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3682 DAG.getTargetConstant( 3683 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3684 } 3685 3686 void SelectionDAGBuilder::visitFPExt(const User &I) { 3687 // FPExt is never a no-op cast, no need to check 3688 SDValue N = getValue(I.getOperand(0)); 3689 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3690 I.getType()); 3691 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3692 } 3693 3694 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3695 // FPToUI is never a no-op cast, no need to check 3696 SDValue N = getValue(I.getOperand(0)); 3697 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3698 I.getType()); 3699 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3700 } 3701 3702 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3703 // FPToSI is never a no-op cast, no need to check 3704 SDValue N = getValue(I.getOperand(0)); 3705 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3706 I.getType()); 3707 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3708 } 3709 3710 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3711 // UIToFP is never a no-op cast, no need to check 3712 SDValue N = getValue(I.getOperand(0)); 3713 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3714 I.getType()); 3715 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3716 } 3717 3718 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3719 // SIToFP is never a no-op cast, no need to check 3720 SDValue N = getValue(I.getOperand(0)); 3721 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3722 I.getType()); 3723 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3724 } 3725 3726 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3727 // What to do depends on the size of the integer and the size of the pointer. 3728 // We can either truncate, zero extend, or no-op, accordingly. 3729 SDValue N = getValue(I.getOperand(0)); 3730 auto &TLI = DAG.getTargetLoweringInfo(); 3731 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3732 I.getType()); 3733 EVT PtrMemVT = 3734 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3735 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3736 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3737 setValue(&I, N); 3738 } 3739 3740 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3741 // What to do depends on the size of the integer and the size of the pointer. 3742 // We can either truncate, zero extend, or no-op, accordingly. 3743 SDValue N = getValue(I.getOperand(0)); 3744 auto &TLI = DAG.getTargetLoweringInfo(); 3745 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3746 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3747 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3748 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3749 setValue(&I, N); 3750 } 3751 3752 void SelectionDAGBuilder::visitBitCast(const User &I) { 3753 SDValue N = getValue(I.getOperand(0)); 3754 SDLoc dl = getCurSDLoc(); 3755 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3756 I.getType()); 3757 3758 // BitCast assures us that source and destination are the same size so this is 3759 // either a BITCAST or a no-op. 3760 if (DestVT != N.getValueType()) 3761 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3762 DestVT, N)); // convert types. 3763 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3764 // might fold any kind of constant expression to an integer constant and that 3765 // is not what we are looking for. Only recognize a bitcast of a genuine 3766 // constant integer as an opaque constant. 3767 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3768 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3769 /*isOpaque*/true)); 3770 else 3771 setValue(&I, N); // noop cast. 3772 } 3773 3774 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3775 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3776 const Value *SV = I.getOperand(0); 3777 SDValue N = getValue(SV); 3778 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3779 3780 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3781 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3782 3783 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3784 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3785 3786 setValue(&I, N); 3787 } 3788 3789 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3790 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3791 SDValue InVec = getValue(I.getOperand(0)); 3792 SDValue InVal = getValue(I.getOperand(1)); 3793 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3794 TLI.getVectorIdxTy(DAG.getDataLayout())); 3795 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3796 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3797 InVec, InVal, InIdx)); 3798 } 3799 3800 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3801 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3802 SDValue InVec = getValue(I.getOperand(0)); 3803 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3804 TLI.getVectorIdxTy(DAG.getDataLayout())); 3805 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3806 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3807 InVec, InIdx)); 3808 } 3809 3810 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3811 SDValue Src1 = getValue(I.getOperand(0)); 3812 SDValue Src2 = getValue(I.getOperand(1)); 3813 ArrayRef<int> Mask; 3814 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3815 Mask = SVI->getShuffleMask(); 3816 else 3817 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3818 SDLoc DL = getCurSDLoc(); 3819 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3820 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3821 EVT SrcVT = Src1.getValueType(); 3822 3823 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3824 VT.isScalableVector()) { 3825 // Canonical splat form of first element of first input vector. 3826 SDValue FirstElt = 3827 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3828 DAG.getVectorIdxConstant(0, DL)); 3829 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3830 return; 3831 } 3832 3833 // For now, we only handle splats for scalable vectors. 3834 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3835 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3836 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3837 3838 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3839 unsigned MaskNumElts = Mask.size(); 3840 3841 if (SrcNumElts == MaskNumElts) { 3842 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3843 return; 3844 } 3845 3846 // Normalize the shuffle vector since mask and vector length don't match. 3847 if (SrcNumElts < MaskNumElts) { 3848 // Mask is longer than the source vectors. We can use concatenate vector to 3849 // make the mask and vectors lengths match. 3850 3851 if (MaskNumElts % SrcNumElts == 0) { 3852 // Mask length is a multiple of the source vector length. 3853 // Check if the shuffle is some kind of concatenation of the input 3854 // vectors. 3855 unsigned NumConcat = MaskNumElts / SrcNumElts; 3856 bool IsConcat = true; 3857 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3858 for (unsigned i = 0; i != MaskNumElts; ++i) { 3859 int Idx = Mask[i]; 3860 if (Idx < 0) 3861 continue; 3862 // Ensure the indices in each SrcVT sized piece are sequential and that 3863 // the same source is used for the whole piece. 3864 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3865 (ConcatSrcs[i / SrcNumElts] >= 0 && 3866 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3867 IsConcat = false; 3868 break; 3869 } 3870 // Remember which source this index came from. 3871 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3872 } 3873 3874 // The shuffle is concatenating multiple vectors together. Just emit 3875 // a CONCAT_VECTORS operation. 3876 if (IsConcat) { 3877 SmallVector<SDValue, 8> ConcatOps; 3878 for (auto Src : ConcatSrcs) { 3879 if (Src < 0) 3880 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3881 else if (Src == 0) 3882 ConcatOps.push_back(Src1); 3883 else 3884 ConcatOps.push_back(Src2); 3885 } 3886 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3887 return; 3888 } 3889 } 3890 3891 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3892 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3893 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3894 PaddedMaskNumElts); 3895 3896 // Pad both vectors with undefs to make them the same length as the mask. 3897 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3898 3899 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3900 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3901 MOps1[0] = Src1; 3902 MOps2[0] = Src2; 3903 3904 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3905 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3906 3907 // Readjust mask for new input vector length. 3908 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3909 for (unsigned i = 0; i != MaskNumElts; ++i) { 3910 int Idx = Mask[i]; 3911 if (Idx >= (int)SrcNumElts) 3912 Idx -= SrcNumElts - PaddedMaskNumElts; 3913 MappedOps[i] = Idx; 3914 } 3915 3916 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3917 3918 // If the concatenated vector was padded, extract a subvector with the 3919 // correct number of elements. 3920 if (MaskNumElts != PaddedMaskNumElts) 3921 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3922 DAG.getVectorIdxConstant(0, DL)); 3923 3924 setValue(&I, Result); 3925 return; 3926 } 3927 3928 if (SrcNumElts > MaskNumElts) { 3929 // Analyze the access pattern of the vector to see if we can extract 3930 // two subvectors and do the shuffle. 3931 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3932 bool CanExtract = true; 3933 for (int Idx : Mask) { 3934 unsigned Input = 0; 3935 if (Idx < 0) 3936 continue; 3937 3938 if (Idx >= (int)SrcNumElts) { 3939 Input = 1; 3940 Idx -= SrcNumElts; 3941 } 3942 3943 // If all the indices come from the same MaskNumElts sized portion of 3944 // the sources we can use extract. Also make sure the extract wouldn't 3945 // extract past the end of the source. 3946 int NewStartIdx = alignDown(Idx, MaskNumElts); 3947 if (NewStartIdx + MaskNumElts > SrcNumElts || 3948 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3949 CanExtract = false; 3950 // Make sure we always update StartIdx as we use it to track if all 3951 // elements are undef. 3952 StartIdx[Input] = NewStartIdx; 3953 } 3954 3955 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3956 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3957 return; 3958 } 3959 if (CanExtract) { 3960 // Extract appropriate subvector and generate a vector shuffle 3961 for (unsigned Input = 0; Input < 2; ++Input) { 3962 SDValue &Src = Input == 0 ? Src1 : Src2; 3963 if (StartIdx[Input] < 0) 3964 Src = DAG.getUNDEF(VT); 3965 else { 3966 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3967 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3968 } 3969 } 3970 3971 // Calculate new mask. 3972 SmallVector<int, 8> MappedOps(Mask); 3973 for (int &Idx : MappedOps) { 3974 if (Idx >= (int)SrcNumElts) 3975 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3976 else if (Idx >= 0) 3977 Idx -= StartIdx[0]; 3978 } 3979 3980 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3981 return; 3982 } 3983 } 3984 3985 // We can't use either concat vectors or extract subvectors so fall back to 3986 // replacing the shuffle with extract and build vector. 3987 // to insert and build vector. 3988 EVT EltVT = VT.getVectorElementType(); 3989 SmallVector<SDValue,8> Ops; 3990 for (int Idx : Mask) { 3991 SDValue Res; 3992 3993 if (Idx < 0) { 3994 Res = DAG.getUNDEF(EltVT); 3995 } else { 3996 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3997 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3998 3999 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 4000 DAG.getVectorIdxConstant(Idx, DL)); 4001 } 4002 4003 Ops.push_back(Res); 4004 } 4005 4006 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 4007 } 4008 4009 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 4010 ArrayRef<unsigned> Indices = I.getIndices(); 4011 const Value *Op0 = I.getOperand(0); 4012 const Value *Op1 = I.getOperand(1); 4013 Type *AggTy = I.getType(); 4014 Type *ValTy = Op1->getType(); 4015 bool IntoUndef = isa<UndefValue>(Op0); 4016 bool FromUndef = isa<UndefValue>(Op1); 4017 4018 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4019 4020 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4021 SmallVector<EVT, 4> AggValueVTs; 4022 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 4023 SmallVector<EVT, 4> ValValueVTs; 4024 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4025 4026 unsigned NumAggValues = AggValueVTs.size(); 4027 unsigned NumValValues = ValValueVTs.size(); 4028 SmallVector<SDValue, 4> Values(NumAggValues); 4029 4030 // Ignore an insertvalue that produces an empty object 4031 if (!NumAggValues) { 4032 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4033 return; 4034 } 4035 4036 SDValue Agg = getValue(Op0); 4037 unsigned i = 0; 4038 // Copy the beginning value(s) from the original aggregate. 4039 for (; i != LinearIndex; ++i) 4040 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4041 SDValue(Agg.getNode(), Agg.getResNo() + i); 4042 // Copy values from the inserted value(s). 4043 if (NumValValues) { 4044 SDValue Val = getValue(Op1); 4045 for (; i != LinearIndex + NumValValues; ++i) 4046 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4047 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 4048 } 4049 // Copy remaining value(s) from the original aggregate. 4050 for (; i != NumAggValues; ++i) 4051 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4052 SDValue(Agg.getNode(), Agg.getResNo() + i); 4053 4054 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4055 DAG.getVTList(AggValueVTs), Values)); 4056 } 4057 4058 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 4059 ArrayRef<unsigned> Indices = I.getIndices(); 4060 const Value *Op0 = I.getOperand(0); 4061 Type *AggTy = Op0->getType(); 4062 Type *ValTy = I.getType(); 4063 bool OutOfUndef = isa<UndefValue>(Op0); 4064 4065 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4066 4067 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4068 SmallVector<EVT, 4> ValValueVTs; 4069 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4070 4071 unsigned NumValValues = ValValueVTs.size(); 4072 4073 // Ignore a extractvalue that produces an empty object 4074 if (!NumValValues) { 4075 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4076 return; 4077 } 4078 4079 SmallVector<SDValue, 4> Values(NumValValues); 4080 4081 SDValue Agg = getValue(Op0); 4082 // Copy out the selected value(s). 4083 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 4084 Values[i - LinearIndex] = 4085 OutOfUndef ? 4086 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 4087 SDValue(Agg.getNode(), Agg.getResNo() + i); 4088 4089 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4090 DAG.getVTList(ValValueVTs), Values)); 4091 } 4092 4093 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 4094 Value *Op0 = I.getOperand(0); 4095 // Note that the pointer operand may be a vector of pointers. Take the scalar 4096 // element which holds a pointer. 4097 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 4098 SDValue N = getValue(Op0); 4099 SDLoc dl = getCurSDLoc(); 4100 auto &TLI = DAG.getTargetLoweringInfo(); 4101 4102 // Normalize Vector GEP - all scalar operands should be converted to the 4103 // splat vector. 4104 bool IsVectorGEP = I.getType()->isVectorTy(); 4105 ElementCount VectorElementCount = 4106 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 4107 : ElementCount::getFixed(0); 4108 4109 if (IsVectorGEP && !N.getValueType().isVector()) { 4110 LLVMContext &Context = *DAG.getContext(); 4111 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 4112 N = DAG.getSplat(VT, dl, N); 4113 } 4114 4115 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 4116 GTI != E; ++GTI) { 4117 const Value *Idx = GTI.getOperand(); 4118 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4119 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4120 if (Field) { 4121 // N = N + Offset 4122 uint64_t Offset = 4123 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4124 4125 // In an inbounds GEP with an offset that is nonnegative even when 4126 // interpreted as signed, assume there is no unsigned overflow. 4127 SDNodeFlags Flags; 4128 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 4129 Flags.setNoUnsignedWrap(true); 4130 4131 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4132 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4133 } 4134 } else { 4135 // IdxSize is the width of the arithmetic according to IR semantics. 4136 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4137 // (and fix up the result later). 4138 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4139 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4140 TypeSize ElementSize = 4141 GTI.getSequentialElementStride(DAG.getDataLayout()); 4142 // We intentionally mask away the high bits here; ElementSize may not 4143 // fit in IdxTy. 4144 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4145 bool ElementScalable = ElementSize.isScalable(); 4146 4147 // If this is a scalar constant or a splat vector of constants, 4148 // handle it quickly. 4149 const auto *C = dyn_cast<Constant>(Idx); 4150 if (C && isa<VectorType>(C->getType())) 4151 C = C->getSplatValue(); 4152 4153 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4154 if (CI && CI->isZero()) 4155 continue; 4156 if (CI && !ElementScalable) { 4157 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4158 LLVMContext &Context = *DAG.getContext(); 4159 SDValue OffsVal; 4160 if (IsVectorGEP) 4161 OffsVal = DAG.getConstant( 4162 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4163 else 4164 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4165 4166 // In an inbounds GEP with an offset that is nonnegative even when 4167 // interpreted as signed, assume there is no unsigned overflow. 4168 SDNodeFlags Flags; 4169 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4170 Flags.setNoUnsignedWrap(true); 4171 4172 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4173 4174 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4175 continue; 4176 } 4177 4178 // N = N + Idx * ElementMul; 4179 SDValue IdxN = getValue(Idx); 4180 4181 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4182 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4183 VectorElementCount); 4184 IdxN = DAG.getSplat(VT, dl, IdxN); 4185 } 4186 4187 // If the index is smaller or larger than intptr_t, truncate or extend 4188 // it. 4189 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4190 4191 if (ElementScalable) { 4192 EVT VScaleTy = N.getValueType().getScalarType(); 4193 SDValue VScale = DAG.getNode( 4194 ISD::VSCALE, dl, VScaleTy, 4195 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4196 if (IsVectorGEP) 4197 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4198 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4199 } else { 4200 // If this is a multiply by a power of two, turn it into a shl 4201 // immediately. This is a very common case. 4202 if (ElementMul != 1) { 4203 if (ElementMul.isPowerOf2()) { 4204 unsigned Amt = ElementMul.logBase2(); 4205 IdxN = DAG.getNode(ISD::SHL, dl, 4206 N.getValueType(), IdxN, 4207 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4208 } else { 4209 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4210 IdxN.getValueType()); 4211 IdxN = DAG.getNode(ISD::MUL, dl, 4212 N.getValueType(), IdxN, Scale); 4213 } 4214 } 4215 } 4216 4217 N = DAG.getNode(ISD::ADD, dl, 4218 N.getValueType(), N, IdxN); 4219 } 4220 } 4221 4222 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4223 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4224 if (IsVectorGEP) { 4225 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4226 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4227 } 4228 4229 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4230 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4231 4232 setValue(&I, N); 4233 } 4234 4235 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4236 // If this is a fixed sized alloca in the entry block of the function, 4237 // allocate it statically on the stack. 4238 if (FuncInfo.StaticAllocaMap.count(&I)) 4239 return; // getValue will auto-populate this. 4240 4241 SDLoc dl = getCurSDLoc(); 4242 Type *Ty = I.getAllocatedType(); 4243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4244 auto &DL = DAG.getDataLayout(); 4245 TypeSize TySize = DL.getTypeAllocSize(Ty); 4246 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4247 4248 SDValue AllocSize = getValue(I.getArraySize()); 4249 4250 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4251 if (AllocSize.getValueType() != IntPtr) 4252 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4253 4254 if (TySize.isScalable()) 4255 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4256 DAG.getVScale(dl, IntPtr, 4257 APInt(IntPtr.getScalarSizeInBits(), 4258 TySize.getKnownMinValue()))); 4259 else { 4260 SDValue TySizeValue = 4261 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4262 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4263 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4264 } 4265 4266 // Handle alignment. If the requested alignment is less than or equal to 4267 // the stack alignment, ignore it. If the size is greater than or equal to 4268 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4269 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4270 if (*Alignment <= StackAlign) 4271 Alignment = std::nullopt; 4272 4273 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4274 // Round the size of the allocation up to the stack alignment size 4275 // by add SA-1 to the size. This doesn't overflow because we're computing 4276 // an address inside an alloca. 4277 SDNodeFlags Flags; 4278 Flags.setNoUnsignedWrap(true); 4279 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4280 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4281 4282 // Mask out the low bits for alignment purposes. 4283 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4284 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4285 4286 SDValue Ops[] = { 4287 getRoot(), AllocSize, 4288 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4289 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4290 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4291 setValue(&I, DSA); 4292 DAG.setRoot(DSA.getValue(1)); 4293 4294 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4295 } 4296 4297 static const MDNode *getRangeMetadata(const Instruction &I) { 4298 // If !noundef is not present, then !range violation results in a poison 4299 // value rather than immediate undefined behavior. In theory, transferring 4300 // these annotations to SDAG is fine, but in practice there are key SDAG 4301 // transforms that are known not to be poison-safe, such as folding logical 4302 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4303 // also present. 4304 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4305 return nullptr; 4306 return I.getMetadata(LLVMContext::MD_range); 4307 } 4308 4309 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4310 if (I.isAtomic()) 4311 return visitAtomicLoad(I); 4312 4313 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4314 const Value *SV = I.getOperand(0); 4315 if (TLI.supportSwiftError()) { 4316 // Swifterror values can come from either a function parameter with 4317 // swifterror attribute or an alloca with swifterror attribute. 4318 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4319 if (Arg->hasSwiftErrorAttr()) 4320 return visitLoadFromSwiftError(I); 4321 } 4322 4323 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4324 if (Alloca->isSwiftError()) 4325 return visitLoadFromSwiftError(I); 4326 } 4327 } 4328 4329 SDValue Ptr = getValue(SV); 4330 4331 Type *Ty = I.getType(); 4332 SmallVector<EVT, 4> ValueVTs, MemVTs; 4333 SmallVector<TypeSize, 4> Offsets; 4334 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets, 0); 4335 unsigned NumValues = ValueVTs.size(); 4336 if (NumValues == 0) 4337 return; 4338 4339 Align Alignment = I.getAlign(); 4340 AAMDNodes AAInfo = I.getAAMetadata(); 4341 const MDNode *Ranges = getRangeMetadata(I); 4342 bool isVolatile = I.isVolatile(); 4343 MachineMemOperand::Flags MMOFlags = 4344 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4345 4346 SDValue Root; 4347 bool ConstantMemory = false; 4348 if (isVolatile) 4349 // Serialize volatile loads with other side effects. 4350 Root = getRoot(); 4351 else if (NumValues > MaxParallelChains) 4352 Root = getMemoryRoot(); 4353 else if (AA && 4354 AA->pointsToConstantMemory(MemoryLocation( 4355 SV, 4356 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4357 AAInfo))) { 4358 // Do not serialize (non-volatile) loads of constant memory with anything. 4359 Root = DAG.getEntryNode(); 4360 ConstantMemory = true; 4361 MMOFlags |= MachineMemOperand::MOInvariant; 4362 } else { 4363 // Do not serialize non-volatile loads against each other. 4364 Root = DAG.getRoot(); 4365 } 4366 4367 SDLoc dl = getCurSDLoc(); 4368 4369 if (isVolatile) 4370 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4371 4372 SmallVector<SDValue, 4> Values(NumValues); 4373 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4374 4375 unsigned ChainI = 0; 4376 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4377 // Serializing loads here may result in excessive register pressure, and 4378 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4379 // could recover a bit by hoisting nodes upward in the chain by recognizing 4380 // they are side-effect free or do not alias. The optimizer should really 4381 // avoid this case by converting large object/array copies to llvm.memcpy 4382 // (MaxParallelChains should always remain as failsafe). 4383 if (ChainI == MaxParallelChains) { 4384 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4385 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4386 ArrayRef(Chains.data(), ChainI)); 4387 Root = Chain; 4388 ChainI = 0; 4389 } 4390 4391 // TODO: MachinePointerInfo only supports a fixed length offset. 4392 MachinePointerInfo PtrInfo = 4393 !Offsets[i].isScalable() || Offsets[i].isZero() 4394 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4395 : MachinePointerInfo(); 4396 4397 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4398 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4399 MMOFlags, AAInfo, Ranges); 4400 Chains[ChainI] = L.getValue(1); 4401 4402 if (MemVTs[i] != ValueVTs[i]) 4403 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4404 4405 Values[i] = L; 4406 } 4407 4408 if (!ConstantMemory) { 4409 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4410 ArrayRef(Chains.data(), ChainI)); 4411 if (isVolatile) 4412 DAG.setRoot(Chain); 4413 else 4414 PendingLoads.push_back(Chain); 4415 } 4416 4417 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4418 DAG.getVTList(ValueVTs), Values)); 4419 } 4420 4421 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4422 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4423 "call visitStoreToSwiftError when backend supports swifterror"); 4424 4425 SmallVector<EVT, 4> ValueVTs; 4426 SmallVector<uint64_t, 4> Offsets; 4427 const Value *SrcV = I.getOperand(0); 4428 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4429 SrcV->getType(), ValueVTs, &Offsets, 0); 4430 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4431 "expect a single EVT for swifterror"); 4432 4433 SDValue Src = getValue(SrcV); 4434 // Create a virtual register, then update the virtual register. 4435 Register VReg = 4436 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4437 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4438 // Chain can be getRoot or getControlRoot. 4439 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4440 SDValue(Src.getNode(), Src.getResNo())); 4441 DAG.setRoot(CopyNode); 4442 } 4443 4444 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4445 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4446 "call visitLoadFromSwiftError when backend supports swifterror"); 4447 4448 assert(!I.isVolatile() && 4449 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4450 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4451 "Support volatile, non temporal, invariant for load_from_swift_error"); 4452 4453 const Value *SV = I.getOperand(0); 4454 Type *Ty = I.getType(); 4455 assert( 4456 (!AA || 4457 !AA->pointsToConstantMemory(MemoryLocation( 4458 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4459 I.getAAMetadata()))) && 4460 "load_from_swift_error should not be constant memory"); 4461 4462 SmallVector<EVT, 4> ValueVTs; 4463 SmallVector<uint64_t, 4> Offsets; 4464 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4465 ValueVTs, &Offsets, 0); 4466 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4467 "expect a single EVT for swifterror"); 4468 4469 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4470 SDValue L = DAG.getCopyFromReg( 4471 getRoot(), getCurSDLoc(), 4472 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4473 4474 setValue(&I, L); 4475 } 4476 4477 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4478 if (I.isAtomic()) 4479 return visitAtomicStore(I); 4480 4481 const Value *SrcV = I.getOperand(0); 4482 const Value *PtrV = I.getOperand(1); 4483 4484 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4485 if (TLI.supportSwiftError()) { 4486 // Swifterror values can come from either a function parameter with 4487 // swifterror attribute or an alloca with swifterror attribute. 4488 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4489 if (Arg->hasSwiftErrorAttr()) 4490 return visitStoreToSwiftError(I); 4491 } 4492 4493 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4494 if (Alloca->isSwiftError()) 4495 return visitStoreToSwiftError(I); 4496 } 4497 } 4498 4499 SmallVector<EVT, 4> ValueVTs, MemVTs; 4500 SmallVector<TypeSize, 4> Offsets; 4501 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4502 SrcV->getType(), ValueVTs, &MemVTs, &Offsets, 0); 4503 unsigned NumValues = ValueVTs.size(); 4504 if (NumValues == 0) 4505 return; 4506 4507 // Get the lowered operands. Note that we do this after 4508 // checking if NumResults is zero, because with zero results 4509 // the operands won't have values in the map. 4510 SDValue Src = getValue(SrcV); 4511 SDValue Ptr = getValue(PtrV); 4512 4513 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4514 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4515 SDLoc dl = getCurSDLoc(); 4516 Align Alignment = I.getAlign(); 4517 AAMDNodes AAInfo = I.getAAMetadata(); 4518 4519 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4520 4521 unsigned ChainI = 0; 4522 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4523 // See visitLoad comments. 4524 if (ChainI == MaxParallelChains) { 4525 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4526 ArrayRef(Chains.data(), ChainI)); 4527 Root = Chain; 4528 ChainI = 0; 4529 } 4530 4531 // TODO: MachinePointerInfo only supports a fixed length offset. 4532 MachinePointerInfo PtrInfo = 4533 !Offsets[i].isScalable() || Offsets[i].isZero() 4534 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4535 : MachinePointerInfo(); 4536 4537 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4538 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4539 if (MemVTs[i] != ValueVTs[i]) 4540 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4541 SDValue St = 4542 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4543 Chains[ChainI] = St; 4544 } 4545 4546 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4547 ArrayRef(Chains.data(), ChainI)); 4548 setValue(&I, StoreNode); 4549 DAG.setRoot(StoreNode); 4550 } 4551 4552 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4553 bool IsCompressing) { 4554 SDLoc sdl = getCurSDLoc(); 4555 4556 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4557 MaybeAlign &Alignment) { 4558 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4559 Src0 = I.getArgOperand(0); 4560 Ptr = I.getArgOperand(1); 4561 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4562 Mask = I.getArgOperand(3); 4563 }; 4564 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4565 MaybeAlign &Alignment) { 4566 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4567 Src0 = I.getArgOperand(0); 4568 Ptr = I.getArgOperand(1); 4569 Mask = I.getArgOperand(2); 4570 Alignment = std::nullopt; 4571 }; 4572 4573 Value *PtrOperand, *MaskOperand, *Src0Operand; 4574 MaybeAlign Alignment; 4575 if (IsCompressing) 4576 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4577 else 4578 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4579 4580 SDValue Ptr = getValue(PtrOperand); 4581 SDValue Src0 = getValue(Src0Operand); 4582 SDValue Mask = getValue(MaskOperand); 4583 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4584 4585 EVT VT = Src0.getValueType(); 4586 if (!Alignment) 4587 Alignment = DAG.getEVTAlign(VT); 4588 4589 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4590 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4591 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4592 SDValue StoreNode = 4593 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4594 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4595 DAG.setRoot(StoreNode); 4596 setValue(&I, StoreNode); 4597 } 4598 4599 // Get a uniform base for the Gather/Scatter intrinsic. 4600 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4601 // We try to represent it as a base pointer + vector of indices. 4602 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4603 // The first operand of the GEP may be a single pointer or a vector of pointers 4604 // Example: 4605 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4606 // or 4607 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4608 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4609 // 4610 // When the first GEP operand is a single pointer - it is the uniform base we 4611 // are looking for. If first operand of the GEP is a splat vector - we 4612 // extract the splat value and use it as a uniform base. 4613 // In all other cases the function returns 'false'. 4614 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4615 ISD::MemIndexType &IndexType, SDValue &Scale, 4616 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4617 uint64_t ElemSize) { 4618 SelectionDAG& DAG = SDB->DAG; 4619 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4620 const DataLayout &DL = DAG.getDataLayout(); 4621 4622 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4623 4624 // Handle splat constant pointer. 4625 if (auto *C = dyn_cast<Constant>(Ptr)) { 4626 C = C->getSplatValue(); 4627 if (!C) 4628 return false; 4629 4630 Base = SDB->getValue(C); 4631 4632 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4633 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4634 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4635 IndexType = ISD::SIGNED_SCALED; 4636 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4637 return true; 4638 } 4639 4640 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4641 if (!GEP || GEP->getParent() != CurBB) 4642 return false; 4643 4644 if (GEP->getNumOperands() != 2) 4645 return false; 4646 4647 const Value *BasePtr = GEP->getPointerOperand(); 4648 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4649 4650 // Make sure the base is scalar and the index is a vector. 4651 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4652 return false; 4653 4654 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4655 if (ScaleVal.isScalable()) 4656 return false; 4657 4658 // Target may not support the required addressing mode. 4659 if (ScaleVal != 1 && 4660 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4661 return false; 4662 4663 Base = SDB->getValue(BasePtr); 4664 Index = SDB->getValue(IndexVal); 4665 IndexType = ISD::SIGNED_SCALED; 4666 4667 Scale = 4668 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4669 return true; 4670 } 4671 4672 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4673 SDLoc sdl = getCurSDLoc(); 4674 4675 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4676 const Value *Ptr = I.getArgOperand(1); 4677 SDValue Src0 = getValue(I.getArgOperand(0)); 4678 SDValue Mask = getValue(I.getArgOperand(3)); 4679 EVT VT = Src0.getValueType(); 4680 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4681 ->getMaybeAlignValue() 4682 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4683 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4684 4685 SDValue Base; 4686 SDValue Index; 4687 ISD::MemIndexType IndexType; 4688 SDValue Scale; 4689 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4690 I.getParent(), VT.getScalarStoreSize()); 4691 4692 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4693 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4694 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4695 // TODO: Make MachineMemOperands aware of scalable 4696 // vectors. 4697 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4698 if (!UniformBase) { 4699 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4700 Index = getValue(Ptr); 4701 IndexType = ISD::SIGNED_SCALED; 4702 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4703 } 4704 4705 EVT IdxVT = Index.getValueType(); 4706 EVT EltTy = IdxVT.getVectorElementType(); 4707 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4708 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4709 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4710 } 4711 4712 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4713 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4714 Ops, MMO, IndexType, false); 4715 DAG.setRoot(Scatter); 4716 setValue(&I, Scatter); 4717 } 4718 4719 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4720 SDLoc sdl = getCurSDLoc(); 4721 4722 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4723 MaybeAlign &Alignment) { 4724 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4725 Ptr = I.getArgOperand(0); 4726 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4727 Mask = I.getArgOperand(2); 4728 Src0 = I.getArgOperand(3); 4729 }; 4730 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4731 MaybeAlign &Alignment) { 4732 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4733 Ptr = I.getArgOperand(0); 4734 Alignment = std::nullopt; 4735 Mask = I.getArgOperand(1); 4736 Src0 = I.getArgOperand(2); 4737 }; 4738 4739 Value *PtrOperand, *MaskOperand, *Src0Operand; 4740 MaybeAlign Alignment; 4741 if (IsExpanding) 4742 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4743 else 4744 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4745 4746 SDValue Ptr = getValue(PtrOperand); 4747 SDValue Src0 = getValue(Src0Operand); 4748 SDValue Mask = getValue(MaskOperand); 4749 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4750 4751 EVT VT = Src0.getValueType(); 4752 if (!Alignment) 4753 Alignment = DAG.getEVTAlign(VT); 4754 4755 AAMDNodes AAInfo = I.getAAMetadata(); 4756 const MDNode *Ranges = getRangeMetadata(I); 4757 4758 // Do not serialize masked loads of constant memory with anything. 4759 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4760 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4761 4762 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4763 4764 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4765 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4766 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4767 4768 SDValue Load = 4769 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4770 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4771 if (AddToChain) 4772 PendingLoads.push_back(Load.getValue(1)); 4773 setValue(&I, Load); 4774 } 4775 4776 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4777 SDLoc sdl = getCurSDLoc(); 4778 4779 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4780 const Value *Ptr = I.getArgOperand(0); 4781 SDValue Src0 = getValue(I.getArgOperand(3)); 4782 SDValue Mask = getValue(I.getArgOperand(2)); 4783 4784 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4785 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4786 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4787 ->getMaybeAlignValue() 4788 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4789 4790 const MDNode *Ranges = getRangeMetadata(I); 4791 4792 SDValue Root = DAG.getRoot(); 4793 SDValue Base; 4794 SDValue Index; 4795 ISD::MemIndexType IndexType; 4796 SDValue Scale; 4797 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4798 I.getParent(), VT.getScalarStoreSize()); 4799 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4800 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4801 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4802 // TODO: Make MachineMemOperands aware of scalable 4803 // vectors. 4804 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4805 4806 if (!UniformBase) { 4807 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4808 Index = getValue(Ptr); 4809 IndexType = ISD::SIGNED_SCALED; 4810 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4811 } 4812 4813 EVT IdxVT = Index.getValueType(); 4814 EVT EltTy = IdxVT.getVectorElementType(); 4815 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4816 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4817 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4818 } 4819 4820 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4821 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4822 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4823 4824 PendingLoads.push_back(Gather.getValue(1)); 4825 setValue(&I, Gather); 4826 } 4827 4828 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4829 SDLoc dl = getCurSDLoc(); 4830 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4831 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4832 SyncScope::ID SSID = I.getSyncScopeID(); 4833 4834 SDValue InChain = getRoot(); 4835 4836 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4837 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4838 4839 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4840 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4841 4842 MachineFunction &MF = DAG.getMachineFunction(); 4843 MachineMemOperand *MMO = MF.getMachineMemOperand( 4844 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4845 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4846 FailureOrdering); 4847 4848 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4849 dl, MemVT, VTs, InChain, 4850 getValue(I.getPointerOperand()), 4851 getValue(I.getCompareOperand()), 4852 getValue(I.getNewValOperand()), MMO); 4853 4854 SDValue OutChain = L.getValue(2); 4855 4856 setValue(&I, L); 4857 DAG.setRoot(OutChain); 4858 } 4859 4860 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4861 SDLoc dl = getCurSDLoc(); 4862 ISD::NodeType NT; 4863 switch (I.getOperation()) { 4864 default: llvm_unreachable("Unknown atomicrmw operation"); 4865 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4866 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4867 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4868 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4869 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4870 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4871 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4872 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4873 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4874 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4875 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4876 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4877 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4878 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4879 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4880 case AtomicRMWInst::UIncWrap: 4881 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 4882 break; 4883 case AtomicRMWInst::UDecWrap: 4884 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 4885 break; 4886 } 4887 AtomicOrdering Ordering = I.getOrdering(); 4888 SyncScope::ID SSID = I.getSyncScopeID(); 4889 4890 SDValue InChain = getRoot(); 4891 4892 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4893 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4894 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4895 4896 MachineFunction &MF = DAG.getMachineFunction(); 4897 MachineMemOperand *MMO = MF.getMachineMemOperand( 4898 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4899 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4900 4901 SDValue L = 4902 DAG.getAtomic(NT, dl, MemVT, InChain, 4903 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4904 MMO); 4905 4906 SDValue OutChain = L.getValue(1); 4907 4908 setValue(&I, L); 4909 DAG.setRoot(OutChain); 4910 } 4911 4912 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4913 SDLoc dl = getCurSDLoc(); 4914 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4915 SDValue Ops[3]; 4916 Ops[0] = getRoot(); 4917 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4918 TLI.getFenceOperandTy(DAG.getDataLayout())); 4919 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4920 TLI.getFenceOperandTy(DAG.getDataLayout())); 4921 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4922 setValue(&I, N); 4923 DAG.setRoot(N); 4924 } 4925 4926 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4927 SDLoc dl = getCurSDLoc(); 4928 AtomicOrdering Order = I.getOrdering(); 4929 SyncScope::ID SSID = I.getSyncScopeID(); 4930 4931 SDValue InChain = getRoot(); 4932 4933 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4934 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4935 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4936 4937 if (!TLI.supportsUnalignedAtomics() && 4938 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4939 report_fatal_error("Cannot generate unaligned atomic load"); 4940 4941 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4942 4943 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4944 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4945 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4946 4947 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4948 4949 SDValue Ptr = getValue(I.getPointerOperand()); 4950 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4951 Ptr, MMO); 4952 4953 SDValue OutChain = L.getValue(1); 4954 if (MemVT != VT) 4955 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4956 4957 setValue(&I, L); 4958 DAG.setRoot(OutChain); 4959 } 4960 4961 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4962 SDLoc dl = getCurSDLoc(); 4963 4964 AtomicOrdering Ordering = I.getOrdering(); 4965 SyncScope::ID SSID = I.getSyncScopeID(); 4966 4967 SDValue InChain = getRoot(); 4968 4969 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4970 EVT MemVT = 4971 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4972 4973 if (!TLI.supportsUnalignedAtomics() && 4974 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4975 report_fatal_error("Cannot generate unaligned atomic store"); 4976 4977 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4978 4979 MachineFunction &MF = DAG.getMachineFunction(); 4980 MachineMemOperand *MMO = MF.getMachineMemOperand( 4981 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4982 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4983 4984 SDValue Val = getValue(I.getValueOperand()); 4985 if (Val.getValueType() != MemVT) 4986 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4987 SDValue Ptr = getValue(I.getPointerOperand()); 4988 4989 SDValue OutChain = 4990 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 4991 4992 setValue(&I, OutChain); 4993 DAG.setRoot(OutChain); 4994 } 4995 4996 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4997 /// node. 4998 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4999 unsigned Intrinsic) { 5000 // Ignore the callsite's attributes. A specific call site may be marked with 5001 // readnone, but the lowering code will expect the chain based on the 5002 // definition. 5003 const Function *F = I.getCalledFunction(); 5004 bool HasChain = !F->doesNotAccessMemory(); 5005 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 5006 5007 // Build the operand list. 5008 SmallVector<SDValue, 8> Ops; 5009 if (HasChain) { // If this intrinsic has side-effects, chainify it. 5010 if (OnlyLoad) { 5011 // We don't need to serialize loads against other loads. 5012 Ops.push_back(DAG.getRoot()); 5013 } else { 5014 Ops.push_back(getRoot()); 5015 } 5016 } 5017 5018 // Info is set by getTgtMemIntrinsic 5019 TargetLowering::IntrinsicInfo Info; 5020 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5021 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 5022 DAG.getMachineFunction(), 5023 Intrinsic); 5024 5025 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 5026 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 5027 Info.opc == ISD::INTRINSIC_W_CHAIN) 5028 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 5029 TLI.getPointerTy(DAG.getDataLayout()))); 5030 5031 // Add all operands of the call to the operand list. 5032 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 5033 const Value *Arg = I.getArgOperand(i); 5034 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 5035 Ops.push_back(getValue(Arg)); 5036 continue; 5037 } 5038 5039 // Use TargetConstant instead of a regular constant for immarg. 5040 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 5041 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 5042 assert(CI->getBitWidth() <= 64 && 5043 "large intrinsic immediates not handled"); 5044 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 5045 } else { 5046 Ops.push_back( 5047 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 5048 } 5049 } 5050 5051 SmallVector<EVT, 4> ValueVTs; 5052 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5053 5054 if (HasChain) 5055 ValueVTs.push_back(MVT::Other); 5056 5057 SDVTList VTs = DAG.getVTList(ValueVTs); 5058 5059 // Propagate fast-math-flags from IR to node(s). 5060 SDNodeFlags Flags; 5061 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 5062 Flags.copyFMF(*FPMO); 5063 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 5064 5065 // Create the node. 5066 SDValue Result; 5067 // In some cases, custom collection of operands from CallInst I may be needed. 5068 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 5069 if (IsTgtIntrinsic) { 5070 // This is target intrinsic that touches memory 5071 // 5072 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 5073 // didn't yield anything useful. 5074 MachinePointerInfo MPI; 5075 if (Info.ptrVal) 5076 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 5077 else if (Info.fallbackAddressSpace) 5078 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 5079 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 5080 Info.memVT, MPI, Info.align, Info.flags, 5081 Info.size, I.getAAMetadata()); 5082 } else if (!HasChain) { 5083 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 5084 } else if (!I.getType()->isVoidTy()) { 5085 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 5086 } else { 5087 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 5088 } 5089 5090 if (HasChain) { 5091 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 5092 if (OnlyLoad) 5093 PendingLoads.push_back(Chain); 5094 else 5095 DAG.setRoot(Chain); 5096 } 5097 5098 if (!I.getType()->isVoidTy()) { 5099 if (!isa<VectorType>(I.getType())) 5100 Result = lowerRangeToAssertZExt(DAG, I, Result); 5101 5102 MaybeAlign Alignment = I.getRetAlign(); 5103 5104 // Insert `assertalign` node if there's an alignment. 5105 if (InsertAssertAlign && Alignment) { 5106 Result = 5107 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5108 } 5109 5110 setValue(&I, Result); 5111 } 5112 } 5113 5114 /// GetSignificand - Get the significand and build it into a floating-point 5115 /// number with exponent of 1: 5116 /// 5117 /// Op = (Op & 0x007fffff) | 0x3f800000; 5118 /// 5119 /// where Op is the hexadecimal representation of floating point value. 5120 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5121 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5122 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5123 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5124 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5125 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5126 } 5127 5128 /// GetExponent - Get the exponent: 5129 /// 5130 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5131 /// 5132 /// where Op is the hexadecimal representation of floating point value. 5133 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5134 const TargetLowering &TLI, const SDLoc &dl) { 5135 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5136 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5137 SDValue t1 = DAG.getNode( 5138 ISD::SRL, dl, MVT::i32, t0, 5139 DAG.getConstant(23, dl, 5140 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5141 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5142 DAG.getConstant(127, dl, MVT::i32)); 5143 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5144 } 5145 5146 /// getF32Constant - Get 32-bit floating point constant. 5147 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5148 const SDLoc &dl) { 5149 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5150 MVT::f32); 5151 } 5152 5153 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5154 SelectionDAG &DAG) { 5155 // TODO: What fast-math-flags should be set on the floating-point nodes? 5156 5157 // IntegerPartOfX = ((int32_t)(t0); 5158 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5159 5160 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5161 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5162 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5163 5164 // IntegerPartOfX <<= 23; 5165 IntegerPartOfX = 5166 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5167 DAG.getConstant(23, dl, 5168 DAG.getTargetLoweringInfo().getShiftAmountTy( 5169 MVT::i32, DAG.getDataLayout()))); 5170 5171 SDValue TwoToFractionalPartOfX; 5172 if (LimitFloatPrecision <= 6) { 5173 // For floating-point precision of 6: 5174 // 5175 // TwoToFractionalPartOfX = 5176 // 0.997535578f + 5177 // (0.735607626f + 0.252464424f * x) * x; 5178 // 5179 // error 0.0144103317, which is 6 bits 5180 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5181 getF32Constant(DAG, 0x3e814304, dl)); 5182 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5183 getF32Constant(DAG, 0x3f3c50c8, dl)); 5184 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5185 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5186 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5187 } else if (LimitFloatPrecision <= 12) { 5188 // For floating-point precision of 12: 5189 // 5190 // TwoToFractionalPartOfX = 5191 // 0.999892986f + 5192 // (0.696457318f + 5193 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5194 // 5195 // error 0.000107046256, which is 13 to 14 bits 5196 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5197 getF32Constant(DAG, 0x3da235e3, dl)); 5198 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5199 getF32Constant(DAG, 0x3e65b8f3, dl)); 5200 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5201 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5202 getF32Constant(DAG, 0x3f324b07, dl)); 5203 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5204 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5205 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5206 } else { // LimitFloatPrecision <= 18 5207 // For floating-point precision of 18: 5208 // 5209 // TwoToFractionalPartOfX = 5210 // 0.999999982f + 5211 // (0.693148872f + 5212 // (0.240227044f + 5213 // (0.554906021e-1f + 5214 // (0.961591928e-2f + 5215 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5216 // error 2.47208000*10^(-7), which is better than 18 bits 5217 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5218 getF32Constant(DAG, 0x3924b03e, dl)); 5219 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5220 getF32Constant(DAG, 0x3ab24b87, dl)); 5221 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5222 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5223 getF32Constant(DAG, 0x3c1d8c17, dl)); 5224 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5225 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5226 getF32Constant(DAG, 0x3d634a1d, dl)); 5227 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5228 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5229 getF32Constant(DAG, 0x3e75fe14, dl)); 5230 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5231 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5232 getF32Constant(DAG, 0x3f317234, dl)); 5233 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5234 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5235 getF32Constant(DAG, 0x3f800000, dl)); 5236 } 5237 5238 // Add the exponent into the result in integer domain. 5239 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5240 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5241 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5242 } 5243 5244 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5245 /// limited-precision mode. 5246 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5247 const TargetLowering &TLI, SDNodeFlags Flags) { 5248 if (Op.getValueType() == MVT::f32 && 5249 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5250 5251 // Put the exponent in the right bit position for later addition to the 5252 // final result: 5253 // 5254 // t0 = Op * log2(e) 5255 5256 // TODO: What fast-math-flags should be set here? 5257 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5258 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5259 return getLimitedPrecisionExp2(t0, dl, DAG); 5260 } 5261 5262 // No special expansion. 5263 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5264 } 5265 5266 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5267 /// limited-precision mode. 5268 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5269 const TargetLowering &TLI, SDNodeFlags Flags) { 5270 // TODO: What fast-math-flags should be set on the floating-point nodes? 5271 5272 if (Op.getValueType() == MVT::f32 && 5273 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5274 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5275 5276 // Scale the exponent by log(2). 5277 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5278 SDValue LogOfExponent = 5279 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5280 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5281 5282 // Get the significand and build it into a floating-point number with 5283 // exponent of 1. 5284 SDValue X = GetSignificand(DAG, Op1, dl); 5285 5286 SDValue LogOfMantissa; 5287 if (LimitFloatPrecision <= 6) { 5288 // For floating-point precision of 6: 5289 // 5290 // LogofMantissa = 5291 // -1.1609546f + 5292 // (1.4034025f - 0.23903021f * x) * x; 5293 // 5294 // error 0.0034276066, which is better than 8 bits 5295 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5296 getF32Constant(DAG, 0xbe74c456, dl)); 5297 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5298 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5299 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5300 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5301 getF32Constant(DAG, 0x3f949a29, dl)); 5302 } else if (LimitFloatPrecision <= 12) { 5303 // For floating-point precision of 12: 5304 // 5305 // LogOfMantissa = 5306 // -1.7417939f + 5307 // (2.8212026f + 5308 // (-1.4699568f + 5309 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5310 // 5311 // error 0.000061011436, which is 14 bits 5312 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5313 getF32Constant(DAG, 0xbd67b6d6, dl)); 5314 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5315 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5316 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5317 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5318 getF32Constant(DAG, 0x3fbc278b, dl)); 5319 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5320 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5321 getF32Constant(DAG, 0x40348e95, dl)); 5322 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5323 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5324 getF32Constant(DAG, 0x3fdef31a, dl)); 5325 } else { // LimitFloatPrecision <= 18 5326 // For floating-point precision of 18: 5327 // 5328 // LogOfMantissa = 5329 // -2.1072184f + 5330 // (4.2372794f + 5331 // (-3.7029485f + 5332 // (2.2781945f + 5333 // (-0.87823314f + 5334 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5335 // 5336 // error 0.0000023660568, which is better than 18 bits 5337 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5338 getF32Constant(DAG, 0xbc91e5ac, dl)); 5339 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5340 getF32Constant(DAG, 0x3e4350aa, dl)); 5341 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5342 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5343 getF32Constant(DAG, 0x3f60d3e3, dl)); 5344 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5345 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5346 getF32Constant(DAG, 0x4011cdf0, dl)); 5347 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5348 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5349 getF32Constant(DAG, 0x406cfd1c, dl)); 5350 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5351 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5352 getF32Constant(DAG, 0x408797cb, dl)); 5353 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5354 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5355 getF32Constant(DAG, 0x4006dcab, dl)); 5356 } 5357 5358 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5359 } 5360 5361 // No special expansion. 5362 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5363 } 5364 5365 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5366 /// limited-precision mode. 5367 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5368 const TargetLowering &TLI, SDNodeFlags Flags) { 5369 // TODO: What fast-math-flags should be set on the floating-point nodes? 5370 5371 if (Op.getValueType() == MVT::f32 && 5372 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5373 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5374 5375 // Get the exponent. 5376 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5377 5378 // Get the significand and build it into a floating-point number with 5379 // exponent of 1. 5380 SDValue X = GetSignificand(DAG, Op1, dl); 5381 5382 // Different possible minimax approximations of significand in 5383 // floating-point for various degrees of accuracy over [1,2]. 5384 SDValue Log2ofMantissa; 5385 if (LimitFloatPrecision <= 6) { 5386 // For floating-point precision of 6: 5387 // 5388 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5389 // 5390 // error 0.0049451742, which is more than 7 bits 5391 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5392 getF32Constant(DAG, 0xbeb08fe0, dl)); 5393 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5394 getF32Constant(DAG, 0x40019463, dl)); 5395 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5396 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5397 getF32Constant(DAG, 0x3fd6633d, dl)); 5398 } else if (LimitFloatPrecision <= 12) { 5399 // For floating-point precision of 12: 5400 // 5401 // Log2ofMantissa = 5402 // -2.51285454f + 5403 // (4.07009056f + 5404 // (-2.12067489f + 5405 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5406 // 5407 // error 0.0000876136000, which is better than 13 bits 5408 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5409 getF32Constant(DAG, 0xbda7262e, dl)); 5410 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5411 getF32Constant(DAG, 0x3f25280b, dl)); 5412 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5413 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5414 getF32Constant(DAG, 0x4007b923, dl)); 5415 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5416 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5417 getF32Constant(DAG, 0x40823e2f, dl)); 5418 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5419 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5420 getF32Constant(DAG, 0x4020d29c, dl)); 5421 } else { // LimitFloatPrecision <= 18 5422 // For floating-point precision of 18: 5423 // 5424 // Log2ofMantissa = 5425 // -3.0400495f + 5426 // (6.1129976f + 5427 // (-5.3420409f + 5428 // (3.2865683f + 5429 // (-1.2669343f + 5430 // (0.27515199f - 5431 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5432 // 5433 // error 0.0000018516, which is better than 18 bits 5434 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5435 getF32Constant(DAG, 0xbcd2769e, dl)); 5436 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5437 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5438 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5439 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5440 getF32Constant(DAG, 0x3fa22ae7, dl)); 5441 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5442 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5443 getF32Constant(DAG, 0x40525723, dl)); 5444 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5445 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5446 getF32Constant(DAG, 0x40aaf200, dl)); 5447 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5448 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5449 getF32Constant(DAG, 0x40c39dad, dl)); 5450 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5451 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5452 getF32Constant(DAG, 0x4042902c, dl)); 5453 } 5454 5455 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5456 } 5457 5458 // No special expansion. 5459 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5460 } 5461 5462 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5463 /// limited-precision mode. 5464 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5465 const TargetLowering &TLI, SDNodeFlags Flags) { 5466 // TODO: What fast-math-flags should be set on the floating-point nodes? 5467 5468 if (Op.getValueType() == MVT::f32 && 5469 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5470 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5471 5472 // Scale the exponent by log10(2) [0.30102999f]. 5473 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5474 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5475 getF32Constant(DAG, 0x3e9a209a, dl)); 5476 5477 // Get the significand and build it into a floating-point number with 5478 // exponent of 1. 5479 SDValue X = GetSignificand(DAG, Op1, dl); 5480 5481 SDValue Log10ofMantissa; 5482 if (LimitFloatPrecision <= 6) { 5483 // For floating-point precision of 6: 5484 // 5485 // Log10ofMantissa = 5486 // -0.50419619f + 5487 // (0.60948995f - 0.10380950f * x) * x; 5488 // 5489 // error 0.0014886165, which is 6 bits 5490 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5491 getF32Constant(DAG, 0xbdd49a13, dl)); 5492 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5493 getF32Constant(DAG, 0x3f1c0789, dl)); 5494 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5495 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5496 getF32Constant(DAG, 0x3f011300, dl)); 5497 } else if (LimitFloatPrecision <= 12) { 5498 // For floating-point precision of 12: 5499 // 5500 // Log10ofMantissa = 5501 // -0.64831180f + 5502 // (0.91751397f + 5503 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5504 // 5505 // error 0.00019228036, which is better than 12 bits 5506 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5507 getF32Constant(DAG, 0x3d431f31, dl)); 5508 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5509 getF32Constant(DAG, 0x3ea21fb2, dl)); 5510 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5511 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5512 getF32Constant(DAG, 0x3f6ae232, dl)); 5513 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5514 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5515 getF32Constant(DAG, 0x3f25f7c3, dl)); 5516 } else { // LimitFloatPrecision <= 18 5517 // For floating-point precision of 18: 5518 // 5519 // Log10ofMantissa = 5520 // -0.84299375f + 5521 // (1.5327582f + 5522 // (-1.0688956f + 5523 // (0.49102474f + 5524 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5525 // 5526 // error 0.0000037995730, which is better than 18 bits 5527 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5528 getF32Constant(DAG, 0x3c5d51ce, dl)); 5529 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5530 getF32Constant(DAG, 0x3e00685a, dl)); 5531 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5532 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5533 getF32Constant(DAG, 0x3efb6798, dl)); 5534 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5535 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5536 getF32Constant(DAG, 0x3f88d192, dl)); 5537 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5538 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5539 getF32Constant(DAG, 0x3fc4316c, dl)); 5540 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5541 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5542 getF32Constant(DAG, 0x3f57ce70, dl)); 5543 } 5544 5545 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5546 } 5547 5548 // No special expansion. 5549 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5550 } 5551 5552 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5553 /// limited-precision mode. 5554 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5555 const TargetLowering &TLI, SDNodeFlags Flags) { 5556 if (Op.getValueType() == MVT::f32 && 5557 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5558 return getLimitedPrecisionExp2(Op, dl, DAG); 5559 5560 // No special expansion. 5561 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5562 } 5563 5564 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5565 /// limited-precision mode with x == 10.0f. 5566 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5567 SelectionDAG &DAG, const TargetLowering &TLI, 5568 SDNodeFlags Flags) { 5569 bool IsExp10 = false; 5570 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5571 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5572 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5573 APFloat Ten(10.0f); 5574 IsExp10 = LHSC->isExactlyValue(Ten); 5575 } 5576 } 5577 5578 // TODO: What fast-math-flags should be set on the FMUL node? 5579 if (IsExp10) { 5580 // Put the exponent in the right bit position for later addition to the 5581 // final result: 5582 // 5583 // #define LOG2OF10 3.3219281f 5584 // t0 = Op * LOG2OF10; 5585 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5586 getF32Constant(DAG, 0x40549a78, dl)); 5587 return getLimitedPrecisionExp2(t0, dl, DAG); 5588 } 5589 5590 // No special expansion. 5591 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5592 } 5593 5594 /// ExpandPowI - Expand a llvm.powi intrinsic. 5595 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5596 SelectionDAG &DAG) { 5597 // If RHS is a constant, we can expand this out to a multiplication tree if 5598 // it's beneficial on the target, otherwise we end up lowering to a call to 5599 // __powidf2 (for example). 5600 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5601 unsigned Val = RHSC->getSExtValue(); 5602 5603 // powi(x, 0) -> 1.0 5604 if (Val == 0) 5605 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5606 5607 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5608 Val, DAG.shouldOptForSize())) { 5609 // Get the exponent as a positive value. 5610 if ((int)Val < 0) 5611 Val = -Val; 5612 // We use the simple binary decomposition method to generate the multiply 5613 // sequence. There are more optimal ways to do this (for example, 5614 // powi(x,15) generates one more multiply than it should), but this has 5615 // the benefit of being both really simple and much better than a libcall. 5616 SDValue Res; // Logically starts equal to 1.0 5617 SDValue CurSquare = LHS; 5618 // TODO: Intrinsics should have fast-math-flags that propagate to these 5619 // nodes. 5620 while (Val) { 5621 if (Val & 1) { 5622 if (Res.getNode()) 5623 Res = 5624 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5625 else 5626 Res = CurSquare; // 1.0*CurSquare. 5627 } 5628 5629 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5630 CurSquare, CurSquare); 5631 Val >>= 1; 5632 } 5633 5634 // If the original was negative, invert the result, producing 1/(x*x*x). 5635 if (RHSC->getSExtValue() < 0) 5636 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5637 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5638 return Res; 5639 } 5640 } 5641 5642 // Otherwise, expand to a libcall. 5643 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5644 } 5645 5646 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5647 SDValue LHS, SDValue RHS, SDValue Scale, 5648 SelectionDAG &DAG, const TargetLowering &TLI) { 5649 EVT VT = LHS.getValueType(); 5650 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5651 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5652 LLVMContext &Ctx = *DAG.getContext(); 5653 5654 // If the type is legal but the operation isn't, this node might survive all 5655 // the way to operation legalization. If we end up there and we do not have 5656 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5657 // node. 5658 5659 // Coax the legalizer into expanding the node during type legalization instead 5660 // by bumping the size by one bit. This will force it to Promote, enabling the 5661 // early expansion and avoiding the need to expand later. 5662 5663 // We don't have to do this if Scale is 0; that can always be expanded, unless 5664 // it's a saturating signed operation. Those can experience true integer 5665 // division overflow, a case which we must avoid. 5666 5667 // FIXME: We wouldn't have to do this (or any of the early 5668 // expansion/promotion) if it was possible to expand a libcall of an 5669 // illegal type during operation legalization. But it's not, so things 5670 // get a bit hacky. 5671 unsigned ScaleInt = Scale->getAsZExtVal(); 5672 if ((ScaleInt > 0 || (Saturating && Signed)) && 5673 (TLI.isTypeLegal(VT) || 5674 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5675 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5676 Opcode, VT, ScaleInt); 5677 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5678 EVT PromVT; 5679 if (VT.isScalarInteger()) 5680 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5681 else if (VT.isVector()) { 5682 PromVT = VT.getVectorElementType(); 5683 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5684 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5685 } else 5686 llvm_unreachable("Wrong VT for DIVFIX?"); 5687 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5688 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5689 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5690 // For saturating operations, we need to shift up the LHS to get the 5691 // proper saturation width, and then shift down again afterwards. 5692 if (Saturating) 5693 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5694 DAG.getConstant(1, DL, ShiftTy)); 5695 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5696 if (Saturating) 5697 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5698 DAG.getConstant(1, DL, ShiftTy)); 5699 return DAG.getZExtOrTrunc(Res, DL, VT); 5700 } 5701 } 5702 5703 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5704 } 5705 5706 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5707 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5708 static void 5709 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5710 const SDValue &N) { 5711 switch (N.getOpcode()) { 5712 case ISD::CopyFromReg: { 5713 SDValue Op = N.getOperand(1); 5714 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5715 Op.getValueType().getSizeInBits()); 5716 return; 5717 } 5718 case ISD::BITCAST: 5719 case ISD::AssertZext: 5720 case ISD::AssertSext: 5721 case ISD::TRUNCATE: 5722 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5723 return; 5724 case ISD::BUILD_PAIR: 5725 case ISD::BUILD_VECTOR: 5726 case ISD::CONCAT_VECTORS: 5727 for (SDValue Op : N->op_values()) 5728 getUnderlyingArgRegs(Regs, Op); 5729 return; 5730 default: 5731 return; 5732 } 5733 } 5734 5735 /// If the DbgValueInst is a dbg_value of a function argument, create the 5736 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5737 /// instruction selection, they will be inserted to the entry BB. 5738 /// We don't currently support this for variadic dbg_values, as they shouldn't 5739 /// appear for function arguments or in the prologue. 5740 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5741 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5742 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5743 const Argument *Arg = dyn_cast<Argument>(V); 5744 if (!Arg) 5745 return false; 5746 5747 MachineFunction &MF = DAG.getMachineFunction(); 5748 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5749 5750 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5751 // we've been asked to pursue. 5752 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5753 bool Indirect) { 5754 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5755 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5756 // pointing at the VReg, which will be patched up later. 5757 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5758 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5759 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5760 /* isKill */ false, /* isDead */ false, 5761 /* isUndef */ false, /* isEarlyClobber */ false, 5762 /* SubReg */ 0, /* isDebug */ true)}); 5763 5764 auto *NewDIExpr = FragExpr; 5765 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5766 // the DIExpression. 5767 if (Indirect) 5768 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5769 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 5770 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 5771 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 5772 } else { 5773 // Create a completely standard DBG_VALUE. 5774 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5775 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5776 } 5777 }; 5778 5779 if (Kind == FuncArgumentDbgValueKind::Value) { 5780 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5781 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5782 // the entry block. 5783 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5784 if (!IsInEntryBlock) 5785 return false; 5786 5787 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5788 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5789 // variable that also is a param. 5790 // 5791 // Although, if we are at the top of the entry block already, we can still 5792 // emit using ArgDbgValue. This might catch some situations when the 5793 // dbg.value refers to an argument that isn't used in the entry block, so 5794 // any CopyToReg node would be optimized out and the only way to express 5795 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5796 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5797 // we should only emit as ArgDbgValue if the Variable is an argument to the 5798 // current function, and the dbg.value intrinsic is found in the entry 5799 // block. 5800 bool VariableIsFunctionInputArg = Variable->isParameter() && 5801 !DL->getInlinedAt(); 5802 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5803 if (!IsInPrologue && !VariableIsFunctionInputArg) 5804 return false; 5805 5806 // Here we assume that a function argument on IR level only can be used to 5807 // describe one input parameter on source level. If we for example have 5808 // source code like this 5809 // 5810 // struct A { long x, y; }; 5811 // void foo(struct A a, long b) { 5812 // ... 5813 // b = a.x; 5814 // ... 5815 // } 5816 // 5817 // and IR like this 5818 // 5819 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5820 // entry: 5821 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5822 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5823 // call void @llvm.dbg.value(metadata i32 %b, "b", 5824 // ... 5825 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5826 // ... 5827 // 5828 // then the last dbg.value is describing a parameter "b" using a value that 5829 // is an argument. But since we already has used %a1 to describe a parameter 5830 // we should not handle that last dbg.value here (that would result in an 5831 // incorrect hoisting of the DBG_VALUE to the function entry). 5832 // Notice that we allow one dbg.value per IR level argument, to accommodate 5833 // for the situation with fragments above. 5834 if (VariableIsFunctionInputArg) { 5835 unsigned ArgNo = Arg->getArgNo(); 5836 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5837 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5838 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5839 return false; 5840 FuncInfo.DescribedArgs.set(ArgNo); 5841 } 5842 } 5843 5844 bool IsIndirect = false; 5845 std::optional<MachineOperand> Op; 5846 // Some arguments' frame index is recorded during argument lowering. 5847 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5848 if (FI != std::numeric_limits<int>::max()) 5849 Op = MachineOperand::CreateFI(FI); 5850 5851 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5852 if (!Op && N.getNode()) { 5853 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5854 Register Reg; 5855 if (ArgRegsAndSizes.size() == 1) 5856 Reg = ArgRegsAndSizes.front().first; 5857 5858 if (Reg && Reg.isVirtual()) { 5859 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5860 Register PR = RegInfo.getLiveInPhysReg(Reg); 5861 if (PR) 5862 Reg = PR; 5863 } 5864 if (Reg) { 5865 Op = MachineOperand::CreateReg(Reg, false); 5866 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5867 } 5868 } 5869 5870 if (!Op && N.getNode()) { 5871 // Check if frame index is available. 5872 SDValue LCandidate = peekThroughBitcasts(N); 5873 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5874 if (FrameIndexSDNode *FINode = 5875 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5876 Op = MachineOperand::CreateFI(FINode->getIndex()); 5877 } 5878 5879 if (!Op) { 5880 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5881 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5882 SplitRegs) { 5883 unsigned Offset = 0; 5884 for (const auto &RegAndSize : SplitRegs) { 5885 // If the expression is already a fragment, the current register 5886 // offset+size might extend beyond the fragment. In this case, only 5887 // the register bits that are inside the fragment are relevant. 5888 int RegFragmentSizeInBits = RegAndSize.second; 5889 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5890 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5891 // The register is entirely outside the expression fragment, 5892 // so is irrelevant for debug info. 5893 if (Offset >= ExprFragmentSizeInBits) 5894 break; 5895 // The register is partially outside the expression fragment, only 5896 // the low bits within the fragment are relevant for debug info. 5897 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5898 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5899 } 5900 } 5901 5902 auto FragmentExpr = DIExpression::createFragmentExpression( 5903 Expr, Offset, RegFragmentSizeInBits); 5904 Offset += RegAndSize.second; 5905 // If a valid fragment expression cannot be created, the variable's 5906 // correct value cannot be determined and so it is set as Undef. 5907 if (!FragmentExpr) { 5908 SDDbgValue *SDV = DAG.getConstantDbgValue( 5909 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5910 DAG.AddDbgValue(SDV, false); 5911 continue; 5912 } 5913 MachineInstr *NewMI = 5914 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5915 Kind != FuncArgumentDbgValueKind::Value); 5916 FuncInfo.ArgDbgValues.push_back(NewMI); 5917 } 5918 }; 5919 5920 // Check if ValueMap has reg number. 5921 DenseMap<const Value *, Register>::const_iterator 5922 VMI = FuncInfo.ValueMap.find(V); 5923 if (VMI != FuncInfo.ValueMap.end()) { 5924 const auto &TLI = DAG.getTargetLoweringInfo(); 5925 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5926 V->getType(), std::nullopt); 5927 if (RFV.occupiesMultipleRegs()) { 5928 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5929 return true; 5930 } 5931 5932 Op = MachineOperand::CreateReg(VMI->second, false); 5933 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5934 } else if (ArgRegsAndSizes.size() > 1) { 5935 // This was split due to the calling convention, and no virtual register 5936 // mapping exists for the value. 5937 splitMultiRegDbgValue(ArgRegsAndSizes); 5938 return true; 5939 } 5940 } 5941 5942 if (!Op) 5943 return false; 5944 5945 assert(Variable->isValidLocationForIntrinsic(DL) && 5946 "Expected inlined-at fields to agree"); 5947 MachineInstr *NewMI = nullptr; 5948 5949 if (Op->isReg()) 5950 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5951 else 5952 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5953 Variable, Expr); 5954 5955 // Otherwise, use ArgDbgValues. 5956 FuncInfo.ArgDbgValues.push_back(NewMI); 5957 return true; 5958 } 5959 5960 /// Return the appropriate SDDbgValue based on N. 5961 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5962 DILocalVariable *Variable, 5963 DIExpression *Expr, 5964 const DebugLoc &dl, 5965 unsigned DbgSDNodeOrder) { 5966 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5967 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5968 // stack slot locations. 5969 // 5970 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5971 // debug values here after optimization: 5972 // 5973 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5974 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5975 // 5976 // Both describe the direct values of their associated variables. 5977 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5978 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5979 } 5980 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5981 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5982 } 5983 5984 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5985 switch (Intrinsic) { 5986 case Intrinsic::smul_fix: 5987 return ISD::SMULFIX; 5988 case Intrinsic::umul_fix: 5989 return ISD::UMULFIX; 5990 case Intrinsic::smul_fix_sat: 5991 return ISD::SMULFIXSAT; 5992 case Intrinsic::umul_fix_sat: 5993 return ISD::UMULFIXSAT; 5994 case Intrinsic::sdiv_fix: 5995 return ISD::SDIVFIX; 5996 case Intrinsic::udiv_fix: 5997 return ISD::UDIVFIX; 5998 case Intrinsic::sdiv_fix_sat: 5999 return ISD::SDIVFIXSAT; 6000 case Intrinsic::udiv_fix_sat: 6001 return ISD::UDIVFIXSAT; 6002 default: 6003 llvm_unreachable("Unhandled fixed point intrinsic"); 6004 } 6005 } 6006 6007 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 6008 const char *FunctionName) { 6009 assert(FunctionName && "FunctionName must not be nullptr"); 6010 SDValue Callee = DAG.getExternalSymbol( 6011 FunctionName, 6012 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6013 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 6014 } 6015 6016 /// Given a @llvm.call.preallocated.setup, return the corresponding 6017 /// preallocated call. 6018 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 6019 assert(cast<CallBase>(PreallocatedSetup) 6020 ->getCalledFunction() 6021 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 6022 "expected call_preallocated_setup Value"); 6023 for (const auto *U : PreallocatedSetup->users()) { 6024 auto *UseCall = cast<CallBase>(U); 6025 const Function *Fn = UseCall->getCalledFunction(); 6026 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 6027 return UseCall; 6028 } 6029 } 6030 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 6031 } 6032 6033 /// If DI is a debug value with an EntryValue expression, lower it using the 6034 /// corresponding physical register of the associated Argument value 6035 /// (guaranteed to exist by the verifier). 6036 bool SelectionDAGBuilder::visitEntryValueDbgValue( 6037 ArrayRef<const Value *> Values, DILocalVariable *Variable, 6038 DIExpression *Expr, DebugLoc DbgLoc) { 6039 if (!Expr->isEntryValue() || !hasSingleElement(Values)) 6040 return false; 6041 6042 // These properties are guaranteed by the verifier. 6043 const Argument *Arg = cast<Argument>(Values[0]); 6044 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 6045 6046 auto ArgIt = FuncInfo.ValueMap.find(Arg); 6047 if (ArgIt == FuncInfo.ValueMap.end()) { 6048 LLVM_DEBUG( 6049 dbgs() << "Dropping dbg.value: expression is entry_value but " 6050 "couldn't find an associated register for the Argument\n"); 6051 return true; 6052 } 6053 Register ArgVReg = ArgIt->getSecond(); 6054 6055 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 6056 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 6057 SDDbgValue *SDV = DAG.getVRegDbgValue( 6058 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder); 6059 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 6060 return true; 6061 } 6062 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 6063 "couldn't find a physical register\n"); 6064 return true; 6065 } 6066 6067 /// Lower the call to the specified intrinsic function. 6068 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 6069 unsigned Intrinsic) { 6070 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6071 SDLoc sdl = getCurSDLoc(); 6072 DebugLoc dl = getCurDebugLoc(); 6073 SDValue Res; 6074 6075 SDNodeFlags Flags; 6076 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 6077 Flags.copyFMF(*FPOp); 6078 6079 switch (Intrinsic) { 6080 default: 6081 // By default, turn this into a target intrinsic node. 6082 visitTargetIntrinsic(I, Intrinsic); 6083 return; 6084 case Intrinsic::vscale: { 6085 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6086 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 6087 return; 6088 } 6089 case Intrinsic::vastart: visitVAStart(I); return; 6090 case Intrinsic::vaend: visitVAEnd(I); return; 6091 case Intrinsic::vacopy: visitVACopy(I); return; 6092 case Intrinsic::returnaddress: 6093 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6094 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6095 getValue(I.getArgOperand(0)))); 6096 return; 6097 case Intrinsic::addressofreturnaddress: 6098 setValue(&I, 6099 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6100 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6101 return; 6102 case Intrinsic::sponentry: 6103 setValue(&I, 6104 DAG.getNode(ISD::SPONENTRY, sdl, 6105 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6106 return; 6107 case Intrinsic::frameaddress: 6108 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6109 TLI.getFrameIndexTy(DAG.getDataLayout()), 6110 getValue(I.getArgOperand(0)))); 6111 return; 6112 case Intrinsic::read_volatile_register: 6113 case Intrinsic::read_register: { 6114 Value *Reg = I.getArgOperand(0); 6115 SDValue Chain = getRoot(); 6116 SDValue RegName = 6117 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6118 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6119 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6120 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6121 setValue(&I, Res); 6122 DAG.setRoot(Res.getValue(1)); 6123 return; 6124 } 6125 case Intrinsic::write_register: { 6126 Value *Reg = I.getArgOperand(0); 6127 Value *RegValue = I.getArgOperand(1); 6128 SDValue Chain = getRoot(); 6129 SDValue RegName = 6130 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6131 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6132 RegName, getValue(RegValue))); 6133 return; 6134 } 6135 case Intrinsic::memcpy: { 6136 const auto &MCI = cast<MemCpyInst>(I); 6137 SDValue Op1 = getValue(I.getArgOperand(0)); 6138 SDValue Op2 = getValue(I.getArgOperand(1)); 6139 SDValue Op3 = getValue(I.getArgOperand(2)); 6140 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6141 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6142 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6143 Align Alignment = std::min(DstAlign, SrcAlign); 6144 bool isVol = MCI.isVolatile(); 6145 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6146 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6147 // node. 6148 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6149 SDValue MC = DAG.getMemcpy( 6150 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6151 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 6152 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6153 updateDAGForMaybeTailCall(MC); 6154 return; 6155 } 6156 case Intrinsic::memcpy_inline: { 6157 const auto &MCI = cast<MemCpyInlineInst>(I); 6158 SDValue Dst = getValue(I.getArgOperand(0)); 6159 SDValue Src = getValue(I.getArgOperand(1)); 6160 SDValue Size = getValue(I.getArgOperand(2)); 6161 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6162 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6163 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6164 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6165 Align Alignment = std::min(DstAlign, SrcAlign); 6166 bool isVol = MCI.isVolatile(); 6167 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6168 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6169 // node. 6170 SDValue MC = DAG.getMemcpy( 6171 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6172 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 6173 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6174 updateDAGForMaybeTailCall(MC); 6175 return; 6176 } 6177 case Intrinsic::memset: { 6178 const auto &MSI = cast<MemSetInst>(I); 6179 SDValue Op1 = getValue(I.getArgOperand(0)); 6180 SDValue Op2 = getValue(I.getArgOperand(1)); 6181 SDValue Op3 = getValue(I.getArgOperand(2)); 6182 // @llvm.memset defines 0 and 1 to both mean no alignment. 6183 Align Alignment = MSI.getDestAlign().valueOrOne(); 6184 bool isVol = MSI.isVolatile(); 6185 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6186 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6187 SDValue MS = DAG.getMemset( 6188 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6189 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6190 updateDAGForMaybeTailCall(MS); 6191 return; 6192 } 6193 case Intrinsic::memset_inline: { 6194 const auto &MSII = cast<MemSetInlineInst>(I); 6195 SDValue Dst = getValue(I.getArgOperand(0)); 6196 SDValue Value = getValue(I.getArgOperand(1)); 6197 SDValue Size = getValue(I.getArgOperand(2)); 6198 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6199 // @llvm.memset defines 0 and 1 to both mean no alignment. 6200 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6201 bool isVol = MSII.isVolatile(); 6202 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6203 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6204 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6205 /* AlwaysInline */ true, isTC, 6206 MachinePointerInfo(I.getArgOperand(0)), 6207 I.getAAMetadata()); 6208 updateDAGForMaybeTailCall(MC); 6209 return; 6210 } 6211 case Intrinsic::memmove: { 6212 const auto &MMI = cast<MemMoveInst>(I); 6213 SDValue Op1 = getValue(I.getArgOperand(0)); 6214 SDValue Op2 = getValue(I.getArgOperand(1)); 6215 SDValue Op3 = getValue(I.getArgOperand(2)); 6216 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6217 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6218 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6219 Align Alignment = std::min(DstAlign, SrcAlign); 6220 bool isVol = MMI.isVolatile(); 6221 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6222 // FIXME: Support passing different dest/src alignments to the memmove DAG 6223 // node. 6224 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6225 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6226 isTC, MachinePointerInfo(I.getArgOperand(0)), 6227 MachinePointerInfo(I.getArgOperand(1)), 6228 I.getAAMetadata(), AA); 6229 updateDAGForMaybeTailCall(MM); 6230 return; 6231 } 6232 case Intrinsic::memcpy_element_unordered_atomic: { 6233 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6234 SDValue Dst = getValue(MI.getRawDest()); 6235 SDValue Src = getValue(MI.getRawSource()); 6236 SDValue Length = getValue(MI.getLength()); 6237 6238 Type *LengthTy = MI.getLength()->getType(); 6239 unsigned ElemSz = MI.getElementSizeInBytes(); 6240 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6241 SDValue MC = 6242 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6243 isTC, MachinePointerInfo(MI.getRawDest()), 6244 MachinePointerInfo(MI.getRawSource())); 6245 updateDAGForMaybeTailCall(MC); 6246 return; 6247 } 6248 case Intrinsic::memmove_element_unordered_atomic: { 6249 auto &MI = cast<AtomicMemMoveInst>(I); 6250 SDValue Dst = getValue(MI.getRawDest()); 6251 SDValue Src = getValue(MI.getRawSource()); 6252 SDValue Length = getValue(MI.getLength()); 6253 6254 Type *LengthTy = MI.getLength()->getType(); 6255 unsigned ElemSz = MI.getElementSizeInBytes(); 6256 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6257 SDValue MC = 6258 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6259 isTC, MachinePointerInfo(MI.getRawDest()), 6260 MachinePointerInfo(MI.getRawSource())); 6261 updateDAGForMaybeTailCall(MC); 6262 return; 6263 } 6264 case Intrinsic::memset_element_unordered_atomic: { 6265 auto &MI = cast<AtomicMemSetInst>(I); 6266 SDValue Dst = getValue(MI.getRawDest()); 6267 SDValue Val = getValue(MI.getValue()); 6268 SDValue Length = getValue(MI.getLength()); 6269 6270 Type *LengthTy = MI.getLength()->getType(); 6271 unsigned ElemSz = MI.getElementSizeInBytes(); 6272 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6273 SDValue MC = 6274 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6275 isTC, MachinePointerInfo(MI.getRawDest())); 6276 updateDAGForMaybeTailCall(MC); 6277 return; 6278 } 6279 case Intrinsic::call_preallocated_setup: { 6280 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6281 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6282 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6283 getRoot(), SrcValue); 6284 setValue(&I, Res); 6285 DAG.setRoot(Res); 6286 return; 6287 } 6288 case Intrinsic::call_preallocated_arg: { 6289 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6290 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6291 SDValue Ops[3]; 6292 Ops[0] = getRoot(); 6293 Ops[1] = SrcValue; 6294 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6295 MVT::i32); // arg index 6296 SDValue Res = DAG.getNode( 6297 ISD::PREALLOCATED_ARG, sdl, 6298 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6299 setValue(&I, Res); 6300 DAG.setRoot(Res.getValue(1)); 6301 return; 6302 } 6303 case Intrinsic::dbg_declare: { 6304 const auto &DI = cast<DbgDeclareInst>(I); 6305 // Debug intrinsics are handled separately in assignment tracking mode. 6306 // Some intrinsics are handled right after Argument lowering. 6307 if (AssignmentTrackingEnabled || 6308 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6309 return; 6310 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n"); 6311 DILocalVariable *Variable = DI.getVariable(); 6312 DIExpression *Expression = DI.getExpression(); 6313 dropDanglingDebugInfo(Variable, Expression); 6314 // Assume dbg.declare can not currently use DIArgList, i.e. 6315 // it is non-variadic. 6316 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6317 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression, 6318 DI.getDebugLoc()); 6319 return; 6320 } 6321 case Intrinsic::dbg_label: { 6322 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6323 DILabel *Label = DI.getLabel(); 6324 assert(Label && "Missing label"); 6325 6326 SDDbgLabel *SDV; 6327 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6328 DAG.AddDbgLabel(SDV); 6329 return; 6330 } 6331 case Intrinsic::dbg_assign: { 6332 // Debug intrinsics are handled seperately in assignment tracking mode. 6333 if (AssignmentTrackingEnabled) 6334 return; 6335 // If assignment tracking hasn't been enabled then fall through and treat 6336 // the dbg.assign as a dbg.value. 6337 [[fallthrough]]; 6338 } 6339 case Intrinsic::dbg_value: { 6340 // Debug intrinsics are handled seperately in assignment tracking mode. 6341 if (AssignmentTrackingEnabled) 6342 return; 6343 const DbgValueInst &DI = cast<DbgValueInst>(I); 6344 assert(DI.getVariable() && "Missing variable"); 6345 6346 DILocalVariable *Variable = DI.getVariable(); 6347 DIExpression *Expression = DI.getExpression(); 6348 dropDanglingDebugInfo(Variable, Expression); 6349 6350 if (DI.isKillLocation()) { 6351 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6352 return; 6353 } 6354 6355 SmallVector<Value *, 4> Values(DI.getValues()); 6356 if (Values.empty()) 6357 return; 6358 6359 bool IsVariadic = DI.hasArgList(); 6360 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6361 SDNodeOrder, IsVariadic)) 6362 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 6363 DI.getDebugLoc(), SDNodeOrder); 6364 return; 6365 } 6366 6367 case Intrinsic::eh_typeid_for: { 6368 // Find the type id for the given typeinfo. 6369 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6370 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6371 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6372 setValue(&I, Res); 6373 return; 6374 } 6375 6376 case Intrinsic::eh_return_i32: 6377 case Intrinsic::eh_return_i64: 6378 DAG.getMachineFunction().setCallsEHReturn(true); 6379 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6380 MVT::Other, 6381 getControlRoot(), 6382 getValue(I.getArgOperand(0)), 6383 getValue(I.getArgOperand(1)))); 6384 return; 6385 case Intrinsic::eh_unwind_init: 6386 DAG.getMachineFunction().setCallsUnwindInit(true); 6387 return; 6388 case Intrinsic::eh_dwarf_cfa: 6389 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6390 TLI.getPointerTy(DAG.getDataLayout()), 6391 getValue(I.getArgOperand(0)))); 6392 return; 6393 case Intrinsic::eh_sjlj_callsite: { 6394 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6395 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6396 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6397 6398 MMI.setCurrentCallSite(CI->getZExtValue()); 6399 return; 6400 } 6401 case Intrinsic::eh_sjlj_functioncontext: { 6402 // Get and store the index of the function context. 6403 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6404 AllocaInst *FnCtx = 6405 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6406 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6407 MFI.setFunctionContextIndex(FI); 6408 return; 6409 } 6410 case Intrinsic::eh_sjlj_setjmp: { 6411 SDValue Ops[2]; 6412 Ops[0] = getRoot(); 6413 Ops[1] = getValue(I.getArgOperand(0)); 6414 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6415 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6416 setValue(&I, Op.getValue(0)); 6417 DAG.setRoot(Op.getValue(1)); 6418 return; 6419 } 6420 case Intrinsic::eh_sjlj_longjmp: 6421 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6422 getRoot(), getValue(I.getArgOperand(0)))); 6423 return; 6424 case Intrinsic::eh_sjlj_setup_dispatch: 6425 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6426 getRoot())); 6427 return; 6428 case Intrinsic::masked_gather: 6429 visitMaskedGather(I); 6430 return; 6431 case Intrinsic::masked_load: 6432 visitMaskedLoad(I); 6433 return; 6434 case Intrinsic::masked_scatter: 6435 visitMaskedScatter(I); 6436 return; 6437 case Intrinsic::masked_store: 6438 visitMaskedStore(I); 6439 return; 6440 case Intrinsic::masked_expandload: 6441 visitMaskedLoad(I, true /* IsExpanding */); 6442 return; 6443 case Intrinsic::masked_compressstore: 6444 visitMaskedStore(I, true /* IsCompressing */); 6445 return; 6446 case Intrinsic::powi: 6447 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6448 getValue(I.getArgOperand(1)), DAG)); 6449 return; 6450 case Intrinsic::log: 6451 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6452 return; 6453 case Intrinsic::log2: 6454 setValue(&I, 6455 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6456 return; 6457 case Intrinsic::log10: 6458 setValue(&I, 6459 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6460 return; 6461 case Intrinsic::exp: 6462 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6463 return; 6464 case Intrinsic::exp2: 6465 setValue(&I, 6466 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6467 return; 6468 case Intrinsic::pow: 6469 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6470 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6471 return; 6472 case Intrinsic::sqrt: 6473 case Intrinsic::fabs: 6474 case Intrinsic::sin: 6475 case Intrinsic::cos: 6476 case Intrinsic::exp10: 6477 case Intrinsic::floor: 6478 case Intrinsic::ceil: 6479 case Intrinsic::trunc: 6480 case Intrinsic::rint: 6481 case Intrinsic::nearbyint: 6482 case Intrinsic::round: 6483 case Intrinsic::roundeven: 6484 case Intrinsic::canonicalize: { 6485 unsigned Opcode; 6486 switch (Intrinsic) { 6487 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6488 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6489 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6490 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6491 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6492 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6493 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6494 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6495 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6496 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6497 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6498 case Intrinsic::round: Opcode = ISD::FROUND; break; 6499 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6500 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6501 } 6502 6503 setValue(&I, DAG.getNode(Opcode, sdl, 6504 getValue(I.getArgOperand(0)).getValueType(), 6505 getValue(I.getArgOperand(0)), Flags)); 6506 return; 6507 } 6508 case Intrinsic::lround: 6509 case Intrinsic::llround: 6510 case Intrinsic::lrint: 6511 case Intrinsic::llrint: { 6512 unsigned Opcode; 6513 switch (Intrinsic) { 6514 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6515 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6516 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6517 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6518 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6519 } 6520 6521 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6522 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6523 getValue(I.getArgOperand(0)))); 6524 return; 6525 } 6526 case Intrinsic::minnum: 6527 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6528 getValue(I.getArgOperand(0)).getValueType(), 6529 getValue(I.getArgOperand(0)), 6530 getValue(I.getArgOperand(1)), Flags)); 6531 return; 6532 case Intrinsic::maxnum: 6533 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6534 getValue(I.getArgOperand(0)).getValueType(), 6535 getValue(I.getArgOperand(0)), 6536 getValue(I.getArgOperand(1)), Flags)); 6537 return; 6538 case Intrinsic::minimum: 6539 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6540 getValue(I.getArgOperand(0)).getValueType(), 6541 getValue(I.getArgOperand(0)), 6542 getValue(I.getArgOperand(1)), Flags)); 6543 return; 6544 case Intrinsic::maximum: 6545 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6546 getValue(I.getArgOperand(0)).getValueType(), 6547 getValue(I.getArgOperand(0)), 6548 getValue(I.getArgOperand(1)), Flags)); 6549 return; 6550 case Intrinsic::copysign: 6551 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6552 getValue(I.getArgOperand(0)).getValueType(), 6553 getValue(I.getArgOperand(0)), 6554 getValue(I.getArgOperand(1)), Flags)); 6555 return; 6556 case Intrinsic::ldexp: 6557 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6558 getValue(I.getArgOperand(0)).getValueType(), 6559 getValue(I.getArgOperand(0)), 6560 getValue(I.getArgOperand(1)), Flags)); 6561 return; 6562 case Intrinsic::frexp: { 6563 SmallVector<EVT, 2> ValueVTs; 6564 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6565 SDVTList VTs = DAG.getVTList(ValueVTs); 6566 setValue(&I, 6567 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6568 return; 6569 } 6570 case Intrinsic::arithmetic_fence: { 6571 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6572 getValue(I.getArgOperand(0)).getValueType(), 6573 getValue(I.getArgOperand(0)), Flags)); 6574 return; 6575 } 6576 case Intrinsic::fma: 6577 setValue(&I, DAG.getNode( 6578 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6579 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6580 getValue(I.getArgOperand(2)), Flags)); 6581 return; 6582 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6583 case Intrinsic::INTRINSIC: 6584 #include "llvm/IR/ConstrainedOps.def" 6585 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6586 return; 6587 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6588 #include "llvm/IR/VPIntrinsics.def" 6589 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6590 return; 6591 case Intrinsic::fptrunc_round: { 6592 // Get the last argument, the metadata and convert it to an integer in the 6593 // call 6594 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6595 std::optional<RoundingMode> RoundMode = 6596 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6597 6598 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6599 6600 // Propagate fast-math-flags from IR to node(s). 6601 SDNodeFlags Flags; 6602 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6603 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6604 6605 SDValue Result; 6606 Result = DAG.getNode( 6607 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6608 DAG.getTargetConstant((int)*RoundMode, sdl, 6609 TLI.getPointerTy(DAG.getDataLayout()))); 6610 setValue(&I, Result); 6611 6612 return; 6613 } 6614 case Intrinsic::fmuladd: { 6615 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6616 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6617 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6618 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6619 getValue(I.getArgOperand(0)).getValueType(), 6620 getValue(I.getArgOperand(0)), 6621 getValue(I.getArgOperand(1)), 6622 getValue(I.getArgOperand(2)), Flags)); 6623 } else { 6624 // TODO: Intrinsic calls should have fast-math-flags. 6625 SDValue Mul = DAG.getNode( 6626 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6627 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6628 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6629 getValue(I.getArgOperand(0)).getValueType(), 6630 Mul, getValue(I.getArgOperand(2)), Flags); 6631 setValue(&I, Add); 6632 } 6633 return; 6634 } 6635 case Intrinsic::convert_to_fp16: 6636 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6637 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6638 getValue(I.getArgOperand(0)), 6639 DAG.getTargetConstant(0, sdl, 6640 MVT::i32)))); 6641 return; 6642 case Intrinsic::convert_from_fp16: 6643 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6644 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6645 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6646 getValue(I.getArgOperand(0))))); 6647 return; 6648 case Intrinsic::fptosi_sat: { 6649 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6650 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6651 getValue(I.getArgOperand(0)), 6652 DAG.getValueType(VT.getScalarType()))); 6653 return; 6654 } 6655 case Intrinsic::fptoui_sat: { 6656 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6657 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6658 getValue(I.getArgOperand(0)), 6659 DAG.getValueType(VT.getScalarType()))); 6660 return; 6661 } 6662 case Intrinsic::set_rounding: 6663 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6664 {getRoot(), getValue(I.getArgOperand(0))}); 6665 setValue(&I, Res); 6666 DAG.setRoot(Res.getValue(0)); 6667 return; 6668 case Intrinsic::is_fpclass: { 6669 const DataLayout DLayout = DAG.getDataLayout(); 6670 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6671 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6672 FPClassTest Test = static_cast<FPClassTest>( 6673 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 6674 MachineFunction &MF = DAG.getMachineFunction(); 6675 const Function &F = MF.getFunction(); 6676 SDValue Op = getValue(I.getArgOperand(0)); 6677 SDNodeFlags Flags; 6678 Flags.setNoFPExcept( 6679 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6680 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6681 // expansion can use illegal types. Making expansion early allows 6682 // legalizing these types prior to selection. 6683 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6684 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6685 setValue(&I, Result); 6686 return; 6687 } 6688 6689 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6690 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6691 setValue(&I, V); 6692 return; 6693 } 6694 case Intrinsic::get_fpenv: { 6695 const DataLayout DLayout = DAG.getDataLayout(); 6696 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 6697 Align TempAlign = DAG.getEVTAlign(EnvVT); 6698 SDValue Chain = getRoot(); 6699 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 6700 // and temporary storage in stack. 6701 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 6702 Res = DAG.getNode( 6703 ISD::GET_FPENV, sdl, 6704 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6705 MVT::Other), 6706 Chain); 6707 } else { 6708 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6709 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6710 auto MPI = 6711 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6712 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6713 MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize, 6714 TempAlign); 6715 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6716 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 6717 } 6718 setValue(&I, Res); 6719 DAG.setRoot(Res.getValue(1)); 6720 return; 6721 } 6722 case Intrinsic::set_fpenv: { 6723 const DataLayout DLayout = DAG.getDataLayout(); 6724 SDValue Env = getValue(I.getArgOperand(0)); 6725 EVT EnvVT = Env.getValueType(); 6726 Align TempAlign = DAG.getEVTAlign(EnvVT); 6727 SDValue Chain = getRoot(); 6728 // If SET_FPENV is custom or legal, use it. Otherwise use loading 6729 // environment from memory. 6730 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 6731 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 6732 } else { 6733 // Allocate space in stack, copy environment bits into it and use this 6734 // memory in SET_FPENV_MEM. 6735 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6736 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6737 auto MPI = 6738 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6739 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 6740 MachineMemOperand::MOStore); 6741 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6742 MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize, 6743 TempAlign); 6744 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6745 } 6746 DAG.setRoot(Chain); 6747 return; 6748 } 6749 case Intrinsic::reset_fpenv: 6750 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 6751 return; 6752 case Intrinsic::get_fpmode: 6753 Res = DAG.getNode( 6754 ISD::GET_FPMODE, sdl, 6755 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6756 MVT::Other), 6757 DAG.getRoot()); 6758 setValue(&I, Res); 6759 DAG.setRoot(Res.getValue(1)); 6760 return; 6761 case Intrinsic::set_fpmode: 6762 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 6763 getValue(I.getArgOperand(0))); 6764 DAG.setRoot(Res); 6765 return; 6766 case Intrinsic::reset_fpmode: { 6767 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 6768 DAG.setRoot(Res); 6769 return; 6770 } 6771 case Intrinsic::pcmarker: { 6772 SDValue Tmp = getValue(I.getArgOperand(0)); 6773 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6774 return; 6775 } 6776 case Intrinsic::readcyclecounter: { 6777 SDValue Op = getRoot(); 6778 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6779 DAG.getVTList(MVT::i64, MVT::Other), Op); 6780 setValue(&I, Res); 6781 DAG.setRoot(Res.getValue(1)); 6782 return; 6783 } 6784 case Intrinsic::bitreverse: 6785 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6786 getValue(I.getArgOperand(0)).getValueType(), 6787 getValue(I.getArgOperand(0)))); 6788 return; 6789 case Intrinsic::bswap: 6790 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6791 getValue(I.getArgOperand(0)).getValueType(), 6792 getValue(I.getArgOperand(0)))); 6793 return; 6794 case Intrinsic::cttz: { 6795 SDValue Arg = getValue(I.getArgOperand(0)); 6796 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6797 EVT Ty = Arg.getValueType(); 6798 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6799 sdl, Ty, Arg)); 6800 return; 6801 } 6802 case Intrinsic::ctlz: { 6803 SDValue Arg = getValue(I.getArgOperand(0)); 6804 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6805 EVT Ty = Arg.getValueType(); 6806 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6807 sdl, Ty, Arg)); 6808 return; 6809 } 6810 case Intrinsic::ctpop: { 6811 SDValue Arg = getValue(I.getArgOperand(0)); 6812 EVT Ty = Arg.getValueType(); 6813 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6814 return; 6815 } 6816 case Intrinsic::fshl: 6817 case Intrinsic::fshr: { 6818 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6819 SDValue X = getValue(I.getArgOperand(0)); 6820 SDValue Y = getValue(I.getArgOperand(1)); 6821 SDValue Z = getValue(I.getArgOperand(2)); 6822 EVT VT = X.getValueType(); 6823 6824 if (X == Y) { 6825 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6826 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6827 } else { 6828 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6829 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6830 } 6831 return; 6832 } 6833 case Intrinsic::sadd_sat: { 6834 SDValue Op1 = getValue(I.getArgOperand(0)); 6835 SDValue Op2 = getValue(I.getArgOperand(1)); 6836 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6837 return; 6838 } 6839 case Intrinsic::uadd_sat: { 6840 SDValue Op1 = getValue(I.getArgOperand(0)); 6841 SDValue Op2 = getValue(I.getArgOperand(1)); 6842 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6843 return; 6844 } 6845 case Intrinsic::ssub_sat: { 6846 SDValue Op1 = getValue(I.getArgOperand(0)); 6847 SDValue Op2 = getValue(I.getArgOperand(1)); 6848 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6849 return; 6850 } 6851 case Intrinsic::usub_sat: { 6852 SDValue Op1 = getValue(I.getArgOperand(0)); 6853 SDValue Op2 = getValue(I.getArgOperand(1)); 6854 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6855 return; 6856 } 6857 case Intrinsic::sshl_sat: { 6858 SDValue Op1 = getValue(I.getArgOperand(0)); 6859 SDValue Op2 = getValue(I.getArgOperand(1)); 6860 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6861 return; 6862 } 6863 case Intrinsic::ushl_sat: { 6864 SDValue Op1 = getValue(I.getArgOperand(0)); 6865 SDValue Op2 = getValue(I.getArgOperand(1)); 6866 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6867 return; 6868 } 6869 case Intrinsic::smul_fix: 6870 case Intrinsic::umul_fix: 6871 case Intrinsic::smul_fix_sat: 6872 case Intrinsic::umul_fix_sat: { 6873 SDValue Op1 = getValue(I.getArgOperand(0)); 6874 SDValue Op2 = getValue(I.getArgOperand(1)); 6875 SDValue Op3 = getValue(I.getArgOperand(2)); 6876 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6877 Op1.getValueType(), Op1, Op2, Op3)); 6878 return; 6879 } 6880 case Intrinsic::sdiv_fix: 6881 case Intrinsic::udiv_fix: 6882 case Intrinsic::sdiv_fix_sat: 6883 case Intrinsic::udiv_fix_sat: { 6884 SDValue Op1 = getValue(I.getArgOperand(0)); 6885 SDValue Op2 = getValue(I.getArgOperand(1)); 6886 SDValue Op3 = getValue(I.getArgOperand(2)); 6887 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6888 Op1, Op2, Op3, DAG, TLI)); 6889 return; 6890 } 6891 case Intrinsic::smax: { 6892 SDValue Op1 = getValue(I.getArgOperand(0)); 6893 SDValue Op2 = getValue(I.getArgOperand(1)); 6894 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6895 return; 6896 } 6897 case Intrinsic::smin: { 6898 SDValue Op1 = getValue(I.getArgOperand(0)); 6899 SDValue Op2 = getValue(I.getArgOperand(1)); 6900 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6901 return; 6902 } 6903 case Intrinsic::umax: { 6904 SDValue Op1 = getValue(I.getArgOperand(0)); 6905 SDValue Op2 = getValue(I.getArgOperand(1)); 6906 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6907 return; 6908 } 6909 case Intrinsic::umin: { 6910 SDValue Op1 = getValue(I.getArgOperand(0)); 6911 SDValue Op2 = getValue(I.getArgOperand(1)); 6912 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6913 return; 6914 } 6915 case Intrinsic::abs: { 6916 // TODO: Preserve "int min is poison" arg in SDAG? 6917 SDValue Op1 = getValue(I.getArgOperand(0)); 6918 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6919 return; 6920 } 6921 case Intrinsic::stacksave: { 6922 SDValue Op = getRoot(); 6923 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6924 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6925 setValue(&I, Res); 6926 DAG.setRoot(Res.getValue(1)); 6927 return; 6928 } 6929 case Intrinsic::stackrestore: 6930 Res = getValue(I.getArgOperand(0)); 6931 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6932 return; 6933 case Intrinsic::get_dynamic_area_offset: { 6934 SDValue Op = getRoot(); 6935 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6936 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6937 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6938 // target. 6939 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6940 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6941 " intrinsic!"); 6942 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6943 Op); 6944 DAG.setRoot(Op); 6945 setValue(&I, Res); 6946 return; 6947 } 6948 case Intrinsic::stackguard: { 6949 MachineFunction &MF = DAG.getMachineFunction(); 6950 const Module &M = *MF.getFunction().getParent(); 6951 SDValue Chain = getRoot(); 6952 if (TLI.useLoadStackGuardNode()) { 6953 Res = getLoadStackGuard(DAG, sdl, Chain); 6954 } else { 6955 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6956 const Value *Global = TLI.getSDagStackGuard(M); 6957 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6958 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6959 MachinePointerInfo(Global, 0), Align, 6960 MachineMemOperand::MOVolatile); 6961 } 6962 if (TLI.useStackGuardXorFP()) 6963 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6964 DAG.setRoot(Chain); 6965 setValue(&I, Res); 6966 return; 6967 } 6968 case Intrinsic::stackprotector: { 6969 // Emit code into the DAG to store the stack guard onto the stack. 6970 MachineFunction &MF = DAG.getMachineFunction(); 6971 MachineFrameInfo &MFI = MF.getFrameInfo(); 6972 SDValue Src, Chain = getRoot(); 6973 6974 if (TLI.useLoadStackGuardNode()) 6975 Src = getLoadStackGuard(DAG, sdl, Chain); 6976 else 6977 Src = getValue(I.getArgOperand(0)); // The guard's value. 6978 6979 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6980 6981 int FI = FuncInfo.StaticAllocaMap[Slot]; 6982 MFI.setStackProtectorIndex(FI); 6983 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6984 6985 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6986 6987 // Store the stack protector onto the stack. 6988 Res = DAG.getStore( 6989 Chain, sdl, Src, FIN, 6990 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6991 MaybeAlign(), MachineMemOperand::MOVolatile); 6992 setValue(&I, Res); 6993 DAG.setRoot(Res); 6994 return; 6995 } 6996 case Intrinsic::objectsize: 6997 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6998 6999 case Intrinsic::is_constant: 7000 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 7001 7002 case Intrinsic::annotation: 7003 case Intrinsic::ptr_annotation: 7004 case Intrinsic::launder_invariant_group: 7005 case Intrinsic::strip_invariant_group: 7006 // Drop the intrinsic, but forward the value 7007 setValue(&I, getValue(I.getOperand(0))); 7008 return; 7009 7010 case Intrinsic::assume: 7011 case Intrinsic::experimental_noalias_scope_decl: 7012 case Intrinsic::var_annotation: 7013 case Intrinsic::sideeffect: 7014 // Discard annotate attributes, noalias scope declarations, assumptions, and 7015 // artificial side-effects. 7016 return; 7017 7018 case Intrinsic::codeview_annotation: { 7019 // Emit a label associated with this metadata. 7020 MachineFunction &MF = DAG.getMachineFunction(); 7021 MCSymbol *Label = 7022 MF.getMMI().getContext().createTempSymbol("annotation", true); 7023 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 7024 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 7025 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 7026 DAG.setRoot(Res); 7027 return; 7028 } 7029 7030 case Intrinsic::init_trampoline: { 7031 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 7032 7033 SDValue Ops[6]; 7034 Ops[0] = getRoot(); 7035 Ops[1] = getValue(I.getArgOperand(0)); 7036 Ops[2] = getValue(I.getArgOperand(1)); 7037 Ops[3] = getValue(I.getArgOperand(2)); 7038 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 7039 Ops[5] = DAG.getSrcValue(F); 7040 7041 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 7042 7043 DAG.setRoot(Res); 7044 return; 7045 } 7046 case Intrinsic::adjust_trampoline: 7047 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7048 TLI.getPointerTy(DAG.getDataLayout()), 7049 getValue(I.getArgOperand(0)))); 7050 return; 7051 case Intrinsic::gcroot: { 7052 assert(DAG.getMachineFunction().getFunction().hasGC() && 7053 "only valid in functions with gc specified, enforced by Verifier"); 7054 assert(GFI && "implied by previous"); 7055 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7056 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7057 7058 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7059 GFI->addStackRoot(FI->getIndex(), TypeMap); 7060 return; 7061 } 7062 case Intrinsic::gcread: 7063 case Intrinsic::gcwrite: 7064 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7065 case Intrinsic::get_rounding: 7066 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7067 setValue(&I, Res); 7068 DAG.setRoot(Res.getValue(1)); 7069 return; 7070 7071 case Intrinsic::expect: 7072 // Just replace __builtin_expect(exp, c) with EXP. 7073 setValue(&I, getValue(I.getArgOperand(0))); 7074 return; 7075 7076 case Intrinsic::ubsantrap: 7077 case Intrinsic::debugtrap: 7078 case Intrinsic::trap: { 7079 StringRef TrapFuncName = 7080 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7081 if (TrapFuncName.empty()) { 7082 switch (Intrinsic) { 7083 case Intrinsic::trap: 7084 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7085 break; 7086 case Intrinsic::debugtrap: 7087 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7088 break; 7089 case Intrinsic::ubsantrap: 7090 DAG.setRoot(DAG.getNode( 7091 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7092 DAG.getTargetConstant( 7093 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7094 MVT::i32))); 7095 break; 7096 default: llvm_unreachable("unknown trap intrinsic"); 7097 } 7098 return; 7099 } 7100 TargetLowering::ArgListTy Args; 7101 if (Intrinsic == Intrinsic::ubsantrap) { 7102 Args.push_back(TargetLoweringBase::ArgListEntry()); 7103 Args[0].Val = I.getArgOperand(0); 7104 Args[0].Node = getValue(Args[0].Val); 7105 Args[0].Ty = Args[0].Val->getType(); 7106 } 7107 7108 TargetLowering::CallLoweringInfo CLI(DAG); 7109 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7110 CallingConv::C, I.getType(), 7111 DAG.getExternalSymbol(TrapFuncName.data(), 7112 TLI.getPointerTy(DAG.getDataLayout())), 7113 std::move(Args)); 7114 7115 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7116 DAG.setRoot(Result.second); 7117 return; 7118 } 7119 7120 case Intrinsic::uadd_with_overflow: 7121 case Intrinsic::sadd_with_overflow: 7122 case Intrinsic::usub_with_overflow: 7123 case Intrinsic::ssub_with_overflow: 7124 case Intrinsic::umul_with_overflow: 7125 case Intrinsic::smul_with_overflow: { 7126 ISD::NodeType Op; 7127 switch (Intrinsic) { 7128 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7129 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7130 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7131 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7132 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7133 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7134 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7135 } 7136 SDValue Op1 = getValue(I.getArgOperand(0)); 7137 SDValue Op2 = getValue(I.getArgOperand(1)); 7138 7139 EVT ResultVT = Op1.getValueType(); 7140 EVT OverflowVT = MVT::i1; 7141 if (ResultVT.isVector()) 7142 OverflowVT = EVT::getVectorVT( 7143 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7144 7145 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7146 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7147 return; 7148 } 7149 case Intrinsic::prefetch: { 7150 SDValue Ops[5]; 7151 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7152 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7153 Ops[0] = DAG.getRoot(); 7154 Ops[1] = getValue(I.getArgOperand(0)); 7155 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7156 MVT::i32); 7157 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7158 MVT::i32); 7159 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7160 MVT::i32); 7161 SDValue Result = DAG.getMemIntrinsicNode( 7162 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7163 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7164 /* align */ std::nullopt, Flags); 7165 7166 // Chain the prefetch in parallel with any pending loads, to stay out of 7167 // the way of later optimizations. 7168 PendingLoads.push_back(Result); 7169 Result = getRoot(); 7170 DAG.setRoot(Result); 7171 return; 7172 } 7173 case Intrinsic::lifetime_start: 7174 case Intrinsic::lifetime_end: { 7175 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7176 // Stack coloring is not enabled in O0, discard region information. 7177 if (TM.getOptLevel() == CodeGenOptLevel::None) 7178 return; 7179 7180 const int64_t ObjectSize = 7181 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7182 Value *const ObjectPtr = I.getArgOperand(1); 7183 SmallVector<const Value *, 4> Allocas; 7184 getUnderlyingObjects(ObjectPtr, Allocas); 7185 7186 for (const Value *Alloca : Allocas) { 7187 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7188 7189 // Could not find an Alloca. 7190 if (!LifetimeObject) 7191 continue; 7192 7193 // First check that the Alloca is static, otherwise it won't have a 7194 // valid frame index. 7195 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7196 if (SI == FuncInfo.StaticAllocaMap.end()) 7197 return; 7198 7199 const int FrameIndex = SI->second; 7200 int64_t Offset; 7201 if (GetPointerBaseWithConstantOffset( 7202 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7203 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7204 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7205 Offset); 7206 DAG.setRoot(Res); 7207 } 7208 return; 7209 } 7210 case Intrinsic::pseudoprobe: { 7211 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7212 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7213 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7214 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7215 DAG.setRoot(Res); 7216 return; 7217 } 7218 case Intrinsic::invariant_start: 7219 // Discard region information. 7220 setValue(&I, 7221 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7222 return; 7223 case Intrinsic::invariant_end: 7224 // Discard region information. 7225 return; 7226 case Intrinsic::clear_cache: 7227 /// FunctionName may be null. 7228 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 7229 lowerCallToExternalSymbol(I, FunctionName); 7230 return; 7231 case Intrinsic::donothing: 7232 case Intrinsic::seh_try_begin: 7233 case Intrinsic::seh_scope_begin: 7234 case Intrinsic::seh_try_end: 7235 case Intrinsic::seh_scope_end: 7236 // ignore 7237 return; 7238 case Intrinsic::experimental_stackmap: 7239 visitStackmap(I); 7240 return; 7241 case Intrinsic::experimental_patchpoint_void: 7242 case Intrinsic::experimental_patchpoint_i64: 7243 visitPatchpoint(I); 7244 return; 7245 case Intrinsic::experimental_gc_statepoint: 7246 LowerStatepoint(cast<GCStatepointInst>(I)); 7247 return; 7248 case Intrinsic::experimental_gc_result: 7249 visitGCResult(cast<GCResultInst>(I)); 7250 return; 7251 case Intrinsic::experimental_gc_relocate: 7252 visitGCRelocate(cast<GCRelocateInst>(I)); 7253 return; 7254 case Intrinsic::instrprof_cover: 7255 llvm_unreachable("instrprof failed to lower a cover"); 7256 case Intrinsic::instrprof_increment: 7257 llvm_unreachable("instrprof failed to lower an increment"); 7258 case Intrinsic::instrprof_timestamp: 7259 llvm_unreachable("instrprof failed to lower a timestamp"); 7260 case Intrinsic::instrprof_value_profile: 7261 llvm_unreachable("instrprof failed to lower a value profiling call"); 7262 case Intrinsic::instrprof_mcdc_parameters: 7263 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7264 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7265 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7266 case Intrinsic::instrprof_mcdc_condbitmap_update: 7267 llvm_unreachable("instrprof failed to lower an mcdc condbitmap update"); 7268 case Intrinsic::localescape: { 7269 MachineFunction &MF = DAG.getMachineFunction(); 7270 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7271 7272 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7273 // is the same on all targets. 7274 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7275 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7276 if (isa<ConstantPointerNull>(Arg)) 7277 continue; // Skip null pointers. They represent a hole in index space. 7278 AllocaInst *Slot = cast<AllocaInst>(Arg); 7279 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7280 "can only escape static allocas"); 7281 int FI = FuncInfo.StaticAllocaMap[Slot]; 7282 MCSymbol *FrameAllocSym = 7283 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7284 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7285 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7286 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7287 .addSym(FrameAllocSym) 7288 .addFrameIndex(FI); 7289 } 7290 7291 return; 7292 } 7293 7294 case Intrinsic::localrecover: { 7295 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7296 MachineFunction &MF = DAG.getMachineFunction(); 7297 7298 // Get the symbol that defines the frame offset. 7299 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7300 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7301 unsigned IdxVal = 7302 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7303 MCSymbol *FrameAllocSym = 7304 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7305 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7306 7307 Value *FP = I.getArgOperand(1); 7308 SDValue FPVal = getValue(FP); 7309 EVT PtrVT = FPVal.getValueType(); 7310 7311 // Create a MCSymbol for the label to avoid any target lowering 7312 // that would make this PC relative. 7313 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7314 SDValue OffsetVal = 7315 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7316 7317 // Add the offset to the FP. 7318 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7319 setValue(&I, Add); 7320 7321 return; 7322 } 7323 7324 case Intrinsic::eh_exceptionpointer: 7325 case Intrinsic::eh_exceptioncode: { 7326 // Get the exception pointer vreg, copy from it, and resize it to fit. 7327 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7328 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7329 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7330 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7331 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7332 if (Intrinsic == Intrinsic::eh_exceptioncode) 7333 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7334 setValue(&I, N); 7335 return; 7336 } 7337 case Intrinsic::xray_customevent: { 7338 // Here we want to make sure that the intrinsic behaves as if it has a 7339 // specific calling convention. 7340 const auto &Triple = DAG.getTarget().getTargetTriple(); 7341 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7342 return; 7343 7344 SmallVector<SDValue, 8> Ops; 7345 7346 // We want to say that we always want the arguments in registers. 7347 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7348 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7349 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7350 SDValue Chain = getRoot(); 7351 Ops.push_back(LogEntryVal); 7352 Ops.push_back(StrSizeVal); 7353 Ops.push_back(Chain); 7354 7355 // We need to enforce the calling convention for the callsite, so that 7356 // argument ordering is enforced correctly, and that register allocation can 7357 // see that some registers may be assumed clobbered and have to preserve 7358 // them across calls to the intrinsic. 7359 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7360 sdl, NodeTys, Ops); 7361 SDValue patchableNode = SDValue(MN, 0); 7362 DAG.setRoot(patchableNode); 7363 setValue(&I, patchableNode); 7364 return; 7365 } 7366 case Intrinsic::xray_typedevent: { 7367 // Here we want to make sure that the intrinsic behaves as if it has a 7368 // specific calling convention. 7369 const auto &Triple = DAG.getTarget().getTargetTriple(); 7370 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7371 return; 7372 7373 SmallVector<SDValue, 8> Ops; 7374 7375 // We want to say that we always want the arguments in registers. 7376 // It's unclear to me how manipulating the selection DAG here forces callers 7377 // to provide arguments in registers instead of on the stack. 7378 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7379 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7380 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7381 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7382 SDValue Chain = getRoot(); 7383 Ops.push_back(LogTypeId); 7384 Ops.push_back(LogEntryVal); 7385 Ops.push_back(StrSizeVal); 7386 Ops.push_back(Chain); 7387 7388 // We need to enforce the calling convention for the callsite, so that 7389 // argument ordering is enforced correctly, and that register allocation can 7390 // see that some registers may be assumed clobbered and have to preserve 7391 // them across calls to the intrinsic. 7392 MachineSDNode *MN = DAG.getMachineNode( 7393 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7394 SDValue patchableNode = SDValue(MN, 0); 7395 DAG.setRoot(patchableNode); 7396 setValue(&I, patchableNode); 7397 return; 7398 } 7399 case Intrinsic::experimental_deoptimize: 7400 LowerDeoptimizeCall(&I); 7401 return; 7402 case Intrinsic::experimental_stepvector: 7403 visitStepVector(I); 7404 return; 7405 case Intrinsic::vector_reduce_fadd: 7406 case Intrinsic::vector_reduce_fmul: 7407 case Intrinsic::vector_reduce_add: 7408 case Intrinsic::vector_reduce_mul: 7409 case Intrinsic::vector_reduce_and: 7410 case Intrinsic::vector_reduce_or: 7411 case Intrinsic::vector_reduce_xor: 7412 case Intrinsic::vector_reduce_smax: 7413 case Intrinsic::vector_reduce_smin: 7414 case Intrinsic::vector_reduce_umax: 7415 case Intrinsic::vector_reduce_umin: 7416 case Intrinsic::vector_reduce_fmax: 7417 case Intrinsic::vector_reduce_fmin: 7418 case Intrinsic::vector_reduce_fmaximum: 7419 case Intrinsic::vector_reduce_fminimum: 7420 visitVectorReduce(I, Intrinsic); 7421 return; 7422 7423 case Intrinsic::icall_branch_funnel: { 7424 SmallVector<SDValue, 16> Ops; 7425 Ops.push_back(getValue(I.getArgOperand(0))); 7426 7427 int64_t Offset; 7428 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7429 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7430 if (!Base) 7431 report_fatal_error( 7432 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7433 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7434 7435 struct BranchFunnelTarget { 7436 int64_t Offset; 7437 SDValue Target; 7438 }; 7439 SmallVector<BranchFunnelTarget, 8> Targets; 7440 7441 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7442 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7443 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7444 if (ElemBase != Base) 7445 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7446 "to the same GlobalValue"); 7447 7448 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7449 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7450 if (!GA) 7451 report_fatal_error( 7452 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7453 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7454 GA->getGlobal(), sdl, Val.getValueType(), 7455 GA->getOffset())}); 7456 } 7457 llvm::sort(Targets, 7458 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7459 return T1.Offset < T2.Offset; 7460 }); 7461 7462 for (auto &T : Targets) { 7463 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7464 Ops.push_back(T.Target); 7465 } 7466 7467 Ops.push_back(DAG.getRoot()); // Chain 7468 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7469 MVT::Other, Ops), 7470 0); 7471 DAG.setRoot(N); 7472 setValue(&I, N); 7473 HasTailCall = true; 7474 return; 7475 } 7476 7477 case Intrinsic::wasm_landingpad_index: 7478 // Information this intrinsic contained has been transferred to 7479 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7480 // delete it now. 7481 return; 7482 7483 case Intrinsic::aarch64_settag: 7484 case Intrinsic::aarch64_settag_zero: { 7485 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7486 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7487 SDValue Val = TSI.EmitTargetCodeForSetTag( 7488 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7489 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7490 ZeroMemory); 7491 DAG.setRoot(Val); 7492 setValue(&I, Val); 7493 return; 7494 } 7495 case Intrinsic::amdgcn_cs_chain: { 7496 assert(I.arg_size() == 5 && "Additional args not supported yet"); 7497 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 7498 "Non-zero flags not supported yet"); 7499 7500 // At this point we don't care if it's amdgpu_cs_chain or 7501 // amdgpu_cs_chain_preserve. 7502 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 7503 7504 Type *RetTy = I.getType(); 7505 assert(RetTy->isVoidTy() && "Should not return"); 7506 7507 SDValue Callee = getValue(I.getOperand(0)); 7508 7509 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 7510 // We'll also tack the value of the EXEC mask at the end. 7511 TargetLowering::ArgListTy Args; 7512 Args.reserve(3); 7513 7514 for (unsigned Idx : {2, 3, 1}) { 7515 TargetLowering::ArgListEntry Arg; 7516 Arg.Node = getValue(I.getOperand(Idx)); 7517 Arg.Ty = I.getOperand(Idx)->getType(); 7518 Arg.setAttributes(&I, Idx); 7519 Args.push_back(Arg); 7520 } 7521 7522 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 7523 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 7524 Args[2].IsInReg = true; // EXEC should be inreg 7525 7526 TargetLowering::CallLoweringInfo CLI(DAG); 7527 CLI.setDebugLoc(getCurSDLoc()) 7528 .setChain(getRoot()) 7529 .setCallee(CC, RetTy, Callee, std::move(Args)) 7530 .setNoReturn(true) 7531 .setTailCall(true) 7532 .setConvergent(I.isConvergent()); 7533 CLI.CB = &I; 7534 std::pair<SDValue, SDValue> Result = 7535 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 7536 (void)Result; 7537 assert(!Result.first.getNode() && !Result.second.getNode() && 7538 "Should've lowered as tail call"); 7539 7540 HasTailCall = true; 7541 return; 7542 } 7543 case Intrinsic::ptrmask: { 7544 SDValue Ptr = getValue(I.getOperand(0)); 7545 SDValue Mask = getValue(I.getOperand(1)); 7546 7547 EVT PtrVT = Ptr.getValueType(); 7548 assert(PtrVT == Mask.getValueType() && 7549 "Pointers with different index type are not supported by SDAG"); 7550 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 7551 return; 7552 } 7553 case Intrinsic::threadlocal_address: { 7554 setValue(&I, getValue(I.getOperand(0))); 7555 return; 7556 } 7557 case Intrinsic::get_active_lane_mask: { 7558 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7559 SDValue Index = getValue(I.getOperand(0)); 7560 EVT ElementVT = Index.getValueType(); 7561 7562 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7563 visitTargetIntrinsic(I, Intrinsic); 7564 return; 7565 } 7566 7567 SDValue TripCount = getValue(I.getOperand(1)); 7568 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7569 CCVT.getVectorElementCount()); 7570 7571 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7572 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7573 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7574 SDValue VectorInduction = DAG.getNode( 7575 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7576 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7577 VectorTripCount, ISD::CondCode::SETULT); 7578 setValue(&I, SetCC); 7579 return; 7580 } 7581 case Intrinsic::experimental_get_vector_length: { 7582 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7583 "Expected positive VF"); 7584 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7585 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7586 7587 SDValue Count = getValue(I.getOperand(0)); 7588 EVT CountVT = Count.getValueType(); 7589 7590 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7591 visitTargetIntrinsic(I, Intrinsic); 7592 return; 7593 } 7594 7595 // Expand to a umin between the trip count and the maximum elements the type 7596 // can hold. 7597 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7598 7599 // Extend the trip count to at least the result VT. 7600 if (CountVT.bitsLT(VT)) { 7601 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7602 CountVT = VT; 7603 } 7604 7605 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7606 ElementCount::get(VF, IsScalable)); 7607 7608 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7609 // Clip to the result type if needed. 7610 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7611 7612 setValue(&I, Trunc); 7613 return; 7614 } 7615 case Intrinsic::experimental_cttz_elts: { 7616 auto DL = getCurSDLoc(); 7617 SDValue Op = getValue(I.getOperand(0)); 7618 EVT OpVT = Op.getValueType(); 7619 7620 if (!TLI.shouldExpandCttzElements(OpVT)) { 7621 visitTargetIntrinsic(I, Intrinsic); 7622 return; 7623 } 7624 7625 if (OpVT.getScalarType() != MVT::i1) { 7626 // Compare the input vector elements to zero & use to count trailing zeros 7627 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 7628 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 7629 OpVT.getVectorElementCount()); 7630 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 7631 } 7632 7633 // Find the smallest "sensible" element type to use for the expansion. 7634 ConstantRange CR( 7635 APInt(64, OpVT.getVectorElementCount().getKnownMinValue())); 7636 if (OpVT.isScalableVT()) 7637 CR = CR.umul_sat(getVScaleRange(I.getCaller(), 64)); 7638 7639 // If the zero-is-poison flag is set, we can assume the upper limit 7640 // of the result is VF-1. 7641 if (!cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero()) 7642 CR = CR.subtract(APInt(64, 1)); 7643 7644 unsigned EltWidth = I.getType()->getScalarSizeInBits(); 7645 EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits()); 7646 EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8); 7647 7648 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 7649 7650 // Create the new vector type & get the vector length 7651 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 7652 OpVT.getVectorElementCount()); 7653 7654 SDValue VL = 7655 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 7656 7657 SDValue StepVec = DAG.getStepVector(DL, NewVT); 7658 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 7659 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 7660 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 7661 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 7662 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 7663 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 7664 7665 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7666 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 7667 7668 setValue(&I, Ret); 7669 return; 7670 } 7671 case Intrinsic::vector_insert: { 7672 SDValue Vec = getValue(I.getOperand(0)); 7673 SDValue SubVec = getValue(I.getOperand(1)); 7674 SDValue Index = getValue(I.getOperand(2)); 7675 7676 // The intrinsic's index type is i64, but the SDNode requires an index type 7677 // suitable for the target. Convert the index as required. 7678 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7679 if (Index.getValueType() != VectorIdxTy) 7680 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 7681 7682 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7683 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7684 Index)); 7685 return; 7686 } 7687 case Intrinsic::vector_extract: { 7688 SDValue Vec = getValue(I.getOperand(0)); 7689 SDValue Index = getValue(I.getOperand(1)); 7690 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7691 7692 // The intrinsic's index type is i64, but the SDNode requires an index type 7693 // suitable for the target. Convert the index as required. 7694 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7695 if (Index.getValueType() != VectorIdxTy) 7696 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 7697 7698 setValue(&I, 7699 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7700 return; 7701 } 7702 case Intrinsic::experimental_vector_reverse: 7703 visitVectorReverse(I); 7704 return; 7705 case Intrinsic::experimental_vector_splice: 7706 visitVectorSplice(I); 7707 return; 7708 case Intrinsic::callbr_landingpad: 7709 visitCallBrLandingPad(I); 7710 return; 7711 case Intrinsic::experimental_vector_interleave2: 7712 visitVectorInterleave(I); 7713 return; 7714 case Intrinsic::experimental_vector_deinterleave2: 7715 visitVectorDeinterleave(I); 7716 return; 7717 } 7718 } 7719 7720 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7721 const ConstrainedFPIntrinsic &FPI) { 7722 SDLoc sdl = getCurSDLoc(); 7723 7724 // We do not need to serialize constrained FP intrinsics against 7725 // each other or against (nonvolatile) loads, so they can be 7726 // chained like loads. 7727 SDValue Chain = DAG.getRoot(); 7728 SmallVector<SDValue, 4> Opers; 7729 Opers.push_back(Chain); 7730 if (FPI.isUnaryOp()) { 7731 Opers.push_back(getValue(FPI.getArgOperand(0))); 7732 } else if (FPI.isTernaryOp()) { 7733 Opers.push_back(getValue(FPI.getArgOperand(0))); 7734 Opers.push_back(getValue(FPI.getArgOperand(1))); 7735 Opers.push_back(getValue(FPI.getArgOperand(2))); 7736 } else { 7737 Opers.push_back(getValue(FPI.getArgOperand(0))); 7738 Opers.push_back(getValue(FPI.getArgOperand(1))); 7739 } 7740 7741 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7742 assert(Result.getNode()->getNumValues() == 2); 7743 7744 // Push node to the appropriate list so that future instructions can be 7745 // chained up correctly. 7746 SDValue OutChain = Result.getValue(1); 7747 switch (EB) { 7748 case fp::ExceptionBehavior::ebIgnore: 7749 // The only reason why ebIgnore nodes still need to be chained is that 7750 // they might depend on the current rounding mode, and therefore must 7751 // not be moved across instruction that may change that mode. 7752 [[fallthrough]]; 7753 case fp::ExceptionBehavior::ebMayTrap: 7754 // These must not be moved across calls or instructions that may change 7755 // floating-point exception masks. 7756 PendingConstrainedFP.push_back(OutChain); 7757 break; 7758 case fp::ExceptionBehavior::ebStrict: 7759 // These must not be moved across calls or instructions that may change 7760 // floating-point exception masks or read floating-point exception flags. 7761 // In addition, they cannot be optimized out even if unused. 7762 PendingConstrainedFPStrict.push_back(OutChain); 7763 break; 7764 } 7765 }; 7766 7767 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7768 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7769 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7770 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7771 7772 SDNodeFlags Flags; 7773 if (EB == fp::ExceptionBehavior::ebIgnore) 7774 Flags.setNoFPExcept(true); 7775 7776 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7777 Flags.copyFMF(*FPOp); 7778 7779 unsigned Opcode; 7780 switch (FPI.getIntrinsicID()) { 7781 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7782 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7783 case Intrinsic::INTRINSIC: \ 7784 Opcode = ISD::STRICT_##DAGN; \ 7785 break; 7786 #include "llvm/IR/ConstrainedOps.def" 7787 case Intrinsic::experimental_constrained_fmuladd: { 7788 Opcode = ISD::STRICT_FMA; 7789 // Break fmuladd into fmul and fadd. 7790 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7791 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7792 Opers.pop_back(); 7793 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7794 pushOutChain(Mul, EB); 7795 Opcode = ISD::STRICT_FADD; 7796 Opers.clear(); 7797 Opers.push_back(Mul.getValue(1)); 7798 Opers.push_back(Mul.getValue(0)); 7799 Opers.push_back(getValue(FPI.getArgOperand(2))); 7800 } 7801 break; 7802 } 7803 } 7804 7805 // A few strict DAG nodes carry additional operands that are not 7806 // set up by the default code above. 7807 switch (Opcode) { 7808 default: break; 7809 case ISD::STRICT_FP_ROUND: 7810 Opers.push_back( 7811 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7812 break; 7813 case ISD::STRICT_FSETCC: 7814 case ISD::STRICT_FSETCCS: { 7815 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7816 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7817 if (TM.Options.NoNaNsFPMath) 7818 Condition = getFCmpCodeWithoutNaN(Condition); 7819 Opers.push_back(DAG.getCondCode(Condition)); 7820 break; 7821 } 7822 } 7823 7824 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7825 pushOutChain(Result, EB); 7826 7827 SDValue FPResult = Result.getValue(0); 7828 setValue(&FPI, FPResult); 7829 } 7830 7831 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7832 std::optional<unsigned> ResOPC; 7833 switch (VPIntrin.getIntrinsicID()) { 7834 case Intrinsic::vp_ctlz: { 7835 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7836 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 7837 break; 7838 } 7839 case Intrinsic::vp_cttz: { 7840 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7841 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 7842 break; 7843 } 7844 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7845 case Intrinsic::VPID: \ 7846 ResOPC = ISD::VPSD; \ 7847 break; 7848 #include "llvm/IR/VPIntrinsics.def" 7849 } 7850 7851 if (!ResOPC) 7852 llvm_unreachable( 7853 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7854 7855 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7856 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7857 if (VPIntrin.getFastMathFlags().allowReassoc()) 7858 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7859 : ISD::VP_REDUCE_FMUL; 7860 } 7861 7862 return *ResOPC; 7863 } 7864 7865 void SelectionDAGBuilder::visitVPLoad( 7866 const VPIntrinsic &VPIntrin, EVT VT, 7867 const SmallVectorImpl<SDValue> &OpValues) { 7868 SDLoc DL = getCurSDLoc(); 7869 Value *PtrOperand = VPIntrin.getArgOperand(0); 7870 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7871 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7872 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7873 SDValue LD; 7874 // Do not serialize variable-length loads of constant memory with 7875 // anything. 7876 if (!Alignment) 7877 Alignment = DAG.getEVTAlign(VT); 7878 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7879 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7880 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7881 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7882 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7883 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7884 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7885 MMO, false /*IsExpanding */); 7886 if (AddToChain) 7887 PendingLoads.push_back(LD.getValue(1)); 7888 setValue(&VPIntrin, LD); 7889 } 7890 7891 void SelectionDAGBuilder::visitVPGather( 7892 const VPIntrinsic &VPIntrin, EVT VT, 7893 const SmallVectorImpl<SDValue> &OpValues) { 7894 SDLoc DL = getCurSDLoc(); 7895 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7896 Value *PtrOperand = VPIntrin.getArgOperand(0); 7897 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7898 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7899 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7900 SDValue LD; 7901 if (!Alignment) 7902 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7903 unsigned AS = 7904 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7905 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7906 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7907 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7908 SDValue Base, Index, Scale; 7909 ISD::MemIndexType IndexType; 7910 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7911 this, VPIntrin.getParent(), 7912 VT.getScalarStoreSize()); 7913 if (!UniformBase) { 7914 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7915 Index = getValue(PtrOperand); 7916 IndexType = ISD::SIGNED_SCALED; 7917 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7918 } 7919 EVT IdxVT = Index.getValueType(); 7920 EVT EltTy = IdxVT.getVectorElementType(); 7921 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7922 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7923 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7924 } 7925 LD = DAG.getGatherVP( 7926 DAG.getVTList(VT, MVT::Other), VT, DL, 7927 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7928 IndexType); 7929 PendingLoads.push_back(LD.getValue(1)); 7930 setValue(&VPIntrin, LD); 7931 } 7932 7933 void SelectionDAGBuilder::visitVPStore( 7934 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7935 SDLoc DL = getCurSDLoc(); 7936 Value *PtrOperand = VPIntrin.getArgOperand(1); 7937 EVT VT = OpValues[0].getValueType(); 7938 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7939 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7940 SDValue ST; 7941 if (!Alignment) 7942 Alignment = DAG.getEVTAlign(VT); 7943 SDValue Ptr = OpValues[1]; 7944 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7945 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7946 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7947 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7948 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7949 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7950 /* IsTruncating */ false, /*IsCompressing*/ false); 7951 DAG.setRoot(ST); 7952 setValue(&VPIntrin, ST); 7953 } 7954 7955 void SelectionDAGBuilder::visitVPScatter( 7956 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7957 SDLoc DL = getCurSDLoc(); 7958 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7959 Value *PtrOperand = VPIntrin.getArgOperand(1); 7960 EVT VT = OpValues[0].getValueType(); 7961 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7962 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7963 SDValue ST; 7964 if (!Alignment) 7965 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7966 unsigned AS = 7967 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7968 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7969 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7970 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7971 SDValue Base, Index, Scale; 7972 ISD::MemIndexType IndexType; 7973 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7974 this, VPIntrin.getParent(), 7975 VT.getScalarStoreSize()); 7976 if (!UniformBase) { 7977 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7978 Index = getValue(PtrOperand); 7979 IndexType = ISD::SIGNED_SCALED; 7980 Scale = 7981 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7982 } 7983 EVT IdxVT = Index.getValueType(); 7984 EVT EltTy = IdxVT.getVectorElementType(); 7985 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7986 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7987 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7988 } 7989 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7990 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7991 OpValues[2], OpValues[3]}, 7992 MMO, IndexType); 7993 DAG.setRoot(ST); 7994 setValue(&VPIntrin, ST); 7995 } 7996 7997 void SelectionDAGBuilder::visitVPStridedLoad( 7998 const VPIntrinsic &VPIntrin, EVT VT, 7999 const SmallVectorImpl<SDValue> &OpValues) { 8000 SDLoc DL = getCurSDLoc(); 8001 Value *PtrOperand = VPIntrin.getArgOperand(0); 8002 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8003 if (!Alignment) 8004 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8005 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8006 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8007 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8008 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8009 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8010 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8011 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 8012 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 8013 8014 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 8015 OpValues[2], OpValues[3], MMO, 8016 false /*IsExpanding*/); 8017 8018 if (AddToChain) 8019 PendingLoads.push_back(LD.getValue(1)); 8020 setValue(&VPIntrin, LD); 8021 } 8022 8023 void SelectionDAGBuilder::visitVPStridedStore( 8024 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8025 SDLoc DL = getCurSDLoc(); 8026 Value *PtrOperand = VPIntrin.getArgOperand(1); 8027 EVT VT = OpValues[0].getValueType(); 8028 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8029 if (!Alignment) 8030 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8031 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8032 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8033 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 8034 MemoryLocation::UnknownSize, *Alignment, AAInfo); 8035 8036 SDValue ST = DAG.getStridedStoreVP( 8037 getMemoryRoot(), DL, OpValues[0], OpValues[1], 8038 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 8039 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 8040 /*IsCompressing*/ false); 8041 8042 DAG.setRoot(ST); 8043 setValue(&VPIntrin, ST); 8044 } 8045 8046 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8047 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8048 SDLoc DL = getCurSDLoc(); 8049 8050 ISD::CondCode Condition; 8051 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8052 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8053 if (IsFP) { 8054 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8055 // flags, but calls that don't return floating-point types can't be 8056 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8057 Condition = getFCmpCondCode(CondCode); 8058 if (TM.Options.NoNaNsFPMath) 8059 Condition = getFCmpCodeWithoutNaN(Condition); 8060 } else { 8061 Condition = getICmpCondCode(CondCode); 8062 } 8063 8064 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8065 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8066 // #2 is the condition code 8067 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8068 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8069 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8070 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8071 "Unexpected target EVL type"); 8072 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8073 8074 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8075 VPIntrin.getType()); 8076 setValue(&VPIntrin, 8077 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8078 } 8079 8080 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8081 const VPIntrinsic &VPIntrin) { 8082 SDLoc DL = getCurSDLoc(); 8083 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8084 8085 auto IID = VPIntrin.getIntrinsicID(); 8086 8087 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8088 return visitVPCmp(*CmpI); 8089 8090 SmallVector<EVT, 4> ValueVTs; 8091 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8092 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8093 SDVTList VTs = DAG.getVTList(ValueVTs); 8094 8095 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8096 8097 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8098 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8099 "Unexpected target EVL type"); 8100 8101 // Request operands. 8102 SmallVector<SDValue, 7> OpValues; 8103 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8104 auto Op = getValue(VPIntrin.getArgOperand(I)); 8105 if (I == EVLParamPos) 8106 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8107 OpValues.push_back(Op); 8108 } 8109 8110 switch (Opcode) { 8111 default: { 8112 SDNodeFlags SDFlags; 8113 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8114 SDFlags.copyFMF(*FPMO); 8115 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8116 setValue(&VPIntrin, Result); 8117 break; 8118 } 8119 case ISD::VP_LOAD: 8120 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8121 break; 8122 case ISD::VP_GATHER: 8123 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8124 break; 8125 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8126 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8127 break; 8128 case ISD::VP_STORE: 8129 visitVPStore(VPIntrin, OpValues); 8130 break; 8131 case ISD::VP_SCATTER: 8132 visitVPScatter(VPIntrin, OpValues); 8133 break; 8134 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8135 visitVPStridedStore(VPIntrin, OpValues); 8136 break; 8137 case ISD::VP_FMULADD: { 8138 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8139 SDNodeFlags SDFlags; 8140 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8141 SDFlags.copyFMF(*FPMO); 8142 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8143 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8144 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8145 } else { 8146 SDValue Mul = DAG.getNode( 8147 ISD::VP_FMUL, DL, VTs, 8148 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8149 SDValue Add = 8150 DAG.getNode(ISD::VP_FADD, DL, VTs, 8151 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8152 setValue(&VPIntrin, Add); 8153 } 8154 break; 8155 } 8156 case ISD::VP_IS_FPCLASS: { 8157 const DataLayout DLayout = DAG.getDataLayout(); 8158 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8159 auto Constant = OpValues[1]->getAsZExtVal(); 8160 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8161 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8162 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8163 setValue(&VPIntrin, V); 8164 return; 8165 } 8166 case ISD::VP_INTTOPTR: { 8167 SDValue N = OpValues[0]; 8168 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8169 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8170 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8171 OpValues[2]); 8172 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8173 OpValues[2]); 8174 setValue(&VPIntrin, N); 8175 break; 8176 } 8177 case ISD::VP_PTRTOINT: { 8178 SDValue N = OpValues[0]; 8179 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8180 VPIntrin.getType()); 8181 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8182 VPIntrin.getOperand(0)->getType()); 8183 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8184 OpValues[2]); 8185 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8186 OpValues[2]); 8187 setValue(&VPIntrin, N); 8188 break; 8189 } 8190 case ISD::VP_ABS: 8191 case ISD::VP_CTLZ: 8192 case ISD::VP_CTLZ_ZERO_UNDEF: 8193 case ISD::VP_CTTZ: 8194 case ISD::VP_CTTZ_ZERO_UNDEF: { 8195 SDValue Result = 8196 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8197 setValue(&VPIntrin, Result); 8198 break; 8199 } 8200 } 8201 } 8202 8203 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8204 const BasicBlock *EHPadBB, 8205 MCSymbol *&BeginLabel) { 8206 MachineFunction &MF = DAG.getMachineFunction(); 8207 MachineModuleInfo &MMI = MF.getMMI(); 8208 8209 // Insert a label before the invoke call to mark the try range. This can be 8210 // used to detect deletion of the invoke via the MachineModuleInfo. 8211 BeginLabel = MMI.getContext().createTempSymbol(); 8212 8213 // For SjLj, keep track of which landing pads go with which invokes 8214 // so as to maintain the ordering of pads in the LSDA. 8215 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 8216 if (CallSiteIndex) { 8217 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8218 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 8219 8220 // Now that the call site is handled, stop tracking it. 8221 MMI.setCurrentCallSite(0); 8222 } 8223 8224 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8225 } 8226 8227 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8228 const BasicBlock *EHPadBB, 8229 MCSymbol *BeginLabel) { 8230 assert(BeginLabel && "BeginLabel should've been set"); 8231 8232 MachineFunction &MF = DAG.getMachineFunction(); 8233 MachineModuleInfo &MMI = MF.getMMI(); 8234 8235 // Insert a label at the end of the invoke call to mark the try range. This 8236 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8237 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 8238 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8239 8240 // Inform MachineModuleInfo of range. 8241 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8242 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8243 // actually use outlined funclets and their LSDA info style. 8244 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8245 assert(II && "II should've been set"); 8246 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8247 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8248 } else if (!isScopedEHPersonality(Pers)) { 8249 assert(EHPadBB); 8250 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8251 } 8252 8253 return Chain; 8254 } 8255 8256 std::pair<SDValue, SDValue> 8257 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8258 const BasicBlock *EHPadBB) { 8259 MCSymbol *BeginLabel = nullptr; 8260 8261 if (EHPadBB) { 8262 // Both PendingLoads and PendingExports must be flushed here; 8263 // this call might not return. 8264 (void)getRoot(); 8265 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8266 CLI.setChain(getRoot()); 8267 } 8268 8269 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8270 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8271 8272 assert((CLI.IsTailCall || Result.second.getNode()) && 8273 "Non-null chain expected with non-tail call!"); 8274 assert((Result.second.getNode() || !Result.first.getNode()) && 8275 "Null value expected with tail call!"); 8276 8277 if (!Result.second.getNode()) { 8278 // As a special case, a null chain means that a tail call has been emitted 8279 // and the DAG root is already updated. 8280 HasTailCall = true; 8281 8282 // Since there's no actual continuation from this block, nothing can be 8283 // relying on us setting vregs for them. 8284 PendingExports.clear(); 8285 } else { 8286 DAG.setRoot(Result.second); 8287 } 8288 8289 if (EHPadBB) { 8290 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8291 BeginLabel)); 8292 } 8293 8294 return Result; 8295 } 8296 8297 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8298 bool isTailCall, 8299 bool isMustTailCall, 8300 const BasicBlock *EHPadBB) { 8301 auto &DL = DAG.getDataLayout(); 8302 FunctionType *FTy = CB.getFunctionType(); 8303 Type *RetTy = CB.getType(); 8304 8305 TargetLowering::ArgListTy Args; 8306 Args.reserve(CB.arg_size()); 8307 8308 const Value *SwiftErrorVal = nullptr; 8309 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8310 8311 if (isTailCall) { 8312 // Avoid emitting tail calls in functions with the disable-tail-calls 8313 // attribute. 8314 auto *Caller = CB.getParent()->getParent(); 8315 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8316 "true" && !isMustTailCall) 8317 isTailCall = false; 8318 8319 // We can't tail call inside a function with a swifterror argument. Lowering 8320 // does not support this yet. It would have to move into the swifterror 8321 // register before the call. 8322 if (TLI.supportSwiftError() && 8323 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8324 isTailCall = false; 8325 } 8326 8327 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8328 TargetLowering::ArgListEntry Entry; 8329 const Value *V = *I; 8330 8331 // Skip empty types 8332 if (V->getType()->isEmptyTy()) 8333 continue; 8334 8335 SDValue ArgNode = getValue(V); 8336 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8337 8338 Entry.setAttributes(&CB, I - CB.arg_begin()); 8339 8340 // Use swifterror virtual register as input to the call. 8341 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8342 SwiftErrorVal = V; 8343 // We find the virtual register for the actual swifterror argument. 8344 // Instead of using the Value, we use the virtual register instead. 8345 Entry.Node = 8346 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8347 EVT(TLI.getPointerTy(DL))); 8348 } 8349 8350 Args.push_back(Entry); 8351 8352 // If we have an explicit sret argument that is an Instruction, (i.e., it 8353 // might point to function-local memory), we can't meaningfully tail-call. 8354 if (Entry.IsSRet && isa<Instruction>(V)) 8355 isTailCall = false; 8356 } 8357 8358 // If call site has a cfguardtarget operand bundle, create and add an 8359 // additional ArgListEntry. 8360 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8361 TargetLowering::ArgListEntry Entry; 8362 Value *V = Bundle->Inputs[0]; 8363 SDValue ArgNode = getValue(V); 8364 Entry.Node = ArgNode; 8365 Entry.Ty = V->getType(); 8366 Entry.IsCFGuardTarget = true; 8367 Args.push_back(Entry); 8368 } 8369 8370 // Check if target-independent constraints permit a tail call here. 8371 // Target-dependent constraints are checked within TLI->LowerCallTo. 8372 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8373 isTailCall = false; 8374 8375 // Disable tail calls if there is an swifterror argument. Targets have not 8376 // been updated to support tail calls. 8377 if (TLI.supportSwiftError() && SwiftErrorVal) 8378 isTailCall = false; 8379 8380 ConstantInt *CFIType = nullptr; 8381 if (CB.isIndirectCall()) { 8382 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8383 if (!TLI.supportKCFIBundles()) 8384 report_fatal_error( 8385 "Target doesn't support calls with kcfi operand bundles."); 8386 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8387 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8388 } 8389 } 8390 8391 TargetLowering::CallLoweringInfo CLI(DAG); 8392 CLI.setDebugLoc(getCurSDLoc()) 8393 .setChain(getRoot()) 8394 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8395 .setTailCall(isTailCall) 8396 .setConvergent(CB.isConvergent()) 8397 .setIsPreallocated( 8398 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8399 .setCFIType(CFIType); 8400 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8401 8402 if (Result.first.getNode()) { 8403 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8404 setValue(&CB, Result.first); 8405 } 8406 8407 // The last element of CLI.InVals has the SDValue for swifterror return. 8408 // Here we copy it to a virtual register and update SwiftErrorMap for 8409 // book-keeping. 8410 if (SwiftErrorVal && TLI.supportSwiftError()) { 8411 // Get the last element of InVals. 8412 SDValue Src = CLI.InVals.back(); 8413 Register VReg = 8414 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8415 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8416 DAG.setRoot(CopyNode); 8417 } 8418 } 8419 8420 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8421 SelectionDAGBuilder &Builder) { 8422 // Check to see if this load can be trivially constant folded, e.g. if the 8423 // input is from a string literal. 8424 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8425 // Cast pointer to the type we really want to load. 8426 Type *LoadTy = 8427 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8428 if (LoadVT.isVector()) 8429 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8430 8431 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8432 PointerType::getUnqual(LoadTy)); 8433 8434 if (const Constant *LoadCst = 8435 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8436 LoadTy, Builder.DAG.getDataLayout())) 8437 return Builder.getValue(LoadCst); 8438 } 8439 8440 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8441 // still constant memory, the input chain can be the entry node. 8442 SDValue Root; 8443 bool ConstantMemory = false; 8444 8445 // Do not serialize (non-volatile) loads of constant memory with anything. 8446 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8447 Root = Builder.DAG.getEntryNode(); 8448 ConstantMemory = true; 8449 } else { 8450 // Do not serialize non-volatile loads against each other. 8451 Root = Builder.DAG.getRoot(); 8452 } 8453 8454 SDValue Ptr = Builder.getValue(PtrVal); 8455 SDValue LoadVal = 8456 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8457 MachinePointerInfo(PtrVal), Align(1)); 8458 8459 if (!ConstantMemory) 8460 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8461 return LoadVal; 8462 } 8463 8464 /// Record the value for an instruction that produces an integer result, 8465 /// converting the type where necessary. 8466 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8467 SDValue Value, 8468 bool IsSigned) { 8469 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8470 I.getType(), true); 8471 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8472 setValue(&I, Value); 8473 } 8474 8475 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8476 /// true and lower it. Otherwise return false, and it will be lowered like a 8477 /// normal call. 8478 /// The caller already checked that \p I calls the appropriate LibFunc with a 8479 /// correct prototype. 8480 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8481 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8482 const Value *Size = I.getArgOperand(2); 8483 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8484 if (CSize && CSize->getZExtValue() == 0) { 8485 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8486 I.getType(), true); 8487 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8488 return true; 8489 } 8490 8491 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8492 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8493 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8494 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8495 if (Res.first.getNode()) { 8496 processIntegerCallValue(I, Res.first, true); 8497 PendingLoads.push_back(Res.second); 8498 return true; 8499 } 8500 8501 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8502 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8503 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8504 return false; 8505 8506 // If the target has a fast compare for the given size, it will return a 8507 // preferred load type for that size. Require that the load VT is legal and 8508 // that the target supports unaligned loads of that type. Otherwise, return 8509 // INVALID. 8510 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8511 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8512 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8513 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8514 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8515 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8516 // TODO: Check alignment of src and dest ptrs. 8517 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8518 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8519 if (!TLI.isTypeLegal(LVT) || 8520 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8521 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8522 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8523 } 8524 8525 return LVT; 8526 }; 8527 8528 // This turns into unaligned loads. We only do this if the target natively 8529 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8530 // we'll only produce a small number of byte loads. 8531 MVT LoadVT; 8532 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8533 switch (NumBitsToCompare) { 8534 default: 8535 return false; 8536 case 16: 8537 LoadVT = MVT::i16; 8538 break; 8539 case 32: 8540 LoadVT = MVT::i32; 8541 break; 8542 case 64: 8543 case 128: 8544 case 256: 8545 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8546 break; 8547 } 8548 8549 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8550 return false; 8551 8552 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8553 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8554 8555 // Bitcast to a wide integer type if the loads are vectors. 8556 if (LoadVT.isVector()) { 8557 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8558 LoadL = DAG.getBitcast(CmpVT, LoadL); 8559 LoadR = DAG.getBitcast(CmpVT, LoadR); 8560 } 8561 8562 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8563 processIntegerCallValue(I, Cmp, false); 8564 return true; 8565 } 8566 8567 /// See if we can lower a memchr call into an optimized form. If so, return 8568 /// true and lower it. Otherwise return false, and it will be lowered like a 8569 /// normal call. 8570 /// The caller already checked that \p I calls the appropriate LibFunc with a 8571 /// correct prototype. 8572 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8573 const Value *Src = I.getArgOperand(0); 8574 const Value *Char = I.getArgOperand(1); 8575 const Value *Length = I.getArgOperand(2); 8576 8577 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8578 std::pair<SDValue, SDValue> Res = 8579 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8580 getValue(Src), getValue(Char), getValue(Length), 8581 MachinePointerInfo(Src)); 8582 if (Res.first.getNode()) { 8583 setValue(&I, Res.first); 8584 PendingLoads.push_back(Res.second); 8585 return true; 8586 } 8587 8588 return false; 8589 } 8590 8591 /// See if we can lower a mempcpy call into an optimized form. If so, return 8592 /// true and lower it. Otherwise return false, and it will be lowered like a 8593 /// normal call. 8594 /// The caller already checked that \p I calls the appropriate LibFunc with a 8595 /// correct prototype. 8596 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8597 SDValue Dst = getValue(I.getArgOperand(0)); 8598 SDValue Src = getValue(I.getArgOperand(1)); 8599 SDValue Size = getValue(I.getArgOperand(2)); 8600 8601 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8602 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8603 // DAG::getMemcpy needs Alignment to be defined. 8604 Align Alignment = std::min(DstAlign, SrcAlign); 8605 8606 SDLoc sdl = getCurSDLoc(); 8607 8608 // In the mempcpy context we need to pass in a false value for isTailCall 8609 // because the return pointer needs to be adjusted by the size of 8610 // the copied memory. 8611 SDValue Root = getMemoryRoot(); 8612 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false, 8613 /*isTailCall=*/false, 8614 MachinePointerInfo(I.getArgOperand(0)), 8615 MachinePointerInfo(I.getArgOperand(1)), 8616 I.getAAMetadata()); 8617 assert(MC.getNode() != nullptr && 8618 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8619 DAG.setRoot(MC); 8620 8621 // Check if Size needs to be truncated or extended. 8622 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8623 8624 // Adjust return pointer to point just past the last dst byte. 8625 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8626 Dst, Size); 8627 setValue(&I, DstPlusSize); 8628 return true; 8629 } 8630 8631 /// See if we can lower a strcpy call into an optimized form. If so, return 8632 /// true and lower it, otherwise return false and it will be lowered like a 8633 /// normal call. 8634 /// The caller already checked that \p I calls the appropriate LibFunc with a 8635 /// correct prototype. 8636 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8637 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8638 8639 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8640 std::pair<SDValue, SDValue> Res = 8641 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8642 getValue(Arg0), getValue(Arg1), 8643 MachinePointerInfo(Arg0), 8644 MachinePointerInfo(Arg1), isStpcpy); 8645 if (Res.first.getNode()) { 8646 setValue(&I, Res.first); 8647 DAG.setRoot(Res.second); 8648 return true; 8649 } 8650 8651 return false; 8652 } 8653 8654 /// See if we can lower a strcmp call into an optimized form. If so, return 8655 /// true and lower it, otherwise return false and it will be lowered like a 8656 /// normal call. 8657 /// The caller already checked that \p I calls the appropriate LibFunc with a 8658 /// correct prototype. 8659 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8660 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8661 8662 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8663 std::pair<SDValue, SDValue> Res = 8664 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8665 getValue(Arg0), getValue(Arg1), 8666 MachinePointerInfo(Arg0), 8667 MachinePointerInfo(Arg1)); 8668 if (Res.first.getNode()) { 8669 processIntegerCallValue(I, Res.first, true); 8670 PendingLoads.push_back(Res.second); 8671 return true; 8672 } 8673 8674 return false; 8675 } 8676 8677 /// See if we can lower a strlen call into an optimized form. If so, return 8678 /// true and lower it, otherwise return false and it will be lowered like a 8679 /// normal call. 8680 /// The caller already checked that \p I calls the appropriate LibFunc with a 8681 /// correct prototype. 8682 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8683 const Value *Arg0 = I.getArgOperand(0); 8684 8685 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8686 std::pair<SDValue, SDValue> Res = 8687 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8688 getValue(Arg0), MachinePointerInfo(Arg0)); 8689 if (Res.first.getNode()) { 8690 processIntegerCallValue(I, Res.first, false); 8691 PendingLoads.push_back(Res.second); 8692 return true; 8693 } 8694 8695 return false; 8696 } 8697 8698 /// See if we can lower a strnlen call into an optimized form. If so, return 8699 /// true and lower it, otherwise return false and it will be lowered like a 8700 /// normal call. 8701 /// The caller already checked that \p I calls the appropriate LibFunc with a 8702 /// correct prototype. 8703 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8704 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8705 8706 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8707 std::pair<SDValue, SDValue> Res = 8708 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8709 getValue(Arg0), getValue(Arg1), 8710 MachinePointerInfo(Arg0)); 8711 if (Res.first.getNode()) { 8712 processIntegerCallValue(I, Res.first, false); 8713 PendingLoads.push_back(Res.second); 8714 return true; 8715 } 8716 8717 return false; 8718 } 8719 8720 /// See if we can lower a unary floating-point operation into an SDNode with 8721 /// the specified Opcode. If so, return true and lower it, otherwise return 8722 /// false and it will be lowered like a normal call. 8723 /// The caller already checked that \p I calls the appropriate LibFunc with a 8724 /// correct prototype. 8725 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8726 unsigned Opcode) { 8727 // We already checked this call's prototype; verify it doesn't modify errno. 8728 if (!I.onlyReadsMemory()) 8729 return false; 8730 8731 SDNodeFlags Flags; 8732 Flags.copyFMF(cast<FPMathOperator>(I)); 8733 8734 SDValue Tmp = getValue(I.getArgOperand(0)); 8735 setValue(&I, 8736 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8737 return true; 8738 } 8739 8740 /// See if we can lower a binary floating-point operation into an SDNode with 8741 /// the specified Opcode. If so, return true and lower it. Otherwise return 8742 /// false, and it will be lowered like a normal call. 8743 /// The caller already checked that \p I calls the appropriate LibFunc with a 8744 /// correct prototype. 8745 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8746 unsigned Opcode) { 8747 // We already checked this call's prototype; verify it doesn't modify errno. 8748 if (!I.onlyReadsMemory()) 8749 return false; 8750 8751 SDNodeFlags Flags; 8752 Flags.copyFMF(cast<FPMathOperator>(I)); 8753 8754 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8755 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8756 EVT VT = Tmp0.getValueType(); 8757 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8758 return true; 8759 } 8760 8761 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8762 // Handle inline assembly differently. 8763 if (I.isInlineAsm()) { 8764 visitInlineAsm(I); 8765 return; 8766 } 8767 8768 diagnoseDontCall(I); 8769 8770 if (Function *F = I.getCalledFunction()) { 8771 if (F->isDeclaration()) { 8772 // Is this an LLVM intrinsic or a target-specific intrinsic? 8773 unsigned IID = F->getIntrinsicID(); 8774 if (!IID) 8775 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8776 IID = II->getIntrinsicID(F); 8777 8778 if (IID) { 8779 visitIntrinsicCall(I, IID); 8780 return; 8781 } 8782 } 8783 8784 // Check for well-known libc/libm calls. If the function is internal, it 8785 // can't be a library call. Don't do the check if marked as nobuiltin for 8786 // some reason or the call site requires strict floating point semantics. 8787 LibFunc Func; 8788 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8789 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8790 LibInfo->hasOptimizedCodeGen(Func)) { 8791 switch (Func) { 8792 default: break; 8793 case LibFunc_bcmp: 8794 if (visitMemCmpBCmpCall(I)) 8795 return; 8796 break; 8797 case LibFunc_copysign: 8798 case LibFunc_copysignf: 8799 case LibFunc_copysignl: 8800 // We already checked this call's prototype; verify it doesn't modify 8801 // errno. 8802 if (I.onlyReadsMemory()) { 8803 SDValue LHS = getValue(I.getArgOperand(0)); 8804 SDValue RHS = getValue(I.getArgOperand(1)); 8805 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8806 LHS.getValueType(), LHS, RHS)); 8807 return; 8808 } 8809 break; 8810 case LibFunc_fabs: 8811 case LibFunc_fabsf: 8812 case LibFunc_fabsl: 8813 if (visitUnaryFloatCall(I, ISD::FABS)) 8814 return; 8815 break; 8816 case LibFunc_fmin: 8817 case LibFunc_fminf: 8818 case LibFunc_fminl: 8819 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8820 return; 8821 break; 8822 case LibFunc_fmax: 8823 case LibFunc_fmaxf: 8824 case LibFunc_fmaxl: 8825 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8826 return; 8827 break; 8828 case LibFunc_sin: 8829 case LibFunc_sinf: 8830 case LibFunc_sinl: 8831 if (visitUnaryFloatCall(I, ISD::FSIN)) 8832 return; 8833 break; 8834 case LibFunc_cos: 8835 case LibFunc_cosf: 8836 case LibFunc_cosl: 8837 if (visitUnaryFloatCall(I, ISD::FCOS)) 8838 return; 8839 break; 8840 case LibFunc_sqrt: 8841 case LibFunc_sqrtf: 8842 case LibFunc_sqrtl: 8843 case LibFunc_sqrt_finite: 8844 case LibFunc_sqrtf_finite: 8845 case LibFunc_sqrtl_finite: 8846 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8847 return; 8848 break; 8849 case LibFunc_floor: 8850 case LibFunc_floorf: 8851 case LibFunc_floorl: 8852 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8853 return; 8854 break; 8855 case LibFunc_nearbyint: 8856 case LibFunc_nearbyintf: 8857 case LibFunc_nearbyintl: 8858 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8859 return; 8860 break; 8861 case LibFunc_ceil: 8862 case LibFunc_ceilf: 8863 case LibFunc_ceill: 8864 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8865 return; 8866 break; 8867 case LibFunc_rint: 8868 case LibFunc_rintf: 8869 case LibFunc_rintl: 8870 if (visitUnaryFloatCall(I, ISD::FRINT)) 8871 return; 8872 break; 8873 case LibFunc_round: 8874 case LibFunc_roundf: 8875 case LibFunc_roundl: 8876 if (visitUnaryFloatCall(I, ISD::FROUND)) 8877 return; 8878 break; 8879 case LibFunc_trunc: 8880 case LibFunc_truncf: 8881 case LibFunc_truncl: 8882 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8883 return; 8884 break; 8885 case LibFunc_log2: 8886 case LibFunc_log2f: 8887 case LibFunc_log2l: 8888 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8889 return; 8890 break; 8891 case LibFunc_exp2: 8892 case LibFunc_exp2f: 8893 case LibFunc_exp2l: 8894 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8895 return; 8896 break; 8897 case LibFunc_exp10: 8898 case LibFunc_exp10f: 8899 case LibFunc_exp10l: 8900 if (visitUnaryFloatCall(I, ISD::FEXP10)) 8901 return; 8902 break; 8903 case LibFunc_ldexp: 8904 case LibFunc_ldexpf: 8905 case LibFunc_ldexpl: 8906 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 8907 return; 8908 break; 8909 case LibFunc_memcmp: 8910 if (visitMemCmpBCmpCall(I)) 8911 return; 8912 break; 8913 case LibFunc_mempcpy: 8914 if (visitMemPCpyCall(I)) 8915 return; 8916 break; 8917 case LibFunc_memchr: 8918 if (visitMemChrCall(I)) 8919 return; 8920 break; 8921 case LibFunc_strcpy: 8922 if (visitStrCpyCall(I, false)) 8923 return; 8924 break; 8925 case LibFunc_stpcpy: 8926 if (visitStrCpyCall(I, true)) 8927 return; 8928 break; 8929 case LibFunc_strcmp: 8930 if (visitStrCmpCall(I)) 8931 return; 8932 break; 8933 case LibFunc_strlen: 8934 if (visitStrLenCall(I)) 8935 return; 8936 break; 8937 case LibFunc_strnlen: 8938 if (visitStrNLenCall(I)) 8939 return; 8940 break; 8941 } 8942 } 8943 } 8944 8945 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8946 // have to do anything here to lower funclet bundles. 8947 // CFGuardTarget bundles are lowered in LowerCallTo. 8948 assert(!I.hasOperandBundlesOtherThan( 8949 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8950 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8951 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8952 "Cannot lower calls with arbitrary operand bundles!"); 8953 8954 SDValue Callee = getValue(I.getCalledOperand()); 8955 8956 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8957 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8958 else 8959 // Check if we can potentially perform a tail call. More detailed checking 8960 // is be done within LowerCallTo, after more information about the call is 8961 // known. 8962 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8963 } 8964 8965 namespace { 8966 8967 /// AsmOperandInfo - This contains information for each constraint that we are 8968 /// lowering. 8969 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8970 public: 8971 /// CallOperand - If this is the result output operand or a clobber 8972 /// this is null, otherwise it is the incoming operand to the CallInst. 8973 /// This gets modified as the asm is processed. 8974 SDValue CallOperand; 8975 8976 /// AssignedRegs - If this is a register or register class operand, this 8977 /// contains the set of register corresponding to the operand. 8978 RegsForValue AssignedRegs; 8979 8980 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8981 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8982 } 8983 8984 /// Whether or not this operand accesses memory 8985 bool hasMemory(const TargetLowering &TLI) const { 8986 // Indirect operand accesses access memory. 8987 if (isIndirect) 8988 return true; 8989 8990 for (const auto &Code : Codes) 8991 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8992 return true; 8993 8994 return false; 8995 } 8996 }; 8997 8998 8999 } // end anonymous namespace 9000 9001 /// Make sure that the output operand \p OpInfo and its corresponding input 9002 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 9003 /// out). 9004 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 9005 SDISelAsmOperandInfo &MatchingOpInfo, 9006 SelectionDAG &DAG) { 9007 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 9008 return; 9009 9010 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 9011 const auto &TLI = DAG.getTargetLoweringInfo(); 9012 9013 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 9014 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 9015 OpInfo.ConstraintVT); 9016 std::pair<unsigned, const TargetRegisterClass *> InputRC = 9017 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 9018 MatchingOpInfo.ConstraintVT); 9019 if ((OpInfo.ConstraintVT.isInteger() != 9020 MatchingOpInfo.ConstraintVT.isInteger()) || 9021 (MatchRC.second != InputRC.second)) { 9022 // FIXME: error out in a more elegant fashion 9023 report_fatal_error("Unsupported asm: input constraint" 9024 " with a matching output constraint of" 9025 " incompatible type!"); 9026 } 9027 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 9028 } 9029 9030 /// Get a direct memory input to behave well as an indirect operand. 9031 /// This may introduce stores, hence the need for a \p Chain. 9032 /// \return The (possibly updated) chain. 9033 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 9034 SDISelAsmOperandInfo &OpInfo, 9035 SelectionDAG &DAG) { 9036 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9037 9038 // If we don't have an indirect input, put it in the constpool if we can, 9039 // otherwise spill it to a stack slot. 9040 // TODO: This isn't quite right. We need to handle these according to 9041 // the addressing mode that the constraint wants. Also, this may take 9042 // an additional register for the computation and we don't want that 9043 // either. 9044 9045 // If the operand is a float, integer, or vector constant, spill to a 9046 // constant pool entry to get its address. 9047 const Value *OpVal = OpInfo.CallOperandVal; 9048 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9049 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9050 OpInfo.CallOperand = DAG.getConstantPool( 9051 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9052 return Chain; 9053 } 9054 9055 // Otherwise, create a stack slot and emit a store to it before the asm. 9056 Type *Ty = OpVal->getType(); 9057 auto &DL = DAG.getDataLayout(); 9058 uint64_t TySize = DL.getTypeAllocSize(Ty); 9059 MachineFunction &MF = DAG.getMachineFunction(); 9060 int SSFI = MF.getFrameInfo().CreateStackObject( 9061 TySize, DL.getPrefTypeAlign(Ty), false); 9062 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9063 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9064 MachinePointerInfo::getFixedStack(MF, SSFI), 9065 TLI.getMemValueType(DL, Ty)); 9066 OpInfo.CallOperand = StackSlot; 9067 9068 return Chain; 9069 } 9070 9071 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9072 /// specified operand. We prefer to assign virtual registers, to allow the 9073 /// register allocator to handle the assignment process. However, if the asm 9074 /// uses features that we can't model on machineinstrs, we have SDISel do the 9075 /// allocation. This produces generally horrible, but correct, code. 9076 /// 9077 /// OpInfo describes the operand 9078 /// RefOpInfo describes the matching operand if any, the operand otherwise 9079 static std::optional<unsigned> 9080 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9081 SDISelAsmOperandInfo &OpInfo, 9082 SDISelAsmOperandInfo &RefOpInfo) { 9083 LLVMContext &Context = *DAG.getContext(); 9084 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9085 9086 MachineFunction &MF = DAG.getMachineFunction(); 9087 SmallVector<unsigned, 4> Regs; 9088 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9089 9090 // No work to do for memory/address operands. 9091 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9092 OpInfo.ConstraintType == TargetLowering::C_Address) 9093 return std::nullopt; 9094 9095 // If this is a constraint for a single physreg, or a constraint for a 9096 // register class, find it. 9097 unsigned AssignedReg; 9098 const TargetRegisterClass *RC; 9099 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9100 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9101 // RC is unset only on failure. Return immediately. 9102 if (!RC) 9103 return std::nullopt; 9104 9105 // Get the actual register value type. This is important, because the user 9106 // may have asked for (e.g.) the AX register in i32 type. We need to 9107 // remember that AX is actually i16 to get the right extension. 9108 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9109 9110 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9111 // If this is an FP operand in an integer register (or visa versa), or more 9112 // generally if the operand value disagrees with the register class we plan 9113 // to stick it in, fix the operand type. 9114 // 9115 // If this is an input value, the bitcast to the new type is done now. 9116 // Bitcast for output value is done at the end of visitInlineAsm(). 9117 if ((OpInfo.Type == InlineAsm::isOutput || 9118 OpInfo.Type == InlineAsm::isInput) && 9119 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9120 // Try to convert to the first EVT that the reg class contains. If the 9121 // types are identical size, use a bitcast to convert (e.g. two differing 9122 // vector types). Note: output bitcast is done at the end of 9123 // visitInlineAsm(). 9124 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9125 // Exclude indirect inputs while they are unsupported because the code 9126 // to perform the load is missing and thus OpInfo.CallOperand still 9127 // refers to the input address rather than the pointed-to value. 9128 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9129 OpInfo.CallOperand = 9130 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9131 OpInfo.ConstraintVT = RegVT; 9132 // If the operand is an FP value and we want it in integer registers, 9133 // use the corresponding integer type. This turns an f64 value into 9134 // i64, which can be passed with two i32 values on a 32-bit machine. 9135 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9136 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9137 if (OpInfo.Type == InlineAsm::isInput) 9138 OpInfo.CallOperand = 9139 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9140 OpInfo.ConstraintVT = VT; 9141 } 9142 } 9143 } 9144 9145 // No need to allocate a matching input constraint since the constraint it's 9146 // matching to has already been allocated. 9147 if (OpInfo.isMatchingInputConstraint()) 9148 return std::nullopt; 9149 9150 EVT ValueVT = OpInfo.ConstraintVT; 9151 if (OpInfo.ConstraintVT == MVT::Other) 9152 ValueVT = RegVT; 9153 9154 // Initialize NumRegs. 9155 unsigned NumRegs = 1; 9156 if (OpInfo.ConstraintVT != MVT::Other) 9157 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9158 9159 // If this is a constraint for a specific physical register, like {r17}, 9160 // assign it now. 9161 9162 // If this associated to a specific register, initialize iterator to correct 9163 // place. If virtual, make sure we have enough registers 9164 9165 // Initialize iterator if necessary 9166 TargetRegisterClass::iterator I = RC->begin(); 9167 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9168 9169 // Do not check for single registers. 9170 if (AssignedReg) { 9171 I = std::find(I, RC->end(), AssignedReg); 9172 if (I == RC->end()) { 9173 // RC does not contain the selected register, which indicates a 9174 // mismatch between the register and the required type/bitwidth. 9175 return {AssignedReg}; 9176 } 9177 } 9178 9179 for (; NumRegs; --NumRegs, ++I) { 9180 assert(I != RC->end() && "Ran out of registers to allocate!"); 9181 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9182 Regs.push_back(R); 9183 } 9184 9185 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9186 return std::nullopt; 9187 } 9188 9189 static unsigned 9190 findMatchingInlineAsmOperand(unsigned OperandNo, 9191 const std::vector<SDValue> &AsmNodeOperands) { 9192 // Scan until we find the definition we already emitted of this operand. 9193 unsigned CurOp = InlineAsm::Op_FirstOperand; 9194 for (; OperandNo; --OperandNo) { 9195 // Advance to the next operand. 9196 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal(); 9197 const InlineAsm::Flag F(OpFlag); 9198 assert( 9199 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9200 "Skipped past definitions?"); 9201 CurOp += F.getNumOperandRegisters() + 1; 9202 } 9203 return CurOp; 9204 } 9205 9206 namespace { 9207 9208 class ExtraFlags { 9209 unsigned Flags = 0; 9210 9211 public: 9212 explicit ExtraFlags(const CallBase &Call) { 9213 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9214 if (IA->hasSideEffects()) 9215 Flags |= InlineAsm::Extra_HasSideEffects; 9216 if (IA->isAlignStack()) 9217 Flags |= InlineAsm::Extra_IsAlignStack; 9218 if (Call.isConvergent()) 9219 Flags |= InlineAsm::Extra_IsConvergent; 9220 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9221 } 9222 9223 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9224 // Ideally, we would only check against memory constraints. However, the 9225 // meaning of an Other constraint can be target-specific and we can't easily 9226 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9227 // for Other constraints as well. 9228 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9229 OpInfo.ConstraintType == TargetLowering::C_Other) { 9230 if (OpInfo.Type == InlineAsm::isInput) 9231 Flags |= InlineAsm::Extra_MayLoad; 9232 else if (OpInfo.Type == InlineAsm::isOutput) 9233 Flags |= InlineAsm::Extra_MayStore; 9234 else if (OpInfo.Type == InlineAsm::isClobber) 9235 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9236 } 9237 } 9238 9239 unsigned get() const { return Flags; } 9240 }; 9241 9242 } // end anonymous namespace 9243 9244 static bool isFunction(SDValue Op) { 9245 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9246 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9247 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9248 9249 // In normal "call dllimport func" instruction (non-inlineasm) it force 9250 // indirect access by specifing call opcode. And usually specially print 9251 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9252 // not do in this way now. (In fact, this is similar with "Data Access" 9253 // action). So here we ignore dllimport function. 9254 if (Fn && !Fn->hasDLLImportStorageClass()) 9255 return true; 9256 } 9257 } 9258 return false; 9259 } 9260 9261 /// visitInlineAsm - Handle a call to an InlineAsm object. 9262 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9263 const BasicBlock *EHPadBB) { 9264 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9265 9266 /// ConstraintOperands - Information about all of the constraints. 9267 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9268 9269 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9270 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9271 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9272 9273 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9274 // AsmDialect, MayLoad, MayStore). 9275 bool HasSideEffect = IA->hasSideEffects(); 9276 ExtraFlags ExtraInfo(Call); 9277 9278 for (auto &T : TargetConstraints) { 9279 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9280 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9281 9282 if (OpInfo.CallOperandVal) 9283 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9284 9285 if (!HasSideEffect) 9286 HasSideEffect = OpInfo.hasMemory(TLI); 9287 9288 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9289 // FIXME: Could we compute this on OpInfo rather than T? 9290 9291 // Compute the constraint code and ConstraintType to use. 9292 TLI.ComputeConstraintToUse(T, SDValue()); 9293 9294 if (T.ConstraintType == TargetLowering::C_Immediate && 9295 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9296 // We've delayed emitting a diagnostic like the "n" constraint because 9297 // inlining could cause an integer showing up. 9298 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9299 "' expects an integer constant " 9300 "expression"); 9301 9302 ExtraInfo.update(T); 9303 } 9304 9305 // We won't need to flush pending loads if this asm doesn't touch 9306 // memory and is nonvolatile. 9307 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9308 9309 bool EmitEHLabels = isa<InvokeInst>(Call); 9310 if (EmitEHLabels) { 9311 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9312 } 9313 bool IsCallBr = isa<CallBrInst>(Call); 9314 9315 if (IsCallBr || EmitEHLabels) { 9316 // If this is a callbr or invoke we need to flush pending exports since 9317 // inlineasm_br and invoke are terminators. 9318 // We need to do this before nodes are glued to the inlineasm_br node. 9319 Chain = getControlRoot(); 9320 } 9321 9322 MCSymbol *BeginLabel = nullptr; 9323 if (EmitEHLabels) { 9324 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9325 } 9326 9327 int OpNo = -1; 9328 SmallVector<StringRef> AsmStrs; 9329 IA->collectAsmStrs(AsmStrs); 9330 9331 // Second pass over the constraints: compute which constraint option to use. 9332 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9333 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9334 OpNo++; 9335 9336 // If this is an output operand with a matching input operand, look up the 9337 // matching input. If their types mismatch, e.g. one is an integer, the 9338 // other is floating point, or their sizes are different, flag it as an 9339 // error. 9340 if (OpInfo.hasMatchingInput()) { 9341 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9342 patchMatchingInput(OpInfo, Input, DAG); 9343 } 9344 9345 // Compute the constraint code and ConstraintType to use. 9346 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9347 9348 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9349 OpInfo.Type == InlineAsm::isClobber) || 9350 OpInfo.ConstraintType == TargetLowering::C_Address) 9351 continue; 9352 9353 // In Linux PIC model, there are 4 cases about value/label addressing: 9354 // 9355 // 1: Function call or Label jmp inside the module. 9356 // 2: Data access (such as global variable, static variable) inside module. 9357 // 3: Function call or Label jmp outside the module. 9358 // 4: Data access (such as global variable) outside the module. 9359 // 9360 // Due to current llvm inline asm architecture designed to not "recognize" 9361 // the asm code, there are quite troubles for us to treat mem addressing 9362 // differently for same value/adress used in different instuctions. 9363 // For example, in pic model, call a func may in plt way or direclty 9364 // pc-related, but lea/mov a function adress may use got. 9365 // 9366 // Here we try to "recognize" function call for the case 1 and case 3 in 9367 // inline asm. And try to adjust the constraint for them. 9368 // 9369 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9370 // label, so here we don't handle jmp function label now, but we need to 9371 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9372 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9373 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9374 TM.getCodeModel() != CodeModel::Large) { 9375 OpInfo.isIndirect = false; 9376 OpInfo.ConstraintType = TargetLowering::C_Address; 9377 } 9378 9379 // If this is a memory input, and if the operand is not indirect, do what we 9380 // need to provide an address for the memory input. 9381 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9382 !OpInfo.isIndirect) { 9383 assert((OpInfo.isMultipleAlternative || 9384 (OpInfo.Type == InlineAsm::isInput)) && 9385 "Can only indirectify direct input operands!"); 9386 9387 // Memory operands really want the address of the value. 9388 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9389 9390 // There is no longer a Value* corresponding to this operand. 9391 OpInfo.CallOperandVal = nullptr; 9392 9393 // It is now an indirect operand. 9394 OpInfo.isIndirect = true; 9395 } 9396 9397 } 9398 9399 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9400 std::vector<SDValue> AsmNodeOperands; 9401 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9402 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9403 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9404 9405 // If we have a !srcloc metadata node associated with it, we want to attach 9406 // this to the ultimately generated inline asm machineinstr. To do this, we 9407 // pass in the third operand as this (potentially null) inline asm MDNode. 9408 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9409 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9410 9411 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9412 // bits as operand 3. 9413 AsmNodeOperands.push_back(DAG.getTargetConstant( 9414 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9415 9416 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9417 // this, assign virtual and physical registers for inputs and otput. 9418 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9419 // Assign Registers. 9420 SDISelAsmOperandInfo &RefOpInfo = 9421 OpInfo.isMatchingInputConstraint() 9422 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9423 : OpInfo; 9424 const auto RegError = 9425 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9426 if (RegError) { 9427 const MachineFunction &MF = DAG.getMachineFunction(); 9428 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9429 const char *RegName = TRI.getName(*RegError); 9430 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9431 "' allocated for constraint '" + 9432 Twine(OpInfo.ConstraintCode) + 9433 "' does not match required type"); 9434 return; 9435 } 9436 9437 auto DetectWriteToReservedRegister = [&]() { 9438 const MachineFunction &MF = DAG.getMachineFunction(); 9439 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9440 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9441 if (Register::isPhysicalRegister(Reg) && 9442 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9443 const char *RegName = TRI.getName(Reg); 9444 emitInlineAsmError(Call, "write to reserved register '" + 9445 Twine(RegName) + "'"); 9446 return true; 9447 } 9448 } 9449 return false; 9450 }; 9451 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9452 (OpInfo.Type == InlineAsm::isInput && 9453 !OpInfo.isMatchingInputConstraint())) && 9454 "Only address as input operand is allowed."); 9455 9456 switch (OpInfo.Type) { 9457 case InlineAsm::isOutput: 9458 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9459 const InlineAsm::ConstraintCode ConstraintID = 9460 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9461 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9462 "Failed to convert memory constraint code to constraint id."); 9463 9464 // Add information to the INLINEASM node to know about this output. 9465 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 9466 OpFlags.setMemConstraint(ConstraintID); 9467 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9468 MVT::i32)); 9469 AsmNodeOperands.push_back(OpInfo.CallOperand); 9470 } else { 9471 // Otherwise, this outputs to a register (directly for C_Register / 9472 // C_RegisterClass, and a target-defined fashion for 9473 // C_Immediate/C_Other). Find a register that we can use. 9474 if (OpInfo.AssignedRegs.Regs.empty()) { 9475 emitInlineAsmError( 9476 Call, "couldn't allocate output register for constraint '" + 9477 Twine(OpInfo.ConstraintCode) + "'"); 9478 return; 9479 } 9480 9481 if (DetectWriteToReservedRegister()) 9482 return; 9483 9484 // Add information to the INLINEASM node to know that this register is 9485 // set. 9486 OpInfo.AssignedRegs.AddInlineAsmOperands( 9487 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 9488 : InlineAsm::Kind::RegDef, 9489 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9490 } 9491 break; 9492 9493 case InlineAsm::isInput: 9494 case InlineAsm::isLabel: { 9495 SDValue InOperandVal = OpInfo.CallOperand; 9496 9497 if (OpInfo.isMatchingInputConstraint()) { 9498 // If this is required to match an output register we have already set, 9499 // just use its register. 9500 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9501 AsmNodeOperands); 9502 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal()); 9503 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 9504 if (OpInfo.isIndirect) { 9505 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9506 emitInlineAsmError(Call, "inline asm not supported yet: " 9507 "don't know how to handle tied " 9508 "indirect register inputs"); 9509 return; 9510 } 9511 9512 SmallVector<unsigned, 4> Regs; 9513 MachineFunction &MF = DAG.getMachineFunction(); 9514 MachineRegisterInfo &MRI = MF.getRegInfo(); 9515 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9516 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9517 Register TiedReg = R->getReg(); 9518 MVT RegVT = R->getSimpleValueType(0); 9519 const TargetRegisterClass *RC = 9520 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9521 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9522 : TRI.getMinimalPhysRegClass(TiedReg); 9523 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 9524 Regs.push_back(MRI.createVirtualRegister(RC)); 9525 9526 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9527 9528 SDLoc dl = getCurSDLoc(); 9529 // Use the produced MatchedRegs object to 9530 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 9531 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 9532 OpInfo.getMatchedOperand(), dl, DAG, 9533 AsmNodeOperands); 9534 break; 9535 } 9536 9537 assert(Flag.isMemKind() && "Unknown matching constraint!"); 9538 assert(Flag.getNumOperandRegisters() == 1 && 9539 "Unexpected number of operands"); 9540 // Add information to the INLINEASM node to know about this input. 9541 // See InlineAsm.h isUseOperandTiedToDef. 9542 Flag.clearMemConstraint(); 9543 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 9544 AsmNodeOperands.push_back(DAG.getTargetConstant( 9545 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9546 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9547 break; 9548 } 9549 9550 // Treat indirect 'X' constraint as memory. 9551 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9552 OpInfo.isIndirect) 9553 OpInfo.ConstraintType = TargetLowering::C_Memory; 9554 9555 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9556 OpInfo.ConstraintType == TargetLowering::C_Other) { 9557 std::vector<SDValue> Ops; 9558 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9559 Ops, DAG); 9560 if (Ops.empty()) { 9561 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9562 if (isa<ConstantSDNode>(InOperandVal)) { 9563 emitInlineAsmError(Call, "value out of range for constraint '" + 9564 Twine(OpInfo.ConstraintCode) + "'"); 9565 return; 9566 } 9567 9568 emitInlineAsmError(Call, 9569 "invalid operand for inline asm constraint '" + 9570 Twine(OpInfo.ConstraintCode) + "'"); 9571 return; 9572 } 9573 9574 // Add information to the INLINEASM node to know about this input. 9575 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 9576 AsmNodeOperands.push_back(DAG.getTargetConstant( 9577 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9578 llvm::append_range(AsmNodeOperands, Ops); 9579 break; 9580 } 9581 9582 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9583 assert((OpInfo.isIndirect || 9584 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9585 "Operand must be indirect to be a mem!"); 9586 assert(InOperandVal.getValueType() == 9587 TLI.getPointerTy(DAG.getDataLayout()) && 9588 "Memory operands expect pointer values"); 9589 9590 const InlineAsm::ConstraintCode ConstraintID = 9591 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9592 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9593 "Failed to convert memory constraint code to constraint id."); 9594 9595 // Add information to the INLINEASM node to know about this input. 9596 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9597 ResOpType.setMemConstraint(ConstraintID); 9598 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9599 getCurSDLoc(), 9600 MVT::i32)); 9601 AsmNodeOperands.push_back(InOperandVal); 9602 break; 9603 } 9604 9605 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9606 const InlineAsm::ConstraintCode ConstraintID = 9607 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9608 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9609 "Failed to convert memory constraint code to constraint id."); 9610 9611 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9612 9613 SDValue AsmOp = InOperandVal; 9614 if (isFunction(InOperandVal)) { 9615 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9616 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 9617 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9618 InOperandVal.getValueType(), 9619 GA->getOffset()); 9620 } 9621 9622 // Add information to the INLINEASM node to know about this input. 9623 ResOpType.setMemConstraint(ConstraintID); 9624 9625 AsmNodeOperands.push_back( 9626 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9627 9628 AsmNodeOperands.push_back(AsmOp); 9629 break; 9630 } 9631 9632 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9633 OpInfo.ConstraintType == TargetLowering::C_Register) && 9634 "Unknown constraint type!"); 9635 9636 // TODO: Support this. 9637 if (OpInfo.isIndirect) { 9638 emitInlineAsmError( 9639 Call, "Don't know how to handle indirect register inputs yet " 9640 "for constraint '" + 9641 Twine(OpInfo.ConstraintCode) + "'"); 9642 return; 9643 } 9644 9645 // Copy the input into the appropriate registers. 9646 if (OpInfo.AssignedRegs.Regs.empty()) { 9647 emitInlineAsmError(Call, 9648 "couldn't allocate input reg for constraint '" + 9649 Twine(OpInfo.ConstraintCode) + "'"); 9650 return; 9651 } 9652 9653 if (DetectWriteToReservedRegister()) 9654 return; 9655 9656 SDLoc dl = getCurSDLoc(); 9657 9658 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 9659 &Call); 9660 9661 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 9662 0, dl, DAG, AsmNodeOperands); 9663 break; 9664 } 9665 case InlineAsm::isClobber: 9666 // Add the clobbered value to the operand list, so that the register 9667 // allocator is aware that the physreg got clobbered. 9668 if (!OpInfo.AssignedRegs.Regs.empty()) 9669 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 9670 false, 0, getCurSDLoc(), DAG, 9671 AsmNodeOperands); 9672 break; 9673 } 9674 } 9675 9676 // Finish up input operands. Set the input chain and add the flag last. 9677 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9678 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 9679 9680 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9681 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9682 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9683 Glue = Chain.getValue(1); 9684 9685 // Do additional work to generate outputs. 9686 9687 SmallVector<EVT, 1> ResultVTs; 9688 SmallVector<SDValue, 1> ResultValues; 9689 SmallVector<SDValue, 8> OutChains; 9690 9691 llvm::Type *CallResultType = Call.getType(); 9692 ArrayRef<Type *> ResultTypes; 9693 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9694 ResultTypes = StructResult->elements(); 9695 else if (!CallResultType->isVoidTy()) 9696 ResultTypes = ArrayRef(CallResultType); 9697 9698 auto CurResultType = ResultTypes.begin(); 9699 auto handleRegAssign = [&](SDValue V) { 9700 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9701 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9702 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9703 ++CurResultType; 9704 // If the type of the inline asm call site return value is different but has 9705 // same size as the type of the asm output bitcast it. One example of this 9706 // is for vectors with different width / number of elements. This can 9707 // happen for register classes that can contain multiple different value 9708 // types. The preg or vreg allocated may not have the same VT as was 9709 // expected. 9710 // 9711 // This can also happen for a return value that disagrees with the register 9712 // class it is put in, eg. a double in a general-purpose register on a 9713 // 32-bit machine. 9714 if (ResultVT != V.getValueType() && 9715 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9716 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9717 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9718 V.getValueType().isInteger()) { 9719 // If a result value was tied to an input value, the computed result 9720 // may have a wider width than the expected result. Extract the 9721 // relevant portion. 9722 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9723 } 9724 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9725 ResultVTs.push_back(ResultVT); 9726 ResultValues.push_back(V); 9727 }; 9728 9729 // Deal with output operands. 9730 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9731 if (OpInfo.Type == InlineAsm::isOutput) { 9732 SDValue Val; 9733 // Skip trivial output operands. 9734 if (OpInfo.AssignedRegs.Regs.empty()) 9735 continue; 9736 9737 switch (OpInfo.ConstraintType) { 9738 case TargetLowering::C_Register: 9739 case TargetLowering::C_RegisterClass: 9740 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9741 Chain, &Glue, &Call); 9742 break; 9743 case TargetLowering::C_Immediate: 9744 case TargetLowering::C_Other: 9745 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 9746 OpInfo, DAG); 9747 break; 9748 case TargetLowering::C_Memory: 9749 break; // Already handled. 9750 case TargetLowering::C_Address: 9751 break; // Silence warning. 9752 case TargetLowering::C_Unknown: 9753 assert(false && "Unexpected unknown constraint"); 9754 } 9755 9756 // Indirect output manifest as stores. Record output chains. 9757 if (OpInfo.isIndirect) { 9758 const Value *Ptr = OpInfo.CallOperandVal; 9759 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9760 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9761 MachinePointerInfo(Ptr)); 9762 OutChains.push_back(Store); 9763 } else { 9764 // generate CopyFromRegs to associated registers. 9765 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9766 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9767 for (const SDValue &V : Val->op_values()) 9768 handleRegAssign(V); 9769 } else 9770 handleRegAssign(Val); 9771 } 9772 } 9773 } 9774 9775 // Set results. 9776 if (!ResultValues.empty()) { 9777 assert(CurResultType == ResultTypes.end() && 9778 "Mismatch in number of ResultTypes"); 9779 assert(ResultValues.size() == ResultTypes.size() && 9780 "Mismatch in number of output operands in asm result"); 9781 9782 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9783 DAG.getVTList(ResultVTs), ResultValues); 9784 setValue(&Call, V); 9785 } 9786 9787 // Collect store chains. 9788 if (!OutChains.empty()) 9789 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9790 9791 if (EmitEHLabels) { 9792 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9793 } 9794 9795 // Only Update Root if inline assembly has a memory effect. 9796 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9797 EmitEHLabels) 9798 DAG.setRoot(Chain); 9799 } 9800 9801 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9802 const Twine &Message) { 9803 LLVMContext &Ctx = *DAG.getContext(); 9804 Ctx.emitError(&Call, Message); 9805 9806 // Make sure we leave the DAG in a valid state 9807 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9808 SmallVector<EVT, 1> ValueVTs; 9809 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9810 9811 if (ValueVTs.empty()) 9812 return; 9813 9814 SmallVector<SDValue, 1> Ops; 9815 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9816 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9817 9818 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9819 } 9820 9821 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9822 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9823 MVT::Other, getRoot(), 9824 getValue(I.getArgOperand(0)), 9825 DAG.getSrcValue(I.getArgOperand(0)))); 9826 } 9827 9828 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9829 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9830 const DataLayout &DL = DAG.getDataLayout(); 9831 SDValue V = DAG.getVAArg( 9832 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9833 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9834 DL.getABITypeAlign(I.getType()).value()); 9835 DAG.setRoot(V.getValue(1)); 9836 9837 if (I.getType()->isPointerTy()) 9838 V = DAG.getPtrExtOrTrunc( 9839 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9840 setValue(&I, V); 9841 } 9842 9843 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9844 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9845 MVT::Other, getRoot(), 9846 getValue(I.getArgOperand(0)), 9847 DAG.getSrcValue(I.getArgOperand(0)))); 9848 } 9849 9850 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9851 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9852 MVT::Other, getRoot(), 9853 getValue(I.getArgOperand(0)), 9854 getValue(I.getArgOperand(1)), 9855 DAG.getSrcValue(I.getArgOperand(0)), 9856 DAG.getSrcValue(I.getArgOperand(1)))); 9857 } 9858 9859 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9860 const Instruction &I, 9861 SDValue Op) { 9862 const MDNode *Range = getRangeMetadata(I); 9863 if (!Range) 9864 return Op; 9865 9866 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9867 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9868 return Op; 9869 9870 APInt Lo = CR.getUnsignedMin(); 9871 if (!Lo.isMinValue()) 9872 return Op; 9873 9874 APInt Hi = CR.getUnsignedMax(); 9875 unsigned Bits = std::max(Hi.getActiveBits(), 9876 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9877 9878 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9879 9880 SDLoc SL = getCurSDLoc(); 9881 9882 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9883 DAG.getValueType(SmallVT)); 9884 unsigned NumVals = Op.getNode()->getNumValues(); 9885 if (NumVals == 1) 9886 return ZExt; 9887 9888 SmallVector<SDValue, 4> Ops; 9889 9890 Ops.push_back(ZExt); 9891 for (unsigned I = 1; I != NumVals; ++I) 9892 Ops.push_back(Op.getValue(I)); 9893 9894 return DAG.getMergeValues(Ops, SL); 9895 } 9896 9897 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9898 /// the call being lowered. 9899 /// 9900 /// This is a helper for lowering intrinsics that follow a target calling 9901 /// convention or require stack pointer adjustment. Only a subset of the 9902 /// intrinsic's operands need to participate in the calling convention. 9903 void SelectionDAGBuilder::populateCallLoweringInfo( 9904 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9905 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9906 AttributeSet RetAttrs, bool IsPatchPoint) { 9907 TargetLowering::ArgListTy Args; 9908 Args.reserve(NumArgs); 9909 9910 // Populate the argument list. 9911 // Attributes for args start at offset 1, after the return attribute. 9912 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9913 ArgI != ArgE; ++ArgI) { 9914 const Value *V = Call->getOperand(ArgI); 9915 9916 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9917 9918 TargetLowering::ArgListEntry Entry; 9919 Entry.Node = getValue(V); 9920 Entry.Ty = V->getType(); 9921 Entry.setAttributes(Call, ArgI); 9922 Args.push_back(Entry); 9923 } 9924 9925 CLI.setDebugLoc(getCurSDLoc()) 9926 .setChain(getRoot()) 9927 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 9928 RetAttrs) 9929 .setDiscardResult(Call->use_empty()) 9930 .setIsPatchPoint(IsPatchPoint) 9931 .setIsPreallocated( 9932 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9933 } 9934 9935 /// Add a stack map intrinsic call's live variable operands to a stackmap 9936 /// or patchpoint target node's operand list. 9937 /// 9938 /// Constants are converted to TargetConstants purely as an optimization to 9939 /// avoid constant materialization and register allocation. 9940 /// 9941 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9942 /// generate addess computation nodes, and so FinalizeISel can convert the 9943 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9944 /// address materialization and register allocation, but may also be required 9945 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9946 /// alloca in the entry block, then the runtime may assume that the alloca's 9947 /// StackMap location can be read immediately after compilation and that the 9948 /// location is valid at any point during execution (this is similar to the 9949 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9950 /// only available in a register, then the runtime would need to trap when 9951 /// execution reaches the StackMap in order to read the alloca's location. 9952 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9953 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9954 SelectionDAGBuilder &Builder) { 9955 SelectionDAG &DAG = Builder.DAG; 9956 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9957 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9958 9959 // Things on the stack are pointer-typed, meaning that they are already 9960 // legal and can be emitted directly to target nodes. 9961 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9962 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9963 } else { 9964 // Otherwise emit a target independent node to be legalised. 9965 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9966 } 9967 } 9968 } 9969 9970 /// Lower llvm.experimental.stackmap. 9971 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9972 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9973 // [live variables...]) 9974 9975 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9976 9977 SDValue Chain, InGlue, Callee; 9978 SmallVector<SDValue, 32> Ops; 9979 9980 SDLoc DL = getCurSDLoc(); 9981 Callee = getValue(CI.getCalledOperand()); 9982 9983 // The stackmap intrinsic only records the live variables (the arguments 9984 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9985 // intrinsic, this won't be lowered to a function call. This means we don't 9986 // have to worry about calling conventions and target specific lowering code. 9987 // Instead we perform the call lowering right here. 9988 // 9989 // chain, flag = CALLSEQ_START(chain, 0, 0) 9990 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9991 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9992 // 9993 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9994 InGlue = Chain.getValue(1); 9995 9996 // Add the STACKMAP operands, starting with DAG house-keeping. 9997 Ops.push_back(Chain); 9998 Ops.push_back(InGlue); 9999 10000 // Add the <id>, <numShadowBytes> operands. 10001 // 10002 // These do not require legalisation, and can be emitted directly to target 10003 // constant nodes. 10004 SDValue ID = getValue(CI.getArgOperand(0)); 10005 assert(ID.getValueType() == MVT::i64); 10006 SDValue IDConst = 10007 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType()); 10008 Ops.push_back(IDConst); 10009 10010 SDValue Shad = getValue(CI.getArgOperand(1)); 10011 assert(Shad.getValueType() == MVT::i32); 10012 SDValue ShadConst = 10013 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType()); 10014 Ops.push_back(ShadConst); 10015 10016 // Add the live variables. 10017 addStackMapLiveVars(CI, 2, DL, Ops, *this); 10018 10019 // Create the STACKMAP node. 10020 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10021 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 10022 InGlue = Chain.getValue(1); 10023 10024 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 10025 10026 // Stackmaps don't generate values, so nothing goes into the NodeMap. 10027 10028 // Set the root to the target-lowered call chain. 10029 DAG.setRoot(Chain); 10030 10031 // Inform the Frame Information that we have a stackmap in this function. 10032 FuncInfo.MF->getFrameInfo().setHasStackMap(); 10033 } 10034 10035 /// Lower llvm.experimental.patchpoint directly to its target opcode. 10036 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 10037 const BasicBlock *EHPadBB) { 10038 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 10039 // i32 <numBytes>, 10040 // i8* <target>, 10041 // i32 <numArgs>, 10042 // [Args...], 10043 // [live variables...]) 10044 10045 CallingConv::ID CC = CB.getCallingConv(); 10046 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10047 bool HasDef = !CB.getType()->isVoidTy(); 10048 SDLoc dl = getCurSDLoc(); 10049 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10050 10051 // Handle immediate and symbolic callees. 10052 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10053 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10054 /*isTarget=*/true); 10055 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10056 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10057 SDLoc(SymbolicCallee), 10058 SymbolicCallee->getValueType(0)); 10059 10060 // Get the real number of arguments participating in the call <numArgs> 10061 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10062 unsigned NumArgs = NArgVal->getAsZExtVal(); 10063 10064 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10065 // Intrinsics include all meta-operands up to but not including CC. 10066 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10067 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10068 "Not enough arguments provided to the patchpoint intrinsic"); 10069 10070 // For AnyRegCC the arguments are lowered later on manually. 10071 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10072 Type *ReturnTy = 10073 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10074 10075 TargetLowering::CallLoweringInfo CLI(DAG); 10076 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10077 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10078 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10079 10080 SDNode *CallEnd = Result.second.getNode(); 10081 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10082 CallEnd = CallEnd->getOperand(0).getNode(); 10083 10084 /// Get a call instruction from the call sequence chain. 10085 /// Tail calls are not allowed. 10086 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10087 "Expected a callseq node."); 10088 SDNode *Call = CallEnd->getOperand(0).getNode(); 10089 bool HasGlue = Call->getGluedNode(); 10090 10091 // Replace the target specific call node with the patchable intrinsic. 10092 SmallVector<SDValue, 8> Ops; 10093 10094 // Push the chain. 10095 Ops.push_back(*(Call->op_begin())); 10096 10097 // Optionally, push the glue (if any). 10098 if (HasGlue) 10099 Ops.push_back(*(Call->op_end() - 1)); 10100 10101 // Push the register mask info. 10102 if (HasGlue) 10103 Ops.push_back(*(Call->op_end() - 2)); 10104 else 10105 Ops.push_back(*(Call->op_end() - 1)); 10106 10107 // Add the <id> and <numBytes> constants. 10108 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10109 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64)); 10110 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10111 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32)); 10112 10113 // Add the callee. 10114 Ops.push_back(Callee); 10115 10116 // Adjust <numArgs> to account for any arguments that have been passed on the 10117 // stack instead. 10118 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10119 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10120 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10121 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10122 10123 // Add the calling convention 10124 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10125 10126 // Add the arguments we omitted previously. The register allocator should 10127 // place these in any free register. 10128 if (IsAnyRegCC) 10129 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10130 Ops.push_back(getValue(CB.getArgOperand(i))); 10131 10132 // Push the arguments from the call instruction. 10133 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10134 Ops.append(Call->op_begin() + 2, e); 10135 10136 // Push live variables for the stack map. 10137 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10138 10139 SDVTList NodeTys; 10140 if (IsAnyRegCC && HasDef) { 10141 // Create the return types based on the intrinsic definition 10142 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10143 SmallVector<EVT, 3> ValueVTs; 10144 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10145 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10146 10147 // There is always a chain and a glue type at the end 10148 ValueVTs.push_back(MVT::Other); 10149 ValueVTs.push_back(MVT::Glue); 10150 NodeTys = DAG.getVTList(ValueVTs); 10151 } else 10152 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10153 10154 // Replace the target specific call node with a PATCHPOINT node. 10155 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10156 10157 // Update the NodeMap. 10158 if (HasDef) { 10159 if (IsAnyRegCC) 10160 setValue(&CB, SDValue(PPV.getNode(), 0)); 10161 else 10162 setValue(&CB, Result.first); 10163 } 10164 10165 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10166 // call sequence. Furthermore the location of the chain and glue can change 10167 // when the AnyReg calling convention is used and the intrinsic returns a 10168 // value. 10169 if (IsAnyRegCC && HasDef) { 10170 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10171 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10172 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10173 } else 10174 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10175 DAG.DeleteNode(Call); 10176 10177 // Inform the Frame Information that we have a patchpoint in this function. 10178 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10179 } 10180 10181 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10182 unsigned Intrinsic) { 10183 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10184 SDValue Op1 = getValue(I.getArgOperand(0)); 10185 SDValue Op2; 10186 if (I.arg_size() > 1) 10187 Op2 = getValue(I.getArgOperand(1)); 10188 SDLoc dl = getCurSDLoc(); 10189 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10190 SDValue Res; 10191 SDNodeFlags SDFlags; 10192 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10193 SDFlags.copyFMF(*FPMO); 10194 10195 switch (Intrinsic) { 10196 case Intrinsic::vector_reduce_fadd: 10197 if (SDFlags.hasAllowReassociation()) 10198 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10199 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10200 SDFlags); 10201 else 10202 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10203 break; 10204 case Intrinsic::vector_reduce_fmul: 10205 if (SDFlags.hasAllowReassociation()) 10206 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10207 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10208 SDFlags); 10209 else 10210 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10211 break; 10212 case Intrinsic::vector_reduce_add: 10213 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10214 break; 10215 case Intrinsic::vector_reduce_mul: 10216 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10217 break; 10218 case Intrinsic::vector_reduce_and: 10219 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10220 break; 10221 case Intrinsic::vector_reduce_or: 10222 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10223 break; 10224 case Intrinsic::vector_reduce_xor: 10225 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10226 break; 10227 case Intrinsic::vector_reduce_smax: 10228 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10229 break; 10230 case Intrinsic::vector_reduce_smin: 10231 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10232 break; 10233 case Intrinsic::vector_reduce_umax: 10234 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10235 break; 10236 case Intrinsic::vector_reduce_umin: 10237 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10238 break; 10239 case Intrinsic::vector_reduce_fmax: 10240 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10241 break; 10242 case Intrinsic::vector_reduce_fmin: 10243 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10244 break; 10245 case Intrinsic::vector_reduce_fmaximum: 10246 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10247 break; 10248 case Intrinsic::vector_reduce_fminimum: 10249 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10250 break; 10251 default: 10252 llvm_unreachable("Unhandled vector reduce intrinsic"); 10253 } 10254 setValue(&I, Res); 10255 } 10256 10257 /// Returns an AttributeList representing the attributes applied to the return 10258 /// value of the given call. 10259 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10260 SmallVector<Attribute::AttrKind, 2> Attrs; 10261 if (CLI.RetSExt) 10262 Attrs.push_back(Attribute::SExt); 10263 if (CLI.RetZExt) 10264 Attrs.push_back(Attribute::ZExt); 10265 if (CLI.IsInReg) 10266 Attrs.push_back(Attribute::InReg); 10267 10268 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10269 Attrs); 10270 } 10271 10272 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10273 /// implementation, which just calls LowerCall. 10274 /// FIXME: When all targets are 10275 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10276 std::pair<SDValue, SDValue> 10277 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10278 // Handle the incoming return values from the call. 10279 CLI.Ins.clear(); 10280 Type *OrigRetTy = CLI.RetTy; 10281 SmallVector<EVT, 4> RetTys; 10282 SmallVector<uint64_t, 4> Offsets; 10283 auto &DL = CLI.DAG.getDataLayout(); 10284 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0); 10285 10286 if (CLI.IsPostTypeLegalization) { 10287 // If we are lowering a libcall after legalization, split the return type. 10288 SmallVector<EVT, 4> OldRetTys; 10289 SmallVector<uint64_t, 4> OldOffsets; 10290 RetTys.swap(OldRetTys); 10291 Offsets.swap(OldOffsets); 10292 10293 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10294 EVT RetVT = OldRetTys[i]; 10295 uint64_t Offset = OldOffsets[i]; 10296 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10297 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10298 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10299 RetTys.append(NumRegs, RegisterVT); 10300 for (unsigned j = 0; j != NumRegs; ++j) 10301 Offsets.push_back(Offset + j * RegisterVTByteSZ); 10302 } 10303 } 10304 10305 SmallVector<ISD::OutputArg, 4> Outs; 10306 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10307 10308 bool CanLowerReturn = 10309 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10310 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10311 10312 SDValue DemoteStackSlot; 10313 int DemoteStackIdx = -100; 10314 if (!CanLowerReturn) { 10315 // FIXME: equivalent assert? 10316 // assert(!CS.hasInAllocaArgument() && 10317 // "sret demotion is incompatible with inalloca"); 10318 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10319 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10320 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10321 DemoteStackIdx = 10322 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10323 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10324 DL.getAllocaAddrSpace()); 10325 10326 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10327 ArgListEntry Entry; 10328 Entry.Node = DemoteStackSlot; 10329 Entry.Ty = StackSlotPtrType; 10330 Entry.IsSExt = false; 10331 Entry.IsZExt = false; 10332 Entry.IsInReg = false; 10333 Entry.IsSRet = true; 10334 Entry.IsNest = false; 10335 Entry.IsByVal = false; 10336 Entry.IsByRef = false; 10337 Entry.IsReturned = false; 10338 Entry.IsSwiftSelf = false; 10339 Entry.IsSwiftAsync = false; 10340 Entry.IsSwiftError = false; 10341 Entry.IsCFGuardTarget = false; 10342 Entry.Alignment = Alignment; 10343 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10344 CLI.NumFixedArgs += 1; 10345 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10346 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10347 10348 // sret demotion isn't compatible with tail-calls, since the sret argument 10349 // points into the callers stack frame. 10350 CLI.IsTailCall = false; 10351 } else { 10352 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10353 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10354 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10355 ISD::ArgFlagsTy Flags; 10356 if (NeedsRegBlock) { 10357 Flags.setInConsecutiveRegs(); 10358 if (I == RetTys.size() - 1) 10359 Flags.setInConsecutiveRegsLast(); 10360 } 10361 EVT VT = RetTys[I]; 10362 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10363 CLI.CallConv, VT); 10364 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10365 CLI.CallConv, VT); 10366 for (unsigned i = 0; i != NumRegs; ++i) { 10367 ISD::InputArg MyFlags; 10368 MyFlags.Flags = Flags; 10369 MyFlags.VT = RegisterVT; 10370 MyFlags.ArgVT = VT; 10371 MyFlags.Used = CLI.IsReturnValueUsed; 10372 if (CLI.RetTy->isPointerTy()) { 10373 MyFlags.Flags.setPointer(); 10374 MyFlags.Flags.setPointerAddrSpace( 10375 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10376 } 10377 if (CLI.RetSExt) 10378 MyFlags.Flags.setSExt(); 10379 if (CLI.RetZExt) 10380 MyFlags.Flags.setZExt(); 10381 if (CLI.IsInReg) 10382 MyFlags.Flags.setInReg(); 10383 CLI.Ins.push_back(MyFlags); 10384 } 10385 } 10386 } 10387 10388 // We push in swifterror return as the last element of CLI.Ins. 10389 ArgListTy &Args = CLI.getArgs(); 10390 if (supportSwiftError()) { 10391 for (const ArgListEntry &Arg : Args) { 10392 if (Arg.IsSwiftError) { 10393 ISD::InputArg MyFlags; 10394 MyFlags.VT = getPointerTy(DL); 10395 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10396 MyFlags.Flags.setSwiftError(); 10397 CLI.Ins.push_back(MyFlags); 10398 } 10399 } 10400 } 10401 10402 // Handle all of the outgoing arguments. 10403 CLI.Outs.clear(); 10404 CLI.OutVals.clear(); 10405 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10406 SmallVector<EVT, 4> ValueVTs; 10407 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10408 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10409 Type *FinalType = Args[i].Ty; 10410 if (Args[i].IsByVal) 10411 FinalType = Args[i].IndirectType; 10412 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10413 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10414 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10415 ++Value) { 10416 EVT VT = ValueVTs[Value]; 10417 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10418 SDValue Op = SDValue(Args[i].Node.getNode(), 10419 Args[i].Node.getResNo() + Value); 10420 ISD::ArgFlagsTy Flags; 10421 10422 // Certain targets (such as MIPS), may have a different ABI alignment 10423 // for a type depending on the context. Give the target a chance to 10424 // specify the alignment it wants. 10425 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10426 Flags.setOrigAlign(OriginalAlignment); 10427 10428 if (Args[i].Ty->isPointerTy()) { 10429 Flags.setPointer(); 10430 Flags.setPointerAddrSpace( 10431 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10432 } 10433 if (Args[i].IsZExt) 10434 Flags.setZExt(); 10435 if (Args[i].IsSExt) 10436 Flags.setSExt(); 10437 if (Args[i].IsInReg) { 10438 // If we are using vectorcall calling convention, a structure that is 10439 // passed InReg - is surely an HVA 10440 if (CLI.CallConv == CallingConv::X86_VectorCall && 10441 isa<StructType>(FinalType)) { 10442 // The first value of a structure is marked 10443 if (0 == Value) 10444 Flags.setHvaStart(); 10445 Flags.setHva(); 10446 } 10447 // Set InReg Flag 10448 Flags.setInReg(); 10449 } 10450 if (Args[i].IsSRet) 10451 Flags.setSRet(); 10452 if (Args[i].IsSwiftSelf) 10453 Flags.setSwiftSelf(); 10454 if (Args[i].IsSwiftAsync) 10455 Flags.setSwiftAsync(); 10456 if (Args[i].IsSwiftError) 10457 Flags.setSwiftError(); 10458 if (Args[i].IsCFGuardTarget) 10459 Flags.setCFGuardTarget(); 10460 if (Args[i].IsByVal) 10461 Flags.setByVal(); 10462 if (Args[i].IsByRef) 10463 Flags.setByRef(); 10464 if (Args[i].IsPreallocated) { 10465 Flags.setPreallocated(); 10466 // Set the byval flag for CCAssignFn callbacks that don't know about 10467 // preallocated. This way we can know how many bytes we should've 10468 // allocated and how many bytes a callee cleanup function will pop. If 10469 // we port preallocated to more targets, we'll have to add custom 10470 // preallocated handling in the various CC lowering callbacks. 10471 Flags.setByVal(); 10472 } 10473 if (Args[i].IsInAlloca) { 10474 Flags.setInAlloca(); 10475 // Set the byval flag for CCAssignFn callbacks that don't know about 10476 // inalloca. This way we can know how many bytes we should've allocated 10477 // and how many bytes a callee cleanup function will pop. If we port 10478 // inalloca to more targets, we'll have to add custom inalloca handling 10479 // in the various CC lowering callbacks. 10480 Flags.setByVal(); 10481 } 10482 Align MemAlign; 10483 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10484 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10485 Flags.setByValSize(FrameSize); 10486 10487 // info is not there but there are cases it cannot get right. 10488 if (auto MA = Args[i].Alignment) 10489 MemAlign = *MA; 10490 else 10491 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10492 } else if (auto MA = Args[i].Alignment) { 10493 MemAlign = *MA; 10494 } else { 10495 MemAlign = OriginalAlignment; 10496 } 10497 Flags.setMemAlign(MemAlign); 10498 if (Args[i].IsNest) 10499 Flags.setNest(); 10500 if (NeedsRegBlock) 10501 Flags.setInConsecutiveRegs(); 10502 10503 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10504 CLI.CallConv, VT); 10505 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10506 CLI.CallConv, VT); 10507 SmallVector<SDValue, 4> Parts(NumParts); 10508 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10509 10510 if (Args[i].IsSExt) 10511 ExtendKind = ISD::SIGN_EXTEND; 10512 else if (Args[i].IsZExt) 10513 ExtendKind = ISD::ZERO_EXTEND; 10514 10515 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10516 // for now. 10517 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10518 CanLowerReturn) { 10519 assert((CLI.RetTy == Args[i].Ty || 10520 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10521 CLI.RetTy->getPointerAddressSpace() == 10522 Args[i].Ty->getPointerAddressSpace())) && 10523 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10524 // Before passing 'returned' to the target lowering code, ensure that 10525 // either the register MVT and the actual EVT are the same size or that 10526 // the return value and argument are extended in the same way; in these 10527 // cases it's safe to pass the argument register value unchanged as the 10528 // return register value (although it's at the target's option whether 10529 // to do so) 10530 // TODO: allow code generation to take advantage of partially preserved 10531 // registers rather than clobbering the entire register when the 10532 // parameter extension method is not compatible with the return 10533 // extension method 10534 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10535 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10536 CLI.RetZExt == Args[i].IsZExt)) 10537 Flags.setReturned(); 10538 } 10539 10540 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10541 CLI.CallConv, ExtendKind); 10542 10543 for (unsigned j = 0; j != NumParts; ++j) { 10544 // if it isn't first piece, alignment must be 1 10545 // For scalable vectors the scalable part is currently handled 10546 // by individual targets, so we just use the known minimum size here. 10547 ISD::OutputArg MyFlags( 10548 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10549 i < CLI.NumFixedArgs, i, 10550 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10551 if (NumParts > 1 && j == 0) 10552 MyFlags.Flags.setSplit(); 10553 else if (j != 0) { 10554 MyFlags.Flags.setOrigAlign(Align(1)); 10555 if (j == NumParts - 1) 10556 MyFlags.Flags.setSplitEnd(); 10557 } 10558 10559 CLI.Outs.push_back(MyFlags); 10560 CLI.OutVals.push_back(Parts[j]); 10561 } 10562 10563 if (NeedsRegBlock && Value == NumValues - 1) 10564 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10565 } 10566 } 10567 10568 SmallVector<SDValue, 4> InVals; 10569 CLI.Chain = LowerCall(CLI, InVals); 10570 10571 // Update CLI.InVals to use outside of this function. 10572 CLI.InVals = InVals; 10573 10574 // Verify that the target's LowerCall behaved as expected. 10575 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10576 "LowerCall didn't return a valid chain!"); 10577 assert((!CLI.IsTailCall || InVals.empty()) && 10578 "LowerCall emitted a return value for a tail call!"); 10579 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10580 "LowerCall didn't emit the correct number of values!"); 10581 10582 // For a tail call, the return value is merely live-out and there aren't 10583 // any nodes in the DAG representing it. Return a special value to 10584 // indicate that a tail call has been emitted and no more Instructions 10585 // should be processed in the current block. 10586 if (CLI.IsTailCall) { 10587 CLI.DAG.setRoot(CLI.Chain); 10588 return std::make_pair(SDValue(), SDValue()); 10589 } 10590 10591 #ifndef NDEBUG 10592 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10593 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10594 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10595 "LowerCall emitted a value with the wrong type!"); 10596 } 10597 #endif 10598 10599 SmallVector<SDValue, 4> ReturnValues; 10600 if (!CanLowerReturn) { 10601 // The instruction result is the result of loading from the 10602 // hidden sret parameter. 10603 SmallVector<EVT, 1> PVTs; 10604 Type *PtrRetTy = 10605 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 10606 10607 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10608 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10609 EVT PtrVT = PVTs[0]; 10610 10611 unsigned NumValues = RetTys.size(); 10612 ReturnValues.resize(NumValues); 10613 SmallVector<SDValue, 4> Chains(NumValues); 10614 10615 // An aggregate return value cannot wrap around the address space, so 10616 // offsets to its parts don't wrap either. 10617 SDNodeFlags Flags; 10618 Flags.setNoUnsignedWrap(true); 10619 10620 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10621 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10622 for (unsigned i = 0; i < NumValues; ++i) { 10623 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10624 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10625 PtrVT), Flags); 10626 SDValue L = CLI.DAG.getLoad( 10627 RetTys[i], CLI.DL, CLI.Chain, Add, 10628 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10629 DemoteStackIdx, Offsets[i]), 10630 HiddenSRetAlign); 10631 ReturnValues[i] = L; 10632 Chains[i] = L.getValue(1); 10633 } 10634 10635 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10636 } else { 10637 // Collect the legal value parts into potentially illegal values 10638 // that correspond to the original function's return values. 10639 std::optional<ISD::NodeType> AssertOp; 10640 if (CLI.RetSExt) 10641 AssertOp = ISD::AssertSext; 10642 else if (CLI.RetZExt) 10643 AssertOp = ISD::AssertZext; 10644 unsigned CurReg = 0; 10645 for (EVT VT : RetTys) { 10646 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10647 CLI.CallConv, VT); 10648 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10649 CLI.CallConv, VT); 10650 10651 ReturnValues.push_back(getCopyFromParts( 10652 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr, 10653 CLI.Chain, CLI.CallConv, AssertOp)); 10654 CurReg += NumRegs; 10655 } 10656 10657 // For a function returning void, there is no return value. We can't create 10658 // such a node, so we just return a null return value in that case. In 10659 // that case, nothing will actually look at the value. 10660 if (ReturnValues.empty()) 10661 return std::make_pair(SDValue(), CLI.Chain); 10662 } 10663 10664 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10665 CLI.DAG.getVTList(RetTys), ReturnValues); 10666 return std::make_pair(Res, CLI.Chain); 10667 } 10668 10669 /// Places new result values for the node in Results (their number 10670 /// and types must exactly match those of the original return values of 10671 /// the node), or leaves Results empty, which indicates that the node is not 10672 /// to be custom lowered after all. 10673 void TargetLowering::LowerOperationWrapper(SDNode *N, 10674 SmallVectorImpl<SDValue> &Results, 10675 SelectionDAG &DAG) const { 10676 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10677 10678 if (!Res.getNode()) 10679 return; 10680 10681 // If the original node has one result, take the return value from 10682 // LowerOperation as is. It might not be result number 0. 10683 if (N->getNumValues() == 1) { 10684 Results.push_back(Res); 10685 return; 10686 } 10687 10688 // If the original node has multiple results, then the return node should 10689 // have the same number of results. 10690 assert((N->getNumValues() == Res->getNumValues()) && 10691 "Lowering returned the wrong number of results!"); 10692 10693 // Places new result values base on N result number. 10694 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10695 Results.push_back(Res.getValue(I)); 10696 } 10697 10698 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10699 llvm_unreachable("LowerOperation not implemented for this target!"); 10700 } 10701 10702 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10703 unsigned Reg, 10704 ISD::NodeType ExtendType) { 10705 SDValue Op = getNonRegisterValue(V); 10706 assert((Op.getOpcode() != ISD::CopyFromReg || 10707 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10708 "Copy from a reg to the same reg!"); 10709 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10710 10711 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10712 // If this is an InlineAsm we have to match the registers required, not the 10713 // notional registers required by the type. 10714 10715 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10716 std::nullopt); // This is not an ABI copy. 10717 SDValue Chain = DAG.getEntryNode(); 10718 10719 if (ExtendType == ISD::ANY_EXTEND) { 10720 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10721 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10722 ExtendType = PreferredExtendIt->second; 10723 } 10724 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10725 PendingExports.push_back(Chain); 10726 } 10727 10728 #include "llvm/CodeGen/SelectionDAGISel.h" 10729 10730 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10731 /// entry block, return true. This includes arguments used by switches, since 10732 /// the switch may expand into multiple basic blocks. 10733 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10734 // With FastISel active, we may be splitting blocks, so force creation 10735 // of virtual registers for all non-dead arguments. 10736 if (FastISel) 10737 return A->use_empty(); 10738 10739 const BasicBlock &Entry = A->getParent()->front(); 10740 for (const User *U : A->users()) 10741 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10742 return false; // Use not in entry block. 10743 10744 return true; 10745 } 10746 10747 using ArgCopyElisionMapTy = 10748 DenseMap<const Argument *, 10749 std::pair<const AllocaInst *, const StoreInst *>>; 10750 10751 /// Scan the entry block of the function in FuncInfo for arguments that look 10752 /// like copies into a local alloca. Record any copied arguments in 10753 /// ArgCopyElisionCandidates. 10754 static void 10755 findArgumentCopyElisionCandidates(const DataLayout &DL, 10756 FunctionLoweringInfo *FuncInfo, 10757 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10758 // Record the state of every static alloca used in the entry block. Argument 10759 // allocas are all used in the entry block, so we need approximately as many 10760 // entries as we have arguments. 10761 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10762 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10763 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10764 StaticAllocas.reserve(NumArgs * 2); 10765 10766 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10767 if (!V) 10768 return nullptr; 10769 V = V->stripPointerCasts(); 10770 const auto *AI = dyn_cast<AllocaInst>(V); 10771 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10772 return nullptr; 10773 auto Iter = StaticAllocas.insert({AI, Unknown}); 10774 return &Iter.first->second; 10775 }; 10776 10777 // Look for stores of arguments to static allocas. Look through bitcasts and 10778 // GEPs to handle type coercions, as long as the alloca is fully initialized 10779 // by the store. Any non-store use of an alloca escapes it and any subsequent 10780 // unanalyzed store might write it. 10781 // FIXME: Handle structs initialized with multiple stores. 10782 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10783 // Look for stores, and handle non-store uses conservatively. 10784 const auto *SI = dyn_cast<StoreInst>(&I); 10785 if (!SI) { 10786 // We will look through cast uses, so ignore them completely. 10787 if (I.isCast()) 10788 continue; 10789 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10790 // to allocas. 10791 if (I.isDebugOrPseudoInst()) 10792 continue; 10793 // This is an unknown instruction. Assume it escapes or writes to all 10794 // static alloca operands. 10795 for (const Use &U : I.operands()) { 10796 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10797 *Info = StaticAllocaInfo::Clobbered; 10798 } 10799 continue; 10800 } 10801 10802 // If the stored value is a static alloca, mark it as escaped. 10803 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10804 *Info = StaticAllocaInfo::Clobbered; 10805 10806 // Check if the destination is a static alloca. 10807 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10808 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10809 if (!Info) 10810 continue; 10811 const AllocaInst *AI = cast<AllocaInst>(Dst); 10812 10813 // Skip allocas that have been initialized or clobbered. 10814 if (*Info != StaticAllocaInfo::Unknown) 10815 continue; 10816 10817 // Check if the stored value is an argument, and that this store fully 10818 // initializes the alloca. 10819 // If the argument type has padding bits we can't directly forward a pointer 10820 // as the upper bits may contain garbage. 10821 // Don't elide copies from the same argument twice. 10822 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10823 const auto *Arg = dyn_cast<Argument>(Val); 10824 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10825 Arg->getType()->isEmptyTy() || 10826 DL.getTypeStoreSize(Arg->getType()) != 10827 DL.getTypeAllocSize(AI->getAllocatedType()) || 10828 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10829 ArgCopyElisionCandidates.count(Arg)) { 10830 *Info = StaticAllocaInfo::Clobbered; 10831 continue; 10832 } 10833 10834 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10835 << '\n'); 10836 10837 // Mark this alloca and store for argument copy elision. 10838 *Info = StaticAllocaInfo::Elidable; 10839 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10840 10841 // Stop scanning if we've seen all arguments. This will happen early in -O0 10842 // builds, which is useful, because -O0 builds have large entry blocks and 10843 // many allocas. 10844 if (ArgCopyElisionCandidates.size() == NumArgs) 10845 break; 10846 } 10847 } 10848 10849 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10850 /// ArgVal is a load from a suitable fixed stack object. 10851 static void tryToElideArgumentCopy( 10852 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10853 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10854 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10855 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10856 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 10857 // Check if this is a load from a fixed stack object. 10858 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 10859 if (!LNode) 10860 return; 10861 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10862 if (!FINode) 10863 return; 10864 10865 // Check that the fixed stack object is the right size and alignment. 10866 // Look at the alignment that the user wrote on the alloca instead of looking 10867 // at the stack object. 10868 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10869 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10870 const AllocaInst *AI = ArgCopyIter->second.first; 10871 int FixedIndex = FINode->getIndex(); 10872 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10873 int OldIndex = AllocaIndex; 10874 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10875 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10876 LLVM_DEBUG( 10877 dbgs() << " argument copy elision failed due to bad fixed stack " 10878 "object size\n"); 10879 return; 10880 } 10881 Align RequiredAlignment = AI->getAlign(); 10882 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10883 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10884 "greater than stack argument alignment (" 10885 << DebugStr(RequiredAlignment) << " vs " 10886 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10887 return; 10888 } 10889 10890 // Perform the elision. Delete the old stack object and replace its only use 10891 // in the variable info map. Mark the stack object as mutable and aliased. 10892 LLVM_DEBUG({ 10893 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10894 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10895 << '\n'; 10896 }); 10897 MFI.RemoveStackObject(OldIndex); 10898 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10899 MFI.setIsAliasedObjectIndex(FixedIndex, true); 10900 AllocaIndex = FixedIndex; 10901 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10902 for (SDValue ArgVal : ArgVals) 10903 Chains.push_back(ArgVal.getValue(1)); 10904 10905 // Avoid emitting code for the store implementing the copy. 10906 const StoreInst *SI = ArgCopyIter->second.second; 10907 ElidedArgCopyInstrs.insert(SI); 10908 10909 // Check for uses of the argument again so that we can avoid exporting ArgVal 10910 // if it is't used by anything other than the store. 10911 for (const Value *U : Arg.users()) { 10912 if (U != SI) { 10913 ArgHasUses = true; 10914 break; 10915 } 10916 } 10917 } 10918 10919 void SelectionDAGISel::LowerArguments(const Function &F) { 10920 SelectionDAG &DAG = SDB->DAG; 10921 SDLoc dl = SDB->getCurSDLoc(); 10922 const DataLayout &DL = DAG.getDataLayout(); 10923 SmallVector<ISD::InputArg, 16> Ins; 10924 10925 // In Naked functions we aren't going to save any registers. 10926 if (F.hasFnAttribute(Attribute::Naked)) 10927 return; 10928 10929 if (!FuncInfo->CanLowerReturn) { 10930 // Put in an sret pointer parameter before all the other parameters. 10931 SmallVector<EVT, 1> ValueVTs; 10932 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10933 PointerType::get(F.getContext(), 10934 DAG.getDataLayout().getAllocaAddrSpace()), 10935 ValueVTs); 10936 10937 // NOTE: Assuming that a pointer will never break down to more than one VT 10938 // or one register. 10939 ISD::ArgFlagsTy Flags; 10940 Flags.setSRet(); 10941 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10942 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10943 ISD::InputArg::NoArgIndex, 0); 10944 Ins.push_back(RetArg); 10945 } 10946 10947 // Look for stores of arguments to static allocas. Mark such arguments with a 10948 // flag to ask the target to give us the memory location of that argument if 10949 // available. 10950 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10951 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10952 ArgCopyElisionCandidates); 10953 10954 // Set up the incoming argument description vector. 10955 for (const Argument &Arg : F.args()) { 10956 unsigned ArgNo = Arg.getArgNo(); 10957 SmallVector<EVT, 4> ValueVTs; 10958 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10959 bool isArgValueUsed = !Arg.use_empty(); 10960 unsigned PartBase = 0; 10961 Type *FinalType = Arg.getType(); 10962 if (Arg.hasAttribute(Attribute::ByVal)) 10963 FinalType = Arg.getParamByValType(); 10964 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10965 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10966 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10967 Value != NumValues; ++Value) { 10968 EVT VT = ValueVTs[Value]; 10969 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10970 ISD::ArgFlagsTy Flags; 10971 10972 10973 if (Arg.getType()->isPointerTy()) { 10974 Flags.setPointer(); 10975 Flags.setPointerAddrSpace( 10976 cast<PointerType>(Arg.getType())->getAddressSpace()); 10977 } 10978 if (Arg.hasAttribute(Attribute::ZExt)) 10979 Flags.setZExt(); 10980 if (Arg.hasAttribute(Attribute::SExt)) 10981 Flags.setSExt(); 10982 if (Arg.hasAttribute(Attribute::InReg)) { 10983 // If we are using vectorcall calling convention, a structure that is 10984 // passed InReg - is surely an HVA 10985 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10986 isa<StructType>(Arg.getType())) { 10987 // The first value of a structure is marked 10988 if (0 == Value) 10989 Flags.setHvaStart(); 10990 Flags.setHva(); 10991 } 10992 // Set InReg Flag 10993 Flags.setInReg(); 10994 } 10995 if (Arg.hasAttribute(Attribute::StructRet)) 10996 Flags.setSRet(); 10997 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10998 Flags.setSwiftSelf(); 10999 if (Arg.hasAttribute(Attribute::SwiftAsync)) 11000 Flags.setSwiftAsync(); 11001 if (Arg.hasAttribute(Attribute::SwiftError)) 11002 Flags.setSwiftError(); 11003 if (Arg.hasAttribute(Attribute::ByVal)) 11004 Flags.setByVal(); 11005 if (Arg.hasAttribute(Attribute::ByRef)) 11006 Flags.setByRef(); 11007 if (Arg.hasAttribute(Attribute::InAlloca)) { 11008 Flags.setInAlloca(); 11009 // Set the byval flag for CCAssignFn callbacks that don't know about 11010 // inalloca. This way we can know how many bytes we should've allocated 11011 // and how many bytes a callee cleanup function will pop. If we port 11012 // inalloca to more targets, we'll have to add custom inalloca handling 11013 // in the various CC lowering callbacks. 11014 Flags.setByVal(); 11015 } 11016 if (Arg.hasAttribute(Attribute::Preallocated)) { 11017 Flags.setPreallocated(); 11018 // Set the byval flag for CCAssignFn callbacks that don't know about 11019 // preallocated. This way we can know how many bytes we should've 11020 // allocated and how many bytes a callee cleanup function will pop. If 11021 // we port preallocated to more targets, we'll have to add custom 11022 // preallocated handling in the various CC lowering callbacks. 11023 Flags.setByVal(); 11024 } 11025 11026 // Certain targets (such as MIPS), may have a different ABI alignment 11027 // for a type depending on the context. Give the target a chance to 11028 // specify the alignment it wants. 11029 const Align OriginalAlignment( 11030 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 11031 Flags.setOrigAlign(OriginalAlignment); 11032 11033 Align MemAlign; 11034 Type *ArgMemTy = nullptr; 11035 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 11036 Flags.isByRef()) { 11037 if (!ArgMemTy) 11038 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11039 11040 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11041 11042 // For in-memory arguments, size and alignment should be passed from FE. 11043 // BE will guess if this info is not there but there are cases it cannot 11044 // get right. 11045 if (auto ParamAlign = Arg.getParamStackAlign()) 11046 MemAlign = *ParamAlign; 11047 else if ((ParamAlign = Arg.getParamAlign())) 11048 MemAlign = *ParamAlign; 11049 else 11050 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 11051 if (Flags.isByRef()) 11052 Flags.setByRefSize(MemSize); 11053 else 11054 Flags.setByValSize(MemSize); 11055 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11056 MemAlign = *ParamAlign; 11057 } else { 11058 MemAlign = OriginalAlignment; 11059 } 11060 Flags.setMemAlign(MemAlign); 11061 11062 if (Arg.hasAttribute(Attribute::Nest)) 11063 Flags.setNest(); 11064 if (NeedsRegBlock) 11065 Flags.setInConsecutiveRegs(); 11066 if (ArgCopyElisionCandidates.count(&Arg)) 11067 Flags.setCopyElisionCandidate(); 11068 if (Arg.hasAttribute(Attribute::Returned)) 11069 Flags.setReturned(); 11070 11071 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11072 *CurDAG->getContext(), F.getCallingConv(), VT); 11073 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11074 *CurDAG->getContext(), F.getCallingConv(), VT); 11075 for (unsigned i = 0; i != NumRegs; ++i) { 11076 // For scalable vectors, use the minimum size; individual targets 11077 // are responsible for handling scalable vector arguments and 11078 // return values. 11079 ISD::InputArg MyFlags( 11080 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11081 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11082 if (NumRegs > 1 && i == 0) 11083 MyFlags.Flags.setSplit(); 11084 // if it isn't first piece, alignment must be 1 11085 else if (i > 0) { 11086 MyFlags.Flags.setOrigAlign(Align(1)); 11087 if (i == NumRegs - 1) 11088 MyFlags.Flags.setSplitEnd(); 11089 } 11090 Ins.push_back(MyFlags); 11091 } 11092 if (NeedsRegBlock && Value == NumValues - 1) 11093 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11094 PartBase += VT.getStoreSize().getKnownMinValue(); 11095 } 11096 } 11097 11098 // Call the target to set up the argument values. 11099 SmallVector<SDValue, 8> InVals; 11100 SDValue NewRoot = TLI->LowerFormalArguments( 11101 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11102 11103 // Verify that the target's LowerFormalArguments behaved as expected. 11104 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11105 "LowerFormalArguments didn't return a valid chain!"); 11106 assert(InVals.size() == Ins.size() && 11107 "LowerFormalArguments didn't emit the correct number of values!"); 11108 LLVM_DEBUG({ 11109 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11110 assert(InVals[i].getNode() && 11111 "LowerFormalArguments emitted a null value!"); 11112 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11113 "LowerFormalArguments emitted a value with the wrong type!"); 11114 } 11115 }); 11116 11117 // Update the DAG with the new chain value resulting from argument lowering. 11118 DAG.setRoot(NewRoot); 11119 11120 // Set up the argument values. 11121 unsigned i = 0; 11122 if (!FuncInfo->CanLowerReturn) { 11123 // Create a virtual register for the sret pointer, and put in a copy 11124 // from the sret argument into it. 11125 SmallVector<EVT, 1> ValueVTs; 11126 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11127 PointerType::get(F.getContext(), 11128 DAG.getDataLayout().getAllocaAddrSpace()), 11129 ValueVTs); 11130 MVT VT = ValueVTs[0].getSimpleVT(); 11131 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11132 std::optional<ISD::NodeType> AssertOp; 11133 SDValue ArgValue = 11134 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot, 11135 F.getCallingConv(), AssertOp); 11136 11137 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11138 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11139 Register SRetReg = 11140 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11141 FuncInfo->DemoteRegister = SRetReg; 11142 NewRoot = 11143 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11144 DAG.setRoot(NewRoot); 11145 11146 // i indexes lowered arguments. Bump it past the hidden sret argument. 11147 ++i; 11148 } 11149 11150 SmallVector<SDValue, 4> Chains; 11151 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11152 for (const Argument &Arg : F.args()) { 11153 SmallVector<SDValue, 4> ArgValues; 11154 SmallVector<EVT, 4> ValueVTs; 11155 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11156 unsigned NumValues = ValueVTs.size(); 11157 if (NumValues == 0) 11158 continue; 11159 11160 bool ArgHasUses = !Arg.use_empty(); 11161 11162 // Elide the copying store if the target loaded this argument from a 11163 // suitable fixed stack object. 11164 if (Ins[i].Flags.isCopyElisionCandidate()) { 11165 unsigned NumParts = 0; 11166 for (EVT VT : ValueVTs) 11167 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11168 F.getCallingConv(), VT); 11169 11170 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11171 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11172 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11173 } 11174 11175 // If this argument is unused then remember its value. It is used to generate 11176 // debugging information. 11177 bool isSwiftErrorArg = 11178 TLI->supportSwiftError() && 11179 Arg.hasAttribute(Attribute::SwiftError); 11180 if (!ArgHasUses && !isSwiftErrorArg) { 11181 SDB->setUnusedArgValue(&Arg, InVals[i]); 11182 11183 // Also remember any frame index for use in FastISel. 11184 if (FrameIndexSDNode *FI = 11185 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11186 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11187 } 11188 11189 for (unsigned Val = 0; Val != NumValues; ++Val) { 11190 EVT VT = ValueVTs[Val]; 11191 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11192 F.getCallingConv(), VT); 11193 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11194 *CurDAG->getContext(), F.getCallingConv(), VT); 11195 11196 // Even an apparent 'unused' swifterror argument needs to be returned. So 11197 // we do generate a copy for it that can be used on return from the 11198 // function. 11199 if (ArgHasUses || isSwiftErrorArg) { 11200 std::optional<ISD::NodeType> AssertOp; 11201 if (Arg.hasAttribute(Attribute::SExt)) 11202 AssertOp = ISD::AssertSext; 11203 else if (Arg.hasAttribute(Attribute::ZExt)) 11204 AssertOp = ISD::AssertZext; 11205 11206 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11207 PartVT, VT, nullptr, NewRoot, 11208 F.getCallingConv(), AssertOp)); 11209 } 11210 11211 i += NumParts; 11212 } 11213 11214 // We don't need to do anything else for unused arguments. 11215 if (ArgValues.empty()) 11216 continue; 11217 11218 // Note down frame index. 11219 if (FrameIndexSDNode *FI = 11220 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11221 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11222 11223 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11224 SDB->getCurSDLoc()); 11225 11226 SDB->setValue(&Arg, Res); 11227 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11228 // We want to associate the argument with the frame index, among 11229 // involved operands, that correspond to the lowest address. The 11230 // getCopyFromParts function, called earlier, is swapping the order of 11231 // the operands to BUILD_PAIR depending on endianness. The result of 11232 // that swapping is that the least significant bits of the argument will 11233 // be in the first operand of the BUILD_PAIR node, and the most 11234 // significant bits will be in the second operand. 11235 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11236 if (LoadSDNode *LNode = 11237 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11238 if (FrameIndexSDNode *FI = 11239 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11240 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11241 } 11242 11243 // Analyses past this point are naive and don't expect an assertion. 11244 if (Res.getOpcode() == ISD::AssertZext) 11245 Res = Res.getOperand(0); 11246 11247 // Update the SwiftErrorVRegDefMap. 11248 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11249 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11250 if (Register::isVirtualRegister(Reg)) 11251 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11252 Reg); 11253 } 11254 11255 // If this argument is live outside of the entry block, insert a copy from 11256 // wherever we got it to the vreg that other BB's will reference it as. 11257 if (Res.getOpcode() == ISD::CopyFromReg) { 11258 // If we can, though, try to skip creating an unnecessary vreg. 11259 // FIXME: This isn't very clean... it would be nice to make this more 11260 // general. 11261 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11262 if (Register::isVirtualRegister(Reg)) { 11263 FuncInfo->ValueMap[&Arg] = Reg; 11264 continue; 11265 } 11266 } 11267 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11268 FuncInfo->InitializeRegForValue(&Arg); 11269 SDB->CopyToExportRegsIfNeeded(&Arg); 11270 } 11271 } 11272 11273 if (!Chains.empty()) { 11274 Chains.push_back(NewRoot); 11275 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11276 } 11277 11278 DAG.setRoot(NewRoot); 11279 11280 assert(i == InVals.size() && "Argument register count mismatch!"); 11281 11282 // If any argument copy elisions occurred and we have debug info, update the 11283 // stale frame indices used in the dbg.declare variable info table. 11284 if (!ArgCopyElisionFrameIndexMap.empty()) { 11285 for (MachineFunction::VariableDbgInfo &VI : 11286 MF->getInStackSlotVariableDbgInfo()) { 11287 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11288 if (I != ArgCopyElisionFrameIndexMap.end()) 11289 VI.updateStackSlot(I->second); 11290 } 11291 } 11292 11293 // Finally, if the target has anything special to do, allow it to do so. 11294 emitFunctionEntryCode(); 11295 } 11296 11297 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11298 /// ensure constants are generated when needed. Remember the virtual registers 11299 /// that need to be added to the Machine PHI nodes as input. We cannot just 11300 /// directly add them, because expansion might result in multiple MBB's for one 11301 /// BB. As such, the start of the BB might correspond to a different MBB than 11302 /// the end. 11303 void 11304 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11305 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11306 11307 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11308 11309 // Check PHI nodes in successors that expect a value to be available from this 11310 // block. 11311 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11312 if (!isa<PHINode>(SuccBB->begin())) continue; 11313 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11314 11315 // If this terminator has multiple identical successors (common for 11316 // switches), only handle each succ once. 11317 if (!SuccsHandled.insert(SuccMBB).second) 11318 continue; 11319 11320 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11321 11322 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11323 // nodes and Machine PHI nodes, but the incoming operands have not been 11324 // emitted yet. 11325 for (const PHINode &PN : SuccBB->phis()) { 11326 // Ignore dead phi's. 11327 if (PN.use_empty()) 11328 continue; 11329 11330 // Skip empty types 11331 if (PN.getType()->isEmptyTy()) 11332 continue; 11333 11334 unsigned Reg; 11335 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11336 11337 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11338 unsigned &RegOut = ConstantsOut[C]; 11339 if (RegOut == 0) { 11340 RegOut = FuncInfo.CreateRegs(C); 11341 // We need to zero/sign extend ConstantInt phi operands to match 11342 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11343 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11344 if (auto *CI = dyn_cast<ConstantInt>(C)) 11345 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11346 : ISD::ZERO_EXTEND; 11347 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11348 } 11349 Reg = RegOut; 11350 } else { 11351 DenseMap<const Value *, Register>::iterator I = 11352 FuncInfo.ValueMap.find(PHIOp); 11353 if (I != FuncInfo.ValueMap.end()) 11354 Reg = I->second; 11355 else { 11356 assert(isa<AllocaInst>(PHIOp) && 11357 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11358 "Didn't codegen value into a register!??"); 11359 Reg = FuncInfo.CreateRegs(PHIOp); 11360 CopyValueToVirtualRegister(PHIOp, Reg); 11361 } 11362 } 11363 11364 // Remember that this register needs to added to the machine PHI node as 11365 // the input for this MBB. 11366 SmallVector<EVT, 4> ValueVTs; 11367 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11368 for (EVT VT : ValueVTs) { 11369 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11370 for (unsigned i = 0; i != NumRegisters; ++i) 11371 FuncInfo.PHINodesToUpdate.push_back( 11372 std::make_pair(&*MBBI++, Reg + i)); 11373 Reg += NumRegisters; 11374 } 11375 } 11376 } 11377 11378 ConstantsOut.clear(); 11379 } 11380 11381 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11382 MachineFunction::iterator I(MBB); 11383 if (++I == FuncInfo.MF->end()) 11384 return nullptr; 11385 return &*I; 11386 } 11387 11388 /// During lowering new call nodes can be created (such as memset, etc.). 11389 /// Those will become new roots of the current DAG, but complications arise 11390 /// when they are tail calls. In such cases, the call lowering will update 11391 /// the root, but the builder still needs to know that a tail call has been 11392 /// lowered in order to avoid generating an additional return. 11393 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11394 // If the node is null, we do have a tail call. 11395 if (MaybeTC.getNode() != nullptr) 11396 DAG.setRoot(MaybeTC); 11397 else 11398 HasTailCall = true; 11399 } 11400 11401 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11402 MachineBasicBlock *SwitchMBB, 11403 MachineBasicBlock *DefaultMBB) { 11404 MachineFunction *CurMF = FuncInfo.MF; 11405 MachineBasicBlock *NextMBB = nullptr; 11406 MachineFunction::iterator BBI(W.MBB); 11407 if (++BBI != FuncInfo.MF->end()) 11408 NextMBB = &*BBI; 11409 11410 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11411 11412 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11413 11414 if (Size == 2 && W.MBB == SwitchMBB) { 11415 // If any two of the cases has the same destination, and if one value 11416 // is the same as the other, but has one bit unset that the other has set, 11417 // use bit manipulation to do two compares at once. For example: 11418 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11419 // TODO: This could be extended to merge any 2 cases in switches with 3 11420 // cases. 11421 // TODO: Handle cases where W.CaseBB != SwitchBB. 11422 CaseCluster &Small = *W.FirstCluster; 11423 CaseCluster &Big = *W.LastCluster; 11424 11425 if (Small.Low == Small.High && Big.Low == Big.High && 11426 Small.MBB == Big.MBB) { 11427 const APInt &SmallValue = Small.Low->getValue(); 11428 const APInt &BigValue = Big.Low->getValue(); 11429 11430 // Check that there is only one bit different. 11431 APInt CommonBit = BigValue ^ SmallValue; 11432 if (CommonBit.isPowerOf2()) { 11433 SDValue CondLHS = getValue(Cond); 11434 EVT VT = CondLHS.getValueType(); 11435 SDLoc DL = getCurSDLoc(); 11436 11437 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11438 DAG.getConstant(CommonBit, DL, VT)); 11439 SDValue Cond = DAG.getSetCC( 11440 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11441 ISD::SETEQ); 11442 11443 // Update successor info. 11444 // Both Small and Big will jump to Small.BB, so we sum up the 11445 // probabilities. 11446 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11447 if (BPI) 11448 addSuccessorWithProb( 11449 SwitchMBB, DefaultMBB, 11450 // The default destination is the first successor in IR. 11451 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11452 else 11453 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11454 11455 // Insert the true branch. 11456 SDValue BrCond = 11457 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11458 DAG.getBasicBlock(Small.MBB)); 11459 // Insert the false branch. 11460 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11461 DAG.getBasicBlock(DefaultMBB)); 11462 11463 DAG.setRoot(BrCond); 11464 return; 11465 } 11466 } 11467 } 11468 11469 if (TM.getOptLevel() != CodeGenOptLevel::None) { 11470 // Here, we order cases by probability so the most likely case will be 11471 // checked first. However, two clusters can have the same probability in 11472 // which case their relative ordering is non-deterministic. So we use Low 11473 // as a tie-breaker as clusters are guaranteed to never overlap. 11474 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11475 [](const CaseCluster &a, const CaseCluster &b) { 11476 return a.Prob != b.Prob ? 11477 a.Prob > b.Prob : 11478 a.Low->getValue().slt(b.Low->getValue()); 11479 }); 11480 11481 // Rearrange the case blocks so that the last one falls through if possible 11482 // without changing the order of probabilities. 11483 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11484 --I; 11485 if (I->Prob > W.LastCluster->Prob) 11486 break; 11487 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11488 std::swap(*I, *W.LastCluster); 11489 break; 11490 } 11491 } 11492 } 11493 11494 // Compute total probability. 11495 BranchProbability DefaultProb = W.DefaultProb; 11496 BranchProbability UnhandledProbs = DefaultProb; 11497 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11498 UnhandledProbs += I->Prob; 11499 11500 MachineBasicBlock *CurMBB = W.MBB; 11501 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11502 bool FallthroughUnreachable = false; 11503 MachineBasicBlock *Fallthrough; 11504 if (I == W.LastCluster) { 11505 // For the last cluster, fall through to the default destination. 11506 Fallthrough = DefaultMBB; 11507 FallthroughUnreachable = isa<UnreachableInst>( 11508 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11509 } else { 11510 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11511 CurMF->insert(BBI, Fallthrough); 11512 // Put Cond in a virtual register to make it available from the new blocks. 11513 ExportFromCurrentBlock(Cond); 11514 } 11515 UnhandledProbs -= I->Prob; 11516 11517 switch (I->Kind) { 11518 case CC_JumpTable: { 11519 // FIXME: Optimize away range check based on pivot comparisons. 11520 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11521 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11522 11523 // The jump block hasn't been inserted yet; insert it here. 11524 MachineBasicBlock *JumpMBB = JT->MBB; 11525 CurMF->insert(BBI, JumpMBB); 11526 11527 auto JumpProb = I->Prob; 11528 auto FallthroughProb = UnhandledProbs; 11529 11530 // If the default statement is a target of the jump table, we evenly 11531 // distribute the default probability to successors of CurMBB. Also 11532 // update the probability on the edge from JumpMBB to Fallthrough. 11533 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11534 SE = JumpMBB->succ_end(); 11535 SI != SE; ++SI) { 11536 if (*SI == DefaultMBB) { 11537 JumpProb += DefaultProb / 2; 11538 FallthroughProb -= DefaultProb / 2; 11539 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11540 JumpMBB->normalizeSuccProbs(); 11541 break; 11542 } 11543 } 11544 11545 // If the default clause is unreachable, propagate that knowledge into 11546 // JTH->FallthroughUnreachable which will use it to suppress the range 11547 // check. 11548 // 11549 // However, don't do this if we're doing branch target enforcement, 11550 // because a table branch _without_ a range check can be a tempting JOP 11551 // gadget - out-of-bounds inputs that are impossible in correct 11552 // execution become possible again if an attacker can influence the 11553 // control flow. So if an attacker doesn't already have a BTI bypass 11554 // available, we don't want them to be able to get one out of this 11555 // table branch. 11556 if (FallthroughUnreachable) { 11557 Function &CurFunc = CurMF->getFunction(); 11558 bool HasBranchTargetEnforcement = false; 11559 if (CurFunc.hasFnAttribute("branch-target-enforcement")) { 11560 HasBranchTargetEnforcement = 11561 CurFunc.getFnAttribute("branch-target-enforcement") 11562 .getValueAsBool(); 11563 } else { 11564 HasBranchTargetEnforcement = 11565 CurMF->getMMI().getModule()->getModuleFlag( 11566 "branch-target-enforcement"); 11567 } 11568 if (!HasBranchTargetEnforcement) 11569 JTH->FallthroughUnreachable = true; 11570 } 11571 11572 if (!JTH->FallthroughUnreachable) 11573 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11574 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11575 CurMBB->normalizeSuccProbs(); 11576 11577 // The jump table header will be inserted in our current block, do the 11578 // range check, and fall through to our fallthrough block. 11579 JTH->HeaderBB = CurMBB; 11580 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11581 11582 // If we're in the right place, emit the jump table header right now. 11583 if (CurMBB == SwitchMBB) { 11584 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11585 JTH->Emitted = true; 11586 } 11587 break; 11588 } 11589 case CC_BitTests: { 11590 // FIXME: Optimize away range check based on pivot comparisons. 11591 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11592 11593 // The bit test blocks haven't been inserted yet; insert them here. 11594 for (BitTestCase &BTC : BTB->Cases) 11595 CurMF->insert(BBI, BTC.ThisBB); 11596 11597 // Fill in fields of the BitTestBlock. 11598 BTB->Parent = CurMBB; 11599 BTB->Default = Fallthrough; 11600 11601 BTB->DefaultProb = UnhandledProbs; 11602 // If the cases in bit test don't form a contiguous range, we evenly 11603 // distribute the probability on the edge to Fallthrough to two 11604 // successors of CurMBB. 11605 if (!BTB->ContiguousRange) { 11606 BTB->Prob += DefaultProb / 2; 11607 BTB->DefaultProb -= DefaultProb / 2; 11608 } 11609 11610 if (FallthroughUnreachable) 11611 BTB->FallthroughUnreachable = true; 11612 11613 // If we're in the right place, emit the bit test header right now. 11614 if (CurMBB == SwitchMBB) { 11615 visitBitTestHeader(*BTB, SwitchMBB); 11616 BTB->Emitted = true; 11617 } 11618 break; 11619 } 11620 case CC_Range: { 11621 const Value *RHS, *LHS, *MHS; 11622 ISD::CondCode CC; 11623 if (I->Low == I->High) { 11624 // Check Cond == I->Low. 11625 CC = ISD::SETEQ; 11626 LHS = Cond; 11627 RHS=I->Low; 11628 MHS = nullptr; 11629 } else { 11630 // Check I->Low <= Cond <= I->High. 11631 CC = ISD::SETLE; 11632 LHS = I->Low; 11633 MHS = Cond; 11634 RHS = I->High; 11635 } 11636 11637 // If Fallthrough is unreachable, fold away the comparison. 11638 if (FallthroughUnreachable) 11639 CC = ISD::SETTRUE; 11640 11641 // The false probability is the sum of all unhandled cases. 11642 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11643 getCurSDLoc(), I->Prob, UnhandledProbs); 11644 11645 if (CurMBB == SwitchMBB) 11646 visitSwitchCase(CB, SwitchMBB); 11647 else 11648 SL->SwitchCases.push_back(CB); 11649 11650 break; 11651 } 11652 } 11653 CurMBB = Fallthrough; 11654 } 11655 } 11656 11657 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11658 const SwitchWorkListItem &W, 11659 Value *Cond, 11660 MachineBasicBlock *SwitchMBB) { 11661 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11662 "Clusters not sorted?"); 11663 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11664 11665 auto [LastLeft, FirstRight, LeftProb, RightProb] = 11666 SL->computeSplitWorkItemInfo(W); 11667 11668 // Use the first element on the right as pivot since we will make less-than 11669 // comparisons against it. 11670 CaseClusterIt PivotCluster = FirstRight; 11671 assert(PivotCluster > W.FirstCluster); 11672 assert(PivotCluster <= W.LastCluster); 11673 11674 CaseClusterIt FirstLeft = W.FirstCluster; 11675 CaseClusterIt LastRight = W.LastCluster; 11676 11677 const ConstantInt *Pivot = PivotCluster->Low; 11678 11679 // New blocks will be inserted immediately after the current one. 11680 MachineFunction::iterator BBI(W.MBB); 11681 ++BBI; 11682 11683 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11684 // we can branch to its destination directly if it's squeezed exactly in 11685 // between the known lower bound and Pivot - 1. 11686 MachineBasicBlock *LeftMBB; 11687 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11688 FirstLeft->Low == W.GE && 11689 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11690 LeftMBB = FirstLeft->MBB; 11691 } else { 11692 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11693 FuncInfo.MF->insert(BBI, LeftMBB); 11694 WorkList.push_back( 11695 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11696 // Put Cond in a virtual register to make it available from the new blocks. 11697 ExportFromCurrentBlock(Cond); 11698 } 11699 11700 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11701 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11702 // directly if RHS.High equals the current upper bound. 11703 MachineBasicBlock *RightMBB; 11704 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11705 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11706 RightMBB = FirstRight->MBB; 11707 } else { 11708 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11709 FuncInfo.MF->insert(BBI, RightMBB); 11710 WorkList.push_back( 11711 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11712 // Put Cond in a virtual register to make it available from the new blocks. 11713 ExportFromCurrentBlock(Cond); 11714 } 11715 11716 // Create the CaseBlock record that will be used to lower the branch. 11717 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11718 getCurSDLoc(), LeftProb, RightProb); 11719 11720 if (W.MBB == SwitchMBB) 11721 visitSwitchCase(CB, SwitchMBB); 11722 else 11723 SL->SwitchCases.push_back(CB); 11724 } 11725 11726 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11727 // from the swith statement. 11728 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11729 BranchProbability PeeledCaseProb) { 11730 if (PeeledCaseProb == BranchProbability::getOne()) 11731 return BranchProbability::getZero(); 11732 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11733 11734 uint32_t Numerator = CaseProb.getNumerator(); 11735 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11736 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11737 } 11738 11739 // Try to peel the top probability case if it exceeds the threshold. 11740 // Return current MachineBasicBlock for the switch statement if the peeling 11741 // does not occur. 11742 // If the peeling is performed, return the newly created MachineBasicBlock 11743 // for the peeled switch statement. Also update Clusters to remove the peeled 11744 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11745 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11746 const SwitchInst &SI, CaseClusterVector &Clusters, 11747 BranchProbability &PeeledCaseProb) { 11748 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11749 // Don't perform if there is only one cluster or optimizing for size. 11750 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11751 TM.getOptLevel() == CodeGenOptLevel::None || 11752 SwitchMBB->getParent()->getFunction().hasMinSize()) 11753 return SwitchMBB; 11754 11755 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11756 unsigned PeeledCaseIndex = 0; 11757 bool SwitchPeeled = false; 11758 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11759 CaseCluster &CC = Clusters[Index]; 11760 if (CC.Prob < TopCaseProb) 11761 continue; 11762 TopCaseProb = CC.Prob; 11763 PeeledCaseIndex = Index; 11764 SwitchPeeled = true; 11765 } 11766 if (!SwitchPeeled) 11767 return SwitchMBB; 11768 11769 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11770 << TopCaseProb << "\n"); 11771 11772 // Record the MBB for the peeled switch statement. 11773 MachineFunction::iterator BBI(SwitchMBB); 11774 ++BBI; 11775 MachineBasicBlock *PeeledSwitchMBB = 11776 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11777 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11778 11779 ExportFromCurrentBlock(SI.getCondition()); 11780 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11781 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11782 nullptr, nullptr, TopCaseProb.getCompl()}; 11783 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11784 11785 Clusters.erase(PeeledCaseIt); 11786 for (CaseCluster &CC : Clusters) { 11787 LLVM_DEBUG( 11788 dbgs() << "Scale the probablity for one cluster, before scaling: " 11789 << CC.Prob << "\n"); 11790 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11791 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11792 } 11793 PeeledCaseProb = TopCaseProb; 11794 return PeeledSwitchMBB; 11795 } 11796 11797 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11798 // Extract cases from the switch. 11799 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11800 CaseClusterVector Clusters; 11801 Clusters.reserve(SI.getNumCases()); 11802 for (auto I : SI.cases()) { 11803 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11804 const ConstantInt *CaseVal = I.getCaseValue(); 11805 BranchProbability Prob = 11806 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11807 : BranchProbability(1, SI.getNumCases() + 1); 11808 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11809 } 11810 11811 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11812 11813 // Cluster adjacent cases with the same destination. We do this at all 11814 // optimization levels because it's cheap to do and will make codegen faster 11815 // if there are many clusters. 11816 sortAndRangeify(Clusters); 11817 11818 // The branch probablity of the peeled case. 11819 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11820 MachineBasicBlock *PeeledSwitchMBB = 11821 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11822 11823 // If there is only the default destination, jump there directly. 11824 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11825 if (Clusters.empty()) { 11826 assert(PeeledSwitchMBB == SwitchMBB); 11827 SwitchMBB->addSuccessor(DefaultMBB); 11828 if (DefaultMBB != NextBlock(SwitchMBB)) { 11829 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11830 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11831 } 11832 return; 11833 } 11834 11835 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 11836 DAG.getBFI()); 11837 SL->findBitTestClusters(Clusters, &SI); 11838 11839 LLVM_DEBUG({ 11840 dbgs() << "Case clusters: "; 11841 for (const CaseCluster &C : Clusters) { 11842 if (C.Kind == CC_JumpTable) 11843 dbgs() << "JT:"; 11844 if (C.Kind == CC_BitTests) 11845 dbgs() << "BT:"; 11846 11847 C.Low->getValue().print(dbgs(), true); 11848 if (C.Low != C.High) { 11849 dbgs() << '-'; 11850 C.High->getValue().print(dbgs(), true); 11851 } 11852 dbgs() << ' '; 11853 } 11854 dbgs() << '\n'; 11855 }); 11856 11857 assert(!Clusters.empty()); 11858 SwitchWorkList WorkList; 11859 CaseClusterIt First = Clusters.begin(); 11860 CaseClusterIt Last = Clusters.end() - 1; 11861 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11862 // Scale the branchprobability for DefaultMBB if the peel occurs and 11863 // DefaultMBB is not replaced. 11864 if (PeeledCaseProb != BranchProbability::getZero() && 11865 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11866 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11867 WorkList.push_back( 11868 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11869 11870 while (!WorkList.empty()) { 11871 SwitchWorkListItem W = WorkList.pop_back_val(); 11872 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11873 11874 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 11875 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11876 // For optimized builds, lower large range as a balanced binary tree. 11877 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11878 continue; 11879 } 11880 11881 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11882 } 11883 } 11884 11885 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11886 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11887 auto DL = getCurSDLoc(); 11888 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11889 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11890 } 11891 11892 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11893 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11894 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11895 11896 SDLoc DL = getCurSDLoc(); 11897 SDValue V = getValue(I.getOperand(0)); 11898 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11899 11900 if (VT.isScalableVector()) { 11901 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11902 return; 11903 } 11904 11905 // Use VECTOR_SHUFFLE for the fixed-length vector 11906 // to maintain existing behavior. 11907 SmallVector<int, 8> Mask; 11908 unsigned NumElts = VT.getVectorMinNumElements(); 11909 for (unsigned i = 0; i != NumElts; ++i) 11910 Mask.push_back(NumElts - 1 - i); 11911 11912 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11913 } 11914 11915 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 11916 auto DL = getCurSDLoc(); 11917 SDValue InVec = getValue(I.getOperand(0)); 11918 EVT OutVT = 11919 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 11920 11921 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 11922 11923 // ISD Node needs the input vectors split into two equal parts 11924 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11925 DAG.getVectorIdxConstant(0, DL)); 11926 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11927 DAG.getVectorIdxConstant(OutNumElts, DL)); 11928 11929 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11930 // legalisation and combines. 11931 if (OutVT.isFixedLengthVector()) { 11932 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11933 createStrideMask(0, 2, OutNumElts)); 11934 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11935 createStrideMask(1, 2, OutNumElts)); 11936 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 11937 setValue(&I, Res); 11938 return; 11939 } 11940 11941 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 11942 DAG.getVTList(OutVT, OutVT), Lo, Hi); 11943 setValue(&I, Res); 11944 } 11945 11946 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 11947 auto DL = getCurSDLoc(); 11948 EVT InVT = getValue(I.getOperand(0)).getValueType(); 11949 SDValue InVec0 = getValue(I.getOperand(0)); 11950 SDValue InVec1 = getValue(I.getOperand(1)); 11951 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11952 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11953 11954 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11955 // legalisation and combines. 11956 if (OutVT.isFixedLengthVector()) { 11957 unsigned NumElts = InVT.getVectorMinNumElements(); 11958 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 11959 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 11960 createInterleaveMask(NumElts, 2))); 11961 return; 11962 } 11963 11964 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 11965 DAG.getVTList(InVT, InVT), InVec0, InVec1); 11966 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 11967 Res.getValue(1)); 11968 setValue(&I, Res); 11969 } 11970 11971 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11972 SmallVector<EVT, 4> ValueVTs; 11973 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11974 ValueVTs); 11975 unsigned NumValues = ValueVTs.size(); 11976 if (NumValues == 0) return; 11977 11978 SmallVector<SDValue, 4> Values(NumValues); 11979 SDValue Op = getValue(I.getOperand(0)); 11980 11981 for (unsigned i = 0; i != NumValues; ++i) 11982 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11983 SDValue(Op.getNode(), Op.getResNo() + i)); 11984 11985 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11986 DAG.getVTList(ValueVTs), Values)); 11987 } 11988 11989 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11990 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11991 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11992 11993 SDLoc DL = getCurSDLoc(); 11994 SDValue V1 = getValue(I.getOperand(0)); 11995 SDValue V2 = getValue(I.getOperand(1)); 11996 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11997 11998 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11999 if (VT.isScalableVector()) { 12000 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 12001 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 12002 DAG.getConstant(Imm, DL, IdxVT))); 12003 return; 12004 } 12005 12006 unsigned NumElts = VT.getVectorNumElements(); 12007 12008 uint64_t Idx = (NumElts + Imm) % NumElts; 12009 12010 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12011 SmallVector<int, 8> Mask; 12012 for (unsigned i = 0; i < NumElts; ++i) 12013 Mask.push_back(Idx + i); 12014 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12015 } 12016 12017 // Consider the following MIR after SelectionDAG, which produces output in 12018 // phyregs in the first case or virtregs in the second case. 12019 // 12020 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12021 // %5:gr32 = COPY $ebx 12022 // %6:gr32 = COPY $edx 12023 // %1:gr32 = COPY %6:gr32 12024 // %0:gr32 = COPY %5:gr32 12025 // 12026 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12027 // %1:gr32 = COPY %6:gr32 12028 // %0:gr32 = COPY %5:gr32 12029 // 12030 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12031 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12032 // 12033 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12034 // to a single virtreg (such as %0). The remaining outputs monotonically 12035 // increase in virtreg number from there. If a callbr has no outputs, then it 12036 // should not have a corresponding callbr landingpad; in fact, the callbr 12037 // landingpad would not even be able to refer to such a callbr. 12038 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12039 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12040 // There is definitely at least one copy. 12041 assert(MI->getOpcode() == TargetOpcode::COPY && 12042 "start of copy chain MUST be COPY"); 12043 Reg = MI->getOperand(1).getReg(); 12044 MI = MRI.def_begin(Reg)->getParent(); 12045 // There may be an optional second copy. 12046 if (MI->getOpcode() == TargetOpcode::COPY) { 12047 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12048 Reg = MI->getOperand(1).getReg(); 12049 assert(Reg.isPhysical() && "expected COPY of physical register"); 12050 MI = MRI.def_begin(Reg)->getParent(); 12051 } 12052 // The start of the chain must be an INLINEASM_BR. 12053 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12054 "end of copy chain MUST be INLINEASM_BR"); 12055 return Reg; 12056 } 12057 12058 // We must do this walk rather than the simpler 12059 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12060 // otherwise we will end up with copies of virtregs only valid along direct 12061 // edges. 12062 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12063 SmallVector<EVT, 8> ResultVTs; 12064 SmallVector<SDValue, 8> ResultValues; 12065 const auto *CBR = 12066 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12067 12068 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12069 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12070 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12071 12072 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12073 SDValue Chain = DAG.getRoot(); 12074 12075 // Re-parse the asm constraints string. 12076 TargetLowering::AsmOperandInfoVector TargetConstraints = 12077 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12078 for (auto &T : TargetConstraints) { 12079 SDISelAsmOperandInfo OpInfo(T); 12080 if (OpInfo.Type != InlineAsm::isOutput) 12081 continue; 12082 12083 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12084 // individual constraint. 12085 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12086 12087 switch (OpInfo.ConstraintType) { 12088 case TargetLowering::C_Register: 12089 case TargetLowering::C_RegisterClass: { 12090 // Fill in OpInfo.AssignedRegs.Regs. 12091 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12092 12093 // getRegistersForValue may produce 1 to many registers based on whether 12094 // the OpInfo.ConstraintVT is legal on the target or not. 12095 for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) { 12096 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12097 if (Register::isPhysicalRegister(OriginalDef)) 12098 FuncInfo.MBB->addLiveIn(OriginalDef); 12099 // Update the assigned registers to use the original defs. 12100 OpInfo.AssignedRegs.Regs[i] = OriginalDef; 12101 } 12102 12103 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12104 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12105 ResultValues.push_back(V); 12106 ResultVTs.push_back(OpInfo.ConstraintVT); 12107 break; 12108 } 12109 case TargetLowering::C_Other: { 12110 SDValue Flag; 12111 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12112 OpInfo, DAG); 12113 ++InitialDef; 12114 ResultValues.push_back(V); 12115 ResultVTs.push_back(OpInfo.ConstraintVT); 12116 break; 12117 } 12118 default: 12119 break; 12120 } 12121 } 12122 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12123 DAG.getVTList(ResultVTs), ResultValues); 12124 setValue(&I, V); 12125 } 12126