xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp (revision c203bd70b5957f85616424b6fa374479372d06e3)
1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/RuntimeLibcalls.h"
38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
41 #include "llvm/CodeGen/TargetFrameLowering.h"
42 #include "llvm/CodeGen/TargetLowering.h"
43 #include "llvm/CodeGen/TargetRegisterInfo.h"
44 #include "llvm/CodeGen/TargetSubtargetInfo.h"
45 #include "llvm/CodeGen/ValueTypes.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CodeGen.h"
59 #include "llvm/Support/Compiler.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/KnownBits.h"
63 #include "llvm/Support/MachineValueType.h"
64 #include "llvm/Support/ManagedStatic.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/Mutex.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Target/TargetOptions.h"
70 #include "llvm/Transforms/Utils/SizeOpts.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstdint>
74 #include <cstdlib>
75 #include <limits>
76 #include <set>
77 #include <string>
78 #include <utility>
79 #include <vector>
80 
81 using namespace llvm;
82 
83 /// makeVTList - Return an instance of the SDVTList struct initialized with the
84 /// specified members.
85 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
86   SDVTList Res = {VTs, NumVTs};
87   return Res;
88 }
89 
90 // Default null implementations of the callbacks.
91 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
92 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
93 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
94 
95 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
96 
97 #define DEBUG_TYPE "selectiondag"
98 
99 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
100        cl::Hidden, cl::init(true),
101        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
102 
103 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
104        cl::desc("Number limit for gluing ld/st of memcpy."),
105        cl::Hidden, cl::init(0));
106 
107 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
108   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
109 }
110 
111 //===----------------------------------------------------------------------===//
112 //                              ConstantFPSDNode Class
113 //===----------------------------------------------------------------------===//
114 
115 /// isExactlyValue - We don't rely on operator== working on double values, as
116 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
117 /// As such, this method can be used to do an exact bit-for-bit comparison of
118 /// two floating point values.
119 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
120   return getValueAPF().bitwiseIsEqual(V);
121 }
122 
123 bool ConstantFPSDNode::isValueValidForType(EVT VT,
124                                            const APFloat& Val) {
125   assert(VT.isFloatingPoint() && "Can only convert between FP types");
126 
127   // convert modifies in place, so make a copy.
128   APFloat Val2 = APFloat(Val);
129   bool losesInfo;
130   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
131                       APFloat::rmNearestTiesToEven,
132                       &losesInfo);
133   return !losesInfo;
134 }
135 
136 //===----------------------------------------------------------------------===//
137 //                              ISD Namespace
138 //===----------------------------------------------------------------------===//
139 
140 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
141   auto *BV = dyn_cast<BuildVectorSDNode>(N);
142   if (!BV)
143     return false;
144 
145   APInt SplatUndef;
146   unsigned SplatBitSize;
147   bool HasUndefs;
148   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
149   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
150                              EltSize) &&
151          EltSize == SplatBitSize;
152 }
153 
154 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
155 // specializations of the more general isConstantSplatVector()?
156 
157 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
158   // Look through a bit convert.
159   while (N->getOpcode() == ISD::BITCAST)
160     N = N->getOperand(0).getNode();
161 
162   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
163 
164   unsigned i = 0, e = N->getNumOperands();
165 
166   // Skip over all of the undef values.
167   while (i != e && N->getOperand(i).isUndef())
168     ++i;
169 
170   // Do not accept an all-undef vector.
171   if (i == e) return false;
172 
173   // Do not accept build_vectors that aren't all constants or which have non-~0
174   // elements. We have to be a bit careful here, as the type of the constant
175   // may not be the same as the type of the vector elements due to type
176   // legalization (the elements are promoted to a legal type for the target and
177   // a vector of a type may be legal when the base element type is not).
178   // We only want to check enough bits to cover the vector elements, because
179   // we care if the resultant vector is all ones, not whether the individual
180   // constants are.
181   SDValue NotZero = N->getOperand(i);
182   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
183   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
184     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
185       return false;
186   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
187     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
188       return false;
189   } else
190     return false;
191 
192   // Okay, we have at least one ~0 value, check to see if the rest match or are
193   // undefs. Even with the above element type twiddling, this should be OK, as
194   // the same type legalization should have applied to all the elements.
195   for (++i; i != e; ++i)
196     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
197       return false;
198   return true;
199 }
200 
201 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
202   // Look through a bit convert.
203   while (N->getOpcode() == ISD::BITCAST)
204     N = N->getOperand(0).getNode();
205 
206   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
207 
208   bool IsAllUndef = true;
209   for (const SDValue &Op : N->op_values()) {
210     if (Op.isUndef())
211       continue;
212     IsAllUndef = false;
213     // Do not accept build_vectors that aren't all constants or which have non-0
214     // elements. We have to be a bit careful here, as the type of the constant
215     // may not be the same as the type of the vector elements due to type
216     // legalization (the elements are promoted to a legal type for the target
217     // and a vector of a type may be legal when the base element type is not).
218     // We only want to check enough bits to cover the vector elements, because
219     // we care if the resultant vector is all zeros, not whether the individual
220     // constants are.
221     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
222     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
223       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
224         return false;
225     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
226       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
227         return false;
228     } else
229       return false;
230   }
231 
232   // Do not accept an all-undef vector.
233   if (IsAllUndef)
234     return false;
235   return true;
236 }
237 
238 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
239   if (N->getOpcode() != ISD::BUILD_VECTOR)
240     return false;
241 
242   for (const SDValue &Op : N->op_values()) {
243     if (Op.isUndef())
244       continue;
245     if (!isa<ConstantSDNode>(Op))
246       return false;
247   }
248   return true;
249 }
250 
251 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
252   if (N->getOpcode() != ISD::BUILD_VECTOR)
253     return false;
254 
255   for (const SDValue &Op : N->op_values()) {
256     if (Op.isUndef())
257       continue;
258     if (!isa<ConstantFPSDNode>(Op))
259       return false;
260   }
261   return true;
262 }
263 
264 bool ISD::allOperandsUndef(const SDNode *N) {
265   // Return false if the node has no operands.
266   // This is "logically inconsistent" with the definition of "all" but
267   // is probably the desired behavior.
268   if (N->getNumOperands() == 0)
269     return false;
270   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
271 }
272 
273 bool ISD::matchUnaryPredicate(SDValue Op,
274                               std::function<bool(ConstantSDNode *)> Match,
275                               bool AllowUndefs) {
276   // FIXME: Add support for scalar UNDEF cases?
277   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
278     return Match(Cst);
279 
280   // FIXME: Add support for vector UNDEF cases?
281   if (ISD::BUILD_VECTOR != Op.getOpcode())
282     return false;
283 
284   EVT SVT = Op.getValueType().getScalarType();
285   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
286     if (AllowUndefs && Op.getOperand(i).isUndef()) {
287       if (!Match(nullptr))
288         return false;
289       continue;
290     }
291 
292     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
293     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
294       return false;
295   }
296   return true;
297 }
298 
299 bool ISD::matchBinaryPredicate(
300     SDValue LHS, SDValue RHS,
301     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
302     bool AllowUndefs, bool AllowTypeMismatch) {
303   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
304     return false;
305 
306   // TODO: Add support for scalar UNDEF cases?
307   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
308     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
309       return Match(LHSCst, RHSCst);
310 
311   // TODO: Add support for vector UNDEF cases?
312   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
313       ISD::BUILD_VECTOR != RHS.getOpcode())
314     return false;
315 
316   EVT SVT = LHS.getValueType().getScalarType();
317   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
318     SDValue LHSOp = LHS.getOperand(i);
319     SDValue RHSOp = RHS.getOperand(i);
320     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
321     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
322     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
323     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
324     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
325       return false;
326     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
327                                LHSOp.getValueType() != RHSOp.getValueType()))
328       return false;
329     if (!Match(LHSCst, RHSCst))
330       return false;
331   }
332   return true;
333 }
334 
335 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
336   switch (ExtType) {
337   case ISD::EXTLOAD:
338     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
339   case ISD::SEXTLOAD:
340     return ISD::SIGN_EXTEND;
341   case ISD::ZEXTLOAD:
342     return ISD::ZERO_EXTEND;
343   default:
344     break;
345   }
346 
347   llvm_unreachable("Invalid LoadExtType");
348 }
349 
350 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
351   // To perform this operation, we just need to swap the L and G bits of the
352   // operation.
353   unsigned OldL = (Operation >> 2) & 1;
354   unsigned OldG = (Operation >> 1) & 1;
355   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
356                        (OldL << 1) |       // New G bit
357                        (OldG << 2));       // New L bit.
358 }
359 
360 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
361   unsigned Operation = Op;
362   if (isIntegerLike)
363     Operation ^= 7;   // Flip L, G, E bits, but not U.
364   else
365     Operation ^= 15;  // Flip all of the condition bits.
366 
367   if (Operation > ISD::SETTRUE2)
368     Operation &= ~8;  // Don't let N and U bits get set.
369 
370   return ISD::CondCode(Operation);
371 }
372 
373 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
374   return getSetCCInverseImpl(Op, Type.isInteger());
375 }
376 
377 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
378                                                bool isIntegerLike) {
379   return getSetCCInverseImpl(Op, isIntegerLike);
380 }
381 
382 /// For an integer comparison, return 1 if the comparison is a signed operation
383 /// and 2 if the result is an unsigned comparison. Return zero if the operation
384 /// does not depend on the sign of the input (setne and seteq).
385 static int isSignedOp(ISD::CondCode Opcode) {
386   switch (Opcode) {
387   default: llvm_unreachable("Illegal integer setcc operation!");
388   case ISD::SETEQ:
389   case ISD::SETNE: return 0;
390   case ISD::SETLT:
391   case ISD::SETLE:
392   case ISD::SETGT:
393   case ISD::SETGE: return 1;
394   case ISD::SETULT:
395   case ISD::SETULE:
396   case ISD::SETUGT:
397   case ISD::SETUGE: return 2;
398   }
399 }
400 
401 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
402                                        EVT Type) {
403   bool IsInteger = Type.isInteger();
404   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
405     // Cannot fold a signed integer setcc with an unsigned integer setcc.
406     return ISD::SETCC_INVALID;
407 
408   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
409 
410   // If the N and U bits get set, then the resultant comparison DOES suddenly
411   // care about orderedness, and it is true when ordered.
412   if (Op > ISD::SETTRUE2)
413     Op &= ~16;     // Clear the U bit if the N bit is set.
414 
415   // Canonicalize illegal integer setcc's.
416   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
417     Op = ISD::SETNE;
418 
419   return ISD::CondCode(Op);
420 }
421 
422 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
423                                         EVT Type) {
424   bool IsInteger = Type.isInteger();
425   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
426     // Cannot fold a signed setcc with an unsigned setcc.
427     return ISD::SETCC_INVALID;
428 
429   // Combine all of the condition bits.
430   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
431 
432   // Canonicalize illegal integer setcc's.
433   if (IsInteger) {
434     switch (Result) {
435     default: break;
436     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
437     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
438     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
439     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
440     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
441     }
442   }
443 
444   return Result;
445 }
446 
447 //===----------------------------------------------------------------------===//
448 //                           SDNode Profile Support
449 //===----------------------------------------------------------------------===//
450 
451 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
452 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
453   ID.AddInteger(OpC);
454 }
455 
456 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
457 /// solely with their pointer.
458 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
459   ID.AddPointer(VTList.VTs);
460 }
461 
462 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
463 static void AddNodeIDOperands(FoldingSetNodeID &ID,
464                               ArrayRef<SDValue> Ops) {
465   for (auto& Op : Ops) {
466     ID.AddPointer(Op.getNode());
467     ID.AddInteger(Op.getResNo());
468   }
469 }
470 
471 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
472 static void AddNodeIDOperands(FoldingSetNodeID &ID,
473                               ArrayRef<SDUse> Ops) {
474   for (auto& Op : Ops) {
475     ID.AddPointer(Op.getNode());
476     ID.AddInteger(Op.getResNo());
477   }
478 }
479 
480 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
481                           SDVTList VTList, ArrayRef<SDValue> OpList) {
482   AddNodeIDOpcode(ID, OpC);
483   AddNodeIDValueTypes(ID, VTList);
484   AddNodeIDOperands(ID, OpList);
485 }
486 
487 /// If this is an SDNode with special info, add this info to the NodeID data.
488 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
489   switch (N->getOpcode()) {
490   case ISD::TargetExternalSymbol:
491   case ISD::ExternalSymbol:
492   case ISD::MCSymbol:
493     llvm_unreachable("Should only be used on nodes with operands");
494   default: break;  // Normal nodes don't need extra info.
495   case ISD::TargetConstant:
496   case ISD::Constant: {
497     const ConstantSDNode *C = cast<ConstantSDNode>(N);
498     ID.AddPointer(C->getConstantIntValue());
499     ID.AddBoolean(C->isOpaque());
500     break;
501   }
502   case ISD::TargetConstantFP:
503   case ISD::ConstantFP:
504     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
505     break;
506   case ISD::TargetGlobalAddress:
507   case ISD::GlobalAddress:
508   case ISD::TargetGlobalTLSAddress:
509   case ISD::GlobalTLSAddress: {
510     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
511     ID.AddPointer(GA->getGlobal());
512     ID.AddInteger(GA->getOffset());
513     ID.AddInteger(GA->getTargetFlags());
514     break;
515   }
516   case ISD::BasicBlock:
517     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
518     break;
519   case ISD::Register:
520     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
521     break;
522   case ISD::RegisterMask:
523     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
524     break;
525   case ISD::SRCVALUE:
526     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
527     break;
528   case ISD::FrameIndex:
529   case ISD::TargetFrameIndex:
530     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
531     break;
532   case ISD::LIFETIME_START:
533   case ISD::LIFETIME_END:
534     if (cast<LifetimeSDNode>(N)->hasOffset()) {
535       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
536       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
537     }
538     break;
539   case ISD::JumpTable:
540   case ISD::TargetJumpTable:
541     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
542     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
543     break;
544   case ISD::ConstantPool:
545   case ISD::TargetConstantPool: {
546     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
547     ID.AddInteger(CP->getAlign().value());
548     ID.AddInteger(CP->getOffset());
549     if (CP->isMachineConstantPoolEntry())
550       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
551     else
552       ID.AddPointer(CP->getConstVal());
553     ID.AddInteger(CP->getTargetFlags());
554     break;
555   }
556   case ISD::TargetIndex: {
557     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
558     ID.AddInteger(TI->getIndex());
559     ID.AddInteger(TI->getOffset());
560     ID.AddInteger(TI->getTargetFlags());
561     break;
562   }
563   case ISD::LOAD: {
564     const LoadSDNode *LD = cast<LoadSDNode>(N);
565     ID.AddInteger(LD->getMemoryVT().getRawBits());
566     ID.AddInteger(LD->getRawSubclassData());
567     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
568     break;
569   }
570   case ISD::STORE: {
571     const StoreSDNode *ST = cast<StoreSDNode>(N);
572     ID.AddInteger(ST->getMemoryVT().getRawBits());
573     ID.AddInteger(ST->getRawSubclassData());
574     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
575     break;
576   }
577   case ISD::MLOAD: {
578     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
579     ID.AddInteger(MLD->getMemoryVT().getRawBits());
580     ID.AddInteger(MLD->getRawSubclassData());
581     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
582     break;
583   }
584   case ISD::MSTORE: {
585     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
586     ID.AddInteger(MST->getMemoryVT().getRawBits());
587     ID.AddInteger(MST->getRawSubclassData());
588     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
589     break;
590   }
591   case ISD::MGATHER: {
592     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
593     ID.AddInteger(MG->getMemoryVT().getRawBits());
594     ID.AddInteger(MG->getRawSubclassData());
595     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
596     break;
597   }
598   case ISD::MSCATTER: {
599     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
600     ID.AddInteger(MS->getMemoryVT().getRawBits());
601     ID.AddInteger(MS->getRawSubclassData());
602     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
603     break;
604   }
605   case ISD::ATOMIC_CMP_SWAP:
606   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
607   case ISD::ATOMIC_SWAP:
608   case ISD::ATOMIC_LOAD_ADD:
609   case ISD::ATOMIC_LOAD_SUB:
610   case ISD::ATOMIC_LOAD_AND:
611   case ISD::ATOMIC_LOAD_CLR:
612   case ISD::ATOMIC_LOAD_OR:
613   case ISD::ATOMIC_LOAD_XOR:
614   case ISD::ATOMIC_LOAD_NAND:
615   case ISD::ATOMIC_LOAD_MIN:
616   case ISD::ATOMIC_LOAD_MAX:
617   case ISD::ATOMIC_LOAD_UMIN:
618   case ISD::ATOMIC_LOAD_UMAX:
619   case ISD::ATOMIC_LOAD:
620   case ISD::ATOMIC_STORE: {
621     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
622     ID.AddInteger(AT->getMemoryVT().getRawBits());
623     ID.AddInteger(AT->getRawSubclassData());
624     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
625     break;
626   }
627   case ISD::PREFETCH: {
628     const MemSDNode *PF = cast<MemSDNode>(N);
629     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
630     break;
631   }
632   case ISD::VECTOR_SHUFFLE: {
633     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
634     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
635          i != e; ++i)
636       ID.AddInteger(SVN->getMaskElt(i));
637     break;
638   }
639   case ISD::TargetBlockAddress:
640   case ISD::BlockAddress: {
641     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
642     ID.AddPointer(BA->getBlockAddress());
643     ID.AddInteger(BA->getOffset());
644     ID.AddInteger(BA->getTargetFlags());
645     break;
646   }
647   } // end switch (N->getOpcode())
648 
649   // Target specific memory nodes could also have address spaces to check.
650   if (N->isTargetMemoryOpcode())
651     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
652 }
653 
654 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
655 /// data.
656 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
657   AddNodeIDOpcode(ID, N->getOpcode());
658   // Add the return value info.
659   AddNodeIDValueTypes(ID, N->getVTList());
660   // Add the operand info.
661   AddNodeIDOperands(ID, N->ops());
662 
663   // Handle SDNode leafs with special info.
664   AddNodeIDCustom(ID, N);
665 }
666 
667 //===----------------------------------------------------------------------===//
668 //                              SelectionDAG Class
669 //===----------------------------------------------------------------------===//
670 
671 /// doNotCSE - Return true if CSE should not be performed for this node.
672 static bool doNotCSE(SDNode *N) {
673   if (N->getValueType(0) == MVT::Glue)
674     return true; // Never CSE anything that produces a flag.
675 
676   switch (N->getOpcode()) {
677   default: break;
678   case ISD::HANDLENODE:
679   case ISD::EH_LABEL:
680     return true;   // Never CSE these nodes.
681   }
682 
683   // Check that remaining values produced are not flags.
684   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
685     if (N->getValueType(i) == MVT::Glue)
686       return true; // Never CSE anything that produces a flag.
687 
688   return false;
689 }
690 
691 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
692 /// SelectionDAG.
693 void SelectionDAG::RemoveDeadNodes() {
694   // Create a dummy node (which is not added to allnodes), that adds a reference
695   // to the root node, preventing it from being deleted.
696   HandleSDNode Dummy(getRoot());
697 
698   SmallVector<SDNode*, 128> DeadNodes;
699 
700   // Add all obviously-dead nodes to the DeadNodes worklist.
701   for (SDNode &Node : allnodes())
702     if (Node.use_empty())
703       DeadNodes.push_back(&Node);
704 
705   RemoveDeadNodes(DeadNodes);
706 
707   // If the root changed (e.g. it was a dead load, update the root).
708   setRoot(Dummy.getValue());
709 }
710 
711 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
712 /// given list, and any nodes that become unreachable as a result.
713 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
714 
715   // Process the worklist, deleting the nodes and adding their uses to the
716   // worklist.
717   while (!DeadNodes.empty()) {
718     SDNode *N = DeadNodes.pop_back_val();
719     // Skip to next node if we've already managed to delete the node. This could
720     // happen if replacing a node causes a node previously added to the node to
721     // be deleted.
722     if (N->getOpcode() == ISD::DELETED_NODE)
723       continue;
724 
725     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
726       DUL->NodeDeleted(N, nullptr);
727 
728     // Take the node out of the appropriate CSE map.
729     RemoveNodeFromCSEMaps(N);
730 
731     // Next, brutally remove the operand list.  This is safe to do, as there are
732     // no cycles in the graph.
733     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
734       SDUse &Use = *I++;
735       SDNode *Operand = Use.getNode();
736       Use.set(SDValue());
737 
738       // Now that we removed this operand, see if there are no uses of it left.
739       if (Operand->use_empty())
740         DeadNodes.push_back(Operand);
741     }
742 
743     DeallocateNode(N);
744   }
745 }
746 
747 void SelectionDAG::RemoveDeadNode(SDNode *N){
748   SmallVector<SDNode*, 16> DeadNodes(1, N);
749 
750   // Create a dummy node that adds a reference to the root node, preventing
751   // it from being deleted.  (This matters if the root is an operand of the
752   // dead node.)
753   HandleSDNode Dummy(getRoot());
754 
755   RemoveDeadNodes(DeadNodes);
756 }
757 
758 void SelectionDAG::DeleteNode(SDNode *N) {
759   // First take this out of the appropriate CSE map.
760   RemoveNodeFromCSEMaps(N);
761 
762   // Finally, remove uses due to operands of this node, remove from the
763   // AllNodes list, and delete the node.
764   DeleteNodeNotInCSEMaps(N);
765 }
766 
767 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
768   assert(N->getIterator() != AllNodes.begin() &&
769          "Cannot delete the entry node!");
770   assert(N->use_empty() && "Cannot delete a node that is not dead!");
771 
772   // Drop all of the operands and decrement used node's use counts.
773   N->DropOperands();
774 
775   DeallocateNode(N);
776 }
777 
778 void SDDbgInfo::erase(const SDNode *Node) {
779   DbgValMapType::iterator I = DbgValMap.find(Node);
780   if (I == DbgValMap.end())
781     return;
782   for (auto &Val: I->second)
783     Val->setIsInvalidated();
784   DbgValMap.erase(I);
785 }
786 
787 void SelectionDAG::DeallocateNode(SDNode *N) {
788   // If we have operands, deallocate them.
789   removeOperands(N);
790 
791   NodeAllocator.Deallocate(AllNodes.remove(N));
792 
793   // Set the opcode to DELETED_NODE to help catch bugs when node
794   // memory is reallocated.
795   // FIXME: There are places in SDag that have grown a dependency on the opcode
796   // value in the released node.
797   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
798   N->NodeType = ISD::DELETED_NODE;
799 
800   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
801   // them and forget about that node.
802   DbgInfo->erase(N);
803 }
804 
805 #ifndef NDEBUG
806 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
807 static void VerifySDNode(SDNode *N) {
808   switch (N->getOpcode()) {
809   default:
810     break;
811   case ISD::BUILD_PAIR: {
812     EVT VT = N->getValueType(0);
813     assert(N->getNumValues() == 1 && "Too many results!");
814     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
815            "Wrong return type!");
816     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
817     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
818            "Mismatched operand types!");
819     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
820            "Wrong operand type!");
821     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
822            "Wrong return type size");
823     break;
824   }
825   case ISD::BUILD_VECTOR: {
826     assert(N->getNumValues() == 1 && "Too many results!");
827     assert(N->getValueType(0).isVector() && "Wrong return type!");
828     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
829            "Wrong number of operands!");
830     EVT EltVT = N->getValueType(0).getVectorElementType();
831     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
832       assert((I->getValueType() == EltVT ||
833              (EltVT.isInteger() && I->getValueType().isInteger() &&
834               EltVT.bitsLE(I->getValueType()))) &&
835             "Wrong operand type!");
836       assert(I->getValueType() == N->getOperand(0).getValueType() &&
837              "Operands must all have the same type");
838     }
839     break;
840   }
841   }
842 }
843 #endif // NDEBUG
844 
845 /// Insert a newly allocated node into the DAG.
846 ///
847 /// Handles insertion into the all nodes list and CSE map, as well as
848 /// verification and other common operations when a new node is allocated.
849 void SelectionDAG::InsertNode(SDNode *N) {
850   AllNodes.push_back(N);
851 #ifndef NDEBUG
852   N->PersistentId = NextPersistentId++;
853   VerifySDNode(N);
854 #endif
855   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
856     DUL->NodeInserted(N);
857 }
858 
859 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
860 /// correspond to it.  This is useful when we're about to delete or repurpose
861 /// the node.  We don't want future request for structurally identical nodes
862 /// to return N anymore.
863 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
864   bool Erased = false;
865   switch (N->getOpcode()) {
866   case ISD::HANDLENODE: return false;  // noop.
867   case ISD::CONDCODE:
868     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
869            "Cond code doesn't exist!");
870     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
871     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
872     break;
873   case ISD::ExternalSymbol:
874     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
875     break;
876   case ISD::TargetExternalSymbol: {
877     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
878     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
879         ESN->getSymbol(), ESN->getTargetFlags()));
880     break;
881   }
882   case ISD::MCSymbol: {
883     auto *MCSN = cast<MCSymbolSDNode>(N);
884     Erased = MCSymbols.erase(MCSN->getMCSymbol());
885     break;
886   }
887   case ISD::VALUETYPE: {
888     EVT VT = cast<VTSDNode>(N)->getVT();
889     if (VT.isExtended()) {
890       Erased = ExtendedValueTypeNodes.erase(VT);
891     } else {
892       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
893       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
894     }
895     break;
896   }
897   default:
898     // Remove it from the CSE Map.
899     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
900     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
901     Erased = CSEMap.RemoveNode(N);
902     break;
903   }
904 #ifndef NDEBUG
905   // Verify that the node was actually in one of the CSE maps, unless it has a
906   // flag result (which cannot be CSE'd) or is one of the special cases that are
907   // not subject to CSE.
908   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
909       !N->isMachineOpcode() && !doNotCSE(N)) {
910     N->dump(this);
911     dbgs() << "\n";
912     llvm_unreachable("Node is not in map!");
913   }
914 #endif
915   return Erased;
916 }
917 
918 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
919 /// maps and modified in place. Add it back to the CSE maps, unless an identical
920 /// node already exists, in which case transfer all its users to the existing
921 /// node. This transfer can potentially trigger recursive merging.
922 void
923 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
924   // For node types that aren't CSE'd, just act as if no identical node
925   // already exists.
926   if (!doNotCSE(N)) {
927     SDNode *Existing = CSEMap.GetOrInsertNode(N);
928     if (Existing != N) {
929       // If there was already an existing matching node, use ReplaceAllUsesWith
930       // to replace the dead one with the existing one.  This can cause
931       // recursive merging of other unrelated nodes down the line.
932       ReplaceAllUsesWith(N, Existing);
933 
934       // N is now dead. Inform the listeners and delete it.
935       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
936         DUL->NodeDeleted(N, Existing);
937       DeleteNodeNotInCSEMaps(N);
938       return;
939     }
940   }
941 
942   // If the node doesn't already exist, we updated it.  Inform listeners.
943   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
944     DUL->NodeUpdated(N);
945 }
946 
947 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
948 /// were replaced with those specified.  If this node is never memoized,
949 /// return null, otherwise return a pointer to the slot it would take.  If a
950 /// node already exists with these operands, the slot will be non-null.
951 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
952                                            void *&InsertPos) {
953   if (doNotCSE(N))
954     return nullptr;
955 
956   SDValue Ops[] = { Op };
957   FoldingSetNodeID ID;
958   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
959   AddNodeIDCustom(ID, N);
960   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
961   if (Node)
962     Node->intersectFlagsWith(N->getFlags());
963   return Node;
964 }
965 
966 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
967 /// were replaced with those specified.  If this node is never memoized,
968 /// return null, otherwise return a pointer to the slot it would take.  If a
969 /// node already exists with these operands, the slot will be non-null.
970 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
971                                            SDValue Op1, SDValue Op2,
972                                            void *&InsertPos) {
973   if (doNotCSE(N))
974     return nullptr;
975 
976   SDValue Ops[] = { Op1, Op2 };
977   FoldingSetNodeID ID;
978   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
979   AddNodeIDCustom(ID, N);
980   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
981   if (Node)
982     Node->intersectFlagsWith(N->getFlags());
983   return Node;
984 }
985 
986 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
987 /// were replaced with those specified.  If this node is never memoized,
988 /// return null, otherwise return a pointer to the slot it would take.  If a
989 /// node already exists with these operands, the slot will be non-null.
990 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
991                                            void *&InsertPos) {
992   if (doNotCSE(N))
993     return nullptr;
994 
995   FoldingSetNodeID ID;
996   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
997   AddNodeIDCustom(ID, N);
998   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
999   if (Node)
1000     Node->intersectFlagsWith(N->getFlags());
1001   return Node;
1002 }
1003 
1004 Align SelectionDAG::getEVTAlign(EVT VT) const {
1005   Type *Ty = VT == MVT::iPTR ?
1006                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1007                    VT.getTypeForEVT(*getContext());
1008 
1009   return getDataLayout().getABITypeAlign(Ty);
1010 }
1011 
1012 // EntryNode could meaningfully have debug info if we can find it...
1013 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1014     : TM(tm), OptLevel(OL),
1015       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1016       Root(getEntryNode()) {
1017   InsertNode(&EntryNode);
1018   DbgInfo = new SDDbgInfo();
1019 }
1020 
1021 void SelectionDAG::init(MachineFunction &NewMF,
1022                         OptimizationRemarkEmitter &NewORE,
1023                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1024                         LegacyDivergenceAnalysis * Divergence,
1025                         ProfileSummaryInfo *PSIin,
1026                         BlockFrequencyInfo *BFIin) {
1027   MF = &NewMF;
1028   SDAGISelPass = PassPtr;
1029   ORE = &NewORE;
1030   TLI = getSubtarget().getTargetLowering();
1031   TSI = getSubtarget().getSelectionDAGInfo();
1032   LibInfo = LibraryInfo;
1033   Context = &MF->getFunction().getContext();
1034   DA = Divergence;
1035   PSI = PSIin;
1036   BFI = BFIin;
1037 }
1038 
1039 SelectionDAG::~SelectionDAG() {
1040   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1041   allnodes_clear();
1042   OperandRecycler.clear(OperandAllocator);
1043   delete DbgInfo;
1044 }
1045 
1046 bool SelectionDAG::shouldOptForSize() const {
1047   return MF->getFunction().hasOptSize() ||
1048       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1049 }
1050 
1051 void SelectionDAG::allnodes_clear() {
1052   assert(&*AllNodes.begin() == &EntryNode);
1053   AllNodes.remove(AllNodes.begin());
1054   while (!AllNodes.empty())
1055     DeallocateNode(&AllNodes.front());
1056 #ifndef NDEBUG
1057   NextPersistentId = 0;
1058 #endif
1059 }
1060 
1061 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1062                                           void *&InsertPos) {
1063   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1064   if (N) {
1065     switch (N->getOpcode()) {
1066     default: break;
1067     case ISD::Constant:
1068     case ISD::ConstantFP:
1069       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1070                        "debug location.  Use another overload.");
1071     }
1072   }
1073   return N;
1074 }
1075 
1076 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1077                                           const SDLoc &DL, void *&InsertPos) {
1078   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1079   if (N) {
1080     switch (N->getOpcode()) {
1081     case ISD::Constant:
1082     case ISD::ConstantFP:
1083       // Erase debug location from the node if the node is used at several
1084       // different places. Do not propagate one location to all uses as it
1085       // will cause a worse single stepping debugging experience.
1086       if (N->getDebugLoc() != DL.getDebugLoc())
1087         N->setDebugLoc(DebugLoc());
1088       break;
1089     default:
1090       // When the node's point of use is located earlier in the instruction
1091       // sequence than its prior point of use, update its debug info to the
1092       // earlier location.
1093       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1094         N->setDebugLoc(DL.getDebugLoc());
1095       break;
1096     }
1097   }
1098   return N;
1099 }
1100 
1101 void SelectionDAG::clear() {
1102   allnodes_clear();
1103   OperandRecycler.clear(OperandAllocator);
1104   OperandAllocator.Reset();
1105   CSEMap.clear();
1106 
1107   ExtendedValueTypeNodes.clear();
1108   ExternalSymbols.clear();
1109   TargetExternalSymbols.clear();
1110   MCSymbols.clear();
1111   SDCallSiteDbgInfo.clear();
1112   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1113             static_cast<CondCodeSDNode*>(nullptr));
1114   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1115             static_cast<SDNode*>(nullptr));
1116 
1117   EntryNode.UseList = nullptr;
1118   InsertNode(&EntryNode);
1119   Root = getEntryNode();
1120   DbgInfo->clear();
1121 }
1122 
1123 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1124   return VT.bitsGT(Op.getValueType())
1125              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1126              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1127 }
1128 
1129 std::pair<SDValue, SDValue>
1130 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1131                                        const SDLoc &DL, EVT VT) {
1132   assert(!VT.bitsEq(Op.getValueType()) &&
1133          "Strict no-op FP extend/round not allowed.");
1134   SDValue Res =
1135       VT.bitsGT(Op.getValueType())
1136           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1137           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1138                     {Chain, Op, getIntPtrConstant(0, DL)});
1139 
1140   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1141 }
1142 
1143 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1144   return VT.bitsGT(Op.getValueType()) ?
1145     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1146     getNode(ISD::TRUNCATE, DL, VT, Op);
1147 }
1148 
1149 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1150   return VT.bitsGT(Op.getValueType()) ?
1151     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1152     getNode(ISD::TRUNCATE, DL, VT, Op);
1153 }
1154 
1155 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1156   return VT.bitsGT(Op.getValueType()) ?
1157     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1158     getNode(ISD::TRUNCATE, DL, VT, Op);
1159 }
1160 
1161 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1162                                         EVT OpVT) {
1163   if (VT.bitsLE(Op.getValueType()))
1164     return getNode(ISD::TRUNCATE, SL, VT, Op);
1165 
1166   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1167   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1168 }
1169 
1170 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1171   EVT OpVT = Op.getValueType();
1172   assert(VT.isInteger() && OpVT.isInteger() &&
1173          "Cannot getZeroExtendInReg FP types");
1174   assert(VT.isVector() == OpVT.isVector() &&
1175          "getZeroExtendInReg type should be vector iff the operand "
1176          "type is vector!");
1177   assert((!VT.isVector() ||
1178           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1179          "Vector element counts must match in getZeroExtendInReg");
1180   assert(VT.bitsLE(OpVT) && "Not extending!");
1181   if (OpVT == VT)
1182     return Op;
1183   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1184                                    VT.getScalarSizeInBits());
1185   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1186 }
1187 
1188 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1189   // Only unsigned pointer semantics are supported right now. In the future this
1190   // might delegate to TLI to check pointer signedness.
1191   return getZExtOrTrunc(Op, DL, VT);
1192 }
1193 
1194 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1195   // Only unsigned pointer semantics are supported right now. In the future this
1196   // might delegate to TLI to check pointer signedness.
1197   return getZeroExtendInReg(Op, DL, VT);
1198 }
1199 
1200 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1201 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1202   EVT EltVT = VT.getScalarType();
1203   SDValue NegOne =
1204     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1205   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1206 }
1207 
1208 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1209   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1210   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1211 }
1212 
1213 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1214                                       EVT OpVT) {
1215   if (!V)
1216     return getConstant(0, DL, VT);
1217 
1218   switch (TLI->getBooleanContents(OpVT)) {
1219   case TargetLowering::ZeroOrOneBooleanContent:
1220   case TargetLowering::UndefinedBooleanContent:
1221     return getConstant(1, DL, VT);
1222   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1223     return getAllOnesConstant(DL, VT);
1224   }
1225   llvm_unreachable("Unexpected boolean content enum!");
1226 }
1227 
1228 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1229                                   bool isT, bool isO) {
1230   EVT EltVT = VT.getScalarType();
1231   assert((EltVT.getSizeInBits() >= 64 ||
1232          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1233          "getConstant with a uint64_t value that doesn't fit in the type!");
1234   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1235 }
1236 
1237 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1238                                   bool isT, bool isO) {
1239   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1240 }
1241 
1242 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1243                                   EVT VT, bool isT, bool isO) {
1244   assert(VT.isInteger() && "Cannot create FP integer constant!");
1245 
1246   EVT EltVT = VT.getScalarType();
1247   const ConstantInt *Elt = &Val;
1248 
1249   // In some cases the vector type is legal but the element type is illegal and
1250   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1251   // inserted value (the type does not need to match the vector element type).
1252   // Any extra bits introduced will be truncated away.
1253   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1254       TargetLowering::TypePromoteInteger) {
1255    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1256    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1257    Elt = ConstantInt::get(*getContext(), NewVal);
1258   }
1259   // In other cases the element type is illegal and needs to be expanded, for
1260   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1261   // the value into n parts and use a vector type with n-times the elements.
1262   // Then bitcast to the type requested.
1263   // Legalizing constants too early makes the DAGCombiner's job harder so we
1264   // only legalize if the DAG tells us we must produce legal types.
1265   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1266            TLI->getTypeAction(*getContext(), EltVT) ==
1267            TargetLowering::TypeExpandInteger) {
1268     const APInt &NewVal = Elt->getValue();
1269     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1270     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1271     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1272     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1273 
1274     // Check the temporary vector is the correct size. If this fails then
1275     // getTypeToTransformTo() probably returned a type whose size (in bits)
1276     // isn't a power-of-2 factor of the requested type size.
1277     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1278 
1279     SmallVector<SDValue, 2> EltParts;
1280     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1281       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1282                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1283                                      ViaEltVT, isT, isO));
1284     }
1285 
1286     // EltParts is currently in little endian order. If we actually want
1287     // big-endian order then reverse it now.
1288     if (getDataLayout().isBigEndian())
1289       std::reverse(EltParts.begin(), EltParts.end());
1290 
1291     // The elements must be reversed when the element order is different
1292     // to the endianness of the elements (because the BITCAST is itself a
1293     // vector shuffle in this situation). However, we do not need any code to
1294     // perform this reversal because getConstant() is producing a vector
1295     // splat.
1296     // This situation occurs in MIPS MSA.
1297 
1298     SmallVector<SDValue, 8> Ops;
1299     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1300       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1301 
1302     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1303     return V;
1304   }
1305 
1306   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1307          "APInt size does not match type size!");
1308   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1309   FoldingSetNodeID ID;
1310   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1311   ID.AddPointer(Elt);
1312   ID.AddBoolean(isO);
1313   void *IP = nullptr;
1314   SDNode *N = nullptr;
1315   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1316     if (!VT.isVector())
1317       return SDValue(N, 0);
1318 
1319   if (!N) {
1320     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1321     CSEMap.InsertNode(N, IP);
1322     InsertNode(N);
1323     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1324   }
1325 
1326   SDValue Result(N, 0);
1327   if (VT.isScalableVector())
1328     Result = getSplatVector(VT, DL, Result);
1329   else if (VT.isVector())
1330     Result = getSplatBuildVector(VT, DL, Result);
1331 
1332   return Result;
1333 }
1334 
1335 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1336                                         bool isTarget) {
1337   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1338 }
1339 
1340 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1341                                              const SDLoc &DL, bool LegalTypes) {
1342   assert(VT.isInteger() && "Shift amount is not an integer type!");
1343   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1344   return getConstant(Val, DL, ShiftVT);
1345 }
1346 
1347 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1348                                            bool isTarget) {
1349   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1350 }
1351 
1352 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1353                                     bool isTarget) {
1354   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1355 }
1356 
1357 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1358                                     EVT VT, bool isTarget) {
1359   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1360 
1361   EVT EltVT = VT.getScalarType();
1362 
1363   // Do the map lookup using the actual bit pattern for the floating point
1364   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1365   // we don't have issues with SNANs.
1366   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1367   FoldingSetNodeID ID;
1368   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1369   ID.AddPointer(&V);
1370   void *IP = nullptr;
1371   SDNode *N = nullptr;
1372   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1373     if (!VT.isVector())
1374       return SDValue(N, 0);
1375 
1376   if (!N) {
1377     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1378     CSEMap.InsertNode(N, IP);
1379     InsertNode(N);
1380   }
1381 
1382   SDValue Result(N, 0);
1383   if (VT.isVector())
1384     Result = getSplatBuildVector(VT, DL, Result);
1385   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1386   return Result;
1387 }
1388 
1389 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1390                                     bool isTarget) {
1391   EVT EltVT = VT.getScalarType();
1392   if (EltVT == MVT::f32)
1393     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1394   else if (EltVT == MVT::f64)
1395     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1396   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1397            EltVT == MVT::f16 || EltVT == MVT::bf16) {
1398     bool Ignored;
1399     APFloat APF = APFloat(Val);
1400     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1401                 &Ignored);
1402     return getConstantFP(APF, DL, VT, isTarget);
1403   } else
1404     llvm_unreachable("Unsupported type in getConstantFP");
1405 }
1406 
1407 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1408                                        EVT VT, int64_t Offset, bool isTargetGA,
1409                                        unsigned TargetFlags) {
1410   assert((TargetFlags == 0 || isTargetGA) &&
1411          "Cannot set target flags on target-independent globals");
1412 
1413   // Truncate (with sign-extension) the offset value to the pointer size.
1414   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1415   if (BitWidth < 64)
1416     Offset = SignExtend64(Offset, BitWidth);
1417 
1418   unsigned Opc;
1419   if (GV->isThreadLocal())
1420     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1421   else
1422     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1423 
1424   FoldingSetNodeID ID;
1425   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1426   ID.AddPointer(GV);
1427   ID.AddInteger(Offset);
1428   ID.AddInteger(TargetFlags);
1429   void *IP = nullptr;
1430   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1431     return SDValue(E, 0);
1432 
1433   auto *N = newSDNode<GlobalAddressSDNode>(
1434       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1435   CSEMap.InsertNode(N, IP);
1436     InsertNode(N);
1437   return SDValue(N, 0);
1438 }
1439 
1440 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1441   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1442   FoldingSetNodeID ID;
1443   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1444   ID.AddInteger(FI);
1445   void *IP = nullptr;
1446   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1447     return SDValue(E, 0);
1448 
1449   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1450   CSEMap.InsertNode(N, IP);
1451   InsertNode(N);
1452   return SDValue(N, 0);
1453 }
1454 
1455 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1456                                    unsigned TargetFlags) {
1457   assert((TargetFlags == 0 || isTarget) &&
1458          "Cannot set target flags on target-independent jump tables");
1459   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1460   FoldingSetNodeID ID;
1461   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1462   ID.AddInteger(JTI);
1463   ID.AddInteger(TargetFlags);
1464   void *IP = nullptr;
1465   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1466     return SDValue(E, 0);
1467 
1468   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1469   CSEMap.InsertNode(N, IP);
1470   InsertNode(N);
1471   return SDValue(N, 0);
1472 }
1473 
1474 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1475                                       MaybeAlign Alignment, int Offset,
1476                                       bool isTarget, unsigned TargetFlags) {
1477   assert((TargetFlags == 0 || isTarget) &&
1478          "Cannot set target flags on target-independent globals");
1479   if (!Alignment)
1480     Alignment = shouldOptForSize()
1481                     ? getDataLayout().getABITypeAlign(C->getType())
1482                     : getDataLayout().getPrefTypeAlign(C->getType());
1483   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1484   FoldingSetNodeID ID;
1485   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1486   ID.AddInteger(Alignment->value());
1487   ID.AddInteger(Offset);
1488   ID.AddPointer(C);
1489   ID.AddInteger(TargetFlags);
1490   void *IP = nullptr;
1491   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1492     return SDValue(E, 0);
1493 
1494   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1495                                           TargetFlags);
1496   CSEMap.InsertNode(N, IP);
1497   InsertNode(N);
1498   SDValue V = SDValue(N, 0);
1499   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1500   return V;
1501 }
1502 
1503 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1504                                       MaybeAlign Alignment, int Offset,
1505                                       bool isTarget, unsigned TargetFlags) {
1506   assert((TargetFlags == 0 || isTarget) &&
1507          "Cannot set target flags on target-independent globals");
1508   if (!Alignment)
1509     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1510   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1511   FoldingSetNodeID ID;
1512   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1513   ID.AddInteger(Alignment->value());
1514   ID.AddInteger(Offset);
1515   C->addSelectionDAGCSEId(ID);
1516   ID.AddInteger(TargetFlags);
1517   void *IP = nullptr;
1518   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1519     return SDValue(E, 0);
1520 
1521   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1522                                           TargetFlags);
1523   CSEMap.InsertNode(N, IP);
1524   InsertNode(N);
1525   return SDValue(N, 0);
1526 }
1527 
1528 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1529                                      unsigned TargetFlags) {
1530   FoldingSetNodeID ID;
1531   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1532   ID.AddInteger(Index);
1533   ID.AddInteger(Offset);
1534   ID.AddInteger(TargetFlags);
1535   void *IP = nullptr;
1536   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1537     return SDValue(E, 0);
1538 
1539   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1540   CSEMap.InsertNode(N, IP);
1541   InsertNode(N);
1542   return SDValue(N, 0);
1543 }
1544 
1545 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1546   FoldingSetNodeID ID;
1547   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1548   ID.AddPointer(MBB);
1549   void *IP = nullptr;
1550   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1551     return SDValue(E, 0);
1552 
1553   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1554   CSEMap.InsertNode(N, IP);
1555   InsertNode(N);
1556   return SDValue(N, 0);
1557 }
1558 
1559 SDValue SelectionDAG::getValueType(EVT VT) {
1560   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1561       ValueTypeNodes.size())
1562     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1563 
1564   SDNode *&N = VT.isExtended() ?
1565     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1566 
1567   if (N) return SDValue(N, 0);
1568   N = newSDNode<VTSDNode>(VT);
1569   InsertNode(N);
1570   return SDValue(N, 0);
1571 }
1572 
1573 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1574   SDNode *&N = ExternalSymbols[Sym];
1575   if (N) return SDValue(N, 0);
1576   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1577   InsertNode(N);
1578   return SDValue(N, 0);
1579 }
1580 
1581 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1582   SDNode *&N = MCSymbols[Sym];
1583   if (N)
1584     return SDValue(N, 0);
1585   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1586   InsertNode(N);
1587   return SDValue(N, 0);
1588 }
1589 
1590 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1591                                               unsigned TargetFlags) {
1592   SDNode *&N =
1593       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1594   if (N) return SDValue(N, 0);
1595   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1596   InsertNode(N);
1597   return SDValue(N, 0);
1598 }
1599 
1600 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1601   if ((unsigned)Cond >= CondCodeNodes.size())
1602     CondCodeNodes.resize(Cond+1);
1603 
1604   if (!CondCodeNodes[Cond]) {
1605     auto *N = newSDNode<CondCodeSDNode>(Cond);
1606     CondCodeNodes[Cond] = N;
1607     InsertNode(N);
1608   }
1609 
1610   return SDValue(CondCodeNodes[Cond], 0);
1611 }
1612 
1613 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1614 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1615 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1616   std::swap(N1, N2);
1617   ShuffleVectorSDNode::commuteMask(M);
1618 }
1619 
1620 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1621                                        SDValue N2, ArrayRef<int> Mask) {
1622   assert(VT.getVectorNumElements() == Mask.size() &&
1623            "Must have the same number of vector elements as mask elements!");
1624   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1625          "Invalid VECTOR_SHUFFLE");
1626 
1627   // Canonicalize shuffle undef, undef -> undef
1628   if (N1.isUndef() && N2.isUndef())
1629     return getUNDEF(VT);
1630 
1631   // Validate that all indices in Mask are within the range of the elements
1632   // input to the shuffle.
1633   int NElts = Mask.size();
1634   assert(llvm::all_of(Mask,
1635                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1636          "Index out of range");
1637 
1638   // Copy the mask so we can do any needed cleanup.
1639   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1640 
1641   // Canonicalize shuffle v, v -> v, undef
1642   if (N1 == N2) {
1643     N2 = getUNDEF(VT);
1644     for (int i = 0; i != NElts; ++i)
1645       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1646   }
1647 
1648   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1649   if (N1.isUndef())
1650     commuteShuffle(N1, N2, MaskVec);
1651 
1652   if (TLI->hasVectorBlend()) {
1653     // If shuffling a splat, try to blend the splat instead. We do this here so
1654     // that even when this arises during lowering we don't have to re-handle it.
1655     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1656       BitVector UndefElements;
1657       SDValue Splat = BV->getSplatValue(&UndefElements);
1658       if (!Splat)
1659         return;
1660 
1661       for (int i = 0; i < NElts; ++i) {
1662         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1663           continue;
1664 
1665         // If this input comes from undef, mark it as such.
1666         if (UndefElements[MaskVec[i] - Offset]) {
1667           MaskVec[i] = -1;
1668           continue;
1669         }
1670 
1671         // If we can blend a non-undef lane, use that instead.
1672         if (!UndefElements[i])
1673           MaskVec[i] = i + Offset;
1674       }
1675     };
1676     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1677       BlendSplat(N1BV, 0);
1678     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1679       BlendSplat(N2BV, NElts);
1680   }
1681 
1682   // Canonicalize all index into lhs, -> shuffle lhs, undef
1683   // Canonicalize all index into rhs, -> shuffle rhs, undef
1684   bool AllLHS = true, AllRHS = true;
1685   bool N2Undef = N2.isUndef();
1686   for (int i = 0; i != NElts; ++i) {
1687     if (MaskVec[i] >= NElts) {
1688       if (N2Undef)
1689         MaskVec[i] = -1;
1690       else
1691         AllLHS = false;
1692     } else if (MaskVec[i] >= 0) {
1693       AllRHS = false;
1694     }
1695   }
1696   if (AllLHS && AllRHS)
1697     return getUNDEF(VT);
1698   if (AllLHS && !N2Undef)
1699     N2 = getUNDEF(VT);
1700   if (AllRHS) {
1701     N1 = getUNDEF(VT);
1702     commuteShuffle(N1, N2, MaskVec);
1703   }
1704   // Reset our undef status after accounting for the mask.
1705   N2Undef = N2.isUndef();
1706   // Re-check whether both sides ended up undef.
1707   if (N1.isUndef() && N2Undef)
1708     return getUNDEF(VT);
1709 
1710   // If Identity shuffle return that node.
1711   bool Identity = true, AllSame = true;
1712   for (int i = 0; i != NElts; ++i) {
1713     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1714     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1715   }
1716   if (Identity && NElts)
1717     return N1;
1718 
1719   // Shuffling a constant splat doesn't change the result.
1720   if (N2Undef) {
1721     SDValue V = N1;
1722 
1723     // Look through any bitcasts. We check that these don't change the number
1724     // (and size) of elements and just changes their types.
1725     while (V.getOpcode() == ISD::BITCAST)
1726       V = V->getOperand(0);
1727 
1728     // A splat should always show up as a build vector node.
1729     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1730       BitVector UndefElements;
1731       SDValue Splat = BV->getSplatValue(&UndefElements);
1732       // If this is a splat of an undef, shuffling it is also undef.
1733       if (Splat && Splat.isUndef())
1734         return getUNDEF(VT);
1735 
1736       bool SameNumElts =
1737           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1738 
1739       // We only have a splat which can skip shuffles if there is a splatted
1740       // value and no undef lanes rearranged by the shuffle.
1741       if (Splat && UndefElements.none()) {
1742         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1743         // number of elements match or the value splatted is a zero constant.
1744         if (SameNumElts)
1745           return N1;
1746         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1747           if (C->isNullValue())
1748             return N1;
1749       }
1750 
1751       // If the shuffle itself creates a splat, build the vector directly.
1752       if (AllSame && SameNumElts) {
1753         EVT BuildVT = BV->getValueType(0);
1754         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1755         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1756 
1757         // We may have jumped through bitcasts, so the type of the
1758         // BUILD_VECTOR may not match the type of the shuffle.
1759         if (BuildVT != VT)
1760           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1761         return NewBV;
1762       }
1763     }
1764   }
1765 
1766   FoldingSetNodeID ID;
1767   SDValue Ops[2] = { N1, N2 };
1768   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1769   for (int i = 0; i != NElts; ++i)
1770     ID.AddInteger(MaskVec[i]);
1771 
1772   void* IP = nullptr;
1773   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1774     return SDValue(E, 0);
1775 
1776   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1777   // SDNode doesn't have access to it.  This memory will be "leaked" when
1778   // the node is deallocated, but recovered when the NodeAllocator is released.
1779   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1780   llvm::copy(MaskVec, MaskAlloc);
1781 
1782   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1783                                            dl.getDebugLoc(), MaskAlloc);
1784   createOperands(N, Ops);
1785 
1786   CSEMap.InsertNode(N, IP);
1787   InsertNode(N);
1788   SDValue V = SDValue(N, 0);
1789   NewSDValueDbgMsg(V, "Creating new node: ", this);
1790   return V;
1791 }
1792 
1793 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1794   EVT VT = SV.getValueType(0);
1795   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1796   ShuffleVectorSDNode::commuteMask(MaskVec);
1797 
1798   SDValue Op0 = SV.getOperand(0);
1799   SDValue Op1 = SV.getOperand(1);
1800   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1801 }
1802 
1803 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1804   FoldingSetNodeID ID;
1805   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1806   ID.AddInteger(RegNo);
1807   void *IP = nullptr;
1808   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1809     return SDValue(E, 0);
1810 
1811   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1812   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1813   CSEMap.InsertNode(N, IP);
1814   InsertNode(N);
1815   return SDValue(N, 0);
1816 }
1817 
1818 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1819   FoldingSetNodeID ID;
1820   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1821   ID.AddPointer(RegMask);
1822   void *IP = nullptr;
1823   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1824     return SDValue(E, 0);
1825 
1826   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1827   CSEMap.InsertNode(N, IP);
1828   InsertNode(N);
1829   return SDValue(N, 0);
1830 }
1831 
1832 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1833                                  MCSymbol *Label) {
1834   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1835 }
1836 
1837 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1838                                    SDValue Root, MCSymbol *Label) {
1839   FoldingSetNodeID ID;
1840   SDValue Ops[] = { Root };
1841   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1842   ID.AddPointer(Label);
1843   void *IP = nullptr;
1844   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1845     return SDValue(E, 0);
1846 
1847   auto *N =
1848       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1849   createOperands(N, Ops);
1850 
1851   CSEMap.InsertNode(N, IP);
1852   InsertNode(N);
1853   return SDValue(N, 0);
1854 }
1855 
1856 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1857                                       int64_t Offset, bool isTarget,
1858                                       unsigned TargetFlags) {
1859   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1860 
1861   FoldingSetNodeID ID;
1862   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1863   ID.AddPointer(BA);
1864   ID.AddInteger(Offset);
1865   ID.AddInteger(TargetFlags);
1866   void *IP = nullptr;
1867   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1868     return SDValue(E, 0);
1869 
1870   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1871   CSEMap.InsertNode(N, IP);
1872   InsertNode(N);
1873   return SDValue(N, 0);
1874 }
1875 
1876 SDValue SelectionDAG::getSrcValue(const Value *V) {
1877   FoldingSetNodeID ID;
1878   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1879   ID.AddPointer(V);
1880 
1881   void *IP = nullptr;
1882   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1883     return SDValue(E, 0);
1884 
1885   auto *N = newSDNode<SrcValueSDNode>(V);
1886   CSEMap.InsertNode(N, IP);
1887   InsertNode(N);
1888   return SDValue(N, 0);
1889 }
1890 
1891 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1892   FoldingSetNodeID ID;
1893   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1894   ID.AddPointer(MD);
1895 
1896   void *IP = nullptr;
1897   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1898     return SDValue(E, 0);
1899 
1900   auto *N = newSDNode<MDNodeSDNode>(MD);
1901   CSEMap.InsertNode(N, IP);
1902   InsertNode(N);
1903   return SDValue(N, 0);
1904 }
1905 
1906 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1907   if (VT == V.getValueType())
1908     return V;
1909 
1910   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1911 }
1912 
1913 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1914                                        unsigned SrcAS, unsigned DestAS) {
1915   SDValue Ops[] = {Ptr};
1916   FoldingSetNodeID ID;
1917   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1918   ID.AddInteger(SrcAS);
1919   ID.AddInteger(DestAS);
1920 
1921   void *IP = nullptr;
1922   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1923     return SDValue(E, 0);
1924 
1925   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1926                                            VT, SrcAS, DestAS);
1927   createOperands(N, Ops);
1928 
1929   CSEMap.InsertNode(N, IP);
1930   InsertNode(N);
1931   return SDValue(N, 0);
1932 }
1933 
1934 SDValue SelectionDAG::getFreeze(SDValue V) {
1935   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
1936 }
1937 
1938 /// getShiftAmountOperand - Return the specified value casted to
1939 /// the target's desired shift amount type.
1940 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1941   EVT OpTy = Op.getValueType();
1942   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1943   if (OpTy == ShTy || OpTy.isVector()) return Op;
1944 
1945   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1946 }
1947 
1948 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1949   SDLoc dl(Node);
1950   const TargetLowering &TLI = getTargetLoweringInfo();
1951   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1952   EVT VT = Node->getValueType(0);
1953   SDValue Tmp1 = Node->getOperand(0);
1954   SDValue Tmp2 = Node->getOperand(1);
1955   const MaybeAlign MA(Node->getConstantOperandVal(3));
1956 
1957   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1958                                Tmp2, MachinePointerInfo(V));
1959   SDValue VAList = VAListLoad;
1960 
1961   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
1962     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1963                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
1964 
1965     VAList =
1966         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1967                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
1968   }
1969 
1970   // Increment the pointer, VAList, to the next vaarg
1971   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1972                  getConstant(getDataLayout().getTypeAllocSize(
1973                                                VT.getTypeForEVT(*getContext())),
1974                              dl, VAList.getValueType()));
1975   // Store the incremented VAList to the legalized pointer
1976   Tmp1 =
1977       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1978   // Load the actual argument out of the pointer VAList
1979   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1980 }
1981 
1982 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1983   SDLoc dl(Node);
1984   const TargetLowering &TLI = getTargetLoweringInfo();
1985   // This defaults to loading a pointer from the input and storing it to the
1986   // output, returning the chain.
1987   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1988   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1989   SDValue Tmp1 =
1990       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1991               Node->getOperand(2), MachinePointerInfo(VS));
1992   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1993                   MachinePointerInfo(VD));
1994 }
1995 
1996 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
1997   const DataLayout &DL = getDataLayout();
1998   Type *Ty = VT.getTypeForEVT(*getContext());
1999   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2000 
2001   if (TLI->isTypeLegal(VT) || !VT.isVector())
2002     return RedAlign;
2003 
2004   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2005   const Align StackAlign = TFI->getStackAlign();
2006 
2007   // See if we can choose a smaller ABI alignment in cases where it's an
2008   // illegal vector type that will get broken down.
2009   if (RedAlign > StackAlign) {
2010     EVT IntermediateVT;
2011     MVT RegisterVT;
2012     unsigned NumIntermediates;
2013     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2014                                 NumIntermediates, RegisterVT);
2015     Ty = IntermediateVT.getTypeForEVT(*getContext());
2016     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2017     if (RedAlign2 < RedAlign)
2018       RedAlign = RedAlign2;
2019   }
2020 
2021   return RedAlign;
2022 }
2023 
2024 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2025   MachineFrameInfo &MFI = MF->getFrameInfo();
2026   int FrameIdx = MFI.CreateStackObject(Bytes, Alignment, false);
2027   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2028 }
2029 
2030 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2031   Type *Ty = VT.getTypeForEVT(*getContext());
2032   Align StackAlign =
2033       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2034   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2035 }
2036 
2037 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2038   TypeSize Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
2039   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2040   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2041   const DataLayout &DL = getDataLayout();
2042   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2043   return CreateStackTemporary(Bytes, Align);
2044 }
2045 
2046 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2047                                 ISD::CondCode Cond, const SDLoc &dl) {
2048   EVT OpVT = N1.getValueType();
2049 
2050   // These setcc operations always fold.
2051   switch (Cond) {
2052   default: break;
2053   case ISD::SETFALSE:
2054   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2055   case ISD::SETTRUE:
2056   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2057 
2058   case ISD::SETOEQ:
2059   case ISD::SETOGT:
2060   case ISD::SETOGE:
2061   case ISD::SETOLT:
2062   case ISD::SETOLE:
2063   case ISD::SETONE:
2064   case ISD::SETO:
2065   case ISD::SETUO:
2066   case ISD::SETUEQ:
2067   case ISD::SETUNE:
2068     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2069     break;
2070   }
2071 
2072   if (OpVT.isInteger()) {
2073     // For EQ and NE, we can always pick a value for the undef to make the
2074     // predicate pass or fail, so we can return undef.
2075     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2076     // icmp eq/ne X, undef -> undef.
2077     if ((N1.isUndef() || N2.isUndef()) &&
2078         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2079       return getUNDEF(VT);
2080 
2081     // If both operands are undef, we can return undef for int comparison.
2082     // icmp undef, undef -> undef.
2083     if (N1.isUndef() && N2.isUndef())
2084       return getUNDEF(VT);
2085 
2086     // icmp X, X -> true/false
2087     // icmp X, undef -> true/false because undef could be X.
2088     if (N1 == N2)
2089       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2090   }
2091 
2092   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2093     const APInt &C2 = N2C->getAPIntValue();
2094     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2095       const APInt &C1 = N1C->getAPIntValue();
2096 
2097       switch (Cond) {
2098       default: llvm_unreachable("Unknown integer setcc!");
2099       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2100       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2101       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2102       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2103       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2104       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2105       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2106       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2107       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2108       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2109       }
2110     }
2111   }
2112 
2113   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2114   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2115 
2116   if (N1CFP && N2CFP) {
2117     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2118     switch (Cond) {
2119     default: break;
2120     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2121                         return getUNDEF(VT);
2122                       LLVM_FALLTHROUGH;
2123     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2124                                              OpVT);
2125     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2126                         return getUNDEF(VT);
2127                       LLVM_FALLTHROUGH;
2128     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2129                                              R==APFloat::cmpLessThan, dl, VT,
2130                                              OpVT);
2131     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2132                         return getUNDEF(VT);
2133                       LLVM_FALLTHROUGH;
2134     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2135                                              OpVT);
2136     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2137                         return getUNDEF(VT);
2138                       LLVM_FALLTHROUGH;
2139     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2140                                              VT, OpVT);
2141     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2142                         return getUNDEF(VT);
2143                       LLVM_FALLTHROUGH;
2144     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2145                                              R==APFloat::cmpEqual, dl, VT,
2146                                              OpVT);
2147     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2148                         return getUNDEF(VT);
2149                       LLVM_FALLTHROUGH;
2150     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2151                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2152     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2153                                              OpVT);
2154     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2155                                              OpVT);
2156     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2157                                              R==APFloat::cmpEqual, dl, VT,
2158                                              OpVT);
2159     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2160                                              OpVT);
2161     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2162                                              R==APFloat::cmpLessThan, dl, VT,
2163                                              OpVT);
2164     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2165                                              R==APFloat::cmpUnordered, dl, VT,
2166                                              OpVT);
2167     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2168                                              VT, OpVT);
2169     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2170                                              OpVT);
2171     }
2172   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2173     // Ensure that the constant occurs on the RHS.
2174     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2175     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2176       return SDValue();
2177     return getSetCC(dl, VT, N2, N1, SwappedCond);
2178   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2179              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2180     // If an operand is known to be a nan (or undef that could be a nan), we can
2181     // fold it.
2182     // Choosing NaN for the undef will always make unordered comparison succeed
2183     // and ordered comparison fails.
2184     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2185     switch (ISD::getUnorderedFlavor(Cond)) {
2186     default:
2187       llvm_unreachable("Unknown flavor!");
2188     case 0: // Known false.
2189       return getBoolConstant(false, dl, VT, OpVT);
2190     case 1: // Known true.
2191       return getBoolConstant(true, dl, VT, OpVT);
2192     case 2: // Undefined.
2193       return getUNDEF(VT);
2194     }
2195   }
2196 
2197   // Could not fold it.
2198   return SDValue();
2199 }
2200 
2201 /// See if the specified operand can be simplified with the knowledge that only
2202 /// the bits specified by DemandedBits are used.
2203 /// TODO: really we should be making this into the DAG equivalent of
2204 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2205 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2206   EVT VT = V.getValueType();
2207   APInt DemandedElts = VT.isVector()
2208                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2209                            : APInt(1, 1);
2210   return GetDemandedBits(V, DemandedBits, DemandedElts);
2211 }
2212 
2213 /// See if the specified operand can be simplified with the knowledge that only
2214 /// the bits specified by DemandedBits are used in the elements specified by
2215 /// DemandedElts.
2216 /// TODO: really we should be making this into the DAG equivalent of
2217 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2218 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2219                                       const APInt &DemandedElts) {
2220   switch (V.getOpcode()) {
2221   default:
2222     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2223                                                 *this, 0);
2224     break;
2225   case ISD::Constant: {
2226     const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2227     APInt NewVal = CVal & DemandedBits;
2228     if (NewVal != CVal)
2229       return getConstant(NewVal, SDLoc(V), V.getValueType());
2230     break;
2231   }
2232   case ISD::SRL:
2233     // Only look at single-use SRLs.
2234     if (!V.getNode()->hasOneUse())
2235       break;
2236     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2237       // See if we can recursively simplify the LHS.
2238       unsigned Amt = RHSC->getZExtValue();
2239 
2240       // Watch out for shift count overflow though.
2241       if (Amt >= DemandedBits.getBitWidth())
2242         break;
2243       APInt SrcDemandedBits = DemandedBits << Amt;
2244       if (SDValue SimplifyLHS =
2245               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2246         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2247                        V.getOperand(1));
2248     }
2249     break;
2250   case ISD::AND: {
2251     // X & -1 -> X (ignoring bits which aren't demanded).
2252     // Also handle the case where masked out bits in X are known to be zero.
2253     if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2254       const APInt &AndVal = RHSC->getAPIntValue();
2255       if (DemandedBits.isSubsetOf(AndVal) ||
2256           DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero |
2257                                   AndVal))
2258         return V.getOperand(0);
2259     }
2260     break;
2261   }
2262   }
2263   return SDValue();
2264 }
2265 
2266 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2267 /// use this predicate to simplify operations downstream.
2268 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2269   unsigned BitWidth = Op.getScalarValueSizeInBits();
2270   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2271 }
2272 
2273 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2274 /// this predicate to simplify operations downstream.  Mask is known to be zero
2275 /// for bits that V cannot have.
2276 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2277                                      unsigned Depth) const {
2278   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2279 }
2280 
2281 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2282 /// DemandedElts.  We use this predicate to simplify operations downstream.
2283 /// Mask is known to be zero for bits that V cannot have.
2284 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2285                                      const APInt &DemandedElts,
2286                                      unsigned Depth) const {
2287   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2288 }
2289 
2290 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2291 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2292                                         unsigned Depth) const {
2293   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2294 }
2295 
2296 /// isSplatValue - Return true if the vector V has the same value
2297 /// across all DemandedElts. For scalable vectors it does not make
2298 /// sense to specify which elements are demanded or undefined, therefore
2299 /// they are simply ignored.
2300 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2301                                 APInt &UndefElts) {
2302   EVT VT = V.getValueType();
2303   assert(VT.isVector() && "Vector type expected");
2304 
2305   if (!VT.isScalableVector() && !DemandedElts)
2306     return false; // No demanded elts, better to assume we don't know anything.
2307 
2308   // Deal with some common cases here that work for both fixed and scalable
2309   // vector types.
2310   switch (V.getOpcode()) {
2311   case ISD::SPLAT_VECTOR:
2312     return true;
2313   case ISD::ADD:
2314   case ISD::SUB:
2315   case ISD::AND: {
2316     APInt UndefLHS, UndefRHS;
2317     SDValue LHS = V.getOperand(0);
2318     SDValue RHS = V.getOperand(1);
2319     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2320         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2321       UndefElts = UndefLHS | UndefRHS;
2322       return true;
2323     }
2324     break;
2325   }
2326   }
2327 
2328   // We don't support other cases than those above for scalable vectors at
2329   // the moment.
2330   if (VT.isScalableVector())
2331     return false;
2332 
2333   unsigned NumElts = VT.getVectorNumElements();
2334   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2335   UndefElts = APInt::getNullValue(NumElts);
2336 
2337   switch (V.getOpcode()) {
2338   case ISD::BUILD_VECTOR: {
2339     SDValue Scl;
2340     for (unsigned i = 0; i != NumElts; ++i) {
2341       SDValue Op = V.getOperand(i);
2342       if (Op.isUndef()) {
2343         UndefElts.setBit(i);
2344         continue;
2345       }
2346       if (!DemandedElts[i])
2347         continue;
2348       if (Scl && Scl != Op)
2349         return false;
2350       Scl = Op;
2351     }
2352     return true;
2353   }
2354   case ISD::VECTOR_SHUFFLE: {
2355     // Check if this is a shuffle node doing a splat.
2356     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2357     int SplatIndex = -1;
2358     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2359     for (int i = 0; i != (int)NumElts; ++i) {
2360       int M = Mask[i];
2361       if (M < 0) {
2362         UndefElts.setBit(i);
2363         continue;
2364       }
2365       if (!DemandedElts[i])
2366         continue;
2367       if (0 <= SplatIndex && SplatIndex != M)
2368         return false;
2369       SplatIndex = M;
2370     }
2371     return true;
2372   }
2373   case ISD::EXTRACT_SUBVECTOR: {
2374     // Offset the demanded elts by the subvector index.
2375     SDValue Src = V.getOperand(0);
2376     uint64_t Idx = V.getConstantOperandVal(1);
2377     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2378     APInt UndefSrcElts;
2379     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2380     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) {
2381       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2382       return true;
2383     }
2384     break;
2385   }
2386   }
2387 
2388   return false;
2389 }
2390 
2391 /// Helper wrapper to main isSplatValue function.
2392 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2393   EVT VT = V.getValueType();
2394   assert(VT.isVector() && "Vector type expected");
2395 
2396   APInt UndefElts;
2397   APInt DemandedElts;
2398 
2399   // For now we don't support this with scalable vectors.
2400   if (!VT.isScalableVector())
2401     DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2402   return isSplatValue(V, DemandedElts, UndefElts) &&
2403          (AllowUndefs || !UndefElts);
2404 }
2405 
2406 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2407   V = peekThroughExtractSubvectors(V);
2408 
2409   EVT VT = V.getValueType();
2410   unsigned Opcode = V.getOpcode();
2411   switch (Opcode) {
2412   default: {
2413     APInt UndefElts;
2414     APInt DemandedElts;
2415 
2416     if (!VT.isScalableVector())
2417       DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2418 
2419     if (isSplatValue(V, DemandedElts, UndefElts)) {
2420       if (VT.isScalableVector()) {
2421         // DemandedElts and UndefElts are ignored for scalable vectors, since
2422         // the only supported cases are SPLAT_VECTOR nodes.
2423         SplatIdx = 0;
2424       } else {
2425         // Handle case where all demanded elements are UNDEF.
2426         if (DemandedElts.isSubsetOf(UndefElts)) {
2427           SplatIdx = 0;
2428           return getUNDEF(VT);
2429         }
2430         SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2431       }
2432       return V;
2433     }
2434     break;
2435   }
2436   case ISD::SPLAT_VECTOR:
2437     SplatIdx = 0;
2438     return V;
2439   case ISD::VECTOR_SHUFFLE: {
2440     if (VT.isScalableVector())
2441       return SDValue();
2442 
2443     // Check if this is a shuffle node doing a splat.
2444     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2445     // getTargetVShiftNode currently struggles without the splat source.
2446     auto *SVN = cast<ShuffleVectorSDNode>(V);
2447     if (!SVN->isSplat())
2448       break;
2449     int Idx = SVN->getSplatIndex();
2450     int NumElts = V.getValueType().getVectorNumElements();
2451     SplatIdx = Idx % NumElts;
2452     return V.getOperand(Idx / NumElts);
2453   }
2454   }
2455 
2456   return SDValue();
2457 }
2458 
2459 SDValue SelectionDAG::getSplatValue(SDValue V) {
2460   int SplatIdx;
2461   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2462     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2463                    SrcVector.getValueType().getScalarType(), SrcVector,
2464                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2465   return SDValue();
2466 }
2467 
2468 const APInt *
2469 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2470                                           const APInt &DemandedElts) const {
2471   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2472           V.getOpcode() == ISD::SRA) &&
2473          "Unknown shift node");
2474   unsigned BitWidth = V.getScalarValueSizeInBits();
2475   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2476     // Shifting more than the bitwidth is not valid.
2477     const APInt &ShAmt = SA->getAPIntValue();
2478     if (ShAmt.ult(BitWidth))
2479       return &ShAmt;
2480   }
2481   return nullptr;
2482 }
2483 
2484 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2485     SDValue V, const APInt &DemandedElts) const {
2486   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2487           V.getOpcode() == ISD::SRA) &&
2488          "Unknown shift node");
2489   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2490     return ValidAmt;
2491   unsigned BitWidth = V.getScalarValueSizeInBits();
2492   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2493   if (!BV)
2494     return nullptr;
2495   const APInt *MinShAmt = nullptr;
2496   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2497     if (!DemandedElts[i])
2498       continue;
2499     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2500     if (!SA)
2501       return nullptr;
2502     // Shifting more than the bitwidth is not valid.
2503     const APInt &ShAmt = SA->getAPIntValue();
2504     if (ShAmt.uge(BitWidth))
2505       return nullptr;
2506     if (MinShAmt && MinShAmt->ule(ShAmt))
2507       continue;
2508     MinShAmt = &ShAmt;
2509   }
2510   return MinShAmt;
2511 }
2512 
2513 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2514     SDValue V, const APInt &DemandedElts) const {
2515   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2516           V.getOpcode() == ISD::SRA) &&
2517          "Unknown shift node");
2518   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2519     return ValidAmt;
2520   unsigned BitWidth = V.getScalarValueSizeInBits();
2521   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2522   if (!BV)
2523     return nullptr;
2524   const APInt *MaxShAmt = nullptr;
2525   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2526     if (!DemandedElts[i])
2527       continue;
2528     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2529     if (!SA)
2530       return nullptr;
2531     // Shifting more than the bitwidth is not valid.
2532     const APInt &ShAmt = SA->getAPIntValue();
2533     if (ShAmt.uge(BitWidth))
2534       return nullptr;
2535     if (MaxShAmt && MaxShAmt->uge(ShAmt))
2536       continue;
2537     MaxShAmt = &ShAmt;
2538   }
2539   return MaxShAmt;
2540 }
2541 
2542 /// Determine which bits of Op are known to be either zero or one and return
2543 /// them in Known. For vectors, the known bits are those that are shared by
2544 /// every vector element.
2545 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2546   EVT VT = Op.getValueType();
2547 
2548   // TOOD: Until we have a plan for how to represent demanded elements for
2549   // scalable vectors, we can just bail out for now.
2550   if (Op.getValueType().isScalableVector()) {
2551     unsigned BitWidth = Op.getScalarValueSizeInBits();
2552     return KnownBits(BitWidth);
2553   }
2554 
2555   APInt DemandedElts = VT.isVector()
2556                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2557                            : APInt(1, 1);
2558   return computeKnownBits(Op, DemandedElts, Depth);
2559 }
2560 
2561 /// Determine which bits of Op are known to be either zero or one and return
2562 /// them in Known. The DemandedElts argument allows us to only collect the known
2563 /// bits that are shared by the requested vector elements.
2564 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2565                                          unsigned Depth) const {
2566   unsigned BitWidth = Op.getScalarValueSizeInBits();
2567 
2568   KnownBits Known(BitWidth);   // Don't know anything.
2569 
2570   // TOOD: Until we have a plan for how to represent demanded elements for
2571   // scalable vectors, we can just bail out for now.
2572   if (Op.getValueType().isScalableVector())
2573     return Known;
2574 
2575   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2576     // We know all of the bits for a constant!
2577     Known.One = C->getAPIntValue();
2578     Known.Zero = ~Known.One;
2579     return Known;
2580   }
2581   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2582     // We know all of the bits for a constant fp!
2583     Known.One = C->getValueAPF().bitcastToAPInt();
2584     Known.Zero = ~Known.One;
2585     return Known;
2586   }
2587 
2588   if (Depth >= MaxRecursionDepth)
2589     return Known;  // Limit search depth.
2590 
2591   KnownBits Known2;
2592   unsigned NumElts = DemandedElts.getBitWidth();
2593   assert((!Op.getValueType().isVector() ||
2594           NumElts == Op.getValueType().getVectorNumElements()) &&
2595          "Unexpected vector size");
2596 
2597   if (!DemandedElts)
2598     return Known;  // No demanded elts, better to assume we don't know anything.
2599 
2600   unsigned Opcode = Op.getOpcode();
2601   switch (Opcode) {
2602   case ISD::BUILD_VECTOR:
2603     // Collect the known bits that are shared by every demanded vector element.
2604     Known.Zero.setAllBits(); Known.One.setAllBits();
2605     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2606       if (!DemandedElts[i])
2607         continue;
2608 
2609       SDValue SrcOp = Op.getOperand(i);
2610       Known2 = computeKnownBits(SrcOp, Depth + 1);
2611 
2612       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2613       if (SrcOp.getValueSizeInBits() != BitWidth) {
2614         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2615                "Expected BUILD_VECTOR implicit truncation");
2616         Known2 = Known2.trunc(BitWidth);
2617       }
2618 
2619       // Known bits are the values that are shared by every demanded element.
2620       Known.One &= Known2.One;
2621       Known.Zero &= Known2.Zero;
2622 
2623       // If we don't know any bits, early out.
2624       if (Known.isUnknown())
2625         break;
2626     }
2627     break;
2628   case ISD::VECTOR_SHUFFLE: {
2629     // Collect the known bits that are shared by every vector element referenced
2630     // by the shuffle.
2631     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2632     Known.Zero.setAllBits(); Known.One.setAllBits();
2633     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2634     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2635     for (unsigned i = 0; i != NumElts; ++i) {
2636       if (!DemandedElts[i])
2637         continue;
2638 
2639       int M = SVN->getMaskElt(i);
2640       if (M < 0) {
2641         // For UNDEF elements, we don't know anything about the common state of
2642         // the shuffle result.
2643         Known.resetAll();
2644         DemandedLHS.clearAllBits();
2645         DemandedRHS.clearAllBits();
2646         break;
2647       }
2648 
2649       if ((unsigned)M < NumElts)
2650         DemandedLHS.setBit((unsigned)M % NumElts);
2651       else
2652         DemandedRHS.setBit((unsigned)M % NumElts);
2653     }
2654     // Known bits are the values that are shared by every demanded element.
2655     if (!!DemandedLHS) {
2656       SDValue LHS = Op.getOperand(0);
2657       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2658       Known.One &= Known2.One;
2659       Known.Zero &= Known2.Zero;
2660     }
2661     // If we don't know any bits, early out.
2662     if (Known.isUnknown())
2663       break;
2664     if (!!DemandedRHS) {
2665       SDValue RHS = Op.getOperand(1);
2666       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2667       Known.One &= Known2.One;
2668       Known.Zero &= Known2.Zero;
2669     }
2670     break;
2671   }
2672   case ISD::CONCAT_VECTORS: {
2673     // Split DemandedElts and test each of the demanded subvectors.
2674     Known.Zero.setAllBits(); Known.One.setAllBits();
2675     EVT SubVectorVT = Op.getOperand(0).getValueType();
2676     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2677     unsigned NumSubVectors = Op.getNumOperands();
2678     for (unsigned i = 0; i != NumSubVectors; ++i) {
2679       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2680       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2681       if (!!DemandedSub) {
2682         SDValue Sub = Op.getOperand(i);
2683         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2684         Known.One &= Known2.One;
2685         Known.Zero &= Known2.Zero;
2686       }
2687       // If we don't know any bits, early out.
2688       if (Known.isUnknown())
2689         break;
2690     }
2691     break;
2692   }
2693   case ISD::INSERT_SUBVECTOR: {
2694     // Demand any elements from the subvector and the remainder from the src its
2695     // inserted into.
2696     SDValue Src = Op.getOperand(0);
2697     SDValue Sub = Op.getOperand(1);
2698     uint64_t Idx = Op.getConstantOperandVal(2);
2699     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2700     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2701     APInt DemandedSrcElts = DemandedElts;
2702     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2703 
2704     Known.One.setAllBits();
2705     Known.Zero.setAllBits();
2706     if (!!DemandedSubElts) {
2707       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2708       if (Known.isUnknown())
2709         break; // early-out.
2710     }
2711     if (!!DemandedSrcElts) {
2712       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2713       Known.One &= Known2.One;
2714       Known.Zero &= Known2.Zero;
2715     }
2716     break;
2717   }
2718   case ISD::EXTRACT_SUBVECTOR: {
2719     // Offset the demanded elts by the subvector index.
2720     SDValue Src = Op.getOperand(0);
2721     // Bail until we can represent demanded elements for scalable vectors.
2722     if (Src.getValueType().isScalableVector())
2723       break;
2724     uint64_t Idx = Op.getConstantOperandVal(1);
2725     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2726     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2727     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2728     break;
2729   }
2730   case ISD::SCALAR_TO_VECTOR: {
2731     // We know about scalar_to_vector as much as we know about it source,
2732     // which becomes the first element of otherwise unknown vector.
2733     if (DemandedElts != 1)
2734       break;
2735 
2736     SDValue N0 = Op.getOperand(0);
2737     Known = computeKnownBits(N0, Depth + 1);
2738     if (N0.getValueSizeInBits() != BitWidth)
2739       Known = Known.trunc(BitWidth);
2740 
2741     break;
2742   }
2743   case ISD::BITCAST: {
2744     SDValue N0 = Op.getOperand(0);
2745     EVT SubVT = N0.getValueType();
2746     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2747 
2748     // Ignore bitcasts from unsupported types.
2749     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2750       break;
2751 
2752     // Fast handling of 'identity' bitcasts.
2753     if (BitWidth == SubBitWidth) {
2754       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2755       break;
2756     }
2757 
2758     bool IsLE = getDataLayout().isLittleEndian();
2759 
2760     // Bitcast 'small element' vector to 'large element' scalar/vector.
2761     if ((BitWidth % SubBitWidth) == 0) {
2762       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2763 
2764       // Collect known bits for the (larger) output by collecting the known
2765       // bits from each set of sub elements and shift these into place.
2766       // We need to separately call computeKnownBits for each set of
2767       // sub elements as the knownbits for each is likely to be different.
2768       unsigned SubScale = BitWidth / SubBitWidth;
2769       APInt SubDemandedElts(NumElts * SubScale, 0);
2770       for (unsigned i = 0; i != NumElts; ++i)
2771         if (DemandedElts[i])
2772           SubDemandedElts.setBit(i * SubScale);
2773 
2774       for (unsigned i = 0; i != SubScale; ++i) {
2775         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2776                          Depth + 1);
2777         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2778         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2779         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2780       }
2781     }
2782 
2783     // Bitcast 'large element' scalar/vector to 'small element' vector.
2784     if ((SubBitWidth % BitWidth) == 0) {
2785       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2786 
2787       // Collect known bits for the (smaller) output by collecting the known
2788       // bits from the overlapping larger input elements and extracting the
2789       // sub sections we actually care about.
2790       unsigned SubScale = SubBitWidth / BitWidth;
2791       APInt SubDemandedElts(NumElts / SubScale, 0);
2792       for (unsigned i = 0; i != NumElts; ++i)
2793         if (DemandedElts[i])
2794           SubDemandedElts.setBit(i / SubScale);
2795 
2796       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2797 
2798       Known.Zero.setAllBits(); Known.One.setAllBits();
2799       for (unsigned i = 0; i != NumElts; ++i)
2800         if (DemandedElts[i]) {
2801           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2802           unsigned Offset = (Shifts % SubScale) * BitWidth;
2803           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2804           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2805           // If we don't know any bits, early out.
2806           if (Known.isUnknown())
2807             break;
2808         }
2809     }
2810     break;
2811   }
2812   case ISD::AND:
2813     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2814     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2815 
2816     Known &= Known2;
2817     break;
2818   case ISD::OR:
2819     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2820     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2821 
2822     Known |= Known2;
2823     break;
2824   case ISD::XOR:
2825     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2826     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2827 
2828     Known ^= Known2;
2829     break;
2830   case ISD::MUL: {
2831     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2832     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2833 
2834     // If low bits are zero in either operand, output low known-0 bits.
2835     // Also compute a conservative estimate for high known-0 bits.
2836     // More trickiness is possible, but this is sufficient for the
2837     // interesting case of alignment computation.
2838     unsigned TrailZ = Known.countMinTrailingZeros() +
2839                       Known2.countMinTrailingZeros();
2840     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2841                                Known2.countMinLeadingZeros(),
2842                                BitWidth) - BitWidth;
2843 
2844     Known.resetAll();
2845     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2846     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2847     break;
2848   }
2849   case ISD::UDIV: {
2850     // For the purposes of computing leading zeros we can conservatively
2851     // treat a udiv as a logical right shift by the power of 2 known to
2852     // be less than the denominator.
2853     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2854     unsigned LeadZ = Known2.countMinLeadingZeros();
2855 
2856     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2857     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2858     if (RHSMaxLeadingZeros != BitWidth)
2859       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2860 
2861     Known.Zero.setHighBits(LeadZ);
2862     break;
2863   }
2864   case ISD::SELECT:
2865   case ISD::VSELECT:
2866     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2867     // If we don't know any bits, early out.
2868     if (Known.isUnknown())
2869       break;
2870     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2871 
2872     // Only known if known in both the LHS and RHS.
2873     Known.One &= Known2.One;
2874     Known.Zero &= Known2.Zero;
2875     break;
2876   case ISD::SELECT_CC:
2877     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2878     // If we don't know any bits, early out.
2879     if (Known.isUnknown())
2880       break;
2881     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2882 
2883     // Only known if known in both the LHS and RHS.
2884     Known.One &= Known2.One;
2885     Known.Zero &= Known2.Zero;
2886     break;
2887   case ISD::SMULO:
2888   case ISD::UMULO:
2889   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2890     if (Op.getResNo() != 1)
2891       break;
2892     // The boolean result conforms to getBooleanContents.
2893     // If we know the result of a setcc has the top bits zero, use this info.
2894     // We know that we have an integer-based boolean since these operations
2895     // are only available for integer.
2896     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2897             TargetLowering::ZeroOrOneBooleanContent &&
2898         BitWidth > 1)
2899       Known.Zero.setBitsFrom(1);
2900     break;
2901   case ISD::SETCC:
2902   case ISD::STRICT_FSETCC:
2903   case ISD::STRICT_FSETCCS: {
2904     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2905     // If we know the result of a setcc has the top bits zero, use this info.
2906     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2907             TargetLowering::ZeroOrOneBooleanContent &&
2908         BitWidth > 1)
2909       Known.Zero.setBitsFrom(1);
2910     break;
2911   }
2912   case ISD::SHL:
2913     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2914 
2915     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2916       unsigned Shift = ShAmt->getZExtValue();
2917       Known.Zero <<= Shift;
2918       Known.One <<= Shift;
2919       // Low bits are known zero.
2920       Known.Zero.setLowBits(Shift);
2921       break;
2922     }
2923 
2924     // No matter the shift amount, the trailing zeros will stay zero.
2925     Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros());
2926     Known.One.clearAllBits();
2927 
2928     // Minimum shift low bits are known zero.
2929     if (const APInt *ShMinAmt =
2930             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2931       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
2932     break;
2933   case ISD::SRL:
2934     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2935 
2936     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2937       unsigned Shift = ShAmt->getZExtValue();
2938       Known.Zero.lshrInPlace(Shift);
2939       Known.One.lshrInPlace(Shift);
2940       // High bits are known zero.
2941       Known.Zero.setHighBits(Shift);
2942       break;
2943     }
2944 
2945     // No matter the shift amount, the leading zeros will stay zero.
2946     Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros());
2947     Known.One.clearAllBits();
2948 
2949     // Minimum shift high bits are known zero.
2950     if (const APInt *ShMinAmt =
2951             getValidMinimumShiftAmountConstant(Op, DemandedElts))
2952       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
2953     break;
2954   case ISD::SRA:
2955     if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2956       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2957       unsigned Shift = ShAmt->getZExtValue();
2958       // Sign extend known zero/one bit (else is unknown).
2959       Known.Zero.ashrInPlace(Shift);
2960       Known.One.ashrInPlace(Shift);
2961     }
2962     break;
2963   case ISD::FSHL:
2964   case ISD::FSHR:
2965     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2966       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2967 
2968       // For fshl, 0-shift returns the 1st arg.
2969       // For fshr, 0-shift returns the 2nd arg.
2970       if (Amt == 0) {
2971         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2972                                  DemandedElts, Depth + 1);
2973         break;
2974       }
2975 
2976       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2977       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2978       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2979       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2980       if (Opcode == ISD::FSHL) {
2981         Known.One <<= Amt;
2982         Known.Zero <<= Amt;
2983         Known2.One.lshrInPlace(BitWidth - Amt);
2984         Known2.Zero.lshrInPlace(BitWidth - Amt);
2985       } else {
2986         Known.One <<= BitWidth - Amt;
2987         Known.Zero <<= BitWidth - Amt;
2988         Known2.One.lshrInPlace(Amt);
2989         Known2.Zero.lshrInPlace(Amt);
2990       }
2991       Known.One |= Known2.One;
2992       Known.Zero |= Known2.Zero;
2993     }
2994     break;
2995   case ISD::SIGN_EXTEND_INREG: {
2996     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2997     unsigned EBits = EVT.getScalarSizeInBits();
2998 
2999     // Sign extension.  Compute the demanded bits in the result that are not
3000     // present in the input.
3001     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
3002 
3003     APInt InSignMask = APInt::getSignMask(EBits);
3004     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
3005 
3006     // If the sign extended bits are demanded, we know that the sign
3007     // bit is demanded.
3008     InSignMask = InSignMask.zext(BitWidth);
3009     if (NewBits.getBoolValue())
3010       InputDemandedBits |= InSignMask;
3011 
3012     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3013     Known.One &= InputDemandedBits;
3014     Known.Zero &= InputDemandedBits;
3015 
3016     // If the sign bit of the input is known set or clear, then we know the
3017     // top bits of the result.
3018     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
3019       Known.Zero |= NewBits;
3020       Known.One  &= ~NewBits;
3021     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
3022       Known.One  |= NewBits;
3023       Known.Zero &= ~NewBits;
3024     } else {                              // Input sign bit unknown
3025       Known.Zero &= ~NewBits;
3026       Known.One  &= ~NewBits;
3027     }
3028     break;
3029   }
3030   case ISD::CTTZ:
3031   case ISD::CTTZ_ZERO_UNDEF: {
3032     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3033     // If we have a known 1, its position is our upper bound.
3034     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3035     unsigned LowBits = Log2_32(PossibleTZ) + 1;
3036     Known.Zero.setBitsFrom(LowBits);
3037     break;
3038   }
3039   case ISD::CTLZ:
3040   case ISD::CTLZ_ZERO_UNDEF: {
3041     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3042     // If we have a known 1, its position is our upper bound.
3043     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3044     unsigned LowBits = Log2_32(PossibleLZ) + 1;
3045     Known.Zero.setBitsFrom(LowBits);
3046     break;
3047   }
3048   case ISD::CTPOP: {
3049     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3050     // If we know some of the bits are zero, they can't be one.
3051     unsigned PossibleOnes = Known2.countMaxPopulation();
3052     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3053     break;
3054   }
3055   case ISD::LOAD: {
3056     LoadSDNode *LD = cast<LoadSDNode>(Op);
3057     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3058     if (ISD::isNON_EXTLoad(LD) && Cst) {
3059       // Determine any common known bits from the loaded constant pool value.
3060       Type *CstTy = Cst->getType();
3061       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3062         // If its a vector splat, then we can (quickly) reuse the scalar path.
3063         // NOTE: We assume all elements match and none are UNDEF.
3064         if (CstTy->isVectorTy()) {
3065           if (const Constant *Splat = Cst->getSplatValue()) {
3066             Cst = Splat;
3067             CstTy = Cst->getType();
3068           }
3069         }
3070         // TODO - do we need to handle different bitwidths?
3071         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3072           // Iterate across all vector elements finding common known bits.
3073           Known.One.setAllBits();
3074           Known.Zero.setAllBits();
3075           for (unsigned i = 0; i != NumElts; ++i) {
3076             if (!DemandedElts[i])
3077               continue;
3078             if (Constant *Elt = Cst->getAggregateElement(i)) {
3079               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3080                 const APInt &Value = CInt->getValue();
3081                 Known.One &= Value;
3082                 Known.Zero &= ~Value;
3083                 continue;
3084               }
3085               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3086                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3087                 Known.One &= Value;
3088                 Known.Zero &= ~Value;
3089                 continue;
3090               }
3091             }
3092             Known.One.clearAllBits();
3093             Known.Zero.clearAllBits();
3094             break;
3095           }
3096         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3097           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3098             const APInt &Value = CInt->getValue();
3099             Known.One = Value;
3100             Known.Zero = ~Value;
3101           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3102             APInt Value = CFP->getValueAPF().bitcastToAPInt();
3103             Known.One = Value;
3104             Known.Zero = ~Value;
3105           }
3106         }
3107       }
3108     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3109       // If this is a ZEXTLoad and we are looking at the loaded value.
3110       EVT VT = LD->getMemoryVT();
3111       unsigned MemBits = VT.getScalarSizeInBits();
3112       Known.Zero.setBitsFrom(MemBits);
3113     } else if (const MDNode *Ranges = LD->getRanges()) {
3114       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3115         computeKnownBitsFromRangeMetadata(*Ranges, Known);
3116     }
3117     break;
3118   }
3119   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3120     EVT InVT = Op.getOperand(0).getValueType();
3121     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3122     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3123     Known = Known.zext(BitWidth);
3124     break;
3125   }
3126   case ISD::ZERO_EXTEND: {
3127     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3128     Known = Known.zext(BitWidth);
3129     break;
3130   }
3131   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3132     EVT InVT = Op.getOperand(0).getValueType();
3133     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3134     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3135     // If the sign bit is known to be zero or one, then sext will extend
3136     // it to the top bits, else it will just zext.
3137     Known = Known.sext(BitWidth);
3138     break;
3139   }
3140   case ISD::SIGN_EXTEND: {
3141     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3142     // If the sign bit is known to be zero or one, then sext will extend
3143     // it to the top bits, else it will just zext.
3144     Known = Known.sext(BitWidth);
3145     break;
3146   }
3147   case ISD::ANY_EXTEND_VECTOR_INREG: {
3148     EVT InVT = Op.getOperand(0).getValueType();
3149     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3150     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3151     Known = Known.anyext(BitWidth);
3152     break;
3153   }
3154   case ISD::ANY_EXTEND: {
3155     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3156     Known = Known.anyext(BitWidth);
3157     break;
3158   }
3159   case ISD::TRUNCATE: {
3160     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3161     Known = Known.trunc(BitWidth);
3162     break;
3163   }
3164   case ISD::AssertZext: {
3165     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3166     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3167     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3168     Known.Zero |= (~InMask);
3169     Known.One  &= (~Known.Zero);
3170     break;
3171   }
3172   case ISD::AssertAlign: {
3173     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3174     assert(LogOfAlign != 0);
3175     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3176     // well as clearing one bits.
3177     Known.Zero.setLowBits(LogOfAlign);
3178     Known.One.clearLowBits(LogOfAlign);
3179     break;
3180   }
3181   case ISD::FGETSIGN:
3182     // All bits are zero except the low bit.
3183     Known.Zero.setBitsFrom(1);
3184     break;
3185   case ISD::USUBO:
3186   case ISD::SSUBO:
3187     if (Op.getResNo() == 1) {
3188       // If we know the result of a setcc has the top bits zero, use this info.
3189       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3190               TargetLowering::ZeroOrOneBooleanContent &&
3191           BitWidth > 1)
3192         Known.Zero.setBitsFrom(1);
3193       break;
3194     }
3195     LLVM_FALLTHROUGH;
3196   case ISD::SUB:
3197   case ISD::SUBC: {
3198     assert(Op.getResNo() == 0 &&
3199            "We only compute knownbits for the difference here.");
3200 
3201     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3202     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3203     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3204                                         Known, Known2);
3205     break;
3206   }
3207   case ISD::UADDO:
3208   case ISD::SADDO:
3209   case ISD::ADDCARRY:
3210     if (Op.getResNo() == 1) {
3211       // If we know the result of a setcc has the top bits zero, use this info.
3212       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3213               TargetLowering::ZeroOrOneBooleanContent &&
3214           BitWidth > 1)
3215         Known.Zero.setBitsFrom(1);
3216       break;
3217     }
3218     LLVM_FALLTHROUGH;
3219   case ISD::ADD:
3220   case ISD::ADDC:
3221   case ISD::ADDE: {
3222     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3223 
3224     // With ADDE and ADDCARRY, a carry bit may be added in.
3225     KnownBits Carry(1);
3226     if (Opcode == ISD::ADDE)
3227       // Can't track carry from glue, set carry to unknown.
3228       Carry.resetAll();
3229     else if (Opcode == ISD::ADDCARRY)
3230       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3231       // the trouble (how often will we find a known carry bit). And I haven't
3232       // tested this very much yet, but something like this might work:
3233       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3234       //   Carry = Carry.zextOrTrunc(1, false);
3235       Carry.resetAll();
3236     else
3237       Carry.setAllZero();
3238 
3239     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3240     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3241     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3242     break;
3243   }
3244   case ISD::SREM:
3245     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3246       const APInt &RA = Rem->getAPIntValue().abs();
3247       if (RA.isPowerOf2()) {
3248         APInt LowBits = RA - 1;
3249         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3250 
3251         // The low bits of the first operand are unchanged by the srem.
3252         Known.Zero = Known2.Zero & LowBits;
3253         Known.One = Known2.One & LowBits;
3254 
3255         // If the first operand is non-negative or has all low bits zero, then
3256         // the upper bits are all zero.
3257         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3258           Known.Zero |= ~LowBits;
3259 
3260         // If the first operand is negative and not all low bits are zero, then
3261         // the upper bits are all one.
3262         if (Known2.isNegative() && LowBits.intersects(Known2.One))
3263           Known.One |= ~LowBits;
3264         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3265       }
3266     }
3267     break;
3268   case ISD::UREM: {
3269     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3270       const APInt &RA = Rem->getAPIntValue();
3271       if (RA.isPowerOf2()) {
3272         APInt LowBits = (RA - 1);
3273         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3274 
3275         // The upper bits are all zero, the lower ones are unchanged.
3276         Known.Zero = Known2.Zero | ~LowBits;
3277         Known.One = Known2.One & LowBits;
3278         break;
3279       }
3280     }
3281 
3282     // Since the result is less than or equal to either operand, any leading
3283     // zero bits in either operand must also exist in the result.
3284     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3285     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3286 
3287     uint32_t Leaders =
3288         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3289     Known.resetAll();
3290     Known.Zero.setHighBits(Leaders);
3291     break;
3292   }
3293   case ISD::EXTRACT_ELEMENT: {
3294     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3295     const unsigned Index = Op.getConstantOperandVal(1);
3296     const unsigned EltBitWidth = Op.getValueSizeInBits();
3297 
3298     // Remove low part of known bits mask
3299     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3300     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3301 
3302     // Remove high part of known bit mask
3303     Known = Known.trunc(EltBitWidth);
3304     break;
3305   }
3306   case ISD::EXTRACT_VECTOR_ELT: {
3307     SDValue InVec = Op.getOperand(0);
3308     SDValue EltNo = Op.getOperand(1);
3309     EVT VecVT = InVec.getValueType();
3310     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3311     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3312 
3313     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3314     // anything about the extended bits.
3315     if (BitWidth > EltBitWidth)
3316       Known = Known.trunc(EltBitWidth);
3317 
3318     // If we know the element index, just demand that vector element, else for
3319     // an unknown element index, ignore DemandedElts and demand them all.
3320     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3321     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3322     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3323       DemandedSrcElts =
3324           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3325 
3326     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3327     if (BitWidth > EltBitWidth)
3328       Known = Known.anyext(BitWidth);
3329     break;
3330   }
3331   case ISD::INSERT_VECTOR_ELT: {
3332     // If we know the element index, split the demand between the
3333     // source vector and the inserted element, otherwise assume we need
3334     // the original demanded vector elements and the value.
3335     SDValue InVec = Op.getOperand(0);
3336     SDValue InVal = Op.getOperand(1);
3337     SDValue EltNo = Op.getOperand(2);
3338     bool DemandedVal = true;
3339     APInt DemandedVecElts = DemandedElts;
3340     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3341     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3342       unsigned EltIdx = CEltNo->getZExtValue();
3343       DemandedVal = !!DemandedElts[EltIdx];
3344       DemandedVecElts.clearBit(EltIdx);
3345     }
3346     Known.One.setAllBits();
3347     Known.Zero.setAllBits();
3348     if (DemandedVal) {
3349       Known2 = computeKnownBits(InVal, Depth + 1);
3350       Known.One &= Known2.One.zextOrTrunc(BitWidth);
3351       Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth);
3352     }
3353     if (!!DemandedVecElts) {
3354       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3355       Known.One &= Known2.One;
3356       Known.Zero &= Known2.Zero;
3357     }
3358     break;
3359   }
3360   case ISD::BITREVERSE: {
3361     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3362     Known.Zero = Known2.Zero.reverseBits();
3363     Known.One = Known2.One.reverseBits();
3364     break;
3365   }
3366   case ISD::BSWAP: {
3367     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3368     Known.Zero = Known2.Zero.byteSwap();
3369     Known.One = Known2.One.byteSwap();
3370     break;
3371   }
3372   case ISD::ABS: {
3373     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3374 
3375     // If the source's MSB is zero then we know the rest of the bits already.
3376     if (Known2.isNonNegative()) {
3377       Known.Zero = Known2.Zero;
3378       Known.One = Known2.One;
3379       break;
3380     }
3381 
3382     // We only know that the absolute values's MSB will be zero iff there is
3383     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3384     Known2.One.clearSignBit();
3385     if (Known2.One.getBoolValue()) {
3386       Known.Zero = APInt::getSignMask(BitWidth);
3387       break;
3388     }
3389     break;
3390   }
3391   case ISD::UMIN: {
3392     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3393     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3394 
3395     // UMIN - we know that the result will have the maximum of the
3396     // known zero leading bits of the inputs.
3397     unsigned LeadZero = Known.countMinLeadingZeros();
3398     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3399 
3400     Known.Zero &= Known2.Zero;
3401     Known.One &= Known2.One;
3402     Known.Zero.setHighBits(LeadZero);
3403     break;
3404   }
3405   case ISD::UMAX: {
3406     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3407     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3408 
3409     // UMAX - we know that the result will have the maximum of the
3410     // known one leading bits of the inputs.
3411     unsigned LeadOne = Known.countMinLeadingOnes();
3412     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3413 
3414     Known.Zero &= Known2.Zero;
3415     Known.One &= Known2.One;
3416     Known.One.setHighBits(LeadOne);
3417     break;
3418   }
3419   case ISD::SMIN:
3420   case ISD::SMAX: {
3421     // If we have a clamp pattern, we know that the number of sign bits will be
3422     // the minimum of the clamp min/max range.
3423     bool IsMax = (Opcode == ISD::SMAX);
3424     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3425     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3426       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3427         CstHigh =
3428             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3429     if (CstLow && CstHigh) {
3430       if (!IsMax)
3431         std::swap(CstLow, CstHigh);
3432 
3433       const APInt &ValueLow = CstLow->getAPIntValue();
3434       const APInt &ValueHigh = CstHigh->getAPIntValue();
3435       if (ValueLow.sle(ValueHigh)) {
3436         unsigned LowSignBits = ValueLow.getNumSignBits();
3437         unsigned HighSignBits = ValueHigh.getNumSignBits();
3438         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3439         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3440           Known.One.setHighBits(MinSignBits);
3441           break;
3442         }
3443         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3444           Known.Zero.setHighBits(MinSignBits);
3445           break;
3446         }
3447       }
3448     }
3449 
3450     // Fallback - just get the shared known bits of the operands.
3451     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3452     if (Known.isUnknown()) break; // Early-out
3453     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3454     Known.Zero &= Known2.Zero;
3455     Known.One &= Known2.One;
3456     break;
3457   }
3458   case ISD::FrameIndex:
3459   case ISD::TargetFrameIndex:
3460     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3461                                        Known, getMachineFunction());
3462     break;
3463 
3464   default:
3465     if (Opcode < ISD::BUILTIN_OP_END)
3466       break;
3467     LLVM_FALLTHROUGH;
3468   case ISD::INTRINSIC_WO_CHAIN:
3469   case ISD::INTRINSIC_W_CHAIN:
3470   case ISD::INTRINSIC_VOID:
3471     // Allow the target to implement this method for its nodes.
3472     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3473     break;
3474   }
3475 
3476   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3477   return Known;
3478 }
3479 
3480 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3481                                                              SDValue N1) const {
3482   // X + 0 never overflow
3483   if (isNullConstant(N1))
3484     return OFK_Never;
3485 
3486   KnownBits N1Known = computeKnownBits(N1);
3487   if (N1Known.Zero.getBoolValue()) {
3488     KnownBits N0Known = computeKnownBits(N0);
3489 
3490     bool overflow;
3491     (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3492     if (!overflow)
3493       return OFK_Never;
3494   }
3495 
3496   // mulhi + 1 never overflow
3497   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3498       (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3499     return OFK_Never;
3500 
3501   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3502     KnownBits N0Known = computeKnownBits(N0);
3503 
3504     if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3505       return OFK_Never;
3506   }
3507 
3508   return OFK_Sometime;
3509 }
3510 
3511 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3512   EVT OpVT = Val.getValueType();
3513   unsigned BitWidth = OpVT.getScalarSizeInBits();
3514 
3515   // Is the constant a known power of 2?
3516   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3517     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3518 
3519   // A left-shift of a constant one will have exactly one bit set because
3520   // shifting the bit off the end is undefined.
3521   if (Val.getOpcode() == ISD::SHL) {
3522     auto *C = isConstOrConstSplat(Val.getOperand(0));
3523     if (C && C->getAPIntValue() == 1)
3524       return true;
3525   }
3526 
3527   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3528   // one bit set.
3529   if (Val.getOpcode() == ISD::SRL) {
3530     auto *C = isConstOrConstSplat(Val.getOperand(0));
3531     if (C && C->getAPIntValue().isSignMask())
3532       return true;
3533   }
3534 
3535   // Are all operands of a build vector constant powers of two?
3536   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3537     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3538           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3539             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3540           return false;
3541         }))
3542       return true;
3543 
3544   // More could be done here, though the above checks are enough
3545   // to handle some common cases.
3546 
3547   // Fall back to computeKnownBits to catch other known cases.
3548   KnownBits Known = computeKnownBits(Val);
3549   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3550 }
3551 
3552 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3553   EVT VT = Op.getValueType();
3554 
3555   // TODO: Assume we don't know anything for now.
3556   if (VT.isScalableVector())
3557     return 1;
3558 
3559   APInt DemandedElts = VT.isVector()
3560                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3561                            : APInt(1, 1);
3562   return ComputeNumSignBits(Op, DemandedElts, Depth);
3563 }
3564 
3565 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3566                                           unsigned Depth) const {
3567   EVT VT = Op.getValueType();
3568   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3569   unsigned VTBits = VT.getScalarSizeInBits();
3570   unsigned NumElts = DemandedElts.getBitWidth();
3571   unsigned Tmp, Tmp2;
3572   unsigned FirstAnswer = 1;
3573 
3574   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3575     const APInt &Val = C->getAPIntValue();
3576     return Val.getNumSignBits();
3577   }
3578 
3579   if (Depth >= MaxRecursionDepth)
3580     return 1;  // Limit search depth.
3581 
3582   if (!DemandedElts || VT.isScalableVector())
3583     return 1;  // No demanded elts, better to assume we don't know anything.
3584 
3585   unsigned Opcode = Op.getOpcode();
3586   switch (Opcode) {
3587   default: break;
3588   case ISD::AssertSext:
3589     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3590     return VTBits-Tmp+1;
3591   case ISD::AssertZext:
3592     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3593     return VTBits-Tmp;
3594 
3595   case ISD::BUILD_VECTOR:
3596     Tmp = VTBits;
3597     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3598       if (!DemandedElts[i])
3599         continue;
3600 
3601       SDValue SrcOp = Op.getOperand(i);
3602       Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3603 
3604       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3605       if (SrcOp.getValueSizeInBits() != VTBits) {
3606         assert(SrcOp.getValueSizeInBits() > VTBits &&
3607                "Expected BUILD_VECTOR implicit truncation");
3608         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3609         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3610       }
3611       Tmp = std::min(Tmp, Tmp2);
3612     }
3613     return Tmp;
3614 
3615   case ISD::VECTOR_SHUFFLE: {
3616     // Collect the minimum number of sign bits that are shared by every vector
3617     // element referenced by the shuffle.
3618     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3619     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3620     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3621     for (unsigned i = 0; i != NumElts; ++i) {
3622       int M = SVN->getMaskElt(i);
3623       if (!DemandedElts[i])
3624         continue;
3625       // For UNDEF elements, we don't know anything about the common state of
3626       // the shuffle result.
3627       if (M < 0)
3628         return 1;
3629       if ((unsigned)M < NumElts)
3630         DemandedLHS.setBit((unsigned)M % NumElts);
3631       else
3632         DemandedRHS.setBit((unsigned)M % NumElts);
3633     }
3634     Tmp = std::numeric_limits<unsigned>::max();
3635     if (!!DemandedLHS)
3636       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3637     if (!!DemandedRHS) {
3638       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3639       Tmp = std::min(Tmp, Tmp2);
3640     }
3641     // If we don't know anything, early out and try computeKnownBits fall-back.
3642     if (Tmp == 1)
3643       break;
3644     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3645     return Tmp;
3646   }
3647 
3648   case ISD::BITCAST: {
3649     SDValue N0 = Op.getOperand(0);
3650     EVT SrcVT = N0.getValueType();
3651     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3652 
3653     // Ignore bitcasts from unsupported types..
3654     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3655       break;
3656 
3657     // Fast handling of 'identity' bitcasts.
3658     if (VTBits == SrcBits)
3659       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3660 
3661     bool IsLE = getDataLayout().isLittleEndian();
3662 
3663     // Bitcast 'large element' scalar/vector to 'small element' vector.
3664     if ((SrcBits % VTBits) == 0) {
3665       assert(VT.isVector() && "Expected bitcast to vector");
3666 
3667       unsigned Scale = SrcBits / VTBits;
3668       APInt SrcDemandedElts(NumElts / Scale, 0);
3669       for (unsigned i = 0; i != NumElts; ++i)
3670         if (DemandedElts[i])
3671           SrcDemandedElts.setBit(i / Scale);
3672 
3673       // Fast case - sign splat can be simply split across the small elements.
3674       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3675       if (Tmp == SrcBits)
3676         return VTBits;
3677 
3678       // Slow case - determine how far the sign extends into each sub-element.
3679       Tmp2 = VTBits;
3680       for (unsigned i = 0; i != NumElts; ++i)
3681         if (DemandedElts[i]) {
3682           unsigned SubOffset = i % Scale;
3683           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3684           SubOffset = SubOffset * VTBits;
3685           if (Tmp <= SubOffset)
3686             return 1;
3687           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3688         }
3689       return Tmp2;
3690     }
3691     break;
3692   }
3693 
3694   case ISD::SIGN_EXTEND:
3695     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3696     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3697   case ISD::SIGN_EXTEND_INREG:
3698     // Max of the input and what this extends.
3699     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3700     Tmp = VTBits-Tmp+1;
3701     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3702     return std::max(Tmp, Tmp2);
3703   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3704     SDValue Src = Op.getOperand(0);
3705     EVT SrcVT = Src.getValueType();
3706     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3707     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3708     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3709   }
3710   case ISD::SRA:
3711     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3712     // SRA X, C -> adds C sign bits.
3713     if (const APInt *ShAmt =
3714             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3715       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3716     return Tmp;
3717   case ISD::SHL:
3718     if (const APInt *ShAmt =
3719             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3720       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3721       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3722       if (ShAmt->ult(Tmp))
3723         return Tmp - ShAmt->getZExtValue();
3724     }
3725     break;
3726   case ISD::AND:
3727   case ISD::OR:
3728   case ISD::XOR:    // NOT is handled here.
3729     // Logical binary ops preserve the number of sign bits at the worst.
3730     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3731     if (Tmp != 1) {
3732       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3733       FirstAnswer = std::min(Tmp, Tmp2);
3734       // We computed what we know about the sign bits as our first
3735       // answer. Now proceed to the generic code that uses
3736       // computeKnownBits, and pick whichever answer is better.
3737     }
3738     break;
3739 
3740   case ISD::SELECT:
3741   case ISD::VSELECT:
3742     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3743     if (Tmp == 1) return 1;  // Early out.
3744     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3745     return std::min(Tmp, Tmp2);
3746   case ISD::SELECT_CC:
3747     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3748     if (Tmp == 1) return 1;  // Early out.
3749     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3750     return std::min(Tmp, Tmp2);
3751 
3752   case ISD::SMIN:
3753   case ISD::SMAX: {
3754     // If we have a clamp pattern, we know that the number of sign bits will be
3755     // the minimum of the clamp min/max range.
3756     bool IsMax = (Opcode == ISD::SMAX);
3757     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3758     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3759       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3760         CstHigh =
3761             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3762     if (CstLow && CstHigh) {
3763       if (!IsMax)
3764         std::swap(CstLow, CstHigh);
3765       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3766         Tmp = CstLow->getAPIntValue().getNumSignBits();
3767         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3768         return std::min(Tmp, Tmp2);
3769       }
3770     }
3771 
3772     // Fallback - just get the minimum number of sign bits of the operands.
3773     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3774     if (Tmp == 1)
3775       return 1;  // Early out.
3776     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3777     return std::min(Tmp, Tmp2);
3778   }
3779   case ISD::UMIN:
3780   case ISD::UMAX:
3781     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3782     if (Tmp == 1)
3783       return 1;  // Early out.
3784     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3785     return std::min(Tmp, Tmp2);
3786   case ISD::SADDO:
3787   case ISD::UADDO:
3788   case ISD::SSUBO:
3789   case ISD::USUBO:
3790   case ISD::SMULO:
3791   case ISD::UMULO:
3792     if (Op.getResNo() != 1)
3793       break;
3794     // The boolean result conforms to getBooleanContents.  Fall through.
3795     // If setcc returns 0/-1, all bits are sign bits.
3796     // We know that we have an integer-based boolean since these operations
3797     // are only available for integer.
3798     if (TLI->getBooleanContents(VT.isVector(), false) ==
3799         TargetLowering::ZeroOrNegativeOneBooleanContent)
3800       return VTBits;
3801     break;
3802   case ISD::SETCC:
3803   case ISD::STRICT_FSETCC:
3804   case ISD::STRICT_FSETCCS: {
3805     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3806     // If setcc returns 0/-1, all bits are sign bits.
3807     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3808         TargetLowering::ZeroOrNegativeOneBooleanContent)
3809       return VTBits;
3810     break;
3811   }
3812   case ISD::ROTL:
3813   case ISD::ROTR:
3814     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3815 
3816     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3817     if (Tmp == VTBits)
3818       return VTBits;
3819 
3820     if (ConstantSDNode *C =
3821             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3822       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3823 
3824       // Handle rotate right by N like a rotate left by 32-N.
3825       if (Opcode == ISD::ROTR)
3826         RotAmt = (VTBits - RotAmt) % VTBits;
3827 
3828       // If we aren't rotating out all of the known-in sign bits, return the
3829       // number that are left.  This handles rotl(sext(x), 1) for example.
3830       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3831     }
3832     break;
3833   case ISD::ADD:
3834   case ISD::ADDC:
3835     // Add can have at most one carry bit.  Thus we know that the output
3836     // is, at worst, one more bit than the inputs.
3837     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3838     if (Tmp == 1) return 1; // Early out.
3839 
3840     // Special case decrementing a value (ADD X, -1):
3841     if (ConstantSDNode *CRHS =
3842             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3843       if (CRHS->isAllOnesValue()) {
3844         KnownBits Known =
3845             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3846 
3847         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3848         // sign bits set.
3849         if ((Known.Zero | 1).isAllOnesValue())
3850           return VTBits;
3851 
3852         // If we are subtracting one from a positive number, there is no carry
3853         // out of the result.
3854         if (Known.isNonNegative())
3855           return Tmp;
3856       }
3857 
3858     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3859     if (Tmp2 == 1) return 1; // Early out.
3860     return std::min(Tmp, Tmp2) - 1;
3861   case ISD::SUB:
3862     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3863     if (Tmp2 == 1) return 1; // Early out.
3864 
3865     // Handle NEG.
3866     if (ConstantSDNode *CLHS =
3867             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3868       if (CLHS->isNullValue()) {
3869         KnownBits Known =
3870             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3871         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3872         // sign bits set.
3873         if ((Known.Zero | 1).isAllOnesValue())
3874           return VTBits;
3875 
3876         // If the input is known to be positive (the sign bit is known clear),
3877         // the output of the NEG has the same number of sign bits as the input.
3878         if (Known.isNonNegative())
3879           return Tmp2;
3880 
3881         // Otherwise, we treat this like a SUB.
3882       }
3883 
3884     // Sub can have at most one carry bit.  Thus we know that the output
3885     // is, at worst, one more bit than the inputs.
3886     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3887     if (Tmp == 1) return 1; // Early out.
3888     return std::min(Tmp, Tmp2) - 1;
3889   case ISD::MUL: {
3890     // The output of the Mul can be at most twice the valid bits in the inputs.
3891     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3892     if (SignBitsOp0 == 1)
3893       break;
3894     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3895     if (SignBitsOp1 == 1)
3896       break;
3897     unsigned OutValidBits =
3898         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3899     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3900   }
3901   case ISD::TRUNCATE: {
3902     // Check if the sign bits of source go down as far as the truncated value.
3903     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3904     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3905     if (NumSrcSignBits > (NumSrcBits - VTBits))
3906       return NumSrcSignBits - (NumSrcBits - VTBits);
3907     break;
3908   }
3909   case ISD::EXTRACT_ELEMENT: {
3910     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3911     const int BitWidth = Op.getValueSizeInBits();
3912     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3913 
3914     // Get reverse index (starting from 1), Op1 value indexes elements from
3915     // little end. Sign starts at big end.
3916     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3917 
3918     // If the sign portion ends in our element the subtraction gives correct
3919     // result. Otherwise it gives either negative or > bitwidth result
3920     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3921   }
3922   case ISD::INSERT_VECTOR_ELT: {
3923     // If we know the element index, split the demand between the
3924     // source vector and the inserted element, otherwise assume we need
3925     // the original demanded vector elements and the value.
3926     SDValue InVec = Op.getOperand(0);
3927     SDValue InVal = Op.getOperand(1);
3928     SDValue EltNo = Op.getOperand(2);
3929     bool DemandedVal = true;
3930     APInt DemandedVecElts = DemandedElts;
3931     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3932     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3933       unsigned EltIdx = CEltNo->getZExtValue();
3934       DemandedVal = !!DemandedElts[EltIdx];
3935       DemandedVecElts.clearBit(EltIdx);
3936     }
3937     Tmp = std::numeric_limits<unsigned>::max();
3938     if (DemandedVal) {
3939       // TODO - handle implicit truncation of inserted elements.
3940       if (InVal.getScalarValueSizeInBits() != VTBits)
3941         break;
3942       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3943       Tmp = std::min(Tmp, Tmp2);
3944     }
3945     if (!!DemandedVecElts) {
3946       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
3947       Tmp = std::min(Tmp, Tmp2);
3948     }
3949     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3950     return Tmp;
3951   }
3952   case ISD::EXTRACT_VECTOR_ELT: {
3953     SDValue InVec = Op.getOperand(0);
3954     SDValue EltNo = Op.getOperand(1);
3955     EVT VecVT = InVec.getValueType();
3956     const unsigned BitWidth = Op.getValueSizeInBits();
3957     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3958     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3959 
3960     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3961     // anything about sign bits. But if the sizes match we can derive knowledge
3962     // about sign bits from the vector operand.
3963     if (BitWidth != EltBitWidth)
3964       break;
3965 
3966     // If we know the element index, just demand that vector element, else for
3967     // an unknown element index, ignore DemandedElts and demand them all.
3968     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3969     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3970     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3971       DemandedSrcElts =
3972           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3973 
3974     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3975   }
3976   case ISD::EXTRACT_SUBVECTOR: {
3977     // Offset the demanded elts by the subvector index.
3978     SDValue Src = Op.getOperand(0);
3979     // Bail until we can represent demanded elements for scalable vectors.
3980     if (Src.getValueType().isScalableVector())
3981       break;
3982     uint64_t Idx = Op.getConstantOperandVal(1);
3983     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3984     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3985     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3986   }
3987   case ISD::CONCAT_VECTORS: {
3988     // Determine the minimum number of sign bits across all demanded
3989     // elts of the input vectors. Early out if the result is already 1.
3990     Tmp = std::numeric_limits<unsigned>::max();
3991     EVT SubVectorVT = Op.getOperand(0).getValueType();
3992     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3993     unsigned NumSubVectors = Op.getNumOperands();
3994     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3995       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3996       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3997       if (!DemandedSub)
3998         continue;
3999       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4000       Tmp = std::min(Tmp, Tmp2);
4001     }
4002     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4003     return Tmp;
4004   }
4005   case ISD::INSERT_SUBVECTOR: {
4006     // Demand any elements from the subvector and the remainder from the src its
4007     // inserted into.
4008     SDValue Src = Op.getOperand(0);
4009     SDValue Sub = Op.getOperand(1);
4010     uint64_t Idx = Op.getConstantOperandVal(2);
4011     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4012     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4013     APInt DemandedSrcElts = DemandedElts;
4014     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
4015 
4016     Tmp = std::numeric_limits<unsigned>::max();
4017     if (!!DemandedSubElts) {
4018       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4019       if (Tmp == 1)
4020         return 1; // early-out
4021     }
4022     if (!!DemandedSrcElts) {
4023       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4024       Tmp = std::min(Tmp, Tmp2);
4025     }
4026     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4027     return Tmp;
4028   }
4029   }
4030 
4031   // If we are looking at the loaded value of the SDNode.
4032   if (Op.getResNo() == 0) {
4033     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4034     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4035       unsigned ExtType = LD->getExtensionType();
4036       switch (ExtType) {
4037       default: break;
4038       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4039         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4040         return VTBits - Tmp + 1;
4041       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4042         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4043         return VTBits - Tmp;
4044       case ISD::NON_EXTLOAD:
4045         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4046           // We only need to handle vectors - computeKnownBits should handle
4047           // scalar cases.
4048           Type *CstTy = Cst->getType();
4049           if (CstTy->isVectorTy() &&
4050               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4051             Tmp = VTBits;
4052             for (unsigned i = 0; i != NumElts; ++i) {
4053               if (!DemandedElts[i])
4054                 continue;
4055               if (Constant *Elt = Cst->getAggregateElement(i)) {
4056                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4057                   const APInt &Value = CInt->getValue();
4058                   Tmp = std::min(Tmp, Value.getNumSignBits());
4059                   continue;
4060                 }
4061                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4062                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4063                   Tmp = std::min(Tmp, Value.getNumSignBits());
4064                   continue;
4065                 }
4066               }
4067               // Unknown type. Conservatively assume no bits match sign bit.
4068               return 1;
4069             }
4070             return Tmp;
4071           }
4072         }
4073         break;
4074       }
4075     }
4076   }
4077 
4078   // Allow the target to implement this method for its nodes.
4079   if (Opcode >= ISD::BUILTIN_OP_END ||
4080       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4081       Opcode == ISD::INTRINSIC_W_CHAIN ||
4082       Opcode == ISD::INTRINSIC_VOID) {
4083     unsigned NumBits =
4084         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4085     if (NumBits > 1)
4086       FirstAnswer = std::max(FirstAnswer, NumBits);
4087   }
4088 
4089   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4090   // use this information.
4091   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4092 
4093   APInt Mask;
4094   if (Known.isNonNegative()) {        // sign bit is 0
4095     Mask = Known.Zero;
4096   } else if (Known.isNegative()) {  // sign bit is 1;
4097     Mask = Known.One;
4098   } else {
4099     // Nothing known.
4100     return FirstAnswer;
4101   }
4102 
4103   // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
4104   // the number of identical bits in the top of the input value.
4105   Mask <<= Mask.getBitWidth()-VTBits;
4106   return std::max(FirstAnswer, Mask.countLeadingOnes());
4107 }
4108 
4109 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4110   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
4111       !isa<ConstantSDNode>(Op.getOperand(1)))
4112     return false;
4113 
4114   if (Op.getOpcode() == ISD::OR &&
4115       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4116     return false;
4117 
4118   return true;
4119 }
4120 
4121 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4122   // If we're told that NaNs won't happen, assume they won't.
4123   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4124     return true;
4125 
4126   if (Depth >= MaxRecursionDepth)
4127     return false; // Limit search depth.
4128 
4129   // TODO: Handle vectors.
4130   // If the value is a constant, we can obviously see if it is a NaN or not.
4131   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4132     return !C->getValueAPF().isNaN() ||
4133            (SNaN && !C->getValueAPF().isSignaling());
4134   }
4135 
4136   unsigned Opcode = Op.getOpcode();
4137   switch (Opcode) {
4138   case ISD::FADD:
4139   case ISD::FSUB:
4140   case ISD::FMUL:
4141   case ISD::FDIV:
4142   case ISD::FREM:
4143   case ISD::FSIN:
4144   case ISD::FCOS: {
4145     if (SNaN)
4146       return true;
4147     // TODO: Need isKnownNeverInfinity
4148     return false;
4149   }
4150   case ISD::FCANONICALIZE:
4151   case ISD::FEXP:
4152   case ISD::FEXP2:
4153   case ISD::FTRUNC:
4154   case ISD::FFLOOR:
4155   case ISD::FCEIL:
4156   case ISD::FROUND:
4157   case ISD::FROUNDEVEN:
4158   case ISD::FRINT:
4159   case ISD::FNEARBYINT: {
4160     if (SNaN)
4161       return true;
4162     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4163   }
4164   case ISD::FABS:
4165   case ISD::FNEG:
4166   case ISD::FCOPYSIGN: {
4167     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4168   }
4169   case ISD::SELECT:
4170     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4171            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4172   case ISD::FP_EXTEND:
4173   case ISD::FP_ROUND: {
4174     if (SNaN)
4175       return true;
4176     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4177   }
4178   case ISD::SINT_TO_FP:
4179   case ISD::UINT_TO_FP:
4180     return true;
4181   case ISD::FMA:
4182   case ISD::FMAD: {
4183     if (SNaN)
4184       return true;
4185     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4186            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4187            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4188   }
4189   case ISD::FSQRT: // Need is known positive
4190   case ISD::FLOG:
4191   case ISD::FLOG2:
4192   case ISD::FLOG10:
4193   case ISD::FPOWI:
4194   case ISD::FPOW: {
4195     if (SNaN)
4196       return true;
4197     // TODO: Refine on operand
4198     return false;
4199   }
4200   case ISD::FMINNUM:
4201   case ISD::FMAXNUM: {
4202     // Only one needs to be known not-nan, since it will be returned if the
4203     // other ends up being one.
4204     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4205            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4206   }
4207   case ISD::FMINNUM_IEEE:
4208   case ISD::FMAXNUM_IEEE: {
4209     if (SNaN)
4210       return true;
4211     // This can return a NaN if either operand is an sNaN, or if both operands
4212     // are NaN.
4213     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4214             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4215            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4216             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4217   }
4218   case ISD::FMINIMUM:
4219   case ISD::FMAXIMUM: {
4220     // TODO: Does this quiet or return the origina NaN as-is?
4221     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4222            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4223   }
4224   case ISD::EXTRACT_VECTOR_ELT: {
4225     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4226   }
4227   default:
4228     if (Opcode >= ISD::BUILTIN_OP_END ||
4229         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4230         Opcode == ISD::INTRINSIC_W_CHAIN ||
4231         Opcode == ISD::INTRINSIC_VOID) {
4232       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4233     }
4234 
4235     return false;
4236   }
4237 }
4238 
4239 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4240   assert(Op.getValueType().isFloatingPoint() &&
4241          "Floating point type expected");
4242 
4243   // If the value is a constant, we can obviously see if it is a zero or not.
4244   // TODO: Add BuildVector support.
4245   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4246     return !C->isZero();
4247   return false;
4248 }
4249 
4250 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4251   assert(!Op.getValueType().isFloatingPoint() &&
4252          "Floating point types unsupported - use isKnownNeverZeroFloat");
4253 
4254   // If the value is a constant, we can obviously see if it is a zero or not.
4255   if (ISD::matchUnaryPredicate(
4256           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4257     return true;
4258 
4259   // TODO: Recognize more cases here.
4260   switch (Op.getOpcode()) {
4261   default: break;
4262   case ISD::OR:
4263     if (isKnownNeverZero(Op.getOperand(1)) ||
4264         isKnownNeverZero(Op.getOperand(0)))
4265       return true;
4266     break;
4267   }
4268 
4269   return false;
4270 }
4271 
4272 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4273   // Check the obvious case.
4274   if (A == B) return true;
4275 
4276   // For for negative and positive zero.
4277   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4278     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4279       if (CA->isZero() && CB->isZero()) return true;
4280 
4281   // Otherwise they may not be equal.
4282   return false;
4283 }
4284 
4285 // FIXME: unify with llvm::haveNoCommonBitsSet.
4286 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4287 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4288   assert(A.getValueType() == B.getValueType() &&
4289          "Values must have the same type");
4290   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4291 }
4292 
4293 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4294                                 ArrayRef<SDValue> Ops,
4295                                 SelectionDAG &DAG) {
4296   int NumOps = Ops.size();
4297   assert(NumOps != 0 && "Can't build an empty vector!");
4298   assert(!VT.isScalableVector() &&
4299          "BUILD_VECTOR cannot be used with scalable types");
4300   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4301          "Incorrect element count in BUILD_VECTOR!");
4302 
4303   // BUILD_VECTOR of UNDEFs is UNDEF.
4304   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4305     return DAG.getUNDEF(VT);
4306 
4307   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4308   SDValue IdentitySrc;
4309   bool IsIdentity = true;
4310   for (int i = 0; i != NumOps; ++i) {
4311     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4312         Ops[i].getOperand(0).getValueType() != VT ||
4313         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4314         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4315         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4316       IsIdentity = false;
4317       break;
4318     }
4319     IdentitySrc = Ops[i].getOperand(0);
4320   }
4321   if (IsIdentity)
4322     return IdentitySrc;
4323 
4324   return SDValue();
4325 }
4326 
4327 /// Try to simplify vector concatenation to an input value, undef, or build
4328 /// vector.
4329 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4330                                   ArrayRef<SDValue> Ops,
4331                                   SelectionDAG &DAG) {
4332   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4333   assert(llvm::all_of(Ops,
4334                       [Ops](SDValue Op) {
4335                         return Ops[0].getValueType() == Op.getValueType();
4336                       }) &&
4337          "Concatenation of vectors with inconsistent value types!");
4338   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4339              VT.getVectorElementCount() &&
4340          "Incorrect element count in vector concatenation!");
4341 
4342   if (Ops.size() == 1)
4343     return Ops[0];
4344 
4345   // Concat of UNDEFs is UNDEF.
4346   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4347     return DAG.getUNDEF(VT);
4348 
4349   // Scan the operands and look for extract operations from a single source
4350   // that correspond to insertion at the same location via this concatenation:
4351   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4352   SDValue IdentitySrc;
4353   bool IsIdentity = true;
4354   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4355     SDValue Op = Ops[i];
4356     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4357     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4358         Op.getOperand(0).getValueType() != VT ||
4359         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4360         Op.getConstantOperandVal(1) != IdentityIndex) {
4361       IsIdentity = false;
4362       break;
4363     }
4364     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4365            "Unexpected identity source vector for concat of extracts");
4366     IdentitySrc = Op.getOperand(0);
4367   }
4368   if (IsIdentity) {
4369     assert(IdentitySrc && "Failed to set source vector of extracts");
4370     return IdentitySrc;
4371   }
4372 
4373   // The code below this point is only designed to work for fixed width
4374   // vectors, so we bail out for now.
4375   if (VT.isScalableVector())
4376     return SDValue();
4377 
4378   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4379   // simplified to one big BUILD_VECTOR.
4380   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4381   EVT SVT = VT.getScalarType();
4382   SmallVector<SDValue, 16> Elts;
4383   for (SDValue Op : Ops) {
4384     EVT OpVT = Op.getValueType();
4385     if (Op.isUndef())
4386       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4387     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4388       Elts.append(Op->op_begin(), Op->op_end());
4389     else
4390       return SDValue();
4391   }
4392 
4393   // BUILD_VECTOR requires all inputs to be of the same type, find the
4394   // maximum type and extend them all.
4395   for (SDValue Op : Elts)
4396     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4397 
4398   if (SVT.bitsGT(VT.getScalarType()))
4399     for (SDValue &Op : Elts)
4400       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4401                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4402                : DAG.getSExtOrTrunc(Op, DL, SVT);
4403 
4404   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4405   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4406   return V;
4407 }
4408 
4409 /// Gets or creates the specified node.
4410 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4411   FoldingSetNodeID ID;
4412   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4413   void *IP = nullptr;
4414   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4415     return SDValue(E, 0);
4416 
4417   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4418                               getVTList(VT));
4419   CSEMap.InsertNode(N, IP);
4420 
4421   InsertNode(N);
4422   SDValue V = SDValue(N, 0);
4423   NewSDValueDbgMsg(V, "Creating new node: ", this);
4424   return V;
4425 }
4426 
4427 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4428                               SDValue Operand, const SDNodeFlags Flags) {
4429   // Constant fold unary operations with an integer constant operand. Even
4430   // opaque constant will be folded, because the folding of unary operations
4431   // doesn't create new constants with different values. Nevertheless, the
4432   // opaque flag is preserved during folding to prevent future folding with
4433   // other constants.
4434   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4435     const APInt &Val = C->getAPIntValue();
4436     switch (Opcode) {
4437     default: break;
4438     case ISD::SIGN_EXTEND:
4439       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4440                          C->isTargetOpcode(), C->isOpaque());
4441     case ISD::TRUNCATE:
4442       if (C->isOpaque())
4443         break;
4444       LLVM_FALLTHROUGH;
4445     case ISD::ANY_EXTEND:
4446     case ISD::ZERO_EXTEND:
4447       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4448                          C->isTargetOpcode(), C->isOpaque());
4449     case ISD::UINT_TO_FP:
4450     case ISD::SINT_TO_FP: {
4451       APFloat apf(EVTToAPFloatSemantics(VT),
4452                   APInt::getNullValue(VT.getSizeInBits()));
4453       (void)apf.convertFromAPInt(Val,
4454                                  Opcode==ISD::SINT_TO_FP,
4455                                  APFloat::rmNearestTiesToEven);
4456       return getConstantFP(apf, DL, VT);
4457     }
4458     case ISD::BITCAST:
4459       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4460         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4461       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4462         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4463       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4464         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4465       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4466         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4467       break;
4468     case ISD::ABS:
4469       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4470                          C->isOpaque());
4471     case ISD::BITREVERSE:
4472       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4473                          C->isOpaque());
4474     case ISD::BSWAP:
4475       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4476                          C->isOpaque());
4477     case ISD::CTPOP:
4478       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4479                          C->isOpaque());
4480     case ISD::CTLZ:
4481     case ISD::CTLZ_ZERO_UNDEF:
4482       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4483                          C->isOpaque());
4484     case ISD::CTTZ:
4485     case ISD::CTTZ_ZERO_UNDEF:
4486       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4487                          C->isOpaque());
4488     case ISD::FP16_TO_FP: {
4489       bool Ignored;
4490       APFloat FPV(APFloat::IEEEhalf(),
4491                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4492 
4493       // This can return overflow, underflow, or inexact; we don't care.
4494       // FIXME need to be more flexible about rounding mode.
4495       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4496                         APFloat::rmNearestTiesToEven, &Ignored);
4497       return getConstantFP(FPV, DL, VT);
4498     }
4499     }
4500   }
4501 
4502   // Constant fold unary operations with a floating point constant operand.
4503   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4504     APFloat V = C->getValueAPF();    // make copy
4505     switch (Opcode) {
4506     case ISD::FNEG:
4507       V.changeSign();
4508       return getConstantFP(V, DL, VT);
4509     case ISD::FABS:
4510       V.clearSign();
4511       return getConstantFP(V, DL, VT);
4512     case ISD::FCEIL: {
4513       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4514       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4515         return getConstantFP(V, DL, VT);
4516       break;
4517     }
4518     case ISD::FTRUNC: {
4519       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4520       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4521         return getConstantFP(V, DL, VT);
4522       break;
4523     }
4524     case ISD::FFLOOR: {
4525       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4526       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4527         return getConstantFP(V, DL, VT);
4528       break;
4529     }
4530     case ISD::FP_EXTEND: {
4531       bool ignored;
4532       // This can return overflow, underflow, or inexact; we don't care.
4533       // FIXME need to be more flexible about rounding mode.
4534       (void)V.convert(EVTToAPFloatSemantics(VT),
4535                       APFloat::rmNearestTiesToEven, &ignored);
4536       return getConstantFP(V, DL, VT);
4537     }
4538     case ISD::FP_TO_SINT:
4539     case ISD::FP_TO_UINT: {
4540       bool ignored;
4541       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4542       // FIXME need to be more flexible about rounding mode.
4543       APFloat::opStatus s =
4544           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4545       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4546         break;
4547       return getConstant(IntVal, DL, VT);
4548     }
4549     case ISD::BITCAST:
4550       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4551         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4552       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4553         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4554       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4555         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4556       break;
4557     case ISD::FP_TO_FP16: {
4558       bool Ignored;
4559       // This can return overflow, underflow, or inexact; we don't care.
4560       // FIXME need to be more flexible about rounding mode.
4561       (void)V.convert(APFloat::IEEEhalf(),
4562                       APFloat::rmNearestTiesToEven, &Ignored);
4563       return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4564     }
4565     }
4566   }
4567 
4568   // Constant fold unary operations with a vector integer or float operand.
4569   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4570     if (BV->isConstant()) {
4571       switch (Opcode) {
4572       default:
4573         // FIXME: Entirely reasonable to perform folding of other unary
4574         // operations here as the need arises.
4575         break;
4576       case ISD::FNEG:
4577       case ISD::FABS:
4578       case ISD::FCEIL:
4579       case ISD::FTRUNC:
4580       case ISD::FFLOOR:
4581       case ISD::FP_EXTEND:
4582       case ISD::FP_TO_SINT:
4583       case ISD::FP_TO_UINT:
4584       case ISD::TRUNCATE:
4585       case ISD::ANY_EXTEND:
4586       case ISD::ZERO_EXTEND:
4587       case ISD::SIGN_EXTEND:
4588       case ISD::UINT_TO_FP:
4589       case ISD::SINT_TO_FP:
4590       case ISD::ABS:
4591       case ISD::BITREVERSE:
4592       case ISD::BSWAP:
4593       case ISD::CTLZ:
4594       case ISD::CTLZ_ZERO_UNDEF:
4595       case ISD::CTTZ:
4596       case ISD::CTTZ_ZERO_UNDEF:
4597       case ISD::CTPOP: {
4598         SDValue Ops = { Operand };
4599         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4600           return Fold;
4601       }
4602       }
4603     }
4604   }
4605 
4606   unsigned OpOpcode = Operand.getNode()->getOpcode();
4607   switch (Opcode) {
4608   case ISD::FREEZE:
4609     assert(VT == Operand.getValueType() && "Unexpected VT!");
4610     break;
4611   case ISD::TokenFactor:
4612   case ISD::MERGE_VALUES:
4613   case ISD::CONCAT_VECTORS:
4614     return Operand;         // Factor, merge or concat of one node?  No need.
4615   case ISD::BUILD_VECTOR: {
4616     // Attempt to simplify BUILD_VECTOR.
4617     SDValue Ops[] = {Operand};
4618     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4619       return V;
4620     break;
4621   }
4622   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4623   case ISD::FP_EXTEND:
4624     assert(VT.isFloatingPoint() &&
4625            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4626     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4627     assert((!VT.isVector() ||
4628             VT.getVectorNumElements() ==
4629             Operand.getValueType().getVectorNumElements()) &&
4630            "Vector element count mismatch!");
4631     assert(Operand.getValueType().bitsLT(VT) &&
4632            "Invalid fpext node, dst < src!");
4633     if (Operand.isUndef())
4634       return getUNDEF(VT);
4635     break;
4636   case ISD::FP_TO_SINT:
4637   case ISD::FP_TO_UINT:
4638     if (Operand.isUndef())
4639       return getUNDEF(VT);
4640     break;
4641   case ISD::SINT_TO_FP:
4642   case ISD::UINT_TO_FP:
4643     // [us]itofp(undef) = 0, because the result value is bounded.
4644     if (Operand.isUndef())
4645       return getConstantFP(0.0, DL, VT);
4646     break;
4647   case ISD::SIGN_EXTEND:
4648     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4649            "Invalid SIGN_EXTEND!");
4650     assert(VT.isVector() == Operand.getValueType().isVector() &&
4651            "SIGN_EXTEND result type type should be vector iff the operand "
4652            "type is vector!");
4653     if (Operand.getValueType() == VT) return Operand;   // noop extension
4654     assert((!VT.isVector() ||
4655             VT.getVectorElementCount() ==
4656                 Operand.getValueType().getVectorElementCount()) &&
4657            "Vector element count mismatch!");
4658     assert(Operand.getValueType().bitsLT(VT) &&
4659            "Invalid sext node, dst < src!");
4660     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4661       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4662     else if (OpOpcode == ISD::UNDEF)
4663       // sext(undef) = 0, because the top bits will all be the same.
4664       return getConstant(0, DL, VT);
4665     break;
4666   case ISD::ZERO_EXTEND:
4667     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4668            "Invalid ZERO_EXTEND!");
4669     assert(VT.isVector() == Operand.getValueType().isVector() &&
4670            "ZERO_EXTEND result type type should be vector iff the operand "
4671            "type is vector!");
4672     if (Operand.getValueType() == VT) return Operand;   // noop extension
4673     assert((!VT.isVector() ||
4674             VT.getVectorElementCount() ==
4675                 Operand.getValueType().getVectorElementCount()) &&
4676            "Vector element count mismatch!");
4677     assert(Operand.getValueType().bitsLT(VT) &&
4678            "Invalid zext node, dst < src!");
4679     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4680       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4681     else if (OpOpcode == ISD::UNDEF)
4682       // zext(undef) = 0, because the top bits will be zero.
4683       return getConstant(0, DL, VT);
4684     break;
4685   case ISD::ANY_EXTEND:
4686     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4687            "Invalid ANY_EXTEND!");
4688     assert(VT.isVector() == Operand.getValueType().isVector() &&
4689            "ANY_EXTEND result type type should be vector iff the operand "
4690            "type is vector!");
4691     if (Operand.getValueType() == VT) return Operand;   // noop extension
4692     assert((!VT.isVector() ||
4693             VT.getVectorElementCount() ==
4694                 Operand.getValueType().getVectorElementCount()) &&
4695            "Vector element count mismatch!");
4696     assert(Operand.getValueType().bitsLT(VT) &&
4697            "Invalid anyext node, dst < src!");
4698 
4699     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4700         OpOpcode == ISD::ANY_EXTEND)
4701       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4702       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4703     else if (OpOpcode == ISD::UNDEF)
4704       return getUNDEF(VT);
4705 
4706     // (ext (trunc x)) -> x
4707     if (OpOpcode == ISD::TRUNCATE) {
4708       SDValue OpOp = Operand.getOperand(0);
4709       if (OpOp.getValueType() == VT) {
4710         transferDbgValues(Operand, OpOp);
4711         return OpOp;
4712       }
4713     }
4714     break;
4715   case ISD::TRUNCATE:
4716     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4717            "Invalid TRUNCATE!");
4718     assert(VT.isVector() == Operand.getValueType().isVector() &&
4719            "TRUNCATE result type type should be vector iff the operand "
4720            "type is vector!");
4721     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4722     assert((!VT.isVector() ||
4723             VT.getVectorElementCount() ==
4724                 Operand.getValueType().getVectorElementCount()) &&
4725            "Vector element count mismatch!");
4726     assert(Operand.getValueType().bitsGT(VT) &&
4727            "Invalid truncate node, src < dst!");
4728     if (OpOpcode == ISD::TRUNCATE)
4729       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4730     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4731         OpOpcode == ISD::ANY_EXTEND) {
4732       // If the source is smaller than the dest, we still need an extend.
4733       if (Operand.getOperand(0).getValueType().getScalarType()
4734             .bitsLT(VT.getScalarType()))
4735         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4736       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4737         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4738       return Operand.getOperand(0);
4739     }
4740     if (OpOpcode == ISD::UNDEF)
4741       return getUNDEF(VT);
4742     break;
4743   case ISD::ANY_EXTEND_VECTOR_INREG:
4744   case ISD::ZERO_EXTEND_VECTOR_INREG:
4745   case ISD::SIGN_EXTEND_VECTOR_INREG:
4746     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4747     assert(Operand.getValueType().bitsLE(VT) &&
4748            "The input must be the same size or smaller than the result.");
4749     assert(VT.getVectorNumElements() <
4750              Operand.getValueType().getVectorNumElements() &&
4751            "The destination vector type must have fewer lanes than the input.");
4752     break;
4753   case ISD::ABS:
4754     assert(VT.isInteger() && VT == Operand.getValueType() &&
4755            "Invalid ABS!");
4756     if (OpOpcode == ISD::UNDEF)
4757       return getUNDEF(VT);
4758     break;
4759   case ISD::BSWAP:
4760     assert(VT.isInteger() && VT == Operand.getValueType() &&
4761            "Invalid BSWAP!");
4762     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4763            "BSWAP types must be a multiple of 16 bits!");
4764     if (OpOpcode == ISD::UNDEF)
4765       return getUNDEF(VT);
4766     break;
4767   case ISD::BITREVERSE:
4768     assert(VT.isInteger() && VT == Operand.getValueType() &&
4769            "Invalid BITREVERSE!");
4770     if (OpOpcode == ISD::UNDEF)
4771       return getUNDEF(VT);
4772     break;
4773   case ISD::BITCAST:
4774     // Basic sanity checking.
4775     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4776            "Cannot BITCAST between types of different sizes!");
4777     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4778     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4779       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4780     if (OpOpcode == ISD::UNDEF)
4781       return getUNDEF(VT);
4782     break;
4783   case ISD::SCALAR_TO_VECTOR:
4784     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4785            (VT.getVectorElementType() == Operand.getValueType() ||
4786             (VT.getVectorElementType().isInteger() &&
4787              Operand.getValueType().isInteger() &&
4788              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4789            "Illegal SCALAR_TO_VECTOR node!");
4790     if (OpOpcode == ISD::UNDEF)
4791       return getUNDEF(VT);
4792     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4793     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4794         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4795         Operand.getConstantOperandVal(1) == 0 &&
4796         Operand.getOperand(0).getValueType() == VT)
4797       return Operand.getOperand(0);
4798     break;
4799   case ISD::FNEG:
4800     // Negation of an unknown bag of bits is still completely undefined.
4801     if (OpOpcode == ISD::UNDEF)
4802       return getUNDEF(VT);
4803 
4804     if (OpOpcode == ISD::FNEG)  // --X -> X
4805       return Operand.getOperand(0);
4806     break;
4807   case ISD::FABS:
4808     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4809       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4810     break;
4811   case ISD::VSCALE:
4812     assert(VT == Operand.getValueType() && "Unexpected VT!");
4813     break;
4814   }
4815 
4816   SDNode *N;
4817   SDVTList VTs = getVTList(VT);
4818   SDValue Ops[] = {Operand};
4819   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4820     FoldingSetNodeID ID;
4821     AddNodeIDNode(ID, Opcode, VTs, Ops);
4822     void *IP = nullptr;
4823     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4824       E->intersectFlagsWith(Flags);
4825       return SDValue(E, 0);
4826     }
4827 
4828     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4829     N->setFlags(Flags);
4830     createOperands(N, Ops);
4831     CSEMap.InsertNode(N, IP);
4832   } else {
4833     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4834     createOperands(N, Ops);
4835   }
4836 
4837   InsertNode(N);
4838   SDValue V = SDValue(N, 0);
4839   NewSDValueDbgMsg(V, "Creating new node: ", this);
4840   return V;
4841 }
4842 
4843 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4844                                        const APInt &C2) {
4845   switch (Opcode) {
4846   case ISD::ADD:  return C1 + C2;
4847   case ISD::SUB:  return C1 - C2;
4848   case ISD::MUL:  return C1 * C2;
4849   case ISD::AND:  return C1 & C2;
4850   case ISD::OR:   return C1 | C2;
4851   case ISD::XOR:  return C1 ^ C2;
4852   case ISD::SHL:  return C1 << C2;
4853   case ISD::SRL:  return C1.lshr(C2);
4854   case ISD::SRA:  return C1.ashr(C2);
4855   case ISD::ROTL: return C1.rotl(C2);
4856   case ISD::ROTR: return C1.rotr(C2);
4857   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4858   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4859   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4860   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4861   case ISD::SADDSAT: return C1.sadd_sat(C2);
4862   case ISD::UADDSAT: return C1.uadd_sat(C2);
4863   case ISD::SSUBSAT: return C1.ssub_sat(C2);
4864   case ISD::USUBSAT: return C1.usub_sat(C2);
4865   case ISD::UDIV:
4866     if (!C2.getBoolValue())
4867       break;
4868     return C1.udiv(C2);
4869   case ISD::UREM:
4870     if (!C2.getBoolValue())
4871       break;
4872     return C1.urem(C2);
4873   case ISD::SDIV:
4874     if (!C2.getBoolValue())
4875       break;
4876     return C1.sdiv(C2);
4877   case ISD::SREM:
4878     if (!C2.getBoolValue())
4879       break;
4880     return C1.srem(C2);
4881   }
4882   return llvm::None;
4883 }
4884 
4885 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4886                                        const GlobalAddressSDNode *GA,
4887                                        const SDNode *N2) {
4888   if (GA->getOpcode() != ISD::GlobalAddress)
4889     return SDValue();
4890   if (!TLI->isOffsetFoldingLegal(GA))
4891     return SDValue();
4892   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4893   if (!C2)
4894     return SDValue();
4895   int64_t Offset = C2->getSExtValue();
4896   switch (Opcode) {
4897   case ISD::ADD: break;
4898   case ISD::SUB: Offset = -uint64_t(Offset); break;
4899   default: return SDValue();
4900   }
4901   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4902                           GA->getOffset() + uint64_t(Offset));
4903 }
4904 
4905 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4906   switch (Opcode) {
4907   case ISD::SDIV:
4908   case ISD::UDIV:
4909   case ISD::SREM:
4910   case ISD::UREM: {
4911     // If a divisor is zero/undef or any element of a divisor vector is
4912     // zero/undef, the whole op is undef.
4913     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4914     SDValue Divisor = Ops[1];
4915     if (Divisor.isUndef() || isNullConstant(Divisor))
4916       return true;
4917 
4918     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4919            llvm::any_of(Divisor->op_values(),
4920                         [](SDValue V) { return V.isUndef() ||
4921                                         isNullConstant(V); });
4922     // TODO: Handle signed overflow.
4923   }
4924   // TODO: Handle oversized shifts.
4925   default:
4926     return false;
4927   }
4928 }
4929 
4930 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4931                                              EVT VT, ArrayRef<SDValue> Ops) {
4932   // If the opcode is a target-specific ISD node, there's nothing we can
4933   // do here and the operand rules may not line up with the below, so
4934   // bail early.
4935   if (Opcode >= ISD::BUILTIN_OP_END)
4936     return SDValue();
4937 
4938   // For now, the array Ops should only contain two values.
4939   // This enforcement will be removed once this function is merged with
4940   // FoldConstantVectorArithmetic
4941   if (Ops.size() != 2)
4942     return SDValue();
4943 
4944   if (isUndef(Opcode, Ops))
4945     return getUNDEF(VT);
4946 
4947   SDNode *N1 = Ops[0].getNode();
4948   SDNode *N2 = Ops[1].getNode();
4949 
4950   // Handle the case of two scalars.
4951   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4952     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4953       if (C1->isOpaque() || C2->isOpaque())
4954         return SDValue();
4955 
4956       Optional<APInt> FoldAttempt =
4957           FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
4958       if (!FoldAttempt)
4959         return SDValue();
4960 
4961       SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
4962       assert((!Folded || !VT.isVector()) &&
4963              "Can't fold vectors ops with scalar operands");
4964       return Folded;
4965     }
4966   }
4967 
4968   // fold (add Sym, c) -> Sym+c
4969   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4970     return FoldSymbolOffset(Opcode, VT, GA, N2);
4971   if (TLI->isCommutativeBinOp(Opcode))
4972     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4973       return FoldSymbolOffset(Opcode, VT, GA, N1);
4974 
4975   // TODO: All the folds below are performed lane-by-lane and assume a fixed
4976   // vector width, however we should be able to do constant folds involving
4977   // splat vector nodes too.
4978   if (VT.isScalableVector())
4979     return SDValue();
4980 
4981   // For fixed width vectors, extract each constant element and fold them
4982   // individually. Either input may be an undef value.
4983   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4984   if (!BV1 && !N1->isUndef())
4985     return SDValue();
4986   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4987   if (!BV2 && !N2->isUndef())
4988     return SDValue();
4989   // If both operands are undef, that's handled the same way as scalars.
4990   if (!BV1 && !BV2)
4991     return SDValue();
4992 
4993   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4994          "Vector binop with different number of elements in operands?");
4995 
4996   EVT SVT = VT.getScalarType();
4997   EVT LegalSVT = SVT;
4998   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4999     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5000     if (LegalSVT.bitsLT(SVT))
5001       return SDValue();
5002   }
5003   SmallVector<SDValue, 4> Outputs;
5004   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
5005   for (unsigned I = 0; I != NumOps; ++I) {
5006     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
5007     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
5008     if (SVT.isInteger()) {
5009       if (V1->getValueType(0).bitsGT(SVT))
5010         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5011       if (V2->getValueType(0).bitsGT(SVT))
5012         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5013     }
5014 
5015     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
5016       return SDValue();
5017 
5018     // Fold one vector element.
5019     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5020     if (LegalSVT != SVT)
5021       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5022 
5023     // Scalar folding only succeeded if the result is a constant or UNDEF.
5024     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5025         ScalarResult.getOpcode() != ISD::ConstantFP)
5026       return SDValue();
5027     Outputs.push_back(ScalarResult);
5028   }
5029 
5030   assert(VT.getVectorNumElements() == Outputs.size() &&
5031          "Vector size mismatch!");
5032 
5033   // We may have a vector type but a scalar result. Create a splat.
5034   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
5035 
5036   // Build a big vector out of the scalar elements we generated.
5037   return getBuildVector(VT, SDLoc(), Outputs);
5038 }
5039 
5040 // TODO: Merge with FoldConstantArithmetic
5041 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5042                                                    const SDLoc &DL, EVT VT,
5043                                                    ArrayRef<SDValue> Ops,
5044                                                    const SDNodeFlags Flags) {
5045   // If the opcode is a target-specific ISD node, there's nothing we can
5046   // do here and the operand rules may not line up with the below, so
5047   // bail early.
5048   if (Opcode >= ISD::BUILTIN_OP_END)
5049     return SDValue();
5050 
5051   if (isUndef(Opcode, Ops))
5052     return getUNDEF(VT);
5053 
5054   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5055   if (!VT.isVector())
5056     return SDValue();
5057 
5058   // TODO: All the folds below are performed lane-by-lane and assume a fixed
5059   // vector width, however we should be able to do constant folds involving
5060   // splat vector nodes too.
5061   if (VT.isScalableVector())
5062     return SDValue();
5063 
5064   // From this point onwards all vectors are assumed to be fixed width.
5065   unsigned NumElts = VT.getVectorNumElements();
5066 
5067   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
5068     return !Op.getValueType().isVector() ||
5069            Op.getValueType().getVectorNumElements() == NumElts;
5070   };
5071 
5072   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5073     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5074     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5075            (BV && BV->isConstant());
5076   };
5077 
5078   // All operands must be vector types with the same number of elements as
5079   // the result type and must be either UNDEF or a build vector of constant
5080   // or UNDEF scalars.
5081   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5082       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5083     return SDValue();
5084 
5085   // If we are comparing vectors, then the result needs to be a i1 boolean
5086   // that is then sign-extended back to the legal result type.
5087   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5088 
5089   // Find legal integer scalar type for constant promotion and
5090   // ensure that its scalar size is at least as large as source.
5091   EVT LegalSVT = VT.getScalarType();
5092   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5093     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5094     if (LegalSVT.bitsLT(VT.getScalarType()))
5095       return SDValue();
5096   }
5097 
5098   // Constant fold each scalar lane separately.
5099   SmallVector<SDValue, 4> ScalarResults;
5100   for (unsigned i = 0; i != NumElts; i++) {
5101     SmallVector<SDValue, 4> ScalarOps;
5102     for (SDValue Op : Ops) {
5103       EVT InSVT = Op.getValueType().getScalarType();
5104       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5105       if (!InBV) {
5106         // We've checked that this is UNDEF or a constant of some kind.
5107         if (Op.isUndef())
5108           ScalarOps.push_back(getUNDEF(InSVT));
5109         else
5110           ScalarOps.push_back(Op);
5111         continue;
5112       }
5113 
5114       SDValue ScalarOp = InBV->getOperand(i);
5115       EVT ScalarVT = ScalarOp.getValueType();
5116 
5117       // Build vector (integer) scalar operands may need implicit
5118       // truncation - do this before constant folding.
5119       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5120         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5121 
5122       ScalarOps.push_back(ScalarOp);
5123     }
5124 
5125     // Constant fold the scalar operands.
5126     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5127 
5128     // Legalize the (integer) scalar constant if necessary.
5129     if (LegalSVT != SVT)
5130       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5131 
5132     // Scalar folding only succeeded if the result is a constant or UNDEF.
5133     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5134         ScalarResult.getOpcode() != ISD::ConstantFP)
5135       return SDValue();
5136     ScalarResults.push_back(ScalarResult);
5137   }
5138 
5139   SDValue V = getBuildVector(VT, DL, ScalarResults);
5140   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5141   return V;
5142 }
5143 
5144 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5145                                          EVT VT, SDValue N1, SDValue N2) {
5146   // TODO: We don't do any constant folding for strict FP opcodes here, but we
5147   //       should. That will require dealing with a potentially non-default
5148   //       rounding mode, checking the "opStatus" return value from the APFloat
5149   //       math calculations, and possibly other variations.
5150   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5151   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5152   if (N1CFP && N2CFP) {
5153     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5154     switch (Opcode) {
5155     case ISD::FADD:
5156       C1.add(C2, APFloat::rmNearestTiesToEven);
5157       return getConstantFP(C1, DL, VT);
5158     case ISD::FSUB:
5159       C1.subtract(C2, APFloat::rmNearestTiesToEven);
5160       return getConstantFP(C1, DL, VT);
5161     case ISD::FMUL:
5162       C1.multiply(C2, APFloat::rmNearestTiesToEven);
5163       return getConstantFP(C1, DL, VT);
5164     case ISD::FDIV:
5165       C1.divide(C2, APFloat::rmNearestTiesToEven);
5166       return getConstantFP(C1, DL, VT);
5167     case ISD::FREM:
5168       C1.mod(C2);
5169       return getConstantFP(C1, DL, VT);
5170     case ISD::FCOPYSIGN:
5171       C1.copySign(C2);
5172       return getConstantFP(C1, DL, VT);
5173     default: break;
5174     }
5175   }
5176   if (N1CFP && Opcode == ISD::FP_ROUND) {
5177     APFloat C1 = N1CFP->getValueAPF();    // make copy
5178     bool Unused;
5179     // This can return overflow, underflow, or inexact; we don't care.
5180     // FIXME need to be more flexible about rounding mode.
5181     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5182                       &Unused);
5183     return getConstantFP(C1, DL, VT);
5184   }
5185 
5186   switch (Opcode) {
5187   case ISD::FSUB:
5188     // -0.0 - undef --> undef (consistent with "fneg undef")
5189     if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5190       return getUNDEF(VT);
5191     LLVM_FALLTHROUGH;
5192 
5193   case ISD::FADD:
5194   case ISD::FMUL:
5195   case ISD::FDIV:
5196   case ISD::FREM:
5197     // If both operands are undef, the result is undef. If 1 operand is undef,
5198     // the result is NaN. This should match the behavior of the IR optimizer.
5199     if (N1.isUndef() && N2.isUndef())
5200       return getUNDEF(VT);
5201     if (N1.isUndef() || N2.isUndef())
5202       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5203   }
5204   return SDValue();
5205 }
5206 
5207 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5208   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5209 
5210   // There's no need to assert on a byte-aligned pointer. All pointers are at
5211   // least byte aligned.
5212   if (A == Align(1))
5213     return Val;
5214 
5215   FoldingSetNodeID ID;
5216   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5217   ID.AddInteger(A.value());
5218 
5219   void *IP = nullptr;
5220   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5221     return SDValue(E, 0);
5222 
5223   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5224                                          Val.getValueType(), A);
5225   createOperands(N, {Val});
5226 
5227   CSEMap.InsertNode(N, IP);
5228   InsertNode(N);
5229 
5230   SDValue V(N, 0);
5231   NewSDValueDbgMsg(V, "Creating new node: ", this);
5232   return V;
5233 }
5234 
5235 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5236                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5237   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5238   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5239   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5240   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5241 
5242   // Canonicalize constant to RHS if commutative.
5243   if (TLI->isCommutativeBinOp(Opcode)) {
5244     if (N1C && !N2C) {
5245       std::swap(N1C, N2C);
5246       std::swap(N1, N2);
5247     } else if (N1CFP && !N2CFP) {
5248       std::swap(N1CFP, N2CFP);
5249       std::swap(N1, N2);
5250     }
5251   }
5252 
5253   switch (Opcode) {
5254   default: break;
5255   case ISD::TokenFactor:
5256     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5257            N2.getValueType() == MVT::Other && "Invalid token factor!");
5258     // Fold trivial token factors.
5259     if (N1.getOpcode() == ISD::EntryToken) return N2;
5260     if (N2.getOpcode() == ISD::EntryToken) return N1;
5261     if (N1 == N2) return N1;
5262     break;
5263   case ISD::BUILD_VECTOR: {
5264     // Attempt to simplify BUILD_VECTOR.
5265     SDValue Ops[] = {N1, N2};
5266     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5267       return V;
5268     break;
5269   }
5270   case ISD::CONCAT_VECTORS: {
5271     SDValue Ops[] = {N1, N2};
5272     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5273       return V;
5274     break;
5275   }
5276   case ISD::AND:
5277     assert(VT.isInteger() && "This operator does not apply to FP types!");
5278     assert(N1.getValueType() == N2.getValueType() &&
5279            N1.getValueType() == VT && "Binary operator types must match!");
5280     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5281     // worth handling here.
5282     if (N2C && N2C->isNullValue())
5283       return N2;
5284     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5285       return N1;
5286     break;
5287   case ISD::OR:
5288   case ISD::XOR:
5289   case ISD::ADD:
5290   case ISD::SUB:
5291     assert(VT.isInteger() && "This operator does not apply to FP types!");
5292     assert(N1.getValueType() == N2.getValueType() &&
5293            N1.getValueType() == VT && "Binary operator types must match!");
5294     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5295     // it's worth handling here.
5296     if (N2C && N2C->isNullValue())
5297       return N1;
5298     break;
5299   case ISD::MUL:
5300     assert(VT.isInteger() && "This operator does not apply to FP types!");
5301     assert(N1.getValueType() == N2.getValueType() &&
5302            N1.getValueType() == VT && "Binary operator types must match!");
5303     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5304       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5305       APInt N2CImm = N2C->getAPIntValue();
5306       return getVScale(DL, VT, MulImm * N2CImm);
5307     }
5308     break;
5309   case ISD::UDIV:
5310   case ISD::UREM:
5311   case ISD::MULHU:
5312   case ISD::MULHS:
5313   case ISD::SDIV:
5314   case ISD::SREM:
5315   case ISD::SMIN:
5316   case ISD::SMAX:
5317   case ISD::UMIN:
5318   case ISD::UMAX:
5319   case ISD::SADDSAT:
5320   case ISD::SSUBSAT:
5321   case ISD::UADDSAT:
5322   case ISD::USUBSAT:
5323     assert(VT.isInteger() && "This operator does not apply to FP types!");
5324     assert(N1.getValueType() == N2.getValueType() &&
5325            N1.getValueType() == VT && "Binary operator types must match!");
5326     break;
5327   case ISD::FADD:
5328   case ISD::FSUB:
5329   case ISD::FMUL:
5330   case ISD::FDIV:
5331   case ISD::FREM:
5332     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5333     assert(N1.getValueType() == N2.getValueType() &&
5334            N1.getValueType() == VT && "Binary operator types must match!");
5335     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5336       return V;
5337     break;
5338   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5339     assert(N1.getValueType() == VT &&
5340            N1.getValueType().isFloatingPoint() &&
5341            N2.getValueType().isFloatingPoint() &&
5342            "Invalid FCOPYSIGN!");
5343     break;
5344   case ISD::SHL:
5345     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5346       APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5347       APInt ShiftImm = N2C->getAPIntValue();
5348       return getVScale(DL, VT, MulImm << ShiftImm);
5349     }
5350     LLVM_FALLTHROUGH;
5351   case ISD::SRA:
5352   case ISD::SRL:
5353     if (SDValue V = simplifyShift(N1, N2))
5354       return V;
5355     LLVM_FALLTHROUGH;
5356   case ISD::ROTL:
5357   case ISD::ROTR:
5358     assert(VT == N1.getValueType() &&
5359            "Shift operators return type must be the same as their first arg");
5360     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5361            "Shifts only work on integers");
5362     assert((!VT.isVector() || VT == N2.getValueType()) &&
5363            "Vector shift amounts must be in the same as their first arg");
5364     // Verify that the shift amount VT is big enough to hold valid shift
5365     // amounts.  This catches things like trying to shift an i1024 value by an
5366     // i8, which is easy to fall into in generic code that uses
5367     // TLI.getShiftAmount().
5368     assert(N2.getValueType().getScalarSizeInBits().getFixedSize() >=
5369                Log2_32_Ceil(VT.getScalarSizeInBits().getFixedSize()) &&
5370            "Invalid use of small shift amount with oversized value!");
5371 
5372     // Always fold shifts of i1 values so the code generator doesn't need to
5373     // handle them.  Since we know the size of the shift has to be less than the
5374     // size of the value, the shift/rotate count is guaranteed to be zero.
5375     if (VT == MVT::i1)
5376       return N1;
5377     if (N2C && N2C->isNullValue())
5378       return N1;
5379     break;
5380   case ISD::FP_ROUND:
5381     assert(VT.isFloatingPoint() &&
5382            N1.getValueType().isFloatingPoint() &&
5383            VT.bitsLE(N1.getValueType()) &&
5384            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5385            "Invalid FP_ROUND!");
5386     if (N1.getValueType() == VT) return N1;  // noop conversion.
5387     break;
5388   case ISD::AssertSext:
5389   case ISD::AssertZext: {
5390     EVT EVT = cast<VTSDNode>(N2)->getVT();
5391     assert(VT == N1.getValueType() && "Not an inreg extend!");
5392     assert(VT.isInteger() && EVT.isInteger() &&
5393            "Cannot *_EXTEND_INREG FP types");
5394     assert(!EVT.isVector() &&
5395            "AssertSExt/AssertZExt type should be the vector element type "
5396            "rather than the vector type!");
5397     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5398     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5399     break;
5400   }
5401   case ISD::SIGN_EXTEND_INREG: {
5402     EVT EVT = cast<VTSDNode>(N2)->getVT();
5403     assert(VT == N1.getValueType() && "Not an inreg extend!");
5404     assert(VT.isInteger() && EVT.isInteger() &&
5405            "Cannot *_EXTEND_INREG FP types");
5406     assert(EVT.isVector() == VT.isVector() &&
5407            "SIGN_EXTEND_INREG type should be vector iff the operand "
5408            "type is vector!");
5409     assert((!EVT.isVector() ||
5410             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5411            "Vector element counts must match in SIGN_EXTEND_INREG");
5412     assert(EVT.bitsLE(VT) && "Not extending!");
5413     if (EVT == VT) return N1;  // Not actually extending
5414 
5415     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5416       unsigned FromBits = EVT.getScalarSizeInBits();
5417       Val <<= Val.getBitWidth() - FromBits;
5418       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5419       return getConstant(Val, DL, ConstantVT);
5420     };
5421 
5422     if (N1C) {
5423       const APInt &Val = N1C->getAPIntValue();
5424       return SignExtendInReg(Val, VT);
5425     }
5426     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5427       SmallVector<SDValue, 8> Ops;
5428       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5429       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5430         SDValue Op = N1.getOperand(i);
5431         if (Op.isUndef()) {
5432           Ops.push_back(getUNDEF(OpVT));
5433           continue;
5434         }
5435         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5436         APInt Val = C->getAPIntValue();
5437         Ops.push_back(SignExtendInReg(Val, OpVT));
5438       }
5439       return getBuildVector(VT, DL, Ops);
5440     }
5441     break;
5442   }
5443   case ISD::EXTRACT_VECTOR_ELT:
5444     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5445            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5446              element type of the vector.");
5447 
5448     // Extract from an undefined value or using an undefined index is undefined.
5449     if (N1.isUndef() || N2.isUndef())
5450       return getUNDEF(VT);
5451 
5452     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5453     // vectors. For scalable vectors we will provide appropriate support for
5454     // dealing with arbitrary indices.
5455     if (N2C && N1.getValueType().isFixedLengthVector() &&
5456         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5457       return getUNDEF(VT);
5458 
5459     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5460     // expanding copies of large vectors from registers. This only works for
5461     // fixed length vectors, since we need to know the exact number of
5462     // elements.
5463     if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5464         N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5465       unsigned Factor =
5466         N1.getOperand(0).getValueType().getVectorNumElements();
5467       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5468                      N1.getOperand(N2C->getZExtValue() / Factor),
5469                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5470     }
5471 
5472     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5473     // lowering is expanding large vector constants.
5474     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5475                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5476       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5477               N1.getValueType().isFixedLengthVector()) &&
5478              "BUILD_VECTOR used for scalable vectors");
5479       unsigned Index =
5480           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5481       SDValue Elt = N1.getOperand(Index);
5482 
5483       if (VT != Elt.getValueType())
5484         // If the vector element type is not legal, the BUILD_VECTOR operands
5485         // are promoted and implicitly truncated, and the result implicitly
5486         // extended. Make that explicit here.
5487         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5488 
5489       return Elt;
5490     }
5491 
5492     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5493     // operations are lowered to scalars.
5494     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5495       // If the indices are the same, return the inserted element else
5496       // if the indices are known different, extract the element from
5497       // the original vector.
5498       SDValue N1Op2 = N1.getOperand(2);
5499       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5500 
5501       if (N1Op2C && N2C) {
5502         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5503           if (VT == N1.getOperand(1).getValueType())
5504             return N1.getOperand(1);
5505           else
5506             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5507         }
5508 
5509         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5510       }
5511     }
5512 
5513     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5514     // when vector types are scalarized and v1iX is legal.
5515     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5516     // Here we are completely ignoring the extract element index (N2),
5517     // which is fine for fixed width vectors, since any index other than 0
5518     // is undefined anyway. However, this cannot be ignored for scalable
5519     // vectors - in theory we could support this, but we don't want to do this
5520     // without a profitability check.
5521     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5522         N1.getValueType().isFixedLengthVector() &&
5523         N1.getValueType().getVectorNumElements() == 1) {
5524       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5525                      N1.getOperand(1));
5526     }
5527     break;
5528   case ISD::EXTRACT_ELEMENT:
5529     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5530     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5531            (N1.getValueType().isInteger() == VT.isInteger()) &&
5532            N1.getValueType() != VT &&
5533            "Wrong types for EXTRACT_ELEMENT!");
5534 
5535     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5536     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5537     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5538     if (N1.getOpcode() == ISD::BUILD_PAIR)
5539       return N1.getOperand(N2C->getZExtValue());
5540 
5541     // EXTRACT_ELEMENT of a constant int is also very common.
5542     if (N1C) {
5543       unsigned ElementSize = VT.getSizeInBits();
5544       unsigned Shift = ElementSize * N2C->getZExtValue();
5545       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5546       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5547     }
5548     break;
5549   case ISD::EXTRACT_SUBVECTOR:
5550     EVT N1VT = N1.getValueType();
5551     assert(VT.isVector() && N1VT.isVector() &&
5552            "Extract subvector VTs must be vectors!");
5553     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5554            "Extract subvector VTs must have the same element type!");
5555     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5556            "Cannot extract a scalable vector from a fixed length vector!");
5557     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5558             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5559            "Extract subvector must be from larger vector to smaller vector!");
5560     assert(N2C && "Extract subvector index must be a constant");
5561     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5562             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5563                 N1VT.getVectorMinNumElements()) &&
5564            "Extract subvector overflow!");
5565 
5566     // Trivial extraction.
5567     if (VT == N1VT)
5568       return N1;
5569 
5570     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5571     if (N1.isUndef())
5572       return getUNDEF(VT);
5573 
5574     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5575     // the concat have the same type as the extract.
5576     if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5577         N1.getNumOperands() > 0 && VT == N1.getOperand(0).getValueType()) {
5578       unsigned Factor = VT.getVectorMinNumElements();
5579       return N1.getOperand(N2C->getZExtValue() / Factor);
5580     }
5581 
5582     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5583     // during shuffle legalization.
5584     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5585         VT == N1.getOperand(1).getValueType())
5586       return N1.getOperand(1);
5587     break;
5588   }
5589 
5590   // Perform trivial constant folding.
5591   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5592     return SV;
5593 
5594   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5595     return V;
5596 
5597   // Canonicalize an UNDEF to the RHS, even over a constant.
5598   if (N1.isUndef()) {
5599     if (TLI->isCommutativeBinOp(Opcode)) {
5600       std::swap(N1, N2);
5601     } else {
5602       switch (Opcode) {
5603       case ISD::SIGN_EXTEND_INREG:
5604       case ISD::SUB:
5605         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5606       case ISD::UDIV:
5607       case ISD::SDIV:
5608       case ISD::UREM:
5609       case ISD::SREM:
5610       case ISD::SSUBSAT:
5611       case ISD::USUBSAT:
5612         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5613       }
5614     }
5615   }
5616 
5617   // Fold a bunch of operators when the RHS is undef.
5618   if (N2.isUndef()) {
5619     switch (Opcode) {
5620     case ISD::XOR:
5621       if (N1.isUndef())
5622         // Handle undef ^ undef -> 0 special case. This is a common
5623         // idiom (misuse).
5624         return getConstant(0, DL, VT);
5625       LLVM_FALLTHROUGH;
5626     case ISD::ADD:
5627     case ISD::SUB:
5628     case ISD::UDIV:
5629     case ISD::SDIV:
5630     case ISD::UREM:
5631     case ISD::SREM:
5632       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5633     case ISD::MUL:
5634     case ISD::AND:
5635     case ISD::SSUBSAT:
5636     case ISD::USUBSAT:
5637       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5638     case ISD::OR:
5639     case ISD::SADDSAT:
5640     case ISD::UADDSAT:
5641       return getAllOnesConstant(DL, VT);
5642     }
5643   }
5644 
5645   // Memoize this node if possible.
5646   SDNode *N;
5647   SDVTList VTs = getVTList(VT);
5648   SDValue Ops[] = {N1, N2};
5649   if (VT != MVT::Glue) {
5650     FoldingSetNodeID ID;
5651     AddNodeIDNode(ID, Opcode, VTs, Ops);
5652     void *IP = nullptr;
5653     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5654       E->intersectFlagsWith(Flags);
5655       return SDValue(E, 0);
5656     }
5657 
5658     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5659     N->setFlags(Flags);
5660     createOperands(N, Ops);
5661     CSEMap.InsertNode(N, IP);
5662   } else {
5663     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5664     createOperands(N, Ops);
5665   }
5666 
5667   InsertNode(N);
5668   SDValue V = SDValue(N, 0);
5669   NewSDValueDbgMsg(V, "Creating new node: ", this);
5670   return V;
5671 }
5672 
5673 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5674                               SDValue N1, SDValue N2, SDValue N3,
5675                               const SDNodeFlags Flags) {
5676   // Perform various simplifications.
5677   switch (Opcode) {
5678   case ISD::FMA: {
5679     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5680     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5681            N3.getValueType() == VT && "FMA types must match!");
5682     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5683     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5684     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5685     if (N1CFP && N2CFP && N3CFP) {
5686       APFloat  V1 = N1CFP->getValueAPF();
5687       const APFloat &V2 = N2CFP->getValueAPF();
5688       const APFloat &V3 = N3CFP->getValueAPF();
5689       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5690       return getConstantFP(V1, DL, VT);
5691     }
5692     break;
5693   }
5694   case ISD::BUILD_VECTOR: {
5695     // Attempt to simplify BUILD_VECTOR.
5696     SDValue Ops[] = {N1, N2, N3};
5697     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5698       return V;
5699     break;
5700   }
5701   case ISD::CONCAT_VECTORS: {
5702     SDValue Ops[] = {N1, N2, N3};
5703     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5704       return V;
5705     break;
5706   }
5707   case ISD::SETCC: {
5708     assert(VT.isInteger() && "SETCC result type must be an integer!");
5709     assert(N1.getValueType() == N2.getValueType() &&
5710            "SETCC operands must have the same type!");
5711     assert(VT.isVector() == N1.getValueType().isVector() &&
5712            "SETCC type should be vector iff the operand type is vector!");
5713     assert((!VT.isVector() || VT.getVectorElementCount() ==
5714                                   N1.getValueType().getVectorElementCount()) &&
5715            "SETCC vector element counts must match!");
5716     // Use FoldSetCC to simplify SETCC's.
5717     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5718       return V;
5719     // Vector constant folding.
5720     SDValue Ops[] = {N1, N2, N3};
5721     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5722       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5723       return V;
5724     }
5725     break;
5726   }
5727   case ISD::SELECT:
5728   case ISD::VSELECT:
5729     if (SDValue V = simplifySelect(N1, N2, N3))
5730       return V;
5731     break;
5732   case ISD::VECTOR_SHUFFLE:
5733     llvm_unreachable("should use getVectorShuffle constructor!");
5734   case ISD::INSERT_VECTOR_ELT: {
5735     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5736     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
5737     // for scalable vectors where we will generate appropriate code to
5738     // deal with out-of-bounds cases correctly.
5739     if (N3C && N1.getValueType().isFixedLengthVector() &&
5740         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5741       return getUNDEF(VT);
5742 
5743     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5744     if (N3.isUndef())
5745       return getUNDEF(VT);
5746 
5747     // If the inserted element is an UNDEF, just use the input vector.
5748     if (N2.isUndef())
5749       return N1;
5750 
5751     break;
5752   }
5753   case ISD::INSERT_SUBVECTOR: {
5754     // Inserting undef into undef is still undef.
5755     if (N1.isUndef() && N2.isUndef())
5756       return getUNDEF(VT);
5757 
5758     EVT N2VT = N2.getValueType();
5759     assert(VT == N1.getValueType() &&
5760            "Dest and insert subvector source types must match!");
5761     assert(VT.isVector() && N2VT.isVector() &&
5762            "Insert subvector VTs must be vectors!");
5763     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
5764            "Cannot insert a scalable vector into a fixed length vector!");
5765     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5766             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
5767            "Insert subvector must be from smaller vector to larger vector!");
5768     assert(isa<ConstantSDNode>(N3) &&
5769            "Insert subvector index must be constant");
5770     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5771             (N2VT.getVectorMinNumElements() +
5772              cast<ConstantSDNode>(N3)->getZExtValue()) <=
5773                 VT.getVectorMinNumElements()) &&
5774            "Insert subvector overflow!");
5775 
5776     // Trivial insertion.
5777     if (VT == N2VT)
5778       return N2;
5779 
5780     // If this is an insert of an extracted vector into an undef vector, we
5781     // can just use the input to the extract.
5782     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5783         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5784       return N2.getOperand(0);
5785     break;
5786   }
5787   case ISD::BITCAST:
5788     // Fold bit_convert nodes from a type to themselves.
5789     if (N1.getValueType() == VT)
5790       return N1;
5791     break;
5792   }
5793 
5794   // Memoize node if it doesn't produce a flag.
5795   SDNode *N;
5796   SDVTList VTs = getVTList(VT);
5797   SDValue Ops[] = {N1, N2, N3};
5798   if (VT != MVT::Glue) {
5799     FoldingSetNodeID ID;
5800     AddNodeIDNode(ID, Opcode, VTs, Ops);
5801     void *IP = nullptr;
5802     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5803       E->intersectFlagsWith(Flags);
5804       return SDValue(E, 0);
5805     }
5806 
5807     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5808     N->setFlags(Flags);
5809     createOperands(N, Ops);
5810     CSEMap.InsertNode(N, IP);
5811   } else {
5812     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5813     createOperands(N, Ops);
5814   }
5815 
5816   InsertNode(N);
5817   SDValue V = SDValue(N, 0);
5818   NewSDValueDbgMsg(V, "Creating new node: ", this);
5819   return V;
5820 }
5821 
5822 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5823                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5824   SDValue Ops[] = { N1, N2, N3, N4 };
5825   return getNode(Opcode, DL, VT, Ops);
5826 }
5827 
5828 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5829                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5830                               SDValue N5) {
5831   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5832   return getNode(Opcode, DL, VT, Ops);
5833 }
5834 
5835 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5836 /// the incoming stack arguments to be loaded from the stack.
5837 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5838   SmallVector<SDValue, 8> ArgChains;
5839 
5840   // Include the original chain at the beginning of the list. When this is
5841   // used by target LowerCall hooks, this helps legalize find the
5842   // CALLSEQ_BEGIN node.
5843   ArgChains.push_back(Chain);
5844 
5845   // Add a chain value for each stack argument.
5846   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5847        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5848     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5849       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5850         if (FI->getIndex() < 0)
5851           ArgChains.push_back(SDValue(L, 1));
5852 
5853   // Build a tokenfactor for all the chains.
5854   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5855 }
5856 
5857 /// getMemsetValue - Vectorized representation of the memset value
5858 /// operand.
5859 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5860                               const SDLoc &dl) {
5861   assert(!Value.isUndef());
5862 
5863   unsigned NumBits = VT.getScalarSizeInBits();
5864   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5865     assert(C->getAPIntValue().getBitWidth() == 8);
5866     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5867     if (VT.isInteger()) {
5868       bool IsOpaque = VT.getSizeInBits() > 64 ||
5869           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5870       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5871     }
5872     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5873                              VT);
5874   }
5875 
5876   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5877   EVT IntVT = VT.getScalarType();
5878   if (!IntVT.isInteger())
5879     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5880 
5881   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5882   if (NumBits > 8) {
5883     // Use a multiplication with 0x010101... to extend the input to the
5884     // required length.
5885     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5886     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5887                         DAG.getConstant(Magic, dl, IntVT));
5888   }
5889 
5890   if (VT != Value.getValueType() && !VT.isInteger())
5891     Value = DAG.getBitcast(VT.getScalarType(), Value);
5892   if (VT != Value.getValueType())
5893     Value = DAG.getSplatBuildVector(VT, dl, Value);
5894 
5895   return Value;
5896 }
5897 
5898 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5899 /// used when a memcpy is turned into a memset when the source is a constant
5900 /// string ptr.
5901 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5902                                   const TargetLowering &TLI,
5903                                   const ConstantDataArraySlice &Slice) {
5904   // Handle vector with all elements zero.
5905   if (Slice.Array == nullptr) {
5906     if (VT.isInteger())
5907       return DAG.getConstant(0, dl, VT);
5908     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5909       return DAG.getConstantFP(0.0, dl, VT);
5910     else if (VT.isVector()) {
5911       unsigned NumElts = VT.getVectorNumElements();
5912       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5913       return DAG.getNode(ISD::BITCAST, dl, VT,
5914                          DAG.getConstant(0, dl,
5915                                          EVT::getVectorVT(*DAG.getContext(),
5916                                                           EltVT, NumElts)));
5917     } else
5918       llvm_unreachable("Expected type!");
5919   }
5920 
5921   assert(!VT.isVector() && "Can't handle vector type here!");
5922   unsigned NumVTBits = VT.getSizeInBits();
5923   unsigned NumVTBytes = NumVTBits / 8;
5924   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5925 
5926   APInt Val(NumVTBits, 0);
5927   if (DAG.getDataLayout().isLittleEndian()) {
5928     for (unsigned i = 0; i != NumBytes; ++i)
5929       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5930   } else {
5931     for (unsigned i = 0; i != NumBytes; ++i)
5932       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5933   }
5934 
5935   // If the "cost" of materializing the integer immediate is less than the cost
5936   // of a load, then it is cost effective to turn the load into the immediate.
5937   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5938   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5939     return DAG.getConstant(Val, dl, VT);
5940   return SDValue(nullptr, 0);
5941 }
5942 
5943 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset,
5944                                            const SDLoc &DL,
5945                                            const SDNodeFlags Flags) {
5946   EVT VT = Base.getValueType();
5947   return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags);
5948 }
5949 
5950 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
5951                                            const SDLoc &DL,
5952                                            const SDNodeFlags Flags) {
5953   assert(Offset.getValueType().isInteger());
5954   EVT BasePtrVT = Ptr.getValueType();
5955   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
5956 }
5957 
5958 /// Returns true if memcpy source is constant data.
5959 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5960   uint64_t SrcDelta = 0;
5961   GlobalAddressSDNode *G = nullptr;
5962   if (Src.getOpcode() == ISD::GlobalAddress)
5963     G = cast<GlobalAddressSDNode>(Src);
5964   else if (Src.getOpcode() == ISD::ADD &&
5965            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5966            Src.getOperand(1).getOpcode() == ISD::Constant) {
5967     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5968     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5969   }
5970   if (!G)
5971     return false;
5972 
5973   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5974                                   SrcDelta + G->getOffset());
5975 }
5976 
5977 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
5978                                       SelectionDAG &DAG) {
5979   // On Darwin, -Os means optimize for size without hurting performance, so
5980   // only really optimize for size when -Oz (MinSize) is used.
5981   if (MF.getTarget().getTargetTriple().isOSDarwin())
5982     return MF.getFunction().hasMinSize();
5983   return DAG.shouldOptForSize();
5984 }
5985 
5986 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5987                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5988                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5989                           SmallVector<SDValue, 16> &OutStoreChains) {
5990   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5991   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5992   SmallVector<SDValue, 16> GluedLoadChains;
5993   for (unsigned i = From; i < To; ++i) {
5994     OutChains.push_back(OutLoadChains[i]);
5995     GluedLoadChains.push_back(OutLoadChains[i]);
5996   }
5997 
5998   // Chain for all loads.
5999   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6000                                   GluedLoadChains);
6001 
6002   for (unsigned i = From; i < To; ++i) {
6003     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6004     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6005                                   ST->getBasePtr(), ST->getMemoryVT(),
6006                                   ST->getMemOperand());
6007     OutChains.push_back(NewStore);
6008   }
6009 }
6010 
6011 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6012                                        SDValue Chain, SDValue Dst, SDValue Src,
6013                                        uint64_t Size, Align Alignment,
6014                                        bool isVol, bool AlwaysInline,
6015                                        MachinePointerInfo DstPtrInfo,
6016                                        MachinePointerInfo SrcPtrInfo) {
6017   // Turn a memcpy of undef to nop.
6018   // FIXME: We need to honor volatile even is Src is undef.
6019   if (Src.isUndef())
6020     return Chain;
6021 
6022   // Expand memcpy to a series of load and store ops if the size operand falls
6023   // below a certain threshold.
6024   // TODO: In the AlwaysInline case, if the size is big then generate a loop
6025   // rather than maybe a humongous number of loads and stores.
6026   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6027   const DataLayout &DL = DAG.getDataLayout();
6028   LLVMContext &C = *DAG.getContext();
6029   std::vector<EVT> MemOps;
6030   bool DstAlignCanChange = false;
6031   MachineFunction &MF = DAG.getMachineFunction();
6032   MachineFrameInfo &MFI = MF.getFrameInfo();
6033   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6034   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6035   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6036     DstAlignCanChange = true;
6037   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6038   if (!SrcAlign || Alignment > *SrcAlign)
6039     SrcAlign = Alignment;
6040   assert(SrcAlign && "SrcAlign must be set");
6041   ConstantDataArraySlice Slice;
6042   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
6043   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6044   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6045   const MemOp Op = isZeroConstant
6046                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6047                                     /*IsZeroMemset*/ true, isVol)
6048                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
6049                                      *SrcAlign, isVol, CopyFromConstant);
6050   if (!TLI.findOptimalMemOpLowering(
6051           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
6052           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
6053     return SDValue();
6054 
6055   if (DstAlignCanChange) {
6056     Type *Ty = MemOps[0].getTypeForEVT(C);
6057     Align NewAlign = DL.getABITypeAlign(Ty);
6058 
6059     // Don't promote to an alignment that would require dynamic stack
6060     // realignment.
6061     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6062     if (!TRI->needsStackRealignment(MF))
6063       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6064         NewAlign = NewAlign / 2;
6065 
6066     if (NewAlign > Alignment) {
6067       // Give the stack frame object a larger alignment if needed.
6068       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6069         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6070       Alignment = NewAlign;
6071     }
6072   }
6073 
6074   MachineMemOperand::Flags MMOFlags =
6075       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6076   SmallVector<SDValue, 16> OutLoadChains;
6077   SmallVector<SDValue, 16> OutStoreChains;
6078   SmallVector<SDValue, 32> OutChains;
6079   unsigned NumMemOps = MemOps.size();
6080   uint64_t SrcOff = 0, DstOff = 0;
6081   for (unsigned i = 0; i != NumMemOps; ++i) {
6082     EVT VT = MemOps[i];
6083     unsigned VTSize = VT.getSizeInBits() / 8;
6084     SDValue Value, Store;
6085 
6086     if (VTSize > Size) {
6087       // Issuing an unaligned load / store pair  that overlaps with the previous
6088       // pair. Adjust the offset accordingly.
6089       assert(i == NumMemOps-1 && i != 0);
6090       SrcOff -= VTSize - Size;
6091       DstOff -= VTSize - Size;
6092     }
6093 
6094     if (CopyFromConstant &&
6095         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6096       // It's unlikely a store of a vector immediate can be done in a single
6097       // instruction. It would require a load from a constantpool first.
6098       // We only handle zero vectors here.
6099       // FIXME: Handle other cases where store of vector immediate is done in
6100       // a single instruction.
6101       ConstantDataArraySlice SubSlice;
6102       if (SrcOff < Slice.Length) {
6103         SubSlice = Slice;
6104         SubSlice.move(SrcOff);
6105       } else {
6106         // This is an out-of-bounds access and hence UB. Pretend we read zero.
6107         SubSlice.Array = nullptr;
6108         SubSlice.Offset = 0;
6109         SubSlice.Length = VTSize;
6110       }
6111       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6112       if (Value.getNode()) {
6113         Store = DAG.getStore(
6114             Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6115             DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags);
6116         OutChains.push_back(Store);
6117       }
6118     }
6119 
6120     if (!Store.getNode()) {
6121       // The type might not be legal for the target.  This should only happen
6122       // if the type is smaller than a legal type, as on PPC, so the right
6123       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
6124       // to Load/Store if NVT==VT.
6125       // FIXME does the case above also need this?
6126       EVT NVT = TLI.getTypeToTransformTo(C, VT);
6127       assert(NVT.bitsGE(VT));
6128 
6129       bool isDereferenceable =
6130         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6131       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6132       if (isDereferenceable)
6133         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6134 
6135       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
6136                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6137                              SrcPtrInfo.getWithOffset(SrcOff), VT,
6138                              commonAlignment(*SrcAlign, SrcOff).value(),
6139                              SrcMMOFlags);
6140       OutLoadChains.push_back(Value.getValue(1));
6141 
6142       Store = DAG.getTruncStore(
6143           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6144           DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags);
6145       OutStoreChains.push_back(Store);
6146     }
6147     SrcOff += VTSize;
6148     DstOff += VTSize;
6149     Size -= VTSize;
6150   }
6151 
6152   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6153                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6154   unsigned NumLdStInMemcpy = OutStoreChains.size();
6155 
6156   if (NumLdStInMemcpy) {
6157     // It may be that memcpy might be converted to memset if it's memcpy
6158     // of constants. In such a case, we won't have loads and stores, but
6159     // just stores. In the absence of loads, there is nothing to gang up.
6160     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6161       // If target does not care, just leave as it.
6162       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6163         OutChains.push_back(OutLoadChains[i]);
6164         OutChains.push_back(OutStoreChains[i]);
6165       }
6166     } else {
6167       // Ld/St less than/equal limit set by target.
6168       if (NumLdStInMemcpy <= GluedLdStLimit) {
6169           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6170                                         NumLdStInMemcpy, OutLoadChains,
6171                                         OutStoreChains);
6172       } else {
6173         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
6174         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6175         unsigned GlueIter = 0;
6176 
6177         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6178           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6179           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
6180 
6181           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6182                                        OutLoadChains, OutStoreChains);
6183           GlueIter += GluedLdStLimit;
6184         }
6185 
6186         // Residual ld/st.
6187         if (RemainingLdStInMemcpy) {
6188           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6189                                         RemainingLdStInMemcpy, OutLoadChains,
6190                                         OutStoreChains);
6191         }
6192       }
6193     }
6194   }
6195   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6196 }
6197 
6198 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
6199                                         SDValue Chain, SDValue Dst, SDValue Src,
6200                                         uint64_t Size, Align Alignment,
6201                                         bool isVol, bool AlwaysInline,
6202                                         MachinePointerInfo DstPtrInfo,
6203                                         MachinePointerInfo SrcPtrInfo) {
6204   // Turn a memmove of undef to nop.
6205   // FIXME: We need to honor volatile even is Src is undef.
6206   if (Src.isUndef())
6207     return Chain;
6208 
6209   // Expand memmove to a series of load and store ops if the size operand falls
6210   // below a certain threshold.
6211   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6212   const DataLayout &DL = DAG.getDataLayout();
6213   LLVMContext &C = *DAG.getContext();
6214   std::vector<EVT> MemOps;
6215   bool DstAlignCanChange = false;
6216   MachineFunction &MF = DAG.getMachineFunction();
6217   MachineFrameInfo &MFI = MF.getFrameInfo();
6218   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6219   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6220   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6221     DstAlignCanChange = true;
6222   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6223   if (!SrcAlign || Alignment > *SrcAlign)
6224     SrcAlign = Alignment;
6225   assert(SrcAlign && "SrcAlign must be set");
6226   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6227   if (!TLI.findOptimalMemOpLowering(
6228           MemOps, Limit,
6229           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6230                       /*IsVolatile*/ true),
6231           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6232           MF.getFunction().getAttributes()))
6233     return SDValue();
6234 
6235   if (DstAlignCanChange) {
6236     Type *Ty = MemOps[0].getTypeForEVT(C);
6237     Align NewAlign = DL.getABITypeAlign(Ty);
6238     if (NewAlign > Alignment) {
6239       // Give the stack frame object a larger alignment if needed.
6240       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6241         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6242       Alignment = NewAlign;
6243     }
6244   }
6245 
6246   MachineMemOperand::Flags MMOFlags =
6247       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6248   uint64_t SrcOff = 0, DstOff = 0;
6249   SmallVector<SDValue, 8> LoadValues;
6250   SmallVector<SDValue, 8> LoadChains;
6251   SmallVector<SDValue, 8> OutChains;
6252   unsigned NumMemOps = MemOps.size();
6253   for (unsigned i = 0; i < NumMemOps; i++) {
6254     EVT VT = MemOps[i];
6255     unsigned VTSize = VT.getSizeInBits() / 8;
6256     SDValue Value;
6257 
6258     bool isDereferenceable =
6259       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6260     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6261     if (isDereferenceable)
6262       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6263 
6264     Value = DAG.getLoad(
6265         VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6266         SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags);
6267     LoadValues.push_back(Value);
6268     LoadChains.push_back(Value.getValue(1));
6269     SrcOff += VTSize;
6270   }
6271   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6272   OutChains.clear();
6273   for (unsigned i = 0; i < NumMemOps; i++) {
6274     EVT VT = MemOps[i];
6275     unsigned VTSize = VT.getSizeInBits() / 8;
6276     SDValue Store;
6277 
6278     Store = DAG.getStore(
6279         Chain, dl, LoadValues[i], DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6280         DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags);
6281     OutChains.push_back(Store);
6282     DstOff += VTSize;
6283   }
6284 
6285   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6286 }
6287 
6288 /// Lower the call to 'memset' intrinsic function into a series of store
6289 /// operations.
6290 ///
6291 /// \param DAG Selection DAG where lowered code is placed.
6292 /// \param dl Link to corresponding IR location.
6293 /// \param Chain Control flow dependency.
6294 /// \param Dst Pointer to destination memory location.
6295 /// \param Src Value of byte to write into the memory.
6296 /// \param Size Number of bytes to write.
6297 /// \param Alignment Alignment of the destination in bytes.
6298 /// \param isVol True if destination is volatile.
6299 /// \param DstPtrInfo IR information on the memory pointer.
6300 /// \returns New head in the control flow, if lowering was successful, empty
6301 /// SDValue otherwise.
6302 ///
6303 /// The function tries to replace 'llvm.memset' intrinsic with several store
6304 /// operations and value calculation code. This is usually profitable for small
6305 /// memory size.
6306 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6307                                SDValue Chain, SDValue Dst, SDValue Src,
6308                                uint64_t Size, Align Alignment, bool isVol,
6309                                MachinePointerInfo DstPtrInfo) {
6310   // Turn a memset of undef to nop.
6311   // FIXME: We need to honor volatile even is Src is undef.
6312   if (Src.isUndef())
6313     return Chain;
6314 
6315   // Expand memset to a series of load/store ops if the size operand
6316   // falls below a certain threshold.
6317   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6318   std::vector<EVT> MemOps;
6319   bool DstAlignCanChange = false;
6320   MachineFunction &MF = DAG.getMachineFunction();
6321   MachineFrameInfo &MFI = MF.getFrameInfo();
6322   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6323   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6324   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6325     DstAlignCanChange = true;
6326   bool IsZeroVal =
6327     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6328   if (!TLI.findOptimalMemOpLowering(
6329           MemOps, TLI.getMaxStoresPerMemset(OptSize),
6330           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6331           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6332     return SDValue();
6333 
6334   if (DstAlignCanChange) {
6335     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6336     Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6337     if (NewAlign > Alignment) {
6338       // Give the stack frame object a larger alignment if needed.
6339       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6340         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6341       Alignment = NewAlign;
6342     }
6343   }
6344 
6345   SmallVector<SDValue, 8> OutChains;
6346   uint64_t DstOff = 0;
6347   unsigned NumMemOps = MemOps.size();
6348 
6349   // Find the largest store and generate the bit pattern for it.
6350   EVT LargestVT = MemOps[0];
6351   for (unsigned i = 1; i < NumMemOps; i++)
6352     if (MemOps[i].bitsGT(LargestVT))
6353       LargestVT = MemOps[i];
6354   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6355 
6356   for (unsigned i = 0; i < NumMemOps; i++) {
6357     EVT VT = MemOps[i];
6358     unsigned VTSize = VT.getSizeInBits() / 8;
6359     if (VTSize > Size) {
6360       // Issuing an unaligned load / store pair  that overlaps with the previous
6361       // pair. Adjust the offset accordingly.
6362       assert(i == NumMemOps-1 && i != 0);
6363       DstOff -= VTSize - Size;
6364     }
6365 
6366     // If this store is smaller than the largest store see whether we can get
6367     // the smaller value for free with a truncate.
6368     SDValue Value = MemSetValue;
6369     if (VT.bitsLT(LargestVT)) {
6370       if (!LargestVT.isVector() && !VT.isVector() &&
6371           TLI.isTruncateFree(LargestVT, VT))
6372         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6373       else
6374         Value = getMemsetValue(Src, VT, DAG, dl);
6375     }
6376     assert(Value.getValueType() == VT && "Value with wrong type.");
6377     SDValue Store = DAG.getStore(
6378         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6379         DstPtrInfo.getWithOffset(DstOff), Alignment.value(),
6380         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6381     OutChains.push_back(Store);
6382     DstOff += VT.getSizeInBits() / 8;
6383     Size -= VTSize;
6384   }
6385 
6386   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6387 }
6388 
6389 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6390                                             unsigned AS) {
6391   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6392   // pointer operands can be losslessly bitcasted to pointers of address space 0
6393   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6394     report_fatal_error("cannot lower memory intrinsic in address space " +
6395                        Twine(AS));
6396   }
6397 }
6398 
6399 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6400                                 SDValue Src, SDValue Size, Align Alignment,
6401                                 bool isVol, bool AlwaysInline, bool isTailCall,
6402                                 MachinePointerInfo DstPtrInfo,
6403                                 MachinePointerInfo SrcPtrInfo) {
6404   // Check to see if we should lower the memcpy to loads and stores first.
6405   // For cases within the target-specified limits, this is the best choice.
6406   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6407   if (ConstantSize) {
6408     // Memcpy with size zero? Just return the original chain.
6409     if (ConstantSize->isNullValue())
6410       return Chain;
6411 
6412     SDValue Result = getMemcpyLoadsAndStores(
6413         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6414         isVol, false, DstPtrInfo, SrcPtrInfo);
6415     if (Result.getNode())
6416       return Result;
6417   }
6418 
6419   // Then check to see if we should lower the memcpy with target-specific
6420   // code. If the target chooses to do this, this is the next best.
6421   if (TSI) {
6422     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6423         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
6424         DstPtrInfo, SrcPtrInfo);
6425     if (Result.getNode())
6426       return Result;
6427   }
6428 
6429   // If we really need inline code and the target declined to provide it,
6430   // use a (potentially long) sequence of loads and stores.
6431   if (AlwaysInline) {
6432     assert(ConstantSize && "AlwaysInline requires a constant size!");
6433     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6434                                    ConstantSize->getZExtValue(), Alignment,
6435                                    isVol, true, DstPtrInfo, SrcPtrInfo);
6436   }
6437 
6438   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6439   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6440 
6441   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6442   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6443   // respect volatile, so they may do things like read or write memory
6444   // beyond the given memory regions. But fixing this isn't easy, and most
6445   // people don't care.
6446 
6447   // Emit a library call.
6448   TargetLowering::ArgListTy Args;
6449   TargetLowering::ArgListEntry Entry;
6450   Entry.Ty = Type::getInt8PtrTy(*getContext());
6451   Entry.Node = Dst; Args.push_back(Entry);
6452   Entry.Node = Src; Args.push_back(Entry);
6453 
6454   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6455   Entry.Node = Size; Args.push_back(Entry);
6456   // FIXME: pass in SDLoc
6457   TargetLowering::CallLoweringInfo CLI(*this);
6458   CLI.setDebugLoc(dl)
6459       .setChain(Chain)
6460       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6461                     Dst.getValueType().getTypeForEVT(*getContext()),
6462                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6463                                       TLI->getPointerTy(getDataLayout())),
6464                     std::move(Args))
6465       .setDiscardResult()
6466       .setTailCall(isTailCall);
6467 
6468   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6469   return CallResult.second;
6470 }
6471 
6472 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6473                                       SDValue Dst, unsigned DstAlign,
6474                                       SDValue Src, unsigned SrcAlign,
6475                                       SDValue Size, Type *SizeTy,
6476                                       unsigned ElemSz, bool isTailCall,
6477                                       MachinePointerInfo DstPtrInfo,
6478                                       MachinePointerInfo SrcPtrInfo) {
6479   // Emit a library call.
6480   TargetLowering::ArgListTy Args;
6481   TargetLowering::ArgListEntry Entry;
6482   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6483   Entry.Node = Dst;
6484   Args.push_back(Entry);
6485 
6486   Entry.Node = Src;
6487   Args.push_back(Entry);
6488 
6489   Entry.Ty = SizeTy;
6490   Entry.Node = Size;
6491   Args.push_back(Entry);
6492 
6493   RTLIB::Libcall LibraryCall =
6494       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6495   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6496     report_fatal_error("Unsupported element size");
6497 
6498   TargetLowering::CallLoweringInfo CLI(*this);
6499   CLI.setDebugLoc(dl)
6500       .setChain(Chain)
6501       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6502                     Type::getVoidTy(*getContext()),
6503                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6504                                       TLI->getPointerTy(getDataLayout())),
6505                     std::move(Args))
6506       .setDiscardResult()
6507       .setTailCall(isTailCall);
6508 
6509   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6510   return CallResult.second;
6511 }
6512 
6513 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6514                                  SDValue Src, SDValue Size, Align Alignment,
6515                                  bool isVol, bool isTailCall,
6516                                  MachinePointerInfo DstPtrInfo,
6517                                  MachinePointerInfo SrcPtrInfo) {
6518   // Check to see if we should lower the memmove to loads and stores first.
6519   // For cases within the target-specified limits, this is the best choice.
6520   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6521   if (ConstantSize) {
6522     // Memmove with size zero? Just return the original chain.
6523     if (ConstantSize->isNullValue())
6524       return Chain;
6525 
6526     SDValue Result = getMemmoveLoadsAndStores(
6527         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6528         isVol, false, DstPtrInfo, SrcPtrInfo);
6529     if (Result.getNode())
6530       return Result;
6531   }
6532 
6533   // Then check to see if we should lower the memmove with target-specific
6534   // code. If the target chooses to do this, this is the next best.
6535   if (TSI) {
6536     SDValue Result =
6537         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
6538                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
6539     if (Result.getNode())
6540       return Result;
6541   }
6542 
6543   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6544   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6545 
6546   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6547   // not be safe.  See memcpy above for more details.
6548 
6549   // Emit a library call.
6550   TargetLowering::ArgListTy Args;
6551   TargetLowering::ArgListEntry Entry;
6552   Entry.Ty = Type::getInt8PtrTy(*getContext());
6553   Entry.Node = Dst; Args.push_back(Entry);
6554   Entry.Node = Src; Args.push_back(Entry);
6555 
6556   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6557   Entry.Node = Size; Args.push_back(Entry);
6558   // FIXME:  pass in SDLoc
6559   TargetLowering::CallLoweringInfo CLI(*this);
6560   CLI.setDebugLoc(dl)
6561       .setChain(Chain)
6562       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6563                     Dst.getValueType().getTypeForEVT(*getContext()),
6564                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6565                                       TLI->getPointerTy(getDataLayout())),
6566                     std::move(Args))
6567       .setDiscardResult()
6568       .setTailCall(isTailCall);
6569 
6570   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6571   return CallResult.second;
6572 }
6573 
6574 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6575                                        SDValue Dst, unsigned DstAlign,
6576                                        SDValue Src, unsigned SrcAlign,
6577                                        SDValue Size, Type *SizeTy,
6578                                        unsigned ElemSz, bool isTailCall,
6579                                        MachinePointerInfo DstPtrInfo,
6580                                        MachinePointerInfo SrcPtrInfo) {
6581   // Emit a library call.
6582   TargetLowering::ArgListTy Args;
6583   TargetLowering::ArgListEntry Entry;
6584   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6585   Entry.Node = Dst;
6586   Args.push_back(Entry);
6587 
6588   Entry.Node = Src;
6589   Args.push_back(Entry);
6590 
6591   Entry.Ty = SizeTy;
6592   Entry.Node = Size;
6593   Args.push_back(Entry);
6594 
6595   RTLIB::Libcall LibraryCall =
6596       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6597   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6598     report_fatal_error("Unsupported element size");
6599 
6600   TargetLowering::CallLoweringInfo CLI(*this);
6601   CLI.setDebugLoc(dl)
6602       .setChain(Chain)
6603       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6604                     Type::getVoidTy(*getContext()),
6605                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6606                                       TLI->getPointerTy(getDataLayout())),
6607                     std::move(Args))
6608       .setDiscardResult()
6609       .setTailCall(isTailCall);
6610 
6611   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6612   return CallResult.second;
6613 }
6614 
6615 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6616                                 SDValue Src, SDValue Size, Align Alignment,
6617                                 bool isVol, bool isTailCall,
6618                                 MachinePointerInfo DstPtrInfo) {
6619   // Check to see if we should lower the memset to stores first.
6620   // For cases within the target-specified limits, this is the best choice.
6621   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6622   if (ConstantSize) {
6623     // Memset with size zero? Just return the original chain.
6624     if (ConstantSize->isNullValue())
6625       return Chain;
6626 
6627     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6628                                      ConstantSize->getZExtValue(), Alignment,
6629                                      isVol, DstPtrInfo);
6630 
6631     if (Result.getNode())
6632       return Result;
6633   }
6634 
6635   // Then check to see if we should lower the memset with target-specific
6636   // code. If the target chooses to do this, this is the next best.
6637   if (TSI) {
6638     SDValue Result = TSI->EmitTargetCodeForMemset(
6639         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
6640     if (Result.getNode())
6641       return Result;
6642   }
6643 
6644   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6645 
6646   // Emit a library call.
6647   TargetLowering::ArgListTy Args;
6648   TargetLowering::ArgListEntry Entry;
6649   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6650   Args.push_back(Entry);
6651   Entry.Node = Src;
6652   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6653   Args.push_back(Entry);
6654   Entry.Node = Size;
6655   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6656   Args.push_back(Entry);
6657 
6658   // FIXME: pass in SDLoc
6659   TargetLowering::CallLoweringInfo CLI(*this);
6660   CLI.setDebugLoc(dl)
6661       .setChain(Chain)
6662       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6663                     Dst.getValueType().getTypeForEVT(*getContext()),
6664                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6665                                       TLI->getPointerTy(getDataLayout())),
6666                     std::move(Args))
6667       .setDiscardResult()
6668       .setTailCall(isTailCall);
6669 
6670   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6671   return CallResult.second;
6672 }
6673 
6674 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6675                                       SDValue Dst, unsigned DstAlign,
6676                                       SDValue Value, SDValue Size, Type *SizeTy,
6677                                       unsigned ElemSz, bool isTailCall,
6678                                       MachinePointerInfo DstPtrInfo) {
6679   // Emit a library call.
6680   TargetLowering::ArgListTy Args;
6681   TargetLowering::ArgListEntry Entry;
6682   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6683   Entry.Node = Dst;
6684   Args.push_back(Entry);
6685 
6686   Entry.Ty = Type::getInt8Ty(*getContext());
6687   Entry.Node = Value;
6688   Args.push_back(Entry);
6689 
6690   Entry.Ty = SizeTy;
6691   Entry.Node = Size;
6692   Args.push_back(Entry);
6693 
6694   RTLIB::Libcall LibraryCall =
6695       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6696   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6697     report_fatal_error("Unsupported element size");
6698 
6699   TargetLowering::CallLoweringInfo CLI(*this);
6700   CLI.setDebugLoc(dl)
6701       .setChain(Chain)
6702       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6703                     Type::getVoidTy(*getContext()),
6704                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6705                                       TLI->getPointerTy(getDataLayout())),
6706                     std::move(Args))
6707       .setDiscardResult()
6708       .setTailCall(isTailCall);
6709 
6710   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6711   return CallResult.second;
6712 }
6713 
6714 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6715                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6716                                 MachineMemOperand *MMO) {
6717   FoldingSetNodeID ID;
6718   ID.AddInteger(MemVT.getRawBits());
6719   AddNodeIDNode(ID, Opcode, VTList, Ops);
6720   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6721   void* IP = nullptr;
6722   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6723     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6724     return SDValue(E, 0);
6725   }
6726 
6727   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6728                                     VTList, MemVT, MMO);
6729   createOperands(N, Ops);
6730 
6731   CSEMap.InsertNode(N, IP);
6732   InsertNode(N);
6733   return SDValue(N, 0);
6734 }
6735 
6736 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6737                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6738                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6739                                        MachineMemOperand *MMO) {
6740   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6741          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6742   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6743 
6744   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6745   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6746 }
6747 
6748 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6749                                 SDValue Chain, SDValue Ptr, SDValue Val,
6750                                 MachineMemOperand *MMO) {
6751   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6752           Opcode == ISD::ATOMIC_LOAD_SUB ||
6753           Opcode == ISD::ATOMIC_LOAD_AND ||
6754           Opcode == ISD::ATOMIC_LOAD_CLR ||
6755           Opcode == ISD::ATOMIC_LOAD_OR ||
6756           Opcode == ISD::ATOMIC_LOAD_XOR ||
6757           Opcode == ISD::ATOMIC_LOAD_NAND ||
6758           Opcode == ISD::ATOMIC_LOAD_MIN ||
6759           Opcode == ISD::ATOMIC_LOAD_MAX ||
6760           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6761           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6762           Opcode == ISD::ATOMIC_LOAD_FADD ||
6763           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6764           Opcode == ISD::ATOMIC_SWAP ||
6765           Opcode == ISD::ATOMIC_STORE) &&
6766          "Invalid Atomic Op");
6767 
6768   EVT VT = Val.getValueType();
6769 
6770   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6771                                                getVTList(VT, MVT::Other);
6772   SDValue Ops[] = {Chain, Ptr, Val};
6773   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6774 }
6775 
6776 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6777                                 EVT VT, SDValue Chain, SDValue Ptr,
6778                                 MachineMemOperand *MMO) {
6779   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6780 
6781   SDVTList VTs = getVTList(VT, MVT::Other);
6782   SDValue Ops[] = {Chain, Ptr};
6783   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6784 }
6785 
6786 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6787 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6788   if (Ops.size() == 1)
6789     return Ops[0];
6790 
6791   SmallVector<EVT, 4> VTs;
6792   VTs.reserve(Ops.size());
6793   for (unsigned i = 0; i < Ops.size(); ++i)
6794     VTs.push_back(Ops[i].getValueType());
6795   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6796 }
6797 
6798 SDValue SelectionDAG::getMemIntrinsicNode(
6799     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6800     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
6801     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6802   if (!Size && MemVT.isScalableVector())
6803     Size = MemoryLocation::UnknownSize;
6804   else if (!Size)
6805     Size = MemVT.getStoreSize();
6806 
6807   MachineFunction &MF = getMachineFunction();
6808   MachineMemOperand *MMO =
6809       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
6810 
6811   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6812 }
6813 
6814 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6815                                           SDVTList VTList,
6816                                           ArrayRef<SDValue> Ops, EVT MemVT,
6817                                           MachineMemOperand *MMO) {
6818   assert((Opcode == ISD::INTRINSIC_VOID ||
6819           Opcode == ISD::INTRINSIC_W_CHAIN ||
6820           Opcode == ISD::PREFETCH ||
6821           ((int)Opcode <= std::numeric_limits<int>::max() &&
6822            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6823          "Opcode is not a memory-accessing opcode!");
6824 
6825   // Memoize the node unless it returns a flag.
6826   MemIntrinsicSDNode *N;
6827   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6828     FoldingSetNodeID ID;
6829     AddNodeIDNode(ID, Opcode, VTList, Ops);
6830     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6831         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6832     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6833     void *IP = nullptr;
6834     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6835       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6836       return SDValue(E, 0);
6837     }
6838 
6839     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6840                                       VTList, MemVT, MMO);
6841     createOperands(N, Ops);
6842 
6843   CSEMap.InsertNode(N, IP);
6844   } else {
6845     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6846                                       VTList, MemVT, MMO);
6847     createOperands(N, Ops);
6848   }
6849   InsertNode(N);
6850   SDValue V(N, 0);
6851   NewSDValueDbgMsg(V, "Creating new node: ", this);
6852   return V;
6853 }
6854 
6855 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6856                                       SDValue Chain, int FrameIndex,
6857                                       int64_t Size, int64_t Offset) {
6858   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6859   const auto VTs = getVTList(MVT::Other);
6860   SDValue Ops[2] = {
6861       Chain,
6862       getFrameIndex(FrameIndex,
6863                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6864                     true)};
6865 
6866   FoldingSetNodeID ID;
6867   AddNodeIDNode(ID, Opcode, VTs, Ops);
6868   ID.AddInteger(FrameIndex);
6869   ID.AddInteger(Size);
6870   ID.AddInteger(Offset);
6871   void *IP = nullptr;
6872   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6873     return SDValue(E, 0);
6874 
6875   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6876       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6877   createOperands(N, Ops);
6878   CSEMap.InsertNode(N, IP);
6879   InsertNode(N);
6880   SDValue V(N, 0);
6881   NewSDValueDbgMsg(V, "Creating new node: ", this);
6882   return V;
6883 }
6884 
6885 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6886 /// MachinePointerInfo record from it.  This is particularly useful because the
6887 /// code generator has many cases where it doesn't bother passing in a
6888 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6889 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6890                                            SelectionDAG &DAG, SDValue Ptr,
6891                                            int64_t Offset = 0) {
6892   // If this is FI+Offset, we can model it.
6893   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6894     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6895                                              FI->getIndex(), Offset);
6896 
6897   // If this is (FI+Offset1)+Offset2, we can model it.
6898   if (Ptr.getOpcode() != ISD::ADD ||
6899       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6900       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6901     return Info;
6902 
6903   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6904   return MachinePointerInfo::getFixedStack(
6905       DAG.getMachineFunction(), FI,
6906       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6907 }
6908 
6909 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6910 /// MachinePointerInfo record from it.  This is particularly useful because the
6911 /// code generator has many cases where it doesn't bother passing in a
6912 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6913 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6914                                            SelectionDAG &DAG, SDValue Ptr,
6915                                            SDValue OffsetOp) {
6916   // If the 'Offset' value isn't a constant, we can't handle this.
6917   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6918     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6919   if (OffsetOp.isUndef())
6920     return InferPointerInfo(Info, DAG, Ptr);
6921   return Info;
6922 }
6923 
6924 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6925                               EVT VT, const SDLoc &dl, SDValue Chain,
6926                               SDValue Ptr, SDValue Offset,
6927                               MachinePointerInfo PtrInfo, EVT MemVT,
6928                               Align Alignment,
6929                               MachineMemOperand::Flags MMOFlags,
6930                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6931   assert(Chain.getValueType() == MVT::Other &&
6932         "Invalid chain type");
6933 
6934   MMOFlags |= MachineMemOperand::MOLoad;
6935   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6936   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6937   // clients.
6938   if (PtrInfo.V.isNull())
6939     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6940 
6941   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
6942   MachineFunction &MF = getMachineFunction();
6943   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
6944                                                    Alignment, AAInfo, Ranges);
6945   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6946 }
6947 
6948 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6949                               EVT VT, const SDLoc &dl, SDValue Chain,
6950                               SDValue Ptr, SDValue Offset, EVT MemVT,
6951                               MachineMemOperand *MMO) {
6952   if (VT == MemVT) {
6953     ExtType = ISD::NON_EXTLOAD;
6954   } else if (ExtType == ISD::NON_EXTLOAD) {
6955     assert(VT == MemVT && "Non-extending load from different memory type!");
6956   } else {
6957     // Extending load.
6958     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6959            "Should only be an extending load, not truncating!");
6960     assert(VT.isInteger() == MemVT.isInteger() &&
6961            "Cannot convert from FP to Int or Int -> FP!");
6962     assert(VT.isVector() == MemVT.isVector() &&
6963            "Cannot use an ext load to convert to or from a vector!");
6964     assert((!VT.isVector() ||
6965             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6966            "Cannot use an ext load to change the number of vector elements!");
6967   }
6968 
6969   bool Indexed = AM != ISD::UNINDEXED;
6970   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6971 
6972   SDVTList VTs = Indexed ?
6973     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6974   SDValue Ops[] = { Chain, Ptr, Offset };
6975   FoldingSetNodeID ID;
6976   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6977   ID.AddInteger(MemVT.getRawBits());
6978   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6979       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6980   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6981   void *IP = nullptr;
6982   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6983     cast<LoadSDNode>(E)->refineAlignment(MMO);
6984     return SDValue(E, 0);
6985   }
6986   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6987                                   ExtType, MemVT, MMO);
6988   createOperands(N, Ops);
6989 
6990   CSEMap.InsertNode(N, IP);
6991   InsertNode(N);
6992   SDValue V(N, 0);
6993   NewSDValueDbgMsg(V, "Creating new node: ", this);
6994   return V;
6995 }
6996 
6997 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6998                               SDValue Ptr, MachinePointerInfo PtrInfo,
6999                               MaybeAlign Alignment,
7000                               MachineMemOperand::Flags MMOFlags,
7001                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
7002   SDValue Undef = getUNDEF(Ptr.getValueType());
7003   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7004                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7005 }
7006 
7007 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7008                               SDValue Ptr, MachineMemOperand *MMO) {
7009   SDValue Undef = getUNDEF(Ptr.getValueType());
7010   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7011                  VT, MMO);
7012 }
7013 
7014 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7015                                  EVT VT, SDValue Chain, SDValue Ptr,
7016                                  MachinePointerInfo PtrInfo, EVT MemVT,
7017                                  MaybeAlign Alignment,
7018                                  MachineMemOperand::Flags MMOFlags,
7019                                  const AAMDNodes &AAInfo) {
7020   SDValue Undef = getUNDEF(Ptr.getValueType());
7021   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7022                  MemVT, Alignment, MMOFlags, AAInfo);
7023 }
7024 
7025 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7026                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7027                                  MachineMemOperand *MMO) {
7028   SDValue Undef = getUNDEF(Ptr.getValueType());
7029   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7030                  MemVT, MMO);
7031 }
7032 
7033 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7034                                      SDValue Base, SDValue Offset,
7035                                      ISD::MemIndexedMode AM) {
7036   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7037   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7038   // Don't propagate the invariant or dereferenceable flags.
7039   auto MMOFlags =
7040       LD->getMemOperand()->getFlags() &
7041       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7042   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7043                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
7044                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
7045                  LD->getAAInfo());
7046 }
7047 
7048 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7049                                SDValue Ptr, MachinePointerInfo PtrInfo,
7050                                Align Alignment,
7051                                MachineMemOperand::Flags MMOFlags,
7052                                const AAMDNodes &AAInfo) {
7053   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7054 
7055   MMOFlags |= MachineMemOperand::MOStore;
7056   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7057 
7058   if (PtrInfo.V.isNull())
7059     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7060 
7061   MachineFunction &MF = getMachineFunction();
7062   uint64_t Size =
7063       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7064   MachineMemOperand *MMO =
7065       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7066   return getStore(Chain, dl, Val, Ptr, MMO);
7067 }
7068 
7069 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7070                                SDValue Ptr, MachineMemOperand *MMO) {
7071   assert(Chain.getValueType() == MVT::Other &&
7072         "Invalid chain type");
7073   EVT VT = Val.getValueType();
7074   SDVTList VTs = getVTList(MVT::Other);
7075   SDValue Undef = getUNDEF(Ptr.getValueType());
7076   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7077   FoldingSetNodeID ID;
7078   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7079   ID.AddInteger(VT.getRawBits());
7080   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7081       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7082   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7083   void *IP = nullptr;
7084   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7085     cast<StoreSDNode>(E)->refineAlignment(MMO);
7086     return SDValue(E, 0);
7087   }
7088   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7089                                    ISD::UNINDEXED, false, VT, MMO);
7090   createOperands(N, Ops);
7091 
7092   CSEMap.InsertNode(N, IP);
7093   InsertNode(N);
7094   SDValue V(N, 0);
7095   NewSDValueDbgMsg(V, "Creating new node: ", this);
7096   return V;
7097 }
7098 
7099 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7100                                     SDValue Ptr, MachinePointerInfo PtrInfo,
7101                                     EVT SVT, Align Alignment,
7102                                     MachineMemOperand::Flags MMOFlags,
7103                                     const AAMDNodes &AAInfo) {
7104   assert(Chain.getValueType() == MVT::Other &&
7105         "Invalid chain type");
7106 
7107   MMOFlags |= MachineMemOperand::MOStore;
7108   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7109 
7110   if (PtrInfo.V.isNull())
7111     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7112 
7113   MachineFunction &MF = getMachineFunction();
7114   MachineMemOperand *MMO = MF.getMachineMemOperand(
7115       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
7116   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7117 }
7118 
7119 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7120                                     SDValue Ptr, EVT SVT,
7121                                     MachineMemOperand *MMO) {
7122   EVT VT = Val.getValueType();
7123 
7124   assert(Chain.getValueType() == MVT::Other &&
7125         "Invalid chain type");
7126   if (VT == SVT)
7127     return getStore(Chain, dl, Val, Ptr, MMO);
7128 
7129   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7130          "Should only be a truncating store, not extending!");
7131   assert(VT.isInteger() == SVT.isInteger() &&
7132          "Can't do FP-INT conversion!");
7133   assert(VT.isVector() == SVT.isVector() &&
7134          "Cannot use trunc store to convert to or from a vector!");
7135   assert((!VT.isVector() ||
7136           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
7137          "Cannot use trunc store to change the number of vector elements!");
7138 
7139   SDVTList VTs = getVTList(MVT::Other);
7140   SDValue Undef = getUNDEF(Ptr.getValueType());
7141   SDValue Ops[] = { Chain, Val, Ptr, Undef };
7142   FoldingSetNodeID ID;
7143   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7144   ID.AddInteger(SVT.getRawBits());
7145   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7146       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7147   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7148   void *IP = nullptr;
7149   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7150     cast<StoreSDNode>(E)->refineAlignment(MMO);
7151     return SDValue(E, 0);
7152   }
7153   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7154                                    ISD::UNINDEXED, true, SVT, MMO);
7155   createOperands(N, Ops);
7156 
7157   CSEMap.InsertNode(N, IP);
7158   InsertNode(N);
7159   SDValue V(N, 0);
7160   NewSDValueDbgMsg(V, "Creating new node: ", this);
7161   return V;
7162 }
7163 
7164 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7165                                       SDValue Base, SDValue Offset,
7166                                       ISD::MemIndexedMode AM) {
7167   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7168   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7169   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7170   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7171   FoldingSetNodeID ID;
7172   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7173   ID.AddInteger(ST->getMemoryVT().getRawBits());
7174   ID.AddInteger(ST->getRawSubclassData());
7175   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7176   void *IP = nullptr;
7177   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7178     return SDValue(E, 0);
7179 
7180   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7181                                    ST->isTruncatingStore(), ST->getMemoryVT(),
7182                                    ST->getMemOperand());
7183   createOperands(N, Ops);
7184 
7185   CSEMap.InsertNode(N, IP);
7186   InsertNode(N);
7187   SDValue V(N, 0);
7188   NewSDValueDbgMsg(V, "Creating new node: ", this);
7189   return V;
7190 }
7191 
7192 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7193                                     SDValue Base, SDValue Offset, SDValue Mask,
7194                                     SDValue PassThru, EVT MemVT,
7195                                     MachineMemOperand *MMO,
7196                                     ISD::MemIndexedMode AM,
7197                                     ISD::LoadExtType ExtTy, bool isExpanding) {
7198   bool Indexed = AM != ISD::UNINDEXED;
7199   assert((Indexed || Offset.isUndef()) &&
7200          "Unindexed masked load with an offset!");
7201   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7202                          : getVTList(VT, MVT::Other);
7203   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7204   FoldingSetNodeID ID;
7205   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7206   ID.AddInteger(MemVT.getRawBits());
7207   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7208       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7209   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7210   void *IP = nullptr;
7211   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7212     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7213     return SDValue(E, 0);
7214   }
7215   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7216                                         AM, ExtTy, isExpanding, MemVT, MMO);
7217   createOperands(N, Ops);
7218 
7219   CSEMap.InsertNode(N, IP);
7220   InsertNode(N);
7221   SDValue V(N, 0);
7222   NewSDValueDbgMsg(V, "Creating new node: ", this);
7223   return V;
7224 }
7225 
7226 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7227                                            SDValue Base, SDValue Offset,
7228                                            ISD::MemIndexedMode AM) {
7229   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7230   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7231   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7232                        Offset, LD->getMask(), LD->getPassThru(),
7233                        LD->getMemoryVT(), LD->getMemOperand(), AM,
7234                        LD->getExtensionType(), LD->isExpandingLoad());
7235 }
7236 
7237 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7238                                      SDValue Val, SDValue Base, SDValue Offset,
7239                                      SDValue Mask, EVT MemVT,
7240                                      MachineMemOperand *MMO,
7241                                      ISD::MemIndexedMode AM, bool IsTruncating,
7242                                      bool IsCompressing) {
7243   assert(Chain.getValueType() == MVT::Other &&
7244         "Invalid chain type");
7245   bool Indexed = AM != ISD::UNINDEXED;
7246   assert((Indexed || Offset.isUndef()) &&
7247          "Unindexed masked store with an offset!");
7248   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7249                          : getVTList(MVT::Other);
7250   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7251   FoldingSetNodeID ID;
7252   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7253   ID.AddInteger(MemVT.getRawBits());
7254   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7255       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7256   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7257   void *IP = nullptr;
7258   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7259     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7260     return SDValue(E, 0);
7261   }
7262   auto *N =
7263       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7264                                    IsTruncating, IsCompressing, MemVT, MMO);
7265   createOperands(N, Ops);
7266 
7267   CSEMap.InsertNode(N, IP);
7268   InsertNode(N);
7269   SDValue V(N, 0);
7270   NewSDValueDbgMsg(V, "Creating new node: ", this);
7271   return V;
7272 }
7273 
7274 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7275                                             SDValue Base, SDValue Offset,
7276                                             ISD::MemIndexedMode AM) {
7277   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7278   assert(ST->getOffset().isUndef() &&
7279          "Masked store is already a indexed store!");
7280   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7281                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7282                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
7283 }
7284 
7285 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7286                                       ArrayRef<SDValue> Ops,
7287                                       MachineMemOperand *MMO,
7288                                       ISD::MemIndexType IndexType) {
7289   assert(Ops.size() == 6 && "Incompatible number of operands");
7290 
7291   FoldingSetNodeID ID;
7292   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7293   ID.AddInteger(VT.getRawBits());
7294   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7295       dl.getIROrder(), VTs, VT, MMO, IndexType));
7296   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7297   void *IP = nullptr;
7298   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7299     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7300     return SDValue(E, 0);
7301   }
7302 
7303   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7304                                           VTs, VT, MMO, IndexType);
7305   createOperands(N, Ops);
7306 
7307   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7308          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7309   assert(N->getMask().getValueType().getVectorNumElements() ==
7310              N->getValueType(0).getVectorNumElements() &&
7311          "Vector width mismatch between mask and data");
7312   assert(N->getIndex().getValueType().getVectorNumElements() >=
7313              N->getValueType(0).getVectorNumElements() &&
7314          "Vector width mismatch between index and data");
7315   assert(isa<ConstantSDNode>(N->getScale()) &&
7316          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7317          "Scale should be a constant power of 2");
7318 
7319   CSEMap.InsertNode(N, IP);
7320   InsertNode(N);
7321   SDValue V(N, 0);
7322   NewSDValueDbgMsg(V, "Creating new node: ", this);
7323   return V;
7324 }
7325 
7326 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7327                                        ArrayRef<SDValue> Ops,
7328                                        MachineMemOperand *MMO,
7329                                        ISD::MemIndexType IndexType) {
7330   assert(Ops.size() == 6 && "Incompatible number of operands");
7331 
7332   FoldingSetNodeID ID;
7333   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7334   ID.AddInteger(VT.getRawBits());
7335   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7336       dl.getIROrder(), VTs, VT, MMO, IndexType));
7337   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7338   void *IP = nullptr;
7339   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7340     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7341     return SDValue(E, 0);
7342   }
7343   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7344                                            VTs, VT, MMO, IndexType);
7345   createOperands(N, Ops);
7346 
7347   assert(N->getMask().getValueType().getVectorNumElements() ==
7348              N->getValue().getValueType().getVectorNumElements() &&
7349          "Vector width mismatch between mask and data");
7350   assert(N->getIndex().getValueType().getVectorNumElements() >=
7351              N->getValue().getValueType().getVectorNumElements() &&
7352          "Vector width mismatch between index and data");
7353   assert(isa<ConstantSDNode>(N->getScale()) &&
7354          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7355          "Scale should be a constant power of 2");
7356 
7357   CSEMap.InsertNode(N, IP);
7358   InsertNode(N);
7359   SDValue V(N, 0);
7360   NewSDValueDbgMsg(V, "Creating new node: ", this);
7361   return V;
7362 }
7363 
7364 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7365   // select undef, T, F --> T (if T is a constant), otherwise F
7366   // select, ?, undef, F --> F
7367   // select, ?, T, undef --> T
7368   if (Cond.isUndef())
7369     return isConstantValueOfAnyType(T) ? T : F;
7370   if (T.isUndef())
7371     return F;
7372   if (F.isUndef())
7373     return T;
7374 
7375   // select true, T, F --> T
7376   // select false, T, F --> F
7377   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7378     return CondC->isNullValue() ? F : T;
7379 
7380   // TODO: This should simplify VSELECT with constant condition using something
7381   // like this (but check boolean contents to be complete?):
7382   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7383   //    return T;
7384   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7385   //    return F;
7386 
7387   // select ?, T, T --> T
7388   if (T == F)
7389     return T;
7390 
7391   return SDValue();
7392 }
7393 
7394 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7395   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7396   if (X.isUndef())
7397     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7398   // shift X, undef --> undef (because it may shift by the bitwidth)
7399   if (Y.isUndef())
7400     return getUNDEF(X.getValueType());
7401 
7402   // shift 0, Y --> 0
7403   // shift X, 0 --> X
7404   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7405     return X;
7406 
7407   // shift X, C >= bitwidth(X) --> undef
7408   // All vector elements must be too big (or undef) to avoid partial undefs.
7409   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7410     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7411   };
7412   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7413     return getUNDEF(X.getValueType());
7414 
7415   return SDValue();
7416 }
7417 
7418 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7419                                       SDNodeFlags Flags) {
7420   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7421   // (an undef operand can be chosen to be Nan/Inf), then the result of this
7422   // operation is poison. That result can be relaxed to undef.
7423   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7424   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7425   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7426                 (YC && YC->getValueAPF().isNaN());
7427   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7428                 (YC && YC->getValueAPF().isInfinity());
7429 
7430   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7431     return getUNDEF(X.getValueType());
7432 
7433   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7434     return getUNDEF(X.getValueType());
7435 
7436   if (!YC)
7437     return SDValue();
7438 
7439   // X + -0.0 --> X
7440   if (Opcode == ISD::FADD)
7441     if (YC->getValueAPF().isNegZero())
7442       return X;
7443 
7444   // X - +0.0 --> X
7445   if (Opcode == ISD::FSUB)
7446     if (YC->getValueAPF().isPosZero())
7447       return X;
7448 
7449   // X * 1.0 --> X
7450   // X / 1.0 --> X
7451   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7452     if (YC->getValueAPF().isExactlyValue(1.0))
7453       return X;
7454 
7455   return SDValue();
7456 }
7457 
7458 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7459                                SDValue Ptr, SDValue SV, unsigned Align) {
7460   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7461   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7462 }
7463 
7464 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7465                               ArrayRef<SDUse> Ops) {
7466   switch (Ops.size()) {
7467   case 0: return getNode(Opcode, DL, VT);
7468   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7469   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7470   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7471   default: break;
7472   }
7473 
7474   // Copy from an SDUse array into an SDValue array for use with
7475   // the regular getNode logic.
7476   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7477   return getNode(Opcode, DL, VT, NewOps);
7478 }
7479 
7480 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7481                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7482   unsigned NumOps = Ops.size();
7483   switch (NumOps) {
7484   case 0: return getNode(Opcode, DL, VT);
7485   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7486   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7487   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7488   default: break;
7489   }
7490 
7491   switch (Opcode) {
7492   default: break;
7493   case ISD::BUILD_VECTOR:
7494     // Attempt to simplify BUILD_VECTOR.
7495     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7496       return V;
7497     break;
7498   case ISD::CONCAT_VECTORS:
7499     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7500       return V;
7501     break;
7502   case ISD::SELECT_CC:
7503     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7504     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7505            "LHS and RHS of condition must have same type!");
7506     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7507            "True and False arms of SelectCC must have same type!");
7508     assert(Ops[2].getValueType() == VT &&
7509            "select_cc node must be of same type as true and false value!");
7510     break;
7511   case ISD::BR_CC:
7512     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7513     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7514            "LHS/RHS of comparison should match types!");
7515     break;
7516   }
7517 
7518   // Memoize nodes.
7519   SDNode *N;
7520   SDVTList VTs = getVTList(VT);
7521 
7522   if (VT != MVT::Glue) {
7523     FoldingSetNodeID ID;
7524     AddNodeIDNode(ID, Opcode, VTs, Ops);
7525     void *IP = nullptr;
7526 
7527     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7528       return SDValue(E, 0);
7529 
7530     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7531     createOperands(N, Ops);
7532 
7533     CSEMap.InsertNode(N, IP);
7534   } else {
7535     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7536     createOperands(N, Ops);
7537   }
7538 
7539   N->setFlags(Flags);
7540   InsertNode(N);
7541   SDValue V(N, 0);
7542   NewSDValueDbgMsg(V, "Creating new node: ", this);
7543   return V;
7544 }
7545 
7546 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7547                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7548   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7549 }
7550 
7551 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7552                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7553   if (VTList.NumVTs == 1)
7554     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7555 
7556   switch (Opcode) {
7557   case ISD::STRICT_FP_EXTEND:
7558     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7559            "Invalid STRICT_FP_EXTEND!");
7560     assert(VTList.VTs[0].isFloatingPoint() &&
7561            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7562     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7563            "STRICT_FP_EXTEND result type should be vector iff the operand "
7564            "type is vector!");
7565     assert((!VTList.VTs[0].isVector() ||
7566             VTList.VTs[0].getVectorNumElements() ==
7567             Ops[1].getValueType().getVectorNumElements()) &&
7568            "Vector element count mismatch!");
7569     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7570            "Invalid fpext node, dst <= src!");
7571     break;
7572   case ISD::STRICT_FP_ROUND:
7573     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7574     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7575            "STRICT_FP_ROUND result type should be vector iff the operand "
7576            "type is vector!");
7577     assert((!VTList.VTs[0].isVector() ||
7578             VTList.VTs[0].getVectorNumElements() ==
7579             Ops[1].getValueType().getVectorNumElements()) &&
7580            "Vector element count mismatch!");
7581     assert(VTList.VTs[0].isFloatingPoint() &&
7582            Ops[1].getValueType().isFloatingPoint() &&
7583            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7584            isa<ConstantSDNode>(Ops[2]) &&
7585            (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7586             cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7587            "Invalid STRICT_FP_ROUND!");
7588     break;
7589 #if 0
7590   // FIXME: figure out how to safely handle things like
7591   // int foo(int x) { return 1 << (x & 255); }
7592   // int bar() { return foo(256); }
7593   case ISD::SRA_PARTS:
7594   case ISD::SRL_PARTS:
7595   case ISD::SHL_PARTS:
7596     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7597         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7598       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7599     else if (N3.getOpcode() == ISD::AND)
7600       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7601         // If the and is only masking out bits that cannot effect the shift,
7602         // eliminate the and.
7603         unsigned NumBits = VT.getScalarSizeInBits()*2;
7604         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7605           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7606       }
7607     break;
7608 #endif
7609   }
7610 
7611   // Memoize the node unless it returns a flag.
7612   SDNode *N;
7613   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7614     FoldingSetNodeID ID;
7615     AddNodeIDNode(ID, Opcode, VTList, Ops);
7616     void *IP = nullptr;
7617     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7618       return SDValue(E, 0);
7619 
7620     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7621     createOperands(N, Ops);
7622     CSEMap.InsertNode(N, IP);
7623   } else {
7624     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7625     createOperands(N, Ops);
7626   }
7627 
7628   N->setFlags(Flags);
7629   InsertNode(N);
7630   SDValue V(N, 0);
7631   NewSDValueDbgMsg(V, "Creating new node: ", this);
7632   return V;
7633 }
7634 
7635 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7636                               SDVTList VTList) {
7637   return getNode(Opcode, DL, VTList, None);
7638 }
7639 
7640 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7641                               SDValue N1) {
7642   SDValue Ops[] = { N1 };
7643   return getNode(Opcode, DL, VTList, Ops);
7644 }
7645 
7646 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7647                               SDValue N1, SDValue N2) {
7648   SDValue Ops[] = { N1, N2 };
7649   return getNode(Opcode, DL, VTList, Ops);
7650 }
7651 
7652 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7653                               SDValue N1, SDValue N2, SDValue N3) {
7654   SDValue Ops[] = { N1, N2, N3 };
7655   return getNode(Opcode, DL, VTList, Ops);
7656 }
7657 
7658 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7659                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7660   SDValue Ops[] = { N1, N2, N3, N4 };
7661   return getNode(Opcode, DL, VTList, Ops);
7662 }
7663 
7664 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7665                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7666                               SDValue N5) {
7667   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7668   return getNode(Opcode, DL, VTList, Ops);
7669 }
7670 
7671 SDVTList SelectionDAG::getVTList(EVT VT) {
7672   return makeVTList(SDNode::getValueTypeList(VT), 1);
7673 }
7674 
7675 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7676   FoldingSetNodeID ID;
7677   ID.AddInteger(2U);
7678   ID.AddInteger(VT1.getRawBits());
7679   ID.AddInteger(VT2.getRawBits());
7680 
7681   void *IP = nullptr;
7682   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7683   if (!Result) {
7684     EVT *Array = Allocator.Allocate<EVT>(2);
7685     Array[0] = VT1;
7686     Array[1] = VT2;
7687     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7688     VTListMap.InsertNode(Result, IP);
7689   }
7690   return Result->getSDVTList();
7691 }
7692 
7693 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7694   FoldingSetNodeID ID;
7695   ID.AddInteger(3U);
7696   ID.AddInteger(VT1.getRawBits());
7697   ID.AddInteger(VT2.getRawBits());
7698   ID.AddInteger(VT3.getRawBits());
7699 
7700   void *IP = nullptr;
7701   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7702   if (!Result) {
7703     EVT *Array = Allocator.Allocate<EVT>(3);
7704     Array[0] = VT1;
7705     Array[1] = VT2;
7706     Array[2] = VT3;
7707     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7708     VTListMap.InsertNode(Result, IP);
7709   }
7710   return Result->getSDVTList();
7711 }
7712 
7713 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7714   FoldingSetNodeID ID;
7715   ID.AddInteger(4U);
7716   ID.AddInteger(VT1.getRawBits());
7717   ID.AddInteger(VT2.getRawBits());
7718   ID.AddInteger(VT3.getRawBits());
7719   ID.AddInteger(VT4.getRawBits());
7720 
7721   void *IP = nullptr;
7722   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7723   if (!Result) {
7724     EVT *Array = Allocator.Allocate<EVT>(4);
7725     Array[0] = VT1;
7726     Array[1] = VT2;
7727     Array[2] = VT3;
7728     Array[3] = VT4;
7729     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7730     VTListMap.InsertNode(Result, IP);
7731   }
7732   return Result->getSDVTList();
7733 }
7734 
7735 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7736   unsigned NumVTs = VTs.size();
7737   FoldingSetNodeID ID;
7738   ID.AddInteger(NumVTs);
7739   for (unsigned index = 0; index < NumVTs; index++) {
7740     ID.AddInteger(VTs[index].getRawBits());
7741   }
7742 
7743   void *IP = nullptr;
7744   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7745   if (!Result) {
7746     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7747     llvm::copy(VTs, Array);
7748     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7749     VTListMap.InsertNode(Result, IP);
7750   }
7751   return Result->getSDVTList();
7752 }
7753 
7754 
7755 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7756 /// specified operands.  If the resultant node already exists in the DAG,
7757 /// this does not modify the specified node, instead it returns the node that
7758 /// already exists.  If the resultant node does not exist in the DAG, the
7759 /// input node is returned.  As a degenerate case, if you specify the same
7760 /// input operands as the node already has, the input node is returned.
7761 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7762   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7763 
7764   // Check to see if there is no change.
7765   if (Op == N->getOperand(0)) return N;
7766 
7767   // See if the modified node already exists.
7768   void *InsertPos = nullptr;
7769   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7770     return Existing;
7771 
7772   // Nope it doesn't.  Remove the node from its current place in the maps.
7773   if (InsertPos)
7774     if (!RemoveNodeFromCSEMaps(N))
7775       InsertPos = nullptr;
7776 
7777   // Now we update the operands.
7778   N->OperandList[0].set(Op);
7779 
7780   updateDivergence(N);
7781   // If this gets put into a CSE map, add it.
7782   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7783   return N;
7784 }
7785 
7786 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7787   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7788 
7789   // Check to see if there is no change.
7790   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7791     return N;   // No operands changed, just return the input node.
7792 
7793   // See if the modified node already exists.
7794   void *InsertPos = nullptr;
7795   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7796     return Existing;
7797 
7798   // Nope it doesn't.  Remove the node from its current place in the maps.
7799   if (InsertPos)
7800     if (!RemoveNodeFromCSEMaps(N))
7801       InsertPos = nullptr;
7802 
7803   // Now we update the operands.
7804   if (N->OperandList[0] != Op1)
7805     N->OperandList[0].set(Op1);
7806   if (N->OperandList[1] != Op2)
7807     N->OperandList[1].set(Op2);
7808 
7809   updateDivergence(N);
7810   // If this gets put into a CSE map, add it.
7811   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7812   return N;
7813 }
7814 
7815 SDNode *SelectionDAG::
7816 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7817   SDValue Ops[] = { Op1, Op2, Op3 };
7818   return UpdateNodeOperands(N, Ops);
7819 }
7820 
7821 SDNode *SelectionDAG::
7822 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7823                    SDValue Op3, SDValue Op4) {
7824   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7825   return UpdateNodeOperands(N, Ops);
7826 }
7827 
7828 SDNode *SelectionDAG::
7829 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7830                    SDValue Op3, SDValue Op4, SDValue Op5) {
7831   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7832   return UpdateNodeOperands(N, Ops);
7833 }
7834 
7835 SDNode *SelectionDAG::
7836 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7837   unsigned NumOps = Ops.size();
7838   assert(N->getNumOperands() == NumOps &&
7839          "Update with wrong number of operands");
7840 
7841   // If no operands changed just return the input node.
7842   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7843     return N;
7844 
7845   // See if the modified node already exists.
7846   void *InsertPos = nullptr;
7847   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7848     return Existing;
7849 
7850   // Nope it doesn't.  Remove the node from its current place in the maps.
7851   if (InsertPos)
7852     if (!RemoveNodeFromCSEMaps(N))
7853       InsertPos = nullptr;
7854 
7855   // Now we update the operands.
7856   for (unsigned i = 0; i != NumOps; ++i)
7857     if (N->OperandList[i] != Ops[i])
7858       N->OperandList[i].set(Ops[i]);
7859 
7860   updateDivergence(N);
7861   // If this gets put into a CSE map, add it.
7862   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7863   return N;
7864 }
7865 
7866 /// DropOperands - Release the operands and set this node to have
7867 /// zero operands.
7868 void SDNode::DropOperands() {
7869   // Unlike the code in MorphNodeTo that does this, we don't need to
7870   // watch for dead nodes here.
7871   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7872     SDUse &Use = *I++;
7873     Use.set(SDValue());
7874   }
7875 }
7876 
7877 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7878                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7879   if (NewMemRefs.empty()) {
7880     N->clearMemRefs();
7881     return;
7882   }
7883 
7884   // Check if we can avoid allocating by storing a single reference directly.
7885   if (NewMemRefs.size() == 1) {
7886     N->MemRefs = NewMemRefs[0];
7887     N->NumMemRefs = 1;
7888     return;
7889   }
7890 
7891   MachineMemOperand **MemRefsBuffer =
7892       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7893   llvm::copy(NewMemRefs, MemRefsBuffer);
7894   N->MemRefs = MemRefsBuffer;
7895   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7896 }
7897 
7898 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7899 /// machine opcode.
7900 ///
7901 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7902                                    EVT VT) {
7903   SDVTList VTs = getVTList(VT);
7904   return SelectNodeTo(N, MachineOpc, VTs, None);
7905 }
7906 
7907 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7908                                    EVT VT, SDValue Op1) {
7909   SDVTList VTs = getVTList(VT);
7910   SDValue Ops[] = { Op1 };
7911   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7912 }
7913 
7914 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7915                                    EVT VT, SDValue Op1,
7916                                    SDValue Op2) {
7917   SDVTList VTs = getVTList(VT);
7918   SDValue Ops[] = { Op1, Op2 };
7919   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7920 }
7921 
7922 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7923                                    EVT VT, SDValue Op1,
7924                                    SDValue Op2, SDValue Op3) {
7925   SDVTList VTs = getVTList(VT);
7926   SDValue Ops[] = { Op1, Op2, Op3 };
7927   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7928 }
7929 
7930 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7931                                    EVT VT, ArrayRef<SDValue> Ops) {
7932   SDVTList VTs = getVTList(VT);
7933   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7934 }
7935 
7936 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7937                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7938   SDVTList VTs = getVTList(VT1, VT2);
7939   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7940 }
7941 
7942 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7943                                    EVT VT1, EVT VT2) {
7944   SDVTList VTs = getVTList(VT1, VT2);
7945   return SelectNodeTo(N, MachineOpc, VTs, None);
7946 }
7947 
7948 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7949                                    EVT VT1, EVT VT2, EVT VT3,
7950                                    ArrayRef<SDValue> Ops) {
7951   SDVTList VTs = getVTList(VT1, VT2, VT3);
7952   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7953 }
7954 
7955 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7956                                    EVT VT1, EVT VT2,
7957                                    SDValue Op1, SDValue Op2) {
7958   SDVTList VTs = getVTList(VT1, VT2);
7959   SDValue Ops[] = { Op1, Op2 };
7960   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7961 }
7962 
7963 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7964                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7965   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7966   // Reset the NodeID to -1.
7967   New->setNodeId(-1);
7968   if (New != N) {
7969     ReplaceAllUsesWith(N, New);
7970     RemoveDeadNode(N);
7971   }
7972   return New;
7973 }
7974 
7975 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7976 /// the line number information on the merged node since it is not possible to
7977 /// preserve the information that operation is associated with multiple lines.
7978 /// This will make the debugger working better at -O0, were there is a higher
7979 /// probability having other instructions associated with that line.
7980 ///
7981 /// For IROrder, we keep the smaller of the two
7982 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7983   DebugLoc NLoc = N->getDebugLoc();
7984   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7985     N->setDebugLoc(DebugLoc());
7986   }
7987   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7988   N->setIROrder(Order);
7989   return N;
7990 }
7991 
7992 /// MorphNodeTo - This *mutates* the specified node to have the specified
7993 /// return type, opcode, and operands.
7994 ///
7995 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7996 /// node of the specified opcode and operands, it returns that node instead of
7997 /// the current one.  Note that the SDLoc need not be the same.
7998 ///
7999 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8000 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8001 /// node, and because it doesn't require CSE recalculation for any of
8002 /// the node's users.
8003 ///
8004 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8005 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8006 /// the legalizer which maintain worklists that would need to be updated when
8007 /// deleting things.
8008 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8009                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
8010   // If an identical node already exists, use it.
8011   void *IP = nullptr;
8012   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8013     FoldingSetNodeID ID;
8014     AddNodeIDNode(ID, Opc, VTs, Ops);
8015     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8016       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8017   }
8018 
8019   if (!RemoveNodeFromCSEMaps(N))
8020     IP = nullptr;
8021 
8022   // Start the morphing.
8023   N->NodeType = Opc;
8024   N->ValueList = VTs.VTs;
8025   N->NumValues = VTs.NumVTs;
8026 
8027   // Clear the operands list, updating used nodes to remove this from their
8028   // use list.  Keep track of any operands that become dead as a result.
8029   SmallPtrSet<SDNode*, 16> DeadNodeSet;
8030   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8031     SDUse &Use = *I++;
8032     SDNode *Used = Use.getNode();
8033     Use.set(SDValue());
8034     if (Used->use_empty())
8035       DeadNodeSet.insert(Used);
8036   }
8037 
8038   // For MachineNode, initialize the memory references information.
8039   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8040     MN->clearMemRefs();
8041 
8042   // Swap for an appropriately sized array from the recycler.
8043   removeOperands(N);
8044   createOperands(N, Ops);
8045 
8046   // Delete any nodes that are still dead after adding the uses for the
8047   // new operands.
8048   if (!DeadNodeSet.empty()) {
8049     SmallVector<SDNode *, 16> DeadNodes;
8050     for (SDNode *N : DeadNodeSet)
8051       if (N->use_empty())
8052         DeadNodes.push_back(N);
8053     RemoveDeadNodes(DeadNodes);
8054   }
8055 
8056   if (IP)
8057     CSEMap.InsertNode(N, IP);   // Memoize the new node.
8058   return N;
8059 }
8060 
8061 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8062   unsigned OrigOpc = Node->getOpcode();
8063   unsigned NewOpc;
8064   switch (OrigOpc) {
8065   default:
8066     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8067 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8068   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8069 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
8070   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8071 #include "llvm/IR/ConstrainedOps.def"
8072   }
8073 
8074   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8075 
8076   // We're taking this node out of the chain, so we need to re-link things.
8077   SDValue InputChain = Node->getOperand(0);
8078   SDValue OutputChain = SDValue(Node, 1);
8079   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8080 
8081   SmallVector<SDValue, 3> Ops;
8082   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8083     Ops.push_back(Node->getOperand(i));
8084 
8085   SDVTList VTs = getVTList(Node->getValueType(0));
8086   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8087 
8088   // MorphNodeTo can operate in two ways: if an existing node with the
8089   // specified operands exists, it can just return it.  Otherwise, it
8090   // updates the node in place to have the requested operands.
8091   if (Res == Node) {
8092     // If we updated the node in place, reset the node ID.  To the isel,
8093     // this should be just like a newly allocated machine node.
8094     Res->setNodeId(-1);
8095   } else {
8096     ReplaceAllUsesWith(Node, Res);
8097     RemoveDeadNode(Node);
8098   }
8099 
8100   return Res;
8101 }
8102 
8103 /// getMachineNode - These are used for target selectors to create a new node
8104 /// with specified return type(s), MachineInstr opcode, and operands.
8105 ///
8106 /// Note that getMachineNode returns the resultant node.  If there is already a
8107 /// node of the specified opcode and operands, it returns that node instead of
8108 /// the current one.
8109 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8110                                             EVT VT) {
8111   SDVTList VTs = getVTList(VT);
8112   return getMachineNode(Opcode, dl, VTs, None);
8113 }
8114 
8115 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8116                                             EVT VT, SDValue Op1) {
8117   SDVTList VTs = getVTList(VT);
8118   SDValue Ops[] = { Op1 };
8119   return getMachineNode(Opcode, dl, VTs, Ops);
8120 }
8121 
8122 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8123                                             EVT VT, SDValue Op1, SDValue Op2) {
8124   SDVTList VTs = getVTList(VT);
8125   SDValue Ops[] = { Op1, Op2 };
8126   return getMachineNode(Opcode, dl, VTs, Ops);
8127 }
8128 
8129 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8130                                             EVT VT, SDValue Op1, SDValue Op2,
8131                                             SDValue Op3) {
8132   SDVTList VTs = getVTList(VT);
8133   SDValue Ops[] = { Op1, Op2, Op3 };
8134   return getMachineNode(Opcode, dl, VTs, Ops);
8135 }
8136 
8137 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8138                                             EVT VT, ArrayRef<SDValue> Ops) {
8139   SDVTList VTs = getVTList(VT);
8140   return getMachineNode(Opcode, dl, VTs, Ops);
8141 }
8142 
8143 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8144                                             EVT VT1, EVT VT2, SDValue Op1,
8145                                             SDValue Op2) {
8146   SDVTList VTs = getVTList(VT1, VT2);
8147   SDValue Ops[] = { Op1, Op2 };
8148   return getMachineNode(Opcode, dl, VTs, Ops);
8149 }
8150 
8151 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8152                                             EVT VT1, EVT VT2, SDValue Op1,
8153                                             SDValue Op2, SDValue Op3) {
8154   SDVTList VTs = getVTList(VT1, VT2);
8155   SDValue Ops[] = { Op1, Op2, Op3 };
8156   return getMachineNode(Opcode, dl, VTs, Ops);
8157 }
8158 
8159 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8160                                             EVT VT1, EVT VT2,
8161                                             ArrayRef<SDValue> Ops) {
8162   SDVTList VTs = getVTList(VT1, VT2);
8163   return getMachineNode(Opcode, dl, VTs, Ops);
8164 }
8165 
8166 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8167                                             EVT VT1, EVT VT2, EVT VT3,
8168                                             SDValue Op1, SDValue Op2) {
8169   SDVTList VTs = getVTList(VT1, VT2, VT3);
8170   SDValue Ops[] = { Op1, Op2 };
8171   return getMachineNode(Opcode, dl, VTs, Ops);
8172 }
8173 
8174 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8175                                             EVT VT1, EVT VT2, EVT VT3,
8176                                             SDValue Op1, SDValue Op2,
8177                                             SDValue Op3) {
8178   SDVTList VTs = getVTList(VT1, VT2, VT3);
8179   SDValue Ops[] = { Op1, Op2, Op3 };
8180   return getMachineNode(Opcode, dl, VTs, Ops);
8181 }
8182 
8183 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8184                                             EVT VT1, EVT VT2, EVT VT3,
8185                                             ArrayRef<SDValue> Ops) {
8186   SDVTList VTs = getVTList(VT1, VT2, VT3);
8187   return getMachineNode(Opcode, dl, VTs, Ops);
8188 }
8189 
8190 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8191                                             ArrayRef<EVT> ResultTys,
8192                                             ArrayRef<SDValue> Ops) {
8193   SDVTList VTs = getVTList(ResultTys);
8194   return getMachineNode(Opcode, dl, VTs, Ops);
8195 }
8196 
8197 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8198                                             SDVTList VTs,
8199                                             ArrayRef<SDValue> Ops) {
8200   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8201   MachineSDNode *N;
8202   void *IP = nullptr;
8203 
8204   if (DoCSE) {
8205     FoldingSetNodeID ID;
8206     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8207     IP = nullptr;
8208     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8209       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8210     }
8211   }
8212 
8213   // Allocate a new MachineSDNode.
8214   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8215   createOperands(N, Ops);
8216 
8217   if (DoCSE)
8218     CSEMap.InsertNode(N, IP);
8219 
8220   InsertNode(N);
8221   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8222   return N;
8223 }
8224 
8225 /// getTargetExtractSubreg - A convenience function for creating
8226 /// TargetOpcode::EXTRACT_SUBREG nodes.
8227 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8228                                              SDValue Operand) {
8229   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8230   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8231                                   VT, Operand, SRIdxVal);
8232   return SDValue(Subreg, 0);
8233 }
8234 
8235 /// getTargetInsertSubreg - A convenience function for creating
8236 /// TargetOpcode::INSERT_SUBREG nodes.
8237 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8238                                             SDValue Operand, SDValue Subreg) {
8239   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8240   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8241                                   VT, Operand, Subreg, SRIdxVal);
8242   return SDValue(Result, 0);
8243 }
8244 
8245 /// getNodeIfExists - Get the specified node if it's already available, or
8246 /// else return NULL.
8247 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8248                                       ArrayRef<SDValue> Ops,
8249                                       const SDNodeFlags Flags) {
8250   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8251     FoldingSetNodeID ID;
8252     AddNodeIDNode(ID, Opcode, VTList, Ops);
8253     void *IP = nullptr;
8254     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8255       E->intersectFlagsWith(Flags);
8256       return E;
8257     }
8258   }
8259   return nullptr;
8260 }
8261 
8262 /// getDbgValue - Creates a SDDbgValue node.
8263 ///
8264 /// SDNode
8265 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8266                                       SDNode *N, unsigned R, bool IsIndirect,
8267                                       const DebugLoc &DL, unsigned O) {
8268   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8269          "Expected inlined-at fields to agree");
8270   return new (DbgInfo->getAlloc())
8271       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8272 }
8273 
8274 /// Constant
8275 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8276                                               DIExpression *Expr,
8277                                               const Value *C,
8278                                               const DebugLoc &DL, unsigned O) {
8279   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8280          "Expected inlined-at fields to agree");
8281   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8282 }
8283 
8284 /// FrameIndex
8285 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8286                                                 DIExpression *Expr, unsigned FI,
8287                                                 bool IsIndirect,
8288                                                 const DebugLoc &DL,
8289                                                 unsigned O) {
8290   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8291          "Expected inlined-at fields to agree");
8292   return new (DbgInfo->getAlloc())
8293       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8294 }
8295 
8296 /// VReg
8297 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8298                                           DIExpression *Expr,
8299                                           unsigned VReg, bool IsIndirect,
8300                                           const DebugLoc &DL, unsigned O) {
8301   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8302          "Expected inlined-at fields to agree");
8303   return new (DbgInfo->getAlloc())
8304       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8305 }
8306 
8307 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8308                                      unsigned OffsetInBits, unsigned SizeInBits,
8309                                      bool InvalidateDbg) {
8310   SDNode *FromNode = From.getNode();
8311   SDNode *ToNode = To.getNode();
8312   assert(FromNode && ToNode && "Can't modify dbg values");
8313 
8314   // PR35338
8315   // TODO: assert(From != To && "Redundant dbg value transfer");
8316   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8317   if (From == To || FromNode == ToNode)
8318     return;
8319 
8320   if (!FromNode->getHasDebugValue())
8321     return;
8322 
8323   SmallVector<SDDbgValue *, 2> ClonedDVs;
8324   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8325     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8326       continue;
8327 
8328     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8329 
8330     // Just transfer the dbg value attached to From.
8331     if (Dbg->getResNo() != From.getResNo())
8332       continue;
8333 
8334     DIVariable *Var = Dbg->getVariable();
8335     auto *Expr = Dbg->getExpression();
8336     // If a fragment is requested, update the expression.
8337     if (SizeInBits) {
8338       // When splitting a larger (e.g., sign-extended) value whose
8339       // lower bits are described with an SDDbgValue, do not attempt
8340       // to transfer the SDDbgValue to the upper bits.
8341       if (auto FI = Expr->getFragmentInfo())
8342         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8343           continue;
8344       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8345                                                              SizeInBits);
8346       if (!Fragment)
8347         continue;
8348       Expr = *Fragment;
8349     }
8350     // Clone the SDDbgValue and move it to To.
8351     SDDbgValue *Clone = getDbgValue(
8352         Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8353         std::max(ToNode->getIROrder(), Dbg->getOrder()));
8354     ClonedDVs.push_back(Clone);
8355 
8356     if (InvalidateDbg) {
8357       // Invalidate value and indicate the SDDbgValue should not be emitted.
8358       Dbg->setIsInvalidated();
8359       Dbg->setIsEmitted();
8360     }
8361   }
8362 
8363   for (SDDbgValue *Dbg : ClonedDVs)
8364     AddDbgValue(Dbg, ToNode, false);
8365 }
8366 
8367 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8368   if (!N.getHasDebugValue())
8369     return;
8370 
8371   SmallVector<SDDbgValue *, 2> ClonedDVs;
8372   for (auto DV : GetDbgValues(&N)) {
8373     if (DV->isInvalidated())
8374       continue;
8375     switch (N.getOpcode()) {
8376     default:
8377       break;
8378     case ISD::ADD:
8379       SDValue N0 = N.getOperand(0);
8380       SDValue N1 = N.getOperand(1);
8381       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8382           isConstantIntBuildVectorOrConstantInt(N1)) {
8383         uint64_t Offset = N.getConstantOperandVal(1);
8384         // Rewrite an ADD constant node into a DIExpression. Since we are
8385         // performing arithmetic to compute the variable's *value* in the
8386         // DIExpression, we need to mark the expression with a
8387         // DW_OP_stack_value.
8388         auto *DIExpr = DV->getExpression();
8389         DIExpr =
8390             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8391         SDDbgValue *Clone =
8392             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8393                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8394         ClonedDVs.push_back(Clone);
8395         DV->setIsInvalidated();
8396         DV->setIsEmitted();
8397         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8398                    N0.getNode()->dumprFull(this);
8399                    dbgs() << " into " << *DIExpr << '\n');
8400       }
8401     }
8402   }
8403 
8404   for (SDDbgValue *Dbg : ClonedDVs)
8405     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8406 }
8407 
8408 /// Creates a SDDbgLabel node.
8409 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8410                                       const DebugLoc &DL, unsigned O) {
8411   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8412          "Expected inlined-at fields to agree");
8413   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8414 }
8415 
8416 namespace {
8417 
8418 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8419 /// pointed to by a use iterator is deleted, increment the use iterator
8420 /// so that it doesn't dangle.
8421 ///
8422 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8423   SDNode::use_iterator &UI;
8424   SDNode::use_iterator &UE;
8425 
8426   void NodeDeleted(SDNode *N, SDNode *E) override {
8427     // Increment the iterator as needed.
8428     while (UI != UE && N == *UI)
8429       ++UI;
8430   }
8431 
8432 public:
8433   RAUWUpdateListener(SelectionDAG &d,
8434                      SDNode::use_iterator &ui,
8435                      SDNode::use_iterator &ue)
8436     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8437 };
8438 
8439 } // end anonymous namespace
8440 
8441 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8442 /// This can cause recursive merging of nodes in the DAG.
8443 ///
8444 /// This version assumes From has a single result value.
8445 ///
8446 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8447   SDNode *From = FromN.getNode();
8448   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8449          "Cannot replace with this method!");
8450   assert(From != To.getNode() && "Cannot replace uses of with self");
8451 
8452   // Preserve Debug Values
8453   transferDbgValues(FromN, To);
8454 
8455   // Iterate over all the existing uses of From. New uses will be added
8456   // to the beginning of the use list, which we avoid visiting.
8457   // This specifically avoids visiting uses of From that arise while the
8458   // replacement is happening, because any such uses would be the result
8459   // of CSE: If an existing node looks like From after one of its operands
8460   // is replaced by To, we don't want to replace of all its users with To
8461   // too. See PR3018 for more info.
8462   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8463   RAUWUpdateListener Listener(*this, UI, UE);
8464   while (UI != UE) {
8465     SDNode *User = *UI;
8466 
8467     // This node is about to morph, remove its old self from the CSE maps.
8468     RemoveNodeFromCSEMaps(User);
8469 
8470     // A user can appear in a use list multiple times, and when this
8471     // happens the uses are usually next to each other in the list.
8472     // To help reduce the number of CSE recomputations, process all
8473     // the uses of this user that we can find this way.
8474     do {
8475       SDUse &Use = UI.getUse();
8476       ++UI;
8477       Use.set(To);
8478       if (To->isDivergent() != From->isDivergent())
8479         updateDivergence(User);
8480     } while (UI != UE && *UI == User);
8481     // Now that we have modified User, add it back to the CSE maps.  If it
8482     // already exists there, recursively merge the results together.
8483     AddModifiedNodeToCSEMaps(User);
8484   }
8485 
8486   // If we just RAUW'd the root, take note.
8487   if (FromN == getRoot())
8488     setRoot(To);
8489 }
8490 
8491 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8492 /// This can cause recursive merging of nodes in the DAG.
8493 ///
8494 /// This version assumes that for each value of From, there is a
8495 /// corresponding value in To in the same position with the same type.
8496 ///
8497 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8498 #ifndef NDEBUG
8499   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8500     assert((!From->hasAnyUseOfValue(i) ||
8501             From->getValueType(i) == To->getValueType(i)) &&
8502            "Cannot use this version of ReplaceAllUsesWith!");
8503 #endif
8504 
8505   // Handle the trivial case.
8506   if (From == To)
8507     return;
8508 
8509   // Preserve Debug Info. Only do this if there's a use.
8510   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8511     if (From->hasAnyUseOfValue(i)) {
8512       assert((i < To->getNumValues()) && "Invalid To location");
8513       transferDbgValues(SDValue(From, i), SDValue(To, i));
8514     }
8515 
8516   // Iterate over just the existing users of From. See the comments in
8517   // the ReplaceAllUsesWith above.
8518   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8519   RAUWUpdateListener Listener(*this, UI, UE);
8520   while (UI != UE) {
8521     SDNode *User = *UI;
8522 
8523     // This node is about to morph, remove its old self from the CSE maps.
8524     RemoveNodeFromCSEMaps(User);
8525 
8526     // A user can appear in a use list multiple times, and when this
8527     // happens the uses are usually next to each other in the list.
8528     // To help reduce the number of CSE recomputations, process all
8529     // the uses of this user that we can find this way.
8530     do {
8531       SDUse &Use = UI.getUse();
8532       ++UI;
8533       Use.setNode(To);
8534       if (To->isDivergent() != From->isDivergent())
8535         updateDivergence(User);
8536     } while (UI != UE && *UI == User);
8537 
8538     // Now that we have modified User, add it back to the CSE maps.  If it
8539     // already exists there, recursively merge the results together.
8540     AddModifiedNodeToCSEMaps(User);
8541   }
8542 
8543   // If we just RAUW'd the root, take note.
8544   if (From == getRoot().getNode())
8545     setRoot(SDValue(To, getRoot().getResNo()));
8546 }
8547 
8548 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8549 /// This can cause recursive merging of nodes in the DAG.
8550 ///
8551 /// This version can replace From with any result values.  To must match the
8552 /// number and types of values returned by From.
8553 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8554   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8555     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8556 
8557   // Preserve Debug Info.
8558   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8559     transferDbgValues(SDValue(From, i), To[i]);
8560 
8561   // Iterate over just the existing users of From. See the comments in
8562   // the ReplaceAllUsesWith above.
8563   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8564   RAUWUpdateListener Listener(*this, UI, UE);
8565   while (UI != UE) {
8566     SDNode *User = *UI;
8567 
8568     // This node is about to morph, remove its old self from the CSE maps.
8569     RemoveNodeFromCSEMaps(User);
8570 
8571     // A user can appear in a use list multiple times, and when this happens the
8572     // uses are usually next to each other in the list.  To help reduce the
8573     // number of CSE and divergence recomputations, process all the uses of this
8574     // user that we can find this way.
8575     bool To_IsDivergent = false;
8576     do {
8577       SDUse &Use = UI.getUse();
8578       const SDValue &ToOp = To[Use.getResNo()];
8579       ++UI;
8580       Use.set(ToOp);
8581       To_IsDivergent |= ToOp->isDivergent();
8582     } while (UI != UE && *UI == User);
8583 
8584     if (To_IsDivergent != From->isDivergent())
8585       updateDivergence(User);
8586 
8587     // Now that we have modified User, add it back to the CSE maps.  If it
8588     // already exists there, recursively merge the results together.
8589     AddModifiedNodeToCSEMaps(User);
8590   }
8591 
8592   // If we just RAUW'd the root, take note.
8593   if (From == getRoot().getNode())
8594     setRoot(SDValue(To[getRoot().getResNo()]));
8595 }
8596 
8597 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8598 /// uses of other values produced by From.getNode() alone.  The Deleted
8599 /// vector is handled the same way as for ReplaceAllUsesWith.
8600 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8601   // Handle the really simple, really trivial case efficiently.
8602   if (From == To) return;
8603 
8604   // Handle the simple, trivial, case efficiently.
8605   if (From.getNode()->getNumValues() == 1) {
8606     ReplaceAllUsesWith(From, To);
8607     return;
8608   }
8609 
8610   // Preserve Debug Info.
8611   transferDbgValues(From, To);
8612 
8613   // Iterate over just the existing users of From. See the comments in
8614   // the ReplaceAllUsesWith above.
8615   SDNode::use_iterator UI = From.getNode()->use_begin(),
8616                        UE = From.getNode()->use_end();
8617   RAUWUpdateListener Listener(*this, UI, UE);
8618   while (UI != UE) {
8619     SDNode *User = *UI;
8620     bool UserRemovedFromCSEMaps = false;
8621 
8622     // A user can appear in a use list multiple times, and when this
8623     // happens the uses are usually next to each other in the list.
8624     // To help reduce the number of CSE recomputations, process all
8625     // the uses of this user that we can find this way.
8626     do {
8627       SDUse &Use = UI.getUse();
8628 
8629       // Skip uses of different values from the same node.
8630       if (Use.getResNo() != From.getResNo()) {
8631         ++UI;
8632         continue;
8633       }
8634 
8635       // If this node hasn't been modified yet, it's still in the CSE maps,
8636       // so remove its old self from the CSE maps.
8637       if (!UserRemovedFromCSEMaps) {
8638         RemoveNodeFromCSEMaps(User);
8639         UserRemovedFromCSEMaps = true;
8640       }
8641 
8642       ++UI;
8643       Use.set(To);
8644       if (To->isDivergent() != From->isDivergent())
8645         updateDivergence(User);
8646     } while (UI != UE && *UI == User);
8647     // We are iterating over all uses of the From node, so if a use
8648     // doesn't use the specific value, no changes are made.
8649     if (!UserRemovedFromCSEMaps)
8650       continue;
8651 
8652     // Now that we have modified User, add it back to the CSE maps.  If it
8653     // already exists there, recursively merge the results together.
8654     AddModifiedNodeToCSEMaps(User);
8655   }
8656 
8657   // If we just RAUW'd the root, take note.
8658   if (From == getRoot())
8659     setRoot(To);
8660 }
8661 
8662 namespace {
8663 
8664   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8665   /// to record information about a use.
8666   struct UseMemo {
8667     SDNode *User;
8668     unsigned Index;
8669     SDUse *Use;
8670   };
8671 
8672   /// operator< - Sort Memos by User.
8673   bool operator<(const UseMemo &L, const UseMemo &R) {
8674     return (intptr_t)L.User < (intptr_t)R.User;
8675   }
8676 
8677 } // end anonymous namespace
8678 
8679 void SelectionDAG::updateDivergence(SDNode * N)
8680 {
8681   if (TLI->isSDNodeAlwaysUniform(N))
8682     return;
8683   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8684   for (auto &Op : N->ops()) {
8685     if (Op.Val.getValueType() != MVT::Other)
8686       IsDivergent |= Op.getNode()->isDivergent();
8687   }
8688   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8689     N->SDNodeBits.IsDivergent = IsDivergent;
8690     for (auto U : N->uses()) {
8691       updateDivergence(U);
8692     }
8693   }
8694 }
8695 
8696 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8697   DenseMap<SDNode *, unsigned> Degree;
8698   Order.reserve(AllNodes.size());
8699   for (auto &N : allnodes()) {
8700     unsigned NOps = N.getNumOperands();
8701     Degree[&N] = NOps;
8702     if (0 == NOps)
8703       Order.push_back(&N);
8704   }
8705   for (size_t I = 0; I != Order.size(); ++I) {
8706     SDNode *N = Order[I];
8707     for (auto U : N->uses()) {
8708       unsigned &UnsortedOps = Degree[U];
8709       if (0 == --UnsortedOps)
8710         Order.push_back(U);
8711     }
8712   }
8713 }
8714 
8715 #ifndef NDEBUG
8716 void SelectionDAG::VerifyDAGDiverence() {
8717   std::vector<SDNode *> TopoOrder;
8718   CreateTopologicalOrder(TopoOrder);
8719   const TargetLowering &TLI = getTargetLoweringInfo();
8720   DenseMap<const SDNode *, bool> DivergenceMap;
8721   for (auto &N : allnodes()) {
8722     DivergenceMap[&N] = false;
8723   }
8724   for (auto N : TopoOrder) {
8725     bool IsDivergent = DivergenceMap[N];
8726     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8727     for (auto &Op : N->ops()) {
8728       if (Op.Val.getValueType() != MVT::Other)
8729         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8730     }
8731     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8732       DivergenceMap[N] = true;
8733     }
8734   }
8735   for (auto &N : allnodes()) {
8736     (void)N;
8737     assert(DivergenceMap[&N] == N.isDivergent() &&
8738            "Divergence bit inconsistency detected\n");
8739   }
8740 }
8741 #endif
8742 
8743 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8744 /// uses of other values produced by From.getNode() alone.  The same value
8745 /// may appear in both the From and To list.  The Deleted vector is
8746 /// handled the same way as for ReplaceAllUsesWith.
8747 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8748                                               const SDValue *To,
8749                                               unsigned Num){
8750   // Handle the simple, trivial case efficiently.
8751   if (Num == 1)
8752     return ReplaceAllUsesOfValueWith(*From, *To);
8753 
8754   transferDbgValues(*From, *To);
8755 
8756   // Read up all the uses and make records of them. This helps
8757   // processing new uses that are introduced during the
8758   // replacement process.
8759   SmallVector<UseMemo, 4> Uses;
8760   for (unsigned i = 0; i != Num; ++i) {
8761     unsigned FromResNo = From[i].getResNo();
8762     SDNode *FromNode = From[i].getNode();
8763     for (SDNode::use_iterator UI = FromNode->use_begin(),
8764          E = FromNode->use_end(); UI != E; ++UI) {
8765       SDUse &Use = UI.getUse();
8766       if (Use.getResNo() == FromResNo) {
8767         UseMemo Memo = { *UI, i, &Use };
8768         Uses.push_back(Memo);
8769       }
8770     }
8771   }
8772 
8773   // Sort the uses, so that all the uses from a given User are together.
8774   llvm::sort(Uses);
8775 
8776   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8777        UseIndex != UseIndexEnd; ) {
8778     // We know that this user uses some value of From.  If it is the right
8779     // value, update it.
8780     SDNode *User = Uses[UseIndex].User;
8781 
8782     // This node is about to morph, remove its old self from the CSE maps.
8783     RemoveNodeFromCSEMaps(User);
8784 
8785     // The Uses array is sorted, so all the uses for a given User
8786     // are next to each other in the list.
8787     // To help reduce the number of CSE recomputations, process all
8788     // the uses of this user that we can find this way.
8789     do {
8790       unsigned i = Uses[UseIndex].Index;
8791       SDUse &Use = *Uses[UseIndex].Use;
8792       ++UseIndex;
8793 
8794       Use.set(To[i]);
8795     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8796 
8797     // Now that we have modified User, add it back to the CSE maps.  If it
8798     // already exists there, recursively merge the results together.
8799     AddModifiedNodeToCSEMaps(User);
8800   }
8801 }
8802 
8803 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8804 /// based on their topological order. It returns the maximum id and a vector
8805 /// of the SDNodes* in assigned order by reference.
8806 unsigned SelectionDAG::AssignTopologicalOrder() {
8807   unsigned DAGSize = 0;
8808 
8809   // SortedPos tracks the progress of the algorithm. Nodes before it are
8810   // sorted, nodes after it are unsorted. When the algorithm completes
8811   // it is at the end of the list.
8812   allnodes_iterator SortedPos = allnodes_begin();
8813 
8814   // Visit all the nodes. Move nodes with no operands to the front of
8815   // the list immediately. Annotate nodes that do have operands with their
8816   // operand count. Before we do this, the Node Id fields of the nodes
8817   // may contain arbitrary values. After, the Node Id fields for nodes
8818   // before SortedPos will contain the topological sort index, and the
8819   // Node Id fields for nodes At SortedPos and after will contain the
8820   // count of outstanding operands.
8821   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8822     SDNode *N = &*I++;
8823     checkForCycles(N, this);
8824     unsigned Degree = N->getNumOperands();
8825     if (Degree == 0) {
8826       // A node with no uses, add it to the result array immediately.
8827       N->setNodeId(DAGSize++);
8828       allnodes_iterator Q(N);
8829       if (Q != SortedPos)
8830         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8831       assert(SortedPos != AllNodes.end() && "Overran node list");
8832       ++SortedPos;
8833     } else {
8834       // Temporarily use the Node Id as scratch space for the degree count.
8835       N->setNodeId(Degree);
8836     }
8837   }
8838 
8839   // Visit all the nodes. As we iterate, move nodes into sorted order,
8840   // such that by the time the end is reached all nodes will be sorted.
8841   for (SDNode &Node : allnodes()) {
8842     SDNode *N = &Node;
8843     checkForCycles(N, this);
8844     // N is in sorted position, so all its uses have one less operand
8845     // that needs to be sorted.
8846     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8847          UI != UE; ++UI) {
8848       SDNode *P = *UI;
8849       unsigned Degree = P->getNodeId();
8850       assert(Degree != 0 && "Invalid node degree");
8851       --Degree;
8852       if (Degree == 0) {
8853         // All of P's operands are sorted, so P may sorted now.
8854         P->setNodeId(DAGSize++);
8855         if (P->getIterator() != SortedPos)
8856           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8857         assert(SortedPos != AllNodes.end() && "Overran node list");
8858         ++SortedPos;
8859       } else {
8860         // Update P's outstanding operand count.
8861         P->setNodeId(Degree);
8862       }
8863     }
8864     if (Node.getIterator() == SortedPos) {
8865 #ifndef NDEBUG
8866       allnodes_iterator I(N);
8867       SDNode *S = &*++I;
8868       dbgs() << "Overran sorted position:\n";
8869       S->dumprFull(this); dbgs() << "\n";
8870       dbgs() << "Checking if this is due to cycles\n";
8871       checkForCycles(this, true);
8872 #endif
8873       llvm_unreachable(nullptr);
8874     }
8875   }
8876 
8877   assert(SortedPos == AllNodes.end() &&
8878          "Topological sort incomplete!");
8879   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8880          "First node in topological sort is not the entry token!");
8881   assert(AllNodes.front().getNodeId() == 0 &&
8882          "First node in topological sort has non-zero id!");
8883   assert(AllNodes.front().getNumOperands() == 0 &&
8884          "First node in topological sort has operands!");
8885   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8886          "Last node in topologic sort has unexpected id!");
8887   assert(AllNodes.back().use_empty() &&
8888          "Last node in topologic sort has users!");
8889   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8890   return DAGSize;
8891 }
8892 
8893 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8894 /// value is produced by SD.
8895 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8896   if (SD) {
8897     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8898     SD->setHasDebugValue(true);
8899   }
8900   DbgInfo->add(DB, SD, isParameter);
8901 }
8902 
8903 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8904   DbgInfo->add(DB);
8905 }
8906 
8907 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8908                                                    SDValue NewMemOp) {
8909   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8910   // The new memory operation must have the same position as the old load in
8911   // terms of memory dependency. Create a TokenFactor for the old load and new
8912   // memory operation and update uses of the old load's output chain to use that
8913   // TokenFactor.
8914   SDValue OldChain = SDValue(OldLoad, 1);
8915   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8916   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8917     return NewChain;
8918 
8919   SDValue TokenFactor =
8920       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8921   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8922   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8923   return TokenFactor;
8924 }
8925 
8926 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8927                                                      Function **OutFunction) {
8928   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8929 
8930   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8931   auto *Module = MF->getFunction().getParent();
8932   auto *Function = Module->getFunction(Symbol);
8933 
8934   if (OutFunction != nullptr)
8935       *OutFunction = Function;
8936 
8937   if (Function != nullptr) {
8938     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8939     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8940   }
8941 
8942   std::string ErrorStr;
8943   raw_string_ostream ErrorFormatter(ErrorStr);
8944 
8945   ErrorFormatter << "Undefined external symbol ";
8946   ErrorFormatter << '"' << Symbol << '"';
8947   ErrorFormatter.flush();
8948 
8949   report_fatal_error(ErrorStr);
8950 }
8951 
8952 //===----------------------------------------------------------------------===//
8953 //                              SDNode Class
8954 //===----------------------------------------------------------------------===//
8955 
8956 bool llvm::isNullConstant(SDValue V) {
8957   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8958   return Const != nullptr && Const->isNullValue();
8959 }
8960 
8961 bool llvm::isNullFPConstant(SDValue V) {
8962   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8963   return Const != nullptr && Const->isZero() && !Const->isNegative();
8964 }
8965 
8966 bool llvm::isAllOnesConstant(SDValue V) {
8967   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8968   return Const != nullptr && Const->isAllOnesValue();
8969 }
8970 
8971 bool llvm::isOneConstant(SDValue V) {
8972   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8973   return Const != nullptr && Const->isOne();
8974 }
8975 
8976 SDValue llvm::peekThroughBitcasts(SDValue V) {
8977   while (V.getOpcode() == ISD::BITCAST)
8978     V = V.getOperand(0);
8979   return V;
8980 }
8981 
8982 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8983   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8984     V = V.getOperand(0);
8985   return V;
8986 }
8987 
8988 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
8989   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8990     V = V.getOperand(0);
8991   return V;
8992 }
8993 
8994 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
8995   if (V.getOpcode() != ISD::XOR)
8996     return false;
8997   V = peekThroughBitcasts(V.getOperand(1));
8998   unsigned NumBits = V.getScalarValueSizeInBits();
8999   ConstantSDNode *C =
9000       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9001   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9002 }
9003 
9004 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9005                                           bool AllowTruncation) {
9006   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9007     return CN;
9008 
9009   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9010     BitVector UndefElements;
9011     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9012 
9013     // BuildVectors can truncate their operands. Ignore that case here unless
9014     // AllowTruncation is set.
9015     if (CN && (UndefElements.none() || AllowUndefs)) {
9016       EVT CVT = CN->getValueType(0);
9017       EVT NSVT = N.getValueType().getScalarType();
9018       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9019       if (AllowTruncation || (CVT == NSVT))
9020         return CN;
9021     }
9022   }
9023 
9024   return nullptr;
9025 }
9026 
9027 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9028                                           bool AllowUndefs,
9029                                           bool AllowTruncation) {
9030   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9031     return CN;
9032 
9033   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9034     BitVector UndefElements;
9035     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9036 
9037     // BuildVectors can truncate their operands. Ignore that case here unless
9038     // AllowTruncation is set.
9039     if (CN && (UndefElements.none() || AllowUndefs)) {
9040       EVT CVT = CN->getValueType(0);
9041       EVT NSVT = N.getValueType().getScalarType();
9042       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9043       if (AllowTruncation || (CVT == NSVT))
9044         return CN;
9045     }
9046   }
9047 
9048   return nullptr;
9049 }
9050 
9051 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9052   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9053     return CN;
9054 
9055   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9056     BitVector UndefElements;
9057     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9058     if (CN && (UndefElements.none() || AllowUndefs))
9059       return CN;
9060   }
9061 
9062   return nullptr;
9063 }
9064 
9065 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9066                                               const APInt &DemandedElts,
9067                                               bool AllowUndefs) {
9068   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9069     return CN;
9070 
9071   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9072     BitVector UndefElements;
9073     ConstantFPSDNode *CN =
9074         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9075     if (CN && (UndefElements.none() || AllowUndefs))
9076       return CN;
9077   }
9078 
9079   return nullptr;
9080 }
9081 
9082 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9083   // TODO: may want to use peekThroughBitcast() here.
9084   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9085   return C && C->isNullValue();
9086 }
9087 
9088 bool llvm::isOneOrOneSplat(SDValue N) {
9089   // TODO: may want to use peekThroughBitcast() here.
9090   unsigned BitWidth = N.getScalarValueSizeInBits();
9091   ConstantSDNode *C = isConstOrConstSplat(N);
9092   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9093 }
9094 
9095 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
9096   N = peekThroughBitcasts(N);
9097   unsigned BitWidth = N.getScalarValueSizeInBits();
9098   ConstantSDNode *C = isConstOrConstSplat(N);
9099   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9100 }
9101 
9102 HandleSDNode::~HandleSDNode() {
9103   DropOperands();
9104 }
9105 
9106 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9107                                          const DebugLoc &DL,
9108                                          const GlobalValue *GA, EVT VT,
9109                                          int64_t o, unsigned TF)
9110     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9111   TheGlobal = GA;
9112 }
9113 
9114 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9115                                          EVT VT, unsigned SrcAS,
9116                                          unsigned DestAS)
9117     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9118       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9119 
9120 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9121                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9122     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9123   MemSDNodeBits.IsVolatile = MMO->isVolatile();
9124   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9125   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9126   MemSDNodeBits.IsInvariant = MMO->isInvariant();
9127 
9128   // We check here that the size of the memory operand fits within the size of
9129   // the MMO. This is because the MMO might indicate only a possible address
9130   // range instead of specifying the affected memory addresses precisely.
9131   // TODO: Make MachineMemOperands aware of scalable vectors.
9132   assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9133          "Size mismatch!");
9134 }
9135 
9136 /// Profile - Gather unique data for the node.
9137 ///
9138 void SDNode::Profile(FoldingSetNodeID &ID) const {
9139   AddNodeIDNode(ID, this);
9140 }
9141 
9142 namespace {
9143 
9144   struct EVTArray {
9145     std::vector<EVT> VTs;
9146 
9147     EVTArray() {
9148       VTs.reserve(MVT::LAST_VALUETYPE);
9149       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9150         VTs.push_back(MVT((MVT::SimpleValueType)i));
9151     }
9152   };
9153 
9154 } // end anonymous namespace
9155 
9156 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9157 static ManagedStatic<EVTArray> SimpleVTArray;
9158 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9159 
9160 /// getValueTypeList - Return a pointer to the specified value type.
9161 ///
9162 const EVT *SDNode::getValueTypeList(EVT VT) {
9163   if (VT.isExtended()) {
9164     sys::SmartScopedLock<true> Lock(*VTMutex);
9165     return &(*EVTs->insert(VT).first);
9166   } else {
9167     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9168            "Value type out of range!");
9169     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9170   }
9171 }
9172 
9173 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9174 /// indicated value.  This method ignores uses of other values defined by this
9175 /// operation.
9176 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9177   assert(Value < getNumValues() && "Bad value!");
9178 
9179   // TODO: Only iterate over uses of a given value of the node
9180   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9181     if (UI.getUse().getResNo() == Value) {
9182       if (NUses == 0)
9183         return false;
9184       --NUses;
9185     }
9186   }
9187 
9188   // Found exactly the right number of uses?
9189   return NUses == 0;
9190 }
9191 
9192 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9193 /// value. This method ignores uses of other values defined by this operation.
9194 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9195   assert(Value < getNumValues() && "Bad value!");
9196 
9197   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9198     if (UI.getUse().getResNo() == Value)
9199       return true;
9200 
9201   return false;
9202 }
9203 
9204 /// isOnlyUserOf - Return true if this node is the only use of N.
9205 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9206   bool Seen = false;
9207   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9208     SDNode *User = *I;
9209     if (User == this)
9210       Seen = true;
9211     else
9212       return false;
9213   }
9214 
9215   return Seen;
9216 }
9217 
9218 /// Return true if the only users of N are contained in Nodes.
9219 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9220   bool Seen = false;
9221   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9222     SDNode *User = *I;
9223     if (llvm::any_of(Nodes,
9224                      [&User](const SDNode *Node) { return User == Node; }))
9225       Seen = true;
9226     else
9227       return false;
9228   }
9229 
9230   return Seen;
9231 }
9232 
9233 /// isOperand - Return true if this node is an operand of N.
9234 bool SDValue::isOperandOf(const SDNode *N) const {
9235   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
9236 }
9237 
9238 bool SDNode::isOperandOf(const SDNode *N) const {
9239   return any_of(N->op_values(),
9240                 [this](SDValue Op) { return this == Op.getNode(); });
9241 }
9242 
9243 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9244 /// be a chain) reaches the specified operand without crossing any
9245 /// side-effecting instructions on any chain path.  In practice, this looks
9246 /// through token factors and non-volatile loads.  In order to remain efficient,
9247 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9248 ///
9249 /// Note that we only need to examine chains when we're searching for
9250 /// side-effects; SelectionDAG requires that all side-effects are represented
9251 /// by chains, even if another operand would force a specific ordering. This
9252 /// constraint is necessary to allow transformations like splitting loads.
9253 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9254                                              unsigned Depth) const {
9255   if (*this == Dest) return true;
9256 
9257   // Don't search too deeply, we just want to be able to see through
9258   // TokenFactor's etc.
9259   if (Depth == 0) return false;
9260 
9261   // If this is a token factor, all inputs to the TF happen in parallel.
9262   if (getOpcode() == ISD::TokenFactor) {
9263     // First, try a shallow search.
9264     if (is_contained((*this)->ops(), Dest)) {
9265       // We found the chain we want as an operand of this TokenFactor.
9266       // Essentially, we reach the chain without side-effects if we could
9267       // serialize the TokenFactor into a simple chain of operations with
9268       // Dest as the last operation. This is automatically true if the
9269       // chain has one use: there are no other ordering constraints.
9270       // If the chain has more than one use, we give up: some other
9271       // use of Dest might force a side-effect between Dest and the current
9272       // node.
9273       if (Dest.hasOneUse())
9274         return true;
9275     }
9276     // Next, try a deep search: check whether every operand of the TokenFactor
9277     // reaches Dest.
9278     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9279       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9280     });
9281   }
9282 
9283   // Loads don't have side effects, look through them.
9284   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9285     if (Ld->isUnordered())
9286       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9287   }
9288   return false;
9289 }
9290 
9291 bool SDNode::hasPredecessor(const SDNode *N) const {
9292   SmallPtrSet<const SDNode *, 32> Visited;
9293   SmallVector<const SDNode *, 16> Worklist;
9294   Worklist.push_back(this);
9295   return hasPredecessorHelper(N, Visited, Worklist);
9296 }
9297 
9298 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9299   this->Flags.intersectWith(Flags);
9300 }
9301 
9302 SDValue
9303 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9304                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9305                                   bool AllowPartials) {
9306   // The pattern must end in an extract from index 0.
9307   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9308       !isNullConstant(Extract->getOperand(1)))
9309     return SDValue();
9310 
9311   // Match against one of the candidate binary ops.
9312   SDValue Op = Extract->getOperand(0);
9313   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9314         return Op.getOpcode() == unsigned(BinOp);
9315       }))
9316     return SDValue();
9317 
9318   // Floating-point reductions may require relaxed constraints on the final step
9319   // of the reduction because they may reorder intermediate operations.
9320   unsigned CandidateBinOp = Op.getOpcode();
9321   if (Op.getValueType().isFloatingPoint()) {
9322     SDNodeFlags Flags = Op->getFlags();
9323     switch (CandidateBinOp) {
9324     case ISD::FADD:
9325       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9326         return SDValue();
9327       break;
9328     default:
9329       llvm_unreachable("Unhandled FP opcode for binop reduction");
9330     }
9331   }
9332 
9333   // Matching failed - attempt to see if we did enough stages that a partial
9334   // reduction from a subvector is possible.
9335   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9336     if (!AllowPartials || !Op)
9337       return SDValue();
9338     EVT OpVT = Op.getValueType();
9339     EVT OpSVT = OpVT.getScalarType();
9340     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9341     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9342       return SDValue();
9343     BinOp = (ISD::NodeType)CandidateBinOp;
9344     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9345                    getVectorIdxConstant(0, SDLoc(Op)));
9346   };
9347 
9348   // At each stage, we're looking for something that looks like:
9349   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9350   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9351   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9352   // %a = binop <8 x i32> %op, %s
9353   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9354   // we expect something like:
9355   // <4,5,6,7,u,u,u,u>
9356   // <2,3,u,u,u,u,u,u>
9357   // <1,u,u,u,u,u,u,u>
9358   // While a partial reduction match would be:
9359   // <2,3,u,u,u,u,u,u>
9360   // <1,u,u,u,u,u,u,u>
9361   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9362   SDValue PrevOp;
9363   for (unsigned i = 0; i < Stages; ++i) {
9364     unsigned MaskEnd = (1 << i);
9365 
9366     if (Op.getOpcode() != CandidateBinOp)
9367       return PartialReduction(PrevOp, MaskEnd);
9368 
9369     SDValue Op0 = Op.getOperand(0);
9370     SDValue Op1 = Op.getOperand(1);
9371 
9372     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9373     if (Shuffle) {
9374       Op = Op1;
9375     } else {
9376       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9377       Op = Op0;
9378     }
9379 
9380     // The first operand of the shuffle should be the same as the other operand
9381     // of the binop.
9382     if (!Shuffle || Shuffle->getOperand(0) != Op)
9383       return PartialReduction(PrevOp, MaskEnd);
9384 
9385     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9386     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9387       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9388         return PartialReduction(PrevOp, MaskEnd);
9389 
9390     PrevOp = Op;
9391   }
9392 
9393   // Handle subvector reductions, which tend to appear after the shuffle
9394   // reduction stages.
9395   while (Op.getOpcode() == CandidateBinOp) {
9396     unsigned NumElts = Op.getValueType().getVectorNumElements();
9397     SDValue Op0 = Op.getOperand(0);
9398     SDValue Op1 = Op.getOperand(1);
9399     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9400         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9401         Op0.getOperand(0) != Op1.getOperand(0))
9402       break;
9403     SDValue Src = Op0.getOperand(0);
9404     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
9405     if (NumSrcElts != (2 * NumElts))
9406       break;
9407     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
9408           Op1.getConstantOperandAPInt(1) == NumElts) &&
9409         !(Op1.getConstantOperandAPInt(1) == 0 &&
9410           Op0.getConstantOperandAPInt(1) == NumElts))
9411       break;
9412     Op = Src;
9413   }
9414 
9415   BinOp = (ISD::NodeType)CandidateBinOp;
9416   return Op;
9417 }
9418 
9419 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9420   assert(N->getNumValues() == 1 &&
9421          "Can't unroll a vector with multiple results!");
9422 
9423   EVT VT = N->getValueType(0);
9424   unsigned NE = VT.getVectorNumElements();
9425   EVT EltVT = VT.getVectorElementType();
9426   SDLoc dl(N);
9427 
9428   SmallVector<SDValue, 8> Scalars;
9429   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9430 
9431   // If ResNE is 0, fully unroll the vector op.
9432   if (ResNE == 0)
9433     ResNE = NE;
9434   else if (NE > ResNE)
9435     NE = ResNE;
9436 
9437   unsigned i;
9438   for (i= 0; i != NE; ++i) {
9439     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9440       SDValue Operand = N->getOperand(j);
9441       EVT OperandVT = Operand.getValueType();
9442       if (OperandVT.isVector()) {
9443         // A vector operand; extract a single element.
9444         EVT OperandEltVT = OperandVT.getVectorElementType();
9445         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9446                               Operand, getVectorIdxConstant(i, dl));
9447       } else {
9448         // A scalar operand; just use it as is.
9449         Operands[j] = Operand;
9450       }
9451     }
9452 
9453     switch (N->getOpcode()) {
9454     default: {
9455       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9456                                 N->getFlags()));
9457       break;
9458     }
9459     case ISD::VSELECT:
9460       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9461       break;
9462     case ISD::SHL:
9463     case ISD::SRA:
9464     case ISD::SRL:
9465     case ISD::ROTL:
9466     case ISD::ROTR:
9467       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9468                                getShiftAmountOperand(Operands[0].getValueType(),
9469                                                      Operands[1])));
9470       break;
9471     case ISD::SIGN_EXTEND_INREG: {
9472       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9473       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9474                                 Operands[0],
9475                                 getValueType(ExtVT)));
9476     }
9477     }
9478   }
9479 
9480   for (; i < ResNE; ++i)
9481     Scalars.push_back(getUNDEF(EltVT));
9482 
9483   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9484   return getBuildVector(VecVT, dl, Scalars);
9485 }
9486 
9487 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9488     SDNode *N, unsigned ResNE) {
9489   unsigned Opcode = N->getOpcode();
9490   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9491           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9492           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9493          "Expected an overflow opcode");
9494 
9495   EVT ResVT = N->getValueType(0);
9496   EVT OvVT = N->getValueType(1);
9497   EVT ResEltVT = ResVT.getVectorElementType();
9498   EVT OvEltVT = OvVT.getVectorElementType();
9499   SDLoc dl(N);
9500 
9501   // If ResNE is 0, fully unroll the vector op.
9502   unsigned NE = ResVT.getVectorNumElements();
9503   if (ResNE == 0)
9504     ResNE = NE;
9505   else if (NE > ResNE)
9506     NE = ResNE;
9507 
9508   SmallVector<SDValue, 8> LHSScalars;
9509   SmallVector<SDValue, 8> RHSScalars;
9510   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9511   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9512 
9513   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9514   SDVTList VTs = getVTList(ResEltVT, SVT);
9515   SmallVector<SDValue, 8> ResScalars;
9516   SmallVector<SDValue, 8> OvScalars;
9517   for (unsigned i = 0; i < NE; ++i) {
9518     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9519     SDValue Ov =
9520         getSelect(dl, OvEltVT, Res.getValue(1),
9521                   getBoolConstant(true, dl, OvEltVT, ResVT),
9522                   getConstant(0, dl, OvEltVT));
9523 
9524     ResScalars.push_back(Res);
9525     OvScalars.push_back(Ov);
9526   }
9527 
9528   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9529   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9530 
9531   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9532   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9533   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9534                         getBuildVector(NewOvVT, dl, OvScalars));
9535 }
9536 
9537 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9538                                                   LoadSDNode *Base,
9539                                                   unsigned Bytes,
9540                                                   int Dist) const {
9541   if (LD->isVolatile() || Base->isVolatile())
9542     return false;
9543   // TODO: probably too restrictive for atomics, revisit
9544   if (!LD->isSimple())
9545     return false;
9546   if (LD->isIndexed() || Base->isIndexed())
9547     return false;
9548   if (LD->getChain() != Base->getChain())
9549     return false;
9550   EVT VT = LD->getValueType(0);
9551   if (VT.getSizeInBits() / 8 != Bytes)
9552     return false;
9553 
9554   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9555   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9556 
9557   int64_t Offset = 0;
9558   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9559     return (Dist * Bytes == Offset);
9560   return false;
9561 }
9562 
9563 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
9564 /// if it cannot be inferred.
9565 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
9566   // If this is a GlobalAddress + cst, return the alignment.
9567   const GlobalValue *GV = nullptr;
9568   int64_t GVOffset = 0;
9569   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9570     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
9571     KnownBits Known(PtrWidth);
9572     llvm::computeKnownBits(GV, Known, getDataLayout());
9573     unsigned AlignBits = Known.countMinTrailingZeros();
9574     if (AlignBits)
9575       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
9576   }
9577 
9578   // If this is a direct reference to a stack slot, use information about the
9579   // stack slot's alignment.
9580   int FrameIdx = INT_MIN;
9581   int64_t FrameOffset = 0;
9582   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9583     FrameIdx = FI->getIndex();
9584   } else if (isBaseWithConstantOffset(Ptr) &&
9585              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9586     // Handle FI+Cst
9587     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9588     FrameOffset = Ptr.getConstantOperandVal(1);
9589   }
9590 
9591   if (FrameIdx != INT_MIN) {
9592     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9593     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
9594   }
9595 
9596   return None;
9597 }
9598 
9599 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9600 /// which is split (or expanded) into two not necessarily identical pieces.
9601 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9602   // Currently all types are split in half.
9603   EVT LoVT, HiVT;
9604   if (!VT.isVector())
9605     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9606   else
9607     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9608 
9609   return std::make_pair(LoVT, HiVT);
9610 }
9611 
9612 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
9613 /// type, dependent on an enveloping VT that has been split into two identical
9614 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
9615 std::pair<EVT, EVT>
9616 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
9617                                        bool *HiIsEmpty) const {
9618   EVT EltTp = VT.getVectorElementType();
9619   bool IsScalable = VT.isScalableVector();
9620   // Examples:
9621   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
9622   //   custom VL=9  with enveloping VL=8/8 yields 8/1
9623   //   custom VL=10 with enveloping VL=8/8 yields 8/2
9624   //   etc.
9625   unsigned VTNumElts = VT.getVectorNumElements();
9626   unsigned EnvNumElts = EnvVT.getVectorNumElements();
9627   EVT LoVT, HiVT;
9628   if (VTNumElts > EnvNumElts) {
9629     LoVT = EnvVT;
9630     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts,
9631                             IsScalable);
9632     *HiIsEmpty = false;
9633   } else {
9634     // Flag that hi type has zero storage size, but return split envelop type
9635     // (this would be easier if vector types with zero elements were allowed).
9636     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts, IsScalable);
9637     HiVT = EnvVT;
9638     *HiIsEmpty = true;
9639   }
9640   return std::make_pair(LoVT, HiVT);
9641 }
9642 
9643 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9644 /// low/high part.
9645 std::pair<SDValue, SDValue>
9646 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9647                           const EVT &HiVT) {
9648   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
9649          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
9650          "Splitting vector with an invalid mixture of fixed and scalable "
9651          "vector types");
9652   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
9653              N.getValueType().getVectorMinNumElements() &&
9654          "More vector elements requested than available!");
9655   SDValue Lo, Hi;
9656   Lo =
9657       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9658   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
9659   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
9660   // IDX with the runtime scaling factor of the result vector type. For
9661   // fixed-width result vectors, that runtime scaling factor is 1.
9662   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9663                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
9664   return std::make_pair(Lo, Hi);
9665 }
9666 
9667 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9668 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9669   EVT VT = N.getValueType();
9670   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9671                                 NextPowerOf2(VT.getVectorNumElements()));
9672   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9673                  getVectorIdxConstant(0, DL));
9674 }
9675 
9676 void SelectionDAG::ExtractVectorElements(SDValue Op,
9677                                          SmallVectorImpl<SDValue> &Args,
9678                                          unsigned Start, unsigned Count,
9679                                          EVT EltVT) {
9680   EVT VT = Op.getValueType();
9681   if (Count == 0)
9682     Count = VT.getVectorNumElements();
9683   if (EltVT == EVT())
9684     EltVT = VT.getVectorElementType();
9685   SDLoc SL(Op);
9686   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9687     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9688                            getVectorIdxConstant(i, SL)));
9689   }
9690 }
9691 
9692 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9693 unsigned GlobalAddressSDNode::getAddressSpace() const {
9694   return getGlobal()->getType()->getAddressSpace();
9695 }
9696 
9697 Type *ConstantPoolSDNode::getType() const {
9698   if (isMachineConstantPoolEntry())
9699     return Val.MachineCPVal->getType();
9700   return Val.ConstVal->getType();
9701 }
9702 
9703 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9704                                         unsigned &SplatBitSize,
9705                                         bool &HasAnyUndefs,
9706                                         unsigned MinSplatBits,
9707                                         bool IsBigEndian) const {
9708   EVT VT = getValueType(0);
9709   assert(VT.isVector() && "Expected a vector type");
9710   unsigned VecWidth = VT.getSizeInBits();
9711   if (MinSplatBits > VecWidth)
9712     return false;
9713 
9714   // FIXME: The widths are based on this node's type, but build vectors can
9715   // truncate their operands.
9716   SplatValue = APInt(VecWidth, 0);
9717   SplatUndef = APInt(VecWidth, 0);
9718 
9719   // Get the bits. Bits with undefined values (when the corresponding element
9720   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9721   // in SplatValue. If any of the values are not constant, give up and return
9722   // false.
9723   unsigned int NumOps = getNumOperands();
9724   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9725   unsigned EltWidth = VT.getScalarSizeInBits();
9726 
9727   for (unsigned j = 0; j < NumOps; ++j) {
9728     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9729     SDValue OpVal = getOperand(i);
9730     unsigned BitPos = j * EltWidth;
9731 
9732     if (OpVal.isUndef())
9733       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9734     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9735       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9736     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9737       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9738     else
9739       return false;
9740   }
9741 
9742   // The build_vector is all constants or undefs. Find the smallest element
9743   // size that splats the vector.
9744   HasAnyUndefs = (SplatUndef != 0);
9745 
9746   // FIXME: This does not work for vectors with elements less than 8 bits.
9747   while (VecWidth > 8) {
9748     unsigned HalfSize = VecWidth / 2;
9749     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9750     APInt LowValue = SplatValue.trunc(HalfSize);
9751     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9752     APInt LowUndef = SplatUndef.trunc(HalfSize);
9753 
9754     // If the two halves do not match (ignoring undef bits), stop here.
9755     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9756         MinSplatBits > HalfSize)
9757       break;
9758 
9759     SplatValue = HighValue | LowValue;
9760     SplatUndef = HighUndef & LowUndef;
9761 
9762     VecWidth = HalfSize;
9763   }
9764 
9765   SplatBitSize = VecWidth;
9766   return true;
9767 }
9768 
9769 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9770                                          BitVector *UndefElements) const {
9771   if (UndefElements) {
9772     UndefElements->clear();
9773     UndefElements->resize(getNumOperands());
9774   }
9775   assert(getNumOperands() == DemandedElts.getBitWidth() &&
9776          "Unexpected vector size");
9777   if (!DemandedElts)
9778     return SDValue();
9779   SDValue Splatted;
9780   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9781     if (!DemandedElts[i])
9782       continue;
9783     SDValue Op = getOperand(i);
9784     if (Op.isUndef()) {
9785       if (UndefElements)
9786         (*UndefElements)[i] = true;
9787     } else if (!Splatted) {
9788       Splatted = Op;
9789     } else if (Splatted != Op) {
9790       return SDValue();
9791     }
9792   }
9793 
9794   if (!Splatted) {
9795     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9796     assert(getOperand(FirstDemandedIdx).isUndef() &&
9797            "Can only have a splat without a constant for all undefs.");
9798     return getOperand(FirstDemandedIdx);
9799   }
9800 
9801   return Splatted;
9802 }
9803 
9804 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9805   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9806   return getSplatValue(DemandedElts, UndefElements);
9807 }
9808 
9809 ConstantSDNode *
9810 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9811                                         BitVector *UndefElements) const {
9812   return dyn_cast_or_null<ConstantSDNode>(
9813       getSplatValue(DemandedElts, UndefElements));
9814 }
9815 
9816 ConstantSDNode *
9817 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9818   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9819 }
9820 
9821 ConstantFPSDNode *
9822 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9823                                           BitVector *UndefElements) const {
9824   return dyn_cast_or_null<ConstantFPSDNode>(
9825       getSplatValue(DemandedElts, UndefElements));
9826 }
9827 
9828 ConstantFPSDNode *
9829 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9830   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9831 }
9832 
9833 int32_t
9834 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9835                                                    uint32_t BitWidth) const {
9836   if (ConstantFPSDNode *CN =
9837           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9838     bool IsExact;
9839     APSInt IntVal(BitWidth);
9840     const APFloat &APF = CN->getValueAPF();
9841     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9842             APFloat::opOK ||
9843         !IsExact)
9844       return -1;
9845 
9846     return IntVal.exactLogBase2();
9847   }
9848   return -1;
9849 }
9850 
9851 bool BuildVectorSDNode::isConstant() const {
9852   for (const SDValue &Op : op_values()) {
9853     unsigned Opc = Op.getOpcode();
9854     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9855       return false;
9856   }
9857   return true;
9858 }
9859 
9860 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9861   // Find the first non-undef value in the shuffle mask.
9862   unsigned i, e;
9863   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9864     /* search */;
9865 
9866   // If all elements are undefined, this shuffle can be considered a splat
9867   // (although it should eventually get simplified away completely).
9868   if (i == e)
9869     return true;
9870 
9871   // Make sure all remaining elements are either undef or the same as the first
9872   // non-undef value.
9873   for (int Idx = Mask[i]; i != e; ++i)
9874     if (Mask[i] >= 0 && Mask[i] != Idx)
9875       return false;
9876   return true;
9877 }
9878 
9879 // Returns the SDNode if it is a constant integer BuildVector
9880 // or constant integer.
9881 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9882   if (isa<ConstantSDNode>(N))
9883     return N.getNode();
9884   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9885     return N.getNode();
9886   // Treat a GlobalAddress supporting constant offset folding as a
9887   // constant integer.
9888   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9889     if (GA->getOpcode() == ISD::GlobalAddress &&
9890         TLI->isOffsetFoldingLegal(GA))
9891       return GA;
9892   return nullptr;
9893 }
9894 
9895 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9896   if (isa<ConstantFPSDNode>(N))
9897     return N.getNode();
9898 
9899   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9900     return N.getNode();
9901 
9902   return nullptr;
9903 }
9904 
9905 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9906   assert(!Node->OperandList && "Node already has operands");
9907   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9908          "too many operands to fit into SDNode");
9909   SDUse *Ops = OperandRecycler.allocate(
9910       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9911 
9912   bool IsDivergent = false;
9913   for (unsigned I = 0; I != Vals.size(); ++I) {
9914     Ops[I].setUser(Node);
9915     Ops[I].setInitial(Vals[I]);
9916     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9917       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9918   }
9919   Node->NumOperands = Vals.size();
9920   Node->OperandList = Ops;
9921   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9922   if (!TLI->isSDNodeAlwaysUniform(Node))
9923     Node->SDNodeBits.IsDivergent = IsDivergent;
9924   checkForCycles(Node);
9925 }
9926 
9927 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9928                                      SmallVectorImpl<SDValue> &Vals) {
9929   size_t Limit = SDNode::getMaxNumOperands();
9930   while (Vals.size() > Limit) {
9931     unsigned SliceIdx = Vals.size() - Limit;
9932     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9933     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9934     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9935     Vals.emplace_back(NewTF);
9936   }
9937   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9938 }
9939 
9940 #ifndef NDEBUG
9941 static void checkForCyclesHelper(const SDNode *N,
9942                                  SmallPtrSetImpl<const SDNode*> &Visited,
9943                                  SmallPtrSetImpl<const SDNode*> &Checked,
9944                                  const llvm::SelectionDAG *DAG) {
9945   // If this node has already been checked, don't check it again.
9946   if (Checked.count(N))
9947     return;
9948 
9949   // If a node has already been visited on this depth-first walk, reject it as
9950   // a cycle.
9951   if (!Visited.insert(N).second) {
9952     errs() << "Detected cycle in SelectionDAG\n";
9953     dbgs() << "Offending node:\n";
9954     N->dumprFull(DAG); dbgs() << "\n";
9955     abort();
9956   }
9957 
9958   for (const SDValue &Op : N->op_values())
9959     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9960 
9961   Checked.insert(N);
9962   Visited.erase(N);
9963 }
9964 #endif
9965 
9966 void llvm::checkForCycles(const llvm::SDNode *N,
9967                           const llvm::SelectionDAG *DAG,
9968                           bool force) {
9969 #ifndef NDEBUG
9970   bool check = force;
9971 #ifdef EXPENSIVE_CHECKS
9972   check = true;
9973 #endif  // EXPENSIVE_CHECKS
9974   if (check) {
9975     assert(N && "Checking nonexistent SDNode");
9976     SmallPtrSet<const SDNode*, 32> visited;
9977     SmallPtrSet<const SDNode*, 32> checked;
9978     checkForCyclesHelper(N, visited, checked, DAG);
9979   }
9980 #endif  // !NDEBUG
9981 }
9982 
9983 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9984   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9985 }
9986