xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp (revision fcaf7f8644a9988098ac6be2165bce3ea4786e91)
1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/CodeGen/Analysis.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineConstantPool.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/RuntimeLibcalls.h"
39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
40 #include "llvm/CodeGen/SelectionDAGNodes.h"
41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
42 #include "llvm/CodeGen/TargetFrameLowering.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/ValueTypes.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CodeGen.h"
59 #include "llvm/Support/Compiler.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/KnownBits.h"
63 #include "llvm/Support/MachineValueType.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Support/Mutex.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include "llvm/Target/TargetOptions.h"
69 #include "llvm/Transforms/Utils/SizeOpts.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstdint>
73 #include <cstdlib>
74 #include <limits>
75 #include <set>
76 #include <string>
77 #include <utility>
78 #include <vector>
79 
80 using namespace llvm;
81 
82 /// makeVTList - Return an instance of the SDVTList struct initialized with the
83 /// specified members.
84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
85   SDVTList Res = {VTs, NumVTs};
86   return Res;
87 }
88 
89 // Default null implementations of the callbacks.
90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
93 
94 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
95 
96 #define DEBUG_TYPE "selectiondag"
97 
98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
99        cl::Hidden, cl::init(true),
100        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
101 
102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
103        cl::desc("Number limit for gluing ld/st of memcpy."),
104        cl::Hidden, cl::init(0));
105 
106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
107   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
108 }
109 
110 //===----------------------------------------------------------------------===//
111 //                              ConstantFPSDNode Class
112 //===----------------------------------------------------------------------===//
113 
114 /// isExactlyValue - We don't rely on operator== working on double values, as
115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
116 /// As such, this method can be used to do an exact bit-for-bit comparison of
117 /// two floating point values.
118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
119   return getValueAPF().bitwiseIsEqual(V);
120 }
121 
122 bool ConstantFPSDNode::isValueValidForType(EVT VT,
123                                            const APFloat& Val) {
124   assert(VT.isFloatingPoint() && "Can only convert between FP types");
125 
126   // convert modifies in place, so make a copy.
127   APFloat Val2 = APFloat(Val);
128   bool losesInfo;
129   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
130                       APFloat::rmNearestTiesToEven,
131                       &losesInfo);
132   return !losesInfo;
133 }
134 
135 //===----------------------------------------------------------------------===//
136 //                              ISD Namespace
137 //===----------------------------------------------------------------------===//
138 
139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
140   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
141     unsigned EltSize =
142         N->getValueType(0).getVectorElementType().getSizeInBits();
143     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
144       SplatVal = Op0->getAPIntValue().trunc(EltSize);
145       return true;
146     }
147     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
148       SplatVal = Op0->getValueAPF().bitcastToAPInt().trunc(EltSize);
149       return true;
150     }
151   }
152 
153   auto *BV = dyn_cast<BuildVectorSDNode>(N);
154   if (!BV)
155     return false;
156 
157   APInt SplatUndef;
158   unsigned SplatBitSize;
159   bool HasUndefs;
160   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
161   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
162                              EltSize) &&
163          EltSize == SplatBitSize;
164 }
165 
166 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
167 // specializations of the more general isConstantSplatVector()?
168 
169 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
170   // Look through a bit convert.
171   while (N->getOpcode() == ISD::BITCAST)
172     N = N->getOperand(0).getNode();
173 
174   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
175     APInt SplatVal;
176     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
177   }
178 
179   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
180 
181   unsigned i = 0, e = N->getNumOperands();
182 
183   // Skip over all of the undef values.
184   while (i != e && N->getOperand(i).isUndef())
185     ++i;
186 
187   // Do not accept an all-undef vector.
188   if (i == e) return false;
189 
190   // Do not accept build_vectors that aren't all constants or which have non-~0
191   // elements. We have to be a bit careful here, as the type of the constant
192   // may not be the same as the type of the vector elements due to type
193   // legalization (the elements are promoted to a legal type for the target and
194   // a vector of a type may be legal when the base element type is not).
195   // We only want to check enough bits to cover the vector elements, because
196   // we care if the resultant vector is all ones, not whether the individual
197   // constants are.
198   SDValue NotZero = N->getOperand(i);
199   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
200   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
201     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
202       return false;
203   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
204     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
205       return false;
206   } else
207     return false;
208 
209   // Okay, we have at least one ~0 value, check to see if the rest match or are
210   // undefs. Even with the above element type twiddling, this should be OK, as
211   // the same type legalization should have applied to all the elements.
212   for (++i; i != e; ++i)
213     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
214       return false;
215   return true;
216 }
217 
218 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
219   // Look through a bit convert.
220   while (N->getOpcode() == ISD::BITCAST)
221     N = N->getOperand(0).getNode();
222 
223   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
224     APInt SplatVal;
225     return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
226   }
227 
228   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
229 
230   bool IsAllUndef = true;
231   for (const SDValue &Op : N->op_values()) {
232     if (Op.isUndef())
233       continue;
234     IsAllUndef = false;
235     // Do not accept build_vectors that aren't all constants or which have non-0
236     // elements. We have to be a bit careful here, as the type of the constant
237     // may not be the same as the type of the vector elements due to type
238     // legalization (the elements are promoted to a legal type for the target
239     // and a vector of a type may be legal when the base element type is not).
240     // We only want to check enough bits to cover the vector elements, because
241     // we care if the resultant vector is all zeros, not whether the individual
242     // constants are.
243     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
244     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
245       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
246         return false;
247     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
248       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
249         return false;
250     } else
251       return false;
252   }
253 
254   // Do not accept an all-undef vector.
255   if (IsAllUndef)
256     return false;
257   return true;
258 }
259 
260 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
261   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
262 }
263 
264 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
265   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
266 }
267 
268 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
269   if (N->getOpcode() != ISD::BUILD_VECTOR)
270     return false;
271 
272   for (const SDValue &Op : N->op_values()) {
273     if (Op.isUndef())
274       continue;
275     if (!isa<ConstantSDNode>(Op))
276       return false;
277   }
278   return true;
279 }
280 
281 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
282   if (N->getOpcode() != ISD::BUILD_VECTOR)
283     return false;
284 
285   for (const SDValue &Op : N->op_values()) {
286     if (Op.isUndef())
287       continue;
288     if (!isa<ConstantFPSDNode>(Op))
289       return false;
290   }
291   return true;
292 }
293 
294 bool ISD::allOperandsUndef(const SDNode *N) {
295   // Return false if the node has no operands.
296   // This is "logically inconsistent" with the definition of "all" but
297   // is probably the desired behavior.
298   if (N->getNumOperands() == 0)
299     return false;
300   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
301 }
302 
303 bool ISD::matchUnaryPredicate(SDValue Op,
304                               std::function<bool(ConstantSDNode *)> Match,
305                               bool AllowUndefs) {
306   // FIXME: Add support for scalar UNDEF cases?
307   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
308     return Match(Cst);
309 
310   // FIXME: Add support for vector UNDEF cases?
311   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
312       ISD::SPLAT_VECTOR != Op.getOpcode())
313     return false;
314 
315   EVT SVT = Op.getValueType().getScalarType();
316   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
317     if (AllowUndefs && Op.getOperand(i).isUndef()) {
318       if (!Match(nullptr))
319         return false;
320       continue;
321     }
322 
323     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
324     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
325       return false;
326   }
327   return true;
328 }
329 
330 bool ISD::matchBinaryPredicate(
331     SDValue LHS, SDValue RHS,
332     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
333     bool AllowUndefs, bool AllowTypeMismatch) {
334   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
335     return false;
336 
337   // TODO: Add support for scalar UNDEF cases?
338   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
339     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
340       return Match(LHSCst, RHSCst);
341 
342   // TODO: Add support for vector UNDEF cases?
343   if (LHS.getOpcode() != RHS.getOpcode() ||
344       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
345        LHS.getOpcode() != ISD::SPLAT_VECTOR))
346     return false;
347 
348   EVT SVT = LHS.getValueType().getScalarType();
349   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
350     SDValue LHSOp = LHS.getOperand(i);
351     SDValue RHSOp = RHS.getOperand(i);
352     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
353     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
354     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
355     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
356     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
357       return false;
358     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
359                                LHSOp.getValueType() != RHSOp.getValueType()))
360       return false;
361     if (!Match(LHSCst, RHSCst))
362       return false;
363   }
364   return true;
365 }
366 
367 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
368   switch (VecReduceOpcode) {
369   default:
370     llvm_unreachable("Expected VECREDUCE opcode");
371   case ISD::VECREDUCE_FADD:
372   case ISD::VECREDUCE_SEQ_FADD:
373   case ISD::VP_REDUCE_FADD:
374   case ISD::VP_REDUCE_SEQ_FADD:
375     return ISD::FADD;
376   case ISD::VECREDUCE_FMUL:
377   case ISD::VECREDUCE_SEQ_FMUL:
378   case ISD::VP_REDUCE_FMUL:
379   case ISD::VP_REDUCE_SEQ_FMUL:
380     return ISD::FMUL;
381   case ISD::VECREDUCE_ADD:
382   case ISD::VP_REDUCE_ADD:
383     return ISD::ADD;
384   case ISD::VECREDUCE_MUL:
385   case ISD::VP_REDUCE_MUL:
386     return ISD::MUL;
387   case ISD::VECREDUCE_AND:
388   case ISD::VP_REDUCE_AND:
389     return ISD::AND;
390   case ISD::VECREDUCE_OR:
391   case ISD::VP_REDUCE_OR:
392     return ISD::OR;
393   case ISD::VECREDUCE_XOR:
394   case ISD::VP_REDUCE_XOR:
395     return ISD::XOR;
396   case ISD::VECREDUCE_SMAX:
397   case ISD::VP_REDUCE_SMAX:
398     return ISD::SMAX;
399   case ISD::VECREDUCE_SMIN:
400   case ISD::VP_REDUCE_SMIN:
401     return ISD::SMIN;
402   case ISD::VECREDUCE_UMAX:
403   case ISD::VP_REDUCE_UMAX:
404     return ISD::UMAX;
405   case ISD::VECREDUCE_UMIN:
406   case ISD::VP_REDUCE_UMIN:
407     return ISD::UMIN;
408   case ISD::VECREDUCE_FMAX:
409   case ISD::VP_REDUCE_FMAX:
410     return ISD::FMAXNUM;
411   case ISD::VECREDUCE_FMIN:
412   case ISD::VP_REDUCE_FMIN:
413     return ISD::FMINNUM;
414   }
415 }
416 
417 bool ISD::isVPOpcode(unsigned Opcode) {
418   switch (Opcode) {
419   default:
420     return false;
421 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...)                                    \
422   case ISD::VPSD:                                                              \
423     return true;
424 #include "llvm/IR/VPIntrinsics.def"
425   }
426 }
427 
428 bool ISD::isVPBinaryOp(unsigned Opcode) {
429   switch (Opcode) {
430   default:
431     break;
432 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
433 #define VP_PROPERTY_BINARYOP return true;
434 #define END_REGISTER_VP_SDNODE(VPSD) break;
435 #include "llvm/IR/VPIntrinsics.def"
436   }
437   return false;
438 }
439 
440 bool ISD::isVPReduction(unsigned Opcode) {
441   switch (Opcode) {
442   default:
443     break;
444 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
445 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true;
446 #define END_REGISTER_VP_SDNODE(VPSD) break;
447 #include "llvm/IR/VPIntrinsics.def"
448   }
449   return false;
450 }
451 
452 /// The operand position of the vector mask.
453 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
454   switch (Opcode) {
455   default:
456     return None;
457 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...)         \
458   case ISD::VPSD:                                                              \
459     return MASKPOS;
460 #include "llvm/IR/VPIntrinsics.def"
461   }
462 }
463 
464 /// The operand position of the explicit vector length parameter.
465 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
466   switch (Opcode) {
467   default:
468     return None;
469 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS)      \
470   case ISD::VPSD:                                                              \
471     return EVLPOS;
472 #include "llvm/IR/VPIntrinsics.def"
473   }
474 }
475 
476 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
477   switch (ExtType) {
478   case ISD::EXTLOAD:
479     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
480   case ISD::SEXTLOAD:
481     return ISD::SIGN_EXTEND;
482   case ISD::ZEXTLOAD:
483     return ISD::ZERO_EXTEND;
484   default:
485     break;
486   }
487 
488   llvm_unreachable("Invalid LoadExtType");
489 }
490 
491 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
492   // To perform this operation, we just need to swap the L and G bits of the
493   // operation.
494   unsigned OldL = (Operation >> 2) & 1;
495   unsigned OldG = (Operation >> 1) & 1;
496   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
497                        (OldL << 1) |       // New G bit
498                        (OldG << 2));       // New L bit.
499 }
500 
501 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
502   unsigned Operation = Op;
503   if (isIntegerLike)
504     Operation ^= 7;   // Flip L, G, E bits, but not U.
505   else
506     Operation ^= 15;  // Flip all of the condition bits.
507 
508   if (Operation > ISD::SETTRUE2)
509     Operation &= ~8;  // Don't let N and U bits get set.
510 
511   return ISD::CondCode(Operation);
512 }
513 
514 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
515   return getSetCCInverseImpl(Op, Type.isInteger());
516 }
517 
518 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
519                                                bool isIntegerLike) {
520   return getSetCCInverseImpl(Op, isIntegerLike);
521 }
522 
523 /// For an integer comparison, return 1 if the comparison is a signed operation
524 /// and 2 if the result is an unsigned comparison. Return zero if the operation
525 /// does not depend on the sign of the input (setne and seteq).
526 static int isSignedOp(ISD::CondCode Opcode) {
527   switch (Opcode) {
528   default: llvm_unreachable("Illegal integer setcc operation!");
529   case ISD::SETEQ:
530   case ISD::SETNE: return 0;
531   case ISD::SETLT:
532   case ISD::SETLE:
533   case ISD::SETGT:
534   case ISD::SETGE: return 1;
535   case ISD::SETULT:
536   case ISD::SETULE:
537   case ISD::SETUGT:
538   case ISD::SETUGE: return 2;
539   }
540 }
541 
542 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
543                                        EVT Type) {
544   bool IsInteger = Type.isInteger();
545   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
546     // Cannot fold a signed integer setcc with an unsigned integer setcc.
547     return ISD::SETCC_INVALID;
548 
549   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
550 
551   // If the N and U bits get set, then the resultant comparison DOES suddenly
552   // care about orderedness, and it is true when ordered.
553   if (Op > ISD::SETTRUE2)
554     Op &= ~16;     // Clear the U bit if the N bit is set.
555 
556   // Canonicalize illegal integer setcc's.
557   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
558     Op = ISD::SETNE;
559 
560   return ISD::CondCode(Op);
561 }
562 
563 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
564                                         EVT Type) {
565   bool IsInteger = Type.isInteger();
566   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
567     // Cannot fold a signed setcc with an unsigned setcc.
568     return ISD::SETCC_INVALID;
569 
570   // Combine all of the condition bits.
571   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
572 
573   // Canonicalize illegal integer setcc's.
574   if (IsInteger) {
575     switch (Result) {
576     default: break;
577     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
578     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
579     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
580     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
581     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
582     }
583   }
584 
585   return Result;
586 }
587 
588 //===----------------------------------------------------------------------===//
589 //                           SDNode Profile Support
590 //===----------------------------------------------------------------------===//
591 
592 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
593 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
594   ID.AddInteger(OpC);
595 }
596 
597 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
598 /// solely with their pointer.
599 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
600   ID.AddPointer(VTList.VTs);
601 }
602 
603 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
604 static void AddNodeIDOperands(FoldingSetNodeID &ID,
605                               ArrayRef<SDValue> Ops) {
606   for (const auto &Op : Ops) {
607     ID.AddPointer(Op.getNode());
608     ID.AddInteger(Op.getResNo());
609   }
610 }
611 
612 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
613 static void AddNodeIDOperands(FoldingSetNodeID &ID,
614                               ArrayRef<SDUse> Ops) {
615   for (const auto &Op : Ops) {
616     ID.AddPointer(Op.getNode());
617     ID.AddInteger(Op.getResNo());
618   }
619 }
620 
621 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
622                           SDVTList VTList, ArrayRef<SDValue> OpList) {
623   AddNodeIDOpcode(ID, OpC);
624   AddNodeIDValueTypes(ID, VTList);
625   AddNodeIDOperands(ID, OpList);
626 }
627 
628 /// If this is an SDNode with special info, add this info to the NodeID data.
629 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
630   switch (N->getOpcode()) {
631   case ISD::TargetExternalSymbol:
632   case ISD::ExternalSymbol:
633   case ISD::MCSymbol:
634     llvm_unreachable("Should only be used on nodes with operands");
635   default: break;  // Normal nodes don't need extra info.
636   case ISD::TargetConstant:
637   case ISD::Constant: {
638     const ConstantSDNode *C = cast<ConstantSDNode>(N);
639     ID.AddPointer(C->getConstantIntValue());
640     ID.AddBoolean(C->isOpaque());
641     break;
642   }
643   case ISD::TargetConstantFP:
644   case ISD::ConstantFP:
645     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
646     break;
647   case ISD::TargetGlobalAddress:
648   case ISD::GlobalAddress:
649   case ISD::TargetGlobalTLSAddress:
650   case ISD::GlobalTLSAddress: {
651     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
652     ID.AddPointer(GA->getGlobal());
653     ID.AddInteger(GA->getOffset());
654     ID.AddInteger(GA->getTargetFlags());
655     break;
656   }
657   case ISD::BasicBlock:
658     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
659     break;
660   case ISD::Register:
661     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
662     break;
663   case ISD::RegisterMask:
664     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
665     break;
666   case ISD::SRCVALUE:
667     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
668     break;
669   case ISD::FrameIndex:
670   case ISD::TargetFrameIndex:
671     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
672     break;
673   case ISD::LIFETIME_START:
674   case ISD::LIFETIME_END:
675     if (cast<LifetimeSDNode>(N)->hasOffset()) {
676       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
677       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
678     }
679     break;
680   case ISD::PSEUDO_PROBE:
681     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
682     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
683     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
684     break;
685   case ISD::JumpTable:
686   case ISD::TargetJumpTable:
687     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
688     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
689     break;
690   case ISD::ConstantPool:
691   case ISD::TargetConstantPool: {
692     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
693     ID.AddInteger(CP->getAlign().value());
694     ID.AddInteger(CP->getOffset());
695     if (CP->isMachineConstantPoolEntry())
696       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
697     else
698       ID.AddPointer(CP->getConstVal());
699     ID.AddInteger(CP->getTargetFlags());
700     break;
701   }
702   case ISD::TargetIndex: {
703     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
704     ID.AddInteger(TI->getIndex());
705     ID.AddInteger(TI->getOffset());
706     ID.AddInteger(TI->getTargetFlags());
707     break;
708   }
709   case ISD::LOAD: {
710     const LoadSDNode *LD = cast<LoadSDNode>(N);
711     ID.AddInteger(LD->getMemoryVT().getRawBits());
712     ID.AddInteger(LD->getRawSubclassData());
713     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
714     ID.AddInteger(LD->getMemOperand()->getFlags());
715     break;
716   }
717   case ISD::STORE: {
718     const StoreSDNode *ST = cast<StoreSDNode>(N);
719     ID.AddInteger(ST->getMemoryVT().getRawBits());
720     ID.AddInteger(ST->getRawSubclassData());
721     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
722     ID.AddInteger(ST->getMemOperand()->getFlags());
723     break;
724   }
725   case ISD::VP_LOAD: {
726     const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
727     ID.AddInteger(ELD->getMemoryVT().getRawBits());
728     ID.AddInteger(ELD->getRawSubclassData());
729     ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
730     ID.AddInteger(ELD->getMemOperand()->getFlags());
731     break;
732   }
733   case ISD::VP_STORE: {
734     const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
735     ID.AddInteger(EST->getMemoryVT().getRawBits());
736     ID.AddInteger(EST->getRawSubclassData());
737     ID.AddInteger(EST->getPointerInfo().getAddrSpace());
738     ID.AddInteger(EST->getMemOperand()->getFlags());
739     break;
740   }
741   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
742     const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N);
743     ID.AddInteger(SLD->getMemoryVT().getRawBits());
744     ID.AddInteger(SLD->getRawSubclassData());
745     ID.AddInteger(SLD->getPointerInfo().getAddrSpace());
746     break;
747   }
748   case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
749     const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N);
750     ID.AddInteger(SST->getMemoryVT().getRawBits());
751     ID.AddInteger(SST->getRawSubclassData());
752     ID.AddInteger(SST->getPointerInfo().getAddrSpace());
753     break;
754   }
755   case ISD::VP_GATHER: {
756     const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
757     ID.AddInteger(EG->getMemoryVT().getRawBits());
758     ID.AddInteger(EG->getRawSubclassData());
759     ID.AddInteger(EG->getPointerInfo().getAddrSpace());
760     ID.AddInteger(EG->getMemOperand()->getFlags());
761     break;
762   }
763   case ISD::VP_SCATTER: {
764     const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
765     ID.AddInteger(ES->getMemoryVT().getRawBits());
766     ID.AddInteger(ES->getRawSubclassData());
767     ID.AddInteger(ES->getPointerInfo().getAddrSpace());
768     ID.AddInteger(ES->getMemOperand()->getFlags());
769     break;
770   }
771   case ISD::MLOAD: {
772     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
773     ID.AddInteger(MLD->getMemoryVT().getRawBits());
774     ID.AddInteger(MLD->getRawSubclassData());
775     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
776     ID.AddInteger(MLD->getMemOperand()->getFlags());
777     break;
778   }
779   case ISD::MSTORE: {
780     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
781     ID.AddInteger(MST->getMemoryVT().getRawBits());
782     ID.AddInteger(MST->getRawSubclassData());
783     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
784     ID.AddInteger(MST->getMemOperand()->getFlags());
785     break;
786   }
787   case ISD::MGATHER: {
788     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
789     ID.AddInteger(MG->getMemoryVT().getRawBits());
790     ID.AddInteger(MG->getRawSubclassData());
791     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
792     ID.AddInteger(MG->getMemOperand()->getFlags());
793     break;
794   }
795   case ISD::MSCATTER: {
796     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
797     ID.AddInteger(MS->getMemoryVT().getRawBits());
798     ID.AddInteger(MS->getRawSubclassData());
799     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
800     ID.AddInteger(MS->getMemOperand()->getFlags());
801     break;
802   }
803   case ISD::ATOMIC_CMP_SWAP:
804   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
805   case ISD::ATOMIC_SWAP:
806   case ISD::ATOMIC_LOAD_ADD:
807   case ISD::ATOMIC_LOAD_SUB:
808   case ISD::ATOMIC_LOAD_AND:
809   case ISD::ATOMIC_LOAD_CLR:
810   case ISD::ATOMIC_LOAD_OR:
811   case ISD::ATOMIC_LOAD_XOR:
812   case ISD::ATOMIC_LOAD_NAND:
813   case ISD::ATOMIC_LOAD_MIN:
814   case ISD::ATOMIC_LOAD_MAX:
815   case ISD::ATOMIC_LOAD_UMIN:
816   case ISD::ATOMIC_LOAD_UMAX:
817   case ISD::ATOMIC_LOAD:
818   case ISD::ATOMIC_STORE: {
819     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
820     ID.AddInteger(AT->getMemoryVT().getRawBits());
821     ID.AddInteger(AT->getRawSubclassData());
822     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
823     ID.AddInteger(AT->getMemOperand()->getFlags());
824     break;
825   }
826   case ISD::PREFETCH: {
827     const MemSDNode *PF = cast<MemSDNode>(N);
828     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
829     ID.AddInteger(PF->getMemOperand()->getFlags());
830     break;
831   }
832   case ISD::VECTOR_SHUFFLE: {
833     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
834     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
835          i != e; ++i)
836       ID.AddInteger(SVN->getMaskElt(i));
837     break;
838   }
839   case ISD::TargetBlockAddress:
840   case ISD::BlockAddress: {
841     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
842     ID.AddPointer(BA->getBlockAddress());
843     ID.AddInteger(BA->getOffset());
844     ID.AddInteger(BA->getTargetFlags());
845     break;
846   }
847   case ISD::AssertAlign:
848     ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value());
849     break;
850   } // end switch (N->getOpcode())
851 
852   // Target specific memory nodes could also have address spaces and flags
853   // to check.
854   if (N->isTargetMemoryOpcode()) {
855     const MemSDNode *MN = cast<MemSDNode>(N);
856     ID.AddInteger(MN->getPointerInfo().getAddrSpace());
857     ID.AddInteger(MN->getMemOperand()->getFlags());
858   }
859 }
860 
861 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
862 /// data.
863 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
864   AddNodeIDOpcode(ID, N->getOpcode());
865   // Add the return value info.
866   AddNodeIDValueTypes(ID, N->getVTList());
867   // Add the operand info.
868   AddNodeIDOperands(ID, N->ops());
869 
870   // Handle SDNode leafs with special info.
871   AddNodeIDCustom(ID, N);
872 }
873 
874 //===----------------------------------------------------------------------===//
875 //                              SelectionDAG Class
876 //===----------------------------------------------------------------------===//
877 
878 /// doNotCSE - Return true if CSE should not be performed for this node.
879 static bool doNotCSE(SDNode *N) {
880   if (N->getValueType(0) == MVT::Glue)
881     return true; // Never CSE anything that produces a flag.
882 
883   switch (N->getOpcode()) {
884   default: break;
885   case ISD::HANDLENODE:
886   case ISD::EH_LABEL:
887     return true;   // Never CSE these nodes.
888   }
889 
890   // Check that remaining values produced are not flags.
891   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
892     if (N->getValueType(i) == MVT::Glue)
893       return true; // Never CSE anything that produces a flag.
894 
895   return false;
896 }
897 
898 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
899 /// SelectionDAG.
900 void SelectionDAG::RemoveDeadNodes() {
901   // Create a dummy node (which is not added to allnodes), that adds a reference
902   // to the root node, preventing it from being deleted.
903   HandleSDNode Dummy(getRoot());
904 
905   SmallVector<SDNode*, 128> DeadNodes;
906 
907   // Add all obviously-dead nodes to the DeadNodes worklist.
908   for (SDNode &Node : allnodes())
909     if (Node.use_empty())
910       DeadNodes.push_back(&Node);
911 
912   RemoveDeadNodes(DeadNodes);
913 
914   // If the root changed (e.g. it was a dead load, update the root).
915   setRoot(Dummy.getValue());
916 }
917 
918 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
919 /// given list, and any nodes that become unreachable as a result.
920 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
921 
922   // Process the worklist, deleting the nodes and adding their uses to the
923   // worklist.
924   while (!DeadNodes.empty()) {
925     SDNode *N = DeadNodes.pop_back_val();
926     // Skip to next node if we've already managed to delete the node. This could
927     // happen if replacing a node causes a node previously added to the node to
928     // be deleted.
929     if (N->getOpcode() == ISD::DELETED_NODE)
930       continue;
931 
932     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
933       DUL->NodeDeleted(N, nullptr);
934 
935     // Take the node out of the appropriate CSE map.
936     RemoveNodeFromCSEMaps(N);
937 
938     // Next, brutally remove the operand list.  This is safe to do, as there are
939     // no cycles in the graph.
940     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
941       SDUse &Use = *I++;
942       SDNode *Operand = Use.getNode();
943       Use.set(SDValue());
944 
945       // Now that we removed this operand, see if there are no uses of it left.
946       if (Operand->use_empty())
947         DeadNodes.push_back(Operand);
948     }
949 
950     DeallocateNode(N);
951   }
952 }
953 
954 void SelectionDAG::RemoveDeadNode(SDNode *N){
955   SmallVector<SDNode*, 16> DeadNodes(1, N);
956 
957   // Create a dummy node that adds a reference to the root node, preventing
958   // it from being deleted.  (This matters if the root is an operand of the
959   // dead node.)
960   HandleSDNode Dummy(getRoot());
961 
962   RemoveDeadNodes(DeadNodes);
963 }
964 
965 void SelectionDAG::DeleteNode(SDNode *N) {
966   // First take this out of the appropriate CSE map.
967   RemoveNodeFromCSEMaps(N);
968 
969   // Finally, remove uses due to operands of this node, remove from the
970   // AllNodes list, and delete the node.
971   DeleteNodeNotInCSEMaps(N);
972 }
973 
974 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
975   assert(N->getIterator() != AllNodes.begin() &&
976          "Cannot delete the entry node!");
977   assert(N->use_empty() && "Cannot delete a node that is not dead!");
978 
979   // Drop all of the operands and decrement used node's use counts.
980   N->DropOperands();
981 
982   DeallocateNode(N);
983 }
984 
985 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
986   assert(!(V->isVariadic() && isParameter));
987   if (isParameter)
988     ByvalParmDbgValues.push_back(V);
989   else
990     DbgValues.push_back(V);
991   for (const SDNode *Node : V->getSDNodes())
992     if (Node)
993       DbgValMap[Node].push_back(V);
994 }
995 
996 void SDDbgInfo::erase(const SDNode *Node) {
997   DbgValMapType::iterator I = DbgValMap.find(Node);
998   if (I == DbgValMap.end())
999     return;
1000   for (auto &Val: I->second)
1001     Val->setIsInvalidated();
1002   DbgValMap.erase(I);
1003 }
1004 
1005 void SelectionDAG::DeallocateNode(SDNode *N) {
1006   // If we have operands, deallocate them.
1007   removeOperands(N);
1008 
1009   NodeAllocator.Deallocate(AllNodes.remove(N));
1010 
1011   // Set the opcode to DELETED_NODE to help catch bugs when node
1012   // memory is reallocated.
1013   // FIXME: There are places in SDag that have grown a dependency on the opcode
1014   // value in the released node.
1015   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
1016   N->NodeType = ISD::DELETED_NODE;
1017 
1018   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
1019   // them and forget about that node.
1020   DbgInfo->erase(N);
1021 }
1022 
1023 #ifndef NDEBUG
1024 /// VerifySDNode - Check the given SDNode.  Aborts if it is invalid.
1025 static void VerifySDNode(SDNode *N) {
1026   switch (N->getOpcode()) {
1027   default:
1028     break;
1029   case ISD::BUILD_PAIR: {
1030     EVT VT = N->getValueType(0);
1031     assert(N->getNumValues() == 1 && "Too many results!");
1032     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1033            "Wrong return type!");
1034     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1035     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1036            "Mismatched operand types!");
1037     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1038            "Wrong operand type!");
1039     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1040            "Wrong return type size");
1041     break;
1042   }
1043   case ISD::BUILD_VECTOR: {
1044     assert(N->getNumValues() == 1 && "Too many results!");
1045     assert(N->getValueType(0).isVector() && "Wrong return type!");
1046     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1047            "Wrong number of operands!");
1048     EVT EltVT = N->getValueType(0).getVectorElementType();
1049     for (const SDUse &Op : N->ops()) {
1050       assert((Op.getValueType() == EltVT ||
1051               (EltVT.isInteger() && Op.getValueType().isInteger() &&
1052                EltVT.bitsLE(Op.getValueType()))) &&
1053              "Wrong operand type!");
1054       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1055              "Operands must all have the same type");
1056     }
1057     break;
1058   }
1059   }
1060 }
1061 #endif // NDEBUG
1062 
1063 /// Insert a newly allocated node into the DAG.
1064 ///
1065 /// Handles insertion into the all nodes list and CSE map, as well as
1066 /// verification and other common operations when a new node is allocated.
1067 void SelectionDAG::InsertNode(SDNode *N) {
1068   AllNodes.push_back(N);
1069 #ifndef NDEBUG
1070   N->PersistentId = NextPersistentId++;
1071   VerifySDNode(N);
1072 #endif
1073   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1074     DUL->NodeInserted(N);
1075 }
1076 
1077 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1078 /// correspond to it.  This is useful when we're about to delete or repurpose
1079 /// the node.  We don't want future request for structurally identical nodes
1080 /// to return N anymore.
1081 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1082   bool Erased = false;
1083   switch (N->getOpcode()) {
1084   case ISD::HANDLENODE: return false;  // noop.
1085   case ISD::CONDCODE:
1086     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1087            "Cond code doesn't exist!");
1088     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1089     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1090     break;
1091   case ISD::ExternalSymbol:
1092     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1093     break;
1094   case ISD::TargetExternalSymbol: {
1095     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1096     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1097         ESN->getSymbol(), ESN->getTargetFlags()));
1098     break;
1099   }
1100   case ISD::MCSymbol: {
1101     auto *MCSN = cast<MCSymbolSDNode>(N);
1102     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1103     break;
1104   }
1105   case ISD::VALUETYPE: {
1106     EVT VT = cast<VTSDNode>(N)->getVT();
1107     if (VT.isExtended()) {
1108       Erased = ExtendedValueTypeNodes.erase(VT);
1109     } else {
1110       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1111       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1112     }
1113     break;
1114   }
1115   default:
1116     // Remove it from the CSE Map.
1117     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1118     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1119     Erased = CSEMap.RemoveNode(N);
1120     break;
1121   }
1122 #ifndef NDEBUG
1123   // Verify that the node was actually in one of the CSE maps, unless it has a
1124   // flag result (which cannot be CSE'd) or is one of the special cases that are
1125   // not subject to CSE.
1126   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1127       !N->isMachineOpcode() && !doNotCSE(N)) {
1128     N->dump(this);
1129     dbgs() << "\n";
1130     llvm_unreachable("Node is not in map!");
1131   }
1132 #endif
1133   return Erased;
1134 }
1135 
1136 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1137 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1138 /// node already exists, in which case transfer all its users to the existing
1139 /// node. This transfer can potentially trigger recursive merging.
1140 void
1141 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1142   // For node types that aren't CSE'd, just act as if no identical node
1143   // already exists.
1144   if (!doNotCSE(N)) {
1145     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1146     if (Existing != N) {
1147       // If there was already an existing matching node, use ReplaceAllUsesWith
1148       // to replace the dead one with the existing one.  This can cause
1149       // recursive merging of other unrelated nodes down the line.
1150       ReplaceAllUsesWith(N, Existing);
1151 
1152       // N is now dead. Inform the listeners and delete it.
1153       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1154         DUL->NodeDeleted(N, Existing);
1155       DeleteNodeNotInCSEMaps(N);
1156       return;
1157     }
1158   }
1159 
1160   // If the node doesn't already exist, we updated it.  Inform listeners.
1161   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1162     DUL->NodeUpdated(N);
1163 }
1164 
1165 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1166 /// were replaced with those specified.  If this node is never memoized,
1167 /// return null, otherwise return a pointer to the slot it would take.  If a
1168 /// node already exists with these operands, the slot will be non-null.
1169 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1170                                            void *&InsertPos) {
1171   if (doNotCSE(N))
1172     return nullptr;
1173 
1174   SDValue Ops[] = { Op };
1175   FoldingSetNodeID ID;
1176   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1177   AddNodeIDCustom(ID, N);
1178   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1179   if (Node)
1180     Node->intersectFlagsWith(N->getFlags());
1181   return Node;
1182 }
1183 
1184 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1185 /// were replaced with those specified.  If this node is never memoized,
1186 /// return null, otherwise return a pointer to the slot it would take.  If a
1187 /// node already exists with these operands, the slot will be non-null.
1188 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1189                                            SDValue Op1, SDValue Op2,
1190                                            void *&InsertPos) {
1191   if (doNotCSE(N))
1192     return nullptr;
1193 
1194   SDValue Ops[] = { Op1, Op2 };
1195   FoldingSetNodeID ID;
1196   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1197   AddNodeIDCustom(ID, N);
1198   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1199   if (Node)
1200     Node->intersectFlagsWith(N->getFlags());
1201   return Node;
1202 }
1203 
1204 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1205 /// were replaced with those specified.  If this node is never memoized,
1206 /// return null, otherwise return a pointer to the slot it would take.  If a
1207 /// node already exists with these operands, the slot will be non-null.
1208 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1209                                            void *&InsertPos) {
1210   if (doNotCSE(N))
1211     return nullptr;
1212 
1213   FoldingSetNodeID ID;
1214   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1215   AddNodeIDCustom(ID, N);
1216   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1217   if (Node)
1218     Node->intersectFlagsWith(N->getFlags());
1219   return Node;
1220 }
1221 
1222 Align SelectionDAG::getEVTAlign(EVT VT) const {
1223   Type *Ty = VT == MVT::iPTR ?
1224                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1225                    VT.getTypeForEVT(*getContext());
1226 
1227   return getDataLayout().getABITypeAlign(Ty);
1228 }
1229 
1230 // EntryNode could meaningfully have debug info if we can find it...
1231 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1232     : TM(tm), OptLevel(OL),
1233       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1234       Root(getEntryNode()) {
1235   InsertNode(&EntryNode);
1236   DbgInfo = new SDDbgInfo();
1237 }
1238 
1239 void SelectionDAG::init(MachineFunction &NewMF,
1240                         OptimizationRemarkEmitter &NewORE,
1241                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1242                         LegacyDivergenceAnalysis * Divergence,
1243                         ProfileSummaryInfo *PSIin,
1244                         BlockFrequencyInfo *BFIin) {
1245   MF = &NewMF;
1246   SDAGISelPass = PassPtr;
1247   ORE = &NewORE;
1248   TLI = getSubtarget().getTargetLowering();
1249   TSI = getSubtarget().getSelectionDAGInfo();
1250   LibInfo = LibraryInfo;
1251   Context = &MF->getFunction().getContext();
1252   DA = Divergence;
1253   PSI = PSIin;
1254   BFI = BFIin;
1255 }
1256 
1257 SelectionDAG::~SelectionDAG() {
1258   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1259   allnodes_clear();
1260   OperandRecycler.clear(OperandAllocator);
1261   delete DbgInfo;
1262 }
1263 
1264 bool SelectionDAG::shouldOptForSize() const {
1265   return MF->getFunction().hasOptSize() ||
1266       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1267 }
1268 
1269 void SelectionDAG::allnodes_clear() {
1270   assert(&*AllNodes.begin() == &EntryNode);
1271   AllNodes.remove(AllNodes.begin());
1272   while (!AllNodes.empty())
1273     DeallocateNode(&AllNodes.front());
1274 #ifndef NDEBUG
1275   NextPersistentId = 0;
1276 #endif
1277 }
1278 
1279 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1280                                           void *&InsertPos) {
1281   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1282   if (N) {
1283     switch (N->getOpcode()) {
1284     default: break;
1285     case ISD::Constant:
1286     case ISD::ConstantFP:
1287       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1288                        "debug location.  Use another overload.");
1289     }
1290   }
1291   return N;
1292 }
1293 
1294 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1295                                           const SDLoc &DL, void *&InsertPos) {
1296   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1297   if (N) {
1298     switch (N->getOpcode()) {
1299     case ISD::Constant:
1300     case ISD::ConstantFP:
1301       // Erase debug location from the node if the node is used at several
1302       // different places. Do not propagate one location to all uses as it
1303       // will cause a worse single stepping debugging experience.
1304       if (N->getDebugLoc() != DL.getDebugLoc())
1305         N->setDebugLoc(DebugLoc());
1306       break;
1307     default:
1308       // When the node's point of use is located earlier in the instruction
1309       // sequence than its prior point of use, update its debug info to the
1310       // earlier location.
1311       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1312         N->setDebugLoc(DL.getDebugLoc());
1313       break;
1314     }
1315   }
1316   return N;
1317 }
1318 
1319 void SelectionDAG::clear() {
1320   allnodes_clear();
1321   OperandRecycler.clear(OperandAllocator);
1322   OperandAllocator.Reset();
1323   CSEMap.clear();
1324 
1325   ExtendedValueTypeNodes.clear();
1326   ExternalSymbols.clear();
1327   TargetExternalSymbols.clear();
1328   MCSymbols.clear();
1329   SDCallSiteDbgInfo.clear();
1330   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1331             static_cast<CondCodeSDNode*>(nullptr));
1332   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1333             static_cast<SDNode*>(nullptr));
1334 
1335   EntryNode.UseList = nullptr;
1336   InsertNode(&EntryNode);
1337   Root = getEntryNode();
1338   DbgInfo->clear();
1339 }
1340 
1341 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1342   return VT.bitsGT(Op.getValueType())
1343              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1344              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1345 }
1346 
1347 std::pair<SDValue, SDValue>
1348 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1349                                        const SDLoc &DL, EVT VT) {
1350   assert(!VT.bitsEq(Op.getValueType()) &&
1351          "Strict no-op FP extend/round not allowed.");
1352   SDValue Res =
1353       VT.bitsGT(Op.getValueType())
1354           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1355           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1356                     {Chain, Op, getIntPtrConstant(0, DL)});
1357 
1358   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1359 }
1360 
1361 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1362   return VT.bitsGT(Op.getValueType()) ?
1363     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1364     getNode(ISD::TRUNCATE, DL, VT, Op);
1365 }
1366 
1367 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1368   return VT.bitsGT(Op.getValueType()) ?
1369     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1370     getNode(ISD::TRUNCATE, DL, VT, Op);
1371 }
1372 
1373 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1374   return VT.bitsGT(Op.getValueType()) ?
1375     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1376     getNode(ISD::TRUNCATE, DL, VT, Op);
1377 }
1378 
1379 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1380                                         EVT OpVT) {
1381   if (VT.bitsLE(Op.getValueType()))
1382     return getNode(ISD::TRUNCATE, SL, VT, Op);
1383 
1384   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1385   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1386 }
1387 
1388 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1389   EVT OpVT = Op.getValueType();
1390   assert(VT.isInteger() && OpVT.isInteger() &&
1391          "Cannot getZeroExtendInReg FP types");
1392   assert(VT.isVector() == OpVT.isVector() &&
1393          "getZeroExtendInReg type should be vector iff the operand "
1394          "type is vector!");
1395   assert((!VT.isVector() ||
1396           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1397          "Vector element counts must match in getZeroExtendInReg");
1398   assert(VT.bitsLE(OpVT) && "Not extending!");
1399   if (OpVT == VT)
1400     return Op;
1401   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1402                                    VT.getScalarSizeInBits());
1403   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1404 }
1405 
1406 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1407   // Only unsigned pointer semantics are supported right now. In the future this
1408   // might delegate to TLI to check pointer signedness.
1409   return getZExtOrTrunc(Op, DL, VT);
1410 }
1411 
1412 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1413   // Only unsigned pointer semantics are supported right now. In the future this
1414   // might delegate to TLI to check pointer signedness.
1415   return getZeroExtendInReg(Op, DL, VT);
1416 }
1417 
1418 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1419 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1420   return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1421 }
1422 
1423 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1424   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1425   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1426 }
1427 
1428 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val,
1429                                       SDValue Mask, SDValue EVL, EVT VT) {
1430   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1431   return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL);
1432 }
1433 
1434 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1435                                       EVT OpVT) {
1436   if (!V)
1437     return getConstant(0, DL, VT);
1438 
1439   switch (TLI->getBooleanContents(OpVT)) {
1440   case TargetLowering::ZeroOrOneBooleanContent:
1441   case TargetLowering::UndefinedBooleanContent:
1442     return getConstant(1, DL, VT);
1443   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1444     return getAllOnesConstant(DL, VT);
1445   }
1446   llvm_unreachable("Unexpected boolean content enum!");
1447 }
1448 
1449 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1450                                   bool isT, bool isO) {
1451   EVT EltVT = VT.getScalarType();
1452   assert((EltVT.getSizeInBits() >= 64 ||
1453           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1454          "getConstant with a uint64_t value that doesn't fit in the type!");
1455   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1456 }
1457 
1458 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1459                                   bool isT, bool isO) {
1460   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1461 }
1462 
1463 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1464                                   EVT VT, bool isT, bool isO) {
1465   assert(VT.isInteger() && "Cannot create FP integer constant!");
1466 
1467   EVT EltVT = VT.getScalarType();
1468   const ConstantInt *Elt = &Val;
1469 
1470   // In some cases the vector type is legal but the element type is illegal and
1471   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1472   // inserted value (the type does not need to match the vector element type).
1473   // Any extra bits introduced will be truncated away.
1474   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1475                            TargetLowering::TypePromoteInteger) {
1476     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1477     APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1478     Elt = ConstantInt::get(*getContext(), NewVal);
1479   }
1480   // In other cases the element type is illegal and needs to be expanded, for
1481   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1482   // the value into n parts and use a vector type with n-times the elements.
1483   // Then bitcast to the type requested.
1484   // Legalizing constants too early makes the DAGCombiner's job harder so we
1485   // only legalize if the DAG tells us we must produce legal types.
1486   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1487            TLI->getTypeAction(*getContext(), EltVT) ==
1488                TargetLowering::TypeExpandInteger) {
1489     const APInt &NewVal = Elt->getValue();
1490     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1491     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1492 
1493     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1494     if (VT.isScalableVector()) {
1495       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1496              "Can only handle an even split!");
1497       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1498 
1499       SmallVector<SDValue, 2> ScalarParts;
1500       for (unsigned i = 0; i != Parts; ++i)
1501         ScalarParts.push_back(getConstant(
1502             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1503             ViaEltVT, isT, isO));
1504 
1505       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1506     }
1507 
1508     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1509     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1510 
1511     // Check the temporary vector is the correct size. If this fails then
1512     // getTypeToTransformTo() probably returned a type whose size (in bits)
1513     // isn't a power-of-2 factor of the requested type size.
1514     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1515 
1516     SmallVector<SDValue, 2> EltParts;
1517     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1518       EltParts.push_back(getConstant(
1519           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1520           ViaEltVT, isT, isO));
1521 
1522     // EltParts is currently in little endian order. If we actually want
1523     // big-endian order then reverse it now.
1524     if (getDataLayout().isBigEndian())
1525       std::reverse(EltParts.begin(), EltParts.end());
1526 
1527     // The elements must be reversed when the element order is different
1528     // to the endianness of the elements (because the BITCAST is itself a
1529     // vector shuffle in this situation). However, we do not need any code to
1530     // perform this reversal because getConstant() is producing a vector
1531     // splat.
1532     // This situation occurs in MIPS MSA.
1533 
1534     SmallVector<SDValue, 8> Ops;
1535     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1536       llvm::append_range(Ops, EltParts);
1537 
1538     SDValue V =
1539         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1540     return V;
1541   }
1542 
1543   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1544          "APInt size does not match type size!");
1545   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1546   FoldingSetNodeID ID;
1547   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1548   ID.AddPointer(Elt);
1549   ID.AddBoolean(isO);
1550   void *IP = nullptr;
1551   SDNode *N = nullptr;
1552   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1553     if (!VT.isVector())
1554       return SDValue(N, 0);
1555 
1556   if (!N) {
1557     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1558     CSEMap.InsertNode(N, IP);
1559     InsertNode(N);
1560     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1561   }
1562 
1563   SDValue Result(N, 0);
1564   if (VT.isScalableVector())
1565     Result = getSplatVector(VT, DL, Result);
1566   else if (VT.isVector())
1567     Result = getSplatBuildVector(VT, DL, Result);
1568 
1569   return Result;
1570 }
1571 
1572 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1573                                         bool isTarget) {
1574   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1575 }
1576 
1577 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1578                                              const SDLoc &DL, bool LegalTypes) {
1579   assert(VT.isInteger() && "Shift amount is not an integer type!");
1580   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1581   return getConstant(Val, DL, ShiftVT);
1582 }
1583 
1584 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1585                                            bool isTarget) {
1586   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1587 }
1588 
1589 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1590                                     bool isTarget) {
1591   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1592 }
1593 
1594 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1595                                     EVT VT, bool isTarget) {
1596   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1597 
1598   EVT EltVT = VT.getScalarType();
1599 
1600   // Do the map lookup using the actual bit pattern for the floating point
1601   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1602   // we don't have issues with SNANs.
1603   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1604   FoldingSetNodeID ID;
1605   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1606   ID.AddPointer(&V);
1607   void *IP = nullptr;
1608   SDNode *N = nullptr;
1609   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1610     if (!VT.isVector())
1611       return SDValue(N, 0);
1612 
1613   if (!N) {
1614     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1615     CSEMap.InsertNode(N, IP);
1616     InsertNode(N);
1617   }
1618 
1619   SDValue Result(N, 0);
1620   if (VT.isScalableVector())
1621     Result = getSplatVector(VT, DL, Result);
1622   else if (VT.isVector())
1623     Result = getSplatBuildVector(VT, DL, Result);
1624   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1625   return Result;
1626 }
1627 
1628 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1629                                     bool isTarget) {
1630   EVT EltVT = VT.getScalarType();
1631   if (EltVT == MVT::f32)
1632     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1633   if (EltVT == MVT::f64)
1634     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1635   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1636       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1637     bool Ignored;
1638     APFloat APF = APFloat(Val);
1639     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1640                 &Ignored);
1641     return getConstantFP(APF, DL, VT, isTarget);
1642   }
1643   llvm_unreachable("Unsupported type in getConstantFP");
1644 }
1645 
1646 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1647                                        EVT VT, int64_t Offset, bool isTargetGA,
1648                                        unsigned TargetFlags) {
1649   assert((TargetFlags == 0 || isTargetGA) &&
1650          "Cannot set target flags on target-independent globals");
1651 
1652   // Truncate (with sign-extension) the offset value to the pointer size.
1653   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1654   if (BitWidth < 64)
1655     Offset = SignExtend64(Offset, BitWidth);
1656 
1657   unsigned Opc;
1658   if (GV->isThreadLocal())
1659     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1660   else
1661     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1662 
1663   FoldingSetNodeID ID;
1664   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1665   ID.AddPointer(GV);
1666   ID.AddInteger(Offset);
1667   ID.AddInteger(TargetFlags);
1668   void *IP = nullptr;
1669   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1670     return SDValue(E, 0);
1671 
1672   auto *N = newSDNode<GlobalAddressSDNode>(
1673       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1674   CSEMap.InsertNode(N, IP);
1675     InsertNode(N);
1676   return SDValue(N, 0);
1677 }
1678 
1679 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1680   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1681   FoldingSetNodeID ID;
1682   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1683   ID.AddInteger(FI);
1684   void *IP = nullptr;
1685   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1686     return SDValue(E, 0);
1687 
1688   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1689   CSEMap.InsertNode(N, IP);
1690   InsertNode(N);
1691   return SDValue(N, 0);
1692 }
1693 
1694 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1695                                    unsigned TargetFlags) {
1696   assert((TargetFlags == 0 || isTarget) &&
1697          "Cannot set target flags on target-independent jump tables");
1698   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1699   FoldingSetNodeID ID;
1700   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1701   ID.AddInteger(JTI);
1702   ID.AddInteger(TargetFlags);
1703   void *IP = nullptr;
1704   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1705     return SDValue(E, 0);
1706 
1707   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1708   CSEMap.InsertNode(N, IP);
1709   InsertNode(N);
1710   return SDValue(N, 0);
1711 }
1712 
1713 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1714                                       MaybeAlign Alignment, int Offset,
1715                                       bool isTarget, unsigned TargetFlags) {
1716   assert((TargetFlags == 0 || isTarget) &&
1717          "Cannot set target flags on target-independent globals");
1718   if (!Alignment)
1719     Alignment = shouldOptForSize()
1720                     ? getDataLayout().getABITypeAlign(C->getType())
1721                     : getDataLayout().getPrefTypeAlign(C->getType());
1722   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1723   FoldingSetNodeID ID;
1724   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1725   ID.AddInteger(Alignment->value());
1726   ID.AddInteger(Offset);
1727   ID.AddPointer(C);
1728   ID.AddInteger(TargetFlags);
1729   void *IP = nullptr;
1730   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1731     return SDValue(E, 0);
1732 
1733   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1734                                           TargetFlags);
1735   CSEMap.InsertNode(N, IP);
1736   InsertNode(N);
1737   SDValue V = SDValue(N, 0);
1738   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1739   return V;
1740 }
1741 
1742 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1743                                       MaybeAlign Alignment, int Offset,
1744                                       bool isTarget, unsigned TargetFlags) {
1745   assert((TargetFlags == 0 || isTarget) &&
1746          "Cannot set target flags on target-independent globals");
1747   if (!Alignment)
1748     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1749   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1750   FoldingSetNodeID ID;
1751   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1752   ID.AddInteger(Alignment->value());
1753   ID.AddInteger(Offset);
1754   C->addSelectionDAGCSEId(ID);
1755   ID.AddInteger(TargetFlags);
1756   void *IP = nullptr;
1757   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1758     return SDValue(E, 0);
1759 
1760   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1761                                           TargetFlags);
1762   CSEMap.InsertNode(N, IP);
1763   InsertNode(N);
1764   return SDValue(N, 0);
1765 }
1766 
1767 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1768                                      unsigned TargetFlags) {
1769   FoldingSetNodeID ID;
1770   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1771   ID.AddInteger(Index);
1772   ID.AddInteger(Offset);
1773   ID.AddInteger(TargetFlags);
1774   void *IP = nullptr;
1775   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1776     return SDValue(E, 0);
1777 
1778   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1779   CSEMap.InsertNode(N, IP);
1780   InsertNode(N);
1781   return SDValue(N, 0);
1782 }
1783 
1784 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1785   FoldingSetNodeID ID;
1786   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1787   ID.AddPointer(MBB);
1788   void *IP = nullptr;
1789   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1790     return SDValue(E, 0);
1791 
1792   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1793   CSEMap.InsertNode(N, IP);
1794   InsertNode(N);
1795   return SDValue(N, 0);
1796 }
1797 
1798 SDValue SelectionDAG::getValueType(EVT VT) {
1799   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1800       ValueTypeNodes.size())
1801     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1802 
1803   SDNode *&N = VT.isExtended() ?
1804     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1805 
1806   if (N) return SDValue(N, 0);
1807   N = newSDNode<VTSDNode>(VT);
1808   InsertNode(N);
1809   return SDValue(N, 0);
1810 }
1811 
1812 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1813   SDNode *&N = ExternalSymbols[Sym];
1814   if (N) return SDValue(N, 0);
1815   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1816   InsertNode(N);
1817   return SDValue(N, 0);
1818 }
1819 
1820 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1821   SDNode *&N = MCSymbols[Sym];
1822   if (N)
1823     return SDValue(N, 0);
1824   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1825   InsertNode(N);
1826   return SDValue(N, 0);
1827 }
1828 
1829 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1830                                               unsigned TargetFlags) {
1831   SDNode *&N =
1832       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1833   if (N) return SDValue(N, 0);
1834   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1835   InsertNode(N);
1836   return SDValue(N, 0);
1837 }
1838 
1839 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1840   if ((unsigned)Cond >= CondCodeNodes.size())
1841     CondCodeNodes.resize(Cond+1);
1842 
1843   if (!CondCodeNodes[Cond]) {
1844     auto *N = newSDNode<CondCodeSDNode>(Cond);
1845     CondCodeNodes[Cond] = N;
1846     InsertNode(N);
1847   }
1848 
1849   return SDValue(CondCodeNodes[Cond], 0);
1850 }
1851 
1852 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
1853   APInt One(ResVT.getScalarSizeInBits(), 1);
1854   return getStepVector(DL, ResVT, One);
1855 }
1856 
1857 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
1858   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
1859   if (ResVT.isScalableVector())
1860     return getNode(
1861         ISD::STEP_VECTOR, DL, ResVT,
1862         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
1863 
1864   SmallVector<SDValue, 16> OpsStepConstants;
1865   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
1866     OpsStepConstants.push_back(
1867         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
1868   return getBuildVector(ResVT, DL, OpsStepConstants);
1869 }
1870 
1871 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1872 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1873 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1874   std::swap(N1, N2);
1875   ShuffleVectorSDNode::commuteMask(M);
1876 }
1877 
1878 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1879                                        SDValue N2, ArrayRef<int> Mask) {
1880   assert(VT.getVectorNumElements() == Mask.size() &&
1881          "Must have the same number of vector elements as mask elements!");
1882   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1883          "Invalid VECTOR_SHUFFLE");
1884 
1885   // Canonicalize shuffle undef, undef -> undef
1886   if (N1.isUndef() && N2.isUndef())
1887     return getUNDEF(VT);
1888 
1889   // Validate that all indices in Mask are within the range of the elements
1890   // input to the shuffle.
1891   int NElts = Mask.size();
1892   assert(llvm::all_of(Mask,
1893                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1894          "Index out of range");
1895 
1896   // Copy the mask so we can do any needed cleanup.
1897   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1898 
1899   // Canonicalize shuffle v, v -> v, undef
1900   if (N1 == N2) {
1901     N2 = getUNDEF(VT);
1902     for (int i = 0; i != NElts; ++i)
1903       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1904   }
1905 
1906   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1907   if (N1.isUndef())
1908     commuteShuffle(N1, N2, MaskVec);
1909 
1910   if (TLI->hasVectorBlend()) {
1911     // If shuffling a splat, try to blend the splat instead. We do this here so
1912     // that even when this arises during lowering we don't have to re-handle it.
1913     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1914       BitVector UndefElements;
1915       SDValue Splat = BV->getSplatValue(&UndefElements);
1916       if (!Splat)
1917         return;
1918 
1919       for (int i = 0; i < NElts; ++i) {
1920         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1921           continue;
1922 
1923         // If this input comes from undef, mark it as such.
1924         if (UndefElements[MaskVec[i] - Offset]) {
1925           MaskVec[i] = -1;
1926           continue;
1927         }
1928 
1929         // If we can blend a non-undef lane, use that instead.
1930         if (!UndefElements[i])
1931           MaskVec[i] = i + Offset;
1932       }
1933     };
1934     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1935       BlendSplat(N1BV, 0);
1936     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1937       BlendSplat(N2BV, NElts);
1938   }
1939 
1940   // Canonicalize all index into lhs, -> shuffle lhs, undef
1941   // Canonicalize all index into rhs, -> shuffle rhs, undef
1942   bool AllLHS = true, AllRHS = true;
1943   bool N2Undef = N2.isUndef();
1944   for (int i = 0; i != NElts; ++i) {
1945     if (MaskVec[i] >= NElts) {
1946       if (N2Undef)
1947         MaskVec[i] = -1;
1948       else
1949         AllLHS = false;
1950     } else if (MaskVec[i] >= 0) {
1951       AllRHS = false;
1952     }
1953   }
1954   if (AllLHS && AllRHS)
1955     return getUNDEF(VT);
1956   if (AllLHS && !N2Undef)
1957     N2 = getUNDEF(VT);
1958   if (AllRHS) {
1959     N1 = getUNDEF(VT);
1960     commuteShuffle(N1, N2, MaskVec);
1961   }
1962   // Reset our undef status after accounting for the mask.
1963   N2Undef = N2.isUndef();
1964   // Re-check whether both sides ended up undef.
1965   if (N1.isUndef() && N2Undef)
1966     return getUNDEF(VT);
1967 
1968   // If Identity shuffle return that node.
1969   bool Identity = true, AllSame = true;
1970   for (int i = 0; i != NElts; ++i) {
1971     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1972     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1973   }
1974   if (Identity && NElts)
1975     return N1;
1976 
1977   // Shuffling a constant splat doesn't change the result.
1978   if (N2Undef) {
1979     SDValue V = N1;
1980 
1981     // Look through any bitcasts. We check that these don't change the number
1982     // (and size) of elements and just changes their types.
1983     while (V.getOpcode() == ISD::BITCAST)
1984       V = V->getOperand(0);
1985 
1986     // A splat should always show up as a build vector node.
1987     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1988       BitVector UndefElements;
1989       SDValue Splat = BV->getSplatValue(&UndefElements);
1990       // If this is a splat of an undef, shuffling it is also undef.
1991       if (Splat && Splat.isUndef())
1992         return getUNDEF(VT);
1993 
1994       bool SameNumElts =
1995           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1996 
1997       // We only have a splat which can skip shuffles if there is a splatted
1998       // value and no undef lanes rearranged by the shuffle.
1999       if (Splat && UndefElements.none()) {
2000         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
2001         // number of elements match or the value splatted is a zero constant.
2002         if (SameNumElts)
2003           return N1;
2004         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
2005           if (C->isZero())
2006             return N1;
2007       }
2008 
2009       // If the shuffle itself creates a splat, build the vector directly.
2010       if (AllSame && SameNumElts) {
2011         EVT BuildVT = BV->getValueType(0);
2012         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
2013         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
2014 
2015         // We may have jumped through bitcasts, so the type of the
2016         // BUILD_VECTOR may not match the type of the shuffle.
2017         if (BuildVT != VT)
2018           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
2019         return NewBV;
2020       }
2021     }
2022   }
2023 
2024   FoldingSetNodeID ID;
2025   SDValue Ops[2] = { N1, N2 };
2026   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
2027   for (int i = 0; i != NElts; ++i)
2028     ID.AddInteger(MaskVec[i]);
2029 
2030   void* IP = nullptr;
2031   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2032     return SDValue(E, 0);
2033 
2034   // Allocate the mask array for the node out of the BumpPtrAllocator, since
2035   // SDNode doesn't have access to it.  This memory will be "leaked" when
2036   // the node is deallocated, but recovered when the NodeAllocator is released.
2037   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2038   llvm::copy(MaskVec, MaskAlloc);
2039 
2040   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
2041                                            dl.getDebugLoc(), MaskAlloc);
2042   createOperands(N, Ops);
2043 
2044   CSEMap.InsertNode(N, IP);
2045   InsertNode(N);
2046   SDValue V = SDValue(N, 0);
2047   NewSDValueDbgMsg(V, "Creating new node: ", this);
2048   return V;
2049 }
2050 
2051 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
2052   EVT VT = SV.getValueType(0);
2053   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
2054   ShuffleVectorSDNode::commuteMask(MaskVec);
2055 
2056   SDValue Op0 = SV.getOperand(0);
2057   SDValue Op1 = SV.getOperand(1);
2058   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2059 }
2060 
2061 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
2062   FoldingSetNodeID ID;
2063   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
2064   ID.AddInteger(RegNo);
2065   void *IP = nullptr;
2066   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2067     return SDValue(E, 0);
2068 
2069   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
2070   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
2071   CSEMap.InsertNode(N, IP);
2072   InsertNode(N);
2073   return SDValue(N, 0);
2074 }
2075 
2076 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2077   FoldingSetNodeID ID;
2078   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
2079   ID.AddPointer(RegMask);
2080   void *IP = nullptr;
2081   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2082     return SDValue(E, 0);
2083 
2084   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2085   CSEMap.InsertNode(N, IP);
2086   InsertNode(N);
2087   return SDValue(N, 0);
2088 }
2089 
2090 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2091                                  MCSymbol *Label) {
2092   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2093 }
2094 
2095 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2096                                    SDValue Root, MCSymbol *Label) {
2097   FoldingSetNodeID ID;
2098   SDValue Ops[] = { Root };
2099   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2100   ID.AddPointer(Label);
2101   void *IP = nullptr;
2102   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2103     return SDValue(E, 0);
2104 
2105   auto *N =
2106       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2107   createOperands(N, Ops);
2108 
2109   CSEMap.InsertNode(N, IP);
2110   InsertNode(N);
2111   return SDValue(N, 0);
2112 }
2113 
2114 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2115                                       int64_t Offset, bool isTarget,
2116                                       unsigned TargetFlags) {
2117   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2118 
2119   FoldingSetNodeID ID;
2120   AddNodeIDNode(ID, Opc, getVTList(VT), None);
2121   ID.AddPointer(BA);
2122   ID.AddInteger(Offset);
2123   ID.AddInteger(TargetFlags);
2124   void *IP = nullptr;
2125   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2126     return SDValue(E, 0);
2127 
2128   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2129   CSEMap.InsertNode(N, IP);
2130   InsertNode(N);
2131   return SDValue(N, 0);
2132 }
2133 
2134 SDValue SelectionDAG::getSrcValue(const Value *V) {
2135   FoldingSetNodeID ID;
2136   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
2137   ID.AddPointer(V);
2138 
2139   void *IP = nullptr;
2140   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2141     return SDValue(E, 0);
2142 
2143   auto *N = newSDNode<SrcValueSDNode>(V);
2144   CSEMap.InsertNode(N, IP);
2145   InsertNode(N);
2146   return SDValue(N, 0);
2147 }
2148 
2149 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2150   FoldingSetNodeID ID;
2151   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
2152   ID.AddPointer(MD);
2153 
2154   void *IP = nullptr;
2155   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2156     return SDValue(E, 0);
2157 
2158   auto *N = newSDNode<MDNodeSDNode>(MD);
2159   CSEMap.InsertNode(N, IP);
2160   InsertNode(N);
2161   return SDValue(N, 0);
2162 }
2163 
2164 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2165   if (VT == V.getValueType())
2166     return V;
2167 
2168   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2169 }
2170 
2171 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2172                                        unsigned SrcAS, unsigned DestAS) {
2173   SDValue Ops[] = {Ptr};
2174   FoldingSetNodeID ID;
2175   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2176   ID.AddInteger(SrcAS);
2177   ID.AddInteger(DestAS);
2178 
2179   void *IP = nullptr;
2180   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2181     return SDValue(E, 0);
2182 
2183   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2184                                            VT, SrcAS, DestAS);
2185   createOperands(N, Ops);
2186 
2187   CSEMap.InsertNode(N, IP);
2188   InsertNode(N);
2189   return SDValue(N, 0);
2190 }
2191 
2192 SDValue SelectionDAG::getFreeze(SDValue V) {
2193   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2194 }
2195 
2196 /// getShiftAmountOperand - Return the specified value casted to
2197 /// the target's desired shift amount type.
2198 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2199   EVT OpTy = Op.getValueType();
2200   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2201   if (OpTy == ShTy || OpTy.isVector()) return Op;
2202 
2203   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2204 }
2205 
2206 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2207   SDLoc dl(Node);
2208   const TargetLowering &TLI = getTargetLoweringInfo();
2209   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2210   EVT VT = Node->getValueType(0);
2211   SDValue Tmp1 = Node->getOperand(0);
2212   SDValue Tmp2 = Node->getOperand(1);
2213   const MaybeAlign MA(Node->getConstantOperandVal(3));
2214 
2215   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2216                                Tmp2, MachinePointerInfo(V));
2217   SDValue VAList = VAListLoad;
2218 
2219   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2220     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2221                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2222 
2223     VAList =
2224         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2225                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2226   }
2227 
2228   // Increment the pointer, VAList, to the next vaarg
2229   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2230                  getConstant(getDataLayout().getTypeAllocSize(
2231                                                VT.getTypeForEVT(*getContext())),
2232                              dl, VAList.getValueType()));
2233   // Store the incremented VAList to the legalized pointer
2234   Tmp1 =
2235       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2236   // Load the actual argument out of the pointer VAList
2237   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2238 }
2239 
2240 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2241   SDLoc dl(Node);
2242   const TargetLowering &TLI = getTargetLoweringInfo();
2243   // This defaults to loading a pointer from the input and storing it to the
2244   // output, returning the chain.
2245   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2246   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2247   SDValue Tmp1 =
2248       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2249               Node->getOperand(2), MachinePointerInfo(VS));
2250   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2251                   MachinePointerInfo(VD));
2252 }
2253 
2254 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2255   const DataLayout &DL = getDataLayout();
2256   Type *Ty = VT.getTypeForEVT(*getContext());
2257   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2258 
2259   if (TLI->isTypeLegal(VT) || !VT.isVector())
2260     return RedAlign;
2261 
2262   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2263   const Align StackAlign = TFI->getStackAlign();
2264 
2265   // See if we can choose a smaller ABI alignment in cases where it's an
2266   // illegal vector type that will get broken down.
2267   if (RedAlign > StackAlign) {
2268     EVT IntermediateVT;
2269     MVT RegisterVT;
2270     unsigned NumIntermediates;
2271     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2272                                 NumIntermediates, RegisterVT);
2273     Ty = IntermediateVT.getTypeForEVT(*getContext());
2274     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2275     if (RedAlign2 < RedAlign)
2276       RedAlign = RedAlign2;
2277   }
2278 
2279   return RedAlign;
2280 }
2281 
2282 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2283   MachineFrameInfo &MFI = MF->getFrameInfo();
2284   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2285   int StackID = 0;
2286   if (Bytes.isScalable())
2287     StackID = TFI->getStackIDForScalableVectors();
2288   // The stack id gives an indication of whether the object is scalable or
2289   // not, so it's safe to pass in the minimum size here.
2290   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment,
2291                                        false, nullptr, StackID);
2292   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2293 }
2294 
2295 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2296   Type *Ty = VT.getTypeForEVT(*getContext());
2297   Align StackAlign =
2298       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2299   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2300 }
2301 
2302 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2303   TypeSize VT1Size = VT1.getStoreSize();
2304   TypeSize VT2Size = VT2.getStoreSize();
2305   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2306          "Don't know how to choose the maximum size when creating a stack "
2307          "temporary");
2308   TypeSize Bytes =
2309       VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size;
2310 
2311   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2312   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2313   const DataLayout &DL = getDataLayout();
2314   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2315   return CreateStackTemporary(Bytes, Align);
2316 }
2317 
2318 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2319                                 ISD::CondCode Cond, const SDLoc &dl) {
2320   EVT OpVT = N1.getValueType();
2321 
2322   // These setcc operations always fold.
2323   switch (Cond) {
2324   default: break;
2325   case ISD::SETFALSE:
2326   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2327   case ISD::SETTRUE:
2328   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2329 
2330   case ISD::SETOEQ:
2331   case ISD::SETOGT:
2332   case ISD::SETOGE:
2333   case ISD::SETOLT:
2334   case ISD::SETOLE:
2335   case ISD::SETONE:
2336   case ISD::SETO:
2337   case ISD::SETUO:
2338   case ISD::SETUEQ:
2339   case ISD::SETUNE:
2340     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2341     break;
2342   }
2343 
2344   if (OpVT.isInteger()) {
2345     // For EQ and NE, we can always pick a value for the undef to make the
2346     // predicate pass or fail, so we can return undef.
2347     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2348     // icmp eq/ne X, undef -> undef.
2349     if ((N1.isUndef() || N2.isUndef()) &&
2350         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2351       return getUNDEF(VT);
2352 
2353     // If both operands are undef, we can return undef for int comparison.
2354     // icmp undef, undef -> undef.
2355     if (N1.isUndef() && N2.isUndef())
2356       return getUNDEF(VT);
2357 
2358     // icmp X, X -> true/false
2359     // icmp X, undef -> true/false because undef could be X.
2360     if (N1 == N2)
2361       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2362   }
2363 
2364   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2365     const APInt &C2 = N2C->getAPIntValue();
2366     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2367       const APInt &C1 = N1C->getAPIntValue();
2368 
2369       return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)),
2370                              dl, VT, OpVT);
2371     }
2372   }
2373 
2374   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2375   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2376 
2377   if (N1CFP && N2CFP) {
2378     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2379     switch (Cond) {
2380     default: break;
2381     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2382                         return getUNDEF(VT);
2383                       LLVM_FALLTHROUGH;
2384     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2385                                              OpVT);
2386     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2387                         return getUNDEF(VT);
2388                       LLVM_FALLTHROUGH;
2389     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2390                                              R==APFloat::cmpLessThan, dl, VT,
2391                                              OpVT);
2392     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2393                         return getUNDEF(VT);
2394                       LLVM_FALLTHROUGH;
2395     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2396                                              OpVT);
2397     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2398                         return getUNDEF(VT);
2399                       LLVM_FALLTHROUGH;
2400     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2401                                              VT, OpVT);
2402     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2403                         return getUNDEF(VT);
2404                       LLVM_FALLTHROUGH;
2405     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2406                                              R==APFloat::cmpEqual, dl, VT,
2407                                              OpVT);
2408     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2409                         return getUNDEF(VT);
2410                       LLVM_FALLTHROUGH;
2411     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2412                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2413     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2414                                              OpVT);
2415     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2416                                              OpVT);
2417     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2418                                              R==APFloat::cmpEqual, dl, VT,
2419                                              OpVT);
2420     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2421                                              OpVT);
2422     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2423                                              R==APFloat::cmpLessThan, dl, VT,
2424                                              OpVT);
2425     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2426                                              R==APFloat::cmpUnordered, dl, VT,
2427                                              OpVT);
2428     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2429                                              VT, OpVT);
2430     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2431                                              OpVT);
2432     }
2433   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2434     // Ensure that the constant occurs on the RHS.
2435     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2436     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2437       return SDValue();
2438     return getSetCC(dl, VT, N2, N1, SwappedCond);
2439   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2440              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2441     // If an operand is known to be a nan (or undef that could be a nan), we can
2442     // fold it.
2443     // Choosing NaN for the undef will always make unordered comparison succeed
2444     // and ordered comparison fails.
2445     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2446     switch (ISD::getUnorderedFlavor(Cond)) {
2447     default:
2448       llvm_unreachable("Unknown flavor!");
2449     case 0: // Known false.
2450       return getBoolConstant(false, dl, VT, OpVT);
2451     case 1: // Known true.
2452       return getBoolConstant(true, dl, VT, OpVT);
2453     case 2: // Undefined.
2454       return getUNDEF(VT);
2455     }
2456   }
2457 
2458   // Could not fold it.
2459   return SDValue();
2460 }
2461 
2462 /// See if the specified operand can be simplified with the knowledge that only
2463 /// the bits specified by DemandedBits are used.
2464 /// TODO: really we should be making this into the DAG equivalent of
2465 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2466 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2467   EVT VT = V.getValueType();
2468 
2469   if (VT.isScalableVector())
2470     return SDValue();
2471 
2472   switch (V.getOpcode()) {
2473   default:
2474     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, *this);
2475   case ISD::Constant: {
2476     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2477     APInt NewVal = CVal & DemandedBits;
2478     if (NewVal != CVal)
2479       return getConstant(NewVal, SDLoc(V), V.getValueType());
2480     break;
2481   }
2482   case ISD::SRL:
2483     // Only look at single-use SRLs.
2484     if (!V.getNode()->hasOneUse())
2485       break;
2486     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2487       // See if we can recursively simplify the LHS.
2488       unsigned Amt = RHSC->getZExtValue();
2489 
2490       // Watch out for shift count overflow though.
2491       if (Amt >= DemandedBits.getBitWidth())
2492         break;
2493       APInt SrcDemandedBits = DemandedBits << Amt;
2494       if (SDValue SimplifyLHS = TLI->SimplifyMultipleUseDemandedBits(
2495               V.getOperand(0), SrcDemandedBits, *this))
2496         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2497                        V.getOperand(1));
2498     }
2499     break;
2500   }
2501   return SDValue();
2502 }
2503 
2504 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2505 /// use this predicate to simplify operations downstream.
2506 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2507   unsigned BitWidth = Op.getScalarValueSizeInBits();
2508   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2509 }
2510 
2511 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2512 /// this predicate to simplify operations downstream.  Mask is known to be zero
2513 /// for bits that V cannot have.
2514 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2515                                      unsigned Depth) const {
2516   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2517 }
2518 
2519 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2520 /// DemandedElts.  We use this predicate to simplify operations downstream.
2521 /// Mask is known to be zero for bits that V cannot have.
2522 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2523                                      const APInt &DemandedElts,
2524                                      unsigned Depth) const {
2525   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2526 }
2527 
2528 /// MaskedVectorIsZero - Return true if 'Op' is known to be zero in
2529 /// DemandedElts.  We use this predicate to simplify operations downstream.
2530 bool SelectionDAG::MaskedVectorIsZero(SDValue V, const APInt &DemandedElts,
2531                                       unsigned Depth /* = 0 */) const {
2532   APInt Mask = APInt::getAllOnes(V.getScalarValueSizeInBits());
2533   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2534 }
2535 
2536 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2537 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2538                                         unsigned Depth) const {
2539   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2540 }
2541 
2542 /// isSplatValue - Return true if the vector V has the same value
2543 /// across all DemandedElts. For scalable vectors it does not make
2544 /// sense to specify which elements are demanded or undefined, therefore
2545 /// they are simply ignored.
2546 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2547                                 APInt &UndefElts, unsigned Depth) const {
2548   unsigned Opcode = V.getOpcode();
2549   EVT VT = V.getValueType();
2550   assert(VT.isVector() && "Vector type expected");
2551 
2552   if (!VT.isScalableVector() && !DemandedElts)
2553     return false; // No demanded elts, better to assume we don't know anything.
2554 
2555   if (Depth >= MaxRecursionDepth)
2556     return false; // Limit search depth.
2557 
2558   // Deal with some common cases here that work for both fixed and scalable
2559   // vector types.
2560   switch (Opcode) {
2561   case ISD::SPLAT_VECTOR:
2562     UndefElts = V.getOperand(0).isUndef()
2563                     ? APInt::getAllOnes(DemandedElts.getBitWidth())
2564                     : APInt(DemandedElts.getBitWidth(), 0);
2565     return true;
2566   case ISD::ADD:
2567   case ISD::SUB:
2568   case ISD::AND:
2569   case ISD::XOR:
2570   case ISD::OR: {
2571     APInt UndefLHS, UndefRHS;
2572     SDValue LHS = V.getOperand(0);
2573     SDValue RHS = V.getOperand(1);
2574     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2575         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2576       UndefElts = UndefLHS | UndefRHS;
2577       return true;
2578     }
2579     return false;
2580   }
2581   case ISD::ABS:
2582   case ISD::TRUNCATE:
2583   case ISD::SIGN_EXTEND:
2584   case ISD::ZERO_EXTEND:
2585     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2586   default:
2587     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
2588         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
2589       return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth);
2590     break;
2591 }
2592 
2593   // We don't support other cases than those above for scalable vectors at
2594   // the moment.
2595   if (VT.isScalableVector())
2596     return false;
2597 
2598   unsigned NumElts = VT.getVectorNumElements();
2599   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2600   UndefElts = APInt::getZero(NumElts);
2601 
2602   switch (Opcode) {
2603   case ISD::BUILD_VECTOR: {
2604     SDValue Scl;
2605     for (unsigned i = 0; i != NumElts; ++i) {
2606       SDValue Op = V.getOperand(i);
2607       if (Op.isUndef()) {
2608         UndefElts.setBit(i);
2609         continue;
2610       }
2611       if (!DemandedElts[i])
2612         continue;
2613       if (Scl && Scl != Op)
2614         return false;
2615       Scl = Op;
2616     }
2617     return true;
2618   }
2619   case ISD::VECTOR_SHUFFLE: {
2620     // Check if this is a shuffle node doing a splat or a shuffle of a splat.
2621     APInt DemandedLHS = APInt::getNullValue(NumElts);
2622     APInt DemandedRHS = APInt::getNullValue(NumElts);
2623     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2624     for (int i = 0; i != (int)NumElts; ++i) {
2625       int M = Mask[i];
2626       if (M < 0) {
2627         UndefElts.setBit(i);
2628         continue;
2629       }
2630       if (!DemandedElts[i])
2631         continue;
2632       if (M < (int)NumElts)
2633         DemandedLHS.setBit(M);
2634       else
2635         DemandedRHS.setBit(M - NumElts);
2636     }
2637 
2638     // If we aren't demanding either op, assume there's no splat.
2639     // If we are demanding both ops, assume there's no splat.
2640     if ((DemandedLHS.isZero() && DemandedRHS.isZero()) ||
2641         (!DemandedLHS.isZero() && !DemandedRHS.isZero()))
2642       return false;
2643 
2644     // See if the demanded elts of the source op is a splat or we only demand
2645     // one element, which should always be a splat.
2646     // TODO: Handle source ops splats with undefs.
2647     auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) {
2648       APInt SrcUndefs;
2649       return (SrcElts.countPopulation() == 1) ||
2650              (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) &&
2651               (SrcElts & SrcUndefs).isZero());
2652     };
2653     if (!DemandedLHS.isZero())
2654       return CheckSplatSrc(V.getOperand(0), DemandedLHS);
2655     return CheckSplatSrc(V.getOperand(1), DemandedRHS);
2656   }
2657   case ISD::EXTRACT_SUBVECTOR: {
2658     // Offset the demanded elts by the subvector index.
2659     SDValue Src = V.getOperand(0);
2660     // We don't support scalable vectors at the moment.
2661     if (Src.getValueType().isScalableVector())
2662       return false;
2663     uint64_t Idx = V.getConstantOperandVal(1);
2664     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2665     APInt UndefSrcElts;
2666     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
2667     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2668       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2669       return true;
2670     }
2671     break;
2672   }
2673   case ISD::ANY_EXTEND_VECTOR_INREG:
2674   case ISD::SIGN_EXTEND_VECTOR_INREG:
2675   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2676     // Widen the demanded elts by the src element count.
2677     SDValue Src = V.getOperand(0);
2678     // We don't support scalable vectors at the moment.
2679     if (Src.getValueType().isScalableVector())
2680       return false;
2681     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2682     APInt UndefSrcElts;
2683     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
2684     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2685       UndefElts = UndefSrcElts.trunc(NumElts);
2686       return true;
2687     }
2688     break;
2689   }
2690   case ISD::BITCAST: {
2691     SDValue Src = V.getOperand(0);
2692     EVT SrcVT = Src.getValueType();
2693     unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
2694     unsigned BitWidth = VT.getScalarSizeInBits();
2695 
2696     // Ignore bitcasts from unsupported types.
2697     // TODO: Add fp support?
2698     if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger())
2699       break;
2700 
2701     // Bitcast 'small element' vector to 'large element' vector.
2702     if ((BitWidth % SrcBitWidth) == 0) {
2703       // See if each sub element is a splat.
2704       unsigned Scale = BitWidth / SrcBitWidth;
2705       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2706       APInt ScaledDemandedElts =
2707           APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2708       for (unsigned I = 0; I != Scale; ++I) {
2709         APInt SubUndefElts;
2710         APInt SubDemandedElt = APInt::getOneBitSet(Scale, I);
2711         APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt);
2712         SubDemandedElts &= ScaledDemandedElts;
2713         if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1))
2714           return false;
2715         // TODO: Add support for merging sub undef elements.
2716         if (!SubUndefElts.isZero())
2717           return false;
2718       }
2719       return true;
2720     }
2721     break;
2722   }
2723   }
2724 
2725   return false;
2726 }
2727 
2728 /// Helper wrapper to main isSplatValue function.
2729 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
2730   EVT VT = V.getValueType();
2731   assert(VT.isVector() && "Vector type expected");
2732 
2733   APInt UndefElts;
2734   APInt DemandedElts;
2735 
2736   // For now we don't support this with scalable vectors.
2737   if (!VT.isScalableVector())
2738     DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2739   return isSplatValue(V, DemandedElts, UndefElts) &&
2740          (AllowUndefs || !UndefElts);
2741 }
2742 
2743 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2744   V = peekThroughExtractSubvectors(V);
2745 
2746   EVT VT = V.getValueType();
2747   unsigned Opcode = V.getOpcode();
2748   switch (Opcode) {
2749   default: {
2750     APInt UndefElts;
2751     APInt DemandedElts;
2752 
2753     if (!VT.isScalableVector())
2754       DemandedElts = APInt::getAllOnes(VT.getVectorNumElements());
2755 
2756     if (isSplatValue(V, DemandedElts, UndefElts)) {
2757       if (VT.isScalableVector()) {
2758         // DemandedElts and UndefElts are ignored for scalable vectors, since
2759         // the only supported cases are SPLAT_VECTOR nodes.
2760         SplatIdx = 0;
2761       } else {
2762         // Handle case where all demanded elements are UNDEF.
2763         if (DemandedElts.isSubsetOf(UndefElts)) {
2764           SplatIdx = 0;
2765           return getUNDEF(VT);
2766         }
2767         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2768       }
2769       return V;
2770     }
2771     break;
2772   }
2773   case ISD::SPLAT_VECTOR:
2774     SplatIdx = 0;
2775     return V;
2776   case ISD::VECTOR_SHUFFLE: {
2777     if (VT.isScalableVector())
2778       return SDValue();
2779 
2780     // Check if this is a shuffle node doing a splat.
2781     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2782     // getTargetVShiftNode currently struggles without the splat source.
2783     auto *SVN = cast<ShuffleVectorSDNode>(V);
2784     if (!SVN->isSplat())
2785       break;
2786     int Idx = SVN->getSplatIndex();
2787     int NumElts = V.getValueType().getVectorNumElements();
2788     SplatIdx = Idx % NumElts;
2789     return V.getOperand(Idx / NumElts);
2790   }
2791   }
2792 
2793   return SDValue();
2794 }
2795 
2796 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2797   int SplatIdx;
2798   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2799     EVT SVT = SrcVector.getValueType().getScalarType();
2800     EVT LegalSVT = SVT;
2801     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2802       if (!SVT.isInteger())
2803         return SDValue();
2804       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2805       if (LegalSVT.bitsLT(SVT))
2806         return SDValue();
2807     }
2808     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2809                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2810   }
2811   return SDValue();
2812 }
2813 
2814 const APInt *
2815 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2816                                           const APInt &DemandedElts) const {
2817   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2818           V.getOpcode() == ISD::SRA) &&
2819          "Unknown shift node");
2820   unsigned BitWidth = V.getScalarValueSizeInBits();
2821   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2822     // Shifting more than the bitwidth is not valid.
2823     const APInt &ShAmt = SA->getAPIntValue();
2824     if (ShAmt.ult(BitWidth))
2825       return &ShAmt;
2826   }
2827   return nullptr;
2828 }
2829 
2830 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2831     SDValue V, const APInt &DemandedElts) const {
2832   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2833           V.getOpcode() == ISD::SRA) &&
2834          "Unknown shift node");
2835   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2836     return ValidAmt;
2837   unsigned BitWidth = V.getScalarValueSizeInBits();
2838   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2839   if (!BV)
2840     return nullptr;
2841   const APInt *MinShAmt = nullptr;
2842   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2843     if (!DemandedElts[i])
2844       continue;
2845     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2846     if (!SA)
2847       return nullptr;
2848     // Shifting more than the bitwidth is not valid.
2849     const APInt &ShAmt = SA->getAPIntValue();
2850     if (ShAmt.uge(BitWidth))
2851       return nullptr;
2852     if (MinShAmt && MinShAmt->ule(ShAmt))
2853       continue;
2854     MinShAmt = &ShAmt;
2855   }
2856   return MinShAmt;
2857 }
2858 
2859 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2860     SDValue V, const APInt &DemandedElts) const {
2861   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2862           V.getOpcode() == ISD::SRA) &&
2863          "Unknown shift node");
2864   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2865     return ValidAmt;
2866   unsigned BitWidth = V.getScalarValueSizeInBits();
2867   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2868   if (!BV)
2869     return nullptr;
2870   const APInt *MaxShAmt = nullptr;
2871   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2872     if (!DemandedElts[i])
2873       continue;
2874     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2875     if (!SA)
2876       return nullptr;
2877     // Shifting more than the bitwidth is not valid.
2878     const APInt &ShAmt = SA->getAPIntValue();
2879     if (ShAmt.uge(BitWidth))
2880       return nullptr;
2881     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2882       continue;
2883     MaxShAmt = &ShAmt;
2884   }
2885   return MaxShAmt;
2886 }
2887 
2888 /// Determine which bits of Op are known to be either zero or one and return
2889 /// them in Known. For vectors, the known bits are those that are shared by
2890 /// every vector element.
2891 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2892   EVT VT = Op.getValueType();
2893 
2894   // TOOD: Until we have a plan for how to represent demanded elements for
2895   // scalable vectors, we can just bail out for now.
2896   if (Op.getValueType().isScalableVector()) {
2897     unsigned BitWidth = Op.getScalarValueSizeInBits();
2898     return KnownBits(BitWidth);
2899   }
2900 
2901   APInt DemandedElts = VT.isVector()
2902                            ? APInt::getAllOnes(VT.getVectorNumElements())
2903                            : APInt(1, 1);
2904   return computeKnownBits(Op, DemandedElts, Depth);
2905 }
2906 
2907 /// Determine which bits of Op are known to be either zero or one and return
2908 /// them in Known. The DemandedElts argument allows us to only collect the known
2909 /// bits that are shared by the requested vector elements.
2910 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2911                                          unsigned Depth) const {
2912   unsigned BitWidth = Op.getScalarValueSizeInBits();
2913 
2914   KnownBits Known(BitWidth);   // Don't know anything.
2915 
2916   // TOOD: Until we have a plan for how to represent demanded elements for
2917   // scalable vectors, we can just bail out for now.
2918   if (Op.getValueType().isScalableVector())
2919     return Known;
2920 
2921   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2922     // We know all of the bits for a constant!
2923     return KnownBits::makeConstant(C->getAPIntValue());
2924   }
2925   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2926     // We know all of the bits for a constant fp!
2927     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
2928   }
2929 
2930   if (Depth >= MaxRecursionDepth)
2931     return Known;  // Limit search depth.
2932 
2933   KnownBits Known2;
2934   unsigned NumElts = DemandedElts.getBitWidth();
2935   assert((!Op.getValueType().isVector() ||
2936           NumElts == Op.getValueType().getVectorNumElements()) &&
2937          "Unexpected vector size");
2938 
2939   if (!DemandedElts)
2940     return Known;  // No demanded elts, better to assume we don't know anything.
2941 
2942   unsigned Opcode = Op.getOpcode();
2943   switch (Opcode) {
2944   case ISD::MERGE_VALUES:
2945     return computeKnownBits(Op.getOperand(Op.getResNo()), DemandedElts,
2946                             Depth + 1);
2947   case ISD::BUILD_VECTOR:
2948     // Collect the known bits that are shared by every demanded vector element.
2949     Known.Zero.setAllBits(); Known.One.setAllBits();
2950     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2951       if (!DemandedElts[i])
2952         continue;
2953 
2954       SDValue SrcOp = Op.getOperand(i);
2955       Known2 = computeKnownBits(SrcOp, Depth + 1);
2956 
2957       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2958       if (SrcOp.getValueSizeInBits() != BitWidth) {
2959         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2960                "Expected BUILD_VECTOR implicit truncation");
2961         Known2 = Known2.trunc(BitWidth);
2962       }
2963 
2964       // Known bits are the values that are shared by every demanded element.
2965       Known = KnownBits::commonBits(Known, Known2);
2966 
2967       // If we don't know any bits, early out.
2968       if (Known.isUnknown())
2969         break;
2970     }
2971     break;
2972   case ISD::VECTOR_SHUFFLE: {
2973     // Collect the known bits that are shared by every vector element referenced
2974     // by the shuffle.
2975     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2976     Known.Zero.setAllBits(); Known.One.setAllBits();
2977     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2978     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2979     for (unsigned i = 0; i != NumElts; ++i) {
2980       if (!DemandedElts[i])
2981         continue;
2982 
2983       int M = SVN->getMaskElt(i);
2984       if (M < 0) {
2985         // For UNDEF elements, we don't know anything about the common state of
2986         // the shuffle result.
2987         Known.resetAll();
2988         DemandedLHS.clearAllBits();
2989         DemandedRHS.clearAllBits();
2990         break;
2991       }
2992 
2993       if ((unsigned)M < NumElts)
2994         DemandedLHS.setBit((unsigned)M % NumElts);
2995       else
2996         DemandedRHS.setBit((unsigned)M % NumElts);
2997     }
2998     // Known bits are the values that are shared by every demanded element.
2999     if (!!DemandedLHS) {
3000       SDValue LHS = Op.getOperand(0);
3001       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
3002       Known = KnownBits::commonBits(Known, Known2);
3003     }
3004     // If we don't know any bits, early out.
3005     if (Known.isUnknown())
3006       break;
3007     if (!!DemandedRHS) {
3008       SDValue RHS = Op.getOperand(1);
3009       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
3010       Known = KnownBits::commonBits(Known, Known2);
3011     }
3012     break;
3013   }
3014   case ISD::CONCAT_VECTORS: {
3015     // Split DemandedElts and test each of the demanded subvectors.
3016     Known.Zero.setAllBits(); Known.One.setAllBits();
3017     EVT SubVectorVT = Op.getOperand(0).getValueType();
3018     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3019     unsigned NumSubVectors = Op.getNumOperands();
3020     for (unsigned i = 0; i != NumSubVectors; ++i) {
3021       APInt DemandedSub =
3022           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
3023       if (!!DemandedSub) {
3024         SDValue Sub = Op.getOperand(i);
3025         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
3026         Known = KnownBits::commonBits(Known, Known2);
3027       }
3028       // If we don't know any bits, early out.
3029       if (Known.isUnknown())
3030         break;
3031     }
3032     break;
3033   }
3034   case ISD::INSERT_SUBVECTOR: {
3035     // Demand any elements from the subvector and the remainder from the src its
3036     // inserted into.
3037     SDValue Src = Op.getOperand(0);
3038     SDValue Sub = Op.getOperand(1);
3039     uint64_t Idx = Op.getConstantOperandVal(2);
3040     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3041     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3042     APInt DemandedSrcElts = DemandedElts;
3043     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3044 
3045     Known.One.setAllBits();
3046     Known.Zero.setAllBits();
3047     if (!!DemandedSubElts) {
3048       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
3049       if (Known.isUnknown())
3050         break; // early-out.
3051     }
3052     if (!!DemandedSrcElts) {
3053       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3054       Known = KnownBits::commonBits(Known, Known2);
3055     }
3056     break;
3057   }
3058   case ISD::EXTRACT_SUBVECTOR: {
3059     // Offset the demanded elts by the subvector index.
3060     SDValue Src = Op.getOperand(0);
3061     // Bail until we can represent demanded elements for scalable vectors.
3062     if (Src.getValueType().isScalableVector())
3063       break;
3064     uint64_t Idx = Op.getConstantOperandVal(1);
3065     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3066     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3067     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3068     break;
3069   }
3070   case ISD::SCALAR_TO_VECTOR: {
3071     // We know about scalar_to_vector as much as we know about it source,
3072     // which becomes the first element of otherwise unknown vector.
3073     if (DemandedElts != 1)
3074       break;
3075 
3076     SDValue N0 = Op.getOperand(0);
3077     Known = computeKnownBits(N0, Depth + 1);
3078     if (N0.getValueSizeInBits() != BitWidth)
3079       Known = Known.trunc(BitWidth);
3080 
3081     break;
3082   }
3083   case ISD::BITCAST: {
3084     SDValue N0 = Op.getOperand(0);
3085     EVT SubVT = N0.getValueType();
3086     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3087 
3088     // Ignore bitcasts from unsupported types.
3089     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3090       break;
3091 
3092     // Fast handling of 'identity' bitcasts.
3093     if (BitWidth == SubBitWidth) {
3094       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3095       break;
3096     }
3097 
3098     bool IsLE = getDataLayout().isLittleEndian();
3099 
3100     // Bitcast 'small element' vector to 'large element' scalar/vector.
3101     if ((BitWidth % SubBitWidth) == 0) {
3102       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3103 
3104       // Collect known bits for the (larger) output by collecting the known
3105       // bits from each set of sub elements and shift these into place.
3106       // We need to separately call computeKnownBits for each set of
3107       // sub elements as the knownbits for each is likely to be different.
3108       unsigned SubScale = BitWidth / SubBitWidth;
3109       APInt SubDemandedElts(NumElts * SubScale, 0);
3110       for (unsigned i = 0; i != NumElts; ++i)
3111         if (DemandedElts[i])
3112           SubDemandedElts.setBit(i * SubScale);
3113 
3114       for (unsigned i = 0; i != SubScale; ++i) {
3115         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3116                          Depth + 1);
3117         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3118         Known.insertBits(Known2, SubBitWidth * Shifts);
3119       }
3120     }
3121 
3122     // Bitcast 'large element' scalar/vector to 'small element' vector.
3123     if ((SubBitWidth % BitWidth) == 0) {
3124       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3125 
3126       // Collect known bits for the (smaller) output by collecting the known
3127       // bits from the overlapping larger input elements and extracting the
3128       // sub sections we actually care about.
3129       unsigned SubScale = SubBitWidth / BitWidth;
3130       APInt SubDemandedElts =
3131           APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3132       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3133 
3134       Known.Zero.setAllBits(); Known.One.setAllBits();
3135       for (unsigned i = 0; i != NumElts; ++i)
3136         if (DemandedElts[i]) {
3137           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3138           unsigned Offset = (Shifts % SubScale) * BitWidth;
3139           Known = KnownBits::commonBits(Known,
3140                                         Known2.extractBits(BitWidth, Offset));
3141           // If we don't know any bits, early out.
3142           if (Known.isUnknown())
3143             break;
3144         }
3145     }
3146     break;
3147   }
3148   case ISD::AND:
3149     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3150     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3151 
3152     Known &= Known2;
3153     break;
3154   case ISD::OR:
3155     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3156     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3157 
3158     Known |= Known2;
3159     break;
3160   case ISD::XOR:
3161     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3162     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3163 
3164     Known ^= Known2;
3165     break;
3166   case ISD::MUL: {
3167     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3168     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3169     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3170     // TODO: SelfMultiply can be poison, but not undef.
3171     if (SelfMultiply)
3172       SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
3173           Op.getOperand(0), DemandedElts, false, Depth + 1);
3174     Known = KnownBits::mul(Known, Known2, SelfMultiply);
3175 
3176     // If the multiplication is known not to overflow, the product of a number
3177     // with itself is non-negative. Only do this if we didn't already computed
3178     // the opposite value for the sign bit.
3179     if (Op->getFlags().hasNoSignedWrap() &&
3180         Op.getOperand(0) == Op.getOperand(1) &&
3181         !Known.isNegative())
3182       Known.makeNonNegative();
3183     break;
3184   }
3185   case ISD::MULHU: {
3186     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3187     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3188     Known = KnownBits::mulhu(Known, Known2);
3189     break;
3190   }
3191   case ISD::MULHS: {
3192     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3193     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3194     Known = KnownBits::mulhs(Known, Known2);
3195     break;
3196   }
3197   case ISD::UMUL_LOHI: {
3198     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3199     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3200     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3201     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3202     if (Op.getResNo() == 0)
3203       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3204     else
3205       Known = KnownBits::mulhu(Known, Known2);
3206     break;
3207   }
3208   case ISD::SMUL_LOHI: {
3209     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3210     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3211     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3212     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3213     if (Op.getResNo() == 0)
3214       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3215     else
3216       Known = KnownBits::mulhs(Known, Known2);
3217     break;
3218   }
3219   case ISD::AVGCEILU: {
3220     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3221     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3222     Known = Known.zext(BitWidth + 1);
3223     Known2 = Known2.zext(BitWidth + 1);
3224     KnownBits One = KnownBits::makeConstant(APInt(1, 1));
3225     Known = KnownBits::computeForAddCarry(Known, Known2, One);
3226     Known = Known.extractBits(BitWidth, 1);
3227     break;
3228   }
3229   case ISD::SELECT:
3230   case ISD::VSELECT:
3231     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3232     // If we don't know any bits, early out.
3233     if (Known.isUnknown())
3234       break;
3235     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3236 
3237     // Only known if known in both the LHS and RHS.
3238     Known = KnownBits::commonBits(Known, Known2);
3239     break;
3240   case ISD::SELECT_CC:
3241     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3242     // If we don't know any bits, early out.
3243     if (Known.isUnknown())
3244       break;
3245     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3246 
3247     // Only known if known in both the LHS and RHS.
3248     Known = KnownBits::commonBits(Known, Known2);
3249     break;
3250   case ISD::SMULO:
3251   case ISD::UMULO:
3252     if (Op.getResNo() != 1)
3253       break;
3254     // The boolean result conforms to getBooleanContents.
3255     // If we know the result of a setcc has the top bits zero, use this info.
3256     // We know that we have an integer-based boolean since these operations
3257     // are only available for integer.
3258     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3259             TargetLowering::ZeroOrOneBooleanContent &&
3260         BitWidth > 1)
3261       Known.Zero.setBitsFrom(1);
3262     break;
3263   case ISD::SETCC:
3264   case ISD::SETCCCARRY:
3265   case ISD::STRICT_FSETCC:
3266   case ISD::STRICT_FSETCCS: {
3267     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3268     // If we know the result of a setcc has the top bits zero, use this info.
3269     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3270             TargetLowering::ZeroOrOneBooleanContent &&
3271         BitWidth > 1)
3272       Known.Zero.setBitsFrom(1);
3273     break;
3274   }
3275   case ISD::SHL:
3276     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3277     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3278     Known = KnownBits::shl(Known, Known2);
3279 
3280     // Minimum shift low bits are known zero.
3281     if (const APInt *ShMinAmt =
3282             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3283       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3284     break;
3285   case ISD::SRL:
3286     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3287     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3288     Known = KnownBits::lshr(Known, Known2);
3289 
3290     // Minimum shift high bits are known zero.
3291     if (const APInt *ShMinAmt =
3292             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3293       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3294     break;
3295   case ISD::SRA:
3296     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3297     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3298     Known = KnownBits::ashr(Known, Known2);
3299     // TODO: Add minimum shift high known sign bits.
3300     break;
3301   case ISD::FSHL:
3302   case ISD::FSHR:
3303     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3304       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3305 
3306       // For fshl, 0-shift returns the 1st arg.
3307       // For fshr, 0-shift returns the 2nd arg.
3308       if (Amt == 0) {
3309         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3310                                  DemandedElts, Depth + 1);
3311         break;
3312       }
3313 
3314       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3315       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3316       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3317       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3318       if (Opcode == ISD::FSHL) {
3319         Known.One <<= Amt;
3320         Known.Zero <<= Amt;
3321         Known2.One.lshrInPlace(BitWidth - Amt);
3322         Known2.Zero.lshrInPlace(BitWidth - Amt);
3323       } else {
3324         Known.One <<= BitWidth - Amt;
3325         Known.Zero <<= BitWidth - Amt;
3326         Known2.One.lshrInPlace(Amt);
3327         Known2.Zero.lshrInPlace(Amt);
3328       }
3329       Known.One |= Known2.One;
3330       Known.Zero |= Known2.Zero;
3331     }
3332     break;
3333   case ISD::SHL_PARTS:
3334   case ISD::SRA_PARTS:
3335   case ISD::SRL_PARTS: {
3336     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3337 
3338     // Collect lo/hi source values and concatenate.
3339     // TODO: Would a KnownBits::concatBits helper be useful?
3340     unsigned LoBits = Op.getOperand(0).getScalarValueSizeInBits();
3341     unsigned HiBits = Op.getOperand(1).getScalarValueSizeInBits();
3342     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3343     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3344     Known = Known.anyext(LoBits + HiBits);
3345     Known.insertBits(Known2, LoBits);
3346 
3347     // Collect shift amount.
3348     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3349 
3350     if (Opcode == ISD::SHL_PARTS)
3351       Known = KnownBits::shl(Known, Known2);
3352     else if (Opcode == ISD::SRA_PARTS)
3353       Known = KnownBits::ashr(Known, Known2);
3354     else // if (Opcode == ISD::SRL_PARTS)
3355       Known = KnownBits::lshr(Known, Known2);
3356 
3357     // TODO: Minimum shift low/high bits are known zero.
3358 
3359     if (Op.getResNo() == 0)
3360       Known = Known.extractBits(LoBits, 0);
3361     else
3362       Known = Known.extractBits(HiBits, LoBits);
3363     break;
3364   }
3365   case ISD::SIGN_EXTEND_INREG: {
3366     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3367     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3368     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3369     break;
3370   }
3371   case ISD::CTTZ:
3372   case ISD::CTTZ_ZERO_UNDEF: {
3373     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3374     // If we have a known 1, its position is our upper bound.
3375     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3376     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3377     Known.Zero.setBitsFrom(LowBits);
3378     break;
3379   }
3380   case ISD::CTLZ:
3381   case ISD::CTLZ_ZERO_UNDEF: {
3382     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3383     // If we have a known 1, its position is our upper bound.
3384     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3385     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3386     Known.Zero.setBitsFrom(LowBits);
3387     break;
3388   }
3389   case ISD::CTPOP: {
3390     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3391     // If we know some of the bits are zero, they can't be one.
3392     unsigned PossibleOnes = Known2.countMaxPopulation();
3393     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3394     break;
3395   }
3396   case ISD::PARITY: {
3397     // Parity returns 0 everywhere but the LSB.
3398     Known.Zero.setBitsFrom(1);
3399     break;
3400   }
3401   case ISD::LOAD: {
3402     LoadSDNode *LD = cast<LoadSDNode>(Op);
3403     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3404     if (ISD::isNON_EXTLoad(LD) && Cst) {
3405       // Determine any common known bits from the loaded constant pool value.
3406       Type *CstTy = Cst->getType();
3407       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3408         // If its a vector splat, then we can (quickly) reuse the scalar path.
3409         // NOTE: We assume all elements match and none are UNDEF.
3410         if (CstTy->isVectorTy()) {
3411           if (const Constant *Splat = Cst->getSplatValue()) {
3412             Cst = Splat;
3413             CstTy = Cst->getType();
3414           }
3415         }
3416         // TODO - do we need to handle different bitwidths?
3417         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3418           // Iterate across all vector elements finding common known bits.
3419           Known.One.setAllBits();
3420           Known.Zero.setAllBits();
3421           for (unsigned i = 0; i != NumElts; ++i) {
3422             if (!DemandedElts[i])
3423               continue;
3424             if (Constant *Elt = Cst->getAggregateElement(i)) {
3425               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3426                 const APInt &Value = CInt->getValue();
3427                 Known.One &= Value;
3428                 Known.Zero &= ~Value;
3429                 continue;
3430               }
3431               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3432                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3433                 Known.One &= Value;
3434                 Known.Zero &= ~Value;
3435                 continue;
3436               }
3437             }
3438             Known.One.clearAllBits();
3439             Known.Zero.clearAllBits();
3440             break;
3441           }
3442         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3443           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3444             Known = KnownBits::makeConstant(CInt->getValue());
3445           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3446             Known =
3447                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3448           }
3449         }
3450       }
3451     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3452       // If this is a ZEXTLoad and we are looking at the loaded value.
3453       EVT VT = LD->getMemoryVT();
3454       unsigned MemBits = VT.getScalarSizeInBits();
3455       Known.Zero.setBitsFrom(MemBits);
3456     } else if (const MDNode *Ranges = LD->getRanges()) {
3457       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3458         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3459     }
3460     break;
3461   }
3462   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3463     EVT InVT = Op.getOperand(0).getValueType();
3464     APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
3465     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3466     Known = Known.zext(BitWidth);
3467     break;
3468   }
3469   case ISD::ZERO_EXTEND: {
3470     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3471     Known = Known.zext(BitWidth);
3472     break;
3473   }
3474   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3475     EVT InVT = Op.getOperand(0).getValueType();
3476     APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
3477     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3478     // If the sign bit is known to be zero or one, then sext will extend
3479     // it to the top bits, else it will just zext.
3480     Known = Known.sext(BitWidth);
3481     break;
3482   }
3483   case ISD::SIGN_EXTEND: {
3484     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3485     // If the sign bit is known to be zero or one, then sext will extend
3486     // it to the top bits, else it will just zext.
3487     Known = Known.sext(BitWidth);
3488     break;
3489   }
3490   case ISD::ANY_EXTEND_VECTOR_INREG: {
3491     EVT InVT = Op.getOperand(0).getValueType();
3492     APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
3493     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3494     Known = Known.anyext(BitWidth);
3495     break;
3496   }
3497   case ISD::ANY_EXTEND: {
3498     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3499     Known = Known.anyext(BitWidth);
3500     break;
3501   }
3502   case ISD::TRUNCATE: {
3503     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3504     Known = Known.trunc(BitWidth);
3505     break;
3506   }
3507   case ISD::AssertZext: {
3508     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3509     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3510     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3511     Known.Zero |= (~InMask);
3512     Known.One  &= (~Known.Zero);
3513     break;
3514   }
3515   case ISD::AssertAlign: {
3516     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3517     assert(LogOfAlign != 0);
3518 
3519     // TODO: Should use maximum with source
3520     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3521     // well as clearing one bits.
3522     Known.Zero.setLowBits(LogOfAlign);
3523     Known.One.clearLowBits(LogOfAlign);
3524     break;
3525   }
3526   case ISD::FGETSIGN:
3527     // All bits are zero except the low bit.
3528     Known.Zero.setBitsFrom(1);
3529     break;
3530   case ISD::USUBO:
3531   case ISD::SSUBO:
3532   case ISD::SUBCARRY:
3533   case ISD::SSUBO_CARRY:
3534     if (Op.getResNo() == 1) {
3535       // If we know the result of a setcc has the top bits zero, use this info.
3536       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3537               TargetLowering::ZeroOrOneBooleanContent &&
3538           BitWidth > 1)
3539         Known.Zero.setBitsFrom(1);
3540       break;
3541     }
3542     LLVM_FALLTHROUGH;
3543   case ISD::SUB:
3544   case ISD::SUBC: {
3545     assert(Op.getResNo() == 0 &&
3546            "We only compute knownbits for the difference here.");
3547 
3548     // TODO: Compute influence of the carry operand.
3549     if (Opcode == ISD::SUBCARRY || Opcode == ISD::SSUBO_CARRY)
3550       break;
3551 
3552     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3553     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3554     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3555                                         Known, Known2);
3556     break;
3557   }
3558   case ISD::UADDO:
3559   case ISD::SADDO:
3560   case ISD::ADDCARRY:
3561   case ISD::SADDO_CARRY:
3562     if (Op.getResNo() == 1) {
3563       // If we know the result of a setcc has the top bits zero, use this info.
3564       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3565               TargetLowering::ZeroOrOneBooleanContent &&
3566           BitWidth > 1)
3567         Known.Zero.setBitsFrom(1);
3568       break;
3569     }
3570     LLVM_FALLTHROUGH;
3571   case ISD::ADD:
3572   case ISD::ADDC:
3573   case ISD::ADDE: {
3574     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3575 
3576     // With ADDE and ADDCARRY, a carry bit may be added in.
3577     KnownBits Carry(1);
3578     if (Opcode == ISD::ADDE)
3579       // Can't track carry from glue, set carry to unknown.
3580       Carry.resetAll();
3581     else if (Opcode == ISD::ADDCARRY || Opcode == ISD::SADDO_CARRY)
3582       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3583       // the trouble (how often will we find a known carry bit). And I haven't
3584       // tested this very much yet, but something like this might work:
3585       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3586       //   Carry = Carry.zextOrTrunc(1, false);
3587       Carry.resetAll();
3588     else
3589       Carry.setAllZero();
3590 
3591     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3592     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3593     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3594     break;
3595   }
3596   case ISD::UDIV: {
3597     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3598     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3599     Known = KnownBits::udiv(Known, Known2);
3600     break;
3601   }
3602   case ISD::SREM: {
3603     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3604     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3605     Known = KnownBits::srem(Known, Known2);
3606     break;
3607   }
3608   case ISD::UREM: {
3609     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3610     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3611     Known = KnownBits::urem(Known, Known2);
3612     break;
3613   }
3614   case ISD::EXTRACT_ELEMENT: {
3615     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3616     const unsigned Index = Op.getConstantOperandVal(1);
3617     const unsigned EltBitWidth = Op.getValueSizeInBits();
3618 
3619     // Remove low part of known bits mask
3620     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3621     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3622 
3623     // Remove high part of known bit mask
3624     Known = Known.trunc(EltBitWidth);
3625     break;
3626   }
3627   case ISD::EXTRACT_VECTOR_ELT: {
3628     SDValue InVec = Op.getOperand(0);
3629     SDValue EltNo = Op.getOperand(1);
3630     EVT VecVT = InVec.getValueType();
3631     // computeKnownBits not yet implemented for scalable vectors.
3632     if (VecVT.isScalableVector())
3633       break;
3634     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3635     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3636 
3637     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3638     // anything about the extended bits.
3639     if (BitWidth > EltBitWidth)
3640       Known = Known.trunc(EltBitWidth);
3641 
3642     // If we know the element index, just demand that vector element, else for
3643     // an unknown element index, ignore DemandedElts and demand them all.
3644     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
3645     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3646     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3647       DemandedSrcElts =
3648           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3649 
3650     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3651     if (BitWidth > EltBitWidth)
3652       Known = Known.anyext(BitWidth);
3653     break;
3654   }
3655   case ISD::INSERT_VECTOR_ELT: {
3656     // If we know the element index, split the demand between the
3657     // source vector and the inserted element, otherwise assume we need
3658     // the original demanded vector elements and the value.
3659     SDValue InVec = Op.getOperand(0);
3660     SDValue InVal = Op.getOperand(1);
3661     SDValue EltNo = Op.getOperand(2);
3662     bool DemandedVal = true;
3663     APInt DemandedVecElts = DemandedElts;
3664     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3665     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3666       unsigned EltIdx = CEltNo->getZExtValue();
3667       DemandedVal = !!DemandedElts[EltIdx];
3668       DemandedVecElts.clearBit(EltIdx);
3669     }
3670     Known.One.setAllBits();
3671     Known.Zero.setAllBits();
3672     if (DemandedVal) {
3673       Known2 = computeKnownBits(InVal, Depth + 1);
3674       Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth));
3675     }
3676     if (!!DemandedVecElts) {
3677       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3678       Known = KnownBits::commonBits(Known, Known2);
3679     }
3680     break;
3681   }
3682   case ISD::BITREVERSE: {
3683     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3684     Known = Known2.reverseBits();
3685     break;
3686   }
3687   case ISD::BSWAP: {
3688     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3689     Known = Known2.byteSwap();
3690     break;
3691   }
3692   case ISD::ABS: {
3693     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3694     Known = Known2.abs();
3695     break;
3696   }
3697   case ISD::USUBSAT: {
3698     // The result of usubsat will never be larger than the LHS.
3699     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3700     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3701     break;
3702   }
3703   case ISD::UMIN: {
3704     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3705     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3706     Known = KnownBits::umin(Known, Known2);
3707     break;
3708   }
3709   case ISD::UMAX: {
3710     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3711     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3712     Known = KnownBits::umax(Known, Known2);
3713     break;
3714   }
3715   case ISD::SMIN:
3716   case ISD::SMAX: {
3717     // If we have a clamp pattern, we know that the number of sign bits will be
3718     // the minimum of the clamp min/max range.
3719     bool IsMax = (Opcode == ISD::SMAX);
3720     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3721     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3722       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3723         CstHigh =
3724             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3725     if (CstLow && CstHigh) {
3726       if (!IsMax)
3727         std::swap(CstLow, CstHigh);
3728 
3729       const APInt &ValueLow = CstLow->getAPIntValue();
3730       const APInt &ValueHigh = CstHigh->getAPIntValue();
3731       if (ValueLow.sle(ValueHigh)) {
3732         unsigned LowSignBits = ValueLow.getNumSignBits();
3733         unsigned HighSignBits = ValueHigh.getNumSignBits();
3734         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3735         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3736           Known.One.setHighBits(MinSignBits);
3737           break;
3738         }
3739         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3740           Known.Zero.setHighBits(MinSignBits);
3741           break;
3742         }
3743       }
3744     }
3745 
3746     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3747     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3748     if (IsMax)
3749       Known = KnownBits::smax(Known, Known2);
3750     else
3751       Known = KnownBits::smin(Known, Known2);
3752 
3753     // For SMAX, if CstLow is non-negative we know the result will be
3754     // non-negative and thus all sign bits are 0.
3755     // TODO: There's an equivalent of this for smin with negative constant for
3756     // known ones.
3757     if (IsMax && CstLow) {
3758       const APInt &ValueLow = CstLow->getAPIntValue();
3759       if (ValueLow.isNonNegative()) {
3760         unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3761         Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits()));
3762       }
3763     }
3764 
3765     break;
3766   }
3767   case ISD::FP_TO_UINT_SAT: {
3768     // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
3769     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3770     Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits());
3771     break;
3772   }
3773   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3774     if (Op.getResNo() == 1) {
3775       // The boolean result conforms to getBooleanContents.
3776       // If we know the result of a setcc has the top bits zero, use this info.
3777       // We know that we have an integer-based boolean since these operations
3778       // are only available for integer.
3779       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3780               TargetLowering::ZeroOrOneBooleanContent &&
3781           BitWidth > 1)
3782         Known.Zero.setBitsFrom(1);
3783       break;
3784     }
3785     LLVM_FALLTHROUGH;
3786   case ISD::ATOMIC_CMP_SWAP:
3787   case ISD::ATOMIC_SWAP:
3788   case ISD::ATOMIC_LOAD_ADD:
3789   case ISD::ATOMIC_LOAD_SUB:
3790   case ISD::ATOMIC_LOAD_AND:
3791   case ISD::ATOMIC_LOAD_CLR:
3792   case ISD::ATOMIC_LOAD_OR:
3793   case ISD::ATOMIC_LOAD_XOR:
3794   case ISD::ATOMIC_LOAD_NAND:
3795   case ISD::ATOMIC_LOAD_MIN:
3796   case ISD::ATOMIC_LOAD_MAX:
3797   case ISD::ATOMIC_LOAD_UMIN:
3798   case ISD::ATOMIC_LOAD_UMAX:
3799   case ISD::ATOMIC_LOAD: {
3800     unsigned MemBits =
3801         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
3802     // If we are looking at the loaded value.
3803     if (Op.getResNo() == 0) {
3804       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
3805         Known.Zero.setBitsFrom(MemBits);
3806     }
3807     break;
3808   }
3809   case ISD::FrameIndex:
3810   case ISD::TargetFrameIndex:
3811     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3812                                        Known, getMachineFunction());
3813     break;
3814 
3815   default:
3816     if (Opcode < ISD::BUILTIN_OP_END)
3817       break;
3818     LLVM_FALLTHROUGH;
3819   case ISD::INTRINSIC_WO_CHAIN:
3820   case ISD::INTRINSIC_W_CHAIN:
3821   case ISD::INTRINSIC_VOID:
3822     // Allow the target to implement this method for its nodes.
3823     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3824     break;
3825   }
3826 
3827   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3828   return Known;
3829 }
3830 
3831 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3832                                                              SDValue N1) const {
3833   // X + 0 never overflow
3834   if (isNullConstant(N1))
3835     return OFK_Never;
3836 
3837   KnownBits N1Known = computeKnownBits(N1);
3838   if (N1Known.Zero.getBoolValue()) {
3839     KnownBits N0Known = computeKnownBits(N0);
3840 
3841     bool overflow;
3842     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3843     if (!overflow)
3844       return OFK_Never;
3845   }
3846 
3847   // mulhi + 1 never overflow
3848   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3849       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3850     return OFK_Never;
3851 
3852   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3853     KnownBits N0Known = computeKnownBits(N0);
3854 
3855     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3856       return OFK_Never;
3857   }
3858 
3859   return OFK_Sometime;
3860 }
3861 
3862 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3863   EVT OpVT = Val.getValueType();
3864   unsigned BitWidth = OpVT.getScalarSizeInBits();
3865 
3866   // Is the constant a known power of 2?
3867   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3868     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3869 
3870   // A left-shift of a constant one will have exactly one bit set because
3871   // shifting the bit off the end is undefined.
3872   if (Val.getOpcode() == ISD::SHL) {
3873     auto *C = isConstOrConstSplat(Val.getOperand(0));
3874     if (C && C->getAPIntValue() == 1)
3875       return true;
3876   }
3877 
3878   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3879   // one bit set.
3880   if (Val.getOpcode() == ISD::SRL) {
3881     auto *C = isConstOrConstSplat(Val.getOperand(0));
3882     if (C && C->getAPIntValue().isSignMask())
3883       return true;
3884   }
3885 
3886   // Are all operands of a build vector constant powers of two?
3887   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3888     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3889           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3890             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3891           return false;
3892         }))
3893       return true;
3894 
3895   // Is the operand of a splat vector a constant power of two?
3896   if (Val.getOpcode() == ISD::SPLAT_VECTOR)
3897     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
3898       if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
3899         return true;
3900 
3901   // vscale(power-of-two) is a power-of-two for some targets
3902   if (Val.getOpcode() == ISD::VSCALE &&
3903       getTargetLoweringInfo().isVScaleKnownToBeAPowerOfTwo() &&
3904       isKnownToBeAPowerOfTwo(Val.getOperand(0)))
3905     return true;
3906 
3907   // More could be done here, though the above checks are enough
3908   // to handle some common cases.
3909 
3910   // Fall back to computeKnownBits to catch other known cases.
3911   KnownBits Known = computeKnownBits(Val);
3912   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3913 }
3914 
3915 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3916   EVT VT = Op.getValueType();
3917 
3918   // TODO: Assume we don't know anything for now.
3919   if (VT.isScalableVector())
3920     return 1;
3921 
3922   APInt DemandedElts = VT.isVector()
3923                            ? APInt::getAllOnes(VT.getVectorNumElements())
3924                            : APInt(1, 1);
3925   return ComputeNumSignBits(Op, DemandedElts, Depth);
3926 }
3927 
3928 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3929                                           unsigned Depth) const {
3930   EVT VT = Op.getValueType();
3931   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3932   unsigned VTBits = VT.getScalarSizeInBits();
3933   unsigned NumElts = DemandedElts.getBitWidth();
3934   unsigned Tmp, Tmp2;
3935   unsigned FirstAnswer = 1;
3936 
3937   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3938     const APInt &Val = C->getAPIntValue();
3939     return Val.getNumSignBits();
3940   }
3941 
3942   if (Depth >= MaxRecursionDepth)
3943     return 1;  // Limit search depth.
3944 
3945   if (!DemandedElts || VT.isScalableVector())
3946     return 1;  // No demanded elts, better to assume we don't know anything.
3947 
3948   unsigned Opcode = Op.getOpcode();
3949   switch (Opcode) {
3950   default: break;
3951   case ISD::AssertSext:
3952     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3953     return VTBits-Tmp+1;
3954   case ISD::AssertZext:
3955     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3956     return VTBits-Tmp;
3957   case ISD::MERGE_VALUES:
3958     return ComputeNumSignBits(Op.getOperand(Op.getResNo()), DemandedElts,
3959                               Depth + 1);
3960   case ISD::BUILD_VECTOR:
3961     Tmp = VTBits;
3962     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3963       if (!DemandedElts[i])
3964         continue;
3965 
3966       SDValue SrcOp = Op.getOperand(i);
3967       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3968 
3969       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3970       if (SrcOp.getValueSizeInBits() != VTBits) {
3971         assert(SrcOp.getValueSizeInBits() > VTBits &&
3972                "Expected BUILD_VECTOR implicit truncation");
3973         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3974         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3975       }
3976       Tmp = std::min(Tmp, Tmp2);
3977     }
3978     return Tmp;
3979 
3980   case ISD::VECTOR_SHUFFLE: {
3981     // Collect the minimum number of sign bits that are shared by every vector
3982     // element referenced by the shuffle.
3983     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3984     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3985     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3986     for (unsigned i = 0; i != NumElts; ++i) {
3987       int M = SVN->getMaskElt(i);
3988       if (!DemandedElts[i])
3989         continue;
3990       // For UNDEF elements, we don't know anything about the common state of
3991       // the shuffle result.
3992       if (M < 0)
3993         return 1;
3994       if ((unsigned)M < NumElts)
3995         DemandedLHS.setBit((unsigned)M % NumElts);
3996       else
3997         DemandedRHS.setBit((unsigned)M % NumElts);
3998     }
3999     Tmp = std::numeric_limits<unsigned>::max();
4000     if (!!DemandedLHS)
4001       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
4002     if (!!DemandedRHS) {
4003       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
4004       Tmp = std::min(Tmp, Tmp2);
4005     }
4006     // If we don't know anything, early out and try computeKnownBits fall-back.
4007     if (Tmp == 1)
4008       break;
4009     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4010     return Tmp;
4011   }
4012 
4013   case ISD::BITCAST: {
4014     SDValue N0 = Op.getOperand(0);
4015     EVT SrcVT = N0.getValueType();
4016     unsigned SrcBits = SrcVT.getScalarSizeInBits();
4017 
4018     // Ignore bitcasts from unsupported types..
4019     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
4020       break;
4021 
4022     // Fast handling of 'identity' bitcasts.
4023     if (VTBits == SrcBits)
4024       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
4025 
4026     bool IsLE = getDataLayout().isLittleEndian();
4027 
4028     // Bitcast 'large element' scalar/vector to 'small element' vector.
4029     if ((SrcBits % VTBits) == 0) {
4030       assert(VT.isVector() && "Expected bitcast to vector");
4031 
4032       unsigned Scale = SrcBits / VTBits;
4033       APInt SrcDemandedElts =
4034           APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
4035 
4036       // Fast case - sign splat can be simply split across the small elements.
4037       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
4038       if (Tmp == SrcBits)
4039         return VTBits;
4040 
4041       // Slow case - determine how far the sign extends into each sub-element.
4042       Tmp2 = VTBits;
4043       for (unsigned i = 0; i != NumElts; ++i)
4044         if (DemandedElts[i]) {
4045           unsigned SubOffset = i % Scale;
4046           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4047           SubOffset = SubOffset * VTBits;
4048           if (Tmp <= SubOffset)
4049             return 1;
4050           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4051         }
4052       return Tmp2;
4053     }
4054     break;
4055   }
4056 
4057   case ISD::FP_TO_SINT_SAT:
4058     // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
4059     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4060     return VTBits - Tmp + 1;
4061   case ISD::SIGN_EXTEND:
4062     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
4063     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
4064   case ISD::SIGN_EXTEND_INREG:
4065     // Max of the input and what this extends.
4066     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4067     Tmp = VTBits-Tmp+1;
4068     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4069     return std::max(Tmp, Tmp2);
4070   case ISD::SIGN_EXTEND_VECTOR_INREG: {
4071     SDValue Src = Op.getOperand(0);
4072     EVT SrcVT = Src.getValueType();
4073     APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements());
4074     Tmp = VTBits - SrcVT.getScalarSizeInBits();
4075     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
4076   }
4077   case ISD::SRA:
4078     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4079     // SRA X, C -> adds C sign bits.
4080     if (const APInt *ShAmt =
4081             getValidMinimumShiftAmountConstant(Op, DemandedElts))
4082       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
4083     return Tmp;
4084   case ISD::SHL:
4085     if (const APInt *ShAmt =
4086             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
4087       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
4088       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4089       if (ShAmt->ult(Tmp))
4090         return Tmp - ShAmt->getZExtValue();
4091     }
4092     break;
4093   case ISD::AND:
4094   case ISD::OR:
4095   case ISD::XOR:    // NOT is handled here.
4096     // Logical binary ops preserve the number of sign bits at the worst.
4097     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4098     if (Tmp != 1) {
4099       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4100       FirstAnswer = std::min(Tmp, Tmp2);
4101       // We computed what we know about the sign bits as our first
4102       // answer. Now proceed to the generic code that uses
4103       // computeKnownBits, and pick whichever answer is better.
4104     }
4105     break;
4106 
4107   case ISD::SELECT:
4108   case ISD::VSELECT:
4109     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4110     if (Tmp == 1) return 1;  // Early out.
4111     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4112     return std::min(Tmp, Tmp2);
4113   case ISD::SELECT_CC:
4114     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4115     if (Tmp == 1) return 1;  // Early out.
4116     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
4117     return std::min(Tmp, Tmp2);
4118 
4119   case ISD::SMIN:
4120   case ISD::SMAX: {
4121     // If we have a clamp pattern, we know that the number of sign bits will be
4122     // the minimum of the clamp min/max range.
4123     bool IsMax = (Opcode == ISD::SMAX);
4124     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4125     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4126       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4127         CstHigh =
4128             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4129     if (CstLow && CstHigh) {
4130       if (!IsMax)
4131         std::swap(CstLow, CstHigh);
4132       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
4133         Tmp = CstLow->getAPIntValue().getNumSignBits();
4134         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4135         return std::min(Tmp, Tmp2);
4136       }
4137     }
4138 
4139     // Fallback - just get the minimum number of sign bits of the operands.
4140     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4141     if (Tmp == 1)
4142       return 1;  // Early out.
4143     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4144     return std::min(Tmp, Tmp2);
4145   }
4146   case ISD::UMIN:
4147   case ISD::UMAX:
4148     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4149     if (Tmp == 1)
4150       return 1;  // Early out.
4151     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4152     return std::min(Tmp, Tmp2);
4153   case ISD::SADDO:
4154   case ISD::UADDO:
4155   case ISD::SADDO_CARRY:
4156   case ISD::ADDCARRY:
4157   case ISD::SSUBO:
4158   case ISD::USUBO:
4159   case ISD::SSUBO_CARRY:
4160   case ISD::SUBCARRY:
4161   case ISD::SMULO:
4162   case ISD::UMULO:
4163     if (Op.getResNo() != 1)
4164       break;
4165     // The boolean result conforms to getBooleanContents.  Fall through.
4166     // If setcc returns 0/-1, all bits are sign bits.
4167     // We know that we have an integer-based boolean since these operations
4168     // are only available for integer.
4169     if (TLI->getBooleanContents(VT.isVector(), false) ==
4170         TargetLowering::ZeroOrNegativeOneBooleanContent)
4171       return VTBits;
4172     break;
4173   case ISD::SETCC:
4174   case ISD::SETCCCARRY:
4175   case ISD::STRICT_FSETCC:
4176   case ISD::STRICT_FSETCCS: {
4177     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
4178     // If setcc returns 0/-1, all bits are sign bits.
4179     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
4180         TargetLowering::ZeroOrNegativeOneBooleanContent)
4181       return VTBits;
4182     break;
4183   }
4184   case ISD::ROTL:
4185   case ISD::ROTR:
4186     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4187 
4188     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
4189     if (Tmp == VTBits)
4190       return VTBits;
4191 
4192     if (ConstantSDNode *C =
4193             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
4194       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
4195 
4196       // Handle rotate right by N like a rotate left by 32-N.
4197       if (Opcode == ISD::ROTR)
4198         RotAmt = (VTBits - RotAmt) % VTBits;
4199 
4200       // If we aren't rotating out all of the known-in sign bits, return the
4201       // number that are left.  This handles rotl(sext(x), 1) for example.
4202       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
4203     }
4204     break;
4205   case ISD::ADD:
4206   case ISD::ADDC:
4207     // Add can have at most one carry bit.  Thus we know that the output
4208     // is, at worst, one more bit than the inputs.
4209     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4210     if (Tmp == 1) return 1; // Early out.
4211 
4212     // Special case decrementing a value (ADD X, -1):
4213     if (ConstantSDNode *CRHS =
4214             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
4215       if (CRHS->isAllOnes()) {
4216         KnownBits Known =
4217             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4218 
4219         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4220         // sign bits set.
4221         if ((Known.Zero | 1).isAllOnes())
4222           return VTBits;
4223 
4224         // If we are subtracting one from a positive number, there is no carry
4225         // out of the result.
4226         if (Known.isNonNegative())
4227           return Tmp;
4228       }
4229 
4230     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4231     if (Tmp2 == 1) return 1; // Early out.
4232     return std::min(Tmp, Tmp2) - 1;
4233   case ISD::SUB:
4234     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4235     if (Tmp2 == 1) return 1; // Early out.
4236 
4237     // Handle NEG.
4238     if (ConstantSDNode *CLHS =
4239             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
4240       if (CLHS->isZero()) {
4241         KnownBits Known =
4242             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4243         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4244         // sign bits set.
4245         if ((Known.Zero | 1).isAllOnes())
4246           return VTBits;
4247 
4248         // If the input is known to be positive (the sign bit is known clear),
4249         // the output of the NEG has the same number of sign bits as the input.
4250         if (Known.isNonNegative())
4251           return Tmp2;
4252 
4253         // Otherwise, we treat this like a SUB.
4254       }
4255 
4256     // Sub can have at most one carry bit.  Thus we know that the output
4257     // is, at worst, one more bit than the inputs.
4258     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4259     if (Tmp == 1) return 1; // Early out.
4260     return std::min(Tmp, Tmp2) - 1;
4261   case ISD::MUL: {
4262     // The output of the Mul can be at most twice the valid bits in the inputs.
4263     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4264     if (SignBitsOp0 == 1)
4265       break;
4266     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4267     if (SignBitsOp1 == 1)
4268       break;
4269     unsigned OutValidBits =
4270         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4271     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4272   }
4273   case ISD::SREM:
4274     // The sign bit is the LHS's sign bit, except when the result of the
4275     // remainder is zero. The magnitude of the result should be less than or
4276     // equal to the magnitude of the LHS. Therefore, the result should have
4277     // at least as many sign bits as the left hand side.
4278     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4279   case ISD::TRUNCATE: {
4280     // Check if the sign bits of source go down as far as the truncated value.
4281     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4282     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4283     if (NumSrcSignBits > (NumSrcBits - VTBits))
4284       return NumSrcSignBits - (NumSrcBits - VTBits);
4285     break;
4286   }
4287   case ISD::EXTRACT_ELEMENT: {
4288     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4289     const int BitWidth = Op.getValueSizeInBits();
4290     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4291 
4292     // Get reverse index (starting from 1), Op1 value indexes elements from
4293     // little end. Sign starts at big end.
4294     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4295 
4296     // If the sign portion ends in our element the subtraction gives correct
4297     // result. Otherwise it gives either negative or > bitwidth result
4298     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
4299   }
4300   case ISD::INSERT_VECTOR_ELT: {
4301     // If we know the element index, split the demand between the
4302     // source vector and the inserted element, otherwise assume we need
4303     // the original demanded vector elements and the value.
4304     SDValue InVec = Op.getOperand(0);
4305     SDValue InVal = Op.getOperand(1);
4306     SDValue EltNo = Op.getOperand(2);
4307     bool DemandedVal = true;
4308     APInt DemandedVecElts = DemandedElts;
4309     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4310     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4311       unsigned EltIdx = CEltNo->getZExtValue();
4312       DemandedVal = !!DemandedElts[EltIdx];
4313       DemandedVecElts.clearBit(EltIdx);
4314     }
4315     Tmp = std::numeric_limits<unsigned>::max();
4316     if (DemandedVal) {
4317       // TODO - handle implicit truncation of inserted elements.
4318       if (InVal.getScalarValueSizeInBits() != VTBits)
4319         break;
4320       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4321       Tmp = std::min(Tmp, Tmp2);
4322     }
4323     if (!!DemandedVecElts) {
4324       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4325       Tmp = std::min(Tmp, Tmp2);
4326     }
4327     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4328     return Tmp;
4329   }
4330   case ISD::EXTRACT_VECTOR_ELT: {
4331     SDValue InVec = Op.getOperand(0);
4332     SDValue EltNo = Op.getOperand(1);
4333     EVT VecVT = InVec.getValueType();
4334     // ComputeNumSignBits not yet implemented for scalable vectors.
4335     if (VecVT.isScalableVector())
4336       break;
4337     const unsigned BitWidth = Op.getValueSizeInBits();
4338     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4339     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4340 
4341     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4342     // anything about sign bits. But if the sizes match we can derive knowledge
4343     // about sign bits from the vector operand.
4344     if (BitWidth != EltBitWidth)
4345       break;
4346 
4347     // If we know the element index, just demand that vector element, else for
4348     // an unknown element index, ignore DemandedElts and demand them all.
4349     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4350     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4351     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4352       DemandedSrcElts =
4353           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4354 
4355     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4356   }
4357   case ISD::EXTRACT_SUBVECTOR: {
4358     // Offset the demanded elts by the subvector index.
4359     SDValue Src = Op.getOperand(0);
4360     // Bail until we can represent demanded elements for scalable vectors.
4361     if (Src.getValueType().isScalableVector())
4362       break;
4363     uint64_t Idx = Op.getConstantOperandVal(1);
4364     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4365     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
4366     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4367   }
4368   case ISD::CONCAT_VECTORS: {
4369     // Determine the minimum number of sign bits across all demanded
4370     // elts of the input vectors. Early out if the result is already 1.
4371     Tmp = std::numeric_limits<unsigned>::max();
4372     EVT SubVectorVT = Op.getOperand(0).getValueType();
4373     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4374     unsigned NumSubVectors = Op.getNumOperands();
4375     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4376       APInt DemandedSub =
4377           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4378       if (!DemandedSub)
4379         continue;
4380       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4381       Tmp = std::min(Tmp, Tmp2);
4382     }
4383     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4384     return Tmp;
4385   }
4386   case ISD::INSERT_SUBVECTOR: {
4387     // Demand any elements from the subvector and the remainder from the src its
4388     // inserted into.
4389     SDValue Src = Op.getOperand(0);
4390     SDValue Sub = Op.getOperand(1);
4391     uint64_t Idx = Op.getConstantOperandVal(2);
4392     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4393     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4394     APInt DemandedSrcElts = DemandedElts;
4395     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
4396 
4397     Tmp = std::numeric_limits<unsigned>::max();
4398     if (!!DemandedSubElts) {
4399       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4400       if (Tmp == 1)
4401         return 1; // early-out
4402     }
4403     if (!!DemandedSrcElts) {
4404       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4405       Tmp = std::min(Tmp, Tmp2);
4406     }
4407     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4408     return Tmp;
4409   }
4410   case ISD::ATOMIC_CMP_SWAP:
4411   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4412   case ISD::ATOMIC_SWAP:
4413   case ISD::ATOMIC_LOAD_ADD:
4414   case ISD::ATOMIC_LOAD_SUB:
4415   case ISD::ATOMIC_LOAD_AND:
4416   case ISD::ATOMIC_LOAD_CLR:
4417   case ISD::ATOMIC_LOAD_OR:
4418   case ISD::ATOMIC_LOAD_XOR:
4419   case ISD::ATOMIC_LOAD_NAND:
4420   case ISD::ATOMIC_LOAD_MIN:
4421   case ISD::ATOMIC_LOAD_MAX:
4422   case ISD::ATOMIC_LOAD_UMIN:
4423   case ISD::ATOMIC_LOAD_UMAX:
4424   case ISD::ATOMIC_LOAD: {
4425     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4426     // If we are looking at the loaded value.
4427     if (Op.getResNo() == 0) {
4428       if (Tmp == VTBits)
4429         return 1; // early-out
4430       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4431         return VTBits - Tmp + 1;
4432       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4433         return VTBits - Tmp;
4434     }
4435     break;
4436   }
4437   }
4438 
4439   // If we are looking at the loaded value of the SDNode.
4440   if (Op.getResNo() == 0) {
4441     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4442     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4443       unsigned ExtType = LD->getExtensionType();
4444       switch (ExtType) {
4445       default: break;
4446       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4447         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4448         return VTBits - Tmp + 1;
4449       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4450         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4451         return VTBits - Tmp;
4452       case ISD::NON_EXTLOAD:
4453         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4454           // We only need to handle vectors - computeKnownBits should handle
4455           // scalar cases.
4456           Type *CstTy = Cst->getType();
4457           if (CstTy->isVectorTy() &&
4458               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
4459               VTBits == CstTy->getScalarSizeInBits()) {
4460             Tmp = VTBits;
4461             for (unsigned i = 0; i != NumElts; ++i) {
4462               if (!DemandedElts[i])
4463                 continue;
4464               if (Constant *Elt = Cst->getAggregateElement(i)) {
4465                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4466                   const APInt &Value = CInt->getValue();
4467                   Tmp = std::min(Tmp, Value.getNumSignBits());
4468                   continue;
4469                 }
4470                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4471                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4472                   Tmp = std::min(Tmp, Value.getNumSignBits());
4473                   continue;
4474                 }
4475               }
4476               // Unknown type. Conservatively assume no bits match sign bit.
4477               return 1;
4478             }
4479             return Tmp;
4480           }
4481         }
4482         break;
4483       }
4484     }
4485   }
4486 
4487   // Allow the target to implement this method for its nodes.
4488   if (Opcode >= ISD::BUILTIN_OP_END ||
4489       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4490       Opcode == ISD::INTRINSIC_W_CHAIN ||
4491       Opcode == ISD::INTRINSIC_VOID) {
4492     unsigned NumBits =
4493         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4494     if (NumBits > 1)
4495       FirstAnswer = std::max(FirstAnswer, NumBits);
4496   }
4497 
4498   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4499   // use this information.
4500   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4501   return std::max(FirstAnswer, Known.countMinSignBits());
4502 }
4503 
4504 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4505                                                  unsigned Depth) const {
4506   unsigned SignBits = ComputeNumSignBits(Op, Depth);
4507   return Op.getScalarValueSizeInBits() - SignBits + 1;
4508 }
4509 
4510 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4511                                                  const APInt &DemandedElts,
4512                                                  unsigned Depth) const {
4513   unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
4514   return Op.getScalarValueSizeInBits() - SignBits + 1;
4515 }
4516 
4517 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4518                                                     unsigned Depth) const {
4519   // Early out for FREEZE.
4520   if (Op.getOpcode() == ISD::FREEZE)
4521     return true;
4522 
4523   // TODO: Assume we don't know anything for now.
4524   EVT VT = Op.getValueType();
4525   if (VT.isScalableVector())
4526     return false;
4527 
4528   APInt DemandedElts = VT.isVector()
4529                            ? APInt::getAllOnes(VT.getVectorNumElements())
4530                            : APInt(1, 1);
4531   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4532 }
4533 
4534 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4535                                                     const APInt &DemandedElts,
4536                                                     bool PoisonOnly,
4537                                                     unsigned Depth) const {
4538   unsigned Opcode = Op.getOpcode();
4539 
4540   // Early out for FREEZE.
4541   if (Opcode == ISD::FREEZE)
4542     return true;
4543 
4544   if (Depth >= MaxRecursionDepth)
4545     return false; // Limit search depth.
4546 
4547   if (isIntOrFPConstant(Op))
4548     return true;
4549 
4550   switch (Opcode) {
4551   case ISD::UNDEF:
4552     return PoisonOnly;
4553 
4554   case ISD::BUILD_VECTOR:
4555     // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4556     // this shouldn't affect the result.
4557     for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
4558       if (!DemandedElts[i])
4559         continue;
4560       if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
4561                                             Depth + 1))
4562         return false;
4563     }
4564     return true;
4565 
4566   // TODO: Search for noundef attributes from library functions.
4567 
4568   // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4569 
4570   default:
4571     // Allow the target to implement this method for its nodes.
4572     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4573         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4574       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4575           Op, DemandedElts, *this, PoisonOnly, Depth);
4576     break;
4577   }
4578 
4579   return false;
4580 }
4581 
4582 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4583   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4584       !isa<ConstantSDNode>(Op.getOperand(1)))
4585     return false;
4586 
4587   if (Op.getOpcode() == ISD::OR &&
4588       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4589     return false;
4590 
4591   return true;
4592 }
4593 
4594 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4595   // If we're told that NaNs won't happen, assume they won't.
4596   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4597     return true;
4598 
4599   if (Depth >= MaxRecursionDepth)
4600     return false; // Limit search depth.
4601 
4602   // TODO: Handle vectors.
4603   // If the value is a constant, we can obviously see if it is a NaN or not.
4604   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4605     return !C->getValueAPF().isNaN() ||
4606            (SNaN && !C->getValueAPF().isSignaling());
4607   }
4608 
4609   unsigned Opcode = Op.getOpcode();
4610   switch (Opcode) {
4611   case ISD::FADD:
4612   case ISD::FSUB:
4613   case ISD::FMUL:
4614   case ISD::FDIV:
4615   case ISD::FREM:
4616   case ISD::FSIN:
4617   case ISD::FCOS: {
4618     if (SNaN)
4619       return true;
4620     // TODO: Need isKnownNeverInfinity
4621     return false;
4622   }
4623   case ISD::FCANONICALIZE:
4624   case ISD::FEXP:
4625   case ISD::FEXP2:
4626   case ISD::FTRUNC:
4627   case ISD::FFLOOR:
4628   case ISD::FCEIL:
4629   case ISD::FROUND:
4630   case ISD::FROUNDEVEN:
4631   case ISD::FRINT:
4632   case ISD::FNEARBYINT: {
4633     if (SNaN)
4634       return true;
4635     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4636   }
4637   case ISD::FABS:
4638   case ISD::FNEG:
4639   case ISD::FCOPYSIGN: {
4640     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4641   }
4642   case ISD::SELECT:
4643     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4644            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4645   case ISD::FP_EXTEND:
4646   case ISD::FP_ROUND: {
4647     if (SNaN)
4648       return true;
4649     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4650   }
4651   case ISD::SINT_TO_FP:
4652   case ISD::UINT_TO_FP:
4653     return true;
4654   case ISD::FMA:
4655   case ISD::FMAD: {
4656     if (SNaN)
4657       return true;
4658     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4659            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4660            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4661   }
4662   case ISD::FSQRT: // Need is known positive
4663   case ISD::FLOG:
4664   case ISD::FLOG2:
4665   case ISD::FLOG10:
4666   case ISD::FPOWI:
4667   case ISD::FPOW: {
4668     if (SNaN)
4669       return true;
4670     // TODO: Refine on operand
4671     return false;
4672   }
4673   case ISD::FMINNUM:
4674   case ISD::FMAXNUM: {
4675     // Only one needs to be known not-nan, since it will be returned if the
4676     // other ends up being one.
4677     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4678            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4679   }
4680   case ISD::FMINNUM_IEEE:
4681   case ISD::FMAXNUM_IEEE: {
4682     if (SNaN)
4683       return true;
4684     // This can return a NaN if either operand is an sNaN, or if both operands
4685     // are NaN.
4686     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4687             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4688            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4689             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4690   }
4691   case ISD::FMINIMUM:
4692   case ISD::FMAXIMUM: {
4693     // TODO: Does this quiet or return the origina NaN as-is?
4694     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4695            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4696   }
4697   case ISD::EXTRACT_VECTOR_ELT: {
4698     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4699   }
4700   default:
4701     if (Opcode >= ISD::BUILTIN_OP_END ||
4702         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4703         Opcode == ISD::INTRINSIC_W_CHAIN ||
4704         Opcode == ISD::INTRINSIC_VOID) {
4705       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4706     }
4707 
4708     return false;
4709   }
4710 }
4711 
4712 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4713   assert(Op.getValueType().isFloatingPoint() &&
4714          "Floating point type expected");
4715 
4716   // If the value is a constant, we can obviously see if it is a zero or not.
4717   // TODO: Add BuildVector support.
4718   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4719     return !C->isZero();
4720   return false;
4721 }
4722 
4723 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4724   assert(!Op.getValueType().isFloatingPoint() &&
4725          "Floating point types unsupported - use isKnownNeverZeroFloat");
4726 
4727   // If the value is a constant, we can obviously see if it is a zero or not.
4728   if (ISD::matchUnaryPredicate(Op,
4729                                [](ConstantSDNode *C) { return !C->isZero(); }))
4730     return true;
4731 
4732   // TODO: Recognize more cases here.
4733   switch (Op.getOpcode()) {
4734   default: break;
4735   case ISD::OR:
4736     if (isKnownNeverZero(Op.getOperand(1)) ||
4737         isKnownNeverZero(Op.getOperand(0)))
4738       return true;
4739     break;
4740   }
4741 
4742   return false;
4743 }
4744 
4745 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4746   // Check the obvious case.
4747   if (A == B) return true;
4748 
4749   // For for negative and positive zero.
4750   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4751     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4752       if (CA->isZero() && CB->isZero()) return true;
4753 
4754   // Otherwise they may not be equal.
4755   return false;
4756 }
4757 
4758 // Only bits set in Mask must be negated, other bits may be arbitrary.
4759 SDValue llvm::getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs) {
4760   if (isBitwiseNot(V, AllowUndefs))
4761     return V.getOperand(0);
4762 
4763   // Handle any_extend (not (truncate X)) pattern, where Mask only sets
4764   // bits in the non-extended part.
4765   ConstantSDNode *MaskC = isConstOrConstSplat(Mask);
4766   if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND)
4767     return SDValue();
4768   SDValue ExtArg = V.getOperand(0);
4769   if (ExtArg.getScalarValueSizeInBits() >=
4770           MaskC->getAPIntValue().getActiveBits() &&
4771       isBitwiseNot(ExtArg, AllowUndefs) &&
4772       ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4773       ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType())
4774     return ExtArg.getOperand(0).getOperand(0);
4775   return SDValue();
4776 }
4777 
4778 static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B) {
4779   // Match masked merge pattern (X & ~M) op (Y & M)
4780   // Including degenerate case (X & ~M) op M
4781   auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask,
4782                                       SDValue Other) {
4783     if (SDValue NotOperand =
4784             getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) {
4785       if (Other == NotOperand)
4786         return true;
4787       if (Other->getOpcode() == ISD::AND)
4788         return NotOperand == Other->getOperand(0) ||
4789                NotOperand == Other->getOperand(1);
4790     }
4791     return false;
4792   };
4793   if (A->getOpcode() == ISD::AND)
4794     return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) ||
4795            MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B);
4796   return false;
4797 }
4798 
4799 // FIXME: unify with llvm::haveNoCommonBitsSet.
4800 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4801   assert(A.getValueType() == B.getValueType() &&
4802          "Values must have the same type");
4803   if (haveNoCommonBitsSetCommutative(A, B) ||
4804       haveNoCommonBitsSetCommutative(B, A))
4805     return true;
4806   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
4807                                         computeKnownBits(B));
4808 }
4809 
4810 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
4811                                SelectionDAG &DAG) {
4812   if (cast<ConstantSDNode>(Step)->isZero())
4813     return DAG.getConstant(0, DL, VT);
4814 
4815   return SDValue();
4816 }
4817 
4818 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4819                                 ArrayRef<SDValue> Ops,
4820                                 SelectionDAG &DAG) {
4821   int NumOps = Ops.size();
4822   assert(NumOps != 0 && "Can't build an empty vector!");
4823   assert(!VT.isScalableVector() &&
4824          "BUILD_VECTOR cannot be used with scalable types");
4825   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4826          "Incorrect element count in BUILD_VECTOR!");
4827 
4828   // BUILD_VECTOR of UNDEFs is UNDEF.
4829   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4830     return DAG.getUNDEF(VT);
4831 
4832   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4833   SDValue IdentitySrc;
4834   bool IsIdentity = true;
4835   for (int i = 0; i != NumOps; ++i) {
4836     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4837         Ops[i].getOperand(0).getValueType() != VT ||
4838         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4839         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4840         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4841       IsIdentity = false;
4842       break;
4843     }
4844     IdentitySrc = Ops[i].getOperand(0);
4845   }
4846   if (IsIdentity)
4847     return IdentitySrc;
4848 
4849   return SDValue();
4850 }
4851 
4852 /// Try to simplify vector concatenation to an input value, undef, or build
4853 /// vector.
4854 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4855                                   ArrayRef<SDValue> Ops,
4856                                   SelectionDAG &DAG) {
4857   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4858   assert(llvm::all_of(Ops,
4859                       [Ops](SDValue Op) {
4860                         return Ops[0].getValueType() == Op.getValueType();
4861                       }) &&
4862          "Concatenation of vectors with inconsistent value types!");
4863   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4864              VT.getVectorElementCount() &&
4865          "Incorrect element count in vector concatenation!");
4866 
4867   if (Ops.size() == 1)
4868     return Ops[0];
4869 
4870   // Concat of UNDEFs is UNDEF.
4871   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4872     return DAG.getUNDEF(VT);
4873 
4874   // Scan the operands and look for extract operations from a single source
4875   // that correspond to insertion at the same location via this concatenation:
4876   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4877   SDValue IdentitySrc;
4878   bool IsIdentity = true;
4879   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4880     SDValue Op = Ops[i];
4881     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4882     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4883         Op.getOperand(0).getValueType() != VT ||
4884         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4885         Op.getConstantOperandVal(1) != IdentityIndex) {
4886       IsIdentity = false;
4887       break;
4888     }
4889     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4890            "Unexpected identity source vector for concat of extracts");
4891     IdentitySrc = Op.getOperand(0);
4892   }
4893   if (IsIdentity) {
4894     assert(IdentitySrc && "Failed to set source vector of extracts");
4895     return IdentitySrc;
4896   }
4897 
4898   // The code below this point is only designed to work for fixed width
4899   // vectors, so we bail out for now.
4900   if (VT.isScalableVector())
4901     return SDValue();
4902 
4903   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4904   // simplified to one big BUILD_VECTOR.
4905   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4906   EVT SVT = VT.getScalarType();
4907   SmallVector<SDValue, 16> Elts;
4908   for (SDValue Op : Ops) {
4909     EVT OpVT = Op.getValueType();
4910     if (Op.isUndef())
4911       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4912     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4913       Elts.append(Op->op_begin(), Op->op_end());
4914     else
4915       return SDValue();
4916   }
4917 
4918   // BUILD_VECTOR requires all inputs to be of the same type, find the
4919   // maximum type and extend them all.
4920   for (SDValue Op : Elts)
4921     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4922 
4923   if (SVT.bitsGT(VT.getScalarType())) {
4924     for (SDValue &Op : Elts) {
4925       if (Op.isUndef())
4926         Op = DAG.getUNDEF(SVT);
4927       else
4928         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4929                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
4930                  : DAG.getSExtOrTrunc(Op, DL, SVT);
4931     }
4932   }
4933 
4934   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4935   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4936   return V;
4937 }
4938 
4939 /// Gets or creates the specified node.
4940 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4941   FoldingSetNodeID ID;
4942   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4943   void *IP = nullptr;
4944   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4945     return SDValue(E, 0);
4946 
4947   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4948                               getVTList(VT));
4949   CSEMap.InsertNode(N, IP);
4950 
4951   InsertNode(N);
4952   SDValue V = SDValue(N, 0);
4953   NewSDValueDbgMsg(V, "Creating new node: ", this);
4954   return V;
4955 }
4956 
4957 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4958                               SDValue Operand) {
4959   SDNodeFlags Flags;
4960   if (Inserter)
4961     Flags = Inserter->getFlags();
4962   return getNode(Opcode, DL, VT, Operand, Flags);
4963 }
4964 
4965 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4966                               SDValue Operand, const SDNodeFlags Flags) {
4967   assert(Operand.getOpcode() != ISD::DELETED_NODE &&
4968          "Operand is DELETED_NODE!");
4969   // Constant fold unary operations with an integer constant operand. Even
4970   // opaque constant will be folded, because the folding of unary operations
4971   // doesn't create new constants with different values. Nevertheless, the
4972   // opaque flag is preserved during folding to prevent future folding with
4973   // other constants.
4974   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4975     const APInt &Val = C->getAPIntValue();
4976     switch (Opcode) {
4977     default: break;
4978     case ISD::SIGN_EXTEND:
4979       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4980                          C->isTargetOpcode(), C->isOpaque());
4981     case ISD::TRUNCATE:
4982       if (C->isOpaque())
4983         break;
4984       LLVM_FALLTHROUGH;
4985     case ISD::ZERO_EXTEND:
4986       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4987                          C->isTargetOpcode(), C->isOpaque());
4988     case ISD::ANY_EXTEND:
4989       // Some targets like RISCV prefer to sign extend some types.
4990       if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT))
4991         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4992                            C->isTargetOpcode(), C->isOpaque());
4993       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4994                          C->isTargetOpcode(), C->isOpaque());
4995     case ISD::UINT_TO_FP:
4996     case ISD::SINT_TO_FP: {
4997       APFloat apf(EVTToAPFloatSemantics(VT),
4998                   APInt::getZero(VT.getSizeInBits()));
4999       (void)apf.convertFromAPInt(Val,
5000                                  Opcode==ISD::SINT_TO_FP,
5001                                  APFloat::rmNearestTiesToEven);
5002       return getConstantFP(apf, DL, VT);
5003     }
5004     case ISD::BITCAST:
5005       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
5006         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
5007       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
5008         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
5009       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
5010         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
5011       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
5012         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
5013       break;
5014     case ISD::ABS:
5015       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
5016                          C->isOpaque());
5017     case ISD::BITREVERSE:
5018       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
5019                          C->isOpaque());
5020     case ISD::BSWAP:
5021       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
5022                          C->isOpaque());
5023     case ISD::CTPOP:
5024       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
5025                          C->isOpaque());
5026     case ISD::CTLZ:
5027     case ISD::CTLZ_ZERO_UNDEF:
5028       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
5029                          C->isOpaque());
5030     case ISD::CTTZ:
5031     case ISD::CTTZ_ZERO_UNDEF:
5032       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
5033                          C->isOpaque());
5034     case ISD::FP16_TO_FP:
5035     case ISD::BF16_TO_FP: {
5036       bool Ignored;
5037       APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf()
5038                                             : APFloat::BFloat(),
5039                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
5040 
5041       // This can return overflow, underflow, or inexact; we don't care.
5042       // FIXME need to be more flexible about rounding mode.
5043       (void)FPV.convert(EVTToAPFloatSemantics(VT),
5044                         APFloat::rmNearestTiesToEven, &Ignored);
5045       return getConstantFP(FPV, DL, VT);
5046     }
5047     case ISD::STEP_VECTOR: {
5048       if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this))
5049         return V;
5050       break;
5051     }
5052     }
5053   }
5054 
5055   // Constant fold unary operations with a floating point constant operand.
5056   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
5057     APFloat V = C->getValueAPF();    // make copy
5058     switch (Opcode) {
5059     case ISD::FNEG:
5060       V.changeSign();
5061       return getConstantFP(V, DL, VT);
5062     case ISD::FABS:
5063       V.clearSign();
5064       return getConstantFP(V, DL, VT);
5065     case ISD::FCEIL: {
5066       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
5067       if (fs == APFloat::opOK || fs == APFloat::opInexact)
5068         return getConstantFP(V, DL, VT);
5069       break;
5070     }
5071     case ISD::FTRUNC: {
5072       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
5073       if (fs == APFloat::opOK || fs == APFloat::opInexact)
5074         return getConstantFP(V, DL, VT);
5075       break;
5076     }
5077     case ISD::FFLOOR: {
5078       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
5079       if (fs == APFloat::opOK || fs == APFloat::opInexact)
5080         return getConstantFP(V, DL, VT);
5081       break;
5082     }
5083     case ISD::FP_EXTEND: {
5084       bool ignored;
5085       // This can return overflow, underflow, or inexact; we don't care.
5086       // FIXME need to be more flexible about rounding mode.
5087       (void)V.convert(EVTToAPFloatSemantics(VT),
5088                       APFloat::rmNearestTiesToEven, &ignored);
5089       return getConstantFP(V, DL, VT);
5090     }
5091     case ISD::FP_TO_SINT:
5092     case ISD::FP_TO_UINT: {
5093       bool ignored;
5094       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
5095       // FIXME need to be more flexible about rounding mode.
5096       APFloat::opStatus s =
5097           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
5098       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
5099         break;
5100       return getConstant(IntVal, DL, VT);
5101     }
5102     case ISD::BITCAST:
5103       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
5104         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
5105       if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
5106         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
5107       if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
5108         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
5109       if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
5110         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
5111       break;
5112     case ISD::FP_TO_FP16:
5113     case ISD::FP_TO_BF16: {
5114       bool Ignored;
5115       // This can return overflow, underflow, or inexact; we don't care.
5116       // FIXME need to be more flexible about rounding mode.
5117       (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf()
5118                                                 : APFloat::BFloat(),
5119                       APFloat::rmNearestTiesToEven, &Ignored);
5120       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
5121     }
5122     }
5123   }
5124 
5125   // Constant fold unary operations with a vector integer or float operand.
5126   switch (Opcode) {
5127   default:
5128     // FIXME: Entirely reasonable to perform folding of other unary
5129     // operations here as the need arises.
5130     break;
5131   case ISD::FNEG:
5132   case ISD::FABS:
5133   case ISD::FCEIL:
5134   case ISD::FTRUNC:
5135   case ISD::FFLOOR:
5136   case ISD::FP_EXTEND:
5137   case ISD::FP_TO_SINT:
5138   case ISD::FP_TO_UINT:
5139   case ISD::TRUNCATE:
5140   case ISD::ANY_EXTEND:
5141   case ISD::ZERO_EXTEND:
5142   case ISD::SIGN_EXTEND:
5143   case ISD::UINT_TO_FP:
5144   case ISD::SINT_TO_FP:
5145   case ISD::ABS:
5146   case ISD::BITREVERSE:
5147   case ISD::BSWAP:
5148   case ISD::CTLZ:
5149   case ISD::CTLZ_ZERO_UNDEF:
5150   case ISD::CTTZ:
5151   case ISD::CTTZ_ZERO_UNDEF:
5152   case ISD::CTPOP: {
5153     SDValue Ops = {Operand};
5154     if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
5155       return Fold;
5156   }
5157   }
5158 
5159   unsigned OpOpcode = Operand.getNode()->getOpcode();
5160   switch (Opcode) {
5161   case ISD::STEP_VECTOR:
5162     assert(VT.isScalableVector() &&
5163            "STEP_VECTOR can only be used with scalable types");
5164     assert(OpOpcode == ISD::TargetConstant &&
5165            VT.getVectorElementType() == Operand.getValueType() &&
5166            "Unexpected step operand");
5167     break;
5168   case ISD::FREEZE:
5169     assert(VT == Operand.getValueType() && "Unexpected VT!");
5170     if (isGuaranteedNotToBeUndefOrPoison(Operand))
5171       return Operand;
5172     break;
5173   case ISD::TokenFactor:
5174   case ISD::MERGE_VALUES:
5175   case ISD::CONCAT_VECTORS:
5176     return Operand;         // Factor, merge or concat of one node?  No need.
5177   case ISD::BUILD_VECTOR: {
5178     // Attempt to simplify BUILD_VECTOR.
5179     SDValue Ops[] = {Operand};
5180     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5181       return V;
5182     break;
5183   }
5184   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
5185   case ISD::FP_EXTEND:
5186     assert(VT.isFloatingPoint() &&
5187            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
5188     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
5189     assert((!VT.isVector() ||
5190             VT.getVectorElementCount() ==
5191             Operand.getValueType().getVectorElementCount()) &&
5192            "Vector element count mismatch!");
5193     assert(Operand.getValueType().bitsLT(VT) &&
5194            "Invalid fpext node, dst < src!");
5195     if (Operand.isUndef())
5196       return getUNDEF(VT);
5197     break;
5198   case ISD::FP_TO_SINT:
5199   case ISD::FP_TO_UINT:
5200     if (Operand.isUndef())
5201       return getUNDEF(VT);
5202     break;
5203   case ISD::SINT_TO_FP:
5204   case ISD::UINT_TO_FP:
5205     // [us]itofp(undef) = 0, because the result value is bounded.
5206     if (Operand.isUndef())
5207       return getConstantFP(0.0, DL, VT);
5208     break;
5209   case ISD::SIGN_EXTEND:
5210     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5211            "Invalid SIGN_EXTEND!");
5212     assert(VT.isVector() == Operand.getValueType().isVector() &&
5213            "SIGN_EXTEND result type type should be vector iff the operand "
5214            "type is vector!");
5215     if (Operand.getValueType() == VT) return Operand;   // noop extension
5216     assert((!VT.isVector() ||
5217             VT.getVectorElementCount() ==
5218                 Operand.getValueType().getVectorElementCount()) &&
5219            "Vector element count mismatch!");
5220     assert(Operand.getValueType().bitsLT(VT) &&
5221            "Invalid sext node, dst < src!");
5222     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
5223       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5224     if (OpOpcode == ISD::UNDEF)
5225       // sext(undef) = 0, because the top bits will all be the same.
5226       return getConstant(0, DL, VT);
5227     break;
5228   case ISD::ZERO_EXTEND:
5229     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5230            "Invalid ZERO_EXTEND!");
5231     assert(VT.isVector() == Operand.getValueType().isVector() &&
5232            "ZERO_EXTEND result type type should be vector iff the operand "
5233            "type is vector!");
5234     if (Operand.getValueType() == VT) return Operand;   // noop extension
5235     assert((!VT.isVector() ||
5236             VT.getVectorElementCount() ==
5237                 Operand.getValueType().getVectorElementCount()) &&
5238            "Vector element count mismatch!");
5239     assert(Operand.getValueType().bitsLT(VT) &&
5240            "Invalid zext node, dst < src!");
5241     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
5242       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
5243     if (OpOpcode == ISD::UNDEF)
5244       // zext(undef) = 0, because the top bits will be zero.
5245       return getConstant(0, DL, VT);
5246     break;
5247   case ISD::ANY_EXTEND:
5248     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5249            "Invalid ANY_EXTEND!");
5250     assert(VT.isVector() == Operand.getValueType().isVector() &&
5251            "ANY_EXTEND result type type should be vector iff the operand "
5252            "type is vector!");
5253     if (Operand.getValueType() == VT) return Operand;   // noop extension
5254     assert((!VT.isVector() ||
5255             VT.getVectorElementCount() ==
5256                 Operand.getValueType().getVectorElementCount()) &&
5257            "Vector element count mismatch!");
5258     assert(Operand.getValueType().bitsLT(VT) &&
5259            "Invalid anyext node, dst < src!");
5260 
5261     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5262         OpOpcode == ISD::ANY_EXTEND)
5263       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
5264       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5265     if (OpOpcode == ISD::UNDEF)
5266       return getUNDEF(VT);
5267 
5268     // (ext (trunc x)) -> x
5269     if (OpOpcode == ISD::TRUNCATE) {
5270       SDValue OpOp = Operand.getOperand(0);
5271       if (OpOp.getValueType() == VT) {
5272         transferDbgValues(Operand, OpOp);
5273         return OpOp;
5274       }
5275     }
5276     break;
5277   case ISD::TRUNCATE:
5278     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
5279            "Invalid TRUNCATE!");
5280     assert(VT.isVector() == Operand.getValueType().isVector() &&
5281            "TRUNCATE result type type should be vector iff the operand "
5282            "type is vector!");
5283     if (Operand.getValueType() == VT) return Operand;   // noop truncate
5284     assert((!VT.isVector() ||
5285             VT.getVectorElementCount() ==
5286                 Operand.getValueType().getVectorElementCount()) &&
5287            "Vector element count mismatch!");
5288     assert(Operand.getValueType().bitsGT(VT) &&
5289            "Invalid truncate node, src < dst!");
5290     if (OpOpcode == ISD::TRUNCATE)
5291       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5292     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5293         OpOpcode == ISD::ANY_EXTEND) {
5294       // If the source is smaller than the dest, we still need an extend.
5295       if (Operand.getOperand(0).getValueType().getScalarType()
5296             .bitsLT(VT.getScalarType()))
5297         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
5298       if (Operand.getOperand(0).getValueType().bitsGT(VT))
5299         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
5300       return Operand.getOperand(0);
5301     }
5302     if (OpOpcode == ISD::UNDEF)
5303       return getUNDEF(VT);
5304     if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
5305       return getVScale(DL, VT, Operand.getConstantOperandAPInt(0));
5306     break;
5307   case ISD::ANY_EXTEND_VECTOR_INREG:
5308   case ISD::ZERO_EXTEND_VECTOR_INREG:
5309   case ISD::SIGN_EXTEND_VECTOR_INREG:
5310     assert(VT.isVector() && "This DAG node is restricted to vector types.");
5311     assert(Operand.getValueType().bitsLE(VT) &&
5312            "The input must be the same size or smaller than the result.");
5313     assert(VT.getVectorMinNumElements() <
5314                Operand.getValueType().getVectorMinNumElements() &&
5315            "The destination vector type must have fewer lanes than the input.");
5316     break;
5317   case ISD::ABS:
5318     assert(VT.isInteger() && VT == Operand.getValueType() &&
5319            "Invalid ABS!");
5320     if (OpOpcode == ISD::UNDEF)
5321       return getConstant(0, DL, VT);
5322     break;
5323   case ISD::BSWAP:
5324     assert(VT.isInteger() && VT == Operand.getValueType() &&
5325            "Invalid BSWAP!");
5326     assert((VT.getScalarSizeInBits() % 16 == 0) &&
5327            "BSWAP types must be a multiple of 16 bits!");
5328     if (OpOpcode == ISD::UNDEF)
5329       return getUNDEF(VT);
5330     // bswap(bswap(X)) -> X.
5331     if (OpOpcode == ISD::BSWAP)
5332       return Operand.getOperand(0);
5333     break;
5334   case ISD::BITREVERSE:
5335     assert(VT.isInteger() && VT == Operand.getValueType() &&
5336            "Invalid BITREVERSE!");
5337     if (OpOpcode == ISD::UNDEF)
5338       return getUNDEF(VT);
5339     break;
5340   case ISD::BITCAST:
5341     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
5342            "Cannot BITCAST between types of different sizes!");
5343     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
5344     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
5345       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
5346     if (OpOpcode == ISD::UNDEF)
5347       return getUNDEF(VT);
5348     break;
5349   case ISD::SCALAR_TO_VECTOR:
5350     assert(VT.isVector() && !Operand.getValueType().isVector() &&
5351            (VT.getVectorElementType() == Operand.getValueType() ||
5352             (VT.getVectorElementType().isInteger() &&
5353              Operand.getValueType().isInteger() &&
5354              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
5355            "Illegal SCALAR_TO_VECTOR node!");
5356     if (OpOpcode == ISD::UNDEF)
5357       return getUNDEF(VT);
5358     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5359     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5360         isa<ConstantSDNode>(Operand.getOperand(1)) &&
5361         Operand.getConstantOperandVal(1) == 0 &&
5362         Operand.getOperand(0).getValueType() == VT)
5363       return Operand.getOperand(0);
5364     break;
5365   case ISD::FNEG:
5366     // Negation of an unknown bag of bits is still completely undefined.
5367     if (OpOpcode == ISD::UNDEF)
5368       return getUNDEF(VT);
5369 
5370     if (OpOpcode == ISD::FNEG)  // --X -> X
5371       return Operand.getOperand(0);
5372     break;
5373   case ISD::FABS:
5374     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
5375       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
5376     break;
5377   case ISD::VSCALE:
5378     assert(VT == Operand.getValueType() && "Unexpected VT!");
5379     break;
5380   case ISD::CTPOP:
5381     if (Operand.getValueType().getScalarType() == MVT::i1)
5382       return Operand;
5383     break;
5384   case ISD::CTLZ:
5385   case ISD::CTTZ:
5386     if (Operand.getValueType().getScalarType() == MVT::i1)
5387       return getNOT(DL, Operand, Operand.getValueType());
5388     break;
5389   case ISD::VECREDUCE_ADD:
5390     if (Operand.getValueType().getScalarType() == MVT::i1)
5391       return getNode(ISD::VECREDUCE_XOR, DL, VT, Operand);
5392     break;
5393   case ISD::VECREDUCE_SMIN:
5394   case ISD::VECREDUCE_UMAX:
5395     if (Operand.getValueType().getScalarType() == MVT::i1)
5396       return getNode(ISD::VECREDUCE_OR, DL, VT, Operand);
5397     break;
5398   case ISD::VECREDUCE_SMAX:
5399   case ISD::VECREDUCE_UMIN:
5400     if (Operand.getValueType().getScalarType() == MVT::i1)
5401       return getNode(ISD::VECREDUCE_AND, DL, VT, Operand);
5402     break;
5403   }
5404 
5405   SDNode *N;
5406   SDVTList VTs = getVTList(VT);
5407   SDValue Ops[] = {Operand};
5408   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
5409     FoldingSetNodeID ID;
5410     AddNodeIDNode(ID, Opcode, VTs, Ops);
5411     void *IP = nullptr;
5412     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5413       E->intersectFlagsWith(Flags);
5414       return SDValue(E, 0);
5415     }
5416 
5417     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5418     N->setFlags(Flags);
5419     createOperands(N, Ops);
5420     CSEMap.InsertNode(N, IP);
5421   } else {
5422     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5423     createOperands(N, Ops);
5424   }
5425 
5426   InsertNode(N);
5427   SDValue V = SDValue(N, 0);
5428   NewSDValueDbgMsg(V, "Creating new node: ", this);
5429   return V;
5430 }
5431 
5432 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5433                                        const APInt &C2) {
5434   switch (Opcode) {
5435   case ISD::ADD:  return C1 + C2;
5436   case ISD::SUB:  return C1 - C2;
5437   case ISD::MUL:  return C1 * C2;
5438   case ISD::AND:  return C1 & C2;
5439   case ISD::OR:   return C1 | C2;
5440   case ISD::XOR:  return C1 ^ C2;
5441   case ISD::SHL:  return C1 << C2;
5442   case ISD::SRL:  return C1.lshr(C2);
5443   case ISD::SRA:  return C1.ashr(C2);
5444   case ISD::ROTL: return C1.rotl(C2);
5445   case ISD::ROTR: return C1.rotr(C2);
5446   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5447   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5448   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5449   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5450   case ISD::SADDSAT: return C1.sadd_sat(C2);
5451   case ISD::UADDSAT: return C1.uadd_sat(C2);
5452   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5453   case ISD::USUBSAT: return C1.usub_sat(C2);
5454   case ISD::SSHLSAT: return C1.sshl_sat(C2);
5455   case ISD::USHLSAT: return C1.ushl_sat(C2);
5456   case ISD::UDIV:
5457     if (!C2.getBoolValue())
5458       break;
5459     return C1.udiv(C2);
5460   case ISD::UREM:
5461     if (!C2.getBoolValue())
5462       break;
5463     return C1.urem(C2);
5464   case ISD::SDIV:
5465     if (!C2.getBoolValue())
5466       break;
5467     return C1.sdiv(C2);
5468   case ISD::SREM:
5469     if (!C2.getBoolValue())
5470       break;
5471     return C1.srem(C2);
5472   case ISD::MULHS: {
5473     unsigned FullWidth = C1.getBitWidth() * 2;
5474     APInt C1Ext = C1.sext(FullWidth);
5475     APInt C2Ext = C2.sext(FullWidth);
5476     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5477   }
5478   case ISD::MULHU: {
5479     unsigned FullWidth = C1.getBitWidth() * 2;
5480     APInt C1Ext = C1.zext(FullWidth);
5481     APInt C2Ext = C2.zext(FullWidth);
5482     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5483   }
5484   case ISD::AVGFLOORS: {
5485     unsigned FullWidth = C1.getBitWidth() + 1;
5486     APInt C1Ext = C1.sext(FullWidth);
5487     APInt C2Ext = C2.sext(FullWidth);
5488     return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
5489   }
5490   case ISD::AVGFLOORU: {
5491     unsigned FullWidth = C1.getBitWidth() + 1;
5492     APInt C1Ext = C1.zext(FullWidth);
5493     APInt C2Ext = C2.zext(FullWidth);
5494     return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
5495   }
5496   case ISD::AVGCEILS: {
5497     unsigned FullWidth = C1.getBitWidth() + 1;
5498     APInt C1Ext = C1.sext(FullWidth);
5499     APInt C2Ext = C2.sext(FullWidth);
5500     return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
5501   }
5502   case ISD::AVGCEILU: {
5503     unsigned FullWidth = C1.getBitWidth() + 1;
5504     APInt C1Ext = C1.zext(FullWidth);
5505     APInt C2Ext = C2.zext(FullWidth);
5506     return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
5507   }
5508   }
5509   return llvm::None;
5510 }
5511 
5512 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
5513                                        const GlobalAddressSDNode *GA,
5514                                        const SDNode *N2) {
5515   if (GA->getOpcode() != ISD::GlobalAddress)
5516     return SDValue();
5517   if (!TLI->isOffsetFoldingLegal(GA))
5518     return SDValue();
5519   auto *C2 = dyn_cast<ConstantSDNode>(N2);
5520   if (!C2)
5521     return SDValue();
5522   int64_t Offset = C2->getSExtValue();
5523   switch (Opcode) {
5524   case ISD::ADD: break;
5525   case ISD::SUB: Offset = -uint64_t(Offset); break;
5526   default: return SDValue();
5527   }
5528   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
5529                           GA->getOffset() + uint64_t(Offset));
5530 }
5531 
5532 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
5533   switch (Opcode) {
5534   case ISD::SDIV:
5535   case ISD::UDIV:
5536   case ISD::SREM:
5537   case ISD::UREM: {
5538     // If a divisor is zero/undef or any element of a divisor vector is
5539     // zero/undef, the whole op is undef.
5540     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
5541     SDValue Divisor = Ops[1];
5542     if (Divisor.isUndef() || isNullConstant(Divisor))
5543       return true;
5544 
5545     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
5546            llvm::any_of(Divisor->op_values(),
5547                         [](SDValue V) { return V.isUndef() ||
5548                                         isNullConstant(V); });
5549     // TODO: Handle signed overflow.
5550   }
5551   // TODO: Handle oversized shifts.
5552   default:
5553     return false;
5554   }
5555 }
5556 
5557 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
5558                                              EVT VT, ArrayRef<SDValue> Ops) {
5559   // If the opcode is a target-specific ISD node, there's nothing we can
5560   // do here and the operand rules may not line up with the below, so
5561   // bail early.
5562   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
5563   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
5564   // foldCONCAT_VECTORS in getNode before this is called.
5565   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
5566     return SDValue();
5567 
5568   unsigned NumOps = Ops.size();
5569   if (NumOps == 0)
5570     return SDValue();
5571 
5572   if (isUndef(Opcode, Ops))
5573     return getUNDEF(VT);
5574 
5575   // Handle binops special cases.
5576   if (NumOps == 2) {
5577     if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1]))
5578       return CFP;
5579 
5580     if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
5581       if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
5582         if (C1->isOpaque() || C2->isOpaque())
5583           return SDValue();
5584 
5585         Optional<APInt> FoldAttempt =
5586             FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5587         if (!FoldAttempt)
5588           return SDValue();
5589 
5590         SDValue Folded = getConstant(*FoldAttempt, DL, VT);
5591         assert((!Folded || !VT.isVector()) &&
5592                "Can't fold vectors ops with scalar operands");
5593         return Folded;
5594       }
5595     }
5596 
5597     // fold (add Sym, c) -> Sym+c
5598     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0]))
5599       return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
5600     if (TLI->isCommutativeBinOp(Opcode))
5601       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1]))
5602         return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
5603   }
5604 
5605   // This is for vector folding only from here on.
5606   if (!VT.isVector())
5607     return SDValue();
5608 
5609   ElementCount NumElts = VT.getVectorElementCount();
5610 
5611   // See if we can fold through bitcasted integer ops.
5612   // TODO: Can we handle undef elements?
5613   if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
5614       Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
5615       Ops[0].getOpcode() == ISD::BITCAST &&
5616       Ops[1].getOpcode() == ISD::BITCAST) {
5617     SDValue N1 = peekThroughBitcasts(Ops[0]);
5618     SDValue N2 = peekThroughBitcasts(Ops[1]);
5619     auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
5620     auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
5621     EVT BVVT = N1.getValueType();
5622     if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) {
5623       bool IsLE = getDataLayout().isLittleEndian();
5624       unsigned EltBits = VT.getScalarSizeInBits();
5625       SmallVector<APInt> RawBits1, RawBits2;
5626       BitVector UndefElts1, UndefElts2;
5627       if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
5628           BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) &&
5629           UndefElts1.none() && UndefElts2.none()) {
5630         SmallVector<APInt> RawBits;
5631         for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
5632           Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]);
5633           if (!Fold)
5634             break;
5635           RawBits.push_back(*Fold);
5636         }
5637         if (RawBits.size() == NumElts.getFixedValue()) {
5638           // We have constant folded, but we need to cast this again back to
5639           // the original (possibly legalized) type.
5640           SmallVector<APInt> DstBits;
5641           BitVector DstUndefs;
5642           BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(),
5643                                            DstBits, RawBits, DstUndefs,
5644                                            BitVector(RawBits.size(), false));
5645           EVT BVEltVT = BV1->getOperand(0).getValueType();
5646           unsigned BVEltBits = BVEltVT.getSizeInBits();
5647           SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
5648           for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
5649             if (DstUndefs[I])
5650               continue;
5651             Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT);
5652           }
5653           return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
5654         }
5655       }
5656     }
5657   }
5658 
5659   // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
5660   //      (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
5661   if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
5662       Ops[0].getOpcode() == ISD::STEP_VECTOR) {
5663     APInt RHSVal;
5664     if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
5665       APInt NewStep = Opcode == ISD::MUL
5666                           ? Ops[0].getConstantOperandAPInt(0) * RHSVal
5667                           : Ops[0].getConstantOperandAPInt(0) << RHSVal;
5668       return getStepVector(DL, VT, NewStep);
5669     }
5670   }
5671 
5672   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
5673     return !Op.getValueType().isVector() ||
5674            Op.getValueType().getVectorElementCount() == NumElts;
5675   };
5676 
5677   auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
5678     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
5679            Op.getOpcode() == ISD::BUILD_VECTOR ||
5680            Op.getOpcode() == ISD::SPLAT_VECTOR;
5681   };
5682 
5683   // All operands must be vector types with the same number of elements as
5684   // the result type and must be either UNDEF or a build/splat vector
5685   // or UNDEF scalars.
5686   if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
5687       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5688     return SDValue();
5689 
5690   // If we are comparing vectors, then the result needs to be a i1 boolean that
5691   // is then extended back to the legal result type depending on how booleans
5692   // are represented.
5693   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5694   ISD::NodeType ExtendCode =
5695       (Opcode == ISD::SETCC && SVT != VT.getScalarType())
5696           ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT))
5697           : ISD::SIGN_EXTEND;
5698 
5699   // Find legal integer scalar type for constant promotion and
5700   // ensure that its scalar size is at least as large as source.
5701   EVT LegalSVT = VT.getScalarType();
5702   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5703     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5704     if (LegalSVT.bitsLT(VT.getScalarType()))
5705       return SDValue();
5706   }
5707 
5708   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
5709   // only have one operand to check. For fixed-length vector types we may have
5710   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
5711   unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
5712 
5713   // Constant fold each scalar lane separately.
5714   SmallVector<SDValue, 4> ScalarResults;
5715   for (unsigned I = 0; I != NumVectorElts; I++) {
5716     SmallVector<SDValue, 4> ScalarOps;
5717     for (SDValue Op : Ops) {
5718       EVT InSVT = Op.getValueType().getScalarType();
5719       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
5720           Op.getOpcode() != ISD::SPLAT_VECTOR) {
5721         if (Op.isUndef())
5722           ScalarOps.push_back(getUNDEF(InSVT));
5723         else
5724           ScalarOps.push_back(Op);
5725         continue;
5726       }
5727 
5728       SDValue ScalarOp =
5729           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
5730       EVT ScalarVT = ScalarOp.getValueType();
5731 
5732       // Build vector (integer) scalar operands may need implicit
5733       // truncation - do this before constant folding.
5734       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) {
5735         // Don't create illegally-typed nodes unless they're constants or undef
5736         // - if we fail to constant fold we can't guarantee the (dead) nodes
5737         // we're creating will be cleaned up before being visited for
5738         // legalization.
5739         if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() &&
5740             !isa<ConstantSDNode>(ScalarOp) &&
5741             TLI->getTypeAction(*getContext(), InSVT) !=
5742                 TargetLowering::TypeLegal)
5743           return SDValue();
5744         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5745       }
5746 
5747       ScalarOps.push_back(ScalarOp);
5748     }
5749 
5750     // Constant fold the scalar operands.
5751     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps);
5752 
5753     // Legalize the (integer) scalar constant if necessary.
5754     if (LegalSVT != SVT)
5755       ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult);
5756 
5757     // Scalar folding only succeeded if the result is a constant or UNDEF.
5758     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5759         ScalarResult.getOpcode() != ISD::ConstantFP)
5760       return SDValue();
5761     ScalarResults.push_back(ScalarResult);
5762   }
5763 
5764   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
5765                                    : getBuildVector(VT, DL, ScalarResults);
5766   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5767   return V;
5768 }
5769 
5770 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5771                                          EVT VT, SDValue N1, SDValue N2) {
5772   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5773   //       should. That will require dealing with a potentially non-default
5774   //       rounding mode, checking the "opStatus" return value from the APFloat
5775   //       math calculations, and possibly other variations.
5776   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
5777   ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
5778   if (N1CFP && N2CFP) {
5779     APFloat C1 = N1CFP->getValueAPF(); // make copy
5780     const APFloat &C2 = N2CFP->getValueAPF();
5781     switch (Opcode) {
5782     case ISD::FADD:
5783       C1.add(C2, APFloat::rmNearestTiesToEven);
5784       return getConstantFP(C1, DL, VT);
5785     case ISD::FSUB:
5786       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5787       return getConstantFP(C1, DL, VT);
5788     case ISD::FMUL:
5789       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5790       return getConstantFP(C1, DL, VT);
5791     case ISD::FDIV:
5792       C1.divide(C2, APFloat::rmNearestTiesToEven);
5793       return getConstantFP(C1, DL, VT);
5794     case ISD::FREM:
5795       C1.mod(C2);
5796       return getConstantFP(C1, DL, VT);
5797     case ISD::FCOPYSIGN:
5798       C1.copySign(C2);
5799       return getConstantFP(C1, DL, VT);
5800     case ISD::FMINNUM:
5801       return getConstantFP(minnum(C1, C2), DL, VT);
5802     case ISD::FMAXNUM:
5803       return getConstantFP(maxnum(C1, C2), DL, VT);
5804     case ISD::FMINIMUM:
5805       return getConstantFP(minimum(C1, C2), DL, VT);
5806     case ISD::FMAXIMUM:
5807       return getConstantFP(maximum(C1, C2), DL, VT);
5808     default: break;
5809     }
5810   }
5811   if (N1CFP && Opcode == ISD::FP_ROUND) {
5812     APFloat C1 = N1CFP->getValueAPF();    // make copy
5813     bool Unused;
5814     // This can return overflow, underflow, or inexact; we don't care.
5815     // FIXME need to be more flexible about rounding mode.
5816     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5817                       &Unused);
5818     return getConstantFP(C1, DL, VT);
5819   }
5820 
5821   switch (Opcode) {
5822   case ISD::FSUB:
5823     // -0.0 - undef --> undef (consistent with "fneg undef")
5824     if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
5825       if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
5826         return getUNDEF(VT);
5827     LLVM_FALLTHROUGH;
5828 
5829   case ISD::FADD:
5830   case ISD::FMUL:
5831   case ISD::FDIV:
5832   case ISD::FREM:
5833     // If both operands are undef, the result is undef. If 1 operand is undef,
5834     // the result is NaN. This should match the behavior of the IR optimizer.
5835     if (N1.isUndef() && N2.isUndef())
5836       return getUNDEF(VT);
5837     if (N1.isUndef() || N2.isUndef())
5838       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5839   }
5840   return SDValue();
5841 }
5842 
5843 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5844   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5845 
5846   // There's no need to assert on a byte-aligned pointer. All pointers are at
5847   // least byte aligned.
5848   if (A == Align(1))
5849     return Val;
5850 
5851   FoldingSetNodeID ID;
5852   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5853   ID.AddInteger(A.value());
5854 
5855   void *IP = nullptr;
5856   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5857     return SDValue(E, 0);
5858 
5859   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5860                                          Val.getValueType(), A);
5861   createOperands(N, {Val});
5862 
5863   CSEMap.InsertNode(N, IP);
5864   InsertNode(N);
5865 
5866   SDValue V(N, 0);
5867   NewSDValueDbgMsg(V, "Creating new node: ", this);
5868   return V;
5869 }
5870 
5871 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5872                               SDValue N1, SDValue N2) {
5873   SDNodeFlags Flags;
5874   if (Inserter)
5875     Flags = Inserter->getFlags();
5876   return getNode(Opcode, DL, VT, N1, N2, Flags);
5877 }
5878 
5879 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1,
5880                                                 SDValue &N2) const {
5881   if (!TLI->isCommutativeBinOp(Opcode))
5882     return;
5883 
5884   // Canonicalize:
5885   //   binop(const, nonconst) -> binop(nonconst, const)
5886   bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1);
5887   bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2);
5888   bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1);
5889   bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2);
5890   if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP))
5891     std::swap(N1, N2);
5892 
5893   // Canonicalize:
5894   //  binop(splat(x), step_vector) -> binop(step_vector, splat(x))
5895   else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
5896            N2.getOpcode() == ISD::STEP_VECTOR)
5897     std::swap(N1, N2);
5898 }
5899 
5900 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5901                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5902   assert(N1.getOpcode() != ISD::DELETED_NODE &&
5903          N2.getOpcode() != ISD::DELETED_NODE &&
5904          "Operand is DELETED_NODE!");
5905 
5906   canonicalizeCommutativeBinop(Opcode, N1, N2);
5907 
5908   auto *N1C = dyn_cast<ConstantSDNode>(N1);
5909   auto *N2C = dyn_cast<ConstantSDNode>(N2);
5910 
5911   // Don't allow undefs in vector splats - we might be returning N2 when folding
5912   // to zero etc.
5913   ConstantSDNode *N2CV =
5914       isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
5915 
5916   switch (Opcode) {
5917   default: break;
5918   case ISD::TokenFactor:
5919     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5920            N2.getValueType() == MVT::Other && "Invalid token factor!");
5921     // Fold trivial token factors.
5922     if (N1.getOpcode() == ISD::EntryToken) return N2;
5923     if (N2.getOpcode() == ISD::EntryToken) return N1;
5924     if (N1 == N2) return N1;
5925     break;
5926   case ISD::BUILD_VECTOR: {
5927     // Attempt to simplify BUILD_VECTOR.
5928     SDValue Ops[] = {N1, N2};
5929     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5930       return V;
5931     break;
5932   }
5933   case ISD::CONCAT_VECTORS: {
5934     SDValue Ops[] = {N1, N2};
5935     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5936       return V;
5937     break;
5938   }
5939   case ISD::AND:
5940     assert(VT.isInteger() && "This operator does not apply to FP types!");
5941     assert(N1.getValueType() == N2.getValueType() &&
5942            N1.getValueType() == VT && "Binary operator types must match!");
5943     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5944     // worth handling here.
5945     if (N2CV && N2CV->isZero())
5946       return N2;
5947     if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
5948       return N1;
5949     break;
5950   case ISD::OR:
5951   case ISD::XOR:
5952   case ISD::ADD:
5953   case ISD::SUB:
5954     assert(VT.isInteger() && "This operator does not apply to FP types!");
5955     assert(N1.getValueType() == N2.getValueType() &&
5956            N1.getValueType() == VT && "Binary operator types must match!");
5957     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5958     // it's worth handling here.
5959     if (N2CV && N2CV->isZero())
5960       return N1;
5961     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
5962         VT.getVectorElementType() == MVT::i1)
5963       return getNode(ISD::XOR, DL, VT, N1, N2);
5964     break;
5965   case ISD::MUL:
5966     assert(VT.isInteger() && "This operator does not apply to FP types!");
5967     assert(N1.getValueType() == N2.getValueType() &&
5968            N1.getValueType() == VT && "Binary operator types must match!");
5969     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
5970       return getNode(ISD::AND, DL, VT, N1, N2);
5971     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5972       const APInt &MulImm = N1->getConstantOperandAPInt(0);
5973       const APInt &N2CImm = N2C->getAPIntValue();
5974       return getVScale(DL, VT, MulImm * N2CImm);
5975     }
5976     break;
5977   case ISD::UDIV:
5978   case ISD::UREM:
5979   case ISD::MULHU:
5980   case ISD::MULHS:
5981   case ISD::SDIV:
5982   case ISD::SREM:
5983   case ISD::SADDSAT:
5984   case ISD::SSUBSAT:
5985   case ISD::UADDSAT:
5986   case ISD::USUBSAT:
5987     assert(VT.isInteger() && "This operator does not apply to FP types!");
5988     assert(N1.getValueType() == N2.getValueType() &&
5989            N1.getValueType() == VT && "Binary operator types must match!");
5990     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
5991       // fold (add_sat x, y) -> (or x, y) for bool types.
5992       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
5993         return getNode(ISD::OR, DL, VT, N1, N2);
5994       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
5995       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
5996         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
5997     }
5998     break;
5999   case ISD::SMIN:
6000   case ISD::UMAX:
6001     assert(VT.isInteger() && "This operator does not apply to FP types!");
6002     assert(N1.getValueType() == N2.getValueType() &&
6003            N1.getValueType() == VT && "Binary operator types must match!");
6004     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
6005       return getNode(ISD::OR, DL, VT, N1, N2);
6006     break;
6007   case ISD::SMAX:
6008   case ISD::UMIN:
6009     assert(VT.isInteger() && "This operator does not apply to FP types!");
6010     assert(N1.getValueType() == N2.getValueType() &&
6011            N1.getValueType() == VT && "Binary operator types must match!");
6012     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
6013       return getNode(ISD::AND, DL, VT, N1, N2);
6014     break;
6015   case ISD::FADD:
6016   case ISD::FSUB:
6017   case ISD::FMUL:
6018   case ISD::FDIV:
6019   case ISD::FREM:
6020     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6021     assert(N1.getValueType() == N2.getValueType() &&
6022            N1.getValueType() == VT && "Binary operator types must match!");
6023     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
6024       return V;
6025     break;
6026   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
6027     assert(N1.getValueType() == VT &&
6028            N1.getValueType().isFloatingPoint() &&
6029            N2.getValueType().isFloatingPoint() &&
6030            "Invalid FCOPYSIGN!");
6031     break;
6032   case ISD::SHL:
6033     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
6034       const APInt &MulImm = N1->getConstantOperandAPInt(0);
6035       const APInt &ShiftImm = N2C->getAPIntValue();
6036       return getVScale(DL, VT, MulImm << ShiftImm);
6037     }
6038     LLVM_FALLTHROUGH;
6039   case ISD::SRA:
6040   case ISD::SRL:
6041     if (SDValue V = simplifyShift(N1, N2))
6042       return V;
6043     LLVM_FALLTHROUGH;
6044   case ISD::ROTL:
6045   case ISD::ROTR:
6046     assert(VT == N1.getValueType() &&
6047            "Shift operators return type must be the same as their first arg");
6048     assert(VT.isInteger() && N2.getValueType().isInteger() &&
6049            "Shifts only work on integers");
6050     assert((!VT.isVector() || VT == N2.getValueType()) &&
6051            "Vector shift amounts must be in the same as their first arg");
6052     // Verify that the shift amount VT is big enough to hold valid shift
6053     // amounts.  This catches things like trying to shift an i1024 value by an
6054     // i8, which is easy to fall into in generic code that uses
6055     // TLI.getShiftAmount().
6056     assert(N2.getValueType().getScalarSizeInBits() >=
6057                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
6058            "Invalid use of small shift amount with oversized value!");
6059 
6060     // Always fold shifts of i1 values so the code generator doesn't need to
6061     // handle them.  Since we know the size of the shift has to be less than the
6062     // size of the value, the shift/rotate count is guaranteed to be zero.
6063     if (VT == MVT::i1)
6064       return N1;
6065     if (N2CV && N2CV->isZero())
6066       return N1;
6067     break;
6068   case ISD::FP_ROUND:
6069     assert(VT.isFloatingPoint() &&
6070            N1.getValueType().isFloatingPoint() &&
6071            VT.bitsLE(N1.getValueType()) &&
6072            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
6073            "Invalid FP_ROUND!");
6074     if (N1.getValueType() == VT) return N1;  // noop conversion.
6075     break;
6076   case ISD::AssertSext:
6077   case ISD::AssertZext: {
6078     EVT EVT = cast<VTSDNode>(N2)->getVT();
6079     assert(VT == N1.getValueType() && "Not an inreg extend!");
6080     assert(VT.isInteger() && EVT.isInteger() &&
6081            "Cannot *_EXTEND_INREG FP types");
6082     assert(!EVT.isVector() &&
6083            "AssertSExt/AssertZExt type should be the vector element type "
6084            "rather than the vector type!");
6085     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
6086     if (VT.getScalarType() == EVT) return N1; // noop assertion.
6087     break;
6088   }
6089   case ISD::SIGN_EXTEND_INREG: {
6090     EVT EVT = cast<VTSDNode>(N2)->getVT();
6091     assert(VT == N1.getValueType() && "Not an inreg extend!");
6092     assert(VT.isInteger() && EVT.isInteger() &&
6093            "Cannot *_EXTEND_INREG FP types");
6094     assert(EVT.isVector() == VT.isVector() &&
6095            "SIGN_EXTEND_INREG type should be vector iff the operand "
6096            "type is vector!");
6097     assert((!EVT.isVector() ||
6098             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
6099            "Vector element counts must match in SIGN_EXTEND_INREG");
6100     assert(EVT.bitsLE(VT) && "Not extending!");
6101     if (EVT == VT) return N1;  // Not actually extending
6102 
6103     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
6104       unsigned FromBits = EVT.getScalarSizeInBits();
6105       Val <<= Val.getBitWidth() - FromBits;
6106       Val.ashrInPlace(Val.getBitWidth() - FromBits);
6107       return getConstant(Val, DL, ConstantVT);
6108     };
6109 
6110     if (N1C) {
6111       const APInt &Val = N1C->getAPIntValue();
6112       return SignExtendInReg(Val, VT);
6113     }
6114 
6115     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
6116       SmallVector<SDValue, 8> Ops;
6117       llvm::EVT OpVT = N1.getOperand(0).getValueType();
6118       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
6119         SDValue Op = N1.getOperand(i);
6120         if (Op.isUndef()) {
6121           Ops.push_back(getUNDEF(OpVT));
6122           continue;
6123         }
6124         ConstantSDNode *C = cast<ConstantSDNode>(Op);
6125         APInt Val = C->getAPIntValue();
6126         Ops.push_back(SignExtendInReg(Val, OpVT));
6127       }
6128       return getBuildVector(VT, DL, Ops);
6129     }
6130     break;
6131   }
6132   case ISD::FP_TO_SINT_SAT:
6133   case ISD::FP_TO_UINT_SAT: {
6134     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
6135            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
6136     assert(N1.getValueType().isVector() == VT.isVector() &&
6137            "FP_TO_*INT_SAT type should be vector iff the operand type is "
6138            "vector!");
6139     assert((!VT.isVector() || VT.getVectorElementCount() ==
6140                                   N1.getValueType().getVectorElementCount()) &&
6141            "Vector element counts must match in FP_TO_*INT_SAT");
6142     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
6143            "Type to saturate to must be a scalar.");
6144     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
6145            "Not extending!");
6146     break;
6147   }
6148   case ISD::EXTRACT_VECTOR_ELT:
6149     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
6150            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
6151              element type of the vector.");
6152 
6153     // Extract from an undefined value or using an undefined index is undefined.
6154     if (N1.isUndef() || N2.isUndef())
6155       return getUNDEF(VT);
6156 
6157     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
6158     // vectors. For scalable vectors we will provide appropriate support for
6159     // dealing with arbitrary indices.
6160     if (N2C && N1.getValueType().isFixedLengthVector() &&
6161         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
6162       return getUNDEF(VT);
6163 
6164     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
6165     // expanding copies of large vectors from registers. This only works for
6166     // fixed length vectors, since we need to know the exact number of
6167     // elements.
6168     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
6169         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
6170       unsigned Factor =
6171         N1.getOperand(0).getValueType().getVectorNumElements();
6172       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
6173                      N1.getOperand(N2C->getZExtValue() / Factor),
6174                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
6175     }
6176 
6177     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
6178     // lowering is expanding large vector constants.
6179     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
6180                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
6181       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
6182               N1.getValueType().isFixedLengthVector()) &&
6183              "BUILD_VECTOR used for scalable vectors");
6184       unsigned Index =
6185           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
6186       SDValue Elt = N1.getOperand(Index);
6187 
6188       if (VT != Elt.getValueType())
6189         // If the vector element type is not legal, the BUILD_VECTOR operands
6190         // are promoted and implicitly truncated, and the result implicitly
6191         // extended. Make that explicit here.
6192         Elt = getAnyExtOrTrunc(Elt, DL, VT);
6193 
6194       return Elt;
6195     }
6196 
6197     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
6198     // operations are lowered to scalars.
6199     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
6200       // If the indices are the same, return the inserted element else
6201       // if the indices are known different, extract the element from
6202       // the original vector.
6203       SDValue N1Op2 = N1.getOperand(2);
6204       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
6205 
6206       if (N1Op2C && N2C) {
6207         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
6208           if (VT == N1.getOperand(1).getValueType())
6209             return N1.getOperand(1);
6210           if (VT.isFloatingPoint()) {
6211             assert(VT.getSizeInBits() > N1.getOperand(1).getValueType().getSizeInBits());
6212             return getFPExtendOrRound(N1.getOperand(1), DL, VT);
6213           }
6214           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
6215         }
6216         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
6217       }
6218     }
6219 
6220     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
6221     // when vector types are scalarized and v1iX is legal.
6222     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
6223     // Here we are completely ignoring the extract element index (N2),
6224     // which is fine for fixed width vectors, since any index other than 0
6225     // is undefined anyway. However, this cannot be ignored for scalable
6226     // vectors - in theory we could support this, but we don't want to do this
6227     // without a profitability check.
6228     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6229         N1.getValueType().isFixedLengthVector() &&
6230         N1.getValueType().getVectorNumElements() == 1) {
6231       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
6232                      N1.getOperand(1));
6233     }
6234     break;
6235   case ISD::EXTRACT_ELEMENT:
6236     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
6237     assert(!N1.getValueType().isVector() && !VT.isVector() &&
6238            (N1.getValueType().isInteger() == VT.isInteger()) &&
6239            N1.getValueType() != VT &&
6240            "Wrong types for EXTRACT_ELEMENT!");
6241 
6242     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
6243     // 64-bit integers into 32-bit parts.  Instead of building the extract of
6244     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
6245     if (N1.getOpcode() == ISD::BUILD_PAIR)
6246       return N1.getOperand(N2C->getZExtValue());
6247 
6248     // EXTRACT_ELEMENT of a constant int is also very common.
6249     if (N1C) {
6250       unsigned ElementSize = VT.getSizeInBits();
6251       unsigned Shift = ElementSize * N2C->getZExtValue();
6252       const APInt &Val = N1C->getAPIntValue();
6253       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
6254     }
6255     break;
6256   case ISD::EXTRACT_SUBVECTOR: {
6257     EVT N1VT = N1.getValueType();
6258     assert(VT.isVector() && N1VT.isVector() &&
6259            "Extract subvector VTs must be vectors!");
6260     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
6261            "Extract subvector VTs must have the same element type!");
6262     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
6263            "Cannot extract a scalable vector from a fixed length vector!");
6264     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6265             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
6266            "Extract subvector must be from larger vector to smaller vector!");
6267     assert(N2C && "Extract subvector index must be a constant");
6268     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6269             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
6270                 N1VT.getVectorMinNumElements()) &&
6271            "Extract subvector overflow!");
6272     assert(N2C->getAPIntValue().getBitWidth() ==
6273                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6274            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
6275 
6276     // Trivial extraction.
6277     if (VT == N1VT)
6278       return N1;
6279 
6280     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
6281     if (N1.isUndef())
6282       return getUNDEF(VT);
6283 
6284     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
6285     // the concat have the same type as the extract.
6286     if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 &&
6287         VT == N1.getOperand(0).getValueType()) {
6288       unsigned Factor = VT.getVectorMinNumElements();
6289       return N1.getOperand(N2C->getZExtValue() / Factor);
6290     }
6291 
6292     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
6293     // during shuffle legalization.
6294     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
6295         VT == N1.getOperand(1).getValueType())
6296       return N1.getOperand(1);
6297     break;
6298   }
6299   }
6300 
6301   // Perform trivial constant folding.
6302   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
6303     return SV;
6304 
6305   // Canonicalize an UNDEF to the RHS, even over a constant.
6306   if (N1.isUndef()) {
6307     if (TLI->isCommutativeBinOp(Opcode)) {
6308       std::swap(N1, N2);
6309     } else {
6310       switch (Opcode) {
6311       case ISD::SUB:
6312         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
6313       case ISD::SIGN_EXTEND_INREG:
6314       case ISD::UDIV:
6315       case ISD::SDIV:
6316       case ISD::UREM:
6317       case ISD::SREM:
6318       case ISD::SSUBSAT:
6319       case ISD::USUBSAT:
6320         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
6321       }
6322     }
6323   }
6324 
6325   // Fold a bunch of operators when the RHS is undef.
6326   if (N2.isUndef()) {
6327     switch (Opcode) {
6328     case ISD::XOR:
6329       if (N1.isUndef())
6330         // Handle undef ^ undef -> 0 special case. This is a common
6331         // idiom (misuse).
6332         return getConstant(0, DL, VT);
6333       LLVM_FALLTHROUGH;
6334     case ISD::ADD:
6335     case ISD::SUB:
6336     case ISD::UDIV:
6337     case ISD::SDIV:
6338     case ISD::UREM:
6339     case ISD::SREM:
6340       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
6341     case ISD::MUL:
6342     case ISD::AND:
6343     case ISD::SSUBSAT:
6344     case ISD::USUBSAT:
6345       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
6346     case ISD::OR:
6347     case ISD::SADDSAT:
6348     case ISD::UADDSAT:
6349       return getAllOnesConstant(DL, VT);
6350     }
6351   }
6352 
6353   // Memoize this node if possible.
6354   SDNode *N;
6355   SDVTList VTs = getVTList(VT);
6356   SDValue Ops[] = {N1, N2};
6357   if (VT != MVT::Glue) {
6358     FoldingSetNodeID ID;
6359     AddNodeIDNode(ID, Opcode, VTs, Ops);
6360     void *IP = nullptr;
6361     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6362       E->intersectFlagsWith(Flags);
6363       return SDValue(E, 0);
6364     }
6365 
6366     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6367     N->setFlags(Flags);
6368     createOperands(N, Ops);
6369     CSEMap.InsertNode(N, IP);
6370   } else {
6371     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6372     createOperands(N, Ops);
6373   }
6374 
6375   InsertNode(N);
6376   SDValue V = SDValue(N, 0);
6377   NewSDValueDbgMsg(V, "Creating new node: ", this);
6378   return V;
6379 }
6380 
6381 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6382                               SDValue N1, SDValue N2, SDValue N3) {
6383   SDNodeFlags Flags;
6384   if (Inserter)
6385     Flags = Inserter->getFlags();
6386   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
6387 }
6388 
6389 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6390                               SDValue N1, SDValue N2, SDValue N3,
6391                               const SDNodeFlags Flags) {
6392   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6393          N2.getOpcode() != ISD::DELETED_NODE &&
6394          N3.getOpcode() != ISD::DELETED_NODE &&
6395          "Operand is DELETED_NODE!");
6396   // Perform various simplifications.
6397   switch (Opcode) {
6398   case ISD::FMA: {
6399     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6400     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
6401            N3.getValueType() == VT && "FMA types must match!");
6402     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6403     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
6404     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
6405     if (N1CFP && N2CFP && N3CFP) {
6406       APFloat  V1 = N1CFP->getValueAPF();
6407       const APFloat &V2 = N2CFP->getValueAPF();
6408       const APFloat &V3 = N3CFP->getValueAPF();
6409       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
6410       return getConstantFP(V1, DL, VT);
6411     }
6412     break;
6413   }
6414   case ISD::BUILD_VECTOR: {
6415     // Attempt to simplify BUILD_VECTOR.
6416     SDValue Ops[] = {N1, N2, N3};
6417     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6418       return V;
6419     break;
6420   }
6421   case ISD::CONCAT_VECTORS: {
6422     SDValue Ops[] = {N1, N2, N3};
6423     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6424       return V;
6425     break;
6426   }
6427   case ISD::SETCC: {
6428     assert(VT.isInteger() && "SETCC result type must be an integer!");
6429     assert(N1.getValueType() == N2.getValueType() &&
6430            "SETCC operands must have the same type!");
6431     assert(VT.isVector() == N1.getValueType().isVector() &&
6432            "SETCC type should be vector iff the operand type is vector!");
6433     assert((!VT.isVector() || VT.getVectorElementCount() ==
6434                                   N1.getValueType().getVectorElementCount()) &&
6435            "SETCC vector element counts must match!");
6436     // Use FoldSetCC to simplify SETCC's.
6437     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
6438       return V;
6439     // Vector constant folding.
6440     SDValue Ops[] = {N1, N2, N3};
6441     if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) {
6442       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
6443       return V;
6444     }
6445     break;
6446   }
6447   case ISD::SELECT:
6448   case ISD::VSELECT:
6449     if (SDValue V = simplifySelect(N1, N2, N3))
6450       return V;
6451     break;
6452   case ISD::VECTOR_SHUFFLE:
6453     llvm_unreachable("should use getVectorShuffle constructor!");
6454   case ISD::VECTOR_SPLICE: {
6455     if (cast<ConstantSDNode>(N3)->isNullValue())
6456       return N1;
6457     break;
6458   }
6459   case ISD::INSERT_VECTOR_ELT: {
6460     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
6461     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
6462     // for scalable vectors where we will generate appropriate code to
6463     // deal with out-of-bounds cases correctly.
6464     if (N3C && N1.getValueType().isFixedLengthVector() &&
6465         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
6466       return getUNDEF(VT);
6467 
6468     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
6469     if (N3.isUndef())
6470       return getUNDEF(VT);
6471 
6472     // If the inserted element is an UNDEF, just use the input vector.
6473     if (N2.isUndef())
6474       return N1;
6475 
6476     break;
6477   }
6478   case ISD::INSERT_SUBVECTOR: {
6479     // Inserting undef into undef is still undef.
6480     if (N1.isUndef() && N2.isUndef())
6481       return getUNDEF(VT);
6482 
6483     EVT N2VT = N2.getValueType();
6484     assert(VT == N1.getValueType() &&
6485            "Dest and insert subvector source types must match!");
6486     assert(VT.isVector() && N2VT.isVector() &&
6487            "Insert subvector VTs must be vectors!");
6488     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
6489            "Cannot insert a scalable vector into a fixed length vector!");
6490     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6491             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
6492            "Insert subvector must be from smaller vector to larger vector!");
6493     assert(isa<ConstantSDNode>(N3) &&
6494            "Insert subvector index must be constant");
6495     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
6496             (N2VT.getVectorMinNumElements() +
6497              cast<ConstantSDNode>(N3)->getZExtValue()) <=
6498                 VT.getVectorMinNumElements()) &&
6499            "Insert subvector overflow!");
6500     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
6501                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6502            "Constant index for INSERT_SUBVECTOR has an invalid size");
6503 
6504     // Trivial insertion.
6505     if (VT == N2VT)
6506       return N2;
6507 
6508     // If this is an insert of an extracted vector into an undef vector, we
6509     // can just use the input to the extract.
6510     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6511         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
6512       return N2.getOperand(0);
6513     break;
6514   }
6515   case ISD::BITCAST:
6516     // Fold bit_convert nodes from a type to themselves.
6517     if (N1.getValueType() == VT)
6518       return N1;
6519     break;
6520   }
6521 
6522   // Memoize node if it doesn't produce a flag.
6523   SDNode *N;
6524   SDVTList VTs = getVTList(VT);
6525   SDValue Ops[] = {N1, N2, N3};
6526   if (VT != MVT::Glue) {
6527     FoldingSetNodeID ID;
6528     AddNodeIDNode(ID, Opcode, VTs, Ops);
6529     void *IP = nullptr;
6530     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6531       E->intersectFlagsWith(Flags);
6532       return SDValue(E, 0);
6533     }
6534 
6535     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6536     N->setFlags(Flags);
6537     createOperands(N, Ops);
6538     CSEMap.InsertNode(N, IP);
6539   } else {
6540     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6541     createOperands(N, Ops);
6542   }
6543 
6544   InsertNode(N);
6545   SDValue V = SDValue(N, 0);
6546   NewSDValueDbgMsg(V, "Creating new node: ", this);
6547   return V;
6548 }
6549 
6550 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6551                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
6552   SDValue Ops[] = { N1, N2, N3, N4 };
6553   return getNode(Opcode, DL, VT, Ops);
6554 }
6555 
6556 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6557                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
6558                               SDValue N5) {
6559   SDValue Ops[] = { N1, N2, N3, N4, N5 };
6560   return getNode(Opcode, DL, VT, Ops);
6561 }
6562 
6563 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
6564 /// the incoming stack arguments to be loaded from the stack.
6565 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
6566   SmallVector<SDValue, 8> ArgChains;
6567 
6568   // Include the original chain at the beginning of the list. When this is
6569   // used by target LowerCall hooks, this helps legalize find the
6570   // CALLSEQ_BEGIN node.
6571   ArgChains.push_back(Chain);
6572 
6573   // Add a chain value for each stack argument.
6574   for (SDNode *U : getEntryNode().getNode()->uses())
6575     if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
6576       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
6577         if (FI->getIndex() < 0)
6578           ArgChains.push_back(SDValue(L, 1));
6579 
6580   // Build a tokenfactor for all the chains.
6581   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
6582 }
6583 
6584 /// getMemsetValue - Vectorized representation of the memset value
6585 /// operand.
6586 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
6587                               const SDLoc &dl) {
6588   assert(!Value.isUndef());
6589 
6590   unsigned NumBits = VT.getScalarSizeInBits();
6591   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
6592     assert(C->getAPIntValue().getBitWidth() == 8);
6593     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
6594     if (VT.isInteger()) {
6595       bool IsOpaque = VT.getSizeInBits() > 64 ||
6596           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
6597       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
6598     }
6599     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
6600                              VT);
6601   }
6602 
6603   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
6604   EVT IntVT = VT.getScalarType();
6605   if (!IntVT.isInteger())
6606     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
6607 
6608   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
6609   if (NumBits > 8) {
6610     // Use a multiplication with 0x010101... to extend the input to the
6611     // required length.
6612     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
6613     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
6614                         DAG.getConstant(Magic, dl, IntVT));
6615   }
6616 
6617   if (VT != Value.getValueType() && !VT.isInteger())
6618     Value = DAG.getBitcast(VT.getScalarType(), Value);
6619   if (VT != Value.getValueType())
6620     Value = DAG.getSplatBuildVector(VT, dl, Value);
6621 
6622   return Value;
6623 }
6624 
6625 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
6626 /// used when a memcpy is turned into a memset when the source is a constant
6627 /// string ptr.
6628 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
6629                                   const TargetLowering &TLI,
6630                                   const ConstantDataArraySlice &Slice) {
6631   // Handle vector with all elements zero.
6632   if (Slice.Array == nullptr) {
6633     if (VT.isInteger())
6634       return DAG.getConstant(0, dl, VT);
6635     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
6636       return DAG.getConstantFP(0.0, dl, VT);
6637     if (VT.isVector()) {
6638       unsigned NumElts = VT.getVectorNumElements();
6639       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
6640       return DAG.getNode(ISD::BITCAST, dl, VT,
6641                          DAG.getConstant(0, dl,
6642                                          EVT::getVectorVT(*DAG.getContext(),
6643                                                           EltVT, NumElts)));
6644     }
6645     llvm_unreachable("Expected type!");
6646   }
6647 
6648   assert(!VT.isVector() && "Can't handle vector type here!");
6649   unsigned NumVTBits = VT.getSizeInBits();
6650   unsigned NumVTBytes = NumVTBits / 8;
6651   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
6652 
6653   APInt Val(NumVTBits, 0);
6654   if (DAG.getDataLayout().isLittleEndian()) {
6655     for (unsigned i = 0; i != NumBytes; ++i)
6656       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
6657   } else {
6658     for (unsigned i = 0; i != NumBytes; ++i)
6659       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
6660   }
6661 
6662   // If the "cost" of materializing the integer immediate is less than the cost
6663   // of a load, then it is cost effective to turn the load into the immediate.
6664   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
6665   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
6666     return DAG.getConstant(Val, dl, VT);
6667   return SDValue();
6668 }
6669 
6670 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
6671                                            const SDLoc &DL,
6672                                            const SDNodeFlags Flags) {
6673   EVT VT = Base.getValueType();
6674   SDValue Index;
6675 
6676   if (Offset.isScalable())
6677     Index = getVScale(DL, Base.getValueType(),
6678                       APInt(Base.getValueSizeInBits().getFixedSize(),
6679                             Offset.getKnownMinSize()));
6680   else
6681     Index = getConstant(Offset.getFixedSize(), DL, VT);
6682 
6683   return getMemBasePlusOffset(Base, Index, DL, Flags);
6684 }
6685 
6686 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6687                                            const SDLoc &DL,
6688                                            const SDNodeFlags Flags) {
6689   assert(Offset.getValueType().isInteger());
6690   EVT BasePtrVT = Ptr.getValueType();
6691   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6692 }
6693 
6694 /// Returns true if memcpy source is constant data.
6695 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6696   uint64_t SrcDelta = 0;
6697   GlobalAddressSDNode *G = nullptr;
6698   if (Src.getOpcode() == ISD::GlobalAddress)
6699     G = cast<GlobalAddressSDNode>(Src);
6700   else if (Src.getOpcode() == ISD::ADD &&
6701            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6702            Src.getOperand(1).getOpcode() == ISD::Constant) {
6703     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6704     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6705   }
6706   if (!G)
6707     return false;
6708 
6709   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6710                                   SrcDelta + G->getOffset());
6711 }
6712 
6713 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6714                                       SelectionDAG &DAG) {
6715   // On Darwin, -Os means optimize for size without hurting performance, so
6716   // only really optimize for size when -Oz (MinSize) is used.
6717   if (MF.getTarget().getTargetTriple().isOSDarwin())
6718     return MF.getFunction().hasMinSize();
6719   return DAG.shouldOptForSize();
6720 }
6721 
6722 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6723                           SmallVector<SDValue, 32> &OutChains, unsigned From,
6724                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6725                           SmallVector<SDValue, 16> &OutStoreChains) {
6726   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6727   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6728   SmallVector<SDValue, 16> GluedLoadChains;
6729   for (unsigned i = From; i < To; ++i) {
6730     OutChains.push_back(OutLoadChains[i]);
6731     GluedLoadChains.push_back(OutLoadChains[i]);
6732   }
6733 
6734   // Chain for all loads.
6735   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6736                                   GluedLoadChains);
6737 
6738   for (unsigned i = From; i < To; ++i) {
6739     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6740     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6741                                   ST->getBasePtr(), ST->getMemoryVT(),
6742                                   ST->getMemOperand());
6743     OutChains.push_back(NewStore);
6744   }
6745 }
6746 
6747 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6748                                        SDValue Chain, SDValue Dst, SDValue Src,
6749                                        uint64_t Size, Align Alignment,
6750                                        bool isVol, bool AlwaysInline,
6751                                        MachinePointerInfo DstPtrInfo,
6752                                        MachinePointerInfo SrcPtrInfo,
6753                                        const AAMDNodes &AAInfo, AAResults *AA) {
6754   // Turn a memcpy of undef to nop.
6755   // FIXME: We need to honor volatile even is Src is undef.
6756   if (Src.isUndef())
6757     return Chain;
6758 
6759   // Expand memcpy to a series of load and store ops if the size operand falls
6760   // below a certain threshold.
6761   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6762   // rather than maybe a humongous number of loads and stores.
6763   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6764   const DataLayout &DL = DAG.getDataLayout();
6765   LLVMContext &C = *DAG.getContext();
6766   std::vector<EVT> MemOps;
6767   bool DstAlignCanChange = false;
6768   MachineFunction &MF = DAG.getMachineFunction();
6769   MachineFrameInfo &MFI = MF.getFrameInfo();
6770   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6771   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6772   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6773     DstAlignCanChange = true;
6774   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6775   if (!SrcAlign || Alignment > *SrcAlign)
6776     SrcAlign = Alignment;
6777   assert(SrcAlign && "SrcAlign must be set");
6778   ConstantDataArraySlice Slice;
6779   // If marked as volatile, perform a copy even when marked as constant.
6780   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
6781   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6782   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6783   const MemOp Op = isZeroConstant
6784                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6785                                     /*IsZeroMemset*/ true, isVol)
6786                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6787                                      *SrcAlign, isVol, CopyFromConstant);
6788   if (!TLI.findOptimalMemOpLowering(
6789           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6790           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6791     return SDValue();
6792 
6793   if (DstAlignCanChange) {
6794     Type *Ty = MemOps[0].getTypeForEVT(C);
6795     Align NewAlign = DL.getABITypeAlign(Ty);
6796 
6797     // Don't promote to an alignment that would require dynamic stack
6798     // realignment.
6799     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6800     if (!TRI->hasStackRealignment(MF))
6801       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6802         NewAlign = NewAlign.previous();
6803 
6804     if (NewAlign > Alignment) {
6805       // Give the stack frame object a larger alignment if needed.
6806       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6807         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6808       Alignment = NewAlign;
6809     }
6810   }
6811 
6812   // Prepare AAInfo for loads/stores after lowering this memcpy.
6813   AAMDNodes NewAAInfo = AAInfo;
6814   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
6815 
6816   const Value *SrcVal = SrcPtrInfo.V.dyn_cast<const Value *>();
6817   bool isConstant =
6818       AA && SrcVal &&
6819       AA->pointsToConstantMemory(MemoryLocation(SrcVal, Size, AAInfo));
6820 
6821   MachineMemOperand::Flags MMOFlags =
6822       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6823   SmallVector<SDValue, 16> OutLoadChains;
6824   SmallVector<SDValue, 16> OutStoreChains;
6825   SmallVector<SDValue, 32> OutChains;
6826   unsigned NumMemOps = MemOps.size();
6827   uint64_t SrcOff = 0, DstOff = 0;
6828   for (unsigned i = 0; i != NumMemOps; ++i) {
6829     EVT VT = MemOps[i];
6830     unsigned VTSize = VT.getSizeInBits() / 8;
6831     SDValue Value, Store;
6832 
6833     if (VTSize > Size) {
6834       // Issuing an unaligned load / store pair  that overlaps with the previous
6835       // pair. Adjust the offset accordingly.
6836       assert(i == NumMemOps-1 && i != 0);
6837       SrcOff -= VTSize - Size;
6838       DstOff -= VTSize - Size;
6839     }
6840 
6841     if (CopyFromConstant &&
6842         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6843       // It's unlikely a store of a vector immediate can be done in a single
6844       // instruction. It would require a load from a constantpool first.
6845       // We only handle zero vectors here.
6846       // FIXME: Handle other cases where store of vector immediate is done in
6847       // a single instruction.
6848       ConstantDataArraySlice SubSlice;
6849       if (SrcOff < Slice.Length) {
6850         SubSlice = Slice;
6851         SubSlice.move(SrcOff);
6852       } else {
6853         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6854         SubSlice.Array = nullptr;
6855         SubSlice.Offset = 0;
6856         SubSlice.Length = VTSize;
6857       }
6858       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6859       if (Value.getNode()) {
6860         Store = DAG.getStore(
6861             Chain, dl, Value,
6862             DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6863             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
6864         OutChains.push_back(Store);
6865       }
6866     }
6867 
6868     if (!Store.getNode()) {
6869       // The type might not be legal for the target.  This should only happen
6870       // if the type is smaller than a legal type, as on PPC, so the right
6871       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6872       // to Load/Store if NVT==VT.
6873       // FIXME does the case above also need this?
6874       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6875       assert(NVT.bitsGE(VT));
6876 
6877       bool isDereferenceable =
6878         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6879       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6880       if (isDereferenceable)
6881         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6882       if (isConstant)
6883         SrcMMOFlags |= MachineMemOperand::MOInvariant;
6884 
6885       Value = DAG.getExtLoad(
6886           ISD::EXTLOAD, dl, NVT, Chain,
6887           DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
6888           SrcPtrInfo.getWithOffset(SrcOff), VT,
6889           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
6890       OutLoadChains.push_back(Value.getValue(1));
6891 
6892       Store = DAG.getTruncStore(
6893           Chain, dl, Value,
6894           DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
6895           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
6896       OutStoreChains.push_back(Store);
6897     }
6898     SrcOff += VTSize;
6899     DstOff += VTSize;
6900     Size -= VTSize;
6901   }
6902 
6903   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6904                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6905   unsigned NumLdStInMemcpy = OutStoreChains.size();
6906 
6907   if (NumLdStInMemcpy) {
6908     // It may be that memcpy might be converted to memset if it's memcpy
6909     // of constants. In such a case, we won't have loads and stores, but
6910     // just stores. In the absence of loads, there is nothing to gang up.
6911     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6912       // If target does not care, just leave as it.
6913       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6914         OutChains.push_back(OutLoadChains[i]);
6915         OutChains.push_back(OutStoreChains[i]);
6916       }
6917     } else {
6918       // Ld/St less than/equal limit set by target.
6919       if (NumLdStInMemcpy <= GluedLdStLimit) {
6920           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6921                                         NumLdStInMemcpy, OutLoadChains,
6922                                         OutStoreChains);
6923       } else {
6924         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6925         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6926         unsigned GlueIter = 0;
6927 
6928         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6929           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6930           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6931 
6932           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6933                                        OutLoadChains, OutStoreChains);
6934           GlueIter += GluedLdStLimit;
6935         }
6936 
6937         // Residual ld/st.
6938         if (RemainingLdStInMemcpy) {
6939           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6940                                         RemainingLdStInMemcpy, OutLoadChains,
6941                                         OutStoreChains);
6942         }
6943       }
6944     }
6945   }
6946   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6947 }
6948 
6949 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6950                                         SDValue Chain, SDValue Dst, SDValue Src,
6951                                         uint64_t Size, Align Alignment,
6952                                         bool isVol, bool AlwaysInline,
6953                                         MachinePointerInfo DstPtrInfo,
6954                                         MachinePointerInfo SrcPtrInfo,
6955                                         const AAMDNodes &AAInfo) {
6956   // Turn a memmove of undef to nop.
6957   // FIXME: We need to honor volatile even is Src is undef.
6958   if (Src.isUndef())
6959     return Chain;
6960 
6961   // Expand memmove to a series of load and store ops if the size operand falls
6962   // below a certain threshold.
6963   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6964   const DataLayout &DL = DAG.getDataLayout();
6965   LLVMContext &C = *DAG.getContext();
6966   std::vector<EVT> MemOps;
6967   bool DstAlignCanChange = false;
6968   MachineFunction &MF = DAG.getMachineFunction();
6969   MachineFrameInfo &MFI = MF.getFrameInfo();
6970   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6971   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6972   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6973     DstAlignCanChange = true;
6974   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6975   if (!SrcAlign || Alignment > *SrcAlign)
6976     SrcAlign = Alignment;
6977   assert(SrcAlign && "SrcAlign must be set");
6978   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6979   if (!TLI.findOptimalMemOpLowering(
6980           MemOps, Limit,
6981           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6982                       /*IsVolatile*/ true),
6983           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6984           MF.getFunction().getAttributes()))
6985     return SDValue();
6986 
6987   if (DstAlignCanChange) {
6988     Type *Ty = MemOps[0].getTypeForEVT(C);
6989     Align NewAlign = DL.getABITypeAlign(Ty);
6990     if (NewAlign > Alignment) {
6991       // Give the stack frame object a larger alignment if needed.
6992       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6993         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6994       Alignment = NewAlign;
6995     }
6996   }
6997 
6998   // Prepare AAInfo for loads/stores after lowering this memmove.
6999   AAMDNodes NewAAInfo = AAInfo;
7000   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
7001 
7002   MachineMemOperand::Flags MMOFlags =
7003       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
7004   uint64_t SrcOff = 0, DstOff = 0;
7005   SmallVector<SDValue, 8> LoadValues;
7006   SmallVector<SDValue, 8> LoadChains;
7007   SmallVector<SDValue, 8> OutChains;
7008   unsigned NumMemOps = MemOps.size();
7009   for (unsigned i = 0; i < NumMemOps; i++) {
7010     EVT VT = MemOps[i];
7011     unsigned VTSize = VT.getSizeInBits() / 8;
7012     SDValue Value;
7013 
7014     bool isDereferenceable =
7015       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
7016     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
7017     if (isDereferenceable)
7018       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
7019 
7020     Value = DAG.getLoad(
7021         VT, dl, Chain,
7022         DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl),
7023         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
7024     LoadValues.push_back(Value);
7025     LoadChains.push_back(Value.getValue(1));
7026     SrcOff += VTSize;
7027   }
7028   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
7029   OutChains.clear();
7030   for (unsigned i = 0; i < NumMemOps; i++) {
7031     EVT VT = MemOps[i];
7032     unsigned VTSize = VT.getSizeInBits() / 8;
7033     SDValue Store;
7034 
7035     Store = DAG.getStore(
7036         Chain, dl, LoadValues[i],
7037         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
7038         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
7039     OutChains.push_back(Store);
7040     DstOff += VTSize;
7041   }
7042 
7043   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
7044 }
7045 
7046 /// Lower the call to 'memset' intrinsic function into a series of store
7047 /// operations.
7048 ///
7049 /// \param DAG Selection DAG where lowered code is placed.
7050 /// \param dl Link to corresponding IR location.
7051 /// \param Chain Control flow dependency.
7052 /// \param Dst Pointer to destination memory location.
7053 /// \param Src Value of byte to write into the memory.
7054 /// \param Size Number of bytes to write.
7055 /// \param Alignment Alignment of the destination in bytes.
7056 /// \param isVol True if destination is volatile.
7057 /// \param AlwaysInline Makes sure no function call is generated.
7058 /// \param DstPtrInfo IR information on the memory pointer.
7059 /// \returns New head in the control flow, if lowering was successful, empty
7060 /// SDValue otherwise.
7061 ///
7062 /// The function tries to replace 'llvm.memset' intrinsic with several store
7063 /// operations and value calculation code. This is usually profitable for small
7064 /// memory size or when the semantic requires inlining.
7065 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
7066                                SDValue Chain, SDValue Dst, SDValue Src,
7067                                uint64_t Size, Align Alignment, bool isVol,
7068                                bool AlwaysInline, MachinePointerInfo DstPtrInfo,
7069                                const AAMDNodes &AAInfo) {
7070   // Turn a memset of undef to nop.
7071   // FIXME: We need to honor volatile even is Src is undef.
7072   if (Src.isUndef())
7073     return Chain;
7074 
7075   // Expand memset to a series of load/store ops if the size operand
7076   // falls below a certain threshold.
7077   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7078   std::vector<EVT> MemOps;
7079   bool DstAlignCanChange = false;
7080   MachineFunction &MF = DAG.getMachineFunction();
7081   MachineFrameInfo &MFI = MF.getFrameInfo();
7082   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
7083   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
7084   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
7085     DstAlignCanChange = true;
7086   bool IsZeroVal =
7087       isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero();
7088   unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize);
7089 
7090   if (!TLI.findOptimalMemOpLowering(
7091           MemOps, Limit,
7092           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
7093           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
7094     return SDValue();
7095 
7096   if (DstAlignCanChange) {
7097     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
7098     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
7099     if (NewAlign > Alignment) {
7100       // Give the stack frame object a larger alignment if needed.
7101       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
7102         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
7103       Alignment = NewAlign;
7104     }
7105   }
7106 
7107   SmallVector<SDValue, 8> OutChains;
7108   uint64_t DstOff = 0;
7109   unsigned NumMemOps = MemOps.size();
7110 
7111   // Find the largest store and generate the bit pattern for it.
7112   EVT LargestVT = MemOps[0];
7113   for (unsigned i = 1; i < NumMemOps; i++)
7114     if (MemOps[i].bitsGT(LargestVT))
7115       LargestVT = MemOps[i];
7116   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
7117 
7118   // Prepare AAInfo for loads/stores after lowering this memset.
7119   AAMDNodes NewAAInfo = AAInfo;
7120   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
7121 
7122   for (unsigned i = 0; i < NumMemOps; i++) {
7123     EVT VT = MemOps[i];
7124     unsigned VTSize = VT.getSizeInBits() / 8;
7125     if (VTSize > Size) {
7126       // Issuing an unaligned load / store pair  that overlaps with the previous
7127       // pair. Adjust the offset accordingly.
7128       assert(i == NumMemOps-1 && i != 0);
7129       DstOff -= VTSize - Size;
7130     }
7131 
7132     // If this store is smaller than the largest store see whether we can get
7133     // the smaller value for free with a truncate.
7134     SDValue Value = MemSetValue;
7135     if (VT.bitsLT(LargestVT)) {
7136       if (!LargestVT.isVector() && !VT.isVector() &&
7137           TLI.isTruncateFree(LargestVT, VT))
7138         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
7139       else
7140         Value = getMemsetValue(Src, VT, DAG, dl);
7141     }
7142     assert(Value.getValueType() == VT && "Value with wrong type.");
7143     SDValue Store = DAG.getStore(
7144         Chain, dl, Value,
7145         DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl),
7146         DstPtrInfo.getWithOffset(DstOff), Alignment,
7147         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
7148         NewAAInfo);
7149     OutChains.push_back(Store);
7150     DstOff += VT.getSizeInBits() / 8;
7151     Size -= VTSize;
7152   }
7153 
7154   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
7155 }
7156 
7157 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
7158                                             unsigned AS) {
7159   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
7160   // pointer operands can be losslessly bitcasted to pointers of address space 0
7161   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
7162     report_fatal_error("cannot lower memory intrinsic in address space " +
7163                        Twine(AS));
7164   }
7165 }
7166 
7167 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
7168                                 SDValue Src, SDValue Size, Align Alignment,
7169                                 bool isVol, bool AlwaysInline, bool isTailCall,
7170                                 MachinePointerInfo DstPtrInfo,
7171                                 MachinePointerInfo SrcPtrInfo,
7172                                 const AAMDNodes &AAInfo, AAResults *AA) {
7173   // Check to see if we should lower the memcpy to loads and stores first.
7174   // For cases within the target-specified limits, this is the best choice.
7175   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7176   if (ConstantSize) {
7177     // Memcpy with size zero? Just return the original chain.
7178     if (ConstantSize->isZero())
7179       return Chain;
7180 
7181     SDValue Result = getMemcpyLoadsAndStores(
7182         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7183         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo, AA);
7184     if (Result.getNode())
7185       return Result;
7186   }
7187 
7188   // Then check to see if we should lower the memcpy with target-specific
7189   // code. If the target chooses to do this, this is the next best.
7190   if (TSI) {
7191     SDValue Result = TSI->EmitTargetCodeForMemcpy(
7192         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
7193         DstPtrInfo, SrcPtrInfo);
7194     if (Result.getNode())
7195       return Result;
7196   }
7197 
7198   // If we really need inline code and the target declined to provide it,
7199   // use a (potentially long) sequence of loads and stores.
7200   if (AlwaysInline) {
7201     assert(ConstantSize && "AlwaysInline requires a constant size!");
7202     return getMemcpyLoadsAndStores(
7203         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7204         isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo, AA);
7205   }
7206 
7207   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7208   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7209 
7210   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
7211   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
7212   // respect volatile, so they may do things like read or write memory
7213   // beyond the given memory regions. But fixing this isn't easy, and most
7214   // people don't care.
7215 
7216   // Emit a library call.
7217   TargetLowering::ArgListTy Args;
7218   TargetLowering::ArgListEntry Entry;
7219   Entry.Ty = Type::getInt8PtrTy(*getContext());
7220   Entry.Node = Dst; Args.push_back(Entry);
7221   Entry.Node = Src; Args.push_back(Entry);
7222 
7223   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7224   Entry.Node = Size; Args.push_back(Entry);
7225   // FIXME: pass in SDLoc
7226   TargetLowering::CallLoweringInfo CLI(*this);
7227   CLI.setDebugLoc(dl)
7228       .setChain(Chain)
7229       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
7230                     Dst.getValueType().getTypeForEVT(*getContext()),
7231                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
7232                                       TLI->getPointerTy(getDataLayout())),
7233                     std::move(Args))
7234       .setDiscardResult()
7235       .setTailCall(isTailCall);
7236 
7237   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7238   return CallResult.second;
7239 }
7240 
7241 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
7242                                       SDValue Dst, SDValue Src, SDValue Size,
7243                                       Type *SizeTy, unsigned ElemSz,
7244                                       bool isTailCall,
7245                                       MachinePointerInfo DstPtrInfo,
7246                                       MachinePointerInfo SrcPtrInfo) {
7247   // Emit a library call.
7248   TargetLowering::ArgListTy Args;
7249   TargetLowering::ArgListEntry Entry;
7250   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7251   Entry.Node = Dst;
7252   Args.push_back(Entry);
7253 
7254   Entry.Node = Src;
7255   Args.push_back(Entry);
7256 
7257   Entry.Ty = SizeTy;
7258   Entry.Node = Size;
7259   Args.push_back(Entry);
7260 
7261   RTLIB::Libcall LibraryCall =
7262       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7263   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7264     report_fatal_error("Unsupported element size");
7265 
7266   TargetLowering::CallLoweringInfo CLI(*this);
7267   CLI.setDebugLoc(dl)
7268       .setChain(Chain)
7269       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7270                     Type::getVoidTy(*getContext()),
7271                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7272                                       TLI->getPointerTy(getDataLayout())),
7273                     std::move(Args))
7274       .setDiscardResult()
7275       .setTailCall(isTailCall);
7276 
7277   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7278   return CallResult.second;
7279 }
7280 
7281 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
7282                                  SDValue Src, SDValue Size, Align Alignment,
7283                                  bool isVol, bool isTailCall,
7284                                  MachinePointerInfo DstPtrInfo,
7285                                  MachinePointerInfo SrcPtrInfo,
7286                                  const AAMDNodes &AAInfo, AAResults *AA) {
7287   // Check to see if we should lower the memmove to loads and stores first.
7288   // For cases within the target-specified limits, this is the best choice.
7289   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7290   if (ConstantSize) {
7291     // Memmove with size zero? Just return the original chain.
7292     if (ConstantSize->isZero())
7293       return Chain;
7294 
7295     SDValue Result = getMemmoveLoadsAndStores(
7296         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7297         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
7298     if (Result.getNode())
7299       return Result;
7300   }
7301 
7302   // Then check to see if we should lower the memmove with target-specific
7303   // code. If the target chooses to do this, this is the next best.
7304   if (TSI) {
7305     SDValue Result =
7306         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
7307                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
7308     if (Result.getNode())
7309       return Result;
7310   }
7311 
7312   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7313   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7314 
7315   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
7316   // not be safe.  See memcpy above for more details.
7317 
7318   // Emit a library call.
7319   TargetLowering::ArgListTy Args;
7320   TargetLowering::ArgListEntry Entry;
7321   Entry.Ty = Type::getInt8PtrTy(*getContext());
7322   Entry.Node = Dst; Args.push_back(Entry);
7323   Entry.Node = Src; Args.push_back(Entry);
7324 
7325   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7326   Entry.Node = Size; Args.push_back(Entry);
7327   // FIXME:  pass in SDLoc
7328   TargetLowering::CallLoweringInfo CLI(*this);
7329   CLI.setDebugLoc(dl)
7330       .setChain(Chain)
7331       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
7332                     Dst.getValueType().getTypeForEVT(*getContext()),
7333                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
7334                                       TLI->getPointerTy(getDataLayout())),
7335                     std::move(Args))
7336       .setDiscardResult()
7337       .setTailCall(isTailCall);
7338 
7339   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7340   return CallResult.second;
7341 }
7342 
7343 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
7344                                        SDValue Dst, SDValue Src, SDValue Size,
7345                                        Type *SizeTy, unsigned ElemSz,
7346                                        bool isTailCall,
7347                                        MachinePointerInfo DstPtrInfo,
7348                                        MachinePointerInfo SrcPtrInfo) {
7349   // Emit a library call.
7350   TargetLowering::ArgListTy Args;
7351   TargetLowering::ArgListEntry Entry;
7352   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7353   Entry.Node = Dst;
7354   Args.push_back(Entry);
7355 
7356   Entry.Node = Src;
7357   Args.push_back(Entry);
7358 
7359   Entry.Ty = SizeTy;
7360   Entry.Node = Size;
7361   Args.push_back(Entry);
7362 
7363   RTLIB::Libcall LibraryCall =
7364       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7365   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7366     report_fatal_error("Unsupported element size");
7367 
7368   TargetLowering::CallLoweringInfo CLI(*this);
7369   CLI.setDebugLoc(dl)
7370       .setChain(Chain)
7371       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7372                     Type::getVoidTy(*getContext()),
7373                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7374                                       TLI->getPointerTy(getDataLayout())),
7375                     std::move(Args))
7376       .setDiscardResult()
7377       .setTailCall(isTailCall);
7378 
7379   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7380   return CallResult.second;
7381 }
7382 
7383 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
7384                                 SDValue Src, SDValue Size, Align Alignment,
7385                                 bool isVol, bool AlwaysInline, bool isTailCall,
7386                                 MachinePointerInfo DstPtrInfo,
7387                                 const AAMDNodes &AAInfo) {
7388   // Check to see if we should lower the memset to stores first.
7389   // For cases within the target-specified limits, this is the best choice.
7390   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7391   if (ConstantSize) {
7392     // Memset with size zero? Just return the original chain.
7393     if (ConstantSize->isZero())
7394       return Chain;
7395 
7396     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7397                                      ConstantSize->getZExtValue(), Alignment,
7398                                      isVol, false, DstPtrInfo, AAInfo);
7399 
7400     if (Result.getNode())
7401       return Result;
7402   }
7403 
7404   // Then check to see if we should lower the memset with target-specific
7405   // code. If the target chooses to do this, this is the next best.
7406   if (TSI) {
7407     SDValue Result = TSI->EmitTargetCodeForMemset(
7408         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
7409     if (Result.getNode())
7410       return Result;
7411   }
7412 
7413   // If we really need inline code and the target declined to provide it,
7414   // use a (potentially long) sequence of loads and stores.
7415   if (AlwaysInline) {
7416     assert(ConstantSize && "AlwaysInline requires a constant size!");
7417     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
7418                                      ConstantSize->getZExtValue(), Alignment,
7419                                      isVol, true, DstPtrInfo, AAInfo);
7420     assert(Result &&
7421            "getMemsetStores must return a valid sequence when AlwaysInline");
7422     return Result;
7423   }
7424 
7425   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7426 
7427   // Emit a library call.
7428   auto &Ctx = *getContext();
7429   const auto& DL = getDataLayout();
7430 
7431   TargetLowering::CallLoweringInfo CLI(*this);
7432   // FIXME: pass in SDLoc
7433   CLI.setDebugLoc(dl).setChain(Chain);
7434 
7435   ConstantSDNode *ConstantSrc = dyn_cast<ConstantSDNode>(Src);
7436   const bool SrcIsZero = ConstantSrc && ConstantSrc->isZero();
7437   const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO);
7438 
7439   // Helper function to create an Entry from Node and Type.
7440   const auto CreateEntry = [](SDValue Node, Type *Ty) {
7441     TargetLowering::ArgListEntry Entry;
7442     Entry.Node = Node;
7443     Entry.Ty = Ty;
7444     return Entry;
7445   };
7446 
7447   // If zeroing out and bzero is present, use it.
7448   if (SrcIsZero && BzeroName) {
7449     TargetLowering::ArgListTy Args;
7450     Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx)));
7451     Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx)));
7452     CLI.setLibCallee(
7453         TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx),
7454         getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args));
7455   } else {
7456     TargetLowering::ArgListTy Args;
7457     Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx)));
7458     Args.push_back(CreateEntry(Src, Src.getValueType().getTypeForEVT(Ctx)));
7459     Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx)));
7460     CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
7461                      Dst.getValueType().getTypeForEVT(Ctx),
7462                      getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
7463                                        TLI->getPointerTy(DL)),
7464                      std::move(Args));
7465   }
7466 
7467   CLI.setDiscardResult().setTailCall(isTailCall);
7468 
7469   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7470   return CallResult.second;
7471 }
7472 
7473 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
7474                                       SDValue Dst, SDValue Value, SDValue Size,
7475                                       Type *SizeTy, unsigned ElemSz,
7476                                       bool isTailCall,
7477                                       MachinePointerInfo DstPtrInfo) {
7478   // Emit a library call.
7479   TargetLowering::ArgListTy Args;
7480   TargetLowering::ArgListEntry Entry;
7481   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7482   Entry.Node = Dst;
7483   Args.push_back(Entry);
7484 
7485   Entry.Ty = Type::getInt8Ty(*getContext());
7486   Entry.Node = Value;
7487   Args.push_back(Entry);
7488 
7489   Entry.Ty = SizeTy;
7490   Entry.Node = Size;
7491   Args.push_back(Entry);
7492 
7493   RTLIB::Libcall LibraryCall =
7494       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
7495   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
7496     report_fatal_error("Unsupported element size");
7497 
7498   TargetLowering::CallLoweringInfo CLI(*this);
7499   CLI.setDebugLoc(dl)
7500       .setChain(Chain)
7501       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
7502                     Type::getVoidTy(*getContext()),
7503                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
7504                                       TLI->getPointerTy(getDataLayout())),
7505                     std::move(Args))
7506       .setDiscardResult()
7507       .setTailCall(isTailCall);
7508 
7509   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
7510   return CallResult.second;
7511 }
7512 
7513 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7514                                 SDVTList VTList, ArrayRef<SDValue> Ops,
7515                                 MachineMemOperand *MMO) {
7516   FoldingSetNodeID ID;
7517   ID.AddInteger(MemVT.getRawBits());
7518   AddNodeIDNode(ID, Opcode, VTList, Ops);
7519   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7520   ID.AddInteger(MMO->getFlags());
7521   void* IP = nullptr;
7522   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7523     cast<AtomicSDNode>(E)->refineAlignment(MMO);
7524     return SDValue(E, 0);
7525   }
7526 
7527   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7528                                     VTList, MemVT, MMO);
7529   createOperands(N, Ops);
7530 
7531   CSEMap.InsertNode(N, IP);
7532   InsertNode(N);
7533   return SDValue(N, 0);
7534 }
7535 
7536 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
7537                                        EVT MemVT, SDVTList VTs, SDValue Chain,
7538                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
7539                                        MachineMemOperand *MMO) {
7540   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
7541          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
7542   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
7543 
7544   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
7545   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7546 }
7547 
7548 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7549                                 SDValue Chain, SDValue Ptr, SDValue Val,
7550                                 MachineMemOperand *MMO) {
7551   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
7552           Opcode == ISD::ATOMIC_LOAD_SUB ||
7553           Opcode == ISD::ATOMIC_LOAD_AND ||
7554           Opcode == ISD::ATOMIC_LOAD_CLR ||
7555           Opcode == ISD::ATOMIC_LOAD_OR ||
7556           Opcode == ISD::ATOMIC_LOAD_XOR ||
7557           Opcode == ISD::ATOMIC_LOAD_NAND ||
7558           Opcode == ISD::ATOMIC_LOAD_MIN ||
7559           Opcode == ISD::ATOMIC_LOAD_MAX ||
7560           Opcode == ISD::ATOMIC_LOAD_UMIN ||
7561           Opcode == ISD::ATOMIC_LOAD_UMAX ||
7562           Opcode == ISD::ATOMIC_LOAD_FADD ||
7563           Opcode == ISD::ATOMIC_LOAD_FSUB ||
7564           Opcode == ISD::ATOMIC_LOAD_FMAX ||
7565           Opcode == ISD::ATOMIC_LOAD_FMIN ||
7566           Opcode == ISD::ATOMIC_SWAP ||
7567           Opcode == ISD::ATOMIC_STORE) &&
7568          "Invalid Atomic Op");
7569 
7570   EVT VT = Val.getValueType();
7571 
7572   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
7573                                                getVTList(VT, MVT::Other);
7574   SDValue Ops[] = {Chain, Ptr, Val};
7575   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7576 }
7577 
7578 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
7579                                 EVT VT, SDValue Chain, SDValue Ptr,
7580                                 MachineMemOperand *MMO) {
7581   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
7582 
7583   SDVTList VTs = getVTList(VT, MVT::Other);
7584   SDValue Ops[] = {Chain, Ptr};
7585   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
7586 }
7587 
7588 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
7589 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
7590   if (Ops.size() == 1)
7591     return Ops[0];
7592 
7593   SmallVector<EVT, 4> VTs;
7594   VTs.reserve(Ops.size());
7595   for (const SDValue &Op : Ops)
7596     VTs.push_back(Op.getValueType());
7597   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7598 }
7599 
7600 SDValue SelectionDAG::getMemIntrinsicNode(
7601     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7602     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7603     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7604   if (!Size && MemVT.isScalableVector())
7605     Size = MemoryLocation::UnknownSize;
7606   else if (!Size)
7607     Size = MemVT.getStoreSize();
7608 
7609   MachineFunction &MF = getMachineFunction();
7610   MachineMemOperand *MMO =
7611       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7612 
7613   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7614 }
7615 
7616 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7617                                           SDVTList VTList,
7618                                           ArrayRef<SDValue> Ops, EVT MemVT,
7619                                           MachineMemOperand *MMO) {
7620   assert((Opcode == ISD::INTRINSIC_VOID ||
7621           Opcode == ISD::INTRINSIC_W_CHAIN ||
7622           Opcode == ISD::PREFETCH ||
7623           ((int)Opcode <= std::numeric_limits<int>::max() &&
7624            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7625          "Opcode is not a memory-accessing opcode!");
7626 
7627   // Memoize the node unless it returns a flag.
7628   MemIntrinsicSDNode *N;
7629   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7630     FoldingSetNodeID ID;
7631     AddNodeIDNode(ID, Opcode, VTList, Ops);
7632     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7633         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7634     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7635     ID.AddInteger(MMO->getFlags());
7636     void *IP = nullptr;
7637     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7638       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7639       return SDValue(E, 0);
7640     }
7641 
7642     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7643                                       VTList, MemVT, MMO);
7644     createOperands(N, Ops);
7645 
7646   CSEMap.InsertNode(N, IP);
7647   } else {
7648     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7649                                       VTList, MemVT, MMO);
7650     createOperands(N, Ops);
7651   }
7652   InsertNode(N);
7653   SDValue V(N, 0);
7654   NewSDValueDbgMsg(V, "Creating new node: ", this);
7655   return V;
7656 }
7657 
7658 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7659                                       SDValue Chain, int FrameIndex,
7660                                       int64_t Size, int64_t Offset) {
7661   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7662   const auto VTs = getVTList(MVT::Other);
7663   SDValue Ops[2] = {
7664       Chain,
7665       getFrameIndex(FrameIndex,
7666                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7667                     true)};
7668 
7669   FoldingSetNodeID ID;
7670   AddNodeIDNode(ID, Opcode, VTs, Ops);
7671   ID.AddInteger(FrameIndex);
7672   ID.AddInteger(Size);
7673   ID.AddInteger(Offset);
7674   void *IP = nullptr;
7675   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7676     return SDValue(E, 0);
7677 
7678   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7679       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7680   createOperands(N, Ops);
7681   CSEMap.InsertNode(N, IP);
7682   InsertNode(N);
7683   SDValue V(N, 0);
7684   NewSDValueDbgMsg(V, "Creating new node: ", this);
7685   return V;
7686 }
7687 
7688 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
7689                                          uint64_t Guid, uint64_t Index,
7690                                          uint32_t Attr) {
7691   const unsigned Opcode = ISD::PSEUDO_PROBE;
7692   const auto VTs = getVTList(MVT::Other);
7693   SDValue Ops[] = {Chain};
7694   FoldingSetNodeID ID;
7695   AddNodeIDNode(ID, Opcode, VTs, Ops);
7696   ID.AddInteger(Guid);
7697   ID.AddInteger(Index);
7698   void *IP = nullptr;
7699   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
7700     return SDValue(E, 0);
7701 
7702   auto *N = newSDNode<PseudoProbeSDNode>(
7703       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
7704   createOperands(N, Ops);
7705   CSEMap.InsertNode(N, IP);
7706   InsertNode(N);
7707   SDValue V(N, 0);
7708   NewSDValueDbgMsg(V, "Creating new node: ", this);
7709   return V;
7710 }
7711 
7712 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7713 /// MachinePointerInfo record from it.  This is particularly useful because the
7714 /// code generator has many cases where it doesn't bother passing in a
7715 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7716 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7717                                            SelectionDAG &DAG, SDValue Ptr,
7718                                            int64_t Offset = 0) {
7719   // If this is FI+Offset, we can model it.
7720   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7721     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7722                                              FI->getIndex(), Offset);
7723 
7724   // If this is (FI+Offset1)+Offset2, we can model it.
7725   if (Ptr.getOpcode() != ISD::ADD ||
7726       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7727       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7728     return Info;
7729 
7730   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7731   return MachinePointerInfo::getFixedStack(
7732       DAG.getMachineFunction(), FI,
7733       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7734 }
7735 
7736 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7737 /// MachinePointerInfo record from it.  This is particularly useful because the
7738 /// code generator has many cases where it doesn't bother passing in a
7739 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
7740 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7741                                            SelectionDAG &DAG, SDValue Ptr,
7742                                            SDValue OffsetOp) {
7743   // If the 'Offset' value isn't a constant, we can't handle this.
7744   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7745     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7746   if (OffsetOp.isUndef())
7747     return InferPointerInfo(Info, DAG, Ptr);
7748   return Info;
7749 }
7750 
7751 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7752                               EVT VT, const SDLoc &dl, SDValue Chain,
7753                               SDValue Ptr, SDValue Offset,
7754                               MachinePointerInfo PtrInfo, EVT MemVT,
7755                               Align Alignment,
7756                               MachineMemOperand::Flags MMOFlags,
7757                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7758   assert(Chain.getValueType() == MVT::Other &&
7759         "Invalid chain type");
7760 
7761   MMOFlags |= MachineMemOperand::MOLoad;
7762   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7763   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7764   // clients.
7765   if (PtrInfo.V.isNull())
7766     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7767 
7768   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7769   MachineFunction &MF = getMachineFunction();
7770   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7771                                                    Alignment, AAInfo, Ranges);
7772   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7773 }
7774 
7775 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7776                               EVT VT, const SDLoc &dl, SDValue Chain,
7777                               SDValue Ptr, SDValue Offset, EVT MemVT,
7778                               MachineMemOperand *MMO) {
7779   if (VT == MemVT) {
7780     ExtType = ISD::NON_EXTLOAD;
7781   } else if (ExtType == ISD::NON_EXTLOAD) {
7782     assert(VT == MemVT && "Non-extending load from different memory type!");
7783   } else {
7784     // Extending load.
7785     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7786            "Should only be an extending load, not truncating!");
7787     assert(VT.isInteger() == MemVT.isInteger() &&
7788            "Cannot convert from FP to Int or Int -> FP!");
7789     assert(VT.isVector() == MemVT.isVector() &&
7790            "Cannot use an ext load to convert to or from a vector!");
7791     assert((!VT.isVector() ||
7792             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
7793            "Cannot use an ext load to change the number of vector elements!");
7794   }
7795 
7796   bool Indexed = AM != ISD::UNINDEXED;
7797   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7798 
7799   SDVTList VTs = Indexed ?
7800     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7801   SDValue Ops[] = { Chain, Ptr, Offset };
7802   FoldingSetNodeID ID;
7803   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7804   ID.AddInteger(MemVT.getRawBits());
7805   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7806       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7807   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7808   ID.AddInteger(MMO->getFlags());
7809   void *IP = nullptr;
7810   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7811     cast<LoadSDNode>(E)->refineAlignment(MMO);
7812     return SDValue(E, 0);
7813   }
7814   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7815                                   ExtType, MemVT, MMO);
7816   createOperands(N, Ops);
7817 
7818   CSEMap.InsertNode(N, IP);
7819   InsertNode(N);
7820   SDValue V(N, 0);
7821   NewSDValueDbgMsg(V, "Creating new node: ", this);
7822   return V;
7823 }
7824 
7825 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7826                               SDValue Ptr, MachinePointerInfo PtrInfo,
7827                               MaybeAlign Alignment,
7828                               MachineMemOperand::Flags MMOFlags,
7829                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7830   SDValue Undef = getUNDEF(Ptr.getValueType());
7831   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7832                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7833 }
7834 
7835 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7836                               SDValue Ptr, MachineMemOperand *MMO) {
7837   SDValue Undef = getUNDEF(Ptr.getValueType());
7838   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7839                  VT, MMO);
7840 }
7841 
7842 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7843                                  EVT VT, SDValue Chain, SDValue Ptr,
7844                                  MachinePointerInfo PtrInfo, EVT MemVT,
7845                                  MaybeAlign Alignment,
7846                                  MachineMemOperand::Flags MMOFlags,
7847                                  const AAMDNodes &AAInfo) {
7848   SDValue Undef = getUNDEF(Ptr.getValueType());
7849   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7850                  MemVT, Alignment, MMOFlags, AAInfo);
7851 }
7852 
7853 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7854                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7855                                  MachineMemOperand *MMO) {
7856   SDValue Undef = getUNDEF(Ptr.getValueType());
7857   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7858                  MemVT, MMO);
7859 }
7860 
7861 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7862                                      SDValue Base, SDValue Offset,
7863                                      ISD::MemIndexedMode AM) {
7864   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7865   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7866   // Don't propagate the invariant or dereferenceable flags.
7867   auto MMOFlags =
7868       LD->getMemOperand()->getFlags() &
7869       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7870   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7871                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7872                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
7873 }
7874 
7875 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7876                                SDValue Ptr, MachinePointerInfo PtrInfo,
7877                                Align Alignment,
7878                                MachineMemOperand::Flags MMOFlags,
7879                                const AAMDNodes &AAInfo) {
7880   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7881 
7882   MMOFlags |= MachineMemOperand::MOStore;
7883   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7884 
7885   if (PtrInfo.V.isNull())
7886     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7887 
7888   MachineFunction &MF = getMachineFunction();
7889   uint64_t Size =
7890       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7891   MachineMemOperand *MMO =
7892       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7893   return getStore(Chain, dl, Val, Ptr, MMO);
7894 }
7895 
7896 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7897                                SDValue Ptr, MachineMemOperand *MMO) {
7898   assert(Chain.getValueType() == MVT::Other &&
7899         "Invalid chain type");
7900   EVT VT = Val.getValueType();
7901   SDVTList VTs = getVTList(MVT::Other);
7902   SDValue Undef = getUNDEF(Ptr.getValueType());
7903   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7904   FoldingSetNodeID ID;
7905   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7906   ID.AddInteger(VT.getRawBits());
7907   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7908       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7909   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7910   ID.AddInteger(MMO->getFlags());
7911   void *IP = nullptr;
7912   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7913     cast<StoreSDNode>(E)->refineAlignment(MMO);
7914     return SDValue(E, 0);
7915   }
7916   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7917                                    ISD::UNINDEXED, false, VT, MMO);
7918   createOperands(N, Ops);
7919 
7920   CSEMap.InsertNode(N, IP);
7921   InsertNode(N);
7922   SDValue V(N, 0);
7923   NewSDValueDbgMsg(V, "Creating new node: ", this);
7924   return V;
7925 }
7926 
7927 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7928                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7929                                     EVT SVT, Align Alignment,
7930                                     MachineMemOperand::Flags MMOFlags,
7931                                     const AAMDNodes &AAInfo) {
7932   assert(Chain.getValueType() == MVT::Other &&
7933         "Invalid chain type");
7934 
7935   MMOFlags |= MachineMemOperand::MOStore;
7936   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7937 
7938   if (PtrInfo.V.isNull())
7939     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7940 
7941   MachineFunction &MF = getMachineFunction();
7942   MachineMemOperand *MMO = MF.getMachineMemOperand(
7943       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
7944       Alignment, AAInfo);
7945   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7946 }
7947 
7948 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7949                                     SDValue Ptr, EVT SVT,
7950                                     MachineMemOperand *MMO) {
7951   EVT VT = Val.getValueType();
7952 
7953   assert(Chain.getValueType() == MVT::Other &&
7954         "Invalid chain type");
7955   if (VT == SVT)
7956     return getStore(Chain, dl, Val, Ptr, MMO);
7957 
7958   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7959          "Should only be a truncating store, not extending!");
7960   assert(VT.isInteger() == SVT.isInteger() &&
7961          "Can't do FP-INT conversion!");
7962   assert(VT.isVector() == SVT.isVector() &&
7963          "Cannot use trunc store to convert to or from a vector!");
7964   assert((!VT.isVector() ||
7965           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
7966          "Cannot use trunc store to change the number of vector elements!");
7967 
7968   SDVTList VTs = getVTList(MVT::Other);
7969   SDValue Undef = getUNDEF(Ptr.getValueType());
7970   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7971   FoldingSetNodeID ID;
7972   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7973   ID.AddInteger(SVT.getRawBits());
7974   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7975       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7976   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7977   ID.AddInteger(MMO->getFlags());
7978   void *IP = nullptr;
7979   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7980     cast<StoreSDNode>(E)->refineAlignment(MMO);
7981     return SDValue(E, 0);
7982   }
7983   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7984                                    ISD::UNINDEXED, true, SVT, MMO);
7985   createOperands(N, Ops);
7986 
7987   CSEMap.InsertNode(N, IP);
7988   InsertNode(N);
7989   SDValue V(N, 0);
7990   NewSDValueDbgMsg(V, "Creating new node: ", this);
7991   return V;
7992 }
7993 
7994 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7995                                       SDValue Base, SDValue Offset,
7996                                       ISD::MemIndexedMode AM) {
7997   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7998   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7999   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
8000   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
8001   FoldingSetNodeID ID;
8002   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
8003   ID.AddInteger(ST->getMemoryVT().getRawBits());
8004   ID.AddInteger(ST->getRawSubclassData());
8005   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
8006   ID.AddInteger(ST->getMemOperand()->getFlags());
8007   void *IP = nullptr;
8008   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
8009     return SDValue(E, 0);
8010 
8011   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8012                                    ST->isTruncatingStore(), ST->getMemoryVT(),
8013                                    ST->getMemOperand());
8014   createOperands(N, Ops);
8015 
8016   CSEMap.InsertNode(N, IP);
8017   InsertNode(N);
8018   SDValue V(N, 0);
8019   NewSDValueDbgMsg(V, "Creating new node: ", this);
8020   return V;
8021 }
8022 
8023 SDValue SelectionDAG::getLoadVP(
8024     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
8025     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
8026     MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
8027     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8028     const MDNode *Ranges, bool IsExpanding) {
8029   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8030 
8031   MMOFlags |= MachineMemOperand::MOLoad;
8032   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
8033   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
8034   // clients.
8035   if (PtrInfo.V.isNull())
8036     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
8037 
8038   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
8039   MachineFunction &MF = getMachineFunction();
8040   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
8041                                                    Alignment, AAInfo, Ranges);
8042   return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
8043                    MMO, IsExpanding);
8044 }
8045 
8046 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
8047                                 ISD::LoadExtType ExtType, EVT VT,
8048                                 const SDLoc &dl, SDValue Chain, SDValue Ptr,
8049                                 SDValue Offset, SDValue Mask, SDValue EVL,
8050                                 EVT MemVT, MachineMemOperand *MMO,
8051                                 bool IsExpanding) {
8052   bool Indexed = AM != ISD::UNINDEXED;
8053   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
8054 
8055   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
8056                          : getVTList(VT, MVT::Other);
8057   SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
8058   FoldingSetNodeID ID;
8059   AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
8060   ID.AddInteger(VT.getRawBits());
8061   ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
8062       dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
8063   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8064   ID.AddInteger(MMO->getFlags());
8065   void *IP = nullptr;
8066   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8067     cast<VPLoadSDNode>(E)->refineAlignment(MMO);
8068     return SDValue(E, 0);
8069   }
8070   auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8071                                     ExtType, IsExpanding, MemVT, MMO);
8072   createOperands(N, Ops);
8073 
8074   CSEMap.InsertNode(N, IP);
8075   InsertNode(N);
8076   SDValue V(N, 0);
8077   NewSDValueDbgMsg(V, "Creating new node: ", this);
8078   return V;
8079 }
8080 
8081 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
8082                                 SDValue Ptr, SDValue Mask, SDValue EVL,
8083                                 MachinePointerInfo PtrInfo,
8084                                 MaybeAlign Alignment,
8085                                 MachineMemOperand::Flags MMOFlags,
8086                                 const AAMDNodes &AAInfo, const MDNode *Ranges,
8087                                 bool IsExpanding) {
8088   SDValue Undef = getUNDEF(Ptr.getValueType());
8089   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
8090                    Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
8091                    IsExpanding);
8092 }
8093 
8094 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
8095                                 SDValue Ptr, SDValue Mask, SDValue EVL,
8096                                 MachineMemOperand *MMO, bool IsExpanding) {
8097   SDValue Undef = getUNDEF(Ptr.getValueType());
8098   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
8099                    Mask, EVL, VT, MMO, IsExpanding);
8100 }
8101 
8102 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
8103                                    EVT VT, SDValue Chain, SDValue Ptr,
8104                                    SDValue Mask, SDValue EVL,
8105                                    MachinePointerInfo PtrInfo, EVT MemVT,
8106                                    MaybeAlign Alignment,
8107                                    MachineMemOperand::Flags MMOFlags,
8108                                    const AAMDNodes &AAInfo, bool IsExpanding) {
8109   SDValue Undef = getUNDEF(Ptr.getValueType());
8110   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
8111                    EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
8112                    IsExpanding);
8113 }
8114 
8115 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
8116                                    EVT VT, SDValue Chain, SDValue Ptr,
8117                                    SDValue Mask, SDValue EVL, EVT MemVT,
8118                                    MachineMemOperand *MMO, bool IsExpanding) {
8119   SDValue Undef = getUNDEF(Ptr.getValueType());
8120   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
8121                    EVL, MemVT, MMO, IsExpanding);
8122 }
8123 
8124 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
8125                                        SDValue Base, SDValue Offset,
8126                                        ISD::MemIndexedMode AM) {
8127   auto *LD = cast<VPLoadSDNode>(OrigLoad);
8128   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
8129   // Don't propagate the invariant or dereferenceable flags.
8130   auto MMOFlags =
8131       LD->getMemOperand()->getFlags() &
8132       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
8133   return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
8134                    LD->getChain(), Base, Offset, LD->getMask(),
8135                    LD->getVectorLength(), LD->getPointerInfo(),
8136                    LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
8137                    nullptr, LD->isExpandingLoad());
8138 }
8139 
8140 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
8141                                  SDValue Ptr, SDValue Offset, SDValue Mask,
8142                                  SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
8143                                  ISD::MemIndexedMode AM, bool IsTruncating,
8144                                  bool IsCompressing) {
8145   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8146   bool Indexed = AM != ISD::UNINDEXED;
8147   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
8148   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
8149                          : getVTList(MVT::Other);
8150   SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
8151   FoldingSetNodeID ID;
8152   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8153   ID.AddInteger(MemVT.getRawBits());
8154   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
8155       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8156   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8157   ID.AddInteger(MMO->getFlags());
8158   void *IP = nullptr;
8159   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8160     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
8161     return SDValue(E, 0);
8162   }
8163   auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8164                                      IsTruncating, IsCompressing, MemVT, MMO);
8165   createOperands(N, Ops);
8166 
8167   CSEMap.InsertNode(N, IP);
8168   InsertNode(N);
8169   SDValue V(N, 0);
8170   NewSDValueDbgMsg(V, "Creating new node: ", this);
8171   return V;
8172 }
8173 
8174 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
8175                                       SDValue Val, SDValue Ptr, SDValue Mask,
8176                                       SDValue EVL, MachinePointerInfo PtrInfo,
8177                                       EVT SVT, Align Alignment,
8178                                       MachineMemOperand::Flags MMOFlags,
8179                                       const AAMDNodes &AAInfo,
8180                                       bool IsCompressing) {
8181   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8182 
8183   MMOFlags |= MachineMemOperand::MOStore;
8184   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
8185 
8186   if (PtrInfo.V.isNull())
8187     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
8188 
8189   MachineFunction &MF = getMachineFunction();
8190   MachineMemOperand *MMO = MF.getMachineMemOperand(
8191       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
8192       Alignment, AAInfo);
8193   return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
8194                          IsCompressing);
8195 }
8196 
8197 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
8198                                       SDValue Val, SDValue Ptr, SDValue Mask,
8199                                       SDValue EVL, EVT SVT,
8200                                       MachineMemOperand *MMO,
8201                                       bool IsCompressing) {
8202   EVT VT = Val.getValueType();
8203 
8204   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8205   if (VT == SVT)
8206     return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
8207                       EVL, VT, MMO, ISD::UNINDEXED,
8208                       /*IsTruncating*/ false, IsCompressing);
8209 
8210   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
8211          "Should only be a truncating store, not extending!");
8212   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
8213   assert(VT.isVector() == SVT.isVector() &&
8214          "Cannot use trunc store to convert to or from a vector!");
8215   assert((!VT.isVector() ||
8216           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
8217          "Cannot use trunc store to change the number of vector elements!");
8218 
8219   SDVTList VTs = getVTList(MVT::Other);
8220   SDValue Undef = getUNDEF(Ptr.getValueType());
8221   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
8222   FoldingSetNodeID ID;
8223   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8224   ID.AddInteger(SVT.getRawBits());
8225   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
8226       dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
8227   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8228   ID.AddInteger(MMO->getFlags());
8229   void *IP = nullptr;
8230   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8231     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
8232     return SDValue(E, 0);
8233   }
8234   auto *N =
8235       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8236                                ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
8237   createOperands(N, Ops);
8238 
8239   CSEMap.InsertNode(N, IP);
8240   InsertNode(N);
8241   SDValue V(N, 0);
8242   NewSDValueDbgMsg(V, "Creating new node: ", this);
8243   return V;
8244 }
8245 
8246 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
8247                                         SDValue Base, SDValue Offset,
8248                                         ISD::MemIndexedMode AM) {
8249   auto *ST = cast<VPStoreSDNode>(OrigStore);
8250   assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
8251   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
8252   SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
8253                    Offset,         ST->getMask(),  ST->getVectorLength()};
8254   FoldingSetNodeID ID;
8255   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8256   ID.AddInteger(ST->getMemoryVT().getRawBits());
8257   ID.AddInteger(ST->getRawSubclassData());
8258   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
8259   ID.AddInteger(ST->getMemOperand()->getFlags());
8260   void *IP = nullptr;
8261   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
8262     return SDValue(E, 0);
8263 
8264   auto *N = newSDNode<VPStoreSDNode>(
8265       dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
8266       ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
8267   createOperands(N, Ops);
8268 
8269   CSEMap.InsertNode(N, IP);
8270   InsertNode(N);
8271   SDValue V(N, 0);
8272   NewSDValueDbgMsg(V, "Creating new node: ", this);
8273   return V;
8274 }
8275 
8276 SDValue SelectionDAG::getStridedLoadVP(
8277     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
8278     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
8279     SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
8280     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8281     const MDNode *Ranges, bool IsExpanding) {
8282   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8283 
8284   MMOFlags |= MachineMemOperand::MOLoad;
8285   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
8286   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
8287   // clients.
8288   if (PtrInfo.V.isNull())
8289     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
8290 
8291   uint64_t Size = MemoryLocation::UnknownSize;
8292   MachineFunction &MF = getMachineFunction();
8293   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
8294                                                    Alignment, AAInfo, Ranges);
8295   return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask,
8296                           EVL, MemVT, MMO, IsExpanding);
8297 }
8298 
8299 SDValue SelectionDAG::getStridedLoadVP(
8300     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
8301     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
8302     SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) {
8303   bool Indexed = AM != ISD::UNINDEXED;
8304   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
8305 
8306   SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL};
8307   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
8308                          : getVTList(VT, MVT::Other);
8309   FoldingSetNodeID ID;
8310   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops);
8311   ID.AddInteger(VT.getRawBits());
8312   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
8313       DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
8314   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8315 
8316   void *IP = nullptr;
8317   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8318     cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO);
8319     return SDValue(E, 0);
8320   }
8321 
8322   auto *N =
8323       newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM,
8324                                      ExtType, IsExpanding, MemVT, MMO);
8325   createOperands(N, Ops);
8326   CSEMap.InsertNode(N, IP);
8327   InsertNode(N);
8328   SDValue V(N, 0);
8329   NewSDValueDbgMsg(V, "Creating new node: ", this);
8330   return V;
8331 }
8332 
8333 SDValue SelectionDAG::getStridedLoadVP(
8334     EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride,
8335     SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment,
8336     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8337     const MDNode *Ranges, bool IsExpanding) {
8338   SDValue Undef = getUNDEF(Ptr.getValueType());
8339   return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
8340                           Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment,
8341                           MMOFlags, AAInfo, Ranges, IsExpanding);
8342 }
8343 
8344 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain,
8345                                        SDValue Ptr, SDValue Stride,
8346                                        SDValue Mask, SDValue EVL,
8347                                        MachineMemOperand *MMO,
8348                                        bool IsExpanding) {
8349   SDValue Undef = getUNDEF(Ptr.getValueType());
8350   return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
8351                           Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
8352 }
8353 
8354 SDValue SelectionDAG::getExtStridedLoadVP(
8355     ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
8356     SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL,
8357     MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment,
8358     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8359     bool IsExpanding) {
8360   SDValue Undef = getUNDEF(Ptr.getValueType());
8361   return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
8362                           Stride, Mask, EVL, PtrInfo, MemVT, Alignment,
8363                           MMOFlags, AAInfo, nullptr, IsExpanding);
8364 }
8365 
8366 SDValue SelectionDAG::getExtStridedLoadVP(
8367     ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
8368     SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT,
8369     MachineMemOperand *MMO, bool IsExpanding) {
8370   SDValue Undef = getUNDEF(Ptr.getValueType());
8371   return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
8372                           Stride, Mask, EVL, MemVT, MMO, IsExpanding);
8373 }
8374 
8375 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL,
8376                                               SDValue Base, SDValue Offset,
8377                                               ISD::MemIndexedMode AM) {
8378   auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad);
8379   assert(SLD->getOffset().isUndef() &&
8380          "Strided load is already a indexed load!");
8381   // Don't propagate the invariant or dereferenceable flags.
8382   auto MMOFlags =
8383       SLD->getMemOperand()->getFlags() &
8384       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
8385   return getStridedLoadVP(
8386       AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(),
8387       Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(),
8388       SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags,
8389       SLD->getAAInfo(), nullptr, SLD->isExpandingLoad());
8390 }
8391 
8392 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL,
8393                                         SDValue Val, SDValue Ptr,
8394                                         SDValue Offset, SDValue Stride,
8395                                         SDValue Mask, SDValue EVL, EVT MemVT,
8396                                         MachineMemOperand *MMO,
8397                                         ISD::MemIndexedMode AM,
8398                                         bool IsTruncating, bool IsCompressing) {
8399   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8400   bool Indexed = AM != ISD::UNINDEXED;
8401   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
8402   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
8403                          : getVTList(MVT::Other);
8404   SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL};
8405   FoldingSetNodeID ID;
8406   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8407   ID.AddInteger(MemVT.getRawBits());
8408   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
8409       DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8410   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8411   void *IP = nullptr;
8412   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8413     cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
8414     return SDValue(E, 0);
8415   }
8416   auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
8417                                             VTs, AM, IsTruncating,
8418                                             IsCompressing, MemVT, MMO);
8419   createOperands(N, Ops);
8420 
8421   CSEMap.InsertNode(N, IP);
8422   InsertNode(N);
8423   SDValue V(N, 0);
8424   NewSDValueDbgMsg(V, "Creating new node: ", this);
8425   return V;
8426 }
8427 
8428 SDValue SelectionDAG::getTruncStridedStoreVP(
8429     SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride,
8430     SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT,
8431     Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8432     bool IsCompressing) {
8433   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8434 
8435   MMOFlags |= MachineMemOperand::MOStore;
8436   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
8437 
8438   if (PtrInfo.V.isNull())
8439     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
8440 
8441   MachineFunction &MF = getMachineFunction();
8442   MachineMemOperand *MMO = MF.getMachineMemOperand(
8443       PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo);
8444   return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT,
8445                                 MMO, IsCompressing);
8446 }
8447 
8448 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL,
8449                                              SDValue Val, SDValue Ptr,
8450                                              SDValue Stride, SDValue Mask,
8451                                              SDValue EVL, EVT SVT,
8452                                              MachineMemOperand *MMO,
8453                                              bool IsCompressing) {
8454   EVT VT = Val.getValueType();
8455 
8456   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8457   if (VT == SVT)
8458     return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()),
8459                              Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED,
8460                              /*IsTruncating*/ false, IsCompressing);
8461 
8462   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
8463          "Should only be a truncating store, not extending!");
8464   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
8465   assert(VT.isVector() == SVT.isVector() &&
8466          "Cannot use trunc store to convert to or from a vector!");
8467   assert((!VT.isVector() ||
8468           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
8469          "Cannot use trunc store to change the number of vector elements!");
8470 
8471   SDVTList VTs = getVTList(MVT::Other);
8472   SDValue Undef = getUNDEF(Ptr.getValueType());
8473   SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
8474   FoldingSetNodeID ID;
8475   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8476   ID.AddInteger(SVT.getRawBits());
8477   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
8478       DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
8479   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8480   void *IP = nullptr;
8481   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8482     cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
8483     return SDValue(E, 0);
8484   }
8485   auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
8486                                             VTs, ISD::UNINDEXED, true,
8487                                             IsCompressing, SVT, MMO);
8488   createOperands(N, Ops);
8489 
8490   CSEMap.InsertNode(N, IP);
8491   InsertNode(N);
8492   SDValue V(N, 0);
8493   NewSDValueDbgMsg(V, "Creating new node: ", this);
8494   return V;
8495 }
8496 
8497 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore,
8498                                                const SDLoc &DL, SDValue Base,
8499                                                SDValue Offset,
8500                                                ISD::MemIndexedMode AM) {
8501   auto *SST = cast<VPStridedStoreSDNode>(OrigStore);
8502   assert(SST->getOffset().isUndef() &&
8503          "Strided store is already an indexed store!");
8504   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
8505   SDValue Ops[] = {
8506       SST->getChain(), SST->getValue(),       Base, Offset, SST->getStride(),
8507       SST->getMask(),  SST->getVectorLength()};
8508   FoldingSetNodeID ID;
8509   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
8510   ID.AddInteger(SST->getMemoryVT().getRawBits());
8511   ID.AddInteger(SST->getRawSubclassData());
8512   ID.AddInteger(SST->getPointerInfo().getAddrSpace());
8513   void *IP = nullptr;
8514   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
8515     return SDValue(E, 0);
8516 
8517   auto *N = newSDNode<VPStridedStoreSDNode>(
8518       DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(),
8519       SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand());
8520   createOperands(N, Ops);
8521 
8522   CSEMap.InsertNode(N, IP);
8523   InsertNode(N);
8524   SDValue V(N, 0);
8525   NewSDValueDbgMsg(V, "Creating new node: ", this);
8526   return V;
8527 }
8528 
8529 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
8530                                   ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
8531                                   ISD::MemIndexType IndexType) {
8532   assert(Ops.size() == 6 && "Incompatible number of operands");
8533 
8534   FoldingSetNodeID ID;
8535   AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
8536   ID.AddInteger(VT.getRawBits());
8537   ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
8538       dl.getIROrder(), VTs, VT, MMO, IndexType));
8539   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8540   ID.AddInteger(MMO->getFlags());
8541   void *IP = nullptr;
8542   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8543     cast<VPGatherSDNode>(E)->refineAlignment(MMO);
8544     return SDValue(E, 0);
8545   }
8546 
8547   auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8548                                       VT, MMO, IndexType);
8549   createOperands(N, Ops);
8550 
8551   assert(N->getMask().getValueType().getVectorElementCount() ==
8552              N->getValueType(0).getVectorElementCount() &&
8553          "Vector width mismatch between mask and data");
8554   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8555              N->getValueType(0).getVectorElementCount().isScalable() &&
8556          "Scalable flags of index and data do not match");
8557   assert(ElementCount::isKnownGE(
8558              N->getIndex().getValueType().getVectorElementCount(),
8559              N->getValueType(0).getVectorElementCount()) &&
8560          "Vector width mismatch between index and data");
8561   assert(isa<ConstantSDNode>(N->getScale()) &&
8562          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8563          "Scale should be a constant power of 2");
8564 
8565   CSEMap.InsertNode(N, IP);
8566   InsertNode(N);
8567   SDValue V(N, 0);
8568   NewSDValueDbgMsg(V, "Creating new node: ", this);
8569   return V;
8570 }
8571 
8572 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
8573                                    ArrayRef<SDValue> Ops,
8574                                    MachineMemOperand *MMO,
8575                                    ISD::MemIndexType IndexType) {
8576   assert(Ops.size() == 7 && "Incompatible number of operands");
8577 
8578   FoldingSetNodeID ID;
8579   AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
8580   ID.AddInteger(VT.getRawBits());
8581   ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
8582       dl.getIROrder(), VTs, VT, MMO, IndexType));
8583   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8584   ID.AddInteger(MMO->getFlags());
8585   void *IP = nullptr;
8586   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8587     cast<VPScatterSDNode>(E)->refineAlignment(MMO);
8588     return SDValue(E, 0);
8589   }
8590   auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8591                                        VT, MMO, IndexType);
8592   createOperands(N, Ops);
8593 
8594   assert(N->getMask().getValueType().getVectorElementCount() ==
8595              N->getValue().getValueType().getVectorElementCount() &&
8596          "Vector width mismatch between mask and data");
8597   assert(
8598       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8599           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8600       "Scalable flags of index and data do not match");
8601   assert(ElementCount::isKnownGE(
8602              N->getIndex().getValueType().getVectorElementCount(),
8603              N->getValue().getValueType().getVectorElementCount()) &&
8604          "Vector width mismatch between index and data");
8605   assert(isa<ConstantSDNode>(N->getScale()) &&
8606          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8607          "Scale should be a constant power of 2");
8608 
8609   CSEMap.InsertNode(N, IP);
8610   InsertNode(N);
8611   SDValue V(N, 0);
8612   NewSDValueDbgMsg(V, "Creating new node: ", this);
8613   return V;
8614 }
8615 
8616 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8617                                     SDValue Base, SDValue Offset, SDValue Mask,
8618                                     SDValue PassThru, EVT MemVT,
8619                                     MachineMemOperand *MMO,
8620                                     ISD::MemIndexedMode AM,
8621                                     ISD::LoadExtType ExtTy, bool isExpanding) {
8622   bool Indexed = AM != ISD::UNINDEXED;
8623   assert((Indexed || Offset.isUndef()) &&
8624          "Unindexed masked load with an offset!");
8625   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
8626                          : getVTList(VT, MVT::Other);
8627   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
8628   FoldingSetNodeID ID;
8629   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
8630   ID.AddInteger(MemVT.getRawBits());
8631   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
8632       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
8633   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8634   ID.AddInteger(MMO->getFlags());
8635   void *IP = nullptr;
8636   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8637     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
8638     return SDValue(E, 0);
8639   }
8640   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8641                                         AM, ExtTy, isExpanding, MemVT, MMO);
8642   createOperands(N, Ops);
8643 
8644   CSEMap.InsertNode(N, IP);
8645   InsertNode(N);
8646   SDValue V(N, 0);
8647   NewSDValueDbgMsg(V, "Creating new node: ", this);
8648   return V;
8649 }
8650 
8651 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
8652                                            SDValue Base, SDValue Offset,
8653                                            ISD::MemIndexedMode AM) {
8654   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
8655   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
8656   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
8657                        Offset, LD->getMask(), LD->getPassThru(),
8658                        LD->getMemoryVT(), LD->getMemOperand(), AM,
8659                        LD->getExtensionType(), LD->isExpandingLoad());
8660 }
8661 
8662 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
8663                                      SDValue Val, SDValue Base, SDValue Offset,
8664                                      SDValue Mask, EVT MemVT,
8665                                      MachineMemOperand *MMO,
8666                                      ISD::MemIndexedMode AM, bool IsTruncating,
8667                                      bool IsCompressing) {
8668   assert(Chain.getValueType() == MVT::Other &&
8669         "Invalid chain type");
8670   bool Indexed = AM != ISD::UNINDEXED;
8671   assert((Indexed || Offset.isUndef()) &&
8672          "Unindexed masked store with an offset!");
8673   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
8674                          : getVTList(MVT::Other);
8675   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
8676   FoldingSetNodeID ID;
8677   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
8678   ID.AddInteger(MemVT.getRawBits());
8679   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
8680       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8681   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8682   ID.AddInteger(MMO->getFlags());
8683   void *IP = nullptr;
8684   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8685     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
8686     return SDValue(E, 0);
8687   }
8688   auto *N =
8689       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8690                                    IsTruncating, IsCompressing, MemVT, MMO);
8691   createOperands(N, Ops);
8692 
8693   CSEMap.InsertNode(N, IP);
8694   InsertNode(N);
8695   SDValue V(N, 0);
8696   NewSDValueDbgMsg(V, "Creating new node: ", this);
8697   return V;
8698 }
8699 
8700 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
8701                                             SDValue Base, SDValue Offset,
8702                                             ISD::MemIndexedMode AM) {
8703   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
8704   assert(ST->getOffset().isUndef() &&
8705          "Masked store is already a indexed store!");
8706   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
8707                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
8708                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
8709 }
8710 
8711 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8712                                       ArrayRef<SDValue> Ops,
8713                                       MachineMemOperand *MMO,
8714                                       ISD::MemIndexType IndexType,
8715                                       ISD::LoadExtType ExtTy) {
8716   assert(Ops.size() == 6 && "Incompatible number of operands");
8717 
8718   FoldingSetNodeID ID;
8719   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
8720   ID.AddInteger(MemVT.getRawBits());
8721   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
8722       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
8723   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8724   ID.AddInteger(MMO->getFlags());
8725   void *IP = nullptr;
8726   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8727     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
8728     return SDValue(E, 0);
8729   }
8730 
8731   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8732                                           VTs, MemVT, MMO, IndexType, ExtTy);
8733   createOperands(N, Ops);
8734 
8735   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
8736          "Incompatible type of the PassThru value in MaskedGatherSDNode");
8737   assert(N->getMask().getValueType().getVectorElementCount() ==
8738              N->getValueType(0).getVectorElementCount() &&
8739          "Vector width mismatch between mask and data");
8740   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8741              N->getValueType(0).getVectorElementCount().isScalable() &&
8742          "Scalable flags of index and data do not match");
8743   assert(ElementCount::isKnownGE(
8744              N->getIndex().getValueType().getVectorElementCount(),
8745              N->getValueType(0).getVectorElementCount()) &&
8746          "Vector width mismatch between index and data");
8747   assert(isa<ConstantSDNode>(N->getScale()) &&
8748          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8749          "Scale should be a constant power of 2");
8750 
8751   CSEMap.InsertNode(N, IP);
8752   InsertNode(N);
8753   SDValue V(N, 0);
8754   NewSDValueDbgMsg(V, "Creating new node: ", this);
8755   return V;
8756 }
8757 
8758 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
8759                                        ArrayRef<SDValue> Ops,
8760                                        MachineMemOperand *MMO,
8761                                        ISD::MemIndexType IndexType,
8762                                        bool IsTrunc) {
8763   assert(Ops.size() == 6 && "Incompatible number of operands");
8764 
8765   FoldingSetNodeID ID;
8766   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
8767   ID.AddInteger(MemVT.getRawBits());
8768   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
8769       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
8770   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8771   ID.AddInteger(MMO->getFlags());
8772   void *IP = nullptr;
8773   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8774     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
8775     return SDValue(E, 0);
8776   }
8777 
8778   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
8779                                            VTs, MemVT, MMO, IndexType, IsTrunc);
8780   createOperands(N, Ops);
8781 
8782   assert(N->getMask().getValueType().getVectorElementCount() ==
8783              N->getValue().getValueType().getVectorElementCount() &&
8784          "Vector width mismatch between mask and data");
8785   assert(
8786       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
8787           N->getValue().getValueType().getVectorElementCount().isScalable() &&
8788       "Scalable flags of index and data do not match");
8789   assert(ElementCount::isKnownGE(
8790              N->getIndex().getValueType().getVectorElementCount(),
8791              N->getValue().getValueType().getVectorElementCount()) &&
8792          "Vector width mismatch between index and data");
8793   assert(isa<ConstantSDNode>(N->getScale()) &&
8794          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
8795          "Scale should be a constant power of 2");
8796 
8797   CSEMap.InsertNode(N, IP);
8798   InsertNode(N);
8799   SDValue V(N, 0);
8800   NewSDValueDbgMsg(V, "Creating new node: ", this);
8801   return V;
8802 }
8803 
8804 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
8805   // select undef, T, F --> T (if T is a constant), otherwise F
8806   // select, ?, undef, F --> F
8807   // select, ?, T, undef --> T
8808   if (Cond.isUndef())
8809     return isConstantValueOfAnyType(T) ? T : F;
8810   if (T.isUndef())
8811     return F;
8812   if (F.isUndef())
8813     return T;
8814 
8815   // select true, T, F --> T
8816   // select false, T, F --> F
8817   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
8818     return CondC->isZero() ? F : T;
8819 
8820   // TODO: This should simplify VSELECT with constant condition using something
8821   // like this (but check boolean contents to be complete?):
8822   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
8823   //    return T;
8824   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
8825   //    return F;
8826 
8827   // select ?, T, T --> T
8828   if (T == F)
8829     return T;
8830 
8831   return SDValue();
8832 }
8833 
8834 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
8835   // shift undef, Y --> 0 (can always assume that the undef value is 0)
8836   if (X.isUndef())
8837     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
8838   // shift X, undef --> undef (because it may shift by the bitwidth)
8839   if (Y.isUndef())
8840     return getUNDEF(X.getValueType());
8841 
8842   // shift 0, Y --> 0
8843   // shift X, 0 --> X
8844   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
8845     return X;
8846 
8847   // shift X, C >= bitwidth(X) --> undef
8848   // All vector elements must be too big (or undef) to avoid partial undefs.
8849   auto isShiftTooBig = [X](ConstantSDNode *Val) {
8850     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
8851   };
8852   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
8853     return getUNDEF(X.getValueType());
8854 
8855   return SDValue();
8856 }
8857 
8858 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
8859                                       SDNodeFlags Flags) {
8860   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
8861   // (an undef operand can be chosen to be Nan/Inf), then the result of this
8862   // operation is poison. That result can be relaxed to undef.
8863   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
8864   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
8865   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
8866                 (YC && YC->getValueAPF().isNaN());
8867   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
8868                 (YC && YC->getValueAPF().isInfinity());
8869 
8870   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
8871     return getUNDEF(X.getValueType());
8872 
8873   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
8874     return getUNDEF(X.getValueType());
8875 
8876   if (!YC)
8877     return SDValue();
8878 
8879   // X + -0.0 --> X
8880   if (Opcode == ISD::FADD)
8881     if (YC->getValueAPF().isNegZero())
8882       return X;
8883 
8884   // X - +0.0 --> X
8885   if (Opcode == ISD::FSUB)
8886     if (YC->getValueAPF().isPosZero())
8887       return X;
8888 
8889   // X * 1.0 --> X
8890   // X / 1.0 --> X
8891   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
8892     if (YC->getValueAPF().isExactlyValue(1.0))
8893       return X;
8894 
8895   // X * 0.0 --> 0.0
8896   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
8897     if (YC->getValueAPF().isZero())
8898       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
8899 
8900   return SDValue();
8901 }
8902 
8903 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
8904                                SDValue Ptr, SDValue SV, unsigned Align) {
8905   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
8906   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
8907 }
8908 
8909 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8910                               ArrayRef<SDUse> Ops) {
8911   switch (Ops.size()) {
8912   case 0: return getNode(Opcode, DL, VT);
8913   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
8914   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
8915   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
8916   default: break;
8917   }
8918 
8919   // Copy from an SDUse array into an SDValue array for use with
8920   // the regular getNode logic.
8921   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
8922   return getNode(Opcode, DL, VT, NewOps);
8923 }
8924 
8925 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8926                               ArrayRef<SDValue> Ops) {
8927   SDNodeFlags Flags;
8928   if (Inserter)
8929     Flags = Inserter->getFlags();
8930   return getNode(Opcode, DL, VT, Ops, Flags);
8931 }
8932 
8933 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8934                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
8935   unsigned NumOps = Ops.size();
8936   switch (NumOps) {
8937   case 0: return getNode(Opcode, DL, VT);
8938   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
8939   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
8940   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
8941   default: break;
8942   }
8943 
8944 #ifndef NDEBUG
8945   for (const auto &Op : Ops)
8946     assert(Op.getOpcode() != ISD::DELETED_NODE &&
8947            "Operand is DELETED_NODE!");
8948 #endif
8949 
8950   switch (Opcode) {
8951   default: break;
8952   case ISD::BUILD_VECTOR:
8953     // Attempt to simplify BUILD_VECTOR.
8954     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8955       return V;
8956     break;
8957   case ISD::CONCAT_VECTORS:
8958     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8959       return V;
8960     break;
8961   case ISD::SELECT_CC:
8962     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
8963     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
8964            "LHS and RHS of condition must have same type!");
8965     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8966            "True and False arms of SelectCC must have same type!");
8967     assert(Ops[2].getValueType() == VT &&
8968            "select_cc node must be of same type as true and false value!");
8969     assert((!Ops[0].getValueType().isVector() ||
8970             Ops[0].getValueType().getVectorElementCount() ==
8971                 VT.getVectorElementCount()) &&
8972            "Expected select_cc with vector result to have the same sized "
8973            "comparison type!");
8974     break;
8975   case ISD::BR_CC:
8976     assert(NumOps == 5 && "BR_CC takes 5 operands!");
8977     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
8978            "LHS/RHS of comparison should match types!");
8979     break;
8980   case ISD::VP_ADD:
8981   case ISD::VP_SUB:
8982     // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR
8983     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
8984       Opcode = ISD::VP_XOR;
8985     break;
8986   case ISD::VP_MUL:
8987     // If it is VP_MUL mask operation then turn it to VP_AND
8988     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
8989       Opcode = ISD::VP_AND;
8990     break;
8991   case ISD::VP_REDUCE_MUL:
8992     // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND
8993     if (VT == MVT::i1)
8994       Opcode = ISD::VP_REDUCE_AND;
8995     break;
8996   case ISD::VP_REDUCE_ADD:
8997     // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR
8998     if (VT == MVT::i1)
8999       Opcode = ISD::VP_REDUCE_XOR;
9000     break;
9001   case ISD::VP_REDUCE_SMAX:
9002   case ISD::VP_REDUCE_UMIN:
9003     // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to
9004     // VP_REDUCE_AND.
9005     if (VT == MVT::i1)
9006       Opcode = ISD::VP_REDUCE_AND;
9007     break;
9008   case ISD::VP_REDUCE_SMIN:
9009   case ISD::VP_REDUCE_UMAX:
9010     // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to
9011     // VP_REDUCE_OR.
9012     if (VT == MVT::i1)
9013       Opcode = ISD::VP_REDUCE_OR;
9014     break;
9015   }
9016 
9017   // Memoize nodes.
9018   SDNode *N;
9019   SDVTList VTs = getVTList(VT);
9020 
9021   if (VT != MVT::Glue) {
9022     FoldingSetNodeID ID;
9023     AddNodeIDNode(ID, Opcode, VTs, Ops);
9024     void *IP = nullptr;
9025 
9026     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
9027       return SDValue(E, 0);
9028 
9029     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9030     createOperands(N, Ops);
9031 
9032     CSEMap.InsertNode(N, IP);
9033   } else {
9034     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9035     createOperands(N, Ops);
9036   }
9037 
9038   N->setFlags(Flags);
9039   InsertNode(N);
9040   SDValue V(N, 0);
9041   NewSDValueDbgMsg(V, "Creating new node: ", this);
9042   return V;
9043 }
9044 
9045 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
9046                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
9047   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
9048 }
9049 
9050 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9051                               ArrayRef<SDValue> Ops) {
9052   SDNodeFlags Flags;
9053   if (Inserter)
9054     Flags = Inserter->getFlags();
9055   return getNode(Opcode, DL, VTList, Ops, Flags);
9056 }
9057 
9058 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9059                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
9060   if (VTList.NumVTs == 1)
9061     return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags);
9062 
9063 #ifndef NDEBUG
9064   for (const auto &Op : Ops)
9065     assert(Op.getOpcode() != ISD::DELETED_NODE &&
9066            "Operand is DELETED_NODE!");
9067 #endif
9068 
9069   switch (Opcode) {
9070   case ISD::SADDO:
9071   case ISD::UADDO:
9072   case ISD::SSUBO:
9073   case ISD::USUBO: {
9074     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
9075            "Invalid add/sub overflow op!");
9076     assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
9077            Ops[0].getValueType() == Ops[1].getValueType() &&
9078            Ops[0].getValueType() == VTList.VTs[0] &&
9079            "Binary operator types must match!");
9080     SDValue N1 = Ops[0], N2 = Ops[1];
9081     canonicalizeCommutativeBinop(Opcode, N1, N2);
9082 
9083     // (X +- 0) -> X with zero-overflow.
9084     ConstantSDNode *N2CV = isConstOrConstSplat(N2, /*AllowUndefs*/ false,
9085                                                /*AllowTruncation*/ true);
9086     if (N2CV && N2CV->isZero()) {
9087       SDValue ZeroOverFlow = getConstant(0, DL, VTList.VTs[1]);
9088       return getNode(ISD::MERGE_VALUES, DL, VTList, {N1, ZeroOverFlow}, Flags);
9089     }
9090     break;
9091   }
9092   case ISD::STRICT_FP_EXTEND:
9093     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
9094            "Invalid STRICT_FP_EXTEND!");
9095     assert(VTList.VTs[0].isFloatingPoint() &&
9096            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
9097     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
9098            "STRICT_FP_EXTEND result type should be vector iff the operand "
9099            "type is vector!");
9100     assert((!VTList.VTs[0].isVector() ||
9101             VTList.VTs[0].getVectorNumElements() ==
9102             Ops[1].getValueType().getVectorNumElements()) &&
9103            "Vector element count mismatch!");
9104     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
9105            "Invalid fpext node, dst <= src!");
9106     break;
9107   case ISD::STRICT_FP_ROUND:
9108     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
9109     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
9110            "STRICT_FP_ROUND result type should be vector iff the operand "
9111            "type is vector!");
9112     assert((!VTList.VTs[0].isVector() ||
9113             VTList.VTs[0].getVectorNumElements() ==
9114             Ops[1].getValueType().getVectorNumElements()) &&
9115            "Vector element count mismatch!");
9116     assert(VTList.VTs[0].isFloatingPoint() &&
9117            Ops[1].getValueType().isFloatingPoint() &&
9118            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
9119            isa<ConstantSDNode>(Ops[2]) &&
9120            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
9121             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
9122            "Invalid STRICT_FP_ROUND!");
9123     break;
9124 #if 0
9125   // FIXME: figure out how to safely handle things like
9126   // int foo(int x) { return 1 << (x & 255); }
9127   // int bar() { return foo(256); }
9128   case ISD::SRA_PARTS:
9129   case ISD::SRL_PARTS:
9130   case ISD::SHL_PARTS:
9131     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
9132         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
9133       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
9134     else if (N3.getOpcode() == ISD::AND)
9135       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
9136         // If the and is only masking out bits that cannot effect the shift,
9137         // eliminate the and.
9138         unsigned NumBits = VT.getScalarSizeInBits()*2;
9139         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
9140           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
9141       }
9142     break;
9143 #endif
9144   }
9145 
9146   // Memoize the node unless it returns a flag.
9147   SDNode *N;
9148   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
9149     FoldingSetNodeID ID;
9150     AddNodeIDNode(ID, Opcode, VTList, Ops);
9151     void *IP = nullptr;
9152     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
9153       return SDValue(E, 0);
9154 
9155     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
9156     createOperands(N, Ops);
9157     CSEMap.InsertNode(N, IP);
9158   } else {
9159     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
9160     createOperands(N, Ops);
9161   }
9162 
9163   N->setFlags(Flags);
9164   InsertNode(N);
9165   SDValue V(N, 0);
9166   NewSDValueDbgMsg(V, "Creating new node: ", this);
9167   return V;
9168 }
9169 
9170 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
9171                               SDVTList VTList) {
9172   return getNode(Opcode, DL, VTList, None);
9173 }
9174 
9175 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9176                               SDValue N1) {
9177   SDValue Ops[] = { N1 };
9178   return getNode(Opcode, DL, VTList, Ops);
9179 }
9180 
9181 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9182                               SDValue N1, SDValue N2) {
9183   SDValue Ops[] = { N1, N2 };
9184   return getNode(Opcode, DL, VTList, Ops);
9185 }
9186 
9187 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9188                               SDValue N1, SDValue N2, SDValue N3) {
9189   SDValue Ops[] = { N1, N2, N3 };
9190   return getNode(Opcode, DL, VTList, Ops);
9191 }
9192 
9193 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9194                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
9195   SDValue Ops[] = { N1, N2, N3, N4 };
9196   return getNode(Opcode, DL, VTList, Ops);
9197 }
9198 
9199 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9200                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
9201                               SDValue N5) {
9202   SDValue Ops[] = { N1, N2, N3, N4, N5 };
9203   return getNode(Opcode, DL, VTList, Ops);
9204 }
9205 
9206 SDVTList SelectionDAG::getVTList(EVT VT) {
9207   return makeVTList(SDNode::getValueTypeList(VT), 1);
9208 }
9209 
9210 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
9211   FoldingSetNodeID ID;
9212   ID.AddInteger(2U);
9213   ID.AddInteger(VT1.getRawBits());
9214   ID.AddInteger(VT2.getRawBits());
9215 
9216   void *IP = nullptr;
9217   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9218   if (!Result) {
9219     EVT *Array = Allocator.Allocate<EVT>(2);
9220     Array[0] = VT1;
9221     Array[1] = VT2;
9222     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
9223     VTListMap.InsertNode(Result, IP);
9224   }
9225   return Result->getSDVTList();
9226 }
9227 
9228 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
9229   FoldingSetNodeID ID;
9230   ID.AddInteger(3U);
9231   ID.AddInteger(VT1.getRawBits());
9232   ID.AddInteger(VT2.getRawBits());
9233   ID.AddInteger(VT3.getRawBits());
9234 
9235   void *IP = nullptr;
9236   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9237   if (!Result) {
9238     EVT *Array = Allocator.Allocate<EVT>(3);
9239     Array[0] = VT1;
9240     Array[1] = VT2;
9241     Array[2] = VT3;
9242     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
9243     VTListMap.InsertNode(Result, IP);
9244   }
9245   return Result->getSDVTList();
9246 }
9247 
9248 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
9249   FoldingSetNodeID ID;
9250   ID.AddInteger(4U);
9251   ID.AddInteger(VT1.getRawBits());
9252   ID.AddInteger(VT2.getRawBits());
9253   ID.AddInteger(VT3.getRawBits());
9254   ID.AddInteger(VT4.getRawBits());
9255 
9256   void *IP = nullptr;
9257   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9258   if (!Result) {
9259     EVT *Array = Allocator.Allocate<EVT>(4);
9260     Array[0] = VT1;
9261     Array[1] = VT2;
9262     Array[2] = VT3;
9263     Array[3] = VT4;
9264     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
9265     VTListMap.InsertNode(Result, IP);
9266   }
9267   return Result->getSDVTList();
9268 }
9269 
9270 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
9271   unsigned NumVTs = VTs.size();
9272   FoldingSetNodeID ID;
9273   ID.AddInteger(NumVTs);
9274   for (unsigned index = 0; index < NumVTs; index++) {
9275     ID.AddInteger(VTs[index].getRawBits());
9276   }
9277 
9278   void *IP = nullptr;
9279   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
9280   if (!Result) {
9281     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
9282     llvm::copy(VTs, Array);
9283     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
9284     VTListMap.InsertNode(Result, IP);
9285   }
9286   return Result->getSDVTList();
9287 }
9288 
9289 
9290 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
9291 /// specified operands.  If the resultant node already exists in the DAG,
9292 /// this does not modify the specified node, instead it returns the node that
9293 /// already exists.  If the resultant node does not exist in the DAG, the
9294 /// input node is returned.  As a degenerate case, if you specify the same
9295 /// input operands as the node already has, the input node is returned.
9296 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
9297   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
9298 
9299   // Check to see if there is no change.
9300   if (Op == N->getOperand(0)) return N;
9301 
9302   // See if the modified node already exists.
9303   void *InsertPos = nullptr;
9304   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
9305     return Existing;
9306 
9307   // Nope it doesn't.  Remove the node from its current place in the maps.
9308   if (InsertPos)
9309     if (!RemoveNodeFromCSEMaps(N))
9310       InsertPos = nullptr;
9311 
9312   // Now we update the operands.
9313   N->OperandList[0].set(Op);
9314 
9315   updateDivergence(N);
9316   // If this gets put into a CSE map, add it.
9317   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9318   return N;
9319 }
9320 
9321 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
9322   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
9323 
9324   // Check to see if there is no change.
9325   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
9326     return N;   // No operands changed, just return the input node.
9327 
9328   // See if the modified node already exists.
9329   void *InsertPos = nullptr;
9330   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
9331     return Existing;
9332 
9333   // Nope it doesn't.  Remove the node from its current place in the maps.
9334   if (InsertPos)
9335     if (!RemoveNodeFromCSEMaps(N))
9336       InsertPos = nullptr;
9337 
9338   // Now we update the operands.
9339   if (N->OperandList[0] != Op1)
9340     N->OperandList[0].set(Op1);
9341   if (N->OperandList[1] != Op2)
9342     N->OperandList[1].set(Op2);
9343 
9344   updateDivergence(N);
9345   // If this gets put into a CSE map, add it.
9346   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9347   return N;
9348 }
9349 
9350 SDNode *SelectionDAG::
9351 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
9352   SDValue Ops[] = { Op1, Op2, Op3 };
9353   return UpdateNodeOperands(N, Ops);
9354 }
9355 
9356 SDNode *SelectionDAG::
9357 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
9358                    SDValue Op3, SDValue Op4) {
9359   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
9360   return UpdateNodeOperands(N, Ops);
9361 }
9362 
9363 SDNode *SelectionDAG::
9364 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
9365                    SDValue Op3, SDValue Op4, SDValue Op5) {
9366   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
9367   return UpdateNodeOperands(N, Ops);
9368 }
9369 
9370 SDNode *SelectionDAG::
9371 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
9372   unsigned NumOps = Ops.size();
9373   assert(N->getNumOperands() == NumOps &&
9374          "Update with wrong number of operands");
9375 
9376   // If no operands changed just return the input node.
9377   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
9378     return N;
9379 
9380   // See if the modified node already exists.
9381   void *InsertPos = nullptr;
9382   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
9383     return Existing;
9384 
9385   // Nope it doesn't.  Remove the node from its current place in the maps.
9386   if (InsertPos)
9387     if (!RemoveNodeFromCSEMaps(N))
9388       InsertPos = nullptr;
9389 
9390   // Now we update the operands.
9391   for (unsigned i = 0; i != NumOps; ++i)
9392     if (N->OperandList[i] != Ops[i])
9393       N->OperandList[i].set(Ops[i]);
9394 
9395   updateDivergence(N);
9396   // If this gets put into a CSE map, add it.
9397   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
9398   return N;
9399 }
9400 
9401 /// DropOperands - Release the operands and set this node to have
9402 /// zero operands.
9403 void SDNode::DropOperands() {
9404   // Unlike the code in MorphNodeTo that does this, we don't need to
9405   // watch for dead nodes here.
9406   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
9407     SDUse &Use = *I++;
9408     Use.set(SDValue());
9409   }
9410 }
9411 
9412 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
9413                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
9414   if (NewMemRefs.empty()) {
9415     N->clearMemRefs();
9416     return;
9417   }
9418 
9419   // Check if we can avoid allocating by storing a single reference directly.
9420   if (NewMemRefs.size() == 1) {
9421     N->MemRefs = NewMemRefs[0];
9422     N->NumMemRefs = 1;
9423     return;
9424   }
9425 
9426   MachineMemOperand **MemRefsBuffer =
9427       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
9428   llvm::copy(NewMemRefs, MemRefsBuffer);
9429   N->MemRefs = MemRefsBuffer;
9430   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
9431 }
9432 
9433 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
9434 /// machine opcode.
9435 ///
9436 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9437                                    EVT VT) {
9438   SDVTList VTs = getVTList(VT);
9439   return SelectNodeTo(N, MachineOpc, VTs, None);
9440 }
9441 
9442 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9443                                    EVT VT, SDValue Op1) {
9444   SDVTList VTs = getVTList(VT);
9445   SDValue Ops[] = { Op1 };
9446   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9447 }
9448 
9449 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9450                                    EVT VT, SDValue Op1,
9451                                    SDValue Op2) {
9452   SDVTList VTs = getVTList(VT);
9453   SDValue Ops[] = { Op1, Op2 };
9454   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9455 }
9456 
9457 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9458                                    EVT VT, SDValue Op1,
9459                                    SDValue Op2, SDValue Op3) {
9460   SDVTList VTs = getVTList(VT);
9461   SDValue Ops[] = { Op1, Op2, Op3 };
9462   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9463 }
9464 
9465 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9466                                    EVT VT, ArrayRef<SDValue> Ops) {
9467   SDVTList VTs = getVTList(VT);
9468   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9469 }
9470 
9471 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9472                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
9473   SDVTList VTs = getVTList(VT1, VT2);
9474   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9475 }
9476 
9477 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9478                                    EVT VT1, EVT VT2) {
9479   SDVTList VTs = getVTList(VT1, VT2);
9480   return SelectNodeTo(N, MachineOpc, VTs, None);
9481 }
9482 
9483 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9484                                    EVT VT1, EVT VT2, EVT VT3,
9485                                    ArrayRef<SDValue> Ops) {
9486   SDVTList VTs = getVTList(VT1, VT2, VT3);
9487   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9488 }
9489 
9490 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9491                                    EVT VT1, EVT VT2,
9492                                    SDValue Op1, SDValue Op2) {
9493   SDVTList VTs = getVTList(VT1, VT2);
9494   SDValue Ops[] = { Op1, Op2 };
9495   return SelectNodeTo(N, MachineOpc, VTs, Ops);
9496 }
9497 
9498 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
9499                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
9500   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
9501   // Reset the NodeID to -1.
9502   New->setNodeId(-1);
9503   if (New != N) {
9504     ReplaceAllUsesWith(N, New);
9505     RemoveDeadNode(N);
9506   }
9507   return New;
9508 }
9509 
9510 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
9511 /// the line number information on the merged node since it is not possible to
9512 /// preserve the information that operation is associated with multiple lines.
9513 /// This will make the debugger working better at -O0, were there is a higher
9514 /// probability having other instructions associated with that line.
9515 ///
9516 /// For IROrder, we keep the smaller of the two
9517 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
9518   DebugLoc NLoc = N->getDebugLoc();
9519   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
9520     N->setDebugLoc(DebugLoc());
9521   }
9522   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
9523   N->setIROrder(Order);
9524   return N;
9525 }
9526 
9527 /// MorphNodeTo - This *mutates* the specified node to have the specified
9528 /// return type, opcode, and operands.
9529 ///
9530 /// Note that MorphNodeTo returns the resultant node.  If there is already a
9531 /// node of the specified opcode and operands, it returns that node instead of
9532 /// the current one.  Note that the SDLoc need not be the same.
9533 ///
9534 /// Using MorphNodeTo is faster than creating a new node and swapping it in
9535 /// with ReplaceAllUsesWith both because it often avoids allocating a new
9536 /// node, and because it doesn't require CSE recalculation for any of
9537 /// the node's users.
9538 ///
9539 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
9540 /// As a consequence it isn't appropriate to use from within the DAG combiner or
9541 /// the legalizer which maintain worklists that would need to be updated when
9542 /// deleting things.
9543 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
9544                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
9545   // If an identical node already exists, use it.
9546   void *IP = nullptr;
9547   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
9548     FoldingSetNodeID ID;
9549     AddNodeIDNode(ID, Opc, VTs, Ops);
9550     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
9551       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
9552   }
9553 
9554   if (!RemoveNodeFromCSEMaps(N))
9555     IP = nullptr;
9556 
9557   // Start the morphing.
9558   N->NodeType = Opc;
9559   N->ValueList = VTs.VTs;
9560   N->NumValues = VTs.NumVTs;
9561 
9562   // Clear the operands list, updating used nodes to remove this from their
9563   // use list.  Keep track of any operands that become dead as a result.
9564   SmallPtrSet<SDNode*, 16> DeadNodeSet;
9565   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
9566     SDUse &Use = *I++;
9567     SDNode *Used = Use.getNode();
9568     Use.set(SDValue());
9569     if (Used->use_empty())
9570       DeadNodeSet.insert(Used);
9571   }
9572 
9573   // For MachineNode, initialize the memory references information.
9574   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
9575     MN->clearMemRefs();
9576 
9577   // Swap for an appropriately sized array from the recycler.
9578   removeOperands(N);
9579   createOperands(N, Ops);
9580 
9581   // Delete any nodes that are still dead after adding the uses for the
9582   // new operands.
9583   if (!DeadNodeSet.empty()) {
9584     SmallVector<SDNode *, 16> DeadNodes;
9585     for (SDNode *N : DeadNodeSet)
9586       if (N->use_empty())
9587         DeadNodes.push_back(N);
9588     RemoveDeadNodes(DeadNodes);
9589   }
9590 
9591   if (IP)
9592     CSEMap.InsertNode(N, IP);   // Memoize the new node.
9593   return N;
9594 }
9595 
9596 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
9597   unsigned OrigOpc = Node->getOpcode();
9598   unsigned NewOpc;
9599   switch (OrigOpc) {
9600   default:
9601     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
9602 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
9603   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
9604 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
9605   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
9606 #include "llvm/IR/ConstrainedOps.def"
9607   }
9608 
9609   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
9610 
9611   // We're taking this node out of the chain, so we need to re-link things.
9612   SDValue InputChain = Node->getOperand(0);
9613   SDValue OutputChain = SDValue(Node, 1);
9614   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
9615 
9616   SmallVector<SDValue, 3> Ops;
9617   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
9618     Ops.push_back(Node->getOperand(i));
9619 
9620   SDVTList VTs = getVTList(Node->getValueType(0));
9621   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
9622 
9623   // MorphNodeTo can operate in two ways: if an existing node with the
9624   // specified operands exists, it can just return it.  Otherwise, it
9625   // updates the node in place to have the requested operands.
9626   if (Res == Node) {
9627     // If we updated the node in place, reset the node ID.  To the isel,
9628     // this should be just like a newly allocated machine node.
9629     Res->setNodeId(-1);
9630   } else {
9631     ReplaceAllUsesWith(Node, Res);
9632     RemoveDeadNode(Node);
9633   }
9634 
9635   return Res;
9636 }
9637 
9638 /// getMachineNode - These are used for target selectors to create a new node
9639 /// with specified return type(s), MachineInstr opcode, and operands.
9640 ///
9641 /// Note that getMachineNode returns the resultant node.  If there is already a
9642 /// node of the specified opcode and operands, it returns that node instead of
9643 /// the current one.
9644 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9645                                             EVT VT) {
9646   SDVTList VTs = getVTList(VT);
9647   return getMachineNode(Opcode, dl, VTs, None);
9648 }
9649 
9650 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9651                                             EVT VT, SDValue Op1) {
9652   SDVTList VTs = getVTList(VT);
9653   SDValue Ops[] = { Op1 };
9654   return getMachineNode(Opcode, dl, VTs, Ops);
9655 }
9656 
9657 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9658                                             EVT VT, SDValue Op1, SDValue Op2) {
9659   SDVTList VTs = getVTList(VT);
9660   SDValue Ops[] = { Op1, Op2 };
9661   return getMachineNode(Opcode, dl, VTs, Ops);
9662 }
9663 
9664 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9665                                             EVT VT, SDValue Op1, SDValue Op2,
9666                                             SDValue Op3) {
9667   SDVTList VTs = getVTList(VT);
9668   SDValue Ops[] = { Op1, Op2, Op3 };
9669   return getMachineNode(Opcode, dl, VTs, Ops);
9670 }
9671 
9672 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9673                                             EVT VT, ArrayRef<SDValue> Ops) {
9674   SDVTList VTs = getVTList(VT);
9675   return getMachineNode(Opcode, dl, VTs, Ops);
9676 }
9677 
9678 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9679                                             EVT VT1, EVT VT2, SDValue Op1,
9680                                             SDValue Op2) {
9681   SDVTList VTs = getVTList(VT1, VT2);
9682   SDValue Ops[] = { Op1, Op2 };
9683   return getMachineNode(Opcode, dl, VTs, Ops);
9684 }
9685 
9686 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9687                                             EVT VT1, EVT VT2, SDValue Op1,
9688                                             SDValue Op2, SDValue Op3) {
9689   SDVTList VTs = getVTList(VT1, VT2);
9690   SDValue Ops[] = { Op1, Op2, Op3 };
9691   return getMachineNode(Opcode, dl, VTs, Ops);
9692 }
9693 
9694 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9695                                             EVT VT1, EVT VT2,
9696                                             ArrayRef<SDValue> Ops) {
9697   SDVTList VTs = getVTList(VT1, VT2);
9698   return getMachineNode(Opcode, dl, VTs, Ops);
9699 }
9700 
9701 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9702                                             EVT VT1, EVT VT2, EVT VT3,
9703                                             SDValue Op1, SDValue Op2) {
9704   SDVTList VTs = getVTList(VT1, VT2, VT3);
9705   SDValue Ops[] = { Op1, Op2 };
9706   return getMachineNode(Opcode, dl, VTs, Ops);
9707 }
9708 
9709 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9710                                             EVT VT1, EVT VT2, EVT VT3,
9711                                             SDValue Op1, SDValue Op2,
9712                                             SDValue Op3) {
9713   SDVTList VTs = getVTList(VT1, VT2, VT3);
9714   SDValue Ops[] = { Op1, Op2, Op3 };
9715   return getMachineNode(Opcode, dl, VTs, Ops);
9716 }
9717 
9718 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9719                                             EVT VT1, EVT VT2, EVT VT3,
9720                                             ArrayRef<SDValue> Ops) {
9721   SDVTList VTs = getVTList(VT1, VT2, VT3);
9722   return getMachineNode(Opcode, dl, VTs, Ops);
9723 }
9724 
9725 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
9726                                             ArrayRef<EVT> ResultTys,
9727                                             ArrayRef<SDValue> Ops) {
9728   SDVTList VTs = getVTList(ResultTys);
9729   return getMachineNode(Opcode, dl, VTs, Ops);
9730 }
9731 
9732 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
9733                                             SDVTList VTs,
9734                                             ArrayRef<SDValue> Ops) {
9735   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
9736   MachineSDNode *N;
9737   void *IP = nullptr;
9738 
9739   if (DoCSE) {
9740     FoldingSetNodeID ID;
9741     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
9742     IP = nullptr;
9743     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9744       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
9745     }
9746   }
9747 
9748   // Allocate a new MachineSDNode.
9749   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9750   createOperands(N, Ops);
9751 
9752   if (DoCSE)
9753     CSEMap.InsertNode(N, IP);
9754 
9755   InsertNode(N);
9756   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
9757   return N;
9758 }
9759 
9760 /// getTargetExtractSubreg - A convenience function for creating
9761 /// TargetOpcode::EXTRACT_SUBREG nodes.
9762 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9763                                              SDValue Operand) {
9764   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9765   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
9766                                   VT, Operand, SRIdxVal);
9767   return SDValue(Subreg, 0);
9768 }
9769 
9770 /// getTargetInsertSubreg - A convenience function for creating
9771 /// TargetOpcode::INSERT_SUBREG nodes.
9772 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
9773                                             SDValue Operand, SDValue Subreg) {
9774   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
9775   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
9776                                   VT, Operand, Subreg, SRIdxVal);
9777   return SDValue(Result, 0);
9778 }
9779 
9780 /// getNodeIfExists - Get the specified node if it's already available, or
9781 /// else return NULL.
9782 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9783                                       ArrayRef<SDValue> Ops) {
9784   SDNodeFlags Flags;
9785   if (Inserter)
9786     Flags = Inserter->getFlags();
9787   return getNodeIfExists(Opcode, VTList, Ops, Flags);
9788 }
9789 
9790 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
9791                                       ArrayRef<SDValue> Ops,
9792                                       const SDNodeFlags Flags) {
9793   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9794     FoldingSetNodeID ID;
9795     AddNodeIDNode(ID, Opcode, VTList, Ops);
9796     void *IP = nullptr;
9797     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
9798       E->intersectFlagsWith(Flags);
9799       return E;
9800     }
9801   }
9802   return nullptr;
9803 }
9804 
9805 /// doesNodeExist - Check if a node exists without modifying its flags.
9806 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
9807                                  ArrayRef<SDValue> Ops) {
9808   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
9809     FoldingSetNodeID ID;
9810     AddNodeIDNode(ID, Opcode, VTList, Ops);
9811     void *IP = nullptr;
9812     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
9813       return true;
9814   }
9815   return false;
9816 }
9817 
9818 /// getDbgValue - Creates a SDDbgValue node.
9819 ///
9820 /// SDNode
9821 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
9822                                       SDNode *N, unsigned R, bool IsIndirect,
9823                                       const DebugLoc &DL, unsigned O) {
9824   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9825          "Expected inlined-at fields to agree");
9826   return new (DbgInfo->getAlloc())
9827       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
9828                  {}, IsIndirect, DL, O,
9829                  /*IsVariadic=*/false);
9830 }
9831 
9832 /// Constant
9833 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
9834                                               DIExpression *Expr,
9835                                               const Value *C,
9836                                               const DebugLoc &DL, unsigned O) {
9837   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9838          "Expected inlined-at fields to agree");
9839   return new (DbgInfo->getAlloc())
9840       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
9841                  /*IsIndirect=*/false, DL, O,
9842                  /*IsVariadic=*/false);
9843 }
9844 
9845 /// FrameIndex
9846 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9847                                                 DIExpression *Expr, unsigned FI,
9848                                                 bool IsIndirect,
9849                                                 const DebugLoc &DL,
9850                                                 unsigned O) {
9851   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9852          "Expected inlined-at fields to agree");
9853   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
9854 }
9855 
9856 /// FrameIndex with dependencies
9857 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
9858                                                 DIExpression *Expr, unsigned FI,
9859                                                 ArrayRef<SDNode *> Dependencies,
9860                                                 bool IsIndirect,
9861                                                 const DebugLoc &DL,
9862                                                 unsigned O) {
9863   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9864          "Expected inlined-at fields to agree");
9865   return new (DbgInfo->getAlloc())
9866       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
9867                  Dependencies, IsIndirect, DL, O,
9868                  /*IsVariadic=*/false);
9869 }
9870 
9871 /// VReg
9872 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
9873                                           unsigned VReg, bool IsIndirect,
9874                                           const DebugLoc &DL, unsigned O) {
9875   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9876          "Expected inlined-at fields to agree");
9877   return new (DbgInfo->getAlloc())
9878       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
9879                  {}, IsIndirect, DL, O,
9880                  /*IsVariadic=*/false);
9881 }
9882 
9883 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
9884                                           ArrayRef<SDDbgOperand> Locs,
9885                                           ArrayRef<SDNode *> Dependencies,
9886                                           bool IsIndirect, const DebugLoc &DL,
9887                                           unsigned O, bool IsVariadic) {
9888   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
9889          "Expected inlined-at fields to agree");
9890   return new (DbgInfo->getAlloc())
9891       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
9892                  DL, O, IsVariadic);
9893 }
9894 
9895 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
9896                                      unsigned OffsetInBits, unsigned SizeInBits,
9897                                      bool InvalidateDbg) {
9898   SDNode *FromNode = From.getNode();
9899   SDNode *ToNode = To.getNode();
9900   assert(FromNode && ToNode && "Can't modify dbg values");
9901 
9902   // PR35338
9903   // TODO: assert(From != To && "Redundant dbg value transfer");
9904   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
9905   if (From == To || FromNode == ToNode)
9906     return;
9907 
9908   if (!FromNode->getHasDebugValue())
9909     return;
9910 
9911   SDDbgOperand FromLocOp =
9912       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
9913   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
9914 
9915   SmallVector<SDDbgValue *, 2> ClonedDVs;
9916   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
9917     if (Dbg->isInvalidated())
9918       continue;
9919 
9920     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
9921 
9922     // Create a new location ops vector that is equal to the old vector, but
9923     // with each instance of FromLocOp replaced with ToLocOp.
9924     bool Changed = false;
9925     auto NewLocOps = Dbg->copyLocationOps();
9926     std::replace_if(
9927         NewLocOps.begin(), NewLocOps.end(),
9928         [&Changed, FromLocOp](const SDDbgOperand &Op) {
9929           bool Match = Op == FromLocOp;
9930           Changed |= Match;
9931           return Match;
9932         },
9933         ToLocOp);
9934     // Ignore this SDDbgValue if we didn't find a matching location.
9935     if (!Changed)
9936       continue;
9937 
9938     DIVariable *Var = Dbg->getVariable();
9939     auto *Expr = Dbg->getExpression();
9940     // If a fragment is requested, update the expression.
9941     if (SizeInBits) {
9942       // When splitting a larger (e.g., sign-extended) value whose
9943       // lower bits are described with an SDDbgValue, do not attempt
9944       // to transfer the SDDbgValue to the upper bits.
9945       if (auto FI = Expr->getFragmentInfo())
9946         if (OffsetInBits + SizeInBits > FI->SizeInBits)
9947           continue;
9948       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
9949                                                              SizeInBits);
9950       if (!Fragment)
9951         continue;
9952       Expr = *Fragment;
9953     }
9954 
9955     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
9956     // Clone the SDDbgValue and move it to To.
9957     SDDbgValue *Clone = getDbgValueList(
9958         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
9959         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
9960         Dbg->isVariadic());
9961     ClonedDVs.push_back(Clone);
9962 
9963     if (InvalidateDbg) {
9964       // Invalidate value and indicate the SDDbgValue should not be emitted.
9965       Dbg->setIsInvalidated();
9966       Dbg->setIsEmitted();
9967     }
9968   }
9969 
9970   for (SDDbgValue *Dbg : ClonedDVs) {
9971     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
9972            "Transferred DbgValues should depend on the new SDNode");
9973     AddDbgValue(Dbg, false);
9974   }
9975 }
9976 
9977 void SelectionDAG::salvageDebugInfo(SDNode &N) {
9978   if (!N.getHasDebugValue())
9979     return;
9980 
9981   SmallVector<SDDbgValue *, 2> ClonedDVs;
9982   for (auto *DV : GetDbgValues(&N)) {
9983     if (DV->isInvalidated())
9984       continue;
9985     switch (N.getOpcode()) {
9986     default:
9987       break;
9988     case ISD::ADD:
9989       SDValue N0 = N.getOperand(0);
9990       SDValue N1 = N.getOperand(1);
9991       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
9992           isConstantIntBuildVectorOrConstantInt(N1)) {
9993         uint64_t Offset = N.getConstantOperandVal(1);
9994 
9995         // Rewrite an ADD constant node into a DIExpression. Since we are
9996         // performing arithmetic to compute the variable's *value* in the
9997         // DIExpression, we need to mark the expression with a
9998         // DW_OP_stack_value.
9999         auto *DIExpr = DV->getExpression();
10000         auto NewLocOps = DV->copyLocationOps();
10001         bool Changed = false;
10002         for (size_t i = 0; i < NewLocOps.size(); ++i) {
10003           // We're not given a ResNo to compare against because the whole
10004           // node is going away. We know that any ISD::ADD only has one
10005           // result, so we can assume any node match is using the result.
10006           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
10007               NewLocOps[i].getSDNode() != &N)
10008             continue;
10009           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
10010           SmallVector<uint64_t, 3> ExprOps;
10011           DIExpression::appendOffset(ExprOps, Offset);
10012           DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
10013           Changed = true;
10014         }
10015         (void)Changed;
10016         assert(Changed && "Salvage target doesn't use N");
10017 
10018         auto AdditionalDependencies = DV->getAdditionalDependencies();
10019         SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr,
10020                                             NewLocOps, AdditionalDependencies,
10021                                             DV->isIndirect(), DV->getDebugLoc(),
10022                                             DV->getOrder(), DV->isVariadic());
10023         ClonedDVs.push_back(Clone);
10024         DV->setIsInvalidated();
10025         DV->setIsEmitted();
10026         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
10027                    N0.getNode()->dumprFull(this);
10028                    dbgs() << " into " << *DIExpr << '\n');
10029       }
10030     }
10031   }
10032 
10033   for (SDDbgValue *Dbg : ClonedDVs) {
10034     assert(!Dbg->getSDNodes().empty() &&
10035            "Salvaged DbgValue should depend on a new SDNode");
10036     AddDbgValue(Dbg, false);
10037   }
10038 }
10039 
10040 /// Creates a SDDbgLabel node.
10041 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
10042                                       const DebugLoc &DL, unsigned O) {
10043   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
10044          "Expected inlined-at fields to agree");
10045   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
10046 }
10047 
10048 namespace {
10049 
10050 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
10051 /// pointed to by a use iterator is deleted, increment the use iterator
10052 /// so that it doesn't dangle.
10053 ///
10054 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
10055   SDNode::use_iterator &UI;
10056   SDNode::use_iterator &UE;
10057 
10058   void NodeDeleted(SDNode *N, SDNode *E) override {
10059     // Increment the iterator as needed.
10060     while (UI != UE && N == *UI)
10061       ++UI;
10062   }
10063 
10064 public:
10065   RAUWUpdateListener(SelectionDAG &d,
10066                      SDNode::use_iterator &ui,
10067                      SDNode::use_iterator &ue)
10068     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
10069 };
10070 
10071 } // end anonymous namespace
10072 
10073 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
10074 /// This can cause recursive merging of nodes in the DAG.
10075 ///
10076 /// This version assumes From has a single result value.
10077 ///
10078 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
10079   SDNode *From = FromN.getNode();
10080   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
10081          "Cannot replace with this method!");
10082   assert(From != To.getNode() && "Cannot replace uses of with self");
10083 
10084   // Preserve Debug Values
10085   transferDbgValues(FromN, To);
10086 
10087   // Iterate over all the existing uses of From. New uses will be added
10088   // to the beginning of the use list, which we avoid visiting.
10089   // This specifically avoids visiting uses of From that arise while the
10090   // replacement is happening, because any such uses would be the result
10091   // of CSE: If an existing node looks like From after one of its operands
10092   // is replaced by To, we don't want to replace of all its users with To
10093   // too. See PR3018 for more info.
10094   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
10095   RAUWUpdateListener Listener(*this, UI, UE);
10096   while (UI != UE) {
10097     SDNode *User = *UI;
10098 
10099     // This node is about to morph, remove its old self from the CSE maps.
10100     RemoveNodeFromCSEMaps(User);
10101 
10102     // A user can appear in a use list multiple times, and when this
10103     // happens the uses are usually next to each other in the list.
10104     // To help reduce the number of CSE recomputations, process all
10105     // the uses of this user that we can find this way.
10106     do {
10107       SDUse &Use = UI.getUse();
10108       ++UI;
10109       Use.set(To);
10110       if (To->isDivergent() != From->isDivergent())
10111         updateDivergence(User);
10112     } while (UI != UE && *UI == User);
10113     // Now that we have modified User, add it back to the CSE maps.  If it
10114     // already exists there, recursively merge the results together.
10115     AddModifiedNodeToCSEMaps(User);
10116   }
10117 
10118   // If we just RAUW'd the root, take note.
10119   if (FromN == getRoot())
10120     setRoot(To);
10121 }
10122 
10123 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
10124 /// This can cause recursive merging of nodes in the DAG.
10125 ///
10126 /// This version assumes that for each value of From, there is a
10127 /// corresponding value in To in the same position with the same type.
10128 ///
10129 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
10130 #ifndef NDEBUG
10131   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
10132     assert((!From->hasAnyUseOfValue(i) ||
10133             From->getValueType(i) == To->getValueType(i)) &&
10134            "Cannot use this version of ReplaceAllUsesWith!");
10135 #endif
10136 
10137   // Handle the trivial case.
10138   if (From == To)
10139     return;
10140 
10141   // Preserve Debug Info. Only do this if there's a use.
10142   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
10143     if (From->hasAnyUseOfValue(i)) {
10144       assert((i < To->getNumValues()) && "Invalid To location");
10145       transferDbgValues(SDValue(From, i), SDValue(To, i));
10146     }
10147 
10148   // Iterate over just the existing users of From. See the comments in
10149   // the ReplaceAllUsesWith above.
10150   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
10151   RAUWUpdateListener Listener(*this, UI, UE);
10152   while (UI != UE) {
10153     SDNode *User = *UI;
10154 
10155     // This node is about to morph, remove its old self from the CSE maps.
10156     RemoveNodeFromCSEMaps(User);
10157 
10158     // A user can appear in a use list multiple times, and when this
10159     // happens the uses are usually next to each other in the list.
10160     // To help reduce the number of CSE recomputations, process all
10161     // the uses of this user that we can find this way.
10162     do {
10163       SDUse &Use = UI.getUse();
10164       ++UI;
10165       Use.setNode(To);
10166       if (To->isDivergent() != From->isDivergent())
10167         updateDivergence(User);
10168     } while (UI != UE && *UI == User);
10169 
10170     // Now that we have modified User, add it back to the CSE maps.  If it
10171     // already exists there, recursively merge the results together.
10172     AddModifiedNodeToCSEMaps(User);
10173   }
10174 
10175   // If we just RAUW'd the root, take note.
10176   if (From == getRoot().getNode())
10177     setRoot(SDValue(To, getRoot().getResNo()));
10178 }
10179 
10180 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
10181 /// This can cause recursive merging of nodes in the DAG.
10182 ///
10183 /// This version can replace From with any result values.  To must match the
10184 /// number and types of values returned by From.
10185 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
10186   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
10187     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
10188 
10189   // Preserve Debug Info.
10190   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
10191     transferDbgValues(SDValue(From, i), To[i]);
10192 
10193   // Iterate over just the existing users of From. See the comments in
10194   // the ReplaceAllUsesWith above.
10195   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
10196   RAUWUpdateListener Listener(*this, UI, UE);
10197   while (UI != UE) {
10198     SDNode *User = *UI;
10199 
10200     // This node is about to morph, remove its old self from the CSE maps.
10201     RemoveNodeFromCSEMaps(User);
10202 
10203     // A user can appear in a use list multiple times, and when this happens the
10204     // uses are usually next to each other in the list.  To help reduce the
10205     // number of CSE and divergence recomputations, process all the uses of this
10206     // user that we can find this way.
10207     bool To_IsDivergent = false;
10208     do {
10209       SDUse &Use = UI.getUse();
10210       const SDValue &ToOp = To[Use.getResNo()];
10211       ++UI;
10212       Use.set(ToOp);
10213       To_IsDivergent |= ToOp->isDivergent();
10214     } while (UI != UE && *UI == User);
10215 
10216     if (To_IsDivergent != From->isDivergent())
10217       updateDivergence(User);
10218 
10219     // Now that we have modified User, add it back to the CSE maps.  If it
10220     // already exists there, recursively merge the results together.
10221     AddModifiedNodeToCSEMaps(User);
10222   }
10223 
10224   // If we just RAUW'd the root, take note.
10225   if (From == getRoot().getNode())
10226     setRoot(SDValue(To[getRoot().getResNo()]));
10227 }
10228 
10229 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
10230 /// uses of other values produced by From.getNode() alone.  The Deleted
10231 /// vector is handled the same way as for ReplaceAllUsesWith.
10232 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
10233   // Handle the really simple, really trivial case efficiently.
10234   if (From == To) return;
10235 
10236   // Handle the simple, trivial, case efficiently.
10237   if (From.getNode()->getNumValues() == 1) {
10238     ReplaceAllUsesWith(From, To);
10239     return;
10240   }
10241 
10242   // Preserve Debug Info.
10243   transferDbgValues(From, To);
10244 
10245   // Iterate over just the existing users of From. See the comments in
10246   // the ReplaceAllUsesWith above.
10247   SDNode::use_iterator UI = From.getNode()->use_begin(),
10248                        UE = From.getNode()->use_end();
10249   RAUWUpdateListener Listener(*this, UI, UE);
10250   while (UI != UE) {
10251     SDNode *User = *UI;
10252     bool UserRemovedFromCSEMaps = false;
10253 
10254     // A user can appear in a use list multiple times, and when this
10255     // happens the uses are usually next to each other in the list.
10256     // To help reduce the number of CSE recomputations, process all
10257     // the uses of this user that we can find this way.
10258     do {
10259       SDUse &Use = UI.getUse();
10260 
10261       // Skip uses of different values from the same node.
10262       if (Use.getResNo() != From.getResNo()) {
10263         ++UI;
10264         continue;
10265       }
10266 
10267       // If this node hasn't been modified yet, it's still in the CSE maps,
10268       // so remove its old self from the CSE maps.
10269       if (!UserRemovedFromCSEMaps) {
10270         RemoveNodeFromCSEMaps(User);
10271         UserRemovedFromCSEMaps = true;
10272       }
10273 
10274       ++UI;
10275       Use.set(To);
10276       if (To->isDivergent() != From->isDivergent())
10277         updateDivergence(User);
10278     } while (UI != UE && *UI == User);
10279     // We are iterating over all uses of the From node, so if a use
10280     // doesn't use the specific value, no changes are made.
10281     if (!UserRemovedFromCSEMaps)
10282       continue;
10283 
10284     // Now that we have modified User, add it back to the CSE maps.  If it
10285     // already exists there, recursively merge the results together.
10286     AddModifiedNodeToCSEMaps(User);
10287   }
10288 
10289   // If we just RAUW'd the root, take note.
10290   if (From == getRoot())
10291     setRoot(To);
10292 }
10293 
10294 namespace {
10295 
10296 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
10297 /// to record information about a use.
10298 struct UseMemo {
10299   SDNode *User;
10300   unsigned Index;
10301   SDUse *Use;
10302 };
10303 
10304 /// operator< - Sort Memos by User.
10305 bool operator<(const UseMemo &L, const UseMemo &R) {
10306   return (intptr_t)L.User < (intptr_t)R.User;
10307 }
10308 
10309 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node
10310 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that
10311 /// the node already has been taken care of recursively.
10312 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener {
10313   SmallVector<UseMemo, 4> &Uses;
10314 
10315   void NodeDeleted(SDNode *N, SDNode *E) override {
10316     for (UseMemo &Memo : Uses)
10317       if (Memo.User == N)
10318         Memo.User = nullptr;
10319   }
10320 
10321 public:
10322   RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses)
10323       : SelectionDAG::DAGUpdateListener(d), Uses(uses) {}
10324 };
10325 
10326 } // end anonymous namespace
10327 
10328 bool SelectionDAG::calculateDivergence(SDNode *N) {
10329   if (TLI->isSDNodeAlwaysUniform(N)) {
10330     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) &&
10331            "Conflicting divergence information!");
10332     return false;
10333   }
10334   if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA))
10335     return true;
10336   for (const auto &Op : N->ops()) {
10337     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
10338       return true;
10339   }
10340   return false;
10341 }
10342 
10343 void SelectionDAG::updateDivergence(SDNode *N) {
10344   SmallVector<SDNode *, 16> Worklist(1, N);
10345   do {
10346     N = Worklist.pop_back_val();
10347     bool IsDivergent = calculateDivergence(N);
10348     if (N->SDNodeBits.IsDivergent != IsDivergent) {
10349       N->SDNodeBits.IsDivergent = IsDivergent;
10350       llvm::append_range(Worklist, N->uses());
10351     }
10352   } while (!Worklist.empty());
10353 }
10354 
10355 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
10356   DenseMap<SDNode *, unsigned> Degree;
10357   Order.reserve(AllNodes.size());
10358   for (auto &N : allnodes()) {
10359     unsigned NOps = N.getNumOperands();
10360     Degree[&N] = NOps;
10361     if (0 == NOps)
10362       Order.push_back(&N);
10363   }
10364   for (size_t I = 0; I != Order.size(); ++I) {
10365     SDNode *N = Order[I];
10366     for (auto *U : N->uses()) {
10367       unsigned &UnsortedOps = Degree[U];
10368       if (0 == --UnsortedOps)
10369         Order.push_back(U);
10370     }
10371   }
10372 }
10373 
10374 #ifndef NDEBUG
10375 void SelectionDAG::VerifyDAGDivergence() {
10376   std::vector<SDNode *> TopoOrder;
10377   CreateTopologicalOrder(TopoOrder);
10378   for (auto *N : TopoOrder) {
10379     assert(calculateDivergence(N) == N->isDivergent() &&
10380            "Divergence bit inconsistency detected");
10381   }
10382 }
10383 #endif
10384 
10385 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
10386 /// uses of other values produced by From.getNode() alone.  The same value
10387 /// may appear in both the From and To list.  The Deleted vector is
10388 /// handled the same way as for ReplaceAllUsesWith.
10389 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
10390                                               const SDValue *To,
10391                                               unsigned Num){
10392   // Handle the simple, trivial case efficiently.
10393   if (Num == 1)
10394     return ReplaceAllUsesOfValueWith(*From, *To);
10395 
10396   transferDbgValues(*From, *To);
10397 
10398   // Read up all the uses and make records of them. This helps
10399   // processing new uses that are introduced during the
10400   // replacement process.
10401   SmallVector<UseMemo, 4> Uses;
10402   for (unsigned i = 0; i != Num; ++i) {
10403     unsigned FromResNo = From[i].getResNo();
10404     SDNode *FromNode = From[i].getNode();
10405     for (SDNode::use_iterator UI = FromNode->use_begin(),
10406          E = FromNode->use_end(); UI != E; ++UI) {
10407       SDUse &Use = UI.getUse();
10408       if (Use.getResNo() == FromResNo) {
10409         UseMemo Memo = { *UI, i, &Use };
10410         Uses.push_back(Memo);
10411       }
10412     }
10413   }
10414 
10415   // Sort the uses, so that all the uses from a given User are together.
10416   llvm::sort(Uses);
10417   RAUOVWUpdateListener Listener(*this, Uses);
10418 
10419   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
10420        UseIndex != UseIndexEnd; ) {
10421     // We know that this user uses some value of From.  If it is the right
10422     // value, update it.
10423     SDNode *User = Uses[UseIndex].User;
10424     // If the node has been deleted by recursive CSE updates when updating
10425     // another node, then just skip this entry.
10426     if (User == nullptr) {
10427       ++UseIndex;
10428       continue;
10429     }
10430 
10431     // This node is about to morph, remove its old self from the CSE maps.
10432     RemoveNodeFromCSEMaps(User);
10433 
10434     // The Uses array is sorted, so all the uses for a given User
10435     // are next to each other in the list.
10436     // To help reduce the number of CSE recomputations, process all
10437     // the uses of this user that we can find this way.
10438     do {
10439       unsigned i = Uses[UseIndex].Index;
10440       SDUse &Use = *Uses[UseIndex].Use;
10441       ++UseIndex;
10442 
10443       Use.set(To[i]);
10444     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
10445 
10446     // Now that we have modified User, add it back to the CSE maps.  If it
10447     // already exists there, recursively merge the results together.
10448     AddModifiedNodeToCSEMaps(User);
10449   }
10450 }
10451 
10452 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
10453 /// based on their topological order. It returns the maximum id and a vector
10454 /// of the SDNodes* in assigned order by reference.
10455 unsigned SelectionDAG::AssignTopologicalOrder() {
10456   unsigned DAGSize = 0;
10457 
10458   // SortedPos tracks the progress of the algorithm. Nodes before it are
10459   // sorted, nodes after it are unsorted. When the algorithm completes
10460   // it is at the end of the list.
10461   allnodes_iterator SortedPos = allnodes_begin();
10462 
10463   // Visit all the nodes. Move nodes with no operands to the front of
10464   // the list immediately. Annotate nodes that do have operands with their
10465   // operand count. Before we do this, the Node Id fields of the nodes
10466   // may contain arbitrary values. After, the Node Id fields for nodes
10467   // before SortedPos will contain the topological sort index, and the
10468   // Node Id fields for nodes At SortedPos and after will contain the
10469   // count of outstanding operands.
10470   for (SDNode &N : llvm::make_early_inc_range(allnodes())) {
10471     checkForCycles(&N, this);
10472     unsigned Degree = N.getNumOperands();
10473     if (Degree == 0) {
10474       // A node with no uses, add it to the result array immediately.
10475       N.setNodeId(DAGSize++);
10476       allnodes_iterator Q(&N);
10477       if (Q != SortedPos)
10478         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
10479       assert(SortedPos != AllNodes.end() && "Overran node list");
10480       ++SortedPos;
10481     } else {
10482       // Temporarily use the Node Id as scratch space for the degree count.
10483       N.setNodeId(Degree);
10484     }
10485   }
10486 
10487   // Visit all the nodes. As we iterate, move nodes into sorted order,
10488   // such that by the time the end is reached all nodes will be sorted.
10489   for (SDNode &Node : allnodes()) {
10490     SDNode *N = &Node;
10491     checkForCycles(N, this);
10492     // N is in sorted position, so all its uses have one less operand
10493     // that needs to be sorted.
10494     for (SDNode *P : N->uses()) {
10495       unsigned Degree = P->getNodeId();
10496       assert(Degree != 0 && "Invalid node degree");
10497       --Degree;
10498       if (Degree == 0) {
10499         // All of P's operands are sorted, so P may sorted now.
10500         P->setNodeId(DAGSize++);
10501         if (P->getIterator() != SortedPos)
10502           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
10503         assert(SortedPos != AllNodes.end() && "Overran node list");
10504         ++SortedPos;
10505       } else {
10506         // Update P's outstanding operand count.
10507         P->setNodeId(Degree);
10508       }
10509     }
10510     if (Node.getIterator() == SortedPos) {
10511 #ifndef NDEBUG
10512       allnodes_iterator I(N);
10513       SDNode *S = &*++I;
10514       dbgs() << "Overran sorted position:\n";
10515       S->dumprFull(this); dbgs() << "\n";
10516       dbgs() << "Checking if this is due to cycles\n";
10517       checkForCycles(this, true);
10518 #endif
10519       llvm_unreachable(nullptr);
10520     }
10521   }
10522 
10523   assert(SortedPos == AllNodes.end() &&
10524          "Topological sort incomplete!");
10525   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
10526          "First node in topological sort is not the entry token!");
10527   assert(AllNodes.front().getNodeId() == 0 &&
10528          "First node in topological sort has non-zero id!");
10529   assert(AllNodes.front().getNumOperands() == 0 &&
10530          "First node in topological sort has operands!");
10531   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
10532          "Last node in topologic sort has unexpected id!");
10533   assert(AllNodes.back().use_empty() &&
10534          "Last node in topologic sort has users!");
10535   assert(DAGSize == allnodes_size() && "Node count mismatch!");
10536   return DAGSize;
10537 }
10538 
10539 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
10540 /// value is produced by SD.
10541 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
10542   for (SDNode *SD : DB->getSDNodes()) {
10543     if (!SD)
10544       continue;
10545     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
10546     SD->setHasDebugValue(true);
10547   }
10548   DbgInfo->add(DB, isParameter);
10549 }
10550 
10551 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
10552 
10553 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
10554                                                    SDValue NewMemOpChain) {
10555   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
10556   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
10557   // The new memory operation must have the same position as the old load in
10558   // terms of memory dependency. Create a TokenFactor for the old load and new
10559   // memory operation and update uses of the old load's output chain to use that
10560   // TokenFactor.
10561   if (OldChain == NewMemOpChain || OldChain.use_empty())
10562     return NewMemOpChain;
10563 
10564   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
10565                                 OldChain, NewMemOpChain);
10566   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
10567   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
10568   return TokenFactor;
10569 }
10570 
10571 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
10572                                                    SDValue NewMemOp) {
10573   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
10574   SDValue OldChain = SDValue(OldLoad, 1);
10575   SDValue NewMemOpChain = NewMemOp.getValue(1);
10576   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
10577 }
10578 
10579 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
10580                                                      Function **OutFunction) {
10581   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
10582 
10583   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
10584   auto *Module = MF->getFunction().getParent();
10585   auto *Function = Module->getFunction(Symbol);
10586 
10587   if (OutFunction != nullptr)
10588       *OutFunction = Function;
10589 
10590   if (Function != nullptr) {
10591     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
10592     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
10593   }
10594 
10595   std::string ErrorStr;
10596   raw_string_ostream ErrorFormatter(ErrorStr);
10597   ErrorFormatter << "Undefined external symbol ";
10598   ErrorFormatter << '"' << Symbol << '"';
10599   report_fatal_error(Twine(ErrorFormatter.str()));
10600 }
10601 
10602 //===----------------------------------------------------------------------===//
10603 //                              SDNode Class
10604 //===----------------------------------------------------------------------===//
10605 
10606 bool llvm::isNullConstant(SDValue V) {
10607   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10608   return Const != nullptr && Const->isZero();
10609 }
10610 
10611 bool llvm::isNullFPConstant(SDValue V) {
10612   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
10613   return Const != nullptr && Const->isZero() && !Const->isNegative();
10614 }
10615 
10616 bool llvm::isAllOnesConstant(SDValue V) {
10617   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10618   return Const != nullptr && Const->isAllOnes();
10619 }
10620 
10621 bool llvm::isOneConstant(SDValue V) {
10622   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10623   return Const != nullptr && Const->isOne();
10624 }
10625 
10626 bool llvm::isMinSignedConstant(SDValue V) {
10627   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
10628   return Const != nullptr && Const->isMinSignedValue();
10629 }
10630 
10631 SDValue llvm::peekThroughBitcasts(SDValue V) {
10632   while (V.getOpcode() == ISD::BITCAST)
10633     V = V.getOperand(0);
10634   return V;
10635 }
10636 
10637 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
10638   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
10639     V = V.getOperand(0);
10640   return V;
10641 }
10642 
10643 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
10644   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
10645     V = V.getOperand(0);
10646   return V;
10647 }
10648 
10649 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
10650   if (V.getOpcode() != ISD::XOR)
10651     return false;
10652   V = peekThroughBitcasts(V.getOperand(1));
10653   unsigned NumBits = V.getScalarValueSizeInBits();
10654   ConstantSDNode *C =
10655       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
10656   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
10657 }
10658 
10659 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
10660                                           bool AllowTruncation) {
10661   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10662     return CN;
10663 
10664   // SplatVectors can truncate their operands. Ignore that case here unless
10665   // AllowTruncation is set.
10666   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
10667     EVT VecEltVT = N->getValueType(0).getVectorElementType();
10668     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10669       EVT CVT = CN->getValueType(0);
10670       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
10671       if (AllowTruncation || CVT == VecEltVT)
10672         return CN;
10673     }
10674   }
10675 
10676   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10677     BitVector UndefElements;
10678     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
10679 
10680     // BuildVectors can truncate their operands. Ignore that case here unless
10681     // AllowTruncation is set.
10682     if (CN && (UndefElements.none() || AllowUndefs)) {
10683       EVT CVT = CN->getValueType(0);
10684       EVT NSVT = N.getValueType().getScalarType();
10685       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10686       if (AllowTruncation || (CVT == NSVT))
10687         return CN;
10688     }
10689   }
10690 
10691   return nullptr;
10692 }
10693 
10694 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
10695                                           bool AllowUndefs,
10696                                           bool AllowTruncation) {
10697   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
10698     return CN;
10699 
10700   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10701     BitVector UndefElements;
10702     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
10703 
10704     // BuildVectors can truncate their operands. Ignore that case here unless
10705     // AllowTruncation is set.
10706     if (CN && (UndefElements.none() || AllowUndefs)) {
10707       EVT CVT = CN->getValueType(0);
10708       EVT NSVT = N.getValueType().getScalarType();
10709       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
10710       if (AllowTruncation || (CVT == NSVT))
10711         return CN;
10712     }
10713   }
10714 
10715   return nullptr;
10716 }
10717 
10718 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
10719   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10720     return CN;
10721 
10722   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10723     BitVector UndefElements;
10724     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
10725     if (CN && (UndefElements.none() || AllowUndefs))
10726       return CN;
10727   }
10728 
10729   if (N.getOpcode() == ISD::SPLAT_VECTOR)
10730     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
10731       return CN;
10732 
10733   return nullptr;
10734 }
10735 
10736 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
10737                                               const APInt &DemandedElts,
10738                                               bool AllowUndefs) {
10739   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
10740     return CN;
10741 
10742   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
10743     BitVector UndefElements;
10744     ConstantFPSDNode *CN =
10745         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
10746     if (CN && (UndefElements.none() || AllowUndefs))
10747       return CN;
10748   }
10749 
10750   return nullptr;
10751 }
10752 
10753 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
10754   // TODO: may want to use peekThroughBitcast() here.
10755   ConstantSDNode *C =
10756       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
10757   return C && C->isZero();
10758 }
10759 
10760 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
10761   ConstantSDNode *C =
10762       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true);
10763   return C && C->isOne();
10764 }
10765 
10766 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
10767   N = peekThroughBitcasts(N);
10768   unsigned BitWidth = N.getScalarValueSizeInBits();
10769   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
10770   return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
10771 }
10772 
10773 HandleSDNode::~HandleSDNode() {
10774   DropOperands();
10775 }
10776 
10777 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
10778                                          const DebugLoc &DL,
10779                                          const GlobalValue *GA, EVT VT,
10780                                          int64_t o, unsigned TF)
10781     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
10782   TheGlobal = GA;
10783 }
10784 
10785 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
10786                                          EVT VT, unsigned SrcAS,
10787                                          unsigned DestAS)
10788     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
10789       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
10790 
10791 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
10792                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
10793     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
10794   MemSDNodeBits.IsVolatile = MMO->isVolatile();
10795   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
10796   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
10797   MemSDNodeBits.IsInvariant = MMO->isInvariant();
10798 
10799   // We check here that the size of the memory operand fits within the size of
10800   // the MMO. This is because the MMO might indicate only a possible address
10801   // range instead of specifying the affected memory addresses precisely.
10802   // TODO: Make MachineMemOperands aware of scalable vectors.
10803   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
10804          "Size mismatch!");
10805 }
10806 
10807 /// Profile - Gather unique data for the node.
10808 ///
10809 void SDNode::Profile(FoldingSetNodeID &ID) const {
10810   AddNodeIDNode(ID, this);
10811 }
10812 
10813 namespace {
10814 
10815   struct EVTArray {
10816     std::vector<EVT> VTs;
10817 
10818     EVTArray() {
10819       VTs.reserve(MVT::VALUETYPE_SIZE);
10820       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
10821         VTs.push_back(MVT((MVT::SimpleValueType)i));
10822     }
10823   };
10824 
10825 } // end anonymous namespace
10826 
10827 /// getValueTypeList - Return a pointer to the specified value type.
10828 ///
10829 const EVT *SDNode::getValueTypeList(EVT VT) {
10830   static std::set<EVT, EVT::compareRawBits> EVTs;
10831   static EVTArray SimpleVTArray;
10832   static sys::SmartMutex<true> VTMutex;
10833 
10834   if (VT.isExtended()) {
10835     sys::SmartScopedLock<true> Lock(VTMutex);
10836     return &(*EVTs.insert(VT).first);
10837   }
10838   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
10839   return &SimpleVTArray.VTs[VT.getSimpleVT().SimpleTy];
10840 }
10841 
10842 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
10843 /// indicated value.  This method ignores uses of other values defined by this
10844 /// operation.
10845 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
10846   assert(Value < getNumValues() && "Bad value!");
10847 
10848   // TODO: Only iterate over uses of a given value of the node
10849   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
10850     if (UI.getUse().getResNo() == Value) {
10851       if (NUses == 0)
10852         return false;
10853       --NUses;
10854     }
10855   }
10856 
10857   // Found exactly the right number of uses?
10858   return NUses == 0;
10859 }
10860 
10861 /// hasAnyUseOfValue - Return true if there are any use of the indicated
10862 /// value. This method ignores uses of other values defined by this operation.
10863 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
10864   assert(Value < getNumValues() && "Bad value!");
10865 
10866   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
10867     if (UI.getUse().getResNo() == Value)
10868       return true;
10869 
10870   return false;
10871 }
10872 
10873 /// isOnlyUserOf - Return true if this node is the only use of N.
10874 bool SDNode::isOnlyUserOf(const SDNode *N) const {
10875   bool Seen = false;
10876   for (const SDNode *User : N->uses()) {
10877     if (User == this)
10878       Seen = true;
10879     else
10880       return false;
10881   }
10882 
10883   return Seen;
10884 }
10885 
10886 /// Return true if the only users of N are contained in Nodes.
10887 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
10888   bool Seen = false;
10889   for (const SDNode *User : N->uses()) {
10890     if (llvm::is_contained(Nodes, User))
10891       Seen = true;
10892     else
10893       return false;
10894   }
10895 
10896   return Seen;
10897 }
10898 
10899 /// isOperand - Return true if this node is an operand of N.
10900 bool SDValue::isOperandOf(const SDNode *N) const {
10901   return is_contained(N->op_values(), *this);
10902 }
10903 
10904 bool SDNode::isOperandOf(const SDNode *N) const {
10905   return any_of(N->op_values(),
10906                 [this](SDValue Op) { return this == Op.getNode(); });
10907 }
10908 
10909 /// reachesChainWithoutSideEffects - Return true if this operand (which must
10910 /// be a chain) reaches the specified operand without crossing any
10911 /// side-effecting instructions on any chain path.  In practice, this looks
10912 /// through token factors and non-volatile loads.  In order to remain efficient,
10913 /// this only looks a couple of nodes in, it does not do an exhaustive search.
10914 ///
10915 /// Note that we only need to examine chains when we're searching for
10916 /// side-effects; SelectionDAG requires that all side-effects are represented
10917 /// by chains, even if another operand would force a specific ordering. This
10918 /// constraint is necessary to allow transformations like splitting loads.
10919 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
10920                                              unsigned Depth) const {
10921   if (*this == Dest) return true;
10922 
10923   // Don't search too deeply, we just want to be able to see through
10924   // TokenFactor's etc.
10925   if (Depth == 0) return false;
10926 
10927   // If this is a token factor, all inputs to the TF happen in parallel.
10928   if (getOpcode() == ISD::TokenFactor) {
10929     // First, try a shallow search.
10930     if (is_contained((*this)->ops(), Dest)) {
10931       // We found the chain we want as an operand of this TokenFactor.
10932       // Essentially, we reach the chain without side-effects if we could
10933       // serialize the TokenFactor into a simple chain of operations with
10934       // Dest as the last operation. This is automatically true if the
10935       // chain has one use: there are no other ordering constraints.
10936       // If the chain has more than one use, we give up: some other
10937       // use of Dest might force a side-effect between Dest and the current
10938       // node.
10939       if (Dest.hasOneUse())
10940         return true;
10941     }
10942     // Next, try a deep search: check whether every operand of the TokenFactor
10943     // reaches Dest.
10944     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
10945       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
10946     });
10947   }
10948 
10949   // Loads don't have side effects, look through them.
10950   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
10951     if (Ld->isUnordered())
10952       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
10953   }
10954   return false;
10955 }
10956 
10957 bool SDNode::hasPredecessor(const SDNode *N) const {
10958   SmallPtrSet<const SDNode *, 32> Visited;
10959   SmallVector<const SDNode *, 16> Worklist;
10960   Worklist.push_back(this);
10961   return hasPredecessorHelper(N, Visited, Worklist);
10962 }
10963 
10964 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
10965   this->Flags.intersectWith(Flags);
10966 }
10967 
10968 SDValue
10969 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
10970                                   ArrayRef<ISD::NodeType> CandidateBinOps,
10971                                   bool AllowPartials) {
10972   // The pattern must end in an extract from index 0.
10973   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10974       !isNullConstant(Extract->getOperand(1)))
10975     return SDValue();
10976 
10977   // Match against one of the candidate binary ops.
10978   SDValue Op = Extract->getOperand(0);
10979   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
10980         return Op.getOpcode() == unsigned(BinOp);
10981       }))
10982     return SDValue();
10983 
10984   // Floating-point reductions may require relaxed constraints on the final step
10985   // of the reduction because they may reorder intermediate operations.
10986   unsigned CandidateBinOp = Op.getOpcode();
10987   if (Op.getValueType().isFloatingPoint()) {
10988     SDNodeFlags Flags = Op->getFlags();
10989     switch (CandidateBinOp) {
10990     case ISD::FADD:
10991       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
10992         return SDValue();
10993       break;
10994     default:
10995       llvm_unreachable("Unhandled FP opcode for binop reduction");
10996     }
10997   }
10998 
10999   // Matching failed - attempt to see if we did enough stages that a partial
11000   // reduction from a subvector is possible.
11001   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
11002     if (!AllowPartials || !Op)
11003       return SDValue();
11004     EVT OpVT = Op.getValueType();
11005     EVT OpSVT = OpVT.getScalarType();
11006     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
11007     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
11008       return SDValue();
11009     BinOp = (ISD::NodeType)CandidateBinOp;
11010     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
11011                    getVectorIdxConstant(0, SDLoc(Op)));
11012   };
11013 
11014   // At each stage, we're looking for something that looks like:
11015   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
11016   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
11017   //                               i32 undef, i32 undef, i32 undef, i32 undef>
11018   // %a = binop <8 x i32> %op, %s
11019   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
11020   // we expect something like:
11021   // <4,5,6,7,u,u,u,u>
11022   // <2,3,u,u,u,u,u,u>
11023   // <1,u,u,u,u,u,u,u>
11024   // While a partial reduction match would be:
11025   // <2,3,u,u,u,u,u,u>
11026   // <1,u,u,u,u,u,u,u>
11027   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
11028   SDValue PrevOp;
11029   for (unsigned i = 0; i < Stages; ++i) {
11030     unsigned MaskEnd = (1 << i);
11031 
11032     if (Op.getOpcode() != CandidateBinOp)
11033       return PartialReduction(PrevOp, MaskEnd);
11034 
11035     SDValue Op0 = Op.getOperand(0);
11036     SDValue Op1 = Op.getOperand(1);
11037 
11038     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
11039     if (Shuffle) {
11040       Op = Op1;
11041     } else {
11042       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
11043       Op = Op0;
11044     }
11045 
11046     // The first operand of the shuffle should be the same as the other operand
11047     // of the binop.
11048     if (!Shuffle || Shuffle->getOperand(0) != Op)
11049       return PartialReduction(PrevOp, MaskEnd);
11050 
11051     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
11052     for (int Index = 0; Index < (int)MaskEnd; ++Index)
11053       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
11054         return PartialReduction(PrevOp, MaskEnd);
11055 
11056     PrevOp = Op;
11057   }
11058 
11059   // Handle subvector reductions, which tend to appear after the shuffle
11060   // reduction stages.
11061   while (Op.getOpcode() == CandidateBinOp) {
11062     unsigned NumElts = Op.getValueType().getVectorNumElements();
11063     SDValue Op0 = Op.getOperand(0);
11064     SDValue Op1 = Op.getOperand(1);
11065     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
11066         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
11067         Op0.getOperand(0) != Op1.getOperand(0))
11068       break;
11069     SDValue Src = Op0.getOperand(0);
11070     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
11071     if (NumSrcElts != (2 * NumElts))
11072       break;
11073     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
11074           Op1.getConstantOperandAPInt(1) == NumElts) &&
11075         !(Op1.getConstantOperandAPInt(1) == 0 &&
11076           Op0.getConstantOperandAPInt(1) == NumElts))
11077       break;
11078     Op = Src;
11079   }
11080 
11081   BinOp = (ISD::NodeType)CandidateBinOp;
11082   return Op;
11083 }
11084 
11085 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
11086   assert(N->getNumValues() == 1 &&
11087          "Can't unroll a vector with multiple results!");
11088 
11089   EVT VT = N->getValueType(0);
11090   unsigned NE = VT.getVectorNumElements();
11091   EVT EltVT = VT.getVectorElementType();
11092   SDLoc dl(N);
11093 
11094   SmallVector<SDValue, 8> Scalars;
11095   SmallVector<SDValue, 4> Operands(N->getNumOperands());
11096 
11097   // If ResNE is 0, fully unroll the vector op.
11098   if (ResNE == 0)
11099     ResNE = NE;
11100   else if (NE > ResNE)
11101     NE = ResNE;
11102 
11103   unsigned i;
11104   for (i= 0; i != NE; ++i) {
11105     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
11106       SDValue Operand = N->getOperand(j);
11107       EVT OperandVT = Operand.getValueType();
11108       if (OperandVT.isVector()) {
11109         // A vector operand; extract a single element.
11110         EVT OperandEltVT = OperandVT.getVectorElementType();
11111         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
11112                               Operand, getVectorIdxConstant(i, dl));
11113       } else {
11114         // A scalar operand; just use it as is.
11115         Operands[j] = Operand;
11116       }
11117     }
11118 
11119     switch (N->getOpcode()) {
11120     default: {
11121       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
11122                                 N->getFlags()));
11123       break;
11124     }
11125     case ISD::VSELECT:
11126       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
11127       break;
11128     case ISD::SHL:
11129     case ISD::SRA:
11130     case ISD::SRL:
11131     case ISD::ROTL:
11132     case ISD::ROTR:
11133       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
11134                                getShiftAmountOperand(Operands[0].getValueType(),
11135                                                      Operands[1])));
11136       break;
11137     case ISD::SIGN_EXTEND_INREG: {
11138       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
11139       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
11140                                 Operands[0],
11141                                 getValueType(ExtVT)));
11142     }
11143     }
11144   }
11145 
11146   for (; i < ResNE; ++i)
11147     Scalars.push_back(getUNDEF(EltVT));
11148 
11149   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
11150   return getBuildVector(VecVT, dl, Scalars);
11151 }
11152 
11153 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
11154     SDNode *N, unsigned ResNE) {
11155   unsigned Opcode = N->getOpcode();
11156   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
11157           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
11158           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
11159          "Expected an overflow opcode");
11160 
11161   EVT ResVT = N->getValueType(0);
11162   EVT OvVT = N->getValueType(1);
11163   EVT ResEltVT = ResVT.getVectorElementType();
11164   EVT OvEltVT = OvVT.getVectorElementType();
11165   SDLoc dl(N);
11166 
11167   // If ResNE is 0, fully unroll the vector op.
11168   unsigned NE = ResVT.getVectorNumElements();
11169   if (ResNE == 0)
11170     ResNE = NE;
11171   else if (NE > ResNE)
11172     NE = ResNE;
11173 
11174   SmallVector<SDValue, 8> LHSScalars;
11175   SmallVector<SDValue, 8> RHSScalars;
11176   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
11177   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
11178 
11179   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
11180   SDVTList VTs = getVTList(ResEltVT, SVT);
11181   SmallVector<SDValue, 8> ResScalars;
11182   SmallVector<SDValue, 8> OvScalars;
11183   for (unsigned i = 0; i < NE; ++i) {
11184     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
11185     SDValue Ov =
11186         getSelect(dl, OvEltVT, Res.getValue(1),
11187                   getBoolConstant(true, dl, OvEltVT, ResVT),
11188                   getConstant(0, dl, OvEltVT));
11189 
11190     ResScalars.push_back(Res);
11191     OvScalars.push_back(Ov);
11192   }
11193 
11194   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
11195   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
11196 
11197   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
11198   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
11199   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
11200                         getBuildVector(NewOvVT, dl, OvScalars));
11201 }
11202 
11203 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
11204                                                   LoadSDNode *Base,
11205                                                   unsigned Bytes,
11206                                                   int Dist) const {
11207   if (LD->isVolatile() || Base->isVolatile())
11208     return false;
11209   // TODO: probably too restrictive for atomics, revisit
11210   if (!LD->isSimple())
11211     return false;
11212   if (LD->isIndexed() || Base->isIndexed())
11213     return false;
11214   if (LD->getChain() != Base->getChain())
11215     return false;
11216   EVT VT = LD->getValueType(0);
11217   if (VT.getSizeInBits() / 8 != Bytes)
11218     return false;
11219 
11220   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
11221   auto LocDecomp = BaseIndexOffset::match(LD, *this);
11222 
11223   int64_t Offset = 0;
11224   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
11225     return (Dist * Bytes == Offset);
11226   return false;
11227 }
11228 
11229 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
11230 /// if it cannot be inferred.
11231 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
11232   // If this is a GlobalAddress + cst, return the alignment.
11233   const GlobalValue *GV = nullptr;
11234   int64_t GVOffset = 0;
11235   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
11236     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
11237     KnownBits Known(PtrWidth);
11238     llvm::computeKnownBits(GV, Known, getDataLayout());
11239     unsigned AlignBits = Known.countMinTrailingZeros();
11240     if (AlignBits)
11241       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
11242   }
11243 
11244   // If this is a direct reference to a stack slot, use information about the
11245   // stack slot's alignment.
11246   int FrameIdx = INT_MIN;
11247   int64_t FrameOffset = 0;
11248   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
11249     FrameIdx = FI->getIndex();
11250   } else if (isBaseWithConstantOffset(Ptr) &&
11251              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
11252     // Handle FI+Cst
11253     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
11254     FrameOffset = Ptr.getConstantOperandVal(1);
11255   }
11256 
11257   if (FrameIdx != INT_MIN) {
11258     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
11259     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
11260   }
11261 
11262   return None;
11263 }
11264 
11265 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
11266 /// which is split (or expanded) into two not necessarily identical pieces.
11267 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
11268   // Currently all types are split in half.
11269   EVT LoVT, HiVT;
11270   if (!VT.isVector())
11271     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
11272   else
11273     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
11274 
11275   return std::make_pair(LoVT, HiVT);
11276 }
11277 
11278 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
11279 /// type, dependent on an enveloping VT that has been split into two identical
11280 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
11281 std::pair<EVT, EVT>
11282 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
11283                                        bool *HiIsEmpty) const {
11284   EVT EltTp = VT.getVectorElementType();
11285   // Examples:
11286   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
11287   //   custom VL=9  with enveloping VL=8/8 yields 8/1
11288   //   custom VL=10 with enveloping VL=8/8 yields 8/2
11289   //   etc.
11290   ElementCount VTNumElts = VT.getVectorElementCount();
11291   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
11292   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
11293          "Mixing fixed width and scalable vectors when enveloping a type");
11294   EVT LoVT, HiVT;
11295   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
11296     LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
11297     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
11298     *HiIsEmpty = false;
11299   } else {
11300     // Flag that hi type has zero storage size, but return split envelop type
11301     // (this would be easier if vector types with zero elements were allowed).
11302     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
11303     HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
11304     *HiIsEmpty = true;
11305   }
11306   return std::make_pair(LoVT, HiVT);
11307 }
11308 
11309 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
11310 /// low/high part.
11311 std::pair<SDValue, SDValue>
11312 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
11313                           const EVT &HiVT) {
11314   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
11315          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
11316          "Splitting vector with an invalid mixture of fixed and scalable "
11317          "vector types");
11318   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
11319              N.getValueType().getVectorMinNumElements() &&
11320          "More vector elements requested than available!");
11321   SDValue Lo, Hi;
11322   Lo =
11323       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
11324   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
11325   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
11326   // IDX with the runtime scaling factor of the result vector type. For
11327   // fixed-width result vectors, that runtime scaling factor is 1.
11328   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
11329                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
11330   return std::make_pair(Lo, Hi);
11331 }
11332 
11333 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
11334                                                    const SDLoc &DL) {
11335   // Split the vector length parameter.
11336   // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
11337   EVT VT = N.getValueType();
11338   assert(VecVT.getVectorElementCount().isKnownEven() &&
11339          "Expecting the mask to be an evenly-sized vector");
11340   unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
11341   SDValue HalfNumElts =
11342       VecVT.isFixedLengthVector()
11343           ? getConstant(HalfMinNumElts, DL, VT)
11344           : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
11345   SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
11346   SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
11347   return std::make_pair(Lo, Hi);
11348 }
11349 
11350 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
11351 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
11352   EVT VT = N.getValueType();
11353   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
11354                                 NextPowerOf2(VT.getVectorNumElements()));
11355   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
11356                  getVectorIdxConstant(0, DL));
11357 }
11358 
11359 void SelectionDAG::ExtractVectorElements(SDValue Op,
11360                                          SmallVectorImpl<SDValue> &Args,
11361                                          unsigned Start, unsigned Count,
11362                                          EVT EltVT) {
11363   EVT VT = Op.getValueType();
11364   if (Count == 0)
11365     Count = VT.getVectorNumElements();
11366   if (EltVT == EVT())
11367     EltVT = VT.getVectorElementType();
11368   SDLoc SL(Op);
11369   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
11370     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
11371                            getVectorIdxConstant(i, SL)));
11372   }
11373 }
11374 
11375 // getAddressSpace - Return the address space this GlobalAddress belongs to.
11376 unsigned GlobalAddressSDNode::getAddressSpace() const {
11377   return getGlobal()->getType()->getAddressSpace();
11378 }
11379 
11380 Type *ConstantPoolSDNode::getType() const {
11381   if (isMachineConstantPoolEntry())
11382     return Val.MachineCPVal->getType();
11383   return Val.ConstVal->getType();
11384 }
11385 
11386 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
11387                                         unsigned &SplatBitSize,
11388                                         bool &HasAnyUndefs,
11389                                         unsigned MinSplatBits,
11390                                         bool IsBigEndian) const {
11391   EVT VT = getValueType(0);
11392   assert(VT.isVector() && "Expected a vector type");
11393   unsigned VecWidth = VT.getSizeInBits();
11394   if (MinSplatBits > VecWidth)
11395     return false;
11396 
11397   // FIXME: The widths are based on this node's type, but build vectors can
11398   // truncate their operands.
11399   SplatValue = APInt(VecWidth, 0);
11400   SplatUndef = APInt(VecWidth, 0);
11401 
11402   // Get the bits. Bits with undefined values (when the corresponding element
11403   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
11404   // in SplatValue. If any of the values are not constant, give up and return
11405   // false.
11406   unsigned int NumOps = getNumOperands();
11407   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
11408   unsigned EltWidth = VT.getScalarSizeInBits();
11409 
11410   for (unsigned j = 0; j < NumOps; ++j) {
11411     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
11412     SDValue OpVal = getOperand(i);
11413     unsigned BitPos = j * EltWidth;
11414 
11415     if (OpVal.isUndef())
11416       SplatUndef.setBits(BitPos, BitPos + EltWidth);
11417     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
11418       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
11419     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
11420       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
11421     else
11422       return false;
11423   }
11424 
11425   // The build_vector is all constants or undefs. Find the smallest element
11426   // size that splats the vector.
11427   HasAnyUndefs = (SplatUndef != 0);
11428 
11429   // FIXME: This does not work for vectors with elements less than 8 bits.
11430   while (VecWidth > 8) {
11431     unsigned HalfSize = VecWidth / 2;
11432     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
11433     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
11434     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
11435     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
11436 
11437     // If the two halves do not match (ignoring undef bits), stop here.
11438     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
11439         MinSplatBits > HalfSize)
11440       break;
11441 
11442     SplatValue = HighValue | LowValue;
11443     SplatUndef = HighUndef & LowUndef;
11444 
11445     VecWidth = HalfSize;
11446   }
11447 
11448   SplatBitSize = VecWidth;
11449   return true;
11450 }
11451 
11452 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
11453                                          BitVector *UndefElements) const {
11454   unsigned NumOps = getNumOperands();
11455   if (UndefElements) {
11456     UndefElements->clear();
11457     UndefElements->resize(NumOps);
11458   }
11459   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
11460   if (!DemandedElts)
11461     return SDValue();
11462   SDValue Splatted;
11463   for (unsigned i = 0; i != NumOps; ++i) {
11464     if (!DemandedElts[i])
11465       continue;
11466     SDValue Op = getOperand(i);
11467     if (Op.isUndef()) {
11468       if (UndefElements)
11469         (*UndefElements)[i] = true;
11470     } else if (!Splatted) {
11471       Splatted = Op;
11472     } else if (Splatted != Op) {
11473       return SDValue();
11474     }
11475   }
11476 
11477   if (!Splatted) {
11478     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
11479     assert(getOperand(FirstDemandedIdx).isUndef() &&
11480            "Can only have a splat without a constant for all undefs.");
11481     return getOperand(FirstDemandedIdx);
11482   }
11483 
11484   return Splatted;
11485 }
11486 
11487 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
11488   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
11489   return getSplatValue(DemandedElts, UndefElements);
11490 }
11491 
11492 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
11493                                             SmallVectorImpl<SDValue> &Sequence,
11494                                             BitVector *UndefElements) const {
11495   unsigned NumOps = getNumOperands();
11496   Sequence.clear();
11497   if (UndefElements) {
11498     UndefElements->clear();
11499     UndefElements->resize(NumOps);
11500   }
11501   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
11502   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
11503     return false;
11504 
11505   // Set the undefs even if we don't find a sequence (like getSplatValue).
11506   if (UndefElements)
11507     for (unsigned I = 0; I != NumOps; ++I)
11508       if (DemandedElts[I] && getOperand(I).isUndef())
11509         (*UndefElements)[I] = true;
11510 
11511   // Iteratively widen the sequence length looking for repetitions.
11512   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
11513     Sequence.append(SeqLen, SDValue());
11514     for (unsigned I = 0; I != NumOps; ++I) {
11515       if (!DemandedElts[I])
11516         continue;
11517       SDValue &SeqOp = Sequence[I % SeqLen];
11518       SDValue Op = getOperand(I);
11519       if (Op.isUndef()) {
11520         if (!SeqOp)
11521           SeqOp = Op;
11522         continue;
11523       }
11524       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
11525         Sequence.clear();
11526         break;
11527       }
11528       SeqOp = Op;
11529     }
11530     if (!Sequence.empty())
11531       return true;
11532   }
11533 
11534   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
11535   return false;
11536 }
11537 
11538 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
11539                                             BitVector *UndefElements) const {
11540   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
11541   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
11542 }
11543 
11544 ConstantSDNode *
11545 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
11546                                         BitVector *UndefElements) const {
11547   return dyn_cast_or_null<ConstantSDNode>(
11548       getSplatValue(DemandedElts, UndefElements));
11549 }
11550 
11551 ConstantSDNode *
11552 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
11553   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
11554 }
11555 
11556 ConstantFPSDNode *
11557 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
11558                                           BitVector *UndefElements) const {
11559   return dyn_cast_or_null<ConstantFPSDNode>(
11560       getSplatValue(DemandedElts, UndefElements));
11561 }
11562 
11563 ConstantFPSDNode *
11564 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
11565   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
11566 }
11567 
11568 int32_t
11569 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
11570                                                    uint32_t BitWidth) const {
11571   if (ConstantFPSDNode *CN =
11572           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
11573     bool IsExact;
11574     APSInt IntVal(BitWidth);
11575     const APFloat &APF = CN->getValueAPF();
11576     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
11577             APFloat::opOK ||
11578         !IsExact)
11579       return -1;
11580 
11581     return IntVal.exactLogBase2();
11582   }
11583   return -1;
11584 }
11585 
11586 bool BuildVectorSDNode::getConstantRawBits(
11587     bool IsLittleEndian, unsigned DstEltSizeInBits,
11588     SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
11589   // Early-out if this contains anything but Undef/Constant/ConstantFP.
11590   if (!isConstant())
11591     return false;
11592 
11593   unsigned NumSrcOps = getNumOperands();
11594   unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
11595   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
11596          "Invalid bitcast scale");
11597 
11598   // Extract raw src bits.
11599   SmallVector<APInt> SrcBitElements(NumSrcOps,
11600                                     APInt::getNullValue(SrcEltSizeInBits));
11601   BitVector SrcUndeElements(NumSrcOps, false);
11602 
11603   for (unsigned I = 0; I != NumSrcOps; ++I) {
11604     SDValue Op = getOperand(I);
11605     if (Op.isUndef()) {
11606       SrcUndeElements.set(I);
11607       continue;
11608     }
11609     auto *CInt = dyn_cast<ConstantSDNode>(Op);
11610     auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
11611     assert((CInt || CFP) && "Unknown constant");
11612     SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
11613                              : CFP->getValueAPF().bitcastToAPInt();
11614   }
11615 
11616   // Recast to dst width.
11617   recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
11618                 SrcBitElements, UndefElements, SrcUndeElements);
11619   return true;
11620 }
11621 
11622 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
11623                                       unsigned DstEltSizeInBits,
11624                                       SmallVectorImpl<APInt> &DstBitElements,
11625                                       ArrayRef<APInt> SrcBitElements,
11626                                       BitVector &DstUndefElements,
11627                                       const BitVector &SrcUndefElements) {
11628   unsigned NumSrcOps = SrcBitElements.size();
11629   unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
11630   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
11631          "Invalid bitcast scale");
11632   assert(NumSrcOps == SrcUndefElements.size() &&
11633          "Vector size mismatch");
11634 
11635   unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
11636   DstUndefElements.clear();
11637   DstUndefElements.resize(NumDstOps, false);
11638   DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits));
11639 
11640   // Concatenate src elements constant bits together into dst element.
11641   if (SrcEltSizeInBits <= DstEltSizeInBits) {
11642     unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
11643     for (unsigned I = 0; I != NumDstOps; ++I) {
11644       DstUndefElements.set(I);
11645       APInt &DstBits = DstBitElements[I];
11646       for (unsigned J = 0; J != Scale; ++J) {
11647         unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
11648         if (SrcUndefElements[Idx])
11649           continue;
11650         DstUndefElements.reset(I);
11651         const APInt &SrcBits = SrcBitElements[Idx];
11652         assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
11653                "Illegal constant bitwidths");
11654         DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
11655       }
11656     }
11657     return;
11658   }
11659 
11660   // Split src element constant bits into dst elements.
11661   unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
11662   for (unsigned I = 0; I != NumSrcOps; ++I) {
11663     if (SrcUndefElements[I]) {
11664       DstUndefElements.set(I * Scale, (I + 1) * Scale);
11665       continue;
11666     }
11667     const APInt &SrcBits = SrcBitElements[I];
11668     for (unsigned J = 0; J != Scale; ++J) {
11669       unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
11670       APInt &DstBits = DstBitElements[Idx];
11671       DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
11672     }
11673   }
11674 }
11675 
11676 bool BuildVectorSDNode::isConstant() const {
11677   for (const SDValue &Op : op_values()) {
11678     unsigned Opc = Op.getOpcode();
11679     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
11680       return false;
11681   }
11682   return true;
11683 }
11684 
11685 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
11686   // Find the first non-undef value in the shuffle mask.
11687   unsigned i, e;
11688   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
11689     /* search */;
11690 
11691   // If all elements are undefined, this shuffle can be considered a splat
11692   // (although it should eventually get simplified away completely).
11693   if (i == e)
11694     return true;
11695 
11696   // Make sure all remaining elements are either undef or the same as the first
11697   // non-undef value.
11698   for (int Idx = Mask[i]; i != e; ++i)
11699     if (Mask[i] >= 0 && Mask[i] != Idx)
11700       return false;
11701   return true;
11702 }
11703 
11704 // Returns the SDNode if it is a constant integer BuildVector
11705 // or constant integer.
11706 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
11707   if (isa<ConstantSDNode>(N))
11708     return N.getNode();
11709   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
11710     return N.getNode();
11711   // Treat a GlobalAddress supporting constant offset folding as a
11712   // constant integer.
11713   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
11714     if (GA->getOpcode() == ISD::GlobalAddress &&
11715         TLI->isOffsetFoldingLegal(GA))
11716       return GA;
11717   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11718       isa<ConstantSDNode>(N.getOperand(0)))
11719     return N.getNode();
11720   return nullptr;
11721 }
11722 
11723 // Returns the SDNode if it is a constant float BuildVector
11724 // or constant float.
11725 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
11726   if (isa<ConstantFPSDNode>(N))
11727     return N.getNode();
11728 
11729   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
11730     return N.getNode();
11731 
11732   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
11733       isa<ConstantFPSDNode>(N.getOperand(0)))
11734     return N.getNode();
11735 
11736   return nullptr;
11737 }
11738 
11739 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
11740   assert(!Node->OperandList && "Node already has operands");
11741   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
11742          "too many operands to fit into SDNode");
11743   SDUse *Ops = OperandRecycler.allocate(
11744       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
11745 
11746   bool IsDivergent = false;
11747   for (unsigned I = 0; I != Vals.size(); ++I) {
11748     Ops[I].setUser(Node);
11749     Ops[I].setInitial(Vals[I]);
11750     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
11751       IsDivergent |= Ops[I].getNode()->isDivergent();
11752   }
11753   Node->NumOperands = Vals.size();
11754   Node->OperandList = Ops;
11755   if (!TLI->isSDNodeAlwaysUniform(Node)) {
11756     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
11757     Node->SDNodeBits.IsDivergent = IsDivergent;
11758   }
11759   checkForCycles(Node);
11760 }
11761 
11762 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
11763                                      SmallVectorImpl<SDValue> &Vals) {
11764   size_t Limit = SDNode::getMaxNumOperands();
11765   while (Vals.size() > Limit) {
11766     unsigned SliceIdx = Vals.size() - Limit;
11767     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
11768     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
11769     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
11770     Vals.emplace_back(NewTF);
11771   }
11772   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
11773 }
11774 
11775 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
11776                                         EVT VT, SDNodeFlags Flags) {
11777   switch (Opcode) {
11778   default:
11779     return SDValue();
11780   case ISD::ADD:
11781   case ISD::OR:
11782   case ISD::XOR:
11783   case ISD::UMAX:
11784     return getConstant(0, DL, VT);
11785   case ISD::MUL:
11786     return getConstant(1, DL, VT);
11787   case ISD::AND:
11788   case ISD::UMIN:
11789     return getAllOnesConstant(DL, VT);
11790   case ISD::SMAX:
11791     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
11792   case ISD::SMIN:
11793     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
11794   case ISD::FADD:
11795     return getConstantFP(-0.0, DL, VT);
11796   case ISD::FMUL:
11797     return getConstantFP(1.0, DL, VT);
11798   case ISD::FMINNUM:
11799   case ISD::FMAXNUM: {
11800     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11801     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
11802     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
11803                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
11804                         APFloat::getLargest(Semantics);
11805     if (Opcode == ISD::FMAXNUM)
11806       NeutralAF.changeSign();
11807 
11808     return getConstantFP(NeutralAF, DL, VT);
11809   }
11810   }
11811 }
11812 
11813 #ifndef NDEBUG
11814 static void checkForCyclesHelper(const SDNode *N,
11815                                  SmallPtrSetImpl<const SDNode*> &Visited,
11816                                  SmallPtrSetImpl<const SDNode*> &Checked,
11817                                  const llvm::SelectionDAG *DAG) {
11818   // If this node has already been checked, don't check it again.
11819   if (Checked.count(N))
11820     return;
11821 
11822   // If a node has already been visited on this depth-first walk, reject it as
11823   // a cycle.
11824   if (!Visited.insert(N).second) {
11825     errs() << "Detected cycle in SelectionDAG\n";
11826     dbgs() << "Offending node:\n";
11827     N->dumprFull(DAG); dbgs() << "\n";
11828     abort();
11829   }
11830 
11831   for (const SDValue &Op : N->op_values())
11832     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
11833 
11834   Checked.insert(N);
11835   Visited.erase(N);
11836 }
11837 #endif
11838 
11839 void llvm::checkForCycles(const llvm::SDNode *N,
11840                           const llvm::SelectionDAG *DAG,
11841                           bool force) {
11842 #ifndef NDEBUG
11843   bool check = force;
11844 #ifdef EXPENSIVE_CHECKS
11845   check = true;
11846 #endif  // EXPENSIVE_CHECKS
11847   if (check) {
11848     assert(N && "Checking nonexistent SDNode");
11849     SmallPtrSet<const SDNode*, 32> visited;
11850     SmallPtrSet<const SDNode*, 32> checked;
11851     checkForCyclesHelper(N, visited, checked, DAG);
11852   }
11853 #endif  // !NDEBUG
11854 }
11855 
11856 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
11857   checkForCycles(DAG->getRoot().getNode(), DAG, force);
11858 }
11859