xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 06c3fb2749bda94cb5201f81ffdb8fa6c3161b2e)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
33 #include "llvm/CodeGen/CodeGenCommonISel.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/RuntimeLibcalls.h"
47 #include "llvm/CodeGen/SelectionDAG.h"
48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
49 #include "llvm/CodeGen/StackMaps.h"
50 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
51 #include "llvm/CodeGen/TargetFrameLowering.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetOpcodes.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/WinEHFuncInfo.h"
57 #include "llvm/IR/Argument.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/CallingConv.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/ConstantRange.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfo.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/EHPersonalities.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GetElementPtrTypeIterator.h"
73 #include "llvm/IR/InlineAsm.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instructions.h"
76 #include "llvm/IR/IntrinsicInst.h"
77 #include "llvm/IR/Intrinsics.h"
78 #include "llvm/IR/IntrinsicsAArch64.h"
79 #include "llvm/IR/IntrinsicsWebAssembly.h"
80 #include "llvm/IR/LLVMContext.h"
81 #include "llvm/IR/Metadata.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/PatternMatch.h"
85 #include "llvm/IR/Statepoint.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/User.h"
88 #include "llvm/IR/Value.h"
89 #include "llvm/MC/MCContext.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/Casting.h"
92 #include "llvm/Support/CommandLine.h"
93 #include "llvm/Support/Compiler.h"
94 #include "llvm/Support/Debug.h"
95 #include "llvm/Support/MathExtras.h"
96 #include "llvm/Support/raw_ostream.h"
97 #include "llvm/Target/TargetIntrinsicInfo.h"
98 #include "llvm/Target/TargetMachine.h"
99 #include "llvm/Target/TargetOptions.h"
100 #include "llvm/TargetParser/Triple.h"
101 #include "llvm/Transforms/Utils/Local.h"
102 #include <cstddef>
103 #include <iterator>
104 #include <limits>
105 #include <optional>
106 #include <tuple>
107 
108 using namespace llvm;
109 using namespace PatternMatch;
110 using namespace SwitchCG;
111 
112 #define DEBUG_TYPE "isel"
113 
114 /// LimitFloatPrecision - Generate low-precision inline sequences for
115 /// some float libcalls (6, 8 or 12 bits).
116 static unsigned LimitFloatPrecision;
117 
118 static cl::opt<bool>
119     InsertAssertAlign("insert-assert-align", cl::init(true),
120                       cl::desc("Insert the experimental `assertalign` node."),
121                       cl::ReallyHidden);
122 
123 static cl::opt<unsigned, true>
124     LimitFPPrecision("limit-float-precision",
125                      cl::desc("Generate low-precision inline sequences "
126                               "for some float libcalls"),
127                      cl::location(LimitFloatPrecision), cl::Hidden,
128                      cl::init(0));
129 
130 static cl::opt<unsigned> SwitchPeelThreshold(
131     "switch-peel-threshold", cl::Hidden, cl::init(66),
132     cl::desc("Set the case probability threshold for peeling the case from a "
133              "switch statement. A value greater than 100 will void this "
134              "optimization"));
135 
136 // Limit the width of DAG chains. This is important in general to prevent
137 // DAG-based analysis from blowing up. For example, alias analysis and
138 // load clustering may not complete in reasonable time. It is difficult to
139 // recognize and avoid this situation within each individual analysis, and
140 // future analyses are likely to have the same behavior. Limiting DAG width is
141 // the safe approach and will be especially important with global DAGs.
142 //
143 // MaxParallelChains default is arbitrarily high to avoid affecting
144 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
145 // sequence over this should have been converted to llvm.memcpy by the
146 // frontend. It is easy to induce this behavior with .ll code such as:
147 // %buffer = alloca [4096 x i8]
148 // %data = load [4096 x i8]* %argPtr
149 // store [4096 x i8] %data, [4096 x i8]* %buffer
150 static const unsigned MaxParallelChains = 64;
151 
152 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
153                                       const SDValue *Parts, unsigned NumParts,
154                                       MVT PartVT, EVT ValueVT, const Value *V,
155                                       std::optional<CallingConv::ID> CC);
156 
157 /// getCopyFromParts - Create a value that contains the specified legal parts
158 /// combined into the value they represent.  If the parts combine to a type
159 /// larger than ValueVT then AssertOp can be used to specify whether the extra
160 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
161 /// (ISD::AssertSext).
162 static SDValue
163 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
164                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
165                  std::optional<CallingConv::ID> CC = std::nullopt,
166                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
167   // Let the target assemble the parts if it wants to
168   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
169   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
170                                                    PartVT, ValueVT, CC))
171     return Val;
172 
173   if (ValueVT.isVector())
174     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
175                                   CC);
176 
177   assert(NumParts > 0 && "No parts to assemble!");
178   SDValue Val = Parts[0];
179 
180   if (NumParts > 1) {
181     // Assemble the value from multiple parts.
182     if (ValueVT.isInteger()) {
183       unsigned PartBits = PartVT.getSizeInBits();
184       unsigned ValueBits = ValueVT.getSizeInBits();
185 
186       // Assemble the power of 2 part.
187       unsigned RoundParts = llvm::bit_floor(NumParts);
188       unsigned RoundBits = PartBits * RoundParts;
189       EVT RoundVT = RoundBits == ValueBits ?
190         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
191       SDValue Lo, Hi;
192 
193       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
194 
195       if (RoundParts > 2) {
196         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
197                               PartVT, HalfVT, V);
198         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
199                               RoundParts / 2, PartVT, HalfVT, V);
200       } else {
201         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
202         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
203       }
204 
205       if (DAG.getDataLayout().isBigEndian())
206         std::swap(Lo, Hi);
207 
208       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
209 
210       if (RoundParts < NumParts) {
211         // Assemble the trailing non-power-of-2 part.
212         unsigned OddParts = NumParts - RoundParts;
213         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
214         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
215                               OddVT, V, CC);
216 
217         // Combine the round and odd parts.
218         Lo = Val;
219         if (DAG.getDataLayout().isBigEndian())
220           std::swap(Lo, Hi);
221         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
222         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
223         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
224                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
225                                          TLI.getShiftAmountTy(
226                                              TotalVT, DAG.getDataLayout())));
227         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
228         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
229       }
230     } else if (PartVT.isFloatingPoint()) {
231       // FP split into multiple FP parts (for ppcf128)
232       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
233              "Unexpected split");
234       SDValue Lo, Hi;
235       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
236       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
237       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
238         std::swap(Lo, Hi);
239       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
240     } else {
241       // FP split into integer parts (soft fp)
242       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
243              !PartVT.isVector() && "Unexpected split");
244       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
245       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
246     }
247   }
248 
249   // There is now one part, held in Val.  Correct it to match ValueVT.
250   // PartEVT is the type of the register class that holds the value.
251   // ValueVT is the type of the inline asm operation.
252   EVT PartEVT = Val.getValueType();
253 
254   if (PartEVT == ValueVT)
255     return Val;
256 
257   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
258       ValueVT.bitsLT(PartEVT)) {
259     // For an FP value in an integer part, we need to truncate to the right
260     // width first.
261     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
262     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
263   }
264 
265   // Handle types that have the same size.
266   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
267     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
268 
269   // Handle types with different sizes.
270   if (PartEVT.isInteger() && ValueVT.isInteger()) {
271     if (ValueVT.bitsLT(PartEVT)) {
272       // For a truncate, see if we have any information to
273       // indicate whether the truncated bits will always be
274       // zero or sign-extension.
275       if (AssertOp)
276         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
277                           DAG.getValueType(ValueVT));
278       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
279     }
280     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
281   }
282 
283   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
284     // FP_ROUND's are always exact here.
285     if (ValueVT.bitsLT(Val.getValueType()))
286       return DAG.getNode(
287           ISD::FP_ROUND, DL, ValueVT, Val,
288           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
289 
290     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
291   }
292 
293   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
294   // then truncating.
295   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
296       ValueVT.bitsLT(PartEVT)) {
297     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
298     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
299   }
300 
301   report_fatal_error("Unknown mismatch in getCopyFromParts!");
302 }
303 
304 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
305                                               const Twine &ErrMsg) {
306   const Instruction *I = dyn_cast_or_null<Instruction>(V);
307   if (!V)
308     return Ctx.emitError(ErrMsg);
309 
310   const char *AsmError = ", possible invalid constraint for vector type";
311   if (const CallInst *CI = dyn_cast<CallInst>(I))
312     if (CI->isInlineAsm())
313       return Ctx.emitError(I, ErrMsg + AsmError);
314 
315   return Ctx.emitError(I, ErrMsg);
316 }
317 
318 /// getCopyFromPartsVector - Create a value that contains the specified legal
319 /// parts combined into the value they represent.  If the parts combine to a
320 /// type larger than ValueVT then AssertOp can be used to specify whether the
321 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
322 /// ValueVT (ISD::AssertSext).
323 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
324                                       const SDValue *Parts, unsigned NumParts,
325                                       MVT PartVT, EVT ValueVT, const Value *V,
326                                       std::optional<CallingConv::ID> CallConv) {
327   assert(ValueVT.isVector() && "Not a vector value");
328   assert(NumParts > 0 && "No parts to assemble!");
329   const bool IsABIRegCopy = CallConv.has_value();
330 
331   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
332   SDValue Val = Parts[0];
333 
334   // Handle a multi-element vector.
335   if (NumParts > 1) {
336     EVT IntermediateVT;
337     MVT RegisterVT;
338     unsigned NumIntermediates;
339     unsigned NumRegs;
340 
341     if (IsABIRegCopy) {
342       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
343           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
344           NumIntermediates, RegisterVT);
345     } else {
346       NumRegs =
347           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
348                                      NumIntermediates, RegisterVT);
349     }
350 
351     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
352     NumParts = NumRegs; // Silence a compiler warning.
353     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
354     assert(RegisterVT.getSizeInBits() ==
355            Parts[0].getSimpleValueType().getSizeInBits() &&
356            "Part type sizes don't match!");
357 
358     // Assemble the parts into intermediate operands.
359     SmallVector<SDValue, 8> Ops(NumIntermediates);
360     if (NumIntermediates == NumParts) {
361       // If the register was not expanded, truncate or copy the value,
362       // as appropriate.
363       for (unsigned i = 0; i != NumParts; ++i)
364         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
365                                   PartVT, IntermediateVT, V, CallConv);
366     } else if (NumParts > 0) {
367       // If the intermediate type was expanded, build the intermediate
368       // operands from the parts.
369       assert(NumParts % NumIntermediates == 0 &&
370              "Must expand into a divisible number of parts!");
371       unsigned Factor = NumParts / NumIntermediates;
372       for (unsigned i = 0; i != NumIntermediates; ++i)
373         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
374                                   PartVT, IntermediateVT, V, CallConv);
375     }
376 
377     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
378     // intermediate operands.
379     EVT BuiltVectorTy =
380         IntermediateVT.isVector()
381             ? EVT::getVectorVT(
382                   *DAG.getContext(), IntermediateVT.getScalarType(),
383                   IntermediateVT.getVectorElementCount() * NumParts)
384             : EVT::getVectorVT(*DAG.getContext(),
385                                IntermediateVT.getScalarType(),
386                                NumIntermediates);
387     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
388                                                 : ISD::BUILD_VECTOR,
389                       DL, BuiltVectorTy, Ops);
390   }
391 
392   // There is now one part, held in Val.  Correct it to match ValueVT.
393   EVT PartEVT = Val.getValueType();
394 
395   if (PartEVT == ValueVT)
396     return Val;
397 
398   if (PartEVT.isVector()) {
399     // Vector/Vector bitcast.
400     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
401       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
402 
403     // If the parts vector has more elements than the value vector, then we
404     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
405     // Extract the elements we want.
406     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
407       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
408               ValueVT.getVectorElementCount().getKnownMinValue()) &&
409              (PartEVT.getVectorElementCount().isScalable() ==
410               ValueVT.getVectorElementCount().isScalable()) &&
411              "Cannot narrow, it would be a lossy transformation");
412       PartEVT =
413           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
414                            ValueVT.getVectorElementCount());
415       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
416                         DAG.getVectorIdxConstant(0, DL));
417       if (PartEVT == ValueVT)
418         return Val;
419       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
420         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
421 
422       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
423       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
424         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
425     }
426 
427     // Promoted vector extract
428     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
429   }
430 
431   // Trivial bitcast if the types are the same size and the destination
432   // vector type is legal.
433   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
434       TLI.isTypeLegal(ValueVT))
435     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
436 
437   if (ValueVT.getVectorNumElements() != 1) {
438      // Certain ABIs require that vectors are passed as integers. For vectors
439      // are the same size, this is an obvious bitcast.
440      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
441        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
442      } else if (ValueVT.bitsLT(PartEVT)) {
443        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
444        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
445        // Drop the extra bits.
446        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
447        return DAG.getBitcast(ValueVT, Val);
448      }
449 
450      diagnosePossiblyInvalidConstraint(
451          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
452      return DAG.getUNDEF(ValueVT);
453   }
454 
455   // Handle cases such as i8 -> <1 x i1>
456   EVT ValueSVT = ValueVT.getVectorElementType();
457   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
458     unsigned ValueSize = ValueSVT.getSizeInBits();
459     if (ValueSize == PartEVT.getSizeInBits()) {
460       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
461     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
462       // It's possible a scalar floating point type gets softened to integer and
463       // then promoted to a larger integer. If PartEVT is the larger integer
464       // we need to truncate it and then bitcast to the FP type.
465       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
466       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
467       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
468       Val = DAG.getBitcast(ValueSVT, Val);
469     } else {
470       Val = ValueVT.isFloatingPoint()
471                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
472                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
473     }
474   }
475 
476   return DAG.getBuildVector(ValueVT, DL, Val);
477 }
478 
479 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
480                                  SDValue Val, SDValue *Parts, unsigned NumParts,
481                                  MVT PartVT, const Value *V,
482                                  std::optional<CallingConv::ID> CallConv);
483 
484 /// getCopyToParts - Create a series of nodes that contain the specified value
485 /// split into legal parts.  If the parts contain more bits than Val, then, for
486 /// integers, ExtendKind can be used to specify how to generate the extra bits.
487 static void
488 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
489                unsigned NumParts, MVT PartVT, const Value *V,
490                std::optional<CallingConv::ID> CallConv = std::nullopt,
491                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
492   // Let the target split the parts if it wants to
493   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
494   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
495                                       CallConv))
496     return;
497   EVT ValueVT = Val.getValueType();
498 
499   // Handle the vector case separately.
500   if (ValueVT.isVector())
501     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
502                                 CallConv);
503 
504   unsigned OrigNumParts = NumParts;
505   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
506          "Copying to an illegal type!");
507 
508   if (NumParts == 0)
509     return;
510 
511   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
512   EVT PartEVT = PartVT;
513   if (PartEVT == ValueVT) {
514     assert(NumParts == 1 && "No-op copy with multiple parts!");
515     Parts[0] = Val;
516     return;
517   }
518 
519   unsigned PartBits = PartVT.getSizeInBits();
520   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
521     // If the parts cover more bits than the value has, promote the value.
522     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
523       assert(NumParts == 1 && "Do not know what to promote to!");
524       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
525     } else {
526       if (ValueVT.isFloatingPoint()) {
527         // FP values need to be bitcast, then extended if they are being put
528         // into a larger container.
529         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
530         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
531       }
532       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
533              ValueVT.isInteger() &&
534              "Unknown mismatch!");
535       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
536       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
537       if (PartVT == MVT::x86mmx)
538         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539     }
540   } else if (PartBits == ValueVT.getSizeInBits()) {
541     // Different types of the same size.
542     assert(NumParts == 1 && PartEVT != ValueVT);
543     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
544   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
545     // If the parts cover less bits than value has, truncate the value.
546     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
547            ValueVT.isInteger() &&
548            "Unknown mismatch!");
549     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
550     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
551     if (PartVT == MVT::x86mmx)
552       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
553   }
554 
555   // The value may have changed - recompute ValueVT.
556   ValueVT = Val.getValueType();
557   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
558          "Failed to tile the value with PartVT!");
559 
560   if (NumParts == 1) {
561     if (PartEVT != ValueVT) {
562       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
563                                         "scalar-to-vector conversion failed");
564       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
565     }
566 
567     Parts[0] = Val;
568     return;
569   }
570 
571   // Expand the value into multiple parts.
572   if (NumParts & (NumParts - 1)) {
573     // The number of parts is not a power of 2.  Split off and copy the tail.
574     assert(PartVT.isInteger() && ValueVT.isInteger() &&
575            "Do not know what to expand to!");
576     unsigned RoundParts = llvm::bit_floor(NumParts);
577     unsigned RoundBits = RoundParts * PartBits;
578     unsigned OddParts = NumParts - RoundParts;
579     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
580       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
581 
582     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
583                    CallConv);
584 
585     if (DAG.getDataLayout().isBigEndian())
586       // The odd parts were reversed by getCopyToParts - unreverse them.
587       std::reverse(Parts + RoundParts, Parts + NumParts);
588 
589     NumParts = RoundParts;
590     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
591     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
592   }
593 
594   // The number of parts is a power of 2.  Repeatedly bisect the value using
595   // EXTRACT_ELEMENT.
596   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
597                          EVT::getIntegerVT(*DAG.getContext(),
598                                            ValueVT.getSizeInBits()),
599                          Val);
600 
601   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
602     for (unsigned i = 0; i < NumParts; i += StepSize) {
603       unsigned ThisBits = StepSize * PartBits / 2;
604       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
605       SDValue &Part0 = Parts[i];
606       SDValue &Part1 = Parts[i+StepSize/2];
607 
608       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
609                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
610       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
611                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
612 
613       if (ThisBits == PartBits && ThisVT != PartVT) {
614         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
615         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
616       }
617     }
618   }
619 
620   if (DAG.getDataLayout().isBigEndian())
621     std::reverse(Parts, Parts + OrigNumParts);
622 }
623 
624 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
625                                      const SDLoc &DL, EVT PartVT) {
626   if (!PartVT.isVector())
627     return SDValue();
628 
629   EVT ValueVT = Val.getValueType();
630   EVT PartEVT = PartVT.getVectorElementType();
631   EVT ValueEVT = ValueVT.getVectorElementType();
632   ElementCount PartNumElts = PartVT.getVectorElementCount();
633   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
634 
635   // We only support widening vectors with equivalent element types and
636   // fixed/scalable properties. If a target needs to widen a fixed-length type
637   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
638   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
639       PartNumElts.isScalable() != ValueNumElts.isScalable())
640     return SDValue();
641 
642   // Have a try for bf16 because some targets share its ABI with fp16.
643   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
644     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
645            "Cannot widen to illegal type");
646     Val = DAG.getNode(ISD::BITCAST, DL,
647                       ValueVT.changeVectorElementType(MVT::f16), Val);
648   } else if (PartEVT != ValueEVT) {
649     return SDValue();
650   }
651 
652   // Widening a scalable vector to another scalable vector is done by inserting
653   // the vector into a larger undef one.
654   if (PartNumElts.isScalable())
655     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
656                        Val, DAG.getVectorIdxConstant(0, DL));
657 
658   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
659   // undef elements.
660   SmallVector<SDValue, 16> Ops;
661   DAG.ExtractVectorElements(Val, Ops);
662   SDValue EltUndef = DAG.getUNDEF(PartEVT);
663   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
664 
665   // FIXME: Use CONCAT for 2x -> 4x.
666   return DAG.getBuildVector(PartVT, DL, Ops);
667 }
668 
669 /// getCopyToPartsVector - Create a series of nodes that contain the specified
670 /// value split into legal parts.
671 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
672                                  SDValue Val, SDValue *Parts, unsigned NumParts,
673                                  MVT PartVT, const Value *V,
674                                  std::optional<CallingConv::ID> CallConv) {
675   EVT ValueVT = Val.getValueType();
676   assert(ValueVT.isVector() && "Not a vector");
677   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
678   const bool IsABIRegCopy = CallConv.has_value();
679 
680   if (NumParts == 1) {
681     EVT PartEVT = PartVT;
682     if (PartEVT == ValueVT) {
683       // Nothing to do.
684     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
685       // Bitconvert vector->vector case.
686       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
687     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
688       Val = Widened;
689     } else if (PartVT.isVector() &&
690                PartEVT.getVectorElementType().bitsGE(
691                    ValueVT.getVectorElementType()) &&
692                PartEVT.getVectorElementCount() ==
693                    ValueVT.getVectorElementCount()) {
694 
695       // Promoted vector extract
696       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
697     } else if (PartEVT.isVector() &&
698                PartEVT.getVectorElementType() !=
699                    ValueVT.getVectorElementType() &&
700                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
701                    TargetLowering::TypeWidenVector) {
702       // Combination of widening and promotion.
703       EVT WidenVT =
704           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
705                            PartVT.getVectorElementCount());
706       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
707       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
708     } else {
709       // Don't extract an integer from a float vector. This can happen if the
710       // FP type gets softened to integer and then promoted. The promotion
711       // prevents it from being picked up by the earlier bitcast case.
712       if (ValueVT.getVectorElementCount().isScalar() &&
713           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
714         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
715                           DAG.getVectorIdxConstant(0, DL));
716       } else {
717         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
718         assert(PartVT.getFixedSizeInBits() > ValueSize &&
719                "lossy conversion of vector to scalar type");
720         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
721         Val = DAG.getBitcast(IntermediateType, Val);
722         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
723       }
724     }
725 
726     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
727     Parts[0] = Val;
728     return;
729   }
730 
731   // Handle a multi-element vector.
732   EVT IntermediateVT;
733   MVT RegisterVT;
734   unsigned NumIntermediates;
735   unsigned NumRegs;
736   if (IsABIRegCopy) {
737     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
738         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
739         RegisterVT);
740   } else {
741     NumRegs =
742         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
743                                    NumIntermediates, RegisterVT);
744   }
745 
746   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
747   NumParts = NumRegs; // Silence a compiler warning.
748   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
749 
750   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
751          "Mixing scalable and fixed vectors when copying in parts");
752 
753   std::optional<ElementCount> DestEltCnt;
754 
755   if (IntermediateVT.isVector())
756     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
757   else
758     DestEltCnt = ElementCount::getFixed(NumIntermediates);
759 
760   EVT BuiltVectorTy = EVT::getVectorVT(
761       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
762 
763   if (ValueVT == BuiltVectorTy) {
764     // Nothing to do.
765   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
766     // Bitconvert vector->vector case.
767     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
768   } else {
769     if (BuiltVectorTy.getVectorElementType().bitsGT(
770             ValueVT.getVectorElementType())) {
771       // Integer promotion.
772       ValueVT = EVT::getVectorVT(*DAG.getContext(),
773                                  BuiltVectorTy.getVectorElementType(),
774                                  ValueVT.getVectorElementCount());
775       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
776     }
777 
778     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
779       Val = Widened;
780     }
781   }
782 
783   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
784 
785   // Split the vector into intermediate operands.
786   SmallVector<SDValue, 8> Ops(NumIntermediates);
787   for (unsigned i = 0; i != NumIntermediates; ++i) {
788     if (IntermediateVT.isVector()) {
789       // This does something sensible for scalable vectors - see the
790       // definition of EXTRACT_SUBVECTOR for further details.
791       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
792       Ops[i] =
793           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
794                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
795     } else {
796       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
797                            DAG.getVectorIdxConstant(i, DL));
798     }
799   }
800 
801   // Split the intermediate operands into legal parts.
802   if (NumParts == NumIntermediates) {
803     // If the register was not expanded, promote or copy the value,
804     // as appropriate.
805     for (unsigned i = 0; i != NumParts; ++i)
806       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
807   } else if (NumParts > 0) {
808     // If the intermediate type was expanded, split each the value into
809     // legal parts.
810     assert(NumIntermediates != 0 && "division by zero");
811     assert(NumParts % NumIntermediates == 0 &&
812            "Must expand into a divisible number of parts!");
813     unsigned Factor = NumParts / NumIntermediates;
814     for (unsigned i = 0; i != NumIntermediates; ++i)
815       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
816                      CallConv);
817   }
818 }
819 
820 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
821                            EVT valuevt, std::optional<CallingConv::ID> CC)
822     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
823       RegCount(1, regs.size()), CallConv(CC) {}
824 
825 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
826                            const DataLayout &DL, unsigned Reg, Type *Ty,
827                            std::optional<CallingConv::ID> CC) {
828   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
829 
830   CallConv = CC;
831 
832   for (EVT ValueVT : ValueVTs) {
833     unsigned NumRegs =
834         isABIMangled()
835             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
836             : TLI.getNumRegisters(Context, ValueVT);
837     MVT RegisterVT =
838         isABIMangled()
839             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
840             : TLI.getRegisterType(Context, ValueVT);
841     for (unsigned i = 0; i != NumRegs; ++i)
842       Regs.push_back(Reg + i);
843     RegVTs.push_back(RegisterVT);
844     RegCount.push_back(NumRegs);
845     Reg += NumRegs;
846   }
847 }
848 
849 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
850                                       FunctionLoweringInfo &FuncInfo,
851                                       const SDLoc &dl, SDValue &Chain,
852                                       SDValue *Glue, const Value *V) const {
853   // A Value with type {} or [0 x %t] needs no registers.
854   if (ValueVTs.empty())
855     return SDValue();
856 
857   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
858 
859   // Assemble the legal parts into the final values.
860   SmallVector<SDValue, 4> Values(ValueVTs.size());
861   SmallVector<SDValue, 8> Parts;
862   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
863     // Copy the legal parts from the registers.
864     EVT ValueVT = ValueVTs[Value];
865     unsigned NumRegs = RegCount[Value];
866     MVT RegisterVT = isABIMangled()
867                          ? TLI.getRegisterTypeForCallingConv(
868                                *DAG.getContext(), *CallConv, RegVTs[Value])
869                          : RegVTs[Value];
870 
871     Parts.resize(NumRegs);
872     for (unsigned i = 0; i != NumRegs; ++i) {
873       SDValue P;
874       if (!Glue) {
875         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
876       } else {
877         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
878         *Glue = P.getValue(2);
879       }
880 
881       Chain = P.getValue(1);
882       Parts[i] = P;
883 
884       // If the source register was virtual and if we know something about it,
885       // add an assert node.
886       if (!Register::isVirtualRegister(Regs[Part + i]) ||
887           !RegisterVT.isInteger())
888         continue;
889 
890       const FunctionLoweringInfo::LiveOutInfo *LOI =
891         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
892       if (!LOI)
893         continue;
894 
895       unsigned RegSize = RegisterVT.getScalarSizeInBits();
896       unsigned NumSignBits = LOI->NumSignBits;
897       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
898 
899       if (NumZeroBits == RegSize) {
900         // The current value is a zero.
901         // Explicitly express that as it would be easier for
902         // optimizations to kick in.
903         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
904         continue;
905       }
906 
907       // FIXME: We capture more information than the dag can represent.  For
908       // now, just use the tightest assertzext/assertsext possible.
909       bool isSExt;
910       EVT FromVT(MVT::Other);
911       if (NumZeroBits) {
912         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
913         isSExt = false;
914       } else if (NumSignBits > 1) {
915         FromVT =
916             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
917         isSExt = true;
918       } else {
919         continue;
920       }
921       // Add an assertion node.
922       assert(FromVT != MVT::Other);
923       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
924                              RegisterVT, P, DAG.getValueType(FromVT));
925     }
926 
927     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
928                                      RegisterVT, ValueVT, V, CallConv);
929     Part += NumRegs;
930     Parts.clear();
931   }
932 
933   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
934 }
935 
936 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
937                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
938                                  const Value *V,
939                                  ISD::NodeType PreferredExtendType) const {
940   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
941   ISD::NodeType ExtendKind = PreferredExtendType;
942 
943   // Get the list of the values's legal parts.
944   unsigned NumRegs = Regs.size();
945   SmallVector<SDValue, 8> Parts(NumRegs);
946   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
947     unsigned NumParts = RegCount[Value];
948 
949     MVT RegisterVT = isABIMangled()
950                          ? TLI.getRegisterTypeForCallingConv(
951                                *DAG.getContext(), *CallConv, RegVTs[Value])
952                          : RegVTs[Value];
953 
954     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
955       ExtendKind = ISD::ZERO_EXTEND;
956 
957     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
958                    NumParts, RegisterVT, V, CallConv, ExtendKind);
959     Part += NumParts;
960   }
961 
962   // Copy the parts into the registers.
963   SmallVector<SDValue, 8> Chains(NumRegs);
964   for (unsigned i = 0; i != NumRegs; ++i) {
965     SDValue Part;
966     if (!Glue) {
967       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
968     } else {
969       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
970       *Glue = Part.getValue(1);
971     }
972 
973     Chains[i] = Part.getValue(0);
974   }
975 
976   if (NumRegs == 1 || Glue)
977     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
978     // flagged to it. That is the CopyToReg nodes and the user are considered
979     // a single scheduling unit. If we create a TokenFactor and return it as
980     // chain, then the TokenFactor is both a predecessor (operand) of the
981     // user as well as a successor (the TF operands are flagged to the user).
982     // c1, f1 = CopyToReg
983     // c2, f2 = CopyToReg
984     // c3     = TokenFactor c1, c2
985     // ...
986     //        = op c3, ..., f2
987     Chain = Chains[NumRegs-1];
988   else
989     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
990 }
991 
992 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
993                                         unsigned MatchingIdx, const SDLoc &dl,
994                                         SelectionDAG &DAG,
995                                         std::vector<SDValue> &Ops) const {
996   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
997 
998   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
999   if (HasMatching)
1000     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
1001   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1002     // Put the register class of the virtual registers in the flag word.  That
1003     // way, later passes can recompute register class constraints for inline
1004     // assembly as well as normal instructions.
1005     // Don't do this for tied operands that can use the regclass information
1006     // from the def.
1007     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1008     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1009     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
1010   }
1011 
1012   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1013   Ops.push_back(Res);
1014 
1015   if (Code == InlineAsm::Kind_Clobber) {
1016     // Clobbers should always have a 1:1 mapping with registers, and may
1017     // reference registers that have illegal (e.g. vector) types. Hence, we
1018     // shouldn't try to apply any sort of splitting logic to them.
1019     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1020            "No 1:1 mapping from clobbers to regs?");
1021     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1022     (void)SP;
1023     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1024       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1025       assert(
1026           (Regs[I] != SP ||
1027            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1028           "If we clobbered the stack pointer, MFI should know about it.");
1029     }
1030     return;
1031   }
1032 
1033   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1034     MVT RegisterVT = RegVTs[Value];
1035     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1036                                            RegisterVT);
1037     for (unsigned i = 0; i != NumRegs; ++i) {
1038       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1039       unsigned TheReg = Regs[Reg++];
1040       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1041     }
1042   }
1043 }
1044 
1045 SmallVector<std::pair<unsigned, TypeSize>, 4>
1046 RegsForValue::getRegsAndSizes() const {
1047   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1048   unsigned I = 0;
1049   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1050     unsigned RegCount = std::get<0>(CountAndVT);
1051     MVT RegisterVT = std::get<1>(CountAndVT);
1052     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1053     for (unsigned E = I + RegCount; I != E; ++I)
1054       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1055   }
1056   return OutVec;
1057 }
1058 
1059 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1060                                AssumptionCache *ac,
1061                                const TargetLibraryInfo *li) {
1062   AA = aa;
1063   AC = ac;
1064   GFI = gfi;
1065   LibInfo = li;
1066   Context = DAG.getContext();
1067   LPadToCallSiteMap.clear();
1068   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1069   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1070       *DAG.getMachineFunction().getFunction().getParent());
1071 }
1072 
1073 void SelectionDAGBuilder::clear() {
1074   NodeMap.clear();
1075   UnusedArgNodeMap.clear();
1076   PendingLoads.clear();
1077   PendingExports.clear();
1078   PendingConstrainedFP.clear();
1079   PendingConstrainedFPStrict.clear();
1080   CurInst = nullptr;
1081   HasTailCall = false;
1082   SDNodeOrder = LowestSDNodeOrder;
1083   StatepointLowering.clear();
1084 }
1085 
1086 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1087   DanglingDebugInfoMap.clear();
1088 }
1089 
1090 // Update DAG root to include dependencies on Pending chains.
1091 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1092   SDValue Root = DAG.getRoot();
1093 
1094   if (Pending.empty())
1095     return Root;
1096 
1097   // Add current root to PendingChains, unless we already indirectly
1098   // depend on it.
1099   if (Root.getOpcode() != ISD::EntryToken) {
1100     unsigned i = 0, e = Pending.size();
1101     for (; i != e; ++i) {
1102       assert(Pending[i].getNode()->getNumOperands() > 1);
1103       if (Pending[i].getNode()->getOperand(0) == Root)
1104         break;  // Don't add the root if we already indirectly depend on it.
1105     }
1106 
1107     if (i == e)
1108       Pending.push_back(Root);
1109   }
1110 
1111   if (Pending.size() == 1)
1112     Root = Pending[0];
1113   else
1114     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1115 
1116   DAG.setRoot(Root);
1117   Pending.clear();
1118   return Root;
1119 }
1120 
1121 SDValue SelectionDAGBuilder::getMemoryRoot() {
1122   return updateRoot(PendingLoads);
1123 }
1124 
1125 SDValue SelectionDAGBuilder::getRoot() {
1126   // Chain up all pending constrained intrinsics together with all
1127   // pending loads, by simply appending them to PendingLoads and
1128   // then calling getMemoryRoot().
1129   PendingLoads.reserve(PendingLoads.size() +
1130                        PendingConstrainedFP.size() +
1131                        PendingConstrainedFPStrict.size());
1132   PendingLoads.append(PendingConstrainedFP.begin(),
1133                       PendingConstrainedFP.end());
1134   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1135                       PendingConstrainedFPStrict.end());
1136   PendingConstrainedFP.clear();
1137   PendingConstrainedFPStrict.clear();
1138   return getMemoryRoot();
1139 }
1140 
1141 SDValue SelectionDAGBuilder::getControlRoot() {
1142   // We need to emit pending fpexcept.strict constrained intrinsics,
1143   // so append them to the PendingExports list.
1144   PendingExports.append(PendingConstrainedFPStrict.begin(),
1145                         PendingConstrainedFPStrict.end());
1146   PendingConstrainedFPStrict.clear();
1147   return updateRoot(PendingExports);
1148 }
1149 
1150 void SelectionDAGBuilder::visit(const Instruction &I) {
1151   // Set up outgoing PHI node register values before emitting the terminator.
1152   if (I.isTerminator()) {
1153     HandlePHINodesInSuccessorBlocks(I.getParent());
1154   }
1155 
1156   // Add SDDbgValue nodes for any var locs here. Do so before updating
1157   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1158   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1159     // Add SDDbgValue nodes for any var locs here. Do so before updating
1160     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1161     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1162          It != End; ++It) {
1163       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1164       dropDanglingDebugInfo(Var, It->Expr);
1165       if (It->Values.isKillLocation(It->Expr)) {
1166         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1167         continue;
1168       }
1169       SmallVector<Value *> Values(It->Values.location_ops());
1170       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1171                             It->Values.hasArgList()))
1172         addDanglingDebugInfo(It, SDNodeOrder);
1173     }
1174   }
1175 
1176   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1177   if (!isa<DbgInfoIntrinsic>(I))
1178     ++SDNodeOrder;
1179 
1180   CurInst = &I;
1181 
1182   // Set inserted listener only if required.
1183   bool NodeInserted = false;
1184   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1185   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1186   if (PCSectionsMD) {
1187     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1188         DAG, [&](SDNode *) { NodeInserted = true; });
1189   }
1190 
1191   visit(I.getOpcode(), I);
1192 
1193   if (!I.isTerminator() && !HasTailCall &&
1194       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1195     CopyToExportRegsIfNeeded(&I);
1196 
1197   // Handle metadata.
1198   if (PCSectionsMD) {
1199     auto It = NodeMap.find(&I);
1200     if (It != NodeMap.end()) {
1201       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1202     } else if (NodeInserted) {
1203       // This should not happen; if it does, don't let it go unnoticed so we can
1204       // fix it. Relevant visit*() function is probably missing a setValue().
1205       errs() << "warning: loosing !pcsections metadata ["
1206              << I.getModule()->getName() << "]\n";
1207       LLVM_DEBUG(I.dump());
1208       assert(false);
1209     }
1210   }
1211 
1212   CurInst = nullptr;
1213 }
1214 
1215 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1216   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1217 }
1218 
1219 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1220   // Note: this doesn't use InstVisitor, because it has to work with
1221   // ConstantExpr's in addition to instructions.
1222   switch (Opcode) {
1223   default: llvm_unreachable("Unknown instruction type encountered!");
1224     // Build the switch statement using the Instruction.def file.
1225 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1226     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1227 #include "llvm/IR/Instruction.def"
1228   }
1229 }
1230 
1231 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1232                                             DILocalVariable *Variable,
1233                                             DebugLoc DL, unsigned Order,
1234                                             RawLocationWrapper Values,
1235                                             DIExpression *Expression) {
1236   if (!Values.hasArgList())
1237     return false;
1238   // For variadic dbg_values we will now insert an undef.
1239   // FIXME: We can potentially recover these!
1240   SmallVector<SDDbgOperand, 2> Locs;
1241   for (const Value *V : Values.location_ops()) {
1242     auto *Undef = UndefValue::get(V->getType());
1243     Locs.push_back(SDDbgOperand::fromConst(Undef));
1244   }
1245   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1246                                         /*IsIndirect=*/false, DL, Order,
1247                                         /*IsVariadic=*/true);
1248   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1249   return true;
1250 }
1251 
1252 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc,
1253                                                unsigned Order) {
1254   if (!handleDanglingVariadicDebugInfo(
1255           DAG,
1256           const_cast<DILocalVariable *>(DAG.getFunctionVarLocs()
1257                                             ->getVariable(VarLoc->VariableID)
1258                                             .getVariable()),
1259           VarLoc->DL, Order, VarLoc->Values, VarLoc->Expr)) {
1260     DanglingDebugInfoMap[VarLoc->Values.getVariableLocationOp(0)].emplace_back(
1261         VarLoc, Order);
1262   }
1263 }
1264 
1265 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1266                                                unsigned Order) {
1267   // We treat variadic dbg_values differently at this stage.
1268   if (!handleDanglingVariadicDebugInfo(
1269           DAG, DI->getVariable(), DI->getDebugLoc(), Order,
1270           DI->getWrappedLocation(), DI->getExpression())) {
1271     // TODO: Dangling debug info will eventually either be resolved or produce
1272     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1273     // between the original dbg.value location and its resolved DBG_VALUE,
1274     // which we should ideally fill with an extra Undef DBG_VALUE.
1275     assert(DI->getNumVariableLocationOps() == 1 &&
1276            "DbgValueInst without an ArgList should have a single location "
1277            "operand.");
1278     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order);
1279   }
1280 }
1281 
1282 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1283                                                 const DIExpression *Expr) {
1284   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1285     DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs());
1286     DIExpression *DanglingExpr = DDI.getExpression();
1287     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1288       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI)
1289                         << "\n");
1290       return true;
1291     }
1292     return false;
1293   };
1294 
1295   for (auto &DDIMI : DanglingDebugInfoMap) {
1296     DanglingDebugInfoVector &DDIV = DDIMI.second;
1297 
1298     // If debug info is to be dropped, run it through final checks to see
1299     // whether it can be salvaged.
1300     for (auto &DDI : DDIV)
1301       if (isMatchingDbgValue(DDI))
1302         salvageUnresolvedDbgValue(DDI);
1303 
1304     erase_if(DDIV, isMatchingDbgValue);
1305   }
1306 }
1307 
1308 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1309 // generate the debug data structures now that we've seen its definition.
1310 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1311                                                    SDValue Val) {
1312   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1313   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1314     return;
1315 
1316   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1317   for (auto &DDI : DDIV) {
1318     DebugLoc DL = DDI.getDebugLoc();
1319     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1320     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1321     DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs());
1322     DIExpression *Expr = DDI.getExpression();
1323     assert(Variable->isValidLocationForIntrinsic(DL) &&
1324            "Expected inlined-at fields to agree");
1325     SDDbgValue *SDV;
1326     if (Val.getNode()) {
1327       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1328       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1329       // we couldn't resolve it directly when examining the DbgValue intrinsic
1330       // in the first place we should not be more successful here). Unless we
1331       // have some test case that prove this to be correct we should avoid
1332       // calling EmitFuncArgumentDbgValue here.
1333       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1334                                     FuncArgumentDbgValueKind::Value, Val)) {
1335         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI)
1336                           << "\n");
1337         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1338         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1339         // inserted after the definition of Val when emitting the instructions
1340         // after ISel. An alternative could be to teach
1341         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1342         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1343                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1344                    << ValSDNodeOrder << "\n");
1345         SDV = getDbgValue(Val, Variable, Expr, DL,
1346                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1347         DAG.AddDbgValue(SDV, false);
1348       } else
1349         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1350                           << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n");
1351     } else {
1352       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n");
1353       auto Undef = UndefValue::get(V->getType());
1354       auto SDV =
1355           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1356       DAG.AddDbgValue(SDV, false);
1357     }
1358   }
1359   DDIV.clear();
1360 }
1361 
1362 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1363   // TODO: For the variadic implementation, instead of only checking the fail
1364   // state of `handleDebugValue`, we need know specifically which values were
1365   // invalid, so that we attempt to salvage only those values when processing
1366   // a DIArgList.
1367   Value *V = DDI.getVariableLocationOp(0);
1368   Value *OrigV = V;
1369   DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs());
1370   DIExpression *Expr = DDI.getExpression();
1371   DebugLoc DL = DDI.getDebugLoc();
1372   unsigned SDOrder = DDI.getSDNodeOrder();
1373 
1374   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1375   // that DW_OP_stack_value is desired.
1376   bool StackValue = true;
1377 
1378   // Can this Value can be encoded without any further work?
1379   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1380     return;
1381 
1382   // Attempt to salvage back through as many instructions as possible. Bail if
1383   // a non-instruction is seen, such as a constant expression or global
1384   // variable. FIXME: Further work could recover those too.
1385   while (isa<Instruction>(V)) {
1386     Instruction &VAsInst = *cast<Instruction>(V);
1387     // Temporary "0", awaiting real implementation.
1388     SmallVector<uint64_t, 16> Ops;
1389     SmallVector<Value *, 4> AdditionalValues;
1390     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1391                              AdditionalValues);
1392     // If we cannot salvage any further, and haven't yet found a suitable debug
1393     // expression, bail out.
1394     if (!V)
1395       break;
1396 
1397     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1398     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1399     // here for variadic dbg_values, remove that condition.
1400     if (!AdditionalValues.empty())
1401       break;
1402 
1403     // New value and expr now represent this debuginfo.
1404     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1405 
1406     // Some kind of simplification occurred: check whether the operand of the
1407     // salvaged debug expression can be encoded in this DAG.
1408     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1409       LLVM_DEBUG(
1410           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1411                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1412       return;
1413     }
1414   }
1415 
1416   // This was the final opportunity to salvage this debug information, and it
1417   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1418   // any earlier variable location.
1419   assert(OrigV && "V shouldn't be null");
1420   auto *Undef = UndefValue::get(OrigV->getType());
1421   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1422   DAG.AddDbgValue(SDV, false);
1423   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << printDDI(DDI)
1424                     << "\n");
1425 }
1426 
1427 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1428                                                DIExpression *Expr,
1429                                                DebugLoc DbgLoc,
1430                                                unsigned Order) {
1431   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1432   DIExpression *NewExpr =
1433       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1434   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1435                    /*IsVariadic*/ false);
1436 }
1437 
1438 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1439                                            DILocalVariable *Var,
1440                                            DIExpression *Expr, DebugLoc DbgLoc,
1441                                            unsigned Order, bool IsVariadic) {
1442   if (Values.empty())
1443     return true;
1444   SmallVector<SDDbgOperand> LocationOps;
1445   SmallVector<SDNode *> Dependencies;
1446   for (const Value *V : Values) {
1447     // Constant value.
1448     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1449         isa<ConstantPointerNull>(V)) {
1450       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1451       continue;
1452     }
1453 
1454     // Look through IntToPtr constants.
1455     if (auto *CE = dyn_cast<ConstantExpr>(V))
1456       if (CE->getOpcode() == Instruction::IntToPtr) {
1457         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1458         continue;
1459       }
1460 
1461     // If the Value is a frame index, we can create a FrameIndex debug value
1462     // without relying on the DAG at all.
1463     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1464       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1465       if (SI != FuncInfo.StaticAllocaMap.end()) {
1466         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1467         continue;
1468       }
1469     }
1470 
1471     // Do not use getValue() in here; we don't want to generate code at
1472     // this point if it hasn't been done yet.
1473     SDValue N = NodeMap[V];
1474     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1475       N = UnusedArgNodeMap[V];
1476     if (N.getNode()) {
1477       // Only emit func arg dbg value for non-variadic dbg.values for now.
1478       if (!IsVariadic &&
1479           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1480                                    FuncArgumentDbgValueKind::Value, N))
1481         return true;
1482       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1483         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1484         // describe stack slot locations.
1485         //
1486         // Consider "int x = 0; int *px = &x;". There are two kinds of
1487         // interesting debug values here after optimization:
1488         //
1489         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1490         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1491         //
1492         // Both describe the direct values of their associated variables.
1493         Dependencies.push_back(N.getNode());
1494         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1495         continue;
1496       }
1497       LocationOps.emplace_back(
1498           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1499       continue;
1500     }
1501 
1502     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1503     // Special rules apply for the first dbg.values of parameter variables in a
1504     // function. Identify them by the fact they reference Argument Values, that
1505     // they're parameters, and they are parameters of the current function. We
1506     // need to let them dangle until they get an SDNode.
1507     bool IsParamOfFunc =
1508         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1509     if (IsParamOfFunc)
1510       return false;
1511 
1512     // The value is not used in this block yet (or it would have an SDNode).
1513     // We still want the value to appear for the user if possible -- if it has
1514     // an associated VReg, we can refer to that instead.
1515     auto VMI = FuncInfo.ValueMap.find(V);
1516     if (VMI != FuncInfo.ValueMap.end()) {
1517       unsigned Reg = VMI->second;
1518       // If this is a PHI node, it may be split up into several MI PHI nodes
1519       // (in FunctionLoweringInfo::set).
1520       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1521                        V->getType(), std::nullopt);
1522       if (RFV.occupiesMultipleRegs()) {
1523         // FIXME: We could potentially support variadic dbg_values here.
1524         if (IsVariadic)
1525           return false;
1526         unsigned Offset = 0;
1527         unsigned BitsToDescribe = 0;
1528         if (auto VarSize = Var->getSizeInBits())
1529           BitsToDescribe = *VarSize;
1530         if (auto Fragment = Expr->getFragmentInfo())
1531           BitsToDescribe = Fragment->SizeInBits;
1532         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1533           // Bail out if all bits are described already.
1534           if (Offset >= BitsToDescribe)
1535             break;
1536           // TODO: handle scalable vectors.
1537           unsigned RegisterSize = RegAndSize.second;
1538           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1539                                       ? BitsToDescribe - Offset
1540                                       : RegisterSize;
1541           auto FragmentExpr = DIExpression::createFragmentExpression(
1542               Expr, Offset, FragmentSize);
1543           if (!FragmentExpr)
1544             continue;
1545           SDDbgValue *SDV = DAG.getVRegDbgValue(
1546               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1547           DAG.AddDbgValue(SDV, false);
1548           Offset += RegisterSize;
1549         }
1550         return true;
1551       }
1552       // We can use simple vreg locations for variadic dbg_values as well.
1553       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1554       continue;
1555     }
1556     // We failed to create a SDDbgOperand for V.
1557     return false;
1558   }
1559 
1560   // We have created a SDDbgOperand for each Value in Values.
1561   // Should use Order instead of SDNodeOrder?
1562   assert(!LocationOps.empty());
1563   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1564                                         /*IsIndirect=*/false, DbgLoc,
1565                                         SDNodeOrder, IsVariadic);
1566   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1567   return true;
1568 }
1569 
1570 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1571   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1572   for (auto &Pair : DanglingDebugInfoMap)
1573     for (auto &DDI : Pair.second)
1574       salvageUnresolvedDbgValue(DDI);
1575   clearDanglingDebugInfo();
1576 }
1577 
1578 /// getCopyFromRegs - If there was virtual register allocated for the value V
1579 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1580 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1581   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1582   SDValue Result;
1583 
1584   if (It != FuncInfo.ValueMap.end()) {
1585     Register InReg = It->second;
1586 
1587     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1588                      DAG.getDataLayout(), InReg, Ty,
1589                      std::nullopt); // This is not an ABI copy.
1590     SDValue Chain = DAG.getEntryNode();
1591     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1592                                  V);
1593     resolveDanglingDebugInfo(V, Result);
1594   }
1595 
1596   return Result;
1597 }
1598 
1599 /// getValue - Return an SDValue for the given Value.
1600 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1601   // If we already have an SDValue for this value, use it. It's important
1602   // to do this first, so that we don't create a CopyFromReg if we already
1603   // have a regular SDValue.
1604   SDValue &N = NodeMap[V];
1605   if (N.getNode()) return N;
1606 
1607   // If there's a virtual register allocated and initialized for this
1608   // value, use it.
1609   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1610     return copyFromReg;
1611 
1612   // Otherwise create a new SDValue and remember it.
1613   SDValue Val = getValueImpl(V);
1614   NodeMap[V] = Val;
1615   resolveDanglingDebugInfo(V, Val);
1616   return Val;
1617 }
1618 
1619 /// getNonRegisterValue - Return an SDValue for the given Value, but
1620 /// don't look in FuncInfo.ValueMap for a virtual register.
1621 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1622   // If we already have an SDValue for this value, use it.
1623   SDValue &N = NodeMap[V];
1624   if (N.getNode()) {
1625     if (isIntOrFPConstant(N)) {
1626       // Remove the debug location from the node as the node is about to be used
1627       // in a location which may differ from the original debug location.  This
1628       // is relevant to Constant and ConstantFP nodes because they can appear
1629       // as constant expressions inside PHI nodes.
1630       N->setDebugLoc(DebugLoc());
1631     }
1632     return N;
1633   }
1634 
1635   // Otherwise create a new SDValue and remember it.
1636   SDValue Val = getValueImpl(V);
1637   NodeMap[V] = Val;
1638   resolveDanglingDebugInfo(V, Val);
1639   return Val;
1640 }
1641 
1642 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1643 /// Create an SDValue for the given value.
1644 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1645   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1646 
1647   if (const Constant *C = dyn_cast<Constant>(V)) {
1648     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1649 
1650     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1651       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1652 
1653     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1654       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1655 
1656     if (isa<ConstantPointerNull>(C)) {
1657       unsigned AS = V->getType()->getPointerAddressSpace();
1658       return DAG.getConstant(0, getCurSDLoc(),
1659                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1660     }
1661 
1662     if (match(C, m_VScale()))
1663       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1664 
1665     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1666       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1667 
1668     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1669       return DAG.getUNDEF(VT);
1670 
1671     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1672       visit(CE->getOpcode(), *CE);
1673       SDValue N1 = NodeMap[V];
1674       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1675       return N1;
1676     }
1677 
1678     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1679       SmallVector<SDValue, 4> Constants;
1680       for (const Use &U : C->operands()) {
1681         SDNode *Val = getValue(U).getNode();
1682         // If the operand is an empty aggregate, there are no values.
1683         if (!Val) continue;
1684         // Add each leaf value from the operand to the Constants list
1685         // to form a flattened list of all the values.
1686         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1687           Constants.push_back(SDValue(Val, i));
1688       }
1689 
1690       return DAG.getMergeValues(Constants, getCurSDLoc());
1691     }
1692 
1693     if (const ConstantDataSequential *CDS =
1694           dyn_cast<ConstantDataSequential>(C)) {
1695       SmallVector<SDValue, 4> Ops;
1696       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1697         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1698         // Add each leaf value from the operand to the Constants list
1699         // to form a flattened list of all the values.
1700         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1701           Ops.push_back(SDValue(Val, i));
1702       }
1703 
1704       if (isa<ArrayType>(CDS->getType()))
1705         return DAG.getMergeValues(Ops, getCurSDLoc());
1706       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1707     }
1708 
1709     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1710       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1711              "Unknown struct or array constant!");
1712 
1713       SmallVector<EVT, 4> ValueVTs;
1714       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1715       unsigned NumElts = ValueVTs.size();
1716       if (NumElts == 0)
1717         return SDValue(); // empty struct
1718       SmallVector<SDValue, 4> Constants(NumElts);
1719       for (unsigned i = 0; i != NumElts; ++i) {
1720         EVT EltVT = ValueVTs[i];
1721         if (isa<UndefValue>(C))
1722           Constants[i] = DAG.getUNDEF(EltVT);
1723         else if (EltVT.isFloatingPoint())
1724           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1725         else
1726           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1727       }
1728 
1729       return DAG.getMergeValues(Constants, getCurSDLoc());
1730     }
1731 
1732     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1733       return DAG.getBlockAddress(BA, VT);
1734 
1735     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1736       return getValue(Equiv->getGlobalValue());
1737 
1738     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1739       return getValue(NC->getGlobalValue());
1740 
1741     VectorType *VecTy = cast<VectorType>(V->getType());
1742 
1743     // Now that we know the number and type of the elements, get that number of
1744     // elements into the Ops array based on what kind of constant it is.
1745     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1746       SmallVector<SDValue, 16> Ops;
1747       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1748       for (unsigned i = 0; i != NumElements; ++i)
1749         Ops.push_back(getValue(CV->getOperand(i)));
1750 
1751       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1752     }
1753 
1754     if (isa<ConstantAggregateZero>(C)) {
1755       EVT EltVT =
1756           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1757 
1758       SDValue Op;
1759       if (EltVT.isFloatingPoint())
1760         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1761       else
1762         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1763 
1764       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1765     }
1766 
1767     llvm_unreachable("Unknown vector constant");
1768   }
1769 
1770   // If this is a static alloca, generate it as the frameindex instead of
1771   // computation.
1772   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1773     DenseMap<const AllocaInst*, int>::iterator SI =
1774       FuncInfo.StaticAllocaMap.find(AI);
1775     if (SI != FuncInfo.StaticAllocaMap.end())
1776       return DAG.getFrameIndex(
1777           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1778   }
1779 
1780   // If this is an instruction which fast-isel has deferred, select it now.
1781   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1782     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1783 
1784     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1785                      Inst->getType(), std::nullopt);
1786     SDValue Chain = DAG.getEntryNode();
1787     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1788   }
1789 
1790   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1791     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1792 
1793   if (const auto *BB = dyn_cast<BasicBlock>(V))
1794     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1795 
1796   llvm_unreachable("Can't get register for value!");
1797 }
1798 
1799 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1800   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1801   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1802   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1803   bool IsSEH = isAsynchronousEHPersonality(Pers);
1804   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1805   if (!IsSEH)
1806     CatchPadMBB->setIsEHScopeEntry();
1807   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1808   if (IsMSVCCXX || IsCoreCLR)
1809     CatchPadMBB->setIsEHFuncletEntry();
1810 }
1811 
1812 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1813   // Update machine-CFG edge.
1814   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1815   FuncInfo.MBB->addSuccessor(TargetMBB);
1816   TargetMBB->setIsEHCatchretTarget(true);
1817   DAG.getMachineFunction().setHasEHCatchret(true);
1818 
1819   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1820   bool IsSEH = isAsynchronousEHPersonality(Pers);
1821   if (IsSEH) {
1822     // If this is not a fall-through branch or optimizations are switched off,
1823     // emit the branch.
1824     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1825         TM.getOptLevel() == CodeGenOpt::None)
1826       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1827                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1828     return;
1829   }
1830 
1831   // Figure out the funclet membership for the catchret's successor.
1832   // This will be used by the FuncletLayout pass to determine how to order the
1833   // BB's.
1834   // A 'catchret' returns to the outer scope's color.
1835   Value *ParentPad = I.getCatchSwitchParentPad();
1836   const BasicBlock *SuccessorColor;
1837   if (isa<ConstantTokenNone>(ParentPad))
1838     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1839   else
1840     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1841   assert(SuccessorColor && "No parent funclet for catchret!");
1842   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1843   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1844 
1845   // Create the terminator node.
1846   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1847                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1848                             DAG.getBasicBlock(SuccessorColorMBB));
1849   DAG.setRoot(Ret);
1850 }
1851 
1852 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1853   // Don't emit any special code for the cleanuppad instruction. It just marks
1854   // the start of an EH scope/funclet.
1855   FuncInfo.MBB->setIsEHScopeEntry();
1856   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1857   if (Pers != EHPersonality::Wasm_CXX) {
1858     FuncInfo.MBB->setIsEHFuncletEntry();
1859     FuncInfo.MBB->setIsCleanupFuncletEntry();
1860   }
1861 }
1862 
1863 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1864 // not match, it is OK to add only the first unwind destination catchpad to the
1865 // successors, because there will be at least one invoke instruction within the
1866 // catch scope that points to the next unwind destination, if one exists, so
1867 // CFGSort cannot mess up with BB sorting order.
1868 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1869 // call within them, and catchpads only consisting of 'catch (...)' have a
1870 // '__cxa_end_catch' call within them, both of which generate invokes in case
1871 // the next unwind destination exists, i.e., the next unwind destination is not
1872 // the caller.)
1873 //
1874 // Having at most one EH pad successor is also simpler and helps later
1875 // transformations.
1876 //
1877 // For example,
1878 // current:
1879 //   invoke void @foo to ... unwind label %catch.dispatch
1880 // catch.dispatch:
1881 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1882 // catch.start:
1883 //   ...
1884 //   ... in this BB or some other child BB dominated by this BB there will be an
1885 //   invoke that points to 'next' BB as an unwind destination
1886 //
1887 // next: ; We don't need to add this to 'current' BB's successor
1888 //   ...
1889 static void findWasmUnwindDestinations(
1890     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1891     BranchProbability Prob,
1892     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1893         &UnwindDests) {
1894   while (EHPadBB) {
1895     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1896     if (isa<CleanupPadInst>(Pad)) {
1897       // Stop on cleanup pads.
1898       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1899       UnwindDests.back().first->setIsEHScopeEntry();
1900       break;
1901     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1902       // Add the catchpad handlers to the possible destinations. We don't
1903       // continue to the unwind destination of the catchswitch for wasm.
1904       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1905         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1906         UnwindDests.back().first->setIsEHScopeEntry();
1907       }
1908       break;
1909     } else {
1910       continue;
1911     }
1912   }
1913 }
1914 
1915 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1916 /// many places it could ultimately go. In the IR, we have a single unwind
1917 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1918 /// This function skips over imaginary basic blocks that hold catchswitch
1919 /// instructions, and finds all the "real" machine
1920 /// basic block destinations. As those destinations may not be successors of
1921 /// EHPadBB, here we also calculate the edge probability to those destinations.
1922 /// The passed-in Prob is the edge probability to EHPadBB.
1923 static void findUnwindDestinations(
1924     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1925     BranchProbability Prob,
1926     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1927         &UnwindDests) {
1928   EHPersonality Personality =
1929     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1930   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1931   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1932   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1933   bool IsSEH = isAsynchronousEHPersonality(Personality);
1934 
1935   if (IsWasmCXX) {
1936     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1937     assert(UnwindDests.size() <= 1 &&
1938            "There should be at most one unwind destination for wasm");
1939     return;
1940   }
1941 
1942   while (EHPadBB) {
1943     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1944     BasicBlock *NewEHPadBB = nullptr;
1945     if (isa<LandingPadInst>(Pad)) {
1946       // Stop on landingpads. They are not funclets.
1947       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1948       break;
1949     } else if (isa<CleanupPadInst>(Pad)) {
1950       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1951       // personalities.
1952       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1953       UnwindDests.back().first->setIsEHScopeEntry();
1954       UnwindDests.back().first->setIsEHFuncletEntry();
1955       break;
1956     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1957       // Add the catchpad handlers to the possible destinations.
1958       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1959         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1960         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1961         if (IsMSVCCXX || IsCoreCLR)
1962           UnwindDests.back().first->setIsEHFuncletEntry();
1963         if (!IsSEH)
1964           UnwindDests.back().first->setIsEHScopeEntry();
1965       }
1966       NewEHPadBB = CatchSwitch->getUnwindDest();
1967     } else {
1968       continue;
1969     }
1970 
1971     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1972     if (BPI && NewEHPadBB)
1973       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1974     EHPadBB = NewEHPadBB;
1975   }
1976 }
1977 
1978 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1979   // Update successor info.
1980   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1981   auto UnwindDest = I.getUnwindDest();
1982   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1983   BranchProbability UnwindDestProb =
1984       (BPI && UnwindDest)
1985           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1986           : BranchProbability::getZero();
1987   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1988   for (auto &UnwindDest : UnwindDests) {
1989     UnwindDest.first->setIsEHPad();
1990     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1991   }
1992   FuncInfo.MBB->normalizeSuccProbs();
1993 
1994   // Create the terminator node.
1995   SDValue Ret =
1996       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1997   DAG.setRoot(Ret);
1998 }
1999 
2000 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2001   report_fatal_error("visitCatchSwitch not yet implemented!");
2002 }
2003 
2004 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2005   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2006   auto &DL = DAG.getDataLayout();
2007   SDValue Chain = getControlRoot();
2008   SmallVector<ISD::OutputArg, 8> Outs;
2009   SmallVector<SDValue, 8> OutVals;
2010 
2011   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2012   // lower
2013   //
2014   //   %val = call <ty> @llvm.experimental.deoptimize()
2015   //   ret <ty> %val
2016   //
2017   // differently.
2018   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2019     LowerDeoptimizingReturn();
2020     return;
2021   }
2022 
2023   if (!FuncInfo.CanLowerReturn) {
2024     unsigned DemoteReg = FuncInfo.DemoteRegister;
2025     const Function *F = I.getParent()->getParent();
2026 
2027     // Emit a store of the return value through the virtual register.
2028     // Leave Outs empty so that LowerReturn won't try to load return
2029     // registers the usual way.
2030     SmallVector<EVT, 1> PtrValueVTs;
2031     ComputeValueVTs(TLI, DL,
2032                     PointerType::get(F->getContext(),
2033                                      DAG.getDataLayout().getAllocaAddrSpace()),
2034                     PtrValueVTs);
2035 
2036     SDValue RetPtr =
2037         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2038     SDValue RetOp = getValue(I.getOperand(0));
2039 
2040     SmallVector<EVT, 4> ValueVTs, MemVTs;
2041     SmallVector<uint64_t, 4> Offsets;
2042     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2043                     &Offsets, 0);
2044     unsigned NumValues = ValueVTs.size();
2045 
2046     SmallVector<SDValue, 4> Chains(NumValues);
2047     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2048     for (unsigned i = 0; i != NumValues; ++i) {
2049       // An aggregate return value cannot wrap around the address space, so
2050       // offsets to its parts don't wrap either.
2051       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2052                                            TypeSize::Fixed(Offsets[i]));
2053 
2054       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2055       if (MemVTs[i] != ValueVTs[i])
2056         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2057       Chains[i] = DAG.getStore(
2058           Chain, getCurSDLoc(), Val,
2059           // FIXME: better loc info would be nice.
2060           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2061           commonAlignment(BaseAlign, Offsets[i]));
2062     }
2063 
2064     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2065                         MVT::Other, Chains);
2066   } else if (I.getNumOperands() != 0) {
2067     SmallVector<EVT, 4> ValueVTs;
2068     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2069     unsigned NumValues = ValueVTs.size();
2070     if (NumValues) {
2071       SDValue RetOp = getValue(I.getOperand(0));
2072 
2073       const Function *F = I.getParent()->getParent();
2074 
2075       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2076           I.getOperand(0)->getType(), F->getCallingConv(),
2077           /*IsVarArg*/ false, DL);
2078 
2079       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2080       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2081         ExtendKind = ISD::SIGN_EXTEND;
2082       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2083         ExtendKind = ISD::ZERO_EXTEND;
2084 
2085       LLVMContext &Context = F->getContext();
2086       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2087 
2088       for (unsigned j = 0; j != NumValues; ++j) {
2089         EVT VT = ValueVTs[j];
2090 
2091         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2092           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2093 
2094         CallingConv::ID CC = F->getCallingConv();
2095 
2096         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2097         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2098         SmallVector<SDValue, 4> Parts(NumParts);
2099         getCopyToParts(DAG, getCurSDLoc(),
2100                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2101                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2102 
2103         // 'inreg' on function refers to return value
2104         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2105         if (RetInReg)
2106           Flags.setInReg();
2107 
2108         if (I.getOperand(0)->getType()->isPointerTy()) {
2109           Flags.setPointer();
2110           Flags.setPointerAddrSpace(
2111               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2112         }
2113 
2114         if (NeedsRegBlock) {
2115           Flags.setInConsecutiveRegs();
2116           if (j == NumValues - 1)
2117             Flags.setInConsecutiveRegsLast();
2118         }
2119 
2120         // Propagate extension type if any
2121         if (ExtendKind == ISD::SIGN_EXTEND)
2122           Flags.setSExt();
2123         else if (ExtendKind == ISD::ZERO_EXTEND)
2124           Flags.setZExt();
2125 
2126         for (unsigned i = 0; i < NumParts; ++i) {
2127           Outs.push_back(ISD::OutputArg(Flags,
2128                                         Parts[i].getValueType().getSimpleVT(),
2129                                         VT, /*isfixed=*/true, 0, 0));
2130           OutVals.push_back(Parts[i]);
2131         }
2132       }
2133     }
2134   }
2135 
2136   // Push in swifterror virtual register as the last element of Outs. This makes
2137   // sure swifterror virtual register will be returned in the swifterror
2138   // physical register.
2139   const Function *F = I.getParent()->getParent();
2140   if (TLI.supportSwiftError() &&
2141       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2142     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2143     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2144     Flags.setSwiftError();
2145     Outs.push_back(ISD::OutputArg(
2146         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2147         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2148     // Create SDNode for the swifterror virtual register.
2149     OutVals.push_back(
2150         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2151                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2152                         EVT(TLI.getPointerTy(DL))));
2153   }
2154 
2155   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2156   CallingConv::ID CallConv =
2157     DAG.getMachineFunction().getFunction().getCallingConv();
2158   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2159       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2160 
2161   // Verify that the target's LowerReturn behaved as expected.
2162   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2163          "LowerReturn didn't return a valid chain!");
2164 
2165   // Update the DAG with the new chain value resulting from return lowering.
2166   DAG.setRoot(Chain);
2167 }
2168 
2169 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2170 /// created for it, emit nodes to copy the value into the virtual
2171 /// registers.
2172 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2173   // Skip empty types
2174   if (V->getType()->isEmptyTy())
2175     return;
2176 
2177   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2178   if (VMI != FuncInfo.ValueMap.end()) {
2179     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2180            "Unused value assigned virtual registers!");
2181     CopyValueToVirtualRegister(V, VMI->second);
2182   }
2183 }
2184 
2185 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2186 /// the current basic block, add it to ValueMap now so that we'll get a
2187 /// CopyTo/FromReg.
2188 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2189   // No need to export constants.
2190   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2191 
2192   // Already exported?
2193   if (FuncInfo.isExportedInst(V)) return;
2194 
2195   Register Reg = FuncInfo.InitializeRegForValue(V);
2196   CopyValueToVirtualRegister(V, Reg);
2197 }
2198 
2199 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2200                                                      const BasicBlock *FromBB) {
2201   // The operands of the setcc have to be in this block.  We don't know
2202   // how to export them from some other block.
2203   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2204     // Can export from current BB.
2205     if (VI->getParent() == FromBB)
2206       return true;
2207 
2208     // Is already exported, noop.
2209     return FuncInfo.isExportedInst(V);
2210   }
2211 
2212   // If this is an argument, we can export it if the BB is the entry block or
2213   // if it is already exported.
2214   if (isa<Argument>(V)) {
2215     if (FromBB->isEntryBlock())
2216       return true;
2217 
2218     // Otherwise, can only export this if it is already exported.
2219     return FuncInfo.isExportedInst(V);
2220   }
2221 
2222   // Otherwise, constants can always be exported.
2223   return true;
2224 }
2225 
2226 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2227 BranchProbability
2228 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2229                                         const MachineBasicBlock *Dst) const {
2230   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2231   const BasicBlock *SrcBB = Src->getBasicBlock();
2232   const BasicBlock *DstBB = Dst->getBasicBlock();
2233   if (!BPI) {
2234     // If BPI is not available, set the default probability as 1 / N, where N is
2235     // the number of successors.
2236     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2237     return BranchProbability(1, SuccSize);
2238   }
2239   return BPI->getEdgeProbability(SrcBB, DstBB);
2240 }
2241 
2242 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2243                                                MachineBasicBlock *Dst,
2244                                                BranchProbability Prob) {
2245   if (!FuncInfo.BPI)
2246     Src->addSuccessorWithoutProb(Dst);
2247   else {
2248     if (Prob.isUnknown())
2249       Prob = getEdgeProbability(Src, Dst);
2250     Src->addSuccessor(Dst, Prob);
2251   }
2252 }
2253 
2254 static bool InBlock(const Value *V, const BasicBlock *BB) {
2255   if (const Instruction *I = dyn_cast<Instruction>(V))
2256     return I->getParent() == BB;
2257   return true;
2258 }
2259 
2260 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2261 /// This function emits a branch and is used at the leaves of an OR or an
2262 /// AND operator tree.
2263 void
2264 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2265                                                   MachineBasicBlock *TBB,
2266                                                   MachineBasicBlock *FBB,
2267                                                   MachineBasicBlock *CurBB,
2268                                                   MachineBasicBlock *SwitchBB,
2269                                                   BranchProbability TProb,
2270                                                   BranchProbability FProb,
2271                                                   bool InvertCond) {
2272   const BasicBlock *BB = CurBB->getBasicBlock();
2273 
2274   // If the leaf of the tree is a comparison, merge the condition into
2275   // the caseblock.
2276   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2277     // The operands of the cmp have to be in this block.  We don't know
2278     // how to export them from some other block.  If this is the first block
2279     // of the sequence, no exporting is needed.
2280     if (CurBB == SwitchBB ||
2281         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2282          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2283       ISD::CondCode Condition;
2284       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2285         ICmpInst::Predicate Pred =
2286             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2287         Condition = getICmpCondCode(Pred);
2288       } else {
2289         const FCmpInst *FC = cast<FCmpInst>(Cond);
2290         FCmpInst::Predicate Pred =
2291             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2292         Condition = getFCmpCondCode(Pred);
2293         if (TM.Options.NoNaNsFPMath)
2294           Condition = getFCmpCodeWithoutNaN(Condition);
2295       }
2296 
2297       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2298                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2299       SL->SwitchCases.push_back(CB);
2300       return;
2301     }
2302   }
2303 
2304   // Create a CaseBlock record representing this branch.
2305   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2306   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2307                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2308   SL->SwitchCases.push_back(CB);
2309 }
2310 
2311 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2312                                                MachineBasicBlock *TBB,
2313                                                MachineBasicBlock *FBB,
2314                                                MachineBasicBlock *CurBB,
2315                                                MachineBasicBlock *SwitchBB,
2316                                                Instruction::BinaryOps Opc,
2317                                                BranchProbability TProb,
2318                                                BranchProbability FProb,
2319                                                bool InvertCond) {
2320   // Skip over not part of the tree and remember to invert op and operands at
2321   // next level.
2322   Value *NotCond;
2323   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2324       InBlock(NotCond, CurBB->getBasicBlock())) {
2325     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2326                          !InvertCond);
2327     return;
2328   }
2329 
2330   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2331   const Value *BOpOp0, *BOpOp1;
2332   // Compute the effective opcode for Cond, taking into account whether it needs
2333   // to be inverted, e.g.
2334   //   and (not (or A, B)), C
2335   // gets lowered as
2336   //   and (and (not A, not B), C)
2337   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2338   if (BOp) {
2339     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2340                ? Instruction::And
2341                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2342                       ? Instruction::Or
2343                       : (Instruction::BinaryOps)0);
2344     if (InvertCond) {
2345       if (BOpc == Instruction::And)
2346         BOpc = Instruction::Or;
2347       else if (BOpc == Instruction::Or)
2348         BOpc = Instruction::And;
2349     }
2350   }
2351 
2352   // If this node is not part of the or/and tree, emit it as a branch.
2353   // Note that all nodes in the tree should have same opcode.
2354   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2355   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2356       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2357       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2358     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2359                                  TProb, FProb, InvertCond);
2360     return;
2361   }
2362 
2363   //  Create TmpBB after CurBB.
2364   MachineFunction::iterator BBI(CurBB);
2365   MachineFunction &MF = DAG.getMachineFunction();
2366   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2367   CurBB->getParent()->insert(++BBI, TmpBB);
2368 
2369   if (Opc == Instruction::Or) {
2370     // Codegen X | Y as:
2371     // BB1:
2372     //   jmp_if_X TBB
2373     //   jmp TmpBB
2374     // TmpBB:
2375     //   jmp_if_Y TBB
2376     //   jmp FBB
2377     //
2378 
2379     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2380     // The requirement is that
2381     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2382     //     = TrueProb for original BB.
2383     // Assuming the original probabilities are A and B, one choice is to set
2384     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2385     // A/(1+B) and 2B/(1+B). This choice assumes that
2386     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2387     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2388     // TmpBB, but the math is more complicated.
2389 
2390     auto NewTrueProb = TProb / 2;
2391     auto NewFalseProb = TProb / 2 + FProb;
2392     // Emit the LHS condition.
2393     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2394                          NewFalseProb, InvertCond);
2395 
2396     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2397     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2398     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2399     // Emit the RHS condition into TmpBB.
2400     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2401                          Probs[1], InvertCond);
2402   } else {
2403     assert(Opc == Instruction::And && "Unknown merge op!");
2404     // Codegen X & Y as:
2405     // BB1:
2406     //   jmp_if_X TmpBB
2407     //   jmp FBB
2408     // TmpBB:
2409     //   jmp_if_Y TBB
2410     //   jmp FBB
2411     //
2412     //  This requires creation of TmpBB after CurBB.
2413 
2414     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2415     // The requirement is that
2416     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2417     //     = FalseProb for original BB.
2418     // Assuming the original probabilities are A and B, one choice is to set
2419     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2420     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2421     // TrueProb for BB1 * FalseProb for TmpBB.
2422 
2423     auto NewTrueProb = TProb + FProb / 2;
2424     auto NewFalseProb = FProb / 2;
2425     // Emit the LHS condition.
2426     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2427                          NewFalseProb, InvertCond);
2428 
2429     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2430     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2431     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2432     // Emit the RHS condition into TmpBB.
2433     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2434                          Probs[1], InvertCond);
2435   }
2436 }
2437 
2438 /// If the set of cases should be emitted as a series of branches, return true.
2439 /// If we should emit this as a bunch of and/or'd together conditions, return
2440 /// false.
2441 bool
2442 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2443   if (Cases.size() != 2) return true;
2444 
2445   // If this is two comparisons of the same values or'd or and'd together, they
2446   // will get folded into a single comparison, so don't emit two blocks.
2447   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2448        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2449       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2450        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2451     return false;
2452   }
2453 
2454   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2455   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2456   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2457       Cases[0].CC == Cases[1].CC &&
2458       isa<Constant>(Cases[0].CmpRHS) &&
2459       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2460     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2461       return false;
2462     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2463       return false;
2464   }
2465 
2466   return true;
2467 }
2468 
2469 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2470   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2471 
2472   // Update machine-CFG edges.
2473   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2474 
2475   if (I.isUnconditional()) {
2476     // Update machine-CFG edges.
2477     BrMBB->addSuccessor(Succ0MBB);
2478 
2479     // If this is not a fall-through branch or optimizations are switched off,
2480     // emit the branch.
2481     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) {
2482       auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2483                             getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2484       setValue(&I, Br);
2485       DAG.setRoot(Br);
2486     }
2487 
2488     return;
2489   }
2490 
2491   // If this condition is one of the special cases we handle, do special stuff
2492   // now.
2493   const Value *CondVal = I.getCondition();
2494   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2495 
2496   // If this is a series of conditions that are or'd or and'd together, emit
2497   // this as a sequence of branches instead of setcc's with and/or operations.
2498   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2499   // unpredictable branches, and vector extracts because those jumps are likely
2500   // expensive for any target), this should improve performance.
2501   // For example, instead of something like:
2502   //     cmp A, B
2503   //     C = seteq
2504   //     cmp D, E
2505   //     F = setle
2506   //     or C, F
2507   //     jnz foo
2508   // Emit:
2509   //     cmp A, B
2510   //     je foo
2511   //     cmp D, E
2512   //     jle foo
2513   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2514   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2515       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2516     Value *Vec;
2517     const Value *BOp0, *BOp1;
2518     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2519     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2520       Opcode = Instruction::And;
2521     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2522       Opcode = Instruction::Or;
2523 
2524     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2525                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2526       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2527                            getEdgeProbability(BrMBB, Succ0MBB),
2528                            getEdgeProbability(BrMBB, Succ1MBB),
2529                            /*InvertCond=*/false);
2530       // If the compares in later blocks need to use values not currently
2531       // exported from this block, export them now.  This block should always
2532       // be the first entry.
2533       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2534 
2535       // Allow some cases to be rejected.
2536       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2537         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2538           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2539           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2540         }
2541 
2542         // Emit the branch for this block.
2543         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2544         SL->SwitchCases.erase(SL->SwitchCases.begin());
2545         return;
2546       }
2547 
2548       // Okay, we decided not to do this, remove any inserted MBB's and clear
2549       // SwitchCases.
2550       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2551         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2552 
2553       SL->SwitchCases.clear();
2554     }
2555   }
2556 
2557   // Create a CaseBlock record representing this branch.
2558   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2559                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2560 
2561   // Use visitSwitchCase to actually insert the fast branch sequence for this
2562   // cond branch.
2563   visitSwitchCase(CB, BrMBB);
2564 }
2565 
2566 /// visitSwitchCase - Emits the necessary code to represent a single node in
2567 /// the binary search tree resulting from lowering a switch instruction.
2568 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2569                                           MachineBasicBlock *SwitchBB) {
2570   SDValue Cond;
2571   SDValue CondLHS = getValue(CB.CmpLHS);
2572   SDLoc dl = CB.DL;
2573 
2574   if (CB.CC == ISD::SETTRUE) {
2575     // Branch or fall through to TrueBB.
2576     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2577     SwitchBB->normalizeSuccProbs();
2578     if (CB.TrueBB != NextBlock(SwitchBB)) {
2579       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2580                               DAG.getBasicBlock(CB.TrueBB)));
2581     }
2582     return;
2583   }
2584 
2585   auto &TLI = DAG.getTargetLoweringInfo();
2586   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2587 
2588   // Build the setcc now.
2589   if (!CB.CmpMHS) {
2590     // Fold "(X == true)" to X and "(X == false)" to !X to
2591     // handle common cases produced by branch lowering.
2592     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2593         CB.CC == ISD::SETEQ)
2594       Cond = CondLHS;
2595     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2596              CB.CC == ISD::SETEQ) {
2597       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2598       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2599     } else {
2600       SDValue CondRHS = getValue(CB.CmpRHS);
2601 
2602       // If a pointer's DAG type is larger than its memory type then the DAG
2603       // values are zero-extended. This breaks signed comparisons so truncate
2604       // back to the underlying type before doing the compare.
2605       if (CondLHS.getValueType() != MemVT) {
2606         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2607         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2608       }
2609       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2610     }
2611   } else {
2612     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2613 
2614     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2615     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2616 
2617     SDValue CmpOp = getValue(CB.CmpMHS);
2618     EVT VT = CmpOp.getValueType();
2619 
2620     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2621       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2622                           ISD::SETLE);
2623     } else {
2624       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2625                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2626       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2627                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2628     }
2629   }
2630 
2631   // Update successor info
2632   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2633   // TrueBB and FalseBB are always different unless the incoming IR is
2634   // degenerate. This only happens when running llc on weird IR.
2635   if (CB.TrueBB != CB.FalseBB)
2636     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2637   SwitchBB->normalizeSuccProbs();
2638 
2639   // If the lhs block is the next block, invert the condition so that we can
2640   // fall through to the lhs instead of the rhs block.
2641   if (CB.TrueBB == NextBlock(SwitchBB)) {
2642     std::swap(CB.TrueBB, CB.FalseBB);
2643     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2644     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2645   }
2646 
2647   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2648                                MVT::Other, getControlRoot(), Cond,
2649                                DAG.getBasicBlock(CB.TrueBB));
2650 
2651   setValue(CurInst, BrCond);
2652 
2653   // Insert the false branch. Do this even if it's a fall through branch,
2654   // this makes it easier to do DAG optimizations which require inverting
2655   // the branch condition.
2656   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2657                        DAG.getBasicBlock(CB.FalseBB));
2658 
2659   DAG.setRoot(BrCond);
2660 }
2661 
2662 /// visitJumpTable - Emit JumpTable node in the current MBB
2663 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2664   // Emit the code for the jump table
2665   assert(JT.Reg != -1U && "Should lower JT Header first!");
2666   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2667   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2668                                      JT.Reg, PTy);
2669   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2670   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2671                                     MVT::Other, Index.getValue(1),
2672                                     Table, Index);
2673   DAG.setRoot(BrJumpTable);
2674 }
2675 
2676 /// visitJumpTableHeader - This function emits necessary code to produce index
2677 /// in the JumpTable from switch case.
2678 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2679                                                JumpTableHeader &JTH,
2680                                                MachineBasicBlock *SwitchBB) {
2681   SDLoc dl = getCurSDLoc();
2682 
2683   // Subtract the lowest switch case value from the value being switched on.
2684   SDValue SwitchOp = getValue(JTH.SValue);
2685   EVT VT = SwitchOp.getValueType();
2686   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2687                             DAG.getConstant(JTH.First, dl, VT));
2688 
2689   // The SDNode we just created, which holds the value being switched on minus
2690   // the smallest case value, needs to be copied to a virtual register so it
2691   // can be used as an index into the jump table in a subsequent basic block.
2692   // This value may be smaller or larger than the target's pointer type, and
2693   // therefore require extension or truncating.
2694   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2695   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2696 
2697   unsigned JumpTableReg =
2698       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2699   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2700                                     JumpTableReg, SwitchOp);
2701   JT.Reg = JumpTableReg;
2702 
2703   if (!JTH.FallthroughUnreachable) {
2704     // Emit the range check for the jump table, and branch to the default block
2705     // for the switch statement if the value being switched on exceeds the
2706     // largest case in the switch.
2707     SDValue CMP = DAG.getSetCC(
2708         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2709                                    Sub.getValueType()),
2710         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2711 
2712     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2713                                  MVT::Other, CopyTo, CMP,
2714                                  DAG.getBasicBlock(JT.Default));
2715 
2716     // Avoid emitting unnecessary branches to the next block.
2717     if (JT.MBB != NextBlock(SwitchBB))
2718       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2719                            DAG.getBasicBlock(JT.MBB));
2720 
2721     DAG.setRoot(BrCond);
2722   } else {
2723     // Avoid emitting unnecessary branches to the next block.
2724     if (JT.MBB != NextBlock(SwitchBB))
2725       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2726                               DAG.getBasicBlock(JT.MBB)));
2727     else
2728       DAG.setRoot(CopyTo);
2729   }
2730 }
2731 
2732 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2733 /// variable if there exists one.
2734 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2735                                  SDValue &Chain) {
2736   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2737   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2738   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2739   MachineFunction &MF = DAG.getMachineFunction();
2740   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2741   MachineSDNode *Node =
2742       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2743   if (Global) {
2744     MachinePointerInfo MPInfo(Global);
2745     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2746                  MachineMemOperand::MODereferenceable;
2747     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2748         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2749     DAG.setNodeMemRefs(Node, {MemRef});
2750   }
2751   if (PtrTy != PtrMemTy)
2752     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2753   return SDValue(Node, 0);
2754 }
2755 
2756 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2757 /// tail spliced into a stack protector check success bb.
2758 ///
2759 /// For a high level explanation of how this fits into the stack protector
2760 /// generation see the comment on the declaration of class
2761 /// StackProtectorDescriptor.
2762 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2763                                                   MachineBasicBlock *ParentBB) {
2764 
2765   // First create the loads to the guard/stack slot for the comparison.
2766   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2767   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2768   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2769 
2770   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2771   int FI = MFI.getStackProtectorIndex();
2772 
2773   SDValue Guard;
2774   SDLoc dl = getCurSDLoc();
2775   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2776   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2777   Align Align =
2778       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2779 
2780   // Generate code to load the content of the guard slot.
2781   SDValue GuardVal = DAG.getLoad(
2782       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2783       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2784       MachineMemOperand::MOVolatile);
2785 
2786   if (TLI.useStackGuardXorFP())
2787     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2788 
2789   // Retrieve guard check function, nullptr if instrumentation is inlined.
2790   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2791     // The target provides a guard check function to validate the guard value.
2792     // Generate a call to that function with the content of the guard slot as
2793     // argument.
2794     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2795     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2796 
2797     TargetLowering::ArgListTy Args;
2798     TargetLowering::ArgListEntry Entry;
2799     Entry.Node = GuardVal;
2800     Entry.Ty = FnTy->getParamType(0);
2801     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2802       Entry.IsInReg = true;
2803     Args.push_back(Entry);
2804 
2805     TargetLowering::CallLoweringInfo CLI(DAG);
2806     CLI.setDebugLoc(getCurSDLoc())
2807         .setChain(DAG.getEntryNode())
2808         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2809                    getValue(GuardCheckFn), std::move(Args));
2810 
2811     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2812     DAG.setRoot(Result.second);
2813     return;
2814   }
2815 
2816   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2817   // Otherwise, emit a volatile load to retrieve the stack guard value.
2818   SDValue Chain = DAG.getEntryNode();
2819   if (TLI.useLoadStackGuardNode()) {
2820     Guard = getLoadStackGuard(DAG, dl, Chain);
2821   } else {
2822     const Value *IRGuard = TLI.getSDagStackGuard(M);
2823     SDValue GuardPtr = getValue(IRGuard);
2824 
2825     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2826                         MachinePointerInfo(IRGuard, 0), Align,
2827                         MachineMemOperand::MOVolatile);
2828   }
2829 
2830   // Perform the comparison via a getsetcc.
2831   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2832                                                         *DAG.getContext(),
2833                                                         Guard.getValueType()),
2834                              Guard, GuardVal, ISD::SETNE);
2835 
2836   // If the guard/stackslot do not equal, branch to failure MBB.
2837   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2838                                MVT::Other, GuardVal.getOperand(0),
2839                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2840   // Otherwise branch to success MBB.
2841   SDValue Br = DAG.getNode(ISD::BR, dl,
2842                            MVT::Other, BrCond,
2843                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2844 
2845   DAG.setRoot(Br);
2846 }
2847 
2848 /// Codegen the failure basic block for a stack protector check.
2849 ///
2850 /// A failure stack protector machine basic block consists simply of a call to
2851 /// __stack_chk_fail().
2852 ///
2853 /// For a high level explanation of how this fits into the stack protector
2854 /// generation see the comment on the declaration of class
2855 /// StackProtectorDescriptor.
2856 void
2857 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2858   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2859   TargetLowering::MakeLibCallOptions CallOptions;
2860   CallOptions.setDiscardResult(true);
2861   SDValue Chain =
2862       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2863                       std::nullopt, CallOptions, getCurSDLoc())
2864           .second;
2865   // On PS4/PS5, the "return address" must still be within the calling
2866   // function, even if it's at the very end, so emit an explicit TRAP here.
2867   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2868   if (TM.getTargetTriple().isPS())
2869     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2870   // WebAssembly needs an unreachable instruction after a non-returning call,
2871   // because the function return type can be different from __stack_chk_fail's
2872   // return type (void).
2873   if (TM.getTargetTriple().isWasm())
2874     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2875 
2876   DAG.setRoot(Chain);
2877 }
2878 
2879 /// visitBitTestHeader - This function emits necessary code to produce value
2880 /// suitable for "bit tests"
2881 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2882                                              MachineBasicBlock *SwitchBB) {
2883   SDLoc dl = getCurSDLoc();
2884 
2885   // Subtract the minimum value.
2886   SDValue SwitchOp = getValue(B.SValue);
2887   EVT VT = SwitchOp.getValueType();
2888   SDValue RangeSub =
2889       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2890 
2891   // Determine the type of the test operands.
2892   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2893   bool UsePtrType = false;
2894   if (!TLI.isTypeLegal(VT)) {
2895     UsePtrType = true;
2896   } else {
2897     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2898       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2899         // Switch table case range are encoded into series of masks.
2900         // Just use pointer type, it's guaranteed to fit.
2901         UsePtrType = true;
2902         break;
2903       }
2904   }
2905   SDValue Sub = RangeSub;
2906   if (UsePtrType) {
2907     VT = TLI.getPointerTy(DAG.getDataLayout());
2908     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2909   }
2910 
2911   B.RegVT = VT.getSimpleVT();
2912   B.Reg = FuncInfo.CreateReg(B.RegVT);
2913   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2914 
2915   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2916 
2917   if (!B.FallthroughUnreachable)
2918     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2919   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2920   SwitchBB->normalizeSuccProbs();
2921 
2922   SDValue Root = CopyTo;
2923   if (!B.FallthroughUnreachable) {
2924     // Conditional branch to the default block.
2925     SDValue RangeCmp = DAG.getSetCC(dl,
2926         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2927                                RangeSub.getValueType()),
2928         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2929         ISD::SETUGT);
2930 
2931     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2932                        DAG.getBasicBlock(B.Default));
2933   }
2934 
2935   // Avoid emitting unnecessary branches to the next block.
2936   if (MBB != NextBlock(SwitchBB))
2937     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2938 
2939   DAG.setRoot(Root);
2940 }
2941 
2942 /// visitBitTestCase - this function produces one "bit test"
2943 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2944                                            MachineBasicBlock* NextMBB,
2945                                            BranchProbability BranchProbToNext,
2946                                            unsigned Reg,
2947                                            BitTestCase &B,
2948                                            MachineBasicBlock *SwitchBB) {
2949   SDLoc dl = getCurSDLoc();
2950   MVT VT = BB.RegVT;
2951   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2952   SDValue Cmp;
2953   unsigned PopCount = llvm::popcount(B.Mask);
2954   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2955   if (PopCount == 1) {
2956     // Testing for a single bit; just compare the shift count with what it
2957     // would need to be to shift a 1 bit in that position.
2958     Cmp = DAG.getSetCC(
2959         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2960         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
2961         ISD::SETEQ);
2962   } else if (PopCount == BB.Range) {
2963     // There is only one zero bit in the range, test for it directly.
2964     Cmp = DAG.getSetCC(
2965         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2966         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
2967   } else {
2968     // Make desired shift
2969     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2970                                     DAG.getConstant(1, dl, VT), ShiftOp);
2971 
2972     // Emit bit tests and jumps
2973     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2974                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2975     Cmp = DAG.getSetCC(
2976         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2977         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2978   }
2979 
2980   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2981   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2982   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2983   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2984   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2985   // one as they are relative probabilities (and thus work more like weights),
2986   // and hence we need to normalize them to let the sum of them become one.
2987   SwitchBB->normalizeSuccProbs();
2988 
2989   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2990                               MVT::Other, getControlRoot(),
2991                               Cmp, DAG.getBasicBlock(B.TargetBB));
2992 
2993   // Avoid emitting unnecessary branches to the next block.
2994   if (NextMBB != NextBlock(SwitchBB))
2995     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2996                         DAG.getBasicBlock(NextMBB));
2997 
2998   DAG.setRoot(BrAnd);
2999 }
3000 
3001 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3002   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3003 
3004   // Retrieve successors. Look through artificial IR level blocks like
3005   // catchswitch for successors.
3006   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
3007   const BasicBlock *EHPadBB = I.getSuccessor(1);
3008   MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB];
3009 
3010   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3011   // have to do anything here to lower funclet bundles.
3012   assert(!I.hasOperandBundlesOtherThan(
3013              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3014               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3015               LLVMContext::OB_cfguardtarget,
3016               LLVMContext::OB_clang_arc_attachedcall}) &&
3017          "Cannot lower invokes with arbitrary operand bundles yet!");
3018 
3019   const Value *Callee(I.getCalledOperand());
3020   const Function *Fn = dyn_cast<Function>(Callee);
3021   if (isa<InlineAsm>(Callee))
3022     visitInlineAsm(I, EHPadBB);
3023   else if (Fn && Fn->isIntrinsic()) {
3024     switch (Fn->getIntrinsicID()) {
3025     default:
3026       llvm_unreachable("Cannot invoke this intrinsic");
3027     case Intrinsic::donothing:
3028       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3029     case Intrinsic::seh_try_begin:
3030     case Intrinsic::seh_scope_begin:
3031     case Intrinsic::seh_try_end:
3032     case Intrinsic::seh_scope_end:
3033       if (EHPadMBB)
3034           // a block referenced by EH table
3035           // so dtor-funclet not removed by opts
3036           EHPadMBB->setMachineBlockAddressTaken();
3037       break;
3038     case Intrinsic::experimental_patchpoint_void:
3039     case Intrinsic::experimental_patchpoint_i64:
3040       visitPatchpoint(I, EHPadBB);
3041       break;
3042     case Intrinsic::experimental_gc_statepoint:
3043       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3044       break;
3045     case Intrinsic::wasm_rethrow: {
3046       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3047       // special because it can be invoked, so we manually lower it to a DAG
3048       // node here.
3049       SmallVector<SDValue, 8> Ops;
3050       Ops.push_back(getRoot()); // inchain
3051       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3052       Ops.push_back(
3053           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3054                                 TLI.getPointerTy(DAG.getDataLayout())));
3055       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3056       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3057       break;
3058     }
3059     }
3060   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3061     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3062     // Eventually we will support lowering the @llvm.experimental.deoptimize
3063     // intrinsic, and right now there are no plans to support other intrinsics
3064     // with deopt state.
3065     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3066   } else {
3067     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3068   }
3069 
3070   // If the value of the invoke is used outside of its defining block, make it
3071   // available as a virtual register.
3072   // We already took care of the exported value for the statepoint instruction
3073   // during call to the LowerStatepoint.
3074   if (!isa<GCStatepointInst>(I)) {
3075     CopyToExportRegsIfNeeded(&I);
3076   }
3077 
3078   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3079   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3080   BranchProbability EHPadBBProb =
3081       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3082           : BranchProbability::getZero();
3083   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3084 
3085   // Update successor info.
3086   addSuccessorWithProb(InvokeMBB, Return);
3087   for (auto &UnwindDest : UnwindDests) {
3088     UnwindDest.first->setIsEHPad();
3089     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3090   }
3091   InvokeMBB->normalizeSuccProbs();
3092 
3093   // Drop into normal successor.
3094   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3095                           DAG.getBasicBlock(Return)));
3096 }
3097 
3098 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3099   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3100 
3101   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3102   // have to do anything here to lower funclet bundles.
3103   assert(!I.hasOperandBundlesOtherThan(
3104              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3105          "Cannot lower callbrs with arbitrary operand bundles yet!");
3106 
3107   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3108   visitInlineAsm(I);
3109   CopyToExportRegsIfNeeded(&I);
3110 
3111   // Retrieve successors.
3112   SmallPtrSet<BasicBlock *, 8> Dests;
3113   Dests.insert(I.getDefaultDest());
3114   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3115 
3116   // Update successor info.
3117   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3118   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3119     BasicBlock *Dest = I.getIndirectDest(i);
3120     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3121     Target->setIsInlineAsmBrIndirectTarget();
3122     Target->setMachineBlockAddressTaken();
3123     Target->setLabelMustBeEmitted();
3124     // Don't add duplicate machine successors.
3125     if (Dests.insert(Dest).second)
3126       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3127   }
3128   CallBrMBB->normalizeSuccProbs();
3129 
3130   // Drop into default successor.
3131   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3132                           MVT::Other, getControlRoot(),
3133                           DAG.getBasicBlock(Return)));
3134 }
3135 
3136 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3137   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3138 }
3139 
3140 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3141   assert(FuncInfo.MBB->isEHPad() &&
3142          "Call to landingpad not in landing pad!");
3143 
3144   // If there aren't registers to copy the values into (e.g., during SjLj
3145   // exceptions), then don't bother to create these DAG nodes.
3146   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3147   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3148   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3149       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3150     return;
3151 
3152   // If landingpad's return type is token type, we don't create DAG nodes
3153   // for its exception pointer and selector value. The extraction of exception
3154   // pointer or selector value from token type landingpads is not currently
3155   // supported.
3156   if (LP.getType()->isTokenTy())
3157     return;
3158 
3159   SmallVector<EVT, 2> ValueVTs;
3160   SDLoc dl = getCurSDLoc();
3161   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3162   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3163 
3164   // Get the two live-in registers as SDValues. The physregs have already been
3165   // copied into virtual registers.
3166   SDValue Ops[2];
3167   if (FuncInfo.ExceptionPointerVirtReg) {
3168     Ops[0] = DAG.getZExtOrTrunc(
3169         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3170                            FuncInfo.ExceptionPointerVirtReg,
3171                            TLI.getPointerTy(DAG.getDataLayout())),
3172         dl, ValueVTs[0]);
3173   } else {
3174     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3175   }
3176   Ops[1] = DAG.getZExtOrTrunc(
3177       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3178                          FuncInfo.ExceptionSelectorVirtReg,
3179                          TLI.getPointerTy(DAG.getDataLayout())),
3180       dl, ValueVTs[1]);
3181 
3182   // Merge into one.
3183   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3184                             DAG.getVTList(ValueVTs), Ops);
3185   setValue(&LP, Res);
3186 }
3187 
3188 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3189                                            MachineBasicBlock *Last) {
3190   // Update JTCases.
3191   for (JumpTableBlock &JTB : SL->JTCases)
3192     if (JTB.first.HeaderBB == First)
3193       JTB.first.HeaderBB = Last;
3194 
3195   // Update BitTestCases.
3196   for (BitTestBlock &BTB : SL->BitTestCases)
3197     if (BTB.Parent == First)
3198       BTB.Parent = Last;
3199 }
3200 
3201 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3202   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3203 
3204   // Update machine-CFG edges with unique successors.
3205   SmallSet<BasicBlock*, 32> Done;
3206   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3207     BasicBlock *BB = I.getSuccessor(i);
3208     bool Inserted = Done.insert(BB).second;
3209     if (!Inserted)
3210         continue;
3211 
3212     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3213     addSuccessorWithProb(IndirectBrMBB, Succ);
3214   }
3215   IndirectBrMBB->normalizeSuccProbs();
3216 
3217   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3218                           MVT::Other, getControlRoot(),
3219                           getValue(I.getAddress())));
3220 }
3221 
3222 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3223   if (!DAG.getTarget().Options.TrapUnreachable)
3224     return;
3225 
3226   // We may be able to ignore unreachable behind a noreturn call.
3227   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3228     const BasicBlock &BB = *I.getParent();
3229     if (&I != &BB.front()) {
3230       BasicBlock::const_iterator PredI =
3231         std::prev(BasicBlock::const_iterator(&I));
3232       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3233         if (Call->doesNotReturn())
3234           return;
3235       }
3236     }
3237   }
3238 
3239   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3240 }
3241 
3242 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3243   SDNodeFlags Flags;
3244   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3245     Flags.copyFMF(*FPOp);
3246 
3247   SDValue Op = getValue(I.getOperand(0));
3248   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3249                                     Op, Flags);
3250   setValue(&I, UnNodeValue);
3251 }
3252 
3253 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3254   SDNodeFlags Flags;
3255   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3256     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3257     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3258   }
3259   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3260     Flags.setExact(ExactOp->isExact());
3261   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3262     Flags.copyFMF(*FPOp);
3263 
3264   SDValue Op1 = getValue(I.getOperand(0));
3265   SDValue Op2 = getValue(I.getOperand(1));
3266   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3267                                      Op1, Op2, Flags);
3268   setValue(&I, BinNodeValue);
3269 }
3270 
3271 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3272   SDValue Op1 = getValue(I.getOperand(0));
3273   SDValue Op2 = getValue(I.getOperand(1));
3274 
3275   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3276       Op1.getValueType(), DAG.getDataLayout());
3277 
3278   // Coerce the shift amount to the right type if we can. This exposes the
3279   // truncate or zext to optimization early.
3280   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3281     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3282            "Unexpected shift type");
3283     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3284   }
3285 
3286   bool nuw = false;
3287   bool nsw = false;
3288   bool exact = false;
3289 
3290   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3291 
3292     if (const OverflowingBinaryOperator *OFBinOp =
3293             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3294       nuw = OFBinOp->hasNoUnsignedWrap();
3295       nsw = OFBinOp->hasNoSignedWrap();
3296     }
3297     if (const PossiblyExactOperator *ExactOp =
3298             dyn_cast<const PossiblyExactOperator>(&I))
3299       exact = ExactOp->isExact();
3300   }
3301   SDNodeFlags Flags;
3302   Flags.setExact(exact);
3303   Flags.setNoSignedWrap(nsw);
3304   Flags.setNoUnsignedWrap(nuw);
3305   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3306                             Flags);
3307   setValue(&I, Res);
3308 }
3309 
3310 void SelectionDAGBuilder::visitSDiv(const User &I) {
3311   SDValue Op1 = getValue(I.getOperand(0));
3312   SDValue Op2 = getValue(I.getOperand(1));
3313 
3314   SDNodeFlags Flags;
3315   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3316                  cast<PossiblyExactOperator>(&I)->isExact());
3317   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3318                            Op2, Flags));
3319 }
3320 
3321 void SelectionDAGBuilder::visitICmp(const User &I) {
3322   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3323   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3324     predicate = IC->getPredicate();
3325   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3326     predicate = ICmpInst::Predicate(IC->getPredicate());
3327   SDValue Op1 = getValue(I.getOperand(0));
3328   SDValue Op2 = getValue(I.getOperand(1));
3329   ISD::CondCode Opcode = getICmpCondCode(predicate);
3330 
3331   auto &TLI = DAG.getTargetLoweringInfo();
3332   EVT MemVT =
3333       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3334 
3335   // If a pointer's DAG type is larger than its memory type then the DAG values
3336   // are zero-extended. This breaks signed comparisons so truncate back to the
3337   // underlying type before doing the compare.
3338   if (Op1.getValueType() != MemVT) {
3339     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3340     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3341   }
3342 
3343   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3344                                                         I.getType());
3345   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3346 }
3347 
3348 void SelectionDAGBuilder::visitFCmp(const User &I) {
3349   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3350   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3351     predicate = FC->getPredicate();
3352   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3353     predicate = FCmpInst::Predicate(FC->getPredicate());
3354   SDValue Op1 = getValue(I.getOperand(0));
3355   SDValue Op2 = getValue(I.getOperand(1));
3356 
3357   ISD::CondCode Condition = getFCmpCondCode(predicate);
3358   auto *FPMO = cast<FPMathOperator>(&I);
3359   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3360     Condition = getFCmpCodeWithoutNaN(Condition);
3361 
3362   SDNodeFlags Flags;
3363   Flags.copyFMF(*FPMO);
3364   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3365 
3366   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3367                                                         I.getType());
3368   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3369 }
3370 
3371 // Check if the condition of the select has one use or two users that are both
3372 // selects with the same condition.
3373 static bool hasOnlySelectUsers(const Value *Cond) {
3374   return llvm::all_of(Cond->users(), [](const Value *V) {
3375     return isa<SelectInst>(V);
3376   });
3377 }
3378 
3379 void SelectionDAGBuilder::visitSelect(const User &I) {
3380   SmallVector<EVT, 4> ValueVTs;
3381   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3382                   ValueVTs);
3383   unsigned NumValues = ValueVTs.size();
3384   if (NumValues == 0) return;
3385 
3386   SmallVector<SDValue, 4> Values(NumValues);
3387   SDValue Cond     = getValue(I.getOperand(0));
3388   SDValue LHSVal   = getValue(I.getOperand(1));
3389   SDValue RHSVal   = getValue(I.getOperand(2));
3390   SmallVector<SDValue, 1> BaseOps(1, Cond);
3391   ISD::NodeType OpCode =
3392       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3393 
3394   bool IsUnaryAbs = false;
3395   bool Negate = false;
3396 
3397   SDNodeFlags Flags;
3398   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3399     Flags.copyFMF(*FPOp);
3400 
3401   Flags.setUnpredictable(
3402       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3403 
3404   // Min/max matching is only viable if all output VTs are the same.
3405   if (all_equal(ValueVTs)) {
3406     EVT VT = ValueVTs[0];
3407     LLVMContext &Ctx = *DAG.getContext();
3408     auto &TLI = DAG.getTargetLoweringInfo();
3409 
3410     // We care about the legality of the operation after it has been type
3411     // legalized.
3412     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3413       VT = TLI.getTypeToTransformTo(Ctx, VT);
3414 
3415     // If the vselect is legal, assume we want to leave this as a vector setcc +
3416     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3417     // min/max is legal on the scalar type.
3418     bool UseScalarMinMax = VT.isVector() &&
3419       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3420 
3421     // ValueTracking's select pattern matching does not account for -0.0,
3422     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3423     // -0.0 is less than +0.0.
3424     Value *LHS, *RHS;
3425     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3426     ISD::NodeType Opc = ISD::DELETED_NODE;
3427     switch (SPR.Flavor) {
3428     case SPF_UMAX:    Opc = ISD::UMAX; break;
3429     case SPF_UMIN:    Opc = ISD::UMIN; break;
3430     case SPF_SMAX:    Opc = ISD::SMAX; break;
3431     case SPF_SMIN:    Opc = ISD::SMIN; break;
3432     case SPF_FMINNUM:
3433       switch (SPR.NaNBehavior) {
3434       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3435       case SPNB_RETURNS_NAN: break;
3436       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3437       case SPNB_RETURNS_ANY:
3438         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3439             (UseScalarMinMax &&
3440              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3441           Opc = ISD::FMINNUM;
3442         break;
3443       }
3444       break;
3445     case SPF_FMAXNUM:
3446       switch (SPR.NaNBehavior) {
3447       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3448       case SPNB_RETURNS_NAN: break;
3449       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3450       case SPNB_RETURNS_ANY:
3451         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3452             (UseScalarMinMax &&
3453              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3454           Opc = ISD::FMAXNUM;
3455         break;
3456       }
3457       break;
3458     case SPF_NABS:
3459       Negate = true;
3460       [[fallthrough]];
3461     case SPF_ABS:
3462       IsUnaryAbs = true;
3463       Opc = ISD::ABS;
3464       break;
3465     default: break;
3466     }
3467 
3468     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3469         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3470          (UseScalarMinMax &&
3471           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3472         // If the underlying comparison instruction is used by any other
3473         // instruction, the consumed instructions won't be destroyed, so it is
3474         // not profitable to convert to a min/max.
3475         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3476       OpCode = Opc;
3477       LHSVal = getValue(LHS);
3478       RHSVal = getValue(RHS);
3479       BaseOps.clear();
3480     }
3481 
3482     if (IsUnaryAbs) {
3483       OpCode = Opc;
3484       LHSVal = getValue(LHS);
3485       BaseOps.clear();
3486     }
3487   }
3488 
3489   if (IsUnaryAbs) {
3490     for (unsigned i = 0; i != NumValues; ++i) {
3491       SDLoc dl = getCurSDLoc();
3492       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3493       Values[i] =
3494           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3495       if (Negate)
3496         Values[i] = DAG.getNegative(Values[i], dl, VT);
3497     }
3498   } else {
3499     for (unsigned i = 0; i != NumValues; ++i) {
3500       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3501       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3502       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3503       Values[i] = DAG.getNode(
3504           OpCode, getCurSDLoc(),
3505           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3506     }
3507   }
3508 
3509   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3510                            DAG.getVTList(ValueVTs), Values));
3511 }
3512 
3513 void SelectionDAGBuilder::visitTrunc(const User &I) {
3514   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3515   SDValue N = getValue(I.getOperand(0));
3516   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3517                                                         I.getType());
3518   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3519 }
3520 
3521 void SelectionDAGBuilder::visitZExt(const User &I) {
3522   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3523   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3524   SDValue N = getValue(I.getOperand(0));
3525   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3526                                                         I.getType());
3527   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3528 }
3529 
3530 void SelectionDAGBuilder::visitSExt(const User &I) {
3531   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3532   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3533   SDValue N = getValue(I.getOperand(0));
3534   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3535                                                         I.getType());
3536   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3537 }
3538 
3539 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3540   // FPTrunc is never a no-op cast, no need to check
3541   SDValue N = getValue(I.getOperand(0));
3542   SDLoc dl = getCurSDLoc();
3543   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3544   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3545   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3546                            DAG.getTargetConstant(
3547                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3548 }
3549 
3550 void SelectionDAGBuilder::visitFPExt(const User &I) {
3551   // FPExt is never a no-op cast, no need to check
3552   SDValue N = getValue(I.getOperand(0));
3553   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3554                                                         I.getType());
3555   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3556 }
3557 
3558 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3559   // FPToUI is never a no-op cast, no need to check
3560   SDValue N = getValue(I.getOperand(0));
3561   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3562                                                         I.getType());
3563   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3564 }
3565 
3566 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3567   // FPToSI is never a no-op cast, no need to check
3568   SDValue N = getValue(I.getOperand(0));
3569   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3570                                                         I.getType());
3571   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3572 }
3573 
3574 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3575   // UIToFP is never a no-op cast, no need to check
3576   SDValue N = getValue(I.getOperand(0));
3577   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3578                                                         I.getType());
3579   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3580 }
3581 
3582 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3583   // SIToFP is never a no-op cast, no need to check
3584   SDValue N = getValue(I.getOperand(0));
3585   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3586                                                         I.getType());
3587   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3588 }
3589 
3590 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3591   // What to do depends on the size of the integer and the size of the pointer.
3592   // We can either truncate, zero extend, or no-op, accordingly.
3593   SDValue N = getValue(I.getOperand(0));
3594   auto &TLI = DAG.getTargetLoweringInfo();
3595   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3596                                                         I.getType());
3597   EVT PtrMemVT =
3598       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3599   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3600   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3601   setValue(&I, N);
3602 }
3603 
3604 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3605   // What to do depends on the size of the integer and the size of the pointer.
3606   // We can either truncate, zero extend, or no-op, accordingly.
3607   SDValue N = getValue(I.getOperand(0));
3608   auto &TLI = DAG.getTargetLoweringInfo();
3609   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3610   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3611   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3612   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3613   setValue(&I, N);
3614 }
3615 
3616 void SelectionDAGBuilder::visitBitCast(const User &I) {
3617   SDValue N = getValue(I.getOperand(0));
3618   SDLoc dl = getCurSDLoc();
3619   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3620                                                         I.getType());
3621 
3622   // BitCast assures us that source and destination are the same size so this is
3623   // either a BITCAST or a no-op.
3624   if (DestVT != N.getValueType())
3625     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3626                              DestVT, N)); // convert types.
3627   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3628   // might fold any kind of constant expression to an integer constant and that
3629   // is not what we are looking for. Only recognize a bitcast of a genuine
3630   // constant integer as an opaque constant.
3631   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3632     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3633                                  /*isOpaque*/true));
3634   else
3635     setValue(&I, N);            // noop cast.
3636 }
3637 
3638 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3639   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3640   const Value *SV = I.getOperand(0);
3641   SDValue N = getValue(SV);
3642   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3643 
3644   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3645   unsigned DestAS = I.getType()->getPointerAddressSpace();
3646 
3647   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3648     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3649 
3650   setValue(&I, N);
3651 }
3652 
3653 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3654   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3655   SDValue InVec = getValue(I.getOperand(0));
3656   SDValue InVal = getValue(I.getOperand(1));
3657   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3658                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3659   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3660                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3661                            InVec, InVal, InIdx));
3662 }
3663 
3664 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3665   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3666   SDValue InVec = getValue(I.getOperand(0));
3667   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3668                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3669   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3670                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3671                            InVec, InIdx));
3672 }
3673 
3674 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3675   SDValue Src1 = getValue(I.getOperand(0));
3676   SDValue Src2 = getValue(I.getOperand(1));
3677   ArrayRef<int> Mask;
3678   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3679     Mask = SVI->getShuffleMask();
3680   else
3681     Mask = cast<ConstantExpr>(I).getShuffleMask();
3682   SDLoc DL = getCurSDLoc();
3683   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3684   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3685   EVT SrcVT = Src1.getValueType();
3686 
3687   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3688       VT.isScalableVector()) {
3689     // Canonical splat form of first element of first input vector.
3690     SDValue FirstElt =
3691         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3692                     DAG.getVectorIdxConstant(0, DL));
3693     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3694     return;
3695   }
3696 
3697   // For now, we only handle splats for scalable vectors.
3698   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3699   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3700   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3701 
3702   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3703   unsigned MaskNumElts = Mask.size();
3704 
3705   if (SrcNumElts == MaskNumElts) {
3706     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3707     return;
3708   }
3709 
3710   // Normalize the shuffle vector since mask and vector length don't match.
3711   if (SrcNumElts < MaskNumElts) {
3712     // Mask is longer than the source vectors. We can use concatenate vector to
3713     // make the mask and vectors lengths match.
3714 
3715     if (MaskNumElts % SrcNumElts == 0) {
3716       // Mask length is a multiple of the source vector length.
3717       // Check if the shuffle is some kind of concatenation of the input
3718       // vectors.
3719       unsigned NumConcat = MaskNumElts / SrcNumElts;
3720       bool IsConcat = true;
3721       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3722       for (unsigned i = 0; i != MaskNumElts; ++i) {
3723         int Idx = Mask[i];
3724         if (Idx < 0)
3725           continue;
3726         // Ensure the indices in each SrcVT sized piece are sequential and that
3727         // the same source is used for the whole piece.
3728         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3729             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3730              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3731           IsConcat = false;
3732           break;
3733         }
3734         // Remember which source this index came from.
3735         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3736       }
3737 
3738       // The shuffle is concatenating multiple vectors together. Just emit
3739       // a CONCAT_VECTORS operation.
3740       if (IsConcat) {
3741         SmallVector<SDValue, 8> ConcatOps;
3742         for (auto Src : ConcatSrcs) {
3743           if (Src < 0)
3744             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3745           else if (Src == 0)
3746             ConcatOps.push_back(Src1);
3747           else
3748             ConcatOps.push_back(Src2);
3749         }
3750         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3751         return;
3752       }
3753     }
3754 
3755     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3756     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3757     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3758                                     PaddedMaskNumElts);
3759 
3760     // Pad both vectors with undefs to make them the same length as the mask.
3761     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3762 
3763     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3764     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3765     MOps1[0] = Src1;
3766     MOps2[0] = Src2;
3767 
3768     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3769     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3770 
3771     // Readjust mask for new input vector length.
3772     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3773     for (unsigned i = 0; i != MaskNumElts; ++i) {
3774       int Idx = Mask[i];
3775       if (Idx >= (int)SrcNumElts)
3776         Idx -= SrcNumElts - PaddedMaskNumElts;
3777       MappedOps[i] = Idx;
3778     }
3779 
3780     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3781 
3782     // If the concatenated vector was padded, extract a subvector with the
3783     // correct number of elements.
3784     if (MaskNumElts != PaddedMaskNumElts)
3785       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3786                            DAG.getVectorIdxConstant(0, DL));
3787 
3788     setValue(&I, Result);
3789     return;
3790   }
3791 
3792   if (SrcNumElts > MaskNumElts) {
3793     // Analyze the access pattern of the vector to see if we can extract
3794     // two subvectors and do the shuffle.
3795     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3796     bool CanExtract = true;
3797     for (int Idx : Mask) {
3798       unsigned Input = 0;
3799       if (Idx < 0)
3800         continue;
3801 
3802       if (Idx >= (int)SrcNumElts) {
3803         Input = 1;
3804         Idx -= SrcNumElts;
3805       }
3806 
3807       // If all the indices come from the same MaskNumElts sized portion of
3808       // the sources we can use extract. Also make sure the extract wouldn't
3809       // extract past the end of the source.
3810       int NewStartIdx = alignDown(Idx, MaskNumElts);
3811       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3812           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3813         CanExtract = false;
3814       // Make sure we always update StartIdx as we use it to track if all
3815       // elements are undef.
3816       StartIdx[Input] = NewStartIdx;
3817     }
3818 
3819     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3820       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3821       return;
3822     }
3823     if (CanExtract) {
3824       // Extract appropriate subvector and generate a vector shuffle
3825       for (unsigned Input = 0; Input < 2; ++Input) {
3826         SDValue &Src = Input == 0 ? Src1 : Src2;
3827         if (StartIdx[Input] < 0)
3828           Src = DAG.getUNDEF(VT);
3829         else {
3830           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3831                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3832         }
3833       }
3834 
3835       // Calculate new mask.
3836       SmallVector<int, 8> MappedOps(Mask);
3837       for (int &Idx : MappedOps) {
3838         if (Idx >= (int)SrcNumElts)
3839           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3840         else if (Idx >= 0)
3841           Idx -= StartIdx[0];
3842       }
3843 
3844       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3845       return;
3846     }
3847   }
3848 
3849   // We can't use either concat vectors or extract subvectors so fall back to
3850   // replacing the shuffle with extract and build vector.
3851   // to insert and build vector.
3852   EVT EltVT = VT.getVectorElementType();
3853   SmallVector<SDValue,8> Ops;
3854   for (int Idx : Mask) {
3855     SDValue Res;
3856 
3857     if (Idx < 0) {
3858       Res = DAG.getUNDEF(EltVT);
3859     } else {
3860       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3861       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3862 
3863       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3864                         DAG.getVectorIdxConstant(Idx, DL));
3865     }
3866 
3867     Ops.push_back(Res);
3868   }
3869 
3870   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3871 }
3872 
3873 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3874   ArrayRef<unsigned> Indices = I.getIndices();
3875   const Value *Op0 = I.getOperand(0);
3876   const Value *Op1 = I.getOperand(1);
3877   Type *AggTy = I.getType();
3878   Type *ValTy = Op1->getType();
3879   bool IntoUndef = isa<UndefValue>(Op0);
3880   bool FromUndef = isa<UndefValue>(Op1);
3881 
3882   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3883 
3884   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3885   SmallVector<EVT, 4> AggValueVTs;
3886   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3887   SmallVector<EVT, 4> ValValueVTs;
3888   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3889 
3890   unsigned NumAggValues = AggValueVTs.size();
3891   unsigned NumValValues = ValValueVTs.size();
3892   SmallVector<SDValue, 4> Values(NumAggValues);
3893 
3894   // Ignore an insertvalue that produces an empty object
3895   if (!NumAggValues) {
3896     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3897     return;
3898   }
3899 
3900   SDValue Agg = getValue(Op0);
3901   unsigned i = 0;
3902   // Copy the beginning value(s) from the original aggregate.
3903   for (; i != LinearIndex; ++i)
3904     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3905                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3906   // Copy values from the inserted value(s).
3907   if (NumValValues) {
3908     SDValue Val = getValue(Op1);
3909     for (; i != LinearIndex + NumValValues; ++i)
3910       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3911                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3912   }
3913   // Copy remaining value(s) from the original aggregate.
3914   for (; i != NumAggValues; ++i)
3915     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3916                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3917 
3918   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3919                            DAG.getVTList(AggValueVTs), Values));
3920 }
3921 
3922 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3923   ArrayRef<unsigned> Indices = I.getIndices();
3924   const Value *Op0 = I.getOperand(0);
3925   Type *AggTy = Op0->getType();
3926   Type *ValTy = I.getType();
3927   bool OutOfUndef = isa<UndefValue>(Op0);
3928 
3929   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3930 
3931   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3932   SmallVector<EVT, 4> ValValueVTs;
3933   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3934 
3935   unsigned NumValValues = ValValueVTs.size();
3936 
3937   // Ignore a extractvalue that produces an empty object
3938   if (!NumValValues) {
3939     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3940     return;
3941   }
3942 
3943   SmallVector<SDValue, 4> Values(NumValValues);
3944 
3945   SDValue Agg = getValue(Op0);
3946   // Copy out the selected value(s).
3947   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3948     Values[i - LinearIndex] =
3949       OutOfUndef ?
3950         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3951         SDValue(Agg.getNode(), Agg.getResNo() + i);
3952 
3953   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3954                            DAG.getVTList(ValValueVTs), Values));
3955 }
3956 
3957 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3958   Value *Op0 = I.getOperand(0);
3959   // Note that the pointer operand may be a vector of pointers. Take the scalar
3960   // element which holds a pointer.
3961   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3962   SDValue N = getValue(Op0);
3963   SDLoc dl = getCurSDLoc();
3964   auto &TLI = DAG.getTargetLoweringInfo();
3965 
3966   // Normalize Vector GEP - all scalar operands should be converted to the
3967   // splat vector.
3968   bool IsVectorGEP = I.getType()->isVectorTy();
3969   ElementCount VectorElementCount =
3970       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3971                   : ElementCount::getFixed(0);
3972 
3973   if (IsVectorGEP && !N.getValueType().isVector()) {
3974     LLVMContext &Context = *DAG.getContext();
3975     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3976     N = DAG.getSplat(VT, dl, N);
3977   }
3978 
3979   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3980        GTI != E; ++GTI) {
3981     const Value *Idx = GTI.getOperand();
3982     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3983       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3984       if (Field) {
3985         // N = N + Offset
3986         uint64_t Offset =
3987             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3988 
3989         // In an inbounds GEP with an offset that is nonnegative even when
3990         // interpreted as signed, assume there is no unsigned overflow.
3991         SDNodeFlags Flags;
3992         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3993           Flags.setNoUnsignedWrap(true);
3994 
3995         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3996                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3997       }
3998     } else {
3999       // IdxSize is the width of the arithmetic according to IR semantics.
4000       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4001       // (and fix up the result later).
4002       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4003       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4004       TypeSize ElementSize =
4005           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
4006       // We intentionally mask away the high bits here; ElementSize may not
4007       // fit in IdxTy.
4008       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4009       bool ElementScalable = ElementSize.isScalable();
4010 
4011       // If this is a scalar constant or a splat vector of constants,
4012       // handle it quickly.
4013       const auto *C = dyn_cast<Constant>(Idx);
4014       if (C && isa<VectorType>(C->getType()))
4015         C = C->getSplatValue();
4016 
4017       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4018       if (CI && CI->isZero())
4019         continue;
4020       if (CI && !ElementScalable) {
4021         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4022         LLVMContext &Context = *DAG.getContext();
4023         SDValue OffsVal;
4024         if (IsVectorGEP)
4025           OffsVal = DAG.getConstant(
4026               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4027         else
4028           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4029 
4030         // In an inbounds GEP with an offset that is nonnegative even when
4031         // interpreted as signed, assume there is no unsigned overflow.
4032         SDNodeFlags Flags;
4033         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
4034           Flags.setNoUnsignedWrap(true);
4035 
4036         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4037 
4038         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4039         continue;
4040       }
4041 
4042       // N = N + Idx * ElementMul;
4043       SDValue IdxN = getValue(Idx);
4044 
4045       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4046         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4047                                   VectorElementCount);
4048         IdxN = DAG.getSplat(VT, dl, IdxN);
4049       }
4050 
4051       // If the index is smaller or larger than intptr_t, truncate or extend
4052       // it.
4053       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4054 
4055       if (ElementScalable) {
4056         EVT VScaleTy = N.getValueType().getScalarType();
4057         SDValue VScale = DAG.getNode(
4058             ISD::VSCALE, dl, VScaleTy,
4059             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4060         if (IsVectorGEP)
4061           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4062         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4063       } else {
4064         // If this is a multiply by a power of two, turn it into a shl
4065         // immediately.  This is a very common case.
4066         if (ElementMul != 1) {
4067           if (ElementMul.isPowerOf2()) {
4068             unsigned Amt = ElementMul.logBase2();
4069             IdxN = DAG.getNode(ISD::SHL, dl,
4070                                N.getValueType(), IdxN,
4071                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4072           } else {
4073             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4074                                             IdxN.getValueType());
4075             IdxN = DAG.getNode(ISD::MUL, dl,
4076                                N.getValueType(), IdxN, Scale);
4077           }
4078         }
4079       }
4080 
4081       N = DAG.getNode(ISD::ADD, dl,
4082                       N.getValueType(), N, IdxN);
4083     }
4084   }
4085 
4086   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4087   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4088   if (IsVectorGEP) {
4089     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4090     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4091   }
4092 
4093   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4094     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4095 
4096   setValue(&I, N);
4097 }
4098 
4099 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4100   // If this is a fixed sized alloca in the entry block of the function,
4101   // allocate it statically on the stack.
4102   if (FuncInfo.StaticAllocaMap.count(&I))
4103     return;   // getValue will auto-populate this.
4104 
4105   SDLoc dl = getCurSDLoc();
4106   Type *Ty = I.getAllocatedType();
4107   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4108   auto &DL = DAG.getDataLayout();
4109   TypeSize TySize = DL.getTypeAllocSize(Ty);
4110   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4111 
4112   SDValue AllocSize = getValue(I.getArraySize());
4113 
4114   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace());
4115   if (AllocSize.getValueType() != IntPtr)
4116     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4117 
4118   if (TySize.isScalable())
4119     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4120                             DAG.getVScale(dl, IntPtr,
4121                                           APInt(IntPtr.getScalarSizeInBits(),
4122                                                 TySize.getKnownMinValue())));
4123   else
4124     AllocSize =
4125         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4126                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4127 
4128   // Handle alignment.  If the requested alignment is less than or equal to
4129   // the stack alignment, ignore it.  If the size is greater than or equal to
4130   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4131   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4132   if (*Alignment <= StackAlign)
4133     Alignment = std::nullopt;
4134 
4135   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4136   // Round the size of the allocation up to the stack alignment size
4137   // by add SA-1 to the size. This doesn't overflow because we're computing
4138   // an address inside an alloca.
4139   SDNodeFlags Flags;
4140   Flags.setNoUnsignedWrap(true);
4141   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4142                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4143 
4144   // Mask out the low bits for alignment purposes.
4145   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4146                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4147 
4148   SDValue Ops[] = {
4149       getRoot(), AllocSize,
4150       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4151   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4152   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4153   setValue(&I, DSA);
4154   DAG.setRoot(DSA.getValue(1));
4155 
4156   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4157 }
4158 
4159 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4160   if (I.isAtomic())
4161     return visitAtomicLoad(I);
4162 
4163   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4164   const Value *SV = I.getOperand(0);
4165   if (TLI.supportSwiftError()) {
4166     // Swifterror values can come from either a function parameter with
4167     // swifterror attribute or an alloca with swifterror attribute.
4168     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4169       if (Arg->hasSwiftErrorAttr())
4170         return visitLoadFromSwiftError(I);
4171     }
4172 
4173     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4174       if (Alloca->isSwiftError())
4175         return visitLoadFromSwiftError(I);
4176     }
4177   }
4178 
4179   SDValue Ptr = getValue(SV);
4180 
4181   Type *Ty = I.getType();
4182   SmallVector<EVT, 4> ValueVTs, MemVTs;
4183   SmallVector<uint64_t, 4> Offsets;
4184   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets, 0);
4185   unsigned NumValues = ValueVTs.size();
4186   if (NumValues == 0)
4187     return;
4188 
4189   Align Alignment = I.getAlign();
4190   AAMDNodes AAInfo = I.getAAMetadata();
4191   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4192   bool isVolatile = I.isVolatile();
4193   MachineMemOperand::Flags MMOFlags =
4194       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4195 
4196   SDValue Root;
4197   bool ConstantMemory = false;
4198   if (isVolatile)
4199     // Serialize volatile loads with other side effects.
4200     Root = getRoot();
4201   else if (NumValues > MaxParallelChains)
4202     Root = getMemoryRoot();
4203   else if (AA &&
4204            AA->pointsToConstantMemory(MemoryLocation(
4205                SV,
4206                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4207                AAInfo))) {
4208     // Do not serialize (non-volatile) loads of constant memory with anything.
4209     Root = DAG.getEntryNode();
4210     ConstantMemory = true;
4211     MMOFlags |= MachineMemOperand::MOInvariant;
4212   } else {
4213     // Do not serialize non-volatile loads against each other.
4214     Root = DAG.getRoot();
4215   }
4216 
4217   SDLoc dl = getCurSDLoc();
4218 
4219   if (isVolatile)
4220     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4221 
4222   // An aggregate load cannot wrap around the address space, so offsets to its
4223   // parts don't wrap either.
4224   SDNodeFlags Flags;
4225   Flags.setNoUnsignedWrap(true);
4226 
4227   SmallVector<SDValue, 4> Values(NumValues);
4228   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4229   EVT PtrVT = Ptr.getValueType();
4230 
4231   unsigned ChainI = 0;
4232   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4233     // Serializing loads here may result in excessive register pressure, and
4234     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4235     // could recover a bit by hoisting nodes upward in the chain by recognizing
4236     // they are side-effect free or do not alias. The optimizer should really
4237     // avoid this case by converting large object/array copies to llvm.memcpy
4238     // (MaxParallelChains should always remain as failsafe).
4239     if (ChainI == MaxParallelChains) {
4240       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4241       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4242                                   ArrayRef(Chains.data(), ChainI));
4243       Root = Chain;
4244       ChainI = 0;
4245     }
4246     SDValue A = DAG.getNode(ISD::ADD, dl,
4247                             PtrVT, Ptr,
4248                             DAG.getConstant(Offsets[i], dl, PtrVT),
4249                             Flags);
4250 
4251     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4252                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4253                             MMOFlags, AAInfo, Ranges);
4254     Chains[ChainI] = L.getValue(1);
4255 
4256     if (MemVTs[i] != ValueVTs[i])
4257       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4258 
4259     Values[i] = L;
4260   }
4261 
4262   if (!ConstantMemory) {
4263     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4264                                 ArrayRef(Chains.data(), ChainI));
4265     if (isVolatile)
4266       DAG.setRoot(Chain);
4267     else
4268       PendingLoads.push_back(Chain);
4269   }
4270 
4271   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4272                            DAG.getVTList(ValueVTs), Values));
4273 }
4274 
4275 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4276   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4277          "call visitStoreToSwiftError when backend supports swifterror");
4278 
4279   SmallVector<EVT, 4> ValueVTs;
4280   SmallVector<uint64_t, 4> Offsets;
4281   const Value *SrcV = I.getOperand(0);
4282   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4283                   SrcV->getType(), ValueVTs, &Offsets, 0);
4284   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4285          "expect a single EVT for swifterror");
4286 
4287   SDValue Src = getValue(SrcV);
4288   // Create a virtual register, then update the virtual register.
4289   Register VReg =
4290       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4291   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4292   // Chain can be getRoot or getControlRoot.
4293   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4294                                       SDValue(Src.getNode(), Src.getResNo()));
4295   DAG.setRoot(CopyNode);
4296 }
4297 
4298 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4299   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4300          "call visitLoadFromSwiftError when backend supports swifterror");
4301 
4302   assert(!I.isVolatile() &&
4303          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4304          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4305          "Support volatile, non temporal, invariant for load_from_swift_error");
4306 
4307   const Value *SV = I.getOperand(0);
4308   Type *Ty = I.getType();
4309   assert(
4310       (!AA ||
4311        !AA->pointsToConstantMemory(MemoryLocation(
4312            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4313            I.getAAMetadata()))) &&
4314       "load_from_swift_error should not be constant memory");
4315 
4316   SmallVector<EVT, 4> ValueVTs;
4317   SmallVector<uint64_t, 4> Offsets;
4318   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4319                   ValueVTs, &Offsets, 0);
4320   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4321          "expect a single EVT for swifterror");
4322 
4323   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4324   SDValue L = DAG.getCopyFromReg(
4325       getRoot(), getCurSDLoc(),
4326       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4327 
4328   setValue(&I, L);
4329 }
4330 
4331 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4332   if (I.isAtomic())
4333     return visitAtomicStore(I);
4334 
4335   const Value *SrcV = I.getOperand(0);
4336   const Value *PtrV = I.getOperand(1);
4337 
4338   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4339   if (TLI.supportSwiftError()) {
4340     // Swifterror values can come from either a function parameter with
4341     // swifterror attribute or an alloca with swifterror attribute.
4342     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4343       if (Arg->hasSwiftErrorAttr())
4344         return visitStoreToSwiftError(I);
4345     }
4346 
4347     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4348       if (Alloca->isSwiftError())
4349         return visitStoreToSwiftError(I);
4350     }
4351   }
4352 
4353   SmallVector<EVT, 4> ValueVTs, MemVTs;
4354   SmallVector<uint64_t, 4> Offsets;
4355   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4356                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets, 0);
4357   unsigned NumValues = ValueVTs.size();
4358   if (NumValues == 0)
4359     return;
4360 
4361   // Get the lowered operands. Note that we do this after
4362   // checking if NumResults is zero, because with zero results
4363   // the operands won't have values in the map.
4364   SDValue Src = getValue(SrcV);
4365   SDValue Ptr = getValue(PtrV);
4366 
4367   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4368   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4369   SDLoc dl = getCurSDLoc();
4370   Align Alignment = I.getAlign();
4371   AAMDNodes AAInfo = I.getAAMetadata();
4372 
4373   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4374 
4375   // An aggregate load cannot wrap around the address space, so offsets to its
4376   // parts don't wrap either.
4377   SDNodeFlags Flags;
4378   Flags.setNoUnsignedWrap(true);
4379 
4380   unsigned ChainI = 0;
4381   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4382     // See visitLoad comments.
4383     if (ChainI == MaxParallelChains) {
4384       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4385                                   ArrayRef(Chains.data(), ChainI));
4386       Root = Chain;
4387       ChainI = 0;
4388     }
4389     SDValue Add =
4390         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4391     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4392     if (MemVTs[i] != ValueVTs[i])
4393       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4394     SDValue St =
4395         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4396                      Alignment, MMOFlags, AAInfo);
4397     Chains[ChainI] = St;
4398   }
4399 
4400   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4401                                   ArrayRef(Chains.data(), ChainI));
4402   setValue(&I, StoreNode);
4403   DAG.setRoot(StoreNode);
4404 }
4405 
4406 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4407                                            bool IsCompressing) {
4408   SDLoc sdl = getCurSDLoc();
4409 
4410   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4411                                MaybeAlign &Alignment) {
4412     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4413     Src0 = I.getArgOperand(0);
4414     Ptr = I.getArgOperand(1);
4415     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4416     Mask = I.getArgOperand(3);
4417   };
4418   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4419                                     MaybeAlign &Alignment) {
4420     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4421     Src0 = I.getArgOperand(0);
4422     Ptr = I.getArgOperand(1);
4423     Mask = I.getArgOperand(2);
4424     Alignment = std::nullopt;
4425   };
4426 
4427   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4428   MaybeAlign Alignment;
4429   if (IsCompressing)
4430     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4431   else
4432     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4433 
4434   SDValue Ptr = getValue(PtrOperand);
4435   SDValue Src0 = getValue(Src0Operand);
4436   SDValue Mask = getValue(MaskOperand);
4437   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4438 
4439   EVT VT = Src0.getValueType();
4440   if (!Alignment)
4441     Alignment = DAG.getEVTAlign(VT);
4442 
4443   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4444       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4445       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4446   SDValue StoreNode =
4447       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4448                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4449   DAG.setRoot(StoreNode);
4450   setValue(&I, StoreNode);
4451 }
4452 
4453 // Get a uniform base for the Gather/Scatter intrinsic.
4454 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4455 // We try to represent it as a base pointer + vector of indices.
4456 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4457 // The first operand of the GEP may be a single pointer or a vector of pointers
4458 // Example:
4459 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4460 //  or
4461 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4462 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4463 //
4464 // When the first GEP operand is a single pointer - it is the uniform base we
4465 // are looking for. If first operand of the GEP is a splat vector - we
4466 // extract the splat value and use it as a uniform base.
4467 // In all other cases the function returns 'false'.
4468 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4469                            ISD::MemIndexType &IndexType, SDValue &Scale,
4470                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4471                            uint64_t ElemSize) {
4472   SelectionDAG& DAG = SDB->DAG;
4473   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4474   const DataLayout &DL = DAG.getDataLayout();
4475 
4476   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4477 
4478   // Handle splat constant pointer.
4479   if (auto *C = dyn_cast<Constant>(Ptr)) {
4480     C = C->getSplatValue();
4481     if (!C)
4482       return false;
4483 
4484     Base = SDB->getValue(C);
4485 
4486     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4487     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4488     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4489     IndexType = ISD::SIGNED_SCALED;
4490     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4491     return true;
4492   }
4493 
4494   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4495   if (!GEP || GEP->getParent() != CurBB)
4496     return false;
4497 
4498   if (GEP->getNumOperands() != 2)
4499     return false;
4500 
4501   const Value *BasePtr = GEP->getPointerOperand();
4502   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4503 
4504   // Make sure the base is scalar and the index is a vector.
4505   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4506     return false;
4507 
4508   TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4509   if (ScaleVal.isScalable())
4510     return false;
4511 
4512   // Target may not support the required addressing mode.
4513   if (ScaleVal != 1 &&
4514       !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
4515     return false;
4516 
4517   Base = SDB->getValue(BasePtr);
4518   Index = SDB->getValue(IndexVal);
4519   IndexType = ISD::SIGNED_SCALED;
4520 
4521   Scale =
4522       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4523   return true;
4524 }
4525 
4526 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4527   SDLoc sdl = getCurSDLoc();
4528 
4529   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4530   const Value *Ptr = I.getArgOperand(1);
4531   SDValue Src0 = getValue(I.getArgOperand(0));
4532   SDValue Mask = getValue(I.getArgOperand(3));
4533   EVT VT = Src0.getValueType();
4534   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4535                         ->getMaybeAlignValue()
4536                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4537   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4538 
4539   SDValue Base;
4540   SDValue Index;
4541   ISD::MemIndexType IndexType;
4542   SDValue Scale;
4543   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4544                                     I.getParent(), VT.getScalarStoreSize());
4545 
4546   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4547   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4548       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4549       // TODO: Make MachineMemOperands aware of scalable
4550       // vectors.
4551       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4552   if (!UniformBase) {
4553     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4554     Index = getValue(Ptr);
4555     IndexType = ISD::SIGNED_SCALED;
4556     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4557   }
4558 
4559   EVT IdxVT = Index.getValueType();
4560   EVT EltTy = IdxVT.getVectorElementType();
4561   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4562     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4563     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4564   }
4565 
4566   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4567   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4568                                          Ops, MMO, IndexType, false);
4569   DAG.setRoot(Scatter);
4570   setValue(&I, Scatter);
4571 }
4572 
4573 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4574   SDLoc sdl = getCurSDLoc();
4575 
4576   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4577                               MaybeAlign &Alignment) {
4578     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4579     Ptr = I.getArgOperand(0);
4580     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4581     Mask = I.getArgOperand(2);
4582     Src0 = I.getArgOperand(3);
4583   };
4584   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4585                                  MaybeAlign &Alignment) {
4586     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4587     Ptr = I.getArgOperand(0);
4588     Alignment = std::nullopt;
4589     Mask = I.getArgOperand(1);
4590     Src0 = I.getArgOperand(2);
4591   };
4592 
4593   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4594   MaybeAlign Alignment;
4595   if (IsExpanding)
4596     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4597   else
4598     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4599 
4600   SDValue Ptr = getValue(PtrOperand);
4601   SDValue Src0 = getValue(Src0Operand);
4602   SDValue Mask = getValue(MaskOperand);
4603   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4604 
4605   EVT VT = Src0.getValueType();
4606   if (!Alignment)
4607     Alignment = DAG.getEVTAlign(VT);
4608 
4609   AAMDNodes AAInfo = I.getAAMetadata();
4610   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4611 
4612   // Do not serialize masked loads of constant memory with anything.
4613   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4614   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4615 
4616   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4617 
4618   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4619       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4620       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4621 
4622   SDValue Load =
4623       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4624                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4625   if (AddToChain)
4626     PendingLoads.push_back(Load.getValue(1));
4627   setValue(&I, Load);
4628 }
4629 
4630 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4631   SDLoc sdl = getCurSDLoc();
4632 
4633   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4634   const Value *Ptr = I.getArgOperand(0);
4635   SDValue Src0 = getValue(I.getArgOperand(3));
4636   SDValue Mask = getValue(I.getArgOperand(2));
4637 
4638   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4639   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4640   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4641                         ->getMaybeAlignValue()
4642                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4643 
4644   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4645 
4646   SDValue Root = DAG.getRoot();
4647   SDValue Base;
4648   SDValue Index;
4649   ISD::MemIndexType IndexType;
4650   SDValue Scale;
4651   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4652                                     I.getParent(), VT.getScalarStoreSize());
4653   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4654   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4655       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4656       // TODO: Make MachineMemOperands aware of scalable
4657       // vectors.
4658       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4659 
4660   if (!UniformBase) {
4661     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4662     Index = getValue(Ptr);
4663     IndexType = ISD::SIGNED_SCALED;
4664     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4665   }
4666 
4667   EVT IdxVT = Index.getValueType();
4668   EVT EltTy = IdxVT.getVectorElementType();
4669   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4670     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4671     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4672   }
4673 
4674   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4675   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4676                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4677 
4678   PendingLoads.push_back(Gather.getValue(1));
4679   setValue(&I, Gather);
4680 }
4681 
4682 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4683   SDLoc dl = getCurSDLoc();
4684   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4685   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4686   SyncScope::ID SSID = I.getSyncScopeID();
4687 
4688   SDValue InChain = getRoot();
4689 
4690   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4691   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4692 
4693   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4694   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4695 
4696   MachineFunction &MF = DAG.getMachineFunction();
4697   MachineMemOperand *MMO = MF.getMachineMemOperand(
4698       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4699       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4700       FailureOrdering);
4701 
4702   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4703                                    dl, MemVT, VTs, InChain,
4704                                    getValue(I.getPointerOperand()),
4705                                    getValue(I.getCompareOperand()),
4706                                    getValue(I.getNewValOperand()), MMO);
4707 
4708   SDValue OutChain = L.getValue(2);
4709 
4710   setValue(&I, L);
4711   DAG.setRoot(OutChain);
4712 }
4713 
4714 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4715   SDLoc dl = getCurSDLoc();
4716   ISD::NodeType NT;
4717   switch (I.getOperation()) {
4718   default: llvm_unreachable("Unknown atomicrmw operation");
4719   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4720   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4721   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4722   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4723   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4724   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4725   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4726   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4727   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4728   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4729   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4730   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4731   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4732   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4733   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4734   case AtomicRMWInst::UIncWrap:
4735     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
4736     break;
4737   case AtomicRMWInst::UDecWrap:
4738     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
4739     break;
4740   }
4741   AtomicOrdering Ordering = I.getOrdering();
4742   SyncScope::ID SSID = I.getSyncScopeID();
4743 
4744   SDValue InChain = getRoot();
4745 
4746   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4747   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4748   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4749 
4750   MachineFunction &MF = DAG.getMachineFunction();
4751   MachineMemOperand *MMO = MF.getMachineMemOperand(
4752       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4753       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4754 
4755   SDValue L =
4756     DAG.getAtomic(NT, dl, MemVT, InChain,
4757                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4758                   MMO);
4759 
4760   SDValue OutChain = L.getValue(1);
4761 
4762   setValue(&I, L);
4763   DAG.setRoot(OutChain);
4764 }
4765 
4766 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4767   SDLoc dl = getCurSDLoc();
4768   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4769   SDValue Ops[3];
4770   Ops[0] = getRoot();
4771   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4772                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4773   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4774                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4775   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4776   setValue(&I, N);
4777   DAG.setRoot(N);
4778 }
4779 
4780 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4781   SDLoc dl = getCurSDLoc();
4782   AtomicOrdering Order = I.getOrdering();
4783   SyncScope::ID SSID = I.getSyncScopeID();
4784 
4785   SDValue InChain = getRoot();
4786 
4787   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4788   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4789   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4790 
4791   if (!TLI.supportsUnalignedAtomics() &&
4792       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4793     report_fatal_error("Cannot generate unaligned atomic load");
4794 
4795   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4796 
4797   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4798       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4799       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4800 
4801   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4802 
4803   SDValue Ptr = getValue(I.getPointerOperand());
4804 
4805   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4806     // TODO: Once this is better exercised by tests, it should be merged with
4807     // the normal path for loads to prevent future divergence.
4808     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4809     if (MemVT != VT)
4810       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4811 
4812     setValue(&I, L);
4813     SDValue OutChain = L.getValue(1);
4814     if (!I.isUnordered())
4815       DAG.setRoot(OutChain);
4816     else
4817       PendingLoads.push_back(OutChain);
4818     return;
4819   }
4820 
4821   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4822                             Ptr, MMO);
4823 
4824   SDValue OutChain = L.getValue(1);
4825   if (MemVT != VT)
4826     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4827 
4828   setValue(&I, L);
4829   DAG.setRoot(OutChain);
4830 }
4831 
4832 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4833   SDLoc dl = getCurSDLoc();
4834 
4835   AtomicOrdering Ordering = I.getOrdering();
4836   SyncScope::ID SSID = I.getSyncScopeID();
4837 
4838   SDValue InChain = getRoot();
4839 
4840   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4841   EVT MemVT =
4842       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4843 
4844   if (!TLI.supportsUnalignedAtomics() &&
4845       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4846     report_fatal_error("Cannot generate unaligned atomic store");
4847 
4848   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4849 
4850   MachineFunction &MF = DAG.getMachineFunction();
4851   MachineMemOperand *MMO = MF.getMachineMemOperand(
4852       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4853       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4854 
4855   SDValue Val = getValue(I.getValueOperand());
4856   if (Val.getValueType() != MemVT)
4857     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4858   SDValue Ptr = getValue(I.getPointerOperand());
4859 
4860   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4861     // TODO: Once this is better exercised by tests, it should be merged with
4862     // the normal path for stores to prevent future divergence.
4863     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4864     setValue(&I, S);
4865     DAG.setRoot(S);
4866     return;
4867   }
4868   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4869                                    Ptr, Val, MMO);
4870 
4871   setValue(&I, OutChain);
4872   DAG.setRoot(OutChain);
4873 }
4874 
4875 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4876 /// node.
4877 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4878                                                unsigned Intrinsic) {
4879   // Ignore the callsite's attributes. A specific call site may be marked with
4880   // readnone, but the lowering code will expect the chain based on the
4881   // definition.
4882   const Function *F = I.getCalledFunction();
4883   bool HasChain = !F->doesNotAccessMemory();
4884   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4885 
4886   // Build the operand list.
4887   SmallVector<SDValue, 8> Ops;
4888   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4889     if (OnlyLoad) {
4890       // We don't need to serialize loads against other loads.
4891       Ops.push_back(DAG.getRoot());
4892     } else {
4893       Ops.push_back(getRoot());
4894     }
4895   }
4896 
4897   // Info is set by getTgtMemIntrinsic
4898   TargetLowering::IntrinsicInfo Info;
4899   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4900   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4901                                                DAG.getMachineFunction(),
4902                                                Intrinsic);
4903 
4904   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4905   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4906       Info.opc == ISD::INTRINSIC_W_CHAIN)
4907     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4908                                         TLI.getPointerTy(DAG.getDataLayout())));
4909 
4910   // Add all operands of the call to the operand list.
4911   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4912     const Value *Arg = I.getArgOperand(i);
4913     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4914       Ops.push_back(getValue(Arg));
4915       continue;
4916     }
4917 
4918     // Use TargetConstant instead of a regular constant for immarg.
4919     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4920     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4921       assert(CI->getBitWidth() <= 64 &&
4922              "large intrinsic immediates not handled");
4923       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4924     } else {
4925       Ops.push_back(
4926           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4927     }
4928   }
4929 
4930   SmallVector<EVT, 4> ValueVTs;
4931   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4932 
4933   if (HasChain)
4934     ValueVTs.push_back(MVT::Other);
4935 
4936   SDVTList VTs = DAG.getVTList(ValueVTs);
4937 
4938   // Propagate fast-math-flags from IR to node(s).
4939   SDNodeFlags Flags;
4940   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4941     Flags.copyFMF(*FPMO);
4942   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4943 
4944   // Create the node.
4945   SDValue Result;
4946   // In some cases, custom collection of operands from CallInst I may be needed.
4947   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
4948   if (IsTgtIntrinsic) {
4949     // This is target intrinsic that touches memory
4950     //
4951     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
4952     //       didn't yield anything useful.
4953     MachinePointerInfo MPI;
4954     if (Info.ptrVal)
4955       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
4956     else if (Info.fallbackAddressSpace)
4957       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
4958     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
4959                                      Info.memVT, MPI, Info.align, Info.flags,
4960                                      Info.size, I.getAAMetadata());
4961   } else if (!HasChain) {
4962     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4963   } else if (!I.getType()->isVoidTy()) {
4964     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4965   } else {
4966     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4967   }
4968 
4969   if (HasChain) {
4970     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4971     if (OnlyLoad)
4972       PendingLoads.push_back(Chain);
4973     else
4974       DAG.setRoot(Chain);
4975   }
4976 
4977   if (!I.getType()->isVoidTy()) {
4978     if (!isa<VectorType>(I.getType()))
4979       Result = lowerRangeToAssertZExt(DAG, I, Result);
4980 
4981     MaybeAlign Alignment = I.getRetAlign();
4982 
4983     // Insert `assertalign` node if there's an alignment.
4984     if (InsertAssertAlign && Alignment) {
4985       Result =
4986           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4987     }
4988 
4989     setValue(&I, Result);
4990   }
4991 }
4992 
4993 /// GetSignificand - Get the significand and build it into a floating-point
4994 /// number with exponent of 1:
4995 ///
4996 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4997 ///
4998 /// where Op is the hexadecimal representation of floating point value.
4999 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
5000   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5001                            DAG.getConstant(0x007fffff, dl, MVT::i32));
5002   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5003                            DAG.getConstant(0x3f800000, dl, MVT::i32));
5004   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5005 }
5006 
5007 /// GetExponent - Get the exponent:
5008 ///
5009 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5010 ///
5011 /// where Op is the hexadecimal representation of floating point value.
5012 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5013                            const TargetLowering &TLI, const SDLoc &dl) {
5014   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5015                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5016   SDValue t1 = DAG.getNode(
5017       ISD::SRL, dl, MVT::i32, t0,
5018       DAG.getConstant(23, dl,
5019                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5020   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5021                            DAG.getConstant(127, dl, MVT::i32));
5022   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5023 }
5024 
5025 /// getF32Constant - Get 32-bit floating point constant.
5026 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5027                               const SDLoc &dl) {
5028   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5029                            MVT::f32);
5030 }
5031 
5032 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5033                                        SelectionDAG &DAG) {
5034   // TODO: What fast-math-flags should be set on the floating-point nodes?
5035 
5036   //   IntegerPartOfX = ((int32_t)(t0);
5037   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5038 
5039   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5040   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5041   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5042 
5043   //   IntegerPartOfX <<= 23;
5044   IntegerPartOfX =
5045       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5046                   DAG.getConstant(23, dl,
5047                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5048                                       MVT::i32, DAG.getDataLayout())));
5049 
5050   SDValue TwoToFractionalPartOfX;
5051   if (LimitFloatPrecision <= 6) {
5052     // For floating-point precision of 6:
5053     //
5054     //   TwoToFractionalPartOfX =
5055     //     0.997535578f +
5056     //       (0.735607626f + 0.252464424f * x) * x;
5057     //
5058     // error 0.0144103317, which is 6 bits
5059     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5060                              getF32Constant(DAG, 0x3e814304, dl));
5061     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5062                              getF32Constant(DAG, 0x3f3c50c8, dl));
5063     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5064     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5065                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5066   } else if (LimitFloatPrecision <= 12) {
5067     // For floating-point precision of 12:
5068     //
5069     //   TwoToFractionalPartOfX =
5070     //     0.999892986f +
5071     //       (0.696457318f +
5072     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5073     //
5074     // error 0.000107046256, which is 13 to 14 bits
5075     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5076                              getF32Constant(DAG, 0x3da235e3, dl));
5077     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5078                              getF32Constant(DAG, 0x3e65b8f3, dl));
5079     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5080     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5081                              getF32Constant(DAG, 0x3f324b07, dl));
5082     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5083     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5084                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5085   } else { // LimitFloatPrecision <= 18
5086     // For floating-point precision of 18:
5087     //
5088     //   TwoToFractionalPartOfX =
5089     //     0.999999982f +
5090     //       (0.693148872f +
5091     //         (0.240227044f +
5092     //           (0.554906021e-1f +
5093     //             (0.961591928e-2f +
5094     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5095     // error 2.47208000*10^(-7), which is better than 18 bits
5096     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5097                              getF32Constant(DAG, 0x3924b03e, dl));
5098     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5099                              getF32Constant(DAG, 0x3ab24b87, dl));
5100     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5101     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5102                              getF32Constant(DAG, 0x3c1d8c17, dl));
5103     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5104     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5105                              getF32Constant(DAG, 0x3d634a1d, dl));
5106     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5107     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5108                              getF32Constant(DAG, 0x3e75fe14, dl));
5109     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5110     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5111                               getF32Constant(DAG, 0x3f317234, dl));
5112     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5113     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5114                                          getF32Constant(DAG, 0x3f800000, dl));
5115   }
5116 
5117   // Add the exponent into the result in integer domain.
5118   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5119   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5120                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5121 }
5122 
5123 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5124 /// limited-precision mode.
5125 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5126                          const TargetLowering &TLI, SDNodeFlags Flags) {
5127   if (Op.getValueType() == MVT::f32 &&
5128       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5129 
5130     // Put the exponent in the right bit position for later addition to the
5131     // final result:
5132     //
5133     // t0 = Op * log2(e)
5134 
5135     // TODO: What fast-math-flags should be set here?
5136     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5137                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5138     return getLimitedPrecisionExp2(t0, dl, DAG);
5139   }
5140 
5141   // No special expansion.
5142   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5143 }
5144 
5145 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5146 /// limited-precision mode.
5147 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5148                          const TargetLowering &TLI, SDNodeFlags Flags) {
5149   // TODO: What fast-math-flags should be set on the floating-point nodes?
5150 
5151   if (Op.getValueType() == MVT::f32 &&
5152       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5153     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5154 
5155     // Scale the exponent by log(2).
5156     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5157     SDValue LogOfExponent =
5158         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5159                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5160 
5161     // Get the significand and build it into a floating-point number with
5162     // exponent of 1.
5163     SDValue X = GetSignificand(DAG, Op1, dl);
5164 
5165     SDValue LogOfMantissa;
5166     if (LimitFloatPrecision <= 6) {
5167       // For floating-point precision of 6:
5168       //
5169       //   LogofMantissa =
5170       //     -1.1609546f +
5171       //       (1.4034025f - 0.23903021f * x) * x;
5172       //
5173       // error 0.0034276066, which is better than 8 bits
5174       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5175                                getF32Constant(DAG, 0xbe74c456, dl));
5176       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5177                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5178       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5179       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5180                                   getF32Constant(DAG, 0x3f949a29, dl));
5181     } else if (LimitFloatPrecision <= 12) {
5182       // For floating-point precision of 12:
5183       //
5184       //   LogOfMantissa =
5185       //     -1.7417939f +
5186       //       (2.8212026f +
5187       //         (-1.4699568f +
5188       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5189       //
5190       // error 0.000061011436, which is 14 bits
5191       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5192                                getF32Constant(DAG, 0xbd67b6d6, dl));
5193       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5194                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5195       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5196       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5197                                getF32Constant(DAG, 0x3fbc278b, dl));
5198       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5199       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5200                                getF32Constant(DAG, 0x40348e95, dl));
5201       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5202       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5203                                   getF32Constant(DAG, 0x3fdef31a, dl));
5204     } else { // LimitFloatPrecision <= 18
5205       // For floating-point precision of 18:
5206       //
5207       //   LogOfMantissa =
5208       //     -2.1072184f +
5209       //       (4.2372794f +
5210       //         (-3.7029485f +
5211       //           (2.2781945f +
5212       //             (-0.87823314f +
5213       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5214       //
5215       // error 0.0000023660568, which is better than 18 bits
5216       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5217                                getF32Constant(DAG, 0xbc91e5ac, dl));
5218       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5219                                getF32Constant(DAG, 0x3e4350aa, dl));
5220       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5221       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5222                                getF32Constant(DAG, 0x3f60d3e3, dl));
5223       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5224       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5225                                getF32Constant(DAG, 0x4011cdf0, dl));
5226       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5227       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5228                                getF32Constant(DAG, 0x406cfd1c, dl));
5229       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5230       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5231                                getF32Constant(DAG, 0x408797cb, dl));
5232       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5233       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5234                                   getF32Constant(DAG, 0x4006dcab, dl));
5235     }
5236 
5237     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5238   }
5239 
5240   // No special expansion.
5241   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5242 }
5243 
5244 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5245 /// limited-precision mode.
5246 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5247                           const TargetLowering &TLI, SDNodeFlags Flags) {
5248   // TODO: What fast-math-flags should be set on the floating-point nodes?
5249 
5250   if (Op.getValueType() == MVT::f32 &&
5251       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5252     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5253 
5254     // Get the exponent.
5255     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5256 
5257     // Get the significand and build it into a floating-point number with
5258     // exponent of 1.
5259     SDValue X = GetSignificand(DAG, Op1, dl);
5260 
5261     // Different possible minimax approximations of significand in
5262     // floating-point for various degrees of accuracy over [1,2].
5263     SDValue Log2ofMantissa;
5264     if (LimitFloatPrecision <= 6) {
5265       // For floating-point precision of 6:
5266       //
5267       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5268       //
5269       // error 0.0049451742, which is more than 7 bits
5270       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5271                                getF32Constant(DAG, 0xbeb08fe0, dl));
5272       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5273                                getF32Constant(DAG, 0x40019463, dl));
5274       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5275       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5276                                    getF32Constant(DAG, 0x3fd6633d, dl));
5277     } else if (LimitFloatPrecision <= 12) {
5278       // For floating-point precision of 12:
5279       //
5280       //   Log2ofMantissa =
5281       //     -2.51285454f +
5282       //       (4.07009056f +
5283       //         (-2.12067489f +
5284       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5285       //
5286       // error 0.0000876136000, which is better than 13 bits
5287       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5288                                getF32Constant(DAG, 0xbda7262e, dl));
5289       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5290                                getF32Constant(DAG, 0x3f25280b, dl));
5291       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5292       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5293                                getF32Constant(DAG, 0x4007b923, dl));
5294       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5295       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5296                                getF32Constant(DAG, 0x40823e2f, dl));
5297       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5298       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5299                                    getF32Constant(DAG, 0x4020d29c, dl));
5300     } else { // LimitFloatPrecision <= 18
5301       // For floating-point precision of 18:
5302       //
5303       //   Log2ofMantissa =
5304       //     -3.0400495f +
5305       //       (6.1129976f +
5306       //         (-5.3420409f +
5307       //           (3.2865683f +
5308       //             (-1.2669343f +
5309       //               (0.27515199f -
5310       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5311       //
5312       // error 0.0000018516, which is better than 18 bits
5313       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5314                                getF32Constant(DAG, 0xbcd2769e, dl));
5315       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5316                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5317       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5318       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5319                                getF32Constant(DAG, 0x3fa22ae7, dl));
5320       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5321       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5322                                getF32Constant(DAG, 0x40525723, dl));
5323       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5324       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5325                                getF32Constant(DAG, 0x40aaf200, dl));
5326       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5327       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5328                                getF32Constant(DAG, 0x40c39dad, dl));
5329       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5330       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5331                                    getF32Constant(DAG, 0x4042902c, dl));
5332     }
5333 
5334     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5335   }
5336 
5337   // No special expansion.
5338   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5339 }
5340 
5341 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5342 /// limited-precision mode.
5343 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5344                            const TargetLowering &TLI, SDNodeFlags Flags) {
5345   // TODO: What fast-math-flags should be set on the floating-point nodes?
5346 
5347   if (Op.getValueType() == MVT::f32 &&
5348       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5349     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5350 
5351     // Scale the exponent by log10(2) [0.30102999f].
5352     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5353     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5354                                         getF32Constant(DAG, 0x3e9a209a, dl));
5355 
5356     // Get the significand and build it into a floating-point number with
5357     // exponent of 1.
5358     SDValue X = GetSignificand(DAG, Op1, dl);
5359 
5360     SDValue Log10ofMantissa;
5361     if (LimitFloatPrecision <= 6) {
5362       // For floating-point precision of 6:
5363       //
5364       //   Log10ofMantissa =
5365       //     -0.50419619f +
5366       //       (0.60948995f - 0.10380950f * x) * x;
5367       //
5368       // error 0.0014886165, which is 6 bits
5369       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5370                                getF32Constant(DAG, 0xbdd49a13, dl));
5371       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5372                                getF32Constant(DAG, 0x3f1c0789, dl));
5373       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5374       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5375                                     getF32Constant(DAG, 0x3f011300, dl));
5376     } else if (LimitFloatPrecision <= 12) {
5377       // For floating-point precision of 12:
5378       //
5379       //   Log10ofMantissa =
5380       //     -0.64831180f +
5381       //       (0.91751397f +
5382       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5383       //
5384       // error 0.00019228036, which is better than 12 bits
5385       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5386                                getF32Constant(DAG, 0x3d431f31, dl));
5387       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5388                                getF32Constant(DAG, 0x3ea21fb2, dl));
5389       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5390       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5391                                getF32Constant(DAG, 0x3f6ae232, dl));
5392       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5393       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5394                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5395     } else { // LimitFloatPrecision <= 18
5396       // For floating-point precision of 18:
5397       //
5398       //   Log10ofMantissa =
5399       //     -0.84299375f +
5400       //       (1.5327582f +
5401       //         (-1.0688956f +
5402       //           (0.49102474f +
5403       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5404       //
5405       // error 0.0000037995730, which is better than 18 bits
5406       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5407                                getF32Constant(DAG, 0x3c5d51ce, dl));
5408       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5409                                getF32Constant(DAG, 0x3e00685a, dl));
5410       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5411       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5412                                getF32Constant(DAG, 0x3efb6798, dl));
5413       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5414       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5415                                getF32Constant(DAG, 0x3f88d192, dl));
5416       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5417       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5418                                getF32Constant(DAG, 0x3fc4316c, dl));
5419       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5420       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5421                                     getF32Constant(DAG, 0x3f57ce70, dl));
5422     }
5423 
5424     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5425   }
5426 
5427   // No special expansion.
5428   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5429 }
5430 
5431 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5432 /// limited-precision mode.
5433 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5434                           const TargetLowering &TLI, SDNodeFlags Flags) {
5435   if (Op.getValueType() == MVT::f32 &&
5436       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5437     return getLimitedPrecisionExp2(Op, dl, DAG);
5438 
5439   // No special expansion.
5440   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5441 }
5442 
5443 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5444 /// limited-precision mode with x == 10.0f.
5445 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5446                          SelectionDAG &DAG, const TargetLowering &TLI,
5447                          SDNodeFlags Flags) {
5448   bool IsExp10 = false;
5449   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5450       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5451     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5452       APFloat Ten(10.0f);
5453       IsExp10 = LHSC->isExactlyValue(Ten);
5454     }
5455   }
5456 
5457   // TODO: What fast-math-flags should be set on the FMUL node?
5458   if (IsExp10) {
5459     // Put the exponent in the right bit position for later addition to the
5460     // final result:
5461     //
5462     //   #define LOG2OF10 3.3219281f
5463     //   t0 = Op * LOG2OF10;
5464     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5465                              getF32Constant(DAG, 0x40549a78, dl));
5466     return getLimitedPrecisionExp2(t0, dl, DAG);
5467   }
5468 
5469   // No special expansion.
5470   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5471 }
5472 
5473 /// ExpandPowI - Expand a llvm.powi intrinsic.
5474 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5475                           SelectionDAG &DAG) {
5476   // If RHS is a constant, we can expand this out to a multiplication tree if
5477   // it's beneficial on the target, otherwise we end up lowering to a call to
5478   // __powidf2 (for example).
5479   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5480     unsigned Val = RHSC->getSExtValue();
5481 
5482     // powi(x, 0) -> 1.0
5483     if (Val == 0)
5484       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5485 
5486     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5487             Val, DAG.shouldOptForSize())) {
5488       // Get the exponent as a positive value.
5489       if ((int)Val < 0)
5490         Val = -Val;
5491       // We use the simple binary decomposition method to generate the multiply
5492       // sequence.  There are more optimal ways to do this (for example,
5493       // powi(x,15) generates one more multiply than it should), but this has
5494       // the benefit of being both really simple and much better than a libcall.
5495       SDValue Res; // Logically starts equal to 1.0
5496       SDValue CurSquare = LHS;
5497       // TODO: Intrinsics should have fast-math-flags that propagate to these
5498       // nodes.
5499       while (Val) {
5500         if (Val & 1) {
5501           if (Res.getNode())
5502             Res =
5503                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5504           else
5505             Res = CurSquare; // 1.0*CurSquare.
5506         }
5507 
5508         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5509                                 CurSquare, CurSquare);
5510         Val >>= 1;
5511       }
5512 
5513       // If the original was negative, invert the result, producing 1/(x*x*x).
5514       if (RHSC->getSExtValue() < 0)
5515         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5516                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5517       return Res;
5518     }
5519   }
5520 
5521   // Otherwise, expand to a libcall.
5522   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5523 }
5524 
5525 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5526                             SDValue LHS, SDValue RHS, SDValue Scale,
5527                             SelectionDAG &DAG, const TargetLowering &TLI) {
5528   EVT VT = LHS.getValueType();
5529   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5530   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5531   LLVMContext &Ctx = *DAG.getContext();
5532 
5533   // If the type is legal but the operation isn't, this node might survive all
5534   // the way to operation legalization. If we end up there and we do not have
5535   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5536   // node.
5537 
5538   // Coax the legalizer into expanding the node during type legalization instead
5539   // by bumping the size by one bit. This will force it to Promote, enabling the
5540   // early expansion and avoiding the need to expand later.
5541 
5542   // We don't have to do this if Scale is 0; that can always be expanded, unless
5543   // it's a saturating signed operation. Those can experience true integer
5544   // division overflow, a case which we must avoid.
5545 
5546   // FIXME: We wouldn't have to do this (or any of the early
5547   // expansion/promotion) if it was possible to expand a libcall of an
5548   // illegal type during operation legalization. But it's not, so things
5549   // get a bit hacky.
5550   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5551   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5552       (TLI.isTypeLegal(VT) ||
5553        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5554     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5555         Opcode, VT, ScaleInt);
5556     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5557       EVT PromVT;
5558       if (VT.isScalarInteger())
5559         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5560       else if (VT.isVector()) {
5561         PromVT = VT.getVectorElementType();
5562         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5563         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5564       } else
5565         llvm_unreachable("Wrong VT for DIVFIX?");
5566       LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5567       RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5568       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5569       // For saturating operations, we need to shift up the LHS to get the
5570       // proper saturation width, and then shift down again afterwards.
5571       if (Saturating)
5572         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5573                           DAG.getConstant(1, DL, ShiftTy));
5574       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5575       if (Saturating)
5576         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5577                           DAG.getConstant(1, DL, ShiftTy));
5578       return DAG.getZExtOrTrunc(Res, DL, VT);
5579     }
5580   }
5581 
5582   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5583 }
5584 
5585 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5586 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5587 static void
5588 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5589                      const SDValue &N) {
5590   switch (N.getOpcode()) {
5591   case ISD::CopyFromReg: {
5592     SDValue Op = N.getOperand(1);
5593     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5594                       Op.getValueType().getSizeInBits());
5595     return;
5596   }
5597   case ISD::BITCAST:
5598   case ISD::AssertZext:
5599   case ISD::AssertSext:
5600   case ISD::TRUNCATE:
5601     getUnderlyingArgRegs(Regs, N.getOperand(0));
5602     return;
5603   case ISD::BUILD_PAIR:
5604   case ISD::BUILD_VECTOR:
5605   case ISD::CONCAT_VECTORS:
5606     for (SDValue Op : N->op_values())
5607       getUnderlyingArgRegs(Regs, Op);
5608     return;
5609   default:
5610     return;
5611   }
5612 }
5613 
5614 /// If the DbgValueInst is a dbg_value of a function argument, create the
5615 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5616 /// instruction selection, they will be inserted to the entry BB.
5617 /// We don't currently support this for variadic dbg_values, as they shouldn't
5618 /// appear for function arguments or in the prologue.
5619 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5620     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5621     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5622   const Argument *Arg = dyn_cast<Argument>(V);
5623   if (!Arg)
5624     return false;
5625 
5626   MachineFunction &MF = DAG.getMachineFunction();
5627   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5628 
5629   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5630   // we've been asked to pursue.
5631   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5632                               bool Indirect) {
5633     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5634       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5635       // pointing at the VReg, which will be patched up later.
5636       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5637       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5638           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5639           /* isKill */ false, /* isDead */ false,
5640           /* isUndef */ false, /* isEarlyClobber */ false,
5641           /* SubReg */ 0, /* isDebug */ true)});
5642 
5643       auto *NewDIExpr = FragExpr;
5644       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5645       // the DIExpression.
5646       if (Indirect)
5647         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5648       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5649       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5650       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5651     } else {
5652       // Create a completely standard DBG_VALUE.
5653       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5654       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5655     }
5656   };
5657 
5658   if (Kind == FuncArgumentDbgValueKind::Value) {
5659     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5660     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5661     // the entry block.
5662     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5663     if (!IsInEntryBlock)
5664       return false;
5665 
5666     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5667     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5668     // variable that also is a param.
5669     //
5670     // Although, if we are at the top of the entry block already, we can still
5671     // emit using ArgDbgValue. This might catch some situations when the
5672     // dbg.value refers to an argument that isn't used in the entry block, so
5673     // any CopyToReg node would be optimized out and the only way to express
5674     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5675     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5676     // we should only emit as ArgDbgValue if the Variable is an argument to the
5677     // current function, and the dbg.value intrinsic is found in the entry
5678     // block.
5679     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5680         !DL->getInlinedAt();
5681     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5682     if (!IsInPrologue && !VariableIsFunctionInputArg)
5683       return false;
5684 
5685     // Here we assume that a function argument on IR level only can be used to
5686     // describe one input parameter on source level. If we for example have
5687     // source code like this
5688     //
5689     //    struct A { long x, y; };
5690     //    void foo(struct A a, long b) {
5691     //      ...
5692     //      b = a.x;
5693     //      ...
5694     //    }
5695     //
5696     // and IR like this
5697     //
5698     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5699     //  entry:
5700     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5701     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5702     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5703     //    ...
5704     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5705     //    ...
5706     //
5707     // then the last dbg.value is describing a parameter "b" using a value that
5708     // is an argument. But since we already has used %a1 to describe a parameter
5709     // we should not handle that last dbg.value here (that would result in an
5710     // incorrect hoisting of the DBG_VALUE to the function entry).
5711     // Notice that we allow one dbg.value per IR level argument, to accommodate
5712     // for the situation with fragments above.
5713     if (VariableIsFunctionInputArg) {
5714       unsigned ArgNo = Arg->getArgNo();
5715       if (ArgNo >= FuncInfo.DescribedArgs.size())
5716         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5717       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5718         return false;
5719       FuncInfo.DescribedArgs.set(ArgNo);
5720     }
5721   }
5722 
5723   bool IsIndirect = false;
5724   std::optional<MachineOperand> Op;
5725   // Some arguments' frame index is recorded during argument lowering.
5726   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5727   if (FI != std::numeric_limits<int>::max())
5728     Op = MachineOperand::CreateFI(FI);
5729 
5730   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5731   if (!Op && N.getNode()) {
5732     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5733     Register Reg;
5734     if (ArgRegsAndSizes.size() == 1)
5735       Reg = ArgRegsAndSizes.front().first;
5736 
5737     if (Reg && Reg.isVirtual()) {
5738       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5739       Register PR = RegInfo.getLiveInPhysReg(Reg);
5740       if (PR)
5741         Reg = PR;
5742     }
5743     if (Reg) {
5744       Op = MachineOperand::CreateReg(Reg, false);
5745       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5746     }
5747   }
5748 
5749   if (!Op && N.getNode()) {
5750     // Check if frame index is available.
5751     SDValue LCandidate = peekThroughBitcasts(N);
5752     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5753       if (FrameIndexSDNode *FINode =
5754           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5755         Op = MachineOperand::CreateFI(FINode->getIndex());
5756   }
5757 
5758   if (!Op) {
5759     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5760     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5761                                          SplitRegs) {
5762       unsigned Offset = 0;
5763       for (const auto &RegAndSize : SplitRegs) {
5764         // If the expression is already a fragment, the current register
5765         // offset+size might extend beyond the fragment. In this case, only
5766         // the register bits that are inside the fragment are relevant.
5767         int RegFragmentSizeInBits = RegAndSize.second;
5768         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5769           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5770           // The register is entirely outside the expression fragment,
5771           // so is irrelevant for debug info.
5772           if (Offset >= ExprFragmentSizeInBits)
5773             break;
5774           // The register is partially outside the expression fragment, only
5775           // the low bits within the fragment are relevant for debug info.
5776           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5777             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5778           }
5779         }
5780 
5781         auto FragmentExpr = DIExpression::createFragmentExpression(
5782             Expr, Offset, RegFragmentSizeInBits);
5783         Offset += RegAndSize.second;
5784         // If a valid fragment expression cannot be created, the variable's
5785         // correct value cannot be determined and so it is set as Undef.
5786         if (!FragmentExpr) {
5787           SDDbgValue *SDV = DAG.getConstantDbgValue(
5788               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5789           DAG.AddDbgValue(SDV, false);
5790           continue;
5791         }
5792         MachineInstr *NewMI =
5793             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5794                              Kind != FuncArgumentDbgValueKind::Value);
5795         FuncInfo.ArgDbgValues.push_back(NewMI);
5796       }
5797     };
5798 
5799     // Check if ValueMap has reg number.
5800     DenseMap<const Value *, Register>::const_iterator
5801       VMI = FuncInfo.ValueMap.find(V);
5802     if (VMI != FuncInfo.ValueMap.end()) {
5803       const auto &TLI = DAG.getTargetLoweringInfo();
5804       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5805                        V->getType(), std::nullopt);
5806       if (RFV.occupiesMultipleRegs()) {
5807         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5808         return true;
5809       }
5810 
5811       Op = MachineOperand::CreateReg(VMI->second, false);
5812       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5813     } else if (ArgRegsAndSizes.size() > 1) {
5814       // This was split due to the calling convention, and no virtual register
5815       // mapping exists for the value.
5816       splitMultiRegDbgValue(ArgRegsAndSizes);
5817       return true;
5818     }
5819   }
5820 
5821   if (!Op)
5822     return false;
5823 
5824   // If the expression refers to the entry value of an Argument, use the
5825   // corresponding livein physical register. As per the Verifier, this is only
5826   // allowed for swiftasync Arguments.
5827   if (Op->isReg() && Expr->isEntryValue()) {
5828     assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
5829     auto OpReg = Op->getReg();
5830     for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
5831       if (OpReg == VirtReg || OpReg == PhysReg) {
5832         SDDbgValue *SDV = DAG.getVRegDbgValue(
5833             Variable, Expr, PhysReg,
5834             Kind != FuncArgumentDbgValueKind::Value /*is indirect*/, DL,
5835             SDNodeOrder);
5836         DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
5837         return true;
5838       }
5839     LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
5840                          "couldn't find a physical register\n");
5841     return true;
5842   }
5843 
5844   assert(Variable->isValidLocationForIntrinsic(DL) &&
5845          "Expected inlined-at fields to agree");
5846   MachineInstr *NewMI = nullptr;
5847 
5848   if (Op->isReg())
5849     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5850   else
5851     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5852                     Variable, Expr);
5853 
5854   // Otherwise, use ArgDbgValues.
5855   FuncInfo.ArgDbgValues.push_back(NewMI);
5856   return true;
5857 }
5858 
5859 /// Return the appropriate SDDbgValue based on N.
5860 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5861                                              DILocalVariable *Variable,
5862                                              DIExpression *Expr,
5863                                              const DebugLoc &dl,
5864                                              unsigned DbgSDNodeOrder) {
5865   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5866     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5867     // stack slot locations.
5868     //
5869     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5870     // debug values here after optimization:
5871     //
5872     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5873     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5874     //
5875     // Both describe the direct values of their associated variables.
5876     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5877                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5878   }
5879   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5880                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5881 }
5882 
5883 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5884   switch (Intrinsic) {
5885   case Intrinsic::smul_fix:
5886     return ISD::SMULFIX;
5887   case Intrinsic::umul_fix:
5888     return ISD::UMULFIX;
5889   case Intrinsic::smul_fix_sat:
5890     return ISD::SMULFIXSAT;
5891   case Intrinsic::umul_fix_sat:
5892     return ISD::UMULFIXSAT;
5893   case Intrinsic::sdiv_fix:
5894     return ISD::SDIVFIX;
5895   case Intrinsic::udiv_fix:
5896     return ISD::UDIVFIX;
5897   case Intrinsic::sdiv_fix_sat:
5898     return ISD::SDIVFIXSAT;
5899   case Intrinsic::udiv_fix_sat:
5900     return ISD::UDIVFIXSAT;
5901   default:
5902     llvm_unreachable("Unhandled fixed point intrinsic");
5903   }
5904 }
5905 
5906 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5907                                            const char *FunctionName) {
5908   assert(FunctionName && "FunctionName must not be nullptr");
5909   SDValue Callee = DAG.getExternalSymbol(
5910       FunctionName,
5911       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5912   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5913 }
5914 
5915 /// Given a @llvm.call.preallocated.setup, return the corresponding
5916 /// preallocated call.
5917 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5918   assert(cast<CallBase>(PreallocatedSetup)
5919                  ->getCalledFunction()
5920                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5921          "expected call_preallocated_setup Value");
5922   for (const auto *U : PreallocatedSetup->users()) {
5923     auto *UseCall = cast<CallBase>(U);
5924     const Function *Fn = UseCall->getCalledFunction();
5925     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5926       return UseCall;
5927     }
5928   }
5929   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5930 }
5931 
5932 /// Lower the call to the specified intrinsic function.
5933 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5934                                              unsigned Intrinsic) {
5935   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5936   SDLoc sdl = getCurSDLoc();
5937   DebugLoc dl = getCurDebugLoc();
5938   SDValue Res;
5939 
5940   SDNodeFlags Flags;
5941   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5942     Flags.copyFMF(*FPOp);
5943 
5944   switch (Intrinsic) {
5945   default:
5946     // By default, turn this into a target intrinsic node.
5947     visitTargetIntrinsic(I, Intrinsic);
5948     return;
5949   case Intrinsic::vscale: {
5950     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5951     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5952     return;
5953   }
5954   case Intrinsic::vastart:  visitVAStart(I); return;
5955   case Intrinsic::vaend:    visitVAEnd(I); return;
5956   case Intrinsic::vacopy:   visitVACopy(I); return;
5957   case Intrinsic::returnaddress:
5958     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5959                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5960                              getValue(I.getArgOperand(0))));
5961     return;
5962   case Intrinsic::addressofreturnaddress:
5963     setValue(&I,
5964              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5965                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5966     return;
5967   case Intrinsic::sponentry:
5968     setValue(&I,
5969              DAG.getNode(ISD::SPONENTRY, sdl,
5970                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5971     return;
5972   case Intrinsic::frameaddress:
5973     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5974                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5975                              getValue(I.getArgOperand(0))));
5976     return;
5977   case Intrinsic::read_volatile_register:
5978   case Intrinsic::read_register: {
5979     Value *Reg = I.getArgOperand(0);
5980     SDValue Chain = getRoot();
5981     SDValue RegName =
5982         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5983     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5984     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5985       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5986     setValue(&I, Res);
5987     DAG.setRoot(Res.getValue(1));
5988     return;
5989   }
5990   case Intrinsic::write_register: {
5991     Value *Reg = I.getArgOperand(0);
5992     Value *RegValue = I.getArgOperand(1);
5993     SDValue Chain = getRoot();
5994     SDValue RegName =
5995         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5996     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5997                             RegName, getValue(RegValue)));
5998     return;
5999   }
6000   case Intrinsic::memcpy: {
6001     const auto &MCI = cast<MemCpyInst>(I);
6002     SDValue Op1 = getValue(I.getArgOperand(0));
6003     SDValue Op2 = getValue(I.getArgOperand(1));
6004     SDValue Op3 = getValue(I.getArgOperand(2));
6005     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6006     Align DstAlign = MCI.getDestAlign().valueOrOne();
6007     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6008     Align Alignment = std::min(DstAlign, SrcAlign);
6009     bool isVol = MCI.isVolatile();
6010     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6011     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6012     // node.
6013     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6014     SDValue MC = DAG.getMemcpy(
6015         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6016         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
6017         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6018     updateDAGForMaybeTailCall(MC);
6019     return;
6020   }
6021   case Intrinsic::memcpy_inline: {
6022     const auto &MCI = cast<MemCpyInlineInst>(I);
6023     SDValue Dst = getValue(I.getArgOperand(0));
6024     SDValue Src = getValue(I.getArgOperand(1));
6025     SDValue Size = getValue(I.getArgOperand(2));
6026     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6027     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6028     Align DstAlign = MCI.getDestAlign().valueOrOne();
6029     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6030     Align Alignment = std::min(DstAlign, SrcAlign);
6031     bool isVol = MCI.isVolatile();
6032     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6033     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6034     // node.
6035     SDValue MC = DAG.getMemcpy(
6036         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6037         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
6038         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6039     updateDAGForMaybeTailCall(MC);
6040     return;
6041   }
6042   case Intrinsic::memset: {
6043     const auto &MSI = cast<MemSetInst>(I);
6044     SDValue Op1 = getValue(I.getArgOperand(0));
6045     SDValue Op2 = getValue(I.getArgOperand(1));
6046     SDValue Op3 = getValue(I.getArgOperand(2));
6047     // @llvm.memset defines 0 and 1 to both mean no alignment.
6048     Align Alignment = MSI.getDestAlign().valueOrOne();
6049     bool isVol = MSI.isVolatile();
6050     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6051     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6052     SDValue MS = DAG.getMemset(
6053         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6054         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6055     updateDAGForMaybeTailCall(MS);
6056     return;
6057   }
6058   case Intrinsic::memset_inline: {
6059     const auto &MSII = cast<MemSetInlineInst>(I);
6060     SDValue Dst = getValue(I.getArgOperand(0));
6061     SDValue Value = getValue(I.getArgOperand(1));
6062     SDValue Size = getValue(I.getArgOperand(2));
6063     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6064     // @llvm.memset defines 0 and 1 to both mean no alignment.
6065     Align DstAlign = MSII.getDestAlign().valueOrOne();
6066     bool isVol = MSII.isVolatile();
6067     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6068     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6069     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6070                                /* AlwaysInline */ true, isTC,
6071                                MachinePointerInfo(I.getArgOperand(0)),
6072                                I.getAAMetadata());
6073     updateDAGForMaybeTailCall(MC);
6074     return;
6075   }
6076   case Intrinsic::memmove: {
6077     const auto &MMI = cast<MemMoveInst>(I);
6078     SDValue Op1 = getValue(I.getArgOperand(0));
6079     SDValue Op2 = getValue(I.getArgOperand(1));
6080     SDValue Op3 = getValue(I.getArgOperand(2));
6081     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6082     Align DstAlign = MMI.getDestAlign().valueOrOne();
6083     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6084     Align Alignment = std::min(DstAlign, SrcAlign);
6085     bool isVol = MMI.isVolatile();
6086     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6087     // FIXME: Support passing different dest/src alignments to the memmove DAG
6088     // node.
6089     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6090     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6091                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6092                                 MachinePointerInfo(I.getArgOperand(1)),
6093                                 I.getAAMetadata(), AA);
6094     updateDAGForMaybeTailCall(MM);
6095     return;
6096   }
6097   case Intrinsic::memcpy_element_unordered_atomic: {
6098     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6099     SDValue Dst = getValue(MI.getRawDest());
6100     SDValue Src = getValue(MI.getRawSource());
6101     SDValue Length = getValue(MI.getLength());
6102 
6103     Type *LengthTy = MI.getLength()->getType();
6104     unsigned ElemSz = MI.getElementSizeInBytes();
6105     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6106     SDValue MC =
6107         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6108                             isTC, MachinePointerInfo(MI.getRawDest()),
6109                             MachinePointerInfo(MI.getRawSource()));
6110     updateDAGForMaybeTailCall(MC);
6111     return;
6112   }
6113   case Intrinsic::memmove_element_unordered_atomic: {
6114     auto &MI = cast<AtomicMemMoveInst>(I);
6115     SDValue Dst = getValue(MI.getRawDest());
6116     SDValue Src = getValue(MI.getRawSource());
6117     SDValue Length = getValue(MI.getLength());
6118 
6119     Type *LengthTy = MI.getLength()->getType();
6120     unsigned ElemSz = MI.getElementSizeInBytes();
6121     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6122     SDValue MC =
6123         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6124                              isTC, MachinePointerInfo(MI.getRawDest()),
6125                              MachinePointerInfo(MI.getRawSource()));
6126     updateDAGForMaybeTailCall(MC);
6127     return;
6128   }
6129   case Intrinsic::memset_element_unordered_atomic: {
6130     auto &MI = cast<AtomicMemSetInst>(I);
6131     SDValue Dst = getValue(MI.getRawDest());
6132     SDValue Val = getValue(MI.getValue());
6133     SDValue Length = getValue(MI.getLength());
6134 
6135     Type *LengthTy = MI.getLength()->getType();
6136     unsigned ElemSz = MI.getElementSizeInBytes();
6137     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6138     SDValue MC =
6139         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6140                             isTC, MachinePointerInfo(MI.getRawDest()));
6141     updateDAGForMaybeTailCall(MC);
6142     return;
6143   }
6144   case Intrinsic::call_preallocated_setup: {
6145     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6146     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6147     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6148                               getRoot(), SrcValue);
6149     setValue(&I, Res);
6150     DAG.setRoot(Res);
6151     return;
6152   }
6153   case Intrinsic::call_preallocated_arg: {
6154     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6155     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6156     SDValue Ops[3];
6157     Ops[0] = getRoot();
6158     Ops[1] = SrcValue;
6159     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6160                                    MVT::i32); // arg index
6161     SDValue Res = DAG.getNode(
6162         ISD::PREALLOCATED_ARG, sdl,
6163         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6164     setValue(&I, Res);
6165     DAG.setRoot(Res.getValue(1));
6166     return;
6167   }
6168   case Intrinsic::dbg_declare: {
6169     const auto &DI = cast<DbgDeclareInst>(I);
6170     // Debug intrinsics are handled separately in assignment tracking mode.
6171     // Some intrinsics are handled right after Argument lowering.
6172     if (AssignmentTrackingEnabled ||
6173         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6174       return;
6175     // Assume dbg.declare can not currently use DIArgList, i.e.
6176     // it is non-variadic.
6177     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6178     DILocalVariable *Variable = DI.getVariable();
6179     DIExpression *Expression = DI.getExpression();
6180     dropDanglingDebugInfo(Variable, Expression);
6181     assert(Variable && "Missing variable");
6182     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6183                       << "\n");
6184     // Check if address has undef value.
6185     const Value *Address = DI.getVariableLocationOp(0);
6186     if (!Address || isa<UndefValue>(Address) ||
6187         (Address->use_empty() && !isa<Argument>(Address))) {
6188       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6189                         << " (bad/undef/unused-arg address)\n");
6190       return;
6191     }
6192 
6193     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6194 
6195     SDValue &N = NodeMap[Address];
6196     if (!N.getNode() && isa<Argument>(Address))
6197       // Check unused arguments map.
6198       N = UnusedArgNodeMap[Address];
6199     SDDbgValue *SDV;
6200     if (N.getNode()) {
6201       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6202         Address = BCI->getOperand(0);
6203       // Parameters are handled specially.
6204       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6205       if (isParameter && FINode) {
6206         // Byval parameter. We have a frame index at this point.
6207         SDV =
6208             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6209                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6210       } else if (isa<Argument>(Address)) {
6211         // Address is an argument, so try to emit its dbg value using
6212         // virtual register info from the FuncInfo.ValueMap.
6213         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6214                                  FuncArgumentDbgValueKind::Declare, N);
6215         return;
6216       } else {
6217         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6218                               true, dl, SDNodeOrder);
6219       }
6220       DAG.AddDbgValue(SDV, isParameter);
6221     } else {
6222       // If Address is an argument then try to emit its dbg value using
6223       // virtual register info from the FuncInfo.ValueMap.
6224       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6225                                     FuncArgumentDbgValueKind::Declare, N)) {
6226         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6227                           << " (could not emit func-arg dbg_value)\n");
6228       }
6229     }
6230     return;
6231   }
6232   case Intrinsic::dbg_label: {
6233     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6234     DILabel *Label = DI.getLabel();
6235     assert(Label && "Missing label");
6236 
6237     SDDbgLabel *SDV;
6238     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6239     DAG.AddDbgLabel(SDV);
6240     return;
6241   }
6242   case Intrinsic::dbg_assign: {
6243     // Debug intrinsics are handled seperately in assignment tracking mode.
6244     if (AssignmentTrackingEnabled)
6245       return;
6246     // If assignment tracking hasn't been enabled then fall through and treat
6247     // the dbg.assign as a dbg.value.
6248     [[fallthrough]];
6249   }
6250   case Intrinsic::dbg_value: {
6251     // Debug intrinsics are handled seperately in assignment tracking mode.
6252     if (AssignmentTrackingEnabled)
6253       return;
6254     const DbgValueInst &DI = cast<DbgValueInst>(I);
6255     assert(DI.getVariable() && "Missing variable");
6256 
6257     DILocalVariable *Variable = DI.getVariable();
6258     DIExpression *Expression = DI.getExpression();
6259     dropDanglingDebugInfo(Variable, Expression);
6260 
6261     if (DI.isKillLocation()) {
6262       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6263       return;
6264     }
6265 
6266     SmallVector<Value *, 4> Values(DI.getValues());
6267     if (Values.empty())
6268       return;
6269 
6270     bool IsVariadic = DI.hasArgList();
6271     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6272                           SDNodeOrder, IsVariadic))
6273       addDanglingDebugInfo(&DI, SDNodeOrder);
6274     return;
6275   }
6276 
6277   case Intrinsic::eh_typeid_for: {
6278     // Find the type id for the given typeinfo.
6279     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6280     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6281     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6282     setValue(&I, Res);
6283     return;
6284   }
6285 
6286   case Intrinsic::eh_return_i32:
6287   case Intrinsic::eh_return_i64:
6288     DAG.getMachineFunction().setCallsEHReturn(true);
6289     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6290                             MVT::Other,
6291                             getControlRoot(),
6292                             getValue(I.getArgOperand(0)),
6293                             getValue(I.getArgOperand(1))));
6294     return;
6295   case Intrinsic::eh_unwind_init:
6296     DAG.getMachineFunction().setCallsUnwindInit(true);
6297     return;
6298   case Intrinsic::eh_dwarf_cfa:
6299     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6300                              TLI.getPointerTy(DAG.getDataLayout()),
6301                              getValue(I.getArgOperand(0))));
6302     return;
6303   case Intrinsic::eh_sjlj_callsite: {
6304     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6305     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6306     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6307 
6308     MMI.setCurrentCallSite(CI->getZExtValue());
6309     return;
6310   }
6311   case Intrinsic::eh_sjlj_functioncontext: {
6312     // Get and store the index of the function context.
6313     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6314     AllocaInst *FnCtx =
6315       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6316     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6317     MFI.setFunctionContextIndex(FI);
6318     return;
6319   }
6320   case Intrinsic::eh_sjlj_setjmp: {
6321     SDValue Ops[2];
6322     Ops[0] = getRoot();
6323     Ops[1] = getValue(I.getArgOperand(0));
6324     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6325                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6326     setValue(&I, Op.getValue(0));
6327     DAG.setRoot(Op.getValue(1));
6328     return;
6329   }
6330   case Intrinsic::eh_sjlj_longjmp:
6331     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6332                             getRoot(), getValue(I.getArgOperand(0))));
6333     return;
6334   case Intrinsic::eh_sjlj_setup_dispatch:
6335     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6336                             getRoot()));
6337     return;
6338   case Intrinsic::masked_gather:
6339     visitMaskedGather(I);
6340     return;
6341   case Intrinsic::masked_load:
6342     visitMaskedLoad(I);
6343     return;
6344   case Intrinsic::masked_scatter:
6345     visitMaskedScatter(I);
6346     return;
6347   case Intrinsic::masked_store:
6348     visitMaskedStore(I);
6349     return;
6350   case Intrinsic::masked_expandload:
6351     visitMaskedLoad(I, true /* IsExpanding */);
6352     return;
6353   case Intrinsic::masked_compressstore:
6354     visitMaskedStore(I, true /* IsCompressing */);
6355     return;
6356   case Intrinsic::powi:
6357     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6358                             getValue(I.getArgOperand(1)), DAG));
6359     return;
6360   case Intrinsic::log:
6361     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6362     return;
6363   case Intrinsic::log2:
6364     setValue(&I,
6365              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6366     return;
6367   case Intrinsic::log10:
6368     setValue(&I,
6369              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6370     return;
6371   case Intrinsic::exp:
6372     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6373     return;
6374   case Intrinsic::exp2:
6375     setValue(&I,
6376              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6377     return;
6378   case Intrinsic::pow:
6379     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6380                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6381     return;
6382   case Intrinsic::sqrt:
6383   case Intrinsic::fabs:
6384   case Intrinsic::sin:
6385   case Intrinsic::cos:
6386   case Intrinsic::floor:
6387   case Intrinsic::ceil:
6388   case Intrinsic::trunc:
6389   case Intrinsic::rint:
6390   case Intrinsic::nearbyint:
6391   case Intrinsic::round:
6392   case Intrinsic::roundeven:
6393   case Intrinsic::canonicalize: {
6394     unsigned Opcode;
6395     switch (Intrinsic) {
6396     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6397     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6398     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6399     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6400     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6401     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6402     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6403     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6404     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6405     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6406     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6407     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6408     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6409     }
6410 
6411     setValue(&I, DAG.getNode(Opcode, sdl,
6412                              getValue(I.getArgOperand(0)).getValueType(),
6413                              getValue(I.getArgOperand(0)), Flags));
6414     return;
6415   }
6416   case Intrinsic::lround:
6417   case Intrinsic::llround:
6418   case Intrinsic::lrint:
6419   case Intrinsic::llrint: {
6420     unsigned Opcode;
6421     switch (Intrinsic) {
6422     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6423     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6424     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6425     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6426     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6427     }
6428 
6429     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6430     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6431                              getValue(I.getArgOperand(0))));
6432     return;
6433   }
6434   case Intrinsic::minnum:
6435     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6436                              getValue(I.getArgOperand(0)).getValueType(),
6437                              getValue(I.getArgOperand(0)),
6438                              getValue(I.getArgOperand(1)), Flags));
6439     return;
6440   case Intrinsic::maxnum:
6441     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6442                              getValue(I.getArgOperand(0)).getValueType(),
6443                              getValue(I.getArgOperand(0)),
6444                              getValue(I.getArgOperand(1)), Flags));
6445     return;
6446   case Intrinsic::minimum:
6447     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6448                              getValue(I.getArgOperand(0)).getValueType(),
6449                              getValue(I.getArgOperand(0)),
6450                              getValue(I.getArgOperand(1)), Flags));
6451     return;
6452   case Intrinsic::maximum:
6453     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6454                              getValue(I.getArgOperand(0)).getValueType(),
6455                              getValue(I.getArgOperand(0)),
6456                              getValue(I.getArgOperand(1)), Flags));
6457     return;
6458   case Intrinsic::copysign:
6459     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6460                              getValue(I.getArgOperand(0)).getValueType(),
6461                              getValue(I.getArgOperand(0)),
6462                              getValue(I.getArgOperand(1)), Flags));
6463     return;
6464   case Intrinsic::ldexp:
6465     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6466                              getValue(I.getArgOperand(0)).getValueType(),
6467                              getValue(I.getArgOperand(0)),
6468                              getValue(I.getArgOperand(1)), Flags));
6469     return;
6470   case Intrinsic::frexp: {
6471     SmallVector<EVT, 2> ValueVTs;
6472     ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
6473     SDVTList VTs = DAG.getVTList(ValueVTs);
6474     setValue(&I,
6475              DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0))));
6476     return;
6477   }
6478   case Intrinsic::arithmetic_fence: {
6479     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6480                              getValue(I.getArgOperand(0)).getValueType(),
6481                              getValue(I.getArgOperand(0)), Flags));
6482     return;
6483   }
6484   case Intrinsic::fma:
6485     setValue(&I, DAG.getNode(
6486                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6487                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6488                      getValue(I.getArgOperand(2)), Flags));
6489     return;
6490 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6491   case Intrinsic::INTRINSIC:
6492 #include "llvm/IR/ConstrainedOps.def"
6493     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6494     return;
6495 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6496 #include "llvm/IR/VPIntrinsics.def"
6497     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6498     return;
6499   case Intrinsic::fptrunc_round: {
6500     // Get the last argument, the metadata and convert it to an integer in the
6501     // call
6502     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6503     std::optional<RoundingMode> RoundMode =
6504         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6505 
6506     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6507 
6508     // Propagate fast-math-flags from IR to node(s).
6509     SDNodeFlags Flags;
6510     Flags.copyFMF(*cast<FPMathOperator>(&I));
6511     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6512 
6513     SDValue Result;
6514     Result = DAG.getNode(
6515         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6516         DAG.getTargetConstant((int)*RoundMode, sdl,
6517                               TLI.getPointerTy(DAG.getDataLayout())));
6518     setValue(&I, Result);
6519 
6520     return;
6521   }
6522   case Intrinsic::fmuladd: {
6523     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6524     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6525         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6526       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6527                                getValue(I.getArgOperand(0)).getValueType(),
6528                                getValue(I.getArgOperand(0)),
6529                                getValue(I.getArgOperand(1)),
6530                                getValue(I.getArgOperand(2)), Flags));
6531     } else {
6532       // TODO: Intrinsic calls should have fast-math-flags.
6533       SDValue Mul = DAG.getNode(
6534           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6535           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6536       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6537                                 getValue(I.getArgOperand(0)).getValueType(),
6538                                 Mul, getValue(I.getArgOperand(2)), Flags);
6539       setValue(&I, Add);
6540     }
6541     return;
6542   }
6543   case Intrinsic::convert_to_fp16:
6544     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6545                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6546                                          getValue(I.getArgOperand(0)),
6547                                          DAG.getTargetConstant(0, sdl,
6548                                                                MVT::i32))));
6549     return;
6550   case Intrinsic::convert_from_fp16:
6551     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6552                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6553                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6554                                          getValue(I.getArgOperand(0)))));
6555     return;
6556   case Intrinsic::fptosi_sat: {
6557     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6558     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6559                              getValue(I.getArgOperand(0)),
6560                              DAG.getValueType(VT.getScalarType())));
6561     return;
6562   }
6563   case Intrinsic::fptoui_sat: {
6564     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6565     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6566                              getValue(I.getArgOperand(0)),
6567                              DAG.getValueType(VT.getScalarType())));
6568     return;
6569   }
6570   case Intrinsic::set_rounding:
6571     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6572                       {getRoot(), getValue(I.getArgOperand(0))});
6573     setValue(&I, Res);
6574     DAG.setRoot(Res.getValue(0));
6575     return;
6576   case Intrinsic::is_fpclass: {
6577     const DataLayout DLayout = DAG.getDataLayout();
6578     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6579     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6580     FPClassTest Test = static_cast<FPClassTest>(
6581         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
6582     MachineFunction &MF = DAG.getMachineFunction();
6583     const Function &F = MF.getFunction();
6584     SDValue Op = getValue(I.getArgOperand(0));
6585     SDNodeFlags Flags;
6586     Flags.setNoFPExcept(
6587         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6588     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6589     // expansion can use illegal types. Making expansion early allows
6590     // legalizing these types prior to selection.
6591     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6592       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6593       setValue(&I, Result);
6594       return;
6595     }
6596 
6597     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6598     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6599     setValue(&I, V);
6600     return;
6601   }
6602   case Intrinsic::get_fpenv: {
6603     const DataLayout DLayout = DAG.getDataLayout();
6604     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
6605     Align TempAlign = DAG.getEVTAlign(EnvVT);
6606     SDValue Chain = getRoot();
6607     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
6608     // and temporary storage in stack.
6609     if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
6610       Res = DAG.getNode(
6611           ISD::GET_FPENV, sdl,
6612           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6613                         MVT::Other),
6614           Chain);
6615     } else {
6616       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6617       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6618       auto MPI =
6619           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6620       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6621           MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize,
6622           TempAlign);
6623       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6624       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
6625     }
6626     setValue(&I, Res);
6627     DAG.setRoot(Res.getValue(1));
6628     return;
6629   }
6630   case Intrinsic::set_fpenv: {
6631     const DataLayout DLayout = DAG.getDataLayout();
6632     SDValue Env = getValue(I.getArgOperand(0));
6633     EVT EnvVT = Env.getValueType();
6634     Align TempAlign = DAG.getEVTAlign(EnvVT);
6635     SDValue Chain = getRoot();
6636     // If SET_FPENV is custom or legal, use it. Otherwise use loading
6637     // environment from memory.
6638     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
6639       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
6640     } else {
6641       // Allocate space in stack, copy environment bits into it and use this
6642       // memory in SET_FPENV_MEM.
6643       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6644       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6645       auto MPI =
6646           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6647       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
6648                            MachineMemOperand::MOStore);
6649       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6650           MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize,
6651           TempAlign);
6652       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6653     }
6654     DAG.setRoot(Chain);
6655     return;
6656   }
6657   case Intrinsic::reset_fpenv:
6658     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
6659     return;
6660   case Intrinsic::pcmarker: {
6661     SDValue Tmp = getValue(I.getArgOperand(0));
6662     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6663     return;
6664   }
6665   case Intrinsic::readcyclecounter: {
6666     SDValue Op = getRoot();
6667     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6668                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6669     setValue(&I, Res);
6670     DAG.setRoot(Res.getValue(1));
6671     return;
6672   }
6673   case Intrinsic::bitreverse:
6674     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6675                              getValue(I.getArgOperand(0)).getValueType(),
6676                              getValue(I.getArgOperand(0))));
6677     return;
6678   case Intrinsic::bswap:
6679     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6680                              getValue(I.getArgOperand(0)).getValueType(),
6681                              getValue(I.getArgOperand(0))));
6682     return;
6683   case Intrinsic::cttz: {
6684     SDValue Arg = getValue(I.getArgOperand(0));
6685     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6686     EVT Ty = Arg.getValueType();
6687     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6688                              sdl, Ty, Arg));
6689     return;
6690   }
6691   case Intrinsic::ctlz: {
6692     SDValue Arg = getValue(I.getArgOperand(0));
6693     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6694     EVT Ty = Arg.getValueType();
6695     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6696                              sdl, Ty, Arg));
6697     return;
6698   }
6699   case Intrinsic::ctpop: {
6700     SDValue Arg = getValue(I.getArgOperand(0));
6701     EVT Ty = Arg.getValueType();
6702     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6703     return;
6704   }
6705   case Intrinsic::fshl:
6706   case Intrinsic::fshr: {
6707     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6708     SDValue X = getValue(I.getArgOperand(0));
6709     SDValue Y = getValue(I.getArgOperand(1));
6710     SDValue Z = getValue(I.getArgOperand(2));
6711     EVT VT = X.getValueType();
6712 
6713     if (X == Y) {
6714       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6715       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6716     } else {
6717       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6718       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6719     }
6720     return;
6721   }
6722   case Intrinsic::sadd_sat: {
6723     SDValue Op1 = getValue(I.getArgOperand(0));
6724     SDValue Op2 = getValue(I.getArgOperand(1));
6725     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6726     return;
6727   }
6728   case Intrinsic::uadd_sat: {
6729     SDValue Op1 = getValue(I.getArgOperand(0));
6730     SDValue Op2 = getValue(I.getArgOperand(1));
6731     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6732     return;
6733   }
6734   case Intrinsic::ssub_sat: {
6735     SDValue Op1 = getValue(I.getArgOperand(0));
6736     SDValue Op2 = getValue(I.getArgOperand(1));
6737     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6738     return;
6739   }
6740   case Intrinsic::usub_sat: {
6741     SDValue Op1 = getValue(I.getArgOperand(0));
6742     SDValue Op2 = getValue(I.getArgOperand(1));
6743     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6744     return;
6745   }
6746   case Intrinsic::sshl_sat: {
6747     SDValue Op1 = getValue(I.getArgOperand(0));
6748     SDValue Op2 = getValue(I.getArgOperand(1));
6749     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6750     return;
6751   }
6752   case Intrinsic::ushl_sat: {
6753     SDValue Op1 = getValue(I.getArgOperand(0));
6754     SDValue Op2 = getValue(I.getArgOperand(1));
6755     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6756     return;
6757   }
6758   case Intrinsic::smul_fix:
6759   case Intrinsic::umul_fix:
6760   case Intrinsic::smul_fix_sat:
6761   case Intrinsic::umul_fix_sat: {
6762     SDValue Op1 = getValue(I.getArgOperand(0));
6763     SDValue Op2 = getValue(I.getArgOperand(1));
6764     SDValue Op3 = getValue(I.getArgOperand(2));
6765     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6766                              Op1.getValueType(), Op1, Op2, Op3));
6767     return;
6768   }
6769   case Intrinsic::sdiv_fix:
6770   case Intrinsic::udiv_fix:
6771   case Intrinsic::sdiv_fix_sat:
6772   case Intrinsic::udiv_fix_sat: {
6773     SDValue Op1 = getValue(I.getArgOperand(0));
6774     SDValue Op2 = getValue(I.getArgOperand(1));
6775     SDValue Op3 = getValue(I.getArgOperand(2));
6776     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6777                               Op1, Op2, Op3, DAG, TLI));
6778     return;
6779   }
6780   case Intrinsic::smax: {
6781     SDValue Op1 = getValue(I.getArgOperand(0));
6782     SDValue Op2 = getValue(I.getArgOperand(1));
6783     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6784     return;
6785   }
6786   case Intrinsic::smin: {
6787     SDValue Op1 = getValue(I.getArgOperand(0));
6788     SDValue Op2 = getValue(I.getArgOperand(1));
6789     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6790     return;
6791   }
6792   case Intrinsic::umax: {
6793     SDValue Op1 = getValue(I.getArgOperand(0));
6794     SDValue Op2 = getValue(I.getArgOperand(1));
6795     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6796     return;
6797   }
6798   case Intrinsic::umin: {
6799     SDValue Op1 = getValue(I.getArgOperand(0));
6800     SDValue Op2 = getValue(I.getArgOperand(1));
6801     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6802     return;
6803   }
6804   case Intrinsic::abs: {
6805     // TODO: Preserve "int min is poison" arg in SDAG?
6806     SDValue Op1 = getValue(I.getArgOperand(0));
6807     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6808     return;
6809   }
6810   case Intrinsic::stacksave: {
6811     SDValue Op = getRoot();
6812     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6813     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6814     setValue(&I, Res);
6815     DAG.setRoot(Res.getValue(1));
6816     return;
6817   }
6818   case Intrinsic::stackrestore:
6819     Res = getValue(I.getArgOperand(0));
6820     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6821     return;
6822   case Intrinsic::get_dynamic_area_offset: {
6823     SDValue Op = getRoot();
6824     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6825     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6826     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6827     // target.
6828     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6829       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6830                          " intrinsic!");
6831     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6832                       Op);
6833     DAG.setRoot(Op);
6834     setValue(&I, Res);
6835     return;
6836   }
6837   case Intrinsic::stackguard: {
6838     MachineFunction &MF = DAG.getMachineFunction();
6839     const Module &M = *MF.getFunction().getParent();
6840     SDValue Chain = getRoot();
6841     if (TLI.useLoadStackGuardNode()) {
6842       Res = getLoadStackGuard(DAG, sdl, Chain);
6843     } else {
6844       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6845       const Value *Global = TLI.getSDagStackGuard(M);
6846       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6847       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6848                         MachinePointerInfo(Global, 0), Align,
6849                         MachineMemOperand::MOVolatile);
6850     }
6851     if (TLI.useStackGuardXorFP())
6852       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6853     DAG.setRoot(Chain);
6854     setValue(&I, Res);
6855     return;
6856   }
6857   case Intrinsic::stackprotector: {
6858     // Emit code into the DAG to store the stack guard onto the stack.
6859     MachineFunction &MF = DAG.getMachineFunction();
6860     MachineFrameInfo &MFI = MF.getFrameInfo();
6861     SDValue Src, Chain = getRoot();
6862 
6863     if (TLI.useLoadStackGuardNode())
6864       Src = getLoadStackGuard(DAG, sdl, Chain);
6865     else
6866       Src = getValue(I.getArgOperand(0));   // The guard's value.
6867 
6868     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6869 
6870     int FI = FuncInfo.StaticAllocaMap[Slot];
6871     MFI.setStackProtectorIndex(FI);
6872     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6873 
6874     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6875 
6876     // Store the stack protector onto the stack.
6877     Res = DAG.getStore(
6878         Chain, sdl, Src, FIN,
6879         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6880         MaybeAlign(), MachineMemOperand::MOVolatile);
6881     setValue(&I, Res);
6882     DAG.setRoot(Res);
6883     return;
6884   }
6885   case Intrinsic::objectsize:
6886     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6887 
6888   case Intrinsic::is_constant:
6889     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6890 
6891   case Intrinsic::annotation:
6892   case Intrinsic::ptr_annotation:
6893   case Intrinsic::launder_invariant_group:
6894   case Intrinsic::strip_invariant_group:
6895     // Drop the intrinsic, but forward the value
6896     setValue(&I, getValue(I.getOperand(0)));
6897     return;
6898 
6899   case Intrinsic::assume:
6900   case Intrinsic::experimental_noalias_scope_decl:
6901   case Intrinsic::var_annotation:
6902   case Intrinsic::sideeffect:
6903     // Discard annotate attributes, noalias scope declarations, assumptions, and
6904     // artificial side-effects.
6905     return;
6906 
6907   case Intrinsic::codeview_annotation: {
6908     // Emit a label associated with this metadata.
6909     MachineFunction &MF = DAG.getMachineFunction();
6910     MCSymbol *Label =
6911         MF.getMMI().getContext().createTempSymbol("annotation", true);
6912     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6913     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6914     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6915     DAG.setRoot(Res);
6916     return;
6917   }
6918 
6919   case Intrinsic::init_trampoline: {
6920     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6921 
6922     SDValue Ops[6];
6923     Ops[0] = getRoot();
6924     Ops[1] = getValue(I.getArgOperand(0));
6925     Ops[2] = getValue(I.getArgOperand(1));
6926     Ops[3] = getValue(I.getArgOperand(2));
6927     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6928     Ops[5] = DAG.getSrcValue(F);
6929 
6930     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6931 
6932     DAG.setRoot(Res);
6933     return;
6934   }
6935   case Intrinsic::adjust_trampoline:
6936     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6937                              TLI.getPointerTy(DAG.getDataLayout()),
6938                              getValue(I.getArgOperand(0))));
6939     return;
6940   case Intrinsic::gcroot: {
6941     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6942            "only valid in functions with gc specified, enforced by Verifier");
6943     assert(GFI && "implied by previous");
6944     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6945     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6946 
6947     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6948     GFI->addStackRoot(FI->getIndex(), TypeMap);
6949     return;
6950   }
6951   case Intrinsic::gcread:
6952   case Intrinsic::gcwrite:
6953     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6954   case Intrinsic::get_rounding:
6955     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
6956     setValue(&I, Res);
6957     DAG.setRoot(Res.getValue(1));
6958     return;
6959 
6960   case Intrinsic::expect:
6961     // Just replace __builtin_expect(exp, c) with EXP.
6962     setValue(&I, getValue(I.getArgOperand(0)));
6963     return;
6964 
6965   case Intrinsic::ubsantrap:
6966   case Intrinsic::debugtrap:
6967   case Intrinsic::trap: {
6968     StringRef TrapFuncName =
6969         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6970     if (TrapFuncName.empty()) {
6971       switch (Intrinsic) {
6972       case Intrinsic::trap:
6973         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6974         break;
6975       case Intrinsic::debugtrap:
6976         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6977         break;
6978       case Intrinsic::ubsantrap:
6979         DAG.setRoot(DAG.getNode(
6980             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6981             DAG.getTargetConstant(
6982                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6983                 MVT::i32)));
6984         break;
6985       default: llvm_unreachable("unknown trap intrinsic");
6986       }
6987       return;
6988     }
6989     TargetLowering::ArgListTy Args;
6990     if (Intrinsic == Intrinsic::ubsantrap) {
6991       Args.push_back(TargetLoweringBase::ArgListEntry());
6992       Args[0].Val = I.getArgOperand(0);
6993       Args[0].Node = getValue(Args[0].Val);
6994       Args[0].Ty = Args[0].Val->getType();
6995     }
6996 
6997     TargetLowering::CallLoweringInfo CLI(DAG);
6998     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6999         CallingConv::C, I.getType(),
7000         DAG.getExternalSymbol(TrapFuncName.data(),
7001                               TLI.getPointerTy(DAG.getDataLayout())),
7002         std::move(Args));
7003 
7004     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7005     DAG.setRoot(Result.second);
7006     return;
7007   }
7008 
7009   case Intrinsic::uadd_with_overflow:
7010   case Intrinsic::sadd_with_overflow:
7011   case Intrinsic::usub_with_overflow:
7012   case Intrinsic::ssub_with_overflow:
7013   case Intrinsic::umul_with_overflow:
7014   case Intrinsic::smul_with_overflow: {
7015     ISD::NodeType Op;
7016     switch (Intrinsic) {
7017     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7018     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7019     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7020     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7021     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7022     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7023     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7024     }
7025     SDValue Op1 = getValue(I.getArgOperand(0));
7026     SDValue Op2 = getValue(I.getArgOperand(1));
7027 
7028     EVT ResultVT = Op1.getValueType();
7029     EVT OverflowVT = MVT::i1;
7030     if (ResultVT.isVector())
7031       OverflowVT = EVT::getVectorVT(
7032           *Context, OverflowVT, ResultVT.getVectorElementCount());
7033 
7034     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7035     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7036     return;
7037   }
7038   case Intrinsic::prefetch: {
7039     SDValue Ops[5];
7040     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7041     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7042     Ops[0] = DAG.getRoot();
7043     Ops[1] = getValue(I.getArgOperand(0));
7044     Ops[2] = getValue(I.getArgOperand(1));
7045     Ops[3] = getValue(I.getArgOperand(2));
7046     Ops[4] = getValue(I.getArgOperand(3));
7047     SDValue Result = DAG.getMemIntrinsicNode(
7048         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7049         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7050         /* align */ std::nullopt, Flags);
7051 
7052     // Chain the prefetch in parallell with any pending loads, to stay out of
7053     // the way of later optimizations.
7054     PendingLoads.push_back(Result);
7055     Result = getRoot();
7056     DAG.setRoot(Result);
7057     return;
7058   }
7059   case Intrinsic::lifetime_start:
7060   case Intrinsic::lifetime_end: {
7061     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7062     // Stack coloring is not enabled in O0, discard region information.
7063     if (TM.getOptLevel() == CodeGenOpt::None)
7064       return;
7065 
7066     const int64_t ObjectSize =
7067         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7068     Value *const ObjectPtr = I.getArgOperand(1);
7069     SmallVector<const Value *, 4> Allocas;
7070     getUnderlyingObjects(ObjectPtr, Allocas);
7071 
7072     for (const Value *Alloca : Allocas) {
7073       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7074 
7075       // Could not find an Alloca.
7076       if (!LifetimeObject)
7077         continue;
7078 
7079       // First check that the Alloca is static, otherwise it won't have a
7080       // valid frame index.
7081       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7082       if (SI == FuncInfo.StaticAllocaMap.end())
7083         return;
7084 
7085       const int FrameIndex = SI->second;
7086       int64_t Offset;
7087       if (GetPointerBaseWithConstantOffset(
7088               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7089         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7090       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7091                                 Offset);
7092       DAG.setRoot(Res);
7093     }
7094     return;
7095   }
7096   case Intrinsic::pseudoprobe: {
7097     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7098     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7099     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7100     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7101     DAG.setRoot(Res);
7102     return;
7103   }
7104   case Intrinsic::invariant_start:
7105     // Discard region information.
7106     setValue(&I,
7107              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7108     return;
7109   case Intrinsic::invariant_end:
7110     // Discard region information.
7111     return;
7112   case Intrinsic::clear_cache:
7113     /// FunctionName may be null.
7114     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
7115       lowerCallToExternalSymbol(I, FunctionName);
7116     return;
7117   case Intrinsic::donothing:
7118   case Intrinsic::seh_try_begin:
7119   case Intrinsic::seh_scope_begin:
7120   case Intrinsic::seh_try_end:
7121   case Intrinsic::seh_scope_end:
7122     // ignore
7123     return;
7124   case Intrinsic::experimental_stackmap:
7125     visitStackmap(I);
7126     return;
7127   case Intrinsic::experimental_patchpoint_void:
7128   case Intrinsic::experimental_patchpoint_i64:
7129     visitPatchpoint(I);
7130     return;
7131   case Intrinsic::experimental_gc_statepoint:
7132     LowerStatepoint(cast<GCStatepointInst>(I));
7133     return;
7134   case Intrinsic::experimental_gc_result:
7135     visitGCResult(cast<GCResultInst>(I));
7136     return;
7137   case Intrinsic::experimental_gc_relocate:
7138     visitGCRelocate(cast<GCRelocateInst>(I));
7139     return;
7140   case Intrinsic::instrprof_cover:
7141     llvm_unreachable("instrprof failed to lower a cover");
7142   case Intrinsic::instrprof_increment:
7143     llvm_unreachable("instrprof failed to lower an increment");
7144   case Intrinsic::instrprof_timestamp:
7145     llvm_unreachable("instrprof failed to lower a timestamp");
7146   case Intrinsic::instrprof_value_profile:
7147     llvm_unreachable("instrprof failed to lower a value profiling call");
7148   case Intrinsic::localescape: {
7149     MachineFunction &MF = DAG.getMachineFunction();
7150     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7151 
7152     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7153     // is the same on all targets.
7154     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7155       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7156       if (isa<ConstantPointerNull>(Arg))
7157         continue; // Skip null pointers. They represent a hole in index space.
7158       AllocaInst *Slot = cast<AllocaInst>(Arg);
7159       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7160              "can only escape static allocas");
7161       int FI = FuncInfo.StaticAllocaMap[Slot];
7162       MCSymbol *FrameAllocSym =
7163           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7164               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7165       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7166               TII->get(TargetOpcode::LOCAL_ESCAPE))
7167           .addSym(FrameAllocSym)
7168           .addFrameIndex(FI);
7169     }
7170 
7171     return;
7172   }
7173 
7174   case Intrinsic::localrecover: {
7175     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7176     MachineFunction &MF = DAG.getMachineFunction();
7177 
7178     // Get the symbol that defines the frame offset.
7179     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7180     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7181     unsigned IdxVal =
7182         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7183     MCSymbol *FrameAllocSym =
7184         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7185             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7186 
7187     Value *FP = I.getArgOperand(1);
7188     SDValue FPVal = getValue(FP);
7189     EVT PtrVT = FPVal.getValueType();
7190 
7191     // Create a MCSymbol for the label to avoid any target lowering
7192     // that would make this PC relative.
7193     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7194     SDValue OffsetVal =
7195         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7196 
7197     // Add the offset to the FP.
7198     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7199     setValue(&I, Add);
7200 
7201     return;
7202   }
7203 
7204   case Intrinsic::eh_exceptionpointer:
7205   case Intrinsic::eh_exceptioncode: {
7206     // Get the exception pointer vreg, copy from it, and resize it to fit.
7207     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7208     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7209     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7210     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7211     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7212     if (Intrinsic == Intrinsic::eh_exceptioncode)
7213       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7214     setValue(&I, N);
7215     return;
7216   }
7217   case Intrinsic::xray_customevent: {
7218     // Here we want to make sure that the intrinsic behaves as if it has a
7219     // specific calling convention.
7220     const auto &Triple = DAG.getTarget().getTargetTriple();
7221     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7222       return;
7223 
7224     SmallVector<SDValue, 8> Ops;
7225 
7226     // We want to say that we always want the arguments in registers.
7227     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7228     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7229     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7230     SDValue Chain = getRoot();
7231     Ops.push_back(LogEntryVal);
7232     Ops.push_back(StrSizeVal);
7233     Ops.push_back(Chain);
7234 
7235     // We need to enforce the calling convention for the callsite, so that
7236     // argument ordering is enforced correctly, and that register allocation can
7237     // see that some registers may be assumed clobbered and have to preserve
7238     // them across calls to the intrinsic.
7239     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7240                                            sdl, NodeTys, Ops);
7241     SDValue patchableNode = SDValue(MN, 0);
7242     DAG.setRoot(patchableNode);
7243     setValue(&I, patchableNode);
7244     return;
7245   }
7246   case Intrinsic::xray_typedevent: {
7247     // Here we want to make sure that the intrinsic behaves as if it has a
7248     // specific calling convention.
7249     const auto &Triple = DAG.getTarget().getTargetTriple();
7250     if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7251       return;
7252 
7253     SmallVector<SDValue, 8> Ops;
7254 
7255     // We want to say that we always want the arguments in registers.
7256     // It's unclear to me how manipulating the selection DAG here forces callers
7257     // to provide arguments in registers instead of on the stack.
7258     SDValue LogTypeId = getValue(I.getArgOperand(0));
7259     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7260     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7261     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7262     SDValue Chain = getRoot();
7263     Ops.push_back(LogTypeId);
7264     Ops.push_back(LogEntryVal);
7265     Ops.push_back(StrSizeVal);
7266     Ops.push_back(Chain);
7267 
7268     // We need to enforce the calling convention for the callsite, so that
7269     // argument ordering is enforced correctly, and that register allocation can
7270     // see that some registers may be assumed clobbered and have to preserve
7271     // them across calls to the intrinsic.
7272     MachineSDNode *MN = DAG.getMachineNode(
7273         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7274     SDValue patchableNode = SDValue(MN, 0);
7275     DAG.setRoot(patchableNode);
7276     setValue(&I, patchableNode);
7277     return;
7278   }
7279   case Intrinsic::experimental_deoptimize:
7280     LowerDeoptimizeCall(&I);
7281     return;
7282   case Intrinsic::experimental_stepvector:
7283     visitStepVector(I);
7284     return;
7285   case Intrinsic::vector_reduce_fadd:
7286   case Intrinsic::vector_reduce_fmul:
7287   case Intrinsic::vector_reduce_add:
7288   case Intrinsic::vector_reduce_mul:
7289   case Intrinsic::vector_reduce_and:
7290   case Intrinsic::vector_reduce_or:
7291   case Intrinsic::vector_reduce_xor:
7292   case Intrinsic::vector_reduce_smax:
7293   case Intrinsic::vector_reduce_smin:
7294   case Intrinsic::vector_reduce_umax:
7295   case Intrinsic::vector_reduce_umin:
7296   case Intrinsic::vector_reduce_fmax:
7297   case Intrinsic::vector_reduce_fmin:
7298   case Intrinsic::vector_reduce_fmaximum:
7299   case Intrinsic::vector_reduce_fminimum:
7300     visitVectorReduce(I, Intrinsic);
7301     return;
7302 
7303   case Intrinsic::icall_branch_funnel: {
7304     SmallVector<SDValue, 16> Ops;
7305     Ops.push_back(getValue(I.getArgOperand(0)));
7306 
7307     int64_t Offset;
7308     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7309         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7310     if (!Base)
7311       report_fatal_error(
7312           "llvm.icall.branch.funnel operand must be a GlobalValue");
7313     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7314 
7315     struct BranchFunnelTarget {
7316       int64_t Offset;
7317       SDValue Target;
7318     };
7319     SmallVector<BranchFunnelTarget, 8> Targets;
7320 
7321     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7322       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7323           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7324       if (ElemBase != Base)
7325         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7326                            "to the same GlobalValue");
7327 
7328       SDValue Val = getValue(I.getArgOperand(Op + 1));
7329       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7330       if (!GA)
7331         report_fatal_error(
7332             "llvm.icall.branch.funnel operand must be a GlobalValue");
7333       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7334                                      GA->getGlobal(), sdl, Val.getValueType(),
7335                                      GA->getOffset())});
7336     }
7337     llvm::sort(Targets,
7338                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7339                  return T1.Offset < T2.Offset;
7340                });
7341 
7342     for (auto &T : Targets) {
7343       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7344       Ops.push_back(T.Target);
7345     }
7346 
7347     Ops.push_back(DAG.getRoot()); // Chain
7348     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7349                                  MVT::Other, Ops),
7350               0);
7351     DAG.setRoot(N);
7352     setValue(&I, N);
7353     HasTailCall = true;
7354     return;
7355   }
7356 
7357   case Intrinsic::wasm_landingpad_index:
7358     // Information this intrinsic contained has been transferred to
7359     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7360     // delete it now.
7361     return;
7362 
7363   case Intrinsic::aarch64_settag:
7364   case Intrinsic::aarch64_settag_zero: {
7365     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7366     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7367     SDValue Val = TSI.EmitTargetCodeForSetTag(
7368         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7369         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7370         ZeroMemory);
7371     DAG.setRoot(Val);
7372     setValue(&I, Val);
7373     return;
7374   }
7375   case Intrinsic::ptrmask: {
7376     SDValue Ptr = getValue(I.getOperand(0));
7377     SDValue Const = getValue(I.getOperand(1));
7378 
7379     EVT PtrVT = Ptr.getValueType();
7380     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7381                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7382     return;
7383   }
7384   case Intrinsic::threadlocal_address: {
7385     setValue(&I, getValue(I.getOperand(0)));
7386     return;
7387   }
7388   case Intrinsic::get_active_lane_mask: {
7389     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7390     SDValue Index = getValue(I.getOperand(0));
7391     EVT ElementVT = Index.getValueType();
7392 
7393     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7394       visitTargetIntrinsic(I, Intrinsic);
7395       return;
7396     }
7397 
7398     SDValue TripCount = getValue(I.getOperand(1));
7399     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7400 
7401     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7402     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7403     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7404     SDValue VectorInduction = DAG.getNode(
7405         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7406     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7407                                  VectorTripCount, ISD::CondCode::SETULT);
7408     setValue(&I, SetCC);
7409     return;
7410   }
7411   case Intrinsic::experimental_get_vector_length: {
7412     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7413            "Expected positive VF");
7414     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7415     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7416 
7417     SDValue Count = getValue(I.getOperand(0));
7418     EVT CountVT = Count.getValueType();
7419 
7420     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7421       visitTargetIntrinsic(I, Intrinsic);
7422       return;
7423     }
7424 
7425     // Expand to a umin between the trip count and the maximum elements the type
7426     // can hold.
7427     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7428 
7429     // Extend the trip count to at least the result VT.
7430     if (CountVT.bitsLT(VT)) {
7431       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7432       CountVT = VT;
7433     }
7434 
7435     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7436                                          ElementCount::get(VF, IsScalable));
7437 
7438     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7439     // Clip to the result type if needed.
7440     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7441 
7442     setValue(&I, Trunc);
7443     return;
7444   }
7445   case Intrinsic::vector_insert: {
7446     SDValue Vec = getValue(I.getOperand(0));
7447     SDValue SubVec = getValue(I.getOperand(1));
7448     SDValue Index = getValue(I.getOperand(2));
7449 
7450     // The intrinsic's index type is i64, but the SDNode requires an index type
7451     // suitable for the target. Convert the index as required.
7452     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7453     if (Index.getValueType() != VectorIdxTy)
7454       Index = DAG.getVectorIdxConstant(
7455           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7456 
7457     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7458     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7459                              Index));
7460     return;
7461   }
7462   case Intrinsic::vector_extract: {
7463     SDValue Vec = getValue(I.getOperand(0));
7464     SDValue Index = getValue(I.getOperand(1));
7465     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7466 
7467     // The intrinsic's index type is i64, but the SDNode requires an index type
7468     // suitable for the target. Convert the index as required.
7469     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7470     if (Index.getValueType() != VectorIdxTy)
7471       Index = DAG.getVectorIdxConstant(
7472           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7473 
7474     setValue(&I,
7475              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7476     return;
7477   }
7478   case Intrinsic::experimental_vector_reverse:
7479     visitVectorReverse(I);
7480     return;
7481   case Intrinsic::experimental_vector_splice:
7482     visitVectorSplice(I);
7483     return;
7484   case Intrinsic::callbr_landingpad:
7485     visitCallBrLandingPad(I);
7486     return;
7487   case Intrinsic::experimental_vector_interleave2:
7488     visitVectorInterleave(I);
7489     return;
7490   case Intrinsic::experimental_vector_deinterleave2:
7491     visitVectorDeinterleave(I);
7492     return;
7493   }
7494 }
7495 
7496 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7497     const ConstrainedFPIntrinsic &FPI) {
7498   SDLoc sdl = getCurSDLoc();
7499 
7500   // We do not need to serialize constrained FP intrinsics against
7501   // each other or against (nonvolatile) loads, so they can be
7502   // chained like loads.
7503   SDValue Chain = DAG.getRoot();
7504   SmallVector<SDValue, 4> Opers;
7505   Opers.push_back(Chain);
7506   if (FPI.isUnaryOp()) {
7507     Opers.push_back(getValue(FPI.getArgOperand(0)));
7508   } else if (FPI.isTernaryOp()) {
7509     Opers.push_back(getValue(FPI.getArgOperand(0)));
7510     Opers.push_back(getValue(FPI.getArgOperand(1)));
7511     Opers.push_back(getValue(FPI.getArgOperand(2)));
7512   } else {
7513     Opers.push_back(getValue(FPI.getArgOperand(0)));
7514     Opers.push_back(getValue(FPI.getArgOperand(1)));
7515   }
7516 
7517   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7518     assert(Result.getNode()->getNumValues() == 2);
7519 
7520     // Push node to the appropriate list so that future instructions can be
7521     // chained up correctly.
7522     SDValue OutChain = Result.getValue(1);
7523     switch (EB) {
7524     case fp::ExceptionBehavior::ebIgnore:
7525       // The only reason why ebIgnore nodes still need to be chained is that
7526       // they might depend on the current rounding mode, and therefore must
7527       // not be moved across instruction that may change that mode.
7528       [[fallthrough]];
7529     case fp::ExceptionBehavior::ebMayTrap:
7530       // These must not be moved across calls or instructions that may change
7531       // floating-point exception masks.
7532       PendingConstrainedFP.push_back(OutChain);
7533       break;
7534     case fp::ExceptionBehavior::ebStrict:
7535       // These must not be moved across calls or instructions that may change
7536       // floating-point exception masks or read floating-point exception flags.
7537       // In addition, they cannot be optimized out even if unused.
7538       PendingConstrainedFPStrict.push_back(OutChain);
7539       break;
7540     }
7541   };
7542 
7543   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7544   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7545   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7546   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7547 
7548   SDNodeFlags Flags;
7549   if (EB == fp::ExceptionBehavior::ebIgnore)
7550     Flags.setNoFPExcept(true);
7551 
7552   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7553     Flags.copyFMF(*FPOp);
7554 
7555   unsigned Opcode;
7556   switch (FPI.getIntrinsicID()) {
7557   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7558 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7559   case Intrinsic::INTRINSIC:                                                   \
7560     Opcode = ISD::STRICT_##DAGN;                                               \
7561     break;
7562 #include "llvm/IR/ConstrainedOps.def"
7563   case Intrinsic::experimental_constrained_fmuladd: {
7564     Opcode = ISD::STRICT_FMA;
7565     // Break fmuladd into fmul and fadd.
7566     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7567         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7568       Opers.pop_back();
7569       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7570       pushOutChain(Mul, EB);
7571       Opcode = ISD::STRICT_FADD;
7572       Opers.clear();
7573       Opers.push_back(Mul.getValue(1));
7574       Opers.push_back(Mul.getValue(0));
7575       Opers.push_back(getValue(FPI.getArgOperand(2)));
7576     }
7577     break;
7578   }
7579   }
7580 
7581   // A few strict DAG nodes carry additional operands that are not
7582   // set up by the default code above.
7583   switch (Opcode) {
7584   default: break;
7585   case ISD::STRICT_FP_ROUND:
7586     Opers.push_back(
7587         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7588     break;
7589   case ISD::STRICT_FSETCC:
7590   case ISD::STRICT_FSETCCS: {
7591     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7592     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7593     if (TM.Options.NoNaNsFPMath)
7594       Condition = getFCmpCodeWithoutNaN(Condition);
7595     Opers.push_back(DAG.getCondCode(Condition));
7596     break;
7597   }
7598   }
7599 
7600   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7601   pushOutChain(Result, EB);
7602 
7603   SDValue FPResult = Result.getValue(0);
7604   setValue(&FPI, FPResult);
7605 }
7606 
7607 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7608   std::optional<unsigned> ResOPC;
7609   switch (VPIntrin.getIntrinsicID()) {
7610   case Intrinsic::vp_ctlz: {
7611     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7612     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
7613     break;
7614   }
7615   case Intrinsic::vp_cttz: {
7616     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7617     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
7618     break;
7619   }
7620 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7621   case Intrinsic::VPID:                                                        \
7622     ResOPC = ISD::VPSD;                                                        \
7623     break;
7624 #include "llvm/IR/VPIntrinsics.def"
7625   }
7626 
7627   if (!ResOPC)
7628     llvm_unreachable(
7629         "Inconsistency: no SDNode available for this VPIntrinsic!");
7630 
7631   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7632       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7633     if (VPIntrin.getFastMathFlags().allowReassoc())
7634       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7635                                                 : ISD::VP_REDUCE_FMUL;
7636   }
7637 
7638   return *ResOPC;
7639 }
7640 
7641 void SelectionDAGBuilder::visitVPLoad(
7642     const VPIntrinsic &VPIntrin, EVT VT,
7643     const SmallVectorImpl<SDValue> &OpValues) {
7644   SDLoc DL = getCurSDLoc();
7645   Value *PtrOperand = VPIntrin.getArgOperand(0);
7646   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7647   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7648   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7649   SDValue LD;
7650   // Do not serialize variable-length loads of constant memory with
7651   // anything.
7652   if (!Alignment)
7653     Alignment = DAG.getEVTAlign(VT);
7654   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7655   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7656   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7657   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7658       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7659       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7660   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7661                      MMO, false /*IsExpanding */);
7662   if (AddToChain)
7663     PendingLoads.push_back(LD.getValue(1));
7664   setValue(&VPIntrin, LD);
7665 }
7666 
7667 void SelectionDAGBuilder::visitVPGather(
7668     const VPIntrinsic &VPIntrin, EVT VT,
7669     const SmallVectorImpl<SDValue> &OpValues) {
7670   SDLoc DL = getCurSDLoc();
7671   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7672   Value *PtrOperand = VPIntrin.getArgOperand(0);
7673   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7674   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7675   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7676   SDValue LD;
7677   if (!Alignment)
7678     Alignment = DAG.getEVTAlign(VT.getScalarType());
7679   unsigned AS =
7680     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7681   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7682      MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7683      MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7684   SDValue Base, Index, Scale;
7685   ISD::MemIndexType IndexType;
7686   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7687                                     this, VPIntrin.getParent(),
7688                                     VT.getScalarStoreSize());
7689   if (!UniformBase) {
7690     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7691     Index = getValue(PtrOperand);
7692     IndexType = ISD::SIGNED_SCALED;
7693     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7694   }
7695   EVT IdxVT = Index.getValueType();
7696   EVT EltTy = IdxVT.getVectorElementType();
7697   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7698     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7699     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7700   }
7701   LD = DAG.getGatherVP(
7702       DAG.getVTList(VT, MVT::Other), VT, DL,
7703       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7704       IndexType);
7705   PendingLoads.push_back(LD.getValue(1));
7706   setValue(&VPIntrin, LD);
7707 }
7708 
7709 void SelectionDAGBuilder::visitVPStore(
7710     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7711   SDLoc DL = getCurSDLoc();
7712   Value *PtrOperand = VPIntrin.getArgOperand(1);
7713   EVT VT = OpValues[0].getValueType();
7714   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7715   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7716   SDValue ST;
7717   if (!Alignment)
7718     Alignment = DAG.getEVTAlign(VT);
7719   SDValue Ptr = OpValues[1];
7720   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7721   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7722       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7723       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7724   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7725                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7726                       /* IsTruncating */ false, /*IsCompressing*/ false);
7727   DAG.setRoot(ST);
7728   setValue(&VPIntrin, ST);
7729 }
7730 
7731 void SelectionDAGBuilder::visitVPScatter(
7732     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7733   SDLoc DL = getCurSDLoc();
7734   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7735   Value *PtrOperand = VPIntrin.getArgOperand(1);
7736   EVT VT = OpValues[0].getValueType();
7737   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7738   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7739   SDValue ST;
7740   if (!Alignment)
7741     Alignment = DAG.getEVTAlign(VT.getScalarType());
7742   unsigned AS =
7743       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7744   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7745       MachinePointerInfo(AS), MachineMemOperand::MOStore,
7746       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7747   SDValue Base, Index, Scale;
7748   ISD::MemIndexType IndexType;
7749   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7750                                     this, VPIntrin.getParent(),
7751                                     VT.getScalarStoreSize());
7752   if (!UniformBase) {
7753     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7754     Index = getValue(PtrOperand);
7755     IndexType = ISD::SIGNED_SCALED;
7756     Scale =
7757       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7758   }
7759   EVT IdxVT = Index.getValueType();
7760   EVT EltTy = IdxVT.getVectorElementType();
7761   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7762     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7763     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7764   }
7765   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7766                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7767                          OpValues[2], OpValues[3]},
7768                         MMO, IndexType);
7769   DAG.setRoot(ST);
7770   setValue(&VPIntrin, ST);
7771 }
7772 
7773 void SelectionDAGBuilder::visitVPStridedLoad(
7774     const VPIntrinsic &VPIntrin, EVT VT,
7775     const SmallVectorImpl<SDValue> &OpValues) {
7776   SDLoc DL = getCurSDLoc();
7777   Value *PtrOperand = VPIntrin.getArgOperand(0);
7778   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7779   if (!Alignment)
7780     Alignment = DAG.getEVTAlign(VT.getScalarType());
7781   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7782   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7783   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7784   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7785   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7786   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7787       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7788       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7789 
7790   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7791                                     OpValues[2], OpValues[3], MMO,
7792                                     false /*IsExpanding*/);
7793 
7794   if (AddToChain)
7795     PendingLoads.push_back(LD.getValue(1));
7796   setValue(&VPIntrin, LD);
7797 }
7798 
7799 void SelectionDAGBuilder::visitVPStridedStore(
7800     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7801   SDLoc DL = getCurSDLoc();
7802   Value *PtrOperand = VPIntrin.getArgOperand(1);
7803   EVT VT = OpValues[0].getValueType();
7804   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7805   if (!Alignment)
7806     Alignment = DAG.getEVTAlign(VT.getScalarType());
7807   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7808   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7809       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7810       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7811 
7812   SDValue ST = DAG.getStridedStoreVP(
7813       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7814       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7815       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7816       /*IsCompressing*/ false);
7817 
7818   DAG.setRoot(ST);
7819   setValue(&VPIntrin, ST);
7820 }
7821 
7822 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7823   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7824   SDLoc DL = getCurSDLoc();
7825 
7826   ISD::CondCode Condition;
7827   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7828   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7829   if (IsFP) {
7830     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7831     // flags, but calls that don't return floating-point types can't be
7832     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7833     Condition = getFCmpCondCode(CondCode);
7834     if (TM.Options.NoNaNsFPMath)
7835       Condition = getFCmpCodeWithoutNaN(Condition);
7836   } else {
7837     Condition = getICmpCondCode(CondCode);
7838   }
7839 
7840   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7841   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7842   // #2 is the condition code
7843   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7844   SDValue EVL = getValue(VPIntrin.getOperand(4));
7845   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7846   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7847          "Unexpected target EVL type");
7848   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7849 
7850   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7851                                                         VPIntrin.getType());
7852   setValue(&VPIntrin,
7853            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7854 }
7855 
7856 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7857     const VPIntrinsic &VPIntrin) {
7858   SDLoc DL = getCurSDLoc();
7859   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7860 
7861   auto IID = VPIntrin.getIntrinsicID();
7862 
7863   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7864     return visitVPCmp(*CmpI);
7865 
7866   SmallVector<EVT, 4> ValueVTs;
7867   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7868   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7869   SDVTList VTs = DAG.getVTList(ValueVTs);
7870 
7871   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7872 
7873   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7874   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7875          "Unexpected target EVL type");
7876 
7877   // Request operands.
7878   SmallVector<SDValue, 7> OpValues;
7879   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7880     auto Op = getValue(VPIntrin.getArgOperand(I));
7881     if (I == EVLParamPos)
7882       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7883     OpValues.push_back(Op);
7884   }
7885 
7886   switch (Opcode) {
7887   default: {
7888     SDNodeFlags SDFlags;
7889     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7890       SDFlags.copyFMF(*FPMO);
7891     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7892     setValue(&VPIntrin, Result);
7893     break;
7894   }
7895   case ISD::VP_LOAD:
7896     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
7897     break;
7898   case ISD::VP_GATHER:
7899     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
7900     break;
7901   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7902     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7903     break;
7904   case ISD::VP_STORE:
7905     visitVPStore(VPIntrin, OpValues);
7906     break;
7907   case ISD::VP_SCATTER:
7908     visitVPScatter(VPIntrin, OpValues);
7909     break;
7910   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7911     visitVPStridedStore(VPIntrin, OpValues);
7912     break;
7913   case ISD::VP_FMULADD: {
7914     assert(OpValues.size() == 5 && "Unexpected number of operands");
7915     SDNodeFlags SDFlags;
7916     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7917       SDFlags.copyFMF(*FPMO);
7918     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7919         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
7920       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
7921     } else {
7922       SDValue Mul = DAG.getNode(
7923           ISD::VP_FMUL, DL, VTs,
7924           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
7925       SDValue Add =
7926           DAG.getNode(ISD::VP_FADD, DL, VTs,
7927                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
7928       setValue(&VPIntrin, Add);
7929     }
7930     break;
7931   }
7932   case ISD::VP_INTTOPTR: {
7933     SDValue N = OpValues[0];
7934     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
7935     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
7936     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7937                                OpValues[2]);
7938     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7939                              OpValues[2]);
7940     setValue(&VPIntrin, N);
7941     break;
7942   }
7943   case ISD::VP_PTRTOINT: {
7944     SDValue N = OpValues[0];
7945     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7946                                                           VPIntrin.getType());
7947     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
7948                                        VPIntrin.getOperand(0)->getType());
7949     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7950                                OpValues[2]);
7951     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7952                              OpValues[2]);
7953     setValue(&VPIntrin, N);
7954     break;
7955   }
7956   case ISD::VP_ABS:
7957   case ISD::VP_CTLZ:
7958   case ISD::VP_CTLZ_ZERO_UNDEF:
7959   case ISD::VP_CTTZ:
7960   case ISD::VP_CTTZ_ZERO_UNDEF: {
7961     SDValue Result =
7962         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
7963     setValue(&VPIntrin, Result);
7964     break;
7965   }
7966   }
7967 }
7968 
7969 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7970                                           const BasicBlock *EHPadBB,
7971                                           MCSymbol *&BeginLabel) {
7972   MachineFunction &MF = DAG.getMachineFunction();
7973   MachineModuleInfo &MMI = MF.getMMI();
7974 
7975   // Insert a label before the invoke call to mark the try range.  This can be
7976   // used to detect deletion of the invoke via the MachineModuleInfo.
7977   BeginLabel = MMI.getContext().createTempSymbol();
7978 
7979   // For SjLj, keep track of which landing pads go with which invokes
7980   // so as to maintain the ordering of pads in the LSDA.
7981   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7982   if (CallSiteIndex) {
7983     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7984     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7985 
7986     // Now that the call site is handled, stop tracking it.
7987     MMI.setCurrentCallSite(0);
7988   }
7989 
7990   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7991 }
7992 
7993 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7994                                         const BasicBlock *EHPadBB,
7995                                         MCSymbol *BeginLabel) {
7996   assert(BeginLabel && "BeginLabel should've been set");
7997 
7998   MachineFunction &MF = DAG.getMachineFunction();
7999   MachineModuleInfo &MMI = MF.getMMI();
8000 
8001   // Insert a label at the end of the invoke call to mark the try range.  This
8002   // can be used to detect deletion of the invoke via the MachineModuleInfo.
8003   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
8004   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
8005 
8006   // Inform MachineModuleInfo of range.
8007   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
8008   // There is a platform (e.g. wasm) that uses funclet style IR but does not
8009   // actually use outlined funclets and their LSDA info style.
8010   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8011     assert(II && "II should've been set");
8012     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8013     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8014   } else if (!isScopedEHPersonality(Pers)) {
8015     assert(EHPadBB);
8016     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
8017   }
8018 
8019   return Chain;
8020 }
8021 
8022 std::pair<SDValue, SDValue>
8023 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8024                                     const BasicBlock *EHPadBB) {
8025   MCSymbol *BeginLabel = nullptr;
8026 
8027   if (EHPadBB) {
8028     // Both PendingLoads and PendingExports must be flushed here;
8029     // this call might not return.
8030     (void)getRoot();
8031     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8032     CLI.setChain(getRoot());
8033   }
8034 
8035   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8036   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8037 
8038   assert((CLI.IsTailCall || Result.second.getNode()) &&
8039          "Non-null chain expected with non-tail call!");
8040   assert((Result.second.getNode() || !Result.first.getNode()) &&
8041          "Null value expected with tail call!");
8042 
8043   if (!Result.second.getNode()) {
8044     // As a special case, a null chain means that a tail call has been emitted
8045     // and the DAG root is already updated.
8046     HasTailCall = true;
8047 
8048     // Since there's no actual continuation from this block, nothing can be
8049     // relying on us setting vregs for them.
8050     PendingExports.clear();
8051   } else {
8052     DAG.setRoot(Result.second);
8053   }
8054 
8055   if (EHPadBB) {
8056     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8057                            BeginLabel));
8058   }
8059 
8060   return Result;
8061 }
8062 
8063 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8064                                       bool isTailCall,
8065                                       bool isMustTailCall,
8066                                       const BasicBlock *EHPadBB) {
8067   auto &DL = DAG.getDataLayout();
8068   FunctionType *FTy = CB.getFunctionType();
8069   Type *RetTy = CB.getType();
8070 
8071   TargetLowering::ArgListTy Args;
8072   Args.reserve(CB.arg_size());
8073 
8074   const Value *SwiftErrorVal = nullptr;
8075   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8076 
8077   if (isTailCall) {
8078     // Avoid emitting tail calls in functions with the disable-tail-calls
8079     // attribute.
8080     auto *Caller = CB.getParent()->getParent();
8081     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8082         "true" && !isMustTailCall)
8083       isTailCall = false;
8084 
8085     // We can't tail call inside a function with a swifterror argument. Lowering
8086     // does not support this yet. It would have to move into the swifterror
8087     // register before the call.
8088     if (TLI.supportSwiftError() &&
8089         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8090       isTailCall = false;
8091   }
8092 
8093   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8094     TargetLowering::ArgListEntry Entry;
8095     const Value *V = *I;
8096 
8097     // Skip empty types
8098     if (V->getType()->isEmptyTy())
8099       continue;
8100 
8101     SDValue ArgNode = getValue(V);
8102     Entry.Node = ArgNode; Entry.Ty = V->getType();
8103 
8104     Entry.setAttributes(&CB, I - CB.arg_begin());
8105 
8106     // Use swifterror virtual register as input to the call.
8107     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8108       SwiftErrorVal = V;
8109       // We find the virtual register for the actual swifterror argument.
8110       // Instead of using the Value, we use the virtual register instead.
8111       Entry.Node =
8112           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8113                           EVT(TLI.getPointerTy(DL)));
8114     }
8115 
8116     Args.push_back(Entry);
8117 
8118     // If we have an explicit sret argument that is an Instruction, (i.e., it
8119     // might point to function-local memory), we can't meaningfully tail-call.
8120     if (Entry.IsSRet && isa<Instruction>(V))
8121       isTailCall = false;
8122   }
8123 
8124   // If call site has a cfguardtarget operand bundle, create and add an
8125   // additional ArgListEntry.
8126   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8127     TargetLowering::ArgListEntry Entry;
8128     Value *V = Bundle->Inputs[0];
8129     SDValue ArgNode = getValue(V);
8130     Entry.Node = ArgNode;
8131     Entry.Ty = V->getType();
8132     Entry.IsCFGuardTarget = true;
8133     Args.push_back(Entry);
8134   }
8135 
8136   // Check if target-independent constraints permit a tail call here.
8137   // Target-dependent constraints are checked within TLI->LowerCallTo.
8138   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8139     isTailCall = false;
8140 
8141   // Disable tail calls if there is an swifterror argument. Targets have not
8142   // been updated to support tail calls.
8143   if (TLI.supportSwiftError() && SwiftErrorVal)
8144     isTailCall = false;
8145 
8146   ConstantInt *CFIType = nullptr;
8147   if (CB.isIndirectCall()) {
8148     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8149       if (!TLI.supportKCFIBundles())
8150         report_fatal_error(
8151             "Target doesn't support calls with kcfi operand bundles.");
8152       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8153       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8154     }
8155   }
8156 
8157   TargetLowering::CallLoweringInfo CLI(DAG);
8158   CLI.setDebugLoc(getCurSDLoc())
8159       .setChain(getRoot())
8160       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8161       .setTailCall(isTailCall)
8162       .setConvergent(CB.isConvergent())
8163       .setIsPreallocated(
8164           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8165       .setCFIType(CFIType);
8166   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8167 
8168   if (Result.first.getNode()) {
8169     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8170     setValue(&CB, Result.first);
8171   }
8172 
8173   // The last element of CLI.InVals has the SDValue for swifterror return.
8174   // Here we copy it to a virtual register and update SwiftErrorMap for
8175   // book-keeping.
8176   if (SwiftErrorVal && TLI.supportSwiftError()) {
8177     // Get the last element of InVals.
8178     SDValue Src = CLI.InVals.back();
8179     Register VReg =
8180         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8181     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8182     DAG.setRoot(CopyNode);
8183   }
8184 }
8185 
8186 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8187                              SelectionDAGBuilder &Builder) {
8188   // Check to see if this load can be trivially constant folded, e.g. if the
8189   // input is from a string literal.
8190   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8191     // Cast pointer to the type we really want to load.
8192     Type *LoadTy =
8193         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8194     if (LoadVT.isVector())
8195       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8196 
8197     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8198                                          PointerType::getUnqual(LoadTy));
8199 
8200     if (const Constant *LoadCst =
8201             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8202                                          LoadTy, Builder.DAG.getDataLayout()))
8203       return Builder.getValue(LoadCst);
8204   }
8205 
8206   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8207   // still constant memory, the input chain can be the entry node.
8208   SDValue Root;
8209   bool ConstantMemory = false;
8210 
8211   // Do not serialize (non-volatile) loads of constant memory with anything.
8212   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8213     Root = Builder.DAG.getEntryNode();
8214     ConstantMemory = true;
8215   } else {
8216     // Do not serialize non-volatile loads against each other.
8217     Root = Builder.DAG.getRoot();
8218   }
8219 
8220   SDValue Ptr = Builder.getValue(PtrVal);
8221   SDValue LoadVal =
8222       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8223                           MachinePointerInfo(PtrVal), Align(1));
8224 
8225   if (!ConstantMemory)
8226     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8227   return LoadVal;
8228 }
8229 
8230 /// Record the value for an instruction that produces an integer result,
8231 /// converting the type where necessary.
8232 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8233                                                   SDValue Value,
8234                                                   bool IsSigned) {
8235   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8236                                                     I.getType(), true);
8237   Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8238   setValue(&I, Value);
8239 }
8240 
8241 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8242 /// true and lower it. Otherwise return false, and it will be lowered like a
8243 /// normal call.
8244 /// The caller already checked that \p I calls the appropriate LibFunc with a
8245 /// correct prototype.
8246 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8247   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8248   const Value *Size = I.getArgOperand(2);
8249   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8250   if (CSize && CSize->getZExtValue() == 0) {
8251     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8252                                                           I.getType(), true);
8253     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8254     return true;
8255   }
8256 
8257   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8258   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8259       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8260       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8261   if (Res.first.getNode()) {
8262     processIntegerCallValue(I, Res.first, true);
8263     PendingLoads.push_back(Res.second);
8264     return true;
8265   }
8266 
8267   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8268   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8269   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8270     return false;
8271 
8272   // If the target has a fast compare for the given size, it will return a
8273   // preferred load type for that size. Require that the load VT is legal and
8274   // that the target supports unaligned loads of that type. Otherwise, return
8275   // INVALID.
8276   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8277     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8278     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8279     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8280       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8281       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8282       // TODO: Check alignment of src and dest ptrs.
8283       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8284       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8285       if (!TLI.isTypeLegal(LVT) ||
8286           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8287           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8288         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8289     }
8290 
8291     return LVT;
8292   };
8293 
8294   // This turns into unaligned loads. We only do this if the target natively
8295   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8296   // we'll only produce a small number of byte loads.
8297   MVT LoadVT;
8298   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8299   switch (NumBitsToCompare) {
8300   default:
8301     return false;
8302   case 16:
8303     LoadVT = MVT::i16;
8304     break;
8305   case 32:
8306     LoadVT = MVT::i32;
8307     break;
8308   case 64:
8309   case 128:
8310   case 256:
8311     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8312     break;
8313   }
8314 
8315   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8316     return false;
8317 
8318   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8319   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8320 
8321   // Bitcast to a wide integer type if the loads are vectors.
8322   if (LoadVT.isVector()) {
8323     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8324     LoadL = DAG.getBitcast(CmpVT, LoadL);
8325     LoadR = DAG.getBitcast(CmpVT, LoadR);
8326   }
8327 
8328   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8329   processIntegerCallValue(I, Cmp, false);
8330   return true;
8331 }
8332 
8333 /// See if we can lower a memchr call into an optimized form. If so, return
8334 /// true and lower it. Otherwise return false, and it will be lowered like a
8335 /// normal call.
8336 /// The caller already checked that \p I calls the appropriate LibFunc with a
8337 /// correct prototype.
8338 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8339   const Value *Src = I.getArgOperand(0);
8340   const Value *Char = I.getArgOperand(1);
8341   const Value *Length = I.getArgOperand(2);
8342 
8343   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8344   std::pair<SDValue, SDValue> Res =
8345     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8346                                 getValue(Src), getValue(Char), getValue(Length),
8347                                 MachinePointerInfo(Src));
8348   if (Res.first.getNode()) {
8349     setValue(&I, Res.first);
8350     PendingLoads.push_back(Res.second);
8351     return true;
8352   }
8353 
8354   return false;
8355 }
8356 
8357 /// See if we can lower a mempcpy call into an optimized form. If so, return
8358 /// true and lower it. Otherwise return false, and it will be lowered like a
8359 /// normal call.
8360 /// The caller already checked that \p I calls the appropriate LibFunc with a
8361 /// correct prototype.
8362 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8363   SDValue Dst = getValue(I.getArgOperand(0));
8364   SDValue Src = getValue(I.getArgOperand(1));
8365   SDValue Size = getValue(I.getArgOperand(2));
8366 
8367   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8368   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8369   // DAG::getMemcpy needs Alignment to be defined.
8370   Align Alignment = std::min(DstAlign, SrcAlign);
8371 
8372   SDLoc sdl = getCurSDLoc();
8373 
8374   // In the mempcpy context we need to pass in a false value for isTailCall
8375   // because the return pointer needs to be adjusted by the size of
8376   // the copied memory.
8377   SDValue Root = getMemoryRoot();
8378   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false,
8379                              /*isTailCall=*/false,
8380                              MachinePointerInfo(I.getArgOperand(0)),
8381                              MachinePointerInfo(I.getArgOperand(1)),
8382                              I.getAAMetadata());
8383   assert(MC.getNode() != nullptr &&
8384          "** memcpy should not be lowered as TailCall in mempcpy context **");
8385   DAG.setRoot(MC);
8386 
8387   // Check if Size needs to be truncated or extended.
8388   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8389 
8390   // Adjust return pointer to point just past the last dst byte.
8391   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8392                                     Dst, Size);
8393   setValue(&I, DstPlusSize);
8394   return true;
8395 }
8396 
8397 /// See if we can lower a strcpy call into an optimized form.  If so, return
8398 /// true and lower it, otherwise return false and it will be lowered like a
8399 /// normal call.
8400 /// The caller already checked that \p I calls the appropriate LibFunc with a
8401 /// correct prototype.
8402 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8403   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8404 
8405   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8406   std::pair<SDValue, SDValue> Res =
8407     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8408                                 getValue(Arg0), getValue(Arg1),
8409                                 MachinePointerInfo(Arg0),
8410                                 MachinePointerInfo(Arg1), isStpcpy);
8411   if (Res.first.getNode()) {
8412     setValue(&I, Res.first);
8413     DAG.setRoot(Res.second);
8414     return true;
8415   }
8416 
8417   return false;
8418 }
8419 
8420 /// See if we can lower a strcmp call into an optimized form.  If so, return
8421 /// true and lower it, otherwise return false and it will be lowered like a
8422 /// normal call.
8423 /// The caller already checked that \p I calls the appropriate LibFunc with a
8424 /// correct prototype.
8425 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8426   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8427 
8428   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8429   std::pair<SDValue, SDValue> Res =
8430     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8431                                 getValue(Arg0), getValue(Arg1),
8432                                 MachinePointerInfo(Arg0),
8433                                 MachinePointerInfo(Arg1));
8434   if (Res.first.getNode()) {
8435     processIntegerCallValue(I, Res.first, true);
8436     PendingLoads.push_back(Res.second);
8437     return true;
8438   }
8439 
8440   return false;
8441 }
8442 
8443 /// See if we can lower a strlen call into an optimized form.  If so, return
8444 /// true and lower it, otherwise return false and it will be lowered like a
8445 /// normal call.
8446 /// The caller already checked that \p I calls the appropriate LibFunc with a
8447 /// correct prototype.
8448 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8449   const Value *Arg0 = I.getArgOperand(0);
8450 
8451   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8452   std::pair<SDValue, SDValue> Res =
8453     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8454                                 getValue(Arg0), MachinePointerInfo(Arg0));
8455   if (Res.first.getNode()) {
8456     processIntegerCallValue(I, Res.first, false);
8457     PendingLoads.push_back(Res.second);
8458     return true;
8459   }
8460 
8461   return false;
8462 }
8463 
8464 /// See if we can lower a strnlen call into an optimized form.  If so, return
8465 /// true and lower it, otherwise return false and it will be lowered like a
8466 /// normal call.
8467 /// The caller already checked that \p I calls the appropriate LibFunc with a
8468 /// correct prototype.
8469 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8470   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8471 
8472   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8473   std::pair<SDValue, SDValue> Res =
8474     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8475                                  getValue(Arg0), getValue(Arg1),
8476                                  MachinePointerInfo(Arg0));
8477   if (Res.first.getNode()) {
8478     processIntegerCallValue(I, Res.first, false);
8479     PendingLoads.push_back(Res.second);
8480     return true;
8481   }
8482 
8483   return false;
8484 }
8485 
8486 /// See if we can lower a unary floating-point operation into an SDNode with
8487 /// the specified Opcode.  If so, return true and lower it, otherwise return
8488 /// false and it will be lowered like a normal call.
8489 /// The caller already checked that \p I calls the appropriate LibFunc with a
8490 /// correct prototype.
8491 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8492                                               unsigned Opcode) {
8493   // We already checked this call's prototype; verify it doesn't modify errno.
8494   if (!I.onlyReadsMemory())
8495     return false;
8496 
8497   SDNodeFlags Flags;
8498   Flags.copyFMF(cast<FPMathOperator>(I));
8499 
8500   SDValue Tmp = getValue(I.getArgOperand(0));
8501   setValue(&I,
8502            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8503   return true;
8504 }
8505 
8506 /// See if we can lower a binary floating-point operation into an SDNode with
8507 /// the specified Opcode. If so, return true and lower it. Otherwise return
8508 /// false, and it will be lowered like a normal call.
8509 /// The caller already checked that \p I calls the appropriate LibFunc with a
8510 /// correct prototype.
8511 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8512                                                unsigned Opcode) {
8513   // We already checked this call's prototype; verify it doesn't modify errno.
8514   if (!I.onlyReadsMemory())
8515     return false;
8516 
8517   SDNodeFlags Flags;
8518   Flags.copyFMF(cast<FPMathOperator>(I));
8519 
8520   SDValue Tmp0 = getValue(I.getArgOperand(0));
8521   SDValue Tmp1 = getValue(I.getArgOperand(1));
8522   EVT VT = Tmp0.getValueType();
8523   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8524   return true;
8525 }
8526 
8527 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8528   // Handle inline assembly differently.
8529   if (I.isInlineAsm()) {
8530     visitInlineAsm(I);
8531     return;
8532   }
8533 
8534   diagnoseDontCall(I);
8535 
8536   if (Function *F = I.getCalledFunction()) {
8537     if (F->isDeclaration()) {
8538       // Is this an LLVM intrinsic or a target-specific intrinsic?
8539       unsigned IID = F->getIntrinsicID();
8540       if (!IID)
8541         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8542           IID = II->getIntrinsicID(F);
8543 
8544       if (IID) {
8545         visitIntrinsicCall(I, IID);
8546         return;
8547       }
8548     }
8549 
8550     // Check for well-known libc/libm calls.  If the function is internal, it
8551     // can't be a library call.  Don't do the check if marked as nobuiltin for
8552     // some reason or the call site requires strict floating point semantics.
8553     LibFunc Func;
8554     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8555         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8556         LibInfo->hasOptimizedCodeGen(Func)) {
8557       switch (Func) {
8558       default: break;
8559       case LibFunc_bcmp:
8560         if (visitMemCmpBCmpCall(I))
8561           return;
8562         break;
8563       case LibFunc_copysign:
8564       case LibFunc_copysignf:
8565       case LibFunc_copysignl:
8566         // We already checked this call's prototype; verify it doesn't modify
8567         // errno.
8568         if (I.onlyReadsMemory()) {
8569           SDValue LHS = getValue(I.getArgOperand(0));
8570           SDValue RHS = getValue(I.getArgOperand(1));
8571           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8572                                    LHS.getValueType(), LHS, RHS));
8573           return;
8574         }
8575         break;
8576       case LibFunc_fabs:
8577       case LibFunc_fabsf:
8578       case LibFunc_fabsl:
8579         if (visitUnaryFloatCall(I, ISD::FABS))
8580           return;
8581         break;
8582       case LibFunc_fmin:
8583       case LibFunc_fminf:
8584       case LibFunc_fminl:
8585         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8586           return;
8587         break;
8588       case LibFunc_fmax:
8589       case LibFunc_fmaxf:
8590       case LibFunc_fmaxl:
8591         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8592           return;
8593         break;
8594       case LibFunc_sin:
8595       case LibFunc_sinf:
8596       case LibFunc_sinl:
8597         if (visitUnaryFloatCall(I, ISD::FSIN))
8598           return;
8599         break;
8600       case LibFunc_cos:
8601       case LibFunc_cosf:
8602       case LibFunc_cosl:
8603         if (visitUnaryFloatCall(I, ISD::FCOS))
8604           return;
8605         break;
8606       case LibFunc_sqrt:
8607       case LibFunc_sqrtf:
8608       case LibFunc_sqrtl:
8609       case LibFunc_sqrt_finite:
8610       case LibFunc_sqrtf_finite:
8611       case LibFunc_sqrtl_finite:
8612         if (visitUnaryFloatCall(I, ISD::FSQRT))
8613           return;
8614         break;
8615       case LibFunc_floor:
8616       case LibFunc_floorf:
8617       case LibFunc_floorl:
8618         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8619           return;
8620         break;
8621       case LibFunc_nearbyint:
8622       case LibFunc_nearbyintf:
8623       case LibFunc_nearbyintl:
8624         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8625           return;
8626         break;
8627       case LibFunc_ceil:
8628       case LibFunc_ceilf:
8629       case LibFunc_ceill:
8630         if (visitUnaryFloatCall(I, ISD::FCEIL))
8631           return;
8632         break;
8633       case LibFunc_rint:
8634       case LibFunc_rintf:
8635       case LibFunc_rintl:
8636         if (visitUnaryFloatCall(I, ISD::FRINT))
8637           return;
8638         break;
8639       case LibFunc_round:
8640       case LibFunc_roundf:
8641       case LibFunc_roundl:
8642         if (visitUnaryFloatCall(I, ISD::FROUND))
8643           return;
8644         break;
8645       case LibFunc_trunc:
8646       case LibFunc_truncf:
8647       case LibFunc_truncl:
8648         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8649           return;
8650         break;
8651       case LibFunc_log2:
8652       case LibFunc_log2f:
8653       case LibFunc_log2l:
8654         if (visitUnaryFloatCall(I, ISD::FLOG2))
8655           return;
8656         break;
8657       case LibFunc_exp2:
8658       case LibFunc_exp2f:
8659       case LibFunc_exp2l:
8660         if (visitUnaryFloatCall(I, ISD::FEXP2))
8661           return;
8662         break;
8663       case LibFunc_ldexp:
8664       case LibFunc_ldexpf:
8665       case LibFunc_ldexpl:
8666         if (visitBinaryFloatCall(I, ISD::FLDEXP))
8667           return;
8668         break;
8669       case LibFunc_memcmp:
8670         if (visitMemCmpBCmpCall(I))
8671           return;
8672         break;
8673       case LibFunc_mempcpy:
8674         if (visitMemPCpyCall(I))
8675           return;
8676         break;
8677       case LibFunc_memchr:
8678         if (visitMemChrCall(I))
8679           return;
8680         break;
8681       case LibFunc_strcpy:
8682         if (visitStrCpyCall(I, false))
8683           return;
8684         break;
8685       case LibFunc_stpcpy:
8686         if (visitStrCpyCall(I, true))
8687           return;
8688         break;
8689       case LibFunc_strcmp:
8690         if (visitStrCmpCall(I))
8691           return;
8692         break;
8693       case LibFunc_strlen:
8694         if (visitStrLenCall(I))
8695           return;
8696         break;
8697       case LibFunc_strnlen:
8698         if (visitStrNLenCall(I))
8699           return;
8700         break;
8701       }
8702     }
8703   }
8704 
8705   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8706   // have to do anything here to lower funclet bundles.
8707   // CFGuardTarget bundles are lowered in LowerCallTo.
8708   assert(!I.hasOperandBundlesOtherThan(
8709              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8710               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8711               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
8712          "Cannot lower calls with arbitrary operand bundles!");
8713 
8714   SDValue Callee = getValue(I.getCalledOperand());
8715 
8716   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8717     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8718   else
8719     // Check if we can potentially perform a tail call. More detailed checking
8720     // is be done within LowerCallTo, after more information about the call is
8721     // known.
8722     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8723 }
8724 
8725 namespace {
8726 
8727 /// AsmOperandInfo - This contains information for each constraint that we are
8728 /// lowering.
8729 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8730 public:
8731   /// CallOperand - If this is the result output operand or a clobber
8732   /// this is null, otherwise it is the incoming operand to the CallInst.
8733   /// This gets modified as the asm is processed.
8734   SDValue CallOperand;
8735 
8736   /// AssignedRegs - If this is a register or register class operand, this
8737   /// contains the set of register corresponding to the operand.
8738   RegsForValue AssignedRegs;
8739 
8740   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8741     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8742   }
8743 
8744   /// Whether or not this operand accesses memory
8745   bool hasMemory(const TargetLowering &TLI) const {
8746     // Indirect operand accesses access memory.
8747     if (isIndirect)
8748       return true;
8749 
8750     for (const auto &Code : Codes)
8751       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8752         return true;
8753 
8754     return false;
8755   }
8756 };
8757 
8758 
8759 } // end anonymous namespace
8760 
8761 /// Make sure that the output operand \p OpInfo and its corresponding input
8762 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8763 /// out).
8764 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8765                                SDISelAsmOperandInfo &MatchingOpInfo,
8766                                SelectionDAG &DAG) {
8767   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8768     return;
8769 
8770   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8771   const auto &TLI = DAG.getTargetLoweringInfo();
8772 
8773   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8774       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8775                                        OpInfo.ConstraintVT);
8776   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8777       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8778                                        MatchingOpInfo.ConstraintVT);
8779   if ((OpInfo.ConstraintVT.isInteger() !=
8780        MatchingOpInfo.ConstraintVT.isInteger()) ||
8781       (MatchRC.second != InputRC.second)) {
8782     // FIXME: error out in a more elegant fashion
8783     report_fatal_error("Unsupported asm: input constraint"
8784                        " with a matching output constraint of"
8785                        " incompatible type!");
8786   }
8787   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8788 }
8789 
8790 /// Get a direct memory input to behave well as an indirect operand.
8791 /// This may introduce stores, hence the need for a \p Chain.
8792 /// \return The (possibly updated) chain.
8793 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8794                                         SDISelAsmOperandInfo &OpInfo,
8795                                         SelectionDAG &DAG) {
8796   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8797 
8798   // If we don't have an indirect input, put it in the constpool if we can,
8799   // otherwise spill it to a stack slot.
8800   // TODO: This isn't quite right. We need to handle these according to
8801   // the addressing mode that the constraint wants. Also, this may take
8802   // an additional register for the computation and we don't want that
8803   // either.
8804 
8805   // If the operand is a float, integer, or vector constant, spill to a
8806   // constant pool entry to get its address.
8807   const Value *OpVal = OpInfo.CallOperandVal;
8808   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8809       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8810     OpInfo.CallOperand = DAG.getConstantPool(
8811         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8812     return Chain;
8813   }
8814 
8815   // Otherwise, create a stack slot and emit a store to it before the asm.
8816   Type *Ty = OpVal->getType();
8817   auto &DL = DAG.getDataLayout();
8818   uint64_t TySize = DL.getTypeAllocSize(Ty);
8819   MachineFunction &MF = DAG.getMachineFunction();
8820   int SSFI = MF.getFrameInfo().CreateStackObject(
8821       TySize, DL.getPrefTypeAlign(Ty), false);
8822   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8823   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8824                             MachinePointerInfo::getFixedStack(MF, SSFI),
8825                             TLI.getMemValueType(DL, Ty));
8826   OpInfo.CallOperand = StackSlot;
8827 
8828   return Chain;
8829 }
8830 
8831 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8832 /// specified operand.  We prefer to assign virtual registers, to allow the
8833 /// register allocator to handle the assignment process.  However, if the asm
8834 /// uses features that we can't model on machineinstrs, we have SDISel do the
8835 /// allocation.  This produces generally horrible, but correct, code.
8836 ///
8837 ///   OpInfo describes the operand
8838 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8839 static std::optional<unsigned>
8840 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8841                      SDISelAsmOperandInfo &OpInfo,
8842                      SDISelAsmOperandInfo &RefOpInfo) {
8843   LLVMContext &Context = *DAG.getContext();
8844   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8845 
8846   MachineFunction &MF = DAG.getMachineFunction();
8847   SmallVector<unsigned, 4> Regs;
8848   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8849 
8850   // No work to do for memory/address operands.
8851   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8852       OpInfo.ConstraintType == TargetLowering::C_Address)
8853     return std::nullopt;
8854 
8855   // If this is a constraint for a single physreg, or a constraint for a
8856   // register class, find it.
8857   unsigned AssignedReg;
8858   const TargetRegisterClass *RC;
8859   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8860       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8861   // RC is unset only on failure. Return immediately.
8862   if (!RC)
8863     return std::nullopt;
8864 
8865   // Get the actual register value type.  This is important, because the user
8866   // may have asked for (e.g.) the AX register in i32 type.  We need to
8867   // remember that AX is actually i16 to get the right extension.
8868   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8869 
8870   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8871     // If this is an FP operand in an integer register (or visa versa), or more
8872     // generally if the operand value disagrees with the register class we plan
8873     // to stick it in, fix the operand type.
8874     //
8875     // If this is an input value, the bitcast to the new type is done now.
8876     // Bitcast for output value is done at the end of visitInlineAsm().
8877     if ((OpInfo.Type == InlineAsm::isOutput ||
8878          OpInfo.Type == InlineAsm::isInput) &&
8879         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8880       // Try to convert to the first EVT that the reg class contains.  If the
8881       // types are identical size, use a bitcast to convert (e.g. two differing
8882       // vector types).  Note: output bitcast is done at the end of
8883       // visitInlineAsm().
8884       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8885         // Exclude indirect inputs while they are unsupported because the code
8886         // to perform the load is missing and thus OpInfo.CallOperand still
8887         // refers to the input address rather than the pointed-to value.
8888         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8889           OpInfo.CallOperand =
8890               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8891         OpInfo.ConstraintVT = RegVT;
8892         // If the operand is an FP value and we want it in integer registers,
8893         // use the corresponding integer type. This turns an f64 value into
8894         // i64, which can be passed with two i32 values on a 32-bit machine.
8895       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8896         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8897         if (OpInfo.Type == InlineAsm::isInput)
8898           OpInfo.CallOperand =
8899               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8900         OpInfo.ConstraintVT = VT;
8901       }
8902     }
8903   }
8904 
8905   // No need to allocate a matching input constraint since the constraint it's
8906   // matching to has already been allocated.
8907   if (OpInfo.isMatchingInputConstraint())
8908     return std::nullopt;
8909 
8910   EVT ValueVT = OpInfo.ConstraintVT;
8911   if (OpInfo.ConstraintVT == MVT::Other)
8912     ValueVT = RegVT;
8913 
8914   // Initialize NumRegs.
8915   unsigned NumRegs = 1;
8916   if (OpInfo.ConstraintVT != MVT::Other)
8917     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8918 
8919   // If this is a constraint for a specific physical register, like {r17},
8920   // assign it now.
8921 
8922   // If this associated to a specific register, initialize iterator to correct
8923   // place. If virtual, make sure we have enough registers
8924 
8925   // Initialize iterator if necessary
8926   TargetRegisterClass::iterator I = RC->begin();
8927   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8928 
8929   // Do not check for single registers.
8930   if (AssignedReg) {
8931     I = std::find(I, RC->end(), AssignedReg);
8932     if (I == RC->end()) {
8933       // RC does not contain the selected register, which indicates a
8934       // mismatch between the register and the required type/bitwidth.
8935       return {AssignedReg};
8936     }
8937   }
8938 
8939   for (; NumRegs; --NumRegs, ++I) {
8940     assert(I != RC->end() && "Ran out of registers to allocate!");
8941     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8942     Regs.push_back(R);
8943   }
8944 
8945   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8946   return std::nullopt;
8947 }
8948 
8949 static unsigned
8950 findMatchingInlineAsmOperand(unsigned OperandNo,
8951                              const std::vector<SDValue> &AsmNodeOperands) {
8952   // Scan until we find the definition we already emitted of this operand.
8953   unsigned CurOp = InlineAsm::Op_FirstOperand;
8954   for (; OperandNo; --OperandNo) {
8955     // Advance to the next operand.
8956     unsigned OpFlag =
8957         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8958     assert((InlineAsm::isRegDefKind(OpFlag) ||
8959             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8960             InlineAsm::isMemKind(OpFlag)) &&
8961            "Skipped past definitions?");
8962     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8963   }
8964   return CurOp;
8965 }
8966 
8967 namespace {
8968 
8969 class ExtraFlags {
8970   unsigned Flags = 0;
8971 
8972 public:
8973   explicit ExtraFlags(const CallBase &Call) {
8974     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8975     if (IA->hasSideEffects())
8976       Flags |= InlineAsm::Extra_HasSideEffects;
8977     if (IA->isAlignStack())
8978       Flags |= InlineAsm::Extra_IsAlignStack;
8979     if (Call.isConvergent())
8980       Flags |= InlineAsm::Extra_IsConvergent;
8981     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8982   }
8983 
8984   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8985     // Ideally, we would only check against memory constraints.  However, the
8986     // meaning of an Other constraint can be target-specific and we can't easily
8987     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8988     // for Other constraints as well.
8989     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8990         OpInfo.ConstraintType == TargetLowering::C_Other) {
8991       if (OpInfo.Type == InlineAsm::isInput)
8992         Flags |= InlineAsm::Extra_MayLoad;
8993       else if (OpInfo.Type == InlineAsm::isOutput)
8994         Flags |= InlineAsm::Extra_MayStore;
8995       else if (OpInfo.Type == InlineAsm::isClobber)
8996         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8997     }
8998   }
8999 
9000   unsigned get() const { return Flags; }
9001 };
9002 
9003 } // end anonymous namespace
9004 
9005 static bool isFunction(SDValue Op) {
9006   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
9007     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
9008       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
9009 
9010       // In normal "call dllimport func" instruction (non-inlineasm) it force
9011       // indirect access by specifing call opcode. And usually specially print
9012       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9013       // not do in this way now. (In fact, this is similar with "Data Access"
9014       // action). So here we ignore dllimport function.
9015       if (Fn && !Fn->hasDLLImportStorageClass())
9016         return true;
9017     }
9018   }
9019   return false;
9020 }
9021 
9022 /// visitInlineAsm - Handle a call to an InlineAsm object.
9023 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9024                                          const BasicBlock *EHPadBB) {
9025   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9026 
9027   /// ConstraintOperands - Information about all of the constraints.
9028   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9029 
9030   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9031   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9032       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9033 
9034   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9035   // AsmDialect, MayLoad, MayStore).
9036   bool HasSideEffect = IA->hasSideEffects();
9037   ExtraFlags ExtraInfo(Call);
9038 
9039   for (auto &T : TargetConstraints) {
9040     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9041     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9042 
9043     if (OpInfo.CallOperandVal)
9044       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9045 
9046     if (!HasSideEffect)
9047       HasSideEffect = OpInfo.hasMemory(TLI);
9048 
9049     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9050     // FIXME: Could we compute this on OpInfo rather than T?
9051 
9052     // Compute the constraint code and ConstraintType to use.
9053     TLI.ComputeConstraintToUse(T, SDValue());
9054 
9055     if (T.ConstraintType == TargetLowering::C_Immediate &&
9056         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9057       // We've delayed emitting a diagnostic like the "n" constraint because
9058       // inlining could cause an integer showing up.
9059       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9060                                           "' expects an integer constant "
9061                                           "expression");
9062 
9063     ExtraInfo.update(T);
9064   }
9065 
9066   // We won't need to flush pending loads if this asm doesn't touch
9067   // memory and is nonvolatile.
9068   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9069 
9070   bool EmitEHLabels = isa<InvokeInst>(Call);
9071   if (EmitEHLabels) {
9072     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9073   }
9074   bool IsCallBr = isa<CallBrInst>(Call);
9075 
9076   if (IsCallBr || EmitEHLabels) {
9077     // If this is a callbr or invoke we need to flush pending exports since
9078     // inlineasm_br and invoke are terminators.
9079     // We need to do this before nodes are glued to the inlineasm_br node.
9080     Chain = getControlRoot();
9081   }
9082 
9083   MCSymbol *BeginLabel = nullptr;
9084   if (EmitEHLabels) {
9085     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9086   }
9087 
9088   int OpNo = -1;
9089   SmallVector<StringRef> AsmStrs;
9090   IA->collectAsmStrs(AsmStrs);
9091 
9092   // Second pass over the constraints: compute which constraint option to use.
9093   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9094     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9095       OpNo++;
9096 
9097     // If this is an output operand with a matching input operand, look up the
9098     // matching input. If their types mismatch, e.g. one is an integer, the
9099     // other is floating point, or their sizes are different, flag it as an
9100     // error.
9101     if (OpInfo.hasMatchingInput()) {
9102       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9103       patchMatchingInput(OpInfo, Input, DAG);
9104     }
9105 
9106     // Compute the constraint code and ConstraintType to use.
9107     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9108 
9109     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9110          OpInfo.Type == InlineAsm::isClobber) ||
9111         OpInfo.ConstraintType == TargetLowering::C_Address)
9112       continue;
9113 
9114     // In Linux PIC model, there are 4 cases about value/label addressing:
9115     //
9116     // 1: Function call or Label jmp inside the module.
9117     // 2: Data access (such as global variable, static variable) inside module.
9118     // 3: Function call or Label jmp outside the module.
9119     // 4: Data access (such as global variable) outside the module.
9120     //
9121     // Due to current llvm inline asm architecture designed to not "recognize"
9122     // the asm code, there are quite troubles for us to treat mem addressing
9123     // differently for same value/adress used in different instuctions.
9124     // For example, in pic model, call a func may in plt way or direclty
9125     // pc-related, but lea/mov a function adress may use got.
9126     //
9127     // Here we try to "recognize" function call for the case 1 and case 3 in
9128     // inline asm. And try to adjust the constraint for them.
9129     //
9130     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9131     // label, so here we don't handle jmp function label now, but we need to
9132     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9133     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9134         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9135         TM.getCodeModel() != CodeModel::Large) {
9136       OpInfo.isIndirect = false;
9137       OpInfo.ConstraintType = TargetLowering::C_Address;
9138     }
9139 
9140     // If this is a memory input, and if the operand is not indirect, do what we
9141     // need to provide an address for the memory input.
9142     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9143         !OpInfo.isIndirect) {
9144       assert((OpInfo.isMultipleAlternative ||
9145               (OpInfo.Type == InlineAsm::isInput)) &&
9146              "Can only indirectify direct input operands!");
9147 
9148       // Memory operands really want the address of the value.
9149       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9150 
9151       // There is no longer a Value* corresponding to this operand.
9152       OpInfo.CallOperandVal = nullptr;
9153 
9154       // It is now an indirect operand.
9155       OpInfo.isIndirect = true;
9156     }
9157 
9158   }
9159 
9160   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9161   std::vector<SDValue> AsmNodeOperands;
9162   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9163   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9164       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9165 
9166   // If we have a !srcloc metadata node associated with it, we want to attach
9167   // this to the ultimately generated inline asm machineinstr.  To do this, we
9168   // pass in the third operand as this (potentially null) inline asm MDNode.
9169   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9170   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9171 
9172   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9173   // bits as operand 3.
9174   AsmNodeOperands.push_back(DAG.getTargetConstant(
9175       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9176 
9177   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9178   // this, assign virtual and physical registers for inputs and otput.
9179   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9180     // Assign Registers.
9181     SDISelAsmOperandInfo &RefOpInfo =
9182         OpInfo.isMatchingInputConstraint()
9183             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9184             : OpInfo;
9185     const auto RegError =
9186         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9187     if (RegError) {
9188       const MachineFunction &MF = DAG.getMachineFunction();
9189       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9190       const char *RegName = TRI.getName(*RegError);
9191       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9192                                    "' allocated for constraint '" +
9193                                    Twine(OpInfo.ConstraintCode) +
9194                                    "' does not match required type");
9195       return;
9196     }
9197 
9198     auto DetectWriteToReservedRegister = [&]() {
9199       const MachineFunction &MF = DAG.getMachineFunction();
9200       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9201       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9202         if (Register::isPhysicalRegister(Reg) &&
9203             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9204           const char *RegName = TRI.getName(Reg);
9205           emitInlineAsmError(Call, "write to reserved register '" +
9206                                        Twine(RegName) + "'");
9207           return true;
9208         }
9209       }
9210       return false;
9211     };
9212     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9213             (OpInfo.Type == InlineAsm::isInput &&
9214              !OpInfo.isMatchingInputConstraint())) &&
9215            "Only address as input operand is allowed.");
9216 
9217     switch (OpInfo.Type) {
9218     case InlineAsm::isOutput:
9219       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9220         unsigned ConstraintID =
9221             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9222         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9223                "Failed to convert memory constraint code to constraint id.");
9224 
9225         // Add information to the INLINEASM node to know about this output.
9226         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9227         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
9228         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9229                                                         MVT::i32));
9230         AsmNodeOperands.push_back(OpInfo.CallOperand);
9231       } else {
9232         // Otherwise, this outputs to a register (directly for C_Register /
9233         // C_RegisterClass, and a target-defined fashion for
9234         // C_Immediate/C_Other). Find a register that we can use.
9235         if (OpInfo.AssignedRegs.Regs.empty()) {
9236           emitInlineAsmError(
9237               Call, "couldn't allocate output register for constraint '" +
9238                         Twine(OpInfo.ConstraintCode) + "'");
9239           return;
9240         }
9241 
9242         if (DetectWriteToReservedRegister())
9243           return;
9244 
9245         // Add information to the INLINEASM node to know that this register is
9246         // set.
9247         OpInfo.AssignedRegs.AddInlineAsmOperands(
9248             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
9249                                   : InlineAsm::Kind_RegDef,
9250             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9251       }
9252       break;
9253 
9254     case InlineAsm::isInput:
9255     case InlineAsm::isLabel: {
9256       SDValue InOperandVal = OpInfo.CallOperand;
9257 
9258       if (OpInfo.isMatchingInputConstraint()) {
9259         // If this is required to match an output register we have already set,
9260         // just use its register.
9261         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9262                                                   AsmNodeOperands);
9263         unsigned OpFlag =
9264           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
9265         if (InlineAsm::isRegDefKind(OpFlag) ||
9266             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
9267           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
9268           if (OpInfo.isIndirect) {
9269             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9270             emitInlineAsmError(Call, "inline asm not supported yet: "
9271                                      "don't know how to handle tied "
9272                                      "indirect register inputs");
9273             return;
9274           }
9275 
9276           SmallVector<unsigned, 4> Regs;
9277           MachineFunction &MF = DAG.getMachineFunction();
9278           MachineRegisterInfo &MRI = MF.getRegInfo();
9279           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9280           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9281           Register TiedReg = R->getReg();
9282           MVT RegVT = R->getSimpleValueType(0);
9283           const TargetRegisterClass *RC =
9284               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9285               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9286                                       : TRI.getMinimalPhysRegClass(TiedReg);
9287           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
9288           for (unsigned i = 0; i != NumRegs; ++i)
9289             Regs.push_back(MRI.createVirtualRegister(RC));
9290 
9291           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9292 
9293           SDLoc dl = getCurSDLoc();
9294           // Use the produced MatchedRegs object to
9295           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
9296           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
9297                                            true, OpInfo.getMatchedOperand(), dl,
9298                                            DAG, AsmNodeOperands);
9299           break;
9300         }
9301 
9302         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
9303         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
9304                "Unexpected number of operands");
9305         // Add information to the INLINEASM node to know about this input.
9306         // See InlineAsm.h isUseOperandTiedToDef.
9307         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
9308         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
9309                                                     OpInfo.getMatchedOperand());
9310         AsmNodeOperands.push_back(DAG.getTargetConstant(
9311             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9312         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9313         break;
9314       }
9315 
9316       // Treat indirect 'X' constraint as memory.
9317       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9318           OpInfo.isIndirect)
9319         OpInfo.ConstraintType = TargetLowering::C_Memory;
9320 
9321       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9322           OpInfo.ConstraintType == TargetLowering::C_Other) {
9323         std::vector<SDValue> Ops;
9324         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9325                                           Ops, DAG);
9326         if (Ops.empty()) {
9327           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9328             if (isa<ConstantSDNode>(InOperandVal)) {
9329               emitInlineAsmError(Call, "value out of range for constraint '" +
9330                                            Twine(OpInfo.ConstraintCode) + "'");
9331               return;
9332             }
9333 
9334           emitInlineAsmError(Call,
9335                              "invalid operand for inline asm constraint '" +
9336                                  Twine(OpInfo.ConstraintCode) + "'");
9337           return;
9338         }
9339 
9340         // Add information to the INLINEASM node to know about this input.
9341         unsigned ResOpType =
9342           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
9343         AsmNodeOperands.push_back(DAG.getTargetConstant(
9344             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9345         llvm::append_range(AsmNodeOperands, Ops);
9346         break;
9347       }
9348 
9349       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9350         assert((OpInfo.isIndirect ||
9351                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9352                "Operand must be indirect to be a mem!");
9353         assert(InOperandVal.getValueType() ==
9354                    TLI.getPointerTy(DAG.getDataLayout()) &&
9355                "Memory operands expect pointer values");
9356 
9357         unsigned ConstraintID =
9358             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9359         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9360                "Failed to convert memory constraint code to constraint id.");
9361 
9362         // Add information to the INLINEASM node to know about this input.
9363         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9364         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9365         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9366                                                         getCurSDLoc(),
9367                                                         MVT::i32));
9368         AsmNodeOperands.push_back(InOperandVal);
9369         break;
9370       }
9371 
9372       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9373         unsigned ConstraintID =
9374             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9375         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9376                "Failed to convert memory constraint code to constraint id.");
9377 
9378         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9379 
9380         SDValue AsmOp = InOperandVal;
9381         if (isFunction(InOperandVal)) {
9382           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9383           ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1);
9384           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9385                                              InOperandVal.getValueType(),
9386                                              GA->getOffset());
9387         }
9388 
9389         // Add information to the INLINEASM node to know about this input.
9390         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9391 
9392         AsmNodeOperands.push_back(
9393             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9394 
9395         AsmNodeOperands.push_back(AsmOp);
9396         break;
9397       }
9398 
9399       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9400               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9401              "Unknown constraint type!");
9402 
9403       // TODO: Support this.
9404       if (OpInfo.isIndirect) {
9405         emitInlineAsmError(
9406             Call, "Don't know how to handle indirect register inputs yet "
9407                   "for constraint '" +
9408                       Twine(OpInfo.ConstraintCode) + "'");
9409         return;
9410       }
9411 
9412       // Copy the input into the appropriate registers.
9413       if (OpInfo.AssignedRegs.Regs.empty()) {
9414         emitInlineAsmError(Call,
9415                            "couldn't allocate input reg for constraint '" +
9416                                Twine(OpInfo.ConstraintCode) + "'");
9417         return;
9418       }
9419 
9420       if (DetectWriteToReservedRegister())
9421         return;
9422 
9423       SDLoc dl = getCurSDLoc();
9424 
9425       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
9426                                         &Call);
9427 
9428       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9429                                                dl, DAG, AsmNodeOperands);
9430       break;
9431     }
9432     case InlineAsm::isClobber:
9433       // Add the clobbered value to the operand list, so that the register
9434       // allocator is aware that the physreg got clobbered.
9435       if (!OpInfo.AssignedRegs.Regs.empty())
9436         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9437                                                  false, 0, getCurSDLoc(), DAG,
9438                                                  AsmNodeOperands);
9439       break;
9440     }
9441   }
9442 
9443   // Finish up input operands.  Set the input chain and add the flag last.
9444   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9445   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
9446 
9447   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9448   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9449                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9450   Glue = Chain.getValue(1);
9451 
9452   // Do additional work to generate outputs.
9453 
9454   SmallVector<EVT, 1> ResultVTs;
9455   SmallVector<SDValue, 1> ResultValues;
9456   SmallVector<SDValue, 8> OutChains;
9457 
9458   llvm::Type *CallResultType = Call.getType();
9459   ArrayRef<Type *> ResultTypes;
9460   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9461     ResultTypes = StructResult->elements();
9462   else if (!CallResultType->isVoidTy())
9463     ResultTypes = ArrayRef(CallResultType);
9464 
9465   auto CurResultType = ResultTypes.begin();
9466   auto handleRegAssign = [&](SDValue V) {
9467     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9468     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9469     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9470     ++CurResultType;
9471     // If the type of the inline asm call site return value is different but has
9472     // same size as the type of the asm output bitcast it.  One example of this
9473     // is for vectors with different width / number of elements.  This can
9474     // happen for register classes that can contain multiple different value
9475     // types.  The preg or vreg allocated may not have the same VT as was
9476     // expected.
9477     //
9478     // This can also happen for a return value that disagrees with the register
9479     // class it is put in, eg. a double in a general-purpose register on a
9480     // 32-bit machine.
9481     if (ResultVT != V.getValueType() &&
9482         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9483       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9484     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9485              V.getValueType().isInteger()) {
9486       // If a result value was tied to an input value, the computed result
9487       // may have a wider width than the expected result.  Extract the
9488       // relevant portion.
9489       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9490     }
9491     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9492     ResultVTs.push_back(ResultVT);
9493     ResultValues.push_back(V);
9494   };
9495 
9496   // Deal with output operands.
9497   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9498     if (OpInfo.Type == InlineAsm::isOutput) {
9499       SDValue Val;
9500       // Skip trivial output operands.
9501       if (OpInfo.AssignedRegs.Regs.empty())
9502         continue;
9503 
9504       switch (OpInfo.ConstraintType) {
9505       case TargetLowering::C_Register:
9506       case TargetLowering::C_RegisterClass:
9507         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9508                                                   Chain, &Glue, &Call);
9509         break;
9510       case TargetLowering::C_Immediate:
9511       case TargetLowering::C_Other:
9512         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
9513                                               OpInfo, DAG);
9514         break;
9515       case TargetLowering::C_Memory:
9516         break; // Already handled.
9517       case TargetLowering::C_Address:
9518         break; // Silence warning.
9519       case TargetLowering::C_Unknown:
9520         assert(false && "Unexpected unknown constraint");
9521       }
9522 
9523       // Indirect output manifest as stores. Record output chains.
9524       if (OpInfo.isIndirect) {
9525         const Value *Ptr = OpInfo.CallOperandVal;
9526         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9527         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9528                                      MachinePointerInfo(Ptr));
9529         OutChains.push_back(Store);
9530       } else {
9531         // generate CopyFromRegs to associated registers.
9532         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9533         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9534           for (const SDValue &V : Val->op_values())
9535             handleRegAssign(V);
9536         } else
9537           handleRegAssign(Val);
9538       }
9539     }
9540   }
9541 
9542   // Set results.
9543   if (!ResultValues.empty()) {
9544     assert(CurResultType == ResultTypes.end() &&
9545            "Mismatch in number of ResultTypes");
9546     assert(ResultValues.size() == ResultTypes.size() &&
9547            "Mismatch in number of output operands in asm result");
9548 
9549     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9550                             DAG.getVTList(ResultVTs), ResultValues);
9551     setValue(&Call, V);
9552   }
9553 
9554   // Collect store chains.
9555   if (!OutChains.empty())
9556     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9557 
9558   if (EmitEHLabels) {
9559     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9560   }
9561 
9562   // Only Update Root if inline assembly has a memory effect.
9563   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9564       EmitEHLabels)
9565     DAG.setRoot(Chain);
9566 }
9567 
9568 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9569                                              const Twine &Message) {
9570   LLVMContext &Ctx = *DAG.getContext();
9571   Ctx.emitError(&Call, Message);
9572 
9573   // Make sure we leave the DAG in a valid state
9574   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9575   SmallVector<EVT, 1> ValueVTs;
9576   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9577 
9578   if (ValueVTs.empty())
9579     return;
9580 
9581   SmallVector<SDValue, 1> Ops;
9582   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9583     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9584 
9585   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9586 }
9587 
9588 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9589   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9590                           MVT::Other, getRoot(),
9591                           getValue(I.getArgOperand(0)),
9592                           DAG.getSrcValue(I.getArgOperand(0))));
9593 }
9594 
9595 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9596   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9597   const DataLayout &DL = DAG.getDataLayout();
9598   SDValue V = DAG.getVAArg(
9599       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9600       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9601       DL.getABITypeAlign(I.getType()).value());
9602   DAG.setRoot(V.getValue(1));
9603 
9604   if (I.getType()->isPointerTy())
9605     V = DAG.getPtrExtOrTrunc(
9606         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9607   setValue(&I, V);
9608 }
9609 
9610 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9611   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9612                           MVT::Other, getRoot(),
9613                           getValue(I.getArgOperand(0)),
9614                           DAG.getSrcValue(I.getArgOperand(0))));
9615 }
9616 
9617 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9618   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9619                           MVT::Other, getRoot(),
9620                           getValue(I.getArgOperand(0)),
9621                           getValue(I.getArgOperand(1)),
9622                           DAG.getSrcValue(I.getArgOperand(0)),
9623                           DAG.getSrcValue(I.getArgOperand(1))));
9624 }
9625 
9626 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9627                                                     const Instruction &I,
9628                                                     SDValue Op) {
9629   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9630   if (!Range)
9631     return Op;
9632 
9633   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9634   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9635     return Op;
9636 
9637   APInt Lo = CR.getUnsignedMin();
9638   if (!Lo.isMinValue())
9639     return Op;
9640 
9641   APInt Hi = CR.getUnsignedMax();
9642   unsigned Bits = std::max(Hi.getActiveBits(),
9643                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9644 
9645   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9646 
9647   SDLoc SL = getCurSDLoc();
9648 
9649   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9650                              DAG.getValueType(SmallVT));
9651   unsigned NumVals = Op.getNode()->getNumValues();
9652   if (NumVals == 1)
9653     return ZExt;
9654 
9655   SmallVector<SDValue, 4> Ops;
9656 
9657   Ops.push_back(ZExt);
9658   for (unsigned I = 1; I != NumVals; ++I)
9659     Ops.push_back(Op.getValue(I));
9660 
9661   return DAG.getMergeValues(Ops, SL);
9662 }
9663 
9664 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9665 /// the call being lowered.
9666 ///
9667 /// This is a helper for lowering intrinsics that follow a target calling
9668 /// convention or require stack pointer adjustment. Only a subset of the
9669 /// intrinsic's operands need to participate in the calling convention.
9670 void SelectionDAGBuilder::populateCallLoweringInfo(
9671     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9672     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9673     bool IsPatchPoint) {
9674   TargetLowering::ArgListTy Args;
9675   Args.reserve(NumArgs);
9676 
9677   // Populate the argument list.
9678   // Attributes for args start at offset 1, after the return attribute.
9679   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9680        ArgI != ArgE; ++ArgI) {
9681     const Value *V = Call->getOperand(ArgI);
9682 
9683     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9684 
9685     TargetLowering::ArgListEntry Entry;
9686     Entry.Node = getValue(V);
9687     Entry.Ty = V->getType();
9688     Entry.setAttributes(Call, ArgI);
9689     Args.push_back(Entry);
9690   }
9691 
9692   CLI.setDebugLoc(getCurSDLoc())
9693       .setChain(getRoot())
9694       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9695       .setDiscardResult(Call->use_empty())
9696       .setIsPatchPoint(IsPatchPoint)
9697       .setIsPreallocated(
9698           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9699 }
9700 
9701 /// Add a stack map intrinsic call's live variable operands to a stackmap
9702 /// or patchpoint target node's operand list.
9703 ///
9704 /// Constants are converted to TargetConstants purely as an optimization to
9705 /// avoid constant materialization and register allocation.
9706 ///
9707 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9708 /// generate addess computation nodes, and so FinalizeISel can convert the
9709 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9710 /// address materialization and register allocation, but may also be required
9711 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9712 /// alloca in the entry block, then the runtime may assume that the alloca's
9713 /// StackMap location can be read immediately after compilation and that the
9714 /// location is valid at any point during execution (this is similar to the
9715 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9716 /// only available in a register, then the runtime would need to trap when
9717 /// execution reaches the StackMap in order to read the alloca's location.
9718 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9719                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9720                                 SelectionDAGBuilder &Builder) {
9721   SelectionDAG &DAG = Builder.DAG;
9722   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9723     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9724 
9725     // Things on the stack are pointer-typed, meaning that they are already
9726     // legal and can be emitted directly to target nodes.
9727     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9728       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9729     } else {
9730       // Otherwise emit a target independent node to be legalised.
9731       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9732     }
9733   }
9734 }
9735 
9736 /// Lower llvm.experimental.stackmap.
9737 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9738   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9739   //                                  [live variables...])
9740 
9741   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9742 
9743   SDValue Chain, InGlue, Callee;
9744   SmallVector<SDValue, 32> Ops;
9745 
9746   SDLoc DL = getCurSDLoc();
9747   Callee = getValue(CI.getCalledOperand());
9748 
9749   // The stackmap intrinsic only records the live variables (the arguments
9750   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9751   // intrinsic, this won't be lowered to a function call. This means we don't
9752   // have to worry about calling conventions and target specific lowering code.
9753   // Instead we perform the call lowering right here.
9754   //
9755   // chain, flag = CALLSEQ_START(chain, 0, 0)
9756   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9757   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9758   //
9759   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9760   InGlue = Chain.getValue(1);
9761 
9762   // Add the STACKMAP operands, starting with DAG house-keeping.
9763   Ops.push_back(Chain);
9764   Ops.push_back(InGlue);
9765 
9766   // Add the <id>, <numShadowBytes> operands.
9767   //
9768   // These do not require legalisation, and can be emitted directly to target
9769   // constant nodes.
9770   SDValue ID = getValue(CI.getArgOperand(0));
9771   assert(ID.getValueType() == MVT::i64);
9772   SDValue IDConst = DAG.getTargetConstant(
9773       cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9774   Ops.push_back(IDConst);
9775 
9776   SDValue Shad = getValue(CI.getArgOperand(1));
9777   assert(Shad.getValueType() == MVT::i32);
9778   SDValue ShadConst = DAG.getTargetConstant(
9779       cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9780   Ops.push_back(ShadConst);
9781 
9782   // Add the live variables.
9783   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9784 
9785   // Create the STACKMAP node.
9786   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9787   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
9788   InGlue = Chain.getValue(1);
9789 
9790   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
9791 
9792   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9793 
9794   // Set the root to the target-lowered call chain.
9795   DAG.setRoot(Chain);
9796 
9797   // Inform the Frame Information that we have a stackmap in this function.
9798   FuncInfo.MF->getFrameInfo().setHasStackMap();
9799 }
9800 
9801 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9802 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9803                                           const BasicBlock *EHPadBB) {
9804   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9805   //                                                 i32 <numBytes>,
9806   //                                                 i8* <target>,
9807   //                                                 i32 <numArgs>,
9808   //                                                 [Args...],
9809   //                                                 [live variables...])
9810 
9811   CallingConv::ID CC = CB.getCallingConv();
9812   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9813   bool HasDef = !CB.getType()->isVoidTy();
9814   SDLoc dl = getCurSDLoc();
9815   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9816 
9817   // Handle immediate and symbolic callees.
9818   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9819     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9820                                    /*isTarget=*/true);
9821   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9822     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9823                                          SDLoc(SymbolicCallee),
9824                                          SymbolicCallee->getValueType(0));
9825 
9826   // Get the real number of arguments participating in the call <numArgs>
9827   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9828   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9829 
9830   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9831   // Intrinsics include all meta-operands up to but not including CC.
9832   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9833   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9834          "Not enough arguments provided to the patchpoint intrinsic");
9835 
9836   // For AnyRegCC the arguments are lowered later on manually.
9837   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9838   Type *ReturnTy =
9839       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9840 
9841   TargetLowering::CallLoweringInfo CLI(DAG);
9842   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9843                            ReturnTy, true);
9844   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9845 
9846   SDNode *CallEnd = Result.second.getNode();
9847   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9848     CallEnd = CallEnd->getOperand(0).getNode();
9849 
9850   /// Get a call instruction from the call sequence chain.
9851   /// Tail calls are not allowed.
9852   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9853          "Expected a callseq node.");
9854   SDNode *Call = CallEnd->getOperand(0).getNode();
9855   bool HasGlue = Call->getGluedNode();
9856 
9857   // Replace the target specific call node with the patchable intrinsic.
9858   SmallVector<SDValue, 8> Ops;
9859 
9860   // Push the chain.
9861   Ops.push_back(*(Call->op_begin()));
9862 
9863   // Optionally, push the glue (if any).
9864   if (HasGlue)
9865     Ops.push_back(*(Call->op_end() - 1));
9866 
9867   // Push the register mask info.
9868   if (HasGlue)
9869     Ops.push_back(*(Call->op_end() - 2));
9870   else
9871     Ops.push_back(*(Call->op_end() - 1));
9872 
9873   // Add the <id> and <numBytes> constants.
9874   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9875   Ops.push_back(DAG.getTargetConstant(
9876                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9877   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9878   Ops.push_back(DAG.getTargetConstant(
9879                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9880                   MVT::i32));
9881 
9882   // Add the callee.
9883   Ops.push_back(Callee);
9884 
9885   // Adjust <numArgs> to account for any arguments that have been passed on the
9886   // stack instead.
9887   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9888   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9889   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9890   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9891 
9892   // Add the calling convention
9893   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9894 
9895   // Add the arguments we omitted previously. The register allocator should
9896   // place these in any free register.
9897   if (IsAnyRegCC)
9898     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9899       Ops.push_back(getValue(CB.getArgOperand(i)));
9900 
9901   // Push the arguments from the call instruction.
9902   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9903   Ops.append(Call->op_begin() + 2, e);
9904 
9905   // Push live variables for the stack map.
9906   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9907 
9908   SDVTList NodeTys;
9909   if (IsAnyRegCC && HasDef) {
9910     // Create the return types based on the intrinsic definition
9911     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9912     SmallVector<EVT, 3> ValueVTs;
9913     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9914     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9915 
9916     // There is always a chain and a glue type at the end
9917     ValueVTs.push_back(MVT::Other);
9918     ValueVTs.push_back(MVT::Glue);
9919     NodeTys = DAG.getVTList(ValueVTs);
9920   } else
9921     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9922 
9923   // Replace the target specific call node with a PATCHPOINT node.
9924   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
9925 
9926   // Update the NodeMap.
9927   if (HasDef) {
9928     if (IsAnyRegCC)
9929       setValue(&CB, SDValue(PPV.getNode(), 0));
9930     else
9931       setValue(&CB, Result.first);
9932   }
9933 
9934   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9935   // call sequence. Furthermore the location of the chain and glue can change
9936   // when the AnyReg calling convention is used and the intrinsic returns a
9937   // value.
9938   if (IsAnyRegCC && HasDef) {
9939     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9940     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
9941     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9942   } else
9943     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
9944   DAG.DeleteNode(Call);
9945 
9946   // Inform the Frame Information that we have a patchpoint in this function.
9947   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9948 }
9949 
9950 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9951                                             unsigned Intrinsic) {
9952   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9953   SDValue Op1 = getValue(I.getArgOperand(0));
9954   SDValue Op2;
9955   if (I.arg_size() > 1)
9956     Op2 = getValue(I.getArgOperand(1));
9957   SDLoc dl = getCurSDLoc();
9958   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9959   SDValue Res;
9960   SDNodeFlags SDFlags;
9961   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9962     SDFlags.copyFMF(*FPMO);
9963 
9964   switch (Intrinsic) {
9965   case Intrinsic::vector_reduce_fadd:
9966     if (SDFlags.hasAllowReassociation())
9967       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9968                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9969                         SDFlags);
9970     else
9971       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9972     break;
9973   case Intrinsic::vector_reduce_fmul:
9974     if (SDFlags.hasAllowReassociation())
9975       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9976                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9977                         SDFlags);
9978     else
9979       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9980     break;
9981   case Intrinsic::vector_reduce_add:
9982     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9983     break;
9984   case Intrinsic::vector_reduce_mul:
9985     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9986     break;
9987   case Intrinsic::vector_reduce_and:
9988     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9989     break;
9990   case Intrinsic::vector_reduce_or:
9991     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9992     break;
9993   case Intrinsic::vector_reduce_xor:
9994     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9995     break;
9996   case Intrinsic::vector_reduce_smax:
9997     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9998     break;
9999   case Intrinsic::vector_reduce_smin:
10000     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
10001     break;
10002   case Intrinsic::vector_reduce_umax:
10003     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
10004     break;
10005   case Intrinsic::vector_reduce_umin:
10006     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10007     break;
10008   case Intrinsic::vector_reduce_fmax:
10009     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10010     break;
10011   case Intrinsic::vector_reduce_fmin:
10012     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10013     break;
10014   case Intrinsic::vector_reduce_fmaximum:
10015     Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10016     break;
10017   case Intrinsic::vector_reduce_fminimum:
10018     Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10019     break;
10020   default:
10021     llvm_unreachable("Unhandled vector reduce intrinsic");
10022   }
10023   setValue(&I, Res);
10024 }
10025 
10026 /// Returns an AttributeList representing the attributes applied to the return
10027 /// value of the given call.
10028 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10029   SmallVector<Attribute::AttrKind, 2> Attrs;
10030   if (CLI.RetSExt)
10031     Attrs.push_back(Attribute::SExt);
10032   if (CLI.RetZExt)
10033     Attrs.push_back(Attribute::ZExt);
10034   if (CLI.IsInReg)
10035     Attrs.push_back(Attribute::InReg);
10036 
10037   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10038                             Attrs);
10039 }
10040 
10041 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10042 /// implementation, which just calls LowerCall.
10043 /// FIXME: When all targets are
10044 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10045 std::pair<SDValue, SDValue>
10046 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10047   // Handle the incoming return values from the call.
10048   CLI.Ins.clear();
10049   Type *OrigRetTy = CLI.RetTy;
10050   SmallVector<EVT, 4> RetTys;
10051   SmallVector<uint64_t, 4> Offsets;
10052   auto &DL = CLI.DAG.getDataLayout();
10053   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0);
10054 
10055   if (CLI.IsPostTypeLegalization) {
10056     // If we are lowering a libcall after legalization, split the return type.
10057     SmallVector<EVT, 4> OldRetTys;
10058     SmallVector<uint64_t, 4> OldOffsets;
10059     RetTys.swap(OldRetTys);
10060     Offsets.swap(OldOffsets);
10061 
10062     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10063       EVT RetVT = OldRetTys[i];
10064       uint64_t Offset = OldOffsets[i];
10065       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10066       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10067       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10068       RetTys.append(NumRegs, RegisterVT);
10069       for (unsigned j = 0; j != NumRegs; ++j)
10070         Offsets.push_back(Offset + j * RegisterVTByteSZ);
10071     }
10072   }
10073 
10074   SmallVector<ISD::OutputArg, 4> Outs;
10075   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10076 
10077   bool CanLowerReturn =
10078       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10079                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10080 
10081   SDValue DemoteStackSlot;
10082   int DemoteStackIdx = -100;
10083   if (!CanLowerReturn) {
10084     // FIXME: equivalent assert?
10085     // assert(!CS.hasInAllocaArgument() &&
10086     //        "sret demotion is incompatible with inalloca");
10087     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10088     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10089     MachineFunction &MF = CLI.DAG.getMachineFunction();
10090     DemoteStackIdx =
10091         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10092     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10093                                               DL.getAllocaAddrSpace());
10094 
10095     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10096     ArgListEntry Entry;
10097     Entry.Node = DemoteStackSlot;
10098     Entry.Ty = StackSlotPtrType;
10099     Entry.IsSExt = false;
10100     Entry.IsZExt = false;
10101     Entry.IsInReg = false;
10102     Entry.IsSRet = true;
10103     Entry.IsNest = false;
10104     Entry.IsByVal = false;
10105     Entry.IsByRef = false;
10106     Entry.IsReturned = false;
10107     Entry.IsSwiftSelf = false;
10108     Entry.IsSwiftAsync = false;
10109     Entry.IsSwiftError = false;
10110     Entry.IsCFGuardTarget = false;
10111     Entry.Alignment = Alignment;
10112     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10113     CLI.NumFixedArgs += 1;
10114     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10115     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10116 
10117     // sret demotion isn't compatible with tail-calls, since the sret argument
10118     // points into the callers stack frame.
10119     CLI.IsTailCall = false;
10120   } else {
10121     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10122         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10123     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10124       ISD::ArgFlagsTy Flags;
10125       if (NeedsRegBlock) {
10126         Flags.setInConsecutiveRegs();
10127         if (I == RetTys.size() - 1)
10128           Flags.setInConsecutiveRegsLast();
10129       }
10130       EVT VT = RetTys[I];
10131       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10132                                                      CLI.CallConv, VT);
10133       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10134                                                        CLI.CallConv, VT);
10135       for (unsigned i = 0; i != NumRegs; ++i) {
10136         ISD::InputArg MyFlags;
10137         MyFlags.Flags = Flags;
10138         MyFlags.VT = RegisterVT;
10139         MyFlags.ArgVT = VT;
10140         MyFlags.Used = CLI.IsReturnValueUsed;
10141         if (CLI.RetTy->isPointerTy()) {
10142           MyFlags.Flags.setPointer();
10143           MyFlags.Flags.setPointerAddrSpace(
10144               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10145         }
10146         if (CLI.RetSExt)
10147           MyFlags.Flags.setSExt();
10148         if (CLI.RetZExt)
10149           MyFlags.Flags.setZExt();
10150         if (CLI.IsInReg)
10151           MyFlags.Flags.setInReg();
10152         CLI.Ins.push_back(MyFlags);
10153       }
10154     }
10155   }
10156 
10157   // We push in swifterror return as the last element of CLI.Ins.
10158   ArgListTy &Args = CLI.getArgs();
10159   if (supportSwiftError()) {
10160     for (const ArgListEntry &Arg : Args) {
10161       if (Arg.IsSwiftError) {
10162         ISD::InputArg MyFlags;
10163         MyFlags.VT = getPointerTy(DL);
10164         MyFlags.ArgVT = EVT(getPointerTy(DL));
10165         MyFlags.Flags.setSwiftError();
10166         CLI.Ins.push_back(MyFlags);
10167       }
10168     }
10169   }
10170 
10171   // Handle all of the outgoing arguments.
10172   CLI.Outs.clear();
10173   CLI.OutVals.clear();
10174   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10175     SmallVector<EVT, 4> ValueVTs;
10176     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10177     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10178     Type *FinalType = Args[i].Ty;
10179     if (Args[i].IsByVal)
10180       FinalType = Args[i].IndirectType;
10181     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10182         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10183     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10184          ++Value) {
10185       EVT VT = ValueVTs[Value];
10186       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10187       SDValue Op = SDValue(Args[i].Node.getNode(),
10188                            Args[i].Node.getResNo() + Value);
10189       ISD::ArgFlagsTy Flags;
10190 
10191       // Certain targets (such as MIPS), may have a different ABI alignment
10192       // for a type depending on the context. Give the target a chance to
10193       // specify the alignment it wants.
10194       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10195       Flags.setOrigAlign(OriginalAlignment);
10196 
10197       if (Args[i].Ty->isPointerTy()) {
10198         Flags.setPointer();
10199         Flags.setPointerAddrSpace(
10200             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10201       }
10202       if (Args[i].IsZExt)
10203         Flags.setZExt();
10204       if (Args[i].IsSExt)
10205         Flags.setSExt();
10206       if (Args[i].IsInReg) {
10207         // If we are using vectorcall calling convention, a structure that is
10208         // passed InReg - is surely an HVA
10209         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10210             isa<StructType>(FinalType)) {
10211           // The first value of a structure is marked
10212           if (0 == Value)
10213             Flags.setHvaStart();
10214           Flags.setHva();
10215         }
10216         // Set InReg Flag
10217         Flags.setInReg();
10218       }
10219       if (Args[i].IsSRet)
10220         Flags.setSRet();
10221       if (Args[i].IsSwiftSelf)
10222         Flags.setSwiftSelf();
10223       if (Args[i].IsSwiftAsync)
10224         Flags.setSwiftAsync();
10225       if (Args[i].IsSwiftError)
10226         Flags.setSwiftError();
10227       if (Args[i].IsCFGuardTarget)
10228         Flags.setCFGuardTarget();
10229       if (Args[i].IsByVal)
10230         Flags.setByVal();
10231       if (Args[i].IsByRef)
10232         Flags.setByRef();
10233       if (Args[i].IsPreallocated) {
10234         Flags.setPreallocated();
10235         // Set the byval flag for CCAssignFn callbacks that don't know about
10236         // preallocated.  This way we can know how many bytes we should've
10237         // allocated and how many bytes a callee cleanup function will pop.  If
10238         // we port preallocated to more targets, we'll have to add custom
10239         // preallocated handling in the various CC lowering callbacks.
10240         Flags.setByVal();
10241       }
10242       if (Args[i].IsInAlloca) {
10243         Flags.setInAlloca();
10244         // Set the byval flag for CCAssignFn callbacks that don't know about
10245         // inalloca.  This way we can know how many bytes we should've allocated
10246         // and how many bytes a callee cleanup function will pop.  If we port
10247         // inalloca to more targets, we'll have to add custom inalloca handling
10248         // in the various CC lowering callbacks.
10249         Flags.setByVal();
10250       }
10251       Align MemAlign;
10252       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10253         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10254         Flags.setByValSize(FrameSize);
10255 
10256         // info is not there but there are cases it cannot get right.
10257         if (auto MA = Args[i].Alignment)
10258           MemAlign = *MA;
10259         else
10260           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10261       } else if (auto MA = Args[i].Alignment) {
10262         MemAlign = *MA;
10263       } else {
10264         MemAlign = OriginalAlignment;
10265       }
10266       Flags.setMemAlign(MemAlign);
10267       if (Args[i].IsNest)
10268         Flags.setNest();
10269       if (NeedsRegBlock)
10270         Flags.setInConsecutiveRegs();
10271 
10272       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10273                                                  CLI.CallConv, VT);
10274       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10275                                                         CLI.CallConv, VT);
10276       SmallVector<SDValue, 4> Parts(NumParts);
10277       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10278 
10279       if (Args[i].IsSExt)
10280         ExtendKind = ISD::SIGN_EXTEND;
10281       else if (Args[i].IsZExt)
10282         ExtendKind = ISD::ZERO_EXTEND;
10283 
10284       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10285       // for now.
10286       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10287           CanLowerReturn) {
10288         assert((CLI.RetTy == Args[i].Ty ||
10289                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10290                  CLI.RetTy->getPointerAddressSpace() ==
10291                      Args[i].Ty->getPointerAddressSpace())) &&
10292                RetTys.size() == NumValues && "unexpected use of 'returned'");
10293         // Before passing 'returned' to the target lowering code, ensure that
10294         // either the register MVT and the actual EVT are the same size or that
10295         // the return value and argument are extended in the same way; in these
10296         // cases it's safe to pass the argument register value unchanged as the
10297         // return register value (although it's at the target's option whether
10298         // to do so)
10299         // TODO: allow code generation to take advantage of partially preserved
10300         // registers rather than clobbering the entire register when the
10301         // parameter extension method is not compatible with the return
10302         // extension method
10303         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10304             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10305              CLI.RetZExt == Args[i].IsZExt))
10306           Flags.setReturned();
10307       }
10308 
10309       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10310                      CLI.CallConv, ExtendKind);
10311 
10312       for (unsigned j = 0; j != NumParts; ++j) {
10313         // if it isn't first piece, alignment must be 1
10314         // For scalable vectors the scalable part is currently handled
10315         // by individual targets, so we just use the known minimum size here.
10316         ISD::OutputArg MyFlags(
10317             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10318             i < CLI.NumFixedArgs, i,
10319             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10320         if (NumParts > 1 && j == 0)
10321           MyFlags.Flags.setSplit();
10322         else if (j != 0) {
10323           MyFlags.Flags.setOrigAlign(Align(1));
10324           if (j == NumParts - 1)
10325             MyFlags.Flags.setSplitEnd();
10326         }
10327 
10328         CLI.Outs.push_back(MyFlags);
10329         CLI.OutVals.push_back(Parts[j]);
10330       }
10331 
10332       if (NeedsRegBlock && Value == NumValues - 1)
10333         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10334     }
10335   }
10336 
10337   SmallVector<SDValue, 4> InVals;
10338   CLI.Chain = LowerCall(CLI, InVals);
10339 
10340   // Update CLI.InVals to use outside of this function.
10341   CLI.InVals = InVals;
10342 
10343   // Verify that the target's LowerCall behaved as expected.
10344   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10345          "LowerCall didn't return a valid chain!");
10346   assert((!CLI.IsTailCall || InVals.empty()) &&
10347          "LowerCall emitted a return value for a tail call!");
10348   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10349          "LowerCall didn't emit the correct number of values!");
10350 
10351   // For a tail call, the return value is merely live-out and there aren't
10352   // any nodes in the DAG representing it. Return a special value to
10353   // indicate that a tail call has been emitted and no more Instructions
10354   // should be processed in the current block.
10355   if (CLI.IsTailCall) {
10356     CLI.DAG.setRoot(CLI.Chain);
10357     return std::make_pair(SDValue(), SDValue());
10358   }
10359 
10360 #ifndef NDEBUG
10361   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10362     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10363     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10364            "LowerCall emitted a value with the wrong type!");
10365   }
10366 #endif
10367 
10368   SmallVector<SDValue, 4> ReturnValues;
10369   if (!CanLowerReturn) {
10370     // The instruction result is the result of loading from the
10371     // hidden sret parameter.
10372     SmallVector<EVT, 1> PVTs;
10373     Type *PtrRetTy =
10374         PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace());
10375 
10376     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10377     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10378     EVT PtrVT = PVTs[0];
10379 
10380     unsigned NumValues = RetTys.size();
10381     ReturnValues.resize(NumValues);
10382     SmallVector<SDValue, 4> Chains(NumValues);
10383 
10384     // An aggregate return value cannot wrap around the address space, so
10385     // offsets to its parts don't wrap either.
10386     SDNodeFlags Flags;
10387     Flags.setNoUnsignedWrap(true);
10388 
10389     MachineFunction &MF = CLI.DAG.getMachineFunction();
10390     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10391     for (unsigned i = 0; i < NumValues; ++i) {
10392       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10393                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10394                                                         PtrVT), Flags);
10395       SDValue L = CLI.DAG.getLoad(
10396           RetTys[i], CLI.DL, CLI.Chain, Add,
10397           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10398                                             DemoteStackIdx, Offsets[i]),
10399           HiddenSRetAlign);
10400       ReturnValues[i] = L;
10401       Chains[i] = L.getValue(1);
10402     }
10403 
10404     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10405   } else {
10406     // Collect the legal value parts into potentially illegal values
10407     // that correspond to the original function's return values.
10408     std::optional<ISD::NodeType> AssertOp;
10409     if (CLI.RetSExt)
10410       AssertOp = ISD::AssertSext;
10411     else if (CLI.RetZExt)
10412       AssertOp = ISD::AssertZext;
10413     unsigned CurReg = 0;
10414     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10415       EVT VT = RetTys[I];
10416       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10417                                                      CLI.CallConv, VT);
10418       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10419                                                        CLI.CallConv, VT);
10420 
10421       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10422                                               NumRegs, RegisterVT, VT, nullptr,
10423                                               CLI.CallConv, AssertOp));
10424       CurReg += NumRegs;
10425     }
10426 
10427     // For a function returning void, there is no return value. We can't create
10428     // such a node, so we just return a null return value in that case. In
10429     // that case, nothing will actually look at the value.
10430     if (ReturnValues.empty())
10431       return std::make_pair(SDValue(), CLI.Chain);
10432   }
10433 
10434   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10435                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10436   return std::make_pair(Res, CLI.Chain);
10437 }
10438 
10439 /// Places new result values for the node in Results (their number
10440 /// and types must exactly match those of the original return values of
10441 /// the node), or leaves Results empty, which indicates that the node is not
10442 /// to be custom lowered after all.
10443 void TargetLowering::LowerOperationWrapper(SDNode *N,
10444                                            SmallVectorImpl<SDValue> &Results,
10445                                            SelectionDAG &DAG) const {
10446   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10447 
10448   if (!Res.getNode())
10449     return;
10450 
10451   // If the original node has one result, take the return value from
10452   // LowerOperation as is. It might not be result number 0.
10453   if (N->getNumValues() == 1) {
10454     Results.push_back(Res);
10455     return;
10456   }
10457 
10458   // If the original node has multiple results, then the return node should
10459   // have the same number of results.
10460   assert((N->getNumValues() == Res->getNumValues()) &&
10461       "Lowering returned the wrong number of results!");
10462 
10463   // Places new result values base on N result number.
10464   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10465     Results.push_back(Res.getValue(I));
10466 }
10467 
10468 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10469   llvm_unreachable("LowerOperation not implemented for this target!");
10470 }
10471 
10472 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10473                                                      unsigned Reg,
10474                                                      ISD::NodeType ExtendType) {
10475   SDValue Op = getNonRegisterValue(V);
10476   assert((Op.getOpcode() != ISD::CopyFromReg ||
10477           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10478          "Copy from a reg to the same reg!");
10479   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10480 
10481   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10482   // If this is an InlineAsm we have to match the registers required, not the
10483   // notional registers required by the type.
10484 
10485   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10486                    std::nullopt); // This is not an ABI copy.
10487   SDValue Chain = DAG.getEntryNode();
10488 
10489   if (ExtendType == ISD::ANY_EXTEND) {
10490     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10491     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10492       ExtendType = PreferredExtendIt->second;
10493   }
10494   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10495   PendingExports.push_back(Chain);
10496 }
10497 
10498 #include "llvm/CodeGen/SelectionDAGISel.h"
10499 
10500 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10501 /// entry block, return true.  This includes arguments used by switches, since
10502 /// the switch may expand into multiple basic blocks.
10503 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10504   // With FastISel active, we may be splitting blocks, so force creation
10505   // of virtual registers for all non-dead arguments.
10506   if (FastISel)
10507     return A->use_empty();
10508 
10509   const BasicBlock &Entry = A->getParent()->front();
10510   for (const User *U : A->users())
10511     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10512       return false;  // Use not in entry block.
10513 
10514   return true;
10515 }
10516 
10517 using ArgCopyElisionMapTy =
10518     DenseMap<const Argument *,
10519              std::pair<const AllocaInst *, const StoreInst *>>;
10520 
10521 /// Scan the entry block of the function in FuncInfo for arguments that look
10522 /// like copies into a local alloca. Record any copied arguments in
10523 /// ArgCopyElisionCandidates.
10524 static void
10525 findArgumentCopyElisionCandidates(const DataLayout &DL,
10526                                   FunctionLoweringInfo *FuncInfo,
10527                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10528   // Record the state of every static alloca used in the entry block. Argument
10529   // allocas are all used in the entry block, so we need approximately as many
10530   // entries as we have arguments.
10531   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10532   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10533   unsigned NumArgs = FuncInfo->Fn->arg_size();
10534   StaticAllocas.reserve(NumArgs * 2);
10535 
10536   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10537     if (!V)
10538       return nullptr;
10539     V = V->stripPointerCasts();
10540     const auto *AI = dyn_cast<AllocaInst>(V);
10541     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10542       return nullptr;
10543     auto Iter = StaticAllocas.insert({AI, Unknown});
10544     return &Iter.first->second;
10545   };
10546 
10547   // Look for stores of arguments to static allocas. Look through bitcasts and
10548   // GEPs to handle type coercions, as long as the alloca is fully initialized
10549   // by the store. Any non-store use of an alloca escapes it and any subsequent
10550   // unanalyzed store might write it.
10551   // FIXME: Handle structs initialized with multiple stores.
10552   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10553     // Look for stores, and handle non-store uses conservatively.
10554     const auto *SI = dyn_cast<StoreInst>(&I);
10555     if (!SI) {
10556       // We will look through cast uses, so ignore them completely.
10557       if (I.isCast())
10558         continue;
10559       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10560       // to allocas.
10561       if (I.isDebugOrPseudoInst())
10562         continue;
10563       // This is an unknown instruction. Assume it escapes or writes to all
10564       // static alloca operands.
10565       for (const Use &U : I.operands()) {
10566         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10567           *Info = StaticAllocaInfo::Clobbered;
10568       }
10569       continue;
10570     }
10571 
10572     // If the stored value is a static alloca, mark it as escaped.
10573     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10574       *Info = StaticAllocaInfo::Clobbered;
10575 
10576     // Check if the destination is a static alloca.
10577     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10578     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10579     if (!Info)
10580       continue;
10581     const AllocaInst *AI = cast<AllocaInst>(Dst);
10582 
10583     // Skip allocas that have been initialized or clobbered.
10584     if (*Info != StaticAllocaInfo::Unknown)
10585       continue;
10586 
10587     // Check if the stored value is an argument, and that this store fully
10588     // initializes the alloca.
10589     // If the argument type has padding bits we can't directly forward a pointer
10590     // as the upper bits may contain garbage.
10591     // Don't elide copies from the same argument twice.
10592     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10593     const auto *Arg = dyn_cast<Argument>(Val);
10594     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10595         Arg->getType()->isEmptyTy() ||
10596         DL.getTypeStoreSize(Arg->getType()) !=
10597             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10598         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10599         ArgCopyElisionCandidates.count(Arg)) {
10600       *Info = StaticAllocaInfo::Clobbered;
10601       continue;
10602     }
10603 
10604     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10605                       << '\n');
10606 
10607     // Mark this alloca and store for argument copy elision.
10608     *Info = StaticAllocaInfo::Elidable;
10609     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10610 
10611     // Stop scanning if we've seen all arguments. This will happen early in -O0
10612     // builds, which is useful, because -O0 builds have large entry blocks and
10613     // many allocas.
10614     if (ArgCopyElisionCandidates.size() == NumArgs)
10615       break;
10616   }
10617 }
10618 
10619 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10620 /// ArgVal is a load from a suitable fixed stack object.
10621 static void tryToElideArgumentCopy(
10622     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10623     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10624     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10625     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10626     ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
10627   // Check if this is a load from a fixed stack object.
10628   auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
10629   if (!LNode)
10630     return;
10631   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10632   if (!FINode)
10633     return;
10634 
10635   // Check that the fixed stack object is the right size and alignment.
10636   // Look at the alignment that the user wrote on the alloca instead of looking
10637   // at the stack object.
10638   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10639   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10640   const AllocaInst *AI = ArgCopyIter->second.first;
10641   int FixedIndex = FINode->getIndex();
10642   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10643   int OldIndex = AllocaIndex;
10644   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10645   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10646     LLVM_DEBUG(
10647         dbgs() << "  argument copy elision failed due to bad fixed stack "
10648                   "object size\n");
10649     return;
10650   }
10651   Align RequiredAlignment = AI->getAlign();
10652   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10653     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10654                          "greater than stack argument alignment ("
10655                       << DebugStr(RequiredAlignment) << " vs "
10656                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10657     return;
10658   }
10659 
10660   // Perform the elision. Delete the old stack object and replace its only use
10661   // in the variable info map. Mark the stack object as mutable.
10662   LLVM_DEBUG({
10663     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10664            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10665            << '\n';
10666   });
10667   MFI.RemoveStackObject(OldIndex);
10668   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10669   AllocaIndex = FixedIndex;
10670   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10671   for (SDValue ArgVal : ArgVals)
10672     Chains.push_back(ArgVal.getValue(1));
10673 
10674   // Avoid emitting code for the store implementing the copy.
10675   const StoreInst *SI = ArgCopyIter->second.second;
10676   ElidedArgCopyInstrs.insert(SI);
10677 
10678   // Check for uses of the argument again so that we can avoid exporting ArgVal
10679   // if it is't used by anything other than the store.
10680   for (const Value *U : Arg.users()) {
10681     if (U != SI) {
10682       ArgHasUses = true;
10683       break;
10684     }
10685   }
10686 }
10687 
10688 void SelectionDAGISel::LowerArguments(const Function &F) {
10689   SelectionDAG &DAG = SDB->DAG;
10690   SDLoc dl = SDB->getCurSDLoc();
10691   const DataLayout &DL = DAG.getDataLayout();
10692   SmallVector<ISD::InputArg, 16> Ins;
10693 
10694   // In Naked functions we aren't going to save any registers.
10695   if (F.hasFnAttribute(Attribute::Naked))
10696     return;
10697 
10698   if (!FuncInfo->CanLowerReturn) {
10699     // Put in an sret pointer parameter before all the other parameters.
10700     SmallVector<EVT, 1> ValueVTs;
10701     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10702                     PointerType::get(F.getContext(),
10703                                      DAG.getDataLayout().getAllocaAddrSpace()),
10704                     ValueVTs);
10705 
10706     // NOTE: Assuming that a pointer will never break down to more than one VT
10707     // or one register.
10708     ISD::ArgFlagsTy Flags;
10709     Flags.setSRet();
10710     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10711     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10712                          ISD::InputArg::NoArgIndex, 0);
10713     Ins.push_back(RetArg);
10714   }
10715 
10716   // Look for stores of arguments to static allocas. Mark such arguments with a
10717   // flag to ask the target to give us the memory location of that argument if
10718   // available.
10719   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10720   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10721                                     ArgCopyElisionCandidates);
10722 
10723   // Set up the incoming argument description vector.
10724   for (const Argument &Arg : F.args()) {
10725     unsigned ArgNo = Arg.getArgNo();
10726     SmallVector<EVT, 4> ValueVTs;
10727     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10728     bool isArgValueUsed = !Arg.use_empty();
10729     unsigned PartBase = 0;
10730     Type *FinalType = Arg.getType();
10731     if (Arg.hasAttribute(Attribute::ByVal))
10732       FinalType = Arg.getParamByValType();
10733     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10734         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10735     for (unsigned Value = 0, NumValues = ValueVTs.size();
10736          Value != NumValues; ++Value) {
10737       EVT VT = ValueVTs[Value];
10738       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10739       ISD::ArgFlagsTy Flags;
10740 
10741 
10742       if (Arg.getType()->isPointerTy()) {
10743         Flags.setPointer();
10744         Flags.setPointerAddrSpace(
10745             cast<PointerType>(Arg.getType())->getAddressSpace());
10746       }
10747       if (Arg.hasAttribute(Attribute::ZExt))
10748         Flags.setZExt();
10749       if (Arg.hasAttribute(Attribute::SExt))
10750         Flags.setSExt();
10751       if (Arg.hasAttribute(Attribute::InReg)) {
10752         // If we are using vectorcall calling convention, a structure that is
10753         // passed InReg - is surely an HVA
10754         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10755             isa<StructType>(Arg.getType())) {
10756           // The first value of a structure is marked
10757           if (0 == Value)
10758             Flags.setHvaStart();
10759           Flags.setHva();
10760         }
10761         // Set InReg Flag
10762         Flags.setInReg();
10763       }
10764       if (Arg.hasAttribute(Attribute::StructRet))
10765         Flags.setSRet();
10766       if (Arg.hasAttribute(Attribute::SwiftSelf))
10767         Flags.setSwiftSelf();
10768       if (Arg.hasAttribute(Attribute::SwiftAsync))
10769         Flags.setSwiftAsync();
10770       if (Arg.hasAttribute(Attribute::SwiftError))
10771         Flags.setSwiftError();
10772       if (Arg.hasAttribute(Attribute::ByVal))
10773         Flags.setByVal();
10774       if (Arg.hasAttribute(Attribute::ByRef))
10775         Flags.setByRef();
10776       if (Arg.hasAttribute(Attribute::InAlloca)) {
10777         Flags.setInAlloca();
10778         // Set the byval flag for CCAssignFn callbacks that don't know about
10779         // inalloca.  This way we can know how many bytes we should've allocated
10780         // and how many bytes a callee cleanup function will pop.  If we port
10781         // inalloca to more targets, we'll have to add custom inalloca handling
10782         // in the various CC lowering callbacks.
10783         Flags.setByVal();
10784       }
10785       if (Arg.hasAttribute(Attribute::Preallocated)) {
10786         Flags.setPreallocated();
10787         // Set the byval flag for CCAssignFn callbacks that don't know about
10788         // preallocated.  This way we can know how many bytes we should've
10789         // allocated and how many bytes a callee cleanup function will pop.  If
10790         // we port preallocated to more targets, we'll have to add custom
10791         // preallocated handling in the various CC lowering callbacks.
10792         Flags.setByVal();
10793       }
10794 
10795       // Certain targets (such as MIPS), may have a different ABI alignment
10796       // for a type depending on the context. Give the target a chance to
10797       // specify the alignment it wants.
10798       const Align OriginalAlignment(
10799           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10800       Flags.setOrigAlign(OriginalAlignment);
10801 
10802       Align MemAlign;
10803       Type *ArgMemTy = nullptr;
10804       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10805           Flags.isByRef()) {
10806         if (!ArgMemTy)
10807           ArgMemTy = Arg.getPointeeInMemoryValueType();
10808 
10809         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10810 
10811         // For in-memory arguments, size and alignment should be passed from FE.
10812         // BE will guess if this info is not there but there are cases it cannot
10813         // get right.
10814         if (auto ParamAlign = Arg.getParamStackAlign())
10815           MemAlign = *ParamAlign;
10816         else if ((ParamAlign = Arg.getParamAlign()))
10817           MemAlign = *ParamAlign;
10818         else
10819           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10820         if (Flags.isByRef())
10821           Flags.setByRefSize(MemSize);
10822         else
10823           Flags.setByValSize(MemSize);
10824       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10825         MemAlign = *ParamAlign;
10826       } else {
10827         MemAlign = OriginalAlignment;
10828       }
10829       Flags.setMemAlign(MemAlign);
10830 
10831       if (Arg.hasAttribute(Attribute::Nest))
10832         Flags.setNest();
10833       if (NeedsRegBlock)
10834         Flags.setInConsecutiveRegs();
10835       if (ArgCopyElisionCandidates.count(&Arg))
10836         Flags.setCopyElisionCandidate();
10837       if (Arg.hasAttribute(Attribute::Returned))
10838         Flags.setReturned();
10839 
10840       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10841           *CurDAG->getContext(), F.getCallingConv(), VT);
10842       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10843           *CurDAG->getContext(), F.getCallingConv(), VT);
10844       for (unsigned i = 0; i != NumRegs; ++i) {
10845         // For scalable vectors, use the minimum size; individual targets
10846         // are responsible for handling scalable vector arguments and
10847         // return values.
10848         ISD::InputArg MyFlags(
10849             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
10850             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
10851         if (NumRegs > 1 && i == 0)
10852           MyFlags.Flags.setSplit();
10853         // if it isn't first piece, alignment must be 1
10854         else if (i > 0) {
10855           MyFlags.Flags.setOrigAlign(Align(1));
10856           if (i == NumRegs - 1)
10857             MyFlags.Flags.setSplitEnd();
10858         }
10859         Ins.push_back(MyFlags);
10860       }
10861       if (NeedsRegBlock && Value == NumValues - 1)
10862         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10863       PartBase += VT.getStoreSize().getKnownMinValue();
10864     }
10865   }
10866 
10867   // Call the target to set up the argument values.
10868   SmallVector<SDValue, 8> InVals;
10869   SDValue NewRoot = TLI->LowerFormalArguments(
10870       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10871 
10872   // Verify that the target's LowerFormalArguments behaved as expected.
10873   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10874          "LowerFormalArguments didn't return a valid chain!");
10875   assert(InVals.size() == Ins.size() &&
10876          "LowerFormalArguments didn't emit the correct number of values!");
10877   LLVM_DEBUG({
10878     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10879       assert(InVals[i].getNode() &&
10880              "LowerFormalArguments emitted a null value!");
10881       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10882              "LowerFormalArguments emitted a value with the wrong type!");
10883     }
10884   });
10885 
10886   // Update the DAG with the new chain value resulting from argument lowering.
10887   DAG.setRoot(NewRoot);
10888 
10889   // Set up the argument values.
10890   unsigned i = 0;
10891   if (!FuncInfo->CanLowerReturn) {
10892     // Create a virtual register for the sret pointer, and put in a copy
10893     // from the sret argument into it.
10894     SmallVector<EVT, 1> ValueVTs;
10895     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10896                     PointerType::get(F.getContext(),
10897                                      DAG.getDataLayout().getAllocaAddrSpace()),
10898                     ValueVTs);
10899     MVT VT = ValueVTs[0].getSimpleVT();
10900     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10901     std::optional<ISD::NodeType> AssertOp;
10902     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10903                                         nullptr, F.getCallingConv(), AssertOp);
10904 
10905     MachineFunction& MF = SDB->DAG.getMachineFunction();
10906     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10907     Register SRetReg =
10908         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10909     FuncInfo->DemoteRegister = SRetReg;
10910     NewRoot =
10911         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10912     DAG.setRoot(NewRoot);
10913 
10914     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10915     ++i;
10916   }
10917 
10918   SmallVector<SDValue, 4> Chains;
10919   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10920   for (const Argument &Arg : F.args()) {
10921     SmallVector<SDValue, 4> ArgValues;
10922     SmallVector<EVT, 4> ValueVTs;
10923     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10924     unsigned NumValues = ValueVTs.size();
10925     if (NumValues == 0)
10926       continue;
10927 
10928     bool ArgHasUses = !Arg.use_empty();
10929 
10930     // Elide the copying store if the target loaded this argument from a
10931     // suitable fixed stack object.
10932     if (Ins[i].Flags.isCopyElisionCandidate()) {
10933       unsigned NumParts = 0;
10934       for (EVT VT : ValueVTs)
10935         NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
10936                                                        F.getCallingConv(), VT);
10937 
10938       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10939                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10940                              ArrayRef(&InVals[i], NumParts), ArgHasUses);
10941     }
10942 
10943     // If this argument is unused then remember its value. It is used to generate
10944     // debugging information.
10945     bool isSwiftErrorArg =
10946         TLI->supportSwiftError() &&
10947         Arg.hasAttribute(Attribute::SwiftError);
10948     if (!ArgHasUses && !isSwiftErrorArg) {
10949       SDB->setUnusedArgValue(&Arg, InVals[i]);
10950 
10951       // Also remember any frame index for use in FastISel.
10952       if (FrameIndexSDNode *FI =
10953           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10954         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10955     }
10956 
10957     for (unsigned Val = 0; Val != NumValues; ++Val) {
10958       EVT VT = ValueVTs[Val];
10959       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10960                                                       F.getCallingConv(), VT);
10961       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10962           *CurDAG->getContext(), F.getCallingConv(), VT);
10963 
10964       // Even an apparent 'unused' swifterror argument needs to be returned. So
10965       // we do generate a copy for it that can be used on return from the
10966       // function.
10967       if (ArgHasUses || isSwiftErrorArg) {
10968         std::optional<ISD::NodeType> AssertOp;
10969         if (Arg.hasAttribute(Attribute::SExt))
10970           AssertOp = ISD::AssertSext;
10971         else if (Arg.hasAttribute(Attribute::ZExt))
10972           AssertOp = ISD::AssertZext;
10973 
10974         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10975                                              PartVT, VT, nullptr,
10976                                              F.getCallingConv(), AssertOp));
10977       }
10978 
10979       i += NumParts;
10980     }
10981 
10982     // We don't need to do anything else for unused arguments.
10983     if (ArgValues.empty())
10984       continue;
10985 
10986     // Note down frame index.
10987     if (FrameIndexSDNode *FI =
10988         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10989       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10990 
10991     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
10992                                      SDB->getCurSDLoc());
10993 
10994     SDB->setValue(&Arg, Res);
10995     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10996       // We want to associate the argument with the frame index, among
10997       // involved operands, that correspond to the lowest address. The
10998       // getCopyFromParts function, called earlier, is swapping the order of
10999       // the operands to BUILD_PAIR depending on endianness. The result of
11000       // that swapping is that the least significant bits of the argument will
11001       // be in the first operand of the BUILD_PAIR node, and the most
11002       // significant bits will be in the second operand.
11003       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
11004       if (LoadSDNode *LNode =
11005           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
11006         if (FrameIndexSDNode *FI =
11007             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11008           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11009     }
11010 
11011     // Analyses past this point are naive and don't expect an assertion.
11012     if (Res.getOpcode() == ISD::AssertZext)
11013       Res = Res.getOperand(0);
11014 
11015     // Update the SwiftErrorVRegDefMap.
11016     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11017       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11018       if (Register::isVirtualRegister(Reg))
11019         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11020                                    Reg);
11021     }
11022 
11023     // If this argument is live outside of the entry block, insert a copy from
11024     // wherever we got it to the vreg that other BB's will reference it as.
11025     if (Res.getOpcode() == ISD::CopyFromReg) {
11026       // If we can, though, try to skip creating an unnecessary vreg.
11027       // FIXME: This isn't very clean... it would be nice to make this more
11028       // general.
11029       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11030       if (Register::isVirtualRegister(Reg)) {
11031         FuncInfo->ValueMap[&Arg] = Reg;
11032         continue;
11033       }
11034     }
11035     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11036       FuncInfo->InitializeRegForValue(&Arg);
11037       SDB->CopyToExportRegsIfNeeded(&Arg);
11038     }
11039   }
11040 
11041   if (!Chains.empty()) {
11042     Chains.push_back(NewRoot);
11043     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11044   }
11045 
11046   DAG.setRoot(NewRoot);
11047 
11048   assert(i == InVals.size() && "Argument register count mismatch!");
11049 
11050   // If any argument copy elisions occurred and we have debug info, update the
11051   // stale frame indices used in the dbg.declare variable info table.
11052   if (!ArgCopyElisionFrameIndexMap.empty()) {
11053     for (MachineFunction::VariableDbgInfo &VI :
11054          MF->getInStackSlotVariableDbgInfo()) {
11055       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11056       if (I != ArgCopyElisionFrameIndexMap.end())
11057         VI.updateStackSlot(I->second);
11058     }
11059   }
11060 
11061   // Finally, if the target has anything special to do, allow it to do so.
11062   emitFunctionEntryCode();
11063 }
11064 
11065 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11066 /// ensure constants are generated when needed.  Remember the virtual registers
11067 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11068 /// directly add them, because expansion might result in multiple MBB's for one
11069 /// BB.  As such, the start of the BB might correspond to a different MBB than
11070 /// the end.
11071 void
11072 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11073   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11074 
11075   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11076 
11077   // Check PHI nodes in successors that expect a value to be available from this
11078   // block.
11079   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11080     if (!isa<PHINode>(SuccBB->begin())) continue;
11081     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
11082 
11083     // If this terminator has multiple identical successors (common for
11084     // switches), only handle each succ once.
11085     if (!SuccsHandled.insert(SuccMBB).second)
11086       continue;
11087 
11088     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11089 
11090     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11091     // nodes and Machine PHI nodes, but the incoming operands have not been
11092     // emitted yet.
11093     for (const PHINode &PN : SuccBB->phis()) {
11094       // Ignore dead phi's.
11095       if (PN.use_empty())
11096         continue;
11097 
11098       // Skip empty types
11099       if (PN.getType()->isEmptyTy())
11100         continue;
11101 
11102       unsigned Reg;
11103       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11104 
11105       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11106         unsigned &RegOut = ConstantsOut[C];
11107         if (RegOut == 0) {
11108           RegOut = FuncInfo.CreateRegs(C);
11109           // We need to zero/sign extend ConstantInt phi operands to match
11110           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11111           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11112           if (auto *CI = dyn_cast<ConstantInt>(C))
11113             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11114                                                     : ISD::ZERO_EXTEND;
11115           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11116         }
11117         Reg = RegOut;
11118       } else {
11119         DenseMap<const Value *, Register>::iterator I =
11120           FuncInfo.ValueMap.find(PHIOp);
11121         if (I != FuncInfo.ValueMap.end())
11122           Reg = I->second;
11123         else {
11124           assert(isa<AllocaInst>(PHIOp) &&
11125                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11126                  "Didn't codegen value into a register!??");
11127           Reg = FuncInfo.CreateRegs(PHIOp);
11128           CopyValueToVirtualRegister(PHIOp, Reg);
11129         }
11130       }
11131 
11132       // Remember that this register needs to added to the machine PHI node as
11133       // the input for this MBB.
11134       SmallVector<EVT, 4> ValueVTs;
11135       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11136       for (EVT VT : ValueVTs) {
11137         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11138         for (unsigned i = 0; i != NumRegisters; ++i)
11139           FuncInfo.PHINodesToUpdate.push_back(
11140               std::make_pair(&*MBBI++, Reg + i));
11141         Reg += NumRegisters;
11142       }
11143     }
11144   }
11145 
11146   ConstantsOut.clear();
11147 }
11148 
11149 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11150   MachineFunction::iterator I(MBB);
11151   if (++I == FuncInfo.MF->end())
11152     return nullptr;
11153   return &*I;
11154 }
11155 
11156 /// During lowering new call nodes can be created (such as memset, etc.).
11157 /// Those will become new roots of the current DAG, but complications arise
11158 /// when they are tail calls. In such cases, the call lowering will update
11159 /// the root, but the builder still needs to know that a tail call has been
11160 /// lowered in order to avoid generating an additional return.
11161 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11162   // If the node is null, we do have a tail call.
11163   if (MaybeTC.getNode() != nullptr)
11164     DAG.setRoot(MaybeTC);
11165   else
11166     HasTailCall = true;
11167 }
11168 
11169 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11170                                         MachineBasicBlock *SwitchMBB,
11171                                         MachineBasicBlock *DefaultMBB) {
11172   MachineFunction *CurMF = FuncInfo.MF;
11173   MachineBasicBlock *NextMBB = nullptr;
11174   MachineFunction::iterator BBI(W.MBB);
11175   if (++BBI != FuncInfo.MF->end())
11176     NextMBB = &*BBI;
11177 
11178   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11179 
11180   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11181 
11182   if (Size == 2 && W.MBB == SwitchMBB) {
11183     // If any two of the cases has the same destination, and if one value
11184     // is the same as the other, but has one bit unset that the other has set,
11185     // use bit manipulation to do two compares at once.  For example:
11186     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11187     // TODO: This could be extended to merge any 2 cases in switches with 3
11188     // cases.
11189     // TODO: Handle cases where W.CaseBB != SwitchBB.
11190     CaseCluster &Small = *W.FirstCluster;
11191     CaseCluster &Big = *W.LastCluster;
11192 
11193     if (Small.Low == Small.High && Big.Low == Big.High &&
11194         Small.MBB == Big.MBB) {
11195       const APInt &SmallValue = Small.Low->getValue();
11196       const APInt &BigValue = Big.Low->getValue();
11197 
11198       // Check that there is only one bit different.
11199       APInt CommonBit = BigValue ^ SmallValue;
11200       if (CommonBit.isPowerOf2()) {
11201         SDValue CondLHS = getValue(Cond);
11202         EVT VT = CondLHS.getValueType();
11203         SDLoc DL = getCurSDLoc();
11204 
11205         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11206                                  DAG.getConstant(CommonBit, DL, VT));
11207         SDValue Cond = DAG.getSetCC(
11208             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11209             ISD::SETEQ);
11210 
11211         // Update successor info.
11212         // Both Small and Big will jump to Small.BB, so we sum up the
11213         // probabilities.
11214         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11215         if (BPI)
11216           addSuccessorWithProb(
11217               SwitchMBB, DefaultMBB,
11218               // The default destination is the first successor in IR.
11219               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11220         else
11221           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11222 
11223         // Insert the true branch.
11224         SDValue BrCond =
11225             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11226                         DAG.getBasicBlock(Small.MBB));
11227         // Insert the false branch.
11228         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11229                              DAG.getBasicBlock(DefaultMBB));
11230 
11231         DAG.setRoot(BrCond);
11232         return;
11233       }
11234     }
11235   }
11236 
11237   if (TM.getOptLevel() != CodeGenOpt::None) {
11238     // Here, we order cases by probability so the most likely case will be
11239     // checked first. However, two clusters can have the same probability in
11240     // which case their relative ordering is non-deterministic. So we use Low
11241     // as a tie-breaker as clusters are guaranteed to never overlap.
11242     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11243                [](const CaseCluster &a, const CaseCluster &b) {
11244       return a.Prob != b.Prob ?
11245              a.Prob > b.Prob :
11246              a.Low->getValue().slt(b.Low->getValue());
11247     });
11248 
11249     // Rearrange the case blocks so that the last one falls through if possible
11250     // without changing the order of probabilities.
11251     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11252       --I;
11253       if (I->Prob > W.LastCluster->Prob)
11254         break;
11255       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11256         std::swap(*I, *W.LastCluster);
11257         break;
11258       }
11259     }
11260   }
11261 
11262   // Compute total probability.
11263   BranchProbability DefaultProb = W.DefaultProb;
11264   BranchProbability UnhandledProbs = DefaultProb;
11265   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11266     UnhandledProbs += I->Prob;
11267 
11268   MachineBasicBlock *CurMBB = W.MBB;
11269   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11270     bool FallthroughUnreachable = false;
11271     MachineBasicBlock *Fallthrough;
11272     if (I == W.LastCluster) {
11273       // For the last cluster, fall through to the default destination.
11274       Fallthrough = DefaultMBB;
11275       FallthroughUnreachable = isa<UnreachableInst>(
11276           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11277     } else {
11278       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11279       CurMF->insert(BBI, Fallthrough);
11280       // Put Cond in a virtual register to make it available from the new blocks.
11281       ExportFromCurrentBlock(Cond);
11282     }
11283     UnhandledProbs -= I->Prob;
11284 
11285     switch (I->Kind) {
11286       case CC_JumpTable: {
11287         // FIXME: Optimize away range check based on pivot comparisons.
11288         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11289         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11290 
11291         // The jump block hasn't been inserted yet; insert it here.
11292         MachineBasicBlock *JumpMBB = JT->MBB;
11293         CurMF->insert(BBI, JumpMBB);
11294 
11295         auto JumpProb = I->Prob;
11296         auto FallthroughProb = UnhandledProbs;
11297 
11298         // If the default statement is a target of the jump table, we evenly
11299         // distribute the default probability to successors of CurMBB. Also
11300         // update the probability on the edge from JumpMBB to Fallthrough.
11301         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11302                                               SE = JumpMBB->succ_end();
11303              SI != SE; ++SI) {
11304           if (*SI == DefaultMBB) {
11305             JumpProb += DefaultProb / 2;
11306             FallthroughProb -= DefaultProb / 2;
11307             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11308             JumpMBB->normalizeSuccProbs();
11309             break;
11310           }
11311         }
11312 
11313         if (FallthroughUnreachable)
11314           JTH->FallthroughUnreachable = true;
11315 
11316         if (!JTH->FallthroughUnreachable)
11317           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11318         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11319         CurMBB->normalizeSuccProbs();
11320 
11321         // The jump table header will be inserted in our current block, do the
11322         // range check, and fall through to our fallthrough block.
11323         JTH->HeaderBB = CurMBB;
11324         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11325 
11326         // If we're in the right place, emit the jump table header right now.
11327         if (CurMBB == SwitchMBB) {
11328           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11329           JTH->Emitted = true;
11330         }
11331         break;
11332       }
11333       case CC_BitTests: {
11334         // FIXME: Optimize away range check based on pivot comparisons.
11335         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11336 
11337         // The bit test blocks haven't been inserted yet; insert them here.
11338         for (BitTestCase &BTC : BTB->Cases)
11339           CurMF->insert(BBI, BTC.ThisBB);
11340 
11341         // Fill in fields of the BitTestBlock.
11342         BTB->Parent = CurMBB;
11343         BTB->Default = Fallthrough;
11344 
11345         BTB->DefaultProb = UnhandledProbs;
11346         // If the cases in bit test don't form a contiguous range, we evenly
11347         // distribute the probability on the edge to Fallthrough to two
11348         // successors of CurMBB.
11349         if (!BTB->ContiguousRange) {
11350           BTB->Prob += DefaultProb / 2;
11351           BTB->DefaultProb -= DefaultProb / 2;
11352         }
11353 
11354         if (FallthroughUnreachable)
11355           BTB->FallthroughUnreachable = true;
11356 
11357         // If we're in the right place, emit the bit test header right now.
11358         if (CurMBB == SwitchMBB) {
11359           visitBitTestHeader(*BTB, SwitchMBB);
11360           BTB->Emitted = true;
11361         }
11362         break;
11363       }
11364       case CC_Range: {
11365         const Value *RHS, *LHS, *MHS;
11366         ISD::CondCode CC;
11367         if (I->Low == I->High) {
11368           // Check Cond == I->Low.
11369           CC = ISD::SETEQ;
11370           LHS = Cond;
11371           RHS=I->Low;
11372           MHS = nullptr;
11373         } else {
11374           // Check I->Low <= Cond <= I->High.
11375           CC = ISD::SETLE;
11376           LHS = I->Low;
11377           MHS = Cond;
11378           RHS = I->High;
11379         }
11380 
11381         // If Fallthrough is unreachable, fold away the comparison.
11382         if (FallthroughUnreachable)
11383           CC = ISD::SETTRUE;
11384 
11385         // The false probability is the sum of all unhandled cases.
11386         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11387                      getCurSDLoc(), I->Prob, UnhandledProbs);
11388 
11389         if (CurMBB == SwitchMBB)
11390           visitSwitchCase(CB, SwitchMBB);
11391         else
11392           SL->SwitchCases.push_back(CB);
11393 
11394         break;
11395       }
11396     }
11397     CurMBB = Fallthrough;
11398   }
11399 }
11400 
11401 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11402                                               CaseClusterIt First,
11403                                               CaseClusterIt Last) {
11404   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11405     if (X.Prob != CC.Prob)
11406       return X.Prob > CC.Prob;
11407 
11408     // Ties are broken by comparing the case value.
11409     return X.Low->getValue().slt(CC.Low->getValue());
11410   });
11411 }
11412 
11413 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11414                                         const SwitchWorkListItem &W,
11415                                         Value *Cond,
11416                                         MachineBasicBlock *SwitchMBB) {
11417   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11418          "Clusters not sorted?");
11419 
11420   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11421 
11422   // Balance the tree based on branch probabilities to create a near-optimal (in
11423   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11424   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11425   CaseClusterIt LastLeft = W.FirstCluster;
11426   CaseClusterIt FirstRight = W.LastCluster;
11427   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11428   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11429 
11430   // Move LastLeft and FirstRight towards each other from opposite directions to
11431   // find a partitioning of the clusters which balances the probability on both
11432   // sides. If LeftProb and RightProb are equal, alternate which side is
11433   // taken to ensure 0-probability nodes are distributed evenly.
11434   unsigned I = 0;
11435   while (LastLeft + 1 < FirstRight) {
11436     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11437       LeftProb += (++LastLeft)->Prob;
11438     else
11439       RightProb += (--FirstRight)->Prob;
11440     I++;
11441   }
11442 
11443   while (true) {
11444     // Our binary search tree differs from a typical BST in that ours can have up
11445     // to three values in each leaf. The pivot selection above doesn't take that
11446     // into account, which means the tree might require more nodes and be less
11447     // efficient. We compensate for this here.
11448 
11449     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11450     unsigned NumRight = W.LastCluster - FirstRight + 1;
11451 
11452     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11453       // If one side has less than 3 clusters, and the other has more than 3,
11454       // consider taking a cluster from the other side.
11455 
11456       if (NumLeft < NumRight) {
11457         // Consider moving the first cluster on the right to the left side.
11458         CaseCluster &CC = *FirstRight;
11459         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11460         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11461         if (LeftSideRank <= RightSideRank) {
11462           // Moving the cluster to the left does not demote it.
11463           ++LastLeft;
11464           ++FirstRight;
11465           continue;
11466         }
11467       } else {
11468         assert(NumRight < NumLeft);
11469         // Consider moving the last element on the left to the right side.
11470         CaseCluster &CC = *LastLeft;
11471         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11472         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11473         if (RightSideRank <= LeftSideRank) {
11474           // Moving the cluster to the right does not demot it.
11475           --LastLeft;
11476           --FirstRight;
11477           continue;
11478         }
11479       }
11480     }
11481     break;
11482   }
11483 
11484   assert(LastLeft + 1 == FirstRight);
11485   assert(LastLeft >= W.FirstCluster);
11486   assert(FirstRight <= W.LastCluster);
11487 
11488   // Use the first element on the right as pivot since we will make less-than
11489   // comparisons against it.
11490   CaseClusterIt PivotCluster = FirstRight;
11491   assert(PivotCluster > W.FirstCluster);
11492   assert(PivotCluster <= W.LastCluster);
11493 
11494   CaseClusterIt FirstLeft = W.FirstCluster;
11495   CaseClusterIt LastRight = W.LastCluster;
11496 
11497   const ConstantInt *Pivot = PivotCluster->Low;
11498 
11499   // New blocks will be inserted immediately after the current one.
11500   MachineFunction::iterator BBI(W.MBB);
11501   ++BBI;
11502 
11503   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11504   // we can branch to its destination directly if it's squeezed exactly in
11505   // between the known lower bound and Pivot - 1.
11506   MachineBasicBlock *LeftMBB;
11507   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11508       FirstLeft->Low == W.GE &&
11509       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11510     LeftMBB = FirstLeft->MBB;
11511   } else {
11512     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11513     FuncInfo.MF->insert(BBI, LeftMBB);
11514     WorkList.push_back(
11515         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11516     // Put Cond in a virtual register to make it available from the new blocks.
11517     ExportFromCurrentBlock(Cond);
11518   }
11519 
11520   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11521   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11522   // directly if RHS.High equals the current upper bound.
11523   MachineBasicBlock *RightMBB;
11524   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11525       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11526     RightMBB = FirstRight->MBB;
11527   } else {
11528     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11529     FuncInfo.MF->insert(BBI, RightMBB);
11530     WorkList.push_back(
11531         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11532     // Put Cond in a virtual register to make it available from the new blocks.
11533     ExportFromCurrentBlock(Cond);
11534   }
11535 
11536   // Create the CaseBlock record that will be used to lower the branch.
11537   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11538                getCurSDLoc(), LeftProb, RightProb);
11539 
11540   if (W.MBB == SwitchMBB)
11541     visitSwitchCase(CB, SwitchMBB);
11542   else
11543     SL->SwitchCases.push_back(CB);
11544 }
11545 
11546 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11547 // from the swith statement.
11548 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11549                                             BranchProbability PeeledCaseProb) {
11550   if (PeeledCaseProb == BranchProbability::getOne())
11551     return BranchProbability::getZero();
11552   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11553 
11554   uint32_t Numerator = CaseProb.getNumerator();
11555   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11556   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11557 }
11558 
11559 // Try to peel the top probability case if it exceeds the threshold.
11560 // Return current MachineBasicBlock for the switch statement if the peeling
11561 // does not occur.
11562 // If the peeling is performed, return the newly created MachineBasicBlock
11563 // for the peeled switch statement. Also update Clusters to remove the peeled
11564 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11565 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11566     const SwitchInst &SI, CaseClusterVector &Clusters,
11567     BranchProbability &PeeledCaseProb) {
11568   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11569   // Don't perform if there is only one cluster or optimizing for size.
11570   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11571       TM.getOptLevel() == CodeGenOpt::None ||
11572       SwitchMBB->getParent()->getFunction().hasMinSize())
11573     return SwitchMBB;
11574 
11575   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11576   unsigned PeeledCaseIndex = 0;
11577   bool SwitchPeeled = false;
11578   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11579     CaseCluster &CC = Clusters[Index];
11580     if (CC.Prob < TopCaseProb)
11581       continue;
11582     TopCaseProb = CC.Prob;
11583     PeeledCaseIndex = Index;
11584     SwitchPeeled = true;
11585   }
11586   if (!SwitchPeeled)
11587     return SwitchMBB;
11588 
11589   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11590                     << TopCaseProb << "\n");
11591 
11592   // Record the MBB for the peeled switch statement.
11593   MachineFunction::iterator BBI(SwitchMBB);
11594   ++BBI;
11595   MachineBasicBlock *PeeledSwitchMBB =
11596       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11597   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11598 
11599   ExportFromCurrentBlock(SI.getCondition());
11600   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11601   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11602                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11603   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11604 
11605   Clusters.erase(PeeledCaseIt);
11606   for (CaseCluster &CC : Clusters) {
11607     LLVM_DEBUG(
11608         dbgs() << "Scale the probablity for one cluster, before scaling: "
11609                << CC.Prob << "\n");
11610     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11611     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11612   }
11613   PeeledCaseProb = TopCaseProb;
11614   return PeeledSwitchMBB;
11615 }
11616 
11617 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11618   // Extract cases from the switch.
11619   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11620   CaseClusterVector Clusters;
11621   Clusters.reserve(SI.getNumCases());
11622   for (auto I : SI.cases()) {
11623     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11624     const ConstantInt *CaseVal = I.getCaseValue();
11625     BranchProbability Prob =
11626         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11627             : BranchProbability(1, SI.getNumCases() + 1);
11628     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11629   }
11630 
11631   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11632 
11633   // Cluster adjacent cases with the same destination. We do this at all
11634   // optimization levels because it's cheap to do and will make codegen faster
11635   // if there are many clusters.
11636   sortAndRangeify(Clusters);
11637 
11638   // The branch probablity of the peeled case.
11639   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11640   MachineBasicBlock *PeeledSwitchMBB =
11641       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11642 
11643   // If there is only the default destination, jump there directly.
11644   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11645   if (Clusters.empty()) {
11646     assert(PeeledSwitchMBB == SwitchMBB);
11647     SwitchMBB->addSuccessor(DefaultMBB);
11648     if (DefaultMBB != NextBlock(SwitchMBB)) {
11649       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11650                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11651     }
11652     return;
11653   }
11654 
11655   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11656   SL->findBitTestClusters(Clusters, &SI);
11657 
11658   LLVM_DEBUG({
11659     dbgs() << "Case clusters: ";
11660     for (const CaseCluster &C : Clusters) {
11661       if (C.Kind == CC_JumpTable)
11662         dbgs() << "JT:";
11663       if (C.Kind == CC_BitTests)
11664         dbgs() << "BT:";
11665 
11666       C.Low->getValue().print(dbgs(), true);
11667       if (C.Low != C.High) {
11668         dbgs() << '-';
11669         C.High->getValue().print(dbgs(), true);
11670       }
11671       dbgs() << ' ';
11672     }
11673     dbgs() << '\n';
11674   });
11675 
11676   assert(!Clusters.empty());
11677   SwitchWorkList WorkList;
11678   CaseClusterIt First = Clusters.begin();
11679   CaseClusterIt Last = Clusters.end() - 1;
11680   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11681   // Scale the branchprobability for DefaultMBB if the peel occurs and
11682   // DefaultMBB is not replaced.
11683   if (PeeledCaseProb != BranchProbability::getZero() &&
11684       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11685     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11686   WorkList.push_back(
11687       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11688 
11689   while (!WorkList.empty()) {
11690     SwitchWorkListItem W = WorkList.pop_back_val();
11691     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11692 
11693     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11694         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11695       // For optimized builds, lower large range as a balanced binary tree.
11696       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11697       continue;
11698     }
11699 
11700     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11701   }
11702 }
11703 
11704 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11705   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11706   auto DL = getCurSDLoc();
11707   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11708   setValue(&I, DAG.getStepVector(DL, ResultVT));
11709 }
11710 
11711 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11712   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11713   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11714 
11715   SDLoc DL = getCurSDLoc();
11716   SDValue V = getValue(I.getOperand(0));
11717   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11718 
11719   if (VT.isScalableVector()) {
11720     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11721     return;
11722   }
11723 
11724   // Use VECTOR_SHUFFLE for the fixed-length vector
11725   // to maintain existing behavior.
11726   SmallVector<int, 8> Mask;
11727   unsigned NumElts = VT.getVectorMinNumElements();
11728   for (unsigned i = 0; i != NumElts; ++i)
11729     Mask.push_back(NumElts - 1 - i);
11730 
11731   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11732 }
11733 
11734 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
11735   auto DL = getCurSDLoc();
11736   SDValue InVec = getValue(I.getOperand(0));
11737   EVT OutVT =
11738       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
11739 
11740   unsigned OutNumElts = OutVT.getVectorMinNumElements();
11741 
11742   // ISD Node needs the input vectors split into two equal parts
11743   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11744                            DAG.getVectorIdxConstant(0, DL));
11745   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11746                            DAG.getVectorIdxConstant(OutNumElts, DL));
11747 
11748   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11749   // legalisation and combines.
11750   if (OutVT.isFixedLengthVector()) {
11751     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11752                                         createStrideMask(0, 2, OutNumElts));
11753     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11754                                        createStrideMask(1, 2, OutNumElts));
11755     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
11756     setValue(&I, Res);
11757     return;
11758   }
11759 
11760   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
11761                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
11762   setValue(&I, Res);
11763 }
11764 
11765 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
11766   auto DL = getCurSDLoc();
11767   EVT InVT = getValue(I.getOperand(0)).getValueType();
11768   SDValue InVec0 = getValue(I.getOperand(0));
11769   SDValue InVec1 = getValue(I.getOperand(1));
11770   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11771   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11772 
11773   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11774   // legalisation and combines.
11775   if (OutVT.isFixedLengthVector()) {
11776     unsigned NumElts = InVT.getVectorMinNumElements();
11777     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
11778     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
11779                                       createInterleaveMask(NumElts, 2)));
11780     return;
11781   }
11782 
11783   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
11784                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
11785   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
11786                     Res.getValue(1));
11787   setValue(&I, Res);
11788 }
11789 
11790 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11791   SmallVector<EVT, 4> ValueVTs;
11792   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11793                   ValueVTs);
11794   unsigned NumValues = ValueVTs.size();
11795   if (NumValues == 0) return;
11796 
11797   SmallVector<SDValue, 4> Values(NumValues);
11798   SDValue Op = getValue(I.getOperand(0));
11799 
11800   for (unsigned i = 0; i != NumValues; ++i)
11801     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11802                             SDValue(Op.getNode(), Op.getResNo() + i));
11803 
11804   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11805                            DAG.getVTList(ValueVTs), Values));
11806 }
11807 
11808 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11809   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11810   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11811 
11812   SDLoc DL = getCurSDLoc();
11813   SDValue V1 = getValue(I.getOperand(0));
11814   SDValue V2 = getValue(I.getOperand(1));
11815   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11816 
11817   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11818   if (VT.isScalableVector()) {
11819     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11820     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11821                              DAG.getConstant(Imm, DL, IdxVT)));
11822     return;
11823   }
11824 
11825   unsigned NumElts = VT.getVectorNumElements();
11826 
11827   uint64_t Idx = (NumElts + Imm) % NumElts;
11828 
11829   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11830   SmallVector<int, 8> Mask;
11831   for (unsigned i = 0; i < NumElts; ++i)
11832     Mask.push_back(Idx + i);
11833   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11834 }
11835 
11836 // Consider the following MIR after SelectionDAG, which produces output in
11837 // phyregs in the first case or virtregs in the second case.
11838 //
11839 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
11840 // %5:gr32 = COPY $ebx
11841 // %6:gr32 = COPY $edx
11842 // %1:gr32 = COPY %6:gr32
11843 // %0:gr32 = COPY %5:gr32
11844 //
11845 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
11846 // %1:gr32 = COPY %6:gr32
11847 // %0:gr32 = COPY %5:gr32
11848 //
11849 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
11850 // Given %1, we'd like to return $edx in the first case and %6 in the second.
11851 //
11852 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
11853 // to a single virtreg (such as %0). The remaining outputs monotonically
11854 // increase in virtreg number from there. If a callbr has no outputs, then it
11855 // should not have a corresponding callbr landingpad; in fact, the callbr
11856 // landingpad would not even be able to refer to such a callbr.
11857 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
11858   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
11859   // There is definitely at least one copy.
11860   assert(MI->getOpcode() == TargetOpcode::COPY &&
11861          "start of copy chain MUST be COPY");
11862   Reg = MI->getOperand(1).getReg();
11863   MI = MRI.def_begin(Reg)->getParent();
11864   // There may be an optional second copy.
11865   if (MI->getOpcode() == TargetOpcode::COPY) {
11866     assert(Reg.isVirtual() && "expected COPY of virtual register");
11867     Reg = MI->getOperand(1).getReg();
11868     assert(Reg.isPhysical() && "expected COPY of physical register");
11869     MI = MRI.def_begin(Reg)->getParent();
11870   }
11871   // The start of the chain must be an INLINEASM_BR.
11872   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
11873          "end of copy chain MUST be INLINEASM_BR");
11874   return Reg;
11875 }
11876 
11877 // We must do this walk rather than the simpler
11878 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
11879 // otherwise we will end up with copies of virtregs only valid along direct
11880 // edges.
11881 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
11882   SmallVector<EVT, 8> ResultVTs;
11883   SmallVector<SDValue, 8> ResultValues;
11884   const auto *CBR =
11885       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
11886 
11887   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11888   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
11889   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11890 
11891   unsigned InitialDef = FuncInfo.ValueMap[CBR];
11892   SDValue Chain = DAG.getRoot();
11893 
11894   // Re-parse the asm constraints string.
11895   TargetLowering::AsmOperandInfoVector TargetConstraints =
11896       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
11897   for (auto &T : TargetConstraints) {
11898     SDISelAsmOperandInfo OpInfo(T);
11899     if (OpInfo.Type != InlineAsm::isOutput)
11900       continue;
11901 
11902     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
11903     // individual constraint.
11904     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
11905 
11906     switch (OpInfo.ConstraintType) {
11907     case TargetLowering::C_Register:
11908     case TargetLowering::C_RegisterClass: {
11909       // Fill in OpInfo.AssignedRegs.Regs.
11910       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
11911 
11912       // getRegistersForValue may produce 1 to many registers based on whether
11913       // the OpInfo.ConstraintVT is legal on the target or not.
11914       for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) {
11915         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
11916         if (Register::isPhysicalRegister(OriginalDef))
11917           FuncInfo.MBB->addLiveIn(OriginalDef);
11918         // Update the assigned registers to use the original defs.
11919         OpInfo.AssignedRegs.Regs[i] = OriginalDef;
11920       }
11921 
11922       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
11923           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
11924       ResultValues.push_back(V);
11925       ResultVTs.push_back(OpInfo.ConstraintVT);
11926       break;
11927     }
11928     case TargetLowering::C_Other: {
11929       SDValue Flag;
11930       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
11931                                                   OpInfo, DAG);
11932       ++InitialDef;
11933       ResultValues.push_back(V);
11934       ResultVTs.push_back(OpInfo.ConstraintVT);
11935       break;
11936     }
11937     default:
11938       break;
11939     }
11940   }
11941   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11942                           DAG.getVTList(ResultVTs), ResultValues);
11943   setValue(&I, V);
11944 }
11945