xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 184c1b943937986c81e1996d999d21626ec7a4ff)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BlockFrequencyInfo.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/ValueTracking.h"
39 #include "llvm/Analysis/VectorUtils.h"
40 #include "llvm/CodeGen/Analysis.h"
41 #include "llvm/CodeGen/FunctionLoweringInfo.h"
42 #include "llvm/CodeGen/GCMetadata.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/MachineBasicBlock.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBuilder.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineOperand.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/RuntimeLibcalls.h"
55 #include "llvm/CodeGen/SelectionDAG.h"
56 #include "llvm/CodeGen/SelectionDAGNodes.h"
57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
58 #include "llvm/CodeGen/StackMaps.h"
59 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
60 #include "llvm/CodeGen/TargetFrameLowering.h"
61 #include "llvm/CodeGen/TargetInstrInfo.h"
62 #include "llvm/CodeGen/TargetLowering.h"
63 #include "llvm/CodeGen/TargetOpcodes.h"
64 #include "llvm/CodeGen/TargetRegisterInfo.h"
65 #include "llvm/CodeGen/TargetSubtargetInfo.h"
66 #include "llvm/CodeGen/ValueTypes.h"
67 #include "llvm/CodeGen/WinEHFuncInfo.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CFG.h"
72 #include "llvm/IR/CallingConv.h"
73 #include "llvm/IR/Constant.h"
74 #include "llvm/IR/ConstantRange.h"
75 #include "llvm/IR/Constants.h"
76 #include "llvm/IR/DataLayout.h"
77 #include "llvm/IR/DebugInfoMetadata.h"
78 #include "llvm/IR/DebugLoc.h"
79 #include "llvm/IR/DerivedTypes.h"
80 #include "llvm/IR/Function.h"
81 #include "llvm/IR/GetElementPtrTypeIterator.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstrTypes.h"
84 #include "llvm/IR/Instruction.h"
85 #include "llvm/IR/Instructions.h"
86 #include "llvm/IR/IntrinsicInst.h"
87 #include "llvm/IR/Intrinsics.h"
88 #include "llvm/IR/IntrinsicsAArch64.h"
89 #include "llvm/IR/IntrinsicsWebAssembly.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/Operator.h"
94 #include "llvm/IR/PatternMatch.h"
95 #include "llvm/IR/Statepoint.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/MC/MCContext.h"
100 #include "llvm/MC/MCSymbol.h"
101 #include "llvm/Support/AtomicOrdering.h"
102 #include "llvm/Support/BranchProbability.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CodeGen.h"
105 #include "llvm/Support/CommandLine.h"
106 #include "llvm/Support/Compiler.h"
107 #include "llvm/Support/Debug.h"
108 #include "llvm/Support/ErrorHandling.h"
109 #include "llvm/Support/MachineValueType.h"
110 #include "llvm/Support/MathExtras.h"
111 #include "llvm/Support/raw_ostream.h"
112 #include "llvm/Target/TargetIntrinsicInfo.h"
113 #include "llvm/Target/TargetMachine.h"
114 #include "llvm/Target/TargetOptions.h"
115 #include "llvm/Transforms/Utils/Local.h"
116 #include <algorithm>
117 #include <cassert>
118 #include <cstddef>
119 #include <cstdint>
120 #include <cstring>
121 #include <iterator>
122 #include <limits>
123 #include <numeric>
124 #include <tuple>
125 #include <utility>
126 #include <vector>
127 
128 using namespace llvm;
129 using namespace PatternMatch;
130 using namespace SwitchCG;
131 
132 #define DEBUG_TYPE "isel"
133 
134 /// LimitFloatPrecision - Generate low-precision inline sequences for
135 /// some float libcalls (6, 8 or 12 bits).
136 static unsigned LimitFloatPrecision;
137 
138 static cl::opt<bool>
139     InsertAssertAlign("insert-assert-align", cl::init(true),
140                       cl::desc("Insert the experimental `assertalign` node."),
141                       cl::ReallyHidden);
142 
143 static cl::opt<unsigned, true>
144     LimitFPPrecision("limit-float-precision",
145                      cl::desc("Generate low-precision inline sequences "
146                               "for some float libcalls"),
147                      cl::location(LimitFloatPrecision), cl::Hidden,
148                      cl::init(0));
149 
150 static cl::opt<unsigned> SwitchPeelThreshold(
151     "switch-peel-threshold", cl::Hidden, cl::init(66),
152     cl::desc("Set the case probability threshold for peeling the case from a "
153              "switch statement. A value greater than 100 will void this "
154              "optimization"));
155 
156 // Limit the width of DAG chains. This is important in general to prevent
157 // DAG-based analysis from blowing up. For example, alias analysis and
158 // load clustering may not complete in reasonable time. It is difficult to
159 // recognize and avoid this situation within each individual analysis, and
160 // future analyses are likely to have the same behavior. Limiting DAG width is
161 // the safe approach and will be especially important with global DAGs.
162 //
163 // MaxParallelChains default is arbitrarily high to avoid affecting
164 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
165 // sequence over this should have been converted to llvm.memcpy by the
166 // frontend. It is easy to induce this behavior with .ll code such as:
167 // %buffer = alloca [4096 x i8]
168 // %data = load [4096 x i8]* %argPtr
169 // store [4096 x i8] %data, [4096 x i8]* %buffer
170 static const unsigned MaxParallelChains = 64;
171 
172 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
173                                       const SDValue *Parts, unsigned NumParts,
174                                       MVT PartVT, EVT ValueVT, const Value *V,
175                                       Optional<CallingConv::ID> CC);
176 
177 /// getCopyFromParts - Create a value that contains the specified legal parts
178 /// combined into the value they represent.  If the parts combine to a type
179 /// larger than ValueVT then AssertOp can be used to specify whether the extra
180 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
181 /// (ISD::AssertSext).
182 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
183                                 const SDValue *Parts, unsigned NumParts,
184                                 MVT PartVT, EVT ValueVT, const Value *V,
185                                 Optional<CallingConv::ID> CC = None,
186                                 Optional<ISD::NodeType> AssertOp = None) {
187   // Let the target assemble the parts if it wants to
188   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
189   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
190                                                    PartVT, ValueVT, CC))
191     return Val;
192 
193   if (ValueVT.isVector())
194     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
195                                   CC);
196 
197   assert(NumParts > 0 && "No parts to assemble!");
198   SDValue Val = Parts[0];
199 
200   if (NumParts > 1) {
201     // Assemble the value from multiple parts.
202     if (ValueVT.isInteger()) {
203       unsigned PartBits = PartVT.getSizeInBits();
204       unsigned ValueBits = ValueVT.getSizeInBits();
205 
206       // Assemble the power of 2 part.
207       unsigned RoundParts =
208           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
209       unsigned RoundBits = PartBits * RoundParts;
210       EVT RoundVT = RoundBits == ValueBits ?
211         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
212       SDValue Lo, Hi;
213 
214       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
215 
216       if (RoundParts > 2) {
217         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
218                               PartVT, HalfVT, V);
219         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
220                               RoundParts / 2, PartVT, HalfVT, V);
221       } else {
222         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
223         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
224       }
225 
226       if (DAG.getDataLayout().isBigEndian())
227         std::swap(Lo, Hi);
228 
229       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
230 
231       if (RoundParts < NumParts) {
232         // Assemble the trailing non-power-of-2 part.
233         unsigned OddParts = NumParts - RoundParts;
234         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
235         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
236                               OddVT, V, CC);
237 
238         // Combine the round and odd parts.
239         Lo = Val;
240         if (DAG.getDataLayout().isBigEndian())
241           std::swap(Lo, Hi);
242         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
243         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
244         Hi =
245             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
246                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
247                                         TLI.getPointerTy(DAG.getDataLayout())));
248         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
249         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
250       }
251     } else if (PartVT.isFloatingPoint()) {
252       // FP split into multiple FP parts (for ppcf128)
253       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
254              "Unexpected split");
255       SDValue Lo, Hi;
256       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
257       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
258       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
259         std::swap(Lo, Hi);
260       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
261     } else {
262       // FP split into integer parts (soft fp)
263       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
264              !PartVT.isVector() && "Unexpected split");
265       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
266       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
267     }
268   }
269 
270   // There is now one part, held in Val.  Correct it to match ValueVT.
271   // PartEVT is the type of the register class that holds the value.
272   // ValueVT is the type of the inline asm operation.
273   EVT PartEVT = Val.getValueType();
274 
275   if (PartEVT == ValueVT)
276     return Val;
277 
278   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
279       ValueVT.bitsLT(PartEVT)) {
280     // For an FP value in an integer part, we need to truncate to the right
281     // width first.
282     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
283     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
284   }
285 
286   // Handle types that have the same size.
287   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
288     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
289 
290   // Handle types with different sizes.
291   if (PartEVT.isInteger() && ValueVT.isInteger()) {
292     if (ValueVT.bitsLT(PartEVT)) {
293       // For a truncate, see if we have any information to
294       // indicate whether the truncated bits will always be
295       // zero or sign-extension.
296       if (AssertOp.hasValue())
297         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
298                           DAG.getValueType(ValueVT));
299       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
300     }
301     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
302   }
303 
304   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
305     // FP_ROUND's are always exact here.
306     if (ValueVT.bitsLT(Val.getValueType()))
307       return DAG.getNode(
308           ISD::FP_ROUND, DL, ValueVT, Val,
309           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
310 
311     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
312   }
313 
314   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
315   // then truncating.
316   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
317       ValueVT.bitsLT(PartEVT)) {
318     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
319     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
320   }
321 
322   report_fatal_error("Unknown mismatch in getCopyFromParts!");
323 }
324 
325 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
326                                               const Twine &ErrMsg) {
327   const Instruction *I = dyn_cast_or_null<Instruction>(V);
328   if (!V)
329     return Ctx.emitError(ErrMsg);
330 
331   const char *AsmError = ", possible invalid constraint for vector type";
332   if (const CallInst *CI = dyn_cast<CallInst>(I))
333     if (CI->isInlineAsm())
334       return Ctx.emitError(I, ErrMsg + AsmError);
335 
336   return Ctx.emitError(I, ErrMsg);
337 }
338 
339 /// getCopyFromPartsVector - Create a value that contains the specified legal
340 /// parts combined into the value they represent.  If the parts combine to a
341 /// type larger than ValueVT then AssertOp can be used to specify whether the
342 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
343 /// ValueVT (ISD::AssertSext).
344 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
345                                       const SDValue *Parts, unsigned NumParts,
346                                       MVT PartVT, EVT ValueVT, const Value *V,
347                                       Optional<CallingConv::ID> CallConv) {
348   assert(ValueVT.isVector() && "Not a vector value");
349   assert(NumParts > 0 && "No parts to assemble!");
350   const bool IsABIRegCopy = CallConv.hasValue();
351 
352   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
353   SDValue Val = Parts[0];
354 
355   // Handle a multi-element vector.
356   if (NumParts > 1) {
357     EVT IntermediateVT;
358     MVT RegisterVT;
359     unsigned NumIntermediates;
360     unsigned NumRegs;
361 
362     if (IsABIRegCopy) {
363       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
364           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
365           NumIntermediates, RegisterVT);
366     } else {
367       NumRegs =
368           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
369                                      NumIntermediates, RegisterVT);
370     }
371 
372     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
373     NumParts = NumRegs; // Silence a compiler warning.
374     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
375     assert(RegisterVT.getSizeInBits() ==
376            Parts[0].getSimpleValueType().getSizeInBits() &&
377            "Part type sizes don't match!");
378 
379     // Assemble the parts into intermediate operands.
380     SmallVector<SDValue, 8> Ops(NumIntermediates);
381     if (NumIntermediates == NumParts) {
382       // If the register was not expanded, truncate or copy the value,
383       // as appropriate.
384       for (unsigned i = 0; i != NumParts; ++i)
385         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
386                                   PartVT, IntermediateVT, V, CallConv);
387     } else if (NumParts > 0) {
388       // If the intermediate type was expanded, build the intermediate
389       // operands from the parts.
390       assert(NumParts % NumIntermediates == 0 &&
391              "Must expand into a divisible number of parts!");
392       unsigned Factor = NumParts / NumIntermediates;
393       for (unsigned i = 0; i != NumIntermediates; ++i)
394         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
395                                   PartVT, IntermediateVT, V, CallConv);
396     }
397 
398     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
399     // intermediate operands.
400     EVT BuiltVectorTy =
401         IntermediateVT.isVector()
402             ? EVT::getVectorVT(
403                   *DAG.getContext(), IntermediateVT.getScalarType(),
404                   IntermediateVT.getVectorElementCount() * NumParts)
405             : EVT::getVectorVT(*DAG.getContext(),
406                                IntermediateVT.getScalarType(),
407                                NumIntermediates);
408     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
409                                                 : ISD::BUILD_VECTOR,
410                       DL, BuiltVectorTy, Ops);
411   }
412 
413   // There is now one part, held in Val.  Correct it to match ValueVT.
414   EVT PartEVT = Val.getValueType();
415 
416   if (PartEVT == ValueVT)
417     return Val;
418 
419   if (PartEVT.isVector()) {
420     // If the element type of the source/dest vectors are the same, but the
421     // parts vector has more elements than the value vector, then we have a
422     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
423     // elements we want.
424     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
425       assert((PartEVT.getVectorElementCount().Min >
426               ValueVT.getVectorElementCount().Min) &&
427              (PartEVT.getVectorElementCount().Scalable ==
428               ValueVT.getVectorElementCount().Scalable) &&
429              "Cannot narrow, it would be a lossy transformation");
430       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
431                          DAG.getVectorIdxConstant(0, DL));
432     }
433 
434     // Vector/Vector bitcast.
435     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
436       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
437 
438     assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() &&
439       "Cannot handle this kind of promotion");
440     // Promoted vector extract
441     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
442 
443   }
444 
445   // Trivial bitcast if the types are the same size and the destination
446   // vector type is legal.
447   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
448       TLI.isTypeLegal(ValueVT))
449     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
450 
451   if (ValueVT.getVectorNumElements() != 1) {
452      // Certain ABIs require that vectors are passed as integers. For vectors
453      // are the same size, this is an obvious bitcast.
454      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
455        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
456      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
457        // Bitcast Val back the original type and extract the corresponding
458        // vector we want.
459        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
460        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
461                                            ValueVT.getVectorElementType(), Elts);
462        Val = DAG.getBitcast(WiderVecType, Val);
463        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
464                           DAG.getVectorIdxConstant(0, DL));
465      }
466 
467      diagnosePossiblyInvalidConstraint(
468          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
469      return DAG.getUNDEF(ValueVT);
470   }
471 
472   // Handle cases such as i8 -> <1 x i1>
473   EVT ValueSVT = ValueVT.getVectorElementType();
474   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
475     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
476       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
477     else
478       Val = ValueVT.isFloatingPoint()
479                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
480                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
481   }
482 
483   return DAG.getBuildVector(ValueVT, DL, Val);
484 }
485 
486 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
487                                  SDValue Val, SDValue *Parts, unsigned NumParts,
488                                  MVT PartVT, const Value *V,
489                                  Optional<CallingConv::ID> CallConv);
490 
491 /// getCopyToParts - Create a series of nodes that contain the specified value
492 /// split into legal parts.  If the parts contain more bits than Val, then, for
493 /// integers, ExtendKind can be used to specify how to generate the extra bits.
494 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
495                            SDValue *Parts, unsigned NumParts, MVT PartVT,
496                            const Value *V,
497                            Optional<CallingConv::ID> CallConv = None,
498                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
499   // Let the target split the parts if it wants to
500   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
501   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
502                                       CallConv))
503     return;
504   EVT ValueVT = Val.getValueType();
505 
506   // Handle the vector case separately.
507   if (ValueVT.isVector())
508     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
509                                 CallConv);
510 
511   unsigned PartBits = PartVT.getSizeInBits();
512   unsigned OrigNumParts = NumParts;
513   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
514          "Copying to an illegal type!");
515 
516   if (NumParts == 0)
517     return;
518 
519   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
520   EVT PartEVT = PartVT;
521   if (PartEVT == ValueVT) {
522     assert(NumParts == 1 && "No-op copy with multiple parts!");
523     Parts[0] = Val;
524     return;
525   }
526 
527   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
528     // If the parts cover more bits than the value has, promote the value.
529     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
530       assert(NumParts == 1 && "Do not know what to promote to!");
531       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
532     } else {
533       if (ValueVT.isFloatingPoint()) {
534         // FP values need to be bitcast, then extended if they are being put
535         // into a larger container.
536         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
537         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
538       }
539       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
540              ValueVT.isInteger() &&
541              "Unknown mismatch!");
542       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
543       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
544       if (PartVT == MVT::x86mmx)
545         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
546     }
547   } else if (PartBits == ValueVT.getSizeInBits()) {
548     // Different types of the same size.
549     assert(NumParts == 1 && PartEVT != ValueVT);
550     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
551   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
552     // If the parts cover less bits than value has, truncate the value.
553     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
554            ValueVT.isInteger() &&
555            "Unknown mismatch!");
556     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
557     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
558     if (PartVT == MVT::x86mmx)
559       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
560   }
561 
562   // The value may have changed - recompute ValueVT.
563   ValueVT = Val.getValueType();
564   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
565          "Failed to tile the value with PartVT!");
566 
567   if (NumParts == 1) {
568     if (PartEVT != ValueVT) {
569       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
570                                         "scalar-to-vector conversion failed");
571       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
572     }
573 
574     Parts[0] = Val;
575     return;
576   }
577 
578   // Expand the value into multiple parts.
579   if (NumParts & (NumParts - 1)) {
580     // The number of parts is not a power of 2.  Split off and copy the tail.
581     assert(PartVT.isInteger() && ValueVT.isInteger() &&
582            "Do not know what to expand to!");
583     unsigned RoundParts = 1 << Log2_32(NumParts);
584     unsigned RoundBits = RoundParts * PartBits;
585     unsigned OddParts = NumParts - RoundParts;
586     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
587       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
588 
589     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
590                    CallConv);
591 
592     if (DAG.getDataLayout().isBigEndian())
593       // The odd parts were reversed by getCopyToParts - unreverse them.
594       std::reverse(Parts + RoundParts, Parts + NumParts);
595 
596     NumParts = RoundParts;
597     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
598     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
599   }
600 
601   // The number of parts is a power of 2.  Repeatedly bisect the value using
602   // EXTRACT_ELEMENT.
603   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
604                          EVT::getIntegerVT(*DAG.getContext(),
605                                            ValueVT.getSizeInBits()),
606                          Val);
607 
608   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
609     for (unsigned i = 0; i < NumParts; i += StepSize) {
610       unsigned ThisBits = StepSize * PartBits / 2;
611       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
612       SDValue &Part0 = Parts[i];
613       SDValue &Part1 = Parts[i+StepSize/2];
614 
615       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
616                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
617       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
618                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
619 
620       if (ThisBits == PartBits && ThisVT != PartVT) {
621         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
622         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
623       }
624     }
625   }
626 
627   if (DAG.getDataLayout().isBigEndian())
628     std::reverse(Parts, Parts + OrigNumParts);
629 }
630 
631 static SDValue widenVectorToPartType(SelectionDAG &DAG,
632                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
633   if (!PartVT.isFixedLengthVector())
634     return SDValue();
635 
636   EVT ValueVT = Val.getValueType();
637   unsigned PartNumElts = PartVT.getVectorNumElements();
638   unsigned ValueNumElts = ValueVT.getVectorNumElements();
639   if (PartNumElts > ValueNumElts &&
640       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
641     EVT ElementVT = PartVT.getVectorElementType();
642     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
643     // undef elements.
644     SmallVector<SDValue, 16> Ops;
645     DAG.ExtractVectorElements(Val, Ops);
646     SDValue EltUndef = DAG.getUNDEF(ElementVT);
647     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
648       Ops.push_back(EltUndef);
649 
650     // FIXME: Use CONCAT for 2x -> 4x.
651     return DAG.getBuildVector(PartVT, DL, Ops);
652   }
653 
654   return SDValue();
655 }
656 
657 /// getCopyToPartsVector - Create a series of nodes that contain the specified
658 /// value split into legal parts.
659 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
660                                  SDValue Val, SDValue *Parts, unsigned NumParts,
661                                  MVT PartVT, const Value *V,
662                                  Optional<CallingConv::ID> CallConv) {
663   EVT ValueVT = Val.getValueType();
664   assert(ValueVT.isVector() && "Not a vector");
665   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
666   const bool IsABIRegCopy = CallConv.hasValue();
667 
668   if (NumParts == 1) {
669     EVT PartEVT = PartVT;
670     if (PartEVT == ValueVT) {
671       // Nothing to do.
672     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
673       // Bitconvert vector->vector case.
674       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
675     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
676       Val = Widened;
677     } else if (PartVT.isVector() &&
678                PartEVT.getVectorElementType().bitsGE(
679                    ValueVT.getVectorElementType()) &&
680                PartEVT.getVectorElementCount() ==
681                    ValueVT.getVectorElementCount()) {
682 
683       // Promoted vector extract
684       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
685     } else {
686       if (ValueVT.getVectorNumElements() == 1) {
687         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
688                           DAG.getVectorIdxConstant(0, DL));
689       } else {
690         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
691                "lossy conversion of vector to scalar type");
692         EVT IntermediateType =
693             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
694         Val = DAG.getBitcast(IntermediateType, Val);
695         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
696       }
697     }
698 
699     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
700     Parts[0] = Val;
701     return;
702   }
703 
704   // Handle a multi-element vector.
705   EVT IntermediateVT;
706   MVT RegisterVT;
707   unsigned NumIntermediates;
708   unsigned NumRegs;
709   if (IsABIRegCopy) {
710     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
711         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
712         NumIntermediates, RegisterVT);
713   } else {
714     NumRegs =
715         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
716                                    NumIntermediates, RegisterVT);
717   }
718 
719   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
720   NumParts = NumRegs; // Silence a compiler warning.
721   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
722 
723   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
724          "Mixing scalable and fixed vectors when copying in parts");
725 
726   ElementCount DestEltCnt;
727 
728   if (IntermediateVT.isVector())
729     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
730   else
731     DestEltCnt = ElementCount(NumIntermediates, false);
732 
733   EVT BuiltVectorTy = EVT::getVectorVT(
734       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt);
735   if (ValueVT != BuiltVectorTy) {
736     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
737       Val = Widened;
738 
739     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
740   }
741 
742   // Split the vector into intermediate operands.
743   SmallVector<SDValue, 8> Ops(NumIntermediates);
744   for (unsigned i = 0; i != NumIntermediates; ++i) {
745     if (IntermediateVT.isVector()) {
746       // This does something sensible for scalable vectors - see the
747       // definition of EXTRACT_SUBVECTOR for further details.
748       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
749       Ops[i] =
750           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
751                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
752     } else {
753       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
754                            DAG.getVectorIdxConstant(i, DL));
755     }
756   }
757 
758   // Split the intermediate operands into legal parts.
759   if (NumParts == NumIntermediates) {
760     // If the register was not expanded, promote or copy the value,
761     // as appropriate.
762     for (unsigned i = 0; i != NumParts; ++i)
763       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
764   } else if (NumParts > 0) {
765     // If the intermediate type was expanded, split each the value into
766     // legal parts.
767     assert(NumIntermediates != 0 && "division by zero");
768     assert(NumParts % NumIntermediates == 0 &&
769            "Must expand into a divisible number of parts!");
770     unsigned Factor = NumParts / NumIntermediates;
771     for (unsigned i = 0; i != NumIntermediates; ++i)
772       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
773                      CallConv);
774   }
775 }
776 
777 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
778                            EVT valuevt, Optional<CallingConv::ID> CC)
779     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
780       RegCount(1, regs.size()), CallConv(CC) {}
781 
782 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
783                            const DataLayout &DL, unsigned Reg, Type *Ty,
784                            Optional<CallingConv::ID> CC) {
785   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
786 
787   CallConv = CC;
788 
789   for (EVT ValueVT : ValueVTs) {
790     unsigned NumRegs =
791         isABIMangled()
792             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
793             : TLI.getNumRegisters(Context, ValueVT);
794     MVT RegisterVT =
795         isABIMangled()
796             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
797             : TLI.getRegisterType(Context, ValueVT);
798     for (unsigned i = 0; i != NumRegs; ++i)
799       Regs.push_back(Reg + i);
800     RegVTs.push_back(RegisterVT);
801     RegCount.push_back(NumRegs);
802     Reg += NumRegs;
803   }
804 }
805 
806 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
807                                       FunctionLoweringInfo &FuncInfo,
808                                       const SDLoc &dl, SDValue &Chain,
809                                       SDValue *Flag, const Value *V) const {
810   // A Value with type {} or [0 x %t] needs no registers.
811   if (ValueVTs.empty())
812     return SDValue();
813 
814   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
815 
816   // Assemble the legal parts into the final values.
817   SmallVector<SDValue, 4> Values(ValueVTs.size());
818   SmallVector<SDValue, 8> Parts;
819   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
820     // Copy the legal parts from the registers.
821     EVT ValueVT = ValueVTs[Value];
822     unsigned NumRegs = RegCount[Value];
823     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
824                                           *DAG.getContext(),
825                                           CallConv.getValue(), RegVTs[Value])
826                                     : RegVTs[Value];
827 
828     Parts.resize(NumRegs);
829     for (unsigned i = 0; i != NumRegs; ++i) {
830       SDValue P;
831       if (!Flag) {
832         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
833       } else {
834         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
835         *Flag = P.getValue(2);
836       }
837 
838       Chain = P.getValue(1);
839       Parts[i] = P;
840 
841       // If the source register was virtual and if we know something about it,
842       // add an assert node.
843       if (!Register::isVirtualRegister(Regs[Part + i]) ||
844           !RegisterVT.isInteger())
845         continue;
846 
847       const FunctionLoweringInfo::LiveOutInfo *LOI =
848         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
849       if (!LOI)
850         continue;
851 
852       unsigned RegSize = RegisterVT.getScalarSizeInBits();
853       unsigned NumSignBits = LOI->NumSignBits;
854       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
855 
856       if (NumZeroBits == RegSize) {
857         // The current value is a zero.
858         // Explicitly express that as it would be easier for
859         // optimizations to kick in.
860         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
861         continue;
862       }
863 
864       // FIXME: We capture more information than the dag can represent.  For
865       // now, just use the tightest assertzext/assertsext possible.
866       bool isSExt;
867       EVT FromVT(MVT::Other);
868       if (NumZeroBits) {
869         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
870         isSExt = false;
871       } else if (NumSignBits > 1) {
872         FromVT =
873             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
874         isSExt = true;
875       } else {
876         continue;
877       }
878       // Add an assertion node.
879       assert(FromVT != MVT::Other);
880       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
881                              RegisterVT, P, DAG.getValueType(FromVT));
882     }
883 
884     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
885                                      RegisterVT, ValueVT, V, CallConv);
886     Part += NumRegs;
887     Parts.clear();
888   }
889 
890   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
891 }
892 
893 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
894                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
895                                  const Value *V,
896                                  ISD::NodeType PreferredExtendType) const {
897   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
898   ISD::NodeType ExtendKind = PreferredExtendType;
899 
900   // Get the list of the values's legal parts.
901   unsigned NumRegs = Regs.size();
902   SmallVector<SDValue, 8> Parts(NumRegs);
903   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
904     unsigned NumParts = RegCount[Value];
905 
906     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
907                                           *DAG.getContext(),
908                                           CallConv.getValue(), RegVTs[Value])
909                                     : RegVTs[Value];
910 
911     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
912       ExtendKind = ISD::ZERO_EXTEND;
913 
914     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
915                    NumParts, RegisterVT, V, CallConv, ExtendKind);
916     Part += NumParts;
917   }
918 
919   // Copy the parts into the registers.
920   SmallVector<SDValue, 8> Chains(NumRegs);
921   for (unsigned i = 0; i != NumRegs; ++i) {
922     SDValue Part;
923     if (!Flag) {
924       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
925     } else {
926       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
927       *Flag = Part.getValue(1);
928     }
929 
930     Chains[i] = Part.getValue(0);
931   }
932 
933   if (NumRegs == 1 || Flag)
934     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
935     // flagged to it. That is the CopyToReg nodes and the user are considered
936     // a single scheduling unit. If we create a TokenFactor and return it as
937     // chain, then the TokenFactor is both a predecessor (operand) of the
938     // user as well as a successor (the TF operands are flagged to the user).
939     // c1, f1 = CopyToReg
940     // c2, f2 = CopyToReg
941     // c3     = TokenFactor c1, c2
942     // ...
943     //        = op c3, ..., f2
944     Chain = Chains[NumRegs-1];
945   else
946     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
947 }
948 
949 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
950                                         unsigned MatchingIdx, const SDLoc &dl,
951                                         SelectionDAG &DAG,
952                                         std::vector<SDValue> &Ops) const {
953   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
954 
955   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
956   if (HasMatching)
957     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
958   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
959     // Put the register class of the virtual registers in the flag word.  That
960     // way, later passes can recompute register class constraints for inline
961     // assembly as well as normal instructions.
962     // Don't do this for tied operands that can use the regclass information
963     // from the def.
964     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
965     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
966     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
967   }
968 
969   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
970   Ops.push_back(Res);
971 
972   if (Code == InlineAsm::Kind_Clobber) {
973     // Clobbers should always have a 1:1 mapping with registers, and may
974     // reference registers that have illegal (e.g. vector) types. Hence, we
975     // shouldn't try to apply any sort of splitting logic to them.
976     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
977            "No 1:1 mapping from clobbers to regs?");
978     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
979     (void)SP;
980     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
981       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
982       assert(
983           (Regs[I] != SP ||
984            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
985           "If we clobbered the stack pointer, MFI should know about it.");
986     }
987     return;
988   }
989 
990   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
991     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
992     MVT RegisterVT = RegVTs[Value];
993     for (unsigned i = 0; i != NumRegs; ++i) {
994       assert(Reg < Regs.size() && "Mismatch in # registers expected");
995       unsigned TheReg = Regs[Reg++];
996       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
997     }
998   }
999 }
1000 
1001 SmallVector<std::pair<unsigned, unsigned>, 4>
1002 RegsForValue::getRegsAndSizes() const {
1003   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
1004   unsigned I = 0;
1005   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1006     unsigned RegCount = std::get<0>(CountAndVT);
1007     MVT RegisterVT = std::get<1>(CountAndVT);
1008     unsigned RegisterSize = RegisterVT.getSizeInBits();
1009     for (unsigned E = I + RegCount; I != E; ++I)
1010       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1011   }
1012   return OutVec;
1013 }
1014 
1015 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1016                                const TargetLibraryInfo *li) {
1017   AA = aa;
1018   GFI = gfi;
1019   LibInfo = li;
1020   DL = &DAG.getDataLayout();
1021   Context = DAG.getContext();
1022   LPadToCallSiteMap.clear();
1023   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1024 }
1025 
1026 void SelectionDAGBuilder::clear() {
1027   NodeMap.clear();
1028   UnusedArgNodeMap.clear();
1029   PendingLoads.clear();
1030   PendingExports.clear();
1031   PendingConstrainedFP.clear();
1032   PendingConstrainedFPStrict.clear();
1033   CurInst = nullptr;
1034   HasTailCall = false;
1035   SDNodeOrder = LowestSDNodeOrder;
1036   StatepointLowering.clear();
1037 }
1038 
1039 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1040   DanglingDebugInfoMap.clear();
1041 }
1042 
1043 // Update DAG root to include dependencies on Pending chains.
1044 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1045   SDValue Root = DAG.getRoot();
1046 
1047   if (Pending.empty())
1048     return Root;
1049 
1050   // Add current root to PendingChains, unless we already indirectly
1051   // depend on it.
1052   if (Root.getOpcode() != ISD::EntryToken) {
1053     unsigned i = 0, e = Pending.size();
1054     for (; i != e; ++i) {
1055       assert(Pending[i].getNode()->getNumOperands() > 1);
1056       if (Pending[i].getNode()->getOperand(0) == Root)
1057         break;  // Don't add the root if we already indirectly depend on it.
1058     }
1059 
1060     if (i == e)
1061       Pending.push_back(Root);
1062   }
1063 
1064   if (Pending.size() == 1)
1065     Root = Pending[0];
1066   else
1067     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1068 
1069   DAG.setRoot(Root);
1070   Pending.clear();
1071   return Root;
1072 }
1073 
1074 SDValue SelectionDAGBuilder::getMemoryRoot() {
1075   return updateRoot(PendingLoads);
1076 }
1077 
1078 SDValue SelectionDAGBuilder::getRoot() {
1079   // Chain up all pending constrained intrinsics together with all
1080   // pending loads, by simply appending them to PendingLoads and
1081   // then calling getMemoryRoot().
1082   PendingLoads.reserve(PendingLoads.size() +
1083                        PendingConstrainedFP.size() +
1084                        PendingConstrainedFPStrict.size());
1085   PendingLoads.append(PendingConstrainedFP.begin(),
1086                       PendingConstrainedFP.end());
1087   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1088                       PendingConstrainedFPStrict.end());
1089   PendingConstrainedFP.clear();
1090   PendingConstrainedFPStrict.clear();
1091   return getMemoryRoot();
1092 }
1093 
1094 SDValue SelectionDAGBuilder::getControlRoot() {
1095   // We need to emit pending fpexcept.strict constrained intrinsics,
1096   // so append them to the PendingExports list.
1097   PendingExports.append(PendingConstrainedFPStrict.begin(),
1098                         PendingConstrainedFPStrict.end());
1099   PendingConstrainedFPStrict.clear();
1100   return updateRoot(PendingExports);
1101 }
1102 
1103 void SelectionDAGBuilder::visit(const Instruction &I) {
1104   // Set up outgoing PHI node register values before emitting the terminator.
1105   if (I.isTerminator()) {
1106     HandlePHINodesInSuccessorBlocks(I.getParent());
1107   }
1108 
1109   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1110   if (!isa<DbgInfoIntrinsic>(I))
1111     ++SDNodeOrder;
1112 
1113   CurInst = &I;
1114 
1115   visit(I.getOpcode(), I);
1116 
1117   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1118     // ConstrainedFPIntrinsics handle their own FMF.
1119     if (!isa<ConstrainedFPIntrinsic>(&I)) {
1120       // Propagate the fast-math-flags of this IR instruction to the DAG node that
1121       // maps to this instruction.
1122       // TODO: We could handle all flags (nsw, etc) here.
1123       // TODO: If an IR instruction maps to >1 node, only the final node will have
1124       //       flags set.
1125       if (SDNode *Node = getNodeForIRValue(&I)) {
1126         SDNodeFlags IncomingFlags;
1127         IncomingFlags.copyFMF(*FPMO);
1128         if (!Node->getFlags().isDefined())
1129           Node->setFlags(IncomingFlags);
1130         else
1131           Node->intersectFlagsWith(IncomingFlags);
1132       }
1133     }
1134   }
1135 
1136   if (!I.isTerminator() && !HasTailCall &&
1137       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1138     CopyToExportRegsIfNeeded(&I);
1139 
1140   CurInst = nullptr;
1141 }
1142 
1143 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1144   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1145 }
1146 
1147 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1148   // Note: this doesn't use InstVisitor, because it has to work with
1149   // ConstantExpr's in addition to instructions.
1150   switch (Opcode) {
1151   default: llvm_unreachable("Unknown instruction type encountered!");
1152     // Build the switch statement using the Instruction.def file.
1153 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1154     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1155 #include "llvm/IR/Instruction.def"
1156   }
1157 }
1158 
1159 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1160                                                 const DIExpression *Expr) {
1161   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1162     const DbgValueInst *DI = DDI.getDI();
1163     DIVariable *DanglingVariable = DI->getVariable();
1164     DIExpression *DanglingExpr = DI->getExpression();
1165     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1166       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1167       return true;
1168     }
1169     return false;
1170   };
1171 
1172   for (auto &DDIMI : DanglingDebugInfoMap) {
1173     DanglingDebugInfoVector &DDIV = DDIMI.second;
1174 
1175     // If debug info is to be dropped, run it through final checks to see
1176     // whether it can be salvaged.
1177     for (auto &DDI : DDIV)
1178       if (isMatchingDbgValue(DDI))
1179         salvageUnresolvedDbgValue(DDI);
1180 
1181     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1182   }
1183 }
1184 
1185 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1186 // generate the debug data structures now that we've seen its definition.
1187 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1188                                                    SDValue Val) {
1189   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1190   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1191     return;
1192 
1193   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1194   for (auto &DDI : DDIV) {
1195     const DbgValueInst *DI = DDI.getDI();
1196     assert(DI && "Ill-formed DanglingDebugInfo");
1197     DebugLoc dl = DDI.getdl();
1198     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1199     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1200     DILocalVariable *Variable = DI->getVariable();
1201     DIExpression *Expr = DI->getExpression();
1202     assert(Variable->isValidLocationForIntrinsic(dl) &&
1203            "Expected inlined-at fields to agree");
1204     SDDbgValue *SDV;
1205     if (Val.getNode()) {
1206       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1207       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1208       // we couldn't resolve it directly when examining the DbgValue intrinsic
1209       // in the first place we should not be more successful here). Unless we
1210       // have some test case that prove this to be correct we should avoid
1211       // calling EmitFuncArgumentDbgValue here.
1212       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1213         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1214                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1215         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1216         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1217         // inserted after the definition of Val when emitting the instructions
1218         // after ISel. An alternative could be to teach
1219         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1220         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1221                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1222                    << ValSDNodeOrder << "\n");
1223         SDV = getDbgValue(Val, Variable, Expr, dl,
1224                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1225         DAG.AddDbgValue(SDV, Val.getNode(), false);
1226       } else
1227         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1228                           << "in EmitFuncArgumentDbgValue\n");
1229     } else {
1230       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1231       auto Undef =
1232           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1233       auto SDV =
1234           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1235       DAG.AddDbgValue(SDV, nullptr, false);
1236     }
1237   }
1238   DDIV.clear();
1239 }
1240 
1241 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1242   Value *V = DDI.getDI()->getValue();
1243   DILocalVariable *Var = DDI.getDI()->getVariable();
1244   DIExpression *Expr = DDI.getDI()->getExpression();
1245   DebugLoc DL = DDI.getdl();
1246   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1247   unsigned SDOrder = DDI.getSDNodeOrder();
1248 
1249   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1250   // that DW_OP_stack_value is desired.
1251   assert(isa<DbgValueInst>(DDI.getDI()));
1252   bool StackValue = true;
1253 
1254   // Can this Value can be encoded without any further work?
1255   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1256     return;
1257 
1258   // Attempt to salvage back through as many instructions as possible. Bail if
1259   // a non-instruction is seen, such as a constant expression or global
1260   // variable. FIXME: Further work could recover those too.
1261   while (isa<Instruction>(V)) {
1262     Instruction &VAsInst = *cast<Instruction>(V);
1263     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1264 
1265     // If we cannot salvage any further, and haven't yet found a suitable debug
1266     // expression, bail out.
1267     if (!NewExpr)
1268       break;
1269 
1270     // New value and expr now represent this debuginfo.
1271     V = VAsInst.getOperand(0);
1272     Expr = NewExpr;
1273 
1274     // Some kind of simplification occurred: check whether the operand of the
1275     // salvaged debug expression can be encoded in this DAG.
1276     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1277       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1278                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1279       return;
1280     }
1281   }
1282 
1283   // This was the final opportunity to salvage this debug information, and it
1284   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1285   // any earlier variable location.
1286   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1287   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1288   DAG.AddDbgValue(SDV, nullptr, false);
1289 
1290   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1291                     << "\n");
1292   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1293                     << "\n");
1294 }
1295 
1296 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1297                                            DIExpression *Expr, DebugLoc dl,
1298                                            DebugLoc InstDL, unsigned Order) {
1299   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1300   SDDbgValue *SDV;
1301   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1302       isa<ConstantPointerNull>(V)) {
1303     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1304     DAG.AddDbgValue(SDV, nullptr, false);
1305     return true;
1306   }
1307 
1308   // If the Value is a frame index, we can create a FrameIndex debug value
1309   // without relying on the DAG at all.
1310   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1311     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1312     if (SI != FuncInfo.StaticAllocaMap.end()) {
1313       auto SDV =
1314           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1315                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1316       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1317       // is still available even if the SDNode gets optimized out.
1318       DAG.AddDbgValue(SDV, nullptr, false);
1319       return true;
1320     }
1321   }
1322 
1323   // Do not use getValue() in here; we don't want to generate code at
1324   // this point if it hasn't been done yet.
1325   SDValue N = NodeMap[V];
1326   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1327     N = UnusedArgNodeMap[V];
1328   if (N.getNode()) {
1329     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1330       return true;
1331     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1332     DAG.AddDbgValue(SDV, N.getNode(), false);
1333     return true;
1334   }
1335 
1336   // Special rules apply for the first dbg.values of parameter variables in a
1337   // function. Identify them by the fact they reference Argument Values, that
1338   // they're parameters, and they are parameters of the current function. We
1339   // need to let them dangle until they get an SDNode.
1340   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1341                        !InstDL.getInlinedAt();
1342   if (!IsParamOfFunc) {
1343     // The value is not used in this block yet (or it would have an SDNode).
1344     // We still want the value to appear for the user if possible -- if it has
1345     // an associated VReg, we can refer to that instead.
1346     auto VMI = FuncInfo.ValueMap.find(V);
1347     if (VMI != FuncInfo.ValueMap.end()) {
1348       unsigned Reg = VMI->second;
1349       // If this is a PHI node, it may be split up into several MI PHI nodes
1350       // (in FunctionLoweringInfo::set).
1351       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1352                        V->getType(), None);
1353       if (RFV.occupiesMultipleRegs()) {
1354         unsigned Offset = 0;
1355         unsigned BitsToDescribe = 0;
1356         if (auto VarSize = Var->getSizeInBits())
1357           BitsToDescribe = *VarSize;
1358         if (auto Fragment = Expr->getFragmentInfo())
1359           BitsToDescribe = Fragment->SizeInBits;
1360         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1361           unsigned RegisterSize = RegAndSize.second;
1362           // Bail out if all bits are described already.
1363           if (Offset >= BitsToDescribe)
1364             break;
1365           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1366               ? BitsToDescribe - Offset
1367               : RegisterSize;
1368           auto FragmentExpr = DIExpression::createFragmentExpression(
1369               Expr, Offset, FragmentSize);
1370           if (!FragmentExpr)
1371               continue;
1372           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1373                                     false, dl, SDNodeOrder);
1374           DAG.AddDbgValue(SDV, nullptr, false);
1375           Offset += RegisterSize;
1376         }
1377       } else {
1378         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1379         DAG.AddDbgValue(SDV, nullptr, false);
1380       }
1381       return true;
1382     }
1383   }
1384 
1385   return false;
1386 }
1387 
1388 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1389   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1390   for (auto &Pair : DanglingDebugInfoMap)
1391     for (auto &DDI : Pair.second)
1392       salvageUnresolvedDbgValue(DDI);
1393   clearDanglingDebugInfo();
1394 }
1395 
1396 /// getCopyFromRegs - If there was virtual register allocated for the value V
1397 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1398 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1399   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1400   SDValue Result;
1401 
1402   if (It != FuncInfo.ValueMap.end()) {
1403     Register InReg = It->second;
1404 
1405     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1406                      DAG.getDataLayout(), InReg, Ty,
1407                      None); // This is not an ABI copy.
1408     SDValue Chain = DAG.getEntryNode();
1409     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1410                                  V);
1411     resolveDanglingDebugInfo(V, Result);
1412   }
1413 
1414   return Result;
1415 }
1416 
1417 /// getValue - Return an SDValue for the given Value.
1418 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1419   // If we already have an SDValue for this value, use it. It's important
1420   // to do this first, so that we don't create a CopyFromReg if we already
1421   // have a regular SDValue.
1422   SDValue &N = NodeMap[V];
1423   if (N.getNode()) return N;
1424 
1425   // If there's a virtual register allocated and initialized for this
1426   // value, use it.
1427   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1428     return copyFromReg;
1429 
1430   // Otherwise create a new SDValue and remember it.
1431   SDValue Val = getValueImpl(V);
1432   NodeMap[V] = Val;
1433   resolveDanglingDebugInfo(V, Val);
1434   return Val;
1435 }
1436 
1437 /// getNonRegisterValue - Return an SDValue for the given Value, but
1438 /// don't look in FuncInfo.ValueMap for a virtual register.
1439 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1440   // If we already have an SDValue for this value, use it.
1441   SDValue &N = NodeMap[V];
1442   if (N.getNode()) {
1443     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1444       // Remove the debug location from the node as the node is about to be used
1445       // in a location which may differ from the original debug location.  This
1446       // is relevant to Constant and ConstantFP nodes because they can appear
1447       // as constant expressions inside PHI nodes.
1448       N->setDebugLoc(DebugLoc());
1449     }
1450     return N;
1451   }
1452 
1453   // Otherwise create a new SDValue and remember it.
1454   SDValue Val = getValueImpl(V);
1455   NodeMap[V] = Val;
1456   resolveDanglingDebugInfo(V, Val);
1457   return Val;
1458 }
1459 
1460 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1461 /// Create an SDValue for the given value.
1462 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1463   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1464 
1465   if (const Constant *C = dyn_cast<Constant>(V)) {
1466     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1467 
1468     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1469       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1470 
1471     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1472       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1473 
1474     if (isa<ConstantPointerNull>(C)) {
1475       unsigned AS = V->getType()->getPointerAddressSpace();
1476       return DAG.getConstant(0, getCurSDLoc(),
1477                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1478     }
1479 
1480     if (match(C, m_VScale(DAG.getDataLayout())))
1481       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1482 
1483     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1484       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1485 
1486     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1487       return DAG.getUNDEF(VT);
1488 
1489     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1490       visit(CE->getOpcode(), *CE);
1491       SDValue N1 = NodeMap[V];
1492       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1493       return N1;
1494     }
1495 
1496     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1497       SmallVector<SDValue, 4> Constants;
1498       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1499            OI != OE; ++OI) {
1500         SDNode *Val = getValue(*OI).getNode();
1501         // If the operand is an empty aggregate, there are no values.
1502         if (!Val) continue;
1503         // Add each leaf value from the operand to the Constants list
1504         // to form a flattened list of all the values.
1505         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1506           Constants.push_back(SDValue(Val, i));
1507       }
1508 
1509       return DAG.getMergeValues(Constants, getCurSDLoc());
1510     }
1511 
1512     if (const ConstantDataSequential *CDS =
1513           dyn_cast<ConstantDataSequential>(C)) {
1514       SmallVector<SDValue, 4> Ops;
1515       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1516         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1517         // Add each leaf value from the operand to the Constants list
1518         // to form a flattened list of all the values.
1519         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1520           Ops.push_back(SDValue(Val, i));
1521       }
1522 
1523       if (isa<ArrayType>(CDS->getType()))
1524         return DAG.getMergeValues(Ops, getCurSDLoc());
1525       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1526     }
1527 
1528     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1529       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1530              "Unknown struct or array constant!");
1531 
1532       SmallVector<EVT, 4> ValueVTs;
1533       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1534       unsigned NumElts = ValueVTs.size();
1535       if (NumElts == 0)
1536         return SDValue(); // empty struct
1537       SmallVector<SDValue, 4> Constants(NumElts);
1538       for (unsigned i = 0; i != NumElts; ++i) {
1539         EVT EltVT = ValueVTs[i];
1540         if (isa<UndefValue>(C))
1541           Constants[i] = DAG.getUNDEF(EltVT);
1542         else if (EltVT.isFloatingPoint())
1543           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1544         else
1545           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1546       }
1547 
1548       return DAG.getMergeValues(Constants, getCurSDLoc());
1549     }
1550 
1551     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1552       return DAG.getBlockAddress(BA, VT);
1553 
1554     VectorType *VecTy = cast<VectorType>(V->getType());
1555 
1556     // Now that we know the number and type of the elements, get that number of
1557     // elements into the Ops array based on what kind of constant it is.
1558     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1559       SmallVector<SDValue, 16> Ops;
1560       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1561       for (unsigned i = 0; i != NumElements; ++i)
1562         Ops.push_back(getValue(CV->getOperand(i)));
1563 
1564       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1565     } else if (isa<ConstantAggregateZero>(C)) {
1566       EVT EltVT =
1567           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1568 
1569       SDValue Op;
1570       if (EltVT.isFloatingPoint())
1571         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1572       else
1573         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1574 
1575       if (isa<ScalableVectorType>(VecTy))
1576         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1577       else {
1578         SmallVector<SDValue, 16> Ops;
1579         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1580         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1581       }
1582     }
1583     llvm_unreachable("Unknown vector constant");
1584   }
1585 
1586   // If this is a static alloca, generate it as the frameindex instead of
1587   // computation.
1588   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1589     DenseMap<const AllocaInst*, int>::iterator SI =
1590       FuncInfo.StaticAllocaMap.find(AI);
1591     if (SI != FuncInfo.StaticAllocaMap.end())
1592       return DAG.getFrameIndex(SI->second,
1593                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1594   }
1595 
1596   // If this is an instruction which fast-isel has deferred, select it now.
1597   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1598     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1599 
1600     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1601                      Inst->getType(), None);
1602     SDValue Chain = DAG.getEntryNode();
1603     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1604   }
1605 
1606   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1607     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1608   }
1609   llvm_unreachable("Can't get register for value!");
1610 }
1611 
1612 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1613   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1614   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1615   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1616   bool IsSEH = isAsynchronousEHPersonality(Pers);
1617   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1618   if (!IsSEH)
1619     CatchPadMBB->setIsEHScopeEntry();
1620   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1621   if (IsMSVCCXX || IsCoreCLR)
1622     CatchPadMBB->setIsEHFuncletEntry();
1623 }
1624 
1625 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1626   // Update machine-CFG edge.
1627   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1628   FuncInfo.MBB->addSuccessor(TargetMBB);
1629 
1630   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1631   bool IsSEH = isAsynchronousEHPersonality(Pers);
1632   if (IsSEH) {
1633     // If this is not a fall-through branch or optimizations are switched off,
1634     // emit the branch.
1635     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1636         TM.getOptLevel() == CodeGenOpt::None)
1637       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1638                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1639     return;
1640   }
1641 
1642   // Figure out the funclet membership for the catchret's successor.
1643   // This will be used by the FuncletLayout pass to determine how to order the
1644   // BB's.
1645   // A 'catchret' returns to the outer scope's color.
1646   Value *ParentPad = I.getCatchSwitchParentPad();
1647   const BasicBlock *SuccessorColor;
1648   if (isa<ConstantTokenNone>(ParentPad))
1649     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1650   else
1651     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1652   assert(SuccessorColor && "No parent funclet for catchret!");
1653   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1654   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1655 
1656   // Create the terminator node.
1657   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1658                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1659                             DAG.getBasicBlock(SuccessorColorMBB));
1660   DAG.setRoot(Ret);
1661 }
1662 
1663 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1664   // Don't emit any special code for the cleanuppad instruction. It just marks
1665   // the start of an EH scope/funclet.
1666   FuncInfo.MBB->setIsEHScopeEntry();
1667   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1668   if (Pers != EHPersonality::Wasm_CXX) {
1669     FuncInfo.MBB->setIsEHFuncletEntry();
1670     FuncInfo.MBB->setIsCleanupFuncletEntry();
1671   }
1672 }
1673 
1674 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1675 // the control flow always stops at the single catch pad, as it does for a
1676 // cleanup pad. In case the exception caught is not of the types the catch pad
1677 // catches, it will be rethrown by a rethrow.
1678 static void findWasmUnwindDestinations(
1679     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1680     BranchProbability Prob,
1681     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1682         &UnwindDests) {
1683   while (EHPadBB) {
1684     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1685     if (isa<CleanupPadInst>(Pad)) {
1686       // Stop on cleanup pads.
1687       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1688       UnwindDests.back().first->setIsEHScopeEntry();
1689       break;
1690     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1691       // Add the catchpad handlers to the possible destinations. We don't
1692       // continue to the unwind destination of the catchswitch for wasm.
1693       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1694         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1695         UnwindDests.back().first->setIsEHScopeEntry();
1696       }
1697       break;
1698     } else {
1699       continue;
1700     }
1701   }
1702 }
1703 
1704 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1705 /// many places it could ultimately go. In the IR, we have a single unwind
1706 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1707 /// This function skips over imaginary basic blocks that hold catchswitch
1708 /// instructions, and finds all the "real" machine
1709 /// basic block destinations. As those destinations may not be successors of
1710 /// EHPadBB, here we also calculate the edge probability to those destinations.
1711 /// The passed-in Prob is the edge probability to EHPadBB.
1712 static void findUnwindDestinations(
1713     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1714     BranchProbability Prob,
1715     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1716         &UnwindDests) {
1717   EHPersonality Personality =
1718     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1719   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1720   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1721   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1722   bool IsSEH = isAsynchronousEHPersonality(Personality);
1723 
1724   if (IsWasmCXX) {
1725     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1726     assert(UnwindDests.size() <= 1 &&
1727            "There should be at most one unwind destination for wasm");
1728     return;
1729   }
1730 
1731   while (EHPadBB) {
1732     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1733     BasicBlock *NewEHPadBB = nullptr;
1734     if (isa<LandingPadInst>(Pad)) {
1735       // Stop on landingpads. They are not funclets.
1736       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1737       break;
1738     } else if (isa<CleanupPadInst>(Pad)) {
1739       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1740       // personalities.
1741       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1742       UnwindDests.back().first->setIsEHScopeEntry();
1743       UnwindDests.back().first->setIsEHFuncletEntry();
1744       break;
1745     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1746       // Add the catchpad handlers to the possible destinations.
1747       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1748         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1749         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1750         if (IsMSVCCXX || IsCoreCLR)
1751           UnwindDests.back().first->setIsEHFuncletEntry();
1752         if (!IsSEH)
1753           UnwindDests.back().first->setIsEHScopeEntry();
1754       }
1755       NewEHPadBB = CatchSwitch->getUnwindDest();
1756     } else {
1757       continue;
1758     }
1759 
1760     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1761     if (BPI && NewEHPadBB)
1762       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1763     EHPadBB = NewEHPadBB;
1764   }
1765 }
1766 
1767 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1768   // Update successor info.
1769   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1770   auto UnwindDest = I.getUnwindDest();
1771   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1772   BranchProbability UnwindDestProb =
1773       (BPI && UnwindDest)
1774           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1775           : BranchProbability::getZero();
1776   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1777   for (auto &UnwindDest : UnwindDests) {
1778     UnwindDest.first->setIsEHPad();
1779     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1780   }
1781   FuncInfo.MBB->normalizeSuccProbs();
1782 
1783   // Create the terminator node.
1784   SDValue Ret =
1785       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1786   DAG.setRoot(Ret);
1787 }
1788 
1789 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1790   report_fatal_error("visitCatchSwitch not yet implemented!");
1791 }
1792 
1793 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1794   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1795   auto &DL = DAG.getDataLayout();
1796   SDValue Chain = getControlRoot();
1797   SmallVector<ISD::OutputArg, 8> Outs;
1798   SmallVector<SDValue, 8> OutVals;
1799 
1800   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1801   // lower
1802   //
1803   //   %val = call <ty> @llvm.experimental.deoptimize()
1804   //   ret <ty> %val
1805   //
1806   // differently.
1807   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1808     LowerDeoptimizingReturn();
1809     return;
1810   }
1811 
1812   if (!FuncInfo.CanLowerReturn) {
1813     unsigned DemoteReg = FuncInfo.DemoteRegister;
1814     const Function *F = I.getParent()->getParent();
1815 
1816     // Emit a store of the return value through the virtual register.
1817     // Leave Outs empty so that LowerReturn won't try to load return
1818     // registers the usual way.
1819     SmallVector<EVT, 1> PtrValueVTs;
1820     ComputeValueVTs(TLI, DL,
1821                     F->getReturnType()->getPointerTo(
1822                         DAG.getDataLayout().getAllocaAddrSpace()),
1823                     PtrValueVTs);
1824 
1825     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1826                                         DemoteReg, PtrValueVTs[0]);
1827     SDValue RetOp = getValue(I.getOperand(0));
1828 
1829     SmallVector<EVT, 4> ValueVTs, MemVTs;
1830     SmallVector<uint64_t, 4> Offsets;
1831     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1832                     &Offsets);
1833     unsigned NumValues = ValueVTs.size();
1834 
1835     SmallVector<SDValue, 4> Chains(NumValues);
1836     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1837     for (unsigned i = 0; i != NumValues; ++i) {
1838       // An aggregate return value cannot wrap around the address space, so
1839       // offsets to its parts don't wrap either.
1840       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1841 
1842       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1843       if (MemVTs[i] != ValueVTs[i])
1844         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1845       Chains[i] = DAG.getStore(
1846           Chain, getCurSDLoc(), Val,
1847           // FIXME: better loc info would be nice.
1848           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1849           commonAlignment(BaseAlign, Offsets[i]));
1850     }
1851 
1852     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1853                         MVT::Other, Chains);
1854   } else if (I.getNumOperands() != 0) {
1855     SmallVector<EVT, 4> ValueVTs;
1856     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1857     unsigned NumValues = ValueVTs.size();
1858     if (NumValues) {
1859       SDValue RetOp = getValue(I.getOperand(0));
1860 
1861       const Function *F = I.getParent()->getParent();
1862 
1863       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1864           I.getOperand(0)->getType(), F->getCallingConv(),
1865           /*IsVarArg*/ false);
1866 
1867       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1868       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1869                                           Attribute::SExt))
1870         ExtendKind = ISD::SIGN_EXTEND;
1871       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1872                                                Attribute::ZExt))
1873         ExtendKind = ISD::ZERO_EXTEND;
1874 
1875       LLVMContext &Context = F->getContext();
1876       bool RetInReg = F->getAttributes().hasAttribute(
1877           AttributeList::ReturnIndex, Attribute::InReg);
1878 
1879       for (unsigned j = 0; j != NumValues; ++j) {
1880         EVT VT = ValueVTs[j];
1881 
1882         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1883           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1884 
1885         CallingConv::ID CC = F->getCallingConv();
1886 
1887         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1888         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1889         SmallVector<SDValue, 4> Parts(NumParts);
1890         getCopyToParts(DAG, getCurSDLoc(),
1891                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1892                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1893 
1894         // 'inreg' on function refers to return value
1895         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1896         if (RetInReg)
1897           Flags.setInReg();
1898 
1899         if (I.getOperand(0)->getType()->isPointerTy()) {
1900           Flags.setPointer();
1901           Flags.setPointerAddrSpace(
1902               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1903         }
1904 
1905         if (NeedsRegBlock) {
1906           Flags.setInConsecutiveRegs();
1907           if (j == NumValues - 1)
1908             Flags.setInConsecutiveRegsLast();
1909         }
1910 
1911         // Propagate extension type if any
1912         if (ExtendKind == ISD::SIGN_EXTEND)
1913           Flags.setSExt();
1914         else if (ExtendKind == ISD::ZERO_EXTEND)
1915           Flags.setZExt();
1916 
1917         for (unsigned i = 0; i < NumParts; ++i) {
1918           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1919                                         VT, /*isfixed=*/true, 0, 0));
1920           OutVals.push_back(Parts[i]);
1921         }
1922       }
1923     }
1924   }
1925 
1926   // Push in swifterror virtual register as the last element of Outs. This makes
1927   // sure swifterror virtual register will be returned in the swifterror
1928   // physical register.
1929   const Function *F = I.getParent()->getParent();
1930   if (TLI.supportSwiftError() &&
1931       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1932     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1933     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1934     Flags.setSwiftError();
1935     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1936                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1937                                   true /*isfixed*/, 1 /*origidx*/,
1938                                   0 /*partOffs*/));
1939     // Create SDNode for the swifterror virtual register.
1940     OutVals.push_back(
1941         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1942                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1943                         EVT(TLI.getPointerTy(DL))));
1944   }
1945 
1946   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1947   CallingConv::ID CallConv =
1948     DAG.getMachineFunction().getFunction().getCallingConv();
1949   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1950       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1951 
1952   // Verify that the target's LowerReturn behaved as expected.
1953   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1954          "LowerReturn didn't return a valid chain!");
1955 
1956   // Update the DAG with the new chain value resulting from return lowering.
1957   DAG.setRoot(Chain);
1958 }
1959 
1960 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1961 /// created for it, emit nodes to copy the value into the virtual
1962 /// registers.
1963 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1964   // Skip empty types
1965   if (V->getType()->isEmptyTy())
1966     return;
1967 
1968   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
1969   if (VMI != FuncInfo.ValueMap.end()) {
1970     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1971     CopyValueToVirtualRegister(V, VMI->second);
1972   }
1973 }
1974 
1975 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1976 /// the current basic block, add it to ValueMap now so that we'll get a
1977 /// CopyTo/FromReg.
1978 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1979   // No need to export constants.
1980   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1981 
1982   // Already exported?
1983   if (FuncInfo.isExportedInst(V)) return;
1984 
1985   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1986   CopyValueToVirtualRegister(V, Reg);
1987 }
1988 
1989 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1990                                                      const BasicBlock *FromBB) {
1991   // The operands of the setcc have to be in this block.  We don't know
1992   // how to export them from some other block.
1993   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1994     // Can export from current BB.
1995     if (VI->getParent() == FromBB)
1996       return true;
1997 
1998     // Is already exported, noop.
1999     return FuncInfo.isExportedInst(V);
2000   }
2001 
2002   // If this is an argument, we can export it if the BB is the entry block or
2003   // if it is already exported.
2004   if (isa<Argument>(V)) {
2005     if (FromBB == &FromBB->getParent()->getEntryBlock())
2006       return true;
2007 
2008     // Otherwise, can only export this if it is already exported.
2009     return FuncInfo.isExportedInst(V);
2010   }
2011 
2012   // Otherwise, constants can always be exported.
2013   return true;
2014 }
2015 
2016 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2017 BranchProbability
2018 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2019                                         const MachineBasicBlock *Dst) const {
2020   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2021   const BasicBlock *SrcBB = Src->getBasicBlock();
2022   const BasicBlock *DstBB = Dst->getBasicBlock();
2023   if (!BPI) {
2024     // If BPI is not available, set the default probability as 1 / N, where N is
2025     // the number of successors.
2026     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2027     return BranchProbability(1, SuccSize);
2028   }
2029   return BPI->getEdgeProbability(SrcBB, DstBB);
2030 }
2031 
2032 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2033                                                MachineBasicBlock *Dst,
2034                                                BranchProbability Prob) {
2035   if (!FuncInfo.BPI)
2036     Src->addSuccessorWithoutProb(Dst);
2037   else {
2038     if (Prob.isUnknown())
2039       Prob = getEdgeProbability(Src, Dst);
2040     Src->addSuccessor(Dst, Prob);
2041   }
2042 }
2043 
2044 static bool InBlock(const Value *V, const BasicBlock *BB) {
2045   if (const Instruction *I = dyn_cast<Instruction>(V))
2046     return I->getParent() == BB;
2047   return true;
2048 }
2049 
2050 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2051 /// This function emits a branch and is used at the leaves of an OR or an
2052 /// AND operator tree.
2053 void
2054 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2055                                                   MachineBasicBlock *TBB,
2056                                                   MachineBasicBlock *FBB,
2057                                                   MachineBasicBlock *CurBB,
2058                                                   MachineBasicBlock *SwitchBB,
2059                                                   BranchProbability TProb,
2060                                                   BranchProbability FProb,
2061                                                   bool InvertCond) {
2062   const BasicBlock *BB = CurBB->getBasicBlock();
2063 
2064   // If the leaf of the tree is a comparison, merge the condition into
2065   // the caseblock.
2066   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2067     // The operands of the cmp have to be in this block.  We don't know
2068     // how to export them from some other block.  If this is the first block
2069     // of the sequence, no exporting is needed.
2070     if (CurBB == SwitchBB ||
2071         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2072          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2073       ISD::CondCode Condition;
2074       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2075         ICmpInst::Predicate Pred =
2076             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2077         Condition = getICmpCondCode(Pred);
2078       } else {
2079         const FCmpInst *FC = cast<FCmpInst>(Cond);
2080         FCmpInst::Predicate Pred =
2081             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2082         Condition = getFCmpCondCode(Pred);
2083         if (TM.Options.NoNaNsFPMath)
2084           Condition = getFCmpCodeWithoutNaN(Condition);
2085       }
2086 
2087       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2088                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2089       SL->SwitchCases.push_back(CB);
2090       return;
2091     }
2092   }
2093 
2094   // Create a CaseBlock record representing this branch.
2095   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2096   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2097                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2098   SL->SwitchCases.push_back(CB);
2099 }
2100 
2101 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2102                                                MachineBasicBlock *TBB,
2103                                                MachineBasicBlock *FBB,
2104                                                MachineBasicBlock *CurBB,
2105                                                MachineBasicBlock *SwitchBB,
2106                                                Instruction::BinaryOps Opc,
2107                                                BranchProbability TProb,
2108                                                BranchProbability FProb,
2109                                                bool InvertCond) {
2110   // Skip over not part of the tree and remember to invert op and operands at
2111   // next level.
2112   Value *NotCond;
2113   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2114       InBlock(NotCond, CurBB->getBasicBlock())) {
2115     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2116                          !InvertCond);
2117     return;
2118   }
2119 
2120   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2121   // Compute the effective opcode for Cond, taking into account whether it needs
2122   // to be inverted, e.g.
2123   //   and (not (or A, B)), C
2124   // gets lowered as
2125   //   and (and (not A, not B), C)
2126   unsigned BOpc = 0;
2127   if (BOp) {
2128     BOpc = BOp->getOpcode();
2129     if (InvertCond) {
2130       if (BOpc == Instruction::And)
2131         BOpc = Instruction::Or;
2132       else if (BOpc == Instruction::Or)
2133         BOpc = Instruction::And;
2134     }
2135   }
2136 
2137   // If this node is not part of the or/and tree, emit it as a branch.
2138   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2139       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2140       BOp->getParent() != CurBB->getBasicBlock() ||
2141       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2142       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2143     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2144                                  TProb, FProb, InvertCond);
2145     return;
2146   }
2147 
2148   //  Create TmpBB after CurBB.
2149   MachineFunction::iterator BBI(CurBB);
2150   MachineFunction &MF = DAG.getMachineFunction();
2151   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2152   CurBB->getParent()->insert(++BBI, TmpBB);
2153 
2154   if (Opc == Instruction::Or) {
2155     // Codegen X | Y as:
2156     // BB1:
2157     //   jmp_if_X TBB
2158     //   jmp TmpBB
2159     // TmpBB:
2160     //   jmp_if_Y TBB
2161     //   jmp FBB
2162     //
2163 
2164     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2165     // The requirement is that
2166     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2167     //     = TrueProb for original BB.
2168     // Assuming the original probabilities are A and B, one choice is to set
2169     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2170     // A/(1+B) and 2B/(1+B). This choice assumes that
2171     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2172     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2173     // TmpBB, but the math is more complicated.
2174 
2175     auto NewTrueProb = TProb / 2;
2176     auto NewFalseProb = TProb / 2 + FProb;
2177     // Emit the LHS condition.
2178     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2179                          NewTrueProb, NewFalseProb, InvertCond);
2180 
2181     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2182     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2183     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2184     // Emit the RHS condition into TmpBB.
2185     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2186                          Probs[0], Probs[1], InvertCond);
2187   } else {
2188     assert(Opc == Instruction::And && "Unknown merge op!");
2189     // Codegen X & Y as:
2190     // BB1:
2191     //   jmp_if_X TmpBB
2192     //   jmp FBB
2193     // TmpBB:
2194     //   jmp_if_Y TBB
2195     //   jmp FBB
2196     //
2197     //  This requires creation of TmpBB after CurBB.
2198 
2199     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2200     // The requirement is that
2201     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2202     //     = FalseProb for original BB.
2203     // Assuming the original probabilities are A and B, one choice is to set
2204     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2205     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2206     // TrueProb for BB1 * FalseProb for TmpBB.
2207 
2208     auto NewTrueProb = TProb + FProb / 2;
2209     auto NewFalseProb = FProb / 2;
2210     // Emit the LHS condition.
2211     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2212                          NewTrueProb, NewFalseProb, InvertCond);
2213 
2214     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2215     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2216     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2217     // Emit the RHS condition into TmpBB.
2218     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2219                          Probs[0], Probs[1], InvertCond);
2220   }
2221 }
2222 
2223 /// If the set of cases should be emitted as a series of branches, return true.
2224 /// If we should emit this as a bunch of and/or'd together conditions, return
2225 /// false.
2226 bool
2227 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2228   if (Cases.size() != 2) return true;
2229 
2230   // If this is two comparisons of the same values or'd or and'd together, they
2231   // will get folded into a single comparison, so don't emit two blocks.
2232   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2233        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2234       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2235        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2236     return false;
2237   }
2238 
2239   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2240   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2241   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2242       Cases[0].CC == Cases[1].CC &&
2243       isa<Constant>(Cases[0].CmpRHS) &&
2244       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2245     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2246       return false;
2247     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2248       return false;
2249   }
2250 
2251   return true;
2252 }
2253 
2254 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2255   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2256 
2257   // Update machine-CFG edges.
2258   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2259 
2260   if (I.isUnconditional()) {
2261     // Update machine-CFG edges.
2262     BrMBB->addSuccessor(Succ0MBB);
2263 
2264     // If this is not a fall-through branch or optimizations are switched off,
2265     // emit the branch.
2266     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2267       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2268                               MVT::Other, getControlRoot(),
2269                               DAG.getBasicBlock(Succ0MBB)));
2270 
2271     return;
2272   }
2273 
2274   // If this condition is one of the special cases we handle, do special stuff
2275   // now.
2276   const Value *CondVal = I.getCondition();
2277   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2278 
2279   // If this is a series of conditions that are or'd or and'd together, emit
2280   // this as a sequence of branches instead of setcc's with and/or operations.
2281   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2282   // unpredictable branches, and vector extracts because those jumps are likely
2283   // expensive for any target), this should improve performance.
2284   // For example, instead of something like:
2285   //     cmp A, B
2286   //     C = seteq
2287   //     cmp D, E
2288   //     F = setle
2289   //     or C, F
2290   //     jnz foo
2291   // Emit:
2292   //     cmp A, B
2293   //     je foo
2294   //     cmp D, E
2295   //     jle foo
2296   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2297     Instruction::BinaryOps Opcode = BOp->getOpcode();
2298     Value *Vec, *BOp0 = BOp->getOperand(0), *BOp1 = BOp->getOperand(1);
2299     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2300         !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2301         (Opcode == Instruction::And || Opcode == Instruction::Or) &&
2302         !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2303           match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2304       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2305                            Opcode,
2306                            getEdgeProbability(BrMBB, Succ0MBB),
2307                            getEdgeProbability(BrMBB, Succ1MBB),
2308                            /*InvertCond=*/false);
2309       // If the compares in later blocks need to use values not currently
2310       // exported from this block, export them now.  This block should always
2311       // be the first entry.
2312       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2313 
2314       // Allow some cases to be rejected.
2315       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2316         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2317           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2318           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2319         }
2320 
2321         // Emit the branch for this block.
2322         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2323         SL->SwitchCases.erase(SL->SwitchCases.begin());
2324         return;
2325       }
2326 
2327       // Okay, we decided not to do this, remove any inserted MBB's and clear
2328       // SwitchCases.
2329       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2330         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2331 
2332       SL->SwitchCases.clear();
2333     }
2334   }
2335 
2336   // Create a CaseBlock record representing this branch.
2337   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2338                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2339 
2340   // Use visitSwitchCase to actually insert the fast branch sequence for this
2341   // cond branch.
2342   visitSwitchCase(CB, BrMBB);
2343 }
2344 
2345 /// visitSwitchCase - Emits the necessary code to represent a single node in
2346 /// the binary search tree resulting from lowering a switch instruction.
2347 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2348                                           MachineBasicBlock *SwitchBB) {
2349   SDValue Cond;
2350   SDValue CondLHS = getValue(CB.CmpLHS);
2351   SDLoc dl = CB.DL;
2352 
2353   if (CB.CC == ISD::SETTRUE) {
2354     // Branch or fall through to TrueBB.
2355     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2356     SwitchBB->normalizeSuccProbs();
2357     if (CB.TrueBB != NextBlock(SwitchBB)) {
2358       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2359                               DAG.getBasicBlock(CB.TrueBB)));
2360     }
2361     return;
2362   }
2363 
2364   auto &TLI = DAG.getTargetLoweringInfo();
2365   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2366 
2367   // Build the setcc now.
2368   if (!CB.CmpMHS) {
2369     // Fold "(X == true)" to X and "(X == false)" to !X to
2370     // handle common cases produced by branch lowering.
2371     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2372         CB.CC == ISD::SETEQ)
2373       Cond = CondLHS;
2374     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2375              CB.CC == ISD::SETEQ) {
2376       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2377       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2378     } else {
2379       SDValue CondRHS = getValue(CB.CmpRHS);
2380 
2381       // If a pointer's DAG type is larger than its memory type then the DAG
2382       // values are zero-extended. This breaks signed comparisons so truncate
2383       // back to the underlying type before doing the compare.
2384       if (CondLHS.getValueType() != MemVT) {
2385         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2386         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2387       }
2388       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2389     }
2390   } else {
2391     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2392 
2393     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2394     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2395 
2396     SDValue CmpOp = getValue(CB.CmpMHS);
2397     EVT VT = CmpOp.getValueType();
2398 
2399     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2400       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2401                           ISD::SETLE);
2402     } else {
2403       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2404                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2405       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2406                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2407     }
2408   }
2409 
2410   // Update successor info
2411   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2412   // TrueBB and FalseBB are always different unless the incoming IR is
2413   // degenerate. This only happens when running llc on weird IR.
2414   if (CB.TrueBB != CB.FalseBB)
2415     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2416   SwitchBB->normalizeSuccProbs();
2417 
2418   // If the lhs block is the next block, invert the condition so that we can
2419   // fall through to the lhs instead of the rhs block.
2420   if (CB.TrueBB == NextBlock(SwitchBB)) {
2421     std::swap(CB.TrueBB, CB.FalseBB);
2422     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2423     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2424   }
2425 
2426   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2427                                MVT::Other, getControlRoot(), Cond,
2428                                DAG.getBasicBlock(CB.TrueBB));
2429 
2430   // Insert the false branch. Do this even if it's a fall through branch,
2431   // this makes it easier to do DAG optimizations which require inverting
2432   // the branch condition.
2433   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2434                        DAG.getBasicBlock(CB.FalseBB));
2435 
2436   DAG.setRoot(BrCond);
2437 }
2438 
2439 /// visitJumpTable - Emit JumpTable node in the current MBB
2440 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2441   // Emit the code for the jump table
2442   assert(JT.Reg != -1U && "Should lower JT Header first!");
2443   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2444   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2445                                      JT.Reg, PTy);
2446   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2447   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2448                                     MVT::Other, Index.getValue(1),
2449                                     Table, Index);
2450   DAG.setRoot(BrJumpTable);
2451 }
2452 
2453 /// visitJumpTableHeader - This function emits necessary code to produce index
2454 /// in the JumpTable from switch case.
2455 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2456                                                JumpTableHeader &JTH,
2457                                                MachineBasicBlock *SwitchBB) {
2458   SDLoc dl = getCurSDLoc();
2459 
2460   // Subtract the lowest switch case value from the value being switched on.
2461   SDValue SwitchOp = getValue(JTH.SValue);
2462   EVT VT = SwitchOp.getValueType();
2463   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2464                             DAG.getConstant(JTH.First, dl, VT));
2465 
2466   // The SDNode we just created, which holds the value being switched on minus
2467   // the smallest case value, needs to be copied to a virtual register so it
2468   // can be used as an index into the jump table in a subsequent basic block.
2469   // This value may be smaller or larger than the target's pointer type, and
2470   // therefore require extension or truncating.
2471   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2472   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2473 
2474   unsigned JumpTableReg =
2475       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2476   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2477                                     JumpTableReg, SwitchOp);
2478   JT.Reg = JumpTableReg;
2479 
2480   if (!JTH.OmitRangeCheck) {
2481     // Emit the range check for the jump table, and branch to the default block
2482     // for the switch statement if the value being switched on exceeds the
2483     // largest case in the switch.
2484     SDValue CMP = DAG.getSetCC(
2485         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2486                                    Sub.getValueType()),
2487         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2488 
2489     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2490                                  MVT::Other, CopyTo, CMP,
2491                                  DAG.getBasicBlock(JT.Default));
2492 
2493     // Avoid emitting unnecessary branches to the next block.
2494     if (JT.MBB != NextBlock(SwitchBB))
2495       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2496                            DAG.getBasicBlock(JT.MBB));
2497 
2498     DAG.setRoot(BrCond);
2499   } else {
2500     // Avoid emitting unnecessary branches to the next block.
2501     if (JT.MBB != NextBlock(SwitchBB))
2502       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2503                               DAG.getBasicBlock(JT.MBB)));
2504     else
2505       DAG.setRoot(CopyTo);
2506   }
2507 }
2508 
2509 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2510 /// variable if there exists one.
2511 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2512                                  SDValue &Chain) {
2513   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2514   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2515   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2516   MachineFunction &MF = DAG.getMachineFunction();
2517   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2518   MachineSDNode *Node =
2519       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2520   if (Global) {
2521     MachinePointerInfo MPInfo(Global);
2522     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2523                  MachineMemOperand::MODereferenceable;
2524     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2525         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2526     DAG.setNodeMemRefs(Node, {MemRef});
2527   }
2528   if (PtrTy != PtrMemTy)
2529     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2530   return SDValue(Node, 0);
2531 }
2532 
2533 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2534 /// tail spliced into a stack protector check success bb.
2535 ///
2536 /// For a high level explanation of how this fits into the stack protector
2537 /// generation see the comment on the declaration of class
2538 /// StackProtectorDescriptor.
2539 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2540                                                   MachineBasicBlock *ParentBB) {
2541 
2542   // First create the loads to the guard/stack slot for the comparison.
2543   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2544   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2545   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2546 
2547   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2548   int FI = MFI.getStackProtectorIndex();
2549 
2550   SDValue Guard;
2551   SDLoc dl = getCurSDLoc();
2552   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2553   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2554   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2555 
2556   // Generate code to load the content of the guard slot.
2557   SDValue GuardVal = DAG.getLoad(
2558       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2559       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2560       MachineMemOperand::MOVolatile);
2561 
2562   if (TLI.useStackGuardXorFP())
2563     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2564 
2565   // Retrieve guard check function, nullptr if instrumentation is inlined.
2566   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2567     // The target provides a guard check function to validate the guard value.
2568     // Generate a call to that function with the content of the guard slot as
2569     // argument.
2570     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2571     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2572 
2573     TargetLowering::ArgListTy Args;
2574     TargetLowering::ArgListEntry Entry;
2575     Entry.Node = GuardVal;
2576     Entry.Ty = FnTy->getParamType(0);
2577     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2578       Entry.IsInReg = true;
2579     Args.push_back(Entry);
2580 
2581     TargetLowering::CallLoweringInfo CLI(DAG);
2582     CLI.setDebugLoc(getCurSDLoc())
2583         .setChain(DAG.getEntryNode())
2584         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2585                    getValue(GuardCheckFn), std::move(Args));
2586 
2587     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2588     DAG.setRoot(Result.second);
2589     return;
2590   }
2591 
2592   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2593   // Otherwise, emit a volatile load to retrieve the stack guard value.
2594   SDValue Chain = DAG.getEntryNode();
2595   if (TLI.useLoadStackGuardNode()) {
2596     Guard = getLoadStackGuard(DAG, dl, Chain);
2597   } else {
2598     const Value *IRGuard = TLI.getSDagStackGuard(M);
2599     SDValue GuardPtr = getValue(IRGuard);
2600 
2601     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2602                         MachinePointerInfo(IRGuard, 0), Align,
2603                         MachineMemOperand::MOVolatile);
2604   }
2605 
2606   // Perform the comparison via a getsetcc.
2607   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2608                                                         *DAG.getContext(),
2609                                                         Guard.getValueType()),
2610                              Guard, GuardVal, ISD::SETNE);
2611 
2612   // If the guard/stackslot do not equal, branch to failure MBB.
2613   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2614                                MVT::Other, GuardVal.getOperand(0),
2615                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2616   // Otherwise branch to success MBB.
2617   SDValue Br = DAG.getNode(ISD::BR, dl,
2618                            MVT::Other, BrCond,
2619                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2620 
2621   DAG.setRoot(Br);
2622 }
2623 
2624 /// Codegen the failure basic block for a stack protector check.
2625 ///
2626 /// A failure stack protector machine basic block consists simply of a call to
2627 /// __stack_chk_fail().
2628 ///
2629 /// For a high level explanation of how this fits into the stack protector
2630 /// generation see the comment on the declaration of class
2631 /// StackProtectorDescriptor.
2632 void
2633 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2634   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2635   TargetLowering::MakeLibCallOptions CallOptions;
2636   CallOptions.setDiscardResult(true);
2637   SDValue Chain =
2638       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2639                       None, CallOptions, getCurSDLoc()).second;
2640   // On PS4, the "return address" must still be within the calling function,
2641   // even if it's at the very end, so emit an explicit TRAP here.
2642   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2643   if (TM.getTargetTriple().isPS4CPU())
2644     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2645   // WebAssembly needs an unreachable instruction after a non-returning call,
2646   // because the function return type can be different from __stack_chk_fail's
2647   // return type (void).
2648   if (TM.getTargetTriple().isWasm())
2649     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2650 
2651   DAG.setRoot(Chain);
2652 }
2653 
2654 /// visitBitTestHeader - This function emits necessary code to produce value
2655 /// suitable for "bit tests"
2656 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2657                                              MachineBasicBlock *SwitchBB) {
2658   SDLoc dl = getCurSDLoc();
2659 
2660   // Subtract the minimum value.
2661   SDValue SwitchOp = getValue(B.SValue);
2662   EVT VT = SwitchOp.getValueType();
2663   SDValue RangeSub =
2664       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2665 
2666   // Determine the type of the test operands.
2667   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2668   bool UsePtrType = false;
2669   if (!TLI.isTypeLegal(VT)) {
2670     UsePtrType = true;
2671   } else {
2672     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2673       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2674         // Switch table case range are encoded into series of masks.
2675         // Just use pointer type, it's guaranteed to fit.
2676         UsePtrType = true;
2677         break;
2678       }
2679   }
2680   SDValue Sub = RangeSub;
2681   if (UsePtrType) {
2682     VT = TLI.getPointerTy(DAG.getDataLayout());
2683     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2684   }
2685 
2686   B.RegVT = VT.getSimpleVT();
2687   B.Reg = FuncInfo.CreateReg(B.RegVT);
2688   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2689 
2690   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2691 
2692   if (!B.OmitRangeCheck)
2693     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2694   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2695   SwitchBB->normalizeSuccProbs();
2696 
2697   SDValue Root = CopyTo;
2698   if (!B.OmitRangeCheck) {
2699     // Conditional branch to the default block.
2700     SDValue RangeCmp = DAG.getSetCC(dl,
2701         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2702                                RangeSub.getValueType()),
2703         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2704         ISD::SETUGT);
2705 
2706     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2707                        DAG.getBasicBlock(B.Default));
2708   }
2709 
2710   // Avoid emitting unnecessary branches to the next block.
2711   if (MBB != NextBlock(SwitchBB))
2712     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2713 
2714   DAG.setRoot(Root);
2715 }
2716 
2717 /// visitBitTestCase - this function produces one "bit test"
2718 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2719                                            MachineBasicBlock* NextMBB,
2720                                            BranchProbability BranchProbToNext,
2721                                            unsigned Reg,
2722                                            BitTestCase &B,
2723                                            MachineBasicBlock *SwitchBB) {
2724   SDLoc dl = getCurSDLoc();
2725   MVT VT = BB.RegVT;
2726   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2727   SDValue Cmp;
2728   unsigned PopCount = countPopulation(B.Mask);
2729   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2730   if (PopCount == 1) {
2731     // Testing for a single bit; just compare the shift count with what it
2732     // would need to be to shift a 1 bit in that position.
2733     Cmp = DAG.getSetCC(
2734         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2735         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2736         ISD::SETEQ);
2737   } else if (PopCount == BB.Range) {
2738     // There is only one zero bit in the range, test for it directly.
2739     Cmp = DAG.getSetCC(
2740         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2741         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2742         ISD::SETNE);
2743   } else {
2744     // Make desired shift
2745     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2746                                     DAG.getConstant(1, dl, VT), ShiftOp);
2747 
2748     // Emit bit tests and jumps
2749     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2750                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2751     Cmp = DAG.getSetCC(
2752         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2753         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2754   }
2755 
2756   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2757   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2758   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2759   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2760   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2761   // one as they are relative probabilities (and thus work more like weights),
2762   // and hence we need to normalize them to let the sum of them become one.
2763   SwitchBB->normalizeSuccProbs();
2764 
2765   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2766                               MVT::Other, getControlRoot(),
2767                               Cmp, DAG.getBasicBlock(B.TargetBB));
2768 
2769   // Avoid emitting unnecessary branches to the next block.
2770   if (NextMBB != NextBlock(SwitchBB))
2771     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2772                         DAG.getBasicBlock(NextMBB));
2773 
2774   DAG.setRoot(BrAnd);
2775 }
2776 
2777 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2778   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2779 
2780   // Retrieve successors. Look through artificial IR level blocks like
2781   // catchswitch for successors.
2782   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2783   const BasicBlock *EHPadBB = I.getSuccessor(1);
2784 
2785   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2786   // have to do anything here to lower funclet bundles.
2787   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2788                                         LLVMContext::OB_gc_transition,
2789                                         LLVMContext::OB_gc_live,
2790                                         LLVMContext::OB_funclet,
2791                                         LLVMContext::OB_cfguardtarget}) &&
2792          "Cannot lower invokes with arbitrary operand bundles yet!");
2793 
2794   const Value *Callee(I.getCalledOperand());
2795   const Function *Fn = dyn_cast<Function>(Callee);
2796   if (isa<InlineAsm>(Callee))
2797     visitInlineAsm(I);
2798   else if (Fn && Fn->isIntrinsic()) {
2799     switch (Fn->getIntrinsicID()) {
2800     default:
2801       llvm_unreachable("Cannot invoke this intrinsic");
2802     case Intrinsic::donothing:
2803       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2804       break;
2805     case Intrinsic::experimental_patchpoint_void:
2806     case Intrinsic::experimental_patchpoint_i64:
2807       visitPatchpoint(I, EHPadBB);
2808       break;
2809     case Intrinsic::experimental_gc_statepoint:
2810       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2811       break;
2812     case Intrinsic::wasm_rethrow_in_catch: {
2813       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2814       // special because it can be invoked, so we manually lower it to a DAG
2815       // node here.
2816       SmallVector<SDValue, 8> Ops;
2817       Ops.push_back(getRoot()); // inchain
2818       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2819       Ops.push_back(
2820           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2821                                 TLI.getPointerTy(DAG.getDataLayout())));
2822       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2823       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2824       break;
2825     }
2826     }
2827   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2828     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2829     // Eventually we will support lowering the @llvm.experimental.deoptimize
2830     // intrinsic, and right now there are no plans to support other intrinsics
2831     // with deopt state.
2832     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2833   } else {
2834     LowerCallTo(I, getValue(Callee), false, EHPadBB);
2835   }
2836 
2837   // If the value of the invoke is used outside of its defining block, make it
2838   // available as a virtual register.
2839   // We already took care of the exported value for the statepoint instruction
2840   // during call to the LowerStatepoint.
2841   if (!isa<GCStatepointInst>(I)) {
2842     CopyToExportRegsIfNeeded(&I);
2843   }
2844 
2845   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2846   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2847   BranchProbability EHPadBBProb =
2848       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2849           : BranchProbability::getZero();
2850   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2851 
2852   // Update successor info.
2853   addSuccessorWithProb(InvokeMBB, Return);
2854   for (auto &UnwindDest : UnwindDests) {
2855     UnwindDest.first->setIsEHPad();
2856     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2857   }
2858   InvokeMBB->normalizeSuccProbs();
2859 
2860   // Drop into normal successor.
2861   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2862                           DAG.getBasicBlock(Return)));
2863 }
2864 
2865 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2866   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2867 
2868   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2869   // have to do anything here to lower funclet bundles.
2870   assert(!I.hasOperandBundlesOtherThan(
2871              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2872          "Cannot lower callbrs with arbitrary operand bundles yet!");
2873 
2874   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2875   visitInlineAsm(I);
2876   CopyToExportRegsIfNeeded(&I);
2877 
2878   // Retrieve successors.
2879   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2880 
2881   // Update successor info.
2882   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2883   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2884     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2885     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2886     Target->setIsInlineAsmBrIndirectTarget();
2887   }
2888   CallBrMBB->normalizeSuccProbs();
2889 
2890   // Drop into default successor.
2891   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2892                           MVT::Other, getControlRoot(),
2893                           DAG.getBasicBlock(Return)));
2894 }
2895 
2896 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2897   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2898 }
2899 
2900 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2901   assert(FuncInfo.MBB->isEHPad() &&
2902          "Call to landingpad not in landing pad!");
2903 
2904   // If there aren't registers to copy the values into (e.g., during SjLj
2905   // exceptions), then don't bother to create these DAG nodes.
2906   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2907   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2908   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2909       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2910     return;
2911 
2912   // If landingpad's return type is token type, we don't create DAG nodes
2913   // for its exception pointer and selector value. The extraction of exception
2914   // pointer or selector value from token type landingpads is not currently
2915   // supported.
2916   if (LP.getType()->isTokenTy())
2917     return;
2918 
2919   SmallVector<EVT, 2> ValueVTs;
2920   SDLoc dl = getCurSDLoc();
2921   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2922   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2923 
2924   // Get the two live-in registers as SDValues. The physregs have already been
2925   // copied into virtual registers.
2926   SDValue Ops[2];
2927   if (FuncInfo.ExceptionPointerVirtReg) {
2928     Ops[0] = DAG.getZExtOrTrunc(
2929         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2930                            FuncInfo.ExceptionPointerVirtReg,
2931                            TLI.getPointerTy(DAG.getDataLayout())),
2932         dl, ValueVTs[0]);
2933   } else {
2934     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2935   }
2936   Ops[1] = DAG.getZExtOrTrunc(
2937       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2938                          FuncInfo.ExceptionSelectorVirtReg,
2939                          TLI.getPointerTy(DAG.getDataLayout())),
2940       dl, ValueVTs[1]);
2941 
2942   // Merge into one.
2943   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2944                             DAG.getVTList(ValueVTs), Ops);
2945   setValue(&LP, Res);
2946 }
2947 
2948 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2949                                            MachineBasicBlock *Last) {
2950   // Update JTCases.
2951   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2952     if (SL->JTCases[i].first.HeaderBB == First)
2953       SL->JTCases[i].first.HeaderBB = Last;
2954 
2955   // Update BitTestCases.
2956   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2957     if (SL->BitTestCases[i].Parent == First)
2958       SL->BitTestCases[i].Parent = Last;
2959 }
2960 
2961 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2962   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2963 
2964   // Update machine-CFG edges with unique successors.
2965   SmallSet<BasicBlock*, 32> Done;
2966   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2967     BasicBlock *BB = I.getSuccessor(i);
2968     bool Inserted = Done.insert(BB).second;
2969     if (!Inserted)
2970         continue;
2971 
2972     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2973     addSuccessorWithProb(IndirectBrMBB, Succ);
2974   }
2975   IndirectBrMBB->normalizeSuccProbs();
2976 
2977   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2978                           MVT::Other, getControlRoot(),
2979                           getValue(I.getAddress())));
2980 }
2981 
2982 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2983   if (!DAG.getTarget().Options.TrapUnreachable)
2984     return;
2985 
2986   // We may be able to ignore unreachable behind a noreturn call.
2987   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2988     const BasicBlock &BB = *I.getParent();
2989     if (&I != &BB.front()) {
2990       BasicBlock::const_iterator PredI =
2991         std::prev(BasicBlock::const_iterator(&I));
2992       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2993         if (Call->doesNotReturn())
2994           return;
2995       }
2996     }
2997   }
2998 
2999   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3000 }
3001 
3002 void SelectionDAGBuilder::visitFSub(const User &I) {
3003   // -0.0 - X --> fneg
3004   Type *Ty = I.getType();
3005   if (isa<Constant>(I.getOperand(0)) &&
3006       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
3007     SDValue Op2 = getValue(I.getOperand(1));
3008     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
3009                              Op2.getValueType(), Op2));
3010     return;
3011   }
3012 
3013   visitBinary(I, ISD::FSUB);
3014 }
3015 
3016 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3017   SDNodeFlags Flags;
3018 
3019   SDValue Op = getValue(I.getOperand(0));
3020   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3021                                     Op, Flags);
3022   setValue(&I, UnNodeValue);
3023 }
3024 
3025 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3026   SDNodeFlags Flags;
3027   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3028     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3029     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3030   }
3031   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3032     Flags.setExact(ExactOp->isExact());
3033   }
3034 
3035   SDValue Op1 = getValue(I.getOperand(0));
3036   SDValue Op2 = getValue(I.getOperand(1));
3037   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3038                                      Op1, Op2, Flags);
3039   setValue(&I, BinNodeValue);
3040 }
3041 
3042 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3043   SDValue Op1 = getValue(I.getOperand(0));
3044   SDValue Op2 = getValue(I.getOperand(1));
3045 
3046   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3047       Op1.getValueType(), DAG.getDataLayout());
3048 
3049   // Coerce the shift amount to the right type if we can.
3050   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3051     unsigned ShiftSize = ShiftTy.getSizeInBits();
3052     unsigned Op2Size = Op2.getValueSizeInBits();
3053     SDLoc DL = getCurSDLoc();
3054 
3055     // If the operand is smaller than the shift count type, promote it.
3056     if (ShiftSize > Op2Size)
3057       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3058 
3059     // If the operand is larger than the shift count type but the shift
3060     // count type has enough bits to represent any shift value, truncate
3061     // it now. This is a common case and it exposes the truncate to
3062     // optimization early.
3063     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3064       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3065     // Otherwise we'll need to temporarily settle for some other convenient
3066     // type.  Type legalization will make adjustments once the shiftee is split.
3067     else
3068       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3069   }
3070 
3071   bool nuw = false;
3072   bool nsw = false;
3073   bool exact = false;
3074 
3075   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3076 
3077     if (const OverflowingBinaryOperator *OFBinOp =
3078             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3079       nuw = OFBinOp->hasNoUnsignedWrap();
3080       nsw = OFBinOp->hasNoSignedWrap();
3081     }
3082     if (const PossiblyExactOperator *ExactOp =
3083             dyn_cast<const PossiblyExactOperator>(&I))
3084       exact = ExactOp->isExact();
3085   }
3086   SDNodeFlags Flags;
3087   Flags.setExact(exact);
3088   Flags.setNoSignedWrap(nsw);
3089   Flags.setNoUnsignedWrap(nuw);
3090   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3091                             Flags);
3092   setValue(&I, Res);
3093 }
3094 
3095 void SelectionDAGBuilder::visitSDiv(const User &I) {
3096   SDValue Op1 = getValue(I.getOperand(0));
3097   SDValue Op2 = getValue(I.getOperand(1));
3098 
3099   SDNodeFlags Flags;
3100   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3101                  cast<PossiblyExactOperator>(&I)->isExact());
3102   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3103                            Op2, Flags));
3104 }
3105 
3106 void SelectionDAGBuilder::visitICmp(const User &I) {
3107   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3108   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3109     predicate = IC->getPredicate();
3110   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3111     predicate = ICmpInst::Predicate(IC->getPredicate());
3112   SDValue Op1 = getValue(I.getOperand(0));
3113   SDValue Op2 = getValue(I.getOperand(1));
3114   ISD::CondCode Opcode = getICmpCondCode(predicate);
3115 
3116   auto &TLI = DAG.getTargetLoweringInfo();
3117   EVT MemVT =
3118       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3119 
3120   // If a pointer's DAG type is larger than its memory type then the DAG values
3121   // are zero-extended. This breaks signed comparisons so truncate back to the
3122   // underlying type before doing the compare.
3123   if (Op1.getValueType() != MemVT) {
3124     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3125     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3126   }
3127 
3128   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3129                                                         I.getType());
3130   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3131 }
3132 
3133 void SelectionDAGBuilder::visitFCmp(const User &I) {
3134   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3135   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3136     predicate = FC->getPredicate();
3137   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3138     predicate = FCmpInst::Predicate(FC->getPredicate());
3139   SDValue Op1 = getValue(I.getOperand(0));
3140   SDValue Op2 = getValue(I.getOperand(1));
3141 
3142   ISD::CondCode Condition = getFCmpCondCode(predicate);
3143   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3144   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3145     Condition = getFCmpCodeWithoutNaN(Condition);
3146 
3147   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3148                                                         I.getType());
3149   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3150 }
3151 
3152 // Check if the condition of the select has one use or two users that are both
3153 // selects with the same condition.
3154 static bool hasOnlySelectUsers(const Value *Cond) {
3155   return llvm::all_of(Cond->users(), [](const Value *V) {
3156     return isa<SelectInst>(V);
3157   });
3158 }
3159 
3160 void SelectionDAGBuilder::visitSelect(const User &I) {
3161   SmallVector<EVT, 4> ValueVTs;
3162   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3163                   ValueVTs);
3164   unsigned NumValues = ValueVTs.size();
3165   if (NumValues == 0) return;
3166 
3167   SmallVector<SDValue, 4> Values(NumValues);
3168   SDValue Cond     = getValue(I.getOperand(0));
3169   SDValue LHSVal   = getValue(I.getOperand(1));
3170   SDValue RHSVal   = getValue(I.getOperand(2));
3171   SmallVector<SDValue, 1> BaseOps(1, Cond);
3172   ISD::NodeType OpCode =
3173       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3174 
3175   bool IsUnaryAbs = false;
3176 
3177   // Min/max matching is only viable if all output VTs are the same.
3178   if (is_splat(ValueVTs)) {
3179     EVT VT = ValueVTs[0];
3180     LLVMContext &Ctx = *DAG.getContext();
3181     auto &TLI = DAG.getTargetLoweringInfo();
3182 
3183     // We care about the legality of the operation after it has been type
3184     // legalized.
3185     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3186       VT = TLI.getTypeToTransformTo(Ctx, VT);
3187 
3188     // If the vselect is legal, assume we want to leave this as a vector setcc +
3189     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3190     // min/max is legal on the scalar type.
3191     bool UseScalarMinMax = VT.isVector() &&
3192       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3193 
3194     Value *LHS, *RHS;
3195     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3196     ISD::NodeType Opc = ISD::DELETED_NODE;
3197     switch (SPR.Flavor) {
3198     case SPF_UMAX:    Opc = ISD::UMAX; break;
3199     case SPF_UMIN:    Opc = ISD::UMIN; break;
3200     case SPF_SMAX:    Opc = ISD::SMAX; break;
3201     case SPF_SMIN:    Opc = ISD::SMIN; break;
3202     case SPF_FMINNUM:
3203       switch (SPR.NaNBehavior) {
3204       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3205       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3206       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3207       case SPNB_RETURNS_ANY: {
3208         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3209           Opc = ISD::FMINNUM;
3210         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3211           Opc = ISD::FMINIMUM;
3212         else if (UseScalarMinMax)
3213           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3214             ISD::FMINNUM : ISD::FMINIMUM;
3215         break;
3216       }
3217       }
3218       break;
3219     case SPF_FMAXNUM:
3220       switch (SPR.NaNBehavior) {
3221       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3222       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3223       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3224       case SPNB_RETURNS_ANY:
3225 
3226         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3227           Opc = ISD::FMAXNUM;
3228         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3229           Opc = ISD::FMAXIMUM;
3230         else if (UseScalarMinMax)
3231           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3232             ISD::FMAXNUM : ISD::FMAXIMUM;
3233         break;
3234       }
3235       break;
3236     case SPF_ABS:
3237       IsUnaryAbs = true;
3238       Opc = ISD::ABS;
3239       break;
3240     case SPF_NABS:
3241       // TODO: we need to produce sub(0, abs(X)).
3242     default: break;
3243     }
3244 
3245     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3246         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3247          (UseScalarMinMax &&
3248           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3249         // If the underlying comparison instruction is used by any other
3250         // instruction, the consumed instructions won't be destroyed, so it is
3251         // not profitable to convert to a min/max.
3252         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3253       OpCode = Opc;
3254       LHSVal = getValue(LHS);
3255       RHSVal = getValue(RHS);
3256       BaseOps.clear();
3257     }
3258 
3259     if (IsUnaryAbs) {
3260       OpCode = Opc;
3261       LHSVal = getValue(LHS);
3262       BaseOps.clear();
3263     }
3264   }
3265 
3266   if (IsUnaryAbs) {
3267     for (unsigned i = 0; i != NumValues; ++i) {
3268       Values[i] =
3269           DAG.getNode(OpCode, getCurSDLoc(),
3270                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3271                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3272     }
3273   } else {
3274     for (unsigned i = 0; i != NumValues; ++i) {
3275       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3276       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3277       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3278       Values[i] = DAG.getNode(
3279           OpCode, getCurSDLoc(),
3280           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3281     }
3282   }
3283 
3284   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3285                            DAG.getVTList(ValueVTs), Values));
3286 }
3287 
3288 void SelectionDAGBuilder::visitTrunc(const User &I) {
3289   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3290   SDValue N = getValue(I.getOperand(0));
3291   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3292                                                         I.getType());
3293   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3294 }
3295 
3296 void SelectionDAGBuilder::visitZExt(const User &I) {
3297   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3298   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3299   SDValue N = getValue(I.getOperand(0));
3300   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3301                                                         I.getType());
3302   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3303 }
3304 
3305 void SelectionDAGBuilder::visitSExt(const User &I) {
3306   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3307   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3308   SDValue N = getValue(I.getOperand(0));
3309   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3310                                                         I.getType());
3311   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3312 }
3313 
3314 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3315   // FPTrunc is never a no-op cast, no need to check
3316   SDValue N = getValue(I.getOperand(0));
3317   SDLoc dl = getCurSDLoc();
3318   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3319   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3320   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3321                            DAG.getTargetConstant(
3322                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3323 }
3324 
3325 void SelectionDAGBuilder::visitFPExt(const User &I) {
3326   // FPExt is never a no-op cast, no need to check
3327   SDValue N = getValue(I.getOperand(0));
3328   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3329                                                         I.getType());
3330   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3331 }
3332 
3333 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3334   // FPToUI is never a no-op cast, no need to check
3335   SDValue N = getValue(I.getOperand(0));
3336   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3337                                                         I.getType());
3338   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3339 }
3340 
3341 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3342   // FPToSI is never a no-op cast, no need to check
3343   SDValue N = getValue(I.getOperand(0));
3344   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3345                                                         I.getType());
3346   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3347 }
3348 
3349 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3350   // UIToFP is never a no-op cast, no need to check
3351   SDValue N = getValue(I.getOperand(0));
3352   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3353                                                         I.getType());
3354   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3355 }
3356 
3357 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3358   // SIToFP is never a no-op cast, no need to check
3359   SDValue N = getValue(I.getOperand(0));
3360   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3361                                                         I.getType());
3362   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3363 }
3364 
3365 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3366   // What to do depends on the size of the integer and the size of the pointer.
3367   // We can either truncate, zero extend, or no-op, accordingly.
3368   SDValue N = getValue(I.getOperand(0));
3369   auto &TLI = DAG.getTargetLoweringInfo();
3370   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3371                                                         I.getType());
3372   EVT PtrMemVT =
3373       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3374   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3375   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3376   setValue(&I, N);
3377 }
3378 
3379 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3380   // What to do depends on the size of the integer and the size of the pointer.
3381   // We can either truncate, zero extend, or no-op, accordingly.
3382   SDValue N = getValue(I.getOperand(0));
3383   auto &TLI = DAG.getTargetLoweringInfo();
3384   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3385   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3386   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3387   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3388   setValue(&I, N);
3389 }
3390 
3391 void SelectionDAGBuilder::visitBitCast(const User &I) {
3392   SDValue N = getValue(I.getOperand(0));
3393   SDLoc dl = getCurSDLoc();
3394   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3395                                                         I.getType());
3396 
3397   // BitCast assures us that source and destination are the same size so this is
3398   // either a BITCAST or a no-op.
3399   if (DestVT != N.getValueType())
3400     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3401                              DestVT, N)); // convert types.
3402   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3403   // might fold any kind of constant expression to an integer constant and that
3404   // is not what we are looking for. Only recognize a bitcast of a genuine
3405   // constant integer as an opaque constant.
3406   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3407     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3408                                  /*isOpaque*/true));
3409   else
3410     setValue(&I, N);            // noop cast.
3411 }
3412 
3413 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3414   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3415   const Value *SV = I.getOperand(0);
3416   SDValue N = getValue(SV);
3417   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3418 
3419   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3420   unsigned DestAS = I.getType()->getPointerAddressSpace();
3421 
3422   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3423     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3424 
3425   setValue(&I, N);
3426 }
3427 
3428 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3429   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3430   SDValue InVec = getValue(I.getOperand(0));
3431   SDValue InVal = getValue(I.getOperand(1));
3432   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3433                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3434   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3435                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3436                            InVec, InVal, InIdx));
3437 }
3438 
3439 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3440   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3441   SDValue InVec = getValue(I.getOperand(0));
3442   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3443                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3444   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3445                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3446                            InVec, InIdx));
3447 }
3448 
3449 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3450   SDValue Src1 = getValue(I.getOperand(0));
3451   SDValue Src2 = getValue(I.getOperand(1));
3452   ArrayRef<int> Mask;
3453   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3454     Mask = SVI->getShuffleMask();
3455   else
3456     Mask = cast<ConstantExpr>(I).getShuffleMask();
3457   SDLoc DL = getCurSDLoc();
3458   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3459   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3460   EVT SrcVT = Src1.getValueType();
3461 
3462   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3463       VT.isScalableVector()) {
3464     // Canonical splat form of first element of first input vector.
3465     SDValue FirstElt =
3466         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3467                     DAG.getVectorIdxConstant(0, DL));
3468     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3469     return;
3470   }
3471 
3472   // For now, we only handle splats for scalable vectors.
3473   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3474   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3475   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3476 
3477   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3478   unsigned MaskNumElts = Mask.size();
3479 
3480   if (SrcNumElts == MaskNumElts) {
3481     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3482     return;
3483   }
3484 
3485   // Normalize the shuffle vector since mask and vector length don't match.
3486   if (SrcNumElts < MaskNumElts) {
3487     // Mask is longer than the source vectors. We can use concatenate vector to
3488     // make the mask and vectors lengths match.
3489 
3490     if (MaskNumElts % SrcNumElts == 0) {
3491       // Mask length is a multiple of the source vector length.
3492       // Check if the shuffle is some kind of concatenation of the input
3493       // vectors.
3494       unsigned NumConcat = MaskNumElts / SrcNumElts;
3495       bool IsConcat = true;
3496       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3497       for (unsigned i = 0; i != MaskNumElts; ++i) {
3498         int Idx = Mask[i];
3499         if (Idx < 0)
3500           continue;
3501         // Ensure the indices in each SrcVT sized piece are sequential and that
3502         // the same source is used for the whole piece.
3503         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3504             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3505              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3506           IsConcat = false;
3507           break;
3508         }
3509         // Remember which source this index came from.
3510         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3511       }
3512 
3513       // The shuffle is concatenating multiple vectors together. Just emit
3514       // a CONCAT_VECTORS operation.
3515       if (IsConcat) {
3516         SmallVector<SDValue, 8> ConcatOps;
3517         for (auto Src : ConcatSrcs) {
3518           if (Src < 0)
3519             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3520           else if (Src == 0)
3521             ConcatOps.push_back(Src1);
3522           else
3523             ConcatOps.push_back(Src2);
3524         }
3525         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3526         return;
3527       }
3528     }
3529 
3530     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3531     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3532     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3533                                     PaddedMaskNumElts);
3534 
3535     // Pad both vectors with undefs to make them the same length as the mask.
3536     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3537 
3538     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3539     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3540     MOps1[0] = Src1;
3541     MOps2[0] = Src2;
3542 
3543     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3544     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3545 
3546     // Readjust mask for new input vector length.
3547     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3548     for (unsigned i = 0; i != MaskNumElts; ++i) {
3549       int Idx = Mask[i];
3550       if (Idx >= (int)SrcNumElts)
3551         Idx -= SrcNumElts - PaddedMaskNumElts;
3552       MappedOps[i] = Idx;
3553     }
3554 
3555     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3556 
3557     // If the concatenated vector was padded, extract a subvector with the
3558     // correct number of elements.
3559     if (MaskNumElts != PaddedMaskNumElts)
3560       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3561                            DAG.getVectorIdxConstant(0, DL));
3562 
3563     setValue(&I, Result);
3564     return;
3565   }
3566 
3567   if (SrcNumElts > MaskNumElts) {
3568     // Analyze the access pattern of the vector to see if we can extract
3569     // two subvectors and do the shuffle.
3570     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3571     bool CanExtract = true;
3572     for (int Idx : Mask) {
3573       unsigned Input = 0;
3574       if (Idx < 0)
3575         continue;
3576 
3577       if (Idx >= (int)SrcNumElts) {
3578         Input = 1;
3579         Idx -= SrcNumElts;
3580       }
3581 
3582       // If all the indices come from the same MaskNumElts sized portion of
3583       // the sources we can use extract. Also make sure the extract wouldn't
3584       // extract past the end of the source.
3585       int NewStartIdx = alignDown(Idx, MaskNumElts);
3586       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3587           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3588         CanExtract = false;
3589       // Make sure we always update StartIdx as we use it to track if all
3590       // elements are undef.
3591       StartIdx[Input] = NewStartIdx;
3592     }
3593 
3594     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3595       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3596       return;
3597     }
3598     if (CanExtract) {
3599       // Extract appropriate subvector and generate a vector shuffle
3600       for (unsigned Input = 0; Input < 2; ++Input) {
3601         SDValue &Src = Input == 0 ? Src1 : Src2;
3602         if (StartIdx[Input] < 0)
3603           Src = DAG.getUNDEF(VT);
3604         else {
3605           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3606                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3607         }
3608       }
3609 
3610       // Calculate new mask.
3611       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3612       for (int &Idx : MappedOps) {
3613         if (Idx >= (int)SrcNumElts)
3614           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3615         else if (Idx >= 0)
3616           Idx -= StartIdx[0];
3617       }
3618 
3619       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3620       return;
3621     }
3622   }
3623 
3624   // We can't use either concat vectors or extract subvectors so fall back to
3625   // replacing the shuffle with extract and build vector.
3626   // to insert and build vector.
3627   EVT EltVT = VT.getVectorElementType();
3628   SmallVector<SDValue,8> Ops;
3629   for (int Idx : Mask) {
3630     SDValue Res;
3631 
3632     if (Idx < 0) {
3633       Res = DAG.getUNDEF(EltVT);
3634     } else {
3635       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3636       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3637 
3638       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3639                         DAG.getVectorIdxConstant(Idx, DL));
3640     }
3641 
3642     Ops.push_back(Res);
3643   }
3644 
3645   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3646 }
3647 
3648 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3649   ArrayRef<unsigned> Indices;
3650   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3651     Indices = IV->getIndices();
3652   else
3653     Indices = cast<ConstantExpr>(&I)->getIndices();
3654 
3655   const Value *Op0 = I.getOperand(0);
3656   const Value *Op1 = I.getOperand(1);
3657   Type *AggTy = I.getType();
3658   Type *ValTy = Op1->getType();
3659   bool IntoUndef = isa<UndefValue>(Op0);
3660   bool FromUndef = isa<UndefValue>(Op1);
3661 
3662   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3663 
3664   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3665   SmallVector<EVT, 4> AggValueVTs;
3666   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3667   SmallVector<EVT, 4> ValValueVTs;
3668   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3669 
3670   unsigned NumAggValues = AggValueVTs.size();
3671   unsigned NumValValues = ValValueVTs.size();
3672   SmallVector<SDValue, 4> Values(NumAggValues);
3673 
3674   // Ignore an insertvalue that produces an empty object
3675   if (!NumAggValues) {
3676     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3677     return;
3678   }
3679 
3680   SDValue Agg = getValue(Op0);
3681   unsigned i = 0;
3682   // Copy the beginning value(s) from the original aggregate.
3683   for (; i != LinearIndex; ++i)
3684     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3685                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3686   // Copy values from the inserted value(s).
3687   if (NumValValues) {
3688     SDValue Val = getValue(Op1);
3689     for (; i != LinearIndex + NumValValues; ++i)
3690       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3691                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3692   }
3693   // Copy remaining value(s) from the original aggregate.
3694   for (; i != NumAggValues; ++i)
3695     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3696                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3697 
3698   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3699                            DAG.getVTList(AggValueVTs), Values));
3700 }
3701 
3702 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3703   ArrayRef<unsigned> Indices;
3704   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3705     Indices = EV->getIndices();
3706   else
3707     Indices = cast<ConstantExpr>(&I)->getIndices();
3708 
3709   const Value *Op0 = I.getOperand(0);
3710   Type *AggTy = Op0->getType();
3711   Type *ValTy = I.getType();
3712   bool OutOfUndef = isa<UndefValue>(Op0);
3713 
3714   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3715 
3716   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3717   SmallVector<EVT, 4> ValValueVTs;
3718   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3719 
3720   unsigned NumValValues = ValValueVTs.size();
3721 
3722   // Ignore a extractvalue that produces an empty object
3723   if (!NumValValues) {
3724     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3725     return;
3726   }
3727 
3728   SmallVector<SDValue, 4> Values(NumValValues);
3729 
3730   SDValue Agg = getValue(Op0);
3731   // Copy out the selected value(s).
3732   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3733     Values[i - LinearIndex] =
3734       OutOfUndef ?
3735         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3736         SDValue(Agg.getNode(), Agg.getResNo() + i);
3737 
3738   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3739                            DAG.getVTList(ValValueVTs), Values));
3740 }
3741 
3742 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3743   Value *Op0 = I.getOperand(0);
3744   // Note that the pointer operand may be a vector of pointers. Take the scalar
3745   // element which holds a pointer.
3746   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3747   SDValue N = getValue(Op0);
3748   SDLoc dl = getCurSDLoc();
3749   auto &TLI = DAG.getTargetLoweringInfo();
3750   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3751   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3752 
3753   // Normalize Vector GEP - all scalar operands should be converted to the
3754   // splat vector.
3755   bool IsVectorGEP = I.getType()->isVectorTy();
3756   ElementCount VectorElementCount =
3757       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3758                   : ElementCount(0, false);
3759 
3760   if (IsVectorGEP && !N.getValueType().isVector()) {
3761     LLVMContext &Context = *DAG.getContext();
3762     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3763     if (VectorElementCount.Scalable)
3764       N = DAG.getSplatVector(VT, dl, N);
3765     else
3766       N = DAG.getSplatBuildVector(VT, dl, N);
3767   }
3768 
3769   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3770        GTI != E; ++GTI) {
3771     const Value *Idx = GTI.getOperand();
3772     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3773       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3774       if (Field) {
3775         // N = N + Offset
3776         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3777 
3778         // In an inbounds GEP with an offset that is nonnegative even when
3779         // interpreted as signed, assume there is no unsigned overflow.
3780         SDNodeFlags Flags;
3781         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3782           Flags.setNoUnsignedWrap(true);
3783 
3784         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3785                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3786       }
3787     } else {
3788       // IdxSize is the width of the arithmetic according to IR semantics.
3789       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3790       // (and fix up the result later).
3791       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3792       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3793       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3794       // We intentionally mask away the high bits here; ElementSize may not
3795       // fit in IdxTy.
3796       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3797       bool ElementScalable = ElementSize.isScalable();
3798 
3799       // If this is a scalar constant or a splat vector of constants,
3800       // handle it quickly.
3801       const auto *C = dyn_cast<Constant>(Idx);
3802       if (C && isa<VectorType>(C->getType()))
3803         C = C->getSplatValue();
3804 
3805       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3806       if (CI && CI->isZero())
3807         continue;
3808       if (CI && !ElementScalable) {
3809         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3810         LLVMContext &Context = *DAG.getContext();
3811         SDValue OffsVal;
3812         if (IsVectorGEP)
3813           OffsVal = DAG.getConstant(
3814               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3815         else
3816           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3817 
3818         // In an inbounds GEP with an offset that is nonnegative even when
3819         // interpreted as signed, assume there is no unsigned overflow.
3820         SDNodeFlags Flags;
3821         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3822           Flags.setNoUnsignedWrap(true);
3823 
3824         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3825 
3826         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3827         continue;
3828       }
3829 
3830       // N = N + Idx * ElementMul;
3831       SDValue IdxN = getValue(Idx);
3832 
3833       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3834         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3835                                   VectorElementCount);
3836         if (VectorElementCount.Scalable)
3837           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3838         else
3839           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3840       }
3841 
3842       // If the index is smaller or larger than intptr_t, truncate or extend
3843       // it.
3844       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3845 
3846       if (ElementScalable) {
3847         EVT VScaleTy = N.getValueType().getScalarType();
3848         SDValue VScale = DAG.getNode(
3849             ISD::VSCALE, dl, VScaleTy,
3850             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3851         if (IsVectorGEP)
3852           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3853         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3854       } else {
3855         // If this is a multiply by a power of two, turn it into a shl
3856         // immediately.  This is a very common case.
3857         if (ElementMul != 1) {
3858           if (ElementMul.isPowerOf2()) {
3859             unsigned Amt = ElementMul.logBase2();
3860             IdxN = DAG.getNode(ISD::SHL, dl,
3861                                N.getValueType(), IdxN,
3862                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3863           } else {
3864             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3865                                             IdxN.getValueType());
3866             IdxN = DAG.getNode(ISD::MUL, dl,
3867                                N.getValueType(), IdxN, Scale);
3868           }
3869         }
3870       }
3871 
3872       N = DAG.getNode(ISD::ADD, dl,
3873                       N.getValueType(), N, IdxN);
3874     }
3875   }
3876 
3877   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3878     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3879 
3880   setValue(&I, N);
3881 }
3882 
3883 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3884   // If this is a fixed sized alloca in the entry block of the function,
3885   // allocate it statically on the stack.
3886   if (FuncInfo.StaticAllocaMap.count(&I))
3887     return;   // getValue will auto-populate this.
3888 
3889   SDLoc dl = getCurSDLoc();
3890   Type *Ty = I.getAllocatedType();
3891   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3892   auto &DL = DAG.getDataLayout();
3893   uint64_t TySize = DL.getTypeAllocSize(Ty);
3894   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3895 
3896   SDValue AllocSize = getValue(I.getArraySize());
3897 
3898   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3899   if (AllocSize.getValueType() != IntPtr)
3900     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3901 
3902   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3903                           AllocSize,
3904                           DAG.getConstant(TySize, dl, IntPtr));
3905 
3906   // Handle alignment.  If the requested alignment is less than or equal to
3907   // the stack alignment, ignore it.  If the size is greater than or equal to
3908   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3909   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
3910   if (*Alignment <= StackAlign)
3911     Alignment = None;
3912 
3913   const uint64_t StackAlignMask = StackAlign.value() - 1U;
3914   // Round the size of the allocation up to the stack alignment size
3915   // by add SA-1 to the size. This doesn't overflow because we're computing
3916   // an address inside an alloca.
3917   SDNodeFlags Flags;
3918   Flags.setNoUnsignedWrap(true);
3919   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3920                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
3921 
3922   // Mask out the low bits for alignment purposes.
3923   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3924                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
3925 
3926   SDValue Ops[] = {
3927       getRoot(), AllocSize,
3928       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
3929   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3930   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3931   setValue(&I, DSA);
3932   DAG.setRoot(DSA.getValue(1));
3933 
3934   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3935 }
3936 
3937 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3938   if (I.isAtomic())
3939     return visitAtomicLoad(I);
3940 
3941   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3942   const Value *SV = I.getOperand(0);
3943   if (TLI.supportSwiftError()) {
3944     // Swifterror values can come from either a function parameter with
3945     // swifterror attribute or an alloca with swifterror attribute.
3946     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3947       if (Arg->hasSwiftErrorAttr())
3948         return visitLoadFromSwiftError(I);
3949     }
3950 
3951     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3952       if (Alloca->isSwiftError())
3953         return visitLoadFromSwiftError(I);
3954     }
3955   }
3956 
3957   SDValue Ptr = getValue(SV);
3958 
3959   Type *Ty = I.getType();
3960   Align Alignment = I.getAlign();
3961 
3962   AAMDNodes AAInfo;
3963   I.getAAMetadata(AAInfo);
3964   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3965 
3966   SmallVector<EVT, 4> ValueVTs, MemVTs;
3967   SmallVector<uint64_t, 4> Offsets;
3968   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
3969   unsigned NumValues = ValueVTs.size();
3970   if (NumValues == 0)
3971     return;
3972 
3973   bool isVolatile = I.isVolatile();
3974 
3975   SDValue Root;
3976   bool ConstantMemory = false;
3977   if (isVolatile)
3978     // Serialize volatile loads with other side effects.
3979     Root = getRoot();
3980   else if (NumValues > MaxParallelChains)
3981     Root = getMemoryRoot();
3982   else if (AA &&
3983            AA->pointsToConstantMemory(MemoryLocation(
3984                SV,
3985                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3986                AAInfo))) {
3987     // Do not serialize (non-volatile) loads of constant memory with anything.
3988     Root = DAG.getEntryNode();
3989     ConstantMemory = true;
3990   } else {
3991     // Do not serialize non-volatile loads against each other.
3992     Root = DAG.getRoot();
3993   }
3994 
3995   SDLoc dl = getCurSDLoc();
3996 
3997   if (isVolatile)
3998     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3999 
4000   // An aggregate load cannot wrap around the address space, so offsets to its
4001   // parts don't wrap either.
4002   SDNodeFlags Flags;
4003   Flags.setNoUnsignedWrap(true);
4004 
4005   SmallVector<SDValue, 4> Values(NumValues);
4006   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4007   EVT PtrVT = Ptr.getValueType();
4008 
4009   MachineMemOperand::Flags MMOFlags
4010     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4011 
4012   unsigned ChainI = 0;
4013   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4014     // Serializing loads here may result in excessive register pressure, and
4015     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4016     // could recover a bit by hoisting nodes upward in the chain by recognizing
4017     // they are side-effect free or do not alias. The optimizer should really
4018     // avoid this case by converting large object/array copies to llvm.memcpy
4019     // (MaxParallelChains should always remain as failsafe).
4020     if (ChainI == MaxParallelChains) {
4021       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4022       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4023                                   makeArrayRef(Chains.data(), ChainI));
4024       Root = Chain;
4025       ChainI = 0;
4026     }
4027     SDValue A = DAG.getNode(ISD::ADD, dl,
4028                             PtrVT, Ptr,
4029                             DAG.getConstant(Offsets[i], dl, PtrVT),
4030                             Flags);
4031 
4032     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4033                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4034                             MMOFlags, AAInfo, Ranges);
4035     Chains[ChainI] = L.getValue(1);
4036 
4037     if (MemVTs[i] != ValueVTs[i])
4038       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4039 
4040     Values[i] = L;
4041   }
4042 
4043   if (!ConstantMemory) {
4044     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4045                                 makeArrayRef(Chains.data(), ChainI));
4046     if (isVolatile)
4047       DAG.setRoot(Chain);
4048     else
4049       PendingLoads.push_back(Chain);
4050   }
4051 
4052   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4053                            DAG.getVTList(ValueVTs), Values));
4054 }
4055 
4056 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4057   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4058          "call visitStoreToSwiftError when backend supports swifterror");
4059 
4060   SmallVector<EVT, 4> ValueVTs;
4061   SmallVector<uint64_t, 4> Offsets;
4062   const Value *SrcV = I.getOperand(0);
4063   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4064                   SrcV->getType(), ValueVTs, &Offsets);
4065   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4066          "expect a single EVT for swifterror");
4067 
4068   SDValue Src = getValue(SrcV);
4069   // Create a virtual register, then update the virtual register.
4070   Register VReg =
4071       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4072   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4073   // Chain can be getRoot or getControlRoot.
4074   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4075                                       SDValue(Src.getNode(), Src.getResNo()));
4076   DAG.setRoot(CopyNode);
4077 }
4078 
4079 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4080   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4081          "call visitLoadFromSwiftError when backend supports swifterror");
4082 
4083   assert(!I.isVolatile() &&
4084          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4085          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4086          "Support volatile, non temporal, invariant for load_from_swift_error");
4087 
4088   const Value *SV = I.getOperand(0);
4089   Type *Ty = I.getType();
4090   AAMDNodes AAInfo;
4091   I.getAAMetadata(AAInfo);
4092   assert(
4093       (!AA ||
4094        !AA->pointsToConstantMemory(MemoryLocation(
4095            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4096            AAInfo))) &&
4097       "load_from_swift_error should not be constant memory");
4098 
4099   SmallVector<EVT, 4> ValueVTs;
4100   SmallVector<uint64_t, 4> Offsets;
4101   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4102                   ValueVTs, &Offsets);
4103   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4104          "expect a single EVT for swifterror");
4105 
4106   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4107   SDValue L = DAG.getCopyFromReg(
4108       getRoot(), getCurSDLoc(),
4109       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4110 
4111   setValue(&I, L);
4112 }
4113 
4114 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4115   if (I.isAtomic())
4116     return visitAtomicStore(I);
4117 
4118   const Value *SrcV = I.getOperand(0);
4119   const Value *PtrV = I.getOperand(1);
4120 
4121   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4122   if (TLI.supportSwiftError()) {
4123     // Swifterror values can come from either a function parameter with
4124     // swifterror attribute or an alloca with swifterror attribute.
4125     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4126       if (Arg->hasSwiftErrorAttr())
4127         return visitStoreToSwiftError(I);
4128     }
4129 
4130     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4131       if (Alloca->isSwiftError())
4132         return visitStoreToSwiftError(I);
4133     }
4134   }
4135 
4136   SmallVector<EVT, 4> ValueVTs, MemVTs;
4137   SmallVector<uint64_t, 4> Offsets;
4138   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4139                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4140   unsigned NumValues = ValueVTs.size();
4141   if (NumValues == 0)
4142     return;
4143 
4144   // Get the lowered operands. Note that we do this after
4145   // checking if NumResults is zero, because with zero results
4146   // the operands won't have values in the map.
4147   SDValue Src = getValue(SrcV);
4148   SDValue Ptr = getValue(PtrV);
4149 
4150   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4151   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4152   SDLoc dl = getCurSDLoc();
4153   Align Alignment = I.getAlign();
4154   AAMDNodes AAInfo;
4155   I.getAAMetadata(AAInfo);
4156 
4157   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4158 
4159   // An aggregate load cannot wrap around the address space, so offsets to its
4160   // parts don't wrap either.
4161   SDNodeFlags Flags;
4162   Flags.setNoUnsignedWrap(true);
4163 
4164   unsigned ChainI = 0;
4165   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4166     // See visitLoad comments.
4167     if (ChainI == MaxParallelChains) {
4168       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4169                                   makeArrayRef(Chains.data(), ChainI));
4170       Root = Chain;
4171       ChainI = 0;
4172     }
4173     SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags);
4174     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4175     if (MemVTs[i] != ValueVTs[i])
4176       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4177     SDValue St =
4178         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4179                      Alignment, MMOFlags, AAInfo);
4180     Chains[ChainI] = St;
4181   }
4182 
4183   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4184                                   makeArrayRef(Chains.data(), ChainI));
4185   DAG.setRoot(StoreNode);
4186 }
4187 
4188 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4189                                            bool IsCompressing) {
4190   SDLoc sdl = getCurSDLoc();
4191 
4192   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4193                                MaybeAlign &Alignment) {
4194     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4195     Src0 = I.getArgOperand(0);
4196     Ptr = I.getArgOperand(1);
4197     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4198     Mask = I.getArgOperand(3);
4199   };
4200   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4201                                     MaybeAlign &Alignment) {
4202     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4203     Src0 = I.getArgOperand(0);
4204     Ptr = I.getArgOperand(1);
4205     Mask = I.getArgOperand(2);
4206     Alignment = None;
4207   };
4208 
4209   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4210   MaybeAlign Alignment;
4211   if (IsCompressing)
4212     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4213   else
4214     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4215 
4216   SDValue Ptr = getValue(PtrOperand);
4217   SDValue Src0 = getValue(Src0Operand);
4218   SDValue Mask = getValue(MaskOperand);
4219   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4220 
4221   EVT VT = Src0.getValueType();
4222   if (!Alignment)
4223     Alignment = DAG.getEVTAlign(VT);
4224 
4225   AAMDNodes AAInfo;
4226   I.getAAMetadata(AAInfo);
4227 
4228   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4229       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4230       // TODO: Make MachineMemOperands aware of scalable
4231       // vectors.
4232       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4233   SDValue StoreNode =
4234       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4235                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4236   DAG.setRoot(StoreNode);
4237   setValue(&I, StoreNode);
4238 }
4239 
4240 // Get a uniform base for the Gather/Scatter intrinsic.
4241 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4242 // We try to represent it as a base pointer + vector of indices.
4243 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4244 // The first operand of the GEP may be a single pointer or a vector of pointers
4245 // Example:
4246 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4247 //  or
4248 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4249 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4250 //
4251 // When the first GEP operand is a single pointer - it is the uniform base we
4252 // are looking for. If first operand of the GEP is a splat vector - we
4253 // extract the splat value and use it as a uniform base.
4254 // In all other cases the function returns 'false'.
4255 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4256                            ISD::MemIndexType &IndexType, SDValue &Scale,
4257                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4258   SelectionDAG& DAG = SDB->DAG;
4259   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4260   const DataLayout &DL = DAG.getDataLayout();
4261 
4262   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4263 
4264   // Handle splat constant pointer.
4265   if (auto *C = dyn_cast<Constant>(Ptr)) {
4266     C = C->getSplatValue();
4267     if (!C)
4268       return false;
4269 
4270     Base = SDB->getValue(C);
4271 
4272     unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements();
4273     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4274     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4275     IndexType = ISD::SIGNED_SCALED;
4276     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4277     return true;
4278   }
4279 
4280   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4281   if (!GEP || GEP->getParent() != CurBB)
4282     return false;
4283 
4284   if (GEP->getNumOperands() != 2)
4285     return false;
4286 
4287   const Value *BasePtr = GEP->getPointerOperand();
4288   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4289 
4290   // Make sure the base is scalar and the index is a vector.
4291   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4292     return false;
4293 
4294   Base = SDB->getValue(BasePtr);
4295   Index = SDB->getValue(IndexVal);
4296   IndexType = ISD::SIGNED_SCALED;
4297   Scale = DAG.getTargetConstant(
4298               DL.getTypeAllocSize(GEP->getResultElementType()),
4299               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4300   return true;
4301 }
4302 
4303 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4304   SDLoc sdl = getCurSDLoc();
4305 
4306   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4307   const Value *Ptr = I.getArgOperand(1);
4308   SDValue Src0 = getValue(I.getArgOperand(0));
4309   SDValue Mask = getValue(I.getArgOperand(3));
4310   EVT VT = Src0.getValueType();
4311   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4312                         ->getMaybeAlignValue()
4313                         .getValueOr(DAG.getEVTAlign(VT));
4314   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4315 
4316   AAMDNodes AAInfo;
4317   I.getAAMetadata(AAInfo);
4318 
4319   SDValue Base;
4320   SDValue Index;
4321   ISD::MemIndexType IndexType;
4322   SDValue Scale;
4323   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4324                                     I.getParent());
4325 
4326   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4327   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4328       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4329       // TODO: Make MachineMemOperands aware of scalable
4330       // vectors.
4331       MemoryLocation::UnknownSize, Alignment, AAInfo);
4332   if (!UniformBase) {
4333     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4334     Index = getValue(Ptr);
4335     IndexType = ISD::SIGNED_SCALED;
4336     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4337   }
4338   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4339   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4340                                          Ops, MMO, IndexType);
4341   DAG.setRoot(Scatter);
4342   setValue(&I, Scatter);
4343 }
4344 
4345 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4346   SDLoc sdl = getCurSDLoc();
4347 
4348   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4349                               MaybeAlign &Alignment) {
4350     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4351     Ptr = I.getArgOperand(0);
4352     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4353     Mask = I.getArgOperand(2);
4354     Src0 = I.getArgOperand(3);
4355   };
4356   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4357                                  MaybeAlign &Alignment) {
4358     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4359     Ptr = I.getArgOperand(0);
4360     Alignment = None;
4361     Mask = I.getArgOperand(1);
4362     Src0 = I.getArgOperand(2);
4363   };
4364 
4365   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4366   MaybeAlign Alignment;
4367   if (IsExpanding)
4368     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4369   else
4370     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4371 
4372   SDValue Ptr = getValue(PtrOperand);
4373   SDValue Src0 = getValue(Src0Operand);
4374   SDValue Mask = getValue(MaskOperand);
4375   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4376 
4377   EVT VT = Src0.getValueType();
4378   if (!Alignment)
4379     Alignment = DAG.getEVTAlign(VT);
4380 
4381   AAMDNodes AAInfo;
4382   I.getAAMetadata(AAInfo);
4383   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4384 
4385   // Do not serialize masked loads of constant memory with anything.
4386   MemoryLocation ML;
4387   if (VT.isScalableVector())
4388     ML = MemoryLocation(PtrOperand);
4389   else
4390     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4391                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4392                            AAInfo);
4393   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4394 
4395   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4396 
4397   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4398       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4399       // TODO: Make MachineMemOperands aware of scalable
4400       // vectors.
4401       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4402 
4403   SDValue Load =
4404       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4405                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4406   if (AddToChain)
4407     PendingLoads.push_back(Load.getValue(1));
4408   setValue(&I, Load);
4409 }
4410 
4411 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4412   SDLoc sdl = getCurSDLoc();
4413 
4414   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4415   const Value *Ptr = I.getArgOperand(0);
4416   SDValue Src0 = getValue(I.getArgOperand(3));
4417   SDValue Mask = getValue(I.getArgOperand(2));
4418 
4419   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4420   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4421   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4422                         ->getMaybeAlignValue()
4423                         .getValueOr(DAG.getEVTAlign(VT));
4424 
4425   AAMDNodes AAInfo;
4426   I.getAAMetadata(AAInfo);
4427   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4428 
4429   SDValue Root = DAG.getRoot();
4430   SDValue Base;
4431   SDValue Index;
4432   ISD::MemIndexType IndexType;
4433   SDValue Scale;
4434   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4435                                     I.getParent());
4436   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4437   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4438       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4439       // TODO: Make MachineMemOperands aware of scalable
4440       // vectors.
4441       MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges);
4442 
4443   if (!UniformBase) {
4444     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4445     Index = getValue(Ptr);
4446     IndexType = ISD::SIGNED_SCALED;
4447     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4448   }
4449   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4450   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4451                                        Ops, MMO, IndexType);
4452 
4453   PendingLoads.push_back(Gather.getValue(1));
4454   setValue(&I, Gather);
4455 }
4456 
4457 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4458   SDLoc dl = getCurSDLoc();
4459   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4460   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4461   SyncScope::ID SSID = I.getSyncScopeID();
4462 
4463   SDValue InChain = getRoot();
4464 
4465   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4466   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4467 
4468   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4469   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4470 
4471   MachineFunction &MF = DAG.getMachineFunction();
4472   MachineMemOperand *MMO = MF.getMachineMemOperand(
4473       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4474       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4475       FailureOrdering);
4476 
4477   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4478                                    dl, MemVT, VTs, InChain,
4479                                    getValue(I.getPointerOperand()),
4480                                    getValue(I.getCompareOperand()),
4481                                    getValue(I.getNewValOperand()), MMO);
4482 
4483   SDValue OutChain = L.getValue(2);
4484 
4485   setValue(&I, L);
4486   DAG.setRoot(OutChain);
4487 }
4488 
4489 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4490   SDLoc dl = getCurSDLoc();
4491   ISD::NodeType NT;
4492   switch (I.getOperation()) {
4493   default: llvm_unreachable("Unknown atomicrmw operation");
4494   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4495   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4496   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4497   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4498   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4499   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4500   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4501   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4502   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4503   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4504   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4505   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4506   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4507   }
4508   AtomicOrdering Ordering = I.getOrdering();
4509   SyncScope::ID SSID = I.getSyncScopeID();
4510 
4511   SDValue InChain = getRoot();
4512 
4513   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4514   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4515   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4516 
4517   MachineFunction &MF = DAG.getMachineFunction();
4518   MachineMemOperand *MMO = MF.getMachineMemOperand(
4519       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4520       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4521 
4522   SDValue L =
4523     DAG.getAtomic(NT, dl, MemVT, InChain,
4524                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4525                   MMO);
4526 
4527   SDValue OutChain = L.getValue(1);
4528 
4529   setValue(&I, L);
4530   DAG.setRoot(OutChain);
4531 }
4532 
4533 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4534   SDLoc dl = getCurSDLoc();
4535   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4536   SDValue Ops[3];
4537   Ops[0] = getRoot();
4538   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4539                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4540   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4541                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4542   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4543 }
4544 
4545 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4546   SDLoc dl = getCurSDLoc();
4547   AtomicOrdering Order = I.getOrdering();
4548   SyncScope::ID SSID = I.getSyncScopeID();
4549 
4550   SDValue InChain = getRoot();
4551 
4552   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4553   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4554   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4555 
4556   if (!TLI.supportsUnalignedAtomics() &&
4557       I.getAlignment() < MemVT.getSizeInBits() / 8)
4558     report_fatal_error("Cannot generate unaligned atomic load");
4559 
4560   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4561 
4562   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4563       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4564       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4565 
4566   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4567 
4568   SDValue Ptr = getValue(I.getPointerOperand());
4569 
4570   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4571     // TODO: Once this is better exercised by tests, it should be merged with
4572     // the normal path for loads to prevent future divergence.
4573     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4574     if (MemVT != VT)
4575       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4576 
4577     setValue(&I, L);
4578     SDValue OutChain = L.getValue(1);
4579     if (!I.isUnordered())
4580       DAG.setRoot(OutChain);
4581     else
4582       PendingLoads.push_back(OutChain);
4583     return;
4584   }
4585 
4586   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4587                             Ptr, MMO);
4588 
4589   SDValue OutChain = L.getValue(1);
4590   if (MemVT != VT)
4591     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4592 
4593   setValue(&I, L);
4594   DAG.setRoot(OutChain);
4595 }
4596 
4597 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4598   SDLoc dl = getCurSDLoc();
4599 
4600   AtomicOrdering Ordering = I.getOrdering();
4601   SyncScope::ID SSID = I.getSyncScopeID();
4602 
4603   SDValue InChain = getRoot();
4604 
4605   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4606   EVT MemVT =
4607       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4608 
4609   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4610     report_fatal_error("Cannot generate unaligned atomic store");
4611 
4612   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4613 
4614   MachineFunction &MF = DAG.getMachineFunction();
4615   MachineMemOperand *MMO = MF.getMachineMemOperand(
4616       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4617       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4618 
4619   SDValue Val = getValue(I.getValueOperand());
4620   if (Val.getValueType() != MemVT)
4621     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4622   SDValue Ptr = getValue(I.getPointerOperand());
4623 
4624   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4625     // TODO: Once this is better exercised by tests, it should be merged with
4626     // the normal path for stores to prevent future divergence.
4627     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4628     DAG.setRoot(S);
4629     return;
4630   }
4631   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4632                                    Ptr, Val, MMO);
4633 
4634 
4635   DAG.setRoot(OutChain);
4636 }
4637 
4638 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4639 /// node.
4640 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4641                                                unsigned Intrinsic) {
4642   // Ignore the callsite's attributes. A specific call site may be marked with
4643   // readnone, but the lowering code will expect the chain based on the
4644   // definition.
4645   const Function *F = I.getCalledFunction();
4646   bool HasChain = !F->doesNotAccessMemory();
4647   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4648 
4649   // Build the operand list.
4650   SmallVector<SDValue, 8> Ops;
4651   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4652     if (OnlyLoad) {
4653       // We don't need to serialize loads against other loads.
4654       Ops.push_back(DAG.getRoot());
4655     } else {
4656       Ops.push_back(getRoot());
4657     }
4658   }
4659 
4660   // Info is set by getTgtMemInstrinsic
4661   TargetLowering::IntrinsicInfo Info;
4662   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4663   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4664                                                DAG.getMachineFunction(),
4665                                                Intrinsic);
4666 
4667   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4668   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4669       Info.opc == ISD::INTRINSIC_W_CHAIN)
4670     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4671                                         TLI.getPointerTy(DAG.getDataLayout())));
4672 
4673   // Add all operands of the call to the operand list.
4674   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4675     const Value *Arg = I.getArgOperand(i);
4676     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4677       Ops.push_back(getValue(Arg));
4678       continue;
4679     }
4680 
4681     // Use TargetConstant instead of a regular constant for immarg.
4682     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4683     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4684       assert(CI->getBitWidth() <= 64 &&
4685              "large intrinsic immediates not handled");
4686       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4687     } else {
4688       Ops.push_back(
4689           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4690     }
4691   }
4692 
4693   SmallVector<EVT, 4> ValueVTs;
4694   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4695 
4696   if (HasChain)
4697     ValueVTs.push_back(MVT::Other);
4698 
4699   SDVTList VTs = DAG.getVTList(ValueVTs);
4700 
4701   // Create the node.
4702   SDValue Result;
4703   if (IsTgtIntrinsic) {
4704     // This is target intrinsic that touches memory
4705     AAMDNodes AAInfo;
4706     I.getAAMetadata(AAInfo);
4707     Result =
4708         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4709                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4710                                 Info.align, Info.flags, Info.size, AAInfo);
4711   } else if (!HasChain) {
4712     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4713   } else if (!I.getType()->isVoidTy()) {
4714     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4715   } else {
4716     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4717   }
4718 
4719   if (HasChain) {
4720     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4721     if (OnlyLoad)
4722       PendingLoads.push_back(Chain);
4723     else
4724       DAG.setRoot(Chain);
4725   }
4726 
4727   if (!I.getType()->isVoidTy()) {
4728     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4729       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4730       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4731     } else
4732       Result = lowerRangeToAssertZExt(DAG, I, Result);
4733 
4734     MaybeAlign Alignment = I.getRetAlign();
4735     if (!Alignment)
4736       Alignment = F->getAttributes().getRetAlignment();
4737     // Insert `assertalign` node if there's an alignment.
4738     if (InsertAssertAlign && Alignment) {
4739       Result =
4740           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4741     }
4742 
4743     setValue(&I, Result);
4744   }
4745 }
4746 
4747 /// GetSignificand - Get the significand and build it into a floating-point
4748 /// number with exponent of 1:
4749 ///
4750 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4751 ///
4752 /// where Op is the hexadecimal representation of floating point value.
4753 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4754   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4755                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4756   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4757                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4758   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4759 }
4760 
4761 /// GetExponent - Get the exponent:
4762 ///
4763 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4764 ///
4765 /// where Op is the hexadecimal representation of floating point value.
4766 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4767                            const TargetLowering &TLI, const SDLoc &dl) {
4768   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4769                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4770   SDValue t1 = DAG.getNode(
4771       ISD::SRL, dl, MVT::i32, t0,
4772       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4773   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4774                            DAG.getConstant(127, dl, MVT::i32));
4775   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4776 }
4777 
4778 /// getF32Constant - Get 32-bit floating point constant.
4779 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4780                               const SDLoc &dl) {
4781   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4782                            MVT::f32);
4783 }
4784 
4785 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4786                                        SelectionDAG &DAG) {
4787   // TODO: What fast-math-flags should be set on the floating-point nodes?
4788 
4789   //   IntegerPartOfX = ((int32_t)(t0);
4790   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4791 
4792   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4793   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4794   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4795 
4796   //   IntegerPartOfX <<= 23;
4797   IntegerPartOfX = DAG.getNode(
4798       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4799       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4800                                   DAG.getDataLayout())));
4801 
4802   SDValue TwoToFractionalPartOfX;
4803   if (LimitFloatPrecision <= 6) {
4804     // For floating-point precision of 6:
4805     //
4806     //   TwoToFractionalPartOfX =
4807     //     0.997535578f +
4808     //       (0.735607626f + 0.252464424f * x) * x;
4809     //
4810     // error 0.0144103317, which is 6 bits
4811     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4812                              getF32Constant(DAG, 0x3e814304, dl));
4813     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4814                              getF32Constant(DAG, 0x3f3c50c8, dl));
4815     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4816     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4817                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4818   } else if (LimitFloatPrecision <= 12) {
4819     // For floating-point precision of 12:
4820     //
4821     //   TwoToFractionalPartOfX =
4822     //     0.999892986f +
4823     //       (0.696457318f +
4824     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4825     //
4826     // error 0.000107046256, which is 13 to 14 bits
4827     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4828                              getF32Constant(DAG, 0x3da235e3, dl));
4829     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4830                              getF32Constant(DAG, 0x3e65b8f3, dl));
4831     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4832     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4833                              getF32Constant(DAG, 0x3f324b07, dl));
4834     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4835     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4836                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4837   } else { // LimitFloatPrecision <= 18
4838     // For floating-point precision of 18:
4839     //
4840     //   TwoToFractionalPartOfX =
4841     //     0.999999982f +
4842     //       (0.693148872f +
4843     //         (0.240227044f +
4844     //           (0.554906021e-1f +
4845     //             (0.961591928e-2f +
4846     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4847     // error 2.47208000*10^(-7), which is better than 18 bits
4848     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4849                              getF32Constant(DAG, 0x3924b03e, dl));
4850     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4851                              getF32Constant(DAG, 0x3ab24b87, dl));
4852     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4853     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4854                              getF32Constant(DAG, 0x3c1d8c17, dl));
4855     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4856     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4857                              getF32Constant(DAG, 0x3d634a1d, dl));
4858     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4859     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4860                              getF32Constant(DAG, 0x3e75fe14, dl));
4861     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4862     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4863                               getF32Constant(DAG, 0x3f317234, dl));
4864     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4865     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4866                                          getF32Constant(DAG, 0x3f800000, dl));
4867   }
4868 
4869   // Add the exponent into the result in integer domain.
4870   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4871   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4872                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4873 }
4874 
4875 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4876 /// limited-precision mode.
4877 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4878                          const TargetLowering &TLI) {
4879   if (Op.getValueType() == MVT::f32 &&
4880       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4881 
4882     // Put the exponent in the right bit position for later addition to the
4883     // final result:
4884     //
4885     // t0 = Op * log2(e)
4886 
4887     // TODO: What fast-math-flags should be set here?
4888     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4889                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
4890     return getLimitedPrecisionExp2(t0, dl, DAG);
4891   }
4892 
4893   // No special expansion.
4894   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4895 }
4896 
4897 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4898 /// limited-precision mode.
4899 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4900                          const TargetLowering &TLI) {
4901   // TODO: What fast-math-flags should be set on the floating-point nodes?
4902 
4903   if (Op.getValueType() == MVT::f32 &&
4904       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4905     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4906 
4907     // Scale the exponent by log(2).
4908     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4909     SDValue LogOfExponent =
4910         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4911                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
4912 
4913     // Get the significand and build it into a floating-point number with
4914     // exponent of 1.
4915     SDValue X = GetSignificand(DAG, Op1, dl);
4916 
4917     SDValue LogOfMantissa;
4918     if (LimitFloatPrecision <= 6) {
4919       // For floating-point precision of 6:
4920       //
4921       //   LogofMantissa =
4922       //     -1.1609546f +
4923       //       (1.4034025f - 0.23903021f * x) * x;
4924       //
4925       // error 0.0034276066, which is better than 8 bits
4926       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4927                                getF32Constant(DAG, 0xbe74c456, dl));
4928       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4929                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4930       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4931       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4932                                   getF32Constant(DAG, 0x3f949a29, dl));
4933     } else if (LimitFloatPrecision <= 12) {
4934       // For floating-point precision of 12:
4935       //
4936       //   LogOfMantissa =
4937       //     -1.7417939f +
4938       //       (2.8212026f +
4939       //         (-1.4699568f +
4940       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4941       //
4942       // error 0.000061011436, which is 14 bits
4943       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4944                                getF32Constant(DAG, 0xbd67b6d6, dl));
4945       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4946                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4947       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4948       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4949                                getF32Constant(DAG, 0x3fbc278b, dl));
4950       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4951       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4952                                getF32Constant(DAG, 0x40348e95, dl));
4953       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4954       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4955                                   getF32Constant(DAG, 0x3fdef31a, dl));
4956     } else { // LimitFloatPrecision <= 18
4957       // For floating-point precision of 18:
4958       //
4959       //   LogOfMantissa =
4960       //     -2.1072184f +
4961       //       (4.2372794f +
4962       //         (-3.7029485f +
4963       //           (2.2781945f +
4964       //             (-0.87823314f +
4965       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4966       //
4967       // error 0.0000023660568, which is better than 18 bits
4968       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4969                                getF32Constant(DAG, 0xbc91e5ac, dl));
4970       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4971                                getF32Constant(DAG, 0x3e4350aa, dl));
4972       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4973       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4974                                getF32Constant(DAG, 0x3f60d3e3, dl));
4975       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4976       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4977                                getF32Constant(DAG, 0x4011cdf0, dl));
4978       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4979       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4980                                getF32Constant(DAG, 0x406cfd1c, dl));
4981       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4982       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4983                                getF32Constant(DAG, 0x408797cb, dl));
4984       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4985       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4986                                   getF32Constant(DAG, 0x4006dcab, dl));
4987     }
4988 
4989     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4990   }
4991 
4992   // No special expansion.
4993   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4994 }
4995 
4996 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4997 /// limited-precision mode.
4998 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4999                           const TargetLowering &TLI) {
5000   // TODO: What fast-math-flags should be set on the floating-point nodes?
5001 
5002   if (Op.getValueType() == MVT::f32 &&
5003       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5004     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5005 
5006     // Get the exponent.
5007     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5008 
5009     // Get the significand and build it into a floating-point number with
5010     // exponent of 1.
5011     SDValue X = GetSignificand(DAG, Op1, dl);
5012 
5013     // Different possible minimax approximations of significand in
5014     // floating-point for various degrees of accuracy over [1,2].
5015     SDValue Log2ofMantissa;
5016     if (LimitFloatPrecision <= 6) {
5017       // For floating-point precision of 6:
5018       //
5019       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5020       //
5021       // error 0.0049451742, which is more than 7 bits
5022       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5023                                getF32Constant(DAG, 0xbeb08fe0, dl));
5024       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5025                                getF32Constant(DAG, 0x40019463, dl));
5026       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5027       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5028                                    getF32Constant(DAG, 0x3fd6633d, dl));
5029     } else if (LimitFloatPrecision <= 12) {
5030       // For floating-point precision of 12:
5031       //
5032       //   Log2ofMantissa =
5033       //     -2.51285454f +
5034       //       (4.07009056f +
5035       //         (-2.12067489f +
5036       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5037       //
5038       // error 0.0000876136000, which is better than 13 bits
5039       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5040                                getF32Constant(DAG, 0xbda7262e, dl));
5041       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5042                                getF32Constant(DAG, 0x3f25280b, dl));
5043       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5044       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5045                                getF32Constant(DAG, 0x4007b923, dl));
5046       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5047       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5048                                getF32Constant(DAG, 0x40823e2f, dl));
5049       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5050       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5051                                    getF32Constant(DAG, 0x4020d29c, dl));
5052     } else { // LimitFloatPrecision <= 18
5053       // For floating-point precision of 18:
5054       //
5055       //   Log2ofMantissa =
5056       //     -3.0400495f +
5057       //       (6.1129976f +
5058       //         (-5.3420409f +
5059       //           (3.2865683f +
5060       //             (-1.2669343f +
5061       //               (0.27515199f -
5062       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5063       //
5064       // error 0.0000018516, which is better than 18 bits
5065       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5066                                getF32Constant(DAG, 0xbcd2769e, dl));
5067       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5068                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5069       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5070       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5071                                getF32Constant(DAG, 0x3fa22ae7, dl));
5072       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5073       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5074                                getF32Constant(DAG, 0x40525723, dl));
5075       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5076       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5077                                getF32Constant(DAG, 0x40aaf200, dl));
5078       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5079       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5080                                getF32Constant(DAG, 0x40c39dad, dl));
5081       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5082       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5083                                    getF32Constant(DAG, 0x4042902c, dl));
5084     }
5085 
5086     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5087   }
5088 
5089   // No special expansion.
5090   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5091 }
5092 
5093 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5094 /// limited-precision mode.
5095 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5096                            const TargetLowering &TLI) {
5097   // TODO: What fast-math-flags should be set on the floating-point nodes?
5098 
5099   if (Op.getValueType() == MVT::f32 &&
5100       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5101     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5102 
5103     // Scale the exponent by log10(2) [0.30102999f].
5104     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5105     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5106                                         getF32Constant(DAG, 0x3e9a209a, dl));
5107 
5108     // Get the significand and build it into a floating-point number with
5109     // exponent of 1.
5110     SDValue X = GetSignificand(DAG, Op1, dl);
5111 
5112     SDValue Log10ofMantissa;
5113     if (LimitFloatPrecision <= 6) {
5114       // For floating-point precision of 6:
5115       //
5116       //   Log10ofMantissa =
5117       //     -0.50419619f +
5118       //       (0.60948995f - 0.10380950f * x) * x;
5119       //
5120       // error 0.0014886165, which is 6 bits
5121       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5122                                getF32Constant(DAG, 0xbdd49a13, dl));
5123       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5124                                getF32Constant(DAG, 0x3f1c0789, dl));
5125       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5126       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5127                                     getF32Constant(DAG, 0x3f011300, dl));
5128     } else if (LimitFloatPrecision <= 12) {
5129       // For floating-point precision of 12:
5130       //
5131       //   Log10ofMantissa =
5132       //     -0.64831180f +
5133       //       (0.91751397f +
5134       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5135       //
5136       // error 0.00019228036, which is better than 12 bits
5137       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5138                                getF32Constant(DAG, 0x3d431f31, dl));
5139       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5140                                getF32Constant(DAG, 0x3ea21fb2, dl));
5141       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5142       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5143                                getF32Constant(DAG, 0x3f6ae232, dl));
5144       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5145       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5146                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5147     } else { // LimitFloatPrecision <= 18
5148       // For floating-point precision of 18:
5149       //
5150       //   Log10ofMantissa =
5151       //     -0.84299375f +
5152       //       (1.5327582f +
5153       //         (-1.0688956f +
5154       //           (0.49102474f +
5155       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5156       //
5157       // error 0.0000037995730, which is better than 18 bits
5158       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5159                                getF32Constant(DAG, 0x3c5d51ce, dl));
5160       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5161                                getF32Constant(DAG, 0x3e00685a, dl));
5162       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5163       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5164                                getF32Constant(DAG, 0x3efb6798, dl));
5165       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5166       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5167                                getF32Constant(DAG, 0x3f88d192, dl));
5168       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5169       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5170                                getF32Constant(DAG, 0x3fc4316c, dl));
5171       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5172       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5173                                     getF32Constant(DAG, 0x3f57ce70, dl));
5174     }
5175 
5176     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5177   }
5178 
5179   // No special expansion.
5180   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5181 }
5182 
5183 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5184 /// limited-precision mode.
5185 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5186                           const TargetLowering &TLI) {
5187   if (Op.getValueType() == MVT::f32 &&
5188       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5189     return getLimitedPrecisionExp2(Op, dl, DAG);
5190 
5191   // No special expansion.
5192   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5193 }
5194 
5195 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5196 /// limited-precision mode with x == 10.0f.
5197 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5198                          SelectionDAG &DAG, const TargetLowering &TLI) {
5199   bool IsExp10 = false;
5200   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5201       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5202     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5203       APFloat Ten(10.0f);
5204       IsExp10 = LHSC->isExactlyValue(Ten);
5205     }
5206   }
5207 
5208   // TODO: What fast-math-flags should be set on the FMUL node?
5209   if (IsExp10) {
5210     // Put the exponent in the right bit position for later addition to the
5211     // final result:
5212     //
5213     //   #define LOG2OF10 3.3219281f
5214     //   t0 = Op * LOG2OF10;
5215     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5216                              getF32Constant(DAG, 0x40549a78, dl));
5217     return getLimitedPrecisionExp2(t0, dl, DAG);
5218   }
5219 
5220   // No special expansion.
5221   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5222 }
5223 
5224 /// ExpandPowI - Expand a llvm.powi intrinsic.
5225 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5226                           SelectionDAG &DAG) {
5227   // If RHS is a constant, we can expand this out to a multiplication tree,
5228   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5229   // optimizing for size, we only want to do this if the expansion would produce
5230   // a small number of multiplies, otherwise we do the full expansion.
5231   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5232     // Get the exponent as a positive value.
5233     unsigned Val = RHSC->getSExtValue();
5234     if ((int)Val < 0) Val = -Val;
5235 
5236     // powi(x, 0) -> 1.0
5237     if (Val == 0)
5238       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5239 
5240     bool OptForSize = DAG.shouldOptForSize();
5241     if (!OptForSize ||
5242         // If optimizing for size, don't insert too many multiplies.
5243         // This inserts up to 5 multiplies.
5244         countPopulation(Val) + Log2_32(Val) < 7) {
5245       // We use the simple binary decomposition method to generate the multiply
5246       // sequence.  There are more optimal ways to do this (for example,
5247       // powi(x,15) generates one more multiply than it should), but this has
5248       // the benefit of being both really simple and much better than a libcall.
5249       SDValue Res;  // Logically starts equal to 1.0
5250       SDValue CurSquare = LHS;
5251       // TODO: Intrinsics should have fast-math-flags that propagate to these
5252       // nodes.
5253       while (Val) {
5254         if (Val & 1) {
5255           if (Res.getNode())
5256             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5257           else
5258             Res = CurSquare;  // 1.0*CurSquare.
5259         }
5260 
5261         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5262                                 CurSquare, CurSquare);
5263         Val >>= 1;
5264       }
5265 
5266       // If the original was negative, invert the result, producing 1/(x*x*x).
5267       if (RHSC->getSExtValue() < 0)
5268         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5269                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5270       return Res;
5271     }
5272   }
5273 
5274   // Otherwise, expand to a libcall.
5275   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5276 }
5277 
5278 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5279                             SDValue LHS, SDValue RHS, SDValue Scale,
5280                             SelectionDAG &DAG, const TargetLowering &TLI) {
5281   EVT VT = LHS.getValueType();
5282   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5283   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5284   LLVMContext &Ctx = *DAG.getContext();
5285 
5286   // If the type is legal but the operation isn't, this node might survive all
5287   // the way to operation legalization. If we end up there and we do not have
5288   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5289   // node.
5290 
5291   // Coax the legalizer into expanding the node during type legalization instead
5292   // by bumping the size by one bit. This will force it to Promote, enabling the
5293   // early expansion and avoiding the need to expand later.
5294 
5295   // We don't have to do this if Scale is 0; that can always be expanded, unless
5296   // it's a saturating signed operation. Those can experience true integer
5297   // division overflow, a case which we must avoid.
5298 
5299   // FIXME: We wouldn't have to do this (or any of the early
5300   // expansion/promotion) if it was possible to expand a libcall of an
5301   // illegal type during operation legalization. But it's not, so things
5302   // get a bit hacky.
5303   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5304   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5305       (TLI.isTypeLegal(VT) ||
5306        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5307     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5308         Opcode, VT, ScaleInt);
5309     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5310       EVT PromVT;
5311       if (VT.isScalarInteger())
5312         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5313       else if (VT.isVector()) {
5314         PromVT = VT.getVectorElementType();
5315         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5316         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5317       } else
5318         llvm_unreachable("Wrong VT for DIVFIX?");
5319       if (Signed) {
5320         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5321         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5322       } else {
5323         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5324         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5325       }
5326       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5327       // For saturating operations, we need to shift up the LHS to get the
5328       // proper saturation width, and then shift down again afterwards.
5329       if (Saturating)
5330         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5331                           DAG.getConstant(1, DL, ShiftTy));
5332       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5333       if (Saturating)
5334         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5335                           DAG.getConstant(1, DL, ShiftTy));
5336       return DAG.getZExtOrTrunc(Res, DL, VT);
5337     }
5338   }
5339 
5340   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5341 }
5342 
5343 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5344 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5345 static void
5346 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5347                      const SDValue &N) {
5348   switch (N.getOpcode()) {
5349   case ISD::CopyFromReg: {
5350     SDValue Op = N.getOperand(1);
5351     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5352                       Op.getValueType().getSizeInBits());
5353     return;
5354   }
5355   case ISD::BITCAST:
5356   case ISD::AssertZext:
5357   case ISD::AssertSext:
5358   case ISD::TRUNCATE:
5359     getUnderlyingArgRegs(Regs, N.getOperand(0));
5360     return;
5361   case ISD::BUILD_PAIR:
5362   case ISD::BUILD_VECTOR:
5363   case ISD::CONCAT_VECTORS:
5364     for (SDValue Op : N->op_values())
5365       getUnderlyingArgRegs(Regs, Op);
5366     return;
5367   default:
5368     return;
5369   }
5370 }
5371 
5372 /// If the DbgValueInst is a dbg_value of a function argument, create the
5373 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5374 /// instruction selection, they will be inserted to the entry BB.
5375 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5376     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5377     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5378   const Argument *Arg = dyn_cast<Argument>(V);
5379   if (!Arg)
5380     return false;
5381 
5382   if (!IsDbgDeclare) {
5383     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5384     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5385     // the entry block.
5386     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5387     if (!IsInEntryBlock)
5388       return false;
5389 
5390     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5391     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5392     // variable that also is a param.
5393     //
5394     // Although, if we are at the top of the entry block already, we can still
5395     // emit using ArgDbgValue. This might catch some situations when the
5396     // dbg.value refers to an argument that isn't used in the entry block, so
5397     // any CopyToReg node would be optimized out and the only way to express
5398     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5399     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5400     // we should only emit as ArgDbgValue if the Variable is an argument to the
5401     // current function, and the dbg.value intrinsic is found in the entry
5402     // block.
5403     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5404         !DL->getInlinedAt();
5405     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5406     if (!IsInPrologue && !VariableIsFunctionInputArg)
5407       return false;
5408 
5409     // Here we assume that a function argument on IR level only can be used to
5410     // describe one input parameter on source level. If we for example have
5411     // source code like this
5412     //
5413     //    struct A { long x, y; };
5414     //    void foo(struct A a, long b) {
5415     //      ...
5416     //      b = a.x;
5417     //      ...
5418     //    }
5419     //
5420     // and IR like this
5421     //
5422     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5423     //  entry:
5424     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5425     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5426     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5427     //    ...
5428     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5429     //    ...
5430     //
5431     // then the last dbg.value is describing a parameter "b" using a value that
5432     // is an argument. But since we already has used %a1 to describe a parameter
5433     // we should not handle that last dbg.value here (that would result in an
5434     // incorrect hoisting of the DBG_VALUE to the function entry).
5435     // Notice that we allow one dbg.value per IR level argument, to accommodate
5436     // for the situation with fragments above.
5437     if (VariableIsFunctionInputArg) {
5438       unsigned ArgNo = Arg->getArgNo();
5439       if (ArgNo >= FuncInfo.DescribedArgs.size())
5440         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5441       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5442         return false;
5443       FuncInfo.DescribedArgs.set(ArgNo);
5444     }
5445   }
5446 
5447   MachineFunction &MF = DAG.getMachineFunction();
5448   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5449 
5450   bool IsIndirect = false;
5451   Optional<MachineOperand> Op;
5452   // Some arguments' frame index is recorded during argument lowering.
5453   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5454   if (FI != std::numeric_limits<int>::max())
5455     Op = MachineOperand::CreateFI(FI);
5456 
5457   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5458   if (!Op && N.getNode()) {
5459     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5460     Register Reg;
5461     if (ArgRegsAndSizes.size() == 1)
5462       Reg = ArgRegsAndSizes.front().first;
5463 
5464     if (Reg && Reg.isVirtual()) {
5465       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5466       Register PR = RegInfo.getLiveInPhysReg(Reg);
5467       if (PR)
5468         Reg = PR;
5469     }
5470     if (Reg) {
5471       Op = MachineOperand::CreateReg(Reg, false);
5472       IsIndirect = IsDbgDeclare;
5473     }
5474   }
5475 
5476   if (!Op && N.getNode()) {
5477     // Check if frame index is available.
5478     SDValue LCandidate = peekThroughBitcasts(N);
5479     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5480       if (FrameIndexSDNode *FINode =
5481           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5482         Op = MachineOperand::CreateFI(FINode->getIndex());
5483   }
5484 
5485   if (!Op) {
5486     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5487     auto splitMultiRegDbgValue
5488       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5489       unsigned Offset = 0;
5490       for (auto RegAndSize : SplitRegs) {
5491         // If the expression is already a fragment, the current register
5492         // offset+size might extend beyond the fragment. In this case, only
5493         // the register bits that are inside the fragment are relevant.
5494         int RegFragmentSizeInBits = RegAndSize.second;
5495         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5496           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5497           // The register is entirely outside the expression fragment,
5498           // so is irrelevant for debug info.
5499           if (Offset >= ExprFragmentSizeInBits)
5500             break;
5501           // The register is partially outside the expression fragment, only
5502           // the low bits within the fragment are relevant for debug info.
5503           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5504             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5505           }
5506         }
5507 
5508         auto FragmentExpr = DIExpression::createFragmentExpression(
5509             Expr, Offset, RegFragmentSizeInBits);
5510         Offset += RegAndSize.second;
5511         // If a valid fragment expression cannot be created, the variable's
5512         // correct value cannot be determined and so it is set as Undef.
5513         if (!FragmentExpr) {
5514           SDDbgValue *SDV = DAG.getConstantDbgValue(
5515               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5516           DAG.AddDbgValue(SDV, nullptr, false);
5517           continue;
5518         }
5519         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5520         FuncInfo.ArgDbgValues.push_back(
5521           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5522                   RegAndSize.first, Variable, *FragmentExpr));
5523       }
5524     };
5525 
5526     // Check if ValueMap has reg number.
5527     DenseMap<const Value *, Register>::const_iterator
5528       VMI = FuncInfo.ValueMap.find(V);
5529     if (VMI != FuncInfo.ValueMap.end()) {
5530       const auto &TLI = DAG.getTargetLoweringInfo();
5531       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5532                        V->getType(), None);
5533       if (RFV.occupiesMultipleRegs()) {
5534         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5535         return true;
5536       }
5537 
5538       Op = MachineOperand::CreateReg(VMI->second, false);
5539       IsIndirect = IsDbgDeclare;
5540     } else if (ArgRegsAndSizes.size() > 1) {
5541       // This was split due to the calling convention, and no virtual register
5542       // mapping exists for the value.
5543       splitMultiRegDbgValue(ArgRegsAndSizes);
5544       return true;
5545     }
5546   }
5547 
5548   if (!Op)
5549     return false;
5550 
5551   assert(Variable->isValidLocationForIntrinsic(DL) &&
5552          "Expected inlined-at fields to agree");
5553   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5554   FuncInfo.ArgDbgValues.push_back(
5555       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5556               *Op, Variable, Expr));
5557 
5558   return true;
5559 }
5560 
5561 /// Return the appropriate SDDbgValue based on N.
5562 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5563                                              DILocalVariable *Variable,
5564                                              DIExpression *Expr,
5565                                              const DebugLoc &dl,
5566                                              unsigned DbgSDNodeOrder) {
5567   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5568     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5569     // stack slot locations.
5570     //
5571     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5572     // debug values here after optimization:
5573     //
5574     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5575     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5576     //
5577     // Both describe the direct values of their associated variables.
5578     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5579                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5580   }
5581   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5582                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5583 }
5584 
5585 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5586   switch (Intrinsic) {
5587   case Intrinsic::smul_fix:
5588     return ISD::SMULFIX;
5589   case Intrinsic::umul_fix:
5590     return ISD::UMULFIX;
5591   case Intrinsic::smul_fix_sat:
5592     return ISD::SMULFIXSAT;
5593   case Intrinsic::umul_fix_sat:
5594     return ISD::UMULFIXSAT;
5595   case Intrinsic::sdiv_fix:
5596     return ISD::SDIVFIX;
5597   case Intrinsic::udiv_fix:
5598     return ISD::UDIVFIX;
5599   case Intrinsic::sdiv_fix_sat:
5600     return ISD::SDIVFIXSAT;
5601   case Intrinsic::udiv_fix_sat:
5602     return ISD::UDIVFIXSAT;
5603   default:
5604     llvm_unreachable("Unhandled fixed point intrinsic");
5605   }
5606 }
5607 
5608 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5609                                            const char *FunctionName) {
5610   assert(FunctionName && "FunctionName must not be nullptr");
5611   SDValue Callee = DAG.getExternalSymbol(
5612       FunctionName,
5613       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5614   LowerCallTo(I, Callee, I.isTailCall());
5615 }
5616 
5617 /// Given a @llvm.call.preallocated.setup, return the corresponding
5618 /// preallocated call.
5619 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5620   assert(cast<CallBase>(PreallocatedSetup)
5621                  ->getCalledFunction()
5622                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5623          "expected call_preallocated_setup Value");
5624   for (auto *U : PreallocatedSetup->users()) {
5625     auto *UseCall = cast<CallBase>(U);
5626     const Function *Fn = UseCall->getCalledFunction();
5627     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5628       return UseCall;
5629     }
5630   }
5631   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5632 }
5633 
5634 /// Lower the call to the specified intrinsic function.
5635 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5636                                              unsigned Intrinsic) {
5637   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5638   SDLoc sdl = getCurSDLoc();
5639   DebugLoc dl = getCurDebugLoc();
5640   SDValue Res;
5641 
5642   switch (Intrinsic) {
5643   default:
5644     // By default, turn this into a target intrinsic node.
5645     visitTargetIntrinsic(I, Intrinsic);
5646     return;
5647   case Intrinsic::vscale: {
5648     match(&I, m_VScale(DAG.getDataLayout()));
5649     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5650     setValue(&I,
5651              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5652     return;
5653   }
5654   case Intrinsic::vastart:  visitVAStart(I); return;
5655   case Intrinsic::vaend:    visitVAEnd(I); return;
5656   case Intrinsic::vacopy:   visitVACopy(I); return;
5657   case Intrinsic::returnaddress:
5658     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5659                              TLI.getPointerTy(DAG.getDataLayout()),
5660                              getValue(I.getArgOperand(0))));
5661     return;
5662   case Intrinsic::addressofreturnaddress:
5663     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5664                              TLI.getPointerTy(DAG.getDataLayout())));
5665     return;
5666   case Intrinsic::sponentry:
5667     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5668                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5669     return;
5670   case Intrinsic::frameaddress:
5671     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5672                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5673                              getValue(I.getArgOperand(0))));
5674     return;
5675   case Intrinsic::read_volatile_register:
5676   case Intrinsic::read_register: {
5677     Value *Reg = I.getArgOperand(0);
5678     SDValue Chain = getRoot();
5679     SDValue RegName =
5680         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5681     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5682     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5683       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5684     setValue(&I, Res);
5685     DAG.setRoot(Res.getValue(1));
5686     return;
5687   }
5688   case Intrinsic::write_register: {
5689     Value *Reg = I.getArgOperand(0);
5690     Value *RegValue = I.getArgOperand(1);
5691     SDValue Chain = getRoot();
5692     SDValue RegName =
5693         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5694     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5695                             RegName, getValue(RegValue)));
5696     return;
5697   }
5698   case Intrinsic::memcpy: {
5699     const auto &MCI = cast<MemCpyInst>(I);
5700     SDValue Op1 = getValue(I.getArgOperand(0));
5701     SDValue Op2 = getValue(I.getArgOperand(1));
5702     SDValue Op3 = getValue(I.getArgOperand(2));
5703     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5704     Align DstAlign = MCI.getDestAlign().valueOrOne();
5705     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5706     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5707     bool isVol = MCI.isVolatile();
5708     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5709     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5710     // node.
5711     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5712     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5713                                /* AlwaysInline */ false, isTC,
5714                                MachinePointerInfo(I.getArgOperand(0)),
5715                                MachinePointerInfo(I.getArgOperand(1)));
5716     updateDAGForMaybeTailCall(MC);
5717     return;
5718   }
5719   case Intrinsic::memcpy_inline: {
5720     const auto &MCI = cast<MemCpyInlineInst>(I);
5721     SDValue Dst = getValue(I.getArgOperand(0));
5722     SDValue Src = getValue(I.getArgOperand(1));
5723     SDValue Size = getValue(I.getArgOperand(2));
5724     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5725     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5726     Align DstAlign = MCI.getDestAlign().valueOrOne();
5727     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5728     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5729     bool isVol = MCI.isVolatile();
5730     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5731     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5732     // node.
5733     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5734                                /* AlwaysInline */ true, isTC,
5735                                MachinePointerInfo(I.getArgOperand(0)),
5736                                MachinePointerInfo(I.getArgOperand(1)));
5737     updateDAGForMaybeTailCall(MC);
5738     return;
5739   }
5740   case Intrinsic::memset: {
5741     const auto &MSI = cast<MemSetInst>(I);
5742     SDValue Op1 = getValue(I.getArgOperand(0));
5743     SDValue Op2 = getValue(I.getArgOperand(1));
5744     SDValue Op3 = getValue(I.getArgOperand(2));
5745     // @llvm.memset defines 0 and 1 to both mean no alignment.
5746     Align Alignment = MSI.getDestAlign().valueOrOne();
5747     bool isVol = MSI.isVolatile();
5748     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5749     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5750     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5751                                MachinePointerInfo(I.getArgOperand(0)));
5752     updateDAGForMaybeTailCall(MS);
5753     return;
5754   }
5755   case Intrinsic::memmove: {
5756     const auto &MMI = cast<MemMoveInst>(I);
5757     SDValue Op1 = getValue(I.getArgOperand(0));
5758     SDValue Op2 = getValue(I.getArgOperand(1));
5759     SDValue Op3 = getValue(I.getArgOperand(2));
5760     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5761     Align DstAlign = MMI.getDestAlign().valueOrOne();
5762     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5763     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5764     bool isVol = MMI.isVolatile();
5765     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5766     // FIXME: Support passing different dest/src alignments to the memmove DAG
5767     // node.
5768     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5769     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5770                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5771                                 MachinePointerInfo(I.getArgOperand(1)));
5772     updateDAGForMaybeTailCall(MM);
5773     return;
5774   }
5775   case Intrinsic::memcpy_element_unordered_atomic: {
5776     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5777     SDValue Dst = getValue(MI.getRawDest());
5778     SDValue Src = getValue(MI.getRawSource());
5779     SDValue Length = getValue(MI.getLength());
5780 
5781     unsigned DstAlign = MI.getDestAlignment();
5782     unsigned SrcAlign = MI.getSourceAlignment();
5783     Type *LengthTy = MI.getLength()->getType();
5784     unsigned ElemSz = MI.getElementSizeInBytes();
5785     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5786     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5787                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5788                                      MachinePointerInfo(MI.getRawDest()),
5789                                      MachinePointerInfo(MI.getRawSource()));
5790     updateDAGForMaybeTailCall(MC);
5791     return;
5792   }
5793   case Intrinsic::memmove_element_unordered_atomic: {
5794     auto &MI = cast<AtomicMemMoveInst>(I);
5795     SDValue Dst = getValue(MI.getRawDest());
5796     SDValue Src = getValue(MI.getRawSource());
5797     SDValue Length = getValue(MI.getLength());
5798 
5799     unsigned DstAlign = MI.getDestAlignment();
5800     unsigned SrcAlign = MI.getSourceAlignment();
5801     Type *LengthTy = MI.getLength()->getType();
5802     unsigned ElemSz = MI.getElementSizeInBytes();
5803     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5804     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5805                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5806                                       MachinePointerInfo(MI.getRawDest()),
5807                                       MachinePointerInfo(MI.getRawSource()));
5808     updateDAGForMaybeTailCall(MC);
5809     return;
5810   }
5811   case Intrinsic::memset_element_unordered_atomic: {
5812     auto &MI = cast<AtomicMemSetInst>(I);
5813     SDValue Dst = getValue(MI.getRawDest());
5814     SDValue Val = getValue(MI.getValue());
5815     SDValue Length = getValue(MI.getLength());
5816 
5817     unsigned DstAlign = MI.getDestAlignment();
5818     Type *LengthTy = MI.getLength()->getType();
5819     unsigned ElemSz = MI.getElementSizeInBytes();
5820     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5821     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5822                                      LengthTy, ElemSz, isTC,
5823                                      MachinePointerInfo(MI.getRawDest()));
5824     updateDAGForMaybeTailCall(MC);
5825     return;
5826   }
5827   case Intrinsic::call_preallocated_setup: {
5828     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5829     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5830     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5831                               getRoot(), SrcValue);
5832     setValue(&I, Res);
5833     DAG.setRoot(Res);
5834     return;
5835   }
5836   case Intrinsic::call_preallocated_arg: {
5837     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5838     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5839     SDValue Ops[3];
5840     Ops[0] = getRoot();
5841     Ops[1] = SrcValue;
5842     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5843                                    MVT::i32); // arg index
5844     SDValue Res = DAG.getNode(
5845         ISD::PREALLOCATED_ARG, sdl,
5846         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
5847     setValue(&I, Res);
5848     DAG.setRoot(Res.getValue(1));
5849     return;
5850   }
5851   case Intrinsic::dbg_addr:
5852   case Intrinsic::dbg_declare: {
5853     const auto &DI = cast<DbgVariableIntrinsic>(I);
5854     DILocalVariable *Variable = DI.getVariable();
5855     DIExpression *Expression = DI.getExpression();
5856     dropDanglingDebugInfo(Variable, Expression);
5857     assert(Variable && "Missing variable");
5858     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5859                       << "\n");
5860     // Check if address has undef value.
5861     const Value *Address = DI.getVariableLocation();
5862     if (!Address || isa<UndefValue>(Address) ||
5863         (Address->use_empty() && !isa<Argument>(Address))) {
5864       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5865                         << " (bad/undef/unused-arg address)\n");
5866       return;
5867     }
5868 
5869     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5870 
5871     // Check if this variable can be described by a frame index, typically
5872     // either as a static alloca or a byval parameter.
5873     int FI = std::numeric_limits<int>::max();
5874     if (const auto *AI =
5875             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5876       if (AI->isStaticAlloca()) {
5877         auto I = FuncInfo.StaticAllocaMap.find(AI);
5878         if (I != FuncInfo.StaticAllocaMap.end())
5879           FI = I->second;
5880       }
5881     } else if (const auto *Arg = dyn_cast<Argument>(
5882                    Address->stripInBoundsConstantOffsets())) {
5883       FI = FuncInfo.getArgumentFrameIndex(Arg);
5884     }
5885 
5886     // llvm.dbg.addr is control dependent and always generates indirect
5887     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5888     // the MachineFunction variable table.
5889     if (FI != std::numeric_limits<int>::max()) {
5890       if (Intrinsic == Intrinsic::dbg_addr) {
5891         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5892             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5893         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5894       } else {
5895         LLVM_DEBUG(dbgs() << "Skipping " << DI
5896                           << " (variable info stashed in MF side table)\n");
5897       }
5898       return;
5899     }
5900 
5901     SDValue &N = NodeMap[Address];
5902     if (!N.getNode() && isa<Argument>(Address))
5903       // Check unused arguments map.
5904       N = UnusedArgNodeMap[Address];
5905     SDDbgValue *SDV;
5906     if (N.getNode()) {
5907       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5908         Address = BCI->getOperand(0);
5909       // Parameters are handled specially.
5910       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5911       if (isParameter && FINode) {
5912         // Byval parameter. We have a frame index at this point.
5913         SDV =
5914             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5915                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5916       } else if (isa<Argument>(Address)) {
5917         // Address is an argument, so try to emit its dbg value using
5918         // virtual register info from the FuncInfo.ValueMap.
5919         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5920         return;
5921       } else {
5922         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5923                               true, dl, SDNodeOrder);
5924       }
5925       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5926     } else {
5927       // If Address is an argument then try to emit its dbg value using
5928       // virtual register info from the FuncInfo.ValueMap.
5929       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5930                                     N)) {
5931         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5932                           << " (could not emit func-arg dbg_value)\n");
5933       }
5934     }
5935     return;
5936   }
5937   case Intrinsic::dbg_label: {
5938     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5939     DILabel *Label = DI.getLabel();
5940     assert(Label && "Missing label");
5941 
5942     SDDbgLabel *SDV;
5943     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5944     DAG.AddDbgLabel(SDV);
5945     return;
5946   }
5947   case Intrinsic::dbg_value: {
5948     const DbgValueInst &DI = cast<DbgValueInst>(I);
5949     assert(DI.getVariable() && "Missing variable");
5950 
5951     DILocalVariable *Variable = DI.getVariable();
5952     DIExpression *Expression = DI.getExpression();
5953     dropDanglingDebugInfo(Variable, Expression);
5954     const Value *V = DI.getValue();
5955     if (!V)
5956       return;
5957 
5958     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5959         SDNodeOrder))
5960       return;
5961 
5962     // TODO: Dangling debug info will eventually either be resolved or produce
5963     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5964     // between the original dbg.value location and its resolved DBG_VALUE, which
5965     // we should ideally fill with an extra Undef DBG_VALUE.
5966 
5967     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5968     return;
5969   }
5970 
5971   case Intrinsic::eh_typeid_for: {
5972     // Find the type id for the given typeinfo.
5973     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5974     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5975     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5976     setValue(&I, Res);
5977     return;
5978   }
5979 
5980   case Intrinsic::eh_return_i32:
5981   case Intrinsic::eh_return_i64:
5982     DAG.getMachineFunction().setCallsEHReturn(true);
5983     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5984                             MVT::Other,
5985                             getControlRoot(),
5986                             getValue(I.getArgOperand(0)),
5987                             getValue(I.getArgOperand(1))));
5988     return;
5989   case Intrinsic::eh_unwind_init:
5990     DAG.getMachineFunction().setCallsUnwindInit(true);
5991     return;
5992   case Intrinsic::eh_dwarf_cfa:
5993     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5994                              TLI.getPointerTy(DAG.getDataLayout()),
5995                              getValue(I.getArgOperand(0))));
5996     return;
5997   case Intrinsic::eh_sjlj_callsite: {
5998     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5999     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6000     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6001     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6002 
6003     MMI.setCurrentCallSite(CI->getZExtValue());
6004     return;
6005   }
6006   case Intrinsic::eh_sjlj_functioncontext: {
6007     // Get and store the index of the function context.
6008     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6009     AllocaInst *FnCtx =
6010       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6011     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6012     MFI.setFunctionContextIndex(FI);
6013     return;
6014   }
6015   case Intrinsic::eh_sjlj_setjmp: {
6016     SDValue Ops[2];
6017     Ops[0] = getRoot();
6018     Ops[1] = getValue(I.getArgOperand(0));
6019     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6020                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6021     setValue(&I, Op.getValue(0));
6022     DAG.setRoot(Op.getValue(1));
6023     return;
6024   }
6025   case Intrinsic::eh_sjlj_longjmp:
6026     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6027                             getRoot(), getValue(I.getArgOperand(0))));
6028     return;
6029   case Intrinsic::eh_sjlj_setup_dispatch:
6030     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6031                             getRoot()));
6032     return;
6033   case Intrinsic::masked_gather:
6034     visitMaskedGather(I);
6035     return;
6036   case Intrinsic::masked_load:
6037     visitMaskedLoad(I);
6038     return;
6039   case Intrinsic::masked_scatter:
6040     visitMaskedScatter(I);
6041     return;
6042   case Intrinsic::masked_store:
6043     visitMaskedStore(I);
6044     return;
6045   case Intrinsic::masked_expandload:
6046     visitMaskedLoad(I, true /* IsExpanding */);
6047     return;
6048   case Intrinsic::masked_compressstore:
6049     visitMaskedStore(I, true /* IsCompressing */);
6050     return;
6051   case Intrinsic::powi:
6052     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6053                             getValue(I.getArgOperand(1)), DAG));
6054     return;
6055   case Intrinsic::log:
6056     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6057     return;
6058   case Intrinsic::log2:
6059     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6060     return;
6061   case Intrinsic::log10:
6062     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6063     return;
6064   case Intrinsic::exp:
6065     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6066     return;
6067   case Intrinsic::exp2:
6068     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6069     return;
6070   case Intrinsic::pow:
6071     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6072                            getValue(I.getArgOperand(1)), DAG, TLI));
6073     return;
6074   case Intrinsic::sqrt:
6075   case Intrinsic::fabs:
6076   case Intrinsic::sin:
6077   case Intrinsic::cos:
6078   case Intrinsic::floor:
6079   case Intrinsic::ceil:
6080   case Intrinsic::trunc:
6081   case Intrinsic::rint:
6082   case Intrinsic::nearbyint:
6083   case Intrinsic::round:
6084   case Intrinsic::roundeven:
6085   case Intrinsic::canonicalize: {
6086     unsigned Opcode;
6087     switch (Intrinsic) {
6088     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6089     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6090     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6091     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6092     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6093     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6094     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6095     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6096     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6097     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6098     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6099     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6100     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6101     }
6102 
6103     setValue(&I, DAG.getNode(Opcode, sdl,
6104                              getValue(I.getArgOperand(0)).getValueType(),
6105                              getValue(I.getArgOperand(0))));
6106     return;
6107   }
6108   case Intrinsic::lround:
6109   case Intrinsic::llround:
6110   case Intrinsic::lrint:
6111   case Intrinsic::llrint: {
6112     unsigned Opcode;
6113     switch (Intrinsic) {
6114     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6115     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6116     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6117     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6118     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6119     }
6120 
6121     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6122     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6123                              getValue(I.getArgOperand(0))));
6124     return;
6125   }
6126   case Intrinsic::minnum:
6127     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6128                              getValue(I.getArgOperand(0)).getValueType(),
6129                              getValue(I.getArgOperand(0)),
6130                              getValue(I.getArgOperand(1))));
6131     return;
6132   case Intrinsic::maxnum:
6133     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6134                              getValue(I.getArgOperand(0)).getValueType(),
6135                              getValue(I.getArgOperand(0)),
6136                              getValue(I.getArgOperand(1))));
6137     return;
6138   case Intrinsic::minimum:
6139     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6140                              getValue(I.getArgOperand(0)).getValueType(),
6141                              getValue(I.getArgOperand(0)),
6142                              getValue(I.getArgOperand(1))));
6143     return;
6144   case Intrinsic::maximum:
6145     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6146                              getValue(I.getArgOperand(0)).getValueType(),
6147                              getValue(I.getArgOperand(0)),
6148                              getValue(I.getArgOperand(1))));
6149     return;
6150   case Intrinsic::copysign:
6151     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6152                              getValue(I.getArgOperand(0)).getValueType(),
6153                              getValue(I.getArgOperand(0)),
6154                              getValue(I.getArgOperand(1))));
6155     return;
6156   case Intrinsic::fma:
6157     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6158                              getValue(I.getArgOperand(0)).getValueType(),
6159                              getValue(I.getArgOperand(0)),
6160                              getValue(I.getArgOperand(1)),
6161                              getValue(I.getArgOperand(2))));
6162     return;
6163 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6164   case Intrinsic::INTRINSIC:
6165 #include "llvm/IR/ConstrainedOps.def"
6166     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6167     return;
6168   case Intrinsic::fmuladd: {
6169     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6170     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6171         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6172       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6173                                getValue(I.getArgOperand(0)).getValueType(),
6174                                getValue(I.getArgOperand(0)),
6175                                getValue(I.getArgOperand(1)),
6176                                getValue(I.getArgOperand(2))));
6177     } else {
6178       // TODO: Intrinsic calls should have fast-math-flags.
6179       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6180                                 getValue(I.getArgOperand(0)).getValueType(),
6181                                 getValue(I.getArgOperand(0)),
6182                                 getValue(I.getArgOperand(1)));
6183       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6184                                 getValue(I.getArgOperand(0)).getValueType(),
6185                                 Mul,
6186                                 getValue(I.getArgOperand(2)));
6187       setValue(&I, Add);
6188     }
6189     return;
6190   }
6191   case Intrinsic::convert_to_fp16:
6192     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6193                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6194                                          getValue(I.getArgOperand(0)),
6195                                          DAG.getTargetConstant(0, sdl,
6196                                                                MVT::i32))));
6197     return;
6198   case Intrinsic::convert_from_fp16:
6199     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6200                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6201                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6202                                          getValue(I.getArgOperand(0)))));
6203     return;
6204   case Intrinsic::pcmarker: {
6205     SDValue Tmp = getValue(I.getArgOperand(0));
6206     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6207     return;
6208   }
6209   case Intrinsic::readcyclecounter: {
6210     SDValue Op = getRoot();
6211     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6212                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6213     setValue(&I, Res);
6214     DAG.setRoot(Res.getValue(1));
6215     return;
6216   }
6217   case Intrinsic::bitreverse:
6218     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6219                              getValue(I.getArgOperand(0)).getValueType(),
6220                              getValue(I.getArgOperand(0))));
6221     return;
6222   case Intrinsic::bswap:
6223     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6224                              getValue(I.getArgOperand(0)).getValueType(),
6225                              getValue(I.getArgOperand(0))));
6226     return;
6227   case Intrinsic::cttz: {
6228     SDValue Arg = getValue(I.getArgOperand(0));
6229     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6230     EVT Ty = Arg.getValueType();
6231     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6232                              sdl, Ty, Arg));
6233     return;
6234   }
6235   case Intrinsic::ctlz: {
6236     SDValue Arg = getValue(I.getArgOperand(0));
6237     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6238     EVT Ty = Arg.getValueType();
6239     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6240                              sdl, Ty, Arg));
6241     return;
6242   }
6243   case Intrinsic::ctpop: {
6244     SDValue Arg = getValue(I.getArgOperand(0));
6245     EVT Ty = Arg.getValueType();
6246     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6247     return;
6248   }
6249   case Intrinsic::fshl:
6250   case Intrinsic::fshr: {
6251     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6252     SDValue X = getValue(I.getArgOperand(0));
6253     SDValue Y = getValue(I.getArgOperand(1));
6254     SDValue Z = getValue(I.getArgOperand(2));
6255     EVT VT = X.getValueType();
6256     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6257     SDValue Zero = DAG.getConstant(0, sdl, VT);
6258     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6259 
6260     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6261     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6262       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6263       return;
6264     }
6265 
6266     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6267     // avoid the select that is necessary in the general case to filter out
6268     // the 0-shift possibility that leads to UB.
6269     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6270       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6271       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6272         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6273         return;
6274       }
6275 
6276       // Some targets only rotate one way. Try the opposite direction.
6277       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6278       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6279         // Negate the shift amount because it is safe to ignore the high bits.
6280         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6281         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6282         return;
6283       }
6284 
6285       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6286       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6287       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6288       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6289       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6290       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6291       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6292       return;
6293     }
6294 
6295     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6296     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6297     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6298     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6299     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6300     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6301 
6302     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6303     // and that is undefined. We must compare and select to avoid UB.
6304     EVT CCVT = MVT::i1;
6305     if (VT.isVector())
6306       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6307 
6308     // For fshl, 0-shift returns the 1st arg (X).
6309     // For fshr, 0-shift returns the 2nd arg (Y).
6310     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6311     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6312     return;
6313   }
6314   case Intrinsic::sadd_sat: {
6315     SDValue Op1 = getValue(I.getArgOperand(0));
6316     SDValue Op2 = getValue(I.getArgOperand(1));
6317     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6318     return;
6319   }
6320   case Intrinsic::uadd_sat: {
6321     SDValue Op1 = getValue(I.getArgOperand(0));
6322     SDValue Op2 = getValue(I.getArgOperand(1));
6323     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6324     return;
6325   }
6326   case Intrinsic::ssub_sat: {
6327     SDValue Op1 = getValue(I.getArgOperand(0));
6328     SDValue Op2 = getValue(I.getArgOperand(1));
6329     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6330     return;
6331   }
6332   case Intrinsic::usub_sat: {
6333     SDValue Op1 = getValue(I.getArgOperand(0));
6334     SDValue Op2 = getValue(I.getArgOperand(1));
6335     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6336     return;
6337   }
6338   case Intrinsic::smul_fix:
6339   case Intrinsic::umul_fix:
6340   case Intrinsic::smul_fix_sat:
6341   case Intrinsic::umul_fix_sat: {
6342     SDValue Op1 = getValue(I.getArgOperand(0));
6343     SDValue Op2 = getValue(I.getArgOperand(1));
6344     SDValue Op3 = getValue(I.getArgOperand(2));
6345     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6346                              Op1.getValueType(), Op1, Op2, Op3));
6347     return;
6348   }
6349   case Intrinsic::sdiv_fix:
6350   case Intrinsic::udiv_fix:
6351   case Intrinsic::sdiv_fix_sat:
6352   case Intrinsic::udiv_fix_sat: {
6353     SDValue Op1 = getValue(I.getArgOperand(0));
6354     SDValue Op2 = getValue(I.getArgOperand(1));
6355     SDValue Op3 = getValue(I.getArgOperand(2));
6356     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6357                               Op1, Op2, Op3, DAG, TLI));
6358     return;
6359   }
6360   case Intrinsic::stacksave: {
6361     SDValue Op = getRoot();
6362     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6363     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6364     setValue(&I, Res);
6365     DAG.setRoot(Res.getValue(1));
6366     return;
6367   }
6368   case Intrinsic::stackrestore:
6369     Res = getValue(I.getArgOperand(0));
6370     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6371     return;
6372   case Intrinsic::get_dynamic_area_offset: {
6373     SDValue Op = getRoot();
6374     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6375     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6376     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6377     // target.
6378     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6379       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6380                          " intrinsic!");
6381     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6382                       Op);
6383     DAG.setRoot(Op);
6384     setValue(&I, Res);
6385     return;
6386   }
6387   case Intrinsic::stackguard: {
6388     MachineFunction &MF = DAG.getMachineFunction();
6389     const Module &M = *MF.getFunction().getParent();
6390     SDValue Chain = getRoot();
6391     if (TLI.useLoadStackGuardNode()) {
6392       Res = getLoadStackGuard(DAG, sdl, Chain);
6393     } else {
6394       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6395       const Value *Global = TLI.getSDagStackGuard(M);
6396       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6397       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6398                         MachinePointerInfo(Global, 0), Align,
6399                         MachineMemOperand::MOVolatile);
6400     }
6401     if (TLI.useStackGuardXorFP())
6402       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6403     DAG.setRoot(Chain);
6404     setValue(&I, Res);
6405     return;
6406   }
6407   case Intrinsic::stackprotector: {
6408     // Emit code into the DAG to store the stack guard onto the stack.
6409     MachineFunction &MF = DAG.getMachineFunction();
6410     MachineFrameInfo &MFI = MF.getFrameInfo();
6411     SDValue Src, Chain = getRoot();
6412 
6413     if (TLI.useLoadStackGuardNode())
6414       Src = getLoadStackGuard(DAG, sdl, Chain);
6415     else
6416       Src = getValue(I.getArgOperand(0));   // The guard's value.
6417 
6418     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6419 
6420     int FI = FuncInfo.StaticAllocaMap[Slot];
6421     MFI.setStackProtectorIndex(FI);
6422     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6423 
6424     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6425 
6426     // Store the stack protector onto the stack.
6427     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6428                                                  DAG.getMachineFunction(), FI),
6429                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6430     setValue(&I, Res);
6431     DAG.setRoot(Res);
6432     return;
6433   }
6434   case Intrinsic::objectsize:
6435     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6436 
6437   case Intrinsic::is_constant:
6438     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6439 
6440   case Intrinsic::annotation:
6441   case Intrinsic::ptr_annotation:
6442   case Intrinsic::launder_invariant_group:
6443   case Intrinsic::strip_invariant_group:
6444     // Drop the intrinsic, but forward the value
6445     setValue(&I, getValue(I.getOperand(0)));
6446     return;
6447   case Intrinsic::assume:
6448   case Intrinsic::var_annotation:
6449   case Intrinsic::sideeffect:
6450     // Discard annotate attributes, assumptions, and artificial side-effects.
6451     return;
6452 
6453   case Intrinsic::codeview_annotation: {
6454     // Emit a label associated with this metadata.
6455     MachineFunction &MF = DAG.getMachineFunction();
6456     MCSymbol *Label =
6457         MF.getMMI().getContext().createTempSymbol("annotation", true);
6458     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6459     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6460     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6461     DAG.setRoot(Res);
6462     return;
6463   }
6464 
6465   case Intrinsic::init_trampoline: {
6466     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6467 
6468     SDValue Ops[6];
6469     Ops[0] = getRoot();
6470     Ops[1] = getValue(I.getArgOperand(0));
6471     Ops[2] = getValue(I.getArgOperand(1));
6472     Ops[3] = getValue(I.getArgOperand(2));
6473     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6474     Ops[5] = DAG.getSrcValue(F);
6475 
6476     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6477 
6478     DAG.setRoot(Res);
6479     return;
6480   }
6481   case Intrinsic::adjust_trampoline:
6482     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6483                              TLI.getPointerTy(DAG.getDataLayout()),
6484                              getValue(I.getArgOperand(0))));
6485     return;
6486   case Intrinsic::gcroot: {
6487     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6488            "only valid in functions with gc specified, enforced by Verifier");
6489     assert(GFI && "implied by previous");
6490     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6491     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6492 
6493     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6494     GFI->addStackRoot(FI->getIndex(), TypeMap);
6495     return;
6496   }
6497   case Intrinsic::gcread:
6498   case Intrinsic::gcwrite:
6499     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6500   case Intrinsic::flt_rounds:
6501     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6502     setValue(&I, Res);
6503     DAG.setRoot(Res.getValue(1));
6504     return;
6505 
6506   case Intrinsic::expect:
6507     // Just replace __builtin_expect(exp, c) with EXP.
6508     setValue(&I, getValue(I.getArgOperand(0)));
6509     return;
6510 
6511   case Intrinsic::debugtrap:
6512   case Intrinsic::trap: {
6513     StringRef TrapFuncName =
6514         I.getAttributes()
6515             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6516             .getValueAsString();
6517     if (TrapFuncName.empty()) {
6518       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6519         ISD::TRAP : ISD::DEBUGTRAP;
6520       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6521       return;
6522     }
6523     TargetLowering::ArgListTy Args;
6524 
6525     TargetLowering::CallLoweringInfo CLI(DAG);
6526     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6527         CallingConv::C, I.getType(),
6528         DAG.getExternalSymbol(TrapFuncName.data(),
6529                               TLI.getPointerTy(DAG.getDataLayout())),
6530         std::move(Args));
6531 
6532     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6533     DAG.setRoot(Result.second);
6534     return;
6535   }
6536 
6537   case Intrinsic::uadd_with_overflow:
6538   case Intrinsic::sadd_with_overflow:
6539   case Intrinsic::usub_with_overflow:
6540   case Intrinsic::ssub_with_overflow:
6541   case Intrinsic::umul_with_overflow:
6542   case Intrinsic::smul_with_overflow: {
6543     ISD::NodeType Op;
6544     switch (Intrinsic) {
6545     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6546     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6547     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6548     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6549     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6550     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6551     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6552     }
6553     SDValue Op1 = getValue(I.getArgOperand(0));
6554     SDValue Op2 = getValue(I.getArgOperand(1));
6555 
6556     EVT ResultVT = Op1.getValueType();
6557     EVT OverflowVT = MVT::i1;
6558     if (ResultVT.isVector())
6559       OverflowVT = EVT::getVectorVT(
6560           *Context, OverflowVT, ResultVT.getVectorNumElements());
6561 
6562     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6563     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6564     return;
6565   }
6566   case Intrinsic::prefetch: {
6567     SDValue Ops[5];
6568     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6569     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6570     Ops[0] = DAG.getRoot();
6571     Ops[1] = getValue(I.getArgOperand(0));
6572     Ops[2] = getValue(I.getArgOperand(1));
6573     Ops[3] = getValue(I.getArgOperand(2));
6574     Ops[4] = getValue(I.getArgOperand(3));
6575     SDValue Result = DAG.getMemIntrinsicNode(
6576         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6577         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6578         /* align */ None, Flags);
6579 
6580     // Chain the prefetch in parallell with any pending loads, to stay out of
6581     // the way of later optimizations.
6582     PendingLoads.push_back(Result);
6583     Result = getRoot();
6584     DAG.setRoot(Result);
6585     return;
6586   }
6587   case Intrinsic::lifetime_start:
6588   case Intrinsic::lifetime_end: {
6589     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6590     // Stack coloring is not enabled in O0, discard region information.
6591     if (TM.getOptLevel() == CodeGenOpt::None)
6592       return;
6593 
6594     const int64_t ObjectSize =
6595         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6596     Value *const ObjectPtr = I.getArgOperand(1);
6597     SmallVector<const Value *, 4> Allocas;
6598     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6599 
6600     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6601            E = Allocas.end(); Object != E; ++Object) {
6602       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6603 
6604       // Could not find an Alloca.
6605       if (!LifetimeObject)
6606         continue;
6607 
6608       // First check that the Alloca is static, otherwise it won't have a
6609       // valid frame index.
6610       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6611       if (SI == FuncInfo.StaticAllocaMap.end())
6612         return;
6613 
6614       const int FrameIndex = SI->second;
6615       int64_t Offset;
6616       if (GetPointerBaseWithConstantOffset(
6617               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6618         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6619       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6620                                 Offset);
6621       DAG.setRoot(Res);
6622     }
6623     return;
6624   }
6625   case Intrinsic::invariant_start:
6626     // Discard region information.
6627     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6628     return;
6629   case Intrinsic::invariant_end:
6630     // Discard region information.
6631     return;
6632   case Intrinsic::clear_cache:
6633     /// FunctionName may be null.
6634     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6635       lowerCallToExternalSymbol(I, FunctionName);
6636     return;
6637   case Intrinsic::donothing:
6638     // ignore
6639     return;
6640   case Intrinsic::experimental_stackmap:
6641     visitStackmap(I);
6642     return;
6643   case Intrinsic::experimental_patchpoint_void:
6644   case Intrinsic::experimental_patchpoint_i64:
6645     visitPatchpoint(I);
6646     return;
6647   case Intrinsic::experimental_gc_statepoint:
6648     LowerStatepoint(cast<GCStatepointInst>(I));
6649     return;
6650   case Intrinsic::experimental_gc_result:
6651     visitGCResult(cast<GCResultInst>(I));
6652     return;
6653   case Intrinsic::experimental_gc_relocate:
6654     visitGCRelocate(cast<GCRelocateInst>(I));
6655     return;
6656   case Intrinsic::instrprof_increment:
6657     llvm_unreachable("instrprof failed to lower an increment");
6658   case Intrinsic::instrprof_value_profile:
6659     llvm_unreachable("instrprof failed to lower a value profiling call");
6660   case Intrinsic::localescape: {
6661     MachineFunction &MF = DAG.getMachineFunction();
6662     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6663 
6664     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6665     // is the same on all targets.
6666     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6667       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6668       if (isa<ConstantPointerNull>(Arg))
6669         continue; // Skip null pointers. They represent a hole in index space.
6670       AllocaInst *Slot = cast<AllocaInst>(Arg);
6671       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6672              "can only escape static allocas");
6673       int FI = FuncInfo.StaticAllocaMap[Slot];
6674       MCSymbol *FrameAllocSym =
6675           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6676               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6677       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6678               TII->get(TargetOpcode::LOCAL_ESCAPE))
6679           .addSym(FrameAllocSym)
6680           .addFrameIndex(FI);
6681     }
6682 
6683     return;
6684   }
6685 
6686   case Intrinsic::localrecover: {
6687     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6688     MachineFunction &MF = DAG.getMachineFunction();
6689 
6690     // Get the symbol that defines the frame offset.
6691     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6692     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6693     unsigned IdxVal =
6694         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6695     MCSymbol *FrameAllocSym =
6696         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6697             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6698 
6699     Value *FP = I.getArgOperand(1);
6700     SDValue FPVal = getValue(FP);
6701     EVT PtrVT = FPVal.getValueType();
6702 
6703     // Create a MCSymbol for the label to avoid any target lowering
6704     // that would make this PC relative.
6705     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6706     SDValue OffsetVal =
6707         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6708 
6709     // Add the offset to the FP.
6710     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6711     setValue(&I, Add);
6712 
6713     return;
6714   }
6715 
6716   case Intrinsic::eh_exceptionpointer:
6717   case Intrinsic::eh_exceptioncode: {
6718     // Get the exception pointer vreg, copy from it, and resize it to fit.
6719     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6720     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6721     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6722     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6723     SDValue N =
6724         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6725     if (Intrinsic == Intrinsic::eh_exceptioncode)
6726       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6727     setValue(&I, N);
6728     return;
6729   }
6730   case Intrinsic::xray_customevent: {
6731     // Here we want to make sure that the intrinsic behaves as if it has a
6732     // specific calling convention, and only for x86_64.
6733     // FIXME: Support other platforms later.
6734     const auto &Triple = DAG.getTarget().getTargetTriple();
6735     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6736       return;
6737 
6738     SDLoc DL = getCurSDLoc();
6739     SmallVector<SDValue, 8> Ops;
6740 
6741     // We want to say that we always want the arguments in registers.
6742     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6743     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6744     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6745     SDValue Chain = getRoot();
6746     Ops.push_back(LogEntryVal);
6747     Ops.push_back(StrSizeVal);
6748     Ops.push_back(Chain);
6749 
6750     // We need to enforce the calling convention for the callsite, so that
6751     // argument ordering is enforced correctly, and that register allocation can
6752     // see that some registers may be assumed clobbered and have to preserve
6753     // them across calls to the intrinsic.
6754     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6755                                            DL, NodeTys, Ops);
6756     SDValue patchableNode = SDValue(MN, 0);
6757     DAG.setRoot(patchableNode);
6758     setValue(&I, patchableNode);
6759     return;
6760   }
6761   case Intrinsic::xray_typedevent: {
6762     // Here we want to make sure that the intrinsic behaves as if it has a
6763     // specific calling convention, and only for x86_64.
6764     // FIXME: Support other platforms later.
6765     const auto &Triple = DAG.getTarget().getTargetTriple();
6766     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6767       return;
6768 
6769     SDLoc DL = getCurSDLoc();
6770     SmallVector<SDValue, 8> Ops;
6771 
6772     // We want to say that we always want the arguments in registers.
6773     // It's unclear to me how manipulating the selection DAG here forces callers
6774     // to provide arguments in registers instead of on the stack.
6775     SDValue LogTypeId = getValue(I.getArgOperand(0));
6776     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6777     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6778     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6779     SDValue Chain = getRoot();
6780     Ops.push_back(LogTypeId);
6781     Ops.push_back(LogEntryVal);
6782     Ops.push_back(StrSizeVal);
6783     Ops.push_back(Chain);
6784 
6785     // We need to enforce the calling convention for the callsite, so that
6786     // argument ordering is enforced correctly, and that register allocation can
6787     // see that some registers may be assumed clobbered and have to preserve
6788     // them across calls to the intrinsic.
6789     MachineSDNode *MN = DAG.getMachineNode(
6790         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6791     SDValue patchableNode = SDValue(MN, 0);
6792     DAG.setRoot(patchableNode);
6793     setValue(&I, patchableNode);
6794     return;
6795   }
6796   case Intrinsic::experimental_deoptimize:
6797     LowerDeoptimizeCall(&I);
6798     return;
6799 
6800   case Intrinsic::experimental_vector_reduce_v2_fadd:
6801   case Intrinsic::experimental_vector_reduce_v2_fmul:
6802   case Intrinsic::experimental_vector_reduce_add:
6803   case Intrinsic::experimental_vector_reduce_mul:
6804   case Intrinsic::experimental_vector_reduce_and:
6805   case Intrinsic::experimental_vector_reduce_or:
6806   case Intrinsic::experimental_vector_reduce_xor:
6807   case Intrinsic::experimental_vector_reduce_smax:
6808   case Intrinsic::experimental_vector_reduce_smin:
6809   case Intrinsic::experimental_vector_reduce_umax:
6810   case Intrinsic::experimental_vector_reduce_umin:
6811   case Intrinsic::experimental_vector_reduce_fmax:
6812   case Intrinsic::experimental_vector_reduce_fmin:
6813     visitVectorReduce(I, Intrinsic);
6814     return;
6815 
6816   case Intrinsic::icall_branch_funnel: {
6817     SmallVector<SDValue, 16> Ops;
6818     Ops.push_back(getValue(I.getArgOperand(0)));
6819 
6820     int64_t Offset;
6821     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6822         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6823     if (!Base)
6824       report_fatal_error(
6825           "llvm.icall.branch.funnel operand must be a GlobalValue");
6826     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6827 
6828     struct BranchFunnelTarget {
6829       int64_t Offset;
6830       SDValue Target;
6831     };
6832     SmallVector<BranchFunnelTarget, 8> Targets;
6833 
6834     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6835       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6836           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6837       if (ElemBase != Base)
6838         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6839                            "to the same GlobalValue");
6840 
6841       SDValue Val = getValue(I.getArgOperand(Op + 1));
6842       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6843       if (!GA)
6844         report_fatal_error(
6845             "llvm.icall.branch.funnel operand must be a GlobalValue");
6846       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6847                                      GA->getGlobal(), getCurSDLoc(),
6848                                      Val.getValueType(), GA->getOffset())});
6849     }
6850     llvm::sort(Targets,
6851                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6852                  return T1.Offset < T2.Offset;
6853                });
6854 
6855     for (auto &T : Targets) {
6856       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6857       Ops.push_back(T.Target);
6858     }
6859 
6860     Ops.push_back(DAG.getRoot()); // Chain
6861     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6862                                  getCurSDLoc(), MVT::Other, Ops),
6863               0);
6864     DAG.setRoot(N);
6865     setValue(&I, N);
6866     HasTailCall = true;
6867     return;
6868   }
6869 
6870   case Intrinsic::wasm_landingpad_index:
6871     // Information this intrinsic contained has been transferred to
6872     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6873     // delete it now.
6874     return;
6875 
6876   case Intrinsic::aarch64_settag:
6877   case Intrinsic::aarch64_settag_zero: {
6878     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6879     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6880     SDValue Val = TSI.EmitTargetCodeForSetTag(
6881         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6882         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6883         ZeroMemory);
6884     DAG.setRoot(Val);
6885     setValue(&I, Val);
6886     return;
6887   }
6888   case Intrinsic::ptrmask: {
6889     SDValue Ptr = getValue(I.getOperand(0));
6890     SDValue Const = getValue(I.getOperand(1));
6891 
6892     EVT PtrVT = Ptr.getValueType();
6893     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
6894                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
6895     return;
6896   }
6897   case Intrinsic::get_active_lane_mask: {
6898     auto DL = getCurSDLoc();
6899     SDValue Index = getValue(I.getOperand(0));
6900     SDValue BTC = getValue(I.getOperand(1));
6901     Type *ElementTy = I.getOperand(0)->getType();
6902     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6903     unsigned VecWidth = VT.getVectorNumElements();
6904 
6905     SmallVector<SDValue, 16> OpsBTC;
6906     SmallVector<SDValue, 16> OpsIndex;
6907     SmallVector<SDValue, 16> OpsStepConstants;
6908     for (unsigned i = 0; i < VecWidth; i++) {
6909       OpsBTC.push_back(BTC);
6910       OpsIndex.push_back(Index);
6911       OpsStepConstants.push_back(DAG.getConstant(i, DL, MVT::getVT(ElementTy)));
6912     }
6913 
6914     EVT CCVT = MVT::i1;
6915     CCVT = EVT::getVectorVT(I.getContext(), CCVT, VecWidth);
6916 
6917     auto VecTy = MVT::getVT(FixedVectorType::get(ElementTy, VecWidth));
6918     SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex);
6919     SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants);
6920     SDValue VectorInduction = DAG.getNode(
6921        ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep);
6922     SDValue VectorBTC = DAG.getBuildVector(VecTy, DL, OpsBTC);
6923     SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0),
6924                                  VectorBTC, ISD::CondCode::SETULE);
6925     setValue(&I, DAG.getNode(ISD::AND, DL, CCVT,
6926                              DAG.getNOT(DL, VectorInduction.getValue(1), CCVT),
6927                              SetCC));
6928     return;
6929   }
6930   }
6931 }
6932 
6933 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6934     const ConstrainedFPIntrinsic &FPI) {
6935   SDLoc sdl = getCurSDLoc();
6936 
6937   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6938   SmallVector<EVT, 4> ValueVTs;
6939   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6940   ValueVTs.push_back(MVT::Other); // Out chain
6941 
6942   // We do not need to serialize constrained FP intrinsics against
6943   // each other or against (nonvolatile) loads, so they can be
6944   // chained like loads.
6945   SDValue Chain = DAG.getRoot();
6946   SmallVector<SDValue, 4> Opers;
6947   Opers.push_back(Chain);
6948   if (FPI.isUnaryOp()) {
6949     Opers.push_back(getValue(FPI.getArgOperand(0)));
6950   } else if (FPI.isTernaryOp()) {
6951     Opers.push_back(getValue(FPI.getArgOperand(0)));
6952     Opers.push_back(getValue(FPI.getArgOperand(1)));
6953     Opers.push_back(getValue(FPI.getArgOperand(2)));
6954   } else {
6955     Opers.push_back(getValue(FPI.getArgOperand(0)));
6956     Opers.push_back(getValue(FPI.getArgOperand(1)));
6957   }
6958 
6959   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
6960     assert(Result.getNode()->getNumValues() == 2);
6961 
6962     // Push node to the appropriate list so that future instructions can be
6963     // chained up correctly.
6964     SDValue OutChain = Result.getValue(1);
6965     switch (EB) {
6966     case fp::ExceptionBehavior::ebIgnore:
6967       // The only reason why ebIgnore nodes still need to be chained is that
6968       // they might depend on the current rounding mode, and therefore must
6969       // not be moved across instruction that may change that mode.
6970       LLVM_FALLTHROUGH;
6971     case fp::ExceptionBehavior::ebMayTrap:
6972       // These must not be moved across calls or instructions that may change
6973       // floating-point exception masks.
6974       PendingConstrainedFP.push_back(OutChain);
6975       break;
6976     case fp::ExceptionBehavior::ebStrict:
6977       // These must not be moved across calls or instructions that may change
6978       // floating-point exception masks or read floating-point exception flags.
6979       // In addition, they cannot be optimized out even if unused.
6980       PendingConstrainedFPStrict.push_back(OutChain);
6981       break;
6982     }
6983   };
6984 
6985   SDVTList VTs = DAG.getVTList(ValueVTs);
6986   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
6987 
6988   SDNodeFlags Flags;
6989   if (EB == fp::ExceptionBehavior::ebIgnore)
6990     Flags.setNoFPExcept(true);
6991 
6992   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
6993     Flags.copyFMF(*FPOp);
6994 
6995   unsigned Opcode;
6996   switch (FPI.getIntrinsicID()) {
6997   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6998 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
6999   case Intrinsic::INTRINSIC:                                                   \
7000     Opcode = ISD::STRICT_##DAGN;                                               \
7001     break;
7002 #include "llvm/IR/ConstrainedOps.def"
7003   case Intrinsic::experimental_constrained_fmuladd: {
7004     Opcode = ISD::STRICT_FMA;
7005     // Break fmuladd into fmul and fadd.
7006     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7007         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7008                                         ValueVTs[0])) {
7009       Opers.pop_back();
7010       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7011       pushOutChain(Mul, EB);
7012       Opcode = ISD::STRICT_FADD;
7013       Opers.clear();
7014       Opers.push_back(Mul.getValue(1));
7015       Opers.push_back(Mul.getValue(0));
7016       Opers.push_back(getValue(FPI.getArgOperand(2)));
7017     }
7018     break;
7019   }
7020   }
7021 
7022   // A few strict DAG nodes carry additional operands that are not
7023   // set up by the default code above.
7024   switch (Opcode) {
7025   default: break;
7026   case ISD::STRICT_FP_ROUND:
7027     Opers.push_back(
7028         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7029     break;
7030   case ISD::STRICT_FSETCC:
7031   case ISD::STRICT_FSETCCS: {
7032     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7033     Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate())));
7034     break;
7035   }
7036   }
7037 
7038   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7039   pushOutChain(Result, EB);
7040 
7041   SDValue FPResult = Result.getValue(0);
7042   setValue(&FPI, FPResult);
7043 }
7044 
7045 std::pair<SDValue, SDValue>
7046 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7047                                     const BasicBlock *EHPadBB) {
7048   MachineFunction &MF = DAG.getMachineFunction();
7049   MachineModuleInfo &MMI = MF.getMMI();
7050   MCSymbol *BeginLabel = nullptr;
7051 
7052   if (EHPadBB) {
7053     // Insert a label before the invoke call to mark the try range.  This can be
7054     // used to detect deletion of the invoke via the MachineModuleInfo.
7055     BeginLabel = MMI.getContext().createTempSymbol();
7056 
7057     // For SjLj, keep track of which landing pads go with which invokes
7058     // so as to maintain the ordering of pads in the LSDA.
7059     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7060     if (CallSiteIndex) {
7061       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7062       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7063 
7064       // Now that the call site is handled, stop tracking it.
7065       MMI.setCurrentCallSite(0);
7066     }
7067 
7068     // Both PendingLoads and PendingExports must be flushed here;
7069     // this call might not return.
7070     (void)getRoot();
7071     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7072 
7073     CLI.setChain(getRoot());
7074   }
7075   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7076   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7077 
7078   assert((CLI.IsTailCall || Result.second.getNode()) &&
7079          "Non-null chain expected with non-tail call!");
7080   assert((Result.second.getNode() || !Result.first.getNode()) &&
7081          "Null value expected with tail call!");
7082 
7083   if (!Result.second.getNode()) {
7084     // As a special case, a null chain means that a tail call has been emitted
7085     // and the DAG root is already updated.
7086     HasTailCall = true;
7087 
7088     // Since there's no actual continuation from this block, nothing can be
7089     // relying on us setting vregs for them.
7090     PendingExports.clear();
7091   } else {
7092     DAG.setRoot(Result.second);
7093   }
7094 
7095   if (EHPadBB) {
7096     // Insert a label at the end of the invoke call to mark the try range.  This
7097     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7098     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7099     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7100 
7101     // Inform MachineModuleInfo of range.
7102     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7103     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7104     // actually use outlined funclets and their LSDA info style.
7105     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7106       assert(CLI.CB);
7107       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7108       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel);
7109     } else if (!isScopedEHPersonality(Pers)) {
7110       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7111     }
7112   }
7113 
7114   return Result;
7115 }
7116 
7117 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7118                                       bool isTailCall,
7119                                       const BasicBlock *EHPadBB) {
7120   auto &DL = DAG.getDataLayout();
7121   FunctionType *FTy = CB.getFunctionType();
7122   Type *RetTy = CB.getType();
7123 
7124   TargetLowering::ArgListTy Args;
7125   Args.reserve(CB.arg_size());
7126 
7127   const Value *SwiftErrorVal = nullptr;
7128   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7129 
7130   if (isTailCall) {
7131     // Avoid emitting tail calls in functions with the disable-tail-calls
7132     // attribute.
7133     auto *Caller = CB.getParent()->getParent();
7134     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7135         "true")
7136       isTailCall = false;
7137 
7138     // We can't tail call inside a function with a swifterror argument. Lowering
7139     // does not support this yet. It would have to move into the swifterror
7140     // register before the call.
7141     if (TLI.supportSwiftError() &&
7142         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7143       isTailCall = false;
7144   }
7145 
7146   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7147     TargetLowering::ArgListEntry Entry;
7148     const Value *V = *I;
7149 
7150     // Skip empty types
7151     if (V->getType()->isEmptyTy())
7152       continue;
7153 
7154     SDValue ArgNode = getValue(V);
7155     Entry.Node = ArgNode; Entry.Ty = V->getType();
7156 
7157     Entry.setAttributes(&CB, I - CB.arg_begin());
7158 
7159     // Use swifterror virtual register as input to the call.
7160     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7161       SwiftErrorVal = V;
7162       // We find the virtual register for the actual swifterror argument.
7163       // Instead of using the Value, we use the virtual register instead.
7164       Entry.Node =
7165           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7166                           EVT(TLI.getPointerTy(DL)));
7167     }
7168 
7169     Args.push_back(Entry);
7170 
7171     // If we have an explicit sret argument that is an Instruction, (i.e., it
7172     // might point to function-local memory), we can't meaningfully tail-call.
7173     if (Entry.IsSRet && isa<Instruction>(V))
7174       isTailCall = false;
7175   }
7176 
7177   // If call site has a cfguardtarget operand bundle, create and add an
7178   // additional ArgListEntry.
7179   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7180     TargetLowering::ArgListEntry Entry;
7181     Value *V = Bundle->Inputs[0];
7182     SDValue ArgNode = getValue(V);
7183     Entry.Node = ArgNode;
7184     Entry.Ty = V->getType();
7185     Entry.IsCFGuardTarget = true;
7186     Args.push_back(Entry);
7187   }
7188 
7189   // Check if target-independent constraints permit a tail call here.
7190   // Target-dependent constraints are checked within TLI->LowerCallTo.
7191   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7192     isTailCall = false;
7193 
7194   // Disable tail calls if there is an swifterror argument. Targets have not
7195   // been updated to support tail calls.
7196   if (TLI.supportSwiftError() && SwiftErrorVal)
7197     isTailCall = false;
7198 
7199   TargetLowering::CallLoweringInfo CLI(DAG);
7200   CLI.setDebugLoc(getCurSDLoc())
7201       .setChain(getRoot())
7202       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7203       .setTailCall(isTailCall)
7204       .setConvergent(CB.isConvergent())
7205       .setIsPreallocated(
7206           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7207   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7208 
7209   if (Result.first.getNode()) {
7210     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7211     setValue(&CB, Result.first);
7212   }
7213 
7214   // The last element of CLI.InVals has the SDValue for swifterror return.
7215   // Here we copy it to a virtual register and update SwiftErrorMap for
7216   // book-keeping.
7217   if (SwiftErrorVal && TLI.supportSwiftError()) {
7218     // Get the last element of InVals.
7219     SDValue Src = CLI.InVals.back();
7220     Register VReg =
7221         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7222     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7223     DAG.setRoot(CopyNode);
7224   }
7225 }
7226 
7227 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7228                              SelectionDAGBuilder &Builder) {
7229   // Check to see if this load can be trivially constant folded, e.g. if the
7230   // input is from a string literal.
7231   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7232     // Cast pointer to the type we really want to load.
7233     Type *LoadTy =
7234         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7235     if (LoadVT.isVector())
7236       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7237 
7238     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7239                                          PointerType::getUnqual(LoadTy));
7240 
7241     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7242             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7243       return Builder.getValue(LoadCst);
7244   }
7245 
7246   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7247   // still constant memory, the input chain can be the entry node.
7248   SDValue Root;
7249   bool ConstantMemory = false;
7250 
7251   // Do not serialize (non-volatile) loads of constant memory with anything.
7252   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7253     Root = Builder.DAG.getEntryNode();
7254     ConstantMemory = true;
7255   } else {
7256     // Do not serialize non-volatile loads against each other.
7257     Root = Builder.DAG.getRoot();
7258   }
7259 
7260   SDValue Ptr = Builder.getValue(PtrVal);
7261   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7262                                         Ptr, MachinePointerInfo(PtrVal),
7263                                         /* Alignment = */ 1);
7264 
7265   if (!ConstantMemory)
7266     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7267   return LoadVal;
7268 }
7269 
7270 /// Record the value for an instruction that produces an integer result,
7271 /// converting the type where necessary.
7272 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7273                                                   SDValue Value,
7274                                                   bool IsSigned) {
7275   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7276                                                     I.getType(), true);
7277   if (IsSigned)
7278     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7279   else
7280     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7281   setValue(&I, Value);
7282 }
7283 
7284 /// See if we can lower a memcmp call into an optimized form. If so, return
7285 /// true and lower it. Otherwise return false, and it will be lowered like a
7286 /// normal call.
7287 /// The caller already checked that \p I calls the appropriate LibFunc with a
7288 /// correct prototype.
7289 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7290   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7291   const Value *Size = I.getArgOperand(2);
7292   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7293   if (CSize && CSize->getZExtValue() == 0) {
7294     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7295                                                           I.getType(), true);
7296     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7297     return true;
7298   }
7299 
7300   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7301   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7302       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7303       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7304   if (Res.first.getNode()) {
7305     processIntegerCallValue(I, Res.first, true);
7306     PendingLoads.push_back(Res.second);
7307     return true;
7308   }
7309 
7310   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7311   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7312   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7313     return false;
7314 
7315   // If the target has a fast compare for the given size, it will return a
7316   // preferred load type for that size. Require that the load VT is legal and
7317   // that the target supports unaligned loads of that type. Otherwise, return
7318   // INVALID.
7319   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7320     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7321     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7322     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7323       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7324       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7325       // TODO: Check alignment of src and dest ptrs.
7326       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7327       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7328       if (!TLI.isTypeLegal(LVT) ||
7329           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7330           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7331         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7332     }
7333 
7334     return LVT;
7335   };
7336 
7337   // This turns into unaligned loads. We only do this if the target natively
7338   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7339   // we'll only produce a small number of byte loads.
7340   MVT LoadVT;
7341   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7342   switch (NumBitsToCompare) {
7343   default:
7344     return false;
7345   case 16:
7346     LoadVT = MVT::i16;
7347     break;
7348   case 32:
7349     LoadVT = MVT::i32;
7350     break;
7351   case 64:
7352   case 128:
7353   case 256:
7354     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7355     break;
7356   }
7357 
7358   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7359     return false;
7360 
7361   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7362   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7363 
7364   // Bitcast to a wide integer type if the loads are vectors.
7365   if (LoadVT.isVector()) {
7366     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7367     LoadL = DAG.getBitcast(CmpVT, LoadL);
7368     LoadR = DAG.getBitcast(CmpVT, LoadR);
7369   }
7370 
7371   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7372   processIntegerCallValue(I, Cmp, false);
7373   return true;
7374 }
7375 
7376 /// See if we can lower a memchr call into an optimized form. If so, return
7377 /// true and lower it. Otherwise return false, and it will be lowered like a
7378 /// normal call.
7379 /// The caller already checked that \p I calls the appropriate LibFunc with a
7380 /// correct prototype.
7381 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7382   const Value *Src = I.getArgOperand(0);
7383   const Value *Char = I.getArgOperand(1);
7384   const Value *Length = I.getArgOperand(2);
7385 
7386   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7387   std::pair<SDValue, SDValue> Res =
7388     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7389                                 getValue(Src), getValue(Char), getValue(Length),
7390                                 MachinePointerInfo(Src));
7391   if (Res.first.getNode()) {
7392     setValue(&I, Res.first);
7393     PendingLoads.push_back(Res.second);
7394     return true;
7395   }
7396 
7397   return false;
7398 }
7399 
7400 /// See if we can lower a mempcpy call into an optimized form. If so, return
7401 /// true and lower it. Otherwise return false, and it will be lowered like a
7402 /// normal call.
7403 /// The caller already checked that \p I calls the appropriate LibFunc with a
7404 /// correct prototype.
7405 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7406   SDValue Dst = getValue(I.getArgOperand(0));
7407   SDValue Src = getValue(I.getArgOperand(1));
7408   SDValue Size = getValue(I.getArgOperand(2));
7409 
7410   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7411   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7412   // DAG::getMemcpy needs Alignment to be defined.
7413   Align Alignment = std::min(DstAlign, SrcAlign);
7414 
7415   bool isVol = false;
7416   SDLoc sdl = getCurSDLoc();
7417 
7418   // In the mempcpy context we need to pass in a false value for isTailCall
7419   // because the return pointer needs to be adjusted by the size of
7420   // the copied memory.
7421   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7422   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7423                              /*isTailCall=*/false,
7424                              MachinePointerInfo(I.getArgOperand(0)),
7425                              MachinePointerInfo(I.getArgOperand(1)));
7426   assert(MC.getNode() != nullptr &&
7427          "** memcpy should not be lowered as TailCall in mempcpy context **");
7428   DAG.setRoot(MC);
7429 
7430   // Check if Size needs to be truncated or extended.
7431   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7432 
7433   // Adjust return pointer to point just past the last dst byte.
7434   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7435                                     Dst, Size);
7436   setValue(&I, DstPlusSize);
7437   return true;
7438 }
7439 
7440 /// See if we can lower a strcpy call into an optimized form.  If so, return
7441 /// true and lower it, otherwise return false and it will be lowered like a
7442 /// normal call.
7443 /// The caller already checked that \p I calls the appropriate LibFunc with a
7444 /// correct prototype.
7445 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7446   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7447 
7448   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7449   std::pair<SDValue, SDValue> Res =
7450     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7451                                 getValue(Arg0), getValue(Arg1),
7452                                 MachinePointerInfo(Arg0),
7453                                 MachinePointerInfo(Arg1), isStpcpy);
7454   if (Res.first.getNode()) {
7455     setValue(&I, Res.first);
7456     DAG.setRoot(Res.second);
7457     return true;
7458   }
7459 
7460   return false;
7461 }
7462 
7463 /// See if we can lower a strcmp call into an optimized form.  If so, return
7464 /// true and lower it, otherwise return false and it will be lowered like a
7465 /// normal call.
7466 /// The caller already checked that \p I calls the appropriate LibFunc with a
7467 /// correct prototype.
7468 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7469   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7470 
7471   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7472   std::pair<SDValue, SDValue> Res =
7473     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7474                                 getValue(Arg0), getValue(Arg1),
7475                                 MachinePointerInfo(Arg0),
7476                                 MachinePointerInfo(Arg1));
7477   if (Res.first.getNode()) {
7478     processIntegerCallValue(I, Res.first, true);
7479     PendingLoads.push_back(Res.second);
7480     return true;
7481   }
7482 
7483   return false;
7484 }
7485 
7486 /// See if we can lower a strlen call into an optimized form.  If so, return
7487 /// true and lower it, otherwise return false and it will be lowered like a
7488 /// normal call.
7489 /// The caller already checked that \p I calls the appropriate LibFunc with a
7490 /// correct prototype.
7491 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7492   const Value *Arg0 = I.getArgOperand(0);
7493 
7494   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7495   std::pair<SDValue, SDValue> Res =
7496     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7497                                 getValue(Arg0), MachinePointerInfo(Arg0));
7498   if (Res.first.getNode()) {
7499     processIntegerCallValue(I, Res.first, false);
7500     PendingLoads.push_back(Res.second);
7501     return true;
7502   }
7503 
7504   return false;
7505 }
7506 
7507 /// See if we can lower a strnlen call into an optimized form.  If so, return
7508 /// true and lower it, otherwise return false and it will be lowered like a
7509 /// normal call.
7510 /// The caller already checked that \p I calls the appropriate LibFunc with a
7511 /// correct prototype.
7512 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7513   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7514 
7515   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7516   std::pair<SDValue, SDValue> Res =
7517     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7518                                  getValue(Arg0), getValue(Arg1),
7519                                  MachinePointerInfo(Arg0));
7520   if (Res.first.getNode()) {
7521     processIntegerCallValue(I, Res.first, false);
7522     PendingLoads.push_back(Res.second);
7523     return true;
7524   }
7525 
7526   return false;
7527 }
7528 
7529 /// See if we can lower a unary floating-point operation into an SDNode with
7530 /// the specified Opcode.  If so, return true and lower it, otherwise return
7531 /// false and it will be lowered like a normal call.
7532 /// The caller already checked that \p I calls the appropriate LibFunc with a
7533 /// correct prototype.
7534 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7535                                               unsigned Opcode) {
7536   // We already checked this call's prototype; verify it doesn't modify errno.
7537   if (!I.onlyReadsMemory())
7538     return false;
7539 
7540   SDValue Tmp = getValue(I.getArgOperand(0));
7541   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7542   return true;
7543 }
7544 
7545 /// See if we can lower a binary floating-point operation into an SDNode with
7546 /// the specified Opcode. If so, return true and lower it. Otherwise return
7547 /// false, and it will be lowered like a normal call.
7548 /// The caller already checked that \p I calls the appropriate LibFunc with a
7549 /// correct prototype.
7550 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7551                                                unsigned Opcode) {
7552   // We already checked this call's prototype; verify it doesn't modify errno.
7553   if (!I.onlyReadsMemory())
7554     return false;
7555 
7556   SDValue Tmp0 = getValue(I.getArgOperand(0));
7557   SDValue Tmp1 = getValue(I.getArgOperand(1));
7558   EVT VT = Tmp0.getValueType();
7559   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7560   return true;
7561 }
7562 
7563 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7564   // Handle inline assembly differently.
7565   if (I.isInlineAsm()) {
7566     visitInlineAsm(I);
7567     return;
7568   }
7569 
7570   if (Function *F = I.getCalledFunction()) {
7571     if (F->isDeclaration()) {
7572       // Is this an LLVM intrinsic or a target-specific intrinsic?
7573       unsigned IID = F->getIntrinsicID();
7574       if (!IID)
7575         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7576           IID = II->getIntrinsicID(F);
7577 
7578       if (IID) {
7579         visitIntrinsicCall(I, IID);
7580         return;
7581       }
7582     }
7583 
7584     // Check for well-known libc/libm calls.  If the function is internal, it
7585     // can't be a library call.  Don't do the check if marked as nobuiltin for
7586     // some reason or the call site requires strict floating point semantics.
7587     LibFunc Func;
7588     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7589         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7590         LibInfo->hasOptimizedCodeGen(Func)) {
7591       switch (Func) {
7592       default: break;
7593       case LibFunc_copysign:
7594       case LibFunc_copysignf:
7595       case LibFunc_copysignl:
7596         // We already checked this call's prototype; verify it doesn't modify
7597         // errno.
7598         if (I.onlyReadsMemory()) {
7599           SDValue LHS = getValue(I.getArgOperand(0));
7600           SDValue RHS = getValue(I.getArgOperand(1));
7601           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7602                                    LHS.getValueType(), LHS, RHS));
7603           return;
7604         }
7605         break;
7606       case LibFunc_fabs:
7607       case LibFunc_fabsf:
7608       case LibFunc_fabsl:
7609         if (visitUnaryFloatCall(I, ISD::FABS))
7610           return;
7611         break;
7612       case LibFunc_fmin:
7613       case LibFunc_fminf:
7614       case LibFunc_fminl:
7615         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7616           return;
7617         break;
7618       case LibFunc_fmax:
7619       case LibFunc_fmaxf:
7620       case LibFunc_fmaxl:
7621         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7622           return;
7623         break;
7624       case LibFunc_sin:
7625       case LibFunc_sinf:
7626       case LibFunc_sinl:
7627         if (visitUnaryFloatCall(I, ISD::FSIN))
7628           return;
7629         break;
7630       case LibFunc_cos:
7631       case LibFunc_cosf:
7632       case LibFunc_cosl:
7633         if (visitUnaryFloatCall(I, ISD::FCOS))
7634           return;
7635         break;
7636       case LibFunc_sqrt:
7637       case LibFunc_sqrtf:
7638       case LibFunc_sqrtl:
7639       case LibFunc_sqrt_finite:
7640       case LibFunc_sqrtf_finite:
7641       case LibFunc_sqrtl_finite:
7642         if (visitUnaryFloatCall(I, ISD::FSQRT))
7643           return;
7644         break;
7645       case LibFunc_floor:
7646       case LibFunc_floorf:
7647       case LibFunc_floorl:
7648         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7649           return;
7650         break;
7651       case LibFunc_nearbyint:
7652       case LibFunc_nearbyintf:
7653       case LibFunc_nearbyintl:
7654         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7655           return;
7656         break;
7657       case LibFunc_ceil:
7658       case LibFunc_ceilf:
7659       case LibFunc_ceill:
7660         if (visitUnaryFloatCall(I, ISD::FCEIL))
7661           return;
7662         break;
7663       case LibFunc_rint:
7664       case LibFunc_rintf:
7665       case LibFunc_rintl:
7666         if (visitUnaryFloatCall(I, ISD::FRINT))
7667           return;
7668         break;
7669       case LibFunc_round:
7670       case LibFunc_roundf:
7671       case LibFunc_roundl:
7672         if (visitUnaryFloatCall(I, ISD::FROUND))
7673           return;
7674         break;
7675       case LibFunc_trunc:
7676       case LibFunc_truncf:
7677       case LibFunc_truncl:
7678         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7679           return;
7680         break;
7681       case LibFunc_log2:
7682       case LibFunc_log2f:
7683       case LibFunc_log2l:
7684         if (visitUnaryFloatCall(I, ISD::FLOG2))
7685           return;
7686         break;
7687       case LibFunc_exp2:
7688       case LibFunc_exp2f:
7689       case LibFunc_exp2l:
7690         if (visitUnaryFloatCall(I, ISD::FEXP2))
7691           return;
7692         break;
7693       case LibFunc_memcmp:
7694         if (visitMemCmpCall(I))
7695           return;
7696         break;
7697       case LibFunc_mempcpy:
7698         if (visitMemPCpyCall(I))
7699           return;
7700         break;
7701       case LibFunc_memchr:
7702         if (visitMemChrCall(I))
7703           return;
7704         break;
7705       case LibFunc_strcpy:
7706         if (visitStrCpyCall(I, false))
7707           return;
7708         break;
7709       case LibFunc_stpcpy:
7710         if (visitStrCpyCall(I, true))
7711           return;
7712         break;
7713       case LibFunc_strcmp:
7714         if (visitStrCmpCall(I))
7715           return;
7716         break;
7717       case LibFunc_strlen:
7718         if (visitStrLenCall(I))
7719           return;
7720         break;
7721       case LibFunc_strnlen:
7722         if (visitStrNLenCall(I))
7723           return;
7724         break;
7725       }
7726     }
7727   }
7728 
7729   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7730   // have to do anything here to lower funclet bundles.
7731   // CFGuardTarget bundles are lowered in LowerCallTo.
7732   assert(!I.hasOperandBundlesOtherThan(
7733              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
7734               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) &&
7735          "Cannot lower calls with arbitrary operand bundles!");
7736 
7737   SDValue Callee = getValue(I.getCalledOperand());
7738 
7739   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7740     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7741   else
7742     // Check if we can potentially perform a tail call. More detailed checking
7743     // is be done within LowerCallTo, after more information about the call is
7744     // known.
7745     LowerCallTo(I, Callee, I.isTailCall());
7746 }
7747 
7748 namespace {
7749 
7750 /// AsmOperandInfo - This contains information for each constraint that we are
7751 /// lowering.
7752 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7753 public:
7754   /// CallOperand - If this is the result output operand or a clobber
7755   /// this is null, otherwise it is the incoming operand to the CallInst.
7756   /// This gets modified as the asm is processed.
7757   SDValue CallOperand;
7758 
7759   /// AssignedRegs - If this is a register or register class operand, this
7760   /// contains the set of register corresponding to the operand.
7761   RegsForValue AssignedRegs;
7762 
7763   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7764     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7765   }
7766 
7767   /// Whether or not this operand accesses memory
7768   bool hasMemory(const TargetLowering &TLI) const {
7769     // Indirect operand accesses access memory.
7770     if (isIndirect)
7771       return true;
7772 
7773     for (const auto &Code : Codes)
7774       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7775         return true;
7776 
7777     return false;
7778   }
7779 
7780   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7781   /// corresponds to.  If there is no Value* for this operand, it returns
7782   /// MVT::Other.
7783   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7784                            const DataLayout &DL) const {
7785     if (!CallOperandVal) return MVT::Other;
7786 
7787     if (isa<BasicBlock>(CallOperandVal))
7788       return TLI.getProgramPointerTy(DL);
7789 
7790     llvm::Type *OpTy = CallOperandVal->getType();
7791 
7792     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7793     // If this is an indirect operand, the operand is a pointer to the
7794     // accessed type.
7795     if (isIndirect) {
7796       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7797       if (!PtrTy)
7798         report_fatal_error("Indirect operand for inline asm not a pointer!");
7799       OpTy = PtrTy->getElementType();
7800     }
7801 
7802     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7803     if (StructType *STy = dyn_cast<StructType>(OpTy))
7804       if (STy->getNumElements() == 1)
7805         OpTy = STy->getElementType(0);
7806 
7807     // If OpTy is not a single value, it may be a struct/union that we
7808     // can tile with integers.
7809     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7810       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7811       switch (BitSize) {
7812       default: break;
7813       case 1:
7814       case 8:
7815       case 16:
7816       case 32:
7817       case 64:
7818       case 128:
7819         OpTy = IntegerType::get(Context, BitSize);
7820         break;
7821       }
7822     }
7823 
7824     return TLI.getValueType(DL, OpTy, true);
7825   }
7826 };
7827 
7828 
7829 } // end anonymous namespace
7830 
7831 /// Make sure that the output operand \p OpInfo and its corresponding input
7832 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7833 /// out).
7834 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7835                                SDISelAsmOperandInfo &MatchingOpInfo,
7836                                SelectionDAG &DAG) {
7837   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7838     return;
7839 
7840   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7841   const auto &TLI = DAG.getTargetLoweringInfo();
7842 
7843   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7844       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7845                                        OpInfo.ConstraintVT);
7846   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7847       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7848                                        MatchingOpInfo.ConstraintVT);
7849   if ((OpInfo.ConstraintVT.isInteger() !=
7850        MatchingOpInfo.ConstraintVT.isInteger()) ||
7851       (MatchRC.second != InputRC.second)) {
7852     // FIXME: error out in a more elegant fashion
7853     report_fatal_error("Unsupported asm: input constraint"
7854                        " with a matching output constraint of"
7855                        " incompatible type!");
7856   }
7857   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7858 }
7859 
7860 /// Get a direct memory input to behave well as an indirect operand.
7861 /// This may introduce stores, hence the need for a \p Chain.
7862 /// \return The (possibly updated) chain.
7863 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7864                                         SDISelAsmOperandInfo &OpInfo,
7865                                         SelectionDAG &DAG) {
7866   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7867 
7868   // If we don't have an indirect input, put it in the constpool if we can,
7869   // otherwise spill it to a stack slot.
7870   // TODO: This isn't quite right. We need to handle these according to
7871   // the addressing mode that the constraint wants. Also, this may take
7872   // an additional register for the computation and we don't want that
7873   // either.
7874 
7875   // If the operand is a float, integer, or vector constant, spill to a
7876   // constant pool entry to get its address.
7877   const Value *OpVal = OpInfo.CallOperandVal;
7878   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7879       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7880     OpInfo.CallOperand = DAG.getConstantPool(
7881         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7882     return Chain;
7883   }
7884 
7885   // Otherwise, create a stack slot and emit a store to it before the asm.
7886   Type *Ty = OpVal->getType();
7887   auto &DL = DAG.getDataLayout();
7888   uint64_t TySize = DL.getTypeAllocSize(Ty);
7889   MachineFunction &MF = DAG.getMachineFunction();
7890   int SSFI = MF.getFrameInfo().CreateStackObject(
7891       TySize, DL.getPrefTypeAlign(Ty), false);
7892   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7893   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7894                             MachinePointerInfo::getFixedStack(MF, SSFI),
7895                             TLI.getMemValueType(DL, Ty));
7896   OpInfo.CallOperand = StackSlot;
7897 
7898   return Chain;
7899 }
7900 
7901 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7902 /// specified operand.  We prefer to assign virtual registers, to allow the
7903 /// register allocator to handle the assignment process.  However, if the asm
7904 /// uses features that we can't model on machineinstrs, we have SDISel do the
7905 /// allocation.  This produces generally horrible, but correct, code.
7906 ///
7907 ///   OpInfo describes the operand
7908 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7909 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7910                                  SDISelAsmOperandInfo &OpInfo,
7911                                  SDISelAsmOperandInfo &RefOpInfo) {
7912   LLVMContext &Context = *DAG.getContext();
7913   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7914 
7915   MachineFunction &MF = DAG.getMachineFunction();
7916   SmallVector<unsigned, 4> Regs;
7917   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7918 
7919   // No work to do for memory operations.
7920   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7921     return;
7922 
7923   // If this is a constraint for a single physreg, or a constraint for a
7924   // register class, find it.
7925   unsigned AssignedReg;
7926   const TargetRegisterClass *RC;
7927   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7928       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7929   // RC is unset only on failure. Return immediately.
7930   if (!RC)
7931     return;
7932 
7933   // Get the actual register value type.  This is important, because the user
7934   // may have asked for (e.g.) the AX register in i32 type.  We need to
7935   // remember that AX is actually i16 to get the right extension.
7936   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7937 
7938   if (OpInfo.ConstraintVT != MVT::Other) {
7939     // If this is an FP operand in an integer register (or visa versa), or more
7940     // generally if the operand value disagrees with the register class we plan
7941     // to stick it in, fix the operand type.
7942     //
7943     // If this is an input value, the bitcast to the new type is done now.
7944     // Bitcast for output value is done at the end of visitInlineAsm().
7945     if ((OpInfo.Type == InlineAsm::isOutput ||
7946          OpInfo.Type == InlineAsm::isInput) &&
7947         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7948       // Try to convert to the first EVT that the reg class contains.  If the
7949       // types are identical size, use a bitcast to convert (e.g. two differing
7950       // vector types).  Note: output bitcast is done at the end of
7951       // visitInlineAsm().
7952       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7953         // Exclude indirect inputs while they are unsupported because the code
7954         // to perform the load is missing and thus OpInfo.CallOperand still
7955         // refers to the input address rather than the pointed-to value.
7956         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7957           OpInfo.CallOperand =
7958               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7959         OpInfo.ConstraintVT = RegVT;
7960         // If the operand is an FP value and we want it in integer registers,
7961         // use the corresponding integer type. This turns an f64 value into
7962         // i64, which can be passed with two i32 values on a 32-bit machine.
7963       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7964         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7965         if (OpInfo.Type == InlineAsm::isInput)
7966           OpInfo.CallOperand =
7967               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7968         OpInfo.ConstraintVT = VT;
7969       }
7970     }
7971   }
7972 
7973   // No need to allocate a matching input constraint since the constraint it's
7974   // matching to has already been allocated.
7975   if (OpInfo.isMatchingInputConstraint())
7976     return;
7977 
7978   EVT ValueVT = OpInfo.ConstraintVT;
7979   if (OpInfo.ConstraintVT == MVT::Other)
7980     ValueVT = RegVT;
7981 
7982   // Initialize NumRegs.
7983   unsigned NumRegs = 1;
7984   if (OpInfo.ConstraintVT != MVT::Other)
7985     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7986 
7987   // If this is a constraint for a specific physical register, like {r17},
7988   // assign it now.
7989 
7990   // If this associated to a specific register, initialize iterator to correct
7991   // place. If virtual, make sure we have enough registers
7992 
7993   // Initialize iterator if necessary
7994   TargetRegisterClass::iterator I = RC->begin();
7995   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7996 
7997   // Do not check for single registers.
7998   if (AssignedReg) {
7999       for (; *I != AssignedReg; ++I)
8000         assert(I != RC->end() && "AssignedReg should be member of RC");
8001   }
8002 
8003   for (; NumRegs; --NumRegs, ++I) {
8004     assert(I != RC->end() && "Ran out of registers to allocate!");
8005     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8006     Regs.push_back(R);
8007   }
8008 
8009   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8010 }
8011 
8012 static unsigned
8013 findMatchingInlineAsmOperand(unsigned OperandNo,
8014                              const std::vector<SDValue> &AsmNodeOperands) {
8015   // Scan until we find the definition we already emitted of this operand.
8016   unsigned CurOp = InlineAsm::Op_FirstOperand;
8017   for (; OperandNo; --OperandNo) {
8018     // Advance to the next operand.
8019     unsigned OpFlag =
8020         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8021     assert((InlineAsm::isRegDefKind(OpFlag) ||
8022             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8023             InlineAsm::isMemKind(OpFlag)) &&
8024            "Skipped past definitions?");
8025     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8026   }
8027   return CurOp;
8028 }
8029 
8030 namespace {
8031 
8032 class ExtraFlags {
8033   unsigned Flags = 0;
8034 
8035 public:
8036   explicit ExtraFlags(const CallBase &Call) {
8037     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8038     if (IA->hasSideEffects())
8039       Flags |= InlineAsm::Extra_HasSideEffects;
8040     if (IA->isAlignStack())
8041       Flags |= InlineAsm::Extra_IsAlignStack;
8042     if (Call.isConvergent())
8043       Flags |= InlineAsm::Extra_IsConvergent;
8044     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8045   }
8046 
8047   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8048     // Ideally, we would only check against memory constraints.  However, the
8049     // meaning of an Other constraint can be target-specific and we can't easily
8050     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8051     // for Other constraints as well.
8052     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8053         OpInfo.ConstraintType == TargetLowering::C_Other) {
8054       if (OpInfo.Type == InlineAsm::isInput)
8055         Flags |= InlineAsm::Extra_MayLoad;
8056       else if (OpInfo.Type == InlineAsm::isOutput)
8057         Flags |= InlineAsm::Extra_MayStore;
8058       else if (OpInfo.Type == InlineAsm::isClobber)
8059         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8060     }
8061   }
8062 
8063   unsigned get() const { return Flags; }
8064 };
8065 
8066 } // end anonymous namespace
8067 
8068 /// visitInlineAsm - Handle a call to an InlineAsm object.
8069 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) {
8070   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8071 
8072   /// ConstraintOperands - Information about all of the constraints.
8073   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8074 
8075   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8076   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8077       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8078 
8079   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8080   // AsmDialect, MayLoad, MayStore).
8081   bool HasSideEffect = IA->hasSideEffects();
8082   ExtraFlags ExtraInfo(Call);
8083 
8084   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8085   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8086   unsigned NumMatchingOps = 0;
8087   for (auto &T : TargetConstraints) {
8088     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8089     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8090 
8091     // Compute the value type for each operand.
8092     if (OpInfo.Type == InlineAsm::isInput ||
8093         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8094       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8095 
8096       // Process the call argument. BasicBlocks are labels, currently appearing
8097       // only in asm's.
8098       if (isa<CallBrInst>(Call) &&
8099           ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8100                         cast<CallBrInst>(&Call)->getNumIndirectDests() -
8101                         NumMatchingOps) &&
8102           (NumMatchingOps == 0 ||
8103            ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8104                         NumMatchingOps))) {
8105         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8106         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8107         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8108       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8109         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8110       } else {
8111         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8112       }
8113 
8114       OpInfo.ConstraintVT =
8115           OpInfo
8116               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8117               .getSimpleVT();
8118     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8119       // The return value of the call is this value.  As such, there is no
8120       // corresponding argument.
8121       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8122       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8123         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8124             DAG.getDataLayout(), STy->getElementType(ResNo));
8125       } else {
8126         assert(ResNo == 0 && "Asm only has one result!");
8127         OpInfo.ConstraintVT =
8128             TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType());
8129       }
8130       ++ResNo;
8131     } else {
8132       OpInfo.ConstraintVT = MVT::Other;
8133     }
8134 
8135     if (OpInfo.hasMatchingInput())
8136       ++NumMatchingOps;
8137 
8138     if (!HasSideEffect)
8139       HasSideEffect = OpInfo.hasMemory(TLI);
8140 
8141     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8142     // FIXME: Could we compute this on OpInfo rather than T?
8143 
8144     // Compute the constraint code and ConstraintType to use.
8145     TLI.ComputeConstraintToUse(T, SDValue());
8146 
8147     if (T.ConstraintType == TargetLowering::C_Immediate &&
8148         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8149       // We've delayed emitting a diagnostic like the "n" constraint because
8150       // inlining could cause an integer showing up.
8151       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8152                                           "' expects an integer constant "
8153                                           "expression");
8154 
8155     ExtraInfo.update(T);
8156   }
8157 
8158 
8159   // We won't need to flush pending loads if this asm doesn't touch
8160   // memory and is nonvolatile.
8161   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8162 
8163   bool IsCallBr = isa<CallBrInst>(Call);
8164   if (IsCallBr) {
8165     // If this is a callbr we need to flush pending exports since inlineasm_br
8166     // is a terminator. We need to do this before nodes are glued to
8167     // the inlineasm_br node.
8168     Chain = getControlRoot();
8169   }
8170 
8171   // Second pass over the constraints: compute which constraint option to use.
8172   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8173     // If this is an output operand with a matching input operand, look up the
8174     // matching input. If their types mismatch, e.g. one is an integer, the
8175     // other is floating point, or their sizes are different, flag it as an
8176     // error.
8177     if (OpInfo.hasMatchingInput()) {
8178       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8179       patchMatchingInput(OpInfo, Input, DAG);
8180     }
8181 
8182     // Compute the constraint code and ConstraintType to use.
8183     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8184 
8185     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8186         OpInfo.Type == InlineAsm::isClobber)
8187       continue;
8188 
8189     // If this is a memory input, and if the operand is not indirect, do what we
8190     // need to provide an address for the memory input.
8191     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8192         !OpInfo.isIndirect) {
8193       assert((OpInfo.isMultipleAlternative ||
8194               (OpInfo.Type == InlineAsm::isInput)) &&
8195              "Can only indirectify direct input operands!");
8196 
8197       // Memory operands really want the address of the value.
8198       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8199 
8200       // There is no longer a Value* corresponding to this operand.
8201       OpInfo.CallOperandVal = nullptr;
8202 
8203       // It is now an indirect operand.
8204       OpInfo.isIndirect = true;
8205     }
8206 
8207   }
8208 
8209   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8210   std::vector<SDValue> AsmNodeOperands;
8211   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8212   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8213       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8214 
8215   // If we have a !srcloc metadata node associated with it, we want to attach
8216   // this to the ultimately generated inline asm machineinstr.  To do this, we
8217   // pass in the third operand as this (potentially null) inline asm MDNode.
8218   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8219   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8220 
8221   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8222   // bits as operand 3.
8223   AsmNodeOperands.push_back(DAG.getTargetConstant(
8224       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8225 
8226   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8227   // this, assign virtual and physical registers for inputs and otput.
8228   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8229     // Assign Registers.
8230     SDISelAsmOperandInfo &RefOpInfo =
8231         OpInfo.isMatchingInputConstraint()
8232             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8233             : OpInfo;
8234     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8235 
8236     auto DetectWriteToReservedRegister = [&]() {
8237       const MachineFunction &MF = DAG.getMachineFunction();
8238       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8239       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8240         if (Register::isPhysicalRegister(Reg) &&
8241             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8242           const char *RegName = TRI.getName(Reg);
8243           emitInlineAsmError(Call, "write to reserved register '" +
8244                                        Twine(RegName) + "'");
8245           return true;
8246         }
8247       }
8248       return false;
8249     };
8250 
8251     switch (OpInfo.Type) {
8252     case InlineAsm::isOutput:
8253       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8254         unsigned ConstraintID =
8255             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8256         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8257                "Failed to convert memory constraint code to constraint id.");
8258 
8259         // Add information to the INLINEASM node to know about this output.
8260         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8261         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8262         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8263                                                         MVT::i32));
8264         AsmNodeOperands.push_back(OpInfo.CallOperand);
8265       } else {
8266         // Otherwise, this outputs to a register (directly for C_Register /
8267         // C_RegisterClass, and a target-defined fashion for
8268         // C_Immediate/C_Other). Find a register that we can use.
8269         if (OpInfo.AssignedRegs.Regs.empty()) {
8270           emitInlineAsmError(
8271               Call, "couldn't allocate output register for constraint '" +
8272                         Twine(OpInfo.ConstraintCode) + "'");
8273           return;
8274         }
8275 
8276         if (DetectWriteToReservedRegister())
8277           return;
8278 
8279         // Add information to the INLINEASM node to know that this register is
8280         // set.
8281         OpInfo.AssignedRegs.AddInlineAsmOperands(
8282             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8283                                   : InlineAsm::Kind_RegDef,
8284             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8285       }
8286       break;
8287 
8288     case InlineAsm::isInput: {
8289       SDValue InOperandVal = OpInfo.CallOperand;
8290 
8291       if (OpInfo.isMatchingInputConstraint()) {
8292         // If this is required to match an output register we have already set,
8293         // just use its register.
8294         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8295                                                   AsmNodeOperands);
8296         unsigned OpFlag =
8297           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8298         if (InlineAsm::isRegDefKind(OpFlag) ||
8299             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8300           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8301           if (OpInfo.isIndirect) {
8302             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8303             emitInlineAsmError(Call, "inline asm not supported yet: "
8304                                      "don't know how to handle tied "
8305                                      "indirect register inputs");
8306             return;
8307           }
8308 
8309           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8310           SmallVector<unsigned, 4> Regs;
8311 
8312           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8313             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8314             MachineRegisterInfo &RegInfo =
8315                 DAG.getMachineFunction().getRegInfo();
8316             for (unsigned i = 0; i != NumRegs; ++i)
8317               Regs.push_back(RegInfo.createVirtualRegister(RC));
8318           } else {
8319             emitInlineAsmError(Call,
8320                                "inline asm error: This value type register "
8321                                "class is not natively supported!");
8322             return;
8323           }
8324 
8325           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8326 
8327           SDLoc dl = getCurSDLoc();
8328           // Use the produced MatchedRegs object to
8329           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8330           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8331                                            true, OpInfo.getMatchedOperand(), dl,
8332                                            DAG, AsmNodeOperands);
8333           break;
8334         }
8335 
8336         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8337         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8338                "Unexpected number of operands");
8339         // Add information to the INLINEASM node to know about this input.
8340         // See InlineAsm.h isUseOperandTiedToDef.
8341         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8342         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8343                                                     OpInfo.getMatchedOperand());
8344         AsmNodeOperands.push_back(DAG.getTargetConstant(
8345             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8346         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8347         break;
8348       }
8349 
8350       // Treat indirect 'X' constraint as memory.
8351       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8352           OpInfo.isIndirect)
8353         OpInfo.ConstraintType = TargetLowering::C_Memory;
8354 
8355       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8356           OpInfo.ConstraintType == TargetLowering::C_Other) {
8357         std::vector<SDValue> Ops;
8358         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8359                                           Ops, DAG);
8360         if (Ops.empty()) {
8361           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8362             if (isa<ConstantSDNode>(InOperandVal)) {
8363               emitInlineAsmError(Call, "value out of range for constraint '" +
8364                                            Twine(OpInfo.ConstraintCode) + "'");
8365               return;
8366             }
8367 
8368           emitInlineAsmError(Call,
8369                              "invalid operand for inline asm constraint '" +
8370                                  Twine(OpInfo.ConstraintCode) + "'");
8371           return;
8372         }
8373 
8374         // Add information to the INLINEASM node to know about this input.
8375         unsigned ResOpType =
8376           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8377         AsmNodeOperands.push_back(DAG.getTargetConstant(
8378             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8379         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8380         break;
8381       }
8382 
8383       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8384         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8385         assert(InOperandVal.getValueType() ==
8386                    TLI.getPointerTy(DAG.getDataLayout()) &&
8387                "Memory operands expect pointer values");
8388 
8389         unsigned ConstraintID =
8390             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8391         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8392                "Failed to convert memory constraint code to constraint id.");
8393 
8394         // Add information to the INLINEASM node to know about this input.
8395         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8396         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8397         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8398                                                         getCurSDLoc(),
8399                                                         MVT::i32));
8400         AsmNodeOperands.push_back(InOperandVal);
8401         break;
8402       }
8403 
8404       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8405               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8406              "Unknown constraint type!");
8407 
8408       // TODO: Support this.
8409       if (OpInfo.isIndirect) {
8410         emitInlineAsmError(
8411             Call, "Don't know how to handle indirect register inputs yet "
8412                   "for constraint '" +
8413                       Twine(OpInfo.ConstraintCode) + "'");
8414         return;
8415       }
8416 
8417       // Copy the input into the appropriate registers.
8418       if (OpInfo.AssignedRegs.Regs.empty()) {
8419         emitInlineAsmError(Call,
8420                            "couldn't allocate input reg for constraint '" +
8421                                Twine(OpInfo.ConstraintCode) + "'");
8422         return;
8423       }
8424 
8425       if (DetectWriteToReservedRegister())
8426         return;
8427 
8428       SDLoc dl = getCurSDLoc();
8429 
8430       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8431                                         &Call);
8432 
8433       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8434                                                dl, DAG, AsmNodeOperands);
8435       break;
8436     }
8437     case InlineAsm::isClobber:
8438       // Add the clobbered value to the operand list, so that the register
8439       // allocator is aware that the physreg got clobbered.
8440       if (!OpInfo.AssignedRegs.Regs.empty())
8441         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8442                                                  false, 0, getCurSDLoc(), DAG,
8443                                                  AsmNodeOperands);
8444       break;
8445     }
8446   }
8447 
8448   // Finish up input operands.  Set the input chain and add the flag last.
8449   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8450   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8451 
8452   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8453   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8454                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8455   Flag = Chain.getValue(1);
8456 
8457   // Do additional work to generate outputs.
8458 
8459   SmallVector<EVT, 1> ResultVTs;
8460   SmallVector<SDValue, 1> ResultValues;
8461   SmallVector<SDValue, 8> OutChains;
8462 
8463   llvm::Type *CallResultType = Call.getType();
8464   ArrayRef<Type *> ResultTypes;
8465   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8466     ResultTypes = StructResult->elements();
8467   else if (!CallResultType->isVoidTy())
8468     ResultTypes = makeArrayRef(CallResultType);
8469 
8470   auto CurResultType = ResultTypes.begin();
8471   auto handleRegAssign = [&](SDValue V) {
8472     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8473     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8474     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8475     ++CurResultType;
8476     // If the type of the inline asm call site return value is different but has
8477     // same size as the type of the asm output bitcast it.  One example of this
8478     // is for vectors with different width / number of elements.  This can
8479     // happen for register classes that can contain multiple different value
8480     // types.  The preg or vreg allocated may not have the same VT as was
8481     // expected.
8482     //
8483     // This can also happen for a return value that disagrees with the register
8484     // class it is put in, eg. a double in a general-purpose register on a
8485     // 32-bit machine.
8486     if (ResultVT != V.getValueType() &&
8487         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8488       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8489     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8490              V.getValueType().isInteger()) {
8491       // If a result value was tied to an input value, the computed result
8492       // may have a wider width than the expected result.  Extract the
8493       // relevant portion.
8494       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8495     }
8496     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8497     ResultVTs.push_back(ResultVT);
8498     ResultValues.push_back(V);
8499   };
8500 
8501   // Deal with output operands.
8502   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8503     if (OpInfo.Type == InlineAsm::isOutput) {
8504       SDValue Val;
8505       // Skip trivial output operands.
8506       if (OpInfo.AssignedRegs.Regs.empty())
8507         continue;
8508 
8509       switch (OpInfo.ConstraintType) {
8510       case TargetLowering::C_Register:
8511       case TargetLowering::C_RegisterClass:
8512         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8513                                                   Chain, &Flag, &Call);
8514         break;
8515       case TargetLowering::C_Immediate:
8516       case TargetLowering::C_Other:
8517         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8518                                               OpInfo, DAG);
8519         break;
8520       case TargetLowering::C_Memory:
8521         break; // Already handled.
8522       case TargetLowering::C_Unknown:
8523         assert(false && "Unexpected unknown constraint");
8524       }
8525 
8526       // Indirect output manifest as stores. Record output chains.
8527       if (OpInfo.isIndirect) {
8528         const Value *Ptr = OpInfo.CallOperandVal;
8529         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8530         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8531                                      MachinePointerInfo(Ptr));
8532         OutChains.push_back(Store);
8533       } else {
8534         // generate CopyFromRegs to associated registers.
8535         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8536         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8537           for (const SDValue &V : Val->op_values())
8538             handleRegAssign(V);
8539         } else
8540           handleRegAssign(Val);
8541       }
8542     }
8543   }
8544 
8545   // Set results.
8546   if (!ResultValues.empty()) {
8547     assert(CurResultType == ResultTypes.end() &&
8548            "Mismatch in number of ResultTypes");
8549     assert(ResultValues.size() == ResultTypes.size() &&
8550            "Mismatch in number of output operands in asm result");
8551 
8552     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8553                             DAG.getVTList(ResultVTs), ResultValues);
8554     setValue(&Call, V);
8555   }
8556 
8557   // Collect store chains.
8558   if (!OutChains.empty())
8559     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8560 
8561   // Only Update Root if inline assembly has a memory effect.
8562   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8563     DAG.setRoot(Chain);
8564 }
8565 
8566 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8567                                              const Twine &Message) {
8568   LLVMContext &Ctx = *DAG.getContext();
8569   Ctx.emitError(&Call, Message);
8570 
8571   // Make sure we leave the DAG in a valid state
8572   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8573   SmallVector<EVT, 1> ValueVTs;
8574   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8575 
8576   if (ValueVTs.empty())
8577     return;
8578 
8579   SmallVector<SDValue, 1> Ops;
8580   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8581     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8582 
8583   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8584 }
8585 
8586 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8587   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8588                           MVT::Other, getRoot(),
8589                           getValue(I.getArgOperand(0)),
8590                           DAG.getSrcValue(I.getArgOperand(0))));
8591 }
8592 
8593 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8594   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8595   const DataLayout &DL = DAG.getDataLayout();
8596   SDValue V = DAG.getVAArg(
8597       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8598       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8599       DL.getABITypeAlign(I.getType()).value());
8600   DAG.setRoot(V.getValue(1));
8601 
8602   if (I.getType()->isPointerTy())
8603     V = DAG.getPtrExtOrTrunc(
8604         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8605   setValue(&I, V);
8606 }
8607 
8608 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8609   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8610                           MVT::Other, getRoot(),
8611                           getValue(I.getArgOperand(0)),
8612                           DAG.getSrcValue(I.getArgOperand(0))));
8613 }
8614 
8615 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8616   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8617                           MVT::Other, getRoot(),
8618                           getValue(I.getArgOperand(0)),
8619                           getValue(I.getArgOperand(1)),
8620                           DAG.getSrcValue(I.getArgOperand(0)),
8621                           DAG.getSrcValue(I.getArgOperand(1))));
8622 }
8623 
8624 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8625                                                     const Instruction &I,
8626                                                     SDValue Op) {
8627   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8628   if (!Range)
8629     return Op;
8630 
8631   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8632   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8633     return Op;
8634 
8635   APInt Lo = CR.getUnsignedMin();
8636   if (!Lo.isMinValue())
8637     return Op;
8638 
8639   APInt Hi = CR.getUnsignedMax();
8640   unsigned Bits = std::max(Hi.getActiveBits(),
8641                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8642 
8643   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8644 
8645   SDLoc SL = getCurSDLoc();
8646 
8647   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8648                              DAG.getValueType(SmallVT));
8649   unsigned NumVals = Op.getNode()->getNumValues();
8650   if (NumVals == 1)
8651     return ZExt;
8652 
8653   SmallVector<SDValue, 4> Ops;
8654 
8655   Ops.push_back(ZExt);
8656   for (unsigned I = 1; I != NumVals; ++I)
8657     Ops.push_back(Op.getValue(I));
8658 
8659   return DAG.getMergeValues(Ops, SL);
8660 }
8661 
8662 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8663 /// the call being lowered.
8664 ///
8665 /// This is a helper for lowering intrinsics that follow a target calling
8666 /// convention or require stack pointer adjustment. Only a subset of the
8667 /// intrinsic's operands need to participate in the calling convention.
8668 void SelectionDAGBuilder::populateCallLoweringInfo(
8669     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8670     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8671     bool IsPatchPoint) {
8672   TargetLowering::ArgListTy Args;
8673   Args.reserve(NumArgs);
8674 
8675   // Populate the argument list.
8676   // Attributes for args start at offset 1, after the return attribute.
8677   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8678        ArgI != ArgE; ++ArgI) {
8679     const Value *V = Call->getOperand(ArgI);
8680 
8681     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8682 
8683     TargetLowering::ArgListEntry Entry;
8684     Entry.Node = getValue(V);
8685     Entry.Ty = V->getType();
8686     Entry.setAttributes(Call, ArgI);
8687     Args.push_back(Entry);
8688   }
8689 
8690   CLI.setDebugLoc(getCurSDLoc())
8691       .setChain(getRoot())
8692       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8693       .setDiscardResult(Call->use_empty())
8694       .setIsPatchPoint(IsPatchPoint)
8695       .setIsPreallocated(
8696           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
8697 }
8698 
8699 /// Add a stack map intrinsic call's live variable operands to a stackmap
8700 /// or patchpoint target node's operand list.
8701 ///
8702 /// Constants are converted to TargetConstants purely as an optimization to
8703 /// avoid constant materialization and register allocation.
8704 ///
8705 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8706 /// generate addess computation nodes, and so FinalizeISel can convert the
8707 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8708 /// address materialization and register allocation, but may also be required
8709 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8710 /// alloca in the entry block, then the runtime may assume that the alloca's
8711 /// StackMap location can be read immediately after compilation and that the
8712 /// location is valid at any point during execution (this is similar to the
8713 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8714 /// only available in a register, then the runtime would need to trap when
8715 /// execution reaches the StackMap in order to read the alloca's location.
8716 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
8717                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8718                                 SelectionDAGBuilder &Builder) {
8719   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
8720     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
8721     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8722       Ops.push_back(
8723         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8724       Ops.push_back(
8725         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8726     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8727       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8728       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8729           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8730     } else
8731       Ops.push_back(OpVal);
8732   }
8733 }
8734 
8735 /// Lower llvm.experimental.stackmap directly to its target opcode.
8736 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8737   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8738   //                                  [live variables...])
8739 
8740   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8741 
8742   SDValue Chain, InFlag, Callee, NullPtr;
8743   SmallVector<SDValue, 32> Ops;
8744 
8745   SDLoc DL = getCurSDLoc();
8746   Callee = getValue(CI.getCalledOperand());
8747   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8748 
8749   // The stackmap intrinsic only records the live variables (the arguments
8750   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8751   // intrinsic, this won't be lowered to a function call. This means we don't
8752   // have to worry about calling conventions and target specific lowering code.
8753   // Instead we perform the call lowering right here.
8754   //
8755   // chain, flag = CALLSEQ_START(chain, 0, 0)
8756   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8757   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8758   //
8759   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8760   InFlag = Chain.getValue(1);
8761 
8762   // Add the <id> and <numBytes> constants.
8763   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8764   Ops.push_back(DAG.getTargetConstant(
8765                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8766   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8767   Ops.push_back(DAG.getTargetConstant(
8768                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8769                   MVT::i32));
8770 
8771   // Push live variables for the stack map.
8772   addStackMapLiveVars(CI, 2, DL, Ops, *this);
8773 
8774   // We are not pushing any register mask info here on the operands list,
8775   // because the stackmap doesn't clobber anything.
8776 
8777   // Push the chain and the glue flag.
8778   Ops.push_back(Chain);
8779   Ops.push_back(InFlag);
8780 
8781   // Create the STACKMAP node.
8782   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8783   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8784   Chain = SDValue(SM, 0);
8785   InFlag = Chain.getValue(1);
8786 
8787   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8788 
8789   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8790 
8791   // Set the root to the target-lowered call chain.
8792   DAG.setRoot(Chain);
8793 
8794   // Inform the Frame Information that we have a stackmap in this function.
8795   FuncInfo.MF->getFrameInfo().setHasStackMap();
8796 }
8797 
8798 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8799 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
8800                                           const BasicBlock *EHPadBB) {
8801   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8802   //                                                 i32 <numBytes>,
8803   //                                                 i8* <target>,
8804   //                                                 i32 <numArgs>,
8805   //                                                 [Args...],
8806   //                                                 [live variables...])
8807 
8808   CallingConv::ID CC = CB.getCallingConv();
8809   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8810   bool HasDef = !CB.getType()->isVoidTy();
8811   SDLoc dl = getCurSDLoc();
8812   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
8813 
8814   // Handle immediate and symbolic callees.
8815   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8816     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8817                                    /*isTarget=*/true);
8818   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8819     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8820                                          SDLoc(SymbolicCallee),
8821                                          SymbolicCallee->getValueType(0));
8822 
8823   // Get the real number of arguments participating in the call <numArgs>
8824   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
8825   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8826 
8827   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8828   // Intrinsics include all meta-operands up to but not including CC.
8829   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8830   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
8831          "Not enough arguments provided to the patchpoint intrinsic");
8832 
8833   // For AnyRegCC the arguments are lowered later on manually.
8834   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8835   Type *ReturnTy =
8836       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
8837 
8838   TargetLowering::CallLoweringInfo CLI(DAG);
8839   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
8840                            ReturnTy, true);
8841   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8842 
8843   SDNode *CallEnd = Result.second.getNode();
8844   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8845     CallEnd = CallEnd->getOperand(0).getNode();
8846 
8847   /// Get a call instruction from the call sequence chain.
8848   /// Tail calls are not allowed.
8849   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8850          "Expected a callseq node.");
8851   SDNode *Call = CallEnd->getOperand(0).getNode();
8852   bool HasGlue = Call->getGluedNode();
8853 
8854   // Replace the target specific call node with the patchable intrinsic.
8855   SmallVector<SDValue, 8> Ops;
8856 
8857   // Add the <id> and <numBytes> constants.
8858   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
8859   Ops.push_back(DAG.getTargetConstant(
8860                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8861   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
8862   Ops.push_back(DAG.getTargetConstant(
8863                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8864                   MVT::i32));
8865 
8866   // Add the callee.
8867   Ops.push_back(Callee);
8868 
8869   // Adjust <numArgs> to account for any arguments that have been passed on the
8870   // stack instead.
8871   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8872   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8873   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8874   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8875 
8876   // Add the calling convention
8877   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8878 
8879   // Add the arguments we omitted previously. The register allocator should
8880   // place these in any free register.
8881   if (IsAnyRegCC)
8882     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8883       Ops.push_back(getValue(CB.getArgOperand(i)));
8884 
8885   // Push the arguments from the call instruction up to the register mask.
8886   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8887   Ops.append(Call->op_begin() + 2, e);
8888 
8889   // Push live variables for the stack map.
8890   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
8891 
8892   // Push the register mask info.
8893   if (HasGlue)
8894     Ops.push_back(*(Call->op_end()-2));
8895   else
8896     Ops.push_back(*(Call->op_end()-1));
8897 
8898   // Push the chain (this is originally the first operand of the call, but
8899   // becomes now the last or second to last operand).
8900   Ops.push_back(*(Call->op_begin()));
8901 
8902   // Push the glue flag (last operand).
8903   if (HasGlue)
8904     Ops.push_back(*(Call->op_end()-1));
8905 
8906   SDVTList NodeTys;
8907   if (IsAnyRegCC && HasDef) {
8908     // Create the return types based on the intrinsic definition
8909     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8910     SmallVector<EVT, 3> ValueVTs;
8911     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
8912     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8913 
8914     // There is always a chain and a glue type at the end
8915     ValueVTs.push_back(MVT::Other);
8916     ValueVTs.push_back(MVT::Glue);
8917     NodeTys = DAG.getVTList(ValueVTs);
8918   } else
8919     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8920 
8921   // Replace the target specific call node with a PATCHPOINT node.
8922   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8923                                          dl, NodeTys, Ops);
8924 
8925   // Update the NodeMap.
8926   if (HasDef) {
8927     if (IsAnyRegCC)
8928       setValue(&CB, SDValue(MN, 0));
8929     else
8930       setValue(&CB, Result.first);
8931   }
8932 
8933   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8934   // call sequence. Furthermore the location of the chain and glue can change
8935   // when the AnyReg calling convention is used and the intrinsic returns a
8936   // value.
8937   if (IsAnyRegCC && HasDef) {
8938     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8939     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8940     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8941   } else
8942     DAG.ReplaceAllUsesWith(Call, MN);
8943   DAG.DeleteNode(Call);
8944 
8945   // Inform the Frame Information that we have a patchpoint in this function.
8946   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8947 }
8948 
8949 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8950                                             unsigned Intrinsic) {
8951   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8952   SDValue Op1 = getValue(I.getArgOperand(0));
8953   SDValue Op2;
8954   if (I.getNumArgOperands() > 1)
8955     Op2 = getValue(I.getArgOperand(1));
8956   SDLoc dl = getCurSDLoc();
8957   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8958   SDValue Res;
8959   FastMathFlags FMF;
8960   if (isa<FPMathOperator>(I))
8961     FMF = I.getFastMathFlags();
8962 
8963   switch (Intrinsic) {
8964   case Intrinsic::experimental_vector_reduce_v2_fadd:
8965     if (FMF.allowReassoc())
8966       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8967                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
8968     else
8969       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8970     break;
8971   case Intrinsic::experimental_vector_reduce_v2_fmul:
8972     if (FMF.allowReassoc())
8973       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8974                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
8975     else
8976       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8977     break;
8978   case Intrinsic::experimental_vector_reduce_add:
8979     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8980     break;
8981   case Intrinsic::experimental_vector_reduce_mul:
8982     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8983     break;
8984   case Intrinsic::experimental_vector_reduce_and:
8985     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8986     break;
8987   case Intrinsic::experimental_vector_reduce_or:
8988     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8989     break;
8990   case Intrinsic::experimental_vector_reduce_xor:
8991     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8992     break;
8993   case Intrinsic::experimental_vector_reduce_smax:
8994     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8995     break;
8996   case Intrinsic::experimental_vector_reduce_smin:
8997     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8998     break;
8999   case Intrinsic::experimental_vector_reduce_umax:
9000     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9001     break;
9002   case Intrinsic::experimental_vector_reduce_umin:
9003     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9004     break;
9005   case Intrinsic::experimental_vector_reduce_fmax:
9006     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
9007     break;
9008   case Intrinsic::experimental_vector_reduce_fmin:
9009     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
9010     break;
9011   default:
9012     llvm_unreachable("Unhandled vector reduce intrinsic");
9013   }
9014   setValue(&I, Res);
9015 }
9016 
9017 /// Returns an AttributeList representing the attributes applied to the return
9018 /// value of the given call.
9019 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9020   SmallVector<Attribute::AttrKind, 2> Attrs;
9021   if (CLI.RetSExt)
9022     Attrs.push_back(Attribute::SExt);
9023   if (CLI.RetZExt)
9024     Attrs.push_back(Attribute::ZExt);
9025   if (CLI.IsInReg)
9026     Attrs.push_back(Attribute::InReg);
9027 
9028   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9029                             Attrs);
9030 }
9031 
9032 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9033 /// implementation, which just calls LowerCall.
9034 /// FIXME: When all targets are
9035 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9036 std::pair<SDValue, SDValue>
9037 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9038   // Handle the incoming return values from the call.
9039   CLI.Ins.clear();
9040   Type *OrigRetTy = CLI.RetTy;
9041   SmallVector<EVT, 4> RetTys;
9042   SmallVector<uint64_t, 4> Offsets;
9043   auto &DL = CLI.DAG.getDataLayout();
9044   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9045 
9046   if (CLI.IsPostTypeLegalization) {
9047     // If we are lowering a libcall after legalization, split the return type.
9048     SmallVector<EVT, 4> OldRetTys;
9049     SmallVector<uint64_t, 4> OldOffsets;
9050     RetTys.swap(OldRetTys);
9051     Offsets.swap(OldOffsets);
9052 
9053     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9054       EVT RetVT = OldRetTys[i];
9055       uint64_t Offset = OldOffsets[i];
9056       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9057       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9058       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9059       RetTys.append(NumRegs, RegisterVT);
9060       for (unsigned j = 0; j != NumRegs; ++j)
9061         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9062     }
9063   }
9064 
9065   SmallVector<ISD::OutputArg, 4> Outs;
9066   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9067 
9068   bool CanLowerReturn =
9069       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9070                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9071 
9072   SDValue DemoteStackSlot;
9073   int DemoteStackIdx = -100;
9074   if (!CanLowerReturn) {
9075     // FIXME: equivalent assert?
9076     // assert(!CS.hasInAllocaArgument() &&
9077     //        "sret demotion is incompatible with inalloca");
9078     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9079     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9080     MachineFunction &MF = CLI.DAG.getMachineFunction();
9081     DemoteStackIdx =
9082         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9083     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9084                                               DL.getAllocaAddrSpace());
9085 
9086     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9087     ArgListEntry Entry;
9088     Entry.Node = DemoteStackSlot;
9089     Entry.Ty = StackSlotPtrType;
9090     Entry.IsSExt = false;
9091     Entry.IsZExt = false;
9092     Entry.IsInReg = false;
9093     Entry.IsSRet = true;
9094     Entry.IsNest = false;
9095     Entry.IsByVal = false;
9096     Entry.IsReturned = false;
9097     Entry.IsSwiftSelf = false;
9098     Entry.IsSwiftError = false;
9099     Entry.IsCFGuardTarget = false;
9100     Entry.Alignment = Alignment;
9101     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9102     CLI.NumFixedArgs += 1;
9103     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9104 
9105     // sret demotion isn't compatible with tail-calls, since the sret argument
9106     // points into the callers stack frame.
9107     CLI.IsTailCall = false;
9108   } else {
9109     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9110         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9111     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9112       ISD::ArgFlagsTy Flags;
9113       if (NeedsRegBlock) {
9114         Flags.setInConsecutiveRegs();
9115         if (I == RetTys.size() - 1)
9116           Flags.setInConsecutiveRegsLast();
9117       }
9118       EVT VT = RetTys[I];
9119       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9120                                                      CLI.CallConv, VT);
9121       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9122                                                        CLI.CallConv, VT);
9123       for (unsigned i = 0; i != NumRegs; ++i) {
9124         ISD::InputArg MyFlags;
9125         MyFlags.Flags = Flags;
9126         MyFlags.VT = RegisterVT;
9127         MyFlags.ArgVT = VT;
9128         MyFlags.Used = CLI.IsReturnValueUsed;
9129         if (CLI.RetTy->isPointerTy()) {
9130           MyFlags.Flags.setPointer();
9131           MyFlags.Flags.setPointerAddrSpace(
9132               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9133         }
9134         if (CLI.RetSExt)
9135           MyFlags.Flags.setSExt();
9136         if (CLI.RetZExt)
9137           MyFlags.Flags.setZExt();
9138         if (CLI.IsInReg)
9139           MyFlags.Flags.setInReg();
9140         CLI.Ins.push_back(MyFlags);
9141       }
9142     }
9143   }
9144 
9145   // We push in swifterror return as the last element of CLI.Ins.
9146   ArgListTy &Args = CLI.getArgs();
9147   if (supportSwiftError()) {
9148     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9149       if (Args[i].IsSwiftError) {
9150         ISD::InputArg MyFlags;
9151         MyFlags.VT = getPointerTy(DL);
9152         MyFlags.ArgVT = EVT(getPointerTy(DL));
9153         MyFlags.Flags.setSwiftError();
9154         CLI.Ins.push_back(MyFlags);
9155       }
9156     }
9157   }
9158 
9159   // Handle all of the outgoing arguments.
9160   CLI.Outs.clear();
9161   CLI.OutVals.clear();
9162   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9163     SmallVector<EVT, 4> ValueVTs;
9164     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9165     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9166     Type *FinalType = Args[i].Ty;
9167     if (Args[i].IsByVal)
9168       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9169     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9170         FinalType, CLI.CallConv, CLI.IsVarArg);
9171     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9172          ++Value) {
9173       EVT VT = ValueVTs[Value];
9174       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9175       SDValue Op = SDValue(Args[i].Node.getNode(),
9176                            Args[i].Node.getResNo() + Value);
9177       ISD::ArgFlagsTy Flags;
9178 
9179       // Certain targets (such as MIPS), may have a different ABI alignment
9180       // for a type depending on the context. Give the target a chance to
9181       // specify the alignment it wants.
9182       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9183 
9184       if (Args[i].Ty->isPointerTy()) {
9185         Flags.setPointer();
9186         Flags.setPointerAddrSpace(
9187             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9188       }
9189       if (Args[i].IsZExt)
9190         Flags.setZExt();
9191       if (Args[i].IsSExt)
9192         Flags.setSExt();
9193       if (Args[i].IsInReg) {
9194         // If we are using vectorcall calling convention, a structure that is
9195         // passed InReg - is surely an HVA
9196         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9197             isa<StructType>(FinalType)) {
9198           // The first value of a structure is marked
9199           if (0 == Value)
9200             Flags.setHvaStart();
9201           Flags.setHva();
9202         }
9203         // Set InReg Flag
9204         Flags.setInReg();
9205       }
9206       if (Args[i].IsSRet)
9207         Flags.setSRet();
9208       if (Args[i].IsSwiftSelf)
9209         Flags.setSwiftSelf();
9210       if (Args[i].IsSwiftError)
9211         Flags.setSwiftError();
9212       if (Args[i].IsCFGuardTarget)
9213         Flags.setCFGuardTarget();
9214       if (Args[i].IsByVal)
9215         Flags.setByVal();
9216       if (Args[i].IsPreallocated) {
9217         Flags.setPreallocated();
9218         // Set the byval flag for CCAssignFn callbacks that don't know about
9219         // preallocated.  This way we can know how many bytes we should've
9220         // allocated and how many bytes a callee cleanup function will pop.  If
9221         // we port preallocated to more targets, we'll have to add custom
9222         // preallocated handling in the various CC lowering callbacks.
9223         Flags.setByVal();
9224       }
9225       if (Args[i].IsInAlloca) {
9226         Flags.setInAlloca();
9227         // Set the byval flag for CCAssignFn callbacks that don't know about
9228         // inalloca.  This way we can know how many bytes we should've allocated
9229         // and how many bytes a callee cleanup function will pop.  If we port
9230         // inalloca to more targets, we'll have to add custom inalloca handling
9231         // in the various CC lowering callbacks.
9232         Flags.setByVal();
9233       }
9234       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9235         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9236         Type *ElementTy = Ty->getElementType();
9237 
9238         unsigned FrameSize = DL.getTypeAllocSize(
9239             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9240         Flags.setByValSize(FrameSize);
9241 
9242         // info is not there but there are cases it cannot get right.
9243         Align FrameAlign;
9244         if (auto MA = Args[i].Alignment)
9245           FrameAlign = *MA;
9246         else
9247           FrameAlign = Align(getByValTypeAlignment(ElementTy, DL));
9248         Flags.setByValAlign(FrameAlign);
9249       }
9250       if (Args[i].IsNest)
9251         Flags.setNest();
9252       if (NeedsRegBlock)
9253         Flags.setInConsecutiveRegs();
9254       Flags.setOrigAlign(OriginalAlignment);
9255 
9256       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9257                                                  CLI.CallConv, VT);
9258       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9259                                                         CLI.CallConv, VT);
9260       SmallVector<SDValue, 4> Parts(NumParts);
9261       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9262 
9263       if (Args[i].IsSExt)
9264         ExtendKind = ISD::SIGN_EXTEND;
9265       else if (Args[i].IsZExt)
9266         ExtendKind = ISD::ZERO_EXTEND;
9267 
9268       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9269       // for now.
9270       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9271           CanLowerReturn) {
9272         assert((CLI.RetTy == Args[i].Ty ||
9273                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9274                  CLI.RetTy->getPointerAddressSpace() ==
9275                      Args[i].Ty->getPointerAddressSpace())) &&
9276                RetTys.size() == NumValues && "unexpected use of 'returned'");
9277         // Before passing 'returned' to the target lowering code, ensure that
9278         // either the register MVT and the actual EVT are the same size or that
9279         // the return value and argument are extended in the same way; in these
9280         // cases it's safe to pass the argument register value unchanged as the
9281         // return register value (although it's at the target's option whether
9282         // to do so)
9283         // TODO: allow code generation to take advantage of partially preserved
9284         // registers rather than clobbering the entire register when the
9285         // parameter extension method is not compatible with the return
9286         // extension method
9287         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9288             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9289              CLI.RetZExt == Args[i].IsZExt))
9290           Flags.setReturned();
9291       }
9292 
9293       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9294                      CLI.CallConv, ExtendKind);
9295 
9296       for (unsigned j = 0; j != NumParts; ++j) {
9297         // if it isn't first piece, alignment must be 1
9298         // For scalable vectors the scalable part is currently handled
9299         // by individual targets, so we just use the known minimum size here.
9300         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9301                     i < CLI.NumFixedArgs, i,
9302                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9303         if (NumParts > 1 && j == 0)
9304           MyFlags.Flags.setSplit();
9305         else if (j != 0) {
9306           MyFlags.Flags.setOrigAlign(Align(1));
9307           if (j == NumParts - 1)
9308             MyFlags.Flags.setSplitEnd();
9309         }
9310 
9311         CLI.Outs.push_back(MyFlags);
9312         CLI.OutVals.push_back(Parts[j]);
9313       }
9314 
9315       if (NeedsRegBlock && Value == NumValues - 1)
9316         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9317     }
9318   }
9319 
9320   SmallVector<SDValue, 4> InVals;
9321   CLI.Chain = LowerCall(CLI, InVals);
9322 
9323   // Update CLI.InVals to use outside of this function.
9324   CLI.InVals = InVals;
9325 
9326   // Verify that the target's LowerCall behaved as expected.
9327   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9328          "LowerCall didn't return a valid chain!");
9329   assert((!CLI.IsTailCall || InVals.empty()) &&
9330          "LowerCall emitted a return value for a tail call!");
9331   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9332          "LowerCall didn't emit the correct number of values!");
9333 
9334   // For a tail call, the return value is merely live-out and there aren't
9335   // any nodes in the DAG representing it. Return a special value to
9336   // indicate that a tail call has been emitted and no more Instructions
9337   // should be processed in the current block.
9338   if (CLI.IsTailCall) {
9339     CLI.DAG.setRoot(CLI.Chain);
9340     return std::make_pair(SDValue(), SDValue());
9341   }
9342 
9343 #ifndef NDEBUG
9344   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9345     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9346     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9347            "LowerCall emitted a value with the wrong type!");
9348   }
9349 #endif
9350 
9351   SmallVector<SDValue, 4> ReturnValues;
9352   if (!CanLowerReturn) {
9353     // The instruction result is the result of loading from the
9354     // hidden sret parameter.
9355     SmallVector<EVT, 1> PVTs;
9356     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9357 
9358     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9359     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9360     EVT PtrVT = PVTs[0];
9361 
9362     unsigned NumValues = RetTys.size();
9363     ReturnValues.resize(NumValues);
9364     SmallVector<SDValue, 4> Chains(NumValues);
9365 
9366     // An aggregate return value cannot wrap around the address space, so
9367     // offsets to its parts don't wrap either.
9368     SDNodeFlags Flags;
9369     Flags.setNoUnsignedWrap(true);
9370 
9371     MachineFunction &MF = CLI.DAG.getMachineFunction();
9372     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9373     for (unsigned i = 0; i < NumValues; ++i) {
9374       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9375                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9376                                                         PtrVT), Flags);
9377       SDValue L = CLI.DAG.getLoad(
9378           RetTys[i], CLI.DL, CLI.Chain, Add,
9379           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9380                                             DemoteStackIdx, Offsets[i]),
9381           HiddenSRetAlign);
9382       ReturnValues[i] = L;
9383       Chains[i] = L.getValue(1);
9384     }
9385 
9386     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9387   } else {
9388     // Collect the legal value parts into potentially illegal values
9389     // that correspond to the original function's return values.
9390     Optional<ISD::NodeType> AssertOp;
9391     if (CLI.RetSExt)
9392       AssertOp = ISD::AssertSext;
9393     else if (CLI.RetZExt)
9394       AssertOp = ISD::AssertZext;
9395     unsigned CurReg = 0;
9396     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9397       EVT VT = RetTys[I];
9398       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9399                                                      CLI.CallConv, VT);
9400       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9401                                                        CLI.CallConv, VT);
9402 
9403       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9404                                               NumRegs, RegisterVT, VT, nullptr,
9405                                               CLI.CallConv, AssertOp));
9406       CurReg += NumRegs;
9407     }
9408 
9409     // For a function returning void, there is no return value. We can't create
9410     // such a node, so we just return a null return value in that case. In
9411     // that case, nothing will actually look at the value.
9412     if (ReturnValues.empty())
9413       return std::make_pair(SDValue(), CLI.Chain);
9414   }
9415 
9416   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9417                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9418   return std::make_pair(Res, CLI.Chain);
9419 }
9420 
9421 void TargetLowering::LowerOperationWrapper(SDNode *N,
9422                                            SmallVectorImpl<SDValue> &Results,
9423                                            SelectionDAG &DAG) const {
9424   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9425     Results.push_back(Res);
9426 }
9427 
9428 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9429   llvm_unreachable("LowerOperation not implemented for this target!");
9430 }
9431 
9432 void
9433 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9434   SDValue Op = getNonRegisterValue(V);
9435   assert((Op.getOpcode() != ISD::CopyFromReg ||
9436           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9437          "Copy from a reg to the same reg!");
9438   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9439 
9440   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9441   // If this is an InlineAsm we have to match the registers required, not the
9442   // notional registers required by the type.
9443 
9444   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9445                    None); // This is not an ABI copy.
9446   SDValue Chain = DAG.getEntryNode();
9447 
9448   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9449                               FuncInfo.PreferredExtendType.end())
9450                                  ? ISD::ANY_EXTEND
9451                                  : FuncInfo.PreferredExtendType[V];
9452   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9453   PendingExports.push_back(Chain);
9454 }
9455 
9456 #include "llvm/CodeGen/SelectionDAGISel.h"
9457 
9458 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9459 /// entry block, return true.  This includes arguments used by switches, since
9460 /// the switch may expand into multiple basic blocks.
9461 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9462   // With FastISel active, we may be splitting blocks, so force creation
9463   // of virtual registers for all non-dead arguments.
9464   if (FastISel)
9465     return A->use_empty();
9466 
9467   const BasicBlock &Entry = A->getParent()->front();
9468   for (const User *U : A->users())
9469     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9470       return false;  // Use not in entry block.
9471 
9472   return true;
9473 }
9474 
9475 using ArgCopyElisionMapTy =
9476     DenseMap<const Argument *,
9477              std::pair<const AllocaInst *, const StoreInst *>>;
9478 
9479 /// Scan the entry block of the function in FuncInfo for arguments that look
9480 /// like copies into a local alloca. Record any copied arguments in
9481 /// ArgCopyElisionCandidates.
9482 static void
9483 findArgumentCopyElisionCandidates(const DataLayout &DL,
9484                                   FunctionLoweringInfo *FuncInfo,
9485                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9486   // Record the state of every static alloca used in the entry block. Argument
9487   // allocas are all used in the entry block, so we need approximately as many
9488   // entries as we have arguments.
9489   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9490   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9491   unsigned NumArgs = FuncInfo->Fn->arg_size();
9492   StaticAllocas.reserve(NumArgs * 2);
9493 
9494   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9495     if (!V)
9496       return nullptr;
9497     V = V->stripPointerCasts();
9498     const auto *AI = dyn_cast<AllocaInst>(V);
9499     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9500       return nullptr;
9501     auto Iter = StaticAllocas.insert({AI, Unknown});
9502     return &Iter.first->second;
9503   };
9504 
9505   // Look for stores of arguments to static allocas. Look through bitcasts and
9506   // GEPs to handle type coercions, as long as the alloca is fully initialized
9507   // by the store. Any non-store use of an alloca escapes it and any subsequent
9508   // unanalyzed store might write it.
9509   // FIXME: Handle structs initialized with multiple stores.
9510   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9511     // Look for stores, and handle non-store uses conservatively.
9512     const auto *SI = dyn_cast<StoreInst>(&I);
9513     if (!SI) {
9514       // We will look through cast uses, so ignore them completely.
9515       if (I.isCast())
9516         continue;
9517       // Ignore debug info intrinsics, they don't escape or store to allocas.
9518       if (isa<DbgInfoIntrinsic>(I))
9519         continue;
9520       // This is an unknown instruction. Assume it escapes or writes to all
9521       // static alloca operands.
9522       for (const Use &U : I.operands()) {
9523         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9524           *Info = StaticAllocaInfo::Clobbered;
9525       }
9526       continue;
9527     }
9528 
9529     // If the stored value is a static alloca, mark it as escaped.
9530     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9531       *Info = StaticAllocaInfo::Clobbered;
9532 
9533     // Check if the destination is a static alloca.
9534     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9535     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9536     if (!Info)
9537       continue;
9538     const AllocaInst *AI = cast<AllocaInst>(Dst);
9539 
9540     // Skip allocas that have been initialized or clobbered.
9541     if (*Info != StaticAllocaInfo::Unknown)
9542       continue;
9543 
9544     // Check if the stored value is an argument, and that this store fully
9545     // initializes the alloca. Don't elide copies from the same argument twice.
9546     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9547     const auto *Arg = dyn_cast<Argument>(Val);
9548     if (!Arg || Arg->hasPassPointeeByValueAttr() ||
9549         Arg->getType()->isEmptyTy() ||
9550         DL.getTypeStoreSize(Arg->getType()) !=
9551             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9552         ArgCopyElisionCandidates.count(Arg)) {
9553       *Info = StaticAllocaInfo::Clobbered;
9554       continue;
9555     }
9556 
9557     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9558                       << '\n');
9559 
9560     // Mark this alloca and store for argument copy elision.
9561     *Info = StaticAllocaInfo::Elidable;
9562     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9563 
9564     // Stop scanning if we've seen all arguments. This will happen early in -O0
9565     // builds, which is useful, because -O0 builds have large entry blocks and
9566     // many allocas.
9567     if (ArgCopyElisionCandidates.size() == NumArgs)
9568       break;
9569   }
9570 }
9571 
9572 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9573 /// ArgVal is a load from a suitable fixed stack object.
9574 static void tryToElideArgumentCopy(
9575     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9576     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9577     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9578     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9579     SDValue ArgVal, bool &ArgHasUses) {
9580   // Check if this is a load from a fixed stack object.
9581   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9582   if (!LNode)
9583     return;
9584   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9585   if (!FINode)
9586     return;
9587 
9588   // Check that the fixed stack object is the right size and alignment.
9589   // Look at the alignment that the user wrote on the alloca instead of looking
9590   // at the stack object.
9591   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9592   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9593   const AllocaInst *AI = ArgCopyIter->second.first;
9594   int FixedIndex = FINode->getIndex();
9595   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9596   int OldIndex = AllocaIndex;
9597   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9598   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9599     LLVM_DEBUG(
9600         dbgs() << "  argument copy elision failed due to bad fixed stack "
9601                   "object size\n");
9602     return;
9603   }
9604   Align RequiredAlignment = AI->getAlign();
9605   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
9606     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9607                          "greater than stack argument alignment ("
9608                       << DebugStr(RequiredAlignment) << " vs "
9609                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
9610     return;
9611   }
9612 
9613   // Perform the elision. Delete the old stack object and replace its only use
9614   // in the variable info map. Mark the stack object as mutable.
9615   LLVM_DEBUG({
9616     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9617            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9618            << '\n';
9619   });
9620   MFI.RemoveStackObject(OldIndex);
9621   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9622   AllocaIndex = FixedIndex;
9623   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9624   Chains.push_back(ArgVal.getValue(1));
9625 
9626   // Avoid emitting code for the store implementing the copy.
9627   const StoreInst *SI = ArgCopyIter->second.second;
9628   ElidedArgCopyInstrs.insert(SI);
9629 
9630   // Check for uses of the argument again so that we can avoid exporting ArgVal
9631   // if it is't used by anything other than the store.
9632   for (const Value *U : Arg.users()) {
9633     if (U != SI) {
9634       ArgHasUses = true;
9635       break;
9636     }
9637   }
9638 }
9639 
9640 void SelectionDAGISel::LowerArguments(const Function &F) {
9641   SelectionDAG &DAG = SDB->DAG;
9642   SDLoc dl = SDB->getCurSDLoc();
9643   const DataLayout &DL = DAG.getDataLayout();
9644   SmallVector<ISD::InputArg, 16> Ins;
9645 
9646   // In Naked functions we aren't going to save any registers.
9647   if (F.hasFnAttribute(Attribute::Naked))
9648     return;
9649 
9650   if (!FuncInfo->CanLowerReturn) {
9651     // Put in an sret pointer parameter before all the other parameters.
9652     SmallVector<EVT, 1> ValueVTs;
9653     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9654                     F.getReturnType()->getPointerTo(
9655                         DAG.getDataLayout().getAllocaAddrSpace()),
9656                     ValueVTs);
9657 
9658     // NOTE: Assuming that a pointer will never break down to more than one VT
9659     // or one register.
9660     ISD::ArgFlagsTy Flags;
9661     Flags.setSRet();
9662     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9663     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9664                          ISD::InputArg::NoArgIndex, 0);
9665     Ins.push_back(RetArg);
9666   }
9667 
9668   // Look for stores of arguments to static allocas. Mark such arguments with a
9669   // flag to ask the target to give us the memory location of that argument if
9670   // available.
9671   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9672   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9673                                     ArgCopyElisionCandidates);
9674 
9675   // Set up the incoming argument description vector.
9676   for (const Argument &Arg : F.args()) {
9677     unsigned ArgNo = Arg.getArgNo();
9678     SmallVector<EVT, 4> ValueVTs;
9679     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9680     bool isArgValueUsed = !Arg.use_empty();
9681     unsigned PartBase = 0;
9682     Type *FinalType = Arg.getType();
9683     if (Arg.hasAttribute(Attribute::ByVal))
9684       FinalType = Arg.getParamByValType();
9685     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9686         FinalType, F.getCallingConv(), F.isVarArg());
9687     for (unsigned Value = 0, NumValues = ValueVTs.size();
9688          Value != NumValues; ++Value) {
9689       EVT VT = ValueVTs[Value];
9690       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9691       ISD::ArgFlagsTy Flags;
9692 
9693       // Certain targets (such as MIPS), may have a different ABI alignment
9694       // for a type depending on the context. Give the target a chance to
9695       // specify the alignment it wants.
9696       const Align OriginalAlignment(
9697           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9698 
9699       if (Arg.getType()->isPointerTy()) {
9700         Flags.setPointer();
9701         Flags.setPointerAddrSpace(
9702             cast<PointerType>(Arg.getType())->getAddressSpace());
9703       }
9704       if (Arg.hasAttribute(Attribute::ZExt))
9705         Flags.setZExt();
9706       if (Arg.hasAttribute(Attribute::SExt))
9707         Flags.setSExt();
9708       if (Arg.hasAttribute(Attribute::InReg)) {
9709         // If we are using vectorcall calling convention, a structure that is
9710         // passed InReg - is surely an HVA
9711         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9712             isa<StructType>(Arg.getType())) {
9713           // The first value of a structure is marked
9714           if (0 == Value)
9715             Flags.setHvaStart();
9716           Flags.setHva();
9717         }
9718         // Set InReg Flag
9719         Flags.setInReg();
9720       }
9721       if (Arg.hasAttribute(Attribute::StructRet))
9722         Flags.setSRet();
9723       if (Arg.hasAttribute(Attribute::SwiftSelf))
9724         Flags.setSwiftSelf();
9725       if (Arg.hasAttribute(Attribute::SwiftError))
9726         Flags.setSwiftError();
9727       if (Arg.hasAttribute(Attribute::ByVal))
9728         Flags.setByVal();
9729       if (Arg.hasAttribute(Attribute::InAlloca)) {
9730         Flags.setInAlloca();
9731         // Set the byval flag for CCAssignFn callbacks that don't know about
9732         // inalloca.  This way we can know how many bytes we should've allocated
9733         // and how many bytes a callee cleanup function will pop.  If we port
9734         // inalloca to more targets, we'll have to add custom inalloca handling
9735         // in the various CC lowering callbacks.
9736         Flags.setByVal();
9737       }
9738       if (Arg.hasAttribute(Attribute::Preallocated)) {
9739         Flags.setPreallocated();
9740         // Set the byval flag for CCAssignFn callbacks that don't know about
9741         // preallocated.  This way we can know how many bytes we should've
9742         // allocated and how many bytes a callee cleanup function will pop.  If
9743         // we port preallocated to more targets, we'll have to add custom
9744         // preallocated handling in the various CC lowering callbacks.
9745         Flags.setByVal();
9746       }
9747       if (F.getCallingConv() == CallingConv::X86_INTR) {
9748         // IA Interrupt passes frame (1st parameter) by value in the stack.
9749         if (ArgNo == 0)
9750           Flags.setByVal();
9751       }
9752       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
9753         Type *ElementTy = Arg.getParamByValType();
9754 
9755         // For ByVal, size and alignment should be passed from FE.  BE will
9756         // guess if this info is not there but there are cases it cannot get
9757         // right.
9758         unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType());
9759         Flags.setByValSize(FrameSize);
9760 
9761         unsigned FrameAlign;
9762         if (Arg.getParamAlignment())
9763           FrameAlign = Arg.getParamAlignment();
9764         else
9765           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9766         Flags.setByValAlign(Align(FrameAlign));
9767       }
9768       if (Arg.hasAttribute(Attribute::Nest))
9769         Flags.setNest();
9770       if (NeedsRegBlock)
9771         Flags.setInConsecutiveRegs();
9772       Flags.setOrigAlign(OriginalAlignment);
9773       if (ArgCopyElisionCandidates.count(&Arg))
9774         Flags.setCopyElisionCandidate();
9775       if (Arg.hasAttribute(Attribute::Returned))
9776         Flags.setReturned();
9777 
9778       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9779           *CurDAG->getContext(), F.getCallingConv(), VT);
9780       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9781           *CurDAG->getContext(), F.getCallingConv(), VT);
9782       for (unsigned i = 0; i != NumRegs; ++i) {
9783         // For scalable vectors, use the minimum size; individual targets
9784         // are responsible for handling scalable vector arguments and
9785         // return values.
9786         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9787                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9788         if (NumRegs > 1 && i == 0)
9789           MyFlags.Flags.setSplit();
9790         // if it isn't first piece, alignment must be 1
9791         else if (i > 0) {
9792           MyFlags.Flags.setOrigAlign(Align(1));
9793           if (i == NumRegs - 1)
9794             MyFlags.Flags.setSplitEnd();
9795         }
9796         Ins.push_back(MyFlags);
9797       }
9798       if (NeedsRegBlock && Value == NumValues - 1)
9799         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9800       PartBase += VT.getStoreSize().getKnownMinSize();
9801     }
9802   }
9803 
9804   // Call the target to set up the argument values.
9805   SmallVector<SDValue, 8> InVals;
9806   SDValue NewRoot = TLI->LowerFormalArguments(
9807       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9808 
9809   // Verify that the target's LowerFormalArguments behaved as expected.
9810   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9811          "LowerFormalArguments didn't return a valid chain!");
9812   assert(InVals.size() == Ins.size() &&
9813          "LowerFormalArguments didn't emit the correct number of values!");
9814   LLVM_DEBUG({
9815     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9816       assert(InVals[i].getNode() &&
9817              "LowerFormalArguments emitted a null value!");
9818       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9819              "LowerFormalArguments emitted a value with the wrong type!");
9820     }
9821   });
9822 
9823   // Update the DAG with the new chain value resulting from argument lowering.
9824   DAG.setRoot(NewRoot);
9825 
9826   // Set up the argument values.
9827   unsigned i = 0;
9828   if (!FuncInfo->CanLowerReturn) {
9829     // Create a virtual register for the sret pointer, and put in a copy
9830     // from the sret argument into it.
9831     SmallVector<EVT, 1> ValueVTs;
9832     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9833                     F.getReturnType()->getPointerTo(
9834                         DAG.getDataLayout().getAllocaAddrSpace()),
9835                     ValueVTs);
9836     MVT VT = ValueVTs[0].getSimpleVT();
9837     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9838     Optional<ISD::NodeType> AssertOp = None;
9839     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9840                                         nullptr, F.getCallingConv(), AssertOp);
9841 
9842     MachineFunction& MF = SDB->DAG.getMachineFunction();
9843     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9844     Register SRetReg =
9845         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9846     FuncInfo->DemoteRegister = SRetReg;
9847     NewRoot =
9848         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9849     DAG.setRoot(NewRoot);
9850 
9851     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9852     ++i;
9853   }
9854 
9855   SmallVector<SDValue, 4> Chains;
9856   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9857   for (const Argument &Arg : F.args()) {
9858     SmallVector<SDValue, 4> ArgValues;
9859     SmallVector<EVT, 4> ValueVTs;
9860     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9861     unsigned NumValues = ValueVTs.size();
9862     if (NumValues == 0)
9863       continue;
9864 
9865     bool ArgHasUses = !Arg.use_empty();
9866 
9867     // Elide the copying store if the target loaded this argument from a
9868     // suitable fixed stack object.
9869     if (Ins[i].Flags.isCopyElisionCandidate()) {
9870       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9871                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9872                              InVals[i], ArgHasUses);
9873     }
9874 
9875     // If this argument is unused then remember its value. It is used to generate
9876     // debugging information.
9877     bool isSwiftErrorArg =
9878         TLI->supportSwiftError() &&
9879         Arg.hasAttribute(Attribute::SwiftError);
9880     if (!ArgHasUses && !isSwiftErrorArg) {
9881       SDB->setUnusedArgValue(&Arg, InVals[i]);
9882 
9883       // Also remember any frame index for use in FastISel.
9884       if (FrameIndexSDNode *FI =
9885           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9886         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9887     }
9888 
9889     for (unsigned Val = 0; Val != NumValues; ++Val) {
9890       EVT VT = ValueVTs[Val];
9891       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9892                                                       F.getCallingConv(), VT);
9893       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9894           *CurDAG->getContext(), F.getCallingConv(), VT);
9895 
9896       // Even an apparent 'unused' swifterror argument needs to be returned. So
9897       // we do generate a copy for it that can be used on return from the
9898       // function.
9899       if (ArgHasUses || isSwiftErrorArg) {
9900         Optional<ISD::NodeType> AssertOp;
9901         if (Arg.hasAttribute(Attribute::SExt))
9902           AssertOp = ISD::AssertSext;
9903         else if (Arg.hasAttribute(Attribute::ZExt))
9904           AssertOp = ISD::AssertZext;
9905 
9906         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9907                                              PartVT, VT, nullptr,
9908                                              F.getCallingConv(), AssertOp));
9909       }
9910 
9911       i += NumParts;
9912     }
9913 
9914     // We don't need to do anything else for unused arguments.
9915     if (ArgValues.empty())
9916       continue;
9917 
9918     // Note down frame index.
9919     if (FrameIndexSDNode *FI =
9920         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9921       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9922 
9923     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9924                                      SDB->getCurSDLoc());
9925 
9926     SDB->setValue(&Arg, Res);
9927     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9928       // We want to associate the argument with the frame index, among
9929       // involved operands, that correspond to the lowest address. The
9930       // getCopyFromParts function, called earlier, is swapping the order of
9931       // the operands to BUILD_PAIR depending on endianness. The result of
9932       // that swapping is that the least significant bits of the argument will
9933       // be in the first operand of the BUILD_PAIR node, and the most
9934       // significant bits will be in the second operand.
9935       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9936       if (LoadSDNode *LNode =
9937           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9938         if (FrameIndexSDNode *FI =
9939             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9940           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9941     }
9942 
9943     // Analyses past this point are naive and don't expect an assertion.
9944     if (Res.getOpcode() == ISD::AssertZext)
9945       Res = Res.getOperand(0);
9946 
9947     // Update the SwiftErrorVRegDefMap.
9948     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9949       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9950       if (Register::isVirtualRegister(Reg))
9951         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9952                                    Reg);
9953     }
9954 
9955     // If this argument is live outside of the entry block, insert a copy from
9956     // wherever we got it to the vreg that other BB's will reference it as.
9957     if (Res.getOpcode() == ISD::CopyFromReg) {
9958       // If we can, though, try to skip creating an unnecessary vreg.
9959       // FIXME: This isn't very clean... it would be nice to make this more
9960       // general.
9961       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9962       if (Register::isVirtualRegister(Reg)) {
9963         FuncInfo->ValueMap[&Arg] = Reg;
9964         continue;
9965       }
9966     }
9967     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9968       FuncInfo->InitializeRegForValue(&Arg);
9969       SDB->CopyToExportRegsIfNeeded(&Arg);
9970     }
9971   }
9972 
9973   if (!Chains.empty()) {
9974     Chains.push_back(NewRoot);
9975     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9976   }
9977 
9978   DAG.setRoot(NewRoot);
9979 
9980   assert(i == InVals.size() && "Argument register count mismatch!");
9981 
9982   // If any argument copy elisions occurred and we have debug info, update the
9983   // stale frame indices used in the dbg.declare variable info table.
9984   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9985   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9986     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9987       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9988       if (I != ArgCopyElisionFrameIndexMap.end())
9989         VI.Slot = I->second;
9990     }
9991   }
9992 
9993   // Finally, if the target has anything special to do, allow it to do so.
9994   emitFunctionEntryCode();
9995 }
9996 
9997 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9998 /// ensure constants are generated when needed.  Remember the virtual registers
9999 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10000 /// directly add them, because expansion might result in multiple MBB's for one
10001 /// BB.  As such, the start of the BB might correspond to a different MBB than
10002 /// the end.
10003 void
10004 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10005   const Instruction *TI = LLVMBB->getTerminator();
10006 
10007   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10008 
10009   // Check PHI nodes in successors that expect a value to be available from this
10010   // block.
10011   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10012     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10013     if (!isa<PHINode>(SuccBB->begin())) continue;
10014     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10015 
10016     // If this terminator has multiple identical successors (common for
10017     // switches), only handle each succ once.
10018     if (!SuccsHandled.insert(SuccMBB).second)
10019       continue;
10020 
10021     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10022 
10023     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10024     // nodes and Machine PHI nodes, but the incoming operands have not been
10025     // emitted yet.
10026     for (const PHINode &PN : SuccBB->phis()) {
10027       // Ignore dead phi's.
10028       if (PN.use_empty())
10029         continue;
10030 
10031       // Skip empty types
10032       if (PN.getType()->isEmptyTy())
10033         continue;
10034 
10035       unsigned Reg;
10036       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10037 
10038       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10039         unsigned &RegOut = ConstantsOut[C];
10040         if (RegOut == 0) {
10041           RegOut = FuncInfo.CreateRegs(C);
10042           CopyValueToVirtualRegister(C, RegOut);
10043         }
10044         Reg = RegOut;
10045       } else {
10046         DenseMap<const Value *, Register>::iterator I =
10047           FuncInfo.ValueMap.find(PHIOp);
10048         if (I != FuncInfo.ValueMap.end())
10049           Reg = I->second;
10050         else {
10051           assert(isa<AllocaInst>(PHIOp) &&
10052                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10053                  "Didn't codegen value into a register!??");
10054           Reg = FuncInfo.CreateRegs(PHIOp);
10055           CopyValueToVirtualRegister(PHIOp, Reg);
10056         }
10057       }
10058 
10059       // Remember that this register needs to added to the machine PHI node as
10060       // the input for this MBB.
10061       SmallVector<EVT, 4> ValueVTs;
10062       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10063       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10064       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10065         EVT VT = ValueVTs[vti];
10066         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10067         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10068           FuncInfo.PHINodesToUpdate.push_back(
10069               std::make_pair(&*MBBI++, Reg + i));
10070         Reg += NumRegisters;
10071       }
10072     }
10073   }
10074 
10075   ConstantsOut.clear();
10076 }
10077 
10078 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10079 /// is 0.
10080 MachineBasicBlock *
10081 SelectionDAGBuilder::StackProtectorDescriptor::
10082 AddSuccessorMBB(const BasicBlock *BB,
10083                 MachineBasicBlock *ParentMBB,
10084                 bool IsLikely,
10085                 MachineBasicBlock *SuccMBB) {
10086   // If SuccBB has not been created yet, create it.
10087   if (!SuccMBB) {
10088     MachineFunction *MF = ParentMBB->getParent();
10089     MachineFunction::iterator BBI(ParentMBB);
10090     SuccMBB = MF->CreateMachineBasicBlock(BB);
10091     MF->insert(++BBI, SuccMBB);
10092   }
10093   // Add it as a successor of ParentMBB.
10094   ParentMBB->addSuccessor(
10095       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10096   return SuccMBB;
10097 }
10098 
10099 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10100   MachineFunction::iterator I(MBB);
10101   if (++I == FuncInfo.MF->end())
10102     return nullptr;
10103   return &*I;
10104 }
10105 
10106 /// During lowering new call nodes can be created (such as memset, etc.).
10107 /// Those will become new roots of the current DAG, but complications arise
10108 /// when they are tail calls. In such cases, the call lowering will update
10109 /// the root, but the builder still needs to know that a tail call has been
10110 /// lowered in order to avoid generating an additional return.
10111 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10112   // If the node is null, we do have a tail call.
10113   if (MaybeTC.getNode() != nullptr)
10114     DAG.setRoot(MaybeTC);
10115   else
10116     HasTailCall = true;
10117 }
10118 
10119 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10120                                         MachineBasicBlock *SwitchMBB,
10121                                         MachineBasicBlock *DefaultMBB) {
10122   MachineFunction *CurMF = FuncInfo.MF;
10123   MachineBasicBlock *NextMBB = nullptr;
10124   MachineFunction::iterator BBI(W.MBB);
10125   if (++BBI != FuncInfo.MF->end())
10126     NextMBB = &*BBI;
10127 
10128   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10129 
10130   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10131 
10132   if (Size == 2 && W.MBB == SwitchMBB) {
10133     // If any two of the cases has the same destination, and if one value
10134     // is the same as the other, but has one bit unset that the other has set,
10135     // use bit manipulation to do two compares at once.  For example:
10136     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10137     // TODO: This could be extended to merge any 2 cases in switches with 3
10138     // cases.
10139     // TODO: Handle cases where W.CaseBB != SwitchBB.
10140     CaseCluster &Small = *W.FirstCluster;
10141     CaseCluster &Big = *W.LastCluster;
10142 
10143     if (Small.Low == Small.High && Big.Low == Big.High &&
10144         Small.MBB == Big.MBB) {
10145       const APInt &SmallValue = Small.Low->getValue();
10146       const APInt &BigValue = Big.Low->getValue();
10147 
10148       // Check that there is only one bit different.
10149       APInt CommonBit = BigValue ^ SmallValue;
10150       if (CommonBit.isPowerOf2()) {
10151         SDValue CondLHS = getValue(Cond);
10152         EVT VT = CondLHS.getValueType();
10153         SDLoc DL = getCurSDLoc();
10154 
10155         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10156                                  DAG.getConstant(CommonBit, DL, VT));
10157         SDValue Cond = DAG.getSetCC(
10158             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10159             ISD::SETEQ);
10160 
10161         // Update successor info.
10162         // Both Small and Big will jump to Small.BB, so we sum up the
10163         // probabilities.
10164         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10165         if (BPI)
10166           addSuccessorWithProb(
10167               SwitchMBB, DefaultMBB,
10168               // The default destination is the first successor in IR.
10169               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10170         else
10171           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10172 
10173         // Insert the true branch.
10174         SDValue BrCond =
10175             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10176                         DAG.getBasicBlock(Small.MBB));
10177         // Insert the false branch.
10178         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10179                              DAG.getBasicBlock(DefaultMBB));
10180 
10181         DAG.setRoot(BrCond);
10182         return;
10183       }
10184     }
10185   }
10186 
10187   if (TM.getOptLevel() != CodeGenOpt::None) {
10188     // Here, we order cases by probability so the most likely case will be
10189     // checked first. However, two clusters can have the same probability in
10190     // which case their relative ordering is non-deterministic. So we use Low
10191     // as a tie-breaker as clusters are guaranteed to never overlap.
10192     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10193                [](const CaseCluster &a, const CaseCluster &b) {
10194       return a.Prob != b.Prob ?
10195              a.Prob > b.Prob :
10196              a.Low->getValue().slt(b.Low->getValue());
10197     });
10198 
10199     // Rearrange the case blocks so that the last one falls through if possible
10200     // without changing the order of probabilities.
10201     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10202       --I;
10203       if (I->Prob > W.LastCluster->Prob)
10204         break;
10205       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10206         std::swap(*I, *W.LastCluster);
10207         break;
10208       }
10209     }
10210   }
10211 
10212   // Compute total probability.
10213   BranchProbability DefaultProb = W.DefaultProb;
10214   BranchProbability UnhandledProbs = DefaultProb;
10215   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10216     UnhandledProbs += I->Prob;
10217 
10218   MachineBasicBlock *CurMBB = W.MBB;
10219   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10220     bool FallthroughUnreachable = false;
10221     MachineBasicBlock *Fallthrough;
10222     if (I == W.LastCluster) {
10223       // For the last cluster, fall through to the default destination.
10224       Fallthrough = DefaultMBB;
10225       FallthroughUnreachable = isa<UnreachableInst>(
10226           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10227     } else {
10228       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10229       CurMF->insert(BBI, Fallthrough);
10230       // Put Cond in a virtual register to make it available from the new blocks.
10231       ExportFromCurrentBlock(Cond);
10232     }
10233     UnhandledProbs -= I->Prob;
10234 
10235     switch (I->Kind) {
10236       case CC_JumpTable: {
10237         // FIXME: Optimize away range check based on pivot comparisons.
10238         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10239         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10240 
10241         // The jump block hasn't been inserted yet; insert it here.
10242         MachineBasicBlock *JumpMBB = JT->MBB;
10243         CurMF->insert(BBI, JumpMBB);
10244 
10245         auto JumpProb = I->Prob;
10246         auto FallthroughProb = UnhandledProbs;
10247 
10248         // If the default statement is a target of the jump table, we evenly
10249         // distribute the default probability to successors of CurMBB. Also
10250         // update the probability on the edge from JumpMBB to Fallthrough.
10251         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10252                                               SE = JumpMBB->succ_end();
10253              SI != SE; ++SI) {
10254           if (*SI == DefaultMBB) {
10255             JumpProb += DefaultProb / 2;
10256             FallthroughProb -= DefaultProb / 2;
10257             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10258             JumpMBB->normalizeSuccProbs();
10259             break;
10260           }
10261         }
10262 
10263         if (FallthroughUnreachable) {
10264           // Skip the range check if the fallthrough block is unreachable.
10265           JTH->OmitRangeCheck = true;
10266         }
10267 
10268         if (!JTH->OmitRangeCheck)
10269           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10270         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10271         CurMBB->normalizeSuccProbs();
10272 
10273         // The jump table header will be inserted in our current block, do the
10274         // range check, and fall through to our fallthrough block.
10275         JTH->HeaderBB = CurMBB;
10276         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10277 
10278         // If we're in the right place, emit the jump table header right now.
10279         if (CurMBB == SwitchMBB) {
10280           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10281           JTH->Emitted = true;
10282         }
10283         break;
10284       }
10285       case CC_BitTests: {
10286         // FIXME: Optimize away range check based on pivot comparisons.
10287         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10288 
10289         // The bit test blocks haven't been inserted yet; insert them here.
10290         for (BitTestCase &BTC : BTB->Cases)
10291           CurMF->insert(BBI, BTC.ThisBB);
10292 
10293         // Fill in fields of the BitTestBlock.
10294         BTB->Parent = CurMBB;
10295         BTB->Default = Fallthrough;
10296 
10297         BTB->DefaultProb = UnhandledProbs;
10298         // If the cases in bit test don't form a contiguous range, we evenly
10299         // distribute the probability on the edge to Fallthrough to two
10300         // successors of CurMBB.
10301         if (!BTB->ContiguousRange) {
10302           BTB->Prob += DefaultProb / 2;
10303           BTB->DefaultProb -= DefaultProb / 2;
10304         }
10305 
10306         if (FallthroughUnreachable) {
10307           // Skip the range check if the fallthrough block is unreachable.
10308           BTB->OmitRangeCheck = true;
10309         }
10310 
10311         // If we're in the right place, emit the bit test header right now.
10312         if (CurMBB == SwitchMBB) {
10313           visitBitTestHeader(*BTB, SwitchMBB);
10314           BTB->Emitted = true;
10315         }
10316         break;
10317       }
10318       case CC_Range: {
10319         const Value *RHS, *LHS, *MHS;
10320         ISD::CondCode CC;
10321         if (I->Low == I->High) {
10322           // Check Cond == I->Low.
10323           CC = ISD::SETEQ;
10324           LHS = Cond;
10325           RHS=I->Low;
10326           MHS = nullptr;
10327         } else {
10328           // Check I->Low <= Cond <= I->High.
10329           CC = ISD::SETLE;
10330           LHS = I->Low;
10331           MHS = Cond;
10332           RHS = I->High;
10333         }
10334 
10335         // If Fallthrough is unreachable, fold away the comparison.
10336         if (FallthroughUnreachable)
10337           CC = ISD::SETTRUE;
10338 
10339         // The false probability is the sum of all unhandled cases.
10340         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10341                      getCurSDLoc(), I->Prob, UnhandledProbs);
10342 
10343         if (CurMBB == SwitchMBB)
10344           visitSwitchCase(CB, SwitchMBB);
10345         else
10346           SL->SwitchCases.push_back(CB);
10347 
10348         break;
10349       }
10350     }
10351     CurMBB = Fallthrough;
10352   }
10353 }
10354 
10355 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10356                                               CaseClusterIt First,
10357                                               CaseClusterIt Last) {
10358   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10359     if (X.Prob != CC.Prob)
10360       return X.Prob > CC.Prob;
10361 
10362     // Ties are broken by comparing the case value.
10363     return X.Low->getValue().slt(CC.Low->getValue());
10364   });
10365 }
10366 
10367 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10368                                         const SwitchWorkListItem &W,
10369                                         Value *Cond,
10370                                         MachineBasicBlock *SwitchMBB) {
10371   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10372          "Clusters not sorted?");
10373 
10374   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10375 
10376   // Balance the tree based on branch probabilities to create a near-optimal (in
10377   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10378   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10379   CaseClusterIt LastLeft = W.FirstCluster;
10380   CaseClusterIt FirstRight = W.LastCluster;
10381   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10382   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10383 
10384   // Move LastLeft and FirstRight towards each other from opposite directions to
10385   // find a partitioning of the clusters which balances the probability on both
10386   // sides. If LeftProb and RightProb are equal, alternate which side is
10387   // taken to ensure 0-probability nodes are distributed evenly.
10388   unsigned I = 0;
10389   while (LastLeft + 1 < FirstRight) {
10390     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10391       LeftProb += (++LastLeft)->Prob;
10392     else
10393       RightProb += (--FirstRight)->Prob;
10394     I++;
10395   }
10396 
10397   while (true) {
10398     // Our binary search tree differs from a typical BST in that ours can have up
10399     // to three values in each leaf. The pivot selection above doesn't take that
10400     // into account, which means the tree might require more nodes and be less
10401     // efficient. We compensate for this here.
10402 
10403     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10404     unsigned NumRight = W.LastCluster - FirstRight + 1;
10405 
10406     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10407       // If one side has less than 3 clusters, and the other has more than 3,
10408       // consider taking a cluster from the other side.
10409 
10410       if (NumLeft < NumRight) {
10411         // Consider moving the first cluster on the right to the left side.
10412         CaseCluster &CC = *FirstRight;
10413         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10414         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10415         if (LeftSideRank <= RightSideRank) {
10416           // Moving the cluster to the left does not demote it.
10417           ++LastLeft;
10418           ++FirstRight;
10419           continue;
10420         }
10421       } else {
10422         assert(NumRight < NumLeft);
10423         // Consider moving the last element on the left to the right side.
10424         CaseCluster &CC = *LastLeft;
10425         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10426         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10427         if (RightSideRank <= LeftSideRank) {
10428           // Moving the cluster to the right does not demot it.
10429           --LastLeft;
10430           --FirstRight;
10431           continue;
10432         }
10433       }
10434     }
10435     break;
10436   }
10437 
10438   assert(LastLeft + 1 == FirstRight);
10439   assert(LastLeft >= W.FirstCluster);
10440   assert(FirstRight <= W.LastCluster);
10441 
10442   // Use the first element on the right as pivot since we will make less-than
10443   // comparisons against it.
10444   CaseClusterIt PivotCluster = FirstRight;
10445   assert(PivotCluster > W.FirstCluster);
10446   assert(PivotCluster <= W.LastCluster);
10447 
10448   CaseClusterIt FirstLeft = W.FirstCluster;
10449   CaseClusterIt LastRight = W.LastCluster;
10450 
10451   const ConstantInt *Pivot = PivotCluster->Low;
10452 
10453   // New blocks will be inserted immediately after the current one.
10454   MachineFunction::iterator BBI(W.MBB);
10455   ++BBI;
10456 
10457   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10458   // we can branch to its destination directly if it's squeezed exactly in
10459   // between the known lower bound and Pivot - 1.
10460   MachineBasicBlock *LeftMBB;
10461   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10462       FirstLeft->Low == W.GE &&
10463       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10464     LeftMBB = FirstLeft->MBB;
10465   } else {
10466     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10467     FuncInfo.MF->insert(BBI, LeftMBB);
10468     WorkList.push_back(
10469         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10470     // Put Cond in a virtual register to make it available from the new blocks.
10471     ExportFromCurrentBlock(Cond);
10472   }
10473 
10474   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10475   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10476   // directly if RHS.High equals the current upper bound.
10477   MachineBasicBlock *RightMBB;
10478   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10479       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10480     RightMBB = FirstRight->MBB;
10481   } else {
10482     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10483     FuncInfo.MF->insert(BBI, RightMBB);
10484     WorkList.push_back(
10485         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10486     // Put Cond in a virtual register to make it available from the new blocks.
10487     ExportFromCurrentBlock(Cond);
10488   }
10489 
10490   // Create the CaseBlock record that will be used to lower the branch.
10491   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10492                getCurSDLoc(), LeftProb, RightProb);
10493 
10494   if (W.MBB == SwitchMBB)
10495     visitSwitchCase(CB, SwitchMBB);
10496   else
10497     SL->SwitchCases.push_back(CB);
10498 }
10499 
10500 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10501 // from the swith statement.
10502 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10503                                             BranchProbability PeeledCaseProb) {
10504   if (PeeledCaseProb == BranchProbability::getOne())
10505     return BranchProbability::getZero();
10506   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10507 
10508   uint32_t Numerator = CaseProb.getNumerator();
10509   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10510   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10511 }
10512 
10513 // Try to peel the top probability case if it exceeds the threshold.
10514 // Return current MachineBasicBlock for the switch statement if the peeling
10515 // does not occur.
10516 // If the peeling is performed, return the newly created MachineBasicBlock
10517 // for the peeled switch statement. Also update Clusters to remove the peeled
10518 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10519 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10520     const SwitchInst &SI, CaseClusterVector &Clusters,
10521     BranchProbability &PeeledCaseProb) {
10522   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10523   // Don't perform if there is only one cluster or optimizing for size.
10524   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10525       TM.getOptLevel() == CodeGenOpt::None ||
10526       SwitchMBB->getParent()->getFunction().hasMinSize())
10527     return SwitchMBB;
10528 
10529   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10530   unsigned PeeledCaseIndex = 0;
10531   bool SwitchPeeled = false;
10532   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10533     CaseCluster &CC = Clusters[Index];
10534     if (CC.Prob < TopCaseProb)
10535       continue;
10536     TopCaseProb = CC.Prob;
10537     PeeledCaseIndex = Index;
10538     SwitchPeeled = true;
10539   }
10540   if (!SwitchPeeled)
10541     return SwitchMBB;
10542 
10543   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10544                     << TopCaseProb << "\n");
10545 
10546   // Record the MBB for the peeled switch statement.
10547   MachineFunction::iterator BBI(SwitchMBB);
10548   ++BBI;
10549   MachineBasicBlock *PeeledSwitchMBB =
10550       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10551   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10552 
10553   ExportFromCurrentBlock(SI.getCondition());
10554   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10555   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10556                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10557   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10558 
10559   Clusters.erase(PeeledCaseIt);
10560   for (CaseCluster &CC : Clusters) {
10561     LLVM_DEBUG(
10562         dbgs() << "Scale the probablity for one cluster, before scaling: "
10563                << CC.Prob << "\n");
10564     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10565     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10566   }
10567   PeeledCaseProb = TopCaseProb;
10568   return PeeledSwitchMBB;
10569 }
10570 
10571 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10572   // Extract cases from the switch.
10573   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10574   CaseClusterVector Clusters;
10575   Clusters.reserve(SI.getNumCases());
10576   for (auto I : SI.cases()) {
10577     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10578     const ConstantInt *CaseVal = I.getCaseValue();
10579     BranchProbability Prob =
10580         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10581             : BranchProbability(1, SI.getNumCases() + 1);
10582     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10583   }
10584 
10585   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10586 
10587   // Cluster adjacent cases with the same destination. We do this at all
10588   // optimization levels because it's cheap to do and will make codegen faster
10589   // if there are many clusters.
10590   sortAndRangeify(Clusters);
10591 
10592   // The branch probablity of the peeled case.
10593   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10594   MachineBasicBlock *PeeledSwitchMBB =
10595       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10596 
10597   // If there is only the default destination, jump there directly.
10598   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10599   if (Clusters.empty()) {
10600     assert(PeeledSwitchMBB == SwitchMBB);
10601     SwitchMBB->addSuccessor(DefaultMBB);
10602     if (DefaultMBB != NextBlock(SwitchMBB)) {
10603       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10604                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10605     }
10606     return;
10607   }
10608 
10609   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10610   SL->findBitTestClusters(Clusters, &SI);
10611 
10612   LLVM_DEBUG({
10613     dbgs() << "Case clusters: ";
10614     for (const CaseCluster &C : Clusters) {
10615       if (C.Kind == CC_JumpTable)
10616         dbgs() << "JT:";
10617       if (C.Kind == CC_BitTests)
10618         dbgs() << "BT:";
10619 
10620       C.Low->getValue().print(dbgs(), true);
10621       if (C.Low != C.High) {
10622         dbgs() << '-';
10623         C.High->getValue().print(dbgs(), true);
10624       }
10625       dbgs() << ' ';
10626     }
10627     dbgs() << '\n';
10628   });
10629 
10630   assert(!Clusters.empty());
10631   SwitchWorkList WorkList;
10632   CaseClusterIt First = Clusters.begin();
10633   CaseClusterIt Last = Clusters.end() - 1;
10634   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10635   // Scale the branchprobability for DefaultMBB if the peel occurs and
10636   // DefaultMBB is not replaced.
10637   if (PeeledCaseProb != BranchProbability::getZero() &&
10638       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10639     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10640   WorkList.push_back(
10641       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10642 
10643   while (!WorkList.empty()) {
10644     SwitchWorkListItem W = WorkList.back();
10645     WorkList.pop_back();
10646     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10647 
10648     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10649         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10650       // For optimized builds, lower large range as a balanced binary tree.
10651       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10652       continue;
10653     }
10654 
10655     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10656   }
10657 }
10658 
10659 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10660   SmallVector<EVT, 4> ValueVTs;
10661   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
10662                   ValueVTs);
10663   unsigned NumValues = ValueVTs.size();
10664   if (NumValues == 0) return;
10665 
10666   SmallVector<SDValue, 4> Values(NumValues);
10667   SDValue Op = getValue(I.getOperand(0));
10668 
10669   for (unsigned i = 0; i != NumValues; ++i)
10670     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
10671                             SDValue(Op.getNode(), Op.getResNo() + i));
10672 
10673   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10674                            DAG.getVTList(ValueVTs), Values));
10675 }
10676