1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/FoldingSet.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Analysis/VectorUtils.h" 30 #include "llvm/BinaryFormat/Dwarf.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/MachineValueType.h" 40 #include "llvm/CodeGen/RuntimeLibcalls.h" 41 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 42 #include "llvm/CodeGen/SelectionDAGNodes.h" 43 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 44 #include "llvm/CodeGen/TargetFrameLowering.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetRegisterInfo.h" 47 #include "llvm/CodeGen/TargetSubtargetInfo.h" 48 #include "llvm/CodeGen/ValueTypes.h" 49 #include "llvm/IR/Constant.h" 50 #include "llvm/IR/ConstantRange.h" 51 #include "llvm/IR/Constants.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DebugInfoMetadata.h" 54 #include "llvm/IR/DebugLoc.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/GlobalValue.h" 58 #include "llvm/IR/Metadata.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CodeGen.h" 62 #include "llvm/Support/Compiler.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/KnownBits.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Mutex.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetOptions.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include "llvm/Transforms/Utils/SizeOpts.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <cstdlib> 77 #include <limits> 78 #include <set> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 /// makeVTList - Return an instance of the SDVTList struct initialized with the 86 /// specified members. 87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 88 SDVTList Res = {VTs, NumVTs}; 89 return Res; 90 } 91 92 // Default null implementations of the callbacks. 93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 96 97 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 98 void SelectionDAG::DAGNodeInsertedListener::anchor() {} 99 100 #define DEBUG_TYPE "selectiondag" 101 102 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 103 cl::Hidden, cl::init(true), 104 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 105 106 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 107 cl::desc("Number limit for gluing ld/st of memcpy."), 108 cl::Hidden, cl::init(0)); 109 110 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 111 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 112 } 113 114 //===----------------------------------------------------------------------===// 115 // ConstantFPSDNode Class 116 //===----------------------------------------------------------------------===// 117 118 /// isExactlyValue - We don't rely on operator== working on double values, as 119 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 120 /// As such, this method can be used to do an exact bit-for-bit comparison of 121 /// two floating point values. 122 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 123 return getValueAPF().bitwiseIsEqual(V); 124 } 125 126 bool ConstantFPSDNode::isValueValidForType(EVT VT, 127 const APFloat& Val) { 128 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 129 130 // convert modifies in place, so make a copy. 131 APFloat Val2 = APFloat(Val); 132 bool losesInfo; 133 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 134 APFloat::rmNearestTiesToEven, 135 &losesInfo); 136 return !losesInfo; 137 } 138 139 //===----------------------------------------------------------------------===// 140 // ISD Namespace 141 //===----------------------------------------------------------------------===// 142 143 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 144 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 145 unsigned EltSize = 146 N->getValueType(0).getVectorElementType().getSizeInBits(); 147 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 148 SplatVal = Op0->getAPIntValue().trunc(EltSize); 149 return true; 150 } 151 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 152 SplatVal = Op0->getValueAPF().bitcastToAPInt().trunc(EltSize); 153 return true; 154 } 155 } 156 157 auto *BV = dyn_cast<BuildVectorSDNode>(N); 158 if (!BV) 159 return false; 160 161 APInt SplatUndef; 162 unsigned SplatBitSize; 163 bool HasUndefs; 164 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 165 // Endianness does not matter here. We are checking for a splat given the 166 // element size of the vector, and if we find such a splat for little endian 167 // layout, then that should be valid also for big endian (as the full vector 168 // size is known to be a multiple of the element size). 169 const bool IsBigEndian = false; 170 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 171 EltSize, IsBigEndian) && 172 EltSize == SplatBitSize; 173 } 174 175 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 176 // specializations of the more general isConstantSplatVector()? 177 178 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 179 // Look through a bit convert. 180 while (N->getOpcode() == ISD::BITCAST) 181 N = N->getOperand(0).getNode(); 182 183 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 184 APInt SplatVal; 185 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 186 } 187 188 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 189 190 unsigned i = 0, e = N->getNumOperands(); 191 192 // Skip over all of the undef values. 193 while (i != e && N->getOperand(i).isUndef()) 194 ++i; 195 196 // Do not accept an all-undef vector. 197 if (i == e) return false; 198 199 // Do not accept build_vectors that aren't all constants or which have non-~0 200 // elements. We have to be a bit careful here, as the type of the constant 201 // may not be the same as the type of the vector elements due to type 202 // legalization (the elements are promoted to a legal type for the target and 203 // a vector of a type may be legal when the base element type is not). 204 // We only want to check enough bits to cover the vector elements, because 205 // we care if the resultant vector is all ones, not whether the individual 206 // constants are. 207 SDValue NotZero = N->getOperand(i); 208 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 209 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 210 if (CN->getAPIntValue().countr_one() < EltSize) 211 return false; 212 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 213 if (CFPN->getValueAPF().bitcastToAPInt().countr_one() < EltSize) 214 return false; 215 } else 216 return false; 217 218 // Okay, we have at least one ~0 value, check to see if the rest match or are 219 // undefs. Even with the above element type twiddling, this should be OK, as 220 // the same type legalization should have applied to all the elements. 221 for (++i; i != e; ++i) 222 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 223 return false; 224 return true; 225 } 226 227 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 228 // Look through a bit convert. 229 while (N->getOpcode() == ISD::BITCAST) 230 N = N->getOperand(0).getNode(); 231 232 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 233 APInt SplatVal; 234 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 235 } 236 237 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 238 239 bool IsAllUndef = true; 240 for (const SDValue &Op : N->op_values()) { 241 if (Op.isUndef()) 242 continue; 243 IsAllUndef = false; 244 // Do not accept build_vectors that aren't all constants or which have non-0 245 // elements. We have to be a bit careful here, as the type of the constant 246 // may not be the same as the type of the vector elements due to type 247 // legalization (the elements are promoted to a legal type for the target 248 // and a vector of a type may be legal when the base element type is not). 249 // We only want to check enough bits to cover the vector elements, because 250 // we care if the resultant vector is all zeros, not whether the individual 251 // constants are. 252 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 253 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 254 if (CN->getAPIntValue().countr_zero() < EltSize) 255 return false; 256 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 257 if (CFPN->getValueAPF().bitcastToAPInt().countr_zero() < EltSize) 258 return false; 259 } else 260 return false; 261 } 262 263 // Do not accept an all-undef vector. 264 if (IsAllUndef) 265 return false; 266 return true; 267 } 268 269 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 270 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 271 } 272 273 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 274 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 275 } 276 277 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 278 if (N->getOpcode() != ISD::BUILD_VECTOR) 279 return false; 280 281 for (const SDValue &Op : N->op_values()) { 282 if (Op.isUndef()) 283 continue; 284 if (!isa<ConstantSDNode>(Op)) 285 return false; 286 } 287 return true; 288 } 289 290 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 291 if (N->getOpcode() != ISD::BUILD_VECTOR) 292 return false; 293 294 for (const SDValue &Op : N->op_values()) { 295 if (Op.isUndef()) 296 continue; 297 if (!isa<ConstantFPSDNode>(Op)) 298 return false; 299 } 300 return true; 301 } 302 303 bool ISD::isVectorShrinkable(const SDNode *N, unsigned NewEltSize, 304 bool Signed) { 305 assert(N->getValueType(0).isVector() && "Expected a vector!"); 306 307 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 308 if (EltSize <= NewEltSize) 309 return false; 310 311 if (N->getOpcode() == ISD::ZERO_EXTEND) { 312 return (N->getOperand(0).getValueType().getScalarSizeInBits() <= 313 NewEltSize) && 314 !Signed; 315 } 316 if (N->getOpcode() == ISD::SIGN_EXTEND) { 317 return (N->getOperand(0).getValueType().getScalarSizeInBits() <= 318 NewEltSize) && 319 Signed; 320 } 321 if (N->getOpcode() != ISD::BUILD_VECTOR) 322 return false; 323 324 for (const SDValue &Op : N->op_values()) { 325 if (Op.isUndef()) 326 continue; 327 if (!isa<ConstantSDNode>(Op)) 328 return false; 329 330 APInt C = Op->getAsAPIntVal().trunc(EltSize); 331 if (Signed && C.trunc(NewEltSize).sext(EltSize) != C) 332 return false; 333 if (!Signed && C.trunc(NewEltSize).zext(EltSize) != C) 334 return false; 335 } 336 337 return true; 338 } 339 340 bool ISD::allOperandsUndef(const SDNode *N) { 341 // Return false if the node has no operands. 342 // This is "logically inconsistent" with the definition of "all" but 343 // is probably the desired behavior. 344 if (N->getNumOperands() == 0) 345 return false; 346 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 347 } 348 349 bool ISD::isFreezeUndef(const SDNode *N) { 350 return N->getOpcode() == ISD::FREEZE && N->getOperand(0).isUndef(); 351 } 352 353 template <typename ConstNodeType> 354 bool ISD::matchUnaryPredicateImpl(SDValue Op, 355 std::function<bool(ConstNodeType *)> Match, 356 bool AllowUndefs) { 357 // FIXME: Add support for scalar UNDEF cases? 358 if (auto *C = dyn_cast<ConstNodeType>(Op)) 359 return Match(C); 360 361 // FIXME: Add support for vector UNDEF cases? 362 if (ISD::BUILD_VECTOR != Op.getOpcode() && 363 ISD::SPLAT_VECTOR != Op.getOpcode()) 364 return false; 365 366 EVT SVT = Op.getValueType().getScalarType(); 367 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 368 if (AllowUndefs && Op.getOperand(i).isUndef()) { 369 if (!Match(nullptr)) 370 return false; 371 continue; 372 } 373 374 auto *Cst = dyn_cast<ConstNodeType>(Op.getOperand(i)); 375 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 376 return false; 377 } 378 return true; 379 } 380 // Build used template types. 381 template bool ISD::matchUnaryPredicateImpl<ConstantSDNode>( 382 SDValue, std::function<bool(ConstantSDNode *)>, bool); 383 template bool ISD::matchUnaryPredicateImpl<ConstantFPSDNode>( 384 SDValue, std::function<bool(ConstantFPSDNode *)>, bool); 385 386 bool ISD::matchBinaryPredicate( 387 SDValue LHS, SDValue RHS, 388 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 389 bool AllowUndefs, bool AllowTypeMismatch) { 390 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 391 return false; 392 393 // TODO: Add support for scalar UNDEF cases? 394 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 395 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 396 return Match(LHSCst, RHSCst); 397 398 // TODO: Add support for vector UNDEF cases? 399 if (LHS.getOpcode() != RHS.getOpcode() || 400 (LHS.getOpcode() != ISD::BUILD_VECTOR && 401 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 402 return false; 403 404 EVT SVT = LHS.getValueType().getScalarType(); 405 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 406 SDValue LHSOp = LHS.getOperand(i); 407 SDValue RHSOp = RHS.getOperand(i); 408 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 409 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 410 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 411 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 412 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 413 return false; 414 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 415 LHSOp.getValueType() != RHSOp.getValueType())) 416 return false; 417 if (!Match(LHSCst, RHSCst)) 418 return false; 419 } 420 return true; 421 } 422 423 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 424 switch (VecReduceOpcode) { 425 default: 426 llvm_unreachable("Expected VECREDUCE opcode"); 427 case ISD::VECREDUCE_FADD: 428 case ISD::VECREDUCE_SEQ_FADD: 429 case ISD::VP_REDUCE_FADD: 430 case ISD::VP_REDUCE_SEQ_FADD: 431 return ISD::FADD; 432 case ISD::VECREDUCE_FMUL: 433 case ISD::VECREDUCE_SEQ_FMUL: 434 case ISD::VP_REDUCE_FMUL: 435 case ISD::VP_REDUCE_SEQ_FMUL: 436 return ISD::FMUL; 437 case ISD::VECREDUCE_ADD: 438 case ISD::VP_REDUCE_ADD: 439 return ISD::ADD; 440 case ISD::VECREDUCE_MUL: 441 case ISD::VP_REDUCE_MUL: 442 return ISD::MUL; 443 case ISD::VECREDUCE_AND: 444 case ISD::VP_REDUCE_AND: 445 return ISD::AND; 446 case ISD::VECREDUCE_OR: 447 case ISD::VP_REDUCE_OR: 448 return ISD::OR; 449 case ISD::VECREDUCE_XOR: 450 case ISD::VP_REDUCE_XOR: 451 return ISD::XOR; 452 case ISD::VECREDUCE_SMAX: 453 case ISD::VP_REDUCE_SMAX: 454 return ISD::SMAX; 455 case ISD::VECREDUCE_SMIN: 456 case ISD::VP_REDUCE_SMIN: 457 return ISD::SMIN; 458 case ISD::VECREDUCE_UMAX: 459 case ISD::VP_REDUCE_UMAX: 460 return ISD::UMAX; 461 case ISD::VECREDUCE_UMIN: 462 case ISD::VP_REDUCE_UMIN: 463 return ISD::UMIN; 464 case ISD::VECREDUCE_FMAX: 465 case ISD::VP_REDUCE_FMAX: 466 return ISD::FMAXNUM; 467 case ISD::VECREDUCE_FMIN: 468 case ISD::VP_REDUCE_FMIN: 469 return ISD::FMINNUM; 470 case ISD::VECREDUCE_FMAXIMUM: 471 return ISD::FMAXIMUM; 472 case ISD::VECREDUCE_FMINIMUM: 473 return ISD::FMINIMUM; 474 } 475 } 476 477 bool ISD::isVPOpcode(unsigned Opcode) { 478 switch (Opcode) { 479 default: 480 return false; 481 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 482 case ISD::VPSD: \ 483 return true; 484 #include "llvm/IR/VPIntrinsics.def" 485 } 486 } 487 488 bool ISD::isVPBinaryOp(unsigned Opcode) { 489 switch (Opcode) { 490 default: 491 break; 492 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 493 #define VP_PROPERTY_BINARYOP return true; 494 #define END_REGISTER_VP_SDNODE(VPSD) break; 495 #include "llvm/IR/VPIntrinsics.def" 496 } 497 return false; 498 } 499 500 bool ISD::isVPReduction(unsigned Opcode) { 501 switch (Opcode) { 502 default: 503 break; 504 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 505 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 506 #define END_REGISTER_VP_SDNODE(VPSD) break; 507 #include "llvm/IR/VPIntrinsics.def" 508 } 509 return false; 510 } 511 512 /// The operand position of the vector mask. 513 std::optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 514 switch (Opcode) { 515 default: 516 return std::nullopt; 517 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 518 case ISD::VPSD: \ 519 return MASKPOS; 520 #include "llvm/IR/VPIntrinsics.def" 521 } 522 } 523 524 /// The operand position of the explicit vector length parameter. 525 std::optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 526 switch (Opcode) { 527 default: 528 return std::nullopt; 529 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 530 case ISD::VPSD: \ 531 return EVLPOS; 532 #include "llvm/IR/VPIntrinsics.def" 533 } 534 } 535 536 std::optional<unsigned> ISD::getBaseOpcodeForVP(unsigned VPOpcode, 537 bool hasFPExcept) { 538 // FIXME: Return strict opcodes in case of fp exceptions. 539 switch (VPOpcode) { 540 default: 541 return std::nullopt; 542 #define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC: 543 #define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC; 544 #define END_REGISTER_VP_SDNODE(VPOPC) break; 545 #include "llvm/IR/VPIntrinsics.def" 546 } 547 return std::nullopt; 548 } 549 550 unsigned ISD::getVPForBaseOpcode(unsigned Opcode) { 551 switch (Opcode) { 552 default: 553 llvm_unreachable("can not translate this Opcode to VP."); 554 #define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break; 555 #define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC: 556 #define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC; 557 #include "llvm/IR/VPIntrinsics.def" 558 } 559 } 560 561 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 562 switch (ExtType) { 563 case ISD::EXTLOAD: 564 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 565 case ISD::SEXTLOAD: 566 return ISD::SIGN_EXTEND; 567 case ISD::ZEXTLOAD: 568 return ISD::ZERO_EXTEND; 569 default: 570 break; 571 } 572 573 llvm_unreachable("Invalid LoadExtType"); 574 } 575 576 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 577 // To perform this operation, we just need to swap the L and G bits of the 578 // operation. 579 unsigned OldL = (Operation >> 2) & 1; 580 unsigned OldG = (Operation >> 1) & 1; 581 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 582 (OldL << 1) | // New G bit 583 (OldG << 2)); // New L bit. 584 } 585 586 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 587 unsigned Operation = Op; 588 if (isIntegerLike) 589 Operation ^= 7; // Flip L, G, E bits, but not U. 590 else 591 Operation ^= 15; // Flip all of the condition bits. 592 593 if (Operation > ISD::SETTRUE2) 594 Operation &= ~8; // Don't let N and U bits get set. 595 596 return ISD::CondCode(Operation); 597 } 598 599 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 600 return getSetCCInverseImpl(Op, Type.isInteger()); 601 } 602 603 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 604 bool isIntegerLike) { 605 return getSetCCInverseImpl(Op, isIntegerLike); 606 } 607 608 /// For an integer comparison, return 1 if the comparison is a signed operation 609 /// and 2 if the result is an unsigned comparison. Return zero if the operation 610 /// does not depend on the sign of the input (setne and seteq). 611 static int isSignedOp(ISD::CondCode Opcode) { 612 switch (Opcode) { 613 default: llvm_unreachable("Illegal integer setcc operation!"); 614 case ISD::SETEQ: 615 case ISD::SETNE: return 0; 616 case ISD::SETLT: 617 case ISD::SETLE: 618 case ISD::SETGT: 619 case ISD::SETGE: return 1; 620 case ISD::SETULT: 621 case ISD::SETULE: 622 case ISD::SETUGT: 623 case ISD::SETUGE: return 2; 624 } 625 } 626 627 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 628 EVT Type) { 629 bool IsInteger = Type.isInteger(); 630 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 631 // Cannot fold a signed integer setcc with an unsigned integer setcc. 632 return ISD::SETCC_INVALID; 633 634 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 635 636 // If the N and U bits get set, then the resultant comparison DOES suddenly 637 // care about orderedness, and it is true when ordered. 638 if (Op > ISD::SETTRUE2) 639 Op &= ~16; // Clear the U bit if the N bit is set. 640 641 // Canonicalize illegal integer setcc's. 642 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 643 Op = ISD::SETNE; 644 645 return ISD::CondCode(Op); 646 } 647 648 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 649 EVT Type) { 650 bool IsInteger = Type.isInteger(); 651 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 652 // Cannot fold a signed setcc with an unsigned setcc. 653 return ISD::SETCC_INVALID; 654 655 // Combine all of the condition bits. 656 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 657 658 // Canonicalize illegal integer setcc's. 659 if (IsInteger) { 660 switch (Result) { 661 default: break; 662 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 663 case ISD::SETOEQ: // SETEQ & SETU[LG]E 664 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 665 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 666 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 667 } 668 } 669 670 return Result; 671 } 672 673 //===----------------------------------------------------------------------===// 674 // SDNode Profile Support 675 //===----------------------------------------------------------------------===// 676 677 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 678 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 679 ID.AddInteger(OpC); 680 } 681 682 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 683 /// solely with their pointer. 684 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 685 ID.AddPointer(VTList.VTs); 686 } 687 688 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 689 static void AddNodeIDOperands(FoldingSetNodeID &ID, 690 ArrayRef<SDValue> Ops) { 691 for (const auto &Op : Ops) { 692 ID.AddPointer(Op.getNode()); 693 ID.AddInteger(Op.getResNo()); 694 } 695 } 696 697 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 698 static void AddNodeIDOperands(FoldingSetNodeID &ID, 699 ArrayRef<SDUse> Ops) { 700 for (const auto &Op : Ops) { 701 ID.AddPointer(Op.getNode()); 702 ID.AddInteger(Op.getResNo()); 703 } 704 } 705 706 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC, 707 SDVTList VTList, ArrayRef<SDValue> OpList) { 708 AddNodeIDOpcode(ID, OpC); 709 AddNodeIDValueTypes(ID, VTList); 710 AddNodeIDOperands(ID, OpList); 711 } 712 713 /// If this is an SDNode with special info, add this info to the NodeID data. 714 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 715 switch (N->getOpcode()) { 716 case ISD::TargetExternalSymbol: 717 case ISD::ExternalSymbol: 718 case ISD::MCSymbol: 719 llvm_unreachable("Should only be used on nodes with operands"); 720 default: break; // Normal nodes don't need extra info. 721 case ISD::TargetConstant: 722 case ISD::Constant: { 723 const ConstantSDNode *C = cast<ConstantSDNode>(N); 724 ID.AddPointer(C->getConstantIntValue()); 725 ID.AddBoolean(C->isOpaque()); 726 break; 727 } 728 case ISD::TargetConstantFP: 729 case ISD::ConstantFP: 730 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 731 break; 732 case ISD::TargetGlobalAddress: 733 case ISD::GlobalAddress: 734 case ISD::TargetGlobalTLSAddress: 735 case ISD::GlobalTLSAddress: { 736 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 737 ID.AddPointer(GA->getGlobal()); 738 ID.AddInteger(GA->getOffset()); 739 ID.AddInteger(GA->getTargetFlags()); 740 break; 741 } 742 case ISD::BasicBlock: 743 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 744 break; 745 case ISD::Register: 746 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 747 break; 748 case ISD::RegisterMask: 749 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 750 break; 751 case ISD::SRCVALUE: 752 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 753 break; 754 case ISD::FrameIndex: 755 case ISD::TargetFrameIndex: 756 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 757 break; 758 case ISD::LIFETIME_START: 759 case ISD::LIFETIME_END: 760 if (cast<LifetimeSDNode>(N)->hasOffset()) { 761 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 762 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 763 } 764 break; 765 case ISD::PSEUDO_PROBE: 766 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 767 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 768 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 769 break; 770 case ISD::JumpTable: 771 case ISD::TargetJumpTable: 772 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 773 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 774 break; 775 case ISD::ConstantPool: 776 case ISD::TargetConstantPool: { 777 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 778 ID.AddInteger(CP->getAlign().value()); 779 ID.AddInteger(CP->getOffset()); 780 if (CP->isMachineConstantPoolEntry()) 781 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 782 else 783 ID.AddPointer(CP->getConstVal()); 784 ID.AddInteger(CP->getTargetFlags()); 785 break; 786 } 787 case ISD::TargetIndex: { 788 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 789 ID.AddInteger(TI->getIndex()); 790 ID.AddInteger(TI->getOffset()); 791 ID.AddInteger(TI->getTargetFlags()); 792 break; 793 } 794 case ISD::LOAD: { 795 const LoadSDNode *LD = cast<LoadSDNode>(N); 796 ID.AddInteger(LD->getMemoryVT().getRawBits()); 797 ID.AddInteger(LD->getRawSubclassData()); 798 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 799 ID.AddInteger(LD->getMemOperand()->getFlags()); 800 break; 801 } 802 case ISD::STORE: { 803 const StoreSDNode *ST = cast<StoreSDNode>(N); 804 ID.AddInteger(ST->getMemoryVT().getRawBits()); 805 ID.AddInteger(ST->getRawSubclassData()); 806 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 807 ID.AddInteger(ST->getMemOperand()->getFlags()); 808 break; 809 } 810 case ISD::VP_LOAD: { 811 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 812 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 813 ID.AddInteger(ELD->getRawSubclassData()); 814 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 815 ID.AddInteger(ELD->getMemOperand()->getFlags()); 816 break; 817 } 818 case ISD::VP_STORE: { 819 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 820 ID.AddInteger(EST->getMemoryVT().getRawBits()); 821 ID.AddInteger(EST->getRawSubclassData()); 822 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 823 ID.AddInteger(EST->getMemOperand()->getFlags()); 824 break; 825 } 826 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: { 827 const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N); 828 ID.AddInteger(SLD->getMemoryVT().getRawBits()); 829 ID.AddInteger(SLD->getRawSubclassData()); 830 ID.AddInteger(SLD->getPointerInfo().getAddrSpace()); 831 break; 832 } 833 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: { 834 const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N); 835 ID.AddInteger(SST->getMemoryVT().getRawBits()); 836 ID.AddInteger(SST->getRawSubclassData()); 837 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 838 break; 839 } 840 case ISD::VP_GATHER: { 841 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 842 ID.AddInteger(EG->getMemoryVT().getRawBits()); 843 ID.AddInteger(EG->getRawSubclassData()); 844 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 845 ID.AddInteger(EG->getMemOperand()->getFlags()); 846 break; 847 } 848 case ISD::VP_SCATTER: { 849 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 850 ID.AddInteger(ES->getMemoryVT().getRawBits()); 851 ID.AddInteger(ES->getRawSubclassData()); 852 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 853 ID.AddInteger(ES->getMemOperand()->getFlags()); 854 break; 855 } 856 case ISD::MLOAD: { 857 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 858 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 859 ID.AddInteger(MLD->getRawSubclassData()); 860 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 861 ID.AddInteger(MLD->getMemOperand()->getFlags()); 862 break; 863 } 864 case ISD::MSTORE: { 865 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 866 ID.AddInteger(MST->getMemoryVT().getRawBits()); 867 ID.AddInteger(MST->getRawSubclassData()); 868 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 869 ID.AddInteger(MST->getMemOperand()->getFlags()); 870 break; 871 } 872 case ISD::MGATHER: { 873 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 874 ID.AddInteger(MG->getMemoryVT().getRawBits()); 875 ID.AddInteger(MG->getRawSubclassData()); 876 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 877 ID.AddInteger(MG->getMemOperand()->getFlags()); 878 break; 879 } 880 case ISD::MSCATTER: { 881 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 882 ID.AddInteger(MS->getMemoryVT().getRawBits()); 883 ID.AddInteger(MS->getRawSubclassData()); 884 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 885 ID.AddInteger(MS->getMemOperand()->getFlags()); 886 break; 887 } 888 case ISD::ATOMIC_CMP_SWAP: 889 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 890 case ISD::ATOMIC_SWAP: 891 case ISD::ATOMIC_LOAD_ADD: 892 case ISD::ATOMIC_LOAD_SUB: 893 case ISD::ATOMIC_LOAD_AND: 894 case ISD::ATOMIC_LOAD_CLR: 895 case ISD::ATOMIC_LOAD_OR: 896 case ISD::ATOMIC_LOAD_XOR: 897 case ISD::ATOMIC_LOAD_NAND: 898 case ISD::ATOMIC_LOAD_MIN: 899 case ISD::ATOMIC_LOAD_MAX: 900 case ISD::ATOMIC_LOAD_UMIN: 901 case ISD::ATOMIC_LOAD_UMAX: 902 case ISD::ATOMIC_LOAD: 903 case ISD::ATOMIC_STORE: { 904 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 905 ID.AddInteger(AT->getMemoryVT().getRawBits()); 906 ID.AddInteger(AT->getRawSubclassData()); 907 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 908 ID.AddInteger(AT->getMemOperand()->getFlags()); 909 break; 910 } 911 case ISD::VECTOR_SHUFFLE: { 912 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 913 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 914 i != e; ++i) 915 ID.AddInteger(SVN->getMaskElt(i)); 916 break; 917 } 918 case ISD::TargetBlockAddress: 919 case ISD::BlockAddress: { 920 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 921 ID.AddPointer(BA->getBlockAddress()); 922 ID.AddInteger(BA->getOffset()); 923 ID.AddInteger(BA->getTargetFlags()); 924 break; 925 } 926 case ISD::AssertAlign: 927 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value()); 928 break; 929 case ISD::PREFETCH: 930 case ISD::INTRINSIC_VOID: 931 case ISD::INTRINSIC_W_CHAIN: 932 // Handled by MemIntrinsicSDNode check after the switch. 933 break; 934 } // end switch (N->getOpcode()) 935 936 // MemIntrinsic nodes could also have subclass data, address spaces, and flags 937 // to check. 938 if (auto *MN = dyn_cast<MemIntrinsicSDNode>(N)) { 939 ID.AddInteger(MN->getRawSubclassData()); 940 ID.AddInteger(MN->getPointerInfo().getAddrSpace()); 941 ID.AddInteger(MN->getMemOperand()->getFlags()); 942 ID.AddInteger(MN->getMemoryVT().getRawBits()); 943 } 944 } 945 946 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 947 /// data. 948 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 949 AddNodeIDOpcode(ID, N->getOpcode()); 950 // Add the return value info. 951 AddNodeIDValueTypes(ID, N->getVTList()); 952 // Add the operand info. 953 AddNodeIDOperands(ID, N->ops()); 954 955 // Handle SDNode leafs with special info. 956 AddNodeIDCustom(ID, N); 957 } 958 959 //===----------------------------------------------------------------------===// 960 // SelectionDAG Class 961 //===----------------------------------------------------------------------===// 962 963 /// doNotCSE - Return true if CSE should not be performed for this node. 964 static bool doNotCSE(SDNode *N) { 965 if (N->getValueType(0) == MVT::Glue) 966 return true; // Never CSE anything that produces a glue result. 967 968 switch (N->getOpcode()) { 969 default: break; 970 case ISD::HANDLENODE: 971 case ISD::EH_LABEL: 972 return true; // Never CSE these nodes. 973 } 974 975 // Check that remaining values produced are not flags. 976 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 977 if (N->getValueType(i) == MVT::Glue) 978 return true; // Never CSE anything that produces a glue result. 979 980 return false; 981 } 982 983 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 984 /// SelectionDAG. 985 void SelectionDAG::RemoveDeadNodes() { 986 // Create a dummy node (which is not added to allnodes), that adds a reference 987 // to the root node, preventing it from being deleted. 988 HandleSDNode Dummy(getRoot()); 989 990 SmallVector<SDNode*, 128> DeadNodes; 991 992 // Add all obviously-dead nodes to the DeadNodes worklist. 993 for (SDNode &Node : allnodes()) 994 if (Node.use_empty()) 995 DeadNodes.push_back(&Node); 996 997 RemoveDeadNodes(DeadNodes); 998 999 // If the root changed (e.g. it was a dead load, update the root). 1000 setRoot(Dummy.getValue()); 1001 } 1002 1003 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 1004 /// given list, and any nodes that become unreachable as a result. 1005 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 1006 1007 // Process the worklist, deleting the nodes and adding their uses to the 1008 // worklist. 1009 while (!DeadNodes.empty()) { 1010 SDNode *N = DeadNodes.pop_back_val(); 1011 // Skip to next node if we've already managed to delete the node. This could 1012 // happen if replacing a node causes a node previously added to the node to 1013 // be deleted. 1014 if (N->getOpcode() == ISD::DELETED_NODE) 1015 continue; 1016 1017 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1018 DUL->NodeDeleted(N, nullptr); 1019 1020 // Take the node out of the appropriate CSE map. 1021 RemoveNodeFromCSEMaps(N); 1022 1023 // Next, brutally remove the operand list. This is safe to do, as there are 1024 // no cycles in the graph. 1025 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 1026 SDUse &Use = *I++; 1027 SDNode *Operand = Use.getNode(); 1028 Use.set(SDValue()); 1029 1030 // Now that we removed this operand, see if there are no uses of it left. 1031 if (Operand->use_empty()) 1032 DeadNodes.push_back(Operand); 1033 } 1034 1035 DeallocateNode(N); 1036 } 1037 } 1038 1039 void SelectionDAG::RemoveDeadNode(SDNode *N){ 1040 SmallVector<SDNode*, 16> DeadNodes(1, N); 1041 1042 // Create a dummy node that adds a reference to the root node, preventing 1043 // it from being deleted. (This matters if the root is an operand of the 1044 // dead node.) 1045 HandleSDNode Dummy(getRoot()); 1046 1047 RemoveDeadNodes(DeadNodes); 1048 } 1049 1050 void SelectionDAG::DeleteNode(SDNode *N) { 1051 // First take this out of the appropriate CSE map. 1052 RemoveNodeFromCSEMaps(N); 1053 1054 // Finally, remove uses due to operands of this node, remove from the 1055 // AllNodes list, and delete the node. 1056 DeleteNodeNotInCSEMaps(N); 1057 } 1058 1059 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 1060 assert(N->getIterator() != AllNodes.begin() && 1061 "Cannot delete the entry node!"); 1062 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 1063 1064 // Drop all of the operands and decrement used node's use counts. 1065 N->DropOperands(); 1066 1067 DeallocateNode(N); 1068 } 1069 1070 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 1071 assert(!(V->isVariadic() && isParameter)); 1072 if (isParameter) 1073 ByvalParmDbgValues.push_back(V); 1074 else 1075 DbgValues.push_back(V); 1076 for (const SDNode *Node : V->getSDNodes()) 1077 if (Node) 1078 DbgValMap[Node].push_back(V); 1079 } 1080 1081 void SDDbgInfo::erase(const SDNode *Node) { 1082 DbgValMapType::iterator I = DbgValMap.find(Node); 1083 if (I == DbgValMap.end()) 1084 return; 1085 for (auto &Val: I->second) 1086 Val->setIsInvalidated(); 1087 DbgValMap.erase(I); 1088 } 1089 1090 void SelectionDAG::DeallocateNode(SDNode *N) { 1091 // If we have operands, deallocate them. 1092 removeOperands(N); 1093 1094 NodeAllocator.Deallocate(AllNodes.remove(N)); 1095 1096 // Set the opcode to DELETED_NODE to help catch bugs when node 1097 // memory is reallocated. 1098 // FIXME: There are places in SDag that have grown a dependency on the opcode 1099 // value in the released node. 1100 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 1101 N->NodeType = ISD::DELETED_NODE; 1102 1103 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 1104 // them and forget about that node. 1105 DbgInfo->erase(N); 1106 1107 // Invalidate extra info. 1108 SDEI.erase(N); 1109 } 1110 1111 #ifndef NDEBUG 1112 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 1113 static void VerifySDNode(SDNode *N) { 1114 switch (N->getOpcode()) { 1115 default: 1116 break; 1117 case ISD::BUILD_PAIR: { 1118 EVT VT = N->getValueType(0); 1119 assert(N->getNumValues() == 1 && "Too many results!"); 1120 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 1121 "Wrong return type!"); 1122 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 1123 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 1124 "Mismatched operand types!"); 1125 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 1126 "Wrong operand type!"); 1127 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 1128 "Wrong return type size"); 1129 break; 1130 } 1131 case ISD::BUILD_VECTOR: { 1132 assert(N->getNumValues() == 1 && "Too many results!"); 1133 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1134 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1135 "Wrong number of operands!"); 1136 EVT EltVT = N->getValueType(0).getVectorElementType(); 1137 for (const SDUse &Op : N->ops()) { 1138 assert((Op.getValueType() == EltVT || 1139 (EltVT.isInteger() && Op.getValueType().isInteger() && 1140 EltVT.bitsLE(Op.getValueType()))) && 1141 "Wrong operand type!"); 1142 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1143 "Operands must all have the same type"); 1144 } 1145 break; 1146 } 1147 } 1148 } 1149 #endif // NDEBUG 1150 1151 /// Insert a newly allocated node into the DAG. 1152 /// 1153 /// Handles insertion into the all nodes list and CSE map, as well as 1154 /// verification and other common operations when a new node is allocated. 1155 void SelectionDAG::InsertNode(SDNode *N) { 1156 AllNodes.push_back(N); 1157 #ifndef NDEBUG 1158 N->PersistentId = NextPersistentId++; 1159 VerifySDNode(N); 1160 #endif 1161 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1162 DUL->NodeInserted(N); 1163 } 1164 1165 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1166 /// correspond to it. This is useful when we're about to delete or repurpose 1167 /// the node. We don't want future request for structurally identical nodes 1168 /// to return N anymore. 1169 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1170 bool Erased = false; 1171 switch (N->getOpcode()) { 1172 case ISD::HANDLENODE: return false; // noop. 1173 case ISD::CONDCODE: 1174 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1175 "Cond code doesn't exist!"); 1176 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1177 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1178 break; 1179 case ISD::ExternalSymbol: 1180 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1181 break; 1182 case ISD::TargetExternalSymbol: { 1183 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1184 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1185 ESN->getSymbol(), ESN->getTargetFlags())); 1186 break; 1187 } 1188 case ISD::MCSymbol: { 1189 auto *MCSN = cast<MCSymbolSDNode>(N); 1190 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1191 break; 1192 } 1193 case ISD::VALUETYPE: { 1194 EVT VT = cast<VTSDNode>(N)->getVT(); 1195 if (VT.isExtended()) { 1196 Erased = ExtendedValueTypeNodes.erase(VT); 1197 } else { 1198 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1199 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1200 } 1201 break; 1202 } 1203 default: 1204 // Remove it from the CSE Map. 1205 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1206 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1207 Erased = CSEMap.RemoveNode(N); 1208 break; 1209 } 1210 #ifndef NDEBUG 1211 // Verify that the node was actually in one of the CSE maps, unless it has a 1212 // glue result (which cannot be CSE'd) or is one of the special cases that are 1213 // not subject to CSE. 1214 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1215 !N->isMachineOpcode() && !doNotCSE(N)) { 1216 N->dump(this); 1217 dbgs() << "\n"; 1218 llvm_unreachable("Node is not in map!"); 1219 } 1220 #endif 1221 return Erased; 1222 } 1223 1224 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1225 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1226 /// node already exists, in which case transfer all its users to the existing 1227 /// node. This transfer can potentially trigger recursive merging. 1228 void 1229 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1230 // For node types that aren't CSE'd, just act as if no identical node 1231 // already exists. 1232 if (!doNotCSE(N)) { 1233 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1234 if (Existing != N) { 1235 // If there was already an existing matching node, use ReplaceAllUsesWith 1236 // to replace the dead one with the existing one. This can cause 1237 // recursive merging of other unrelated nodes down the line. 1238 ReplaceAllUsesWith(N, Existing); 1239 1240 // N is now dead. Inform the listeners and delete it. 1241 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1242 DUL->NodeDeleted(N, Existing); 1243 DeleteNodeNotInCSEMaps(N); 1244 return; 1245 } 1246 } 1247 1248 // If the node doesn't already exist, we updated it. Inform listeners. 1249 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1250 DUL->NodeUpdated(N); 1251 } 1252 1253 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1254 /// were replaced with those specified. If this node is never memoized, 1255 /// return null, otherwise return a pointer to the slot it would take. If a 1256 /// node already exists with these operands, the slot will be non-null. 1257 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1258 void *&InsertPos) { 1259 if (doNotCSE(N)) 1260 return nullptr; 1261 1262 SDValue Ops[] = { Op }; 1263 FoldingSetNodeID ID; 1264 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1265 AddNodeIDCustom(ID, N); 1266 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1267 if (Node) 1268 Node->intersectFlagsWith(N->getFlags()); 1269 return Node; 1270 } 1271 1272 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1273 /// were replaced with those specified. If this node is never memoized, 1274 /// return null, otherwise return a pointer to the slot it would take. If a 1275 /// node already exists with these operands, the slot will be non-null. 1276 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1277 SDValue Op1, SDValue Op2, 1278 void *&InsertPos) { 1279 if (doNotCSE(N)) 1280 return nullptr; 1281 1282 SDValue Ops[] = { Op1, Op2 }; 1283 FoldingSetNodeID ID; 1284 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1285 AddNodeIDCustom(ID, N); 1286 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1287 if (Node) 1288 Node->intersectFlagsWith(N->getFlags()); 1289 return Node; 1290 } 1291 1292 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1293 /// were replaced with those specified. If this node is never memoized, 1294 /// return null, otherwise return a pointer to the slot it would take. If a 1295 /// node already exists with these operands, the slot will be non-null. 1296 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1297 void *&InsertPos) { 1298 if (doNotCSE(N)) 1299 return nullptr; 1300 1301 FoldingSetNodeID ID; 1302 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1303 AddNodeIDCustom(ID, N); 1304 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1305 if (Node) 1306 Node->intersectFlagsWith(N->getFlags()); 1307 return Node; 1308 } 1309 1310 Align SelectionDAG::getEVTAlign(EVT VT) const { 1311 Type *Ty = VT == MVT::iPTR ? PointerType::get(*getContext(), 0) 1312 : VT.getTypeForEVT(*getContext()); 1313 1314 return getDataLayout().getABITypeAlign(Ty); 1315 } 1316 1317 // EntryNode could meaningfully have debug info if we can find it... 1318 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOptLevel OL) 1319 : TM(tm), OptLevel(OL), EntryNode(ISD::EntryToken, 0, DebugLoc(), 1320 getVTList(MVT::Other, MVT::Glue)), 1321 Root(getEntryNode()) { 1322 InsertNode(&EntryNode); 1323 DbgInfo = new SDDbgInfo(); 1324 } 1325 1326 void SelectionDAG::init(MachineFunction &NewMF, 1327 OptimizationRemarkEmitter &NewORE, Pass *PassPtr, 1328 const TargetLibraryInfo *LibraryInfo, 1329 UniformityInfo *NewUA, ProfileSummaryInfo *PSIin, 1330 BlockFrequencyInfo *BFIin, 1331 FunctionVarLocs const *VarLocs) { 1332 MF = &NewMF; 1333 SDAGISelPass = PassPtr; 1334 ORE = &NewORE; 1335 TLI = getSubtarget().getTargetLowering(); 1336 TSI = getSubtarget().getSelectionDAGInfo(); 1337 LibInfo = LibraryInfo; 1338 Context = &MF->getFunction().getContext(); 1339 UA = NewUA; 1340 PSI = PSIin; 1341 BFI = BFIin; 1342 FnVarLocs = VarLocs; 1343 } 1344 1345 SelectionDAG::~SelectionDAG() { 1346 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1347 allnodes_clear(); 1348 OperandRecycler.clear(OperandAllocator); 1349 delete DbgInfo; 1350 } 1351 1352 bool SelectionDAG::shouldOptForSize() const { 1353 return MF->getFunction().hasOptSize() || 1354 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1355 } 1356 1357 void SelectionDAG::allnodes_clear() { 1358 assert(&*AllNodes.begin() == &EntryNode); 1359 AllNodes.remove(AllNodes.begin()); 1360 while (!AllNodes.empty()) 1361 DeallocateNode(&AllNodes.front()); 1362 #ifndef NDEBUG 1363 NextPersistentId = 0; 1364 #endif 1365 } 1366 1367 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1368 void *&InsertPos) { 1369 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1370 if (N) { 1371 switch (N->getOpcode()) { 1372 default: break; 1373 case ISD::Constant: 1374 case ISD::ConstantFP: 1375 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1376 "debug location. Use another overload."); 1377 } 1378 } 1379 return N; 1380 } 1381 1382 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1383 const SDLoc &DL, void *&InsertPos) { 1384 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1385 if (N) { 1386 switch (N->getOpcode()) { 1387 case ISD::Constant: 1388 case ISD::ConstantFP: 1389 // Erase debug location from the node if the node is used at several 1390 // different places. Do not propagate one location to all uses as it 1391 // will cause a worse single stepping debugging experience. 1392 if (N->getDebugLoc() != DL.getDebugLoc()) 1393 N->setDebugLoc(DebugLoc()); 1394 break; 1395 default: 1396 // When the node's point of use is located earlier in the instruction 1397 // sequence than its prior point of use, update its debug info to the 1398 // earlier location. 1399 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1400 N->setDebugLoc(DL.getDebugLoc()); 1401 break; 1402 } 1403 } 1404 return N; 1405 } 1406 1407 void SelectionDAG::clear() { 1408 allnodes_clear(); 1409 OperandRecycler.clear(OperandAllocator); 1410 OperandAllocator.Reset(); 1411 CSEMap.clear(); 1412 1413 ExtendedValueTypeNodes.clear(); 1414 ExternalSymbols.clear(); 1415 TargetExternalSymbols.clear(); 1416 MCSymbols.clear(); 1417 SDEI.clear(); 1418 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1419 static_cast<CondCodeSDNode*>(nullptr)); 1420 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1421 static_cast<SDNode*>(nullptr)); 1422 1423 EntryNode.UseList = nullptr; 1424 InsertNode(&EntryNode); 1425 Root = getEntryNode(); 1426 DbgInfo->clear(); 1427 } 1428 1429 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1430 return VT.bitsGT(Op.getValueType()) 1431 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1432 : getNode(ISD::FP_ROUND, DL, VT, Op, 1433 getIntPtrConstant(0, DL, /*isTarget=*/true)); 1434 } 1435 1436 std::pair<SDValue, SDValue> 1437 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1438 const SDLoc &DL, EVT VT) { 1439 assert(!VT.bitsEq(Op.getValueType()) && 1440 "Strict no-op FP extend/round not allowed."); 1441 SDValue Res = 1442 VT.bitsGT(Op.getValueType()) 1443 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1444 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1445 {Chain, Op, getIntPtrConstant(0, DL)}); 1446 1447 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1448 } 1449 1450 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1451 return VT.bitsGT(Op.getValueType()) ? 1452 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1453 getNode(ISD::TRUNCATE, DL, VT, Op); 1454 } 1455 1456 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1457 return VT.bitsGT(Op.getValueType()) ? 1458 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1459 getNode(ISD::TRUNCATE, DL, VT, Op); 1460 } 1461 1462 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1463 return VT.bitsGT(Op.getValueType()) ? 1464 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1465 getNode(ISD::TRUNCATE, DL, VT, Op); 1466 } 1467 1468 SDValue SelectionDAG::getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, 1469 EVT VT) { 1470 assert(!VT.isVector()); 1471 auto Type = Op.getValueType(); 1472 SDValue DestOp; 1473 if (Type == VT) 1474 return Op; 1475 auto Size = Op.getValueSizeInBits(); 1476 DestOp = getBitcast(MVT::getIntegerVT(Size), Op); 1477 if (DestOp.getValueType() == VT) 1478 return DestOp; 1479 1480 return getAnyExtOrTrunc(DestOp, DL, VT); 1481 } 1482 1483 SDValue SelectionDAG::getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL, 1484 EVT VT) { 1485 assert(!VT.isVector()); 1486 auto Type = Op.getValueType(); 1487 SDValue DestOp; 1488 if (Type == VT) 1489 return Op; 1490 auto Size = Op.getValueSizeInBits(); 1491 DestOp = getBitcast(MVT::getIntegerVT(Size), Op); 1492 if (DestOp.getValueType() == VT) 1493 return DestOp; 1494 1495 return getSExtOrTrunc(DestOp, DL, VT); 1496 } 1497 1498 SDValue SelectionDAG::getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL, 1499 EVT VT) { 1500 assert(!VT.isVector()); 1501 auto Type = Op.getValueType(); 1502 SDValue DestOp; 1503 if (Type == VT) 1504 return Op; 1505 auto Size = Op.getValueSizeInBits(); 1506 DestOp = getBitcast(MVT::getIntegerVT(Size), Op); 1507 if (DestOp.getValueType() == VT) 1508 return DestOp; 1509 1510 return getZExtOrTrunc(DestOp, DL, VT); 1511 } 1512 1513 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1514 EVT OpVT) { 1515 if (VT.bitsLE(Op.getValueType())) 1516 return getNode(ISD::TRUNCATE, SL, VT, Op); 1517 1518 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1519 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1520 } 1521 1522 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1523 EVT OpVT = Op.getValueType(); 1524 assert(VT.isInteger() && OpVT.isInteger() && 1525 "Cannot getZeroExtendInReg FP types"); 1526 assert(VT.isVector() == OpVT.isVector() && 1527 "getZeroExtendInReg type should be vector iff the operand " 1528 "type is vector!"); 1529 assert((!VT.isVector() || 1530 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1531 "Vector element counts must match in getZeroExtendInReg"); 1532 assert(VT.bitsLE(OpVT) && "Not extending!"); 1533 if (OpVT == VT) 1534 return Op; 1535 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1536 VT.getScalarSizeInBits()); 1537 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1538 } 1539 1540 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1541 // Only unsigned pointer semantics are supported right now. In the future this 1542 // might delegate to TLI to check pointer signedness. 1543 return getZExtOrTrunc(Op, DL, VT); 1544 } 1545 1546 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1547 // Only unsigned pointer semantics are supported right now. In the future this 1548 // might delegate to TLI to check pointer signedness. 1549 return getZeroExtendInReg(Op, DL, VT); 1550 } 1551 1552 SDValue SelectionDAG::getNegative(SDValue Val, const SDLoc &DL, EVT VT) { 1553 return getNode(ISD::SUB, DL, VT, getConstant(0, DL, VT), Val); 1554 } 1555 1556 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1557 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1558 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1559 } 1560 1561 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1562 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1563 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1564 } 1565 1566 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val, 1567 SDValue Mask, SDValue EVL, EVT VT) { 1568 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1569 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL); 1570 } 1571 1572 SDValue SelectionDAG::getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, 1573 SDValue Mask, SDValue EVL) { 1574 return getVPZExtOrTrunc(DL, VT, Op, Mask, EVL); 1575 } 1576 1577 SDValue SelectionDAG::getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, 1578 SDValue Mask, SDValue EVL) { 1579 if (VT.bitsGT(Op.getValueType())) 1580 return getNode(ISD::VP_ZERO_EXTEND, DL, VT, Op, Mask, EVL); 1581 if (VT.bitsLT(Op.getValueType())) 1582 return getNode(ISD::VP_TRUNCATE, DL, VT, Op, Mask, EVL); 1583 return Op; 1584 } 1585 1586 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1587 EVT OpVT) { 1588 if (!V) 1589 return getConstant(0, DL, VT); 1590 1591 switch (TLI->getBooleanContents(OpVT)) { 1592 case TargetLowering::ZeroOrOneBooleanContent: 1593 case TargetLowering::UndefinedBooleanContent: 1594 return getConstant(1, DL, VT); 1595 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1596 return getAllOnesConstant(DL, VT); 1597 } 1598 llvm_unreachable("Unexpected boolean content enum!"); 1599 } 1600 1601 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1602 bool isT, bool isO) { 1603 EVT EltVT = VT.getScalarType(); 1604 assert((EltVT.getSizeInBits() >= 64 || 1605 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1606 "getConstant with a uint64_t value that doesn't fit in the type!"); 1607 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1608 } 1609 1610 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1611 bool isT, bool isO) { 1612 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1613 } 1614 1615 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1616 EVT VT, bool isT, bool isO) { 1617 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1618 1619 EVT EltVT = VT.getScalarType(); 1620 const ConstantInt *Elt = &Val; 1621 1622 // In some cases the vector type is legal but the element type is illegal and 1623 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1624 // inserted value (the type does not need to match the vector element type). 1625 // Any extra bits introduced will be truncated away. 1626 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1627 TargetLowering::TypePromoteInteger) { 1628 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1629 APInt NewVal; 1630 if (TLI->isSExtCheaperThanZExt(VT.getScalarType(), EltVT)) 1631 NewVal = Elt->getValue().sextOrTrunc(EltVT.getSizeInBits()); 1632 else 1633 NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1634 Elt = ConstantInt::get(*getContext(), NewVal); 1635 } 1636 // In other cases the element type is illegal and needs to be expanded, for 1637 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1638 // the value into n parts and use a vector type with n-times the elements. 1639 // Then bitcast to the type requested. 1640 // Legalizing constants too early makes the DAGCombiner's job harder so we 1641 // only legalize if the DAG tells us we must produce legal types. 1642 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1643 TLI->getTypeAction(*getContext(), EltVT) == 1644 TargetLowering::TypeExpandInteger) { 1645 const APInt &NewVal = Elt->getValue(); 1646 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1647 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1648 1649 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1650 if (VT.isScalableVector() || 1651 TLI->isOperationLegal(ISD::SPLAT_VECTOR, VT)) { 1652 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1653 "Can only handle an even split!"); 1654 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1655 1656 SmallVector<SDValue, 2> ScalarParts; 1657 for (unsigned i = 0; i != Parts; ++i) 1658 ScalarParts.push_back(getConstant( 1659 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1660 ViaEltVT, isT, isO)); 1661 1662 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1663 } 1664 1665 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1666 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1667 1668 // Check the temporary vector is the correct size. If this fails then 1669 // getTypeToTransformTo() probably returned a type whose size (in bits) 1670 // isn't a power-of-2 factor of the requested type size. 1671 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1672 1673 SmallVector<SDValue, 2> EltParts; 1674 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1675 EltParts.push_back(getConstant( 1676 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1677 ViaEltVT, isT, isO)); 1678 1679 // EltParts is currently in little endian order. If we actually want 1680 // big-endian order then reverse it now. 1681 if (getDataLayout().isBigEndian()) 1682 std::reverse(EltParts.begin(), EltParts.end()); 1683 1684 // The elements must be reversed when the element order is different 1685 // to the endianness of the elements (because the BITCAST is itself a 1686 // vector shuffle in this situation). However, we do not need any code to 1687 // perform this reversal because getConstant() is producing a vector 1688 // splat. 1689 // This situation occurs in MIPS MSA. 1690 1691 SmallVector<SDValue, 8> Ops; 1692 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1693 llvm::append_range(Ops, EltParts); 1694 1695 SDValue V = 1696 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1697 return V; 1698 } 1699 1700 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1701 "APInt size does not match type size!"); 1702 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1703 FoldingSetNodeID ID; 1704 AddNodeIDNode(ID, Opc, getVTList(EltVT), std::nullopt); 1705 ID.AddPointer(Elt); 1706 ID.AddBoolean(isO); 1707 void *IP = nullptr; 1708 SDNode *N = nullptr; 1709 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1710 if (!VT.isVector()) 1711 return SDValue(N, 0); 1712 1713 if (!N) { 1714 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1715 CSEMap.InsertNode(N, IP); 1716 InsertNode(N); 1717 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1718 } 1719 1720 SDValue Result(N, 0); 1721 if (VT.isVector()) 1722 Result = getSplat(VT, DL, Result); 1723 return Result; 1724 } 1725 1726 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1727 bool isTarget) { 1728 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1729 } 1730 1731 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1732 const SDLoc &DL, bool LegalTypes) { 1733 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1734 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1735 return getConstant(Val, DL, ShiftVT); 1736 } 1737 1738 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1739 bool isTarget) { 1740 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1741 } 1742 1743 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1744 bool isTarget) { 1745 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1746 } 1747 1748 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1749 EVT VT, bool isTarget) { 1750 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1751 1752 EVT EltVT = VT.getScalarType(); 1753 1754 // Do the map lookup using the actual bit pattern for the floating point 1755 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1756 // we don't have issues with SNANs. 1757 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1758 FoldingSetNodeID ID; 1759 AddNodeIDNode(ID, Opc, getVTList(EltVT), std::nullopt); 1760 ID.AddPointer(&V); 1761 void *IP = nullptr; 1762 SDNode *N = nullptr; 1763 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1764 if (!VT.isVector()) 1765 return SDValue(N, 0); 1766 1767 if (!N) { 1768 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1769 CSEMap.InsertNode(N, IP); 1770 InsertNode(N); 1771 } 1772 1773 SDValue Result(N, 0); 1774 if (VT.isVector()) 1775 Result = getSplat(VT, DL, Result); 1776 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1777 return Result; 1778 } 1779 1780 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1781 bool isTarget) { 1782 EVT EltVT = VT.getScalarType(); 1783 if (EltVT == MVT::f32) 1784 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1785 if (EltVT == MVT::f64) 1786 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1787 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1788 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1789 bool Ignored; 1790 APFloat APF = APFloat(Val); 1791 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1792 &Ignored); 1793 return getConstantFP(APF, DL, VT, isTarget); 1794 } 1795 llvm_unreachable("Unsupported type in getConstantFP"); 1796 } 1797 1798 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1799 EVT VT, int64_t Offset, bool isTargetGA, 1800 unsigned TargetFlags) { 1801 assert((TargetFlags == 0 || isTargetGA) && 1802 "Cannot set target flags on target-independent globals"); 1803 1804 // Truncate (with sign-extension) the offset value to the pointer size. 1805 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1806 if (BitWidth < 64) 1807 Offset = SignExtend64(Offset, BitWidth); 1808 1809 unsigned Opc; 1810 if (GV->isThreadLocal()) 1811 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1812 else 1813 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1814 1815 FoldingSetNodeID ID; 1816 AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt); 1817 ID.AddPointer(GV); 1818 ID.AddInteger(Offset); 1819 ID.AddInteger(TargetFlags); 1820 void *IP = nullptr; 1821 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1822 return SDValue(E, 0); 1823 1824 auto *N = newSDNode<GlobalAddressSDNode>( 1825 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1826 CSEMap.InsertNode(N, IP); 1827 InsertNode(N); 1828 return SDValue(N, 0); 1829 } 1830 1831 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1832 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1833 FoldingSetNodeID ID; 1834 AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt); 1835 ID.AddInteger(FI); 1836 void *IP = nullptr; 1837 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1838 return SDValue(E, 0); 1839 1840 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1841 CSEMap.InsertNode(N, IP); 1842 InsertNode(N); 1843 return SDValue(N, 0); 1844 } 1845 1846 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1847 unsigned TargetFlags) { 1848 assert((TargetFlags == 0 || isTarget) && 1849 "Cannot set target flags on target-independent jump tables"); 1850 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1851 FoldingSetNodeID ID; 1852 AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt); 1853 ID.AddInteger(JTI); 1854 ID.AddInteger(TargetFlags); 1855 void *IP = nullptr; 1856 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1857 return SDValue(E, 0); 1858 1859 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1860 CSEMap.InsertNode(N, IP); 1861 InsertNode(N); 1862 return SDValue(N, 0); 1863 } 1864 1865 SDValue SelectionDAG::getJumpTableDebugInfo(int JTI, SDValue Chain, 1866 const SDLoc &DL) { 1867 EVT PTy = getTargetLoweringInfo().getPointerTy(getDataLayout()); 1868 return getNode(ISD::JUMP_TABLE_DEBUG_INFO, DL, MVT::Glue, Chain, 1869 getTargetConstant(static_cast<uint64_t>(JTI), DL, PTy, true)); 1870 } 1871 1872 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1873 MaybeAlign Alignment, int Offset, 1874 bool isTarget, unsigned TargetFlags) { 1875 assert((TargetFlags == 0 || isTarget) && 1876 "Cannot set target flags on target-independent globals"); 1877 if (!Alignment) 1878 Alignment = shouldOptForSize() 1879 ? getDataLayout().getABITypeAlign(C->getType()) 1880 : getDataLayout().getPrefTypeAlign(C->getType()); 1881 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1882 FoldingSetNodeID ID; 1883 AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt); 1884 ID.AddInteger(Alignment->value()); 1885 ID.AddInteger(Offset); 1886 ID.AddPointer(C); 1887 ID.AddInteger(TargetFlags); 1888 void *IP = nullptr; 1889 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1890 return SDValue(E, 0); 1891 1892 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1893 TargetFlags); 1894 CSEMap.InsertNode(N, IP); 1895 InsertNode(N); 1896 SDValue V = SDValue(N, 0); 1897 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1898 return V; 1899 } 1900 1901 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1902 MaybeAlign Alignment, int Offset, 1903 bool isTarget, unsigned TargetFlags) { 1904 assert((TargetFlags == 0 || isTarget) && 1905 "Cannot set target flags on target-independent globals"); 1906 if (!Alignment) 1907 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1908 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1909 FoldingSetNodeID ID; 1910 AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt); 1911 ID.AddInteger(Alignment->value()); 1912 ID.AddInteger(Offset); 1913 C->addSelectionDAGCSEId(ID); 1914 ID.AddInteger(TargetFlags); 1915 void *IP = nullptr; 1916 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1917 return SDValue(E, 0); 1918 1919 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1920 TargetFlags); 1921 CSEMap.InsertNode(N, IP); 1922 InsertNode(N); 1923 return SDValue(N, 0); 1924 } 1925 1926 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1927 FoldingSetNodeID ID; 1928 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), std::nullopt); 1929 ID.AddPointer(MBB); 1930 void *IP = nullptr; 1931 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1932 return SDValue(E, 0); 1933 1934 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1935 CSEMap.InsertNode(N, IP); 1936 InsertNode(N); 1937 return SDValue(N, 0); 1938 } 1939 1940 SDValue SelectionDAG::getValueType(EVT VT) { 1941 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1942 ValueTypeNodes.size()) 1943 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1944 1945 SDNode *&N = VT.isExtended() ? 1946 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1947 1948 if (N) return SDValue(N, 0); 1949 N = newSDNode<VTSDNode>(VT); 1950 InsertNode(N); 1951 return SDValue(N, 0); 1952 } 1953 1954 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1955 SDNode *&N = ExternalSymbols[Sym]; 1956 if (N) return SDValue(N, 0); 1957 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1958 InsertNode(N); 1959 return SDValue(N, 0); 1960 } 1961 1962 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1963 SDNode *&N = MCSymbols[Sym]; 1964 if (N) 1965 return SDValue(N, 0); 1966 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1967 InsertNode(N); 1968 return SDValue(N, 0); 1969 } 1970 1971 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1972 unsigned TargetFlags) { 1973 SDNode *&N = 1974 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1975 if (N) return SDValue(N, 0); 1976 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1977 InsertNode(N); 1978 return SDValue(N, 0); 1979 } 1980 1981 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1982 if ((unsigned)Cond >= CondCodeNodes.size()) 1983 CondCodeNodes.resize(Cond+1); 1984 1985 if (!CondCodeNodes[Cond]) { 1986 auto *N = newSDNode<CondCodeSDNode>(Cond); 1987 CondCodeNodes[Cond] = N; 1988 InsertNode(N); 1989 } 1990 1991 return SDValue(CondCodeNodes[Cond], 0); 1992 } 1993 1994 SDValue SelectionDAG::getVScale(const SDLoc &DL, EVT VT, APInt MulImm, 1995 bool ConstantFold) { 1996 assert(MulImm.getBitWidth() == VT.getSizeInBits() && 1997 "APInt size does not match type size!"); 1998 1999 if (MulImm == 0) 2000 return getConstant(0, DL, VT); 2001 2002 if (ConstantFold) { 2003 const MachineFunction &MF = getMachineFunction(); 2004 const Function &F = MF.getFunction(); 2005 ConstantRange CR = getVScaleRange(&F, 64); 2006 if (const APInt *C = CR.getSingleElement()) 2007 return getConstant(MulImm * C->getZExtValue(), DL, VT); 2008 } 2009 2010 return getNode(ISD::VSCALE, DL, VT, getConstant(MulImm, DL, VT)); 2011 } 2012 2013 SDValue SelectionDAG::getElementCount(const SDLoc &DL, EVT VT, ElementCount EC, 2014 bool ConstantFold) { 2015 if (EC.isScalable()) 2016 return getVScale(DL, VT, 2017 APInt(VT.getSizeInBits(), EC.getKnownMinValue())); 2018 2019 return getConstant(EC.getKnownMinValue(), DL, VT); 2020 } 2021 2022 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 2023 APInt One(ResVT.getScalarSizeInBits(), 1); 2024 return getStepVector(DL, ResVT, One); 2025 } 2026 2027 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 2028 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 2029 if (ResVT.isScalableVector()) 2030 return getNode( 2031 ISD::STEP_VECTOR, DL, ResVT, 2032 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 2033 2034 SmallVector<SDValue, 16> OpsStepConstants; 2035 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 2036 OpsStepConstants.push_back( 2037 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 2038 return getBuildVector(ResVT, DL, OpsStepConstants); 2039 } 2040 2041 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 2042 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 2043 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 2044 std::swap(N1, N2); 2045 ShuffleVectorSDNode::commuteMask(M); 2046 } 2047 2048 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 2049 SDValue N2, ArrayRef<int> Mask) { 2050 assert(VT.getVectorNumElements() == Mask.size() && 2051 "Must have the same number of vector elements as mask elements!"); 2052 assert(VT == N1.getValueType() && VT == N2.getValueType() && 2053 "Invalid VECTOR_SHUFFLE"); 2054 2055 // Canonicalize shuffle undef, undef -> undef 2056 if (N1.isUndef() && N2.isUndef()) 2057 return getUNDEF(VT); 2058 2059 // Validate that all indices in Mask are within the range of the elements 2060 // input to the shuffle. 2061 int NElts = Mask.size(); 2062 assert(llvm::all_of(Mask, 2063 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 2064 "Index out of range"); 2065 2066 // Copy the mask so we can do any needed cleanup. 2067 SmallVector<int, 8> MaskVec(Mask); 2068 2069 // Canonicalize shuffle v, v -> v, undef 2070 if (N1 == N2) { 2071 N2 = getUNDEF(VT); 2072 for (int i = 0; i != NElts; ++i) 2073 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 2074 } 2075 2076 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 2077 if (N1.isUndef()) 2078 commuteShuffle(N1, N2, MaskVec); 2079 2080 if (TLI->hasVectorBlend()) { 2081 // If shuffling a splat, try to blend the splat instead. We do this here so 2082 // that even when this arises during lowering we don't have to re-handle it. 2083 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 2084 BitVector UndefElements; 2085 SDValue Splat = BV->getSplatValue(&UndefElements); 2086 if (!Splat) 2087 return; 2088 2089 for (int i = 0; i < NElts; ++i) { 2090 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 2091 continue; 2092 2093 // If this input comes from undef, mark it as such. 2094 if (UndefElements[MaskVec[i] - Offset]) { 2095 MaskVec[i] = -1; 2096 continue; 2097 } 2098 2099 // If we can blend a non-undef lane, use that instead. 2100 if (!UndefElements[i]) 2101 MaskVec[i] = i + Offset; 2102 } 2103 }; 2104 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 2105 BlendSplat(N1BV, 0); 2106 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 2107 BlendSplat(N2BV, NElts); 2108 } 2109 2110 // Canonicalize all index into lhs, -> shuffle lhs, undef 2111 // Canonicalize all index into rhs, -> shuffle rhs, undef 2112 bool AllLHS = true, AllRHS = true; 2113 bool N2Undef = N2.isUndef(); 2114 for (int i = 0; i != NElts; ++i) { 2115 if (MaskVec[i] >= NElts) { 2116 if (N2Undef) 2117 MaskVec[i] = -1; 2118 else 2119 AllLHS = false; 2120 } else if (MaskVec[i] >= 0) { 2121 AllRHS = false; 2122 } 2123 } 2124 if (AllLHS && AllRHS) 2125 return getUNDEF(VT); 2126 if (AllLHS && !N2Undef) 2127 N2 = getUNDEF(VT); 2128 if (AllRHS) { 2129 N1 = getUNDEF(VT); 2130 commuteShuffle(N1, N2, MaskVec); 2131 } 2132 // Reset our undef status after accounting for the mask. 2133 N2Undef = N2.isUndef(); 2134 // Re-check whether both sides ended up undef. 2135 if (N1.isUndef() && N2Undef) 2136 return getUNDEF(VT); 2137 2138 // If Identity shuffle return that node. 2139 bool Identity = true, AllSame = true; 2140 for (int i = 0; i != NElts; ++i) { 2141 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 2142 if (MaskVec[i] != MaskVec[0]) AllSame = false; 2143 } 2144 if (Identity && NElts) 2145 return N1; 2146 2147 // Shuffling a constant splat doesn't change the result. 2148 if (N2Undef) { 2149 SDValue V = N1; 2150 2151 // Look through any bitcasts. We check that these don't change the number 2152 // (and size) of elements and just changes their types. 2153 while (V.getOpcode() == ISD::BITCAST) 2154 V = V->getOperand(0); 2155 2156 // A splat should always show up as a build vector node. 2157 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2158 BitVector UndefElements; 2159 SDValue Splat = BV->getSplatValue(&UndefElements); 2160 // If this is a splat of an undef, shuffling it is also undef. 2161 if (Splat && Splat.isUndef()) 2162 return getUNDEF(VT); 2163 2164 bool SameNumElts = 2165 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 2166 2167 // We only have a splat which can skip shuffles if there is a splatted 2168 // value and no undef lanes rearranged by the shuffle. 2169 if (Splat && UndefElements.none()) { 2170 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 2171 // number of elements match or the value splatted is a zero constant. 2172 if (SameNumElts || isNullConstant(Splat)) 2173 return N1; 2174 } 2175 2176 // If the shuffle itself creates a splat, build the vector directly. 2177 if (AllSame && SameNumElts) { 2178 EVT BuildVT = BV->getValueType(0); 2179 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 2180 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 2181 2182 // We may have jumped through bitcasts, so the type of the 2183 // BUILD_VECTOR may not match the type of the shuffle. 2184 if (BuildVT != VT) 2185 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 2186 return NewBV; 2187 } 2188 } 2189 } 2190 2191 FoldingSetNodeID ID; 2192 SDValue Ops[2] = { N1, N2 }; 2193 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 2194 for (int i = 0; i != NElts; ++i) 2195 ID.AddInteger(MaskVec[i]); 2196 2197 void* IP = nullptr; 2198 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2199 return SDValue(E, 0); 2200 2201 // Allocate the mask array for the node out of the BumpPtrAllocator, since 2202 // SDNode doesn't have access to it. This memory will be "leaked" when 2203 // the node is deallocated, but recovered when the NodeAllocator is released. 2204 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 2205 llvm::copy(MaskVec, MaskAlloc); 2206 2207 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 2208 dl.getDebugLoc(), MaskAlloc); 2209 createOperands(N, Ops); 2210 2211 CSEMap.InsertNode(N, IP); 2212 InsertNode(N); 2213 SDValue V = SDValue(N, 0); 2214 NewSDValueDbgMsg(V, "Creating new node: ", this); 2215 return V; 2216 } 2217 2218 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2219 EVT VT = SV.getValueType(0); 2220 SmallVector<int, 8> MaskVec(SV.getMask()); 2221 ShuffleVectorSDNode::commuteMask(MaskVec); 2222 2223 SDValue Op0 = SV.getOperand(0); 2224 SDValue Op1 = SV.getOperand(1); 2225 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2226 } 2227 2228 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2229 FoldingSetNodeID ID; 2230 AddNodeIDNode(ID, ISD::Register, getVTList(VT), std::nullopt); 2231 ID.AddInteger(RegNo); 2232 void *IP = nullptr; 2233 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2234 return SDValue(E, 0); 2235 2236 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2237 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, UA); 2238 CSEMap.InsertNode(N, IP); 2239 InsertNode(N); 2240 return SDValue(N, 0); 2241 } 2242 2243 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2244 FoldingSetNodeID ID; 2245 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), std::nullopt); 2246 ID.AddPointer(RegMask); 2247 void *IP = nullptr; 2248 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2249 return SDValue(E, 0); 2250 2251 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2252 CSEMap.InsertNode(N, IP); 2253 InsertNode(N); 2254 return SDValue(N, 0); 2255 } 2256 2257 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2258 MCSymbol *Label) { 2259 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2260 } 2261 2262 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2263 SDValue Root, MCSymbol *Label) { 2264 FoldingSetNodeID ID; 2265 SDValue Ops[] = { Root }; 2266 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2267 ID.AddPointer(Label); 2268 void *IP = nullptr; 2269 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2270 return SDValue(E, 0); 2271 2272 auto *N = 2273 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2274 createOperands(N, Ops); 2275 2276 CSEMap.InsertNode(N, IP); 2277 InsertNode(N); 2278 return SDValue(N, 0); 2279 } 2280 2281 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2282 int64_t Offset, bool isTarget, 2283 unsigned TargetFlags) { 2284 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2285 2286 FoldingSetNodeID ID; 2287 AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt); 2288 ID.AddPointer(BA); 2289 ID.AddInteger(Offset); 2290 ID.AddInteger(TargetFlags); 2291 void *IP = nullptr; 2292 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2293 return SDValue(E, 0); 2294 2295 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2296 CSEMap.InsertNode(N, IP); 2297 InsertNode(N); 2298 return SDValue(N, 0); 2299 } 2300 2301 SDValue SelectionDAG::getSrcValue(const Value *V) { 2302 FoldingSetNodeID ID; 2303 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), std::nullopt); 2304 ID.AddPointer(V); 2305 2306 void *IP = nullptr; 2307 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2308 return SDValue(E, 0); 2309 2310 auto *N = newSDNode<SrcValueSDNode>(V); 2311 CSEMap.InsertNode(N, IP); 2312 InsertNode(N); 2313 return SDValue(N, 0); 2314 } 2315 2316 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2317 FoldingSetNodeID ID; 2318 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), std::nullopt); 2319 ID.AddPointer(MD); 2320 2321 void *IP = nullptr; 2322 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2323 return SDValue(E, 0); 2324 2325 auto *N = newSDNode<MDNodeSDNode>(MD); 2326 CSEMap.InsertNode(N, IP); 2327 InsertNode(N); 2328 return SDValue(N, 0); 2329 } 2330 2331 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2332 if (VT == V.getValueType()) 2333 return V; 2334 2335 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2336 } 2337 2338 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2339 unsigned SrcAS, unsigned DestAS) { 2340 SDValue Ops[] = {Ptr}; 2341 FoldingSetNodeID ID; 2342 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2343 ID.AddInteger(SrcAS); 2344 ID.AddInteger(DestAS); 2345 2346 void *IP = nullptr; 2347 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2348 return SDValue(E, 0); 2349 2350 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2351 VT, SrcAS, DestAS); 2352 createOperands(N, Ops); 2353 2354 CSEMap.InsertNode(N, IP); 2355 InsertNode(N); 2356 return SDValue(N, 0); 2357 } 2358 2359 SDValue SelectionDAG::getFreeze(SDValue V) { 2360 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2361 } 2362 2363 /// getShiftAmountOperand - Return the specified value casted to 2364 /// the target's desired shift amount type. 2365 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2366 EVT OpTy = Op.getValueType(); 2367 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2368 if (OpTy == ShTy || OpTy.isVector()) return Op; 2369 2370 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2371 } 2372 2373 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2374 SDLoc dl(Node); 2375 const TargetLowering &TLI = getTargetLoweringInfo(); 2376 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2377 EVT VT = Node->getValueType(0); 2378 SDValue Tmp1 = Node->getOperand(0); 2379 SDValue Tmp2 = Node->getOperand(1); 2380 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2381 2382 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2383 Tmp2, MachinePointerInfo(V)); 2384 SDValue VAList = VAListLoad; 2385 2386 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2387 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2388 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2389 2390 VAList = 2391 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2392 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2393 } 2394 2395 // Increment the pointer, VAList, to the next vaarg 2396 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2397 getConstant(getDataLayout().getTypeAllocSize( 2398 VT.getTypeForEVT(*getContext())), 2399 dl, VAList.getValueType())); 2400 // Store the incremented VAList to the legalized pointer 2401 Tmp1 = 2402 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2403 // Load the actual argument out of the pointer VAList 2404 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2405 } 2406 2407 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2408 SDLoc dl(Node); 2409 const TargetLowering &TLI = getTargetLoweringInfo(); 2410 // This defaults to loading a pointer from the input and storing it to the 2411 // output, returning the chain. 2412 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2413 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2414 SDValue Tmp1 = 2415 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2416 Node->getOperand(2), MachinePointerInfo(VS)); 2417 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2418 MachinePointerInfo(VD)); 2419 } 2420 2421 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2422 const DataLayout &DL = getDataLayout(); 2423 Type *Ty = VT.getTypeForEVT(*getContext()); 2424 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2425 2426 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2427 return RedAlign; 2428 2429 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2430 const Align StackAlign = TFI->getStackAlign(); 2431 2432 // See if we can choose a smaller ABI alignment in cases where it's an 2433 // illegal vector type that will get broken down. 2434 if (RedAlign > StackAlign) { 2435 EVT IntermediateVT; 2436 MVT RegisterVT; 2437 unsigned NumIntermediates; 2438 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2439 NumIntermediates, RegisterVT); 2440 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2441 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2442 if (RedAlign2 < RedAlign) 2443 RedAlign = RedAlign2; 2444 } 2445 2446 return RedAlign; 2447 } 2448 2449 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2450 MachineFrameInfo &MFI = MF->getFrameInfo(); 2451 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2452 int StackID = 0; 2453 if (Bytes.isScalable()) 2454 StackID = TFI->getStackIDForScalableVectors(); 2455 // The stack id gives an indication of whether the object is scalable or 2456 // not, so it's safe to pass in the minimum size here. 2457 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinValue(), Alignment, 2458 false, nullptr, StackID); 2459 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2460 } 2461 2462 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2463 Type *Ty = VT.getTypeForEVT(*getContext()); 2464 Align StackAlign = 2465 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2466 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2467 } 2468 2469 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2470 TypeSize VT1Size = VT1.getStoreSize(); 2471 TypeSize VT2Size = VT2.getStoreSize(); 2472 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2473 "Don't know how to choose the maximum size when creating a stack " 2474 "temporary"); 2475 TypeSize Bytes = VT1Size.getKnownMinValue() > VT2Size.getKnownMinValue() 2476 ? VT1Size 2477 : VT2Size; 2478 2479 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2480 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2481 const DataLayout &DL = getDataLayout(); 2482 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2483 return CreateStackTemporary(Bytes, Align); 2484 } 2485 2486 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2487 ISD::CondCode Cond, const SDLoc &dl) { 2488 EVT OpVT = N1.getValueType(); 2489 2490 auto GetUndefBooleanConstant = [&]() { 2491 if (VT.getScalarType() == MVT::i1 || 2492 TLI->getBooleanContents(OpVT) == 2493 TargetLowering::UndefinedBooleanContent) 2494 return getUNDEF(VT); 2495 // ZeroOrOne / ZeroOrNegative require specific values for the high bits, 2496 // so we cannot use getUNDEF(). Return zero instead. 2497 return getConstant(0, dl, VT); 2498 }; 2499 2500 // These setcc operations always fold. 2501 switch (Cond) { 2502 default: break; 2503 case ISD::SETFALSE: 2504 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2505 case ISD::SETTRUE: 2506 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2507 2508 case ISD::SETOEQ: 2509 case ISD::SETOGT: 2510 case ISD::SETOGE: 2511 case ISD::SETOLT: 2512 case ISD::SETOLE: 2513 case ISD::SETONE: 2514 case ISD::SETO: 2515 case ISD::SETUO: 2516 case ISD::SETUEQ: 2517 case ISD::SETUNE: 2518 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2519 break; 2520 } 2521 2522 if (OpVT.isInteger()) { 2523 // For EQ and NE, we can always pick a value for the undef to make the 2524 // predicate pass or fail, so we can return undef. 2525 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2526 // icmp eq/ne X, undef -> undef. 2527 if ((N1.isUndef() || N2.isUndef()) && 2528 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2529 return GetUndefBooleanConstant(); 2530 2531 // If both operands are undef, we can return undef for int comparison. 2532 // icmp undef, undef -> undef. 2533 if (N1.isUndef() && N2.isUndef()) 2534 return GetUndefBooleanConstant(); 2535 2536 // icmp X, X -> true/false 2537 // icmp X, undef -> true/false because undef could be X. 2538 if (N1.isUndef() || N2.isUndef() || N1 == N2) 2539 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2540 } 2541 2542 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2543 const APInt &C2 = N2C->getAPIntValue(); 2544 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2545 const APInt &C1 = N1C->getAPIntValue(); 2546 2547 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2548 dl, VT, OpVT); 2549 } 2550 } 2551 2552 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2553 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2554 2555 if (N1CFP && N2CFP) { 2556 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2557 switch (Cond) { 2558 default: break; 2559 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2560 return GetUndefBooleanConstant(); 2561 [[fallthrough]]; 2562 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2563 OpVT); 2564 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2565 return GetUndefBooleanConstant(); 2566 [[fallthrough]]; 2567 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2568 R==APFloat::cmpLessThan, dl, VT, 2569 OpVT); 2570 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2571 return GetUndefBooleanConstant(); 2572 [[fallthrough]]; 2573 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2574 OpVT); 2575 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2576 return GetUndefBooleanConstant(); 2577 [[fallthrough]]; 2578 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2579 VT, OpVT); 2580 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2581 return GetUndefBooleanConstant(); 2582 [[fallthrough]]; 2583 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2584 R==APFloat::cmpEqual, dl, VT, 2585 OpVT); 2586 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2587 return GetUndefBooleanConstant(); 2588 [[fallthrough]]; 2589 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2590 R==APFloat::cmpEqual, dl, VT, OpVT); 2591 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2592 OpVT); 2593 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2594 OpVT); 2595 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2596 R==APFloat::cmpEqual, dl, VT, 2597 OpVT); 2598 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2599 OpVT); 2600 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2601 R==APFloat::cmpLessThan, dl, VT, 2602 OpVT); 2603 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2604 R==APFloat::cmpUnordered, dl, VT, 2605 OpVT); 2606 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2607 VT, OpVT); 2608 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2609 OpVT); 2610 } 2611 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2612 // Ensure that the constant occurs on the RHS. 2613 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2614 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2615 return SDValue(); 2616 return getSetCC(dl, VT, N2, N1, SwappedCond); 2617 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2618 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2619 // If an operand is known to be a nan (or undef that could be a nan), we can 2620 // fold it. 2621 // Choosing NaN for the undef will always make unordered comparison succeed 2622 // and ordered comparison fails. 2623 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2624 switch (ISD::getUnorderedFlavor(Cond)) { 2625 default: 2626 llvm_unreachable("Unknown flavor!"); 2627 case 0: // Known false. 2628 return getBoolConstant(false, dl, VT, OpVT); 2629 case 1: // Known true. 2630 return getBoolConstant(true, dl, VT, OpVT); 2631 case 2: // Undefined. 2632 return GetUndefBooleanConstant(); 2633 } 2634 } 2635 2636 // Could not fold it. 2637 return SDValue(); 2638 } 2639 2640 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2641 /// use this predicate to simplify operations downstream. 2642 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2643 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2644 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2645 } 2646 2647 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2648 /// this predicate to simplify operations downstream. Mask is known to be zero 2649 /// for bits that V cannot have. 2650 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2651 unsigned Depth) const { 2652 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2653 } 2654 2655 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2656 /// DemandedElts. We use this predicate to simplify operations downstream. 2657 /// Mask is known to be zero for bits that V cannot have. 2658 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2659 const APInt &DemandedElts, 2660 unsigned Depth) const { 2661 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2662 } 2663 2664 /// MaskedVectorIsZero - Return true if 'Op' is known to be zero in 2665 /// DemandedElts. We use this predicate to simplify operations downstream. 2666 bool SelectionDAG::MaskedVectorIsZero(SDValue V, const APInt &DemandedElts, 2667 unsigned Depth /* = 0 */) const { 2668 return computeKnownBits(V, DemandedElts, Depth).isZero(); 2669 } 2670 2671 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2672 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2673 unsigned Depth) const { 2674 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2675 } 2676 2677 APInt SelectionDAG::computeVectorKnownZeroElements(SDValue Op, 2678 const APInt &DemandedElts, 2679 unsigned Depth) const { 2680 EVT VT = Op.getValueType(); 2681 assert(VT.isVector() && !VT.isScalableVector() && "Only for fixed vectors!"); 2682 2683 unsigned NumElts = VT.getVectorNumElements(); 2684 assert(DemandedElts.getBitWidth() == NumElts && "Unexpected demanded mask."); 2685 2686 APInt KnownZeroElements = APInt::getZero(NumElts); 2687 for (unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) { 2688 if (!DemandedElts[EltIdx]) 2689 continue; // Don't query elements that are not demanded. 2690 APInt Mask = APInt::getOneBitSet(NumElts, EltIdx); 2691 if (MaskedVectorIsZero(Op, Mask, Depth)) 2692 KnownZeroElements.setBit(EltIdx); 2693 } 2694 return KnownZeroElements; 2695 } 2696 2697 /// isSplatValue - Return true if the vector V has the same value 2698 /// across all DemandedElts. For scalable vectors, we don't know the 2699 /// number of lanes at compile time. Instead, we use a 1 bit APInt 2700 /// to represent a conservative value for all lanes; that is, that 2701 /// one bit value is implicitly splatted across all lanes. 2702 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2703 APInt &UndefElts, unsigned Depth) const { 2704 unsigned Opcode = V.getOpcode(); 2705 EVT VT = V.getValueType(); 2706 assert(VT.isVector() && "Vector type expected"); 2707 assert((!VT.isScalableVector() || DemandedElts.getBitWidth() == 1) && 2708 "scalable demanded bits are ignored"); 2709 2710 if (!DemandedElts) 2711 return false; // No demanded elts, better to assume we don't know anything. 2712 2713 if (Depth >= MaxRecursionDepth) 2714 return false; // Limit search depth. 2715 2716 // Deal with some common cases here that work for both fixed and scalable 2717 // vector types. 2718 switch (Opcode) { 2719 case ISD::SPLAT_VECTOR: 2720 UndefElts = V.getOperand(0).isUndef() 2721 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2722 : APInt(DemandedElts.getBitWidth(), 0); 2723 return true; 2724 case ISD::ADD: 2725 case ISD::SUB: 2726 case ISD::AND: 2727 case ISD::XOR: 2728 case ISD::OR: { 2729 APInt UndefLHS, UndefRHS; 2730 SDValue LHS = V.getOperand(0); 2731 SDValue RHS = V.getOperand(1); 2732 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2733 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2734 UndefElts = UndefLHS | UndefRHS; 2735 return true; 2736 } 2737 return false; 2738 } 2739 case ISD::ABS: 2740 case ISD::TRUNCATE: 2741 case ISD::SIGN_EXTEND: 2742 case ISD::ZERO_EXTEND: 2743 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2744 default: 2745 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2746 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2747 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *this, 2748 Depth); 2749 break; 2750 } 2751 2752 // We don't support other cases than those above for scalable vectors at 2753 // the moment. 2754 if (VT.isScalableVector()) 2755 return false; 2756 2757 unsigned NumElts = VT.getVectorNumElements(); 2758 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2759 UndefElts = APInt::getZero(NumElts); 2760 2761 switch (Opcode) { 2762 case ISD::BUILD_VECTOR: { 2763 SDValue Scl; 2764 for (unsigned i = 0; i != NumElts; ++i) { 2765 SDValue Op = V.getOperand(i); 2766 if (Op.isUndef()) { 2767 UndefElts.setBit(i); 2768 continue; 2769 } 2770 if (!DemandedElts[i]) 2771 continue; 2772 if (Scl && Scl != Op) 2773 return false; 2774 Scl = Op; 2775 } 2776 return true; 2777 } 2778 case ISD::VECTOR_SHUFFLE: { 2779 // Check if this is a shuffle node doing a splat or a shuffle of a splat. 2780 APInt DemandedLHS = APInt::getZero(NumElts); 2781 APInt DemandedRHS = APInt::getZero(NumElts); 2782 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2783 for (int i = 0; i != (int)NumElts; ++i) { 2784 int M = Mask[i]; 2785 if (M < 0) { 2786 UndefElts.setBit(i); 2787 continue; 2788 } 2789 if (!DemandedElts[i]) 2790 continue; 2791 if (M < (int)NumElts) 2792 DemandedLHS.setBit(M); 2793 else 2794 DemandedRHS.setBit(M - NumElts); 2795 } 2796 2797 // If we aren't demanding either op, assume there's no splat. 2798 // If we are demanding both ops, assume there's no splat. 2799 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) || 2800 (!DemandedLHS.isZero() && !DemandedRHS.isZero())) 2801 return false; 2802 2803 // See if the demanded elts of the source op is a splat or we only demand 2804 // one element, which should always be a splat. 2805 // TODO: Handle source ops splats with undefs. 2806 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) { 2807 APInt SrcUndefs; 2808 return (SrcElts.popcount() == 1) || 2809 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) && 2810 (SrcElts & SrcUndefs).isZero()); 2811 }; 2812 if (!DemandedLHS.isZero()) 2813 return CheckSplatSrc(V.getOperand(0), DemandedLHS); 2814 return CheckSplatSrc(V.getOperand(1), DemandedRHS); 2815 } 2816 case ISD::EXTRACT_SUBVECTOR: { 2817 // Offset the demanded elts by the subvector index. 2818 SDValue Src = V.getOperand(0); 2819 // We don't support scalable vectors at the moment. 2820 if (Src.getValueType().isScalableVector()) 2821 return false; 2822 uint64_t Idx = V.getConstantOperandVal(1); 2823 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2824 APInt UndefSrcElts; 2825 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 2826 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2827 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2828 return true; 2829 } 2830 break; 2831 } 2832 case ISD::ANY_EXTEND_VECTOR_INREG: 2833 case ISD::SIGN_EXTEND_VECTOR_INREG: 2834 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2835 // Widen the demanded elts by the src element count. 2836 SDValue Src = V.getOperand(0); 2837 // We don't support scalable vectors at the moment. 2838 if (Src.getValueType().isScalableVector()) 2839 return false; 2840 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2841 APInt UndefSrcElts; 2842 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 2843 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2844 UndefElts = UndefSrcElts.trunc(NumElts); 2845 return true; 2846 } 2847 break; 2848 } 2849 case ISD::BITCAST: { 2850 SDValue Src = V.getOperand(0); 2851 EVT SrcVT = Src.getValueType(); 2852 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits(); 2853 unsigned BitWidth = VT.getScalarSizeInBits(); 2854 2855 // Ignore bitcasts from unsupported types. 2856 // TODO: Add fp support? 2857 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger()) 2858 break; 2859 2860 // Bitcast 'small element' vector to 'large element' vector. 2861 if ((BitWidth % SrcBitWidth) == 0) { 2862 // See if each sub element is a splat. 2863 unsigned Scale = BitWidth / SrcBitWidth; 2864 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2865 APInt ScaledDemandedElts = 2866 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2867 for (unsigned I = 0; I != Scale; ++I) { 2868 APInt SubUndefElts; 2869 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I); 2870 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt); 2871 SubDemandedElts &= ScaledDemandedElts; 2872 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1)) 2873 return false; 2874 // TODO: Add support for merging sub undef elements. 2875 if (!SubUndefElts.isZero()) 2876 return false; 2877 } 2878 return true; 2879 } 2880 break; 2881 } 2882 } 2883 2884 return false; 2885 } 2886 2887 /// Helper wrapper to main isSplatValue function. 2888 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2889 EVT VT = V.getValueType(); 2890 assert(VT.isVector() && "Vector type expected"); 2891 2892 APInt UndefElts; 2893 // Since the number of lanes in a scalable vector is unknown at compile time, 2894 // we track one bit which is implicitly broadcast to all lanes. This means 2895 // that all lanes in a scalable vector are considered demanded. 2896 APInt DemandedElts 2897 = APInt::getAllOnes(VT.isScalableVector() ? 1 : VT.getVectorNumElements()); 2898 return isSplatValue(V, DemandedElts, UndefElts) && 2899 (AllowUndefs || !UndefElts); 2900 } 2901 2902 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2903 V = peekThroughExtractSubvectors(V); 2904 2905 EVT VT = V.getValueType(); 2906 unsigned Opcode = V.getOpcode(); 2907 switch (Opcode) { 2908 default: { 2909 APInt UndefElts; 2910 // Since the number of lanes in a scalable vector is unknown at compile time, 2911 // we track one bit which is implicitly broadcast to all lanes. This means 2912 // that all lanes in a scalable vector are considered demanded. 2913 APInt DemandedElts 2914 = APInt::getAllOnes(VT.isScalableVector() ? 1 : VT.getVectorNumElements()); 2915 2916 if (isSplatValue(V, DemandedElts, UndefElts)) { 2917 if (VT.isScalableVector()) { 2918 // DemandedElts and UndefElts are ignored for scalable vectors, since 2919 // the only supported cases are SPLAT_VECTOR nodes. 2920 SplatIdx = 0; 2921 } else { 2922 // Handle case where all demanded elements are UNDEF. 2923 if (DemandedElts.isSubsetOf(UndefElts)) { 2924 SplatIdx = 0; 2925 return getUNDEF(VT); 2926 } 2927 SplatIdx = (UndefElts & DemandedElts).countr_one(); 2928 } 2929 return V; 2930 } 2931 break; 2932 } 2933 case ISD::SPLAT_VECTOR: 2934 SplatIdx = 0; 2935 return V; 2936 case ISD::VECTOR_SHUFFLE: { 2937 assert(!VT.isScalableVector()); 2938 // Check if this is a shuffle node doing a splat. 2939 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2940 // getTargetVShiftNode currently struggles without the splat source. 2941 auto *SVN = cast<ShuffleVectorSDNode>(V); 2942 if (!SVN->isSplat()) 2943 break; 2944 int Idx = SVN->getSplatIndex(); 2945 int NumElts = V.getValueType().getVectorNumElements(); 2946 SplatIdx = Idx % NumElts; 2947 return V.getOperand(Idx / NumElts); 2948 } 2949 } 2950 2951 return SDValue(); 2952 } 2953 2954 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2955 int SplatIdx; 2956 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2957 EVT SVT = SrcVector.getValueType().getScalarType(); 2958 EVT LegalSVT = SVT; 2959 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2960 if (!SVT.isInteger()) 2961 return SDValue(); 2962 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2963 if (LegalSVT.bitsLT(SVT)) 2964 return SDValue(); 2965 } 2966 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2967 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2968 } 2969 return SDValue(); 2970 } 2971 2972 const APInt * 2973 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2974 const APInt &DemandedElts) const { 2975 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2976 V.getOpcode() == ISD::SRA) && 2977 "Unknown shift node"); 2978 unsigned BitWidth = V.getScalarValueSizeInBits(); 2979 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2980 // Shifting more than the bitwidth is not valid. 2981 const APInt &ShAmt = SA->getAPIntValue(); 2982 if (ShAmt.ult(BitWidth)) 2983 return &ShAmt; 2984 } 2985 return nullptr; 2986 } 2987 2988 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2989 SDValue V, const APInt &DemandedElts) const { 2990 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2991 V.getOpcode() == ISD::SRA) && 2992 "Unknown shift node"); 2993 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2994 return ValidAmt; 2995 unsigned BitWidth = V.getScalarValueSizeInBits(); 2996 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2997 if (!BV) 2998 return nullptr; 2999 const APInt *MinShAmt = nullptr; 3000 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 3001 if (!DemandedElts[i]) 3002 continue; 3003 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 3004 if (!SA) 3005 return nullptr; 3006 // Shifting more than the bitwidth is not valid. 3007 const APInt &ShAmt = SA->getAPIntValue(); 3008 if (ShAmt.uge(BitWidth)) 3009 return nullptr; 3010 if (MinShAmt && MinShAmt->ule(ShAmt)) 3011 continue; 3012 MinShAmt = &ShAmt; 3013 } 3014 return MinShAmt; 3015 } 3016 3017 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 3018 SDValue V, const APInt &DemandedElts) const { 3019 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 3020 V.getOpcode() == ISD::SRA) && 3021 "Unknown shift node"); 3022 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 3023 return ValidAmt; 3024 unsigned BitWidth = V.getScalarValueSizeInBits(); 3025 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 3026 if (!BV) 3027 return nullptr; 3028 const APInt *MaxShAmt = nullptr; 3029 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 3030 if (!DemandedElts[i]) 3031 continue; 3032 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 3033 if (!SA) 3034 return nullptr; 3035 // Shifting more than the bitwidth is not valid. 3036 const APInt &ShAmt = SA->getAPIntValue(); 3037 if (ShAmt.uge(BitWidth)) 3038 return nullptr; 3039 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 3040 continue; 3041 MaxShAmt = &ShAmt; 3042 } 3043 return MaxShAmt; 3044 } 3045 3046 /// Determine which bits of Op are known to be either zero or one and return 3047 /// them in Known. For vectors, the known bits are those that are shared by 3048 /// every vector element. 3049 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 3050 EVT VT = Op.getValueType(); 3051 3052 // Since the number of lanes in a scalable vector is unknown at compile time, 3053 // we track one bit which is implicitly broadcast to all lanes. This means 3054 // that all lanes in a scalable vector are considered demanded. 3055 APInt DemandedElts = VT.isFixedLengthVector() 3056 ? APInt::getAllOnes(VT.getVectorNumElements()) 3057 : APInt(1, 1); 3058 return computeKnownBits(Op, DemandedElts, Depth); 3059 } 3060 3061 /// Determine which bits of Op are known to be either zero or one and return 3062 /// them in Known. The DemandedElts argument allows us to only collect the known 3063 /// bits that are shared by the requested vector elements. 3064 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 3065 unsigned Depth) const { 3066 unsigned BitWidth = Op.getScalarValueSizeInBits(); 3067 3068 KnownBits Known(BitWidth); // Don't know anything. 3069 3070 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3071 // We know all of the bits for a constant! 3072 return KnownBits::makeConstant(C->getAPIntValue()); 3073 } 3074 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 3075 // We know all of the bits for a constant fp! 3076 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 3077 } 3078 3079 if (Depth >= MaxRecursionDepth) 3080 return Known; // Limit search depth. 3081 3082 KnownBits Known2; 3083 unsigned NumElts = DemandedElts.getBitWidth(); 3084 assert((!Op.getValueType().isFixedLengthVector() || 3085 NumElts == Op.getValueType().getVectorNumElements()) && 3086 "Unexpected vector size"); 3087 3088 if (!DemandedElts) 3089 return Known; // No demanded elts, better to assume we don't know anything. 3090 3091 unsigned Opcode = Op.getOpcode(); 3092 switch (Opcode) { 3093 case ISD::MERGE_VALUES: 3094 return computeKnownBits(Op.getOperand(Op.getResNo()), DemandedElts, 3095 Depth + 1); 3096 case ISD::SPLAT_VECTOR: { 3097 SDValue SrcOp = Op.getOperand(0); 3098 assert(SrcOp.getValueSizeInBits() >= BitWidth && 3099 "Expected SPLAT_VECTOR implicit truncation"); 3100 // Implicitly truncate the bits to match the official semantics of 3101 // SPLAT_VECTOR. 3102 Known = computeKnownBits(SrcOp, Depth + 1).trunc(BitWidth); 3103 break; 3104 } 3105 case ISD::SPLAT_VECTOR_PARTS: { 3106 unsigned ScalarSize = Op.getOperand(0).getScalarValueSizeInBits(); 3107 assert(ScalarSize * Op.getNumOperands() == BitWidth && 3108 "Expected SPLAT_VECTOR_PARTS scalars to cover element width"); 3109 for (auto [I, SrcOp] : enumerate(Op->ops())) { 3110 Known.insertBits(computeKnownBits(SrcOp, Depth + 1), ScalarSize * I); 3111 } 3112 break; 3113 } 3114 case ISD::BUILD_VECTOR: 3115 assert(!Op.getValueType().isScalableVector()); 3116 // Collect the known bits that are shared by every demanded vector element. 3117 Known.Zero.setAllBits(); Known.One.setAllBits(); 3118 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 3119 if (!DemandedElts[i]) 3120 continue; 3121 3122 SDValue SrcOp = Op.getOperand(i); 3123 Known2 = computeKnownBits(SrcOp, Depth + 1); 3124 3125 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3126 if (SrcOp.getValueSizeInBits() != BitWidth) { 3127 assert(SrcOp.getValueSizeInBits() > BitWidth && 3128 "Expected BUILD_VECTOR implicit truncation"); 3129 Known2 = Known2.trunc(BitWidth); 3130 } 3131 3132 // Known bits are the values that are shared by every demanded element. 3133 Known = Known.intersectWith(Known2); 3134 3135 // If we don't know any bits, early out. 3136 if (Known.isUnknown()) 3137 break; 3138 } 3139 break; 3140 case ISD::VECTOR_SHUFFLE: { 3141 assert(!Op.getValueType().isScalableVector()); 3142 // Collect the known bits that are shared by every vector element referenced 3143 // by the shuffle. 3144 APInt DemandedLHS, DemandedRHS; 3145 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3146 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3147 if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts, 3148 DemandedLHS, DemandedRHS)) 3149 break; 3150 3151 // Known bits are the values that are shared by every demanded element. 3152 Known.Zero.setAllBits(); Known.One.setAllBits(); 3153 if (!!DemandedLHS) { 3154 SDValue LHS = Op.getOperand(0); 3155 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 3156 Known = Known.intersectWith(Known2); 3157 } 3158 // If we don't know any bits, early out. 3159 if (Known.isUnknown()) 3160 break; 3161 if (!!DemandedRHS) { 3162 SDValue RHS = Op.getOperand(1); 3163 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 3164 Known = Known.intersectWith(Known2); 3165 } 3166 break; 3167 } 3168 case ISD::VSCALE: { 3169 const Function &F = getMachineFunction().getFunction(); 3170 const APInt &Multiplier = Op.getConstantOperandAPInt(0); 3171 Known = getVScaleRange(&F, BitWidth).multiply(Multiplier).toKnownBits(); 3172 break; 3173 } 3174 case ISD::CONCAT_VECTORS: { 3175 if (Op.getValueType().isScalableVector()) 3176 break; 3177 // Split DemandedElts and test each of the demanded subvectors. 3178 Known.Zero.setAllBits(); Known.One.setAllBits(); 3179 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3180 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3181 unsigned NumSubVectors = Op.getNumOperands(); 3182 for (unsigned i = 0; i != NumSubVectors; ++i) { 3183 APInt DemandedSub = 3184 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 3185 if (!!DemandedSub) { 3186 SDValue Sub = Op.getOperand(i); 3187 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 3188 Known = Known.intersectWith(Known2); 3189 } 3190 // If we don't know any bits, early out. 3191 if (Known.isUnknown()) 3192 break; 3193 } 3194 break; 3195 } 3196 case ISD::INSERT_SUBVECTOR: { 3197 if (Op.getValueType().isScalableVector()) 3198 break; 3199 // Demand any elements from the subvector and the remainder from the src its 3200 // inserted into. 3201 SDValue Src = Op.getOperand(0); 3202 SDValue Sub = Op.getOperand(1); 3203 uint64_t Idx = Op.getConstantOperandVal(2); 3204 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3205 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3206 APInt DemandedSrcElts = DemandedElts; 3207 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3208 3209 Known.One.setAllBits(); 3210 Known.Zero.setAllBits(); 3211 if (!!DemandedSubElts) { 3212 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 3213 if (Known.isUnknown()) 3214 break; // early-out. 3215 } 3216 if (!!DemandedSrcElts) { 3217 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3218 Known = Known.intersectWith(Known2); 3219 } 3220 break; 3221 } 3222 case ISD::EXTRACT_SUBVECTOR: { 3223 // Offset the demanded elts by the subvector index. 3224 SDValue Src = Op.getOperand(0); 3225 // Bail until we can represent demanded elements for scalable vectors. 3226 if (Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector()) 3227 break; 3228 uint64_t Idx = Op.getConstantOperandVal(1); 3229 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3230 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3231 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3232 break; 3233 } 3234 case ISD::SCALAR_TO_VECTOR: { 3235 if (Op.getValueType().isScalableVector()) 3236 break; 3237 // We know about scalar_to_vector as much as we know about it source, 3238 // which becomes the first element of otherwise unknown vector. 3239 if (DemandedElts != 1) 3240 break; 3241 3242 SDValue N0 = Op.getOperand(0); 3243 Known = computeKnownBits(N0, Depth + 1); 3244 if (N0.getValueSizeInBits() != BitWidth) 3245 Known = Known.trunc(BitWidth); 3246 3247 break; 3248 } 3249 case ISD::BITCAST: { 3250 if (Op.getValueType().isScalableVector()) 3251 break; 3252 3253 SDValue N0 = Op.getOperand(0); 3254 EVT SubVT = N0.getValueType(); 3255 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 3256 3257 // Ignore bitcasts from unsupported types. 3258 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 3259 break; 3260 3261 // Fast handling of 'identity' bitcasts. 3262 if (BitWidth == SubBitWidth) { 3263 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 3264 break; 3265 } 3266 3267 bool IsLE = getDataLayout().isLittleEndian(); 3268 3269 // Bitcast 'small element' vector to 'large element' scalar/vector. 3270 if ((BitWidth % SubBitWidth) == 0) { 3271 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3272 3273 // Collect known bits for the (larger) output by collecting the known 3274 // bits from each set of sub elements and shift these into place. 3275 // We need to separately call computeKnownBits for each set of 3276 // sub elements as the knownbits for each is likely to be different. 3277 unsigned SubScale = BitWidth / SubBitWidth; 3278 APInt SubDemandedElts(NumElts * SubScale, 0); 3279 for (unsigned i = 0; i != NumElts; ++i) 3280 if (DemandedElts[i]) 3281 SubDemandedElts.setBit(i * SubScale); 3282 3283 for (unsigned i = 0; i != SubScale; ++i) { 3284 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3285 Depth + 1); 3286 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3287 Known.insertBits(Known2, SubBitWidth * Shifts); 3288 } 3289 } 3290 3291 // Bitcast 'large element' scalar/vector to 'small element' vector. 3292 if ((SubBitWidth % BitWidth) == 0) { 3293 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3294 3295 // Collect known bits for the (smaller) output by collecting the known 3296 // bits from the overlapping larger input elements and extracting the 3297 // sub sections we actually care about. 3298 unsigned SubScale = SubBitWidth / BitWidth; 3299 APInt SubDemandedElts = 3300 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3301 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3302 3303 Known.Zero.setAllBits(); Known.One.setAllBits(); 3304 for (unsigned i = 0; i != NumElts; ++i) 3305 if (DemandedElts[i]) { 3306 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3307 unsigned Offset = (Shifts % SubScale) * BitWidth; 3308 Known = Known.intersectWith(Known2.extractBits(BitWidth, Offset)); 3309 // If we don't know any bits, early out. 3310 if (Known.isUnknown()) 3311 break; 3312 } 3313 } 3314 break; 3315 } 3316 case ISD::AND: 3317 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3318 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3319 3320 Known &= Known2; 3321 break; 3322 case ISD::OR: 3323 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3324 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3325 3326 Known |= Known2; 3327 break; 3328 case ISD::XOR: 3329 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3330 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3331 3332 Known ^= Known2; 3333 break; 3334 case ISD::MUL: { 3335 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3336 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3337 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3338 // TODO: SelfMultiply can be poison, but not undef. 3339 if (SelfMultiply) 3340 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison( 3341 Op.getOperand(0), DemandedElts, false, Depth + 1); 3342 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3343 3344 // If the multiplication is known not to overflow, the product of a number 3345 // with itself is non-negative. Only do this if we didn't already computed 3346 // the opposite value for the sign bit. 3347 if (Op->getFlags().hasNoSignedWrap() && 3348 Op.getOperand(0) == Op.getOperand(1) && 3349 !Known.isNegative()) 3350 Known.makeNonNegative(); 3351 break; 3352 } 3353 case ISD::MULHU: { 3354 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3355 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3356 Known = KnownBits::mulhu(Known, Known2); 3357 break; 3358 } 3359 case ISD::MULHS: { 3360 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3361 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3362 Known = KnownBits::mulhs(Known, Known2); 3363 break; 3364 } 3365 case ISD::UMUL_LOHI: { 3366 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3367 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3368 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3369 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3370 if (Op.getResNo() == 0) 3371 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3372 else 3373 Known = KnownBits::mulhu(Known, Known2); 3374 break; 3375 } 3376 case ISD::SMUL_LOHI: { 3377 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3378 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3379 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3380 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3381 if (Op.getResNo() == 0) 3382 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3383 else 3384 Known = KnownBits::mulhs(Known, Known2); 3385 break; 3386 } 3387 case ISD::AVGCEILU: { 3388 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3389 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3390 Known = Known.zext(BitWidth + 1); 3391 Known2 = Known2.zext(BitWidth + 1); 3392 KnownBits One = KnownBits::makeConstant(APInt(1, 1)); 3393 Known = KnownBits::computeForAddCarry(Known, Known2, One); 3394 Known = Known.extractBits(BitWidth, 1); 3395 break; 3396 } 3397 case ISD::SELECT: 3398 case ISD::VSELECT: 3399 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3400 // If we don't know any bits, early out. 3401 if (Known.isUnknown()) 3402 break; 3403 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3404 3405 // Only known if known in both the LHS and RHS. 3406 Known = Known.intersectWith(Known2); 3407 break; 3408 case ISD::SELECT_CC: 3409 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3410 // If we don't know any bits, early out. 3411 if (Known.isUnknown()) 3412 break; 3413 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3414 3415 // Only known if known in both the LHS and RHS. 3416 Known = Known.intersectWith(Known2); 3417 break; 3418 case ISD::SMULO: 3419 case ISD::UMULO: 3420 if (Op.getResNo() != 1) 3421 break; 3422 // The boolean result conforms to getBooleanContents. 3423 // If we know the result of a setcc has the top bits zero, use this info. 3424 // We know that we have an integer-based boolean since these operations 3425 // are only available for integer. 3426 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3427 TargetLowering::ZeroOrOneBooleanContent && 3428 BitWidth > 1) 3429 Known.Zero.setBitsFrom(1); 3430 break; 3431 case ISD::SETCC: 3432 case ISD::SETCCCARRY: 3433 case ISD::STRICT_FSETCC: 3434 case ISD::STRICT_FSETCCS: { 3435 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3436 // If we know the result of a setcc has the top bits zero, use this info. 3437 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3438 TargetLowering::ZeroOrOneBooleanContent && 3439 BitWidth > 1) 3440 Known.Zero.setBitsFrom(1); 3441 break; 3442 } 3443 case ISD::SHL: 3444 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3445 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3446 Known = KnownBits::shl(Known, Known2); 3447 3448 // Minimum shift low bits are known zero. 3449 if (const APInt *ShMinAmt = 3450 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3451 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3452 break; 3453 case ISD::SRL: 3454 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3455 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3456 Known = KnownBits::lshr(Known, Known2); 3457 3458 // Minimum shift high bits are known zero. 3459 if (const APInt *ShMinAmt = 3460 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3461 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3462 break; 3463 case ISD::SRA: 3464 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3465 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3466 Known = KnownBits::ashr(Known, Known2); 3467 break; 3468 case ISD::FSHL: 3469 case ISD::FSHR: 3470 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3471 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3472 3473 // For fshl, 0-shift returns the 1st arg. 3474 // For fshr, 0-shift returns the 2nd arg. 3475 if (Amt == 0) { 3476 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3477 DemandedElts, Depth + 1); 3478 break; 3479 } 3480 3481 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3482 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3483 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3484 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3485 if (Opcode == ISD::FSHL) { 3486 Known.One <<= Amt; 3487 Known.Zero <<= Amt; 3488 Known2.One.lshrInPlace(BitWidth - Amt); 3489 Known2.Zero.lshrInPlace(BitWidth - Amt); 3490 } else { 3491 Known.One <<= BitWidth - Amt; 3492 Known.Zero <<= BitWidth - Amt; 3493 Known2.One.lshrInPlace(Amt); 3494 Known2.Zero.lshrInPlace(Amt); 3495 } 3496 Known = Known.unionWith(Known2); 3497 } 3498 break; 3499 case ISD::SHL_PARTS: 3500 case ISD::SRA_PARTS: 3501 case ISD::SRL_PARTS: { 3502 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3503 3504 // Collect lo/hi source values and concatenate. 3505 unsigned LoBits = Op.getOperand(0).getScalarValueSizeInBits(); 3506 unsigned HiBits = Op.getOperand(1).getScalarValueSizeInBits(); 3507 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3508 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3509 Known = Known2.concat(Known); 3510 3511 // Collect shift amount. 3512 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3513 3514 if (Opcode == ISD::SHL_PARTS) 3515 Known = KnownBits::shl(Known, Known2); 3516 else if (Opcode == ISD::SRA_PARTS) 3517 Known = KnownBits::ashr(Known, Known2); 3518 else // if (Opcode == ISD::SRL_PARTS) 3519 Known = KnownBits::lshr(Known, Known2); 3520 3521 // TODO: Minimum shift low/high bits are known zero. 3522 3523 if (Op.getResNo() == 0) 3524 Known = Known.extractBits(LoBits, 0); 3525 else 3526 Known = Known.extractBits(HiBits, LoBits); 3527 break; 3528 } 3529 case ISD::SIGN_EXTEND_INREG: { 3530 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3531 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3532 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3533 break; 3534 } 3535 case ISD::CTTZ: 3536 case ISD::CTTZ_ZERO_UNDEF: { 3537 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3538 // If we have a known 1, its position is our upper bound. 3539 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3540 unsigned LowBits = llvm::bit_width(PossibleTZ); 3541 Known.Zero.setBitsFrom(LowBits); 3542 break; 3543 } 3544 case ISD::CTLZ: 3545 case ISD::CTLZ_ZERO_UNDEF: { 3546 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3547 // If we have a known 1, its position is our upper bound. 3548 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3549 unsigned LowBits = llvm::bit_width(PossibleLZ); 3550 Known.Zero.setBitsFrom(LowBits); 3551 break; 3552 } 3553 case ISD::CTPOP: { 3554 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3555 // If we know some of the bits are zero, they can't be one. 3556 unsigned PossibleOnes = Known2.countMaxPopulation(); 3557 Known.Zero.setBitsFrom(llvm::bit_width(PossibleOnes)); 3558 break; 3559 } 3560 case ISD::PARITY: { 3561 // Parity returns 0 everywhere but the LSB. 3562 Known.Zero.setBitsFrom(1); 3563 break; 3564 } 3565 case ISD::LOAD: { 3566 LoadSDNode *LD = cast<LoadSDNode>(Op); 3567 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3568 if (ISD::isNON_EXTLoad(LD) && Cst) { 3569 // Determine any common known bits from the loaded constant pool value. 3570 Type *CstTy = Cst->getType(); 3571 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits() && 3572 !Op.getValueType().isScalableVector()) { 3573 // If its a vector splat, then we can (quickly) reuse the scalar path. 3574 // NOTE: We assume all elements match and none are UNDEF. 3575 if (CstTy->isVectorTy()) { 3576 if (const Constant *Splat = Cst->getSplatValue()) { 3577 Cst = Splat; 3578 CstTy = Cst->getType(); 3579 } 3580 } 3581 // TODO - do we need to handle different bitwidths? 3582 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3583 // Iterate across all vector elements finding common known bits. 3584 Known.One.setAllBits(); 3585 Known.Zero.setAllBits(); 3586 for (unsigned i = 0; i != NumElts; ++i) { 3587 if (!DemandedElts[i]) 3588 continue; 3589 if (Constant *Elt = Cst->getAggregateElement(i)) { 3590 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3591 const APInt &Value = CInt->getValue(); 3592 Known.One &= Value; 3593 Known.Zero &= ~Value; 3594 continue; 3595 } 3596 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3597 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3598 Known.One &= Value; 3599 Known.Zero &= ~Value; 3600 continue; 3601 } 3602 } 3603 Known.One.clearAllBits(); 3604 Known.Zero.clearAllBits(); 3605 break; 3606 } 3607 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3608 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3609 Known = KnownBits::makeConstant(CInt->getValue()); 3610 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3611 Known = 3612 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3613 } 3614 } 3615 } 3616 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3617 // If this is a ZEXTLoad and we are looking at the loaded value. 3618 EVT VT = LD->getMemoryVT(); 3619 unsigned MemBits = VT.getScalarSizeInBits(); 3620 Known.Zero.setBitsFrom(MemBits); 3621 } else if (const MDNode *Ranges = LD->getRanges()) { 3622 EVT VT = LD->getValueType(0); 3623 3624 // TODO: Handle for extending loads 3625 if (LD->getExtensionType() == ISD::NON_EXTLOAD) { 3626 if (VT.isVector()) { 3627 // Handle truncation to the first demanded element. 3628 // TODO: Figure out which demanded elements are covered 3629 if (DemandedElts != 1 || !getDataLayout().isLittleEndian()) 3630 break; 3631 3632 // Handle the case where a load has a vector type, but scalar memory 3633 // with an attached range. 3634 EVT MemVT = LD->getMemoryVT(); 3635 KnownBits KnownFull(MemVT.getSizeInBits()); 3636 3637 computeKnownBitsFromRangeMetadata(*Ranges, KnownFull); 3638 Known = KnownFull.trunc(BitWidth); 3639 } else 3640 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3641 } 3642 } 3643 break; 3644 } 3645 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3646 if (Op.getValueType().isScalableVector()) 3647 break; 3648 EVT InVT = Op.getOperand(0).getValueType(); 3649 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3650 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3651 Known = Known.zext(BitWidth); 3652 break; 3653 } 3654 case ISD::ZERO_EXTEND: { 3655 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3656 Known = Known.zext(BitWidth); 3657 break; 3658 } 3659 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3660 if (Op.getValueType().isScalableVector()) 3661 break; 3662 EVT InVT = Op.getOperand(0).getValueType(); 3663 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3664 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3665 // If the sign bit is known to be zero or one, then sext will extend 3666 // it to the top bits, else it will just zext. 3667 Known = Known.sext(BitWidth); 3668 break; 3669 } 3670 case ISD::SIGN_EXTEND: { 3671 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3672 // If the sign bit is known to be zero or one, then sext will extend 3673 // it to the top bits, else it will just zext. 3674 Known = Known.sext(BitWidth); 3675 break; 3676 } 3677 case ISD::ANY_EXTEND_VECTOR_INREG: { 3678 if (Op.getValueType().isScalableVector()) 3679 break; 3680 EVT InVT = Op.getOperand(0).getValueType(); 3681 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3682 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3683 Known = Known.anyext(BitWidth); 3684 break; 3685 } 3686 case ISD::ANY_EXTEND: { 3687 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3688 Known = Known.anyext(BitWidth); 3689 break; 3690 } 3691 case ISD::TRUNCATE: { 3692 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3693 Known = Known.trunc(BitWidth); 3694 break; 3695 } 3696 case ISD::AssertZext: { 3697 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3698 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3699 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3700 Known.Zero |= (~InMask); 3701 Known.One &= (~Known.Zero); 3702 break; 3703 } 3704 case ISD::AssertAlign: { 3705 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3706 assert(LogOfAlign != 0); 3707 3708 // TODO: Should use maximum with source 3709 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3710 // well as clearing one bits. 3711 Known.Zero.setLowBits(LogOfAlign); 3712 Known.One.clearLowBits(LogOfAlign); 3713 break; 3714 } 3715 case ISD::FGETSIGN: 3716 // All bits are zero except the low bit. 3717 Known.Zero.setBitsFrom(1); 3718 break; 3719 case ISD::ADD: 3720 case ISD::SUB: { 3721 SDNodeFlags Flags = Op.getNode()->getFlags(); 3722 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3723 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3724 Known = KnownBits::computeForAddSub(Op.getOpcode() == ISD::ADD, 3725 Flags.hasNoSignedWrap(), Known, Known2); 3726 break; 3727 } 3728 case ISD::USUBO: 3729 case ISD::SSUBO: 3730 case ISD::USUBO_CARRY: 3731 case ISD::SSUBO_CARRY: 3732 if (Op.getResNo() == 1) { 3733 // If we know the result of a setcc has the top bits zero, use this info. 3734 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3735 TargetLowering::ZeroOrOneBooleanContent && 3736 BitWidth > 1) 3737 Known.Zero.setBitsFrom(1); 3738 break; 3739 } 3740 [[fallthrough]]; 3741 case ISD::SUBC: { 3742 assert(Op.getResNo() == 0 && 3743 "We only compute knownbits for the difference here."); 3744 3745 // With USUBO_CARRY and SSUBO_CARRY a borrow bit may be added in. 3746 KnownBits Borrow(1); 3747 if (Opcode == ISD::USUBO_CARRY || Opcode == ISD::SSUBO_CARRY) { 3748 Borrow = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3749 // Borrow has bit width 1 3750 Borrow = Borrow.trunc(1); 3751 } else { 3752 Borrow.setAllZero(); 3753 } 3754 3755 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3756 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3757 Known = KnownBits::computeForSubBorrow(Known, Known2, Borrow); 3758 break; 3759 } 3760 case ISD::UADDO: 3761 case ISD::SADDO: 3762 case ISD::UADDO_CARRY: 3763 case ISD::SADDO_CARRY: 3764 if (Op.getResNo() == 1) { 3765 // If we know the result of a setcc has the top bits zero, use this info. 3766 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3767 TargetLowering::ZeroOrOneBooleanContent && 3768 BitWidth > 1) 3769 Known.Zero.setBitsFrom(1); 3770 break; 3771 } 3772 [[fallthrough]]; 3773 case ISD::ADDC: 3774 case ISD::ADDE: { 3775 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3776 3777 // With ADDE and UADDO_CARRY, a carry bit may be added in. 3778 KnownBits Carry(1); 3779 if (Opcode == ISD::ADDE) 3780 // Can't track carry from glue, set carry to unknown. 3781 Carry.resetAll(); 3782 else if (Opcode == ISD::UADDO_CARRY || Opcode == ISD::SADDO_CARRY) { 3783 Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3784 // Carry has bit width 1 3785 Carry = Carry.trunc(1); 3786 } else { 3787 Carry.setAllZero(); 3788 } 3789 3790 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3791 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3792 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3793 break; 3794 } 3795 case ISD::UDIV: { 3796 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3797 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3798 Known = KnownBits::udiv(Known, Known2, Op->getFlags().hasExact()); 3799 break; 3800 } 3801 case ISD::SDIV: { 3802 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3803 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3804 Known = KnownBits::sdiv(Known, Known2, Op->getFlags().hasExact()); 3805 break; 3806 } 3807 case ISD::SREM: { 3808 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3809 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3810 Known = KnownBits::srem(Known, Known2); 3811 break; 3812 } 3813 case ISD::UREM: { 3814 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3815 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3816 Known = KnownBits::urem(Known, Known2); 3817 break; 3818 } 3819 case ISD::EXTRACT_ELEMENT: { 3820 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3821 const unsigned Index = Op.getConstantOperandVal(1); 3822 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3823 3824 // Remove low part of known bits mask 3825 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3826 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3827 3828 // Remove high part of known bit mask 3829 Known = Known.trunc(EltBitWidth); 3830 break; 3831 } 3832 case ISD::EXTRACT_VECTOR_ELT: { 3833 SDValue InVec = Op.getOperand(0); 3834 SDValue EltNo = Op.getOperand(1); 3835 EVT VecVT = InVec.getValueType(); 3836 // computeKnownBits not yet implemented for scalable vectors. 3837 if (VecVT.isScalableVector()) 3838 break; 3839 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3840 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3841 3842 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3843 // anything about the extended bits. 3844 if (BitWidth > EltBitWidth) 3845 Known = Known.trunc(EltBitWidth); 3846 3847 // If we know the element index, just demand that vector element, else for 3848 // an unknown element index, ignore DemandedElts and demand them all. 3849 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3850 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3851 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3852 DemandedSrcElts = 3853 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3854 3855 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3856 if (BitWidth > EltBitWidth) 3857 Known = Known.anyext(BitWidth); 3858 break; 3859 } 3860 case ISD::INSERT_VECTOR_ELT: { 3861 if (Op.getValueType().isScalableVector()) 3862 break; 3863 3864 // If we know the element index, split the demand between the 3865 // source vector and the inserted element, otherwise assume we need 3866 // the original demanded vector elements and the value. 3867 SDValue InVec = Op.getOperand(0); 3868 SDValue InVal = Op.getOperand(1); 3869 SDValue EltNo = Op.getOperand(2); 3870 bool DemandedVal = true; 3871 APInt DemandedVecElts = DemandedElts; 3872 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3873 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3874 unsigned EltIdx = CEltNo->getZExtValue(); 3875 DemandedVal = !!DemandedElts[EltIdx]; 3876 DemandedVecElts.clearBit(EltIdx); 3877 } 3878 Known.One.setAllBits(); 3879 Known.Zero.setAllBits(); 3880 if (DemandedVal) { 3881 Known2 = computeKnownBits(InVal, Depth + 1); 3882 Known = Known.intersectWith(Known2.zextOrTrunc(BitWidth)); 3883 } 3884 if (!!DemandedVecElts) { 3885 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3886 Known = Known.intersectWith(Known2); 3887 } 3888 break; 3889 } 3890 case ISD::BITREVERSE: { 3891 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3892 Known = Known2.reverseBits(); 3893 break; 3894 } 3895 case ISD::BSWAP: { 3896 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3897 Known = Known2.byteSwap(); 3898 break; 3899 } 3900 case ISD::ABS: { 3901 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3902 Known = Known2.abs(); 3903 break; 3904 } 3905 case ISD::USUBSAT: { 3906 // The result of usubsat will never be larger than the LHS. 3907 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3908 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3909 break; 3910 } 3911 case ISD::UMIN: { 3912 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3913 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3914 Known = KnownBits::umin(Known, Known2); 3915 break; 3916 } 3917 case ISD::UMAX: { 3918 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3919 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3920 Known = KnownBits::umax(Known, Known2); 3921 break; 3922 } 3923 case ISD::SMIN: 3924 case ISD::SMAX: { 3925 // If we have a clamp pattern, we know that the number of sign bits will be 3926 // the minimum of the clamp min/max range. 3927 bool IsMax = (Opcode == ISD::SMAX); 3928 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3929 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3930 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3931 CstHigh = 3932 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3933 if (CstLow && CstHigh) { 3934 if (!IsMax) 3935 std::swap(CstLow, CstHigh); 3936 3937 const APInt &ValueLow = CstLow->getAPIntValue(); 3938 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3939 if (ValueLow.sle(ValueHigh)) { 3940 unsigned LowSignBits = ValueLow.getNumSignBits(); 3941 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3942 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3943 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3944 Known.One.setHighBits(MinSignBits); 3945 break; 3946 } 3947 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3948 Known.Zero.setHighBits(MinSignBits); 3949 break; 3950 } 3951 } 3952 } 3953 3954 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3955 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3956 if (IsMax) 3957 Known = KnownBits::smax(Known, Known2); 3958 else 3959 Known = KnownBits::smin(Known, Known2); 3960 3961 // For SMAX, if CstLow is non-negative we know the result will be 3962 // non-negative and thus all sign bits are 0. 3963 // TODO: There's an equivalent of this for smin with negative constant for 3964 // known ones. 3965 if (IsMax && CstLow) { 3966 const APInt &ValueLow = CstLow->getAPIntValue(); 3967 if (ValueLow.isNonNegative()) { 3968 unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3969 Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits())); 3970 } 3971 } 3972 3973 break; 3974 } 3975 case ISD::FP_TO_UINT_SAT: { 3976 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT. 3977 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3978 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits()); 3979 break; 3980 } 3981 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3982 if (Op.getResNo() == 1) { 3983 // The boolean result conforms to getBooleanContents. 3984 // If we know the result of a setcc has the top bits zero, use this info. 3985 // We know that we have an integer-based boolean since these operations 3986 // are only available for integer. 3987 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3988 TargetLowering::ZeroOrOneBooleanContent && 3989 BitWidth > 1) 3990 Known.Zero.setBitsFrom(1); 3991 break; 3992 } 3993 [[fallthrough]]; 3994 case ISD::ATOMIC_CMP_SWAP: 3995 case ISD::ATOMIC_SWAP: 3996 case ISD::ATOMIC_LOAD_ADD: 3997 case ISD::ATOMIC_LOAD_SUB: 3998 case ISD::ATOMIC_LOAD_AND: 3999 case ISD::ATOMIC_LOAD_CLR: 4000 case ISD::ATOMIC_LOAD_OR: 4001 case ISD::ATOMIC_LOAD_XOR: 4002 case ISD::ATOMIC_LOAD_NAND: 4003 case ISD::ATOMIC_LOAD_MIN: 4004 case ISD::ATOMIC_LOAD_MAX: 4005 case ISD::ATOMIC_LOAD_UMIN: 4006 case ISD::ATOMIC_LOAD_UMAX: 4007 case ISD::ATOMIC_LOAD: { 4008 unsigned MemBits = 4009 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4010 // If we are looking at the loaded value. 4011 if (Op.getResNo() == 0) { 4012 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4013 Known.Zero.setBitsFrom(MemBits); 4014 } 4015 break; 4016 } 4017 case ISD::FrameIndex: 4018 case ISD::TargetFrameIndex: 4019 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 4020 Known, getMachineFunction()); 4021 break; 4022 4023 default: 4024 if (Opcode < ISD::BUILTIN_OP_END) 4025 break; 4026 [[fallthrough]]; 4027 case ISD::INTRINSIC_WO_CHAIN: 4028 case ISD::INTRINSIC_W_CHAIN: 4029 case ISD::INTRINSIC_VOID: 4030 // TODO: Probably okay to remove after audit; here to reduce change size 4031 // in initial enablement patch for scalable vectors 4032 if (Op.getValueType().isScalableVector()) 4033 break; 4034 4035 // Allow the target to implement this method for its nodes. 4036 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 4037 break; 4038 } 4039 4040 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 4041 return Known; 4042 } 4043 4044 /// Convert ConstantRange OverflowResult into SelectionDAG::OverflowKind. 4045 static SelectionDAG::OverflowKind mapOverflowResult(ConstantRange::OverflowResult OR) { 4046 switch (OR) { 4047 case ConstantRange::OverflowResult::MayOverflow: 4048 return SelectionDAG::OFK_Sometime; 4049 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4050 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4051 return SelectionDAG::OFK_Always; 4052 case ConstantRange::OverflowResult::NeverOverflows: 4053 return SelectionDAG::OFK_Never; 4054 } 4055 llvm_unreachable("Unknown OverflowResult"); 4056 } 4057 4058 SelectionDAG::OverflowKind 4059 SelectionDAG::computeOverflowForSignedAdd(SDValue N0, SDValue N1) const { 4060 // X + 0 never overflow 4061 if (isNullConstant(N1)) 4062 return OFK_Never; 4063 4064 // If both operands each have at least two sign bits, the addition 4065 // cannot overflow. 4066 if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1) 4067 return OFK_Never; 4068 4069 // TODO: Add ConstantRange::signedAddMayOverflow handling. 4070 return OFK_Sometime; 4071 } 4072 4073 SelectionDAG::OverflowKind 4074 SelectionDAG::computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const { 4075 // X + 0 never overflow 4076 if (isNullConstant(N1)) 4077 return OFK_Never; 4078 4079 // mulhi + 1 never overflow 4080 KnownBits N1Known = computeKnownBits(N1); 4081 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 4082 N1Known.getMaxValue().ult(2)) 4083 return OFK_Never; 4084 4085 KnownBits N0Known = computeKnownBits(N0); 4086 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1 && 4087 N0Known.getMaxValue().ult(2)) 4088 return OFK_Never; 4089 4090 // Fallback to ConstantRange::unsignedAddMayOverflow handling. 4091 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false); 4092 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false); 4093 return mapOverflowResult(N0Range.unsignedAddMayOverflow(N1Range)); 4094 } 4095 4096 SelectionDAG::OverflowKind 4097 SelectionDAG::computeOverflowForSignedSub(SDValue N0, SDValue N1) const { 4098 // X - 0 never overflow 4099 if (isNullConstant(N1)) 4100 return OFK_Never; 4101 4102 // If both operands each have at least two sign bits, the subtraction 4103 // cannot overflow. 4104 if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1) 4105 return OFK_Never; 4106 4107 KnownBits N0Known = computeKnownBits(N0); 4108 KnownBits N1Known = computeKnownBits(N1); 4109 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, true); 4110 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, true); 4111 return mapOverflowResult(N0Range.signedSubMayOverflow(N1Range)); 4112 } 4113 4114 SelectionDAG::OverflowKind 4115 SelectionDAG::computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const { 4116 // X - 0 never overflow 4117 if (isNullConstant(N1)) 4118 return OFK_Never; 4119 4120 KnownBits N0Known = computeKnownBits(N0); 4121 KnownBits N1Known = computeKnownBits(N1); 4122 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false); 4123 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false); 4124 return mapOverflowResult(N0Range.unsignedSubMayOverflow(N1Range)); 4125 } 4126 4127 SelectionDAG::OverflowKind 4128 SelectionDAG::computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const { 4129 // X * 0 and X * 1 never overflow. 4130 if (isNullConstant(N1) || isOneConstant(N1)) 4131 return OFK_Never; 4132 4133 KnownBits N0Known = computeKnownBits(N0); 4134 KnownBits N1Known = computeKnownBits(N1); 4135 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false); 4136 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false); 4137 return mapOverflowResult(N0Range.unsignedMulMayOverflow(N1Range)); 4138 } 4139 4140 SelectionDAG::OverflowKind 4141 SelectionDAG::computeOverflowForSignedMul(SDValue N0, SDValue N1) const { 4142 // X * 0 and X * 1 never overflow. 4143 if (isNullConstant(N1) || isOneConstant(N1)) 4144 return OFK_Never; 4145 4146 // Get the size of the result. 4147 unsigned BitWidth = N0.getScalarValueSizeInBits(); 4148 4149 // Sum of the sign bits. 4150 unsigned SignBits = ComputeNumSignBits(N0) + ComputeNumSignBits(N1); 4151 4152 // If we have enough sign bits, then there's no overflow. 4153 if (SignBits > BitWidth + 1) 4154 return OFK_Never; 4155 4156 if (SignBits == BitWidth + 1) { 4157 // The overflow occurs when the true multiplication of the 4158 // the operands is the minimum negative number. 4159 KnownBits N0Known = computeKnownBits(N0); 4160 KnownBits N1Known = computeKnownBits(N1); 4161 // If one of the operands is non-negative, then there's no 4162 // overflow. 4163 if (N0Known.isNonNegative() || N1Known.isNonNegative()) 4164 return OFK_Never; 4165 } 4166 4167 return OFK_Sometime; 4168 } 4169 4170 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth) const { 4171 if (Depth >= MaxRecursionDepth) 4172 return false; // Limit search depth. 4173 4174 EVT OpVT = Val.getValueType(); 4175 unsigned BitWidth = OpVT.getScalarSizeInBits(); 4176 4177 // Is the constant a known power of 2? 4178 if (ISD::matchUnaryPredicate(Val, [BitWidth](ConstantSDNode *C) { 4179 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 4180 })) 4181 return true; 4182 4183 // A left-shift of a constant one will have exactly one bit set because 4184 // shifting the bit off the end is undefined. 4185 if (Val.getOpcode() == ISD::SHL) { 4186 auto *C = isConstOrConstSplat(Val.getOperand(0)); 4187 if (C && C->getAPIntValue() == 1) 4188 return true; 4189 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) && 4190 isKnownNeverZero(Val, Depth); 4191 } 4192 4193 // Similarly, a logical right-shift of a constant sign-bit will have exactly 4194 // one bit set. 4195 if (Val.getOpcode() == ISD::SRL) { 4196 auto *C = isConstOrConstSplat(Val.getOperand(0)); 4197 if (C && C->getAPIntValue().isSignMask()) 4198 return true; 4199 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) && 4200 isKnownNeverZero(Val, Depth); 4201 } 4202 4203 if (Val.getOpcode() == ISD::ROTL || Val.getOpcode() == ISD::ROTR) 4204 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1); 4205 4206 // Are all operands of a build vector constant powers of two? 4207 if (Val.getOpcode() == ISD::BUILD_VECTOR) 4208 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 4209 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 4210 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 4211 return false; 4212 })) 4213 return true; 4214 4215 // Is the operand of a splat vector a constant power of two? 4216 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 4217 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 4218 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 4219 return true; 4220 4221 // vscale(power-of-two) is a power-of-two for some targets 4222 if (Val.getOpcode() == ISD::VSCALE && 4223 getTargetLoweringInfo().isVScaleKnownToBeAPowerOfTwo() && 4224 isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1)) 4225 return true; 4226 4227 if (Val.getOpcode() == ISD::SMIN || Val.getOpcode() == ISD::SMAX || 4228 Val.getOpcode() == ISD::UMIN || Val.getOpcode() == ISD::UMAX) 4229 return isKnownToBeAPowerOfTwo(Val.getOperand(1), Depth + 1) && 4230 isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1); 4231 4232 if (Val.getOpcode() == ISD::SELECT || Val.getOpcode() == ISD::VSELECT) 4233 return isKnownToBeAPowerOfTwo(Val.getOperand(2), Depth + 1) && 4234 isKnownToBeAPowerOfTwo(Val.getOperand(1), Depth + 1); 4235 4236 if (Val.getOpcode() == ISD::AND) { 4237 // Looking for `x & -x` pattern: 4238 // If x == 0: 4239 // x & -x -> 0 4240 // If x != 0: 4241 // x & -x -> non-zero pow2 4242 // so if we find the pattern return whether we know `x` is non-zero. 4243 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { 4244 SDValue NegOp = Val.getOperand(OpIdx); 4245 if (NegOp.getOpcode() == ISD::SUB && 4246 NegOp.getOperand(1) == Val.getOperand(1 - OpIdx) && 4247 isNullOrNullSplat(NegOp.getOperand(0))) 4248 return isKnownNeverZero(Val.getOperand(1 - OpIdx), Depth); 4249 } 4250 } 4251 4252 if (Val.getOpcode() == ISD::ZERO_EXTEND) 4253 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1); 4254 4255 // More could be done here, though the above checks are enough 4256 // to handle some common cases. 4257 return false; 4258 } 4259 4260 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 4261 EVT VT = Op.getValueType(); 4262 4263 // Since the number of lanes in a scalable vector is unknown at compile time, 4264 // we track one bit which is implicitly broadcast to all lanes. This means 4265 // that all lanes in a scalable vector are considered demanded. 4266 APInt DemandedElts = VT.isFixedLengthVector() 4267 ? APInt::getAllOnes(VT.getVectorNumElements()) 4268 : APInt(1, 1); 4269 return ComputeNumSignBits(Op, DemandedElts, Depth); 4270 } 4271 4272 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 4273 unsigned Depth) const { 4274 EVT VT = Op.getValueType(); 4275 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 4276 unsigned VTBits = VT.getScalarSizeInBits(); 4277 unsigned NumElts = DemandedElts.getBitWidth(); 4278 unsigned Tmp, Tmp2; 4279 unsigned FirstAnswer = 1; 4280 4281 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 4282 const APInt &Val = C->getAPIntValue(); 4283 return Val.getNumSignBits(); 4284 } 4285 4286 if (Depth >= MaxRecursionDepth) 4287 return 1; // Limit search depth. 4288 4289 if (!DemandedElts) 4290 return 1; // No demanded elts, better to assume we don't know anything. 4291 4292 unsigned Opcode = Op.getOpcode(); 4293 switch (Opcode) { 4294 default: break; 4295 case ISD::AssertSext: 4296 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 4297 return VTBits-Tmp+1; 4298 case ISD::AssertZext: 4299 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 4300 return VTBits-Tmp; 4301 case ISD::MERGE_VALUES: 4302 return ComputeNumSignBits(Op.getOperand(Op.getResNo()), DemandedElts, 4303 Depth + 1); 4304 case ISD::SPLAT_VECTOR: { 4305 // Check if the sign bits of source go down as far as the truncated value. 4306 unsigned NumSrcBits = Op.getOperand(0).getValueSizeInBits(); 4307 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4308 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4309 return NumSrcSignBits - (NumSrcBits - VTBits); 4310 break; 4311 } 4312 case ISD::BUILD_VECTOR: 4313 assert(!VT.isScalableVector()); 4314 Tmp = VTBits; 4315 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 4316 if (!DemandedElts[i]) 4317 continue; 4318 4319 SDValue SrcOp = Op.getOperand(i); 4320 // BUILD_VECTOR can implicitly truncate sources, we handle this specially 4321 // for constant nodes to ensure we only look at the sign bits. 4322 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SrcOp)) { 4323 APInt T = C->getAPIntValue().trunc(VTBits); 4324 Tmp2 = T.getNumSignBits(); 4325 } else { 4326 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 4327 4328 if (SrcOp.getValueSizeInBits() != VTBits) { 4329 assert(SrcOp.getValueSizeInBits() > VTBits && 4330 "Expected BUILD_VECTOR implicit truncation"); 4331 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 4332 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 4333 } 4334 } 4335 Tmp = std::min(Tmp, Tmp2); 4336 } 4337 return Tmp; 4338 4339 case ISD::VECTOR_SHUFFLE: { 4340 // Collect the minimum number of sign bits that are shared by every vector 4341 // element referenced by the shuffle. 4342 APInt DemandedLHS, DemandedRHS; 4343 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 4344 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 4345 if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts, 4346 DemandedLHS, DemandedRHS)) 4347 return 1; 4348 4349 Tmp = std::numeric_limits<unsigned>::max(); 4350 if (!!DemandedLHS) 4351 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 4352 if (!!DemandedRHS) { 4353 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 4354 Tmp = std::min(Tmp, Tmp2); 4355 } 4356 // If we don't know anything, early out and try computeKnownBits fall-back. 4357 if (Tmp == 1) 4358 break; 4359 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4360 return Tmp; 4361 } 4362 4363 case ISD::BITCAST: { 4364 if (VT.isScalableVector()) 4365 break; 4366 SDValue N0 = Op.getOperand(0); 4367 EVT SrcVT = N0.getValueType(); 4368 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 4369 4370 // Ignore bitcasts from unsupported types.. 4371 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 4372 break; 4373 4374 // Fast handling of 'identity' bitcasts. 4375 if (VTBits == SrcBits) 4376 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 4377 4378 bool IsLE = getDataLayout().isLittleEndian(); 4379 4380 // Bitcast 'large element' scalar/vector to 'small element' vector. 4381 if ((SrcBits % VTBits) == 0) { 4382 assert(VT.isVector() && "Expected bitcast to vector"); 4383 4384 unsigned Scale = SrcBits / VTBits; 4385 APInt SrcDemandedElts = 4386 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 4387 4388 // Fast case - sign splat can be simply split across the small elements. 4389 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 4390 if (Tmp == SrcBits) 4391 return VTBits; 4392 4393 // Slow case - determine how far the sign extends into each sub-element. 4394 Tmp2 = VTBits; 4395 for (unsigned i = 0; i != NumElts; ++i) 4396 if (DemandedElts[i]) { 4397 unsigned SubOffset = i % Scale; 4398 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 4399 SubOffset = SubOffset * VTBits; 4400 if (Tmp <= SubOffset) 4401 return 1; 4402 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 4403 } 4404 return Tmp2; 4405 } 4406 break; 4407 } 4408 4409 case ISD::FP_TO_SINT_SAT: 4410 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT. 4411 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4412 return VTBits - Tmp + 1; 4413 case ISD::SIGN_EXTEND: 4414 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 4415 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 4416 case ISD::SIGN_EXTEND_INREG: 4417 // Max of the input and what this extends. 4418 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4419 Tmp = VTBits-Tmp+1; 4420 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4421 return std::max(Tmp, Tmp2); 4422 case ISD::SIGN_EXTEND_VECTOR_INREG: { 4423 if (VT.isScalableVector()) 4424 break; 4425 SDValue Src = Op.getOperand(0); 4426 EVT SrcVT = Src.getValueType(); 4427 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements()); 4428 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 4429 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 4430 } 4431 case ISD::SRA: 4432 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4433 // SRA X, C -> adds C sign bits. 4434 if (const APInt *ShAmt = 4435 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 4436 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 4437 return Tmp; 4438 case ISD::SHL: 4439 if (const APInt *ShAmt = 4440 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 4441 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 4442 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4443 if (ShAmt->ult(Tmp)) 4444 return Tmp - ShAmt->getZExtValue(); 4445 } 4446 break; 4447 case ISD::AND: 4448 case ISD::OR: 4449 case ISD::XOR: // NOT is handled here. 4450 // Logical binary ops preserve the number of sign bits at the worst. 4451 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4452 if (Tmp != 1) { 4453 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4454 FirstAnswer = std::min(Tmp, Tmp2); 4455 // We computed what we know about the sign bits as our first 4456 // answer. Now proceed to the generic code that uses 4457 // computeKnownBits, and pick whichever answer is better. 4458 } 4459 break; 4460 4461 case ISD::SELECT: 4462 case ISD::VSELECT: 4463 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4464 if (Tmp == 1) return 1; // Early out. 4465 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4466 return std::min(Tmp, Tmp2); 4467 case ISD::SELECT_CC: 4468 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4469 if (Tmp == 1) return 1; // Early out. 4470 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 4471 return std::min(Tmp, Tmp2); 4472 4473 case ISD::SMIN: 4474 case ISD::SMAX: { 4475 // If we have a clamp pattern, we know that the number of sign bits will be 4476 // the minimum of the clamp min/max range. 4477 bool IsMax = (Opcode == ISD::SMAX); 4478 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 4479 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 4480 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 4481 CstHigh = 4482 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 4483 if (CstLow && CstHigh) { 4484 if (!IsMax) 4485 std::swap(CstLow, CstHigh); 4486 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 4487 Tmp = CstLow->getAPIntValue().getNumSignBits(); 4488 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 4489 return std::min(Tmp, Tmp2); 4490 } 4491 } 4492 4493 // Fallback - just get the minimum number of sign bits of the operands. 4494 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4495 if (Tmp == 1) 4496 return 1; // Early out. 4497 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4498 return std::min(Tmp, Tmp2); 4499 } 4500 case ISD::UMIN: 4501 case ISD::UMAX: 4502 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4503 if (Tmp == 1) 4504 return 1; // Early out. 4505 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4506 return std::min(Tmp, Tmp2); 4507 case ISD::SADDO: 4508 case ISD::UADDO: 4509 case ISD::SADDO_CARRY: 4510 case ISD::UADDO_CARRY: 4511 case ISD::SSUBO: 4512 case ISD::USUBO: 4513 case ISD::SSUBO_CARRY: 4514 case ISD::USUBO_CARRY: 4515 case ISD::SMULO: 4516 case ISD::UMULO: 4517 if (Op.getResNo() != 1) 4518 break; 4519 // The boolean result conforms to getBooleanContents. Fall through. 4520 // If setcc returns 0/-1, all bits are sign bits. 4521 // We know that we have an integer-based boolean since these operations 4522 // are only available for integer. 4523 if (TLI->getBooleanContents(VT.isVector(), false) == 4524 TargetLowering::ZeroOrNegativeOneBooleanContent) 4525 return VTBits; 4526 break; 4527 case ISD::SETCC: 4528 case ISD::SETCCCARRY: 4529 case ISD::STRICT_FSETCC: 4530 case ISD::STRICT_FSETCCS: { 4531 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 4532 // If setcc returns 0/-1, all bits are sign bits. 4533 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 4534 TargetLowering::ZeroOrNegativeOneBooleanContent) 4535 return VTBits; 4536 break; 4537 } 4538 case ISD::ROTL: 4539 case ISD::ROTR: 4540 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4541 4542 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 4543 if (Tmp == VTBits) 4544 return VTBits; 4545 4546 if (ConstantSDNode *C = 4547 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 4548 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 4549 4550 // Handle rotate right by N like a rotate left by 32-N. 4551 if (Opcode == ISD::ROTR) 4552 RotAmt = (VTBits - RotAmt) % VTBits; 4553 4554 // If we aren't rotating out all of the known-in sign bits, return the 4555 // number that are left. This handles rotl(sext(x), 1) for example. 4556 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4557 } 4558 break; 4559 case ISD::ADD: 4560 case ISD::ADDC: 4561 // Add can have at most one carry bit. Thus we know that the output 4562 // is, at worst, one more bit than the inputs. 4563 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4564 if (Tmp == 1) return 1; // Early out. 4565 4566 // Special case decrementing a value (ADD X, -1): 4567 if (ConstantSDNode *CRHS = 4568 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4569 if (CRHS->isAllOnes()) { 4570 KnownBits Known = 4571 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4572 4573 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4574 // sign bits set. 4575 if ((Known.Zero | 1).isAllOnes()) 4576 return VTBits; 4577 4578 // If we are subtracting one from a positive number, there is no carry 4579 // out of the result. 4580 if (Known.isNonNegative()) 4581 return Tmp; 4582 } 4583 4584 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4585 if (Tmp2 == 1) return 1; // Early out. 4586 return std::min(Tmp, Tmp2) - 1; 4587 case ISD::SUB: 4588 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4589 if (Tmp2 == 1) return 1; // Early out. 4590 4591 // Handle NEG. 4592 if (ConstantSDNode *CLHS = 4593 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4594 if (CLHS->isZero()) { 4595 KnownBits Known = 4596 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4597 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4598 // sign bits set. 4599 if ((Known.Zero | 1).isAllOnes()) 4600 return VTBits; 4601 4602 // If the input is known to be positive (the sign bit is known clear), 4603 // the output of the NEG has the same number of sign bits as the input. 4604 if (Known.isNonNegative()) 4605 return Tmp2; 4606 4607 // Otherwise, we treat this like a SUB. 4608 } 4609 4610 // Sub can have at most one carry bit. Thus we know that the output 4611 // is, at worst, one more bit than the inputs. 4612 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4613 if (Tmp == 1) return 1; // Early out. 4614 return std::min(Tmp, Tmp2) - 1; 4615 case ISD::MUL: { 4616 // The output of the Mul can be at most twice the valid bits in the inputs. 4617 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4618 if (SignBitsOp0 == 1) 4619 break; 4620 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4621 if (SignBitsOp1 == 1) 4622 break; 4623 unsigned OutValidBits = 4624 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4625 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4626 } 4627 case ISD::SREM: 4628 // The sign bit is the LHS's sign bit, except when the result of the 4629 // remainder is zero. The magnitude of the result should be less than or 4630 // equal to the magnitude of the LHS. Therefore, the result should have 4631 // at least as many sign bits as the left hand side. 4632 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4633 case ISD::TRUNCATE: { 4634 // Check if the sign bits of source go down as far as the truncated value. 4635 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4636 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4637 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4638 return NumSrcSignBits - (NumSrcBits - VTBits); 4639 break; 4640 } 4641 case ISD::EXTRACT_ELEMENT: { 4642 if (VT.isScalableVector()) 4643 break; 4644 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4645 const int BitWidth = Op.getValueSizeInBits(); 4646 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4647 4648 // Get reverse index (starting from 1), Op1 value indexes elements from 4649 // little end. Sign starts at big end. 4650 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4651 4652 // If the sign portion ends in our element the subtraction gives correct 4653 // result. Otherwise it gives either negative or > bitwidth result 4654 return std::clamp(KnownSign - rIndex * BitWidth, 0, BitWidth); 4655 } 4656 case ISD::INSERT_VECTOR_ELT: { 4657 if (VT.isScalableVector()) 4658 break; 4659 // If we know the element index, split the demand between the 4660 // source vector and the inserted element, otherwise assume we need 4661 // the original demanded vector elements and the value. 4662 SDValue InVec = Op.getOperand(0); 4663 SDValue InVal = Op.getOperand(1); 4664 SDValue EltNo = Op.getOperand(2); 4665 bool DemandedVal = true; 4666 APInt DemandedVecElts = DemandedElts; 4667 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4668 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4669 unsigned EltIdx = CEltNo->getZExtValue(); 4670 DemandedVal = !!DemandedElts[EltIdx]; 4671 DemandedVecElts.clearBit(EltIdx); 4672 } 4673 Tmp = std::numeric_limits<unsigned>::max(); 4674 if (DemandedVal) { 4675 // TODO - handle implicit truncation of inserted elements. 4676 if (InVal.getScalarValueSizeInBits() != VTBits) 4677 break; 4678 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4679 Tmp = std::min(Tmp, Tmp2); 4680 } 4681 if (!!DemandedVecElts) { 4682 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4683 Tmp = std::min(Tmp, Tmp2); 4684 } 4685 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4686 return Tmp; 4687 } 4688 case ISD::EXTRACT_VECTOR_ELT: { 4689 assert(!VT.isScalableVector()); 4690 SDValue InVec = Op.getOperand(0); 4691 SDValue EltNo = Op.getOperand(1); 4692 EVT VecVT = InVec.getValueType(); 4693 // ComputeNumSignBits not yet implemented for scalable vectors. 4694 if (VecVT.isScalableVector()) 4695 break; 4696 const unsigned BitWidth = Op.getValueSizeInBits(); 4697 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4698 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4699 4700 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4701 // anything about sign bits. But if the sizes match we can derive knowledge 4702 // about sign bits from the vector operand. 4703 if (BitWidth != EltBitWidth) 4704 break; 4705 4706 // If we know the element index, just demand that vector element, else for 4707 // an unknown element index, ignore DemandedElts and demand them all. 4708 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4709 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4710 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4711 DemandedSrcElts = 4712 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4713 4714 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4715 } 4716 case ISD::EXTRACT_SUBVECTOR: { 4717 // Offset the demanded elts by the subvector index. 4718 SDValue Src = Op.getOperand(0); 4719 // Bail until we can represent demanded elements for scalable vectors. 4720 if (Src.getValueType().isScalableVector()) 4721 break; 4722 uint64_t Idx = Op.getConstantOperandVal(1); 4723 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4724 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 4725 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4726 } 4727 case ISD::CONCAT_VECTORS: { 4728 if (VT.isScalableVector()) 4729 break; 4730 // Determine the minimum number of sign bits across all demanded 4731 // elts of the input vectors. Early out if the result is already 1. 4732 Tmp = std::numeric_limits<unsigned>::max(); 4733 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4734 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4735 unsigned NumSubVectors = Op.getNumOperands(); 4736 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4737 APInt DemandedSub = 4738 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4739 if (!DemandedSub) 4740 continue; 4741 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4742 Tmp = std::min(Tmp, Tmp2); 4743 } 4744 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4745 return Tmp; 4746 } 4747 case ISD::INSERT_SUBVECTOR: { 4748 if (VT.isScalableVector()) 4749 break; 4750 // Demand any elements from the subvector and the remainder from the src its 4751 // inserted into. 4752 SDValue Src = Op.getOperand(0); 4753 SDValue Sub = Op.getOperand(1); 4754 uint64_t Idx = Op.getConstantOperandVal(2); 4755 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4756 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4757 APInt DemandedSrcElts = DemandedElts; 4758 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4759 4760 Tmp = std::numeric_limits<unsigned>::max(); 4761 if (!!DemandedSubElts) { 4762 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4763 if (Tmp == 1) 4764 return 1; // early-out 4765 } 4766 if (!!DemandedSrcElts) { 4767 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4768 Tmp = std::min(Tmp, Tmp2); 4769 } 4770 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4771 return Tmp; 4772 } 4773 case ISD::LOAD: { 4774 LoadSDNode *LD = cast<LoadSDNode>(Op); 4775 if (const MDNode *Ranges = LD->getRanges()) { 4776 if (DemandedElts != 1) 4777 break; 4778 4779 ConstantRange CR = getConstantRangeFromMetadata(*Ranges); 4780 if (VTBits > CR.getBitWidth()) { 4781 switch (LD->getExtensionType()) { 4782 case ISD::SEXTLOAD: 4783 CR = CR.signExtend(VTBits); 4784 break; 4785 case ISD::ZEXTLOAD: 4786 CR = CR.zeroExtend(VTBits); 4787 break; 4788 default: 4789 break; 4790 } 4791 } 4792 4793 if (VTBits != CR.getBitWidth()) 4794 break; 4795 return std::min(CR.getSignedMin().getNumSignBits(), 4796 CR.getSignedMax().getNumSignBits()); 4797 } 4798 4799 break; 4800 } 4801 case ISD::ATOMIC_CMP_SWAP: 4802 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4803 case ISD::ATOMIC_SWAP: 4804 case ISD::ATOMIC_LOAD_ADD: 4805 case ISD::ATOMIC_LOAD_SUB: 4806 case ISD::ATOMIC_LOAD_AND: 4807 case ISD::ATOMIC_LOAD_CLR: 4808 case ISD::ATOMIC_LOAD_OR: 4809 case ISD::ATOMIC_LOAD_XOR: 4810 case ISD::ATOMIC_LOAD_NAND: 4811 case ISD::ATOMIC_LOAD_MIN: 4812 case ISD::ATOMIC_LOAD_MAX: 4813 case ISD::ATOMIC_LOAD_UMIN: 4814 case ISD::ATOMIC_LOAD_UMAX: 4815 case ISD::ATOMIC_LOAD: { 4816 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4817 // If we are looking at the loaded value. 4818 if (Op.getResNo() == 0) { 4819 if (Tmp == VTBits) 4820 return 1; // early-out 4821 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4822 return VTBits - Tmp + 1; 4823 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4824 return VTBits - Tmp; 4825 } 4826 break; 4827 } 4828 } 4829 4830 // If we are looking at the loaded value of the SDNode. 4831 if (Op.getResNo() == 0) { 4832 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4833 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4834 unsigned ExtType = LD->getExtensionType(); 4835 switch (ExtType) { 4836 default: break; 4837 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4838 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4839 return VTBits - Tmp + 1; 4840 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4841 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4842 return VTBits - Tmp; 4843 case ISD::NON_EXTLOAD: 4844 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4845 // We only need to handle vectors - computeKnownBits should handle 4846 // scalar cases. 4847 Type *CstTy = Cst->getType(); 4848 if (CstTy->isVectorTy() && !VT.isScalableVector() && 4849 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() && 4850 VTBits == CstTy->getScalarSizeInBits()) { 4851 Tmp = VTBits; 4852 for (unsigned i = 0; i != NumElts; ++i) { 4853 if (!DemandedElts[i]) 4854 continue; 4855 if (Constant *Elt = Cst->getAggregateElement(i)) { 4856 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4857 const APInt &Value = CInt->getValue(); 4858 Tmp = std::min(Tmp, Value.getNumSignBits()); 4859 continue; 4860 } 4861 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4862 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4863 Tmp = std::min(Tmp, Value.getNumSignBits()); 4864 continue; 4865 } 4866 } 4867 // Unknown type. Conservatively assume no bits match sign bit. 4868 return 1; 4869 } 4870 return Tmp; 4871 } 4872 } 4873 break; 4874 } 4875 } 4876 } 4877 4878 // Allow the target to implement this method for its nodes. 4879 if (Opcode >= ISD::BUILTIN_OP_END || 4880 Opcode == ISD::INTRINSIC_WO_CHAIN || 4881 Opcode == ISD::INTRINSIC_W_CHAIN || 4882 Opcode == ISD::INTRINSIC_VOID) { 4883 // TODO: This can probably be removed once target code is audited. This 4884 // is here purely to reduce patch size and review complexity. 4885 if (!VT.isScalableVector()) { 4886 unsigned NumBits = 4887 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4888 if (NumBits > 1) 4889 FirstAnswer = std::max(FirstAnswer, NumBits); 4890 } 4891 } 4892 4893 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4894 // use this information. 4895 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4896 return std::max(FirstAnswer, Known.countMinSignBits()); 4897 } 4898 4899 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4900 unsigned Depth) const { 4901 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4902 return Op.getScalarValueSizeInBits() - SignBits + 1; 4903 } 4904 4905 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4906 const APInt &DemandedElts, 4907 unsigned Depth) const { 4908 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4909 return Op.getScalarValueSizeInBits() - SignBits + 1; 4910 } 4911 4912 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4913 unsigned Depth) const { 4914 // Early out for FREEZE. 4915 if (Op.getOpcode() == ISD::FREEZE) 4916 return true; 4917 4918 // TODO: Assume we don't know anything for now. 4919 EVT VT = Op.getValueType(); 4920 if (VT.isScalableVector()) 4921 return false; 4922 4923 APInt DemandedElts = VT.isVector() 4924 ? APInt::getAllOnes(VT.getVectorNumElements()) 4925 : APInt(1, 1); 4926 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4927 } 4928 4929 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4930 const APInt &DemandedElts, 4931 bool PoisonOnly, 4932 unsigned Depth) const { 4933 unsigned Opcode = Op.getOpcode(); 4934 4935 // Early out for FREEZE. 4936 if (Opcode == ISD::FREEZE) 4937 return true; 4938 4939 if (Depth >= MaxRecursionDepth) 4940 return false; // Limit search depth. 4941 4942 if (isIntOrFPConstant(Op)) 4943 return true; 4944 4945 switch (Opcode) { 4946 case ISD::VALUETYPE: 4947 case ISD::FrameIndex: 4948 case ISD::TargetFrameIndex: 4949 return true; 4950 4951 case ISD::UNDEF: 4952 return PoisonOnly; 4953 4954 case ISD::BUILD_VECTOR: 4955 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4956 // this shouldn't affect the result. 4957 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4958 if (!DemandedElts[i]) 4959 continue; 4960 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4961 Depth + 1)) 4962 return false; 4963 } 4964 return true; 4965 4966 // TODO: Search for noundef attributes from library functions. 4967 4968 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4969 4970 default: 4971 // Allow the target to implement this method for its nodes. 4972 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4973 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4974 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4975 Op, DemandedElts, *this, PoisonOnly, Depth); 4976 break; 4977 } 4978 4979 // If Op can't create undef/poison and none of its operands are undef/poison 4980 // then Op is never undef/poison. 4981 // NOTE: TargetNodes should handle this in themselves in 4982 // isGuaranteedNotToBeUndefOrPoisonForTargetNode. 4983 return !canCreateUndefOrPoison(Op, PoisonOnly, /*ConsiderFlags*/ true, 4984 Depth) && 4985 all_of(Op->ops(), [&](SDValue V) { 4986 return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1); 4987 }); 4988 } 4989 4990 bool SelectionDAG::canCreateUndefOrPoison(SDValue Op, bool PoisonOnly, 4991 bool ConsiderFlags, 4992 unsigned Depth) const { 4993 // TODO: Assume we don't know anything for now. 4994 EVT VT = Op.getValueType(); 4995 if (VT.isScalableVector()) 4996 return true; 4997 4998 APInt DemandedElts = VT.isVector() 4999 ? APInt::getAllOnes(VT.getVectorNumElements()) 5000 : APInt(1, 1); 5001 return canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly, ConsiderFlags, 5002 Depth); 5003 } 5004 5005 bool SelectionDAG::canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, 5006 bool PoisonOnly, bool ConsiderFlags, 5007 unsigned Depth) const { 5008 // TODO: Assume we don't know anything for now. 5009 EVT VT = Op.getValueType(); 5010 if (VT.isScalableVector()) 5011 return true; 5012 5013 unsigned Opcode = Op.getOpcode(); 5014 switch (Opcode) { 5015 case ISD::FREEZE: 5016 case ISD::CONCAT_VECTORS: 5017 case ISD::INSERT_SUBVECTOR: 5018 case ISD::AND: 5019 case ISD::XOR: 5020 case ISD::ROTL: 5021 case ISD::ROTR: 5022 case ISD::FSHL: 5023 case ISD::FSHR: 5024 case ISD::BSWAP: 5025 case ISD::CTPOP: 5026 case ISD::BITREVERSE: 5027 case ISD::PARITY: 5028 case ISD::SIGN_EXTEND: 5029 case ISD::TRUNCATE: 5030 case ISD::SIGN_EXTEND_INREG: 5031 case ISD::SIGN_EXTEND_VECTOR_INREG: 5032 case ISD::ZERO_EXTEND_VECTOR_INREG: 5033 case ISD::BITCAST: 5034 case ISD::BUILD_VECTOR: 5035 case ISD::BUILD_PAIR: 5036 return false; 5037 5038 // Matches hasPoisonGeneratingFlags(). 5039 case ISD::ZERO_EXTEND: 5040 return ConsiderFlags && Op->getFlags().hasNonNeg(); 5041 5042 case ISD::ADD: 5043 case ISD::SUB: 5044 case ISD::MUL: 5045 // Matches hasPoisonGeneratingFlags(). 5046 return ConsiderFlags && (Op->getFlags().hasNoSignedWrap() || 5047 Op->getFlags().hasNoUnsignedWrap()); 5048 5049 case ISD::SHL: 5050 // If the max shift amount isn't in range, then the shift can create poison. 5051 if (!getValidMaximumShiftAmountConstant(Op, DemandedElts)) 5052 return true; 5053 5054 // Matches hasPoisonGeneratingFlags(). 5055 return ConsiderFlags && (Op->getFlags().hasNoSignedWrap() || 5056 Op->getFlags().hasNoUnsignedWrap()); 5057 5058 // Matches hasPoisonGeneratingFlags(). 5059 case ISD::OR: 5060 return ConsiderFlags && Op->getFlags().hasDisjoint(); 5061 5062 case ISD::INSERT_VECTOR_ELT:{ 5063 // Ensure that the element index is in bounds. 5064 EVT VecVT = Op.getOperand(0).getValueType(); 5065 KnownBits KnownIdx = computeKnownBits(Op.getOperand(2), Depth + 1); 5066 return KnownIdx.getMaxValue().uge(VecVT.getVectorMinNumElements()); 5067 } 5068 5069 default: 5070 // Allow the target to implement this method for its nodes. 5071 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 5072 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 5073 return TLI->canCreateUndefOrPoisonForTargetNode( 5074 Op, DemandedElts, *this, PoisonOnly, ConsiderFlags, Depth); 5075 break; 5076 } 5077 5078 // Be conservative and return true. 5079 return true; 5080 } 5081 5082 bool SelectionDAG::isADDLike(SDValue Op) const { 5083 unsigned Opcode = Op.getOpcode(); 5084 if (Opcode == ISD::OR) 5085 return Op->getFlags().hasDisjoint() || 5086 haveNoCommonBitsSet(Op.getOperand(0), Op.getOperand(1)); 5087 if (Opcode == ISD::XOR) 5088 return isMinSignedConstant(Op.getOperand(1)); 5089 return false; 5090 } 5091 5092 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 5093 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 5094 !isa<ConstantSDNode>(Op.getOperand(1))) 5095 return false; 5096 5097 if (Op.getOpcode() == ISD::OR && 5098 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 5099 return false; 5100 5101 return true; 5102 } 5103 5104 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 5105 // If we're told that NaNs won't happen, assume they won't. 5106 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 5107 return true; 5108 5109 if (Depth >= MaxRecursionDepth) 5110 return false; // Limit search depth. 5111 5112 // If the value is a constant, we can obviously see if it is a NaN or not. 5113 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 5114 return !C->getValueAPF().isNaN() || 5115 (SNaN && !C->getValueAPF().isSignaling()); 5116 } 5117 5118 unsigned Opcode = Op.getOpcode(); 5119 switch (Opcode) { 5120 case ISD::FADD: 5121 case ISD::FSUB: 5122 case ISD::FMUL: 5123 case ISD::FDIV: 5124 case ISD::FREM: 5125 case ISD::FSIN: 5126 case ISD::FCOS: 5127 case ISD::FMA: 5128 case ISD::FMAD: { 5129 if (SNaN) 5130 return true; 5131 // TODO: Need isKnownNeverInfinity 5132 return false; 5133 } 5134 case ISD::FCANONICALIZE: 5135 case ISD::FEXP: 5136 case ISD::FEXP2: 5137 case ISD::FEXP10: 5138 case ISD::FTRUNC: 5139 case ISD::FFLOOR: 5140 case ISD::FCEIL: 5141 case ISD::FROUND: 5142 case ISD::FROUNDEVEN: 5143 case ISD::FRINT: 5144 case ISD::LRINT: 5145 case ISD::LLRINT: 5146 case ISD::FNEARBYINT: 5147 case ISD::FLDEXP: { 5148 if (SNaN) 5149 return true; 5150 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 5151 } 5152 case ISD::FABS: 5153 case ISD::FNEG: 5154 case ISD::FCOPYSIGN: { 5155 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 5156 } 5157 case ISD::SELECT: 5158 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 5159 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 5160 case ISD::FP_EXTEND: 5161 case ISD::FP_ROUND: { 5162 if (SNaN) 5163 return true; 5164 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 5165 } 5166 case ISD::SINT_TO_FP: 5167 case ISD::UINT_TO_FP: 5168 return true; 5169 case ISD::FSQRT: // Need is known positive 5170 case ISD::FLOG: 5171 case ISD::FLOG2: 5172 case ISD::FLOG10: 5173 case ISD::FPOWI: 5174 case ISD::FPOW: { 5175 if (SNaN) 5176 return true; 5177 // TODO: Refine on operand 5178 return false; 5179 } 5180 case ISD::FMINNUM: 5181 case ISD::FMAXNUM: { 5182 // Only one needs to be known not-nan, since it will be returned if the 5183 // other ends up being one. 5184 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 5185 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 5186 } 5187 case ISD::FMINNUM_IEEE: 5188 case ISD::FMAXNUM_IEEE: { 5189 if (SNaN) 5190 return true; 5191 // This can return a NaN if either operand is an sNaN, or if both operands 5192 // are NaN. 5193 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 5194 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 5195 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 5196 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 5197 } 5198 case ISD::FMINIMUM: 5199 case ISD::FMAXIMUM: { 5200 // TODO: Does this quiet or return the origina NaN as-is? 5201 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 5202 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 5203 } 5204 case ISD::EXTRACT_VECTOR_ELT: { 5205 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 5206 } 5207 case ISD::BUILD_VECTOR: { 5208 for (const SDValue &Opnd : Op->ops()) 5209 if (!isKnownNeverNaN(Opnd, SNaN, Depth + 1)) 5210 return false; 5211 return true; 5212 } 5213 default: 5214 if (Opcode >= ISD::BUILTIN_OP_END || 5215 Opcode == ISD::INTRINSIC_WO_CHAIN || 5216 Opcode == ISD::INTRINSIC_W_CHAIN || 5217 Opcode == ISD::INTRINSIC_VOID) { 5218 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 5219 } 5220 5221 return false; 5222 } 5223 } 5224 5225 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 5226 assert(Op.getValueType().isFloatingPoint() && 5227 "Floating point type expected"); 5228 5229 // If the value is a constant, we can obviously see if it is a zero or not. 5230 return ISD::matchUnaryFpPredicate( 5231 Op, [](ConstantFPSDNode *C) { return !C->isZero(); }); 5232 } 5233 5234 bool SelectionDAG::isKnownNeverZero(SDValue Op, unsigned Depth) const { 5235 if (Depth >= MaxRecursionDepth) 5236 return false; // Limit search depth. 5237 5238 assert(!Op.getValueType().isFloatingPoint() && 5239 "Floating point types unsupported - use isKnownNeverZeroFloat"); 5240 5241 // If the value is a constant, we can obviously see if it is a zero or not. 5242 if (ISD::matchUnaryPredicate(Op, 5243 [](ConstantSDNode *C) { return !C->isZero(); })) 5244 return true; 5245 5246 // TODO: Recognize more cases here. Most of the cases are also incomplete to 5247 // some degree. 5248 switch (Op.getOpcode()) { 5249 default: 5250 break; 5251 5252 case ISD::OR: 5253 return isKnownNeverZero(Op.getOperand(1), Depth + 1) || 5254 isKnownNeverZero(Op.getOperand(0), Depth + 1); 5255 5256 case ISD::VSELECT: 5257 case ISD::SELECT: 5258 return isKnownNeverZero(Op.getOperand(1), Depth + 1) && 5259 isKnownNeverZero(Op.getOperand(2), Depth + 1); 5260 5261 case ISD::SHL: { 5262 if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap()) 5263 return isKnownNeverZero(Op.getOperand(0), Depth + 1); 5264 KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1); 5265 // 1 << X is never zero. 5266 if (ValKnown.One[0]) 5267 return true; 5268 // If max shift cnt of known ones is non-zero, result is non-zero. 5269 APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue(); 5270 if (MaxCnt.ult(ValKnown.getBitWidth()) && 5271 !ValKnown.One.shl(MaxCnt).isZero()) 5272 return true; 5273 break; 5274 } 5275 case ISD::UADDSAT: 5276 case ISD::UMAX: 5277 return isKnownNeverZero(Op.getOperand(1), Depth + 1) || 5278 isKnownNeverZero(Op.getOperand(0), Depth + 1); 5279 5280 // TODO for smin/smax: If either operand is known negative/positive 5281 // respectively we don't need the other to be known at all. 5282 case ISD::SMAX: 5283 case ISD::SMIN: 5284 case ISD::UMIN: 5285 return isKnownNeverZero(Op.getOperand(1), Depth + 1) && 5286 isKnownNeverZero(Op.getOperand(0), Depth + 1); 5287 5288 case ISD::ROTL: 5289 case ISD::ROTR: 5290 case ISD::BITREVERSE: 5291 case ISD::BSWAP: 5292 case ISD::CTPOP: 5293 case ISD::ABS: 5294 return isKnownNeverZero(Op.getOperand(0), Depth + 1); 5295 5296 case ISD::SRA: 5297 case ISD::SRL: { 5298 if (Op->getFlags().hasExact()) 5299 return isKnownNeverZero(Op.getOperand(0), Depth + 1); 5300 KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1); 5301 if (ValKnown.isNegative()) 5302 return true; 5303 // If max shift cnt of known ones is non-zero, result is non-zero. 5304 APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue(); 5305 if (MaxCnt.ult(ValKnown.getBitWidth()) && 5306 !ValKnown.One.lshr(MaxCnt).isZero()) 5307 return true; 5308 break; 5309 } 5310 case ISD::UDIV: 5311 case ISD::SDIV: 5312 // div exact can only produce a zero if the dividend is zero. 5313 // TODO: For udiv this is also true if Op1 u<= Op0 5314 if (Op->getFlags().hasExact()) 5315 return isKnownNeverZero(Op.getOperand(0), Depth + 1); 5316 break; 5317 5318 case ISD::ADD: 5319 if (Op->getFlags().hasNoUnsignedWrap()) 5320 if (isKnownNeverZero(Op.getOperand(1), Depth + 1) || 5321 isKnownNeverZero(Op.getOperand(0), Depth + 1)) 5322 return true; 5323 // TODO: There are a lot more cases we can prove for add. 5324 break; 5325 5326 case ISD::SUB: { 5327 if (isNullConstant(Op.getOperand(0))) 5328 return isKnownNeverZero(Op.getOperand(1), Depth + 1); 5329 5330 std::optional<bool> ne = 5331 KnownBits::ne(computeKnownBits(Op.getOperand(0), Depth + 1), 5332 computeKnownBits(Op.getOperand(1), Depth + 1)); 5333 return ne && *ne; 5334 } 5335 5336 case ISD::MUL: 5337 if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap()) 5338 if (isKnownNeverZero(Op.getOperand(1), Depth + 1) && 5339 isKnownNeverZero(Op.getOperand(0), Depth + 1)) 5340 return true; 5341 break; 5342 5343 case ISD::ZERO_EXTEND: 5344 case ISD::SIGN_EXTEND: 5345 return isKnownNeverZero(Op.getOperand(0), Depth + 1); 5346 } 5347 5348 return computeKnownBits(Op, Depth).isNonZero(); 5349 } 5350 5351 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 5352 // Check the obvious case. 5353 if (A == B) return true; 5354 5355 // For negative and positive zero. 5356 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 5357 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 5358 if (CA->isZero() && CB->isZero()) return true; 5359 5360 // Otherwise they may not be equal. 5361 return false; 5362 } 5363 5364 // Only bits set in Mask must be negated, other bits may be arbitrary. 5365 SDValue llvm::getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs) { 5366 if (isBitwiseNot(V, AllowUndefs)) 5367 return V.getOperand(0); 5368 5369 // Handle any_extend (not (truncate X)) pattern, where Mask only sets 5370 // bits in the non-extended part. 5371 ConstantSDNode *MaskC = isConstOrConstSplat(Mask); 5372 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND) 5373 return SDValue(); 5374 SDValue ExtArg = V.getOperand(0); 5375 if (ExtArg.getScalarValueSizeInBits() >= 5376 MaskC->getAPIntValue().getActiveBits() && 5377 isBitwiseNot(ExtArg, AllowUndefs) && 5378 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE && 5379 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType()) 5380 return ExtArg.getOperand(0).getOperand(0); 5381 return SDValue(); 5382 } 5383 5384 static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B) { 5385 // Match masked merge pattern (X & ~M) op (Y & M) 5386 // Including degenerate case (X & ~M) op M 5387 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask, 5388 SDValue Other) { 5389 if (SDValue NotOperand = 5390 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) { 5391 if (NotOperand->getOpcode() == ISD::ZERO_EXTEND || 5392 NotOperand->getOpcode() == ISD::TRUNCATE) 5393 NotOperand = NotOperand->getOperand(0); 5394 5395 if (Other == NotOperand) 5396 return true; 5397 if (Other->getOpcode() == ISD::AND) 5398 return NotOperand == Other->getOperand(0) || 5399 NotOperand == Other->getOperand(1); 5400 } 5401 return false; 5402 }; 5403 5404 if (A->getOpcode() == ISD::ZERO_EXTEND || A->getOpcode() == ISD::TRUNCATE) 5405 A = A->getOperand(0); 5406 5407 if (B->getOpcode() == ISD::ZERO_EXTEND || B->getOpcode() == ISD::TRUNCATE) 5408 B = B->getOperand(0); 5409 5410 if (A->getOpcode() == ISD::AND) 5411 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) || 5412 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B); 5413 return false; 5414 } 5415 5416 // FIXME: unify with llvm::haveNoCommonBitsSet. 5417 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 5418 assert(A.getValueType() == B.getValueType() && 5419 "Values must have the same type"); 5420 if (haveNoCommonBitsSetCommutative(A, B) || 5421 haveNoCommonBitsSetCommutative(B, A)) 5422 return true; 5423 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 5424 computeKnownBits(B)); 5425 } 5426 5427 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 5428 SelectionDAG &DAG) { 5429 if (cast<ConstantSDNode>(Step)->isZero()) 5430 return DAG.getConstant(0, DL, VT); 5431 5432 return SDValue(); 5433 } 5434 5435 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 5436 ArrayRef<SDValue> Ops, 5437 SelectionDAG &DAG) { 5438 int NumOps = Ops.size(); 5439 assert(NumOps != 0 && "Can't build an empty vector!"); 5440 assert(!VT.isScalableVector() && 5441 "BUILD_VECTOR cannot be used with scalable types"); 5442 assert(VT.getVectorNumElements() == (unsigned)NumOps && 5443 "Incorrect element count in BUILD_VECTOR!"); 5444 5445 // BUILD_VECTOR of UNDEFs is UNDEF. 5446 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 5447 return DAG.getUNDEF(VT); 5448 5449 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 5450 SDValue IdentitySrc; 5451 bool IsIdentity = true; 5452 for (int i = 0; i != NumOps; ++i) { 5453 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 5454 Ops[i].getOperand(0).getValueType() != VT || 5455 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 5456 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 5457 Ops[i].getConstantOperandAPInt(1) != i) { 5458 IsIdentity = false; 5459 break; 5460 } 5461 IdentitySrc = Ops[i].getOperand(0); 5462 } 5463 if (IsIdentity) 5464 return IdentitySrc; 5465 5466 return SDValue(); 5467 } 5468 5469 /// Try to simplify vector concatenation to an input value, undef, or build 5470 /// vector. 5471 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 5472 ArrayRef<SDValue> Ops, 5473 SelectionDAG &DAG) { 5474 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 5475 assert(llvm::all_of(Ops, 5476 [Ops](SDValue Op) { 5477 return Ops[0].getValueType() == Op.getValueType(); 5478 }) && 5479 "Concatenation of vectors with inconsistent value types!"); 5480 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 5481 VT.getVectorElementCount() && 5482 "Incorrect element count in vector concatenation!"); 5483 5484 if (Ops.size() == 1) 5485 return Ops[0]; 5486 5487 // Concat of UNDEFs is UNDEF. 5488 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 5489 return DAG.getUNDEF(VT); 5490 5491 // Scan the operands and look for extract operations from a single source 5492 // that correspond to insertion at the same location via this concatenation: 5493 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 5494 SDValue IdentitySrc; 5495 bool IsIdentity = true; 5496 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 5497 SDValue Op = Ops[i]; 5498 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 5499 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 5500 Op.getOperand(0).getValueType() != VT || 5501 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 5502 Op.getConstantOperandVal(1) != IdentityIndex) { 5503 IsIdentity = false; 5504 break; 5505 } 5506 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 5507 "Unexpected identity source vector for concat of extracts"); 5508 IdentitySrc = Op.getOperand(0); 5509 } 5510 if (IsIdentity) { 5511 assert(IdentitySrc && "Failed to set source vector of extracts"); 5512 return IdentitySrc; 5513 } 5514 5515 // The code below this point is only designed to work for fixed width 5516 // vectors, so we bail out for now. 5517 if (VT.isScalableVector()) 5518 return SDValue(); 5519 5520 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 5521 // simplified to one big BUILD_VECTOR. 5522 // FIXME: Add support for SCALAR_TO_VECTOR as well. 5523 EVT SVT = VT.getScalarType(); 5524 SmallVector<SDValue, 16> Elts; 5525 for (SDValue Op : Ops) { 5526 EVT OpVT = Op.getValueType(); 5527 if (Op.isUndef()) 5528 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 5529 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 5530 Elts.append(Op->op_begin(), Op->op_end()); 5531 else 5532 return SDValue(); 5533 } 5534 5535 // BUILD_VECTOR requires all inputs to be of the same type, find the 5536 // maximum type and extend them all. 5537 for (SDValue Op : Elts) 5538 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 5539 5540 if (SVT.bitsGT(VT.getScalarType())) { 5541 for (SDValue &Op : Elts) { 5542 if (Op.isUndef()) 5543 Op = DAG.getUNDEF(SVT); 5544 else 5545 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 5546 ? DAG.getZExtOrTrunc(Op, DL, SVT) 5547 : DAG.getSExtOrTrunc(Op, DL, SVT); 5548 } 5549 } 5550 5551 SDValue V = DAG.getBuildVector(VT, DL, Elts); 5552 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 5553 return V; 5554 } 5555 5556 /// Gets or creates the specified node. 5557 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 5558 FoldingSetNodeID ID; 5559 AddNodeIDNode(ID, Opcode, getVTList(VT), std::nullopt); 5560 void *IP = nullptr; 5561 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5562 return SDValue(E, 0); 5563 5564 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 5565 getVTList(VT)); 5566 CSEMap.InsertNode(N, IP); 5567 5568 InsertNode(N); 5569 SDValue V = SDValue(N, 0); 5570 NewSDValueDbgMsg(V, "Creating new node: ", this); 5571 return V; 5572 } 5573 5574 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5575 SDValue N1) { 5576 SDNodeFlags Flags; 5577 if (Inserter) 5578 Flags = Inserter->getFlags(); 5579 return getNode(Opcode, DL, VT, N1, Flags); 5580 } 5581 5582 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5583 SDValue N1, const SDNodeFlags Flags) { 5584 assert(N1.getOpcode() != ISD::DELETED_NODE && "Operand is DELETED_NODE!"); 5585 5586 // Constant fold unary operations with a vector integer or float operand. 5587 switch (Opcode) { 5588 default: 5589 // FIXME: Entirely reasonable to perform folding of other unary 5590 // operations here as the need arises. 5591 break; 5592 case ISD::FNEG: 5593 case ISD::FABS: 5594 case ISD::FCEIL: 5595 case ISD::FTRUNC: 5596 case ISD::FFLOOR: 5597 case ISD::FP_EXTEND: 5598 case ISD::FP_TO_SINT: 5599 case ISD::FP_TO_UINT: 5600 case ISD::FP_TO_FP16: 5601 case ISD::FP_TO_BF16: 5602 case ISD::TRUNCATE: 5603 case ISD::ANY_EXTEND: 5604 case ISD::ZERO_EXTEND: 5605 case ISD::SIGN_EXTEND: 5606 case ISD::UINT_TO_FP: 5607 case ISD::SINT_TO_FP: 5608 case ISD::FP16_TO_FP: 5609 case ISD::BF16_TO_FP: 5610 case ISD::BITCAST: 5611 case ISD::ABS: 5612 case ISD::BITREVERSE: 5613 case ISD::BSWAP: 5614 case ISD::CTLZ: 5615 case ISD::CTLZ_ZERO_UNDEF: 5616 case ISD::CTTZ: 5617 case ISD::CTTZ_ZERO_UNDEF: 5618 case ISD::CTPOP: 5619 case ISD::STEP_VECTOR: { 5620 SDValue Ops = {N1}; 5621 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 5622 return Fold; 5623 } 5624 } 5625 5626 unsigned OpOpcode = N1.getNode()->getOpcode(); 5627 switch (Opcode) { 5628 case ISD::STEP_VECTOR: 5629 assert(VT.isScalableVector() && 5630 "STEP_VECTOR can only be used with scalable types"); 5631 assert(OpOpcode == ISD::TargetConstant && 5632 VT.getVectorElementType() == N1.getValueType() && 5633 "Unexpected step operand"); 5634 break; 5635 case ISD::FREEZE: 5636 assert(VT == N1.getValueType() && "Unexpected VT!"); 5637 if (isGuaranteedNotToBeUndefOrPoison(N1, /*PoisonOnly*/ false, 5638 /*Depth*/ 1)) 5639 return N1; 5640 break; 5641 case ISD::TokenFactor: 5642 case ISD::MERGE_VALUES: 5643 case ISD::CONCAT_VECTORS: 5644 return N1; // Factor, merge or concat of one node? No need. 5645 case ISD::BUILD_VECTOR: { 5646 // Attempt to simplify BUILD_VECTOR. 5647 SDValue Ops[] = {N1}; 5648 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5649 return V; 5650 break; 5651 } 5652 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 5653 case ISD::FP_EXTEND: 5654 assert(VT.isFloatingPoint() && N1.getValueType().isFloatingPoint() && 5655 "Invalid FP cast!"); 5656 if (N1.getValueType() == VT) return N1; // noop conversion. 5657 assert((!VT.isVector() || VT.getVectorElementCount() == 5658 N1.getValueType().getVectorElementCount()) && 5659 "Vector element count mismatch!"); 5660 assert(N1.getValueType().bitsLT(VT) && "Invalid fpext node, dst < src!"); 5661 if (N1.isUndef()) 5662 return getUNDEF(VT); 5663 break; 5664 case ISD::FP_TO_SINT: 5665 case ISD::FP_TO_UINT: 5666 if (N1.isUndef()) 5667 return getUNDEF(VT); 5668 break; 5669 case ISD::SINT_TO_FP: 5670 case ISD::UINT_TO_FP: 5671 // [us]itofp(undef) = 0, because the result value is bounded. 5672 if (N1.isUndef()) 5673 return getConstantFP(0.0, DL, VT); 5674 break; 5675 case ISD::SIGN_EXTEND: 5676 assert(VT.isInteger() && N1.getValueType().isInteger() && 5677 "Invalid SIGN_EXTEND!"); 5678 assert(VT.isVector() == N1.getValueType().isVector() && 5679 "SIGN_EXTEND result type type should be vector iff the operand " 5680 "type is vector!"); 5681 if (N1.getValueType() == VT) return N1; // noop extension 5682 assert((!VT.isVector() || VT.getVectorElementCount() == 5683 N1.getValueType().getVectorElementCount()) && 5684 "Vector element count mismatch!"); 5685 assert(N1.getValueType().bitsLT(VT) && "Invalid sext node, dst < src!"); 5686 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 5687 return getNode(OpOpcode, DL, VT, N1.getOperand(0)); 5688 if (OpOpcode == ISD::UNDEF) 5689 // sext(undef) = 0, because the top bits will all be the same. 5690 return getConstant(0, DL, VT); 5691 break; 5692 case ISD::ZERO_EXTEND: 5693 assert(VT.isInteger() && N1.getValueType().isInteger() && 5694 "Invalid ZERO_EXTEND!"); 5695 assert(VT.isVector() == N1.getValueType().isVector() && 5696 "ZERO_EXTEND result type type should be vector iff the operand " 5697 "type is vector!"); 5698 if (N1.getValueType() == VT) return N1; // noop extension 5699 assert((!VT.isVector() || VT.getVectorElementCount() == 5700 N1.getValueType().getVectorElementCount()) && 5701 "Vector element count mismatch!"); 5702 assert(N1.getValueType().bitsLT(VT) && "Invalid zext node, dst < src!"); 5703 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5704 return getNode(ISD::ZERO_EXTEND, DL, VT, N1.getOperand(0)); 5705 if (OpOpcode == ISD::UNDEF) 5706 // zext(undef) = 0, because the top bits will be zero. 5707 return getConstant(0, DL, VT); 5708 5709 // Skip unnecessary zext_inreg pattern: 5710 // (zext (trunc x)) -> x iff the upper bits are known zero. 5711 // TODO: Remove (zext (trunc (and x, c))) exception which some targets 5712 // use to recognise zext_inreg patterns. 5713 if (OpOpcode == ISD::TRUNCATE) { 5714 SDValue OpOp = N1.getOperand(0); 5715 if (OpOp.getValueType() == VT) { 5716 if (OpOp.getOpcode() != ISD::AND) { 5717 APInt HiBits = APInt::getBitsSetFrom(VT.getScalarSizeInBits(), 5718 N1.getScalarValueSizeInBits()); 5719 if (MaskedValueIsZero(OpOp, HiBits)) { 5720 transferDbgValues(N1, OpOp); 5721 return OpOp; 5722 } 5723 } 5724 } 5725 } 5726 break; 5727 case ISD::ANY_EXTEND: 5728 assert(VT.isInteger() && N1.getValueType().isInteger() && 5729 "Invalid ANY_EXTEND!"); 5730 assert(VT.isVector() == N1.getValueType().isVector() && 5731 "ANY_EXTEND result type type should be vector iff the operand " 5732 "type is vector!"); 5733 if (N1.getValueType() == VT) return N1; // noop extension 5734 assert((!VT.isVector() || VT.getVectorElementCount() == 5735 N1.getValueType().getVectorElementCount()) && 5736 "Vector element count mismatch!"); 5737 assert(N1.getValueType().bitsLT(VT) && "Invalid anyext node, dst < src!"); 5738 5739 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5740 OpOpcode == ISD::ANY_EXTEND) 5741 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5742 return getNode(OpOpcode, DL, VT, N1.getOperand(0)); 5743 if (OpOpcode == ISD::UNDEF) 5744 return getUNDEF(VT); 5745 5746 // (ext (trunc x)) -> x 5747 if (OpOpcode == ISD::TRUNCATE) { 5748 SDValue OpOp = N1.getOperand(0); 5749 if (OpOp.getValueType() == VT) { 5750 transferDbgValues(N1, OpOp); 5751 return OpOp; 5752 } 5753 } 5754 break; 5755 case ISD::TRUNCATE: 5756 assert(VT.isInteger() && N1.getValueType().isInteger() && 5757 "Invalid TRUNCATE!"); 5758 assert(VT.isVector() == N1.getValueType().isVector() && 5759 "TRUNCATE result type type should be vector iff the operand " 5760 "type is vector!"); 5761 if (N1.getValueType() == VT) return N1; // noop truncate 5762 assert((!VT.isVector() || VT.getVectorElementCount() == 5763 N1.getValueType().getVectorElementCount()) && 5764 "Vector element count mismatch!"); 5765 assert(N1.getValueType().bitsGT(VT) && "Invalid truncate node, src < dst!"); 5766 if (OpOpcode == ISD::TRUNCATE) 5767 return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0)); 5768 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5769 OpOpcode == ISD::ANY_EXTEND) { 5770 // If the source is smaller than the dest, we still need an extend. 5771 if (N1.getOperand(0).getValueType().getScalarType().bitsLT( 5772 VT.getScalarType())) 5773 return getNode(OpOpcode, DL, VT, N1.getOperand(0)); 5774 if (N1.getOperand(0).getValueType().bitsGT(VT)) 5775 return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0)); 5776 return N1.getOperand(0); 5777 } 5778 if (OpOpcode == ISD::UNDEF) 5779 return getUNDEF(VT); 5780 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5781 return getVScale(DL, VT, 5782 N1.getConstantOperandAPInt(0).trunc(VT.getSizeInBits())); 5783 break; 5784 case ISD::ANY_EXTEND_VECTOR_INREG: 5785 case ISD::ZERO_EXTEND_VECTOR_INREG: 5786 case ISD::SIGN_EXTEND_VECTOR_INREG: 5787 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5788 assert(N1.getValueType().bitsLE(VT) && 5789 "The input must be the same size or smaller than the result."); 5790 assert(VT.getVectorMinNumElements() < 5791 N1.getValueType().getVectorMinNumElements() && 5792 "The destination vector type must have fewer lanes than the input."); 5793 break; 5794 case ISD::ABS: 5795 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid ABS!"); 5796 if (OpOpcode == ISD::UNDEF) 5797 return getConstant(0, DL, VT); 5798 break; 5799 case ISD::BSWAP: 5800 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BSWAP!"); 5801 assert((VT.getScalarSizeInBits() % 16 == 0) && 5802 "BSWAP types must be a multiple of 16 bits!"); 5803 if (OpOpcode == ISD::UNDEF) 5804 return getUNDEF(VT); 5805 // bswap(bswap(X)) -> X. 5806 if (OpOpcode == ISD::BSWAP) 5807 return N1.getOperand(0); 5808 break; 5809 case ISD::BITREVERSE: 5810 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BITREVERSE!"); 5811 if (OpOpcode == ISD::UNDEF) 5812 return getUNDEF(VT); 5813 break; 5814 case ISD::BITCAST: 5815 assert(VT.getSizeInBits() == N1.getValueSizeInBits() && 5816 "Cannot BITCAST between types of different sizes!"); 5817 if (VT == N1.getValueType()) return N1; // noop conversion. 5818 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5819 return getNode(ISD::BITCAST, DL, VT, N1.getOperand(0)); 5820 if (OpOpcode == ISD::UNDEF) 5821 return getUNDEF(VT); 5822 break; 5823 case ISD::SCALAR_TO_VECTOR: 5824 assert(VT.isVector() && !N1.getValueType().isVector() && 5825 (VT.getVectorElementType() == N1.getValueType() || 5826 (VT.getVectorElementType().isInteger() && 5827 N1.getValueType().isInteger() && 5828 VT.getVectorElementType().bitsLE(N1.getValueType()))) && 5829 "Illegal SCALAR_TO_VECTOR node!"); 5830 if (OpOpcode == ISD::UNDEF) 5831 return getUNDEF(VT); 5832 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5833 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5834 isa<ConstantSDNode>(N1.getOperand(1)) && 5835 N1.getConstantOperandVal(1) == 0 && 5836 N1.getOperand(0).getValueType() == VT) 5837 return N1.getOperand(0); 5838 break; 5839 case ISD::FNEG: 5840 // Negation of an unknown bag of bits is still completely undefined. 5841 if (OpOpcode == ISD::UNDEF) 5842 return getUNDEF(VT); 5843 5844 if (OpOpcode == ISD::FNEG) // --X -> X 5845 return N1.getOperand(0); 5846 break; 5847 case ISD::FABS: 5848 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5849 return getNode(ISD::FABS, DL, VT, N1.getOperand(0)); 5850 break; 5851 case ISD::VSCALE: 5852 assert(VT == N1.getValueType() && "Unexpected VT!"); 5853 break; 5854 case ISD::CTPOP: 5855 if (N1.getValueType().getScalarType() == MVT::i1) 5856 return N1; 5857 break; 5858 case ISD::CTLZ: 5859 case ISD::CTTZ: 5860 if (N1.getValueType().getScalarType() == MVT::i1) 5861 return getNOT(DL, N1, N1.getValueType()); 5862 break; 5863 case ISD::VECREDUCE_ADD: 5864 if (N1.getValueType().getScalarType() == MVT::i1) 5865 return getNode(ISD::VECREDUCE_XOR, DL, VT, N1); 5866 break; 5867 case ISD::VECREDUCE_SMIN: 5868 case ISD::VECREDUCE_UMAX: 5869 if (N1.getValueType().getScalarType() == MVT::i1) 5870 return getNode(ISD::VECREDUCE_OR, DL, VT, N1); 5871 break; 5872 case ISD::VECREDUCE_SMAX: 5873 case ISD::VECREDUCE_UMIN: 5874 if (N1.getValueType().getScalarType() == MVT::i1) 5875 return getNode(ISD::VECREDUCE_AND, DL, VT, N1); 5876 break; 5877 } 5878 5879 SDNode *N; 5880 SDVTList VTs = getVTList(VT); 5881 SDValue Ops[] = {N1}; 5882 if (VT != MVT::Glue) { // Don't CSE glue producing nodes 5883 FoldingSetNodeID ID; 5884 AddNodeIDNode(ID, Opcode, VTs, Ops); 5885 void *IP = nullptr; 5886 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5887 E->intersectFlagsWith(Flags); 5888 return SDValue(E, 0); 5889 } 5890 5891 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5892 N->setFlags(Flags); 5893 createOperands(N, Ops); 5894 CSEMap.InsertNode(N, IP); 5895 } else { 5896 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5897 createOperands(N, Ops); 5898 } 5899 5900 InsertNode(N); 5901 SDValue V = SDValue(N, 0); 5902 NewSDValueDbgMsg(V, "Creating new node: ", this); 5903 return V; 5904 } 5905 5906 static std::optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5907 const APInt &C2) { 5908 switch (Opcode) { 5909 case ISD::ADD: return C1 + C2; 5910 case ISD::SUB: return C1 - C2; 5911 case ISD::MUL: return C1 * C2; 5912 case ISD::AND: return C1 & C2; 5913 case ISD::OR: return C1 | C2; 5914 case ISD::XOR: return C1 ^ C2; 5915 case ISD::SHL: return C1 << C2; 5916 case ISD::SRL: return C1.lshr(C2); 5917 case ISD::SRA: return C1.ashr(C2); 5918 case ISD::ROTL: return C1.rotl(C2); 5919 case ISD::ROTR: return C1.rotr(C2); 5920 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5921 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5922 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5923 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5924 case ISD::SADDSAT: return C1.sadd_sat(C2); 5925 case ISD::UADDSAT: return C1.uadd_sat(C2); 5926 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5927 case ISD::USUBSAT: return C1.usub_sat(C2); 5928 case ISD::SSHLSAT: return C1.sshl_sat(C2); 5929 case ISD::USHLSAT: return C1.ushl_sat(C2); 5930 case ISD::UDIV: 5931 if (!C2.getBoolValue()) 5932 break; 5933 return C1.udiv(C2); 5934 case ISD::UREM: 5935 if (!C2.getBoolValue()) 5936 break; 5937 return C1.urem(C2); 5938 case ISD::SDIV: 5939 if (!C2.getBoolValue()) 5940 break; 5941 return C1.sdiv(C2); 5942 case ISD::SREM: 5943 if (!C2.getBoolValue()) 5944 break; 5945 return C1.srem(C2); 5946 case ISD::MULHS: { 5947 unsigned FullWidth = C1.getBitWidth() * 2; 5948 APInt C1Ext = C1.sext(FullWidth); 5949 APInt C2Ext = C2.sext(FullWidth); 5950 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5951 } 5952 case ISD::MULHU: { 5953 unsigned FullWidth = C1.getBitWidth() * 2; 5954 APInt C1Ext = C1.zext(FullWidth); 5955 APInt C2Ext = C2.zext(FullWidth); 5956 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5957 } 5958 case ISD::AVGFLOORS: { 5959 unsigned FullWidth = C1.getBitWidth() + 1; 5960 APInt C1Ext = C1.sext(FullWidth); 5961 APInt C2Ext = C2.sext(FullWidth); 5962 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5963 } 5964 case ISD::AVGFLOORU: { 5965 unsigned FullWidth = C1.getBitWidth() + 1; 5966 APInt C1Ext = C1.zext(FullWidth); 5967 APInt C2Ext = C2.zext(FullWidth); 5968 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5969 } 5970 case ISD::AVGCEILS: { 5971 unsigned FullWidth = C1.getBitWidth() + 1; 5972 APInt C1Ext = C1.sext(FullWidth); 5973 APInt C2Ext = C2.sext(FullWidth); 5974 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5975 } 5976 case ISD::AVGCEILU: { 5977 unsigned FullWidth = C1.getBitWidth() + 1; 5978 APInt C1Ext = C1.zext(FullWidth); 5979 APInt C2Ext = C2.zext(FullWidth); 5980 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5981 } 5982 case ISD::ABDS: 5983 return APIntOps::smax(C1, C2) - APIntOps::smin(C1, C2); 5984 case ISD::ABDU: 5985 return APIntOps::umax(C1, C2) - APIntOps::umin(C1, C2); 5986 } 5987 return std::nullopt; 5988 } 5989 5990 // Handle constant folding with UNDEF. 5991 // TODO: Handle more cases. 5992 static std::optional<APInt> FoldValueWithUndef(unsigned Opcode, const APInt &C1, 5993 bool IsUndef1, const APInt &C2, 5994 bool IsUndef2) { 5995 if (!(IsUndef1 || IsUndef2)) 5996 return FoldValue(Opcode, C1, C2); 5997 5998 // Fold and(x, undef) -> 0 5999 // Fold mul(x, undef) -> 0 6000 if (Opcode == ISD::AND || Opcode == ISD::MUL) 6001 return APInt::getZero(C1.getBitWidth()); 6002 6003 return std::nullopt; 6004 } 6005 6006 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 6007 const GlobalAddressSDNode *GA, 6008 const SDNode *N2) { 6009 if (GA->getOpcode() != ISD::GlobalAddress) 6010 return SDValue(); 6011 if (!TLI->isOffsetFoldingLegal(GA)) 6012 return SDValue(); 6013 auto *C2 = dyn_cast<ConstantSDNode>(N2); 6014 if (!C2) 6015 return SDValue(); 6016 int64_t Offset = C2->getSExtValue(); 6017 switch (Opcode) { 6018 case ISD::ADD: break; 6019 case ISD::SUB: Offset = -uint64_t(Offset); break; 6020 default: return SDValue(); 6021 } 6022 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 6023 GA->getOffset() + uint64_t(Offset)); 6024 } 6025 6026 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 6027 switch (Opcode) { 6028 case ISD::SDIV: 6029 case ISD::UDIV: 6030 case ISD::SREM: 6031 case ISD::UREM: { 6032 // If a divisor is zero/undef or any element of a divisor vector is 6033 // zero/undef, the whole op is undef. 6034 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 6035 SDValue Divisor = Ops[1]; 6036 if (Divisor.isUndef() || isNullConstant(Divisor)) 6037 return true; 6038 6039 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 6040 llvm::any_of(Divisor->op_values(), 6041 [](SDValue V) { return V.isUndef() || 6042 isNullConstant(V); }); 6043 // TODO: Handle signed overflow. 6044 } 6045 // TODO: Handle oversized shifts. 6046 default: 6047 return false; 6048 } 6049 } 6050 6051 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 6052 EVT VT, ArrayRef<SDValue> Ops) { 6053 // If the opcode is a target-specific ISD node, there's nothing we can 6054 // do here and the operand rules may not line up with the below, so 6055 // bail early. 6056 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 6057 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 6058 // foldCONCAT_VECTORS in getNode before this is called. 6059 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 6060 return SDValue(); 6061 6062 unsigned NumOps = Ops.size(); 6063 if (NumOps == 0) 6064 return SDValue(); 6065 6066 if (isUndef(Opcode, Ops)) 6067 return getUNDEF(VT); 6068 6069 // Handle unary special cases. 6070 if (NumOps == 1) { 6071 SDValue N1 = Ops[0]; 6072 6073 // Constant fold unary operations with an integer constant operand. Even 6074 // opaque constant will be folded, because the folding of unary operations 6075 // doesn't create new constants with different values. Nevertheless, the 6076 // opaque flag is preserved during folding to prevent future folding with 6077 // other constants. 6078 if (auto *C = dyn_cast<ConstantSDNode>(N1)) { 6079 const APInt &Val = C->getAPIntValue(); 6080 switch (Opcode) { 6081 case ISD::SIGN_EXTEND: 6082 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 6083 C->isTargetOpcode(), C->isOpaque()); 6084 case ISD::TRUNCATE: 6085 if (C->isOpaque()) 6086 break; 6087 [[fallthrough]]; 6088 case ISD::ZERO_EXTEND: 6089 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 6090 C->isTargetOpcode(), C->isOpaque()); 6091 case ISD::ANY_EXTEND: 6092 // Some targets like RISCV prefer to sign extend some types. 6093 if (TLI->isSExtCheaperThanZExt(N1.getValueType(), VT)) 6094 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 6095 C->isTargetOpcode(), C->isOpaque()); 6096 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 6097 C->isTargetOpcode(), C->isOpaque()); 6098 case ISD::ABS: 6099 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 6100 C->isOpaque()); 6101 case ISD::BITREVERSE: 6102 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 6103 C->isOpaque()); 6104 case ISD::BSWAP: 6105 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 6106 C->isOpaque()); 6107 case ISD::CTPOP: 6108 return getConstant(Val.popcount(), DL, VT, C->isTargetOpcode(), 6109 C->isOpaque()); 6110 case ISD::CTLZ: 6111 case ISD::CTLZ_ZERO_UNDEF: 6112 return getConstant(Val.countl_zero(), DL, VT, C->isTargetOpcode(), 6113 C->isOpaque()); 6114 case ISD::CTTZ: 6115 case ISD::CTTZ_ZERO_UNDEF: 6116 return getConstant(Val.countr_zero(), DL, VT, C->isTargetOpcode(), 6117 C->isOpaque()); 6118 case ISD::UINT_TO_FP: 6119 case ISD::SINT_TO_FP: { 6120 APFloat apf(EVTToAPFloatSemantics(VT), 6121 APInt::getZero(VT.getSizeInBits())); 6122 (void)apf.convertFromAPInt(Val, Opcode == ISD::SINT_TO_FP, 6123 APFloat::rmNearestTiesToEven); 6124 return getConstantFP(apf, DL, VT); 6125 } 6126 case ISD::FP16_TO_FP: 6127 case ISD::BF16_TO_FP: { 6128 bool Ignored; 6129 APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf() 6130 : APFloat::BFloat(), 6131 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 6132 6133 // This can return overflow, underflow, or inexact; we don't care. 6134 // FIXME need to be more flexible about rounding mode. 6135 (void)FPV.convert(EVTToAPFloatSemantics(VT), 6136 APFloat::rmNearestTiesToEven, &Ignored); 6137 return getConstantFP(FPV, DL, VT); 6138 } 6139 case ISD::STEP_VECTOR: 6140 if (SDValue V = FoldSTEP_VECTOR(DL, VT, N1, *this)) 6141 return V; 6142 break; 6143 case ISD::BITCAST: 6144 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 6145 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 6146 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 6147 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 6148 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 6149 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 6150 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 6151 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 6152 break; 6153 } 6154 } 6155 6156 // Constant fold unary operations with a floating point constant operand. 6157 if (auto *C = dyn_cast<ConstantFPSDNode>(N1)) { 6158 APFloat V = C->getValueAPF(); // make copy 6159 switch (Opcode) { 6160 case ISD::FNEG: 6161 V.changeSign(); 6162 return getConstantFP(V, DL, VT); 6163 case ISD::FABS: 6164 V.clearSign(); 6165 return getConstantFP(V, DL, VT); 6166 case ISD::FCEIL: { 6167 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 6168 if (fs == APFloat::opOK || fs == APFloat::opInexact) 6169 return getConstantFP(V, DL, VT); 6170 return SDValue(); 6171 } 6172 case ISD::FTRUNC: { 6173 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 6174 if (fs == APFloat::opOK || fs == APFloat::opInexact) 6175 return getConstantFP(V, DL, VT); 6176 return SDValue(); 6177 } 6178 case ISD::FFLOOR: { 6179 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 6180 if (fs == APFloat::opOK || fs == APFloat::opInexact) 6181 return getConstantFP(V, DL, VT); 6182 return SDValue(); 6183 } 6184 case ISD::FP_EXTEND: { 6185 bool ignored; 6186 // This can return overflow, underflow, or inexact; we don't care. 6187 // FIXME need to be more flexible about rounding mode. 6188 (void)V.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 6189 &ignored); 6190 return getConstantFP(V, DL, VT); 6191 } 6192 case ISD::FP_TO_SINT: 6193 case ISD::FP_TO_UINT: { 6194 bool ignored; 6195 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 6196 // FIXME need to be more flexible about rounding mode. 6197 APFloat::opStatus s = 6198 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 6199 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 6200 break; 6201 return getConstant(IntVal, DL, VT); 6202 } 6203 case ISD::FP_TO_FP16: 6204 case ISD::FP_TO_BF16: { 6205 bool Ignored; 6206 // This can return overflow, underflow, or inexact; we don't care. 6207 // FIXME need to be more flexible about rounding mode. 6208 (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf() 6209 : APFloat::BFloat(), 6210 APFloat::rmNearestTiesToEven, &Ignored); 6211 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 6212 } 6213 case ISD::BITCAST: 6214 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 6215 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, 6216 VT); 6217 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 6218 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, 6219 VT); 6220 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 6221 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, 6222 VT); 6223 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 6224 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 6225 break; 6226 } 6227 } 6228 6229 // Early-out if we failed to constant fold a bitcast. 6230 if (Opcode == ISD::BITCAST) 6231 return SDValue(); 6232 } 6233 6234 // Handle binops special cases. 6235 if (NumOps == 2) { 6236 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops)) 6237 return CFP; 6238 6239 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 6240 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 6241 if (C1->isOpaque() || C2->isOpaque()) 6242 return SDValue(); 6243 6244 std::optional<APInt> FoldAttempt = 6245 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 6246 if (!FoldAttempt) 6247 return SDValue(); 6248 6249 SDValue Folded = getConstant(*FoldAttempt, DL, VT); 6250 assert((!Folded || !VT.isVector()) && 6251 "Can't fold vectors ops with scalar operands"); 6252 return Folded; 6253 } 6254 } 6255 6256 // fold (add Sym, c) -> Sym+c 6257 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 6258 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 6259 if (TLI->isCommutativeBinOp(Opcode)) 6260 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 6261 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 6262 } 6263 6264 // This is for vector folding only from here on. 6265 if (!VT.isVector()) 6266 return SDValue(); 6267 6268 ElementCount NumElts = VT.getVectorElementCount(); 6269 6270 // See if we can fold through bitcasted integer ops. 6271 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 6272 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 6273 Ops[0].getOpcode() == ISD::BITCAST && 6274 Ops[1].getOpcode() == ISD::BITCAST) { 6275 SDValue N1 = peekThroughBitcasts(Ops[0]); 6276 SDValue N2 = peekThroughBitcasts(Ops[1]); 6277 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 6278 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 6279 EVT BVVT = N1.getValueType(); 6280 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 6281 bool IsLE = getDataLayout().isLittleEndian(); 6282 unsigned EltBits = VT.getScalarSizeInBits(); 6283 SmallVector<APInt> RawBits1, RawBits2; 6284 BitVector UndefElts1, UndefElts2; 6285 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 6286 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) { 6287 SmallVector<APInt> RawBits; 6288 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 6289 std::optional<APInt> Fold = FoldValueWithUndef( 6290 Opcode, RawBits1[I], UndefElts1[I], RawBits2[I], UndefElts2[I]); 6291 if (!Fold) 6292 break; 6293 RawBits.push_back(*Fold); 6294 } 6295 if (RawBits.size() == NumElts.getFixedValue()) { 6296 // We have constant folded, but we need to cast this again back to 6297 // the original (possibly legalized) type. 6298 SmallVector<APInt> DstBits; 6299 BitVector DstUndefs; 6300 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 6301 DstBits, RawBits, DstUndefs, 6302 BitVector(RawBits.size(), false)); 6303 EVT BVEltVT = BV1->getOperand(0).getValueType(); 6304 unsigned BVEltBits = BVEltVT.getSizeInBits(); 6305 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 6306 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 6307 if (DstUndefs[I]) 6308 continue; 6309 Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT); 6310 } 6311 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 6312 } 6313 } 6314 } 6315 } 6316 6317 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 6318 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1)) 6319 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) && 6320 Ops[0].getOpcode() == ISD::STEP_VECTOR) { 6321 APInt RHSVal; 6322 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) { 6323 APInt NewStep = Opcode == ISD::MUL 6324 ? Ops[0].getConstantOperandAPInt(0) * RHSVal 6325 : Ops[0].getConstantOperandAPInt(0) << RHSVal; 6326 return getStepVector(DL, VT, NewStep); 6327 } 6328 } 6329 6330 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 6331 return !Op.getValueType().isVector() || 6332 Op.getValueType().getVectorElementCount() == NumElts; 6333 }; 6334 6335 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 6336 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 6337 Op.getOpcode() == ISD::BUILD_VECTOR || 6338 Op.getOpcode() == ISD::SPLAT_VECTOR; 6339 }; 6340 6341 // All operands must be vector types with the same number of elements as 6342 // the result type and must be either UNDEF or a build/splat vector 6343 // or UNDEF scalars. 6344 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 6345 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 6346 return SDValue(); 6347 6348 // If we are comparing vectors, then the result needs to be a i1 boolean that 6349 // is then extended back to the legal result type depending on how booleans 6350 // are represented. 6351 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 6352 ISD::NodeType ExtendCode = 6353 (Opcode == ISD::SETCC && SVT != VT.getScalarType()) 6354 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT)) 6355 : ISD::SIGN_EXTEND; 6356 6357 // Find legal integer scalar type for constant promotion and 6358 // ensure that its scalar size is at least as large as source. 6359 EVT LegalSVT = VT.getScalarType(); 6360 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 6361 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 6362 if (LegalSVT.bitsLT(VT.getScalarType())) 6363 return SDValue(); 6364 } 6365 6366 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 6367 // only have one operand to check. For fixed-length vector types we may have 6368 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 6369 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 6370 6371 // Constant fold each scalar lane separately. 6372 SmallVector<SDValue, 4> ScalarResults; 6373 for (unsigned I = 0; I != NumVectorElts; I++) { 6374 SmallVector<SDValue, 4> ScalarOps; 6375 for (SDValue Op : Ops) { 6376 EVT InSVT = Op.getValueType().getScalarType(); 6377 if (Op.getOpcode() != ISD::BUILD_VECTOR && 6378 Op.getOpcode() != ISD::SPLAT_VECTOR) { 6379 if (Op.isUndef()) 6380 ScalarOps.push_back(getUNDEF(InSVT)); 6381 else 6382 ScalarOps.push_back(Op); 6383 continue; 6384 } 6385 6386 SDValue ScalarOp = 6387 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 6388 EVT ScalarVT = ScalarOp.getValueType(); 6389 6390 // Build vector (integer) scalar operands may need implicit 6391 // truncation - do this before constant folding. 6392 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) { 6393 // Don't create illegally-typed nodes unless they're constants or undef 6394 // - if we fail to constant fold we can't guarantee the (dead) nodes 6395 // we're creating will be cleaned up before being visited for 6396 // legalization. 6397 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() && 6398 !isa<ConstantSDNode>(ScalarOp) && 6399 TLI->getTypeAction(*getContext(), InSVT) != 6400 TargetLowering::TypeLegal) 6401 return SDValue(); 6402 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 6403 } 6404 6405 ScalarOps.push_back(ScalarOp); 6406 } 6407 6408 // Constant fold the scalar operands. 6409 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 6410 6411 // Legalize the (integer) scalar constant if necessary. 6412 if (LegalSVT != SVT) 6413 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult); 6414 6415 // Scalar folding only succeeded if the result is a constant or UNDEF. 6416 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 6417 ScalarResult.getOpcode() != ISD::ConstantFP) 6418 return SDValue(); 6419 ScalarResults.push_back(ScalarResult); 6420 } 6421 6422 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 6423 : getBuildVector(VT, DL, ScalarResults); 6424 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 6425 return V; 6426 } 6427 6428 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 6429 EVT VT, ArrayRef<SDValue> Ops) { 6430 // TODO: Add support for unary/ternary fp opcodes. 6431 if (Ops.size() != 2) 6432 return SDValue(); 6433 6434 // TODO: We don't do any constant folding for strict FP opcodes here, but we 6435 // should. That will require dealing with a potentially non-default 6436 // rounding mode, checking the "opStatus" return value from the APFloat 6437 // math calculations, and possibly other variations. 6438 SDValue N1 = Ops[0]; 6439 SDValue N2 = Ops[1]; 6440 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 6441 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 6442 if (N1CFP && N2CFP) { 6443 APFloat C1 = N1CFP->getValueAPF(); // make copy 6444 const APFloat &C2 = N2CFP->getValueAPF(); 6445 switch (Opcode) { 6446 case ISD::FADD: 6447 C1.add(C2, APFloat::rmNearestTiesToEven); 6448 return getConstantFP(C1, DL, VT); 6449 case ISD::FSUB: 6450 C1.subtract(C2, APFloat::rmNearestTiesToEven); 6451 return getConstantFP(C1, DL, VT); 6452 case ISD::FMUL: 6453 C1.multiply(C2, APFloat::rmNearestTiesToEven); 6454 return getConstantFP(C1, DL, VT); 6455 case ISD::FDIV: 6456 C1.divide(C2, APFloat::rmNearestTiesToEven); 6457 return getConstantFP(C1, DL, VT); 6458 case ISD::FREM: 6459 C1.mod(C2); 6460 return getConstantFP(C1, DL, VT); 6461 case ISD::FCOPYSIGN: 6462 C1.copySign(C2); 6463 return getConstantFP(C1, DL, VT); 6464 case ISD::FMINNUM: 6465 return getConstantFP(minnum(C1, C2), DL, VT); 6466 case ISD::FMAXNUM: 6467 return getConstantFP(maxnum(C1, C2), DL, VT); 6468 case ISD::FMINIMUM: 6469 return getConstantFP(minimum(C1, C2), DL, VT); 6470 case ISD::FMAXIMUM: 6471 return getConstantFP(maximum(C1, C2), DL, VT); 6472 default: break; 6473 } 6474 } 6475 if (N1CFP && Opcode == ISD::FP_ROUND) { 6476 APFloat C1 = N1CFP->getValueAPF(); // make copy 6477 bool Unused; 6478 // This can return overflow, underflow, or inexact; we don't care. 6479 // FIXME need to be more flexible about rounding mode. 6480 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 6481 &Unused); 6482 return getConstantFP(C1, DL, VT); 6483 } 6484 6485 switch (Opcode) { 6486 case ISD::FSUB: 6487 // -0.0 - undef --> undef (consistent with "fneg undef") 6488 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 6489 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 6490 return getUNDEF(VT); 6491 [[fallthrough]]; 6492 6493 case ISD::FADD: 6494 case ISD::FMUL: 6495 case ISD::FDIV: 6496 case ISD::FREM: 6497 // If both operands are undef, the result is undef. If 1 operand is undef, 6498 // the result is NaN. This should match the behavior of the IR optimizer. 6499 if (N1.isUndef() && N2.isUndef()) 6500 return getUNDEF(VT); 6501 if (N1.isUndef() || N2.isUndef()) 6502 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 6503 } 6504 return SDValue(); 6505 } 6506 6507 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 6508 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 6509 6510 // There's no need to assert on a byte-aligned pointer. All pointers are at 6511 // least byte aligned. 6512 if (A == Align(1)) 6513 return Val; 6514 6515 FoldingSetNodeID ID; 6516 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 6517 ID.AddInteger(A.value()); 6518 6519 void *IP = nullptr; 6520 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 6521 return SDValue(E, 0); 6522 6523 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 6524 Val.getValueType(), A); 6525 createOperands(N, {Val}); 6526 6527 CSEMap.InsertNode(N, IP); 6528 InsertNode(N); 6529 6530 SDValue V(N, 0); 6531 NewSDValueDbgMsg(V, "Creating new node: ", this); 6532 return V; 6533 } 6534 6535 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6536 SDValue N1, SDValue N2) { 6537 SDNodeFlags Flags; 6538 if (Inserter) 6539 Flags = Inserter->getFlags(); 6540 return getNode(Opcode, DL, VT, N1, N2, Flags); 6541 } 6542 6543 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, 6544 SDValue &N2) const { 6545 if (!TLI->isCommutativeBinOp(Opcode)) 6546 return; 6547 6548 // Canonicalize: 6549 // binop(const, nonconst) -> binop(nonconst, const) 6550 SDNode *N1C = isConstantIntBuildVectorOrConstantInt(N1); 6551 SDNode *N2C = isConstantIntBuildVectorOrConstantInt(N2); 6552 SDNode *N1CFP = isConstantFPBuildVectorOrConstantFP(N1); 6553 SDNode *N2CFP = isConstantFPBuildVectorOrConstantFP(N2); 6554 if ((N1C && !N2C) || (N1CFP && !N2CFP)) 6555 std::swap(N1, N2); 6556 6557 // Canonicalize: 6558 // binop(splat(x), step_vector) -> binop(step_vector, splat(x)) 6559 else if (N1.getOpcode() == ISD::SPLAT_VECTOR && 6560 N2.getOpcode() == ISD::STEP_VECTOR) 6561 std::swap(N1, N2); 6562 } 6563 6564 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6565 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 6566 assert(N1.getOpcode() != ISD::DELETED_NODE && 6567 N2.getOpcode() != ISD::DELETED_NODE && 6568 "Operand is DELETED_NODE!"); 6569 6570 canonicalizeCommutativeBinop(Opcode, N1, N2); 6571 6572 auto *N1C = dyn_cast<ConstantSDNode>(N1); 6573 auto *N2C = dyn_cast<ConstantSDNode>(N2); 6574 6575 // Don't allow undefs in vector splats - we might be returning N2 when folding 6576 // to zero etc. 6577 ConstantSDNode *N2CV = 6578 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true); 6579 6580 switch (Opcode) { 6581 default: break; 6582 case ISD::TokenFactor: 6583 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 6584 N2.getValueType() == MVT::Other && "Invalid token factor!"); 6585 // Fold trivial token factors. 6586 if (N1.getOpcode() == ISD::EntryToken) return N2; 6587 if (N2.getOpcode() == ISD::EntryToken) return N1; 6588 if (N1 == N2) return N1; 6589 break; 6590 case ISD::BUILD_VECTOR: { 6591 // Attempt to simplify BUILD_VECTOR. 6592 SDValue Ops[] = {N1, N2}; 6593 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6594 return V; 6595 break; 6596 } 6597 case ISD::CONCAT_VECTORS: { 6598 SDValue Ops[] = {N1, N2}; 6599 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6600 return V; 6601 break; 6602 } 6603 case ISD::AND: 6604 assert(VT.isInteger() && "This operator does not apply to FP types!"); 6605 assert(N1.getValueType() == N2.getValueType() && 6606 N1.getValueType() == VT && "Binary operator types must match!"); 6607 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 6608 // worth handling here. 6609 if (N2CV && N2CV->isZero()) 6610 return N2; 6611 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X 6612 return N1; 6613 break; 6614 case ISD::OR: 6615 case ISD::XOR: 6616 case ISD::ADD: 6617 case ISD::SUB: 6618 assert(VT.isInteger() && "This operator does not apply to FP types!"); 6619 assert(N1.getValueType() == N2.getValueType() && 6620 N1.getValueType() == VT && "Binary operator types must match!"); 6621 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 6622 // it's worth handling here. 6623 if (N2CV && N2CV->isZero()) 6624 return N1; 6625 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 6626 VT.getVectorElementType() == MVT::i1) 6627 return getNode(ISD::XOR, DL, VT, N1, N2); 6628 break; 6629 case ISD::MUL: 6630 assert(VT.isInteger() && "This operator does not apply to FP types!"); 6631 assert(N1.getValueType() == N2.getValueType() && 6632 N1.getValueType() == VT && "Binary operator types must match!"); 6633 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 6634 return getNode(ISD::AND, DL, VT, N1, N2); 6635 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 6636 const APInt &MulImm = N1->getConstantOperandAPInt(0); 6637 const APInt &N2CImm = N2C->getAPIntValue(); 6638 return getVScale(DL, VT, MulImm * N2CImm); 6639 } 6640 break; 6641 case ISD::UDIV: 6642 case ISD::UREM: 6643 case ISD::MULHU: 6644 case ISD::MULHS: 6645 case ISD::SDIV: 6646 case ISD::SREM: 6647 case ISD::SADDSAT: 6648 case ISD::SSUBSAT: 6649 case ISD::UADDSAT: 6650 case ISD::USUBSAT: 6651 assert(VT.isInteger() && "This operator does not apply to FP types!"); 6652 assert(N1.getValueType() == N2.getValueType() && 6653 N1.getValueType() == VT && "Binary operator types must match!"); 6654 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 6655 // fold (add_sat x, y) -> (or x, y) for bool types. 6656 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 6657 return getNode(ISD::OR, DL, VT, N1, N2); 6658 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 6659 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 6660 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 6661 } 6662 break; 6663 case ISD::ABDS: 6664 case ISD::ABDU: 6665 assert(VT.isInteger() && "This operator does not apply to FP types!"); 6666 assert(N1.getValueType() == N2.getValueType() && 6667 N1.getValueType() == VT && "Binary operator types must match!"); 6668 break; 6669 case ISD::SMIN: 6670 case ISD::UMAX: 6671 assert(VT.isInteger() && "This operator does not apply to FP types!"); 6672 assert(N1.getValueType() == N2.getValueType() && 6673 N1.getValueType() == VT && "Binary operator types must match!"); 6674 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 6675 return getNode(ISD::OR, DL, VT, N1, N2); 6676 break; 6677 case ISD::SMAX: 6678 case ISD::UMIN: 6679 assert(VT.isInteger() && "This operator does not apply to FP types!"); 6680 assert(N1.getValueType() == N2.getValueType() && 6681 N1.getValueType() == VT && "Binary operator types must match!"); 6682 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 6683 return getNode(ISD::AND, DL, VT, N1, N2); 6684 break; 6685 case ISD::FADD: 6686 case ISD::FSUB: 6687 case ISD::FMUL: 6688 case ISD::FDIV: 6689 case ISD::FREM: 6690 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6691 assert(N1.getValueType() == N2.getValueType() && 6692 N1.getValueType() == VT && "Binary operator types must match!"); 6693 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 6694 return V; 6695 break; 6696 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 6697 assert(N1.getValueType() == VT && 6698 N1.getValueType().isFloatingPoint() && 6699 N2.getValueType().isFloatingPoint() && 6700 "Invalid FCOPYSIGN!"); 6701 break; 6702 case ISD::SHL: 6703 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 6704 const APInt &MulImm = N1->getConstantOperandAPInt(0); 6705 const APInt &ShiftImm = N2C->getAPIntValue(); 6706 return getVScale(DL, VT, MulImm << ShiftImm); 6707 } 6708 [[fallthrough]]; 6709 case ISD::SRA: 6710 case ISD::SRL: 6711 if (SDValue V = simplifyShift(N1, N2)) 6712 return V; 6713 [[fallthrough]]; 6714 case ISD::ROTL: 6715 case ISD::ROTR: 6716 assert(VT == N1.getValueType() && 6717 "Shift operators return type must be the same as their first arg"); 6718 assert(VT.isInteger() && N2.getValueType().isInteger() && 6719 "Shifts only work on integers"); 6720 assert((!VT.isVector() || VT == N2.getValueType()) && 6721 "Vector shift amounts must be in the same as their first arg"); 6722 // Verify that the shift amount VT is big enough to hold valid shift 6723 // amounts. This catches things like trying to shift an i1024 value by an 6724 // i8, which is easy to fall into in generic code that uses 6725 // TLI.getShiftAmount(). 6726 assert(N2.getValueType().getScalarSizeInBits() >= 6727 Log2_32_Ceil(VT.getScalarSizeInBits()) && 6728 "Invalid use of small shift amount with oversized value!"); 6729 6730 // Always fold shifts of i1 values so the code generator doesn't need to 6731 // handle them. Since we know the size of the shift has to be less than the 6732 // size of the value, the shift/rotate count is guaranteed to be zero. 6733 if (VT == MVT::i1) 6734 return N1; 6735 if (N2CV && N2CV->isZero()) 6736 return N1; 6737 break; 6738 case ISD::FP_ROUND: 6739 assert(VT.isFloatingPoint() && 6740 N1.getValueType().isFloatingPoint() && 6741 VT.bitsLE(N1.getValueType()) && 6742 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 6743 "Invalid FP_ROUND!"); 6744 if (N1.getValueType() == VT) return N1; // noop conversion. 6745 break; 6746 case ISD::AssertSext: 6747 case ISD::AssertZext: { 6748 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6749 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6750 assert(VT.isInteger() && EVT.isInteger() && 6751 "Cannot *_EXTEND_INREG FP types"); 6752 assert(!EVT.isVector() && 6753 "AssertSExt/AssertZExt type should be the vector element type " 6754 "rather than the vector type!"); 6755 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 6756 if (VT.getScalarType() == EVT) return N1; // noop assertion. 6757 break; 6758 } 6759 case ISD::SIGN_EXTEND_INREG: { 6760 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6761 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6762 assert(VT.isInteger() && EVT.isInteger() && 6763 "Cannot *_EXTEND_INREG FP types"); 6764 assert(EVT.isVector() == VT.isVector() && 6765 "SIGN_EXTEND_INREG type should be vector iff the operand " 6766 "type is vector!"); 6767 assert((!EVT.isVector() || 6768 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 6769 "Vector element counts must match in SIGN_EXTEND_INREG"); 6770 assert(EVT.bitsLE(VT) && "Not extending!"); 6771 if (EVT == VT) return N1; // Not actually extending 6772 6773 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 6774 unsigned FromBits = EVT.getScalarSizeInBits(); 6775 Val <<= Val.getBitWidth() - FromBits; 6776 Val.ashrInPlace(Val.getBitWidth() - FromBits); 6777 return getConstant(Val, DL, ConstantVT); 6778 }; 6779 6780 if (N1C) { 6781 const APInt &Val = N1C->getAPIntValue(); 6782 return SignExtendInReg(Val, VT); 6783 } 6784 6785 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 6786 SmallVector<SDValue, 8> Ops; 6787 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 6788 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 6789 SDValue Op = N1.getOperand(i); 6790 if (Op.isUndef()) { 6791 Ops.push_back(getUNDEF(OpVT)); 6792 continue; 6793 } 6794 ConstantSDNode *C = cast<ConstantSDNode>(Op); 6795 APInt Val = C->getAPIntValue(); 6796 Ops.push_back(SignExtendInReg(Val, OpVT)); 6797 } 6798 return getBuildVector(VT, DL, Ops); 6799 } 6800 6801 if (N1.getOpcode() == ISD::SPLAT_VECTOR && 6802 isa<ConstantSDNode>(N1.getOperand(0))) 6803 return getNode( 6804 ISD::SPLAT_VECTOR, DL, VT, 6805 SignExtendInReg(N1.getConstantOperandAPInt(0), 6806 N1.getOperand(0).getValueType())); 6807 break; 6808 } 6809 case ISD::FP_TO_SINT_SAT: 6810 case ISD::FP_TO_UINT_SAT: { 6811 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 6812 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 6813 assert(N1.getValueType().isVector() == VT.isVector() && 6814 "FP_TO_*INT_SAT type should be vector iff the operand type is " 6815 "vector!"); 6816 assert((!VT.isVector() || VT.getVectorElementCount() == 6817 N1.getValueType().getVectorElementCount()) && 6818 "Vector element counts must match in FP_TO_*INT_SAT"); 6819 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 6820 "Type to saturate to must be a scalar."); 6821 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 6822 "Not extending!"); 6823 break; 6824 } 6825 case ISD::EXTRACT_VECTOR_ELT: 6826 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 6827 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 6828 element type of the vector."); 6829 6830 // Extract from an undefined value or using an undefined index is undefined. 6831 if (N1.isUndef() || N2.isUndef()) 6832 return getUNDEF(VT); 6833 6834 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 6835 // vectors. For scalable vectors we will provide appropriate support for 6836 // dealing with arbitrary indices. 6837 if (N2C && N1.getValueType().isFixedLengthVector() && 6838 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 6839 return getUNDEF(VT); 6840 6841 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 6842 // expanding copies of large vectors from registers. This only works for 6843 // fixed length vectors, since we need to know the exact number of 6844 // elements. 6845 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 6846 N1.getOperand(0).getValueType().isFixedLengthVector()) { 6847 unsigned Factor = 6848 N1.getOperand(0).getValueType().getVectorNumElements(); 6849 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 6850 N1.getOperand(N2C->getZExtValue() / Factor), 6851 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 6852 } 6853 6854 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 6855 // lowering is expanding large vector constants. 6856 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 6857 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 6858 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 6859 N1.getValueType().isFixedLengthVector()) && 6860 "BUILD_VECTOR used for scalable vectors"); 6861 unsigned Index = 6862 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 6863 SDValue Elt = N1.getOperand(Index); 6864 6865 if (VT != Elt.getValueType()) 6866 // If the vector element type is not legal, the BUILD_VECTOR operands 6867 // are promoted and implicitly truncated, and the result implicitly 6868 // extended. Make that explicit here. 6869 Elt = getAnyExtOrTrunc(Elt, DL, VT); 6870 6871 return Elt; 6872 } 6873 6874 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 6875 // operations are lowered to scalars. 6876 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 6877 // If the indices are the same, return the inserted element else 6878 // if the indices are known different, extract the element from 6879 // the original vector. 6880 SDValue N1Op2 = N1.getOperand(2); 6881 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 6882 6883 if (N1Op2C && N2C) { 6884 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 6885 if (VT == N1.getOperand(1).getValueType()) 6886 return N1.getOperand(1); 6887 if (VT.isFloatingPoint()) { 6888 assert(VT.getSizeInBits() > N1.getOperand(1).getValueType().getSizeInBits()); 6889 return getFPExtendOrRound(N1.getOperand(1), DL, VT); 6890 } 6891 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 6892 } 6893 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 6894 } 6895 } 6896 6897 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 6898 // when vector types are scalarized and v1iX is legal. 6899 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 6900 // Here we are completely ignoring the extract element index (N2), 6901 // which is fine for fixed width vectors, since any index other than 0 6902 // is undefined anyway. However, this cannot be ignored for scalable 6903 // vectors - in theory we could support this, but we don't want to do this 6904 // without a profitability check. 6905 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6906 N1.getValueType().isFixedLengthVector() && 6907 N1.getValueType().getVectorNumElements() == 1) { 6908 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 6909 N1.getOperand(1)); 6910 } 6911 break; 6912 case ISD::EXTRACT_ELEMENT: 6913 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 6914 assert(!N1.getValueType().isVector() && !VT.isVector() && 6915 (N1.getValueType().isInteger() == VT.isInteger()) && 6916 N1.getValueType() != VT && 6917 "Wrong types for EXTRACT_ELEMENT!"); 6918 6919 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 6920 // 64-bit integers into 32-bit parts. Instead of building the extract of 6921 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 6922 if (N1.getOpcode() == ISD::BUILD_PAIR) 6923 return N1.getOperand(N2C->getZExtValue()); 6924 6925 // EXTRACT_ELEMENT of a constant int is also very common. 6926 if (N1C) { 6927 unsigned ElementSize = VT.getSizeInBits(); 6928 unsigned Shift = ElementSize * N2C->getZExtValue(); 6929 const APInt &Val = N1C->getAPIntValue(); 6930 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 6931 } 6932 break; 6933 case ISD::EXTRACT_SUBVECTOR: { 6934 EVT N1VT = N1.getValueType(); 6935 assert(VT.isVector() && N1VT.isVector() && 6936 "Extract subvector VTs must be vectors!"); 6937 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 6938 "Extract subvector VTs must have the same element type!"); 6939 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 6940 "Cannot extract a scalable vector from a fixed length vector!"); 6941 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6942 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 6943 "Extract subvector must be from larger vector to smaller vector!"); 6944 assert(N2C && "Extract subvector index must be a constant"); 6945 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6946 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 6947 N1VT.getVectorMinNumElements()) && 6948 "Extract subvector overflow!"); 6949 assert(N2C->getAPIntValue().getBitWidth() == 6950 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6951 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 6952 6953 // Trivial extraction. 6954 if (VT == N1VT) 6955 return N1; 6956 6957 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 6958 if (N1.isUndef()) 6959 return getUNDEF(VT); 6960 6961 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 6962 // the concat have the same type as the extract. 6963 if (N1.getOpcode() == ISD::CONCAT_VECTORS && 6964 VT == N1.getOperand(0).getValueType()) { 6965 unsigned Factor = VT.getVectorMinNumElements(); 6966 return N1.getOperand(N2C->getZExtValue() / Factor); 6967 } 6968 6969 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 6970 // during shuffle legalization. 6971 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 6972 VT == N1.getOperand(1).getValueType()) 6973 return N1.getOperand(1); 6974 break; 6975 } 6976 } 6977 6978 // Perform trivial constant folding. 6979 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 6980 return SV; 6981 6982 // Canonicalize an UNDEF to the RHS, even over a constant. 6983 if (N1.isUndef()) { 6984 if (TLI->isCommutativeBinOp(Opcode)) { 6985 std::swap(N1, N2); 6986 } else { 6987 switch (Opcode) { 6988 case ISD::SUB: 6989 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6990 case ISD::SIGN_EXTEND_INREG: 6991 case ISD::UDIV: 6992 case ISD::SDIV: 6993 case ISD::UREM: 6994 case ISD::SREM: 6995 case ISD::SSUBSAT: 6996 case ISD::USUBSAT: 6997 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6998 } 6999 } 7000 } 7001 7002 // Fold a bunch of operators when the RHS is undef. 7003 if (N2.isUndef()) { 7004 switch (Opcode) { 7005 case ISD::XOR: 7006 if (N1.isUndef()) 7007 // Handle undef ^ undef -> 0 special case. This is a common 7008 // idiom (misuse). 7009 return getConstant(0, DL, VT); 7010 [[fallthrough]]; 7011 case ISD::ADD: 7012 case ISD::SUB: 7013 case ISD::UDIV: 7014 case ISD::SDIV: 7015 case ISD::UREM: 7016 case ISD::SREM: 7017 return getUNDEF(VT); // fold op(arg1, undef) -> undef 7018 case ISD::MUL: 7019 case ISD::AND: 7020 case ISD::SSUBSAT: 7021 case ISD::USUBSAT: 7022 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 7023 case ISD::OR: 7024 case ISD::SADDSAT: 7025 case ISD::UADDSAT: 7026 return getAllOnesConstant(DL, VT); 7027 } 7028 } 7029 7030 // Memoize this node if possible. 7031 SDNode *N; 7032 SDVTList VTs = getVTList(VT); 7033 SDValue Ops[] = {N1, N2}; 7034 if (VT != MVT::Glue) { 7035 FoldingSetNodeID ID; 7036 AddNodeIDNode(ID, Opcode, VTs, Ops); 7037 void *IP = nullptr; 7038 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 7039 E->intersectFlagsWith(Flags); 7040 return SDValue(E, 0); 7041 } 7042 7043 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7044 N->setFlags(Flags); 7045 createOperands(N, Ops); 7046 CSEMap.InsertNode(N, IP); 7047 } else { 7048 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7049 createOperands(N, Ops); 7050 } 7051 7052 InsertNode(N); 7053 SDValue V = SDValue(N, 0); 7054 NewSDValueDbgMsg(V, "Creating new node: ", this); 7055 return V; 7056 } 7057 7058 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7059 SDValue N1, SDValue N2, SDValue N3) { 7060 SDNodeFlags Flags; 7061 if (Inserter) 7062 Flags = Inserter->getFlags(); 7063 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 7064 } 7065 7066 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7067 SDValue N1, SDValue N2, SDValue N3, 7068 const SDNodeFlags Flags) { 7069 assert(N1.getOpcode() != ISD::DELETED_NODE && 7070 N2.getOpcode() != ISD::DELETED_NODE && 7071 N3.getOpcode() != ISD::DELETED_NODE && 7072 "Operand is DELETED_NODE!"); 7073 // Perform various simplifications. 7074 switch (Opcode) { 7075 case ISD::FMA: 7076 case ISD::FMAD: { 7077 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 7078 assert(N1.getValueType() == VT && N2.getValueType() == VT && 7079 N3.getValueType() == VT && "FMA types must match!"); 7080 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 7081 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 7082 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 7083 if (N1CFP && N2CFP && N3CFP) { 7084 APFloat V1 = N1CFP->getValueAPF(); 7085 const APFloat &V2 = N2CFP->getValueAPF(); 7086 const APFloat &V3 = N3CFP->getValueAPF(); 7087 if (Opcode == ISD::FMAD) { 7088 V1.multiply(V2, APFloat::rmNearestTiesToEven); 7089 V1.add(V3, APFloat::rmNearestTiesToEven); 7090 } else 7091 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 7092 return getConstantFP(V1, DL, VT); 7093 } 7094 break; 7095 } 7096 case ISD::BUILD_VECTOR: { 7097 // Attempt to simplify BUILD_VECTOR. 7098 SDValue Ops[] = {N1, N2, N3}; 7099 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7100 return V; 7101 break; 7102 } 7103 case ISD::CONCAT_VECTORS: { 7104 SDValue Ops[] = {N1, N2, N3}; 7105 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7106 return V; 7107 break; 7108 } 7109 case ISD::SETCC: { 7110 assert(VT.isInteger() && "SETCC result type must be an integer!"); 7111 assert(N1.getValueType() == N2.getValueType() && 7112 "SETCC operands must have the same type!"); 7113 assert(VT.isVector() == N1.getValueType().isVector() && 7114 "SETCC type should be vector iff the operand type is vector!"); 7115 assert((!VT.isVector() || VT.getVectorElementCount() == 7116 N1.getValueType().getVectorElementCount()) && 7117 "SETCC vector element counts must match!"); 7118 // Use FoldSetCC to simplify SETCC's. 7119 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 7120 return V; 7121 // Vector constant folding. 7122 SDValue Ops[] = {N1, N2, N3}; 7123 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 7124 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 7125 return V; 7126 } 7127 break; 7128 } 7129 case ISD::SELECT: 7130 case ISD::VSELECT: 7131 if (SDValue V = simplifySelect(N1, N2, N3)) 7132 return V; 7133 break; 7134 case ISD::VECTOR_SHUFFLE: 7135 llvm_unreachable("should use getVectorShuffle constructor!"); 7136 case ISD::VECTOR_SPLICE: { 7137 if (cast<ConstantSDNode>(N3)->isZero()) 7138 return N1; 7139 break; 7140 } 7141 case ISD::INSERT_VECTOR_ELT: { 7142 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 7143 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 7144 // for scalable vectors where we will generate appropriate code to 7145 // deal with out-of-bounds cases correctly. 7146 if (N3C && N1.getValueType().isFixedLengthVector() && 7147 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 7148 return getUNDEF(VT); 7149 7150 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 7151 if (N3.isUndef()) 7152 return getUNDEF(VT); 7153 7154 // If the inserted element is an UNDEF, just use the input vector. 7155 if (N2.isUndef()) 7156 return N1; 7157 7158 break; 7159 } 7160 case ISD::INSERT_SUBVECTOR: { 7161 // Inserting undef into undef is still undef. 7162 if (N1.isUndef() && N2.isUndef()) 7163 return getUNDEF(VT); 7164 7165 EVT N2VT = N2.getValueType(); 7166 assert(VT == N1.getValueType() && 7167 "Dest and insert subvector source types must match!"); 7168 assert(VT.isVector() && N2VT.isVector() && 7169 "Insert subvector VTs must be vectors!"); 7170 assert(VT.getVectorElementType() == N2VT.getVectorElementType() && 7171 "Insert subvector VTs must have the same element type!"); 7172 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 7173 "Cannot insert a scalable vector into a fixed length vector!"); 7174 assert((VT.isScalableVector() != N2VT.isScalableVector() || 7175 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 7176 "Insert subvector must be from smaller vector to larger vector!"); 7177 assert(isa<ConstantSDNode>(N3) && 7178 "Insert subvector index must be constant"); 7179 assert((VT.isScalableVector() != N2VT.isScalableVector() || 7180 (N2VT.getVectorMinNumElements() + N3->getAsZExtVal()) <= 7181 VT.getVectorMinNumElements()) && 7182 "Insert subvector overflow!"); 7183 assert(N3->getAsAPIntVal().getBitWidth() == 7184 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 7185 "Constant index for INSERT_SUBVECTOR has an invalid size"); 7186 7187 // Trivial insertion. 7188 if (VT == N2VT) 7189 return N2; 7190 7191 // If this is an insert of an extracted vector into an undef vector, we 7192 // can just use the input to the extract. 7193 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 7194 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 7195 return N2.getOperand(0); 7196 break; 7197 } 7198 case ISD::BITCAST: 7199 // Fold bit_convert nodes from a type to themselves. 7200 if (N1.getValueType() == VT) 7201 return N1; 7202 break; 7203 case ISD::VP_TRUNCATE: 7204 case ISD::VP_SIGN_EXTEND: 7205 case ISD::VP_ZERO_EXTEND: 7206 // Don't create noop casts. 7207 if (N1.getValueType() == VT) 7208 return N1; 7209 break; 7210 } 7211 7212 // Memoize node if it doesn't produce a glue result. 7213 SDNode *N; 7214 SDVTList VTs = getVTList(VT); 7215 SDValue Ops[] = {N1, N2, N3}; 7216 if (VT != MVT::Glue) { 7217 FoldingSetNodeID ID; 7218 AddNodeIDNode(ID, Opcode, VTs, Ops); 7219 void *IP = nullptr; 7220 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 7221 E->intersectFlagsWith(Flags); 7222 return SDValue(E, 0); 7223 } 7224 7225 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7226 N->setFlags(Flags); 7227 createOperands(N, Ops); 7228 CSEMap.InsertNode(N, IP); 7229 } else { 7230 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7231 createOperands(N, Ops); 7232 } 7233 7234 InsertNode(N); 7235 SDValue V = SDValue(N, 0); 7236 NewSDValueDbgMsg(V, "Creating new node: ", this); 7237 return V; 7238 } 7239 7240 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7241 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7242 SDValue Ops[] = { N1, N2, N3, N4 }; 7243 return getNode(Opcode, DL, VT, Ops); 7244 } 7245 7246 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7247 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7248 SDValue N5) { 7249 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7250 return getNode(Opcode, DL, VT, Ops); 7251 } 7252 7253 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 7254 /// the incoming stack arguments to be loaded from the stack. 7255 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 7256 SmallVector<SDValue, 8> ArgChains; 7257 7258 // Include the original chain at the beginning of the list. When this is 7259 // used by target LowerCall hooks, this helps legalize find the 7260 // CALLSEQ_BEGIN node. 7261 ArgChains.push_back(Chain); 7262 7263 // Add a chain value for each stack argument. 7264 for (SDNode *U : getEntryNode().getNode()->uses()) 7265 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 7266 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 7267 if (FI->getIndex() < 0) 7268 ArgChains.push_back(SDValue(L, 1)); 7269 7270 // Build a tokenfactor for all the chains. 7271 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 7272 } 7273 7274 /// getMemsetValue - Vectorized representation of the memset value 7275 /// operand. 7276 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 7277 const SDLoc &dl) { 7278 assert(!Value.isUndef()); 7279 7280 unsigned NumBits = VT.getScalarSizeInBits(); 7281 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 7282 assert(C->getAPIntValue().getBitWidth() == 8); 7283 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 7284 if (VT.isInteger()) { 7285 bool IsOpaque = VT.getSizeInBits() > 64 || 7286 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 7287 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 7288 } 7289 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 7290 VT); 7291 } 7292 7293 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 7294 EVT IntVT = VT.getScalarType(); 7295 if (!IntVT.isInteger()) 7296 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 7297 7298 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 7299 if (NumBits > 8) { 7300 // Use a multiplication with 0x010101... to extend the input to the 7301 // required length. 7302 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 7303 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 7304 DAG.getConstant(Magic, dl, IntVT)); 7305 } 7306 7307 if (VT != Value.getValueType() && !VT.isInteger()) 7308 Value = DAG.getBitcast(VT.getScalarType(), Value); 7309 if (VT != Value.getValueType()) 7310 Value = DAG.getSplatBuildVector(VT, dl, Value); 7311 7312 return Value; 7313 } 7314 7315 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 7316 /// used when a memcpy is turned into a memset when the source is a constant 7317 /// string ptr. 7318 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 7319 const TargetLowering &TLI, 7320 const ConstantDataArraySlice &Slice) { 7321 // Handle vector with all elements zero. 7322 if (Slice.Array == nullptr) { 7323 if (VT.isInteger()) 7324 return DAG.getConstant(0, dl, VT); 7325 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 7326 return DAG.getConstantFP(0.0, dl, VT); 7327 if (VT.isVector()) { 7328 unsigned NumElts = VT.getVectorNumElements(); 7329 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 7330 return DAG.getNode(ISD::BITCAST, dl, VT, 7331 DAG.getConstant(0, dl, 7332 EVT::getVectorVT(*DAG.getContext(), 7333 EltVT, NumElts))); 7334 } 7335 llvm_unreachable("Expected type!"); 7336 } 7337 7338 assert(!VT.isVector() && "Can't handle vector type here!"); 7339 unsigned NumVTBits = VT.getSizeInBits(); 7340 unsigned NumVTBytes = NumVTBits / 8; 7341 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 7342 7343 APInt Val(NumVTBits, 0); 7344 if (DAG.getDataLayout().isLittleEndian()) { 7345 for (unsigned i = 0; i != NumBytes; ++i) 7346 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 7347 } else { 7348 for (unsigned i = 0; i != NumBytes; ++i) 7349 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 7350 } 7351 7352 // If the "cost" of materializing the integer immediate is less than the cost 7353 // of a load, then it is cost effective to turn the load into the immediate. 7354 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 7355 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 7356 return DAG.getConstant(Val, dl, VT); 7357 return SDValue(); 7358 } 7359 7360 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 7361 const SDLoc &DL, 7362 const SDNodeFlags Flags) { 7363 EVT VT = Base.getValueType(); 7364 SDValue Index; 7365 7366 if (Offset.isScalable()) 7367 Index = getVScale(DL, Base.getValueType(), 7368 APInt(Base.getValueSizeInBits().getFixedValue(), 7369 Offset.getKnownMinValue())); 7370 else 7371 Index = getConstant(Offset.getFixedValue(), DL, VT); 7372 7373 return getMemBasePlusOffset(Base, Index, DL, Flags); 7374 } 7375 7376 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 7377 const SDLoc &DL, 7378 const SDNodeFlags Flags) { 7379 assert(Offset.getValueType().isInteger()); 7380 EVT BasePtrVT = Ptr.getValueType(); 7381 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 7382 } 7383 7384 /// Returns true if memcpy source is constant data. 7385 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 7386 uint64_t SrcDelta = 0; 7387 GlobalAddressSDNode *G = nullptr; 7388 if (Src.getOpcode() == ISD::GlobalAddress) 7389 G = cast<GlobalAddressSDNode>(Src); 7390 else if (Src.getOpcode() == ISD::ADD && 7391 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 7392 Src.getOperand(1).getOpcode() == ISD::Constant) { 7393 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 7394 SrcDelta = Src.getConstantOperandVal(1); 7395 } 7396 if (!G) 7397 return false; 7398 7399 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 7400 SrcDelta + G->getOffset()); 7401 } 7402 7403 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 7404 SelectionDAG &DAG) { 7405 // On Darwin, -Os means optimize for size without hurting performance, so 7406 // only really optimize for size when -Oz (MinSize) is used. 7407 if (MF.getTarget().getTargetTriple().isOSDarwin()) 7408 return MF.getFunction().hasMinSize(); 7409 return DAG.shouldOptForSize(); 7410 } 7411 7412 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 7413 SmallVector<SDValue, 32> &OutChains, unsigned From, 7414 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 7415 SmallVector<SDValue, 16> &OutStoreChains) { 7416 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 7417 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 7418 SmallVector<SDValue, 16> GluedLoadChains; 7419 for (unsigned i = From; i < To; ++i) { 7420 OutChains.push_back(OutLoadChains[i]); 7421 GluedLoadChains.push_back(OutLoadChains[i]); 7422 } 7423 7424 // Chain for all loads. 7425 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 7426 GluedLoadChains); 7427 7428 for (unsigned i = From; i < To; ++i) { 7429 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 7430 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 7431 ST->getBasePtr(), ST->getMemoryVT(), 7432 ST->getMemOperand()); 7433 OutChains.push_back(NewStore); 7434 } 7435 } 7436 7437 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 7438 SDValue Chain, SDValue Dst, SDValue Src, 7439 uint64_t Size, Align Alignment, 7440 bool isVol, bool AlwaysInline, 7441 MachinePointerInfo DstPtrInfo, 7442 MachinePointerInfo SrcPtrInfo, 7443 const AAMDNodes &AAInfo, AAResults *AA) { 7444 // Turn a memcpy of undef to nop. 7445 // FIXME: We need to honor volatile even is Src is undef. 7446 if (Src.isUndef()) 7447 return Chain; 7448 7449 // Expand memcpy to a series of load and store ops if the size operand falls 7450 // below a certain threshold. 7451 // TODO: In the AlwaysInline case, if the size is big then generate a loop 7452 // rather than maybe a humongous number of loads and stores. 7453 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7454 const DataLayout &DL = DAG.getDataLayout(); 7455 LLVMContext &C = *DAG.getContext(); 7456 std::vector<EVT> MemOps; 7457 bool DstAlignCanChange = false; 7458 MachineFunction &MF = DAG.getMachineFunction(); 7459 MachineFrameInfo &MFI = MF.getFrameInfo(); 7460 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 7461 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 7462 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 7463 DstAlignCanChange = true; 7464 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 7465 if (!SrcAlign || Alignment > *SrcAlign) 7466 SrcAlign = Alignment; 7467 assert(SrcAlign && "SrcAlign must be set"); 7468 ConstantDataArraySlice Slice; 7469 // If marked as volatile, perform a copy even when marked as constant. 7470 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 7471 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 7472 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 7473 const MemOp Op = isZeroConstant 7474 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 7475 /*IsZeroMemset*/ true, isVol) 7476 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 7477 *SrcAlign, isVol, CopyFromConstant); 7478 if (!TLI.findOptimalMemOpLowering( 7479 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 7480 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 7481 return SDValue(); 7482 7483 if (DstAlignCanChange) { 7484 Type *Ty = MemOps[0].getTypeForEVT(C); 7485 Align NewAlign = DL.getABITypeAlign(Ty); 7486 7487 // Don't promote to an alignment that would require dynamic stack 7488 // realignment which may conflict with optimizations such as tail call 7489 // optimization. 7490 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 7491 if (!TRI->hasStackRealignment(MF)) 7492 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 7493 NewAlign = NewAlign.previous(); 7494 7495 if (NewAlign > Alignment) { 7496 // Give the stack frame object a larger alignment if needed. 7497 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 7498 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 7499 Alignment = NewAlign; 7500 } 7501 } 7502 7503 // Prepare AAInfo for loads/stores after lowering this memcpy. 7504 AAMDNodes NewAAInfo = AAInfo; 7505 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 7506 7507 const Value *SrcVal = dyn_cast_if_present<const Value *>(SrcPtrInfo.V); 7508 bool isConstant = 7509 AA && SrcVal && 7510 AA->pointsToConstantMemory(MemoryLocation(SrcVal, Size, AAInfo)); 7511 7512 MachineMemOperand::Flags MMOFlags = 7513 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 7514 SmallVector<SDValue, 16> OutLoadChains; 7515 SmallVector<SDValue, 16> OutStoreChains; 7516 SmallVector<SDValue, 32> OutChains; 7517 unsigned NumMemOps = MemOps.size(); 7518 uint64_t SrcOff = 0, DstOff = 0; 7519 for (unsigned i = 0; i != NumMemOps; ++i) { 7520 EVT VT = MemOps[i]; 7521 unsigned VTSize = VT.getSizeInBits() / 8; 7522 SDValue Value, Store; 7523 7524 if (VTSize > Size) { 7525 // Issuing an unaligned load / store pair that overlaps with the previous 7526 // pair. Adjust the offset accordingly. 7527 assert(i == NumMemOps-1 && i != 0); 7528 SrcOff -= VTSize - Size; 7529 DstOff -= VTSize - Size; 7530 } 7531 7532 if (CopyFromConstant && 7533 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 7534 // It's unlikely a store of a vector immediate can be done in a single 7535 // instruction. It would require a load from a constantpool first. 7536 // We only handle zero vectors here. 7537 // FIXME: Handle other cases where store of vector immediate is done in 7538 // a single instruction. 7539 ConstantDataArraySlice SubSlice; 7540 if (SrcOff < Slice.Length) { 7541 SubSlice = Slice; 7542 SubSlice.move(SrcOff); 7543 } else { 7544 // This is an out-of-bounds access and hence UB. Pretend we read zero. 7545 SubSlice.Array = nullptr; 7546 SubSlice.Offset = 0; 7547 SubSlice.Length = VTSize; 7548 } 7549 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 7550 if (Value.getNode()) { 7551 Store = DAG.getStore( 7552 Chain, dl, Value, 7553 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl), 7554 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 7555 OutChains.push_back(Store); 7556 } 7557 } 7558 7559 if (!Store.getNode()) { 7560 // The type might not be legal for the target. This should only happen 7561 // if the type is smaller than a legal type, as on PPC, so the right 7562 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 7563 // to Load/Store if NVT==VT. 7564 // FIXME does the case above also need this? 7565 EVT NVT = TLI.getTypeToTransformTo(C, VT); 7566 assert(NVT.bitsGE(VT)); 7567 7568 bool isDereferenceable = 7569 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 7570 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 7571 if (isDereferenceable) 7572 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 7573 if (isConstant) 7574 SrcMMOFlags |= MachineMemOperand::MOInvariant; 7575 7576 Value = DAG.getExtLoad( 7577 ISD::EXTLOAD, dl, NVT, Chain, 7578 DAG.getMemBasePlusOffset(Src, TypeSize::getFixed(SrcOff), dl), 7579 SrcPtrInfo.getWithOffset(SrcOff), VT, 7580 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 7581 OutLoadChains.push_back(Value.getValue(1)); 7582 7583 Store = DAG.getTruncStore( 7584 Chain, dl, Value, 7585 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl), 7586 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 7587 OutStoreChains.push_back(Store); 7588 } 7589 SrcOff += VTSize; 7590 DstOff += VTSize; 7591 Size -= VTSize; 7592 } 7593 7594 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 7595 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 7596 unsigned NumLdStInMemcpy = OutStoreChains.size(); 7597 7598 if (NumLdStInMemcpy) { 7599 // It may be that memcpy might be converted to memset if it's memcpy 7600 // of constants. In such a case, we won't have loads and stores, but 7601 // just stores. In the absence of loads, there is nothing to gang up. 7602 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 7603 // If target does not care, just leave as it. 7604 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 7605 OutChains.push_back(OutLoadChains[i]); 7606 OutChains.push_back(OutStoreChains[i]); 7607 } 7608 } else { 7609 // Ld/St less than/equal limit set by target. 7610 if (NumLdStInMemcpy <= GluedLdStLimit) { 7611 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 7612 NumLdStInMemcpy, OutLoadChains, 7613 OutStoreChains); 7614 } else { 7615 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 7616 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 7617 unsigned GlueIter = 0; 7618 7619 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 7620 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 7621 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 7622 7623 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 7624 OutLoadChains, OutStoreChains); 7625 GlueIter += GluedLdStLimit; 7626 } 7627 7628 // Residual ld/st. 7629 if (RemainingLdStInMemcpy) { 7630 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 7631 RemainingLdStInMemcpy, OutLoadChains, 7632 OutStoreChains); 7633 } 7634 } 7635 } 7636 } 7637 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 7638 } 7639 7640 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 7641 SDValue Chain, SDValue Dst, SDValue Src, 7642 uint64_t Size, Align Alignment, 7643 bool isVol, bool AlwaysInline, 7644 MachinePointerInfo DstPtrInfo, 7645 MachinePointerInfo SrcPtrInfo, 7646 const AAMDNodes &AAInfo) { 7647 // Turn a memmove of undef to nop. 7648 // FIXME: We need to honor volatile even is Src is undef. 7649 if (Src.isUndef()) 7650 return Chain; 7651 7652 // Expand memmove to a series of load and store ops if the size operand falls 7653 // below a certain threshold. 7654 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7655 const DataLayout &DL = DAG.getDataLayout(); 7656 LLVMContext &C = *DAG.getContext(); 7657 std::vector<EVT> MemOps; 7658 bool DstAlignCanChange = false; 7659 MachineFunction &MF = DAG.getMachineFunction(); 7660 MachineFrameInfo &MFI = MF.getFrameInfo(); 7661 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 7662 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 7663 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 7664 DstAlignCanChange = true; 7665 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 7666 if (!SrcAlign || Alignment > *SrcAlign) 7667 SrcAlign = Alignment; 7668 assert(SrcAlign && "SrcAlign must be set"); 7669 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 7670 if (!TLI.findOptimalMemOpLowering( 7671 MemOps, Limit, 7672 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 7673 /*IsVolatile*/ true), 7674 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 7675 MF.getFunction().getAttributes())) 7676 return SDValue(); 7677 7678 if (DstAlignCanChange) { 7679 Type *Ty = MemOps[0].getTypeForEVT(C); 7680 Align NewAlign = DL.getABITypeAlign(Ty); 7681 7682 // Don't promote to an alignment that would require dynamic stack 7683 // realignment which may conflict with optimizations such as tail call 7684 // optimization. 7685 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 7686 if (!TRI->hasStackRealignment(MF)) 7687 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 7688 NewAlign = NewAlign.previous(); 7689 7690 if (NewAlign > Alignment) { 7691 // Give the stack frame object a larger alignment if needed. 7692 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 7693 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 7694 Alignment = NewAlign; 7695 } 7696 } 7697 7698 // Prepare AAInfo for loads/stores after lowering this memmove. 7699 AAMDNodes NewAAInfo = AAInfo; 7700 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 7701 7702 MachineMemOperand::Flags MMOFlags = 7703 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 7704 uint64_t SrcOff = 0, DstOff = 0; 7705 SmallVector<SDValue, 8> LoadValues; 7706 SmallVector<SDValue, 8> LoadChains; 7707 SmallVector<SDValue, 8> OutChains; 7708 unsigned NumMemOps = MemOps.size(); 7709 for (unsigned i = 0; i < NumMemOps; i++) { 7710 EVT VT = MemOps[i]; 7711 unsigned VTSize = VT.getSizeInBits() / 8; 7712 SDValue Value; 7713 7714 bool isDereferenceable = 7715 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 7716 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 7717 if (isDereferenceable) 7718 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 7719 7720 Value = DAG.getLoad( 7721 VT, dl, Chain, 7722 DAG.getMemBasePlusOffset(Src, TypeSize::getFixed(SrcOff), dl), 7723 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 7724 LoadValues.push_back(Value); 7725 LoadChains.push_back(Value.getValue(1)); 7726 SrcOff += VTSize; 7727 } 7728 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7729 OutChains.clear(); 7730 for (unsigned i = 0; i < NumMemOps; i++) { 7731 EVT VT = MemOps[i]; 7732 unsigned VTSize = VT.getSizeInBits() / 8; 7733 SDValue Store; 7734 7735 Store = DAG.getStore( 7736 Chain, dl, LoadValues[i], 7737 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl), 7738 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 7739 OutChains.push_back(Store); 7740 DstOff += VTSize; 7741 } 7742 7743 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 7744 } 7745 7746 /// Lower the call to 'memset' intrinsic function into a series of store 7747 /// operations. 7748 /// 7749 /// \param DAG Selection DAG where lowered code is placed. 7750 /// \param dl Link to corresponding IR location. 7751 /// \param Chain Control flow dependency. 7752 /// \param Dst Pointer to destination memory location. 7753 /// \param Src Value of byte to write into the memory. 7754 /// \param Size Number of bytes to write. 7755 /// \param Alignment Alignment of the destination in bytes. 7756 /// \param isVol True if destination is volatile. 7757 /// \param AlwaysInline Makes sure no function call is generated. 7758 /// \param DstPtrInfo IR information on the memory pointer. 7759 /// \returns New head in the control flow, if lowering was successful, empty 7760 /// SDValue otherwise. 7761 /// 7762 /// The function tries to replace 'llvm.memset' intrinsic with several store 7763 /// operations and value calculation code. This is usually profitable for small 7764 /// memory size or when the semantic requires inlining. 7765 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 7766 SDValue Chain, SDValue Dst, SDValue Src, 7767 uint64_t Size, Align Alignment, bool isVol, 7768 bool AlwaysInline, MachinePointerInfo DstPtrInfo, 7769 const AAMDNodes &AAInfo) { 7770 // Turn a memset of undef to nop. 7771 // FIXME: We need to honor volatile even is Src is undef. 7772 if (Src.isUndef()) 7773 return Chain; 7774 7775 // Expand memset to a series of load/store ops if the size operand 7776 // falls below a certain threshold. 7777 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7778 std::vector<EVT> MemOps; 7779 bool DstAlignCanChange = false; 7780 MachineFunction &MF = DAG.getMachineFunction(); 7781 MachineFrameInfo &MFI = MF.getFrameInfo(); 7782 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 7783 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 7784 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 7785 DstAlignCanChange = true; 7786 bool IsZeroVal = isNullConstant(Src); 7787 unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize); 7788 7789 if (!TLI.findOptimalMemOpLowering( 7790 MemOps, Limit, 7791 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 7792 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 7793 return SDValue(); 7794 7795 if (DstAlignCanChange) { 7796 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 7797 const DataLayout &DL = DAG.getDataLayout(); 7798 Align NewAlign = DL.getABITypeAlign(Ty); 7799 7800 // Don't promote to an alignment that would require dynamic stack 7801 // realignment which may conflict with optimizations such as tail call 7802 // optimization. 7803 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 7804 if (!TRI->hasStackRealignment(MF)) 7805 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 7806 NewAlign = NewAlign.previous(); 7807 7808 if (NewAlign > Alignment) { 7809 // Give the stack frame object a larger alignment if needed. 7810 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 7811 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 7812 Alignment = NewAlign; 7813 } 7814 } 7815 7816 SmallVector<SDValue, 8> OutChains; 7817 uint64_t DstOff = 0; 7818 unsigned NumMemOps = MemOps.size(); 7819 7820 // Find the largest store and generate the bit pattern for it. 7821 EVT LargestVT = MemOps[0]; 7822 for (unsigned i = 1; i < NumMemOps; i++) 7823 if (MemOps[i].bitsGT(LargestVT)) 7824 LargestVT = MemOps[i]; 7825 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 7826 7827 // Prepare AAInfo for loads/stores after lowering this memset. 7828 AAMDNodes NewAAInfo = AAInfo; 7829 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 7830 7831 for (unsigned i = 0; i < NumMemOps; i++) { 7832 EVT VT = MemOps[i]; 7833 unsigned VTSize = VT.getSizeInBits() / 8; 7834 if (VTSize > Size) { 7835 // Issuing an unaligned load / store pair that overlaps with the previous 7836 // pair. Adjust the offset accordingly. 7837 assert(i == NumMemOps-1 && i != 0); 7838 DstOff -= VTSize - Size; 7839 } 7840 7841 // If this store is smaller than the largest store see whether we can get 7842 // the smaller value for free with a truncate or extract vector element and 7843 // then store. 7844 SDValue Value = MemSetValue; 7845 if (VT.bitsLT(LargestVT)) { 7846 unsigned Index; 7847 unsigned NElts = LargestVT.getSizeInBits() / VT.getSizeInBits(); 7848 EVT SVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), NElts); 7849 if (!LargestVT.isVector() && !VT.isVector() && 7850 TLI.isTruncateFree(LargestVT, VT)) 7851 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 7852 else if (LargestVT.isVector() && !VT.isVector() && 7853 TLI.shallExtractConstSplatVectorElementToStore( 7854 LargestVT.getTypeForEVT(*DAG.getContext()), 7855 VT.getSizeInBits(), Index) && 7856 TLI.isTypeLegal(SVT) && 7857 LargestVT.getSizeInBits() == SVT.getSizeInBits()) { 7858 // Target which can combine store(extractelement VectorTy, Idx) can get 7859 // the smaller value for free. 7860 SDValue TailValue = DAG.getNode(ISD::BITCAST, dl, SVT, MemSetValue); 7861 Value = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, TailValue, 7862 DAG.getVectorIdxConstant(Index, dl)); 7863 } else 7864 Value = getMemsetValue(Src, VT, DAG, dl); 7865 } 7866 assert(Value.getValueType() == VT && "Value with wrong type."); 7867 SDValue Store = DAG.getStore( 7868 Chain, dl, Value, 7869 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl), 7870 DstPtrInfo.getWithOffset(DstOff), Alignment, 7871 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 7872 NewAAInfo); 7873 OutChains.push_back(Store); 7874 DstOff += VT.getSizeInBits() / 8; 7875 Size -= VTSize; 7876 } 7877 7878 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 7879 } 7880 7881 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 7882 unsigned AS) { 7883 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 7884 // pointer operands can be losslessly bitcasted to pointers of address space 0 7885 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 7886 report_fatal_error("cannot lower memory intrinsic in address space " + 7887 Twine(AS)); 7888 } 7889 } 7890 7891 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 7892 SDValue Src, SDValue Size, Align Alignment, 7893 bool isVol, bool AlwaysInline, bool isTailCall, 7894 MachinePointerInfo DstPtrInfo, 7895 MachinePointerInfo SrcPtrInfo, 7896 const AAMDNodes &AAInfo, AAResults *AA) { 7897 // Check to see if we should lower the memcpy to loads and stores first. 7898 // For cases within the target-specified limits, this is the best choice. 7899 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7900 if (ConstantSize) { 7901 // Memcpy with size zero? Just return the original chain. 7902 if (ConstantSize->isZero()) 7903 return Chain; 7904 7905 SDValue Result = getMemcpyLoadsAndStores( 7906 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7907 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo, AA); 7908 if (Result.getNode()) 7909 return Result; 7910 } 7911 7912 // Then check to see if we should lower the memcpy with target-specific 7913 // code. If the target chooses to do this, this is the next best. 7914 if (TSI) { 7915 SDValue Result = TSI->EmitTargetCodeForMemcpy( 7916 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 7917 DstPtrInfo, SrcPtrInfo); 7918 if (Result.getNode()) 7919 return Result; 7920 } 7921 7922 // If we really need inline code and the target declined to provide it, 7923 // use a (potentially long) sequence of loads and stores. 7924 if (AlwaysInline) { 7925 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7926 return getMemcpyLoadsAndStores( 7927 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7928 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo, AA); 7929 } 7930 7931 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7932 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7933 7934 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 7935 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 7936 // respect volatile, so they may do things like read or write memory 7937 // beyond the given memory regions. But fixing this isn't easy, and most 7938 // people don't care. 7939 7940 // Emit a library call. 7941 TargetLowering::ArgListTy Args; 7942 TargetLowering::ArgListEntry Entry; 7943 Entry.Ty = PointerType::getUnqual(*getContext()); 7944 Entry.Node = Dst; Args.push_back(Entry); 7945 Entry.Node = Src; Args.push_back(Entry); 7946 7947 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7948 Entry.Node = Size; Args.push_back(Entry); 7949 // FIXME: pass in SDLoc 7950 TargetLowering::CallLoweringInfo CLI(*this); 7951 CLI.setDebugLoc(dl) 7952 .setChain(Chain) 7953 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 7954 Dst.getValueType().getTypeForEVT(*getContext()), 7955 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 7956 TLI->getPointerTy(getDataLayout())), 7957 std::move(Args)) 7958 .setDiscardResult() 7959 .setTailCall(isTailCall); 7960 7961 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7962 return CallResult.second; 7963 } 7964 7965 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 7966 SDValue Dst, SDValue Src, SDValue Size, 7967 Type *SizeTy, unsigned ElemSz, 7968 bool isTailCall, 7969 MachinePointerInfo DstPtrInfo, 7970 MachinePointerInfo SrcPtrInfo) { 7971 // Emit a library call. 7972 TargetLowering::ArgListTy Args; 7973 TargetLowering::ArgListEntry Entry; 7974 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7975 Entry.Node = Dst; 7976 Args.push_back(Entry); 7977 7978 Entry.Node = Src; 7979 Args.push_back(Entry); 7980 7981 Entry.Ty = SizeTy; 7982 Entry.Node = Size; 7983 Args.push_back(Entry); 7984 7985 RTLIB::Libcall LibraryCall = 7986 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7987 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7988 report_fatal_error("Unsupported element size"); 7989 7990 TargetLowering::CallLoweringInfo CLI(*this); 7991 CLI.setDebugLoc(dl) 7992 .setChain(Chain) 7993 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7994 Type::getVoidTy(*getContext()), 7995 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7996 TLI->getPointerTy(getDataLayout())), 7997 std::move(Args)) 7998 .setDiscardResult() 7999 .setTailCall(isTailCall); 8000 8001 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 8002 return CallResult.second; 8003 } 8004 8005 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 8006 SDValue Src, SDValue Size, Align Alignment, 8007 bool isVol, bool isTailCall, 8008 MachinePointerInfo DstPtrInfo, 8009 MachinePointerInfo SrcPtrInfo, 8010 const AAMDNodes &AAInfo, AAResults *AA) { 8011 // Check to see if we should lower the memmove to loads and stores first. 8012 // For cases within the target-specified limits, this is the best choice. 8013 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 8014 if (ConstantSize) { 8015 // Memmove with size zero? Just return the original chain. 8016 if (ConstantSize->isZero()) 8017 return Chain; 8018 8019 SDValue Result = getMemmoveLoadsAndStores( 8020 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 8021 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 8022 if (Result.getNode()) 8023 return Result; 8024 } 8025 8026 // Then check to see if we should lower the memmove with target-specific 8027 // code. If the target chooses to do this, this is the next best. 8028 if (TSI) { 8029 SDValue Result = 8030 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 8031 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 8032 if (Result.getNode()) 8033 return Result; 8034 } 8035 8036 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 8037 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 8038 8039 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 8040 // not be safe. See memcpy above for more details. 8041 8042 // Emit a library call. 8043 TargetLowering::ArgListTy Args; 8044 TargetLowering::ArgListEntry Entry; 8045 Entry.Ty = PointerType::getUnqual(*getContext()); 8046 Entry.Node = Dst; Args.push_back(Entry); 8047 Entry.Node = Src; Args.push_back(Entry); 8048 8049 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 8050 Entry.Node = Size; Args.push_back(Entry); 8051 // FIXME: pass in SDLoc 8052 TargetLowering::CallLoweringInfo CLI(*this); 8053 CLI.setDebugLoc(dl) 8054 .setChain(Chain) 8055 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 8056 Dst.getValueType().getTypeForEVT(*getContext()), 8057 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 8058 TLI->getPointerTy(getDataLayout())), 8059 std::move(Args)) 8060 .setDiscardResult() 8061 .setTailCall(isTailCall); 8062 8063 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 8064 return CallResult.second; 8065 } 8066 8067 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 8068 SDValue Dst, SDValue Src, SDValue Size, 8069 Type *SizeTy, unsigned ElemSz, 8070 bool isTailCall, 8071 MachinePointerInfo DstPtrInfo, 8072 MachinePointerInfo SrcPtrInfo) { 8073 // Emit a library call. 8074 TargetLowering::ArgListTy Args; 8075 TargetLowering::ArgListEntry Entry; 8076 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 8077 Entry.Node = Dst; 8078 Args.push_back(Entry); 8079 8080 Entry.Node = Src; 8081 Args.push_back(Entry); 8082 8083 Entry.Ty = SizeTy; 8084 Entry.Node = Size; 8085 Args.push_back(Entry); 8086 8087 RTLIB::Libcall LibraryCall = 8088 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 8089 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 8090 report_fatal_error("Unsupported element size"); 8091 8092 TargetLowering::CallLoweringInfo CLI(*this); 8093 CLI.setDebugLoc(dl) 8094 .setChain(Chain) 8095 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 8096 Type::getVoidTy(*getContext()), 8097 getExternalSymbol(TLI->getLibcallName(LibraryCall), 8098 TLI->getPointerTy(getDataLayout())), 8099 std::move(Args)) 8100 .setDiscardResult() 8101 .setTailCall(isTailCall); 8102 8103 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 8104 return CallResult.second; 8105 } 8106 8107 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 8108 SDValue Src, SDValue Size, Align Alignment, 8109 bool isVol, bool AlwaysInline, bool isTailCall, 8110 MachinePointerInfo DstPtrInfo, 8111 const AAMDNodes &AAInfo) { 8112 // Check to see if we should lower the memset to stores first. 8113 // For cases within the target-specified limits, this is the best choice. 8114 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 8115 if (ConstantSize) { 8116 // Memset with size zero? Just return the original chain. 8117 if (ConstantSize->isZero()) 8118 return Chain; 8119 8120 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 8121 ConstantSize->getZExtValue(), Alignment, 8122 isVol, false, DstPtrInfo, AAInfo); 8123 8124 if (Result.getNode()) 8125 return Result; 8126 } 8127 8128 // Then check to see if we should lower the memset with target-specific 8129 // code. If the target chooses to do this, this is the next best. 8130 if (TSI) { 8131 SDValue Result = TSI->EmitTargetCodeForMemset( 8132 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo); 8133 if (Result.getNode()) 8134 return Result; 8135 } 8136 8137 // If we really need inline code and the target declined to provide it, 8138 // use a (potentially long) sequence of loads and stores. 8139 if (AlwaysInline) { 8140 assert(ConstantSize && "AlwaysInline requires a constant size!"); 8141 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 8142 ConstantSize->getZExtValue(), Alignment, 8143 isVol, true, DstPtrInfo, AAInfo); 8144 assert(Result && 8145 "getMemsetStores must return a valid sequence when AlwaysInline"); 8146 return Result; 8147 } 8148 8149 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 8150 8151 // Emit a library call. 8152 auto &Ctx = *getContext(); 8153 const auto& DL = getDataLayout(); 8154 8155 TargetLowering::CallLoweringInfo CLI(*this); 8156 // FIXME: pass in SDLoc 8157 CLI.setDebugLoc(dl).setChain(Chain); 8158 8159 const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO); 8160 8161 // Helper function to create an Entry from Node and Type. 8162 const auto CreateEntry = [](SDValue Node, Type *Ty) { 8163 TargetLowering::ArgListEntry Entry; 8164 Entry.Node = Node; 8165 Entry.Ty = Ty; 8166 return Entry; 8167 }; 8168 8169 // If zeroing out and bzero is present, use it. 8170 if (isNullConstant(Src) && BzeroName) { 8171 TargetLowering::ArgListTy Args; 8172 Args.push_back(CreateEntry(Dst, PointerType::getUnqual(Ctx))); 8173 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx))); 8174 CLI.setLibCallee( 8175 TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx), 8176 getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args)); 8177 } else { 8178 TargetLowering::ArgListTy Args; 8179 Args.push_back(CreateEntry(Dst, PointerType::getUnqual(Ctx))); 8180 Args.push_back(CreateEntry(Src, Src.getValueType().getTypeForEVT(Ctx))); 8181 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx))); 8182 CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 8183 Dst.getValueType().getTypeForEVT(Ctx), 8184 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 8185 TLI->getPointerTy(DL)), 8186 std::move(Args)); 8187 } 8188 8189 CLI.setDiscardResult().setTailCall(isTailCall); 8190 8191 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 8192 return CallResult.second; 8193 } 8194 8195 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 8196 SDValue Dst, SDValue Value, SDValue Size, 8197 Type *SizeTy, unsigned ElemSz, 8198 bool isTailCall, 8199 MachinePointerInfo DstPtrInfo) { 8200 // Emit a library call. 8201 TargetLowering::ArgListTy Args; 8202 TargetLowering::ArgListEntry Entry; 8203 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 8204 Entry.Node = Dst; 8205 Args.push_back(Entry); 8206 8207 Entry.Ty = Type::getInt8Ty(*getContext()); 8208 Entry.Node = Value; 8209 Args.push_back(Entry); 8210 8211 Entry.Ty = SizeTy; 8212 Entry.Node = Size; 8213 Args.push_back(Entry); 8214 8215 RTLIB::Libcall LibraryCall = 8216 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 8217 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 8218 report_fatal_error("Unsupported element size"); 8219 8220 TargetLowering::CallLoweringInfo CLI(*this); 8221 CLI.setDebugLoc(dl) 8222 .setChain(Chain) 8223 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 8224 Type::getVoidTy(*getContext()), 8225 getExternalSymbol(TLI->getLibcallName(LibraryCall), 8226 TLI->getPointerTy(getDataLayout())), 8227 std::move(Args)) 8228 .setDiscardResult() 8229 .setTailCall(isTailCall); 8230 8231 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 8232 return CallResult.second; 8233 } 8234 8235 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 8236 SDVTList VTList, ArrayRef<SDValue> Ops, 8237 MachineMemOperand *MMO) { 8238 FoldingSetNodeID ID; 8239 ID.AddInteger(MemVT.getRawBits()); 8240 AddNodeIDNode(ID, Opcode, VTList, Ops); 8241 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8242 ID.AddInteger(MMO->getFlags()); 8243 void* IP = nullptr; 8244 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8245 cast<AtomicSDNode>(E)->refineAlignment(MMO); 8246 return SDValue(E, 0); 8247 } 8248 8249 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 8250 VTList, MemVT, MMO); 8251 createOperands(N, Ops); 8252 8253 CSEMap.InsertNode(N, IP); 8254 InsertNode(N); 8255 return SDValue(N, 0); 8256 } 8257 8258 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 8259 EVT MemVT, SDVTList VTs, SDValue Chain, 8260 SDValue Ptr, SDValue Cmp, SDValue Swp, 8261 MachineMemOperand *MMO) { 8262 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 8263 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 8264 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 8265 8266 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 8267 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 8268 } 8269 8270 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 8271 SDValue Chain, SDValue Ptr, SDValue Val, 8272 MachineMemOperand *MMO) { 8273 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 8274 Opcode == ISD::ATOMIC_LOAD_SUB || 8275 Opcode == ISD::ATOMIC_LOAD_AND || 8276 Opcode == ISD::ATOMIC_LOAD_CLR || 8277 Opcode == ISD::ATOMIC_LOAD_OR || 8278 Opcode == ISD::ATOMIC_LOAD_XOR || 8279 Opcode == ISD::ATOMIC_LOAD_NAND || 8280 Opcode == ISD::ATOMIC_LOAD_MIN || 8281 Opcode == ISD::ATOMIC_LOAD_MAX || 8282 Opcode == ISD::ATOMIC_LOAD_UMIN || 8283 Opcode == ISD::ATOMIC_LOAD_UMAX || 8284 Opcode == ISD::ATOMIC_LOAD_FADD || 8285 Opcode == ISD::ATOMIC_LOAD_FSUB || 8286 Opcode == ISD::ATOMIC_LOAD_FMAX || 8287 Opcode == ISD::ATOMIC_LOAD_FMIN || 8288 Opcode == ISD::ATOMIC_LOAD_UINC_WRAP || 8289 Opcode == ISD::ATOMIC_LOAD_UDEC_WRAP || 8290 Opcode == ISD::ATOMIC_SWAP || 8291 Opcode == ISD::ATOMIC_STORE) && 8292 "Invalid Atomic Op"); 8293 8294 EVT VT = Val.getValueType(); 8295 8296 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 8297 getVTList(VT, MVT::Other); 8298 SDValue Ops[] = {Chain, Ptr, Val}; 8299 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 8300 } 8301 8302 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 8303 EVT VT, SDValue Chain, SDValue Ptr, 8304 MachineMemOperand *MMO) { 8305 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 8306 8307 SDVTList VTs = getVTList(VT, MVT::Other); 8308 SDValue Ops[] = {Chain, Ptr}; 8309 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 8310 } 8311 8312 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 8313 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 8314 if (Ops.size() == 1) 8315 return Ops[0]; 8316 8317 SmallVector<EVT, 4> VTs; 8318 VTs.reserve(Ops.size()); 8319 for (const SDValue &Op : Ops) 8320 VTs.push_back(Op.getValueType()); 8321 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 8322 } 8323 8324 SDValue SelectionDAG::getMemIntrinsicNode( 8325 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 8326 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 8327 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 8328 if (!Size && MemVT.isScalableVector()) 8329 Size = MemoryLocation::UnknownSize; 8330 else if (!Size) 8331 Size = MemVT.getStoreSize(); 8332 8333 MachineFunction &MF = getMachineFunction(); 8334 MachineMemOperand *MMO = 8335 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 8336 8337 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 8338 } 8339 8340 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 8341 SDVTList VTList, 8342 ArrayRef<SDValue> Ops, EVT MemVT, 8343 MachineMemOperand *MMO) { 8344 assert((Opcode == ISD::INTRINSIC_VOID || 8345 Opcode == ISD::INTRINSIC_W_CHAIN || 8346 Opcode == ISD::PREFETCH || 8347 (Opcode <= (unsigned)std::numeric_limits<int>::max() && 8348 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 8349 "Opcode is not a memory-accessing opcode!"); 8350 8351 // Memoize the node unless it returns a glue result. 8352 MemIntrinsicSDNode *N; 8353 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8354 FoldingSetNodeID ID; 8355 AddNodeIDNode(ID, Opcode, VTList, Ops); 8356 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 8357 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 8358 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8359 ID.AddInteger(MMO->getFlags()); 8360 ID.AddInteger(MemVT.getRawBits()); 8361 void *IP = nullptr; 8362 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8363 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 8364 return SDValue(E, 0); 8365 } 8366 8367 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 8368 VTList, MemVT, MMO); 8369 createOperands(N, Ops); 8370 8371 CSEMap.InsertNode(N, IP); 8372 } else { 8373 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 8374 VTList, MemVT, MMO); 8375 createOperands(N, Ops); 8376 } 8377 InsertNode(N); 8378 SDValue V(N, 0); 8379 NewSDValueDbgMsg(V, "Creating new node: ", this); 8380 return V; 8381 } 8382 8383 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 8384 SDValue Chain, int FrameIndex, 8385 int64_t Size, int64_t Offset) { 8386 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 8387 const auto VTs = getVTList(MVT::Other); 8388 SDValue Ops[2] = { 8389 Chain, 8390 getFrameIndex(FrameIndex, 8391 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 8392 true)}; 8393 8394 FoldingSetNodeID ID; 8395 AddNodeIDNode(ID, Opcode, VTs, Ops); 8396 ID.AddInteger(FrameIndex); 8397 ID.AddInteger(Size); 8398 ID.AddInteger(Offset); 8399 void *IP = nullptr; 8400 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 8401 return SDValue(E, 0); 8402 8403 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 8404 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 8405 createOperands(N, Ops); 8406 CSEMap.InsertNode(N, IP); 8407 InsertNode(N); 8408 SDValue V(N, 0); 8409 NewSDValueDbgMsg(V, "Creating new node: ", this); 8410 return V; 8411 } 8412 8413 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 8414 uint64_t Guid, uint64_t Index, 8415 uint32_t Attr) { 8416 const unsigned Opcode = ISD::PSEUDO_PROBE; 8417 const auto VTs = getVTList(MVT::Other); 8418 SDValue Ops[] = {Chain}; 8419 FoldingSetNodeID ID; 8420 AddNodeIDNode(ID, Opcode, VTs, Ops); 8421 ID.AddInteger(Guid); 8422 ID.AddInteger(Index); 8423 void *IP = nullptr; 8424 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 8425 return SDValue(E, 0); 8426 8427 auto *N = newSDNode<PseudoProbeSDNode>( 8428 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 8429 createOperands(N, Ops); 8430 CSEMap.InsertNode(N, IP); 8431 InsertNode(N); 8432 SDValue V(N, 0); 8433 NewSDValueDbgMsg(V, "Creating new node: ", this); 8434 return V; 8435 } 8436 8437 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 8438 /// MachinePointerInfo record from it. This is particularly useful because the 8439 /// code generator has many cases where it doesn't bother passing in a 8440 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 8441 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 8442 SelectionDAG &DAG, SDValue Ptr, 8443 int64_t Offset = 0) { 8444 // If this is FI+Offset, we can model it. 8445 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 8446 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 8447 FI->getIndex(), Offset); 8448 8449 // If this is (FI+Offset1)+Offset2, we can model it. 8450 if (Ptr.getOpcode() != ISD::ADD || 8451 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 8452 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 8453 return Info; 8454 8455 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 8456 return MachinePointerInfo::getFixedStack( 8457 DAG.getMachineFunction(), FI, 8458 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 8459 } 8460 8461 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 8462 /// MachinePointerInfo record from it. This is particularly useful because the 8463 /// code generator has many cases where it doesn't bother passing in a 8464 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 8465 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 8466 SelectionDAG &DAG, SDValue Ptr, 8467 SDValue OffsetOp) { 8468 // If the 'Offset' value isn't a constant, we can't handle this. 8469 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 8470 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 8471 if (OffsetOp.isUndef()) 8472 return InferPointerInfo(Info, DAG, Ptr); 8473 return Info; 8474 } 8475 8476 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 8477 EVT VT, const SDLoc &dl, SDValue Chain, 8478 SDValue Ptr, SDValue Offset, 8479 MachinePointerInfo PtrInfo, EVT MemVT, 8480 Align Alignment, 8481 MachineMemOperand::Flags MMOFlags, 8482 const AAMDNodes &AAInfo, const MDNode *Ranges) { 8483 assert(Chain.getValueType() == MVT::Other && 8484 "Invalid chain type"); 8485 8486 MMOFlags |= MachineMemOperand::MOLoad; 8487 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 8488 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 8489 // clients. 8490 if (PtrInfo.V.isNull()) 8491 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 8492 8493 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 8494 MachineFunction &MF = getMachineFunction(); 8495 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 8496 Alignment, AAInfo, Ranges); 8497 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 8498 } 8499 8500 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 8501 EVT VT, const SDLoc &dl, SDValue Chain, 8502 SDValue Ptr, SDValue Offset, EVT MemVT, 8503 MachineMemOperand *MMO) { 8504 if (VT == MemVT) { 8505 ExtType = ISD::NON_EXTLOAD; 8506 } else if (ExtType == ISD::NON_EXTLOAD) { 8507 assert(VT == MemVT && "Non-extending load from different memory type!"); 8508 } else { 8509 // Extending load. 8510 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 8511 "Should only be an extending load, not truncating!"); 8512 assert(VT.isInteger() == MemVT.isInteger() && 8513 "Cannot convert from FP to Int or Int -> FP!"); 8514 assert(VT.isVector() == MemVT.isVector() && 8515 "Cannot use an ext load to convert to or from a vector!"); 8516 assert((!VT.isVector() || 8517 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 8518 "Cannot use an ext load to change the number of vector elements!"); 8519 } 8520 8521 bool Indexed = AM != ISD::UNINDEXED; 8522 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 8523 8524 SDVTList VTs = Indexed ? 8525 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 8526 SDValue Ops[] = { Chain, Ptr, Offset }; 8527 FoldingSetNodeID ID; 8528 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 8529 ID.AddInteger(MemVT.getRawBits()); 8530 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 8531 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 8532 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8533 ID.AddInteger(MMO->getFlags()); 8534 void *IP = nullptr; 8535 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8536 cast<LoadSDNode>(E)->refineAlignment(MMO); 8537 return SDValue(E, 0); 8538 } 8539 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8540 ExtType, MemVT, MMO); 8541 createOperands(N, Ops); 8542 8543 CSEMap.InsertNode(N, IP); 8544 InsertNode(N); 8545 SDValue V(N, 0); 8546 NewSDValueDbgMsg(V, "Creating new node: ", this); 8547 return V; 8548 } 8549 8550 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8551 SDValue Ptr, MachinePointerInfo PtrInfo, 8552 MaybeAlign Alignment, 8553 MachineMemOperand::Flags MMOFlags, 8554 const AAMDNodes &AAInfo, const MDNode *Ranges) { 8555 SDValue Undef = getUNDEF(Ptr.getValueType()); 8556 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8557 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 8558 } 8559 8560 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8561 SDValue Ptr, MachineMemOperand *MMO) { 8562 SDValue Undef = getUNDEF(Ptr.getValueType()); 8563 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8564 VT, MMO); 8565 } 8566 8567 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 8568 EVT VT, SDValue Chain, SDValue Ptr, 8569 MachinePointerInfo PtrInfo, EVT MemVT, 8570 MaybeAlign Alignment, 8571 MachineMemOperand::Flags MMOFlags, 8572 const AAMDNodes &AAInfo) { 8573 SDValue Undef = getUNDEF(Ptr.getValueType()); 8574 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 8575 MemVT, Alignment, MMOFlags, AAInfo); 8576 } 8577 8578 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 8579 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 8580 MachineMemOperand *MMO) { 8581 SDValue Undef = getUNDEF(Ptr.getValueType()); 8582 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 8583 MemVT, MMO); 8584 } 8585 8586 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 8587 SDValue Base, SDValue Offset, 8588 ISD::MemIndexedMode AM) { 8589 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 8590 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 8591 // Don't propagate the invariant or dereferenceable flags. 8592 auto MMOFlags = 8593 LD->getMemOperand()->getFlags() & 8594 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8595 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 8596 LD->getChain(), Base, Offset, LD->getPointerInfo(), 8597 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 8598 } 8599 8600 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 8601 SDValue Ptr, MachinePointerInfo PtrInfo, 8602 Align Alignment, 8603 MachineMemOperand::Flags MMOFlags, 8604 const AAMDNodes &AAInfo) { 8605 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8606 8607 MMOFlags |= MachineMemOperand::MOStore; 8608 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8609 8610 if (PtrInfo.V.isNull()) 8611 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8612 8613 MachineFunction &MF = getMachineFunction(); 8614 uint64_t Size = 8615 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 8616 MachineMemOperand *MMO = 8617 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 8618 return getStore(Chain, dl, Val, Ptr, MMO); 8619 } 8620 8621 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 8622 SDValue Ptr, MachineMemOperand *MMO) { 8623 assert(Chain.getValueType() == MVT::Other && 8624 "Invalid chain type"); 8625 EVT VT = Val.getValueType(); 8626 SDVTList VTs = getVTList(MVT::Other); 8627 SDValue Undef = getUNDEF(Ptr.getValueType()); 8628 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 8629 FoldingSetNodeID ID; 8630 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 8631 ID.AddInteger(VT.getRawBits()); 8632 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 8633 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 8634 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8635 ID.AddInteger(MMO->getFlags()); 8636 void *IP = nullptr; 8637 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8638 cast<StoreSDNode>(E)->refineAlignment(MMO); 8639 return SDValue(E, 0); 8640 } 8641 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8642 ISD::UNINDEXED, false, VT, MMO); 8643 createOperands(N, Ops); 8644 8645 CSEMap.InsertNode(N, IP); 8646 InsertNode(N); 8647 SDValue V(N, 0); 8648 NewSDValueDbgMsg(V, "Creating new node: ", this); 8649 return V; 8650 } 8651 8652 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 8653 SDValue Ptr, MachinePointerInfo PtrInfo, 8654 EVT SVT, Align Alignment, 8655 MachineMemOperand::Flags MMOFlags, 8656 const AAMDNodes &AAInfo) { 8657 assert(Chain.getValueType() == MVT::Other && 8658 "Invalid chain type"); 8659 8660 MMOFlags |= MachineMemOperand::MOStore; 8661 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8662 8663 if (PtrInfo.V.isNull()) 8664 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8665 8666 MachineFunction &MF = getMachineFunction(); 8667 MachineMemOperand *MMO = MF.getMachineMemOperand( 8668 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 8669 Alignment, AAInfo); 8670 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 8671 } 8672 8673 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 8674 SDValue Ptr, EVT SVT, 8675 MachineMemOperand *MMO) { 8676 EVT VT = Val.getValueType(); 8677 8678 assert(Chain.getValueType() == MVT::Other && 8679 "Invalid chain type"); 8680 if (VT == SVT) 8681 return getStore(Chain, dl, Val, Ptr, MMO); 8682 8683 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8684 "Should only be a truncating store, not extending!"); 8685 assert(VT.isInteger() == SVT.isInteger() && 8686 "Can't do FP-INT conversion!"); 8687 assert(VT.isVector() == SVT.isVector() && 8688 "Cannot use trunc store to convert to or from a vector!"); 8689 assert((!VT.isVector() || 8690 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8691 "Cannot use trunc store to change the number of vector elements!"); 8692 8693 SDVTList VTs = getVTList(MVT::Other); 8694 SDValue Undef = getUNDEF(Ptr.getValueType()); 8695 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 8696 FoldingSetNodeID ID; 8697 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 8698 ID.AddInteger(SVT.getRawBits()); 8699 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 8700 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 8701 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8702 ID.AddInteger(MMO->getFlags()); 8703 void *IP = nullptr; 8704 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8705 cast<StoreSDNode>(E)->refineAlignment(MMO); 8706 return SDValue(E, 0); 8707 } 8708 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8709 ISD::UNINDEXED, true, SVT, MMO); 8710 createOperands(N, Ops); 8711 8712 CSEMap.InsertNode(N, IP); 8713 InsertNode(N); 8714 SDValue V(N, 0); 8715 NewSDValueDbgMsg(V, "Creating new node: ", this); 8716 return V; 8717 } 8718 8719 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 8720 SDValue Base, SDValue Offset, 8721 ISD::MemIndexedMode AM) { 8722 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 8723 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 8724 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8725 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 8726 FoldingSetNodeID ID; 8727 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 8728 ID.AddInteger(ST->getMemoryVT().getRawBits()); 8729 ID.AddInteger(ST->getRawSubclassData()); 8730 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 8731 ID.AddInteger(ST->getMemOperand()->getFlags()); 8732 void *IP = nullptr; 8733 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 8734 return SDValue(E, 0); 8735 8736 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8737 ST->isTruncatingStore(), ST->getMemoryVT(), 8738 ST->getMemOperand()); 8739 createOperands(N, Ops); 8740 8741 CSEMap.InsertNode(N, IP); 8742 InsertNode(N); 8743 SDValue V(N, 0); 8744 NewSDValueDbgMsg(V, "Creating new node: ", this); 8745 return V; 8746 } 8747 8748 SDValue SelectionDAG::getLoadVP( 8749 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 8750 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 8751 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 8752 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8753 const MDNode *Ranges, bool IsExpanding) { 8754 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8755 8756 MMOFlags |= MachineMemOperand::MOLoad; 8757 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 8758 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 8759 // clients. 8760 if (PtrInfo.V.isNull()) 8761 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 8762 8763 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 8764 MachineFunction &MF = getMachineFunction(); 8765 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 8766 Alignment, AAInfo, Ranges); 8767 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 8768 MMO, IsExpanding); 8769 } 8770 8771 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 8772 ISD::LoadExtType ExtType, EVT VT, 8773 const SDLoc &dl, SDValue Chain, SDValue Ptr, 8774 SDValue Offset, SDValue Mask, SDValue EVL, 8775 EVT MemVT, MachineMemOperand *MMO, 8776 bool IsExpanding) { 8777 bool Indexed = AM != ISD::UNINDEXED; 8778 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 8779 8780 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 8781 : getVTList(VT, MVT::Other); 8782 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 8783 FoldingSetNodeID ID; 8784 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 8785 ID.AddInteger(MemVT.getRawBits()); 8786 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 8787 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 8788 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8789 ID.AddInteger(MMO->getFlags()); 8790 void *IP = nullptr; 8791 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8792 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 8793 return SDValue(E, 0); 8794 } 8795 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8796 ExtType, IsExpanding, MemVT, MMO); 8797 createOperands(N, Ops); 8798 8799 CSEMap.InsertNode(N, IP); 8800 InsertNode(N); 8801 SDValue V(N, 0); 8802 NewSDValueDbgMsg(V, "Creating new node: ", this); 8803 return V; 8804 } 8805 8806 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 8807 SDValue Ptr, SDValue Mask, SDValue EVL, 8808 MachinePointerInfo PtrInfo, 8809 MaybeAlign Alignment, 8810 MachineMemOperand::Flags MMOFlags, 8811 const AAMDNodes &AAInfo, const MDNode *Ranges, 8812 bool IsExpanding) { 8813 SDValue Undef = getUNDEF(Ptr.getValueType()); 8814 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8815 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 8816 IsExpanding); 8817 } 8818 8819 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 8820 SDValue Ptr, SDValue Mask, SDValue EVL, 8821 MachineMemOperand *MMO, bool IsExpanding) { 8822 SDValue Undef = getUNDEF(Ptr.getValueType()); 8823 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8824 Mask, EVL, VT, MMO, IsExpanding); 8825 } 8826 8827 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8828 EVT VT, SDValue Chain, SDValue Ptr, 8829 SDValue Mask, SDValue EVL, 8830 MachinePointerInfo PtrInfo, EVT MemVT, 8831 MaybeAlign Alignment, 8832 MachineMemOperand::Flags MMOFlags, 8833 const AAMDNodes &AAInfo, bool IsExpanding) { 8834 SDValue Undef = getUNDEF(Ptr.getValueType()); 8835 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8836 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 8837 IsExpanding); 8838 } 8839 8840 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8841 EVT VT, SDValue Chain, SDValue Ptr, 8842 SDValue Mask, SDValue EVL, EVT MemVT, 8843 MachineMemOperand *MMO, bool IsExpanding) { 8844 SDValue Undef = getUNDEF(Ptr.getValueType()); 8845 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8846 EVL, MemVT, MMO, IsExpanding); 8847 } 8848 8849 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 8850 SDValue Base, SDValue Offset, 8851 ISD::MemIndexedMode AM) { 8852 auto *LD = cast<VPLoadSDNode>(OrigLoad); 8853 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 8854 // Don't propagate the invariant or dereferenceable flags. 8855 auto MMOFlags = 8856 LD->getMemOperand()->getFlags() & 8857 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8858 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 8859 LD->getChain(), Base, Offset, LD->getMask(), 8860 LD->getVectorLength(), LD->getPointerInfo(), 8861 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 8862 nullptr, LD->isExpandingLoad()); 8863 } 8864 8865 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 8866 SDValue Ptr, SDValue Offset, SDValue Mask, 8867 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, 8868 ISD::MemIndexedMode AM, bool IsTruncating, 8869 bool IsCompressing) { 8870 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8871 bool Indexed = AM != ISD::UNINDEXED; 8872 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8873 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8874 : getVTList(MVT::Other); 8875 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL}; 8876 FoldingSetNodeID ID; 8877 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8878 ID.AddInteger(MemVT.getRawBits()); 8879 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8880 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8881 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8882 ID.AddInteger(MMO->getFlags()); 8883 void *IP = nullptr; 8884 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8885 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8886 return SDValue(E, 0); 8887 } 8888 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8889 IsTruncating, IsCompressing, MemVT, MMO); 8890 createOperands(N, Ops); 8891 8892 CSEMap.InsertNode(N, IP); 8893 InsertNode(N); 8894 SDValue V(N, 0); 8895 NewSDValueDbgMsg(V, "Creating new node: ", this); 8896 return V; 8897 } 8898 8899 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8900 SDValue Val, SDValue Ptr, SDValue Mask, 8901 SDValue EVL, MachinePointerInfo PtrInfo, 8902 EVT SVT, Align Alignment, 8903 MachineMemOperand::Flags MMOFlags, 8904 const AAMDNodes &AAInfo, 8905 bool IsCompressing) { 8906 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8907 8908 MMOFlags |= MachineMemOperand::MOStore; 8909 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8910 8911 if (PtrInfo.V.isNull()) 8912 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8913 8914 MachineFunction &MF = getMachineFunction(); 8915 MachineMemOperand *MMO = MF.getMachineMemOperand( 8916 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 8917 Alignment, AAInfo); 8918 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 8919 IsCompressing); 8920 } 8921 8922 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8923 SDValue Val, SDValue Ptr, SDValue Mask, 8924 SDValue EVL, EVT SVT, 8925 MachineMemOperand *MMO, 8926 bool IsCompressing) { 8927 EVT VT = Val.getValueType(); 8928 8929 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8930 if (VT == SVT) 8931 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask, 8932 EVL, VT, MMO, ISD::UNINDEXED, 8933 /*IsTruncating*/ false, IsCompressing); 8934 8935 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8936 "Should only be a truncating store, not extending!"); 8937 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8938 assert(VT.isVector() == SVT.isVector() && 8939 "Cannot use trunc store to convert to or from a vector!"); 8940 assert((!VT.isVector() || 8941 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8942 "Cannot use trunc store to change the number of vector elements!"); 8943 8944 SDVTList VTs = getVTList(MVT::Other); 8945 SDValue Undef = getUNDEF(Ptr.getValueType()); 8946 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 8947 FoldingSetNodeID ID; 8948 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8949 ID.AddInteger(SVT.getRawBits()); 8950 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8951 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8952 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8953 ID.AddInteger(MMO->getFlags()); 8954 void *IP = nullptr; 8955 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8956 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8957 return SDValue(E, 0); 8958 } 8959 auto *N = 8960 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8961 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 8962 createOperands(N, Ops); 8963 8964 CSEMap.InsertNode(N, IP); 8965 InsertNode(N); 8966 SDValue V(N, 0); 8967 NewSDValueDbgMsg(V, "Creating new node: ", this); 8968 return V; 8969 } 8970 8971 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 8972 SDValue Base, SDValue Offset, 8973 ISD::MemIndexedMode AM) { 8974 auto *ST = cast<VPStoreSDNode>(OrigStore); 8975 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 8976 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8977 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 8978 Offset, ST->getMask(), ST->getVectorLength()}; 8979 FoldingSetNodeID ID; 8980 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8981 ID.AddInteger(ST->getMemoryVT().getRawBits()); 8982 ID.AddInteger(ST->getRawSubclassData()); 8983 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 8984 ID.AddInteger(ST->getMemOperand()->getFlags()); 8985 void *IP = nullptr; 8986 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 8987 return SDValue(E, 0); 8988 8989 auto *N = newSDNode<VPStoreSDNode>( 8990 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 8991 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 8992 createOperands(N, Ops); 8993 8994 CSEMap.InsertNode(N, IP); 8995 InsertNode(N); 8996 SDValue V(N, 0); 8997 NewSDValueDbgMsg(V, "Creating new node: ", this); 8998 return V; 8999 } 9000 9001 SDValue SelectionDAG::getStridedLoadVP( 9002 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 9003 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 9004 SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 9005 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 9006 const MDNode *Ranges, bool IsExpanding) { 9007 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 9008 9009 MMOFlags |= MachineMemOperand::MOLoad; 9010 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 9011 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 9012 // clients. 9013 if (PtrInfo.V.isNull()) 9014 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 9015 9016 uint64_t Size = MemoryLocation::UnknownSize; 9017 MachineFunction &MF = getMachineFunction(); 9018 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 9019 Alignment, AAInfo, Ranges); 9020 return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask, 9021 EVL, MemVT, MMO, IsExpanding); 9022 } 9023 9024 SDValue SelectionDAG::getStridedLoadVP( 9025 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 9026 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 9027 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) { 9028 bool Indexed = AM != ISD::UNINDEXED; 9029 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 9030 9031 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL}; 9032 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 9033 : getVTList(VT, MVT::Other); 9034 FoldingSetNodeID ID; 9035 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops); 9036 ID.AddInteger(VT.getRawBits()); 9037 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>( 9038 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 9039 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 9040 9041 void *IP = nullptr; 9042 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9043 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO); 9044 return SDValue(E, 0); 9045 } 9046 9047 auto *N = 9048 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM, 9049 ExtType, IsExpanding, MemVT, MMO); 9050 createOperands(N, Ops); 9051 CSEMap.InsertNode(N, IP); 9052 InsertNode(N); 9053 SDValue V(N, 0); 9054 NewSDValueDbgMsg(V, "Creating new node: ", this); 9055 return V; 9056 } 9057 9058 SDValue SelectionDAG::getStridedLoadVP( 9059 EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride, 9060 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment, 9061 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 9062 const MDNode *Ranges, bool IsExpanding) { 9063 SDValue Undef = getUNDEF(Ptr.getValueType()); 9064 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 9065 Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment, 9066 MMOFlags, AAInfo, Ranges, IsExpanding); 9067 } 9068 9069 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain, 9070 SDValue Ptr, SDValue Stride, 9071 SDValue Mask, SDValue EVL, 9072 MachineMemOperand *MMO, 9073 bool IsExpanding) { 9074 SDValue Undef = getUNDEF(Ptr.getValueType()); 9075 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 9076 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding); 9077 } 9078 9079 SDValue SelectionDAG::getExtStridedLoadVP( 9080 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 9081 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, 9082 MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, 9083 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 9084 bool IsExpanding) { 9085 SDValue Undef = getUNDEF(Ptr.getValueType()); 9086 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 9087 Stride, Mask, EVL, PtrInfo, MemVT, Alignment, 9088 MMOFlags, AAInfo, nullptr, IsExpanding); 9089 } 9090 9091 SDValue SelectionDAG::getExtStridedLoadVP( 9092 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 9093 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, 9094 MachineMemOperand *MMO, bool IsExpanding) { 9095 SDValue Undef = getUNDEF(Ptr.getValueType()); 9096 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 9097 Stride, Mask, EVL, MemVT, MMO, IsExpanding); 9098 } 9099 9100 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL, 9101 SDValue Base, SDValue Offset, 9102 ISD::MemIndexedMode AM) { 9103 auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad); 9104 assert(SLD->getOffset().isUndef() && 9105 "Strided load is already a indexed load!"); 9106 // Don't propagate the invariant or dereferenceable flags. 9107 auto MMOFlags = 9108 SLD->getMemOperand()->getFlags() & 9109 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 9110 return getStridedLoadVP( 9111 AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(), 9112 Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(), 9113 SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags, 9114 SLD->getAAInfo(), nullptr, SLD->isExpandingLoad()); 9115 } 9116 9117 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL, 9118 SDValue Val, SDValue Ptr, 9119 SDValue Offset, SDValue Stride, 9120 SDValue Mask, SDValue EVL, EVT MemVT, 9121 MachineMemOperand *MMO, 9122 ISD::MemIndexedMode AM, 9123 bool IsTruncating, bool IsCompressing) { 9124 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 9125 bool Indexed = AM != ISD::UNINDEXED; 9126 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 9127 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 9128 : getVTList(MVT::Other); 9129 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL}; 9130 FoldingSetNodeID ID; 9131 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 9132 ID.AddInteger(MemVT.getRawBits()); 9133 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 9134 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 9135 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 9136 void *IP = nullptr; 9137 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9138 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 9139 return SDValue(E, 0); 9140 } 9141 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 9142 VTs, AM, IsTruncating, 9143 IsCompressing, MemVT, MMO); 9144 createOperands(N, Ops); 9145 9146 CSEMap.InsertNode(N, IP); 9147 InsertNode(N); 9148 SDValue V(N, 0); 9149 NewSDValueDbgMsg(V, "Creating new node: ", this); 9150 return V; 9151 } 9152 9153 SDValue SelectionDAG::getTruncStridedStoreVP( 9154 SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, 9155 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, 9156 Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 9157 bool IsCompressing) { 9158 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 9159 9160 MMOFlags |= MachineMemOperand::MOStore; 9161 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 9162 9163 if (PtrInfo.V.isNull()) 9164 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 9165 9166 MachineFunction &MF = getMachineFunction(); 9167 MachineMemOperand *MMO = MF.getMachineMemOperand( 9168 PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo); 9169 return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT, 9170 MMO, IsCompressing); 9171 } 9172 9173 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, 9174 SDValue Val, SDValue Ptr, 9175 SDValue Stride, SDValue Mask, 9176 SDValue EVL, EVT SVT, 9177 MachineMemOperand *MMO, 9178 bool IsCompressing) { 9179 EVT VT = Val.getValueType(); 9180 9181 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 9182 if (VT == SVT) 9183 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()), 9184 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED, 9185 /*IsTruncating*/ false, IsCompressing); 9186 9187 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 9188 "Should only be a truncating store, not extending!"); 9189 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 9190 assert(VT.isVector() == SVT.isVector() && 9191 "Cannot use trunc store to convert to or from a vector!"); 9192 assert((!VT.isVector() || 9193 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 9194 "Cannot use trunc store to change the number of vector elements!"); 9195 9196 SDVTList VTs = getVTList(MVT::Other); 9197 SDValue Undef = getUNDEF(Ptr.getValueType()); 9198 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL}; 9199 FoldingSetNodeID ID; 9200 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 9201 ID.AddInteger(SVT.getRawBits()); 9202 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 9203 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 9204 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 9205 void *IP = nullptr; 9206 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9207 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 9208 return SDValue(E, 0); 9209 } 9210 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 9211 VTs, ISD::UNINDEXED, true, 9212 IsCompressing, SVT, MMO); 9213 createOperands(N, Ops); 9214 9215 CSEMap.InsertNode(N, IP); 9216 InsertNode(N); 9217 SDValue V(N, 0); 9218 NewSDValueDbgMsg(V, "Creating new node: ", this); 9219 return V; 9220 } 9221 9222 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore, 9223 const SDLoc &DL, SDValue Base, 9224 SDValue Offset, 9225 ISD::MemIndexedMode AM) { 9226 auto *SST = cast<VPStridedStoreSDNode>(OrigStore); 9227 assert(SST->getOffset().isUndef() && 9228 "Strided store is already an indexed store!"); 9229 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 9230 SDValue Ops[] = { 9231 SST->getChain(), SST->getValue(), Base, Offset, SST->getStride(), 9232 SST->getMask(), SST->getVectorLength()}; 9233 FoldingSetNodeID ID; 9234 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 9235 ID.AddInteger(SST->getMemoryVT().getRawBits()); 9236 ID.AddInteger(SST->getRawSubclassData()); 9237 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 9238 void *IP = nullptr; 9239 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 9240 return SDValue(E, 0); 9241 9242 auto *N = newSDNode<VPStridedStoreSDNode>( 9243 DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(), 9244 SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand()); 9245 createOperands(N, Ops); 9246 9247 CSEMap.InsertNode(N, IP); 9248 InsertNode(N); 9249 SDValue V(N, 0); 9250 NewSDValueDbgMsg(V, "Creating new node: ", this); 9251 return V; 9252 } 9253 9254 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 9255 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 9256 ISD::MemIndexType IndexType) { 9257 assert(Ops.size() == 6 && "Incompatible number of operands"); 9258 9259 FoldingSetNodeID ID; 9260 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 9261 ID.AddInteger(VT.getRawBits()); 9262 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 9263 dl.getIROrder(), VTs, VT, MMO, IndexType)); 9264 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 9265 ID.AddInteger(MMO->getFlags()); 9266 void *IP = nullptr; 9267 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 9268 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 9269 return SDValue(E, 0); 9270 } 9271 9272 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 9273 VT, MMO, IndexType); 9274 createOperands(N, Ops); 9275 9276 assert(N->getMask().getValueType().getVectorElementCount() == 9277 N->getValueType(0).getVectorElementCount() && 9278 "Vector width mismatch between mask and data"); 9279 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 9280 N->getValueType(0).getVectorElementCount().isScalable() && 9281 "Scalable flags of index and data do not match"); 9282 assert(ElementCount::isKnownGE( 9283 N->getIndex().getValueType().getVectorElementCount(), 9284 N->getValueType(0).getVectorElementCount()) && 9285 "Vector width mismatch between index and data"); 9286 assert(isa<ConstantSDNode>(N->getScale()) && 9287 N->getScale()->getAsAPIntVal().isPowerOf2() && 9288 "Scale should be a constant power of 2"); 9289 9290 CSEMap.InsertNode(N, IP); 9291 InsertNode(N); 9292 SDValue V(N, 0); 9293 NewSDValueDbgMsg(V, "Creating new node: ", this); 9294 return V; 9295 } 9296 9297 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 9298 ArrayRef<SDValue> Ops, 9299 MachineMemOperand *MMO, 9300 ISD::MemIndexType IndexType) { 9301 assert(Ops.size() == 7 && "Incompatible number of operands"); 9302 9303 FoldingSetNodeID ID; 9304 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 9305 ID.AddInteger(VT.getRawBits()); 9306 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 9307 dl.getIROrder(), VTs, VT, MMO, IndexType)); 9308 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 9309 ID.AddInteger(MMO->getFlags()); 9310 void *IP = nullptr; 9311 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 9312 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 9313 return SDValue(E, 0); 9314 } 9315 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 9316 VT, MMO, IndexType); 9317 createOperands(N, Ops); 9318 9319 assert(N->getMask().getValueType().getVectorElementCount() == 9320 N->getValue().getValueType().getVectorElementCount() && 9321 "Vector width mismatch between mask and data"); 9322 assert( 9323 N->getIndex().getValueType().getVectorElementCount().isScalable() == 9324 N->getValue().getValueType().getVectorElementCount().isScalable() && 9325 "Scalable flags of index and data do not match"); 9326 assert(ElementCount::isKnownGE( 9327 N->getIndex().getValueType().getVectorElementCount(), 9328 N->getValue().getValueType().getVectorElementCount()) && 9329 "Vector width mismatch between index and data"); 9330 assert(isa<ConstantSDNode>(N->getScale()) && 9331 N->getScale()->getAsAPIntVal().isPowerOf2() && 9332 "Scale should be a constant power of 2"); 9333 9334 CSEMap.InsertNode(N, IP); 9335 InsertNode(N); 9336 SDValue V(N, 0); 9337 NewSDValueDbgMsg(V, "Creating new node: ", this); 9338 return V; 9339 } 9340 9341 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 9342 SDValue Base, SDValue Offset, SDValue Mask, 9343 SDValue PassThru, EVT MemVT, 9344 MachineMemOperand *MMO, 9345 ISD::MemIndexedMode AM, 9346 ISD::LoadExtType ExtTy, bool isExpanding) { 9347 bool Indexed = AM != ISD::UNINDEXED; 9348 assert((Indexed || Offset.isUndef()) && 9349 "Unindexed masked load with an offset!"); 9350 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 9351 : getVTList(VT, MVT::Other); 9352 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 9353 FoldingSetNodeID ID; 9354 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 9355 ID.AddInteger(MemVT.getRawBits()); 9356 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 9357 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 9358 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 9359 ID.AddInteger(MMO->getFlags()); 9360 void *IP = nullptr; 9361 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 9362 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 9363 return SDValue(E, 0); 9364 } 9365 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 9366 AM, ExtTy, isExpanding, MemVT, MMO); 9367 createOperands(N, Ops); 9368 9369 CSEMap.InsertNode(N, IP); 9370 InsertNode(N); 9371 SDValue V(N, 0); 9372 NewSDValueDbgMsg(V, "Creating new node: ", this); 9373 return V; 9374 } 9375 9376 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 9377 SDValue Base, SDValue Offset, 9378 ISD::MemIndexedMode AM) { 9379 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 9380 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 9381 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 9382 Offset, LD->getMask(), LD->getPassThru(), 9383 LD->getMemoryVT(), LD->getMemOperand(), AM, 9384 LD->getExtensionType(), LD->isExpandingLoad()); 9385 } 9386 9387 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 9388 SDValue Val, SDValue Base, SDValue Offset, 9389 SDValue Mask, EVT MemVT, 9390 MachineMemOperand *MMO, 9391 ISD::MemIndexedMode AM, bool IsTruncating, 9392 bool IsCompressing) { 9393 assert(Chain.getValueType() == MVT::Other && 9394 "Invalid chain type"); 9395 bool Indexed = AM != ISD::UNINDEXED; 9396 assert((Indexed || Offset.isUndef()) && 9397 "Unindexed masked store with an offset!"); 9398 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 9399 : getVTList(MVT::Other); 9400 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 9401 FoldingSetNodeID ID; 9402 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 9403 ID.AddInteger(MemVT.getRawBits()); 9404 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 9405 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 9406 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 9407 ID.AddInteger(MMO->getFlags()); 9408 void *IP = nullptr; 9409 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 9410 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 9411 return SDValue(E, 0); 9412 } 9413 auto *N = 9414 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 9415 IsTruncating, IsCompressing, MemVT, MMO); 9416 createOperands(N, Ops); 9417 9418 CSEMap.InsertNode(N, IP); 9419 InsertNode(N); 9420 SDValue V(N, 0); 9421 NewSDValueDbgMsg(V, "Creating new node: ", this); 9422 return V; 9423 } 9424 9425 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 9426 SDValue Base, SDValue Offset, 9427 ISD::MemIndexedMode AM) { 9428 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 9429 assert(ST->getOffset().isUndef() && 9430 "Masked store is already a indexed store!"); 9431 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 9432 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 9433 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 9434 } 9435 9436 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 9437 ArrayRef<SDValue> Ops, 9438 MachineMemOperand *MMO, 9439 ISD::MemIndexType IndexType, 9440 ISD::LoadExtType ExtTy) { 9441 assert(Ops.size() == 6 && "Incompatible number of operands"); 9442 9443 FoldingSetNodeID ID; 9444 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 9445 ID.AddInteger(MemVT.getRawBits()); 9446 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 9447 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 9448 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 9449 ID.AddInteger(MMO->getFlags()); 9450 void *IP = nullptr; 9451 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 9452 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 9453 return SDValue(E, 0); 9454 } 9455 9456 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 9457 VTs, MemVT, MMO, IndexType, ExtTy); 9458 createOperands(N, Ops); 9459 9460 assert(N->getPassThru().getValueType() == N->getValueType(0) && 9461 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 9462 assert(N->getMask().getValueType().getVectorElementCount() == 9463 N->getValueType(0).getVectorElementCount() && 9464 "Vector width mismatch between mask and data"); 9465 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 9466 N->getValueType(0).getVectorElementCount().isScalable() && 9467 "Scalable flags of index and data do not match"); 9468 assert(ElementCount::isKnownGE( 9469 N->getIndex().getValueType().getVectorElementCount(), 9470 N->getValueType(0).getVectorElementCount()) && 9471 "Vector width mismatch between index and data"); 9472 assert(isa<ConstantSDNode>(N->getScale()) && 9473 N->getScale()->getAsAPIntVal().isPowerOf2() && 9474 "Scale should be a constant power of 2"); 9475 9476 CSEMap.InsertNode(N, IP); 9477 InsertNode(N); 9478 SDValue V(N, 0); 9479 NewSDValueDbgMsg(V, "Creating new node: ", this); 9480 return V; 9481 } 9482 9483 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 9484 ArrayRef<SDValue> Ops, 9485 MachineMemOperand *MMO, 9486 ISD::MemIndexType IndexType, 9487 bool IsTrunc) { 9488 assert(Ops.size() == 6 && "Incompatible number of operands"); 9489 9490 FoldingSetNodeID ID; 9491 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 9492 ID.AddInteger(MemVT.getRawBits()); 9493 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 9494 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 9495 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 9496 ID.AddInteger(MMO->getFlags()); 9497 void *IP = nullptr; 9498 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 9499 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 9500 return SDValue(E, 0); 9501 } 9502 9503 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 9504 VTs, MemVT, MMO, IndexType, IsTrunc); 9505 createOperands(N, Ops); 9506 9507 assert(N->getMask().getValueType().getVectorElementCount() == 9508 N->getValue().getValueType().getVectorElementCount() && 9509 "Vector width mismatch between mask and data"); 9510 assert( 9511 N->getIndex().getValueType().getVectorElementCount().isScalable() == 9512 N->getValue().getValueType().getVectorElementCount().isScalable() && 9513 "Scalable flags of index and data do not match"); 9514 assert(ElementCount::isKnownGE( 9515 N->getIndex().getValueType().getVectorElementCount(), 9516 N->getValue().getValueType().getVectorElementCount()) && 9517 "Vector width mismatch between index and data"); 9518 assert(isa<ConstantSDNode>(N->getScale()) && 9519 N->getScale()->getAsAPIntVal().isPowerOf2() && 9520 "Scale should be a constant power of 2"); 9521 9522 CSEMap.InsertNode(N, IP); 9523 InsertNode(N); 9524 SDValue V(N, 0); 9525 NewSDValueDbgMsg(V, "Creating new node: ", this); 9526 return V; 9527 } 9528 9529 SDValue SelectionDAG::getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, 9530 EVT MemVT, MachineMemOperand *MMO) { 9531 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 9532 SDVTList VTs = getVTList(MVT::Other); 9533 SDValue Ops[] = {Chain, Ptr}; 9534 FoldingSetNodeID ID; 9535 AddNodeIDNode(ID, ISD::GET_FPENV_MEM, VTs, Ops); 9536 ID.AddInteger(MemVT.getRawBits()); 9537 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>( 9538 ISD::GET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO)); 9539 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 9540 ID.AddInteger(MMO->getFlags()); 9541 void *IP = nullptr; 9542 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 9543 return SDValue(E, 0); 9544 9545 auto *N = newSDNode<FPStateAccessSDNode>(ISD::GET_FPENV_MEM, dl.getIROrder(), 9546 dl.getDebugLoc(), VTs, MemVT, MMO); 9547 createOperands(N, Ops); 9548 9549 CSEMap.InsertNode(N, IP); 9550 InsertNode(N); 9551 SDValue V(N, 0); 9552 NewSDValueDbgMsg(V, "Creating new node: ", this); 9553 return V; 9554 } 9555 9556 SDValue SelectionDAG::getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, 9557 EVT MemVT, MachineMemOperand *MMO) { 9558 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 9559 SDVTList VTs = getVTList(MVT::Other); 9560 SDValue Ops[] = {Chain, Ptr}; 9561 FoldingSetNodeID ID; 9562 AddNodeIDNode(ID, ISD::SET_FPENV_MEM, VTs, Ops); 9563 ID.AddInteger(MemVT.getRawBits()); 9564 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>( 9565 ISD::SET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO)); 9566 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 9567 ID.AddInteger(MMO->getFlags()); 9568 void *IP = nullptr; 9569 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 9570 return SDValue(E, 0); 9571 9572 auto *N = newSDNode<FPStateAccessSDNode>(ISD::SET_FPENV_MEM, dl.getIROrder(), 9573 dl.getDebugLoc(), VTs, MemVT, MMO); 9574 createOperands(N, Ops); 9575 9576 CSEMap.InsertNode(N, IP); 9577 InsertNode(N); 9578 SDValue V(N, 0); 9579 NewSDValueDbgMsg(V, "Creating new node: ", this); 9580 return V; 9581 } 9582 9583 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 9584 // select undef, T, F --> T (if T is a constant), otherwise F 9585 // select, ?, undef, F --> F 9586 // select, ?, T, undef --> T 9587 if (Cond.isUndef()) 9588 return isConstantValueOfAnyType(T) ? T : F; 9589 if (T.isUndef()) 9590 return F; 9591 if (F.isUndef()) 9592 return T; 9593 9594 // select true, T, F --> T 9595 // select false, T, F --> F 9596 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 9597 return CondC->isZero() ? F : T; 9598 9599 // TODO: This should simplify VSELECT with non-zero constant condition using 9600 // something like this (but check boolean contents to be complete?): 9601 if (ConstantSDNode *CondC = isConstOrConstSplat(Cond, /*AllowUndefs*/ false, 9602 /*AllowTruncation*/ true)) 9603 if (CondC->isZero()) 9604 return F; 9605 9606 // select ?, T, T --> T 9607 if (T == F) 9608 return T; 9609 9610 return SDValue(); 9611 } 9612 9613 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 9614 // shift undef, Y --> 0 (can always assume that the undef value is 0) 9615 if (X.isUndef()) 9616 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 9617 // shift X, undef --> undef (because it may shift by the bitwidth) 9618 if (Y.isUndef()) 9619 return getUNDEF(X.getValueType()); 9620 9621 // shift 0, Y --> 0 9622 // shift X, 0 --> X 9623 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 9624 return X; 9625 9626 // shift X, C >= bitwidth(X) --> undef 9627 // All vector elements must be too big (or undef) to avoid partial undefs. 9628 auto isShiftTooBig = [X](ConstantSDNode *Val) { 9629 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 9630 }; 9631 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 9632 return getUNDEF(X.getValueType()); 9633 9634 return SDValue(); 9635 } 9636 9637 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 9638 SDNodeFlags Flags) { 9639 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 9640 // (an undef operand can be chosen to be Nan/Inf), then the result of this 9641 // operation is poison. That result can be relaxed to undef. 9642 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 9643 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 9644 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 9645 (YC && YC->getValueAPF().isNaN()); 9646 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 9647 (YC && YC->getValueAPF().isInfinity()); 9648 9649 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 9650 return getUNDEF(X.getValueType()); 9651 9652 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 9653 return getUNDEF(X.getValueType()); 9654 9655 if (!YC) 9656 return SDValue(); 9657 9658 // X + -0.0 --> X 9659 if (Opcode == ISD::FADD) 9660 if (YC->getValueAPF().isNegZero()) 9661 return X; 9662 9663 // X - +0.0 --> X 9664 if (Opcode == ISD::FSUB) 9665 if (YC->getValueAPF().isPosZero()) 9666 return X; 9667 9668 // X * 1.0 --> X 9669 // X / 1.0 --> X 9670 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 9671 if (YC->getValueAPF().isExactlyValue(1.0)) 9672 return X; 9673 9674 // X * 0.0 --> 0.0 9675 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 9676 if (YC->getValueAPF().isZero()) 9677 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 9678 9679 return SDValue(); 9680 } 9681 9682 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 9683 SDValue Ptr, SDValue SV, unsigned Align) { 9684 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 9685 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 9686 } 9687 9688 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 9689 ArrayRef<SDUse> Ops) { 9690 switch (Ops.size()) { 9691 case 0: return getNode(Opcode, DL, VT); 9692 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 9693 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 9694 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 9695 default: break; 9696 } 9697 9698 // Copy from an SDUse array into an SDValue array for use with 9699 // the regular getNode logic. 9700 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 9701 return getNode(Opcode, DL, VT, NewOps); 9702 } 9703 9704 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 9705 ArrayRef<SDValue> Ops) { 9706 SDNodeFlags Flags; 9707 if (Inserter) 9708 Flags = Inserter->getFlags(); 9709 return getNode(Opcode, DL, VT, Ops, Flags); 9710 } 9711 9712 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 9713 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 9714 unsigned NumOps = Ops.size(); 9715 switch (NumOps) { 9716 case 0: return getNode(Opcode, DL, VT); 9717 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 9718 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 9719 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 9720 default: break; 9721 } 9722 9723 #ifndef NDEBUG 9724 for (const auto &Op : Ops) 9725 assert(Op.getOpcode() != ISD::DELETED_NODE && 9726 "Operand is DELETED_NODE!"); 9727 #endif 9728 9729 switch (Opcode) { 9730 default: break; 9731 case ISD::BUILD_VECTOR: 9732 // Attempt to simplify BUILD_VECTOR. 9733 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 9734 return V; 9735 break; 9736 case ISD::CONCAT_VECTORS: 9737 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 9738 return V; 9739 break; 9740 case ISD::SELECT_CC: 9741 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 9742 assert(Ops[0].getValueType() == Ops[1].getValueType() && 9743 "LHS and RHS of condition must have same type!"); 9744 assert(Ops[2].getValueType() == Ops[3].getValueType() && 9745 "True and False arms of SelectCC must have same type!"); 9746 assert(Ops[2].getValueType() == VT && 9747 "select_cc node must be of same type as true and false value!"); 9748 assert((!Ops[0].getValueType().isVector() || 9749 Ops[0].getValueType().getVectorElementCount() == 9750 VT.getVectorElementCount()) && 9751 "Expected select_cc with vector result to have the same sized " 9752 "comparison type!"); 9753 break; 9754 case ISD::BR_CC: 9755 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 9756 assert(Ops[2].getValueType() == Ops[3].getValueType() && 9757 "LHS/RHS of comparison should match types!"); 9758 break; 9759 case ISD::VP_ADD: 9760 case ISD::VP_SUB: 9761 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR 9762 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 9763 Opcode = ISD::VP_XOR; 9764 break; 9765 case ISD::VP_MUL: 9766 // If it is VP_MUL mask operation then turn it to VP_AND 9767 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 9768 Opcode = ISD::VP_AND; 9769 break; 9770 case ISD::VP_REDUCE_MUL: 9771 // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND 9772 if (VT == MVT::i1) 9773 Opcode = ISD::VP_REDUCE_AND; 9774 break; 9775 case ISD::VP_REDUCE_ADD: 9776 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR 9777 if (VT == MVT::i1) 9778 Opcode = ISD::VP_REDUCE_XOR; 9779 break; 9780 case ISD::VP_REDUCE_SMAX: 9781 case ISD::VP_REDUCE_UMIN: 9782 // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to 9783 // VP_REDUCE_AND. 9784 if (VT == MVT::i1) 9785 Opcode = ISD::VP_REDUCE_AND; 9786 break; 9787 case ISD::VP_REDUCE_SMIN: 9788 case ISD::VP_REDUCE_UMAX: 9789 // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to 9790 // VP_REDUCE_OR. 9791 if (VT == MVT::i1) 9792 Opcode = ISD::VP_REDUCE_OR; 9793 break; 9794 } 9795 9796 // Memoize nodes. 9797 SDNode *N; 9798 SDVTList VTs = getVTList(VT); 9799 9800 if (VT != MVT::Glue) { 9801 FoldingSetNodeID ID; 9802 AddNodeIDNode(ID, Opcode, VTs, Ops); 9803 void *IP = nullptr; 9804 9805 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 9806 return SDValue(E, 0); 9807 9808 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9809 createOperands(N, Ops); 9810 9811 CSEMap.InsertNode(N, IP); 9812 } else { 9813 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9814 createOperands(N, Ops); 9815 } 9816 9817 N->setFlags(Flags); 9818 InsertNode(N); 9819 SDValue V(N, 0); 9820 NewSDValueDbgMsg(V, "Creating new node: ", this); 9821 return V; 9822 } 9823 9824 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 9825 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 9826 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 9827 } 9828 9829 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9830 ArrayRef<SDValue> Ops) { 9831 SDNodeFlags Flags; 9832 if (Inserter) 9833 Flags = Inserter->getFlags(); 9834 return getNode(Opcode, DL, VTList, Ops, Flags); 9835 } 9836 9837 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9838 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 9839 if (VTList.NumVTs == 1) 9840 return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags); 9841 9842 #ifndef NDEBUG 9843 for (const auto &Op : Ops) 9844 assert(Op.getOpcode() != ISD::DELETED_NODE && 9845 "Operand is DELETED_NODE!"); 9846 #endif 9847 9848 switch (Opcode) { 9849 case ISD::SADDO: 9850 case ISD::UADDO: 9851 case ISD::SSUBO: 9852 case ISD::USUBO: { 9853 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 9854 "Invalid add/sub overflow op!"); 9855 assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() && 9856 Ops[0].getValueType() == Ops[1].getValueType() && 9857 Ops[0].getValueType() == VTList.VTs[0] && 9858 "Binary operator types must match!"); 9859 SDValue N1 = Ops[0], N2 = Ops[1]; 9860 canonicalizeCommutativeBinop(Opcode, N1, N2); 9861 9862 // (X +- 0) -> X with zero-overflow. 9863 ConstantSDNode *N2CV = isConstOrConstSplat(N2, /*AllowUndefs*/ false, 9864 /*AllowTruncation*/ true); 9865 if (N2CV && N2CV->isZero()) { 9866 SDValue ZeroOverFlow = getConstant(0, DL, VTList.VTs[1]); 9867 return getNode(ISD::MERGE_VALUES, DL, VTList, {N1, ZeroOverFlow}, Flags); 9868 } 9869 9870 if (VTList.VTs[0].isVector() && 9871 VTList.VTs[0].getVectorElementType() == MVT::i1 && 9872 VTList.VTs[1].getVectorElementType() == MVT::i1) { 9873 SDValue F1 = getFreeze(N1); 9874 SDValue F2 = getFreeze(N2); 9875 // {vXi1,vXi1} (u/s)addo(vXi1 x, vXi1y) -> {xor(x,y),and(x,y)} 9876 if (Opcode == ISD::UADDO || Opcode == ISD::SADDO) 9877 return getNode(ISD::MERGE_VALUES, DL, VTList, 9878 {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2), 9879 getNode(ISD::AND, DL, VTList.VTs[1], F1, F2)}, 9880 Flags); 9881 // {vXi1,vXi1} (u/s)subo(vXi1 x, vXi1y) -> {xor(x,y),and(~x,y)} 9882 if (Opcode == ISD::USUBO || Opcode == ISD::SSUBO) { 9883 SDValue NotF1 = getNOT(DL, F1, VTList.VTs[0]); 9884 return getNode(ISD::MERGE_VALUES, DL, VTList, 9885 {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2), 9886 getNode(ISD::AND, DL, VTList.VTs[1], NotF1, F2)}, 9887 Flags); 9888 } 9889 } 9890 break; 9891 } 9892 case ISD::SMUL_LOHI: 9893 case ISD::UMUL_LOHI: { 9894 assert(VTList.NumVTs == 2 && Ops.size() == 2 && "Invalid mul lo/hi op!"); 9895 assert(VTList.VTs[0].isInteger() && VTList.VTs[0] == VTList.VTs[1] && 9896 VTList.VTs[0] == Ops[0].getValueType() && 9897 VTList.VTs[0] == Ops[1].getValueType() && 9898 "Binary operator types must match!"); 9899 // Constant fold. 9900 ConstantSDNode *LHS = dyn_cast<ConstantSDNode>(Ops[0]); 9901 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ops[1]); 9902 if (LHS && RHS) { 9903 unsigned Width = VTList.VTs[0].getScalarSizeInBits(); 9904 unsigned OutWidth = Width * 2; 9905 APInt Val = LHS->getAPIntValue(); 9906 APInt Mul = RHS->getAPIntValue(); 9907 if (Opcode == ISD::SMUL_LOHI) { 9908 Val = Val.sext(OutWidth); 9909 Mul = Mul.sext(OutWidth); 9910 } else { 9911 Val = Val.zext(OutWidth); 9912 Mul = Mul.zext(OutWidth); 9913 } 9914 Val *= Mul; 9915 9916 SDValue Hi = 9917 getConstant(Val.extractBits(Width, Width), DL, VTList.VTs[0]); 9918 SDValue Lo = getConstant(Val.trunc(Width), DL, VTList.VTs[0]); 9919 return getNode(ISD::MERGE_VALUES, DL, VTList, {Lo, Hi}, Flags); 9920 } 9921 break; 9922 } 9923 case ISD::FFREXP: { 9924 assert(VTList.NumVTs == 2 && Ops.size() == 1 && "Invalid ffrexp op!"); 9925 assert(VTList.VTs[0].isFloatingPoint() && VTList.VTs[1].isInteger() && 9926 VTList.VTs[0] == Ops[0].getValueType() && "frexp type mismatch"); 9927 9928 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Ops[0])) { 9929 int FrexpExp; 9930 APFloat FrexpMant = 9931 frexp(C->getValueAPF(), FrexpExp, APFloat::rmNearestTiesToEven); 9932 SDValue Result0 = getConstantFP(FrexpMant, DL, VTList.VTs[0]); 9933 SDValue Result1 = 9934 getConstant(FrexpMant.isFinite() ? FrexpExp : 0, DL, VTList.VTs[1]); 9935 return getNode(ISD::MERGE_VALUES, DL, VTList, {Result0, Result1}, Flags); 9936 } 9937 9938 break; 9939 } 9940 case ISD::STRICT_FP_EXTEND: 9941 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 9942 "Invalid STRICT_FP_EXTEND!"); 9943 assert(VTList.VTs[0].isFloatingPoint() && 9944 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 9945 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 9946 "STRICT_FP_EXTEND result type should be vector iff the operand " 9947 "type is vector!"); 9948 assert((!VTList.VTs[0].isVector() || 9949 VTList.VTs[0].getVectorElementCount() == 9950 Ops[1].getValueType().getVectorElementCount()) && 9951 "Vector element count mismatch!"); 9952 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 9953 "Invalid fpext node, dst <= src!"); 9954 break; 9955 case ISD::STRICT_FP_ROUND: 9956 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 9957 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 9958 "STRICT_FP_ROUND result type should be vector iff the operand " 9959 "type is vector!"); 9960 assert((!VTList.VTs[0].isVector() || 9961 VTList.VTs[0].getVectorElementCount() == 9962 Ops[1].getValueType().getVectorElementCount()) && 9963 "Vector element count mismatch!"); 9964 assert(VTList.VTs[0].isFloatingPoint() && 9965 Ops[1].getValueType().isFloatingPoint() && 9966 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 9967 isa<ConstantSDNode>(Ops[2]) && 9968 (Ops[2]->getAsZExtVal() == 0 || Ops[2]->getAsZExtVal() == 1) && 9969 "Invalid STRICT_FP_ROUND!"); 9970 break; 9971 #if 0 9972 // FIXME: figure out how to safely handle things like 9973 // int foo(int x) { return 1 << (x & 255); } 9974 // int bar() { return foo(256); } 9975 case ISD::SRA_PARTS: 9976 case ISD::SRL_PARTS: 9977 case ISD::SHL_PARTS: 9978 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 9979 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 9980 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9981 else if (N3.getOpcode() == ISD::AND) 9982 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 9983 // If the and is only masking out bits that cannot effect the shift, 9984 // eliminate the and. 9985 unsigned NumBits = VT.getScalarSizeInBits()*2; 9986 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 9987 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9988 } 9989 break; 9990 #endif 9991 } 9992 9993 // Memoize the node unless it returns a glue result. 9994 SDNode *N; 9995 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 9996 FoldingSetNodeID ID; 9997 AddNodeIDNode(ID, Opcode, VTList, Ops); 9998 void *IP = nullptr; 9999 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 10000 return SDValue(E, 0); 10001 10002 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 10003 createOperands(N, Ops); 10004 CSEMap.InsertNode(N, IP); 10005 } else { 10006 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 10007 createOperands(N, Ops); 10008 } 10009 10010 N->setFlags(Flags); 10011 InsertNode(N); 10012 SDValue V(N, 0); 10013 NewSDValueDbgMsg(V, "Creating new node: ", this); 10014 return V; 10015 } 10016 10017 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 10018 SDVTList VTList) { 10019 return getNode(Opcode, DL, VTList, std::nullopt); 10020 } 10021 10022 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 10023 SDValue N1) { 10024 SDValue Ops[] = { N1 }; 10025 return getNode(Opcode, DL, VTList, Ops); 10026 } 10027 10028 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 10029 SDValue N1, SDValue N2) { 10030 SDValue Ops[] = { N1, N2 }; 10031 return getNode(Opcode, DL, VTList, Ops); 10032 } 10033 10034 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 10035 SDValue N1, SDValue N2, SDValue N3) { 10036 SDValue Ops[] = { N1, N2, N3 }; 10037 return getNode(Opcode, DL, VTList, Ops); 10038 } 10039 10040 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 10041 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 10042 SDValue Ops[] = { N1, N2, N3, N4 }; 10043 return getNode(Opcode, DL, VTList, Ops); 10044 } 10045 10046 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 10047 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 10048 SDValue N5) { 10049 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 10050 return getNode(Opcode, DL, VTList, Ops); 10051 } 10052 10053 SDVTList SelectionDAG::getVTList(EVT VT) { 10054 return makeVTList(SDNode::getValueTypeList(VT), 1); 10055 } 10056 10057 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 10058 FoldingSetNodeID ID; 10059 ID.AddInteger(2U); 10060 ID.AddInteger(VT1.getRawBits()); 10061 ID.AddInteger(VT2.getRawBits()); 10062 10063 void *IP = nullptr; 10064 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 10065 if (!Result) { 10066 EVT *Array = Allocator.Allocate<EVT>(2); 10067 Array[0] = VT1; 10068 Array[1] = VT2; 10069 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 10070 VTListMap.InsertNode(Result, IP); 10071 } 10072 return Result->getSDVTList(); 10073 } 10074 10075 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 10076 FoldingSetNodeID ID; 10077 ID.AddInteger(3U); 10078 ID.AddInteger(VT1.getRawBits()); 10079 ID.AddInteger(VT2.getRawBits()); 10080 ID.AddInteger(VT3.getRawBits()); 10081 10082 void *IP = nullptr; 10083 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 10084 if (!Result) { 10085 EVT *Array = Allocator.Allocate<EVT>(3); 10086 Array[0] = VT1; 10087 Array[1] = VT2; 10088 Array[2] = VT3; 10089 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 10090 VTListMap.InsertNode(Result, IP); 10091 } 10092 return Result->getSDVTList(); 10093 } 10094 10095 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 10096 FoldingSetNodeID ID; 10097 ID.AddInteger(4U); 10098 ID.AddInteger(VT1.getRawBits()); 10099 ID.AddInteger(VT2.getRawBits()); 10100 ID.AddInteger(VT3.getRawBits()); 10101 ID.AddInteger(VT4.getRawBits()); 10102 10103 void *IP = nullptr; 10104 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 10105 if (!Result) { 10106 EVT *Array = Allocator.Allocate<EVT>(4); 10107 Array[0] = VT1; 10108 Array[1] = VT2; 10109 Array[2] = VT3; 10110 Array[3] = VT4; 10111 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 10112 VTListMap.InsertNode(Result, IP); 10113 } 10114 return Result->getSDVTList(); 10115 } 10116 10117 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 10118 unsigned NumVTs = VTs.size(); 10119 FoldingSetNodeID ID; 10120 ID.AddInteger(NumVTs); 10121 for (unsigned index = 0; index < NumVTs; index++) { 10122 ID.AddInteger(VTs[index].getRawBits()); 10123 } 10124 10125 void *IP = nullptr; 10126 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 10127 if (!Result) { 10128 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 10129 llvm::copy(VTs, Array); 10130 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 10131 VTListMap.InsertNode(Result, IP); 10132 } 10133 return Result->getSDVTList(); 10134 } 10135 10136 10137 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 10138 /// specified operands. If the resultant node already exists in the DAG, 10139 /// this does not modify the specified node, instead it returns the node that 10140 /// already exists. If the resultant node does not exist in the DAG, the 10141 /// input node is returned. As a degenerate case, if you specify the same 10142 /// input operands as the node already has, the input node is returned. 10143 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 10144 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 10145 10146 // Check to see if there is no change. 10147 if (Op == N->getOperand(0)) return N; 10148 10149 // See if the modified node already exists. 10150 void *InsertPos = nullptr; 10151 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 10152 return Existing; 10153 10154 // Nope it doesn't. Remove the node from its current place in the maps. 10155 if (InsertPos) 10156 if (!RemoveNodeFromCSEMaps(N)) 10157 InsertPos = nullptr; 10158 10159 // Now we update the operands. 10160 N->OperandList[0].set(Op); 10161 10162 updateDivergence(N); 10163 // If this gets put into a CSE map, add it. 10164 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 10165 return N; 10166 } 10167 10168 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 10169 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 10170 10171 // Check to see if there is no change. 10172 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 10173 return N; // No operands changed, just return the input node. 10174 10175 // See if the modified node already exists. 10176 void *InsertPos = nullptr; 10177 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 10178 return Existing; 10179 10180 // Nope it doesn't. Remove the node from its current place in the maps. 10181 if (InsertPos) 10182 if (!RemoveNodeFromCSEMaps(N)) 10183 InsertPos = nullptr; 10184 10185 // Now we update the operands. 10186 if (N->OperandList[0] != Op1) 10187 N->OperandList[0].set(Op1); 10188 if (N->OperandList[1] != Op2) 10189 N->OperandList[1].set(Op2); 10190 10191 updateDivergence(N); 10192 // If this gets put into a CSE map, add it. 10193 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 10194 return N; 10195 } 10196 10197 SDNode *SelectionDAG:: 10198 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 10199 SDValue Ops[] = { Op1, Op2, Op3 }; 10200 return UpdateNodeOperands(N, Ops); 10201 } 10202 10203 SDNode *SelectionDAG:: 10204 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 10205 SDValue Op3, SDValue Op4) { 10206 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 10207 return UpdateNodeOperands(N, Ops); 10208 } 10209 10210 SDNode *SelectionDAG:: 10211 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 10212 SDValue Op3, SDValue Op4, SDValue Op5) { 10213 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 10214 return UpdateNodeOperands(N, Ops); 10215 } 10216 10217 SDNode *SelectionDAG:: 10218 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 10219 unsigned NumOps = Ops.size(); 10220 assert(N->getNumOperands() == NumOps && 10221 "Update with wrong number of operands"); 10222 10223 // If no operands changed just return the input node. 10224 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 10225 return N; 10226 10227 // See if the modified node already exists. 10228 void *InsertPos = nullptr; 10229 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 10230 return Existing; 10231 10232 // Nope it doesn't. Remove the node from its current place in the maps. 10233 if (InsertPos) 10234 if (!RemoveNodeFromCSEMaps(N)) 10235 InsertPos = nullptr; 10236 10237 // Now we update the operands. 10238 for (unsigned i = 0; i != NumOps; ++i) 10239 if (N->OperandList[i] != Ops[i]) 10240 N->OperandList[i].set(Ops[i]); 10241 10242 updateDivergence(N); 10243 // If this gets put into a CSE map, add it. 10244 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 10245 return N; 10246 } 10247 10248 /// DropOperands - Release the operands and set this node to have 10249 /// zero operands. 10250 void SDNode::DropOperands() { 10251 // Unlike the code in MorphNodeTo that does this, we don't need to 10252 // watch for dead nodes here. 10253 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 10254 SDUse &Use = *I++; 10255 Use.set(SDValue()); 10256 } 10257 } 10258 10259 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 10260 ArrayRef<MachineMemOperand *> NewMemRefs) { 10261 if (NewMemRefs.empty()) { 10262 N->clearMemRefs(); 10263 return; 10264 } 10265 10266 // Check if we can avoid allocating by storing a single reference directly. 10267 if (NewMemRefs.size() == 1) { 10268 N->MemRefs = NewMemRefs[0]; 10269 N->NumMemRefs = 1; 10270 return; 10271 } 10272 10273 MachineMemOperand **MemRefsBuffer = 10274 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 10275 llvm::copy(NewMemRefs, MemRefsBuffer); 10276 N->MemRefs = MemRefsBuffer; 10277 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 10278 } 10279 10280 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 10281 /// machine opcode. 10282 /// 10283 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 10284 EVT VT) { 10285 SDVTList VTs = getVTList(VT); 10286 return SelectNodeTo(N, MachineOpc, VTs, std::nullopt); 10287 } 10288 10289 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 10290 EVT VT, SDValue Op1) { 10291 SDVTList VTs = getVTList(VT); 10292 SDValue Ops[] = { Op1 }; 10293 return SelectNodeTo(N, MachineOpc, VTs, Ops); 10294 } 10295 10296 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 10297 EVT VT, SDValue Op1, 10298 SDValue Op2) { 10299 SDVTList VTs = getVTList(VT); 10300 SDValue Ops[] = { Op1, Op2 }; 10301 return SelectNodeTo(N, MachineOpc, VTs, Ops); 10302 } 10303 10304 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 10305 EVT VT, SDValue Op1, 10306 SDValue Op2, SDValue Op3) { 10307 SDVTList VTs = getVTList(VT); 10308 SDValue Ops[] = { Op1, Op2, Op3 }; 10309 return SelectNodeTo(N, MachineOpc, VTs, Ops); 10310 } 10311 10312 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 10313 EVT VT, ArrayRef<SDValue> Ops) { 10314 SDVTList VTs = getVTList(VT); 10315 return SelectNodeTo(N, MachineOpc, VTs, Ops); 10316 } 10317 10318 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 10319 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 10320 SDVTList VTs = getVTList(VT1, VT2); 10321 return SelectNodeTo(N, MachineOpc, VTs, Ops); 10322 } 10323 10324 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 10325 EVT VT1, EVT VT2) { 10326 SDVTList VTs = getVTList(VT1, VT2); 10327 return SelectNodeTo(N, MachineOpc, VTs, std::nullopt); 10328 } 10329 10330 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 10331 EVT VT1, EVT VT2, EVT VT3, 10332 ArrayRef<SDValue> Ops) { 10333 SDVTList VTs = getVTList(VT1, VT2, VT3); 10334 return SelectNodeTo(N, MachineOpc, VTs, Ops); 10335 } 10336 10337 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 10338 EVT VT1, EVT VT2, 10339 SDValue Op1, SDValue Op2) { 10340 SDVTList VTs = getVTList(VT1, VT2); 10341 SDValue Ops[] = { Op1, Op2 }; 10342 return SelectNodeTo(N, MachineOpc, VTs, Ops); 10343 } 10344 10345 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 10346 SDVTList VTs,ArrayRef<SDValue> Ops) { 10347 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 10348 // Reset the NodeID to -1. 10349 New->setNodeId(-1); 10350 if (New != N) { 10351 ReplaceAllUsesWith(N, New); 10352 RemoveDeadNode(N); 10353 } 10354 return New; 10355 } 10356 10357 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 10358 /// the line number information on the merged node since it is not possible to 10359 /// preserve the information that operation is associated with multiple lines. 10360 /// This will make the debugger working better at -O0, were there is a higher 10361 /// probability having other instructions associated with that line. 10362 /// 10363 /// For IROrder, we keep the smaller of the two 10364 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 10365 DebugLoc NLoc = N->getDebugLoc(); 10366 if (NLoc && OptLevel == CodeGenOptLevel::None && OLoc.getDebugLoc() != NLoc) { 10367 N->setDebugLoc(DebugLoc()); 10368 } 10369 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 10370 N->setIROrder(Order); 10371 return N; 10372 } 10373 10374 /// MorphNodeTo - This *mutates* the specified node to have the specified 10375 /// return type, opcode, and operands. 10376 /// 10377 /// Note that MorphNodeTo returns the resultant node. If there is already a 10378 /// node of the specified opcode and operands, it returns that node instead of 10379 /// the current one. Note that the SDLoc need not be the same. 10380 /// 10381 /// Using MorphNodeTo is faster than creating a new node and swapping it in 10382 /// with ReplaceAllUsesWith both because it often avoids allocating a new 10383 /// node, and because it doesn't require CSE recalculation for any of 10384 /// the node's users. 10385 /// 10386 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 10387 /// As a consequence it isn't appropriate to use from within the DAG combiner or 10388 /// the legalizer which maintain worklists that would need to be updated when 10389 /// deleting things. 10390 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 10391 SDVTList VTs, ArrayRef<SDValue> Ops) { 10392 // If an identical node already exists, use it. 10393 void *IP = nullptr; 10394 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 10395 FoldingSetNodeID ID; 10396 AddNodeIDNode(ID, Opc, VTs, Ops); 10397 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 10398 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 10399 } 10400 10401 if (!RemoveNodeFromCSEMaps(N)) 10402 IP = nullptr; 10403 10404 // Start the morphing. 10405 N->NodeType = Opc; 10406 N->ValueList = VTs.VTs; 10407 N->NumValues = VTs.NumVTs; 10408 10409 // Clear the operands list, updating used nodes to remove this from their 10410 // use list. Keep track of any operands that become dead as a result. 10411 SmallPtrSet<SDNode*, 16> DeadNodeSet; 10412 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 10413 SDUse &Use = *I++; 10414 SDNode *Used = Use.getNode(); 10415 Use.set(SDValue()); 10416 if (Used->use_empty()) 10417 DeadNodeSet.insert(Used); 10418 } 10419 10420 // For MachineNode, initialize the memory references information. 10421 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 10422 MN->clearMemRefs(); 10423 10424 // Swap for an appropriately sized array from the recycler. 10425 removeOperands(N); 10426 createOperands(N, Ops); 10427 10428 // Delete any nodes that are still dead after adding the uses for the 10429 // new operands. 10430 if (!DeadNodeSet.empty()) { 10431 SmallVector<SDNode *, 16> DeadNodes; 10432 for (SDNode *N : DeadNodeSet) 10433 if (N->use_empty()) 10434 DeadNodes.push_back(N); 10435 RemoveDeadNodes(DeadNodes); 10436 } 10437 10438 if (IP) 10439 CSEMap.InsertNode(N, IP); // Memoize the new node. 10440 return N; 10441 } 10442 10443 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 10444 unsigned OrigOpc = Node->getOpcode(); 10445 unsigned NewOpc; 10446 switch (OrigOpc) { 10447 default: 10448 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 10449 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 10450 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 10451 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 10452 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 10453 #include "llvm/IR/ConstrainedOps.def" 10454 } 10455 10456 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 10457 10458 // We're taking this node out of the chain, so we need to re-link things. 10459 SDValue InputChain = Node->getOperand(0); 10460 SDValue OutputChain = SDValue(Node, 1); 10461 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 10462 10463 SmallVector<SDValue, 3> Ops; 10464 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 10465 Ops.push_back(Node->getOperand(i)); 10466 10467 SDVTList VTs = getVTList(Node->getValueType(0)); 10468 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 10469 10470 // MorphNodeTo can operate in two ways: if an existing node with the 10471 // specified operands exists, it can just return it. Otherwise, it 10472 // updates the node in place to have the requested operands. 10473 if (Res == Node) { 10474 // If we updated the node in place, reset the node ID. To the isel, 10475 // this should be just like a newly allocated machine node. 10476 Res->setNodeId(-1); 10477 } else { 10478 ReplaceAllUsesWith(Node, Res); 10479 RemoveDeadNode(Node); 10480 } 10481 10482 return Res; 10483 } 10484 10485 /// getMachineNode - These are used for target selectors to create a new node 10486 /// with specified return type(s), MachineInstr opcode, and operands. 10487 /// 10488 /// Note that getMachineNode returns the resultant node. If there is already a 10489 /// node of the specified opcode and operands, it returns that node instead of 10490 /// the current one. 10491 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10492 EVT VT) { 10493 SDVTList VTs = getVTList(VT); 10494 return getMachineNode(Opcode, dl, VTs, std::nullopt); 10495 } 10496 10497 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10498 EVT VT, SDValue Op1) { 10499 SDVTList VTs = getVTList(VT); 10500 SDValue Ops[] = { Op1 }; 10501 return getMachineNode(Opcode, dl, VTs, Ops); 10502 } 10503 10504 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10505 EVT VT, SDValue Op1, SDValue Op2) { 10506 SDVTList VTs = getVTList(VT); 10507 SDValue Ops[] = { Op1, Op2 }; 10508 return getMachineNode(Opcode, dl, VTs, Ops); 10509 } 10510 10511 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10512 EVT VT, SDValue Op1, SDValue Op2, 10513 SDValue Op3) { 10514 SDVTList VTs = getVTList(VT); 10515 SDValue Ops[] = { Op1, Op2, Op3 }; 10516 return getMachineNode(Opcode, dl, VTs, Ops); 10517 } 10518 10519 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10520 EVT VT, ArrayRef<SDValue> Ops) { 10521 SDVTList VTs = getVTList(VT); 10522 return getMachineNode(Opcode, dl, VTs, Ops); 10523 } 10524 10525 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10526 EVT VT1, EVT VT2, SDValue Op1, 10527 SDValue Op2) { 10528 SDVTList VTs = getVTList(VT1, VT2); 10529 SDValue Ops[] = { Op1, Op2 }; 10530 return getMachineNode(Opcode, dl, VTs, Ops); 10531 } 10532 10533 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10534 EVT VT1, EVT VT2, SDValue Op1, 10535 SDValue Op2, SDValue Op3) { 10536 SDVTList VTs = getVTList(VT1, VT2); 10537 SDValue Ops[] = { Op1, Op2, Op3 }; 10538 return getMachineNode(Opcode, dl, VTs, Ops); 10539 } 10540 10541 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10542 EVT VT1, EVT VT2, 10543 ArrayRef<SDValue> Ops) { 10544 SDVTList VTs = getVTList(VT1, VT2); 10545 return getMachineNode(Opcode, dl, VTs, Ops); 10546 } 10547 10548 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10549 EVT VT1, EVT VT2, EVT VT3, 10550 SDValue Op1, SDValue Op2) { 10551 SDVTList VTs = getVTList(VT1, VT2, VT3); 10552 SDValue Ops[] = { Op1, Op2 }; 10553 return getMachineNode(Opcode, dl, VTs, Ops); 10554 } 10555 10556 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10557 EVT VT1, EVT VT2, EVT VT3, 10558 SDValue Op1, SDValue Op2, 10559 SDValue Op3) { 10560 SDVTList VTs = getVTList(VT1, VT2, VT3); 10561 SDValue Ops[] = { Op1, Op2, Op3 }; 10562 return getMachineNode(Opcode, dl, VTs, Ops); 10563 } 10564 10565 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10566 EVT VT1, EVT VT2, EVT VT3, 10567 ArrayRef<SDValue> Ops) { 10568 SDVTList VTs = getVTList(VT1, VT2, VT3); 10569 return getMachineNode(Opcode, dl, VTs, Ops); 10570 } 10571 10572 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10573 ArrayRef<EVT> ResultTys, 10574 ArrayRef<SDValue> Ops) { 10575 SDVTList VTs = getVTList(ResultTys); 10576 return getMachineNode(Opcode, dl, VTs, Ops); 10577 } 10578 10579 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 10580 SDVTList VTs, 10581 ArrayRef<SDValue> Ops) { 10582 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 10583 MachineSDNode *N; 10584 void *IP = nullptr; 10585 10586 if (DoCSE) { 10587 FoldingSetNodeID ID; 10588 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 10589 IP = nullptr; 10590 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 10591 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 10592 } 10593 } 10594 10595 // Allocate a new MachineSDNode. 10596 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 10597 createOperands(N, Ops); 10598 10599 if (DoCSE) 10600 CSEMap.InsertNode(N, IP); 10601 10602 InsertNode(N); 10603 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 10604 return N; 10605 } 10606 10607 /// getTargetExtractSubreg - A convenience function for creating 10608 /// TargetOpcode::EXTRACT_SUBREG nodes. 10609 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 10610 SDValue Operand) { 10611 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 10612 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 10613 VT, Operand, SRIdxVal); 10614 return SDValue(Subreg, 0); 10615 } 10616 10617 /// getTargetInsertSubreg - A convenience function for creating 10618 /// TargetOpcode::INSERT_SUBREG nodes. 10619 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 10620 SDValue Operand, SDValue Subreg) { 10621 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 10622 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 10623 VT, Operand, Subreg, SRIdxVal); 10624 return SDValue(Result, 0); 10625 } 10626 10627 /// getNodeIfExists - Get the specified node if it's already available, or 10628 /// else return NULL. 10629 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 10630 ArrayRef<SDValue> Ops) { 10631 SDNodeFlags Flags; 10632 if (Inserter) 10633 Flags = Inserter->getFlags(); 10634 return getNodeIfExists(Opcode, VTList, Ops, Flags); 10635 } 10636 10637 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 10638 ArrayRef<SDValue> Ops, 10639 const SDNodeFlags Flags) { 10640 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 10641 FoldingSetNodeID ID; 10642 AddNodeIDNode(ID, Opcode, VTList, Ops); 10643 void *IP = nullptr; 10644 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 10645 E->intersectFlagsWith(Flags); 10646 return E; 10647 } 10648 } 10649 return nullptr; 10650 } 10651 10652 /// doesNodeExist - Check if a node exists without modifying its flags. 10653 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 10654 ArrayRef<SDValue> Ops) { 10655 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 10656 FoldingSetNodeID ID; 10657 AddNodeIDNode(ID, Opcode, VTList, Ops); 10658 void *IP = nullptr; 10659 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 10660 return true; 10661 } 10662 return false; 10663 } 10664 10665 /// getDbgValue - Creates a SDDbgValue node. 10666 /// 10667 /// SDNode 10668 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 10669 SDNode *N, unsigned R, bool IsIndirect, 10670 const DebugLoc &DL, unsigned O) { 10671 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 10672 "Expected inlined-at fields to agree"); 10673 return new (DbgInfo->getAlloc()) 10674 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 10675 {}, IsIndirect, DL, O, 10676 /*IsVariadic=*/false); 10677 } 10678 10679 /// Constant 10680 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 10681 DIExpression *Expr, 10682 const Value *C, 10683 const DebugLoc &DL, unsigned O) { 10684 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 10685 "Expected inlined-at fields to agree"); 10686 return new (DbgInfo->getAlloc()) 10687 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 10688 /*IsIndirect=*/false, DL, O, 10689 /*IsVariadic=*/false); 10690 } 10691 10692 /// FrameIndex 10693 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 10694 DIExpression *Expr, unsigned FI, 10695 bool IsIndirect, 10696 const DebugLoc &DL, 10697 unsigned O) { 10698 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 10699 "Expected inlined-at fields to agree"); 10700 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 10701 } 10702 10703 /// FrameIndex with dependencies 10704 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 10705 DIExpression *Expr, unsigned FI, 10706 ArrayRef<SDNode *> Dependencies, 10707 bool IsIndirect, 10708 const DebugLoc &DL, 10709 unsigned O) { 10710 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 10711 "Expected inlined-at fields to agree"); 10712 return new (DbgInfo->getAlloc()) 10713 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 10714 Dependencies, IsIndirect, DL, O, 10715 /*IsVariadic=*/false); 10716 } 10717 10718 /// VReg 10719 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 10720 unsigned VReg, bool IsIndirect, 10721 const DebugLoc &DL, unsigned O) { 10722 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 10723 "Expected inlined-at fields to agree"); 10724 return new (DbgInfo->getAlloc()) 10725 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 10726 {}, IsIndirect, DL, O, 10727 /*IsVariadic=*/false); 10728 } 10729 10730 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 10731 ArrayRef<SDDbgOperand> Locs, 10732 ArrayRef<SDNode *> Dependencies, 10733 bool IsIndirect, const DebugLoc &DL, 10734 unsigned O, bool IsVariadic) { 10735 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 10736 "Expected inlined-at fields to agree"); 10737 return new (DbgInfo->getAlloc()) 10738 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 10739 DL, O, IsVariadic); 10740 } 10741 10742 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 10743 unsigned OffsetInBits, unsigned SizeInBits, 10744 bool InvalidateDbg) { 10745 SDNode *FromNode = From.getNode(); 10746 SDNode *ToNode = To.getNode(); 10747 assert(FromNode && ToNode && "Can't modify dbg values"); 10748 10749 // PR35338 10750 // TODO: assert(From != To && "Redundant dbg value transfer"); 10751 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 10752 if (From == To || FromNode == ToNode) 10753 return; 10754 10755 if (!FromNode->getHasDebugValue()) 10756 return; 10757 10758 SDDbgOperand FromLocOp = 10759 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 10760 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 10761 10762 SmallVector<SDDbgValue *, 2> ClonedDVs; 10763 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 10764 if (Dbg->isInvalidated()) 10765 continue; 10766 10767 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 10768 10769 // Create a new location ops vector that is equal to the old vector, but 10770 // with each instance of FromLocOp replaced with ToLocOp. 10771 bool Changed = false; 10772 auto NewLocOps = Dbg->copyLocationOps(); 10773 std::replace_if( 10774 NewLocOps.begin(), NewLocOps.end(), 10775 [&Changed, FromLocOp](const SDDbgOperand &Op) { 10776 bool Match = Op == FromLocOp; 10777 Changed |= Match; 10778 return Match; 10779 }, 10780 ToLocOp); 10781 // Ignore this SDDbgValue if we didn't find a matching location. 10782 if (!Changed) 10783 continue; 10784 10785 DIVariable *Var = Dbg->getVariable(); 10786 auto *Expr = Dbg->getExpression(); 10787 // If a fragment is requested, update the expression. 10788 if (SizeInBits) { 10789 // When splitting a larger (e.g., sign-extended) value whose 10790 // lower bits are described with an SDDbgValue, do not attempt 10791 // to transfer the SDDbgValue to the upper bits. 10792 if (auto FI = Expr->getFragmentInfo()) 10793 if (OffsetInBits + SizeInBits > FI->SizeInBits) 10794 continue; 10795 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 10796 SizeInBits); 10797 if (!Fragment) 10798 continue; 10799 Expr = *Fragment; 10800 } 10801 10802 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 10803 // Clone the SDDbgValue and move it to To. 10804 SDDbgValue *Clone = getDbgValueList( 10805 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 10806 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 10807 Dbg->isVariadic()); 10808 ClonedDVs.push_back(Clone); 10809 10810 if (InvalidateDbg) { 10811 // Invalidate value and indicate the SDDbgValue should not be emitted. 10812 Dbg->setIsInvalidated(); 10813 Dbg->setIsEmitted(); 10814 } 10815 } 10816 10817 for (SDDbgValue *Dbg : ClonedDVs) { 10818 assert(is_contained(Dbg->getSDNodes(), ToNode) && 10819 "Transferred DbgValues should depend on the new SDNode"); 10820 AddDbgValue(Dbg, false); 10821 } 10822 } 10823 10824 void SelectionDAG::salvageDebugInfo(SDNode &N) { 10825 if (!N.getHasDebugValue()) 10826 return; 10827 10828 SmallVector<SDDbgValue *, 2> ClonedDVs; 10829 for (auto *DV : GetDbgValues(&N)) { 10830 if (DV->isInvalidated()) 10831 continue; 10832 switch (N.getOpcode()) { 10833 default: 10834 break; 10835 case ISD::ADD: { 10836 SDValue N0 = N.getOperand(0); 10837 SDValue N1 = N.getOperand(1); 10838 if (!isa<ConstantSDNode>(N0)) { 10839 bool RHSConstant = isa<ConstantSDNode>(N1); 10840 uint64_t Offset; 10841 if (RHSConstant) 10842 Offset = N.getConstantOperandVal(1); 10843 // We are not allowed to turn indirect debug values variadic, so 10844 // don't salvage those. 10845 if (!RHSConstant && DV->isIndirect()) 10846 continue; 10847 10848 // Rewrite an ADD constant node into a DIExpression. Since we are 10849 // performing arithmetic to compute the variable's *value* in the 10850 // DIExpression, we need to mark the expression with a 10851 // DW_OP_stack_value. 10852 auto *DIExpr = DV->getExpression(); 10853 auto NewLocOps = DV->copyLocationOps(); 10854 bool Changed = false; 10855 size_t OrigLocOpsSize = NewLocOps.size(); 10856 for (size_t i = 0; i < OrigLocOpsSize; ++i) { 10857 // We're not given a ResNo to compare against because the whole 10858 // node is going away. We know that any ISD::ADD only has one 10859 // result, so we can assume any node match is using the result. 10860 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 10861 NewLocOps[i].getSDNode() != &N) 10862 continue; 10863 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 10864 if (RHSConstant) { 10865 SmallVector<uint64_t, 3> ExprOps; 10866 DIExpression::appendOffset(ExprOps, Offset); 10867 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 10868 } else { 10869 // Convert to a variadic expression (if not already). 10870 // convertToVariadicExpression() returns a const pointer, so we use 10871 // a temporary const variable here. 10872 const auto *TmpDIExpr = 10873 DIExpression::convertToVariadicExpression(DIExpr); 10874 SmallVector<uint64_t, 3> ExprOps; 10875 ExprOps.push_back(dwarf::DW_OP_LLVM_arg); 10876 ExprOps.push_back(NewLocOps.size()); 10877 ExprOps.push_back(dwarf::DW_OP_plus); 10878 SDDbgOperand RHS = 10879 SDDbgOperand::fromNode(N1.getNode(), N1.getResNo()); 10880 NewLocOps.push_back(RHS); 10881 DIExpr = DIExpression::appendOpsToArg(TmpDIExpr, ExprOps, i, true); 10882 } 10883 Changed = true; 10884 } 10885 (void)Changed; 10886 assert(Changed && "Salvage target doesn't use N"); 10887 10888 bool IsVariadic = 10889 DV->isVariadic() || OrigLocOpsSize != NewLocOps.size(); 10890 10891 auto AdditionalDependencies = DV->getAdditionalDependencies(); 10892 SDDbgValue *Clone = getDbgValueList( 10893 DV->getVariable(), DIExpr, NewLocOps, AdditionalDependencies, 10894 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder(), IsVariadic); 10895 ClonedDVs.push_back(Clone); 10896 DV->setIsInvalidated(); 10897 DV->setIsEmitted(); 10898 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 10899 N0.getNode()->dumprFull(this); 10900 dbgs() << " into " << *DIExpr << '\n'); 10901 } 10902 break; 10903 } 10904 case ISD::TRUNCATE: { 10905 SDValue N0 = N.getOperand(0); 10906 TypeSize FromSize = N0.getValueSizeInBits(); 10907 TypeSize ToSize = N.getValueSizeInBits(0); 10908 10909 DIExpression *DbgExpression = DV->getExpression(); 10910 auto ExtOps = DIExpression::getExtOps(FromSize, ToSize, false); 10911 auto NewLocOps = DV->copyLocationOps(); 10912 bool Changed = false; 10913 for (size_t i = 0; i < NewLocOps.size(); ++i) { 10914 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 10915 NewLocOps[i].getSDNode() != &N) 10916 continue; 10917 10918 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 10919 DbgExpression = DIExpression::appendOpsToArg(DbgExpression, ExtOps, i); 10920 Changed = true; 10921 } 10922 assert(Changed && "Salvage target doesn't use N"); 10923 (void)Changed; 10924 10925 SDDbgValue *Clone = 10926 getDbgValueList(DV->getVariable(), DbgExpression, NewLocOps, 10927 DV->getAdditionalDependencies(), DV->isIndirect(), 10928 DV->getDebugLoc(), DV->getOrder(), DV->isVariadic()); 10929 10930 ClonedDVs.push_back(Clone); 10931 DV->setIsInvalidated(); 10932 DV->setIsEmitted(); 10933 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; N0.getNode()->dumprFull(this); 10934 dbgs() << " into " << *DbgExpression << '\n'); 10935 break; 10936 } 10937 } 10938 } 10939 10940 for (SDDbgValue *Dbg : ClonedDVs) { 10941 assert(!Dbg->getSDNodes().empty() && 10942 "Salvaged DbgValue should depend on a new SDNode"); 10943 AddDbgValue(Dbg, false); 10944 } 10945 } 10946 10947 /// Creates a SDDbgLabel node. 10948 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 10949 const DebugLoc &DL, unsigned O) { 10950 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 10951 "Expected inlined-at fields to agree"); 10952 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 10953 } 10954 10955 namespace { 10956 10957 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 10958 /// pointed to by a use iterator is deleted, increment the use iterator 10959 /// so that it doesn't dangle. 10960 /// 10961 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 10962 SDNode::use_iterator &UI; 10963 SDNode::use_iterator &UE; 10964 10965 void NodeDeleted(SDNode *N, SDNode *E) override { 10966 // Increment the iterator as needed. 10967 while (UI != UE && N == *UI) 10968 ++UI; 10969 } 10970 10971 public: 10972 RAUWUpdateListener(SelectionDAG &d, 10973 SDNode::use_iterator &ui, 10974 SDNode::use_iterator &ue) 10975 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 10976 }; 10977 10978 } // end anonymous namespace 10979 10980 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10981 /// This can cause recursive merging of nodes in the DAG. 10982 /// 10983 /// This version assumes From has a single result value. 10984 /// 10985 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 10986 SDNode *From = FromN.getNode(); 10987 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 10988 "Cannot replace with this method!"); 10989 assert(From != To.getNode() && "Cannot replace uses of with self"); 10990 10991 // Preserve Debug Values 10992 transferDbgValues(FromN, To); 10993 // Preserve extra info. 10994 copyExtraInfo(From, To.getNode()); 10995 10996 // Iterate over all the existing uses of From. New uses will be added 10997 // to the beginning of the use list, which we avoid visiting. 10998 // This specifically avoids visiting uses of From that arise while the 10999 // replacement is happening, because any such uses would be the result 11000 // of CSE: If an existing node looks like From after one of its operands 11001 // is replaced by To, we don't want to replace of all its users with To 11002 // too. See PR3018 for more info. 11003 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 11004 RAUWUpdateListener Listener(*this, UI, UE); 11005 while (UI != UE) { 11006 SDNode *User = *UI; 11007 11008 // This node is about to morph, remove its old self from the CSE maps. 11009 RemoveNodeFromCSEMaps(User); 11010 11011 // A user can appear in a use list multiple times, and when this 11012 // happens the uses are usually next to each other in the list. 11013 // To help reduce the number of CSE recomputations, process all 11014 // the uses of this user that we can find this way. 11015 do { 11016 SDUse &Use = UI.getUse(); 11017 ++UI; 11018 Use.set(To); 11019 if (To->isDivergent() != From->isDivergent()) 11020 updateDivergence(User); 11021 } while (UI != UE && *UI == User); 11022 // Now that we have modified User, add it back to the CSE maps. If it 11023 // already exists there, recursively merge the results together. 11024 AddModifiedNodeToCSEMaps(User); 11025 } 11026 11027 // If we just RAUW'd the root, take note. 11028 if (FromN == getRoot()) 11029 setRoot(To); 11030 } 11031 11032 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 11033 /// This can cause recursive merging of nodes in the DAG. 11034 /// 11035 /// This version assumes that for each value of From, there is a 11036 /// corresponding value in To in the same position with the same type. 11037 /// 11038 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 11039 #ifndef NDEBUG 11040 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 11041 assert((!From->hasAnyUseOfValue(i) || 11042 From->getValueType(i) == To->getValueType(i)) && 11043 "Cannot use this version of ReplaceAllUsesWith!"); 11044 #endif 11045 11046 // Handle the trivial case. 11047 if (From == To) 11048 return; 11049 11050 // Preserve Debug Info. Only do this if there's a use. 11051 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 11052 if (From->hasAnyUseOfValue(i)) { 11053 assert((i < To->getNumValues()) && "Invalid To location"); 11054 transferDbgValues(SDValue(From, i), SDValue(To, i)); 11055 } 11056 // Preserve extra info. 11057 copyExtraInfo(From, To); 11058 11059 // Iterate over just the existing users of From. See the comments in 11060 // the ReplaceAllUsesWith above. 11061 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 11062 RAUWUpdateListener Listener(*this, UI, UE); 11063 while (UI != UE) { 11064 SDNode *User = *UI; 11065 11066 // This node is about to morph, remove its old self from the CSE maps. 11067 RemoveNodeFromCSEMaps(User); 11068 11069 // A user can appear in a use list multiple times, and when this 11070 // happens the uses are usually next to each other in the list. 11071 // To help reduce the number of CSE recomputations, process all 11072 // the uses of this user that we can find this way. 11073 do { 11074 SDUse &Use = UI.getUse(); 11075 ++UI; 11076 Use.setNode(To); 11077 if (To->isDivergent() != From->isDivergent()) 11078 updateDivergence(User); 11079 } while (UI != UE && *UI == User); 11080 11081 // Now that we have modified User, add it back to the CSE maps. If it 11082 // already exists there, recursively merge the results together. 11083 AddModifiedNodeToCSEMaps(User); 11084 } 11085 11086 // If we just RAUW'd the root, take note. 11087 if (From == getRoot().getNode()) 11088 setRoot(SDValue(To, getRoot().getResNo())); 11089 } 11090 11091 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 11092 /// This can cause recursive merging of nodes in the DAG. 11093 /// 11094 /// This version can replace From with any result values. To must match the 11095 /// number and types of values returned by From. 11096 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 11097 if (From->getNumValues() == 1) // Handle the simple case efficiently. 11098 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 11099 11100 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) { 11101 // Preserve Debug Info. 11102 transferDbgValues(SDValue(From, i), To[i]); 11103 // Preserve extra info. 11104 copyExtraInfo(From, To[i].getNode()); 11105 } 11106 11107 // Iterate over just the existing users of From. See the comments in 11108 // the ReplaceAllUsesWith above. 11109 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 11110 RAUWUpdateListener Listener(*this, UI, UE); 11111 while (UI != UE) { 11112 SDNode *User = *UI; 11113 11114 // This node is about to morph, remove its old self from the CSE maps. 11115 RemoveNodeFromCSEMaps(User); 11116 11117 // A user can appear in a use list multiple times, and when this happens the 11118 // uses are usually next to each other in the list. To help reduce the 11119 // number of CSE and divergence recomputations, process all the uses of this 11120 // user that we can find this way. 11121 bool To_IsDivergent = false; 11122 do { 11123 SDUse &Use = UI.getUse(); 11124 const SDValue &ToOp = To[Use.getResNo()]; 11125 ++UI; 11126 Use.set(ToOp); 11127 To_IsDivergent |= ToOp->isDivergent(); 11128 } while (UI != UE && *UI == User); 11129 11130 if (To_IsDivergent != From->isDivergent()) 11131 updateDivergence(User); 11132 11133 // Now that we have modified User, add it back to the CSE maps. If it 11134 // already exists there, recursively merge the results together. 11135 AddModifiedNodeToCSEMaps(User); 11136 } 11137 11138 // If we just RAUW'd the root, take note. 11139 if (From == getRoot().getNode()) 11140 setRoot(SDValue(To[getRoot().getResNo()])); 11141 } 11142 11143 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 11144 /// uses of other values produced by From.getNode() alone. The Deleted 11145 /// vector is handled the same way as for ReplaceAllUsesWith. 11146 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 11147 // Handle the really simple, really trivial case efficiently. 11148 if (From == To) return; 11149 11150 // Handle the simple, trivial, case efficiently. 11151 if (From.getNode()->getNumValues() == 1) { 11152 ReplaceAllUsesWith(From, To); 11153 return; 11154 } 11155 11156 // Preserve Debug Info. 11157 transferDbgValues(From, To); 11158 copyExtraInfo(From.getNode(), To.getNode()); 11159 11160 // Iterate over just the existing users of From. See the comments in 11161 // the ReplaceAllUsesWith above. 11162 SDNode::use_iterator UI = From.getNode()->use_begin(), 11163 UE = From.getNode()->use_end(); 11164 RAUWUpdateListener Listener(*this, UI, UE); 11165 while (UI != UE) { 11166 SDNode *User = *UI; 11167 bool UserRemovedFromCSEMaps = false; 11168 11169 // A user can appear in a use list multiple times, and when this 11170 // happens the uses are usually next to each other in the list. 11171 // To help reduce the number of CSE recomputations, process all 11172 // the uses of this user that we can find this way. 11173 do { 11174 SDUse &Use = UI.getUse(); 11175 11176 // Skip uses of different values from the same node. 11177 if (Use.getResNo() != From.getResNo()) { 11178 ++UI; 11179 continue; 11180 } 11181 11182 // If this node hasn't been modified yet, it's still in the CSE maps, 11183 // so remove its old self from the CSE maps. 11184 if (!UserRemovedFromCSEMaps) { 11185 RemoveNodeFromCSEMaps(User); 11186 UserRemovedFromCSEMaps = true; 11187 } 11188 11189 ++UI; 11190 Use.set(To); 11191 if (To->isDivergent() != From->isDivergent()) 11192 updateDivergence(User); 11193 } while (UI != UE && *UI == User); 11194 // We are iterating over all uses of the From node, so if a use 11195 // doesn't use the specific value, no changes are made. 11196 if (!UserRemovedFromCSEMaps) 11197 continue; 11198 11199 // Now that we have modified User, add it back to the CSE maps. If it 11200 // already exists there, recursively merge the results together. 11201 AddModifiedNodeToCSEMaps(User); 11202 } 11203 11204 // If we just RAUW'd the root, take note. 11205 if (From == getRoot()) 11206 setRoot(To); 11207 } 11208 11209 namespace { 11210 11211 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 11212 /// to record information about a use. 11213 struct UseMemo { 11214 SDNode *User; 11215 unsigned Index; 11216 SDUse *Use; 11217 }; 11218 11219 /// operator< - Sort Memos by User. 11220 bool operator<(const UseMemo &L, const UseMemo &R) { 11221 return (intptr_t)L.User < (intptr_t)R.User; 11222 } 11223 11224 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node 11225 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that 11226 /// the node already has been taken care of recursively. 11227 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener { 11228 SmallVector<UseMemo, 4> &Uses; 11229 11230 void NodeDeleted(SDNode *N, SDNode *E) override { 11231 for (UseMemo &Memo : Uses) 11232 if (Memo.User == N) 11233 Memo.User = nullptr; 11234 } 11235 11236 public: 11237 RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses) 11238 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {} 11239 }; 11240 11241 } // end anonymous namespace 11242 11243 bool SelectionDAG::calculateDivergence(SDNode *N) { 11244 if (TLI->isSDNodeAlwaysUniform(N)) { 11245 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, UA) && 11246 "Conflicting divergence information!"); 11247 return false; 11248 } 11249 if (TLI->isSDNodeSourceOfDivergence(N, FLI, UA)) 11250 return true; 11251 for (const auto &Op : N->ops()) { 11252 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 11253 return true; 11254 } 11255 return false; 11256 } 11257 11258 void SelectionDAG::updateDivergence(SDNode *N) { 11259 SmallVector<SDNode *, 16> Worklist(1, N); 11260 do { 11261 N = Worklist.pop_back_val(); 11262 bool IsDivergent = calculateDivergence(N); 11263 if (N->SDNodeBits.IsDivergent != IsDivergent) { 11264 N->SDNodeBits.IsDivergent = IsDivergent; 11265 llvm::append_range(Worklist, N->uses()); 11266 } 11267 } while (!Worklist.empty()); 11268 } 11269 11270 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 11271 DenseMap<SDNode *, unsigned> Degree; 11272 Order.reserve(AllNodes.size()); 11273 for (auto &N : allnodes()) { 11274 unsigned NOps = N.getNumOperands(); 11275 Degree[&N] = NOps; 11276 if (0 == NOps) 11277 Order.push_back(&N); 11278 } 11279 for (size_t I = 0; I != Order.size(); ++I) { 11280 SDNode *N = Order[I]; 11281 for (auto *U : N->uses()) { 11282 unsigned &UnsortedOps = Degree[U]; 11283 if (0 == --UnsortedOps) 11284 Order.push_back(U); 11285 } 11286 } 11287 } 11288 11289 #ifndef NDEBUG 11290 void SelectionDAG::VerifyDAGDivergence() { 11291 std::vector<SDNode *> TopoOrder; 11292 CreateTopologicalOrder(TopoOrder); 11293 for (auto *N : TopoOrder) { 11294 assert(calculateDivergence(N) == N->isDivergent() && 11295 "Divergence bit inconsistency detected"); 11296 } 11297 } 11298 #endif 11299 11300 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 11301 /// uses of other values produced by From.getNode() alone. The same value 11302 /// may appear in both the From and To list. The Deleted vector is 11303 /// handled the same way as for ReplaceAllUsesWith. 11304 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 11305 const SDValue *To, 11306 unsigned Num){ 11307 // Handle the simple, trivial case efficiently. 11308 if (Num == 1) 11309 return ReplaceAllUsesOfValueWith(*From, *To); 11310 11311 transferDbgValues(*From, *To); 11312 copyExtraInfo(From->getNode(), To->getNode()); 11313 11314 // Read up all the uses and make records of them. This helps 11315 // processing new uses that are introduced during the 11316 // replacement process. 11317 SmallVector<UseMemo, 4> Uses; 11318 for (unsigned i = 0; i != Num; ++i) { 11319 unsigned FromResNo = From[i].getResNo(); 11320 SDNode *FromNode = From[i].getNode(); 11321 for (SDNode::use_iterator UI = FromNode->use_begin(), 11322 E = FromNode->use_end(); UI != E; ++UI) { 11323 SDUse &Use = UI.getUse(); 11324 if (Use.getResNo() == FromResNo) { 11325 UseMemo Memo = { *UI, i, &Use }; 11326 Uses.push_back(Memo); 11327 } 11328 } 11329 } 11330 11331 // Sort the uses, so that all the uses from a given User are together. 11332 llvm::sort(Uses); 11333 RAUOVWUpdateListener Listener(*this, Uses); 11334 11335 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 11336 UseIndex != UseIndexEnd; ) { 11337 // We know that this user uses some value of From. If it is the right 11338 // value, update it. 11339 SDNode *User = Uses[UseIndex].User; 11340 // If the node has been deleted by recursive CSE updates when updating 11341 // another node, then just skip this entry. 11342 if (User == nullptr) { 11343 ++UseIndex; 11344 continue; 11345 } 11346 11347 // This node is about to morph, remove its old self from the CSE maps. 11348 RemoveNodeFromCSEMaps(User); 11349 11350 // The Uses array is sorted, so all the uses for a given User 11351 // are next to each other in the list. 11352 // To help reduce the number of CSE recomputations, process all 11353 // the uses of this user that we can find this way. 11354 do { 11355 unsigned i = Uses[UseIndex].Index; 11356 SDUse &Use = *Uses[UseIndex].Use; 11357 ++UseIndex; 11358 11359 Use.set(To[i]); 11360 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 11361 11362 // Now that we have modified User, add it back to the CSE maps. If it 11363 // already exists there, recursively merge the results together. 11364 AddModifiedNodeToCSEMaps(User); 11365 } 11366 } 11367 11368 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 11369 /// based on their topological order. It returns the maximum id and a vector 11370 /// of the SDNodes* in assigned order by reference. 11371 unsigned SelectionDAG::AssignTopologicalOrder() { 11372 unsigned DAGSize = 0; 11373 11374 // SortedPos tracks the progress of the algorithm. Nodes before it are 11375 // sorted, nodes after it are unsorted. When the algorithm completes 11376 // it is at the end of the list. 11377 allnodes_iterator SortedPos = allnodes_begin(); 11378 11379 // Visit all the nodes. Move nodes with no operands to the front of 11380 // the list immediately. Annotate nodes that do have operands with their 11381 // operand count. Before we do this, the Node Id fields of the nodes 11382 // may contain arbitrary values. After, the Node Id fields for nodes 11383 // before SortedPos will contain the topological sort index, and the 11384 // Node Id fields for nodes At SortedPos and after will contain the 11385 // count of outstanding operands. 11386 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 11387 checkForCycles(&N, this); 11388 unsigned Degree = N.getNumOperands(); 11389 if (Degree == 0) { 11390 // A node with no uses, add it to the result array immediately. 11391 N.setNodeId(DAGSize++); 11392 allnodes_iterator Q(&N); 11393 if (Q != SortedPos) 11394 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 11395 assert(SortedPos != AllNodes.end() && "Overran node list"); 11396 ++SortedPos; 11397 } else { 11398 // Temporarily use the Node Id as scratch space for the degree count. 11399 N.setNodeId(Degree); 11400 } 11401 } 11402 11403 // Visit all the nodes. As we iterate, move nodes into sorted order, 11404 // such that by the time the end is reached all nodes will be sorted. 11405 for (SDNode &Node : allnodes()) { 11406 SDNode *N = &Node; 11407 checkForCycles(N, this); 11408 // N is in sorted position, so all its uses have one less operand 11409 // that needs to be sorted. 11410 for (SDNode *P : N->uses()) { 11411 unsigned Degree = P->getNodeId(); 11412 assert(Degree != 0 && "Invalid node degree"); 11413 --Degree; 11414 if (Degree == 0) { 11415 // All of P's operands are sorted, so P may sorted now. 11416 P->setNodeId(DAGSize++); 11417 if (P->getIterator() != SortedPos) 11418 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 11419 assert(SortedPos != AllNodes.end() && "Overran node list"); 11420 ++SortedPos; 11421 } else { 11422 // Update P's outstanding operand count. 11423 P->setNodeId(Degree); 11424 } 11425 } 11426 if (Node.getIterator() == SortedPos) { 11427 #ifndef NDEBUG 11428 allnodes_iterator I(N); 11429 SDNode *S = &*++I; 11430 dbgs() << "Overran sorted position:\n"; 11431 S->dumprFull(this); dbgs() << "\n"; 11432 dbgs() << "Checking if this is due to cycles\n"; 11433 checkForCycles(this, true); 11434 #endif 11435 llvm_unreachable(nullptr); 11436 } 11437 } 11438 11439 assert(SortedPos == AllNodes.end() && 11440 "Topological sort incomplete!"); 11441 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 11442 "First node in topological sort is not the entry token!"); 11443 assert(AllNodes.front().getNodeId() == 0 && 11444 "First node in topological sort has non-zero id!"); 11445 assert(AllNodes.front().getNumOperands() == 0 && 11446 "First node in topological sort has operands!"); 11447 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 11448 "Last node in topologic sort has unexpected id!"); 11449 assert(AllNodes.back().use_empty() && 11450 "Last node in topologic sort has users!"); 11451 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 11452 return DAGSize; 11453 } 11454 11455 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 11456 /// value is produced by SD. 11457 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 11458 for (SDNode *SD : DB->getSDNodes()) { 11459 if (!SD) 11460 continue; 11461 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 11462 SD->setHasDebugValue(true); 11463 } 11464 DbgInfo->add(DB, isParameter); 11465 } 11466 11467 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 11468 11469 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 11470 SDValue NewMemOpChain) { 11471 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 11472 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 11473 // The new memory operation must have the same position as the old load in 11474 // terms of memory dependency. Create a TokenFactor for the old load and new 11475 // memory operation and update uses of the old load's output chain to use that 11476 // TokenFactor. 11477 if (OldChain == NewMemOpChain || OldChain.use_empty()) 11478 return NewMemOpChain; 11479 11480 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 11481 OldChain, NewMemOpChain); 11482 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 11483 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 11484 return TokenFactor; 11485 } 11486 11487 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 11488 SDValue NewMemOp) { 11489 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 11490 SDValue OldChain = SDValue(OldLoad, 1); 11491 SDValue NewMemOpChain = NewMemOp.getValue(1); 11492 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 11493 } 11494 11495 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 11496 Function **OutFunction) { 11497 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 11498 11499 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 11500 auto *Module = MF->getFunction().getParent(); 11501 auto *Function = Module->getFunction(Symbol); 11502 11503 if (OutFunction != nullptr) 11504 *OutFunction = Function; 11505 11506 if (Function != nullptr) { 11507 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 11508 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 11509 } 11510 11511 std::string ErrorStr; 11512 raw_string_ostream ErrorFormatter(ErrorStr); 11513 ErrorFormatter << "Undefined external symbol "; 11514 ErrorFormatter << '"' << Symbol << '"'; 11515 report_fatal_error(Twine(ErrorFormatter.str())); 11516 } 11517 11518 //===----------------------------------------------------------------------===// 11519 // SDNode Class 11520 //===----------------------------------------------------------------------===// 11521 11522 bool llvm::isNullConstant(SDValue V) { 11523 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 11524 return Const != nullptr && Const->isZero(); 11525 } 11526 11527 bool llvm::isNullFPConstant(SDValue V) { 11528 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 11529 return Const != nullptr && Const->isZero() && !Const->isNegative(); 11530 } 11531 11532 bool llvm::isAllOnesConstant(SDValue V) { 11533 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 11534 return Const != nullptr && Const->isAllOnes(); 11535 } 11536 11537 bool llvm::isOneConstant(SDValue V) { 11538 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 11539 return Const != nullptr && Const->isOne(); 11540 } 11541 11542 bool llvm::isMinSignedConstant(SDValue V) { 11543 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 11544 return Const != nullptr && Const->isMinSignedValue(); 11545 } 11546 11547 bool llvm::isNeutralConstant(unsigned Opcode, SDNodeFlags Flags, SDValue V, 11548 unsigned OperandNo) { 11549 // NOTE: The cases should match with IR's ConstantExpr::getBinOpIdentity(). 11550 // TODO: Target-specific opcodes could be added. 11551 if (auto *Const = isConstOrConstSplat(V)) { 11552 switch (Opcode) { 11553 case ISD::ADD: 11554 case ISD::OR: 11555 case ISD::XOR: 11556 case ISD::UMAX: 11557 return Const->isZero(); 11558 case ISD::MUL: 11559 return Const->isOne(); 11560 case ISD::AND: 11561 case ISD::UMIN: 11562 return Const->isAllOnes(); 11563 case ISD::SMAX: 11564 return Const->isMinSignedValue(); 11565 case ISD::SMIN: 11566 return Const->isMaxSignedValue(); 11567 case ISD::SUB: 11568 case ISD::SHL: 11569 case ISD::SRA: 11570 case ISD::SRL: 11571 return OperandNo == 1 && Const->isZero(); 11572 case ISD::UDIV: 11573 case ISD::SDIV: 11574 return OperandNo == 1 && Const->isOne(); 11575 } 11576 } else if (auto *ConstFP = isConstOrConstSplatFP(V)) { 11577 switch (Opcode) { 11578 case ISD::FADD: 11579 return ConstFP->isZero() && 11580 (Flags.hasNoSignedZeros() || ConstFP->isNegative()); 11581 case ISD::FSUB: 11582 return OperandNo == 1 && ConstFP->isZero() && 11583 (Flags.hasNoSignedZeros() || !ConstFP->isNegative()); 11584 case ISD::FMUL: 11585 return ConstFP->isExactlyValue(1.0); 11586 case ISD::FDIV: 11587 return OperandNo == 1 && ConstFP->isExactlyValue(1.0); 11588 case ISD::FMINNUM: 11589 case ISD::FMAXNUM: { 11590 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11591 EVT VT = V.getValueType(); 11592 const fltSemantics &Semantics = SelectionDAG::EVTToAPFloatSemantics(VT); 11593 APFloat NeutralAF = !Flags.hasNoNaNs() 11594 ? APFloat::getQNaN(Semantics) 11595 : !Flags.hasNoInfs() 11596 ? APFloat::getInf(Semantics) 11597 : APFloat::getLargest(Semantics); 11598 if (Opcode == ISD::FMAXNUM) 11599 NeutralAF.changeSign(); 11600 11601 return ConstFP->isExactlyValue(NeutralAF); 11602 } 11603 } 11604 } 11605 return false; 11606 } 11607 11608 SDValue llvm::peekThroughBitcasts(SDValue V) { 11609 while (V.getOpcode() == ISD::BITCAST) 11610 V = V.getOperand(0); 11611 return V; 11612 } 11613 11614 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 11615 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 11616 V = V.getOperand(0); 11617 return V; 11618 } 11619 11620 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 11621 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 11622 V = V.getOperand(0); 11623 return V; 11624 } 11625 11626 SDValue llvm::peekThroughTruncates(SDValue V) { 11627 while (V.getOpcode() == ISD::TRUNCATE) 11628 V = V.getOperand(0); 11629 return V; 11630 } 11631 11632 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 11633 if (V.getOpcode() != ISD::XOR) 11634 return false; 11635 V = peekThroughBitcasts(V.getOperand(1)); 11636 unsigned NumBits = V.getScalarValueSizeInBits(); 11637 ConstantSDNode *C = 11638 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 11639 return C && (C->getAPIntValue().countr_one() >= NumBits); 11640 } 11641 11642 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 11643 bool AllowTruncation) { 11644 EVT VT = N.getValueType(); 11645 APInt DemandedElts = VT.isFixedLengthVector() 11646 ? APInt::getAllOnes(VT.getVectorMinNumElements()) 11647 : APInt(1, 1); 11648 return isConstOrConstSplat(N, DemandedElts, AllowUndefs, AllowTruncation); 11649 } 11650 11651 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 11652 bool AllowUndefs, 11653 bool AllowTruncation) { 11654 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 11655 return CN; 11656 11657 // SplatVectors can truncate their operands. Ignore that case here unless 11658 // AllowTruncation is set. 11659 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 11660 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 11661 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 11662 EVT CVT = CN->getValueType(0); 11663 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 11664 if (AllowTruncation || CVT == VecEltVT) 11665 return CN; 11666 } 11667 } 11668 11669 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 11670 BitVector UndefElements; 11671 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 11672 11673 // BuildVectors can truncate their operands. Ignore that case here unless 11674 // AllowTruncation is set. 11675 // TODO: Look into whether we should allow UndefElements in non-DemandedElts 11676 if (CN && (UndefElements.none() || AllowUndefs)) { 11677 EVT CVT = CN->getValueType(0); 11678 EVT NSVT = N.getValueType().getScalarType(); 11679 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 11680 if (AllowTruncation || (CVT == NSVT)) 11681 return CN; 11682 } 11683 } 11684 11685 return nullptr; 11686 } 11687 11688 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 11689 EVT VT = N.getValueType(); 11690 APInt DemandedElts = VT.isFixedLengthVector() 11691 ? APInt::getAllOnes(VT.getVectorMinNumElements()) 11692 : APInt(1, 1); 11693 return isConstOrConstSplatFP(N, DemandedElts, AllowUndefs); 11694 } 11695 11696 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 11697 const APInt &DemandedElts, 11698 bool AllowUndefs) { 11699 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 11700 return CN; 11701 11702 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 11703 BitVector UndefElements; 11704 ConstantFPSDNode *CN = 11705 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 11706 // TODO: Look into whether we should allow UndefElements in non-DemandedElts 11707 if (CN && (UndefElements.none() || AllowUndefs)) 11708 return CN; 11709 } 11710 11711 if (N.getOpcode() == ISD::SPLAT_VECTOR) 11712 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 11713 return CN; 11714 11715 return nullptr; 11716 } 11717 11718 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 11719 // TODO: may want to use peekThroughBitcast() here. 11720 ConstantSDNode *C = 11721 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 11722 return C && C->isZero(); 11723 } 11724 11725 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 11726 ConstantSDNode *C = 11727 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true); 11728 return C && C->isOne(); 11729 } 11730 11731 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 11732 N = peekThroughBitcasts(N); 11733 unsigned BitWidth = N.getScalarValueSizeInBits(); 11734 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 11735 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 11736 } 11737 11738 HandleSDNode::~HandleSDNode() { 11739 DropOperands(); 11740 } 11741 11742 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 11743 const DebugLoc &DL, 11744 const GlobalValue *GA, EVT VT, 11745 int64_t o, unsigned TF) 11746 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 11747 TheGlobal = GA; 11748 } 11749 11750 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 11751 EVT VT, unsigned SrcAS, 11752 unsigned DestAS) 11753 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 11754 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 11755 11756 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 11757 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 11758 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 11759 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 11760 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 11761 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 11762 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 11763 11764 // We check here that the size of the memory operand fits within the size of 11765 // the MMO. This is because the MMO might indicate only a possible address 11766 // range instead of specifying the affected memory addresses precisely. 11767 // TODO: Make MachineMemOperands aware of scalable vectors. 11768 assert(memvt.getStoreSize().getKnownMinValue() <= MMO->getSize() && 11769 "Size mismatch!"); 11770 } 11771 11772 /// Profile - Gather unique data for the node. 11773 /// 11774 void SDNode::Profile(FoldingSetNodeID &ID) const { 11775 AddNodeIDNode(ID, this); 11776 } 11777 11778 namespace { 11779 11780 struct EVTArray { 11781 std::vector<EVT> VTs; 11782 11783 EVTArray() { 11784 VTs.reserve(MVT::VALUETYPE_SIZE); 11785 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 11786 VTs.push_back(MVT((MVT::SimpleValueType)i)); 11787 } 11788 }; 11789 11790 } // end anonymous namespace 11791 11792 /// getValueTypeList - Return a pointer to the specified value type. 11793 /// 11794 const EVT *SDNode::getValueTypeList(EVT VT) { 11795 static std::set<EVT, EVT::compareRawBits> EVTs; 11796 static EVTArray SimpleVTArray; 11797 static sys::SmartMutex<true> VTMutex; 11798 11799 if (VT.isExtended()) { 11800 sys::SmartScopedLock<true> Lock(VTMutex); 11801 return &(*EVTs.insert(VT).first); 11802 } 11803 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 11804 return &SimpleVTArray.VTs[VT.getSimpleVT().SimpleTy]; 11805 } 11806 11807 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 11808 /// indicated value. This method ignores uses of other values defined by this 11809 /// operation. 11810 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 11811 assert(Value < getNumValues() && "Bad value!"); 11812 11813 // TODO: Only iterate over uses of a given value of the node 11814 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 11815 if (UI.getUse().getResNo() == Value) { 11816 if (NUses == 0) 11817 return false; 11818 --NUses; 11819 } 11820 } 11821 11822 // Found exactly the right number of uses? 11823 return NUses == 0; 11824 } 11825 11826 /// hasAnyUseOfValue - Return true if there are any use of the indicated 11827 /// value. This method ignores uses of other values defined by this operation. 11828 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 11829 assert(Value < getNumValues() && "Bad value!"); 11830 11831 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 11832 if (UI.getUse().getResNo() == Value) 11833 return true; 11834 11835 return false; 11836 } 11837 11838 /// isOnlyUserOf - Return true if this node is the only use of N. 11839 bool SDNode::isOnlyUserOf(const SDNode *N) const { 11840 bool Seen = false; 11841 for (const SDNode *User : N->uses()) { 11842 if (User == this) 11843 Seen = true; 11844 else 11845 return false; 11846 } 11847 11848 return Seen; 11849 } 11850 11851 /// Return true if the only users of N are contained in Nodes. 11852 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 11853 bool Seen = false; 11854 for (const SDNode *User : N->uses()) { 11855 if (llvm::is_contained(Nodes, User)) 11856 Seen = true; 11857 else 11858 return false; 11859 } 11860 11861 return Seen; 11862 } 11863 11864 /// isOperand - Return true if this node is an operand of N. 11865 bool SDValue::isOperandOf(const SDNode *N) const { 11866 return is_contained(N->op_values(), *this); 11867 } 11868 11869 bool SDNode::isOperandOf(const SDNode *N) const { 11870 return any_of(N->op_values(), 11871 [this](SDValue Op) { return this == Op.getNode(); }); 11872 } 11873 11874 /// reachesChainWithoutSideEffects - Return true if this operand (which must 11875 /// be a chain) reaches the specified operand without crossing any 11876 /// side-effecting instructions on any chain path. In practice, this looks 11877 /// through token factors and non-volatile loads. In order to remain efficient, 11878 /// this only looks a couple of nodes in, it does not do an exhaustive search. 11879 /// 11880 /// Note that we only need to examine chains when we're searching for 11881 /// side-effects; SelectionDAG requires that all side-effects are represented 11882 /// by chains, even if another operand would force a specific ordering. This 11883 /// constraint is necessary to allow transformations like splitting loads. 11884 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 11885 unsigned Depth) const { 11886 if (*this == Dest) return true; 11887 11888 // Don't search too deeply, we just want to be able to see through 11889 // TokenFactor's etc. 11890 if (Depth == 0) return false; 11891 11892 // If this is a token factor, all inputs to the TF happen in parallel. 11893 if (getOpcode() == ISD::TokenFactor) { 11894 // First, try a shallow search. 11895 if (is_contained((*this)->ops(), Dest)) { 11896 // We found the chain we want as an operand of this TokenFactor. 11897 // Essentially, we reach the chain without side-effects if we could 11898 // serialize the TokenFactor into a simple chain of operations with 11899 // Dest as the last operation. This is automatically true if the 11900 // chain has one use: there are no other ordering constraints. 11901 // If the chain has more than one use, we give up: some other 11902 // use of Dest might force a side-effect between Dest and the current 11903 // node. 11904 if (Dest.hasOneUse()) 11905 return true; 11906 } 11907 // Next, try a deep search: check whether every operand of the TokenFactor 11908 // reaches Dest. 11909 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 11910 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 11911 }); 11912 } 11913 11914 // Loads don't have side effects, look through them. 11915 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 11916 if (Ld->isUnordered()) 11917 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 11918 } 11919 return false; 11920 } 11921 11922 bool SDNode::hasPredecessor(const SDNode *N) const { 11923 SmallPtrSet<const SDNode *, 32> Visited; 11924 SmallVector<const SDNode *, 16> Worklist; 11925 Worklist.push_back(this); 11926 return hasPredecessorHelper(N, Visited, Worklist); 11927 } 11928 11929 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 11930 this->Flags.intersectWith(Flags); 11931 } 11932 11933 SDValue 11934 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 11935 ArrayRef<ISD::NodeType> CandidateBinOps, 11936 bool AllowPartials) { 11937 // The pattern must end in an extract from index 0. 11938 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 11939 !isNullConstant(Extract->getOperand(1))) 11940 return SDValue(); 11941 11942 // Match against one of the candidate binary ops. 11943 SDValue Op = Extract->getOperand(0); 11944 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 11945 return Op.getOpcode() == unsigned(BinOp); 11946 })) 11947 return SDValue(); 11948 11949 // Floating-point reductions may require relaxed constraints on the final step 11950 // of the reduction because they may reorder intermediate operations. 11951 unsigned CandidateBinOp = Op.getOpcode(); 11952 if (Op.getValueType().isFloatingPoint()) { 11953 SDNodeFlags Flags = Op->getFlags(); 11954 switch (CandidateBinOp) { 11955 case ISD::FADD: 11956 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 11957 return SDValue(); 11958 break; 11959 default: 11960 llvm_unreachable("Unhandled FP opcode for binop reduction"); 11961 } 11962 } 11963 11964 // Matching failed - attempt to see if we did enough stages that a partial 11965 // reduction from a subvector is possible. 11966 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 11967 if (!AllowPartials || !Op) 11968 return SDValue(); 11969 EVT OpVT = Op.getValueType(); 11970 EVT OpSVT = OpVT.getScalarType(); 11971 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 11972 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 11973 return SDValue(); 11974 BinOp = (ISD::NodeType)CandidateBinOp; 11975 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 11976 getVectorIdxConstant(0, SDLoc(Op))); 11977 }; 11978 11979 // At each stage, we're looking for something that looks like: 11980 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 11981 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 11982 // i32 undef, i32 undef, i32 undef, i32 undef> 11983 // %a = binop <8 x i32> %op, %s 11984 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 11985 // we expect something like: 11986 // <4,5,6,7,u,u,u,u> 11987 // <2,3,u,u,u,u,u,u> 11988 // <1,u,u,u,u,u,u,u> 11989 // While a partial reduction match would be: 11990 // <2,3,u,u,u,u,u,u> 11991 // <1,u,u,u,u,u,u,u> 11992 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 11993 SDValue PrevOp; 11994 for (unsigned i = 0; i < Stages; ++i) { 11995 unsigned MaskEnd = (1 << i); 11996 11997 if (Op.getOpcode() != CandidateBinOp) 11998 return PartialReduction(PrevOp, MaskEnd); 11999 12000 SDValue Op0 = Op.getOperand(0); 12001 SDValue Op1 = Op.getOperand(1); 12002 12003 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 12004 if (Shuffle) { 12005 Op = Op1; 12006 } else { 12007 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 12008 Op = Op0; 12009 } 12010 12011 // The first operand of the shuffle should be the same as the other operand 12012 // of the binop. 12013 if (!Shuffle || Shuffle->getOperand(0) != Op) 12014 return PartialReduction(PrevOp, MaskEnd); 12015 12016 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 12017 for (int Index = 0; Index < (int)MaskEnd; ++Index) 12018 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 12019 return PartialReduction(PrevOp, MaskEnd); 12020 12021 PrevOp = Op; 12022 } 12023 12024 // Handle subvector reductions, which tend to appear after the shuffle 12025 // reduction stages. 12026 while (Op.getOpcode() == CandidateBinOp) { 12027 unsigned NumElts = Op.getValueType().getVectorNumElements(); 12028 SDValue Op0 = Op.getOperand(0); 12029 SDValue Op1 = Op.getOperand(1); 12030 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 12031 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 12032 Op0.getOperand(0) != Op1.getOperand(0)) 12033 break; 12034 SDValue Src = Op0.getOperand(0); 12035 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 12036 if (NumSrcElts != (2 * NumElts)) 12037 break; 12038 if (!(Op0.getConstantOperandAPInt(1) == 0 && 12039 Op1.getConstantOperandAPInt(1) == NumElts) && 12040 !(Op1.getConstantOperandAPInt(1) == 0 && 12041 Op0.getConstantOperandAPInt(1) == NumElts)) 12042 break; 12043 Op = Src; 12044 } 12045 12046 BinOp = (ISD::NodeType)CandidateBinOp; 12047 return Op; 12048 } 12049 12050 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 12051 EVT VT = N->getValueType(0); 12052 EVT EltVT = VT.getVectorElementType(); 12053 unsigned NE = VT.getVectorNumElements(); 12054 12055 SDLoc dl(N); 12056 12057 // If ResNE is 0, fully unroll the vector op. 12058 if (ResNE == 0) 12059 ResNE = NE; 12060 else if (NE > ResNE) 12061 NE = ResNE; 12062 12063 if (N->getNumValues() == 2) { 12064 SmallVector<SDValue, 8> Scalars0, Scalars1; 12065 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 12066 EVT VT1 = N->getValueType(1); 12067 EVT EltVT1 = VT1.getVectorElementType(); 12068 12069 unsigned i; 12070 for (i = 0; i != NE; ++i) { 12071 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 12072 SDValue Operand = N->getOperand(j); 12073 EVT OperandVT = Operand.getValueType(); 12074 12075 // A vector operand; extract a single element. 12076 EVT OperandEltVT = OperandVT.getVectorElementType(); 12077 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 12078 Operand, getVectorIdxConstant(i, dl)); 12079 } 12080 12081 SDValue EltOp = getNode(N->getOpcode(), dl, {EltVT, EltVT1}, Operands); 12082 Scalars0.push_back(EltOp); 12083 Scalars1.push_back(EltOp.getValue(1)); 12084 } 12085 12086 SDValue Vec0 = getBuildVector(VT, dl, Scalars0); 12087 SDValue Vec1 = getBuildVector(VT1, dl, Scalars1); 12088 return getMergeValues({Vec0, Vec1}, dl); 12089 } 12090 12091 assert(N->getNumValues() == 1 && 12092 "Can't unroll a vector with multiple results!"); 12093 12094 SmallVector<SDValue, 8> Scalars; 12095 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 12096 12097 unsigned i; 12098 for (i= 0; i != NE; ++i) { 12099 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 12100 SDValue Operand = N->getOperand(j); 12101 EVT OperandVT = Operand.getValueType(); 12102 if (OperandVT.isVector()) { 12103 // A vector operand; extract a single element. 12104 EVT OperandEltVT = OperandVT.getVectorElementType(); 12105 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 12106 Operand, getVectorIdxConstant(i, dl)); 12107 } else { 12108 // A scalar operand; just use it as is. 12109 Operands[j] = Operand; 12110 } 12111 } 12112 12113 switch (N->getOpcode()) { 12114 default: { 12115 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 12116 N->getFlags())); 12117 break; 12118 } 12119 case ISD::VSELECT: 12120 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 12121 break; 12122 case ISD::SHL: 12123 case ISD::SRA: 12124 case ISD::SRL: 12125 case ISD::ROTL: 12126 case ISD::ROTR: 12127 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 12128 getShiftAmountOperand(Operands[0].getValueType(), 12129 Operands[1]))); 12130 break; 12131 case ISD::SIGN_EXTEND_INREG: { 12132 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 12133 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 12134 Operands[0], 12135 getValueType(ExtVT))); 12136 } 12137 } 12138 } 12139 12140 for (; i < ResNE; ++i) 12141 Scalars.push_back(getUNDEF(EltVT)); 12142 12143 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 12144 return getBuildVector(VecVT, dl, Scalars); 12145 } 12146 12147 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 12148 SDNode *N, unsigned ResNE) { 12149 unsigned Opcode = N->getOpcode(); 12150 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 12151 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 12152 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 12153 "Expected an overflow opcode"); 12154 12155 EVT ResVT = N->getValueType(0); 12156 EVT OvVT = N->getValueType(1); 12157 EVT ResEltVT = ResVT.getVectorElementType(); 12158 EVT OvEltVT = OvVT.getVectorElementType(); 12159 SDLoc dl(N); 12160 12161 // If ResNE is 0, fully unroll the vector op. 12162 unsigned NE = ResVT.getVectorNumElements(); 12163 if (ResNE == 0) 12164 ResNE = NE; 12165 else if (NE > ResNE) 12166 NE = ResNE; 12167 12168 SmallVector<SDValue, 8> LHSScalars; 12169 SmallVector<SDValue, 8> RHSScalars; 12170 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 12171 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 12172 12173 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 12174 SDVTList VTs = getVTList(ResEltVT, SVT); 12175 SmallVector<SDValue, 8> ResScalars; 12176 SmallVector<SDValue, 8> OvScalars; 12177 for (unsigned i = 0; i < NE; ++i) { 12178 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 12179 SDValue Ov = 12180 getSelect(dl, OvEltVT, Res.getValue(1), 12181 getBoolConstant(true, dl, OvEltVT, ResVT), 12182 getConstant(0, dl, OvEltVT)); 12183 12184 ResScalars.push_back(Res); 12185 OvScalars.push_back(Ov); 12186 } 12187 12188 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 12189 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 12190 12191 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 12192 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 12193 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 12194 getBuildVector(NewOvVT, dl, OvScalars)); 12195 } 12196 12197 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 12198 LoadSDNode *Base, 12199 unsigned Bytes, 12200 int Dist) const { 12201 if (LD->isVolatile() || Base->isVolatile()) 12202 return false; 12203 // TODO: probably too restrictive for atomics, revisit 12204 if (!LD->isSimple()) 12205 return false; 12206 if (LD->isIndexed() || Base->isIndexed()) 12207 return false; 12208 if (LD->getChain() != Base->getChain()) 12209 return false; 12210 EVT VT = LD->getMemoryVT(); 12211 if (VT.getSizeInBits() / 8 != Bytes) 12212 return false; 12213 12214 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 12215 auto LocDecomp = BaseIndexOffset::match(LD, *this); 12216 12217 int64_t Offset = 0; 12218 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 12219 return (Dist * (int64_t)Bytes == Offset); 12220 return false; 12221 } 12222 12223 /// InferPtrAlignment - Infer alignment of a load / store address. Return 12224 /// std::nullopt if it cannot be inferred. 12225 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 12226 // If this is a GlobalAddress + cst, return the alignment. 12227 const GlobalValue *GV = nullptr; 12228 int64_t GVOffset = 0; 12229 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 12230 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 12231 KnownBits Known(PtrWidth); 12232 llvm::computeKnownBits(GV, Known, getDataLayout()); 12233 unsigned AlignBits = Known.countMinTrailingZeros(); 12234 if (AlignBits) 12235 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 12236 } 12237 12238 // If this is a direct reference to a stack slot, use information about the 12239 // stack slot's alignment. 12240 int FrameIdx = INT_MIN; 12241 int64_t FrameOffset = 0; 12242 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 12243 FrameIdx = FI->getIndex(); 12244 } else if (isBaseWithConstantOffset(Ptr) && 12245 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 12246 // Handle FI+Cst 12247 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 12248 FrameOffset = Ptr.getConstantOperandVal(1); 12249 } 12250 12251 if (FrameIdx != INT_MIN) { 12252 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 12253 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 12254 } 12255 12256 return std::nullopt; 12257 } 12258 12259 /// Split the scalar node with EXTRACT_ELEMENT using the provided 12260 /// VTs and return the low/high part. 12261 std::pair<SDValue, SDValue> SelectionDAG::SplitScalar(const SDValue &N, 12262 const SDLoc &DL, 12263 const EVT &LoVT, 12264 const EVT &HiVT) { 12265 assert(!LoVT.isVector() && !HiVT.isVector() && !N.getValueType().isVector() && 12266 "Split node must be a scalar type"); 12267 SDValue Lo = 12268 getNode(ISD::EXTRACT_ELEMENT, DL, LoVT, N, getIntPtrConstant(0, DL)); 12269 SDValue Hi = 12270 getNode(ISD::EXTRACT_ELEMENT, DL, HiVT, N, getIntPtrConstant(1, DL)); 12271 return std::make_pair(Lo, Hi); 12272 } 12273 12274 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 12275 /// which is split (or expanded) into two not necessarily identical pieces. 12276 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 12277 // Currently all types are split in half. 12278 EVT LoVT, HiVT; 12279 if (!VT.isVector()) 12280 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 12281 else 12282 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 12283 12284 return std::make_pair(LoVT, HiVT); 12285 } 12286 12287 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 12288 /// type, dependent on an enveloping VT that has been split into two identical 12289 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 12290 std::pair<EVT, EVT> 12291 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 12292 bool *HiIsEmpty) const { 12293 EVT EltTp = VT.getVectorElementType(); 12294 // Examples: 12295 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 12296 // custom VL=9 with enveloping VL=8/8 yields 8/1 12297 // custom VL=10 with enveloping VL=8/8 yields 8/2 12298 // etc. 12299 ElementCount VTNumElts = VT.getVectorElementCount(); 12300 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 12301 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 12302 "Mixing fixed width and scalable vectors when enveloping a type"); 12303 EVT LoVT, HiVT; 12304 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 12305 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 12306 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 12307 *HiIsEmpty = false; 12308 } else { 12309 // Flag that hi type has zero storage size, but return split envelop type 12310 // (this would be easier if vector types with zero elements were allowed). 12311 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 12312 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 12313 *HiIsEmpty = true; 12314 } 12315 return std::make_pair(LoVT, HiVT); 12316 } 12317 12318 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 12319 /// low/high part. 12320 std::pair<SDValue, SDValue> 12321 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 12322 const EVT &HiVT) { 12323 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 12324 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 12325 "Splitting vector with an invalid mixture of fixed and scalable " 12326 "vector types"); 12327 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 12328 N.getValueType().getVectorMinNumElements() && 12329 "More vector elements requested than available!"); 12330 SDValue Lo, Hi; 12331 Lo = 12332 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 12333 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 12334 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 12335 // IDX with the runtime scaling factor of the result vector type. For 12336 // fixed-width result vectors, that runtime scaling factor is 1. 12337 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 12338 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 12339 return std::make_pair(Lo, Hi); 12340 } 12341 12342 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT, 12343 const SDLoc &DL) { 12344 // Split the vector length parameter. 12345 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts). 12346 EVT VT = N.getValueType(); 12347 assert(VecVT.getVectorElementCount().isKnownEven() && 12348 "Expecting the mask to be an evenly-sized vector"); 12349 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2; 12350 SDValue HalfNumElts = 12351 VecVT.isFixedLengthVector() 12352 ? getConstant(HalfMinNumElts, DL, VT) 12353 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts)); 12354 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts); 12355 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts); 12356 return std::make_pair(Lo, Hi); 12357 } 12358 12359 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 12360 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 12361 EVT VT = N.getValueType(); 12362 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 12363 NextPowerOf2(VT.getVectorNumElements())); 12364 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 12365 getVectorIdxConstant(0, DL)); 12366 } 12367 12368 void SelectionDAG::ExtractVectorElements(SDValue Op, 12369 SmallVectorImpl<SDValue> &Args, 12370 unsigned Start, unsigned Count, 12371 EVT EltVT) { 12372 EVT VT = Op.getValueType(); 12373 if (Count == 0) 12374 Count = VT.getVectorNumElements(); 12375 if (EltVT == EVT()) 12376 EltVT = VT.getVectorElementType(); 12377 SDLoc SL(Op); 12378 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 12379 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 12380 getVectorIdxConstant(i, SL))); 12381 } 12382 } 12383 12384 // getAddressSpace - Return the address space this GlobalAddress belongs to. 12385 unsigned GlobalAddressSDNode::getAddressSpace() const { 12386 return getGlobal()->getType()->getAddressSpace(); 12387 } 12388 12389 Type *ConstantPoolSDNode::getType() const { 12390 if (isMachineConstantPoolEntry()) 12391 return Val.MachineCPVal->getType(); 12392 return Val.ConstVal->getType(); 12393 } 12394 12395 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 12396 unsigned &SplatBitSize, 12397 bool &HasAnyUndefs, 12398 unsigned MinSplatBits, 12399 bool IsBigEndian) const { 12400 EVT VT = getValueType(0); 12401 assert(VT.isVector() && "Expected a vector type"); 12402 unsigned VecWidth = VT.getSizeInBits(); 12403 if (MinSplatBits > VecWidth) 12404 return false; 12405 12406 // FIXME: The widths are based on this node's type, but build vectors can 12407 // truncate their operands. 12408 SplatValue = APInt(VecWidth, 0); 12409 SplatUndef = APInt(VecWidth, 0); 12410 12411 // Get the bits. Bits with undefined values (when the corresponding element 12412 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 12413 // in SplatValue. If any of the values are not constant, give up and return 12414 // false. 12415 unsigned int NumOps = getNumOperands(); 12416 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 12417 unsigned EltWidth = VT.getScalarSizeInBits(); 12418 12419 for (unsigned j = 0; j < NumOps; ++j) { 12420 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 12421 SDValue OpVal = getOperand(i); 12422 unsigned BitPos = j * EltWidth; 12423 12424 if (OpVal.isUndef()) 12425 SplatUndef.setBits(BitPos, BitPos + EltWidth); 12426 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 12427 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 12428 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 12429 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 12430 else 12431 return false; 12432 } 12433 12434 // The build_vector is all constants or undefs. Find the smallest element 12435 // size that splats the vector. 12436 HasAnyUndefs = (SplatUndef != 0); 12437 12438 // FIXME: This does not work for vectors with elements less than 8 bits. 12439 while (VecWidth > 8) { 12440 // If we can't split in half, stop here. 12441 if (VecWidth & 1) 12442 break; 12443 12444 unsigned HalfSize = VecWidth / 2; 12445 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 12446 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 12447 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 12448 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 12449 12450 // If the two halves do not match (ignoring undef bits), stop here. 12451 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 12452 MinSplatBits > HalfSize) 12453 break; 12454 12455 SplatValue = HighValue | LowValue; 12456 SplatUndef = HighUndef & LowUndef; 12457 12458 VecWidth = HalfSize; 12459 } 12460 12461 // FIXME: The loop above only tries to split in halves. But if the input 12462 // vector for example is <3 x i16> it wouldn't be able to detect a 12463 // SplatBitSize of 16. No idea if that is a design flaw currently limiting 12464 // optimizations. I guess that back in the days when this helper was created 12465 // vectors normally was power-of-2 sized. 12466 12467 SplatBitSize = VecWidth; 12468 return true; 12469 } 12470 12471 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 12472 BitVector *UndefElements) const { 12473 unsigned NumOps = getNumOperands(); 12474 if (UndefElements) { 12475 UndefElements->clear(); 12476 UndefElements->resize(NumOps); 12477 } 12478 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 12479 if (!DemandedElts) 12480 return SDValue(); 12481 SDValue Splatted; 12482 for (unsigned i = 0; i != NumOps; ++i) { 12483 if (!DemandedElts[i]) 12484 continue; 12485 SDValue Op = getOperand(i); 12486 if (Op.isUndef()) { 12487 if (UndefElements) 12488 (*UndefElements)[i] = true; 12489 } else if (!Splatted) { 12490 Splatted = Op; 12491 } else if (Splatted != Op) { 12492 return SDValue(); 12493 } 12494 } 12495 12496 if (!Splatted) { 12497 unsigned FirstDemandedIdx = DemandedElts.countr_zero(); 12498 assert(getOperand(FirstDemandedIdx).isUndef() && 12499 "Can only have a splat without a constant for all undefs."); 12500 return getOperand(FirstDemandedIdx); 12501 } 12502 12503 return Splatted; 12504 } 12505 12506 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 12507 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 12508 return getSplatValue(DemandedElts, UndefElements); 12509 } 12510 12511 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 12512 SmallVectorImpl<SDValue> &Sequence, 12513 BitVector *UndefElements) const { 12514 unsigned NumOps = getNumOperands(); 12515 Sequence.clear(); 12516 if (UndefElements) { 12517 UndefElements->clear(); 12518 UndefElements->resize(NumOps); 12519 } 12520 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 12521 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 12522 return false; 12523 12524 // Set the undefs even if we don't find a sequence (like getSplatValue). 12525 if (UndefElements) 12526 for (unsigned I = 0; I != NumOps; ++I) 12527 if (DemandedElts[I] && getOperand(I).isUndef()) 12528 (*UndefElements)[I] = true; 12529 12530 // Iteratively widen the sequence length looking for repetitions. 12531 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 12532 Sequence.append(SeqLen, SDValue()); 12533 for (unsigned I = 0; I != NumOps; ++I) { 12534 if (!DemandedElts[I]) 12535 continue; 12536 SDValue &SeqOp = Sequence[I % SeqLen]; 12537 SDValue Op = getOperand(I); 12538 if (Op.isUndef()) { 12539 if (!SeqOp) 12540 SeqOp = Op; 12541 continue; 12542 } 12543 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 12544 Sequence.clear(); 12545 break; 12546 } 12547 SeqOp = Op; 12548 } 12549 if (!Sequence.empty()) 12550 return true; 12551 } 12552 12553 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 12554 return false; 12555 } 12556 12557 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 12558 BitVector *UndefElements) const { 12559 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 12560 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 12561 } 12562 12563 ConstantSDNode * 12564 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 12565 BitVector *UndefElements) const { 12566 return dyn_cast_or_null<ConstantSDNode>( 12567 getSplatValue(DemandedElts, UndefElements)); 12568 } 12569 12570 ConstantSDNode * 12571 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 12572 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 12573 } 12574 12575 ConstantFPSDNode * 12576 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 12577 BitVector *UndefElements) const { 12578 return dyn_cast_or_null<ConstantFPSDNode>( 12579 getSplatValue(DemandedElts, UndefElements)); 12580 } 12581 12582 ConstantFPSDNode * 12583 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 12584 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 12585 } 12586 12587 int32_t 12588 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 12589 uint32_t BitWidth) const { 12590 if (ConstantFPSDNode *CN = 12591 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 12592 bool IsExact; 12593 APSInt IntVal(BitWidth); 12594 const APFloat &APF = CN->getValueAPF(); 12595 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 12596 APFloat::opOK || 12597 !IsExact) 12598 return -1; 12599 12600 return IntVal.exactLogBase2(); 12601 } 12602 return -1; 12603 } 12604 12605 bool BuildVectorSDNode::getConstantRawBits( 12606 bool IsLittleEndian, unsigned DstEltSizeInBits, 12607 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 12608 // Early-out if this contains anything but Undef/Constant/ConstantFP. 12609 if (!isConstant()) 12610 return false; 12611 12612 unsigned NumSrcOps = getNumOperands(); 12613 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 12614 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 12615 "Invalid bitcast scale"); 12616 12617 // Extract raw src bits. 12618 SmallVector<APInt> SrcBitElements(NumSrcOps, 12619 APInt::getZero(SrcEltSizeInBits)); 12620 BitVector SrcUndeElements(NumSrcOps, false); 12621 12622 for (unsigned I = 0; I != NumSrcOps; ++I) { 12623 SDValue Op = getOperand(I); 12624 if (Op.isUndef()) { 12625 SrcUndeElements.set(I); 12626 continue; 12627 } 12628 auto *CInt = dyn_cast<ConstantSDNode>(Op); 12629 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 12630 assert((CInt || CFP) && "Unknown constant"); 12631 SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits) 12632 : CFP->getValueAPF().bitcastToAPInt(); 12633 } 12634 12635 // Recast to dst width. 12636 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 12637 SrcBitElements, UndefElements, SrcUndeElements); 12638 return true; 12639 } 12640 12641 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 12642 unsigned DstEltSizeInBits, 12643 SmallVectorImpl<APInt> &DstBitElements, 12644 ArrayRef<APInt> SrcBitElements, 12645 BitVector &DstUndefElements, 12646 const BitVector &SrcUndefElements) { 12647 unsigned NumSrcOps = SrcBitElements.size(); 12648 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 12649 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 12650 "Invalid bitcast scale"); 12651 assert(NumSrcOps == SrcUndefElements.size() && 12652 "Vector size mismatch"); 12653 12654 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 12655 DstUndefElements.clear(); 12656 DstUndefElements.resize(NumDstOps, false); 12657 DstBitElements.assign(NumDstOps, APInt::getZero(DstEltSizeInBits)); 12658 12659 // Concatenate src elements constant bits together into dst element. 12660 if (SrcEltSizeInBits <= DstEltSizeInBits) { 12661 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 12662 for (unsigned I = 0; I != NumDstOps; ++I) { 12663 DstUndefElements.set(I); 12664 APInt &DstBits = DstBitElements[I]; 12665 for (unsigned J = 0; J != Scale; ++J) { 12666 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 12667 if (SrcUndefElements[Idx]) 12668 continue; 12669 DstUndefElements.reset(I); 12670 const APInt &SrcBits = SrcBitElements[Idx]; 12671 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 12672 "Illegal constant bitwidths"); 12673 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 12674 } 12675 } 12676 return; 12677 } 12678 12679 // Split src element constant bits into dst elements. 12680 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 12681 for (unsigned I = 0; I != NumSrcOps; ++I) { 12682 if (SrcUndefElements[I]) { 12683 DstUndefElements.set(I * Scale, (I + 1) * Scale); 12684 continue; 12685 } 12686 const APInt &SrcBits = SrcBitElements[I]; 12687 for (unsigned J = 0; J != Scale; ++J) { 12688 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 12689 APInt &DstBits = DstBitElements[Idx]; 12690 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 12691 } 12692 } 12693 } 12694 12695 bool BuildVectorSDNode::isConstant() const { 12696 for (const SDValue &Op : op_values()) { 12697 unsigned Opc = Op.getOpcode(); 12698 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 12699 return false; 12700 } 12701 return true; 12702 } 12703 12704 std::optional<std::pair<APInt, APInt>> 12705 BuildVectorSDNode::isConstantSequence() const { 12706 unsigned NumOps = getNumOperands(); 12707 if (NumOps < 2) 12708 return std::nullopt; 12709 12710 if (!isa<ConstantSDNode>(getOperand(0)) || 12711 !isa<ConstantSDNode>(getOperand(1))) 12712 return std::nullopt; 12713 12714 unsigned EltSize = getValueType(0).getScalarSizeInBits(); 12715 APInt Start = getConstantOperandAPInt(0).trunc(EltSize); 12716 APInt Stride = getConstantOperandAPInt(1).trunc(EltSize) - Start; 12717 12718 if (Stride.isZero()) 12719 return std::nullopt; 12720 12721 for (unsigned i = 2; i < NumOps; ++i) { 12722 if (!isa<ConstantSDNode>(getOperand(i))) 12723 return std::nullopt; 12724 12725 APInt Val = getConstantOperandAPInt(i).trunc(EltSize); 12726 if (Val != (Start + (Stride * i))) 12727 return std::nullopt; 12728 } 12729 12730 return std::make_pair(Start, Stride); 12731 } 12732 12733 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 12734 // Find the first non-undef value in the shuffle mask. 12735 unsigned i, e; 12736 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 12737 /* search */; 12738 12739 // If all elements are undefined, this shuffle can be considered a splat 12740 // (although it should eventually get simplified away completely). 12741 if (i == e) 12742 return true; 12743 12744 // Make sure all remaining elements are either undef or the same as the first 12745 // non-undef value. 12746 for (int Idx = Mask[i]; i != e; ++i) 12747 if (Mask[i] >= 0 && Mask[i] != Idx) 12748 return false; 12749 return true; 12750 } 12751 12752 // Returns the SDNode if it is a constant integer BuildVector 12753 // or constant integer. 12754 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 12755 if (isa<ConstantSDNode>(N)) 12756 return N.getNode(); 12757 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 12758 return N.getNode(); 12759 // Treat a GlobalAddress supporting constant offset folding as a 12760 // constant integer. 12761 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 12762 if (GA->getOpcode() == ISD::GlobalAddress && 12763 TLI->isOffsetFoldingLegal(GA)) 12764 return GA; 12765 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 12766 isa<ConstantSDNode>(N.getOperand(0))) 12767 return N.getNode(); 12768 return nullptr; 12769 } 12770 12771 // Returns the SDNode if it is a constant float BuildVector 12772 // or constant float. 12773 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 12774 if (isa<ConstantFPSDNode>(N)) 12775 return N.getNode(); 12776 12777 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 12778 return N.getNode(); 12779 12780 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 12781 isa<ConstantFPSDNode>(N.getOperand(0))) 12782 return N.getNode(); 12783 12784 return nullptr; 12785 } 12786 12787 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 12788 assert(!Node->OperandList && "Node already has operands"); 12789 assert(SDNode::getMaxNumOperands() >= Vals.size() && 12790 "too many operands to fit into SDNode"); 12791 SDUse *Ops = OperandRecycler.allocate( 12792 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 12793 12794 bool IsDivergent = false; 12795 for (unsigned I = 0; I != Vals.size(); ++I) { 12796 Ops[I].setUser(Node); 12797 Ops[I].setInitial(Vals[I]); 12798 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 12799 IsDivergent |= Ops[I].getNode()->isDivergent(); 12800 } 12801 Node->NumOperands = Vals.size(); 12802 Node->OperandList = Ops; 12803 if (!TLI->isSDNodeAlwaysUniform(Node)) { 12804 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA); 12805 Node->SDNodeBits.IsDivergent = IsDivergent; 12806 } 12807 checkForCycles(Node); 12808 } 12809 12810 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 12811 SmallVectorImpl<SDValue> &Vals) { 12812 size_t Limit = SDNode::getMaxNumOperands(); 12813 while (Vals.size() > Limit) { 12814 unsigned SliceIdx = Vals.size() - Limit; 12815 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 12816 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 12817 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 12818 Vals.emplace_back(NewTF); 12819 } 12820 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 12821 } 12822 12823 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 12824 EVT VT, SDNodeFlags Flags) { 12825 switch (Opcode) { 12826 default: 12827 return SDValue(); 12828 case ISD::ADD: 12829 case ISD::OR: 12830 case ISD::XOR: 12831 case ISD::UMAX: 12832 return getConstant(0, DL, VT); 12833 case ISD::MUL: 12834 return getConstant(1, DL, VT); 12835 case ISD::AND: 12836 case ISD::UMIN: 12837 return getAllOnesConstant(DL, VT); 12838 case ISD::SMAX: 12839 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 12840 case ISD::SMIN: 12841 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 12842 case ISD::FADD: 12843 return getConstantFP(-0.0, DL, VT); 12844 case ISD::FMUL: 12845 return getConstantFP(1.0, DL, VT); 12846 case ISD::FMINNUM: 12847 case ISD::FMAXNUM: { 12848 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 12849 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 12850 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 12851 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 12852 APFloat::getLargest(Semantics); 12853 if (Opcode == ISD::FMAXNUM) 12854 NeutralAF.changeSign(); 12855 12856 return getConstantFP(NeutralAF, DL, VT); 12857 } 12858 case ISD::FMINIMUM: 12859 case ISD::FMAXIMUM: { 12860 // Neutral element for fminimum is Inf or FLT_MAX, depending on FMF. 12861 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 12862 APFloat NeutralAF = !Flags.hasNoInfs() ? APFloat::getInf(Semantics) 12863 : APFloat::getLargest(Semantics); 12864 if (Opcode == ISD::FMAXIMUM) 12865 NeutralAF.changeSign(); 12866 12867 return getConstantFP(NeutralAF, DL, VT); 12868 } 12869 12870 } 12871 } 12872 12873 /// Helper used to make a call to a library function that has one argument of 12874 /// pointer type. 12875 /// 12876 /// Such functions include 'fegetmode', 'fesetenv' and some others, which are 12877 /// used to get or set floating-point state. They have one argument of pointer 12878 /// type, which points to the memory region containing bits of the 12879 /// floating-point state. The value returned by such function is ignored in the 12880 /// created call. 12881 /// 12882 /// \param LibFunc Reference to library function (value of RTLIB::Libcall). 12883 /// \param Ptr Pointer used to save/load state. 12884 /// \param InChain Ingoing token chain. 12885 /// \returns Outgoing chain token. 12886 SDValue SelectionDAG::makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, 12887 SDValue InChain, 12888 const SDLoc &DLoc) { 12889 assert(InChain.getValueType() == MVT::Other && "Expected token chain"); 12890 TargetLowering::ArgListTy Args; 12891 TargetLowering::ArgListEntry Entry; 12892 Entry.Node = Ptr; 12893 Entry.Ty = Ptr.getValueType().getTypeForEVT(*getContext()); 12894 Args.push_back(Entry); 12895 RTLIB::Libcall LC = static_cast<RTLIB::Libcall>(LibFunc); 12896 SDValue Callee = getExternalSymbol(TLI->getLibcallName(LC), 12897 TLI->getPointerTy(getDataLayout())); 12898 TargetLowering::CallLoweringInfo CLI(*this); 12899 CLI.setDebugLoc(DLoc).setChain(InChain).setLibCallee( 12900 TLI->getLibcallCallingConv(LC), Type::getVoidTy(*getContext()), Callee, 12901 std::move(Args)); 12902 return TLI->LowerCallTo(CLI).second; 12903 } 12904 12905 void SelectionDAG::copyExtraInfo(SDNode *From, SDNode *To) { 12906 assert(From && To && "Invalid SDNode; empty source SDValue?"); 12907 auto I = SDEI.find(From); 12908 if (I == SDEI.end()) 12909 return; 12910 12911 // Use of operator[] on the DenseMap may cause an insertion, which invalidates 12912 // the iterator, hence the need to make a copy to prevent a use-after-free. 12913 NodeExtraInfo NEI = I->second; 12914 if (LLVM_LIKELY(!NEI.PCSections)) { 12915 // No deep copy required for the types of extra info set. 12916 // 12917 // FIXME: Investigate if other types of extra info also need deep copy. This 12918 // depends on the types of nodes they can be attached to: if some extra info 12919 // is only ever attached to nodes where a replacement To node is always the 12920 // node where later use and propagation of the extra info has the intended 12921 // semantics, no deep copy is required. 12922 SDEI[To] = std::move(NEI); 12923 return; 12924 } 12925 12926 // We need to copy NodeExtraInfo to all _new_ nodes that are being introduced 12927 // through the replacement of From with To. Otherwise, replacements of a node 12928 // (From) with more complex nodes (To and its operands) may result in lost 12929 // extra info where the root node (To) is insignificant in further propagating 12930 // and using extra info when further lowering to MIR. 12931 // 12932 // In the first step pre-populate the visited set with the nodes reachable 12933 // from the old From node. This avoids copying NodeExtraInfo to parts of the 12934 // DAG that is not new and should be left untouched. 12935 SmallVector<const SDNode *> Leafs{From}; // Leafs reachable with VisitFrom. 12936 DenseSet<const SDNode *> FromReach; // The set of nodes reachable from From. 12937 auto VisitFrom = [&](auto &&Self, const SDNode *N, int MaxDepth) { 12938 if (MaxDepth == 0) { 12939 // Remember this node in case we need to increase MaxDepth and continue 12940 // populating FromReach from this node. 12941 Leafs.emplace_back(N); 12942 return; 12943 } 12944 if (!FromReach.insert(N).second) 12945 return; 12946 for (const SDValue &Op : N->op_values()) 12947 Self(Self, Op.getNode(), MaxDepth - 1); 12948 }; 12949 12950 // Copy extra info to To and all its transitive operands (that are new). 12951 SmallPtrSet<const SDNode *, 8> Visited; 12952 auto DeepCopyTo = [&](auto &&Self, const SDNode *N) { 12953 if (FromReach.contains(N)) 12954 return true; 12955 if (!Visited.insert(N).second) 12956 return true; 12957 if (getEntryNode().getNode() == N) 12958 return false; 12959 for (const SDValue &Op : N->op_values()) { 12960 if (!Self(Self, Op.getNode())) 12961 return false; 12962 } 12963 // Copy only if entry node was not reached. 12964 SDEI[N] = NEI; 12965 return true; 12966 }; 12967 12968 // We first try with a lower MaxDepth, assuming that the path to common 12969 // operands between From and To is relatively short. This significantly 12970 // improves performance in the common case. The initial MaxDepth is big 12971 // enough to avoid retry in the common case; the last MaxDepth is large 12972 // enough to avoid having to use the fallback below (and protects from 12973 // potential stack exhaustion from recursion). 12974 for (int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024; 12975 PrevDepth = MaxDepth, MaxDepth *= 2, Visited.clear()) { 12976 // StartFrom is the previous (or initial) set of leafs reachable at the 12977 // previous maximum depth. 12978 SmallVector<const SDNode *> StartFrom; 12979 std::swap(StartFrom, Leafs); 12980 for (const SDNode *N : StartFrom) 12981 VisitFrom(VisitFrom, N, MaxDepth - PrevDepth); 12982 if (LLVM_LIKELY(DeepCopyTo(DeepCopyTo, To))) 12983 return; 12984 // This should happen very rarely (reached the entry node). 12985 LLVM_DEBUG(dbgs() << __func__ << ": MaxDepth=" << MaxDepth << " too low\n"); 12986 assert(!Leafs.empty()); 12987 } 12988 12989 // This should not happen - but if it did, that means the subgraph reachable 12990 // from From has depth greater or equal to maximum MaxDepth, and VisitFrom() 12991 // could not visit all reachable common operands. Consequently, we were able 12992 // to reach the entry node. 12993 errs() << "warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n"; 12994 assert(false && "From subgraph too complex - increase max. MaxDepth?"); 12995 // Best-effort fallback if assertions disabled. 12996 SDEI[To] = std::move(NEI); 12997 } 12998 12999 #ifndef NDEBUG 13000 static void checkForCyclesHelper(const SDNode *N, 13001 SmallPtrSetImpl<const SDNode*> &Visited, 13002 SmallPtrSetImpl<const SDNode*> &Checked, 13003 const llvm::SelectionDAG *DAG) { 13004 // If this node has already been checked, don't check it again. 13005 if (Checked.count(N)) 13006 return; 13007 13008 // If a node has already been visited on this depth-first walk, reject it as 13009 // a cycle. 13010 if (!Visited.insert(N).second) { 13011 errs() << "Detected cycle in SelectionDAG\n"; 13012 dbgs() << "Offending node:\n"; 13013 N->dumprFull(DAG); dbgs() << "\n"; 13014 abort(); 13015 } 13016 13017 for (const SDValue &Op : N->op_values()) 13018 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 13019 13020 Checked.insert(N); 13021 Visited.erase(N); 13022 } 13023 #endif 13024 13025 void llvm::checkForCycles(const llvm::SDNode *N, 13026 const llvm::SelectionDAG *DAG, 13027 bool force) { 13028 #ifndef NDEBUG 13029 bool check = force; 13030 #ifdef EXPENSIVE_CHECKS 13031 check = true; 13032 #endif // EXPENSIVE_CHECKS 13033 if (check) { 13034 assert(N && "Checking nonexistent SDNode"); 13035 SmallPtrSet<const SDNode*, 32> visited; 13036 SmallPtrSet<const SDNode*, 32> checked; 13037 checkForCyclesHelper(N, visited, checked, DAG); 13038 } 13039 #endif // !NDEBUG 13040 } 13041 13042 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 13043 checkForCycles(DAG->getRoot().getNode(), DAG, force); 13044 } 13045