1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/CodeGen/ISDOpcodes.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/RuntimeLibcalls.h" 35 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/IR/Constant.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CodeGen.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/KnownBits.h" 59 #include "llvm/Support/MachineValueType.h" 60 #include "llvm/Support/ManagedStatic.h" 61 #include "llvm/Support/MathExtras.h" 62 #include "llvm/Support/Mutex.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetMachine.h" 65 #include "llvm/Target/TargetOptions.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstdint> 69 #include <cstdlib> 70 #include <limits> 71 #include <set> 72 #include <string> 73 #include <utility> 74 #include <vector> 75 76 using namespace llvm; 77 78 /// makeVTList - Return an instance of the SDVTList struct initialized with the 79 /// specified members. 80 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 81 SDVTList Res = {VTs, NumVTs}; 82 return Res; 83 } 84 85 // Default null implementations of the callbacks. 86 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 87 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 88 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 89 90 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 91 92 #define DEBUG_TYPE "selectiondag" 93 94 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 95 cl::Hidden, cl::init(true), 96 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 97 98 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 99 cl::desc("Number limit for gluing ld/st of memcpy."), 100 cl::Hidden, cl::init(0)); 101 102 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 103 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 104 } 105 106 //===----------------------------------------------------------------------===// 107 // ConstantFPSDNode Class 108 //===----------------------------------------------------------------------===// 109 110 /// isExactlyValue - We don't rely on operator== working on double values, as 111 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 112 /// As such, this method can be used to do an exact bit-for-bit comparison of 113 /// two floating point values. 114 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 115 return getValueAPF().bitwiseIsEqual(V); 116 } 117 118 bool ConstantFPSDNode::isValueValidForType(EVT VT, 119 const APFloat& Val) { 120 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 121 122 // convert modifies in place, so make a copy. 123 APFloat Val2 = APFloat(Val); 124 bool losesInfo; 125 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 126 APFloat::rmNearestTiesToEven, 127 &losesInfo); 128 return !losesInfo; 129 } 130 131 //===----------------------------------------------------------------------===// 132 // ISD Namespace 133 //===----------------------------------------------------------------------===// 134 135 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 136 auto *BV = dyn_cast<BuildVectorSDNode>(N); 137 if (!BV) 138 return false; 139 140 APInt SplatUndef; 141 unsigned SplatBitSize; 142 bool HasUndefs; 143 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 144 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 145 EltSize) && 146 EltSize == SplatBitSize; 147 } 148 149 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 150 // specializations of the more general isConstantSplatVector()? 151 152 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 153 // Look through a bit convert. 154 while (N->getOpcode() == ISD::BITCAST) 155 N = N->getOperand(0).getNode(); 156 157 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 158 159 unsigned i = 0, e = N->getNumOperands(); 160 161 // Skip over all of the undef values. 162 while (i != e && N->getOperand(i).isUndef()) 163 ++i; 164 165 // Do not accept an all-undef vector. 166 if (i == e) return false; 167 168 // Do not accept build_vectors that aren't all constants or which have non-~0 169 // elements. We have to be a bit careful here, as the type of the constant 170 // may not be the same as the type of the vector elements due to type 171 // legalization (the elements are promoted to a legal type for the target and 172 // a vector of a type may be legal when the base element type is not). 173 // We only want to check enough bits to cover the vector elements, because 174 // we care if the resultant vector is all ones, not whether the individual 175 // constants are. 176 SDValue NotZero = N->getOperand(i); 177 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 178 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 179 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 180 return false; 181 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 182 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 183 return false; 184 } else 185 return false; 186 187 // Okay, we have at least one ~0 value, check to see if the rest match or are 188 // undefs. Even with the above element type twiddling, this should be OK, as 189 // the same type legalization should have applied to all the elements. 190 for (++i; i != e; ++i) 191 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 192 return false; 193 return true; 194 } 195 196 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 197 // Look through a bit convert. 198 while (N->getOpcode() == ISD::BITCAST) 199 N = N->getOperand(0).getNode(); 200 201 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 202 203 bool IsAllUndef = true; 204 for (const SDValue &Op : N->op_values()) { 205 if (Op.isUndef()) 206 continue; 207 IsAllUndef = false; 208 // Do not accept build_vectors that aren't all constants or which have non-0 209 // elements. We have to be a bit careful here, as the type of the constant 210 // may not be the same as the type of the vector elements due to type 211 // legalization (the elements are promoted to a legal type for the target 212 // and a vector of a type may be legal when the base element type is not). 213 // We only want to check enough bits to cover the vector elements, because 214 // we care if the resultant vector is all zeros, not whether the individual 215 // constants are. 216 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 217 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 218 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 219 return false; 220 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 221 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 222 return false; 223 } else 224 return false; 225 } 226 227 // Do not accept an all-undef vector. 228 if (IsAllUndef) 229 return false; 230 return true; 231 } 232 233 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 234 if (N->getOpcode() != ISD::BUILD_VECTOR) 235 return false; 236 237 for (const SDValue &Op : N->op_values()) { 238 if (Op.isUndef()) 239 continue; 240 if (!isa<ConstantSDNode>(Op)) 241 return false; 242 } 243 return true; 244 } 245 246 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 247 if (N->getOpcode() != ISD::BUILD_VECTOR) 248 return false; 249 250 for (const SDValue &Op : N->op_values()) { 251 if (Op.isUndef()) 252 continue; 253 if (!isa<ConstantFPSDNode>(Op)) 254 return false; 255 } 256 return true; 257 } 258 259 bool ISD::allOperandsUndef(const SDNode *N) { 260 // Return false if the node has no operands. 261 // This is "logically inconsistent" with the definition of "all" but 262 // is probably the desired behavior. 263 if (N->getNumOperands() == 0) 264 return false; 265 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 266 } 267 268 bool ISD::matchUnaryPredicate(SDValue Op, 269 std::function<bool(ConstantSDNode *)> Match, 270 bool AllowUndefs) { 271 // FIXME: Add support for scalar UNDEF cases? 272 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 273 return Match(Cst); 274 275 // FIXME: Add support for vector UNDEF cases? 276 if (ISD::BUILD_VECTOR != Op.getOpcode()) 277 return false; 278 279 EVT SVT = Op.getValueType().getScalarType(); 280 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 281 if (AllowUndefs && Op.getOperand(i).isUndef()) { 282 if (!Match(nullptr)) 283 return false; 284 continue; 285 } 286 287 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 288 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 289 return false; 290 } 291 return true; 292 } 293 294 bool ISD::matchBinaryPredicate( 295 SDValue LHS, SDValue RHS, 296 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 297 bool AllowUndefs, bool AllowTypeMismatch) { 298 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 299 return false; 300 301 // TODO: Add support for scalar UNDEF cases? 302 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 303 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 304 return Match(LHSCst, RHSCst); 305 306 // TODO: Add support for vector UNDEF cases? 307 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 308 ISD::BUILD_VECTOR != RHS.getOpcode()) 309 return false; 310 311 EVT SVT = LHS.getValueType().getScalarType(); 312 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 313 SDValue LHSOp = LHS.getOperand(i); 314 SDValue RHSOp = RHS.getOperand(i); 315 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 316 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 317 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 318 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 319 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 320 return false; 321 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 322 LHSOp.getValueType() != RHSOp.getValueType())) 323 return false; 324 if (!Match(LHSCst, RHSCst)) 325 return false; 326 } 327 return true; 328 } 329 330 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 331 switch (ExtType) { 332 case ISD::EXTLOAD: 333 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 334 case ISD::SEXTLOAD: 335 return ISD::SIGN_EXTEND; 336 case ISD::ZEXTLOAD: 337 return ISD::ZERO_EXTEND; 338 default: 339 break; 340 } 341 342 llvm_unreachable("Invalid LoadExtType"); 343 } 344 345 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 346 // To perform this operation, we just need to swap the L and G bits of the 347 // operation. 348 unsigned OldL = (Operation >> 2) & 1; 349 unsigned OldG = (Operation >> 1) & 1; 350 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 351 (OldL << 1) | // New G bit 352 (OldG << 2)); // New L bit. 353 } 354 355 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 356 unsigned Operation = Op; 357 if (isInteger) 358 Operation ^= 7; // Flip L, G, E bits, but not U. 359 else 360 Operation ^= 15; // Flip all of the condition bits. 361 362 if (Operation > ISD::SETTRUE2) 363 Operation &= ~8; // Don't let N and U bits get set. 364 365 return ISD::CondCode(Operation); 366 } 367 368 /// For an integer comparison, return 1 if the comparison is a signed operation 369 /// and 2 if the result is an unsigned comparison. Return zero if the operation 370 /// does not depend on the sign of the input (setne and seteq). 371 static int isSignedOp(ISD::CondCode Opcode) { 372 switch (Opcode) { 373 default: llvm_unreachable("Illegal integer setcc operation!"); 374 case ISD::SETEQ: 375 case ISD::SETNE: return 0; 376 case ISD::SETLT: 377 case ISD::SETLE: 378 case ISD::SETGT: 379 case ISD::SETGE: return 1; 380 case ISD::SETULT: 381 case ISD::SETULE: 382 case ISD::SETUGT: 383 case ISD::SETUGE: return 2; 384 } 385 } 386 387 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 388 bool IsInteger) { 389 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 390 // Cannot fold a signed integer setcc with an unsigned integer setcc. 391 return ISD::SETCC_INVALID; 392 393 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 394 395 // If the N and U bits get set, then the resultant comparison DOES suddenly 396 // care about orderedness, and it is true when ordered. 397 if (Op > ISD::SETTRUE2) 398 Op &= ~16; // Clear the U bit if the N bit is set. 399 400 // Canonicalize illegal integer setcc's. 401 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 402 Op = ISD::SETNE; 403 404 return ISD::CondCode(Op); 405 } 406 407 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 408 bool IsInteger) { 409 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 410 // Cannot fold a signed setcc with an unsigned setcc. 411 return ISD::SETCC_INVALID; 412 413 // Combine all of the condition bits. 414 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 415 416 // Canonicalize illegal integer setcc's. 417 if (IsInteger) { 418 switch (Result) { 419 default: break; 420 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 421 case ISD::SETOEQ: // SETEQ & SETU[LG]E 422 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 423 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 424 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 425 } 426 } 427 428 return Result; 429 } 430 431 //===----------------------------------------------------------------------===// 432 // SDNode Profile Support 433 //===----------------------------------------------------------------------===// 434 435 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 436 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 437 ID.AddInteger(OpC); 438 } 439 440 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 441 /// solely with their pointer. 442 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 443 ID.AddPointer(VTList.VTs); 444 } 445 446 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 447 static void AddNodeIDOperands(FoldingSetNodeID &ID, 448 ArrayRef<SDValue> Ops) { 449 for (auto& Op : Ops) { 450 ID.AddPointer(Op.getNode()); 451 ID.AddInteger(Op.getResNo()); 452 } 453 } 454 455 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 456 static void AddNodeIDOperands(FoldingSetNodeID &ID, 457 ArrayRef<SDUse> Ops) { 458 for (auto& Op : Ops) { 459 ID.AddPointer(Op.getNode()); 460 ID.AddInteger(Op.getResNo()); 461 } 462 } 463 464 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 465 SDVTList VTList, ArrayRef<SDValue> OpList) { 466 AddNodeIDOpcode(ID, OpC); 467 AddNodeIDValueTypes(ID, VTList); 468 AddNodeIDOperands(ID, OpList); 469 } 470 471 /// If this is an SDNode with special info, add this info to the NodeID data. 472 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 473 switch (N->getOpcode()) { 474 case ISD::TargetExternalSymbol: 475 case ISD::ExternalSymbol: 476 case ISD::MCSymbol: 477 llvm_unreachable("Should only be used on nodes with operands"); 478 default: break; // Normal nodes don't need extra info. 479 case ISD::TargetConstant: 480 case ISD::Constant: { 481 const ConstantSDNode *C = cast<ConstantSDNode>(N); 482 ID.AddPointer(C->getConstantIntValue()); 483 ID.AddBoolean(C->isOpaque()); 484 break; 485 } 486 case ISD::TargetConstantFP: 487 case ISD::ConstantFP: 488 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 489 break; 490 case ISD::TargetGlobalAddress: 491 case ISD::GlobalAddress: 492 case ISD::TargetGlobalTLSAddress: 493 case ISD::GlobalTLSAddress: { 494 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 495 ID.AddPointer(GA->getGlobal()); 496 ID.AddInteger(GA->getOffset()); 497 ID.AddInteger(GA->getTargetFlags()); 498 break; 499 } 500 case ISD::BasicBlock: 501 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 502 break; 503 case ISD::Register: 504 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 505 break; 506 case ISD::RegisterMask: 507 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 508 break; 509 case ISD::SRCVALUE: 510 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 511 break; 512 case ISD::FrameIndex: 513 case ISD::TargetFrameIndex: 514 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 515 break; 516 case ISD::LIFETIME_START: 517 case ISD::LIFETIME_END: 518 if (cast<LifetimeSDNode>(N)->hasOffset()) { 519 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 520 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 521 } 522 break; 523 case ISD::JumpTable: 524 case ISD::TargetJumpTable: 525 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 526 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 527 break; 528 case ISD::ConstantPool: 529 case ISD::TargetConstantPool: { 530 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 531 ID.AddInteger(CP->getAlignment()); 532 ID.AddInteger(CP->getOffset()); 533 if (CP->isMachineConstantPoolEntry()) 534 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 535 else 536 ID.AddPointer(CP->getConstVal()); 537 ID.AddInteger(CP->getTargetFlags()); 538 break; 539 } 540 case ISD::TargetIndex: { 541 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 542 ID.AddInteger(TI->getIndex()); 543 ID.AddInteger(TI->getOffset()); 544 ID.AddInteger(TI->getTargetFlags()); 545 break; 546 } 547 case ISD::LOAD: { 548 const LoadSDNode *LD = cast<LoadSDNode>(N); 549 ID.AddInteger(LD->getMemoryVT().getRawBits()); 550 ID.AddInteger(LD->getRawSubclassData()); 551 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 552 break; 553 } 554 case ISD::STORE: { 555 const StoreSDNode *ST = cast<StoreSDNode>(N); 556 ID.AddInteger(ST->getMemoryVT().getRawBits()); 557 ID.AddInteger(ST->getRawSubclassData()); 558 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 559 break; 560 } 561 case ISD::MLOAD: { 562 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 563 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 564 ID.AddInteger(MLD->getRawSubclassData()); 565 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 566 break; 567 } 568 case ISD::MSTORE: { 569 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 570 ID.AddInteger(MST->getMemoryVT().getRawBits()); 571 ID.AddInteger(MST->getRawSubclassData()); 572 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 573 break; 574 } 575 case ISD::MGATHER: { 576 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 577 ID.AddInteger(MG->getMemoryVT().getRawBits()); 578 ID.AddInteger(MG->getRawSubclassData()); 579 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 580 break; 581 } 582 case ISD::MSCATTER: { 583 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 584 ID.AddInteger(MS->getMemoryVT().getRawBits()); 585 ID.AddInteger(MS->getRawSubclassData()); 586 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 587 break; 588 } 589 case ISD::ATOMIC_CMP_SWAP: 590 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 591 case ISD::ATOMIC_SWAP: 592 case ISD::ATOMIC_LOAD_ADD: 593 case ISD::ATOMIC_LOAD_SUB: 594 case ISD::ATOMIC_LOAD_AND: 595 case ISD::ATOMIC_LOAD_CLR: 596 case ISD::ATOMIC_LOAD_OR: 597 case ISD::ATOMIC_LOAD_XOR: 598 case ISD::ATOMIC_LOAD_NAND: 599 case ISD::ATOMIC_LOAD_MIN: 600 case ISD::ATOMIC_LOAD_MAX: 601 case ISD::ATOMIC_LOAD_UMIN: 602 case ISD::ATOMIC_LOAD_UMAX: 603 case ISD::ATOMIC_LOAD: 604 case ISD::ATOMIC_STORE: { 605 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 606 ID.AddInteger(AT->getMemoryVT().getRawBits()); 607 ID.AddInteger(AT->getRawSubclassData()); 608 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 609 break; 610 } 611 case ISD::PREFETCH: { 612 const MemSDNode *PF = cast<MemSDNode>(N); 613 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 614 break; 615 } 616 case ISD::VECTOR_SHUFFLE: { 617 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 618 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 619 i != e; ++i) 620 ID.AddInteger(SVN->getMaskElt(i)); 621 break; 622 } 623 case ISD::TargetBlockAddress: 624 case ISD::BlockAddress: { 625 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 626 ID.AddPointer(BA->getBlockAddress()); 627 ID.AddInteger(BA->getOffset()); 628 ID.AddInteger(BA->getTargetFlags()); 629 break; 630 } 631 } // end switch (N->getOpcode()) 632 633 // Target specific memory nodes could also have address spaces to check. 634 if (N->isTargetMemoryOpcode()) 635 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 636 } 637 638 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 639 /// data. 640 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 641 AddNodeIDOpcode(ID, N->getOpcode()); 642 // Add the return value info. 643 AddNodeIDValueTypes(ID, N->getVTList()); 644 // Add the operand info. 645 AddNodeIDOperands(ID, N->ops()); 646 647 // Handle SDNode leafs with special info. 648 AddNodeIDCustom(ID, N); 649 } 650 651 //===----------------------------------------------------------------------===// 652 // SelectionDAG Class 653 //===----------------------------------------------------------------------===// 654 655 /// doNotCSE - Return true if CSE should not be performed for this node. 656 static bool doNotCSE(SDNode *N) { 657 if (N->getValueType(0) == MVT::Glue) 658 return true; // Never CSE anything that produces a flag. 659 660 switch (N->getOpcode()) { 661 default: break; 662 case ISD::HANDLENODE: 663 case ISD::EH_LABEL: 664 return true; // Never CSE these nodes. 665 } 666 667 // Check that remaining values produced are not flags. 668 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 669 if (N->getValueType(i) == MVT::Glue) 670 return true; // Never CSE anything that produces a flag. 671 672 return false; 673 } 674 675 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 676 /// SelectionDAG. 677 void SelectionDAG::RemoveDeadNodes() { 678 // Create a dummy node (which is not added to allnodes), that adds a reference 679 // to the root node, preventing it from being deleted. 680 HandleSDNode Dummy(getRoot()); 681 682 SmallVector<SDNode*, 128> DeadNodes; 683 684 // Add all obviously-dead nodes to the DeadNodes worklist. 685 for (SDNode &Node : allnodes()) 686 if (Node.use_empty()) 687 DeadNodes.push_back(&Node); 688 689 RemoveDeadNodes(DeadNodes); 690 691 // If the root changed (e.g. it was a dead load, update the root). 692 setRoot(Dummy.getValue()); 693 } 694 695 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 696 /// given list, and any nodes that become unreachable as a result. 697 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 698 699 // Process the worklist, deleting the nodes and adding their uses to the 700 // worklist. 701 while (!DeadNodes.empty()) { 702 SDNode *N = DeadNodes.pop_back_val(); 703 // Skip to next node if we've already managed to delete the node. This could 704 // happen if replacing a node causes a node previously added to the node to 705 // be deleted. 706 if (N->getOpcode() == ISD::DELETED_NODE) 707 continue; 708 709 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 710 DUL->NodeDeleted(N, nullptr); 711 712 // Take the node out of the appropriate CSE map. 713 RemoveNodeFromCSEMaps(N); 714 715 // Next, brutally remove the operand list. This is safe to do, as there are 716 // no cycles in the graph. 717 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 718 SDUse &Use = *I++; 719 SDNode *Operand = Use.getNode(); 720 Use.set(SDValue()); 721 722 // Now that we removed this operand, see if there are no uses of it left. 723 if (Operand->use_empty()) 724 DeadNodes.push_back(Operand); 725 } 726 727 DeallocateNode(N); 728 } 729 } 730 731 void SelectionDAG::RemoveDeadNode(SDNode *N){ 732 SmallVector<SDNode*, 16> DeadNodes(1, N); 733 734 // Create a dummy node that adds a reference to the root node, preventing 735 // it from being deleted. (This matters if the root is an operand of the 736 // dead node.) 737 HandleSDNode Dummy(getRoot()); 738 739 RemoveDeadNodes(DeadNodes); 740 } 741 742 void SelectionDAG::DeleteNode(SDNode *N) { 743 // First take this out of the appropriate CSE map. 744 RemoveNodeFromCSEMaps(N); 745 746 // Finally, remove uses due to operands of this node, remove from the 747 // AllNodes list, and delete the node. 748 DeleteNodeNotInCSEMaps(N); 749 } 750 751 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 752 assert(N->getIterator() != AllNodes.begin() && 753 "Cannot delete the entry node!"); 754 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 755 756 // Drop all of the operands and decrement used node's use counts. 757 N->DropOperands(); 758 759 DeallocateNode(N); 760 } 761 762 void SDDbgInfo::erase(const SDNode *Node) { 763 DbgValMapType::iterator I = DbgValMap.find(Node); 764 if (I == DbgValMap.end()) 765 return; 766 for (auto &Val: I->second) 767 Val->setIsInvalidated(); 768 DbgValMap.erase(I); 769 } 770 771 void SelectionDAG::DeallocateNode(SDNode *N) { 772 // If we have operands, deallocate them. 773 removeOperands(N); 774 775 NodeAllocator.Deallocate(AllNodes.remove(N)); 776 777 // Set the opcode to DELETED_NODE to help catch bugs when node 778 // memory is reallocated. 779 // FIXME: There are places in SDag that have grown a dependency on the opcode 780 // value in the released node. 781 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 782 N->NodeType = ISD::DELETED_NODE; 783 784 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 785 // them and forget about that node. 786 DbgInfo->erase(N); 787 } 788 789 #ifndef NDEBUG 790 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 791 static void VerifySDNode(SDNode *N) { 792 switch (N->getOpcode()) { 793 default: 794 break; 795 case ISD::BUILD_PAIR: { 796 EVT VT = N->getValueType(0); 797 assert(N->getNumValues() == 1 && "Too many results!"); 798 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 799 "Wrong return type!"); 800 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 801 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 802 "Mismatched operand types!"); 803 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 804 "Wrong operand type!"); 805 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 806 "Wrong return type size"); 807 break; 808 } 809 case ISD::BUILD_VECTOR: { 810 assert(N->getNumValues() == 1 && "Too many results!"); 811 assert(N->getValueType(0).isVector() && "Wrong return type!"); 812 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 813 "Wrong number of operands!"); 814 EVT EltVT = N->getValueType(0).getVectorElementType(); 815 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 816 assert((I->getValueType() == EltVT || 817 (EltVT.isInteger() && I->getValueType().isInteger() && 818 EltVT.bitsLE(I->getValueType()))) && 819 "Wrong operand type!"); 820 assert(I->getValueType() == N->getOperand(0).getValueType() && 821 "Operands must all have the same type"); 822 } 823 break; 824 } 825 } 826 } 827 #endif // NDEBUG 828 829 /// Insert a newly allocated node into the DAG. 830 /// 831 /// Handles insertion into the all nodes list and CSE map, as well as 832 /// verification and other common operations when a new node is allocated. 833 void SelectionDAG::InsertNode(SDNode *N) { 834 AllNodes.push_back(N); 835 #ifndef NDEBUG 836 N->PersistentId = NextPersistentId++; 837 VerifySDNode(N); 838 #endif 839 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 840 DUL->NodeInserted(N); 841 } 842 843 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 844 /// correspond to it. This is useful when we're about to delete or repurpose 845 /// the node. We don't want future request for structurally identical nodes 846 /// to return N anymore. 847 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 848 bool Erased = false; 849 switch (N->getOpcode()) { 850 case ISD::HANDLENODE: return false; // noop. 851 case ISD::CONDCODE: 852 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 853 "Cond code doesn't exist!"); 854 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 855 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 856 break; 857 case ISD::ExternalSymbol: 858 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 859 break; 860 case ISD::TargetExternalSymbol: { 861 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 862 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 863 ESN->getSymbol(), ESN->getTargetFlags())); 864 break; 865 } 866 case ISD::MCSymbol: { 867 auto *MCSN = cast<MCSymbolSDNode>(N); 868 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 869 break; 870 } 871 case ISD::VALUETYPE: { 872 EVT VT = cast<VTSDNode>(N)->getVT(); 873 if (VT.isExtended()) { 874 Erased = ExtendedValueTypeNodes.erase(VT); 875 } else { 876 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 877 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 878 } 879 break; 880 } 881 default: 882 // Remove it from the CSE Map. 883 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 884 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 885 Erased = CSEMap.RemoveNode(N); 886 break; 887 } 888 #ifndef NDEBUG 889 // Verify that the node was actually in one of the CSE maps, unless it has a 890 // flag result (which cannot be CSE'd) or is one of the special cases that are 891 // not subject to CSE. 892 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 893 !N->isMachineOpcode() && !doNotCSE(N)) { 894 N->dump(this); 895 dbgs() << "\n"; 896 llvm_unreachable("Node is not in map!"); 897 } 898 #endif 899 return Erased; 900 } 901 902 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 903 /// maps and modified in place. Add it back to the CSE maps, unless an identical 904 /// node already exists, in which case transfer all its users to the existing 905 /// node. This transfer can potentially trigger recursive merging. 906 void 907 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 908 // For node types that aren't CSE'd, just act as if no identical node 909 // already exists. 910 if (!doNotCSE(N)) { 911 SDNode *Existing = CSEMap.GetOrInsertNode(N); 912 if (Existing != N) { 913 // If there was already an existing matching node, use ReplaceAllUsesWith 914 // to replace the dead one with the existing one. This can cause 915 // recursive merging of other unrelated nodes down the line. 916 ReplaceAllUsesWith(N, Existing); 917 918 // N is now dead. Inform the listeners and delete it. 919 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 920 DUL->NodeDeleted(N, Existing); 921 DeleteNodeNotInCSEMaps(N); 922 return; 923 } 924 } 925 926 // If the node doesn't already exist, we updated it. Inform listeners. 927 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 928 DUL->NodeUpdated(N); 929 } 930 931 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 932 /// were replaced with those specified. If this node is never memoized, 933 /// return null, otherwise return a pointer to the slot it would take. If a 934 /// node already exists with these operands, the slot will be non-null. 935 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 936 void *&InsertPos) { 937 if (doNotCSE(N)) 938 return nullptr; 939 940 SDValue Ops[] = { Op }; 941 FoldingSetNodeID ID; 942 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 943 AddNodeIDCustom(ID, N); 944 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 945 if (Node) 946 Node->intersectFlagsWith(N->getFlags()); 947 return Node; 948 } 949 950 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 951 /// were replaced with those specified. If this node is never memoized, 952 /// return null, otherwise return a pointer to the slot it would take. If a 953 /// node already exists with these operands, the slot will be non-null. 954 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 955 SDValue Op1, SDValue Op2, 956 void *&InsertPos) { 957 if (doNotCSE(N)) 958 return nullptr; 959 960 SDValue Ops[] = { Op1, Op2 }; 961 FoldingSetNodeID ID; 962 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 963 AddNodeIDCustom(ID, N); 964 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 965 if (Node) 966 Node->intersectFlagsWith(N->getFlags()); 967 return Node; 968 } 969 970 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 971 /// were replaced with those specified. If this node is never memoized, 972 /// return null, otherwise return a pointer to the slot it would take. If a 973 /// node already exists with these operands, the slot will be non-null. 974 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 975 void *&InsertPos) { 976 if (doNotCSE(N)) 977 return nullptr; 978 979 FoldingSetNodeID ID; 980 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 981 AddNodeIDCustom(ID, N); 982 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 983 if (Node) 984 Node->intersectFlagsWith(N->getFlags()); 985 return Node; 986 } 987 988 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 989 Type *Ty = VT == MVT::iPTR ? 990 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 991 VT.getTypeForEVT(*getContext()); 992 993 return getDataLayout().getABITypeAlignment(Ty); 994 } 995 996 // EntryNode could meaningfully have debug info if we can find it... 997 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 998 : TM(tm), OptLevel(OL), 999 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1000 Root(getEntryNode()) { 1001 InsertNode(&EntryNode); 1002 DbgInfo = new SDDbgInfo(); 1003 } 1004 1005 void SelectionDAG::init(MachineFunction &NewMF, 1006 OptimizationRemarkEmitter &NewORE, 1007 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1008 LegacyDivergenceAnalysis * Divergence) { 1009 MF = &NewMF; 1010 SDAGISelPass = PassPtr; 1011 ORE = &NewORE; 1012 TLI = getSubtarget().getTargetLowering(); 1013 TSI = getSubtarget().getSelectionDAGInfo(); 1014 LibInfo = LibraryInfo; 1015 Context = &MF->getFunction().getContext(); 1016 DA = Divergence; 1017 } 1018 1019 SelectionDAG::~SelectionDAG() { 1020 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1021 allnodes_clear(); 1022 OperandRecycler.clear(OperandAllocator); 1023 delete DbgInfo; 1024 } 1025 1026 void SelectionDAG::allnodes_clear() { 1027 assert(&*AllNodes.begin() == &EntryNode); 1028 AllNodes.remove(AllNodes.begin()); 1029 while (!AllNodes.empty()) 1030 DeallocateNode(&AllNodes.front()); 1031 #ifndef NDEBUG 1032 NextPersistentId = 0; 1033 #endif 1034 } 1035 1036 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1037 void *&InsertPos) { 1038 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1039 if (N) { 1040 switch (N->getOpcode()) { 1041 default: break; 1042 case ISD::Constant: 1043 case ISD::ConstantFP: 1044 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1045 "debug location. Use another overload."); 1046 } 1047 } 1048 return N; 1049 } 1050 1051 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1052 const SDLoc &DL, void *&InsertPos) { 1053 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1054 if (N) { 1055 switch (N->getOpcode()) { 1056 case ISD::Constant: 1057 case ISD::ConstantFP: 1058 // Erase debug location from the node if the node is used at several 1059 // different places. Do not propagate one location to all uses as it 1060 // will cause a worse single stepping debugging experience. 1061 if (N->getDebugLoc() != DL.getDebugLoc()) 1062 N->setDebugLoc(DebugLoc()); 1063 break; 1064 default: 1065 // When the node's point of use is located earlier in the instruction 1066 // sequence than its prior point of use, update its debug info to the 1067 // earlier location. 1068 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1069 N->setDebugLoc(DL.getDebugLoc()); 1070 break; 1071 } 1072 } 1073 return N; 1074 } 1075 1076 void SelectionDAG::clear() { 1077 allnodes_clear(); 1078 OperandRecycler.clear(OperandAllocator); 1079 OperandAllocator.Reset(); 1080 CSEMap.clear(); 1081 1082 ExtendedValueTypeNodes.clear(); 1083 ExternalSymbols.clear(); 1084 TargetExternalSymbols.clear(); 1085 MCSymbols.clear(); 1086 SDCallSiteDbgInfo.clear(); 1087 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1088 static_cast<CondCodeSDNode*>(nullptr)); 1089 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1090 static_cast<SDNode*>(nullptr)); 1091 1092 EntryNode.UseList = nullptr; 1093 InsertNode(&EntryNode); 1094 Root = getEntryNode(); 1095 DbgInfo->clear(); 1096 } 1097 1098 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1099 return VT.bitsGT(Op.getValueType()) 1100 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1101 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1102 } 1103 1104 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1105 return VT.bitsGT(Op.getValueType()) ? 1106 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1107 getNode(ISD::TRUNCATE, DL, VT, Op); 1108 } 1109 1110 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1111 return VT.bitsGT(Op.getValueType()) ? 1112 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1113 getNode(ISD::TRUNCATE, DL, VT, Op); 1114 } 1115 1116 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1117 return VT.bitsGT(Op.getValueType()) ? 1118 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1119 getNode(ISD::TRUNCATE, DL, VT, Op); 1120 } 1121 1122 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1123 EVT OpVT) { 1124 if (VT.bitsLE(Op.getValueType())) 1125 return getNode(ISD::TRUNCATE, SL, VT, Op); 1126 1127 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1128 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1129 } 1130 1131 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1132 assert(!VT.isVector() && 1133 "getZeroExtendInReg should use the vector element type instead of " 1134 "the vector type!"); 1135 if (Op.getValueType().getScalarType() == VT) return Op; 1136 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1137 APInt Imm = APInt::getLowBitsSet(BitWidth, 1138 VT.getSizeInBits()); 1139 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1140 getConstant(Imm, DL, Op.getValueType())); 1141 } 1142 1143 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1144 // Only unsigned pointer semantics are supported right now. In the future this 1145 // might delegate to TLI to check pointer signedness. 1146 return getZExtOrTrunc(Op, DL, VT); 1147 } 1148 1149 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1150 // Only unsigned pointer semantics are supported right now. In the future this 1151 // might delegate to TLI to check pointer signedness. 1152 return getZeroExtendInReg(Op, DL, VT); 1153 } 1154 1155 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1156 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1157 EVT EltVT = VT.getScalarType(); 1158 SDValue NegOne = 1159 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1160 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1161 } 1162 1163 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1164 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1165 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1166 } 1167 1168 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1169 EVT OpVT) { 1170 if (!V) 1171 return getConstant(0, DL, VT); 1172 1173 switch (TLI->getBooleanContents(OpVT)) { 1174 case TargetLowering::ZeroOrOneBooleanContent: 1175 case TargetLowering::UndefinedBooleanContent: 1176 return getConstant(1, DL, VT); 1177 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1178 return getAllOnesConstant(DL, VT); 1179 } 1180 llvm_unreachable("Unexpected boolean content enum!"); 1181 } 1182 1183 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1184 bool isT, bool isO) { 1185 EVT EltVT = VT.getScalarType(); 1186 assert((EltVT.getSizeInBits() >= 64 || 1187 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1188 "getConstant with a uint64_t value that doesn't fit in the type!"); 1189 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1190 } 1191 1192 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1193 bool isT, bool isO) { 1194 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1195 } 1196 1197 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1198 EVT VT, bool isT, bool isO) { 1199 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1200 1201 EVT EltVT = VT.getScalarType(); 1202 const ConstantInt *Elt = &Val; 1203 1204 // In some cases the vector type is legal but the element type is illegal and 1205 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1206 // inserted value (the type does not need to match the vector element type). 1207 // Any extra bits introduced will be truncated away. 1208 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1209 TargetLowering::TypePromoteInteger) { 1210 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1211 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1212 Elt = ConstantInt::get(*getContext(), NewVal); 1213 } 1214 // In other cases the element type is illegal and needs to be expanded, for 1215 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1216 // the value into n parts and use a vector type with n-times the elements. 1217 // Then bitcast to the type requested. 1218 // Legalizing constants too early makes the DAGCombiner's job harder so we 1219 // only legalize if the DAG tells us we must produce legal types. 1220 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1221 TLI->getTypeAction(*getContext(), EltVT) == 1222 TargetLowering::TypeExpandInteger) { 1223 const APInt &NewVal = Elt->getValue(); 1224 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1225 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1226 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1227 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1228 1229 // Check the temporary vector is the correct size. If this fails then 1230 // getTypeToTransformTo() probably returned a type whose size (in bits) 1231 // isn't a power-of-2 factor of the requested type size. 1232 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1233 1234 SmallVector<SDValue, 2> EltParts; 1235 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1236 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1237 .zextOrTrunc(ViaEltSizeInBits), DL, 1238 ViaEltVT, isT, isO)); 1239 } 1240 1241 // EltParts is currently in little endian order. If we actually want 1242 // big-endian order then reverse it now. 1243 if (getDataLayout().isBigEndian()) 1244 std::reverse(EltParts.begin(), EltParts.end()); 1245 1246 // The elements must be reversed when the element order is different 1247 // to the endianness of the elements (because the BITCAST is itself a 1248 // vector shuffle in this situation). However, we do not need any code to 1249 // perform this reversal because getConstant() is producing a vector 1250 // splat. 1251 // This situation occurs in MIPS MSA. 1252 1253 SmallVector<SDValue, 8> Ops; 1254 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1255 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1256 1257 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1258 return V; 1259 } 1260 1261 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1262 "APInt size does not match type size!"); 1263 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1264 FoldingSetNodeID ID; 1265 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1266 ID.AddPointer(Elt); 1267 ID.AddBoolean(isO); 1268 void *IP = nullptr; 1269 SDNode *N = nullptr; 1270 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1271 if (!VT.isVector()) 1272 return SDValue(N, 0); 1273 1274 if (!N) { 1275 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1276 CSEMap.InsertNode(N, IP); 1277 InsertNode(N); 1278 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1279 } 1280 1281 SDValue Result(N, 0); 1282 if (VT.isVector()) 1283 Result = getSplatBuildVector(VT, DL, Result); 1284 1285 return Result; 1286 } 1287 1288 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1289 bool isTarget) { 1290 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1291 } 1292 1293 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1294 const SDLoc &DL, bool LegalTypes) { 1295 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1296 return getConstant(Val, DL, ShiftVT); 1297 } 1298 1299 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1300 bool isTarget) { 1301 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1302 } 1303 1304 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1305 EVT VT, bool isTarget) { 1306 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1307 1308 EVT EltVT = VT.getScalarType(); 1309 1310 // Do the map lookup using the actual bit pattern for the floating point 1311 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1312 // we don't have issues with SNANs. 1313 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1314 FoldingSetNodeID ID; 1315 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1316 ID.AddPointer(&V); 1317 void *IP = nullptr; 1318 SDNode *N = nullptr; 1319 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1320 if (!VT.isVector()) 1321 return SDValue(N, 0); 1322 1323 if (!N) { 1324 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1325 CSEMap.InsertNode(N, IP); 1326 InsertNode(N); 1327 } 1328 1329 SDValue Result(N, 0); 1330 if (VT.isVector()) 1331 Result = getSplatBuildVector(VT, DL, Result); 1332 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1333 return Result; 1334 } 1335 1336 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1337 bool isTarget) { 1338 EVT EltVT = VT.getScalarType(); 1339 if (EltVT == MVT::f32) 1340 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1341 else if (EltVT == MVT::f64) 1342 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1343 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1344 EltVT == MVT::f16) { 1345 bool Ignored; 1346 APFloat APF = APFloat(Val); 1347 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1348 &Ignored); 1349 return getConstantFP(APF, DL, VT, isTarget); 1350 } else 1351 llvm_unreachable("Unsupported type in getConstantFP"); 1352 } 1353 1354 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1355 EVT VT, int64_t Offset, bool isTargetGA, 1356 unsigned TargetFlags) { 1357 assert((TargetFlags == 0 || isTargetGA) && 1358 "Cannot set target flags on target-independent globals"); 1359 1360 // Truncate (with sign-extension) the offset value to the pointer size. 1361 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1362 if (BitWidth < 64) 1363 Offset = SignExtend64(Offset, BitWidth); 1364 1365 unsigned Opc; 1366 if (GV->isThreadLocal()) 1367 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1368 else 1369 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1370 1371 FoldingSetNodeID ID; 1372 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1373 ID.AddPointer(GV); 1374 ID.AddInteger(Offset); 1375 ID.AddInteger(TargetFlags); 1376 void *IP = nullptr; 1377 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1378 return SDValue(E, 0); 1379 1380 auto *N = newSDNode<GlobalAddressSDNode>( 1381 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1382 CSEMap.InsertNode(N, IP); 1383 InsertNode(N); 1384 return SDValue(N, 0); 1385 } 1386 1387 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1388 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1389 FoldingSetNodeID ID; 1390 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1391 ID.AddInteger(FI); 1392 void *IP = nullptr; 1393 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1394 return SDValue(E, 0); 1395 1396 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1397 CSEMap.InsertNode(N, IP); 1398 InsertNode(N); 1399 return SDValue(N, 0); 1400 } 1401 1402 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1403 unsigned TargetFlags) { 1404 assert((TargetFlags == 0 || isTarget) && 1405 "Cannot set target flags on target-independent jump tables"); 1406 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1407 FoldingSetNodeID ID; 1408 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1409 ID.AddInteger(JTI); 1410 ID.AddInteger(TargetFlags); 1411 void *IP = nullptr; 1412 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1413 return SDValue(E, 0); 1414 1415 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1416 CSEMap.InsertNode(N, IP); 1417 InsertNode(N); 1418 return SDValue(N, 0); 1419 } 1420 1421 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1422 unsigned Alignment, int Offset, 1423 bool isTarget, 1424 unsigned TargetFlags) { 1425 assert((TargetFlags == 0 || isTarget) && 1426 "Cannot set target flags on target-independent globals"); 1427 if (Alignment == 0) 1428 Alignment = MF->getFunction().hasOptSize() 1429 ? getDataLayout().getABITypeAlignment(C->getType()) 1430 : getDataLayout().getPrefTypeAlignment(C->getType()); 1431 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1432 FoldingSetNodeID ID; 1433 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1434 ID.AddInteger(Alignment); 1435 ID.AddInteger(Offset); 1436 ID.AddPointer(C); 1437 ID.AddInteger(TargetFlags); 1438 void *IP = nullptr; 1439 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1440 return SDValue(E, 0); 1441 1442 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1443 TargetFlags); 1444 CSEMap.InsertNode(N, IP); 1445 InsertNode(N); 1446 return SDValue(N, 0); 1447 } 1448 1449 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1450 unsigned Alignment, int Offset, 1451 bool isTarget, 1452 unsigned TargetFlags) { 1453 assert((TargetFlags == 0 || isTarget) && 1454 "Cannot set target flags on target-independent globals"); 1455 if (Alignment == 0) 1456 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1457 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1458 FoldingSetNodeID ID; 1459 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1460 ID.AddInteger(Alignment); 1461 ID.AddInteger(Offset); 1462 C->addSelectionDAGCSEId(ID); 1463 ID.AddInteger(TargetFlags); 1464 void *IP = nullptr; 1465 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1466 return SDValue(E, 0); 1467 1468 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1469 TargetFlags); 1470 CSEMap.InsertNode(N, IP); 1471 InsertNode(N); 1472 return SDValue(N, 0); 1473 } 1474 1475 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1476 unsigned TargetFlags) { 1477 FoldingSetNodeID ID; 1478 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1479 ID.AddInteger(Index); 1480 ID.AddInteger(Offset); 1481 ID.AddInteger(TargetFlags); 1482 void *IP = nullptr; 1483 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1484 return SDValue(E, 0); 1485 1486 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1487 CSEMap.InsertNode(N, IP); 1488 InsertNode(N); 1489 return SDValue(N, 0); 1490 } 1491 1492 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1493 FoldingSetNodeID ID; 1494 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1495 ID.AddPointer(MBB); 1496 void *IP = nullptr; 1497 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1498 return SDValue(E, 0); 1499 1500 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1501 CSEMap.InsertNode(N, IP); 1502 InsertNode(N); 1503 return SDValue(N, 0); 1504 } 1505 1506 SDValue SelectionDAG::getValueType(EVT VT) { 1507 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1508 ValueTypeNodes.size()) 1509 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1510 1511 SDNode *&N = VT.isExtended() ? 1512 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1513 1514 if (N) return SDValue(N, 0); 1515 N = newSDNode<VTSDNode>(VT); 1516 InsertNode(N); 1517 return SDValue(N, 0); 1518 } 1519 1520 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1521 SDNode *&N = ExternalSymbols[Sym]; 1522 if (N) return SDValue(N, 0); 1523 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1524 InsertNode(N); 1525 return SDValue(N, 0); 1526 } 1527 1528 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1529 SDNode *&N = MCSymbols[Sym]; 1530 if (N) 1531 return SDValue(N, 0); 1532 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1533 InsertNode(N); 1534 return SDValue(N, 0); 1535 } 1536 1537 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1538 unsigned TargetFlags) { 1539 SDNode *&N = 1540 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1541 if (N) return SDValue(N, 0); 1542 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1543 InsertNode(N); 1544 return SDValue(N, 0); 1545 } 1546 1547 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1548 if ((unsigned)Cond >= CondCodeNodes.size()) 1549 CondCodeNodes.resize(Cond+1); 1550 1551 if (!CondCodeNodes[Cond]) { 1552 auto *N = newSDNode<CondCodeSDNode>(Cond); 1553 CondCodeNodes[Cond] = N; 1554 InsertNode(N); 1555 } 1556 1557 return SDValue(CondCodeNodes[Cond], 0); 1558 } 1559 1560 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1561 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1562 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1563 std::swap(N1, N2); 1564 ShuffleVectorSDNode::commuteMask(M); 1565 } 1566 1567 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1568 SDValue N2, ArrayRef<int> Mask) { 1569 assert(VT.getVectorNumElements() == Mask.size() && 1570 "Must have the same number of vector elements as mask elements!"); 1571 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1572 "Invalid VECTOR_SHUFFLE"); 1573 1574 // Canonicalize shuffle undef, undef -> undef 1575 if (N1.isUndef() && N2.isUndef()) 1576 return getUNDEF(VT); 1577 1578 // Validate that all indices in Mask are within the range of the elements 1579 // input to the shuffle. 1580 int NElts = Mask.size(); 1581 assert(llvm::all_of(Mask, 1582 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1583 "Index out of range"); 1584 1585 // Copy the mask so we can do any needed cleanup. 1586 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1587 1588 // Canonicalize shuffle v, v -> v, undef 1589 if (N1 == N2) { 1590 N2 = getUNDEF(VT); 1591 for (int i = 0; i != NElts; ++i) 1592 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1593 } 1594 1595 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1596 if (N1.isUndef()) 1597 commuteShuffle(N1, N2, MaskVec); 1598 1599 if (TLI->hasVectorBlend()) { 1600 // If shuffling a splat, try to blend the splat instead. We do this here so 1601 // that even when this arises during lowering we don't have to re-handle it. 1602 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1603 BitVector UndefElements; 1604 SDValue Splat = BV->getSplatValue(&UndefElements); 1605 if (!Splat) 1606 return; 1607 1608 for (int i = 0; i < NElts; ++i) { 1609 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1610 continue; 1611 1612 // If this input comes from undef, mark it as such. 1613 if (UndefElements[MaskVec[i] - Offset]) { 1614 MaskVec[i] = -1; 1615 continue; 1616 } 1617 1618 // If we can blend a non-undef lane, use that instead. 1619 if (!UndefElements[i]) 1620 MaskVec[i] = i + Offset; 1621 } 1622 }; 1623 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1624 BlendSplat(N1BV, 0); 1625 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1626 BlendSplat(N2BV, NElts); 1627 } 1628 1629 // Canonicalize all index into lhs, -> shuffle lhs, undef 1630 // Canonicalize all index into rhs, -> shuffle rhs, undef 1631 bool AllLHS = true, AllRHS = true; 1632 bool N2Undef = N2.isUndef(); 1633 for (int i = 0; i != NElts; ++i) { 1634 if (MaskVec[i] >= NElts) { 1635 if (N2Undef) 1636 MaskVec[i] = -1; 1637 else 1638 AllLHS = false; 1639 } else if (MaskVec[i] >= 0) { 1640 AllRHS = false; 1641 } 1642 } 1643 if (AllLHS && AllRHS) 1644 return getUNDEF(VT); 1645 if (AllLHS && !N2Undef) 1646 N2 = getUNDEF(VT); 1647 if (AllRHS) { 1648 N1 = getUNDEF(VT); 1649 commuteShuffle(N1, N2, MaskVec); 1650 } 1651 // Reset our undef status after accounting for the mask. 1652 N2Undef = N2.isUndef(); 1653 // Re-check whether both sides ended up undef. 1654 if (N1.isUndef() && N2Undef) 1655 return getUNDEF(VT); 1656 1657 // If Identity shuffle return that node. 1658 bool Identity = true, AllSame = true; 1659 for (int i = 0; i != NElts; ++i) { 1660 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1661 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1662 } 1663 if (Identity && NElts) 1664 return N1; 1665 1666 // Shuffling a constant splat doesn't change the result. 1667 if (N2Undef) { 1668 SDValue V = N1; 1669 1670 // Look through any bitcasts. We check that these don't change the number 1671 // (and size) of elements and just changes their types. 1672 while (V.getOpcode() == ISD::BITCAST) 1673 V = V->getOperand(0); 1674 1675 // A splat should always show up as a build vector node. 1676 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1677 BitVector UndefElements; 1678 SDValue Splat = BV->getSplatValue(&UndefElements); 1679 // If this is a splat of an undef, shuffling it is also undef. 1680 if (Splat && Splat.isUndef()) 1681 return getUNDEF(VT); 1682 1683 bool SameNumElts = 1684 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1685 1686 // We only have a splat which can skip shuffles if there is a splatted 1687 // value and no undef lanes rearranged by the shuffle. 1688 if (Splat && UndefElements.none()) { 1689 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1690 // number of elements match or the value splatted is a zero constant. 1691 if (SameNumElts) 1692 return N1; 1693 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1694 if (C->isNullValue()) 1695 return N1; 1696 } 1697 1698 // If the shuffle itself creates a splat, build the vector directly. 1699 if (AllSame && SameNumElts) { 1700 EVT BuildVT = BV->getValueType(0); 1701 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1702 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1703 1704 // We may have jumped through bitcasts, so the type of the 1705 // BUILD_VECTOR may not match the type of the shuffle. 1706 if (BuildVT != VT) 1707 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1708 return NewBV; 1709 } 1710 } 1711 } 1712 1713 FoldingSetNodeID ID; 1714 SDValue Ops[2] = { N1, N2 }; 1715 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1716 for (int i = 0; i != NElts; ++i) 1717 ID.AddInteger(MaskVec[i]); 1718 1719 void* IP = nullptr; 1720 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1721 return SDValue(E, 0); 1722 1723 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1724 // SDNode doesn't have access to it. This memory will be "leaked" when 1725 // the node is deallocated, but recovered when the NodeAllocator is released. 1726 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1727 llvm::copy(MaskVec, MaskAlloc); 1728 1729 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1730 dl.getDebugLoc(), MaskAlloc); 1731 createOperands(N, Ops); 1732 1733 CSEMap.InsertNode(N, IP); 1734 InsertNode(N); 1735 SDValue V = SDValue(N, 0); 1736 NewSDValueDbgMsg(V, "Creating new node: ", this); 1737 return V; 1738 } 1739 1740 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1741 EVT VT = SV.getValueType(0); 1742 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1743 ShuffleVectorSDNode::commuteMask(MaskVec); 1744 1745 SDValue Op0 = SV.getOperand(0); 1746 SDValue Op1 = SV.getOperand(1); 1747 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1748 } 1749 1750 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1751 FoldingSetNodeID ID; 1752 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1753 ID.AddInteger(RegNo); 1754 void *IP = nullptr; 1755 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1756 return SDValue(E, 0); 1757 1758 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1759 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1760 CSEMap.InsertNode(N, IP); 1761 InsertNode(N); 1762 return SDValue(N, 0); 1763 } 1764 1765 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1766 FoldingSetNodeID ID; 1767 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1768 ID.AddPointer(RegMask); 1769 void *IP = nullptr; 1770 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1771 return SDValue(E, 0); 1772 1773 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1774 CSEMap.InsertNode(N, IP); 1775 InsertNode(N); 1776 return SDValue(N, 0); 1777 } 1778 1779 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1780 MCSymbol *Label) { 1781 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1782 } 1783 1784 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1785 SDValue Root, MCSymbol *Label) { 1786 FoldingSetNodeID ID; 1787 SDValue Ops[] = { Root }; 1788 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1789 ID.AddPointer(Label); 1790 void *IP = nullptr; 1791 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1792 return SDValue(E, 0); 1793 1794 auto *N = 1795 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1796 createOperands(N, Ops); 1797 1798 CSEMap.InsertNode(N, IP); 1799 InsertNode(N); 1800 return SDValue(N, 0); 1801 } 1802 1803 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1804 int64_t Offset, bool isTarget, 1805 unsigned TargetFlags) { 1806 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1807 1808 FoldingSetNodeID ID; 1809 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1810 ID.AddPointer(BA); 1811 ID.AddInteger(Offset); 1812 ID.AddInteger(TargetFlags); 1813 void *IP = nullptr; 1814 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1815 return SDValue(E, 0); 1816 1817 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1818 CSEMap.InsertNode(N, IP); 1819 InsertNode(N); 1820 return SDValue(N, 0); 1821 } 1822 1823 SDValue SelectionDAG::getSrcValue(const Value *V) { 1824 assert((!V || V->getType()->isPointerTy()) && 1825 "SrcValue is not a pointer?"); 1826 1827 FoldingSetNodeID ID; 1828 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1829 ID.AddPointer(V); 1830 1831 void *IP = nullptr; 1832 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1833 return SDValue(E, 0); 1834 1835 auto *N = newSDNode<SrcValueSDNode>(V); 1836 CSEMap.InsertNode(N, IP); 1837 InsertNode(N); 1838 return SDValue(N, 0); 1839 } 1840 1841 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1842 FoldingSetNodeID ID; 1843 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1844 ID.AddPointer(MD); 1845 1846 void *IP = nullptr; 1847 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1848 return SDValue(E, 0); 1849 1850 auto *N = newSDNode<MDNodeSDNode>(MD); 1851 CSEMap.InsertNode(N, IP); 1852 InsertNode(N); 1853 return SDValue(N, 0); 1854 } 1855 1856 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1857 if (VT == V.getValueType()) 1858 return V; 1859 1860 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1861 } 1862 1863 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1864 unsigned SrcAS, unsigned DestAS) { 1865 SDValue Ops[] = {Ptr}; 1866 FoldingSetNodeID ID; 1867 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1868 ID.AddInteger(SrcAS); 1869 ID.AddInteger(DestAS); 1870 1871 void *IP = nullptr; 1872 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1873 return SDValue(E, 0); 1874 1875 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1876 VT, SrcAS, DestAS); 1877 createOperands(N, Ops); 1878 1879 CSEMap.InsertNode(N, IP); 1880 InsertNode(N); 1881 return SDValue(N, 0); 1882 } 1883 1884 /// getShiftAmountOperand - Return the specified value casted to 1885 /// the target's desired shift amount type. 1886 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1887 EVT OpTy = Op.getValueType(); 1888 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1889 if (OpTy == ShTy || OpTy.isVector()) return Op; 1890 1891 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1892 } 1893 1894 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1895 SDLoc dl(Node); 1896 const TargetLowering &TLI = getTargetLoweringInfo(); 1897 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1898 EVT VT = Node->getValueType(0); 1899 SDValue Tmp1 = Node->getOperand(0); 1900 SDValue Tmp2 = Node->getOperand(1); 1901 const MaybeAlign MA(Node->getConstantOperandVal(3)); 1902 1903 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1904 Tmp2, MachinePointerInfo(V)); 1905 SDValue VAList = VAListLoad; 1906 1907 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 1908 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1909 getConstant(MA->value() - 1, dl, VAList.getValueType())); 1910 1911 VAList = 1912 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1913 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 1914 } 1915 1916 // Increment the pointer, VAList, to the next vaarg 1917 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1918 getConstant(getDataLayout().getTypeAllocSize( 1919 VT.getTypeForEVT(*getContext())), 1920 dl, VAList.getValueType())); 1921 // Store the incremented VAList to the legalized pointer 1922 Tmp1 = 1923 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1924 // Load the actual argument out of the pointer VAList 1925 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1926 } 1927 1928 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1929 SDLoc dl(Node); 1930 const TargetLowering &TLI = getTargetLoweringInfo(); 1931 // This defaults to loading a pointer from the input and storing it to the 1932 // output, returning the chain. 1933 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1934 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1935 SDValue Tmp1 = 1936 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1937 Node->getOperand(2), MachinePointerInfo(VS)); 1938 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1939 MachinePointerInfo(VD)); 1940 } 1941 1942 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1943 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1944 unsigned ByteSize = VT.getStoreSize(); 1945 Type *Ty = VT.getTypeForEVT(*getContext()); 1946 unsigned StackAlign = 1947 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1948 1949 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1950 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1951 } 1952 1953 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1954 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1955 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1956 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1957 const DataLayout &DL = getDataLayout(); 1958 unsigned Align = 1959 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1960 1961 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1962 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1963 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1964 } 1965 1966 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1967 ISD::CondCode Cond, const SDLoc &dl) { 1968 EVT OpVT = N1.getValueType(); 1969 1970 // These setcc operations always fold. 1971 switch (Cond) { 1972 default: break; 1973 case ISD::SETFALSE: 1974 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 1975 case ISD::SETTRUE: 1976 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 1977 1978 case ISD::SETOEQ: 1979 case ISD::SETOGT: 1980 case ISD::SETOGE: 1981 case ISD::SETOLT: 1982 case ISD::SETOLE: 1983 case ISD::SETONE: 1984 case ISD::SETO: 1985 case ISD::SETUO: 1986 case ISD::SETUEQ: 1987 case ISD::SETUNE: 1988 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 1989 break; 1990 } 1991 1992 if (OpVT.isInteger()) { 1993 // For EQ and NE, we can always pick a value for the undef to make the 1994 // predicate pass or fail, so we can return undef. 1995 // Matches behavior in llvm::ConstantFoldCompareInstruction. 1996 // icmp eq/ne X, undef -> undef. 1997 if ((N1.isUndef() || N2.isUndef()) && 1998 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 1999 return getUNDEF(VT); 2000 2001 // If both operands are undef, we can return undef for int comparison. 2002 // icmp undef, undef -> undef. 2003 if (N1.isUndef() && N2.isUndef()) 2004 return getUNDEF(VT); 2005 2006 // icmp X, X -> true/false 2007 // icmp X, undef -> true/false because undef could be X. 2008 if (N1 == N2) 2009 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2010 } 2011 2012 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2013 const APInt &C2 = N2C->getAPIntValue(); 2014 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2015 const APInt &C1 = N1C->getAPIntValue(); 2016 2017 switch (Cond) { 2018 default: llvm_unreachable("Unknown integer setcc!"); 2019 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2020 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2021 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2022 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2023 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2024 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2025 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2026 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2027 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2028 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2029 } 2030 } 2031 } 2032 2033 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2034 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2035 2036 if (N1CFP && N2CFP) { 2037 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2038 switch (Cond) { 2039 default: break; 2040 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2041 return getUNDEF(VT); 2042 LLVM_FALLTHROUGH; 2043 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2044 OpVT); 2045 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2046 return getUNDEF(VT); 2047 LLVM_FALLTHROUGH; 2048 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2049 R==APFloat::cmpLessThan, dl, VT, 2050 OpVT); 2051 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2052 return getUNDEF(VT); 2053 LLVM_FALLTHROUGH; 2054 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2055 OpVT); 2056 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2057 return getUNDEF(VT); 2058 LLVM_FALLTHROUGH; 2059 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2060 VT, OpVT); 2061 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2062 return getUNDEF(VT); 2063 LLVM_FALLTHROUGH; 2064 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2065 R==APFloat::cmpEqual, dl, VT, 2066 OpVT); 2067 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2068 return getUNDEF(VT); 2069 LLVM_FALLTHROUGH; 2070 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2071 R==APFloat::cmpEqual, dl, VT, OpVT); 2072 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2073 OpVT); 2074 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2075 OpVT); 2076 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2077 R==APFloat::cmpEqual, dl, VT, 2078 OpVT); 2079 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2080 OpVT); 2081 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2082 R==APFloat::cmpLessThan, dl, VT, 2083 OpVT); 2084 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2085 R==APFloat::cmpUnordered, dl, VT, 2086 OpVT); 2087 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2088 VT, OpVT); 2089 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2090 OpVT); 2091 } 2092 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2093 // Ensure that the constant occurs on the RHS. 2094 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2095 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2096 return SDValue(); 2097 return getSetCC(dl, VT, N2, N1, SwappedCond); 2098 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2099 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2100 // If an operand is known to be a nan (or undef that could be a nan), we can 2101 // fold it. 2102 // Choosing NaN for the undef will always make unordered comparison succeed 2103 // and ordered comparison fails. 2104 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2105 switch (ISD::getUnorderedFlavor(Cond)) { 2106 default: 2107 llvm_unreachable("Unknown flavor!"); 2108 case 0: // Known false. 2109 return getBoolConstant(false, dl, VT, OpVT); 2110 case 1: // Known true. 2111 return getBoolConstant(true, dl, VT, OpVT); 2112 case 2: // Undefined. 2113 return getUNDEF(VT); 2114 } 2115 } 2116 2117 // Could not fold it. 2118 return SDValue(); 2119 } 2120 2121 /// See if the specified operand can be simplified with the knowledge that only 2122 /// the bits specified by DemandedBits are used. 2123 /// TODO: really we should be making this into the DAG equivalent of 2124 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2125 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2126 EVT VT = V.getValueType(); 2127 APInt DemandedElts = VT.isVector() 2128 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2129 : APInt(1, 1); 2130 return GetDemandedBits(V, DemandedBits, DemandedElts); 2131 } 2132 2133 /// See if the specified operand can be simplified with the knowledge that only 2134 /// the bits specified by DemandedBits are used in the elements specified by 2135 /// DemandedElts. 2136 /// TODO: really we should be making this into the DAG equivalent of 2137 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2138 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2139 const APInt &DemandedElts) { 2140 switch (V.getOpcode()) { 2141 default: 2142 break; 2143 case ISD::Constant: { 2144 auto *CV = cast<ConstantSDNode>(V.getNode()); 2145 assert(CV && "Const value should be ConstSDNode."); 2146 const APInt &CVal = CV->getAPIntValue(); 2147 APInt NewVal = CVal & DemandedBits; 2148 if (NewVal != CVal) 2149 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2150 break; 2151 } 2152 case ISD::OR: 2153 case ISD::XOR: 2154 case ISD::SIGN_EXTEND_INREG: 2155 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2156 *this, 0); 2157 case ISD::SRL: 2158 // Only look at single-use SRLs. 2159 if (!V.getNode()->hasOneUse()) 2160 break; 2161 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2162 // See if we can recursively simplify the LHS. 2163 unsigned Amt = RHSC->getZExtValue(); 2164 2165 // Watch out for shift count overflow though. 2166 if (Amt >= DemandedBits.getBitWidth()) 2167 break; 2168 APInt SrcDemandedBits = DemandedBits << Amt; 2169 if (SDValue SimplifyLHS = 2170 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2171 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2172 V.getOperand(1)); 2173 } 2174 break; 2175 case ISD::AND: { 2176 // X & -1 -> X (ignoring bits which aren't demanded). 2177 // Also handle the case where masked out bits in X are known to be zero. 2178 if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { 2179 const APInt &AndVal = RHSC->getAPIntValue(); 2180 if (DemandedBits.isSubsetOf(AndVal) || 2181 DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | 2182 AndVal)) 2183 return V.getOperand(0); 2184 } 2185 break; 2186 } 2187 case ISD::ANY_EXTEND: { 2188 SDValue Src = V.getOperand(0); 2189 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 2190 // Being conservative here - only peek through if we only demand bits in the 2191 // non-extended source (even though the extended bits are technically 2192 // undef). 2193 if (DemandedBits.getActiveBits() > SrcBitWidth) 2194 break; 2195 APInt SrcDemandedBits = DemandedBits.trunc(SrcBitWidth); 2196 if (SDValue DemandedSrc = GetDemandedBits(Src, SrcDemandedBits)) 2197 return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc); 2198 break; 2199 } 2200 } 2201 return SDValue(); 2202 } 2203 2204 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2205 /// use this predicate to simplify operations downstream. 2206 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2207 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2208 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2209 } 2210 2211 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2212 /// this predicate to simplify operations downstream. Mask is known to be zero 2213 /// for bits that V cannot have. 2214 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2215 unsigned Depth) const { 2216 EVT VT = V.getValueType(); 2217 APInt DemandedElts = VT.isVector() 2218 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2219 : APInt(1, 1); 2220 return MaskedValueIsZero(V, Mask, DemandedElts, Depth); 2221 } 2222 2223 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2224 /// DemandedElts. We use this predicate to simplify operations downstream. 2225 /// Mask is known to be zero for bits that V cannot have. 2226 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2227 const APInt &DemandedElts, 2228 unsigned Depth) const { 2229 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2230 } 2231 2232 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2233 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2234 unsigned Depth) const { 2235 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2236 } 2237 2238 /// isSplatValue - Return true if the vector V has the same value 2239 /// across all DemandedElts. 2240 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2241 APInt &UndefElts) { 2242 if (!DemandedElts) 2243 return false; // No demanded elts, better to assume we don't know anything. 2244 2245 EVT VT = V.getValueType(); 2246 assert(VT.isVector() && "Vector type expected"); 2247 2248 unsigned NumElts = VT.getVectorNumElements(); 2249 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2250 UndefElts = APInt::getNullValue(NumElts); 2251 2252 switch (V.getOpcode()) { 2253 case ISD::BUILD_VECTOR: { 2254 SDValue Scl; 2255 for (unsigned i = 0; i != NumElts; ++i) { 2256 SDValue Op = V.getOperand(i); 2257 if (Op.isUndef()) { 2258 UndefElts.setBit(i); 2259 continue; 2260 } 2261 if (!DemandedElts[i]) 2262 continue; 2263 if (Scl && Scl != Op) 2264 return false; 2265 Scl = Op; 2266 } 2267 return true; 2268 } 2269 case ISD::VECTOR_SHUFFLE: { 2270 // Check if this is a shuffle node doing a splat. 2271 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2272 int SplatIndex = -1; 2273 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2274 for (int i = 0; i != (int)NumElts; ++i) { 2275 int M = Mask[i]; 2276 if (M < 0) { 2277 UndefElts.setBit(i); 2278 continue; 2279 } 2280 if (!DemandedElts[i]) 2281 continue; 2282 if (0 <= SplatIndex && SplatIndex != M) 2283 return false; 2284 SplatIndex = M; 2285 } 2286 return true; 2287 } 2288 case ISD::EXTRACT_SUBVECTOR: { 2289 SDValue Src = V.getOperand(0); 2290 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1)); 2291 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2292 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2293 // Offset the demanded elts by the subvector index. 2294 uint64_t Idx = SubIdx->getZExtValue(); 2295 APInt UndefSrcElts; 2296 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2297 if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) { 2298 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2299 return true; 2300 } 2301 } 2302 break; 2303 } 2304 case ISD::ADD: 2305 case ISD::SUB: 2306 case ISD::AND: { 2307 APInt UndefLHS, UndefRHS; 2308 SDValue LHS = V.getOperand(0); 2309 SDValue RHS = V.getOperand(1); 2310 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2311 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2312 UndefElts = UndefLHS | UndefRHS; 2313 return true; 2314 } 2315 break; 2316 } 2317 } 2318 2319 return false; 2320 } 2321 2322 /// Helper wrapper to main isSplatValue function. 2323 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2324 EVT VT = V.getValueType(); 2325 assert(VT.isVector() && "Vector type expected"); 2326 unsigned NumElts = VT.getVectorNumElements(); 2327 2328 APInt UndefElts; 2329 APInt DemandedElts = APInt::getAllOnesValue(NumElts); 2330 return isSplatValue(V, DemandedElts, UndefElts) && 2331 (AllowUndefs || !UndefElts); 2332 } 2333 2334 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2335 V = peekThroughExtractSubvectors(V); 2336 2337 EVT VT = V.getValueType(); 2338 unsigned Opcode = V.getOpcode(); 2339 switch (Opcode) { 2340 default: { 2341 APInt UndefElts; 2342 APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2343 if (isSplatValue(V, DemandedElts, UndefElts)) { 2344 // Handle case where all demanded elements are UNDEF. 2345 if (DemandedElts.isSubsetOf(UndefElts)) { 2346 SplatIdx = 0; 2347 return getUNDEF(VT); 2348 } 2349 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2350 return V; 2351 } 2352 break; 2353 } 2354 case ISD::VECTOR_SHUFFLE: { 2355 // Check if this is a shuffle node doing a splat. 2356 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2357 // getTargetVShiftNode currently struggles without the splat source. 2358 auto *SVN = cast<ShuffleVectorSDNode>(V); 2359 if (!SVN->isSplat()) 2360 break; 2361 int Idx = SVN->getSplatIndex(); 2362 int NumElts = V.getValueType().getVectorNumElements(); 2363 SplatIdx = Idx % NumElts; 2364 return V.getOperand(Idx / NumElts); 2365 } 2366 } 2367 2368 return SDValue(); 2369 } 2370 2371 SDValue SelectionDAG::getSplatValue(SDValue V) { 2372 int SplatIdx; 2373 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2374 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2375 SrcVector.getValueType().getScalarType(), SrcVector, 2376 getIntPtrConstant(SplatIdx, SDLoc(V))); 2377 return SDValue(); 2378 } 2379 2380 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 2381 /// is less than the element bit-width of the shift node, return it. 2382 static const APInt *getValidShiftAmountConstant(SDValue V) { 2383 unsigned BitWidth = V.getScalarValueSizeInBits(); 2384 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { 2385 // Shifting more than the bitwidth is not valid. 2386 const APInt &ShAmt = SA->getAPIntValue(); 2387 if (ShAmt.ult(BitWidth)) 2388 return &ShAmt; 2389 } 2390 return nullptr; 2391 } 2392 2393 /// If a SHL/SRA/SRL node has constant vector shift amounts that are all less 2394 /// than the element bit-width of the shift node, return the minimum value. 2395 static const APInt *getValidMinimumShiftAmountConstant(SDValue V) { 2396 unsigned BitWidth = V.getScalarValueSizeInBits(); 2397 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2398 if (!BV) 2399 return nullptr; 2400 const APInt *MinShAmt = nullptr; 2401 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2402 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2403 if (!SA) 2404 return nullptr; 2405 // Shifting more than the bitwidth is not valid. 2406 const APInt &ShAmt = SA->getAPIntValue(); 2407 if (ShAmt.uge(BitWidth)) 2408 return nullptr; 2409 if (MinShAmt && MinShAmt->ule(ShAmt)) 2410 continue; 2411 MinShAmt = &ShAmt; 2412 } 2413 return MinShAmt; 2414 } 2415 2416 /// Determine which bits of Op are known to be either zero or one and return 2417 /// them in Known. For vectors, the known bits are those that are shared by 2418 /// every vector element. 2419 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2420 EVT VT = Op.getValueType(); 2421 APInt DemandedElts = VT.isVector() 2422 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2423 : APInt(1, 1); 2424 return computeKnownBits(Op, DemandedElts, Depth); 2425 } 2426 2427 /// Determine which bits of Op are known to be either zero or one and return 2428 /// them in Known. The DemandedElts argument allows us to only collect the known 2429 /// bits that are shared by the requested vector elements. 2430 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2431 unsigned Depth) const { 2432 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2433 2434 KnownBits Known(BitWidth); // Don't know anything. 2435 2436 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2437 // We know all of the bits for a constant! 2438 Known.One = C->getAPIntValue(); 2439 Known.Zero = ~Known.One; 2440 return Known; 2441 } 2442 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2443 // We know all of the bits for a constant fp! 2444 Known.One = C->getValueAPF().bitcastToAPInt(); 2445 Known.Zero = ~Known.One; 2446 return Known; 2447 } 2448 2449 if (Depth >= MaxRecursionDepth) 2450 return Known; // Limit search depth. 2451 2452 KnownBits Known2; 2453 unsigned NumElts = DemandedElts.getBitWidth(); 2454 assert((!Op.getValueType().isVector() || 2455 NumElts == Op.getValueType().getVectorNumElements()) && 2456 "Unexpected vector size"); 2457 2458 if (!DemandedElts) 2459 return Known; // No demanded elts, better to assume we don't know anything. 2460 2461 unsigned Opcode = Op.getOpcode(); 2462 switch (Opcode) { 2463 case ISD::BUILD_VECTOR: 2464 // Collect the known bits that are shared by every demanded vector element. 2465 Known.Zero.setAllBits(); Known.One.setAllBits(); 2466 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2467 if (!DemandedElts[i]) 2468 continue; 2469 2470 SDValue SrcOp = Op.getOperand(i); 2471 Known2 = computeKnownBits(SrcOp, Depth + 1); 2472 2473 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2474 if (SrcOp.getValueSizeInBits() != BitWidth) { 2475 assert(SrcOp.getValueSizeInBits() > BitWidth && 2476 "Expected BUILD_VECTOR implicit truncation"); 2477 Known2 = Known2.trunc(BitWidth); 2478 } 2479 2480 // Known bits are the values that are shared by every demanded element. 2481 Known.One &= Known2.One; 2482 Known.Zero &= Known2.Zero; 2483 2484 // If we don't know any bits, early out. 2485 if (Known.isUnknown()) 2486 break; 2487 } 2488 break; 2489 case ISD::VECTOR_SHUFFLE: { 2490 // Collect the known bits that are shared by every vector element referenced 2491 // by the shuffle. 2492 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2493 Known.Zero.setAllBits(); Known.One.setAllBits(); 2494 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2495 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2496 for (unsigned i = 0; i != NumElts; ++i) { 2497 if (!DemandedElts[i]) 2498 continue; 2499 2500 int M = SVN->getMaskElt(i); 2501 if (M < 0) { 2502 // For UNDEF elements, we don't know anything about the common state of 2503 // the shuffle result. 2504 Known.resetAll(); 2505 DemandedLHS.clearAllBits(); 2506 DemandedRHS.clearAllBits(); 2507 break; 2508 } 2509 2510 if ((unsigned)M < NumElts) 2511 DemandedLHS.setBit((unsigned)M % NumElts); 2512 else 2513 DemandedRHS.setBit((unsigned)M % NumElts); 2514 } 2515 // Known bits are the values that are shared by every demanded element. 2516 if (!!DemandedLHS) { 2517 SDValue LHS = Op.getOperand(0); 2518 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2519 Known.One &= Known2.One; 2520 Known.Zero &= Known2.Zero; 2521 } 2522 // If we don't know any bits, early out. 2523 if (Known.isUnknown()) 2524 break; 2525 if (!!DemandedRHS) { 2526 SDValue RHS = Op.getOperand(1); 2527 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2528 Known.One &= Known2.One; 2529 Known.Zero &= Known2.Zero; 2530 } 2531 break; 2532 } 2533 case ISD::CONCAT_VECTORS: { 2534 // Split DemandedElts and test each of the demanded subvectors. 2535 Known.Zero.setAllBits(); Known.One.setAllBits(); 2536 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2537 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2538 unsigned NumSubVectors = Op.getNumOperands(); 2539 for (unsigned i = 0; i != NumSubVectors; ++i) { 2540 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2541 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2542 if (!!DemandedSub) { 2543 SDValue Sub = Op.getOperand(i); 2544 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2545 Known.One &= Known2.One; 2546 Known.Zero &= Known2.Zero; 2547 } 2548 // If we don't know any bits, early out. 2549 if (Known.isUnknown()) 2550 break; 2551 } 2552 break; 2553 } 2554 case ISD::INSERT_SUBVECTOR: { 2555 // If we know the element index, demand any elements from the subvector and 2556 // the remainder from the src its inserted into, otherwise demand them all. 2557 SDValue Src = Op.getOperand(0); 2558 SDValue Sub = Op.getOperand(1); 2559 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2560 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2561 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 2562 Known.One.setAllBits(); 2563 Known.Zero.setAllBits(); 2564 uint64_t Idx = SubIdx->getZExtValue(); 2565 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2566 if (!!DemandedSubElts) { 2567 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2568 if (Known.isUnknown()) 2569 break; // early-out. 2570 } 2571 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 2572 APInt DemandedSrcElts = DemandedElts & ~SubMask; 2573 if (!!DemandedSrcElts) { 2574 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2575 Known.One &= Known2.One; 2576 Known.Zero &= Known2.Zero; 2577 } 2578 } else { 2579 Known = computeKnownBits(Sub, Depth + 1); 2580 if (Known.isUnknown()) 2581 break; // early-out. 2582 Known2 = computeKnownBits(Src, Depth + 1); 2583 Known.One &= Known2.One; 2584 Known.Zero &= Known2.Zero; 2585 } 2586 break; 2587 } 2588 case ISD::EXTRACT_SUBVECTOR: { 2589 // If we know the element index, just demand that subvector elements, 2590 // otherwise demand them all. 2591 SDValue Src = Op.getOperand(0); 2592 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2593 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2594 APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts); 2595 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2596 // Offset the demanded elts by the subvector index. 2597 uint64_t Idx = SubIdx->getZExtValue(); 2598 DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2599 } 2600 Known = computeKnownBits(Src, DemandedSrc, Depth + 1); 2601 break; 2602 } 2603 case ISD::SCALAR_TO_VECTOR: { 2604 // We know about scalar_to_vector as much as we know about it source, 2605 // which becomes the first element of otherwise unknown vector. 2606 if (DemandedElts != 1) 2607 break; 2608 2609 SDValue N0 = Op.getOperand(0); 2610 Known = computeKnownBits(N0, Depth + 1); 2611 if (N0.getValueSizeInBits() != BitWidth) 2612 Known = Known.trunc(BitWidth); 2613 2614 break; 2615 } 2616 case ISD::BITCAST: { 2617 SDValue N0 = Op.getOperand(0); 2618 EVT SubVT = N0.getValueType(); 2619 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2620 2621 // Ignore bitcasts from unsupported types. 2622 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2623 break; 2624 2625 // Fast handling of 'identity' bitcasts. 2626 if (BitWidth == SubBitWidth) { 2627 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2628 break; 2629 } 2630 2631 bool IsLE = getDataLayout().isLittleEndian(); 2632 2633 // Bitcast 'small element' vector to 'large element' scalar/vector. 2634 if ((BitWidth % SubBitWidth) == 0) { 2635 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2636 2637 // Collect known bits for the (larger) output by collecting the known 2638 // bits from each set of sub elements and shift these into place. 2639 // We need to separately call computeKnownBits for each set of 2640 // sub elements as the knownbits for each is likely to be different. 2641 unsigned SubScale = BitWidth / SubBitWidth; 2642 APInt SubDemandedElts(NumElts * SubScale, 0); 2643 for (unsigned i = 0; i != NumElts; ++i) 2644 if (DemandedElts[i]) 2645 SubDemandedElts.setBit(i * SubScale); 2646 2647 for (unsigned i = 0; i != SubScale; ++i) { 2648 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2649 Depth + 1); 2650 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2651 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2652 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2653 } 2654 } 2655 2656 // Bitcast 'large element' scalar/vector to 'small element' vector. 2657 if ((SubBitWidth % BitWidth) == 0) { 2658 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2659 2660 // Collect known bits for the (smaller) output by collecting the known 2661 // bits from the overlapping larger input elements and extracting the 2662 // sub sections we actually care about. 2663 unsigned SubScale = SubBitWidth / BitWidth; 2664 APInt SubDemandedElts(NumElts / SubScale, 0); 2665 for (unsigned i = 0; i != NumElts; ++i) 2666 if (DemandedElts[i]) 2667 SubDemandedElts.setBit(i / SubScale); 2668 2669 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2670 2671 Known.Zero.setAllBits(); Known.One.setAllBits(); 2672 for (unsigned i = 0; i != NumElts; ++i) 2673 if (DemandedElts[i]) { 2674 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2675 unsigned Offset = (Shifts % SubScale) * BitWidth; 2676 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2677 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2678 // If we don't know any bits, early out. 2679 if (Known.isUnknown()) 2680 break; 2681 } 2682 } 2683 break; 2684 } 2685 case ISD::AND: 2686 // If either the LHS or the RHS are Zero, the result is zero. 2687 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2688 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2689 2690 // Output known-1 bits are only known if set in both the LHS & RHS. 2691 Known.One &= Known2.One; 2692 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2693 Known.Zero |= Known2.Zero; 2694 break; 2695 case ISD::OR: 2696 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2697 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2698 2699 // Output known-0 bits are only known if clear in both the LHS & RHS. 2700 Known.Zero &= Known2.Zero; 2701 // Output known-1 are known to be set if set in either the LHS | RHS. 2702 Known.One |= Known2.One; 2703 break; 2704 case ISD::XOR: { 2705 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2706 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2707 2708 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2709 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 2710 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2711 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 2712 Known.Zero = KnownZeroOut; 2713 break; 2714 } 2715 case ISD::MUL: { 2716 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2717 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2718 2719 // If low bits are zero in either operand, output low known-0 bits. 2720 // Also compute a conservative estimate for high known-0 bits. 2721 // More trickiness is possible, but this is sufficient for the 2722 // interesting case of alignment computation. 2723 unsigned TrailZ = Known.countMinTrailingZeros() + 2724 Known2.countMinTrailingZeros(); 2725 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2726 Known2.countMinLeadingZeros(), 2727 BitWidth) - BitWidth; 2728 2729 Known.resetAll(); 2730 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2731 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2732 break; 2733 } 2734 case ISD::UDIV: { 2735 // For the purposes of computing leading zeros we can conservatively 2736 // treat a udiv as a logical right shift by the power of 2 known to 2737 // be less than the denominator. 2738 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2739 unsigned LeadZ = Known2.countMinLeadingZeros(); 2740 2741 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2742 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2743 if (RHSMaxLeadingZeros != BitWidth) 2744 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2745 2746 Known.Zero.setHighBits(LeadZ); 2747 break; 2748 } 2749 case ISD::SELECT: 2750 case ISD::VSELECT: 2751 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2752 // If we don't know any bits, early out. 2753 if (Known.isUnknown()) 2754 break; 2755 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2756 2757 // Only known if known in both the LHS and RHS. 2758 Known.One &= Known2.One; 2759 Known.Zero &= Known2.Zero; 2760 break; 2761 case ISD::SELECT_CC: 2762 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2763 // If we don't know any bits, early out. 2764 if (Known.isUnknown()) 2765 break; 2766 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2767 2768 // Only known if known in both the LHS and RHS. 2769 Known.One &= Known2.One; 2770 Known.Zero &= Known2.Zero; 2771 break; 2772 case ISD::SMULO: 2773 case ISD::UMULO: 2774 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2775 if (Op.getResNo() != 1) 2776 break; 2777 // The boolean result conforms to getBooleanContents. 2778 // If we know the result of a setcc has the top bits zero, use this info. 2779 // We know that we have an integer-based boolean since these operations 2780 // are only available for integer. 2781 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2782 TargetLowering::ZeroOrOneBooleanContent && 2783 BitWidth > 1) 2784 Known.Zero.setBitsFrom(1); 2785 break; 2786 case ISD::SETCC: 2787 // If we know the result of a setcc has the top bits zero, use this info. 2788 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2789 TargetLowering::ZeroOrOneBooleanContent && 2790 BitWidth > 1) 2791 Known.Zero.setBitsFrom(1); 2792 break; 2793 case ISD::SHL: 2794 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2795 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2796 unsigned Shift = ShAmt->getZExtValue(); 2797 Known.Zero <<= Shift; 2798 Known.One <<= Shift; 2799 // Low bits are known zero. 2800 Known.Zero.setLowBits(Shift); 2801 } 2802 break; 2803 case ISD::SRL: 2804 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2805 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2806 unsigned Shift = ShAmt->getZExtValue(); 2807 Known.Zero.lshrInPlace(Shift); 2808 Known.One.lshrInPlace(Shift); 2809 // High bits are known zero. 2810 Known.Zero.setHighBits(Shift); 2811 } else if (const APInt *ShMinAmt = getValidMinimumShiftAmountConstant(Op)) { 2812 // Minimum shift high bits are known zero. 2813 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2814 } 2815 break; 2816 case ISD::SRA: 2817 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2818 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2819 unsigned Shift = ShAmt->getZExtValue(); 2820 // Sign extend known zero/one bit (else is unknown). 2821 Known.Zero.ashrInPlace(Shift); 2822 Known.One.ashrInPlace(Shift); 2823 } 2824 break; 2825 case ISD::FSHL: 2826 case ISD::FSHR: 2827 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2828 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2829 2830 // For fshl, 0-shift returns the 1st arg. 2831 // For fshr, 0-shift returns the 2nd arg. 2832 if (Amt == 0) { 2833 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2834 DemandedElts, Depth + 1); 2835 break; 2836 } 2837 2838 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2839 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2840 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2841 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2842 if (Opcode == ISD::FSHL) { 2843 Known.One <<= Amt; 2844 Known.Zero <<= Amt; 2845 Known2.One.lshrInPlace(BitWidth - Amt); 2846 Known2.Zero.lshrInPlace(BitWidth - Amt); 2847 } else { 2848 Known.One <<= BitWidth - Amt; 2849 Known.Zero <<= BitWidth - Amt; 2850 Known2.One.lshrInPlace(Amt); 2851 Known2.Zero.lshrInPlace(Amt); 2852 } 2853 Known.One |= Known2.One; 2854 Known.Zero |= Known2.Zero; 2855 } 2856 break; 2857 case ISD::SIGN_EXTEND_INREG: { 2858 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2859 unsigned EBits = EVT.getScalarSizeInBits(); 2860 2861 // Sign extension. Compute the demanded bits in the result that are not 2862 // present in the input. 2863 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2864 2865 APInt InSignMask = APInt::getSignMask(EBits); 2866 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2867 2868 // If the sign extended bits are demanded, we know that the sign 2869 // bit is demanded. 2870 InSignMask = InSignMask.zext(BitWidth); 2871 if (NewBits.getBoolValue()) 2872 InputDemandedBits |= InSignMask; 2873 2874 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2875 Known.One &= InputDemandedBits; 2876 Known.Zero &= InputDemandedBits; 2877 2878 // If the sign bit of the input is known set or clear, then we know the 2879 // top bits of the result. 2880 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2881 Known.Zero |= NewBits; 2882 Known.One &= ~NewBits; 2883 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2884 Known.One |= NewBits; 2885 Known.Zero &= ~NewBits; 2886 } else { // Input sign bit unknown 2887 Known.Zero &= ~NewBits; 2888 Known.One &= ~NewBits; 2889 } 2890 break; 2891 } 2892 case ISD::CTTZ: 2893 case ISD::CTTZ_ZERO_UNDEF: { 2894 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2895 // If we have a known 1, its position is our upper bound. 2896 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2897 unsigned LowBits = Log2_32(PossibleTZ) + 1; 2898 Known.Zero.setBitsFrom(LowBits); 2899 break; 2900 } 2901 case ISD::CTLZ: 2902 case ISD::CTLZ_ZERO_UNDEF: { 2903 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2904 // If we have a known 1, its position is our upper bound. 2905 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 2906 unsigned LowBits = Log2_32(PossibleLZ) + 1; 2907 Known.Zero.setBitsFrom(LowBits); 2908 break; 2909 } 2910 case ISD::CTPOP: { 2911 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2912 // If we know some of the bits are zero, they can't be one. 2913 unsigned PossibleOnes = Known2.countMaxPopulation(); 2914 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 2915 break; 2916 } 2917 case ISD::LOAD: { 2918 LoadSDNode *LD = cast<LoadSDNode>(Op); 2919 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 2920 if (ISD::isNON_EXTLoad(LD) && Cst) { 2921 // Determine any common known bits from the loaded constant pool value. 2922 Type *CstTy = Cst->getType(); 2923 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 2924 // If its a vector splat, then we can (quickly) reuse the scalar path. 2925 // NOTE: We assume all elements match and none are UNDEF. 2926 if (CstTy->isVectorTy()) { 2927 if (const Constant *Splat = Cst->getSplatValue()) { 2928 Cst = Splat; 2929 CstTy = Cst->getType(); 2930 } 2931 } 2932 // TODO - do we need to handle different bitwidths? 2933 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 2934 // Iterate across all vector elements finding common known bits. 2935 Known.One.setAllBits(); 2936 Known.Zero.setAllBits(); 2937 for (unsigned i = 0; i != NumElts; ++i) { 2938 if (!DemandedElts[i]) 2939 continue; 2940 if (Constant *Elt = Cst->getAggregateElement(i)) { 2941 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 2942 const APInt &Value = CInt->getValue(); 2943 Known.One &= Value; 2944 Known.Zero &= ~Value; 2945 continue; 2946 } 2947 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 2948 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 2949 Known.One &= Value; 2950 Known.Zero &= ~Value; 2951 continue; 2952 } 2953 } 2954 Known.One.clearAllBits(); 2955 Known.Zero.clearAllBits(); 2956 break; 2957 } 2958 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 2959 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 2960 const APInt &Value = CInt->getValue(); 2961 Known.One = Value; 2962 Known.Zero = ~Value; 2963 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 2964 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 2965 Known.One = Value; 2966 Known.Zero = ~Value; 2967 } 2968 } 2969 } 2970 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2971 // If this is a ZEXTLoad and we are looking at the loaded value. 2972 EVT VT = LD->getMemoryVT(); 2973 unsigned MemBits = VT.getScalarSizeInBits(); 2974 Known.Zero.setBitsFrom(MemBits); 2975 } else if (const MDNode *Ranges = LD->getRanges()) { 2976 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2977 computeKnownBitsFromRangeMetadata(*Ranges, Known); 2978 } 2979 break; 2980 } 2981 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2982 EVT InVT = Op.getOperand(0).getValueType(); 2983 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 2984 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 2985 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 2986 break; 2987 } 2988 case ISD::ZERO_EXTEND: { 2989 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2990 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 2991 break; 2992 } 2993 case ISD::SIGN_EXTEND_VECTOR_INREG: { 2994 EVT InVT = Op.getOperand(0).getValueType(); 2995 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 2996 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 2997 // If the sign bit is known to be zero or one, then sext will extend 2998 // it to the top bits, else it will just zext. 2999 Known = Known.sext(BitWidth); 3000 break; 3001 } 3002 case ISD::SIGN_EXTEND: { 3003 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3004 // If the sign bit is known to be zero or one, then sext will extend 3005 // it to the top bits, else it will just zext. 3006 Known = Known.sext(BitWidth); 3007 break; 3008 } 3009 case ISD::ANY_EXTEND: { 3010 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3011 Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */); 3012 break; 3013 } 3014 case ISD::TRUNCATE: { 3015 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3016 Known = Known.trunc(BitWidth); 3017 break; 3018 } 3019 case ISD::AssertZext: { 3020 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3021 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3022 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3023 Known.Zero |= (~InMask); 3024 Known.One &= (~Known.Zero); 3025 break; 3026 } 3027 case ISD::FGETSIGN: 3028 // All bits are zero except the low bit. 3029 Known.Zero.setBitsFrom(1); 3030 break; 3031 case ISD::USUBO: 3032 case ISD::SSUBO: 3033 if (Op.getResNo() == 1) { 3034 // If we know the result of a setcc has the top bits zero, use this info. 3035 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3036 TargetLowering::ZeroOrOneBooleanContent && 3037 BitWidth > 1) 3038 Known.Zero.setBitsFrom(1); 3039 break; 3040 } 3041 LLVM_FALLTHROUGH; 3042 case ISD::SUB: 3043 case ISD::SUBC: { 3044 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3045 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3046 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3047 Known, Known2); 3048 break; 3049 } 3050 case ISD::UADDO: 3051 case ISD::SADDO: 3052 case ISD::ADDCARRY: 3053 if (Op.getResNo() == 1) { 3054 // If we know the result of a setcc has the top bits zero, use this info. 3055 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3056 TargetLowering::ZeroOrOneBooleanContent && 3057 BitWidth > 1) 3058 Known.Zero.setBitsFrom(1); 3059 break; 3060 } 3061 LLVM_FALLTHROUGH; 3062 case ISD::ADD: 3063 case ISD::ADDC: 3064 case ISD::ADDE: { 3065 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3066 3067 // With ADDE and ADDCARRY, a carry bit may be added in. 3068 KnownBits Carry(1); 3069 if (Opcode == ISD::ADDE) 3070 // Can't track carry from glue, set carry to unknown. 3071 Carry.resetAll(); 3072 else if (Opcode == ISD::ADDCARRY) 3073 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3074 // the trouble (how often will we find a known carry bit). And I haven't 3075 // tested this very much yet, but something like this might work: 3076 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3077 // Carry = Carry.zextOrTrunc(1, false); 3078 Carry.resetAll(); 3079 else 3080 Carry.setAllZero(); 3081 3082 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3083 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3084 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3085 break; 3086 } 3087 case ISD::SREM: 3088 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3089 const APInt &RA = Rem->getAPIntValue().abs(); 3090 if (RA.isPowerOf2()) { 3091 APInt LowBits = RA - 1; 3092 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3093 3094 // The low bits of the first operand are unchanged by the srem. 3095 Known.Zero = Known2.Zero & LowBits; 3096 Known.One = Known2.One & LowBits; 3097 3098 // If the first operand is non-negative or has all low bits zero, then 3099 // the upper bits are all zero. 3100 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 3101 Known.Zero |= ~LowBits; 3102 3103 // If the first operand is negative and not all low bits are zero, then 3104 // the upper bits are all one. 3105 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 3106 Known.One |= ~LowBits; 3107 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3108 } 3109 } 3110 break; 3111 case ISD::UREM: { 3112 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3113 const APInt &RA = Rem->getAPIntValue(); 3114 if (RA.isPowerOf2()) { 3115 APInt LowBits = (RA - 1); 3116 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3117 3118 // The upper bits are all zero, the lower ones are unchanged. 3119 Known.Zero = Known2.Zero | ~LowBits; 3120 Known.One = Known2.One & LowBits; 3121 break; 3122 } 3123 } 3124 3125 // Since the result is less than or equal to either operand, any leading 3126 // zero bits in either operand must also exist in the result. 3127 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3128 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3129 3130 uint32_t Leaders = 3131 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3132 Known.resetAll(); 3133 Known.Zero.setHighBits(Leaders); 3134 break; 3135 } 3136 case ISD::EXTRACT_ELEMENT: { 3137 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3138 const unsigned Index = Op.getConstantOperandVal(1); 3139 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3140 3141 // Remove low part of known bits mask 3142 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3143 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3144 3145 // Remove high part of known bit mask 3146 Known = Known.trunc(EltBitWidth); 3147 break; 3148 } 3149 case ISD::EXTRACT_VECTOR_ELT: { 3150 SDValue InVec = Op.getOperand(0); 3151 SDValue EltNo = Op.getOperand(1); 3152 EVT VecVT = InVec.getValueType(); 3153 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3154 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3155 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3156 // anything about the extended bits. 3157 if (BitWidth > EltBitWidth) 3158 Known = Known.trunc(EltBitWidth); 3159 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3160 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 3161 // If we know the element index, just demand that vector element. 3162 unsigned Idx = ConstEltNo->getZExtValue(); 3163 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 3164 Known = computeKnownBits(InVec, DemandedElt, Depth + 1); 3165 } else { 3166 // Unknown element index, so ignore DemandedElts and demand them all. 3167 Known = computeKnownBits(InVec, Depth + 1); 3168 } 3169 if (BitWidth > EltBitWidth) 3170 Known = Known.zext(BitWidth, false /* => any extend */); 3171 break; 3172 } 3173 case ISD::INSERT_VECTOR_ELT: { 3174 SDValue InVec = Op.getOperand(0); 3175 SDValue InVal = Op.getOperand(1); 3176 SDValue EltNo = Op.getOperand(2); 3177 3178 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3179 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3180 // If we know the element index, split the demand between the 3181 // source vector and the inserted element. 3182 Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth); 3183 unsigned EltIdx = CEltNo->getZExtValue(); 3184 3185 // If we demand the inserted element then add its common known bits. 3186 if (DemandedElts[EltIdx]) { 3187 Known2 = computeKnownBits(InVal, Depth + 1); 3188 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 3189 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 3190 } 3191 3192 // If we demand the source vector then add its common known bits, ensuring 3193 // that we don't demand the inserted element. 3194 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); 3195 if (!!VectorElts) { 3196 Known2 = computeKnownBits(InVec, VectorElts, Depth + 1); 3197 Known.One &= Known2.One; 3198 Known.Zero &= Known2.Zero; 3199 } 3200 } else { 3201 // Unknown element index, so ignore DemandedElts and demand them all. 3202 Known = computeKnownBits(InVec, Depth + 1); 3203 Known2 = computeKnownBits(InVal, Depth + 1); 3204 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 3205 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 3206 } 3207 break; 3208 } 3209 case ISD::BITREVERSE: { 3210 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3211 Known.Zero = Known2.Zero.reverseBits(); 3212 Known.One = Known2.One.reverseBits(); 3213 break; 3214 } 3215 case ISD::BSWAP: { 3216 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3217 Known.Zero = Known2.Zero.byteSwap(); 3218 Known.One = Known2.One.byteSwap(); 3219 break; 3220 } 3221 case ISD::ABS: { 3222 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3223 3224 // If the source's MSB is zero then we know the rest of the bits already. 3225 if (Known2.isNonNegative()) { 3226 Known.Zero = Known2.Zero; 3227 Known.One = Known2.One; 3228 break; 3229 } 3230 3231 // We only know that the absolute values's MSB will be zero iff there is 3232 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3233 Known2.One.clearSignBit(); 3234 if (Known2.One.getBoolValue()) { 3235 Known.Zero = APInt::getSignMask(BitWidth); 3236 break; 3237 } 3238 break; 3239 } 3240 case ISD::UMIN: { 3241 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3242 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3243 3244 // UMIN - we know that the result will have the maximum of the 3245 // known zero leading bits of the inputs. 3246 unsigned LeadZero = Known.countMinLeadingZeros(); 3247 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3248 3249 Known.Zero &= Known2.Zero; 3250 Known.One &= Known2.One; 3251 Known.Zero.setHighBits(LeadZero); 3252 break; 3253 } 3254 case ISD::UMAX: { 3255 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3256 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3257 3258 // UMAX - we know that the result will have the maximum of the 3259 // known one leading bits of the inputs. 3260 unsigned LeadOne = Known.countMinLeadingOnes(); 3261 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3262 3263 Known.Zero &= Known2.Zero; 3264 Known.One &= Known2.One; 3265 Known.One.setHighBits(LeadOne); 3266 break; 3267 } 3268 case ISD::SMIN: 3269 case ISD::SMAX: { 3270 // If we have a clamp pattern, we know that the number of sign bits will be 3271 // the minimum of the clamp min/max range. 3272 bool IsMax = (Opcode == ISD::SMAX); 3273 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3274 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3275 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3276 CstHigh = 3277 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3278 if (CstLow && CstHigh) { 3279 if (!IsMax) 3280 std::swap(CstLow, CstHigh); 3281 3282 const APInt &ValueLow = CstLow->getAPIntValue(); 3283 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3284 if (ValueLow.sle(ValueHigh)) { 3285 unsigned LowSignBits = ValueLow.getNumSignBits(); 3286 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3287 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3288 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3289 Known.One.setHighBits(MinSignBits); 3290 break; 3291 } 3292 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3293 Known.Zero.setHighBits(MinSignBits); 3294 break; 3295 } 3296 } 3297 } 3298 3299 // Fallback - just get the shared known bits of the operands. 3300 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3301 if (Known.isUnknown()) break; // Early-out 3302 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3303 Known.Zero &= Known2.Zero; 3304 Known.One &= Known2.One; 3305 break; 3306 } 3307 case ISD::FrameIndex: 3308 case ISD::TargetFrameIndex: 3309 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 3310 break; 3311 3312 default: 3313 if (Opcode < ISD::BUILTIN_OP_END) 3314 break; 3315 LLVM_FALLTHROUGH; 3316 case ISD::INTRINSIC_WO_CHAIN: 3317 case ISD::INTRINSIC_W_CHAIN: 3318 case ISD::INTRINSIC_VOID: 3319 // Allow the target to implement this method for its nodes. 3320 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3321 break; 3322 } 3323 3324 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3325 return Known; 3326 } 3327 3328 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3329 SDValue N1) const { 3330 // X + 0 never overflow 3331 if (isNullConstant(N1)) 3332 return OFK_Never; 3333 3334 KnownBits N1Known = computeKnownBits(N1); 3335 if (N1Known.Zero.getBoolValue()) { 3336 KnownBits N0Known = computeKnownBits(N0); 3337 3338 bool overflow; 3339 (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow); 3340 if (!overflow) 3341 return OFK_Never; 3342 } 3343 3344 // mulhi + 1 never overflow 3345 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3346 (~N1Known.Zero & 0x01) == ~N1Known.Zero) 3347 return OFK_Never; 3348 3349 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3350 KnownBits N0Known = computeKnownBits(N0); 3351 3352 if ((~N0Known.Zero & 0x01) == ~N0Known.Zero) 3353 return OFK_Never; 3354 } 3355 3356 return OFK_Sometime; 3357 } 3358 3359 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3360 EVT OpVT = Val.getValueType(); 3361 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3362 3363 // Is the constant a known power of 2? 3364 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3365 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3366 3367 // A left-shift of a constant one will have exactly one bit set because 3368 // shifting the bit off the end is undefined. 3369 if (Val.getOpcode() == ISD::SHL) { 3370 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3371 if (C && C->getAPIntValue() == 1) 3372 return true; 3373 } 3374 3375 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3376 // one bit set. 3377 if (Val.getOpcode() == ISD::SRL) { 3378 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3379 if (C && C->getAPIntValue().isSignMask()) 3380 return true; 3381 } 3382 3383 // Are all operands of a build vector constant powers of two? 3384 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3385 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3386 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3387 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3388 return false; 3389 })) 3390 return true; 3391 3392 // More could be done here, though the above checks are enough 3393 // to handle some common cases. 3394 3395 // Fall back to computeKnownBits to catch other known cases. 3396 KnownBits Known = computeKnownBits(Val); 3397 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3398 } 3399 3400 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3401 EVT VT = Op.getValueType(); 3402 APInt DemandedElts = VT.isVector() 3403 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3404 : APInt(1, 1); 3405 return ComputeNumSignBits(Op, DemandedElts, Depth); 3406 } 3407 3408 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3409 unsigned Depth) const { 3410 EVT VT = Op.getValueType(); 3411 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3412 unsigned VTBits = VT.getScalarSizeInBits(); 3413 unsigned NumElts = DemandedElts.getBitWidth(); 3414 unsigned Tmp, Tmp2; 3415 unsigned FirstAnswer = 1; 3416 3417 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3418 const APInt &Val = C->getAPIntValue(); 3419 return Val.getNumSignBits(); 3420 } 3421 3422 if (Depth >= MaxRecursionDepth) 3423 return 1; // Limit search depth. 3424 3425 if (!DemandedElts) 3426 return 1; // No demanded elts, better to assume we don't know anything. 3427 3428 unsigned Opcode = Op.getOpcode(); 3429 switch (Opcode) { 3430 default: break; 3431 case ISD::AssertSext: 3432 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3433 return VTBits-Tmp+1; 3434 case ISD::AssertZext: 3435 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3436 return VTBits-Tmp; 3437 3438 case ISD::BUILD_VECTOR: 3439 Tmp = VTBits; 3440 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3441 if (!DemandedElts[i]) 3442 continue; 3443 3444 SDValue SrcOp = Op.getOperand(i); 3445 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3446 3447 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3448 if (SrcOp.getValueSizeInBits() != VTBits) { 3449 assert(SrcOp.getValueSizeInBits() > VTBits && 3450 "Expected BUILD_VECTOR implicit truncation"); 3451 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3452 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3453 } 3454 Tmp = std::min(Tmp, Tmp2); 3455 } 3456 return Tmp; 3457 3458 case ISD::VECTOR_SHUFFLE: { 3459 // Collect the minimum number of sign bits that are shared by every vector 3460 // element referenced by the shuffle. 3461 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3462 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3463 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3464 for (unsigned i = 0; i != NumElts; ++i) { 3465 int M = SVN->getMaskElt(i); 3466 if (!DemandedElts[i]) 3467 continue; 3468 // For UNDEF elements, we don't know anything about the common state of 3469 // the shuffle result. 3470 if (M < 0) 3471 return 1; 3472 if ((unsigned)M < NumElts) 3473 DemandedLHS.setBit((unsigned)M % NumElts); 3474 else 3475 DemandedRHS.setBit((unsigned)M % NumElts); 3476 } 3477 Tmp = std::numeric_limits<unsigned>::max(); 3478 if (!!DemandedLHS) 3479 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3480 if (!!DemandedRHS) { 3481 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3482 Tmp = std::min(Tmp, Tmp2); 3483 } 3484 // If we don't know anything, early out and try computeKnownBits fall-back. 3485 if (Tmp == 1) 3486 break; 3487 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3488 return Tmp; 3489 } 3490 3491 case ISD::BITCAST: { 3492 SDValue N0 = Op.getOperand(0); 3493 EVT SrcVT = N0.getValueType(); 3494 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3495 3496 // Ignore bitcasts from unsupported types.. 3497 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3498 break; 3499 3500 // Fast handling of 'identity' bitcasts. 3501 if (VTBits == SrcBits) 3502 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3503 3504 bool IsLE = getDataLayout().isLittleEndian(); 3505 3506 // Bitcast 'large element' scalar/vector to 'small element' vector. 3507 if ((SrcBits % VTBits) == 0) { 3508 assert(VT.isVector() && "Expected bitcast to vector"); 3509 3510 unsigned Scale = SrcBits / VTBits; 3511 APInt SrcDemandedElts(NumElts / Scale, 0); 3512 for (unsigned i = 0; i != NumElts; ++i) 3513 if (DemandedElts[i]) 3514 SrcDemandedElts.setBit(i / Scale); 3515 3516 // Fast case - sign splat can be simply split across the small elements. 3517 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3518 if (Tmp == SrcBits) 3519 return VTBits; 3520 3521 // Slow case - determine how far the sign extends into each sub-element. 3522 Tmp2 = VTBits; 3523 for (unsigned i = 0; i != NumElts; ++i) 3524 if (DemandedElts[i]) { 3525 unsigned SubOffset = i % Scale; 3526 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3527 SubOffset = SubOffset * VTBits; 3528 if (Tmp <= SubOffset) 3529 return 1; 3530 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3531 } 3532 return Tmp2; 3533 } 3534 break; 3535 } 3536 3537 case ISD::SIGN_EXTEND: 3538 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3539 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3540 case ISD::SIGN_EXTEND_INREG: 3541 // Max of the input and what this extends. 3542 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3543 Tmp = VTBits-Tmp+1; 3544 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3545 return std::max(Tmp, Tmp2); 3546 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3547 SDValue Src = Op.getOperand(0); 3548 EVT SrcVT = Src.getValueType(); 3549 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3550 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3551 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3552 } 3553 3554 case ISD::SRA: 3555 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3556 // SRA X, C -> adds C sign bits. 3557 if (ConstantSDNode *C = 3558 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3559 APInt ShiftVal = C->getAPIntValue(); 3560 ShiftVal += Tmp; 3561 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); 3562 } 3563 return Tmp; 3564 case ISD::SHL: 3565 if (ConstantSDNode *C = 3566 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3567 // shl destroys sign bits. 3568 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3569 if (C->getAPIntValue().uge(VTBits) || // Bad shift. 3570 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. 3571 return Tmp - C->getZExtValue(); 3572 } 3573 break; 3574 case ISD::AND: 3575 case ISD::OR: 3576 case ISD::XOR: // NOT is handled here. 3577 // Logical binary ops preserve the number of sign bits at the worst. 3578 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3579 if (Tmp != 1) { 3580 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3581 FirstAnswer = std::min(Tmp, Tmp2); 3582 // We computed what we know about the sign bits as our first 3583 // answer. Now proceed to the generic code that uses 3584 // computeKnownBits, and pick whichever answer is better. 3585 } 3586 break; 3587 3588 case ISD::SELECT: 3589 case ISD::VSELECT: 3590 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3591 if (Tmp == 1) return 1; // Early out. 3592 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3593 return std::min(Tmp, Tmp2); 3594 case ISD::SELECT_CC: 3595 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3596 if (Tmp == 1) return 1; // Early out. 3597 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3598 return std::min(Tmp, Tmp2); 3599 3600 case ISD::SMIN: 3601 case ISD::SMAX: { 3602 // If we have a clamp pattern, we know that the number of sign bits will be 3603 // the minimum of the clamp min/max range. 3604 bool IsMax = (Opcode == ISD::SMAX); 3605 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3606 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3607 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3608 CstHigh = 3609 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3610 if (CstLow && CstHigh) { 3611 if (!IsMax) 3612 std::swap(CstLow, CstHigh); 3613 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3614 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3615 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3616 return std::min(Tmp, Tmp2); 3617 } 3618 } 3619 3620 // Fallback - just get the minimum number of sign bits of the operands. 3621 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3622 if (Tmp == 1) 3623 return 1; // Early out. 3624 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3625 return std::min(Tmp, Tmp2); 3626 } 3627 case ISD::UMIN: 3628 case ISD::UMAX: 3629 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3630 if (Tmp == 1) 3631 return 1; // Early out. 3632 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3633 return std::min(Tmp, Tmp2); 3634 case ISD::SADDO: 3635 case ISD::UADDO: 3636 case ISD::SSUBO: 3637 case ISD::USUBO: 3638 case ISD::SMULO: 3639 case ISD::UMULO: 3640 if (Op.getResNo() != 1) 3641 break; 3642 // The boolean result conforms to getBooleanContents. Fall through. 3643 // If setcc returns 0/-1, all bits are sign bits. 3644 // We know that we have an integer-based boolean since these operations 3645 // are only available for integer. 3646 if (TLI->getBooleanContents(VT.isVector(), false) == 3647 TargetLowering::ZeroOrNegativeOneBooleanContent) 3648 return VTBits; 3649 break; 3650 case ISD::SETCC: 3651 // If setcc returns 0/-1, all bits are sign bits. 3652 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3653 TargetLowering::ZeroOrNegativeOneBooleanContent) 3654 return VTBits; 3655 break; 3656 case ISD::ROTL: 3657 case ISD::ROTR: 3658 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3659 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3660 3661 // Handle rotate right by N like a rotate left by 32-N. 3662 if (Opcode == ISD::ROTR) 3663 RotAmt = (VTBits - RotAmt) % VTBits; 3664 3665 // If we aren't rotating out all of the known-in sign bits, return the 3666 // number that are left. This handles rotl(sext(x), 1) for example. 3667 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3668 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3669 } 3670 break; 3671 case ISD::ADD: 3672 case ISD::ADDC: 3673 // Add can have at most one carry bit. Thus we know that the output 3674 // is, at worst, one more bit than the inputs. 3675 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3676 if (Tmp == 1) return 1; // Early out. 3677 3678 // Special case decrementing a value (ADD X, -1): 3679 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3680 if (CRHS->isAllOnesValue()) { 3681 KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1); 3682 3683 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3684 // sign bits set. 3685 if ((Known.Zero | 1).isAllOnesValue()) 3686 return VTBits; 3687 3688 // If we are subtracting one from a positive number, there is no carry 3689 // out of the result. 3690 if (Known.isNonNegative()) 3691 return Tmp; 3692 } 3693 3694 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3695 if (Tmp2 == 1) return 1; 3696 return std::min(Tmp, Tmp2)-1; 3697 3698 case ISD::SUB: 3699 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3700 if (Tmp2 == 1) return 1; 3701 3702 // Handle NEG. 3703 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 3704 if (CLHS->isNullValue()) { 3705 KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1); 3706 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3707 // sign bits set. 3708 if ((Known.Zero | 1).isAllOnesValue()) 3709 return VTBits; 3710 3711 // If the input is known to be positive (the sign bit is known clear), 3712 // the output of the NEG has the same number of sign bits as the input. 3713 if (Known.isNonNegative()) 3714 return Tmp2; 3715 3716 // Otherwise, we treat this like a SUB. 3717 } 3718 3719 // Sub can have at most one carry bit. Thus we know that the output 3720 // is, at worst, one more bit than the inputs. 3721 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3722 if (Tmp == 1) return 1; // Early out. 3723 return std::min(Tmp, Tmp2)-1; 3724 case ISD::MUL: { 3725 // The output of the Mul can be at most twice the valid bits in the inputs. 3726 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3727 if (SignBitsOp0 == 1) 3728 break; 3729 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3730 if (SignBitsOp1 == 1) 3731 break; 3732 unsigned OutValidBits = 3733 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3734 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3735 } 3736 case ISD::TRUNCATE: { 3737 // Check if the sign bits of source go down as far as the truncated value. 3738 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3739 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3740 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3741 return NumSrcSignBits - (NumSrcBits - VTBits); 3742 break; 3743 } 3744 case ISD::EXTRACT_ELEMENT: { 3745 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3746 const int BitWidth = Op.getValueSizeInBits(); 3747 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3748 3749 // Get reverse index (starting from 1), Op1 value indexes elements from 3750 // little end. Sign starts at big end. 3751 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3752 3753 // If the sign portion ends in our element the subtraction gives correct 3754 // result. Otherwise it gives either negative or > bitwidth result 3755 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3756 } 3757 case ISD::INSERT_VECTOR_ELT: { 3758 SDValue InVec = Op.getOperand(0); 3759 SDValue InVal = Op.getOperand(1); 3760 SDValue EltNo = Op.getOperand(2); 3761 3762 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3763 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3764 // If we know the element index, split the demand between the 3765 // source vector and the inserted element. 3766 unsigned EltIdx = CEltNo->getZExtValue(); 3767 3768 // If we demand the inserted element then get its sign bits. 3769 Tmp = std::numeric_limits<unsigned>::max(); 3770 if (DemandedElts[EltIdx]) { 3771 // TODO - handle implicit truncation of inserted elements. 3772 if (InVal.getScalarValueSizeInBits() != VTBits) 3773 break; 3774 Tmp = ComputeNumSignBits(InVal, Depth + 1); 3775 } 3776 3777 // If we demand the source vector then get its sign bits, and determine 3778 // the minimum. 3779 APInt VectorElts = DemandedElts; 3780 VectorElts.clearBit(EltIdx); 3781 if (!!VectorElts) { 3782 Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1); 3783 Tmp = std::min(Tmp, Tmp2); 3784 } 3785 } else { 3786 // Unknown element index, so ignore DemandedElts and demand them all. 3787 Tmp = ComputeNumSignBits(InVec, Depth + 1); 3788 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3789 Tmp = std::min(Tmp, Tmp2); 3790 } 3791 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3792 return Tmp; 3793 } 3794 case ISD::EXTRACT_VECTOR_ELT: { 3795 SDValue InVec = Op.getOperand(0); 3796 SDValue EltNo = Op.getOperand(1); 3797 EVT VecVT = InVec.getValueType(); 3798 const unsigned BitWidth = Op.getValueSizeInBits(); 3799 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3800 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3801 3802 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3803 // anything about sign bits. But if the sizes match we can derive knowledge 3804 // about sign bits from the vector operand. 3805 if (BitWidth != EltBitWidth) 3806 break; 3807 3808 // If we know the element index, just demand that vector element, else for 3809 // an unknown element index, ignore DemandedElts and demand them all. 3810 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3811 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3812 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3813 DemandedSrcElts = 3814 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3815 3816 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3817 } 3818 case ISD::EXTRACT_SUBVECTOR: { 3819 // If we know the element index, just demand that subvector elements, 3820 // otherwise demand them all. 3821 SDValue Src = Op.getOperand(0); 3822 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3823 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3824 APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts); 3825 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 3826 // Offset the demanded elts by the subvector index. 3827 uint64_t Idx = SubIdx->getZExtValue(); 3828 DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3829 } 3830 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); 3831 } 3832 case ISD::CONCAT_VECTORS: { 3833 // Determine the minimum number of sign bits across all demanded 3834 // elts of the input vectors. Early out if the result is already 1. 3835 Tmp = std::numeric_limits<unsigned>::max(); 3836 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3837 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3838 unsigned NumSubVectors = Op.getNumOperands(); 3839 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3840 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3841 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3842 if (!DemandedSub) 3843 continue; 3844 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3845 Tmp = std::min(Tmp, Tmp2); 3846 } 3847 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3848 return Tmp; 3849 } 3850 case ISD::INSERT_SUBVECTOR: { 3851 // If we know the element index, demand any elements from the subvector and 3852 // the remainder from the src its inserted into, otherwise demand them all. 3853 SDValue Src = Op.getOperand(0); 3854 SDValue Sub = Op.getOperand(1); 3855 auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3856 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3857 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 3858 Tmp = std::numeric_limits<unsigned>::max(); 3859 uint64_t Idx = SubIdx->getZExtValue(); 3860 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3861 if (!!DemandedSubElts) { 3862 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3863 if (Tmp == 1) return 1; // early-out 3864 } 3865 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 3866 APInt DemandedSrcElts = DemandedElts & ~SubMask; 3867 if (!!DemandedSrcElts) { 3868 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3869 Tmp = std::min(Tmp, Tmp2); 3870 } 3871 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3872 return Tmp; 3873 } 3874 3875 // Not able to determine the index so just assume worst case. 3876 Tmp = ComputeNumSignBits(Sub, Depth + 1); 3877 if (Tmp == 1) return 1; // early-out 3878 Tmp2 = ComputeNumSignBits(Src, Depth + 1); 3879 Tmp = std::min(Tmp, Tmp2); 3880 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3881 return Tmp; 3882 } 3883 } 3884 3885 // If we are looking at the loaded value of the SDNode. 3886 if (Op.getResNo() == 0) { 3887 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3888 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3889 unsigned ExtType = LD->getExtensionType(); 3890 switch (ExtType) { 3891 default: break; 3892 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 3893 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3894 return VTBits - Tmp + 1; 3895 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 3896 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3897 return VTBits - Tmp; 3898 case ISD::NON_EXTLOAD: 3899 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 3900 // We only need to handle vectors - computeKnownBits should handle 3901 // scalar cases. 3902 Type *CstTy = Cst->getType(); 3903 if (CstTy->isVectorTy() && 3904 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 3905 Tmp = VTBits; 3906 for (unsigned i = 0; i != NumElts; ++i) { 3907 if (!DemandedElts[i]) 3908 continue; 3909 if (Constant *Elt = Cst->getAggregateElement(i)) { 3910 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3911 const APInt &Value = CInt->getValue(); 3912 Tmp = std::min(Tmp, Value.getNumSignBits()); 3913 continue; 3914 } 3915 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3916 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3917 Tmp = std::min(Tmp, Value.getNumSignBits()); 3918 continue; 3919 } 3920 } 3921 // Unknown type. Conservatively assume no bits match sign bit. 3922 return 1; 3923 } 3924 return Tmp; 3925 } 3926 } 3927 break; 3928 } 3929 } 3930 } 3931 3932 // Allow the target to implement this method for its nodes. 3933 if (Opcode >= ISD::BUILTIN_OP_END || 3934 Opcode == ISD::INTRINSIC_WO_CHAIN || 3935 Opcode == ISD::INTRINSIC_W_CHAIN || 3936 Opcode == ISD::INTRINSIC_VOID) { 3937 unsigned NumBits = 3938 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 3939 if (NumBits > 1) 3940 FirstAnswer = std::max(FirstAnswer, NumBits); 3941 } 3942 3943 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3944 // use this information. 3945 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 3946 3947 APInt Mask; 3948 if (Known.isNonNegative()) { // sign bit is 0 3949 Mask = Known.Zero; 3950 } else if (Known.isNegative()) { // sign bit is 1; 3951 Mask = Known.One; 3952 } else { 3953 // Nothing known. 3954 return FirstAnswer; 3955 } 3956 3957 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 3958 // the number of identical bits in the top of the input value. 3959 Mask = ~Mask; 3960 Mask <<= Mask.getBitWidth()-VTBits; 3961 // Return # leading zeros. We use 'min' here in case Val was zero before 3962 // shifting. We don't want to return '64' as for an i32 "0". 3963 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 3964 } 3965 3966 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 3967 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 3968 !isa<ConstantSDNode>(Op.getOperand(1))) 3969 return false; 3970 3971 if (Op.getOpcode() == ISD::OR && 3972 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 3973 return false; 3974 3975 return true; 3976 } 3977 3978 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 3979 // If we're told that NaNs won't happen, assume they won't. 3980 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 3981 return true; 3982 3983 if (Depth >= MaxRecursionDepth) 3984 return false; // Limit search depth. 3985 3986 // TODO: Handle vectors. 3987 // If the value is a constant, we can obviously see if it is a NaN or not. 3988 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 3989 return !C->getValueAPF().isNaN() || 3990 (SNaN && !C->getValueAPF().isSignaling()); 3991 } 3992 3993 unsigned Opcode = Op.getOpcode(); 3994 switch (Opcode) { 3995 case ISD::FADD: 3996 case ISD::FSUB: 3997 case ISD::FMUL: 3998 case ISD::FDIV: 3999 case ISD::FREM: 4000 case ISD::FSIN: 4001 case ISD::FCOS: { 4002 if (SNaN) 4003 return true; 4004 // TODO: Need isKnownNeverInfinity 4005 return false; 4006 } 4007 case ISD::FCANONICALIZE: 4008 case ISD::FEXP: 4009 case ISD::FEXP2: 4010 case ISD::FTRUNC: 4011 case ISD::FFLOOR: 4012 case ISD::FCEIL: 4013 case ISD::FROUND: 4014 case ISD::FRINT: 4015 case ISD::FNEARBYINT: { 4016 if (SNaN) 4017 return true; 4018 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4019 } 4020 case ISD::FABS: 4021 case ISD::FNEG: 4022 case ISD::FCOPYSIGN: { 4023 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4024 } 4025 case ISD::SELECT: 4026 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4027 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4028 case ISD::FP_EXTEND: 4029 case ISD::FP_ROUND: { 4030 if (SNaN) 4031 return true; 4032 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4033 } 4034 case ISD::SINT_TO_FP: 4035 case ISD::UINT_TO_FP: 4036 return true; 4037 case ISD::FMA: 4038 case ISD::FMAD: { 4039 if (SNaN) 4040 return true; 4041 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4042 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4043 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4044 } 4045 case ISD::FSQRT: // Need is known positive 4046 case ISD::FLOG: 4047 case ISD::FLOG2: 4048 case ISD::FLOG10: 4049 case ISD::FPOWI: 4050 case ISD::FPOW: { 4051 if (SNaN) 4052 return true; 4053 // TODO: Refine on operand 4054 return false; 4055 } 4056 case ISD::FMINNUM: 4057 case ISD::FMAXNUM: { 4058 // Only one needs to be known not-nan, since it will be returned if the 4059 // other ends up being one. 4060 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4061 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4062 } 4063 case ISD::FMINNUM_IEEE: 4064 case ISD::FMAXNUM_IEEE: { 4065 if (SNaN) 4066 return true; 4067 // This can return a NaN if either operand is an sNaN, or if both operands 4068 // are NaN. 4069 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4070 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4071 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4072 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4073 } 4074 case ISD::FMINIMUM: 4075 case ISD::FMAXIMUM: { 4076 // TODO: Does this quiet or return the origina NaN as-is? 4077 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4078 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4079 } 4080 case ISD::EXTRACT_VECTOR_ELT: { 4081 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4082 } 4083 default: 4084 if (Opcode >= ISD::BUILTIN_OP_END || 4085 Opcode == ISD::INTRINSIC_WO_CHAIN || 4086 Opcode == ISD::INTRINSIC_W_CHAIN || 4087 Opcode == ISD::INTRINSIC_VOID) { 4088 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4089 } 4090 4091 return false; 4092 } 4093 } 4094 4095 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4096 assert(Op.getValueType().isFloatingPoint() && 4097 "Floating point type expected"); 4098 4099 // If the value is a constant, we can obviously see if it is a zero or not. 4100 // TODO: Add BuildVector support. 4101 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4102 return !C->isZero(); 4103 return false; 4104 } 4105 4106 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4107 assert(!Op.getValueType().isFloatingPoint() && 4108 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4109 4110 // If the value is a constant, we can obviously see if it is a zero or not. 4111 if (ISD::matchUnaryPredicate( 4112 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4113 return true; 4114 4115 // TODO: Recognize more cases here. 4116 switch (Op.getOpcode()) { 4117 default: break; 4118 case ISD::OR: 4119 if (isKnownNeverZero(Op.getOperand(1)) || 4120 isKnownNeverZero(Op.getOperand(0))) 4121 return true; 4122 break; 4123 } 4124 4125 return false; 4126 } 4127 4128 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4129 // Check the obvious case. 4130 if (A == B) return true; 4131 4132 // For for negative and positive zero. 4133 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4134 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4135 if (CA->isZero() && CB->isZero()) return true; 4136 4137 // Otherwise they may not be equal. 4138 return false; 4139 } 4140 4141 // FIXME: unify with llvm::haveNoCommonBitsSet. 4142 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4143 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4144 assert(A.getValueType() == B.getValueType() && 4145 "Values must have the same type"); 4146 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4147 } 4148 4149 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4150 ArrayRef<SDValue> Ops, 4151 SelectionDAG &DAG) { 4152 int NumOps = Ops.size(); 4153 assert(NumOps != 0 && "Can't build an empty vector!"); 4154 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4155 "Incorrect element count in BUILD_VECTOR!"); 4156 4157 // BUILD_VECTOR of UNDEFs is UNDEF. 4158 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4159 return DAG.getUNDEF(VT); 4160 4161 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4162 SDValue IdentitySrc; 4163 bool IsIdentity = true; 4164 for (int i = 0; i != NumOps; ++i) { 4165 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4166 Ops[i].getOperand(0).getValueType() != VT || 4167 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4168 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4169 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4170 IsIdentity = false; 4171 break; 4172 } 4173 IdentitySrc = Ops[i].getOperand(0); 4174 } 4175 if (IsIdentity) 4176 return IdentitySrc; 4177 4178 return SDValue(); 4179 } 4180 4181 /// Try to simplify vector concatenation to an input value, undef, or build 4182 /// vector. 4183 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4184 ArrayRef<SDValue> Ops, 4185 SelectionDAG &DAG) { 4186 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4187 assert(llvm::all_of(Ops, 4188 [Ops](SDValue Op) { 4189 return Ops[0].getValueType() == Op.getValueType(); 4190 }) && 4191 "Concatenation of vectors with inconsistent value types!"); 4192 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 4193 VT.getVectorNumElements() && 4194 "Incorrect element count in vector concatenation!"); 4195 4196 if (Ops.size() == 1) 4197 return Ops[0]; 4198 4199 // Concat of UNDEFs is UNDEF. 4200 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4201 return DAG.getUNDEF(VT); 4202 4203 // Scan the operands and look for extract operations from a single source 4204 // that correspond to insertion at the same location via this concatenation: 4205 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4206 SDValue IdentitySrc; 4207 bool IsIdentity = true; 4208 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4209 SDValue Op = Ops[i]; 4210 unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements(); 4211 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4212 Op.getOperand(0).getValueType() != VT || 4213 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4214 !isa<ConstantSDNode>(Op.getOperand(1)) || 4215 Op.getConstantOperandVal(1) != IdentityIndex) { 4216 IsIdentity = false; 4217 break; 4218 } 4219 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4220 "Unexpected identity source vector for concat of extracts"); 4221 IdentitySrc = Op.getOperand(0); 4222 } 4223 if (IsIdentity) { 4224 assert(IdentitySrc && "Failed to set source vector of extracts"); 4225 return IdentitySrc; 4226 } 4227 4228 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4229 // simplified to one big BUILD_VECTOR. 4230 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4231 EVT SVT = VT.getScalarType(); 4232 SmallVector<SDValue, 16> Elts; 4233 for (SDValue Op : Ops) { 4234 EVT OpVT = Op.getValueType(); 4235 if (Op.isUndef()) 4236 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4237 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4238 Elts.append(Op->op_begin(), Op->op_end()); 4239 else 4240 return SDValue(); 4241 } 4242 4243 // BUILD_VECTOR requires all inputs to be of the same type, find the 4244 // maximum type and extend them all. 4245 for (SDValue Op : Elts) 4246 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4247 4248 if (SVT.bitsGT(VT.getScalarType())) 4249 for (SDValue &Op : Elts) 4250 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4251 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4252 : DAG.getSExtOrTrunc(Op, DL, SVT); 4253 4254 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4255 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4256 return V; 4257 } 4258 4259 /// Gets or creates the specified node. 4260 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4261 FoldingSetNodeID ID; 4262 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4263 void *IP = nullptr; 4264 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4265 return SDValue(E, 0); 4266 4267 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4268 getVTList(VT)); 4269 CSEMap.InsertNode(N, IP); 4270 4271 InsertNode(N); 4272 SDValue V = SDValue(N, 0); 4273 NewSDValueDbgMsg(V, "Creating new node: ", this); 4274 return V; 4275 } 4276 4277 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4278 SDValue Operand, const SDNodeFlags Flags) { 4279 // Constant fold unary operations with an integer constant operand. Even 4280 // opaque constant will be folded, because the folding of unary operations 4281 // doesn't create new constants with different values. Nevertheless, the 4282 // opaque flag is preserved during folding to prevent future folding with 4283 // other constants. 4284 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4285 const APInt &Val = C->getAPIntValue(); 4286 switch (Opcode) { 4287 default: break; 4288 case ISD::SIGN_EXTEND: 4289 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4290 C->isTargetOpcode(), C->isOpaque()); 4291 case ISD::TRUNCATE: 4292 if (C->isOpaque()) 4293 break; 4294 LLVM_FALLTHROUGH; 4295 case ISD::ANY_EXTEND: 4296 case ISD::ZERO_EXTEND: 4297 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4298 C->isTargetOpcode(), C->isOpaque()); 4299 case ISD::UINT_TO_FP: 4300 case ISD::SINT_TO_FP: { 4301 APFloat apf(EVTToAPFloatSemantics(VT), 4302 APInt::getNullValue(VT.getSizeInBits())); 4303 (void)apf.convertFromAPInt(Val, 4304 Opcode==ISD::SINT_TO_FP, 4305 APFloat::rmNearestTiesToEven); 4306 return getConstantFP(apf, DL, VT); 4307 } 4308 case ISD::BITCAST: 4309 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4310 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4311 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4312 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4313 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4314 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4315 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4316 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4317 break; 4318 case ISD::ABS: 4319 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4320 C->isOpaque()); 4321 case ISD::BITREVERSE: 4322 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4323 C->isOpaque()); 4324 case ISD::BSWAP: 4325 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4326 C->isOpaque()); 4327 case ISD::CTPOP: 4328 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4329 C->isOpaque()); 4330 case ISD::CTLZ: 4331 case ISD::CTLZ_ZERO_UNDEF: 4332 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4333 C->isOpaque()); 4334 case ISD::CTTZ: 4335 case ISD::CTTZ_ZERO_UNDEF: 4336 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4337 C->isOpaque()); 4338 case ISD::FP16_TO_FP: { 4339 bool Ignored; 4340 APFloat FPV(APFloat::IEEEhalf(), 4341 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4342 4343 // This can return overflow, underflow, or inexact; we don't care. 4344 // FIXME need to be more flexible about rounding mode. 4345 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4346 APFloat::rmNearestTiesToEven, &Ignored); 4347 return getConstantFP(FPV, DL, VT); 4348 } 4349 } 4350 } 4351 4352 // Constant fold unary operations with a floating point constant operand. 4353 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4354 APFloat V = C->getValueAPF(); // make copy 4355 switch (Opcode) { 4356 case ISD::FNEG: 4357 V.changeSign(); 4358 return getConstantFP(V, DL, VT); 4359 case ISD::FABS: 4360 V.clearSign(); 4361 return getConstantFP(V, DL, VT); 4362 case ISD::FCEIL: { 4363 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4364 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4365 return getConstantFP(V, DL, VT); 4366 break; 4367 } 4368 case ISD::FTRUNC: { 4369 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4370 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4371 return getConstantFP(V, DL, VT); 4372 break; 4373 } 4374 case ISD::FFLOOR: { 4375 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4376 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4377 return getConstantFP(V, DL, VT); 4378 break; 4379 } 4380 case ISD::FP_EXTEND: { 4381 bool ignored; 4382 // This can return overflow, underflow, or inexact; we don't care. 4383 // FIXME need to be more flexible about rounding mode. 4384 (void)V.convert(EVTToAPFloatSemantics(VT), 4385 APFloat::rmNearestTiesToEven, &ignored); 4386 return getConstantFP(V, DL, VT); 4387 } 4388 case ISD::FP_TO_SINT: 4389 case ISD::FP_TO_UINT: { 4390 bool ignored; 4391 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4392 // FIXME need to be more flexible about rounding mode. 4393 APFloat::opStatus s = 4394 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4395 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4396 break; 4397 return getConstant(IntVal, DL, VT); 4398 } 4399 case ISD::BITCAST: 4400 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4401 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4402 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4403 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4404 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4405 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4406 break; 4407 case ISD::FP_TO_FP16: { 4408 bool Ignored; 4409 // This can return overflow, underflow, or inexact; we don't care. 4410 // FIXME need to be more flexible about rounding mode. 4411 (void)V.convert(APFloat::IEEEhalf(), 4412 APFloat::rmNearestTiesToEven, &Ignored); 4413 return getConstant(V.bitcastToAPInt(), DL, VT); 4414 } 4415 } 4416 } 4417 4418 // Constant fold unary operations with a vector integer or float operand. 4419 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4420 if (BV->isConstant()) { 4421 switch (Opcode) { 4422 default: 4423 // FIXME: Entirely reasonable to perform folding of other unary 4424 // operations here as the need arises. 4425 break; 4426 case ISD::FNEG: 4427 case ISD::FABS: 4428 case ISD::FCEIL: 4429 case ISD::FTRUNC: 4430 case ISD::FFLOOR: 4431 case ISD::FP_EXTEND: 4432 case ISD::FP_TO_SINT: 4433 case ISD::FP_TO_UINT: 4434 case ISD::TRUNCATE: 4435 case ISD::ANY_EXTEND: 4436 case ISD::ZERO_EXTEND: 4437 case ISD::SIGN_EXTEND: 4438 case ISD::UINT_TO_FP: 4439 case ISD::SINT_TO_FP: 4440 case ISD::ABS: 4441 case ISD::BITREVERSE: 4442 case ISD::BSWAP: 4443 case ISD::CTLZ: 4444 case ISD::CTLZ_ZERO_UNDEF: 4445 case ISD::CTTZ: 4446 case ISD::CTTZ_ZERO_UNDEF: 4447 case ISD::CTPOP: { 4448 SDValue Ops = { Operand }; 4449 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4450 return Fold; 4451 } 4452 } 4453 } 4454 } 4455 4456 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4457 switch (Opcode) { 4458 case ISD::TokenFactor: 4459 case ISD::MERGE_VALUES: 4460 case ISD::CONCAT_VECTORS: 4461 return Operand; // Factor, merge or concat of one node? No need. 4462 case ISD::BUILD_VECTOR: { 4463 // Attempt to simplify BUILD_VECTOR. 4464 SDValue Ops[] = {Operand}; 4465 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4466 return V; 4467 break; 4468 } 4469 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4470 case ISD::FP_EXTEND: 4471 assert(VT.isFloatingPoint() && 4472 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4473 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4474 assert((!VT.isVector() || 4475 VT.getVectorNumElements() == 4476 Operand.getValueType().getVectorNumElements()) && 4477 "Vector element count mismatch!"); 4478 assert(Operand.getValueType().bitsLT(VT) && 4479 "Invalid fpext node, dst < src!"); 4480 if (Operand.isUndef()) 4481 return getUNDEF(VT); 4482 break; 4483 case ISD::FP_TO_SINT: 4484 case ISD::FP_TO_UINT: 4485 if (Operand.isUndef()) 4486 return getUNDEF(VT); 4487 break; 4488 case ISD::SINT_TO_FP: 4489 case ISD::UINT_TO_FP: 4490 // [us]itofp(undef) = 0, because the result value is bounded. 4491 if (Operand.isUndef()) 4492 return getConstantFP(0.0, DL, VT); 4493 break; 4494 case ISD::SIGN_EXTEND: 4495 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4496 "Invalid SIGN_EXTEND!"); 4497 assert(VT.isVector() == Operand.getValueType().isVector() && 4498 "SIGN_EXTEND result type type should be vector iff the operand " 4499 "type is vector!"); 4500 if (Operand.getValueType() == VT) return Operand; // noop extension 4501 assert((!VT.isVector() || 4502 VT.getVectorNumElements() == 4503 Operand.getValueType().getVectorNumElements()) && 4504 "Vector element count mismatch!"); 4505 assert(Operand.getValueType().bitsLT(VT) && 4506 "Invalid sext node, dst < src!"); 4507 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4508 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4509 else if (OpOpcode == ISD::UNDEF) 4510 // sext(undef) = 0, because the top bits will all be the same. 4511 return getConstant(0, DL, VT); 4512 break; 4513 case ISD::ZERO_EXTEND: 4514 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4515 "Invalid ZERO_EXTEND!"); 4516 assert(VT.isVector() == Operand.getValueType().isVector() && 4517 "ZERO_EXTEND result type type should be vector iff the operand " 4518 "type is vector!"); 4519 if (Operand.getValueType() == VT) return Operand; // noop extension 4520 assert((!VT.isVector() || 4521 VT.getVectorNumElements() == 4522 Operand.getValueType().getVectorNumElements()) && 4523 "Vector element count mismatch!"); 4524 assert(Operand.getValueType().bitsLT(VT) && 4525 "Invalid zext node, dst < src!"); 4526 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4527 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4528 else if (OpOpcode == ISD::UNDEF) 4529 // zext(undef) = 0, because the top bits will be zero. 4530 return getConstant(0, DL, VT); 4531 break; 4532 case ISD::ANY_EXTEND: 4533 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4534 "Invalid ANY_EXTEND!"); 4535 assert(VT.isVector() == Operand.getValueType().isVector() && 4536 "ANY_EXTEND result type type should be vector iff the operand " 4537 "type is vector!"); 4538 if (Operand.getValueType() == VT) return Operand; // noop extension 4539 assert((!VT.isVector() || 4540 VT.getVectorNumElements() == 4541 Operand.getValueType().getVectorNumElements()) && 4542 "Vector element count mismatch!"); 4543 assert(Operand.getValueType().bitsLT(VT) && 4544 "Invalid anyext node, dst < src!"); 4545 4546 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4547 OpOpcode == ISD::ANY_EXTEND) 4548 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4549 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4550 else if (OpOpcode == ISD::UNDEF) 4551 return getUNDEF(VT); 4552 4553 // (ext (trunc x)) -> x 4554 if (OpOpcode == ISD::TRUNCATE) { 4555 SDValue OpOp = Operand.getOperand(0); 4556 if (OpOp.getValueType() == VT) { 4557 transferDbgValues(Operand, OpOp); 4558 return OpOp; 4559 } 4560 } 4561 break; 4562 case ISD::TRUNCATE: 4563 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4564 "Invalid TRUNCATE!"); 4565 assert(VT.isVector() == Operand.getValueType().isVector() && 4566 "TRUNCATE result type type should be vector iff the operand " 4567 "type is vector!"); 4568 if (Operand.getValueType() == VT) return Operand; // noop truncate 4569 assert((!VT.isVector() || 4570 VT.getVectorNumElements() == 4571 Operand.getValueType().getVectorNumElements()) && 4572 "Vector element count mismatch!"); 4573 assert(Operand.getValueType().bitsGT(VT) && 4574 "Invalid truncate node, src < dst!"); 4575 if (OpOpcode == ISD::TRUNCATE) 4576 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4577 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4578 OpOpcode == ISD::ANY_EXTEND) { 4579 // If the source is smaller than the dest, we still need an extend. 4580 if (Operand.getOperand(0).getValueType().getScalarType() 4581 .bitsLT(VT.getScalarType())) 4582 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4583 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4584 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4585 return Operand.getOperand(0); 4586 } 4587 if (OpOpcode == ISD::UNDEF) 4588 return getUNDEF(VT); 4589 break; 4590 case ISD::ANY_EXTEND_VECTOR_INREG: 4591 case ISD::ZERO_EXTEND_VECTOR_INREG: 4592 case ISD::SIGN_EXTEND_VECTOR_INREG: 4593 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4594 assert(Operand.getValueType().bitsLE(VT) && 4595 "The input must be the same size or smaller than the result."); 4596 assert(VT.getVectorNumElements() < 4597 Operand.getValueType().getVectorNumElements() && 4598 "The destination vector type must have fewer lanes than the input."); 4599 break; 4600 case ISD::ABS: 4601 assert(VT.isInteger() && VT == Operand.getValueType() && 4602 "Invalid ABS!"); 4603 if (OpOpcode == ISD::UNDEF) 4604 return getUNDEF(VT); 4605 break; 4606 case ISD::BSWAP: 4607 assert(VT.isInteger() && VT == Operand.getValueType() && 4608 "Invalid BSWAP!"); 4609 assert((VT.getScalarSizeInBits() % 16 == 0) && 4610 "BSWAP types must be a multiple of 16 bits!"); 4611 if (OpOpcode == ISD::UNDEF) 4612 return getUNDEF(VT); 4613 break; 4614 case ISD::BITREVERSE: 4615 assert(VT.isInteger() && VT == Operand.getValueType() && 4616 "Invalid BITREVERSE!"); 4617 if (OpOpcode == ISD::UNDEF) 4618 return getUNDEF(VT); 4619 break; 4620 case ISD::BITCAST: 4621 // Basic sanity checking. 4622 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4623 "Cannot BITCAST between types of different sizes!"); 4624 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4625 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4626 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4627 if (OpOpcode == ISD::UNDEF) 4628 return getUNDEF(VT); 4629 break; 4630 case ISD::SCALAR_TO_VECTOR: 4631 assert(VT.isVector() && !Operand.getValueType().isVector() && 4632 (VT.getVectorElementType() == Operand.getValueType() || 4633 (VT.getVectorElementType().isInteger() && 4634 Operand.getValueType().isInteger() && 4635 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4636 "Illegal SCALAR_TO_VECTOR node!"); 4637 if (OpOpcode == ISD::UNDEF) 4638 return getUNDEF(VT); 4639 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4640 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4641 isa<ConstantSDNode>(Operand.getOperand(1)) && 4642 Operand.getConstantOperandVal(1) == 0 && 4643 Operand.getOperand(0).getValueType() == VT) 4644 return Operand.getOperand(0); 4645 break; 4646 case ISD::FNEG: 4647 // Negation of an unknown bag of bits is still completely undefined. 4648 if (OpOpcode == ISD::UNDEF) 4649 return getUNDEF(VT); 4650 4651 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 4652 if ((getTarget().Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) && 4653 OpOpcode == ISD::FSUB) 4654 return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1), 4655 Operand.getOperand(0), Flags); 4656 if (OpOpcode == ISD::FNEG) // --X -> X 4657 return Operand.getOperand(0); 4658 break; 4659 case ISD::FABS: 4660 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4661 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4662 break; 4663 } 4664 4665 SDNode *N; 4666 SDVTList VTs = getVTList(VT); 4667 SDValue Ops[] = {Operand}; 4668 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4669 FoldingSetNodeID ID; 4670 AddNodeIDNode(ID, Opcode, VTs, Ops); 4671 void *IP = nullptr; 4672 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4673 E->intersectFlagsWith(Flags); 4674 return SDValue(E, 0); 4675 } 4676 4677 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4678 N->setFlags(Flags); 4679 createOperands(N, Ops); 4680 CSEMap.InsertNode(N, IP); 4681 } else { 4682 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4683 createOperands(N, Ops); 4684 } 4685 4686 InsertNode(N); 4687 SDValue V = SDValue(N, 0); 4688 NewSDValueDbgMsg(V, "Creating new node: ", this); 4689 return V; 4690 } 4691 4692 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 4693 const APInt &C2) { 4694 switch (Opcode) { 4695 case ISD::ADD: return std::make_pair(C1 + C2, true); 4696 case ISD::SUB: return std::make_pair(C1 - C2, true); 4697 case ISD::MUL: return std::make_pair(C1 * C2, true); 4698 case ISD::AND: return std::make_pair(C1 & C2, true); 4699 case ISD::OR: return std::make_pair(C1 | C2, true); 4700 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 4701 case ISD::SHL: return std::make_pair(C1 << C2, true); 4702 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 4703 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 4704 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 4705 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 4706 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 4707 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 4708 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 4709 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 4710 case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true); 4711 case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true); 4712 case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true); 4713 case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true); 4714 case ISD::UDIV: 4715 if (!C2.getBoolValue()) 4716 break; 4717 return std::make_pair(C1.udiv(C2), true); 4718 case ISD::UREM: 4719 if (!C2.getBoolValue()) 4720 break; 4721 return std::make_pair(C1.urem(C2), true); 4722 case ISD::SDIV: 4723 if (!C2.getBoolValue()) 4724 break; 4725 return std::make_pair(C1.sdiv(C2), true); 4726 case ISD::SREM: 4727 if (!C2.getBoolValue()) 4728 break; 4729 return std::make_pair(C1.srem(C2), true); 4730 } 4731 return std::make_pair(APInt(1, 0), false); 4732 } 4733 4734 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4735 EVT VT, const ConstantSDNode *C1, 4736 const ConstantSDNode *C2) { 4737 if (C1->isOpaque() || C2->isOpaque()) 4738 return SDValue(); 4739 4740 std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(), 4741 C2->getAPIntValue()); 4742 if (!Folded.second) 4743 return SDValue(); 4744 return getConstant(Folded.first, DL, VT); 4745 } 4746 4747 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4748 const GlobalAddressSDNode *GA, 4749 const SDNode *N2) { 4750 if (GA->getOpcode() != ISD::GlobalAddress) 4751 return SDValue(); 4752 if (!TLI->isOffsetFoldingLegal(GA)) 4753 return SDValue(); 4754 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4755 if (!C2) 4756 return SDValue(); 4757 int64_t Offset = C2->getSExtValue(); 4758 switch (Opcode) { 4759 case ISD::ADD: break; 4760 case ISD::SUB: Offset = -uint64_t(Offset); break; 4761 default: return SDValue(); 4762 } 4763 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4764 GA->getOffset() + uint64_t(Offset)); 4765 } 4766 4767 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4768 switch (Opcode) { 4769 case ISD::SDIV: 4770 case ISD::UDIV: 4771 case ISD::SREM: 4772 case ISD::UREM: { 4773 // If a divisor is zero/undef or any element of a divisor vector is 4774 // zero/undef, the whole op is undef. 4775 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4776 SDValue Divisor = Ops[1]; 4777 if (Divisor.isUndef() || isNullConstant(Divisor)) 4778 return true; 4779 4780 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4781 llvm::any_of(Divisor->op_values(), 4782 [](SDValue V) { return V.isUndef() || 4783 isNullConstant(V); }); 4784 // TODO: Handle signed overflow. 4785 } 4786 // TODO: Handle oversized shifts. 4787 default: 4788 return false; 4789 } 4790 } 4791 4792 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4793 EVT VT, SDNode *N1, SDNode *N2) { 4794 // If the opcode is a target-specific ISD node, there's nothing we can 4795 // do here and the operand rules may not line up with the below, so 4796 // bail early. 4797 if (Opcode >= ISD::BUILTIN_OP_END) 4798 return SDValue(); 4799 4800 if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)})) 4801 return getUNDEF(VT); 4802 4803 // Handle the case of two scalars. 4804 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4805 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4806 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2); 4807 assert((!Folded || !VT.isVector()) && 4808 "Can't fold vectors ops with scalar operands"); 4809 return Folded; 4810 } 4811 } 4812 4813 // fold (add Sym, c) -> Sym+c 4814 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4815 return FoldSymbolOffset(Opcode, VT, GA, N2); 4816 if (TLI->isCommutativeBinOp(Opcode)) 4817 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4818 return FoldSymbolOffset(Opcode, VT, GA, N1); 4819 4820 // For vectors, extract each constant element and fold them individually. 4821 // Either input may be an undef value. 4822 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4823 if (!BV1 && !N1->isUndef()) 4824 return SDValue(); 4825 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4826 if (!BV2 && !N2->isUndef()) 4827 return SDValue(); 4828 // If both operands are undef, that's handled the same way as scalars. 4829 if (!BV1 && !BV2) 4830 return SDValue(); 4831 4832 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4833 "Vector binop with different number of elements in operands?"); 4834 4835 EVT SVT = VT.getScalarType(); 4836 EVT LegalSVT = SVT; 4837 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4838 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4839 if (LegalSVT.bitsLT(SVT)) 4840 return SDValue(); 4841 } 4842 SmallVector<SDValue, 4> Outputs; 4843 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4844 for (unsigned I = 0; I != NumOps; ++I) { 4845 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4846 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4847 if (SVT.isInteger()) { 4848 if (V1->getValueType(0).bitsGT(SVT)) 4849 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4850 if (V2->getValueType(0).bitsGT(SVT)) 4851 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4852 } 4853 4854 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4855 return SDValue(); 4856 4857 // Fold one vector element. 4858 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4859 if (LegalSVT != SVT) 4860 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4861 4862 // Scalar folding only succeeded if the result is a constant or UNDEF. 4863 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4864 ScalarResult.getOpcode() != ISD::ConstantFP) 4865 return SDValue(); 4866 Outputs.push_back(ScalarResult); 4867 } 4868 4869 assert(VT.getVectorNumElements() == Outputs.size() && 4870 "Vector size mismatch!"); 4871 4872 // We may have a vector type but a scalar result. Create a splat. 4873 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4874 4875 // Build a big vector out of the scalar elements we generated. 4876 return getBuildVector(VT, SDLoc(), Outputs); 4877 } 4878 4879 // TODO: Merge with FoldConstantArithmetic 4880 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4881 const SDLoc &DL, EVT VT, 4882 ArrayRef<SDValue> Ops, 4883 const SDNodeFlags Flags) { 4884 // If the opcode is a target-specific ISD node, there's nothing we can 4885 // do here and the operand rules may not line up with the below, so 4886 // bail early. 4887 if (Opcode >= ISD::BUILTIN_OP_END) 4888 return SDValue(); 4889 4890 if (isUndef(Opcode, Ops)) 4891 return getUNDEF(VT); 4892 4893 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4894 if (!VT.isVector()) 4895 return SDValue(); 4896 4897 unsigned NumElts = VT.getVectorNumElements(); 4898 4899 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 4900 return !Op.getValueType().isVector() || 4901 Op.getValueType().getVectorNumElements() == NumElts; 4902 }; 4903 4904 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 4905 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 4906 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 4907 (BV && BV->isConstant()); 4908 }; 4909 4910 // All operands must be vector types with the same number of elements as 4911 // the result type and must be either UNDEF or a build vector of constant 4912 // or UNDEF scalars. 4913 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 4914 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 4915 return SDValue(); 4916 4917 // If we are comparing vectors, then the result needs to be a i1 boolean 4918 // that is then sign-extended back to the legal result type. 4919 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 4920 4921 // Find legal integer scalar type for constant promotion and 4922 // ensure that its scalar size is at least as large as source. 4923 EVT LegalSVT = VT.getScalarType(); 4924 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4925 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4926 if (LegalSVT.bitsLT(VT.getScalarType())) 4927 return SDValue(); 4928 } 4929 4930 // Constant fold each scalar lane separately. 4931 SmallVector<SDValue, 4> ScalarResults; 4932 for (unsigned i = 0; i != NumElts; i++) { 4933 SmallVector<SDValue, 4> ScalarOps; 4934 for (SDValue Op : Ops) { 4935 EVT InSVT = Op.getValueType().getScalarType(); 4936 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 4937 if (!InBV) { 4938 // We've checked that this is UNDEF or a constant of some kind. 4939 if (Op.isUndef()) 4940 ScalarOps.push_back(getUNDEF(InSVT)); 4941 else 4942 ScalarOps.push_back(Op); 4943 continue; 4944 } 4945 4946 SDValue ScalarOp = InBV->getOperand(i); 4947 EVT ScalarVT = ScalarOp.getValueType(); 4948 4949 // Build vector (integer) scalar operands may need implicit 4950 // truncation - do this before constant folding. 4951 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 4952 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 4953 4954 ScalarOps.push_back(ScalarOp); 4955 } 4956 4957 // Constant fold the scalar operands. 4958 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 4959 4960 // Legalize the (integer) scalar constant if necessary. 4961 if (LegalSVT != SVT) 4962 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4963 4964 // Scalar folding only succeeded if the result is a constant or UNDEF. 4965 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4966 ScalarResult.getOpcode() != ISD::ConstantFP) 4967 return SDValue(); 4968 ScalarResults.push_back(ScalarResult); 4969 } 4970 4971 SDValue V = getBuildVector(VT, DL, ScalarResults); 4972 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 4973 return V; 4974 } 4975 4976 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 4977 EVT VT, SDValue N1, SDValue N2) { 4978 // TODO: We don't do any constant folding for strict FP opcodes here, but we 4979 // should. That will require dealing with a potentially non-default 4980 // rounding mode, checking the "opStatus" return value from the APFloat 4981 // math calculations, and possibly other variations. 4982 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 4983 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 4984 if (N1CFP && N2CFP) { 4985 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 4986 switch (Opcode) { 4987 case ISD::FADD: 4988 C1.add(C2, APFloat::rmNearestTiesToEven); 4989 return getConstantFP(C1, DL, VT); 4990 case ISD::FSUB: 4991 C1.subtract(C2, APFloat::rmNearestTiesToEven); 4992 return getConstantFP(C1, DL, VT); 4993 case ISD::FMUL: 4994 C1.multiply(C2, APFloat::rmNearestTiesToEven); 4995 return getConstantFP(C1, DL, VT); 4996 case ISD::FDIV: 4997 C1.divide(C2, APFloat::rmNearestTiesToEven); 4998 return getConstantFP(C1, DL, VT); 4999 case ISD::FREM: 5000 C1.mod(C2); 5001 return getConstantFP(C1, DL, VT); 5002 case ISD::FCOPYSIGN: 5003 C1.copySign(C2); 5004 return getConstantFP(C1, DL, VT); 5005 default: break; 5006 } 5007 } 5008 if (N1CFP && Opcode == ISD::FP_ROUND) { 5009 APFloat C1 = N1CFP->getValueAPF(); // make copy 5010 bool Unused; 5011 // This can return overflow, underflow, or inexact; we don't care. 5012 // FIXME need to be more flexible about rounding mode. 5013 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5014 &Unused); 5015 return getConstantFP(C1, DL, VT); 5016 } 5017 5018 switch (Opcode) { 5019 case ISD::FADD: 5020 case ISD::FSUB: 5021 case ISD::FMUL: 5022 case ISD::FDIV: 5023 case ISD::FREM: 5024 // If both operands are undef, the result is undef. If 1 operand is undef, 5025 // the result is NaN. This should match the behavior of the IR optimizer. 5026 if (N1.isUndef() && N2.isUndef()) 5027 return getUNDEF(VT); 5028 if (N1.isUndef() || N2.isUndef()) 5029 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5030 } 5031 return SDValue(); 5032 } 5033 5034 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5035 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5036 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5037 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5038 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5039 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5040 5041 // Canonicalize constant to RHS if commutative. 5042 if (TLI->isCommutativeBinOp(Opcode)) { 5043 if (N1C && !N2C) { 5044 std::swap(N1C, N2C); 5045 std::swap(N1, N2); 5046 } else if (N1CFP && !N2CFP) { 5047 std::swap(N1CFP, N2CFP); 5048 std::swap(N1, N2); 5049 } 5050 } 5051 5052 switch (Opcode) { 5053 default: break; 5054 case ISD::TokenFactor: 5055 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5056 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5057 // Fold trivial token factors. 5058 if (N1.getOpcode() == ISD::EntryToken) return N2; 5059 if (N2.getOpcode() == ISD::EntryToken) return N1; 5060 if (N1 == N2) return N1; 5061 break; 5062 case ISD::BUILD_VECTOR: { 5063 // Attempt to simplify BUILD_VECTOR. 5064 SDValue Ops[] = {N1, N2}; 5065 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5066 return V; 5067 break; 5068 } 5069 case ISD::CONCAT_VECTORS: { 5070 SDValue Ops[] = {N1, N2}; 5071 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5072 return V; 5073 break; 5074 } 5075 case ISD::AND: 5076 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5077 assert(N1.getValueType() == N2.getValueType() && 5078 N1.getValueType() == VT && "Binary operator types must match!"); 5079 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5080 // worth handling here. 5081 if (N2C && N2C->isNullValue()) 5082 return N2; 5083 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5084 return N1; 5085 break; 5086 case ISD::OR: 5087 case ISD::XOR: 5088 case ISD::ADD: 5089 case ISD::SUB: 5090 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5091 assert(N1.getValueType() == N2.getValueType() && 5092 N1.getValueType() == VT && "Binary operator types must match!"); 5093 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5094 // it's worth handling here. 5095 if (N2C && N2C->isNullValue()) 5096 return N1; 5097 break; 5098 case ISD::UDIV: 5099 case ISD::UREM: 5100 case ISD::MULHU: 5101 case ISD::MULHS: 5102 case ISD::MUL: 5103 case ISD::SDIV: 5104 case ISD::SREM: 5105 case ISD::SMIN: 5106 case ISD::SMAX: 5107 case ISD::UMIN: 5108 case ISD::UMAX: 5109 case ISD::SADDSAT: 5110 case ISD::SSUBSAT: 5111 case ISD::UADDSAT: 5112 case ISD::USUBSAT: 5113 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5114 assert(N1.getValueType() == N2.getValueType() && 5115 N1.getValueType() == VT && "Binary operator types must match!"); 5116 break; 5117 case ISD::FADD: 5118 case ISD::FSUB: 5119 case ISD::FMUL: 5120 case ISD::FDIV: 5121 case ISD::FREM: 5122 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5123 assert(N1.getValueType() == N2.getValueType() && 5124 N1.getValueType() == VT && "Binary operator types must match!"); 5125 if (SDValue V = simplifyFPBinop(Opcode, N1, N2)) 5126 return V; 5127 break; 5128 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5129 assert(N1.getValueType() == VT && 5130 N1.getValueType().isFloatingPoint() && 5131 N2.getValueType().isFloatingPoint() && 5132 "Invalid FCOPYSIGN!"); 5133 break; 5134 case ISD::SHL: 5135 case ISD::SRA: 5136 case ISD::SRL: 5137 if (SDValue V = simplifyShift(N1, N2)) 5138 return V; 5139 LLVM_FALLTHROUGH; 5140 case ISD::ROTL: 5141 case ISD::ROTR: 5142 assert(VT == N1.getValueType() && 5143 "Shift operators return type must be the same as their first arg"); 5144 assert(VT.isInteger() && N2.getValueType().isInteger() && 5145 "Shifts only work on integers"); 5146 assert((!VT.isVector() || VT == N2.getValueType()) && 5147 "Vector shift amounts must be in the same as their first arg"); 5148 // Verify that the shift amount VT is big enough to hold valid shift 5149 // amounts. This catches things like trying to shift an i1024 value by an 5150 // i8, which is easy to fall into in generic code that uses 5151 // TLI.getShiftAmount(). 5152 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 5153 "Invalid use of small shift amount with oversized value!"); 5154 5155 // Always fold shifts of i1 values so the code generator doesn't need to 5156 // handle them. Since we know the size of the shift has to be less than the 5157 // size of the value, the shift/rotate count is guaranteed to be zero. 5158 if (VT == MVT::i1) 5159 return N1; 5160 if (N2C && N2C->isNullValue()) 5161 return N1; 5162 break; 5163 case ISD::FP_ROUND: 5164 assert(VT.isFloatingPoint() && 5165 N1.getValueType().isFloatingPoint() && 5166 VT.bitsLE(N1.getValueType()) && 5167 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5168 "Invalid FP_ROUND!"); 5169 if (N1.getValueType() == VT) return N1; // noop conversion. 5170 break; 5171 case ISD::AssertSext: 5172 case ISD::AssertZext: { 5173 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5174 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5175 assert(VT.isInteger() && EVT.isInteger() && 5176 "Cannot *_EXTEND_INREG FP types"); 5177 assert(!EVT.isVector() && 5178 "AssertSExt/AssertZExt type should be the vector element type " 5179 "rather than the vector type!"); 5180 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5181 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5182 break; 5183 } 5184 case ISD::SIGN_EXTEND_INREG: { 5185 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5186 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5187 assert(VT.isInteger() && EVT.isInteger() && 5188 "Cannot *_EXTEND_INREG FP types"); 5189 assert(EVT.isVector() == VT.isVector() && 5190 "SIGN_EXTEND_INREG type should be vector iff the operand " 5191 "type is vector!"); 5192 assert((!EVT.isVector() || 5193 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 5194 "Vector element counts must match in SIGN_EXTEND_INREG"); 5195 assert(EVT.bitsLE(VT) && "Not extending!"); 5196 if (EVT == VT) return N1; // Not actually extending 5197 5198 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5199 unsigned FromBits = EVT.getScalarSizeInBits(); 5200 Val <<= Val.getBitWidth() - FromBits; 5201 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5202 return getConstant(Val, DL, ConstantVT); 5203 }; 5204 5205 if (N1C) { 5206 const APInt &Val = N1C->getAPIntValue(); 5207 return SignExtendInReg(Val, VT); 5208 } 5209 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5210 SmallVector<SDValue, 8> Ops; 5211 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5212 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5213 SDValue Op = N1.getOperand(i); 5214 if (Op.isUndef()) { 5215 Ops.push_back(getUNDEF(OpVT)); 5216 continue; 5217 } 5218 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5219 APInt Val = C->getAPIntValue(); 5220 Ops.push_back(SignExtendInReg(Val, OpVT)); 5221 } 5222 return getBuildVector(VT, DL, Ops); 5223 } 5224 break; 5225 } 5226 case ISD::EXTRACT_VECTOR_ELT: 5227 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5228 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5229 element type of the vector."); 5230 5231 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 5232 if (N1.isUndef()) 5233 return getUNDEF(VT); 5234 5235 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 5236 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5237 return getUNDEF(VT); 5238 5239 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5240 // expanding copies of large vectors from registers. 5241 if (N2C && 5242 N1.getOpcode() == ISD::CONCAT_VECTORS && 5243 N1.getNumOperands() > 0) { 5244 unsigned Factor = 5245 N1.getOperand(0).getValueType().getVectorNumElements(); 5246 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5247 N1.getOperand(N2C->getZExtValue() / Factor), 5248 getConstant(N2C->getZExtValue() % Factor, DL, 5249 N2.getValueType())); 5250 } 5251 5252 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 5253 // expanding large vector constants. 5254 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 5255 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 5256 5257 if (VT != Elt.getValueType()) 5258 // If the vector element type is not legal, the BUILD_VECTOR operands 5259 // are promoted and implicitly truncated, and the result implicitly 5260 // extended. Make that explicit here. 5261 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5262 5263 return Elt; 5264 } 5265 5266 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5267 // operations are lowered to scalars. 5268 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5269 // If the indices are the same, return the inserted element else 5270 // if the indices are known different, extract the element from 5271 // the original vector. 5272 SDValue N1Op2 = N1.getOperand(2); 5273 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5274 5275 if (N1Op2C && N2C) { 5276 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5277 if (VT == N1.getOperand(1).getValueType()) 5278 return N1.getOperand(1); 5279 else 5280 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5281 } 5282 5283 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5284 } 5285 } 5286 5287 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5288 // when vector types are scalarized and v1iX is legal. 5289 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 5290 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5291 N1.getValueType().getVectorNumElements() == 1) { 5292 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5293 N1.getOperand(1)); 5294 } 5295 break; 5296 case ISD::EXTRACT_ELEMENT: 5297 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5298 assert(!N1.getValueType().isVector() && !VT.isVector() && 5299 (N1.getValueType().isInteger() == VT.isInteger()) && 5300 N1.getValueType() != VT && 5301 "Wrong types for EXTRACT_ELEMENT!"); 5302 5303 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5304 // 64-bit integers into 32-bit parts. Instead of building the extract of 5305 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5306 if (N1.getOpcode() == ISD::BUILD_PAIR) 5307 return N1.getOperand(N2C->getZExtValue()); 5308 5309 // EXTRACT_ELEMENT of a constant int is also very common. 5310 if (N1C) { 5311 unsigned ElementSize = VT.getSizeInBits(); 5312 unsigned Shift = ElementSize * N2C->getZExtValue(); 5313 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5314 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5315 } 5316 break; 5317 case ISD::EXTRACT_SUBVECTOR: 5318 if (VT.isSimple() && N1.getValueType().isSimple()) { 5319 assert(VT.isVector() && N1.getValueType().isVector() && 5320 "Extract subvector VTs must be a vectors!"); 5321 assert(VT.getVectorElementType() == 5322 N1.getValueType().getVectorElementType() && 5323 "Extract subvector VTs must have the same element type!"); 5324 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 5325 "Extract subvector must be from larger vector to smaller vector!"); 5326 5327 if (N2C) { 5328 assert((VT.getVectorNumElements() + N2C->getZExtValue() 5329 <= N1.getValueType().getVectorNumElements()) 5330 && "Extract subvector overflow!"); 5331 } 5332 5333 // Trivial extraction. 5334 if (VT.getSimpleVT() == N1.getSimpleValueType()) 5335 return N1; 5336 5337 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5338 if (N1.isUndef()) 5339 return getUNDEF(VT); 5340 5341 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5342 // the concat have the same type as the extract. 5343 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5344 N1.getNumOperands() > 0 && 5345 VT == N1.getOperand(0).getValueType()) { 5346 unsigned Factor = VT.getVectorNumElements(); 5347 return N1.getOperand(N2C->getZExtValue() / Factor); 5348 } 5349 5350 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5351 // during shuffle legalization. 5352 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5353 VT == N1.getOperand(1).getValueType()) 5354 return N1.getOperand(1); 5355 } 5356 break; 5357 } 5358 5359 // Perform trivial constant folding. 5360 if (SDValue SV = 5361 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 5362 return SV; 5363 5364 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5365 return V; 5366 5367 // Canonicalize an UNDEF to the RHS, even over a constant. 5368 if (N1.isUndef()) { 5369 if (TLI->isCommutativeBinOp(Opcode)) { 5370 std::swap(N1, N2); 5371 } else { 5372 switch (Opcode) { 5373 case ISD::SIGN_EXTEND_INREG: 5374 case ISD::SUB: 5375 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5376 case ISD::UDIV: 5377 case ISD::SDIV: 5378 case ISD::UREM: 5379 case ISD::SREM: 5380 case ISD::SSUBSAT: 5381 case ISD::USUBSAT: 5382 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5383 } 5384 } 5385 } 5386 5387 // Fold a bunch of operators when the RHS is undef. 5388 if (N2.isUndef()) { 5389 switch (Opcode) { 5390 case ISD::XOR: 5391 if (N1.isUndef()) 5392 // Handle undef ^ undef -> 0 special case. This is a common 5393 // idiom (misuse). 5394 return getConstant(0, DL, VT); 5395 LLVM_FALLTHROUGH; 5396 case ISD::ADD: 5397 case ISD::SUB: 5398 case ISD::UDIV: 5399 case ISD::SDIV: 5400 case ISD::UREM: 5401 case ISD::SREM: 5402 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5403 case ISD::MUL: 5404 case ISD::AND: 5405 case ISD::SSUBSAT: 5406 case ISD::USUBSAT: 5407 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5408 case ISD::OR: 5409 case ISD::SADDSAT: 5410 case ISD::UADDSAT: 5411 return getAllOnesConstant(DL, VT); 5412 } 5413 } 5414 5415 // Memoize this node if possible. 5416 SDNode *N; 5417 SDVTList VTs = getVTList(VT); 5418 SDValue Ops[] = {N1, N2}; 5419 if (VT != MVT::Glue) { 5420 FoldingSetNodeID ID; 5421 AddNodeIDNode(ID, Opcode, VTs, Ops); 5422 void *IP = nullptr; 5423 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5424 E->intersectFlagsWith(Flags); 5425 return SDValue(E, 0); 5426 } 5427 5428 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5429 N->setFlags(Flags); 5430 createOperands(N, Ops); 5431 CSEMap.InsertNode(N, IP); 5432 } else { 5433 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5434 createOperands(N, Ops); 5435 } 5436 5437 InsertNode(N); 5438 SDValue V = SDValue(N, 0); 5439 NewSDValueDbgMsg(V, "Creating new node: ", this); 5440 return V; 5441 } 5442 5443 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5444 SDValue N1, SDValue N2, SDValue N3, 5445 const SDNodeFlags Flags) { 5446 // Perform various simplifications. 5447 switch (Opcode) { 5448 case ISD::FMA: { 5449 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5450 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5451 N3.getValueType() == VT && "FMA types must match!"); 5452 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5453 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5454 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5455 if (N1CFP && N2CFP && N3CFP) { 5456 APFloat V1 = N1CFP->getValueAPF(); 5457 const APFloat &V2 = N2CFP->getValueAPF(); 5458 const APFloat &V3 = N3CFP->getValueAPF(); 5459 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5460 return getConstantFP(V1, DL, VT); 5461 } 5462 break; 5463 } 5464 case ISD::BUILD_VECTOR: { 5465 // Attempt to simplify BUILD_VECTOR. 5466 SDValue Ops[] = {N1, N2, N3}; 5467 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5468 return V; 5469 break; 5470 } 5471 case ISD::CONCAT_VECTORS: { 5472 SDValue Ops[] = {N1, N2, N3}; 5473 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5474 return V; 5475 break; 5476 } 5477 case ISD::SETCC: { 5478 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5479 assert(N1.getValueType() == N2.getValueType() && 5480 "SETCC operands must have the same type!"); 5481 assert(VT.isVector() == N1.getValueType().isVector() && 5482 "SETCC type should be vector iff the operand type is vector!"); 5483 assert((!VT.isVector() || 5484 VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) && 5485 "SETCC vector element counts must match!"); 5486 // Use FoldSetCC to simplify SETCC's. 5487 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5488 return V; 5489 // Vector constant folding. 5490 SDValue Ops[] = {N1, N2, N3}; 5491 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5492 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5493 return V; 5494 } 5495 break; 5496 } 5497 case ISD::SELECT: 5498 case ISD::VSELECT: 5499 if (SDValue V = simplifySelect(N1, N2, N3)) 5500 return V; 5501 break; 5502 case ISD::VECTOR_SHUFFLE: 5503 llvm_unreachable("should use getVectorShuffle constructor!"); 5504 case ISD::INSERT_VECTOR_ELT: { 5505 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5506 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 5507 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5508 return getUNDEF(VT); 5509 break; 5510 } 5511 case ISD::INSERT_SUBVECTOR: { 5512 // Inserting undef into undef is still undef. 5513 if (N1.isUndef() && N2.isUndef()) 5514 return getUNDEF(VT); 5515 SDValue Index = N3; 5516 if (VT.isSimple() && N1.getValueType().isSimple() 5517 && N2.getValueType().isSimple()) { 5518 assert(VT.isVector() && N1.getValueType().isVector() && 5519 N2.getValueType().isVector() && 5520 "Insert subvector VTs must be a vectors"); 5521 assert(VT == N1.getValueType() && 5522 "Dest and insert subvector source types must match!"); 5523 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 5524 "Insert subvector must be from smaller vector to larger vector!"); 5525 if (isa<ConstantSDNode>(Index)) { 5526 assert((N2.getValueType().getVectorNumElements() + 5527 cast<ConstantSDNode>(Index)->getZExtValue() 5528 <= VT.getVectorNumElements()) 5529 && "Insert subvector overflow!"); 5530 } 5531 5532 // Trivial insertion. 5533 if (VT.getSimpleVT() == N2.getSimpleValueType()) 5534 return N2; 5535 5536 // If this is an insert of an extracted vector into an undef vector, we 5537 // can just use the input to the extract. 5538 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5539 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5540 return N2.getOperand(0); 5541 } 5542 break; 5543 } 5544 case ISD::BITCAST: 5545 // Fold bit_convert nodes from a type to themselves. 5546 if (N1.getValueType() == VT) 5547 return N1; 5548 break; 5549 } 5550 5551 // Memoize node if it doesn't produce a flag. 5552 SDNode *N; 5553 SDVTList VTs = getVTList(VT); 5554 SDValue Ops[] = {N1, N2, N3}; 5555 if (VT != MVT::Glue) { 5556 FoldingSetNodeID ID; 5557 AddNodeIDNode(ID, Opcode, VTs, Ops); 5558 void *IP = nullptr; 5559 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5560 E->intersectFlagsWith(Flags); 5561 return SDValue(E, 0); 5562 } 5563 5564 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5565 N->setFlags(Flags); 5566 createOperands(N, Ops); 5567 CSEMap.InsertNode(N, IP); 5568 } else { 5569 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5570 createOperands(N, Ops); 5571 } 5572 5573 InsertNode(N); 5574 SDValue V = SDValue(N, 0); 5575 NewSDValueDbgMsg(V, "Creating new node: ", this); 5576 return V; 5577 } 5578 5579 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5580 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5581 SDValue Ops[] = { N1, N2, N3, N4 }; 5582 return getNode(Opcode, DL, VT, Ops); 5583 } 5584 5585 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5586 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5587 SDValue N5) { 5588 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5589 return getNode(Opcode, DL, VT, Ops); 5590 } 5591 5592 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5593 /// the incoming stack arguments to be loaded from the stack. 5594 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5595 SmallVector<SDValue, 8> ArgChains; 5596 5597 // Include the original chain at the beginning of the list. When this is 5598 // used by target LowerCall hooks, this helps legalize find the 5599 // CALLSEQ_BEGIN node. 5600 ArgChains.push_back(Chain); 5601 5602 // Add a chain value for each stack argument. 5603 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5604 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5605 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5606 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5607 if (FI->getIndex() < 0) 5608 ArgChains.push_back(SDValue(L, 1)); 5609 5610 // Build a tokenfactor for all the chains. 5611 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5612 } 5613 5614 /// getMemsetValue - Vectorized representation of the memset value 5615 /// operand. 5616 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5617 const SDLoc &dl) { 5618 assert(!Value.isUndef()); 5619 5620 unsigned NumBits = VT.getScalarSizeInBits(); 5621 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5622 assert(C->getAPIntValue().getBitWidth() == 8); 5623 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5624 if (VT.isInteger()) { 5625 bool IsOpaque = VT.getSizeInBits() > 64 || 5626 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5627 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5628 } 5629 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5630 VT); 5631 } 5632 5633 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5634 EVT IntVT = VT.getScalarType(); 5635 if (!IntVT.isInteger()) 5636 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5637 5638 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5639 if (NumBits > 8) { 5640 // Use a multiplication with 0x010101... to extend the input to the 5641 // required length. 5642 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5643 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5644 DAG.getConstant(Magic, dl, IntVT)); 5645 } 5646 5647 if (VT != Value.getValueType() && !VT.isInteger()) 5648 Value = DAG.getBitcast(VT.getScalarType(), Value); 5649 if (VT != Value.getValueType()) 5650 Value = DAG.getSplatBuildVector(VT, dl, Value); 5651 5652 return Value; 5653 } 5654 5655 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5656 /// used when a memcpy is turned into a memset when the source is a constant 5657 /// string ptr. 5658 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5659 const TargetLowering &TLI, 5660 const ConstantDataArraySlice &Slice) { 5661 // Handle vector with all elements zero. 5662 if (Slice.Array == nullptr) { 5663 if (VT.isInteger()) 5664 return DAG.getConstant(0, dl, VT); 5665 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5666 return DAG.getConstantFP(0.0, dl, VT); 5667 else if (VT.isVector()) { 5668 unsigned NumElts = VT.getVectorNumElements(); 5669 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5670 return DAG.getNode(ISD::BITCAST, dl, VT, 5671 DAG.getConstant(0, dl, 5672 EVT::getVectorVT(*DAG.getContext(), 5673 EltVT, NumElts))); 5674 } else 5675 llvm_unreachable("Expected type!"); 5676 } 5677 5678 assert(!VT.isVector() && "Can't handle vector type here!"); 5679 unsigned NumVTBits = VT.getSizeInBits(); 5680 unsigned NumVTBytes = NumVTBits / 8; 5681 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5682 5683 APInt Val(NumVTBits, 0); 5684 if (DAG.getDataLayout().isLittleEndian()) { 5685 for (unsigned i = 0; i != NumBytes; ++i) 5686 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5687 } else { 5688 for (unsigned i = 0; i != NumBytes; ++i) 5689 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5690 } 5691 5692 // If the "cost" of materializing the integer immediate is less than the cost 5693 // of a load, then it is cost effective to turn the load into the immediate. 5694 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5695 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5696 return DAG.getConstant(Val, dl, VT); 5697 return SDValue(nullptr, 0); 5698 } 5699 5700 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 5701 const SDLoc &DL) { 5702 EVT VT = Base.getValueType(); 5703 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 5704 } 5705 5706 /// Returns true if memcpy source is constant data. 5707 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5708 uint64_t SrcDelta = 0; 5709 GlobalAddressSDNode *G = nullptr; 5710 if (Src.getOpcode() == ISD::GlobalAddress) 5711 G = cast<GlobalAddressSDNode>(Src); 5712 else if (Src.getOpcode() == ISD::ADD && 5713 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5714 Src.getOperand(1).getOpcode() == ISD::Constant) { 5715 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5716 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5717 } 5718 if (!G) 5719 return false; 5720 5721 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5722 SrcDelta + G->getOffset()); 5723 } 5724 5725 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 5726 // On Darwin, -Os means optimize for size without hurting performance, so 5727 // only really optimize for size when -Oz (MinSize) is used. 5728 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5729 return MF.getFunction().hasMinSize(); 5730 return MF.getFunction().hasOptSize(); 5731 } 5732 5733 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5734 SmallVector<SDValue, 32> &OutChains, unsigned From, 5735 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5736 SmallVector<SDValue, 16> &OutStoreChains) { 5737 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5738 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5739 SmallVector<SDValue, 16> GluedLoadChains; 5740 for (unsigned i = From; i < To; ++i) { 5741 OutChains.push_back(OutLoadChains[i]); 5742 GluedLoadChains.push_back(OutLoadChains[i]); 5743 } 5744 5745 // Chain for all loads. 5746 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5747 GluedLoadChains); 5748 5749 for (unsigned i = From; i < To; ++i) { 5750 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5751 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5752 ST->getBasePtr(), ST->getMemoryVT(), 5753 ST->getMemOperand()); 5754 OutChains.push_back(NewStore); 5755 } 5756 } 5757 5758 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5759 SDValue Chain, SDValue Dst, SDValue Src, 5760 uint64_t Size, unsigned Alignment, 5761 bool isVol, bool AlwaysInline, 5762 MachinePointerInfo DstPtrInfo, 5763 MachinePointerInfo SrcPtrInfo) { 5764 // Turn a memcpy of undef to nop. 5765 // FIXME: We need to honor volatile even is Src is undef. 5766 if (Src.isUndef()) 5767 return Chain; 5768 5769 // Expand memcpy to a series of load and store ops if the size operand falls 5770 // below a certain threshold. 5771 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5772 // rather than maybe a humongous number of loads and stores. 5773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5774 const DataLayout &DL = DAG.getDataLayout(); 5775 LLVMContext &C = *DAG.getContext(); 5776 std::vector<EVT> MemOps; 5777 bool DstAlignCanChange = false; 5778 MachineFunction &MF = DAG.getMachineFunction(); 5779 MachineFrameInfo &MFI = MF.getFrameInfo(); 5780 bool OptSize = shouldLowerMemFuncForSize(MF); 5781 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5782 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5783 DstAlignCanChange = true; 5784 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5785 if (Alignment > SrcAlign) 5786 SrcAlign = Alignment; 5787 ConstantDataArraySlice Slice; 5788 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5789 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5790 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5791 5792 if (!TLI.findOptimalMemOpLowering( 5793 MemOps, Limit, Size, (DstAlignCanChange ? 0 : Alignment), 5794 (isZeroConstant ? 0 : SrcAlign), /*IsMemset=*/false, 5795 /*ZeroMemset=*/false, /*MemcpyStrSrc=*/CopyFromConstant, 5796 /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), 5797 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 5798 return SDValue(); 5799 5800 if (DstAlignCanChange) { 5801 Type *Ty = MemOps[0].getTypeForEVT(C); 5802 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5803 5804 // Don't promote to an alignment that would require dynamic stack 5805 // realignment. 5806 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5807 if (!TRI->needsStackRealignment(MF)) 5808 while (NewAlign > Alignment && 5809 DL.exceedsNaturalStackAlignment(Align(NewAlign))) 5810 NewAlign /= 2; 5811 5812 if (NewAlign > Alignment) { 5813 // Give the stack frame object a larger alignment if needed. 5814 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5815 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5816 Alignment = NewAlign; 5817 } 5818 } 5819 5820 MachineMemOperand::Flags MMOFlags = 5821 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5822 SmallVector<SDValue, 16> OutLoadChains; 5823 SmallVector<SDValue, 16> OutStoreChains; 5824 SmallVector<SDValue, 32> OutChains; 5825 unsigned NumMemOps = MemOps.size(); 5826 uint64_t SrcOff = 0, DstOff = 0; 5827 for (unsigned i = 0; i != NumMemOps; ++i) { 5828 EVT VT = MemOps[i]; 5829 unsigned VTSize = VT.getSizeInBits() / 8; 5830 SDValue Value, Store; 5831 5832 if (VTSize > Size) { 5833 // Issuing an unaligned load / store pair that overlaps with the previous 5834 // pair. Adjust the offset accordingly. 5835 assert(i == NumMemOps-1 && i != 0); 5836 SrcOff -= VTSize - Size; 5837 DstOff -= VTSize - Size; 5838 } 5839 5840 if (CopyFromConstant && 5841 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5842 // It's unlikely a store of a vector immediate can be done in a single 5843 // instruction. It would require a load from a constantpool first. 5844 // We only handle zero vectors here. 5845 // FIXME: Handle other cases where store of vector immediate is done in 5846 // a single instruction. 5847 ConstantDataArraySlice SubSlice; 5848 if (SrcOff < Slice.Length) { 5849 SubSlice = Slice; 5850 SubSlice.move(SrcOff); 5851 } else { 5852 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5853 SubSlice.Array = nullptr; 5854 SubSlice.Offset = 0; 5855 SubSlice.Length = VTSize; 5856 } 5857 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5858 if (Value.getNode()) { 5859 Store = DAG.getStore( 5860 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5861 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 5862 OutChains.push_back(Store); 5863 } 5864 } 5865 5866 if (!Store.getNode()) { 5867 // The type might not be legal for the target. This should only happen 5868 // if the type is smaller than a legal type, as on PPC, so the right 5869 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 5870 // to Load/Store if NVT==VT. 5871 // FIXME does the case above also need this? 5872 EVT NVT = TLI.getTypeToTransformTo(C, VT); 5873 assert(NVT.bitsGE(VT)); 5874 5875 bool isDereferenceable = 5876 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5877 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5878 if (isDereferenceable) 5879 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5880 5881 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 5882 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5883 SrcPtrInfo.getWithOffset(SrcOff), VT, 5884 MinAlign(SrcAlign, SrcOff), SrcMMOFlags); 5885 OutLoadChains.push_back(Value.getValue(1)); 5886 5887 Store = DAG.getTruncStore( 5888 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5889 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags); 5890 OutStoreChains.push_back(Store); 5891 } 5892 SrcOff += VTSize; 5893 DstOff += VTSize; 5894 Size -= VTSize; 5895 } 5896 5897 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 5898 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 5899 unsigned NumLdStInMemcpy = OutStoreChains.size(); 5900 5901 if (NumLdStInMemcpy) { 5902 // It may be that memcpy might be converted to memset if it's memcpy 5903 // of constants. In such a case, we won't have loads and stores, but 5904 // just stores. In the absence of loads, there is nothing to gang up. 5905 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 5906 // If target does not care, just leave as it. 5907 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 5908 OutChains.push_back(OutLoadChains[i]); 5909 OutChains.push_back(OutStoreChains[i]); 5910 } 5911 } else { 5912 // Ld/St less than/equal limit set by target. 5913 if (NumLdStInMemcpy <= GluedLdStLimit) { 5914 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 5915 NumLdStInMemcpy, OutLoadChains, 5916 OutStoreChains); 5917 } else { 5918 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 5919 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 5920 unsigned GlueIter = 0; 5921 5922 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 5923 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 5924 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 5925 5926 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 5927 OutLoadChains, OutStoreChains); 5928 GlueIter += GluedLdStLimit; 5929 } 5930 5931 // Residual ld/st. 5932 if (RemainingLdStInMemcpy) { 5933 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 5934 RemainingLdStInMemcpy, OutLoadChains, 5935 OutStoreChains); 5936 } 5937 } 5938 } 5939 } 5940 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5941 } 5942 5943 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5944 SDValue Chain, SDValue Dst, SDValue Src, 5945 uint64_t Size, unsigned Align, 5946 bool isVol, bool AlwaysInline, 5947 MachinePointerInfo DstPtrInfo, 5948 MachinePointerInfo SrcPtrInfo) { 5949 // Turn a memmove of undef to nop. 5950 // FIXME: We need to honor volatile even is Src is undef. 5951 if (Src.isUndef()) 5952 return Chain; 5953 5954 // Expand memmove to a series of load and store ops if the size operand falls 5955 // below a certain threshold. 5956 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5957 const DataLayout &DL = DAG.getDataLayout(); 5958 LLVMContext &C = *DAG.getContext(); 5959 std::vector<EVT> MemOps; 5960 bool DstAlignCanChange = false; 5961 MachineFunction &MF = DAG.getMachineFunction(); 5962 MachineFrameInfo &MFI = MF.getFrameInfo(); 5963 bool OptSize = shouldLowerMemFuncForSize(MF); 5964 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5965 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5966 DstAlignCanChange = true; 5967 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5968 if (Align > SrcAlign) 5969 SrcAlign = Align; 5970 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 5971 // FIXME: `AllowOverlap` should really be `!isVol` but there is a bug in 5972 // findOptimalMemOpLowering. Meanwhile, setting it to `false` produces the 5973 // correct code. 5974 bool AllowOverlap = false; 5975 if (!TLI.findOptimalMemOpLowering( 5976 MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), SrcAlign, 5977 /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false, 5978 AllowOverlap, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 5979 MF.getFunction().getAttributes())) 5980 return SDValue(); 5981 5982 if (DstAlignCanChange) { 5983 Type *Ty = MemOps[0].getTypeForEVT(C); 5984 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5985 if (NewAlign > Align) { 5986 // Give the stack frame object a larger alignment if needed. 5987 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5988 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5989 Align = NewAlign; 5990 } 5991 } 5992 5993 MachineMemOperand::Flags MMOFlags = 5994 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5995 uint64_t SrcOff = 0, DstOff = 0; 5996 SmallVector<SDValue, 8> LoadValues; 5997 SmallVector<SDValue, 8> LoadChains; 5998 SmallVector<SDValue, 8> OutChains; 5999 unsigned NumMemOps = MemOps.size(); 6000 for (unsigned i = 0; i < NumMemOps; i++) { 6001 EVT VT = MemOps[i]; 6002 unsigned VTSize = VT.getSizeInBits() / 8; 6003 SDValue Value; 6004 6005 bool isDereferenceable = 6006 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6007 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6008 if (isDereferenceable) 6009 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6010 6011 Value = 6012 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6013 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags); 6014 LoadValues.push_back(Value); 6015 LoadChains.push_back(Value.getValue(1)); 6016 SrcOff += VTSize; 6017 } 6018 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6019 OutChains.clear(); 6020 for (unsigned i = 0; i < NumMemOps; i++) { 6021 EVT VT = MemOps[i]; 6022 unsigned VTSize = VT.getSizeInBits() / 8; 6023 SDValue Store; 6024 6025 Store = DAG.getStore(Chain, dl, LoadValues[i], 6026 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6027 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 6028 OutChains.push_back(Store); 6029 DstOff += VTSize; 6030 } 6031 6032 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6033 } 6034 6035 /// Lower the call to 'memset' intrinsic function into a series of store 6036 /// operations. 6037 /// 6038 /// \param DAG Selection DAG where lowered code is placed. 6039 /// \param dl Link to corresponding IR location. 6040 /// \param Chain Control flow dependency. 6041 /// \param Dst Pointer to destination memory location. 6042 /// \param Src Value of byte to write into the memory. 6043 /// \param Size Number of bytes to write. 6044 /// \param Align Alignment of the destination in bytes. 6045 /// \param isVol True if destination is volatile. 6046 /// \param DstPtrInfo IR information on the memory pointer. 6047 /// \returns New head in the control flow, if lowering was successful, empty 6048 /// SDValue otherwise. 6049 /// 6050 /// The function tries to replace 'llvm.memset' intrinsic with several store 6051 /// operations and value calculation code. This is usually profitable for small 6052 /// memory size. 6053 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6054 SDValue Chain, SDValue Dst, SDValue Src, 6055 uint64_t Size, unsigned Align, bool isVol, 6056 MachinePointerInfo DstPtrInfo) { 6057 // Turn a memset of undef to nop. 6058 // FIXME: We need to honor volatile even is Src is undef. 6059 if (Src.isUndef()) 6060 return Chain; 6061 6062 // Expand memset to a series of load/store ops if the size operand 6063 // falls below a certain threshold. 6064 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6065 std::vector<EVT> MemOps; 6066 bool DstAlignCanChange = false; 6067 MachineFunction &MF = DAG.getMachineFunction(); 6068 MachineFrameInfo &MFI = MF.getFrameInfo(); 6069 bool OptSize = shouldLowerMemFuncForSize(MF); 6070 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6071 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6072 DstAlignCanChange = true; 6073 bool IsZeroVal = 6074 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6075 if (!TLI.findOptimalMemOpLowering( 6076 MemOps, TLI.getMaxStoresPerMemset(OptSize), Size, 6077 (DstAlignCanChange ? 0 : Align), 0, /*IsMemset=*/true, 6078 /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false, 6079 /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), ~0u, 6080 MF.getFunction().getAttributes())) 6081 return SDValue(); 6082 6083 if (DstAlignCanChange) { 6084 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6085 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 6086 if (NewAlign > Align) { 6087 // Give the stack frame object a larger alignment if needed. 6088 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 6089 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6090 Align = NewAlign; 6091 } 6092 } 6093 6094 SmallVector<SDValue, 8> OutChains; 6095 uint64_t DstOff = 0; 6096 unsigned NumMemOps = MemOps.size(); 6097 6098 // Find the largest store and generate the bit pattern for it. 6099 EVT LargestVT = MemOps[0]; 6100 for (unsigned i = 1; i < NumMemOps; i++) 6101 if (MemOps[i].bitsGT(LargestVT)) 6102 LargestVT = MemOps[i]; 6103 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6104 6105 for (unsigned i = 0; i < NumMemOps; i++) { 6106 EVT VT = MemOps[i]; 6107 unsigned VTSize = VT.getSizeInBits() / 8; 6108 if (VTSize > Size) { 6109 // Issuing an unaligned load / store pair that overlaps with the previous 6110 // pair. Adjust the offset accordingly. 6111 assert(i == NumMemOps-1 && i != 0); 6112 DstOff -= VTSize - Size; 6113 } 6114 6115 // If this store is smaller than the largest store see whether we can get 6116 // the smaller value for free with a truncate. 6117 SDValue Value = MemSetValue; 6118 if (VT.bitsLT(LargestVT)) { 6119 if (!LargestVT.isVector() && !VT.isVector() && 6120 TLI.isTruncateFree(LargestVT, VT)) 6121 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6122 else 6123 Value = getMemsetValue(Src, VT, DAG, dl); 6124 } 6125 assert(Value.getValueType() == VT && "Value with wrong type."); 6126 SDValue Store = DAG.getStore( 6127 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6128 DstPtrInfo.getWithOffset(DstOff), Align, 6129 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6130 OutChains.push_back(Store); 6131 DstOff += VT.getSizeInBits() / 8; 6132 Size -= VTSize; 6133 } 6134 6135 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6136 } 6137 6138 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6139 unsigned AS) { 6140 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6141 // pointer operands can be losslessly bitcasted to pointers of address space 0 6142 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 6143 report_fatal_error("cannot lower memory intrinsic in address space " + 6144 Twine(AS)); 6145 } 6146 } 6147 6148 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6149 SDValue Src, SDValue Size, unsigned Align, 6150 bool isVol, bool AlwaysInline, bool isTailCall, 6151 MachinePointerInfo DstPtrInfo, 6152 MachinePointerInfo SrcPtrInfo) { 6153 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6154 6155 // Check to see if we should lower the memcpy to loads and stores first. 6156 // For cases within the target-specified limits, this is the best choice. 6157 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6158 if (ConstantSize) { 6159 // Memcpy with size zero? Just return the original chain. 6160 if (ConstantSize->isNullValue()) 6161 return Chain; 6162 6163 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6164 ConstantSize->getZExtValue(),Align, 6165 isVol, false, DstPtrInfo, SrcPtrInfo); 6166 if (Result.getNode()) 6167 return Result; 6168 } 6169 6170 // Then check to see if we should lower the memcpy with target-specific 6171 // code. If the target chooses to do this, this is the next best. 6172 if (TSI) { 6173 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6174 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 6175 DstPtrInfo, SrcPtrInfo); 6176 if (Result.getNode()) 6177 return Result; 6178 } 6179 6180 // If we really need inline code and the target declined to provide it, 6181 // use a (potentially long) sequence of loads and stores. 6182 if (AlwaysInline) { 6183 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6184 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6185 ConstantSize->getZExtValue(), Align, isVol, 6186 true, DstPtrInfo, SrcPtrInfo); 6187 } 6188 6189 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6190 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6191 6192 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6193 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6194 // respect volatile, so they may do things like read or write memory 6195 // beyond the given memory regions. But fixing this isn't easy, and most 6196 // people don't care. 6197 6198 // Emit a library call. 6199 TargetLowering::ArgListTy Args; 6200 TargetLowering::ArgListEntry Entry; 6201 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6202 Entry.Node = Dst; Args.push_back(Entry); 6203 Entry.Node = Src; Args.push_back(Entry); 6204 6205 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6206 Entry.Node = Size; Args.push_back(Entry); 6207 // FIXME: pass in SDLoc 6208 TargetLowering::CallLoweringInfo CLI(*this); 6209 CLI.setDebugLoc(dl) 6210 .setChain(Chain) 6211 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6212 Dst.getValueType().getTypeForEVT(*getContext()), 6213 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6214 TLI->getPointerTy(getDataLayout())), 6215 std::move(Args)) 6216 .setDiscardResult() 6217 .setTailCall(isTailCall); 6218 6219 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6220 return CallResult.second; 6221 } 6222 6223 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6224 SDValue Dst, unsigned DstAlign, 6225 SDValue Src, unsigned SrcAlign, 6226 SDValue Size, Type *SizeTy, 6227 unsigned ElemSz, bool isTailCall, 6228 MachinePointerInfo DstPtrInfo, 6229 MachinePointerInfo SrcPtrInfo) { 6230 // Emit a library call. 6231 TargetLowering::ArgListTy Args; 6232 TargetLowering::ArgListEntry Entry; 6233 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6234 Entry.Node = Dst; 6235 Args.push_back(Entry); 6236 6237 Entry.Node = Src; 6238 Args.push_back(Entry); 6239 6240 Entry.Ty = SizeTy; 6241 Entry.Node = Size; 6242 Args.push_back(Entry); 6243 6244 RTLIB::Libcall LibraryCall = 6245 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6246 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6247 report_fatal_error("Unsupported element size"); 6248 6249 TargetLowering::CallLoweringInfo CLI(*this); 6250 CLI.setDebugLoc(dl) 6251 .setChain(Chain) 6252 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6253 Type::getVoidTy(*getContext()), 6254 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6255 TLI->getPointerTy(getDataLayout())), 6256 std::move(Args)) 6257 .setDiscardResult() 6258 .setTailCall(isTailCall); 6259 6260 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6261 return CallResult.second; 6262 } 6263 6264 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6265 SDValue Src, SDValue Size, unsigned Align, 6266 bool isVol, bool isTailCall, 6267 MachinePointerInfo DstPtrInfo, 6268 MachinePointerInfo SrcPtrInfo) { 6269 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6270 6271 // Check to see if we should lower the memmove to loads and stores first. 6272 // For cases within the target-specified limits, this is the best choice. 6273 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6274 if (ConstantSize) { 6275 // Memmove with size zero? Just return the original chain. 6276 if (ConstantSize->isNullValue()) 6277 return Chain; 6278 6279 SDValue Result = 6280 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 6281 ConstantSize->getZExtValue(), Align, isVol, 6282 false, DstPtrInfo, SrcPtrInfo); 6283 if (Result.getNode()) 6284 return Result; 6285 } 6286 6287 // Then check to see if we should lower the memmove with target-specific 6288 // code. If the target chooses to do this, this is the next best. 6289 if (TSI) { 6290 SDValue Result = TSI->EmitTargetCodeForMemmove( 6291 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 6292 if (Result.getNode()) 6293 return Result; 6294 } 6295 6296 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6297 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6298 6299 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6300 // not be safe. See memcpy above for more details. 6301 6302 // Emit a library call. 6303 TargetLowering::ArgListTy Args; 6304 TargetLowering::ArgListEntry Entry; 6305 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6306 Entry.Node = Dst; Args.push_back(Entry); 6307 Entry.Node = Src; Args.push_back(Entry); 6308 6309 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6310 Entry.Node = Size; Args.push_back(Entry); 6311 // FIXME: pass in SDLoc 6312 TargetLowering::CallLoweringInfo CLI(*this); 6313 CLI.setDebugLoc(dl) 6314 .setChain(Chain) 6315 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6316 Dst.getValueType().getTypeForEVT(*getContext()), 6317 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6318 TLI->getPointerTy(getDataLayout())), 6319 std::move(Args)) 6320 .setDiscardResult() 6321 .setTailCall(isTailCall); 6322 6323 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6324 return CallResult.second; 6325 } 6326 6327 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6328 SDValue Dst, unsigned DstAlign, 6329 SDValue Src, unsigned SrcAlign, 6330 SDValue Size, Type *SizeTy, 6331 unsigned ElemSz, bool isTailCall, 6332 MachinePointerInfo DstPtrInfo, 6333 MachinePointerInfo SrcPtrInfo) { 6334 // Emit a library call. 6335 TargetLowering::ArgListTy Args; 6336 TargetLowering::ArgListEntry Entry; 6337 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6338 Entry.Node = Dst; 6339 Args.push_back(Entry); 6340 6341 Entry.Node = Src; 6342 Args.push_back(Entry); 6343 6344 Entry.Ty = SizeTy; 6345 Entry.Node = Size; 6346 Args.push_back(Entry); 6347 6348 RTLIB::Libcall LibraryCall = 6349 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6350 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6351 report_fatal_error("Unsupported element size"); 6352 6353 TargetLowering::CallLoweringInfo CLI(*this); 6354 CLI.setDebugLoc(dl) 6355 .setChain(Chain) 6356 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6357 Type::getVoidTy(*getContext()), 6358 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6359 TLI->getPointerTy(getDataLayout())), 6360 std::move(Args)) 6361 .setDiscardResult() 6362 .setTailCall(isTailCall); 6363 6364 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6365 return CallResult.second; 6366 } 6367 6368 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6369 SDValue Src, SDValue Size, unsigned Align, 6370 bool isVol, bool isTailCall, 6371 MachinePointerInfo DstPtrInfo) { 6372 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6373 6374 // Check to see if we should lower the memset to stores first. 6375 // For cases within the target-specified limits, this is the best choice. 6376 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6377 if (ConstantSize) { 6378 // Memset with size zero? Just return the original chain. 6379 if (ConstantSize->isNullValue()) 6380 return Chain; 6381 6382 SDValue Result = 6383 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 6384 Align, isVol, DstPtrInfo); 6385 6386 if (Result.getNode()) 6387 return Result; 6388 } 6389 6390 // Then check to see if we should lower the memset with target-specific 6391 // code. If the target chooses to do this, this is the next best. 6392 if (TSI) { 6393 SDValue Result = TSI->EmitTargetCodeForMemset( 6394 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 6395 if (Result.getNode()) 6396 return Result; 6397 } 6398 6399 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6400 6401 // Emit a library call. 6402 TargetLowering::ArgListTy Args; 6403 TargetLowering::ArgListEntry Entry; 6404 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6405 Args.push_back(Entry); 6406 Entry.Node = Src; 6407 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6408 Args.push_back(Entry); 6409 Entry.Node = Size; 6410 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6411 Args.push_back(Entry); 6412 6413 // FIXME: pass in SDLoc 6414 TargetLowering::CallLoweringInfo CLI(*this); 6415 CLI.setDebugLoc(dl) 6416 .setChain(Chain) 6417 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6418 Dst.getValueType().getTypeForEVT(*getContext()), 6419 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6420 TLI->getPointerTy(getDataLayout())), 6421 std::move(Args)) 6422 .setDiscardResult() 6423 .setTailCall(isTailCall); 6424 6425 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6426 return CallResult.second; 6427 } 6428 6429 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6430 SDValue Dst, unsigned DstAlign, 6431 SDValue Value, SDValue Size, Type *SizeTy, 6432 unsigned ElemSz, bool isTailCall, 6433 MachinePointerInfo DstPtrInfo) { 6434 // Emit a library call. 6435 TargetLowering::ArgListTy Args; 6436 TargetLowering::ArgListEntry Entry; 6437 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6438 Entry.Node = Dst; 6439 Args.push_back(Entry); 6440 6441 Entry.Ty = Type::getInt8Ty(*getContext()); 6442 Entry.Node = Value; 6443 Args.push_back(Entry); 6444 6445 Entry.Ty = SizeTy; 6446 Entry.Node = Size; 6447 Args.push_back(Entry); 6448 6449 RTLIB::Libcall LibraryCall = 6450 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6451 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6452 report_fatal_error("Unsupported element size"); 6453 6454 TargetLowering::CallLoweringInfo CLI(*this); 6455 CLI.setDebugLoc(dl) 6456 .setChain(Chain) 6457 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6458 Type::getVoidTy(*getContext()), 6459 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6460 TLI->getPointerTy(getDataLayout())), 6461 std::move(Args)) 6462 .setDiscardResult() 6463 .setTailCall(isTailCall); 6464 6465 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6466 return CallResult.second; 6467 } 6468 6469 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6470 SDVTList VTList, ArrayRef<SDValue> Ops, 6471 MachineMemOperand *MMO) { 6472 FoldingSetNodeID ID; 6473 ID.AddInteger(MemVT.getRawBits()); 6474 AddNodeIDNode(ID, Opcode, VTList, Ops); 6475 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6476 void* IP = nullptr; 6477 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6478 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6479 return SDValue(E, 0); 6480 } 6481 6482 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6483 VTList, MemVT, MMO); 6484 createOperands(N, Ops); 6485 6486 CSEMap.InsertNode(N, IP); 6487 InsertNode(N); 6488 return SDValue(N, 0); 6489 } 6490 6491 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6492 EVT MemVT, SDVTList VTs, SDValue Chain, 6493 SDValue Ptr, SDValue Cmp, SDValue Swp, 6494 MachineMemOperand *MMO) { 6495 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6496 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6497 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6498 6499 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6500 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6501 } 6502 6503 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6504 SDValue Chain, SDValue Ptr, SDValue Val, 6505 MachineMemOperand *MMO) { 6506 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6507 Opcode == ISD::ATOMIC_LOAD_SUB || 6508 Opcode == ISD::ATOMIC_LOAD_AND || 6509 Opcode == ISD::ATOMIC_LOAD_CLR || 6510 Opcode == ISD::ATOMIC_LOAD_OR || 6511 Opcode == ISD::ATOMIC_LOAD_XOR || 6512 Opcode == ISD::ATOMIC_LOAD_NAND || 6513 Opcode == ISD::ATOMIC_LOAD_MIN || 6514 Opcode == ISD::ATOMIC_LOAD_MAX || 6515 Opcode == ISD::ATOMIC_LOAD_UMIN || 6516 Opcode == ISD::ATOMIC_LOAD_UMAX || 6517 Opcode == ISD::ATOMIC_LOAD_FADD || 6518 Opcode == ISD::ATOMIC_LOAD_FSUB || 6519 Opcode == ISD::ATOMIC_SWAP || 6520 Opcode == ISD::ATOMIC_STORE) && 6521 "Invalid Atomic Op"); 6522 6523 EVT VT = Val.getValueType(); 6524 6525 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6526 getVTList(VT, MVT::Other); 6527 SDValue Ops[] = {Chain, Ptr, Val}; 6528 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6529 } 6530 6531 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6532 EVT VT, SDValue Chain, SDValue Ptr, 6533 MachineMemOperand *MMO) { 6534 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6535 6536 SDVTList VTs = getVTList(VT, MVT::Other); 6537 SDValue Ops[] = {Chain, Ptr}; 6538 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6539 } 6540 6541 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6542 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6543 if (Ops.size() == 1) 6544 return Ops[0]; 6545 6546 SmallVector<EVT, 4> VTs; 6547 VTs.reserve(Ops.size()); 6548 for (unsigned i = 0; i < Ops.size(); ++i) 6549 VTs.push_back(Ops[i].getValueType()); 6550 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6551 } 6552 6553 SDValue SelectionDAG::getMemIntrinsicNode( 6554 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6555 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, 6556 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6557 if (Align == 0) // Ensure that codegen never sees alignment 0 6558 Align = getEVTAlignment(MemVT); 6559 6560 if (!Size) 6561 Size = MemVT.getStoreSize(); 6562 6563 MachineFunction &MF = getMachineFunction(); 6564 MachineMemOperand *MMO = 6565 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo); 6566 6567 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6568 } 6569 6570 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6571 SDVTList VTList, 6572 ArrayRef<SDValue> Ops, EVT MemVT, 6573 MachineMemOperand *MMO) { 6574 assert((Opcode == ISD::INTRINSIC_VOID || 6575 Opcode == ISD::INTRINSIC_W_CHAIN || 6576 Opcode == ISD::PREFETCH || 6577 Opcode == ISD::LIFETIME_START || 6578 Opcode == ISD::LIFETIME_END || 6579 ((int)Opcode <= std::numeric_limits<int>::max() && 6580 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6581 "Opcode is not a memory-accessing opcode!"); 6582 6583 // Memoize the node unless it returns a flag. 6584 MemIntrinsicSDNode *N; 6585 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6586 FoldingSetNodeID ID; 6587 AddNodeIDNode(ID, Opcode, VTList, Ops); 6588 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6589 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6590 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6591 void *IP = nullptr; 6592 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6593 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6594 return SDValue(E, 0); 6595 } 6596 6597 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6598 VTList, MemVT, MMO); 6599 createOperands(N, Ops); 6600 6601 CSEMap.InsertNode(N, IP); 6602 } else { 6603 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6604 VTList, MemVT, MMO); 6605 createOperands(N, Ops); 6606 } 6607 InsertNode(N); 6608 SDValue V(N, 0); 6609 NewSDValueDbgMsg(V, "Creating new node: ", this); 6610 return V; 6611 } 6612 6613 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6614 SDValue Chain, int FrameIndex, 6615 int64_t Size, int64_t Offset) { 6616 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6617 const auto VTs = getVTList(MVT::Other); 6618 SDValue Ops[2] = { 6619 Chain, 6620 getFrameIndex(FrameIndex, 6621 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6622 true)}; 6623 6624 FoldingSetNodeID ID; 6625 AddNodeIDNode(ID, Opcode, VTs, Ops); 6626 ID.AddInteger(FrameIndex); 6627 ID.AddInteger(Size); 6628 ID.AddInteger(Offset); 6629 void *IP = nullptr; 6630 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6631 return SDValue(E, 0); 6632 6633 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6634 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6635 createOperands(N, Ops); 6636 CSEMap.InsertNode(N, IP); 6637 InsertNode(N); 6638 SDValue V(N, 0); 6639 NewSDValueDbgMsg(V, "Creating new node: ", this); 6640 return V; 6641 } 6642 6643 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6644 /// MachinePointerInfo record from it. This is particularly useful because the 6645 /// code generator has many cases where it doesn't bother passing in a 6646 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6647 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6648 SelectionDAG &DAG, SDValue Ptr, 6649 int64_t Offset = 0) { 6650 // If this is FI+Offset, we can model it. 6651 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6652 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6653 FI->getIndex(), Offset); 6654 6655 // If this is (FI+Offset1)+Offset2, we can model it. 6656 if (Ptr.getOpcode() != ISD::ADD || 6657 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6658 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6659 return Info; 6660 6661 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6662 return MachinePointerInfo::getFixedStack( 6663 DAG.getMachineFunction(), FI, 6664 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6665 } 6666 6667 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6668 /// MachinePointerInfo record from it. This is particularly useful because the 6669 /// code generator has many cases where it doesn't bother passing in a 6670 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6671 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6672 SelectionDAG &DAG, SDValue Ptr, 6673 SDValue OffsetOp) { 6674 // If the 'Offset' value isn't a constant, we can't handle this. 6675 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6676 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6677 if (OffsetOp.isUndef()) 6678 return InferPointerInfo(Info, DAG, Ptr); 6679 return Info; 6680 } 6681 6682 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6683 EVT VT, const SDLoc &dl, SDValue Chain, 6684 SDValue Ptr, SDValue Offset, 6685 MachinePointerInfo PtrInfo, EVT MemVT, 6686 unsigned Alignment, 6687 MachineMemOperand::Flags MMOFlags, 6688 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6689 assert(Chain.getValueType() == MVT::Other && 6690 "Invalid chain type"); 6691 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6692 Alignment = getEVTAlignment(MemVT); 6693 6694 MMOFlags |= MachineMemOperand::MOLoad; 6695 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6696 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6697 // clients. 6698 if (PtrInfo.V.isNull()) 6699 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6700 6701 MachineFunction &MF = getMachineFunction(); 6702 MachineMemOperand *MMO = MF.getMachineMemOperand( 6703 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 6704 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6705 } 6706 6707 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6708 EVT VT, const SDLoc &dl, SDValue Chain, 6709 SDValue Ptr, SDValue Offset, EVT MemVT, 6710 MachineMemOperand *MMO) { 6711 if (VT == MemVT) { 6712 ExtType = ISD::NON_EXTLOAD; 6713 } else if (ExtType == ISD::NON_EXTLOAD) { 6714 assert(VT == MemVT && "Non-extending load from different memory type!"); 6715 } else { 6716 // Extending load. 6717 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6718 "Should only be an extending load, not truncating!"); 6719 assert(VT.isInteger() == MemVT.isInteger() && 6720 "Cannot convert from FP to Int or Int -> FP!"); 6721 assert(VT.isVector() == MemVT.isVector() && 6722 "Cannot use an ext load to convert to or from a vector!"); 6723 assert((!VT.isVector() || 6724 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6725 "Cannot use an ext load to change the number of vector elements!"); 6726 } 6727 6728 bool Indexed = AM != ISD::UNINDEXED; 6729 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6730 6731 SDVTList VTs = Indexed ? 6732 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6733 SDValue Ops[] = { Chain, Ptr, Offset }; 6734 FoldingSetNodeID ID; 6735 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6736 ID.AddInteger(MemVT.getRawBits()); 6737 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6738 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6739 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6740 void *IP = nullptr; 6741 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6742 cast<LoadSDNode>(E)->refineAlignment(MMO); 6743 return SDValue(E, 0); 6744 } 6745 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6746 ExtType, MemVT, MMO); 6747 createOperands(N, Ops); 6748 6749 CSEMap.InsertNode(N, IP); 6750 InsertNode(N); 6751 SDValue V(N, 0); 6752 NewSDValueDbgMsg(V, "Creating new node: ", this); 6753 return V; 6754 } 6755 6756 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6757 SDValue Ptr, MachinePointerInfo PtrInfo, 6758 unsigned Alignment, 6759 MachineMemOperand::Flags MMOFlags, 6760 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6761 SDValue Undef = getUNDEF(Ptr.getValueType()); 6762 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6763 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 6764 } 6765 6766 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6767 SDValue Ptr, MachineMemOperand *MMO) { 6768 SDValue Undef = getUNDEF(Ptr.getValueType()); 6769 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6770 VT, MMO); 6771 } 6772 6773 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6774 EVT VT, SDValue Chain, SDValue Ptr, 6775 MachinePointerInfo PtrInfo, EVT MemVT, 6776 unsigned Alignment, 6777 MachineMemOperand::Flags MMOFlags, 6778 const AAMDNodes &AAInfo) { 6779 SDValue Undef = getUNDEF(Ptr.getValueType()); 6780 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 6781 MemVT, Alignment, MMOFlags, AAInfo); 6782 } 6783 6784 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6785 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 6786 MachineMemOperand *MMO) { 6787 SDValue Undef = getUNDEF(Ptr.getValueType()); 6788 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 6789 MemVT, MMO); 6790 } 6791 6792 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 6793 SDValue Base, SDValue Offset, 6794 ISD::MemIndexedMode AM) { 6795 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 6796 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 6797 // Don't propagate the invariant or dereferenceable flags. 6798 auto MMOFlags = 6799 LD->getMemOperand()->getFlags() & 6800 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 6801 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 6802 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6803 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6804 LD->getAAInfo()); 6805 } 6806 6807 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6808 SDValue Ptr, MachinePointerInfo PtrInfo, 6809 unsigned Alignment, 6810 MachineMemOperand::Flags MMOFlags, 6811 const AAMDNodes &AAInfo) { 6812 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6813 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6814 Alignment = getEVTAlignment(Val.getValueType()); 6815 6816 MMOFlags |= MachineMemOperand::MOStore; 6817 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6818 6819 if (PtrInfo.V.isNull()) 6820 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6821 6822 MachineFunction &MF = getMachineFunction(); 6823 MachineMemOperand *MMO = MF.getMachineMemOperand( 6824 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 6825 return getStore(Chain, dl, Val, Ptr, MMO); 6826 } 6827 6828 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6829 SDValue Ptr, MachineMemOperand *MMO) { 6830 assert(Chain.getValueType() == MVT::Other && 6831 "Invalid chain type"); 6832 EVT VT = Val.getValueType(); 6833 SDVTList VTs = getVTList(MVT::Other); 6834 SDValue Undef = getUNDEF(Ptr.getValueType()); 6835 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6836 FoldingSetNodeID ID; 6837 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6838 ID.AddInteger(VT.getRawBits()); 6839 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6840 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6841 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6842 void *IP = nullptr; 6843 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6844 cast<StoreSDNode>(E)->refineAlignment(MMO); 6845 return SDValue(E, 0); 6846 } 6847 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6848 ISD::UNINDEXED, false, VT, MMO); 6849 createOperands(N, Ops); 6850 6851 CSEMap.InsertNode(N, IP); 6852 InsertNode(N); 6853 SDValue V(N, 0); 6854 NewSDValueDbgMsg(V, "Creating new node: ", this); 6855 return V; 6856 } 6857 6858 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6859 SDValue Ptr, MachinePointerInfo PtrInfo, 6860 EVT SVT, unsigned Alignment, 6861 MachineMemOperand::Flags MMOFlags, 6862 const AAMDNodes &AAInfo) { 6863 assert(Chain.getValueType() == MVT::Other && 6864 "Invalid chain type"); 6865 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6866 Alignment = getEVTAlignment(SVT); 6867 6868 MMOFlags |= MachineMemOperand::MOStore; 6869 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6870 6871 if (PtrInfo.V.isNull()) 6872 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6873 6874 MachineFunction &MF = getMachineFunction(); 6875 MachineMemOperand *MMO = MF.getMachineMemOperand( 6876 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 6877 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 6878 } 6879 6880 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6881 SDValue Ptr, EVT SVT, 6882 MachineMemOperand *MMO) { 6883 EVT VT = Val.getValueType(); 6884 6885 assert(Chain.getValueType() == MVT::Other && 6886 "Invalid chain type"); 6887 if (VT == SVT) 6888 return getStore(Chain, dl, Val, Ptr, MMO); 6889 6890 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 6891 "Should only be a truncating store, not extending!"); 6892 assert(VT.isInteger() == SVT.isInteger() && 6893 "Can't do FP-INT conversion!"); 6894 assert(VT.isVector() == SVT.isVector() && 6895 "Cannot use trunc store to convert to or from a vector!"); 6896 assert((!VT.isVector() || 6897 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 6898 "Cannot use trunc store to change the number of vector elements!"); 6899 6900 SDVTList VTs = getVTList(MVT::Other); 6901 SDValue Undef = getUNDEF(Ptr.getValueType()); 6902 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6903 FoldingSetNodeID ID; 6904 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6905 ID.AddInteger(SVT.getRawBits()); 6906 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6907 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 6908 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6909 void *IP = nullptr; 6910 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6911 cast<StoreSDNode>(E)->refineAlignment(MMO); 6912 return SDValue(E, 0); 6913 } 6914 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6915 ISD::UNINDEXED, true, SVT, MMO); 6916 createOperands(N, Ops); 6917 6918 CSEMap.InsertNode(N, IP); 6919 InsertNode(N); 6920 SDValue V(N, 0); 6921 NewSDValueDbgMsg(V, "Creating new node: ", this); 6922 return V; 6923 } 6924 6925 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 6926 SDValue Base, SDValue Offset, 6927 ISD::MemIndexedMode AM) { 6928 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 6929 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 6930 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 6931 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 6932 FoldingSetNodeID ID; 6933 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6934 ID.AddInteger(ST->getMemoryVT().getRawBits()); 6935 ID.AddInteger(ST->getRawSubclassData()); 6936 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 6937 void *IP = nullptr; 6938 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6939 return SDValue(E, 0); 6940 6941 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6942 ST->isTruncatingStore(), ST->getMemoryVT(), 6943 ST->getMemOperand()); 6944 createOperands(N, Ops); 6945 6946 CSEMap.InsertNode(N, IP); 6947 InsertNode(N); 6948 SDValue V(N, 0); 6949 NewSDValueDbgMsg(V, "Creating new node: ", this); 6950 return V; 6951 } 6952 6953 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6954 SDValue Ptr, SDValue Mask, SDValue PassThru, 6955 EVT MemVT, MachineMemOperand *MMO, 6956 ISD::LoadExtType ExtTy, bool isExpanding) { 6957 SDVTList VTs = getVTList(VT, MVT::Other); 6958 SDValue Ops[] = { Chain, Ptr, Mask, PassThru }; 6959 FoldingSetNodeID ID; 6960 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 6961 ID.AddInteger(MemVT.getRawBits()); 6962 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 6963 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 6964 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6965 void *IP = nullptr; 6966 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6967 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 6968 return SDValue(E, 0); 6969 } 6970 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6971 ExtTy, isExpanding, MemVT, MMO); 6972 createOperands(N, Ops); 6973 6974 CSEMap.InsertNode(N, IP); 6975 InsertNode(N); 6976 SDValue V(N, 0); 6977 NewSDValueDbgMsg(V, "Creating new node: ", this); 6978 return V; 6979 } 6980 6981 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 6982 SDValue Val, SDValue Ptr, SDValue Mask, 6983 EVT MemVT, MachineMemOperand *MMO, 6984 bool IsTruncating, bool IsCompressing) { 6985 assert(Chain.getValueType() == MVT::Other && 6986 "Invalid chain type"); 6987 SDVTList VTs = getVTList(MVT::Other); 6988 SDValue Ops[] = { Chain, Val, Ptr, Mask }; 6989 FoldingSetNodeID ID; 6990 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 6991 ID.AddInteger(MemVT.getRawBits()); 6992 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 6993 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 6994 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6995 void *IP = nullptr; 6996 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6997 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 6998 return SDValue(E, 0); 6999 } 7000 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7001 IsTruncating, IsCompressing, MemVT, MMO); 7002 createOperands(N, Ops); 7003 7004 CSEMap.InsertNode(N, IP); 7005 InsertNode(N); 7006 SDValue V(N, 0); 7007 NewSDValueDbgMsg(V, "Creating new node: ", this); 7008 return V; 7009 } 7010 7011 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7012 ArrayRef<SDValue> Ops, 7013 MachineMemOperand *MMO, 7014 ISD::MemIndexType IndexType) { 7015 assert(Ops.size() == 6 && "Incompatible number of operands"); 7016 7017 FoldingSetNodeID ID; 7018 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7019 ID.AddInteger(VT.getRawBits()); 7020 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7021 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7022 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7023 void *IP = nullptr; 7024 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7025 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7026 return SDValue(E, 0); 7027 } 7028 7029 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7030 VTs, VT, MMO, IndexType); 7031 createOperands(N, Ops); 7032 7033 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7034 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7035 assert(N->getMask().getValueType().getVectorNumElements() == 7036 N->getValueType(0).getVectorNumElements() && 7037 "Vector width mismatch between mask and data"); 7038 assert(N->getIndex().getValueType().getVectorNumElements() >= 7039 N->getValueType(0).getVectorNumElements() && 7040 "Vector width mismatch between index and data"); 7041 assert(isa<ConstantSDNode>(N->getScale()) && 7042 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7043 "Scale should be a constant power of 2"); 7044 7045 CSEMap.InsertNode(N, IP); 7046 InsertNode(N); 7047 SDValue V(N, 0); 7048 NewSDValueDbgMsg(V, "Creating new node: ", this); 7049 return V; 7050 } 7051 7052 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7053 ArrayRef<SDValue> Ops, 7054 MachineMemOperand *MMO, 7055 ISD::MemIndexType IndexType) { 7056 assert(Ops.size() == 6 && "Incompatible number of operands"); 7057 7058 FoldingSetNodeID ID; 7059 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7060 ID.AddInteger(VT.getRawBits()); 7061 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7062 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7063 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7064 void *IP = nullptr; 7065 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7066 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7067 return SDValue(E, 0); 7068 } 7069 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7070 VTs, VT, MMO, IndexType); 7071 createOperands(N, Ops); 7072 7073 assert(N->getMask().getValueType().getVectorNumElements() == 7074 N->getValue().getValueType().getVectorNumElements() && 7075 "Vector width mismatch between mask and data"); 7076 assert(N->getIndex().getValueType().getVectorNumElements() >= 7077 N->getValue().getValueType().getVectorNumElements() && 7078 "Vector width mismatch between index and data"); 7079 assert(isa<ConstantSDNode>(N->getScale()) && 7080 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7081 "Scale should be a constant power of 2"); 7082 7083 CSEMap.InsertNode(N, IP); 7084 InsertNode(N); 7085 SDValue V(N, 0); 7086 NewSDValueDbgMsg(V, "Creating new node: ", this); 7087 return V; 7088 } 7089 7090 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7091 // select undef, T, F --> T (if T is a constant), otherwise F 7092 // select, ?, undef, F --> F 7093 // select, ?, T, undef --> T 7094 if (Cond.isUndef()) 7095 return isConstantValueOfAnyType(T) ? T : F; 7096 if (T.isUndef()) 7097 return F; 7098 if (F.isUndef()) 7099 return T; 7100 7101 // select true, T, F --> T 7102 // select false, T, F --> F 7103 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7104 return CondC->isNullValue() ? F : T; 7105 7106 // TODO: This should simplify VSELECT with constant condition using something 7107 // like this (but check boolean contents to be complete?): 7108 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7109 // return T; 7110 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7111 // return F; 7112 7113 // select ?, T, T --> T 7114 if (T == F) 7115 return T; 7116 7117 return SDValue(); 7118 } 7119 7120 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7121 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7122 if (X.isUndef()) 7123 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7124 // shift X, undef --> undef (because it may shift by the bitwidth) 7125 if (Y.isUndef()) 7126 return getUNDEF(X.getValueType()); 7127 7128 // shift 0, Y --> 0 7129 // shift X, 0 --> X 7130 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7131 return X; 7132 7133 // shift X, C >= bitwidth(X) --> undef 7134 // All vector elements must be too big (or undef) to avoid partial undefs. 7135 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7136 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7137 }; 7138 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7139 return getUNDEF(X.getValueType()); 7140 7141 return SDValue(); 7142 } 7143 7144 // TODO: Use fast-math-flags to enable more simplifications. 7145 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) { 7146 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7147 if (!YC) 7148 return SDValue(); 7149 7150 // X + -0.0 --> X 7151 if (Opcode == ISD::FADD) 7152 if (YC->getValueAPF().isNegZero()) 7153 return X; 7154 7155 // X - +0.0 --> X 7156 if (Opcode == ISD::FSUB) 7157 if (YC->getValueAPF().isPosZero()) 7158 return X; 7159 7160 // X * 1.0 --> X 7161 // X / 1.0 --> X 7162 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7163 if (YC->getValueAPF().isExactlyValue(1.0)) 7164 return X; 7165 7166 return SDValue(); 7167 } 7168 7169 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7170 SDValue Ptr, SDValue SV, unsigned Align) { 7171 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7172 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7173 } 7174 7175 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7176 ArrayRef<SDUse> Ops) { 7177 switch (Ops.size()) { 7178 case 0: return getNode(Opcode, DL, VT); 7179 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7180 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7181 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7182 default: break; 7183 } 7184 7185 // Copy from an SDUse array into an SDValue array for use with 7186 // the regular getNode logic. 7187 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7188 return getNode(Opcode, DL, VT, NewOps); 7189 } 7190 7191 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7192 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7193 unsigned NumOps = Ops.size(); 7194 switch (NumOps) { 7195 case 0: return getNode(Opcode, DL, VT); 7196 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7197 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7198 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7199 default: break; 7200 } 7201 7202 switch (Opcode) { 7203 default: break; 7204 case ISD::BUILD_VECTOR: 7205 // Attempt to simplify BUILD_VECTOR. 7206 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7207 return V; 7208 break; 7209 case ISD::CONCAT_VECTORS: 7210 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7211 return V; 7212 break; 7213 case ISD::SELECT_CC: 7214 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7215 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7216 "LHS and RHS of condition must have same type!"); 7217 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7218 "True and False arms of SelectCC must have same type!"); 7219 assert(Ops[2].getValueType() == VT && 7220 "select_cc node must be of same type as true and false value!"); 7221 break; 7222 case ISD::BR_CC: 7223 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7224 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7225 "LHS/RHS of comparison should match types!"); 7226 break; 7227 } 7228 7229 // Memoize nodes. 7230 SDNode *N; 7231 SDVTList VTs = getVTList(VT); 7232 7233 if (VT != MVT::Glue) { 7234 FoldingSetNodeID ID; 7235 AddNodeIDNode(ID, Opcode, VTs, Ops); 7236 void *IP = nullptr; 7237 7238 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7239 return SDValue(E, 0); 7240 7241 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7242 createOperands(N, Ops); 7243 7244 CSEMap.InsertNode(N, IP); 7245 } else { 7246 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7247 createOperands(N, Ops); 7248 } 7249 7250 InsertNode(N); 7251 SDValue V(N, 0); 7252 NewSDValueDbgMsg(V, "Creating new node: ", this); 7253 return V; 7254 } 7255 7256 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7257 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7258 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7259 } 7260 7261 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7262 ArrayRef<SDValue> Ops) { 7263 if (VTList.NumVTs == 1) 7264 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7265 7266 #if 0 7267 switch (Opcode) { 7268 // FIXME: figure out how to safely handle things like 7269 // int foo(int x) { return 1 << (x & 255); } 7270 // int bar() { return foo(256); } 7271 case ISD::SRA_PARTS: 7272 case ISD::SRL_PARTS: 7273 case ISD::SHL_PARTS: 7274 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7275 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7276 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7277 else if (N3.getOpcode() == ISD::AND) 7278 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7279 // If the and is only masking out bits that cannot effect the shift, 7280 // eliminate the and. 7281 unsigned NumBits = VT.getScalarSizeInBits()*2; 7282 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7283 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7284 } 7285 break; 7286 } 7287 #endif 7288 7289 // Memoize the node unless it returns a flag. 7290 SDNode *N; 7291 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7292 FoldingSetNodeID ID; 7293 AddNodeIDNode(ID, Opcode, VTList, Ops); 7294 void *IP = nullptr; 7295 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7296 return SDValue(E, 0); 7297 7298 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7299 createOperands(N, Ops); 7300 CSEMap.InsertNode(N, IP); 7301 } else { 7302 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7303 createOperands(N, Ops); 7304 } 7305 InsertNode(N); 7306 SDValue V(N, 0); 7307 NewSDValueDbgMsg(V, "Creating new node: ", this); 7308 return V; 7309 } 7310 7311 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7312 SDVTList VTList) { 7313 return getNode(Opcode, DL, VTList, None); 7314 } 7315 7316 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7317 SDValue N1) { 7318 SDValue Ops[] = { N1 }; 7319 return getNode(Opcode, DL, VTList, Ops); 7320 } 7321 7322 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7323 SDValue N1, SDValue N2) { 7324 SDValue Ops[] = { N1, N2 }; 7325 return getNode(Opcode, DL, VTList, Ops); 7326 } 7327 7328 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7329 SDValue N1, SDValue N2, SDValue N3) { 7330 SDValue Ops[] = { N1, N2, N3 }; 7331 return getNode(Opcode, DL, VTList, Ops); 7332 } 7333 7334 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7335 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7336 SDValue Ops[] = { N1, N2, N3, N4 }; 7337 return getNode(Opcode, DL, VTList, Ops); 7338 } 7339 7340 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7341 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7342 SDValue N5) { 7343 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7344 return getNode(Opcode, DL, VTList, Ops); 7345 } 7346 7347 SDVTList SelectionDAG::getVTList(EVT VT) { 7348 return makeVTList(SDNode::getValueTypeList(VT), 1); 7349 } 7350 7351 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7352 FoldingSetNodeID ID; 7353 ID.AddInteger(2U); 7354 ID.AddInteger(VT1.getRawBits()); 7355 ID.AddInteger(VT2.getRawBits()); 7356 7357 void *IP = nullptr; 7358 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7359 if (!Result) { 7360 EVT *Array = Allocator.Allocate<EVT>(2); 7361 Array[0] = VT1; 7362 Array[1] = VT2; 7363 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7364 VTListMap.InsertNode(Result, IP); 7365 } 7366 return Result->getSDVTList(); 7367 } 7368 7369 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7370 FoldingSetNodeID ID; 7371 ID.AddInteger(3U); 7372 ID.AddInteger(VT1.getRawBits()); 7373 ID.AddInteger(VT2.getRawBits()); 7374 ID.AddInteger(VT3.getRawBits()); 7375 7376 void *IP = nullptr; 7377 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7378 if (!Result) { 7379 EVT *Array = Allocator.Allocate<EVT>(3); 7380 Array[0] = VT1; 7381 Array[1] = VT2; 7382 Array[2] = VT3; 7383 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7384 VTListMap.InsertNode(Result, IP); 7385 } 7386 return Result->getSDVTList(); 7387 } 7388 7389 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7390 FoldingSetNodeID ID; 7391 ID.AddInteger(4U); 7392 ID.AddInteger(VT1.getRawBits()); 7393 ID.AddInteger(VT2.getRawBits()); 7394 ID.AddInteger(VT3.getRawBits()); 7395 ID.AddInteger(VT4.getRawBits()); 7396 7397 void *IP = nullptr; 7398 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7399 if (!Result) { 7400 EVT *Array = Allocator.Allocate<EVT>(4); 7401 Array[0] = VT1; 7402 Array[1] = VT2; 7403 Array[2] = VT3; 7404 Array[3] = VT4; 7405 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7406 VTListMap.InsertNode(Result, IP); 7407 } 7408 return Result->getSDVTList(); 7409 } 7410 7411 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7412 unsigned NumVTs = VTs.size(); 7413 FoldingSetNodeID ID; 7414 ID.AddInteger(NumVTs); 7415 for (unsigned index = 0; index < NumVTs; index++) { 7416 ID.AddInteger(VTs[index].getRawBits()); 7417 } 7418 7419 void *IP = nullptr; 7420 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7421 if (!Result) { 7422 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7423 llvm::copy(VTs, Array); 7424 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7425 VTListMap.InsertNode(Result, IP); 7426 } 7427 return Result->getSDVTList(); 7428 } 7429 7430 7431 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7432 /// specified operands. If the resultant node already exists in the DAG, 7433 /// this does not modify the specified node, instead it returns the node that 7434 /// already exists. If the resultant node does not exist in the DAG, the 7435 /// input node is returned. As a degenerate case, if you specify the same 7436 /// input operands as the node already has, the input node is returned. 7437 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7438 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7439 7440 // Check to see if there is no change. 7441 if (Op == N->getOperand(0)) return N; 7442 7443 // See if the modified node already exists. 7444 void *InsertPos = nullptr; 7445 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7446 return Existing; 7447 7448 // Nope it doesn't. Remove the node from its current place in the maps. 7449 if (InsertPos) 7450 if (!RemoveNodeFromCSEMaps(N)) 7451 InsertPos = nullptr; 7452 7453 // Now we update the operands. 7454 N->OperandList[0].set(Op); 7455 7456 updateDivergence(N); 7457 // If this gets put into a CSE map, add it. 7458 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7459 return N; 7460 } 7461 7462 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7463 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7464 7465 // Check to see if there is no change. 7466 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7467 return N; // No operands changed, just return the input node. 7468 7469 // See if the modified node already exists. 7470 void *InsertPos = nullptr; 7471 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7472 return Existing; 7473 7474 // Nope it doesn't. Remove the node from its current place in the maps. 7475 if (InsertPos) 7476 if (!RemoveNodeFromCSEMaps(N)) 7477 InsertPos = nullptr; 7478 7479 // Now we update the operands. 7480 if (N->OperandList[0] != Op1) 7481 N->OperandList[0].set(Op1); 7482 if (N->OperandList[1] != Op2) 7483 N->OperandList[1].set(Op2); 7484 7485 updateDivergence(N); 7486 // If this gets put into a CSE map, add it. 7487 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7488 return N; 7489 } 7490 7491 SDNode *SelectionDAG:: 7492 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7493 SDValue Ops[] = { Op1, Op2, Op3 }; 7494 return UpdateNodeOperands(N, Ops); 7495 } 7496 7497 SDNode *SelectionDAG:: 7498 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7499 SDValue Op3, SDValue Op4) { 7500 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7501 return UpdateNodeOperands(N, Ops); 7502 } 7503 7504 SDNode *SelectionDAG:: 7505 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7506 SDValue Op3, SDValue Op4, SDValue Op5) { 7507 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7508 return UpdateNodeOperands(N, Ops); 7509 } 7510 7511 SDNode *SelectionDAG:: 7512 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7513 unsigned NumOps = Ops.size(); 7514 assert(N->getNumOperands() == NumOps && 7515 "Update with wrong number of operands"); 7516 7517 // If no operands changed just return the input node. 7518 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7519 return N; 7520 7521 // See if the modified node already exists. 7522 void *InsertPos = nullptr; 7523 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7524 return Existing; 7525 7526 // Nope it doesn't. Remove the node from its current place in the maps. 7527 if (InsertPos) 7528 if (!RemoveNodeFromCSEMaps(N)) 7529 InsertPos = nullptr; 7530 7531 // Now we update the operands. 7532 for (unsigned i = 0; i != NumOps; ++i) 7533 if (N->OperandList[i] != Ops[i]) 7534 N->OperandList[i].set(Ops[i]); 7535 7536 updateDivergence(N); 7537 // If this gets put into a CSE map, add it. 7538 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7539 return N; 7540 } 7541 7542 /// DropOperands - Release the operands and set this node to have 7543 /// zero operands. 7544 void SDNode::DropOperands() { 7545 // Unlike the code in MorphNodeTo that does this, we don't need to 7546 // watch for dead nodes here. 7547 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7548 SDUse &Use = *I++; 7549 Use.set(SDValue()); 7550 } 7551 } 7552 7553 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7554 ArrayRef<MachineMemOperand *> NewMemRefs) { 7555 if (NewMemRefs.empty()) { 7556 N->clearMemRefs(); 7557 return; 7558 } 7559 7560 // Check if we can avoid allocating by storing a single reference directly. 7561 if (NewMemRefs.size() == 1) { 7562 N->MemRefs = NewMemRefs[0]; 7563 N->NumMemRefs = 1; 7564 return; 7565 } 7566 7567 MachineMemOperand **MemRefsBuffer = 7568 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7569 llvm::copy(NewMemRefs, MemRefsBuffer); 7570 N->MemRefs = MemRefsBuffer; 7571 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7572 } 7573 7574 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7575 /// machine opcode. 7576 /// 7577 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7578 EVT VT) { 7579 SDVTList VTs = getVTList(VT); 7580 return SelectNodeTo(N, MachineOpc, VTs, None); 7581 } 7582 7583 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7584 EVT VT, SDValue Op1) { 7585 SDVTList VTs = getVTList(VT); 7586 SDValue Ops[] = { Op1 }; 7587 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7588 } 7589 7590 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7591 EVT VT, SDValue Op1, 7592 SDValue Op2) { 7593 SDVTList VTs = getVTList(VT); 7594 SDValue Ops[] = { Op1, Op2 }; 7595 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7596 } 7597 7598 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7599 EVT VT, SDValue Op1, 7600 SDValue Op2, SDValue Op3) { 7601 SDVTList VTs = getVTList(VT); 7602 SDValue Ops[] = { Op1, Op2, Op3 }; 7603 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7604 } 7605 7606 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7607 EVT VT, ArrayRef<SDValue> Ops) { 7608 SDVTList VTs = getVTList(VT); 7609 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7610 } 7611 7612 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7613 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7614 SDVTList VTs = getVTList(VT1, VT2); 7615 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7616 } 7617 7618 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7619 EVT VT1, EVT VT2) { 7620 SDVTList VTs = getVTList(VT1, VT2); 7621 return SelectNodeTo(N, MachineOpc, VTs, None); 7622 } 7623 7624 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7625 EVT VT1, EVT VT2, EVT VT3, 7626 ArrayRef<SDValue> Ops) { 7627 SDVTList VTs = getVTList(VT1, VT2, VT3); 7628 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7629 } 7630 7631 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7632 EVT VT1, EVT VT2, 7633 SDValue Op1, SDValue Op2) { 7634 SDVTList VTs = getVTList(VT1, VT2); 7635 SDValue Ops[] = { Op1, Op2 }; 7636 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7637 } 7638 7639 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7640 SDVTList VTs,ArrayRef<SDValue> Ops) { 7641 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7642 // Reset the NodeID to -1. 7643 New->setNodeId(-1); 7644 if (New != N) { 7645 ReplaceAllUsesWith(N, New); 7646 RemoveDeadNode(N); 7647 } 7648 return New; 7649 } 7650 7651 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7652 /// the line number information on the merged node since it is not possible to 7653 /// preserve the information that operation is associated with multiple lines. 7654 /// This will make the debugger working better at -O0, were there is a higher 7655 /// probability having other instructions associated with that line. 7656 /// 7657 /// For IROrder, we keep the smaller of the two 7658 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7659 DebugLoc NLoc = N->getDebugLoc(); 7660 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 7661 N->setDebugLoc(DebugLoc()); 7662 } 7663 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 7664 N->setIROrder(Order); 7665 return N; 7666 } 7667 7668 /// MorphNodeTo - This *mutates* the specified node to have the specified 7669 /// return type, opcode, and operands. 7670 /// 7671 /// Note that MorphNodeTo returns the resultant node. If there is already a 7672 /// node of the specified opcode and operands, it returns that node instead of 7673 /// the current one. Note that the SDLoc need not be the same. 7674 /// 7675 /// Using MorphNodeTo is faster than creating a new node and swapping it in 7676 /// with ReplaceAllUsesWith both because it often avoids allocating a new 7677 /// node, and because it doesn't require CSE recalculation for any of 7678 /// the node's users. 7679 /// 7680 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 7681 /// As a consequence it isn't appropriate to use from within the DAG combiner or 7682 /// the legalizer which maintain worklists that would need to be updated when 7683 /// deleting things. 7684 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 7685 SDVTList VTs, ArrayRef<SDValue> Ops) { 7686 // If an identical node already exists, use it. 7687 void *IP = nullptr; 7688 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 7689 FoldingSetNodeID ID; 7690 AddNodeIDNode(ID, Opc, VTs, Ops); 7691 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 7692 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 7693 } 7694 7695 if (!RemoveNodeFromCSEMaps(N)) 7696 IP = nullptr; 7697 7698 // Start the morphing. 7699 N->NodeType = Opc; 7700 N->ValueList = VTs.VTs; 7701 N->NumValues = VTs.NumVTs; 7702 7703 // Clear the operands list, updating used nodes to remove this from their 7704 // use list. Keep track of any operands that become dead as a result. 7705 SmallPtrSet<SDNode*, 16> DeadNodeSet; 7706 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 7707 SDUse &Use = *I++; 7708 SDNode *Used = Use.getNode(); 7709 Use.set(SDValue()); 7710 if (Used->use_empty()) 7711 DeadNodeSet.insert(Used); 7712 } 7713 7714 // For MachineNode, initialize the memory references information. 7715 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 7716 MN->clearMemRefs(); 7717 7718 // Swap for an appropriately sized array from the recycler. 7719 removeOperands(N); 7720 createOperands(N, Ops); 7721 7722 // Delete any nodes that are still dead after adding the uses for the 7723 // new operands. 7724 if (!DeadNodeSet.empty()) { 7725 SmallVector<SDNode *, 16> DeadNodes; 7726 for (SDNode *N : DeadNodeSet) 7727 if (N->use_empty()) 7728 DeadNodes.push_back(N); 7729 RemoveDeadNodes(DeadNodes); 7730 } 7731 7732 if (IP) 7733 CSEMap.InsertNode(N, IP); // Memoize the new node. 7734 return N; 7735 } 7736 7737 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 7738 unsigned OrigOpc = Node->getOpcode(); 7739 unsigned NewOpc; 7740 switch (OrigOpc) { 7741 default: 7742 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 7743 case ISD::STRICT_FADD: NewOpc = ISD::FADD; break; 7744 case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break; 7745 case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break; 7746 case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break; 7747 case ISD::STRICT_FREM: NewOpc = ISD::FREM; break; 7748 case ISD::STRICT_FMA: NewOpc = ISD::FMA; break; 7749 case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; break; 7750 case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break; 7751 case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break; 7752 case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; break; 7753 case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; break; 7754 case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; break; 7755 case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; break; 7756 case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; break; 7757 case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; break; 7758 case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; break; 7759 case ISD::STRICT_LRINT: NewOpc = ISD::LRINT; break; 7760 case ISD::STRICT_LLRINT: NewOpc = ISD::LLRINT; break; 7761 case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; break; 7762 case ISD::STRICT_FNEARBYINT: NewOpc = ISD::FNEARBYINT; break; 7763 case ISD::STRICT_FMAXNUM: NewOpc = ISD::FMAXNUM; break; 7764 case ISD::STRICT_FMINNUM: NewOpc = ISD::FMINNUM; break; 7765 case ISD::STRICT_FCEIL: NewOpc = ISD::FCEIL; break; 7766 case ISD::STRICT_FFLOOR: NewOpc = ISD::FFLOOR; break; 7767 case ISD::STRICT_LROUND: NewOpc = ISD::LROUND; break; 7768 case ISD::STRICT_LLROUND: NewOpc = ISD::LLROUND; break; 7769 case ISD::STRICT_FROUND: NewOpc = ISD::FROUND; break; 7770 case ISD::STRICT_FTRUNC: NewOpc = ISD::FTRUNC; break; 7771 case ISD::STRICT_FP_ROUND: NewOpc = ISD::FP_ROUND; break; 7772 case ISD::STRICT_FP_EXTEND: NewOpc = ISD::FP_EXTEND; break; 7773 case ISD::STRICT_FP_TO_SINT: NewOpc = ISD::FP_TO_SINT; break; 7774 case ISD::STRICT_FP_TO_UINT: NewOpc = ISD::FP_TO_UINT; break; 7775 } 7776 7777 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 7778 7779 // We're taking this node out of the chain, so we need to re-link things. 7780 SDValue InputChain = Node->getOperand(0); 7781 SDValue OutputChain = SDValue(Node, 1); 7782 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 7783 7784 SmallVector<SDValue, 3> Ops; 7785 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 7786 Ops.push_back(Node->getOperand(i)); 7787 7788 SDVTList VTs = getVTList(Node->getValueType(0)); 7789 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 7790 7791 // MorphNodeTo can operate in two ways: if an existing node with the 7792 // specified operands exists, it can just return it. Otherwise, it 7793 // updates the node in place to have the requested operands. 7794 if (Res == Node) { 7795 // If we updated the node in place, reset the node ID. To the isel, 7796 // this should be just like a newly allocated machine node. 7797 Res->setNodeId(-1); 7798 } else { 7799 ReplaceAllUsesWith(Node, Res); 7800 RemoveDeadNode(Node); 7801 } 7802 7803 return Res; 7804 } 7805 7806 /// getMachineNode - These are used for target selectors to create a new node 7807 /// with specified return type(s), MachineInstr opcode, and operands. 7808 /// 7809 /// Note that getMachineNode returns the resultant node. If there is already a 7810 /// node of the specified opcode and operands, it returns that node instead of 7811 /// the current one. 7812 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7813 EVT VT) { 7814 SDVTList VTs = getVTList(VT); 7815 return getMachineNode(Opcode, dl, VTs, None); 7816 } 7817 7818 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7819 EVT VT, SDValue Op1) { 7820 SDVTList VTs = getVTList(VT); 7821 SDValue Ops[] = { Op1 }; 7822 return getMachineNode(Opcode, dl, VTs, Ops); 7823 } 7824 7825 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7826 EVT VT, SDValue Op1, SDValue Op2) { 7827 SDVTList VTs = getVTList(VT); 7828 SDValue Ops[] = { Op1, Op2 }; 7829 return getMachineNode(Opcode, dl, VTs, Ops); 7830 } 7831 7832 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7833 EVT VT, SDValue Op1, SDValue Op2, 7834 SDValue Op3) { 7835 SDVTList VTs = getVTList(VT); 7836 SDValue Ops[] = { Op1, Op2, Op3 }; 7837 return getMachineNode(Opcode, dl, VTs, Ops); 7838 } 7839 7840 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7841 EVT VT, ArrayRef<SDValue> Ops) { 7842 SDVTList VTs = getVTList(VT); 7843 return getMachineNode(Opcode, dl, VTs, Ops); 7844 } 7845 7846 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7847 EVT VT1, EVT VT2, SDValue Op1, 7848 SDValue Op2) { 7849 SDVTList VTs = getVTList(VT1, VT2); 7850 SDValue Ops[] = { Op1, Op2 }; 7851 return getMachineNode(Opcode, dl, VTs, Ops); 7852 } 7853 7854 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7855 EVT VT1, EVT VT2, SDValue Op1, 7856 SDValue Op2, SDValue Op3) { 7857 SDVTList VTs = getVTList(VT1, VT2); 7858 SDValue Ops[] = { Op1, Op2, Op3 }; 7859 return getMachineNode(Opcode, dl, VTs, Ops); 7860 } 7861 7862 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7863 EVT VT1, EVT VT2, 7864 ArrayRef<SDValue> Ops) { 7865 SDVTList VTs = getVTList(VT1, VT2); 7866 return getMachineNode(Opcode, dl, VTs, Ops); 7867 } 7868 7869 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7870 EVT VT1, EVT VT2, EVT VT3, 7871 SDValue Op1, SDValue Op2) { 7872 SDVTList VTs = getVTList(VT1, VT2, VT3); 7873 SDValue Ops[] = { Op1, Op2 }; 7874 return getMachineNode(Opcode, dl, VTs, Ops); 7875 } 7876 7877 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7878 EVT VT1, EVT VT2, EVT VT3, 7879 SDValue Op1, SDValue Op2, 7880 SDValue Op3) { 7881 SDVTList VTs = getVTList(VT1, VT2, VT3); 7882 SDValue Ops[] = { Op1, Op2, Op3 }; 7883 return getMachineNode(Opcode, dl, VTs, Ops); 7884 } 7885 7886 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7887 EVT VT1, EVT VT2, EVT VT3, 7888 ArrayRef<SDValue> Ops) { 7889 SDVTList VTs = getVTList(VT1, VT2, VT3); 7890 return getMachineNode(Opcode, dl, VTs, Ops); 7891 } 7892 7893 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7894 ArrayRef<EVT> ResultTys, 7895 ArrayRef<SDValue> Ops) { 7896 SDVTList VTs = getVTList(ResultTys); 7897 return getMachineNode(Opcode, dl, VTs, Ops); 7898 } 7899 7900 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 7901 SDVTList VTs, 7902 ArrayRef<SDValue> Ops) { 7903 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 7904 MachineSDNode *N; 7905 void *IP = nullptr; 7906 7907 if (DoCSE) { 7908 FoldingSetNodeID ID; 7909 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 7910 IP = nullptr; 7911 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 7912 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 7913 } 7914 } 7915 7916 // Allocate a new MachineSDNode. 7917 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7918 createOperands(N, Ops); 7919 7920 if (DoCSE) 7921 CSEMap.InsertNode(N, IP); 7922 7923 InsertNode(N); 7924 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 7925 return N; 7926 } 7927 7928 /// getTargetExtractSubreg - A convenience function for creating 7929 /// TargetOpcode::EXTRACT_SUBREG nodes. 7930 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7931 SDValue Operand) { 7932 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7933 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 7934 VT, Operand, SRIdxVal); 7935 return SDValue(Subreg, 0); 7936 } 7937 7938 /// getTargetInsertSubreg - A convenience function for creating 7939 /// TargetOpcode::INSERT_SUBREG nodes. 7940 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7941 SDValue Operand, SDValue Subreg) { 7942 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7943 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 7944 VT, Operand, Subreg, SRIdxVal); 7945 return SDValue(Result, 0); 7946 } 7947 7948 /// getNodeIfExists - Get the specified node if it's already available, or 7949 /// else return NULL. 7950 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 7951 ArrayRef<SDValue> Ops, 7952 const SDNodeFlags Flags) { 7953 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 7954 FoldingSetNodeID ID; 7955 AddNodeIDNode(ID, Opcode, VTList, Ops); 7956 void *IP = nullptr; 7957 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 7958 E->intersectFlagsWith(Flags); 7959 return E; 7960 } 7961 } 7962 return nullptr; 7963 } 7964 7965 /// getDbgValue - Creates a SDDbgValue node. 7966 /// 7967 /// SDNode 7968 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 7969 SDNode *N, unsigned R, bool IsIndirect, 7970 const DebugLoc &DL, unsigned O) { 7971 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7972 "Expected inlined-at fields to agree"); 7973 return new (DbgInfo->getAlloc()) 7974 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 7975 } 7976 7977 /// Constant 7978 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 7979 DIExpression *Expr, 7980 const Value *C, 7981 const DebugLoc &DL, unsigned O) { 7982 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7983 "Expected inlined-at fields to agree"); 7984 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 7985 } 7986 7987 /// FrameIndex 7988 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 7989 DIExpression *Expr, unsigned FI, 7990 bool IsIndirect, 7991 const DebugLoc &DL, 7992 unsigned O) { 7993 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7994 "Expected inlined-at fields to agree"); 7995 return new (DbgInfo->getAlloc()) 7996 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 7997 } 7998 7999 /// VReg 8000 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8001 DIExpression *Expr, 8002 unsigned VReg, bool IsIndirect, 8003 const DebugLoc &DL, unsigned O) { 8004 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8005 "Expected inlined-at fields to agree"); 8006 return new (DbgInfo->getAlloc()) 8007 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8008 } 8009 8010 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8011 unsigned OffsetInBits, unsigned SizeInBits, 8012 bool InvalidateDbg) { 8013 SDNode *FromNode = From.getNode(); 8014 SDNode *ToNode = To.getNode(); 8015 assert(FromNode && ToNode && "Can't modify dbg values"); 8016 8017 // PR35338 8018 // TODO: assert(From != To && "Redundant dbg value transfer"); 8019 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8020 if (From == To || FromNode == ToNode) 8021 return; 8022 8023 if (!FromNode->getHasDebugValue()) 8024 return; 8025 8026 SmallVector<SDDbgValue *, 2> ClonedDVs; 8027 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8028 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8029 continue; 8030 8031 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8032 8033 // Just transfer the dbg value attached to From. 8034 if (Dbg->getResNo() != From.getResNo()) 8035 continue; 8036 8037 DIVariable *Var = Dbg->getVariable(); 8038 auto *Expr = Dbg->getExpression(); 8039 // If a fragment is requested, update the expression. 8040 if (SizeInBits) { 8041 // When splitting a larger (e.g., sign-extended) value whose 8042 // lower bits are described with an SDDbgValue, do not attempt 8043 // to transfer the SDDbgValue to the upper bits. 8044 if (auto FI = Expr->getFragmentInfo()) 8045 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8046 continue; 8047 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8048 SizeInBits); 8049 if (!Fragment) 8050 continue; 8051 Expr = *Fragment; 8052 } 8053 // Clone the SDDbgValue and move it to To. 8054 SDDbgValue *Clone = 8055 getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), 8056 Dbg->getDebugLoc(), Dbg->getOrder()); 8057 ClonedDVs.push_back(Clone); 8058 8059 if (InvalidateDbg) { 8060 // Invalidate value and indicate the SDDbgValue should not be emitted. 8061 Dbg->setIsInvalidated(); 8062 Dbg->setIsEmitted(); 8063 } 8064 } 8065 8066 for (SDDbgValue *Dbg : ClonedDVs) 8067 AddDbgValue(Dbg, ToNode, false); 8068 } 8069 8070 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8071 if (!N.getHasDebugValue()) 8072 return; 8073 8074 SmallVector<SDDbgValue *, 2> ClonedDVs; 8075 for (auto DV : GetDbgValues(&N)) { 8076 if (DV->isInvalidated()) 8077 continue; 8078 switch (N.getOpcode()) { 8079 default: 8080 break; 8081 case ISD::ADD: 8082 SDValue N0 = N.getOperand(0); 8083 SDValue N1 = N.getOperand(1); 8084 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8085 isConstantIntBuildVectorOrConstantInt(N1)) { 8086 uint64_t Offset = N.getConstantOperandVal(1); 8087 // Rewrite an ADD constant node into a DIExpression. Since we are 8088 // performing arithmetic to compute the variable's *value* in the 8089 // DIExpression, we need to mark the expression with a 8090 // DW_OP_stack_value. 8091 auto *DIExpr = DV->getExpression(); 8092 DIExpr = 8093 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8094 SDDbgValue *Clone = 8095 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8096 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8097 ClonedDVs.push_back(Clone); 8098 DV->setIsInvalidated(); 8099 DV->setIsEmitted(); 8100 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8101 N0.getNode()->dumprFull(this); 8102 dbgs() << " into " << *DIExpr << '\n'); 8103 } 8104 } 8105 } 8106 8107 for (SDDbgValue *Dbg : ClonedDVs) 8108 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8109 } 8110 8111 /// Creates a SDDbgLabel node. 8112 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8113 const DebugLoc &DL, unsigned O) { 8114 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8115 "Expected inlined-at fields to agree"); 8116 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8117 } 8118 8119 namespace { 8120 8121 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8122 /// pointed to by a use iterator is deleted, increment the use iterator 8123 /// so that it doesn't dangle. 8124 /// 8125 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8126 SDNode::use_iterator &UI; 8127 SDNode::use_iterator &UE; 8128 8129 void NodeDeleted(SDNode *N, SDNode *E) override { 8130 // Increment the iterator as needed. 8131 while (UI != UE && N == *UI) 8132 ++UI; 8133 } 8134 8135 public: 8136 RAUWUpdateListener(SelectionDAG &d, 8137 SDNode::use_iterator &ui, 8138 SDNode::use_iterator &ue) 8139 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8140 }; 8141 8142 } // end anonymous namespace 8143 8144 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8145 /// This can cause recursive merging of nodes in the DAG. 8146 /// 8147 /// This version assumes From has a single result value. 8148 /// 8149 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8150 SDNode *From = FromN.getNode(); 8151 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8152 "Cannot replace with this method!"); 8153 assert(From != To.getNode() && "Cannot replace uses of with self"); 8154 8155 // Preserve Debug Values 8156 transferDbgValues(FromN, To); 8157 8158 // Iterate over all the existing uses of From. New uses will be added 8159 // to the beginning of the use list, which we avoid visiting. 8160 // This specifically avoids visiting uses of From that arise while the 8161 // replacement is happening, because any such uses would be the result 8162 // of CSE: If an existing node looks like From after one of its operands 8163 // is replaced by To, we don't want to replace of all its users with To 8164 // too. See PR3018 for more info. 8165 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8166 RAUWUpdateListener Listener(*this, UI, UE); 8167 while (UI != UE) { 8168 SDNode *User = *UI; 8169 8170 // This node is about to morph, remove its old self from the CSE maps. 8171 RemoveNodeFromCSEMaps(User); 8172 8173 // A user can appear in a use list multiple times, and when this 8174 // happens the uses are usually next to each other in the list. 8175 // To help reduce the number of CSE recomputations, process all 8176 // the uses of this user that we can find this way. 8177 do { 8178 SDUse &Use = UI.getUse(); 8179 ++UI; 8180 Use.set(To); 8181 if (To->isDivergent() != From->isDivergent()) 8182 updateDivergence(User); 8183 } while (UI != UE && *UI == User); 8184 // Now that we have modified User, add it back to the CSE maps. If it 8185 // already exists there, recursively merge the results together. 8186 AddModifiedNodeToCSEMaps(User); 8187 } 8188 8189 // If we just RAUW'd the root, take note. 8190 if (FromN == getRoot()) 8191 setRoot(To); 8192 } 8193 8194 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8195 /// This can cause recursive merging of nodes in the DAG. 8196 /// 8197 /// This version assumes that for each value of From, there is a 8198 /// corresponding value in To in the same position with the same type. 8199 /// 8200 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8201 #ifndef NDEBUG 8202 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8203 assert((!From->hasAnyUseOfValue(i) || 8204 From->getValueType(i) == To->getValueType(i)) && 8205 "Cannot use this version of ReplaceAllUsesWith!"); 8206 #endif 8207 8208 // Handle the trivial case. 8209 if (From == To) 8210 return; 8211 8212 // Preserve Debug Info. Only do this if there's a use. 8213 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8214 if (From->hasAnyUseOfValue(i)) { 8215 assert((i < To->getNumValues()) && "Invalid To location"); 8216 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8217 } 8218 8219 // Iterate over just the existing users of From. See the comments in 8220 // the ReplaceAllUsesWith above. 8221 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8222 RAUWUpdateListener Listener(*this, UI, UE); 8223 while (UI != UE) { 8224 SDNode *User = *UI; 8225 8226 // This node is about to morph, remove its old self from the CSE maps. 8227 RemoveNodeFromCSEMaps(User); 8228 8229 // A user can appear in a use list multiple times, and when this 8230 // happens the uses are usually next to each other in the list. 8231 // To help reduce the number of CSE recomputations, process all 8232 // the uses of this user that we can find this way. 8233 do { 8234 SDUse &Use = UI.getUse(); 8235 ++UI; 8236 Use.setNode(To); 8237 if (To->isDivergent() != From->isDivergent()) 8238 updateDivergence(User); 8239 } while (UI != UE && *UI == User); 8240 8241 // Now that we have modified User, add it back to the CSE maps. If it 8242 // already exists there, recursively merge the results together. 8243 AddModifiedNodeToCSEMaps(User); 8244 } 8245 8246 // If we just RAUW'd the root, take note. 8247 if (From == getRoot().getNode()) 8248 setRoot(SDValue(To, getRoot().getResNo())); 8249 } 8250 8251 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8252 /// This can cause recursive merging of nodes in the DAG. 8253 /// 8254 /// This version can replace From with any result values. To must match the 8255 /// number and types of values returned by From. 8256 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8257 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8258 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8259 8260 // Preserve Debug Info. 8261 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8262 transferDbgValues(SDValue(From, i), To[i]); 8263 8264 // Iterate over just the existing users of From. See the comments in 8265 // the ReplaceAllUsesWith above. 8266 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8267 RAUWUpdateListener Listener(*this, UI, UE); 8268 while (UI != UE) { 8269 SDNode *User = *UI; 8270 8271 // This node is about to morph, remove its old self from the CSE maps. 8272 RemoveNodeFromCSEMaps(User); 8273 8274 // A user can appear in a use list multiple times, and when this happens the 8275 // uses are usually next to each other in the list. To help reduce the 8276 // number of CSE and divergence recomputations, process all the uses of this 8277 // user that we can find this way. 8278 bool To_IsDivergent = false; 8279 do { 8280 SDUse &Use = UI.getUse(); 8281 const SDValue &ToOp = To[Use.getResNo()]; 8282 ++UI; 8283 Use.set(ToOp); 8284 To_IsDivergent |= ToOp->isDivergent(); 8285 } while (UI != UE && *UI == User); 8286 8287 if (To_IsDivergent != From->isDivergent()) 8288 updateDivergence(User); 8289 8290 // Now that we have modified User, add it back to the CSE maps. If it 8291 // already exists there, recursively merge the results together. 8292 AddModifiedNodeToCSEMaps(User); 8293 } 8294 8295 // If we just RAUW'd the root, take note. 8296 if (From == getRoot().getNode()) 8297 setRoot(SDValue(To[getRoot().getResNo()])); 8298 } 8299 8300 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8301 /// uses of other values produced by From.getNode() alone. The Deleted 8302 /// vector is handled the same way as for ReplaceAllUsesWith. 8303 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8304 // Handle the really simple, really trivial case efficiently. 8305 if (From == To) return; 8306 8307 // Handle the simple, trivial, case efficiently. 8308 if (From.getNode()->getNumValues() == 1) { 8309 ReplaceAllUsesWith(From, To); 8310 return; 8311 } 8312 8313 // Preserve Debug Info. 8314 transferDbgValues(From, To); 8315 8316 // Iterate over just the existing users of From. See the comments in 8317 // the ReplaceAllUsesWith above. 8318 SDNode::use_iterator UI = From.getNode()->use_begin(), 8319 UE = From.getNode()->use_end(); 8320 RAUWUpdateListener Listener(*this, UI, UE); 8321 while (UI != UE) { 8322 SDNode *User = *UI; 8323 bool UserRemovedFromCSEMaps = false; 8324 8325 // A user can appear in a use list multiple times, and when this 8326 // happens the uses are usually next to each other in the list. 8327 // To help reduce the number of CSE recomputations, process all 8328 // the uses of this user that we can find this way. 8329 do { 8330 SDUse &Use = UI.getUse(); 8331 8332 // Skip uses of different values from the same node. 8333 if (Use.getResNo() != From.getResNo()) { 8334 ++UI; 8335 continue; 8336 } 8337 8338 // If this node hasn't been modified yet, it's still in the CSE maps, 8339 // so remove its old self from the CSE maps. 8340 if (!UserRemovedFromCSEMaps) { 8341 RemoveNodeFromCSEMaps(User); 8342 UserRemovedFromCSEMaps = true; 8343 } 8344 8345 ++UI; 8346 Use.set(To); 8347 if (To->isDivergent() != From->isDivergent()) 8348 updateDivergence(User); 8349 } while (UI != UE && *UI == User); 8350 // We are iterating over all uses of the From node, so if a use 8351 // doesn't use the specific value, no changes are made. 8352 if (!UserRemovedFromCSEMaps) 8353 continue; 8354 8355 // Now that we have modified User, add it back to the CSE maps. If it 8356 // already exists there, recursively merge the results together. 8357 AddModifiedNodeToCSEMaps(User); 8358 } 8359 8360 // If we just RAUW'd the root, take note. 8361 if (From == getRoot()) 8362 setRoot(To); 8363 } 8364 8365 namespace { 8366 8367 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8368 /// to record information about a use. 8369 struct UseMemo { 8370 SDNode *User; 8371 unsigned Index; 8372 SDUse *Use; 8373 }; 8374 8375 /// operator< - Sort Memos by User. 8376 bool operator<(const UseMemo &L, const UseMemo &R) { 8377 return (intptr_t)L.User < (intptr_t)R.User; 8378 } 8379 8380 } // end anonymous namespace 8381 8382 void SelectionDAG::updateDivergence(SDNode * N) 8383 { 8384 if (TLI->isSDNodeAlwaysUniform(N)) 8385 return; 8386 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8387 for (auto &Op : N->ops()) { 8388 if (Op.Val.getValueType() != MVT::Other) 8389 IsDivergent |= Op.getNode()->isDivergent(); 8390 } 8391 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8392 N->SDNodeBits.IsDivergent = IsDivergent; 8393 for (auto U : N->uses()) { 8394 updateDivergence(U); 8395 } 8396 } 8397 } 8398 8399 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8400 DenseMap<SDNode *, unsigned> Degree; 8401 Order.reserve(AllNodes.size()); 8402 for (auto &N : allnodes()) { 8403 unsigned NOps = N.getNumOperands(); 8404 Degree[&N] = NOps; 8405 if (0 == NOps) 8406 Order.push_back(&N); 8407 } 8408 for (size_t I = 0; I != Order.size(); ++I) { 8409 SDNode *N = Order[I]; 8410 for (auto U : N->uses()) { 8411 unsigned &UnsortedOps = Degree[U]; 8412 if (0 == --UnsortedOps) 8413 Order.push_back(U); 8414 } 8415 } 8416 } 8417 8418 #ifndef NDEBUG 8419 void SelectionDAG::VerifyDAGDiverence() { 8420 std::vector<SDNode *> TopoOrder; 8421 CreateTopologicalOrder(TopoOrder); 8422 const TargetLowering &TLI = getTargetLoweringInfo(); 8423 DenseMap<const SDNode *, bool> DivergenceMap; 8424 for (auto &N : allnodes()) { 8425 DivergenceMap[&N] = false; 8426 } 8427 for (auto N : TopoOrder) { 8428 bool IsDivergent = DivergenceMap[N]; 8429 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8430 for (auto &Op : N->ops()) { 8431 if (Op.Val.getValueType() != MVT::Other) 8432 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8433 } 8434 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8435 DivergenceMap[N] = true; 8436 } 8437 } 8438 for (auto &N : allnodes()) { 8439 (void)N; 8440 assert(DivergenceMap[&N] == N.isDivergent() && 8441 "Divergence bit inconsistency detected\n"); 8442 } 8443 } 8444 #endif 8445 8446 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8447 /// uses of other values produced by From.getNode() alone. The same value 8448 /// may appear in both the From and To list. The Deleted vector is 8449 /// handled the same way as for ReplaceAllUsesWith. 8450 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8451 const SDValue *To, 8452 unsigned Num){ 8453 // Handle the simple, trivial case efficiently. 8454 if (Num == 1) 8455 return ReplaceAllUsesOfValueWith(*From, *To); 8456 8457 transferDbgValues(*From, *To); 8458 8459 // Read up all the uses and make records of them. This helps 8460 // processing new uses that are introduced during the 8461 // replacement process. 8462 SmallVector<UseMemo, 4> Uses; 8463 for (unsigned i = 0; i != Num; ++i) { 8464 unsigned FromResNo = From[i].getResNo(); 8465 SDNode *FromNode = From[i].getNode(); 8466 for (SDNode::use_iterator UI = FromNode->use_begin(), 8467 E = FromNode->use_end(); UI != E; ++UI) { 8468 SDUse &Use = UI.getUse(); 8469 if (Use.getResNo() == FromResNo) { 8470 UseMemo Memo = { *UI, i, &Use }; 8471 Uses.push_back(Memo); 8472 } 8473 } 8474 } 8475 8476 // Sort the uses, so that all the uses from a given User are together. 8477 llvm::sort(Uses); 8478 8479 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8480 UseIndex != UseIndexEnd; ) { 8481 // We know that this user uses some value of From. If it is the right 8482 // value, update it. 8483 SDNode *User = Uses[UseIndex].User; 8484 8485 // This node is about to morph, remove its old self from the CSE maps. 8486 RemoveNodeFromCSEMaps(User); 8487 8488 // The Uses array is sorted, so all the uses for a given User 8489 // are next to each other in the list. 8490 // To help reduce the number of CSE recomputations, process all 8491 // the uses of this user that we can find this way. 8492 do { 8493 unsigned i = Uses[UseIndex].Index; 8494 SDUse &Use = *Uses[UseIndex].Use; 8495 ++UseIndex; 8496 8497 Use.set(To[i]); 8498 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8499 8500 // Now that we have modified User, add it back to the CSE maps. If it 8501 // already exists there, recursively merge the results together. 8502 AddModifiedNodeToCSEMaps(User); 8503 } 8504 } 8505 8506 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8507 /// based on their topological order. It returns the maximum id and a vector 8508 /// of the SDNodes* in assigned order by reference. 8509 unsigned SelectionDAG::AssignTopologicalOrder() { 8510 unsigned DAGSize = 0; 8511 8512 // SortedPos tracks the progress of the algorithm. Nodes before it are 8513 // sorted, nodes after it are unsorted. When the algorithm completes 8514 // it is at the end of the list. 8515 allnodes_iterator SortedPos = allnodes_begin(); 8516 8517 // Visit all the nodes. Move nodes with no operands to the front of 8518 // the list immediately. Annotate nodes that do have operands with their 8519 // operand count. Before we do this, the Node Id fields of the nodes 8520 // may contain arbitrary values. After, the Node Id fields for nodes 8521 // before SortedPos will contain the topological sort index, and the 8522 // Node Id fields for nodes At SortedPos and after will contain the 8523 // count of outstanding operands. 8524 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8525 SDNode *N = &*I++; 8526 checkForCycles(N, this); 8527 unsigned Degree = N->getNumOperands(); 8528 if (Degree == 0) { 8529 // A node with no uses, add it to the result array immediately. 8530 N->setNodeId(DAGSize++); 8531 allnodes_iterator Q(N); 8532 if (Q != SortedPos) 8533 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8534 assert(SortedPos != AllNodes.end() && "Overran node list"); 8535 ++SortedPos; 8536 } else { 8537 // Temporarily use the Node Id as scratch space for the degree count. 8538 N->setNodeId(Degree); 8539 } 8540 } 8541 8542 // Visit all the nodes. As we iterate, move nodes into sorted order, 8543 // such that by the time the end is reached all nodes will be sorted. 8544 for (SDNode &Node : allnodes()) { 8545 SDNode *N = &Node; 8546 checkForCycles(N, this); 8547 // N is in sorted position, so all its uses have one less operand 8548 // that needs to be sorted. 8549 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8550 UI != UE; ++UI) { 8551 SDNode *P = *UI; 8552 unsigned Degree = P->getNodeId(); 8553 assert(Degree != 0 && "Invalid node degree"); 8554 --Degree; 8555 if (Degree == 0) { 8556 // All of P's operands are sorted, so P may sorted now. 8557 P->setNodeId(DAGSize++); 8558 if (P->getIterator() != SortedPos) 8559 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8560 assert(SortedPos != AllNodes.end() && "Overran node list"); 8561 ++SortedPos; 8562 } else { 8563 // Update P's outstanding operand count. 8564 P->setNodeId(Degree); 8565 } 8566 } 8567 if (Node.getIterator() == SortedPos) { 8568 #ifndef NDEBUG 8569 allnodes_iterator I(N); 8570 SDNode *S = &*++I; 8571 dbgs() << "Overran sorted position:\n"; 8572 S->dumprFull(this); dbgs() << "\n"; 8573 dbgs() << "Checking if this is due to cycles\n"; 8574 checkForCycles(this, true); 8575 #endif 8576 llvm_unreachable(nullptr); 8577 } 8578 } 8579 8580 assert(SortedPos == AllNodes.end() && 8581 "Topological sort incomplete!"); 8582 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8583 "First node in topological sort is not the entry token!"); 8584 assert(AllNodes.front().getNodeId() == 0 && 8585 "First node in topological sort has non-zero id!"); 8586 assert(AllNodes.front().getNumOperands() == 0 && 8587 "First node in topological sort has operands!"); 8588 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8589 "Last node in topologic sort has unexpected id!"); 8590 assert(AllNodes.back().use_empty() && 8591 "Last node in topologic sort has users!"); 8592 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8593 return DAGSize; 8594 } 8595 8596 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8597 /// value is produced by SD. 8598 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8599 if (SD) { 8600 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8601 SD->setHasDebugValue(true); 8602 } 8603 DbgInfo->add(DB, SD, isParameter); 8604 } 8605 8606 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8607 DbgInfo->add(DB); 8608 } 8609 8610 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8611 SDValue NewMemOp) { 8612 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8613 // The new memory operation must have the same position as the old load in 8614 // terms of memory dependency. Create a TokenFactor for the old load and new 8615 // memory operation and update uses of the old load's output chain to use that 8616 // TokenFactor. 8617 SDValue OldChain = SDValue(OldLoad, 1); 8618 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8619 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8620 return NewChain; 8621 8622 SDValue TokenFactor = 8623 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8624 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8625 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8626 return TokenFactor; 8627 } 8628 8629 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8630 Function **OutFunction) { 8631 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8632 8633 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8634 auto *Module = MF->getFunction().getParent(); 8635 auto *Function = Module->getFunction(Symbol); 8636 8637 if (OutFunction != nullptr) 8638 *OutFunction = Function; 8639 8640 if (Function != nullptr) { 8641 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8642 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8643 } 8644 8645 std::string ErrorStr; 8646 raw_string_ostream ErrorFormatter(ErrorStr); 8647 8648 ErrorFormatter << "Undefined external symbol "; 8649 ErrorFormatter << '"' << Symbol << '"'; 8650 ErrorFormatter.flush(); 8651 8652 report_fatal_error(ErrorStr); 8653 } 8654 8655 //===----------------------------------------------------------------------===// 8656 // SDNode Class 8657 //===----------------------------------------------------------------------===// 8658 8659 bool llvm::isNullConstant(SDValue V) { 8660 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8661 return Const != nullptr && Const->isNullValue(); 8662 } 8663 8664 bool llvm::isNullFPConstant(SDValue V) { 8665 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8666 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8667 } 8668 8669 bool llvm::isAllOnesConstant(SDValue V) { 8670 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8671 return Const != nullptr && Const->isAllOnesValue(); 8672 } 8673 8674 bool llvm::isOneConstant(SDValue V) { 8675 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8676 return Const != nullptr && Const->isOne(); 8677 } 8678 8679 SDValue llvm::peekThroughBitcasts(SDValue V) { 8680 while (V.getOpcode() == ISD::BITCAST) 8681 V = V.getOperand(0); 8682 return V; 8683 } 8684 8685 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 8686 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 8687 V = V.getOperand(0); 8688 return V; 8689 } 8690 8691 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 8692 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 8693 V = V.getOperand(0); 8694 return V; 8695 } 8696 8697 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 8698 if (V.getOpcode() != ISD::XOR) 8699 return false; 8700 V = peekThroughBitcasts(V.getOperand(1)); 8701 unsigned NumBits = V.getScalarValueSizeInBits(); 8702 ConstantSDNode *C = 8703 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 8704 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 8705 } 8706 8707 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 8708 bool AllowTruncation) { 8709 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8710 return CN; 8711 8712 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8713 BitVector UndefElements; 8714 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 8715 8716 // BuildVectors can truncate their operands. Ignore that case here unless 8717 // AllowTruncation is set. 8718 if (CN && (UndefElements.none() || AllowUndefs)) { 8719 EVT CVT = CN->getValueType(0); 8720 EVT NSVT = N.getValueType().getScalarType(); 8721 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8722 if (AllowTruncation || (CVT == NSVT)) 8723 return CN; 8724 } 8725 } 8726 8727 return nullptr; 8728 } 8729 8730 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 8731 bool AllowUndefs, 8732 bool AllowTruncation) { 8733 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8734 return CN; 8735 8736 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8737 BitVector UndefElements; 8738 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 8739 8740 // BuildVectors can truncate their operands. Ignore that case here unless 8741 // AllowTruncation is set. 8742 if (CN && (UndefElements.none() || AllowUndefs)) { 8743 EVT CVT = CN->getValueType(0); 8744 EVT NSVT = N.getValueType().getScalarType(); 8745 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8746 if (AllowTruncation || (CVT == NSVT)) 8747 return CN; 8748 } 8749 } 8750 8751 return nullptr; 8752 } 8753 8754 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 8755 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8756 return CN; 8757 8758 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8759 BitVector UndefElements; 8760 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 8761 if (CN && (UndefElements.none() || AllowUndefs)) 8762 return CN; 8763 } 8764 8765 return nullptr; 8766 } 8767 8768 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 8769 const APInt &DemandedElts, 8770 bool AllowUndefs) { 8771 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8772 return CN; 8773 8774 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8775 BitVector UndefElements; 8776 ConstantFPSDNode *CN = 8777 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 8778 if (CN && (UndefElements.none() || AllowUndefs)) 8779 return CN; 8780 } 8781 8782 return nullptr; 8783 } 8784 8785 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 8786 // TODO: may want to use peekThroughBitcast() here. 8787 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 8788 return C && C->isNullValue(); 8789 } 8790 8791 bool llvm::isOneOrOneSplat(SDValue N) { 8792 // TODO: may want to use peekThroughBitcast() here. 8793 unsigned BitWidth = N.getScalarValueSizeInBits(); 8794 ConstantSDNode *C = isConstOrConstSplat(N); 8795 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 8796 } 8797 8798 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 8799 N = peekThroughBitcasts(N); 8800 unsigned BitWidth = N.getScalarValueSizeInBits(); 8801 ConstantSDNode *C = isConstOrConstSplat(N); 8802 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 8803 } 8804 8805 HandleSDNode::~HandleSDNode() { 8806 DropOperands(); 8807 } 8808 8809 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 8810 const DebugLoc &DL, 8811 const GlobalValue *GA, EVT VT, 8812 int64_t o, unsigned TF) 8813 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 8814 TheGlobal = GA; 8815 } 8816 8817 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 8818 EVT VT, unsigned SrcAS, 8819 unsigned DestAS) 8820 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 8821 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 8822 8823 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 8824 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 8825 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 8826 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 8827 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 8828 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 8829 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 8830 8831 // We check here that the size of the memory operand fits within the size of 8832 // the MMO. This is because the MMO might indicate only a possible address 8833 // range instead of specifying the affected memory addresses precisely. 8834 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 8835 } 8836 8837 /// Profile - Gather unique data for the node. 8838 /// 8839 void SDNode::Profile(FoldingSetNodeID &ID) const { 8840 AddNodeIDNode(ID, this); 8841 } 8842 8843 namespace { 8844 8845 struct EVTArray { 8846 std::vector<EVT> VTs; 8847 8848 EVTArray() { 8849 VTs.reserve(MVT::LAST_VALUETYPE); 8850 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 8851 VTs.push_back(MVT((MVT::SimpleValueType)i)); 8852 } 8853 }; 8854 8855 } // end anonymous namespace 8856 8857 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 8858 static ManagedStatic<EVTArray> SimpleVTArray; 8859 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 8860 8861 /// getValueTypeList - Return a pointer to the specified value type. 8862 /// 8863 const EVT *SDNode::getValueTypeList(EVT VT) { 8864 if (VT.isExtended()) { 8865 sys::SmartScopedLock<true> Lock(*VTMutex); 8866 return &(*EVTs->insert(VT).first); 8867 } else { 8868 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 8869 "Value type out of range!"); 8870 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 8871 } 8872 } 8873 8874 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 8875 /// indicated value. This method ignores uses of other values defined by this 8876 /// operation. 8877 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 8878 assert(Value < getNumValues() && "Bad value!"); 8879 8880 // TODO: Only iterate over uses of a given value of the node 8881 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 8882 if (UI.getUse().getResNo() == Value) { 8883 if (NUses == 0) 8884 return false; 8885 --NUses; 8886 } 8887 } 8888 8889 // Found exactly the right number of uses? 8890 return NUses == 0; 8891 } 8892 8893 /// hasAnyUseOfValue - Return true if there are any use of the indicated 8894 /// value. This method ignores uses of other values defined by this operation. 8895 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 8896 assert(Value < getNumValues() && "Bad value!"); 8897 8898 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 8899 if (UI.getUse().getResNo() == Value) 8900 return true; 8901 8902 return false; 8903 } 8904 8905 /// isOnlyUserOf - Return true if this node is the only use of N. 8906 bool SDNode::isOnlyUserOf(const SDNode *N) const { 8907 bool Seen = false; 8908 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 8909 SDNode *User = *I; 8910 if (User == this) 8911 Seen = true; 8912 else 8913 return false; 8914 } 8915 8916 return Seen; 8917 } 8918 8919 /// Return true if the only users of N are contained in Nodes. 8920 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 8921 bool Seen = false; 8922 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 8923 SDNode *User = *I; 8924 if (llvm::any_of(Nodes, 8925 [&User](const SDNode *Node) { return User == Node; })) 8926 Seen = true; 8927 else 8928 return false; 8929 } 8930 8931 return Seen; 8932 } 8933 8934 /// isOperand - Return true if this node is an operand of N. 8935 bool SDValue::isOperandOf(const SDNode *N) const { 8936 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 8937 } 8938 8939 bool SDNode::isOperandOf(const SDNode *N) const { 8940 return any_of(N->op_values(), 8941 [this](SDValue Op) { return this == Op.getNode(); }); 8942 } 8943 8944 /// reachesChainWithoutSideEffects - Return true if this operand (which must 8945 /// be a chain) reaches the specified operand without crossing any 8946 /// side-effecting instructions on any chain path. In practice, this looks 8947 /// through token factors and non-volatile loads. In order to remain efficient, 8948 /// this only looks a couple of nodes in, it does not do an exhaustive search. 8949 /// 8950 /// Note that we only need to examine chains when we're searching for 8951 /// side-effects; SelectionDAG requires that all side-effects are represented 8952 /// by chains, even if another operand would force a specific ordering. This 8953 /// constraint is necessary to allow transformations like splitting loads. 8954 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 8955 unsigned Depth) const { 8956 if (*this == Dest) return true; 8957 8958 // Don't search too deeply, we just want to be able to see through 8959 // TokenFactor's etc. 8960 if (Depth == 0) return false; 8961 8962 // If this is a token factor, all inputs to the TF happen in parallel. 8963 if (getOpcode() == ISD::TokenFactor) { 8964 // First, try a shallow search. 8965 if (is_contained((*this)->ops(), Dest)) { 8966 // We found the chain we want as an operand of this TokenFactor. 8967 // Essentially, we reach the chain without side-effects if we could 8968 // serialize the TokenFactor into a simple chain of operations with 8969 // Dest as the last operation. This is automatically true if the 8970 // chain has one use: there are no other ordering constraints. 8971 // If the chain has more than one use, we give up: some other 8972 // use of Dest might force a side-effect between Dest and the current 8973 // node. 8974 if (Dest.hasOneUse()) 8975 return true; 8976 } 8977 // Next, try a deep search: check whether every operand of the TokenFactor 8978 // reaches Dest. 8979 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 8980 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 8981 }); 8982 } 8983 8984 // Loads don't have side effects, look through them. 8985 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 8986 if (Ld->isUnordered()) 8987 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 8988 } 8989 return false; 8990 } 8991 8992 bool SDNode::hasPredecessor(const SDNode *N) const { 8993 SmallPtrSet<const SDNode *, 32> Visited; 8994 SmallVector<const SDNode *, 16> Worklist; 8995 Worklist.push_back(this); 8996 return hasPredecessorHelper(N, Visited, Worklist); 8997 } 8998 8999 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9000 this->Flags.intersectWith(Flags); 9001 } 9002 9003 SDValue 9004 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9005 ArrayRef<ISD::NodeType> CandidateBinOps, 9006 bool AllowPartials) { 9007 // The pattern must end in an extract from index 0. 9008 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9009 !isNullConstant(Extract->getOperand(1))) 9010 return SDValue(); 9011 9012 // Match against one of the candidate binary ops. 9013 SDValue Op = Extract->getOperand(0); 9014 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9015 return Op.getOpcode() == unsigned(BinOp); 9016 })) 9017 return SDValue(); 9018 9019 // Floating-point reductions may require relaxed constraints on the final step 9020 // of the reduction because they may reorder intermediate operations. 9021 unsigned CandidateBinOp = Op.getOpcode(); 9022 if (Op.getValueType().isFloatingPoint()) { 9023 SDNodeFlags Flags = Op->getFlags(); 9024 switch (CandidateBinOp) { 9025 case ISD::FADD: 9026 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9027 return SDValue(); 9028 break; 9029 default: 9030 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9031 } 9032 } 9033 9034 // Matching failed - attempt to see if we did enough stages that a partial 9035 // reduction from a subvector is possible. 9036 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9037 if (!AllowPartials || !Op) 9038 return SDValue(); 9039 EVT OpVT = Op.getValueType(); 9040 EVT OpSVT = OpVT.getScalarType(); 9041 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9042 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9043 return SDValue(); 9044 BinOp = (ISD::NodeType)CandidateBinOp; 9045 return getNode( 9046 ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9047 getConstant(0, SDLoc(Op), TLI->getVectorIdxTy(getDataLayout()))); 9048 }; 9049 9050 // At each stage, we're looking for something that looks like: 9051 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9052 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9053 // i32 undef, i32 undef, i32 undef, i32 undef> 9054 // %a = binop <8 x i32> %op, %s 9055 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9056 // we expect something like: 9057 // <4,5,6,7,u,u,u,u> 9058 // <2,3,u,u,u,u,u,u> 9059 // <1,u,u,u,u,u,u,u> 9060 // While a partial reduction match would be: 9061 // <2,3,u,u,u,u,u,u> 9062 // <1,u,u,u,u,u,u,u> 9063 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9064 SDValue PrevOp; 9065 for (unsigned i = 0; i < Stages; ++i) { 9066 unsigned MaskEnd = (1 << i); 9067 9068 if (Op.getOpcode() != CandidateBinOp) 9069 return PartialReduction(PrevOp, MaskEnd); 9070 9071 SDValue Op0 = Op.getOperand(0); 9072 SDValue Op1 = Op.getOperand(1); 9073 9074 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9075 if (Shuffle) { 9076 Op = Op1; 9077 } else { 9078 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9079 Op = Op0; 9080 } 9081 9082 // The first operand of the shuffle should be the same as the other operand 9083 // of the binop. 9084 if (!Shuffle || Shuffle->getOperand(0) != Op) 9085 return PartialReduction(PrevOp, MaskEnd); 9086 9087 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9088 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9089 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9090 return PartialReduction(PrevOp, MaskEnd); 9091 9092 PrevOp = Op; 9093 } 9094 9095 BinOp = (ISD::NodeType)CandidateBinOp; 9096 return Op; 9097 } 9098 9099 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9100 assert(N->getNumValues() == 1 && 9101 "Can't unroll a vector with multiple results!"); 9102 9103 EVT VT = N->getValueType(0); 9104 unsigned NE = VT.getVectorNumElements(); 9105 EVT EltVT = VT.getVectorElementType(); 9106 SDLoc dl(N); 9107 9108 SmallVector<SDValue, 8> Scalars; 9109 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9110 9111 // If ResNE is 0, fully unroll the vector op. 9112 if (ResNE == 0) 9113 ResNE = NE; 9114 else if (NE > ResNE) 9115 NE = ResNE; 9116 9117 unsigned i; 9118 for (i= 0; i != NE; ++i) { 9119 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9120 SDValue Operand = N->getOperand(j); 9121 EVT OperandVT = Operand.getValueType(); 9122 if (OperandVT.isVector()) { 9123 // A vector operand; extract a single element. 9124 EVT OperandEltVT = OperandVT.getVectorElementType(); 9125 Operands[j] = 9126 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 9127 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 9128 } else { 9129 // A scalar operand; just use it as is. 9130 Operands[j] = Operand; 9131 } 9132 } 9133 9134 switch (N->getOpcode()) { 9135 default: { 9136 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9137 N->getFlags())); 9138 break; 9139 } 9140 case ISD::VSELECT: 9141 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9142 break; 9143 case ISD::SHL: 9144 case ISD::SRA: 9145 case ISD::SRL: 9146 case ISD::ROTL: 9147 case ISD::ROTR: 9148 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9149 getShiftAmountOperand(Operands[0].getValueType(), 9150 Operands[1]))); 9151 break; 9152 case ISD::SIGN_EXTEND_INREG: { 9153 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9154 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9155 Operands[0], 9156 getValueType(ExtVT))); 9157 } 9158 } 9159 } 9160 9161 for (; i < ResNE; ++i) 9162 Scalars.push_back(getUNDEF(EltVT)); 9163 9164 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9165 return getBuildVector(VecVT, dl, Scalars); 9166 } 9167 9168 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9169 SDNode *N, unsigned ResNE) { 9170 unsigned Opcode = N->getOpcode(); 9171 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9172 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9173 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9174 "Expected an overflow opcode"); 9175 9176 EVT ResVT = N->getValueType(0); 9177 EVT OvVT = N->getValueType(1); 9178 EVT ResEltVT = ResVT.getVectorElementType(); 9179 EVT OvEltVT = OvVT.getVectorElementType(); 9180 SDLoc dl(N); 9181 9182 // If ResNE is 0, fully unroll the vector op. 9183 unsigned NE = ResVT.getVectorNumElements(); 9184 if (ResNE == 0) 9185 ResNE = NE; 9186 else if (NE > ResNE) 9187 NE = ResNE; 9188 9189 SmallVector<SDValue, 8> LHSScalars; 9190 SmallVector<SDValue, 8> RHSScalars; 9191 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9192 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9193 9194 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9195 SDVTList VTs = getVTList(ResEltVT, SVT); 9196 SmallVector<SDValue, 8> ResScalars; 9197 SmallVector<SDValue, 8> OvScalars; 9198 for (unsigned i = 0; i < NE; ++i) { 9199 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9200 SDValue Ov = 9201 getSelect(dl, OvEltVT, Res.getValue(1), 9202 getBoolConstant(true, dl, OvEltVT, ResVT), 9203 getConstant(0, dl, OvEltVT)); 9204 9205 ResScalars.push_back(Res); 9206 OvScalars.push_back(Ov); 9207 } 9208 9209 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9210 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9211 9212 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9213 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9214 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9215 getBuildVector(NewOvVT, dl, OvScalars)); 9216 } 9217 9218 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9219 LoadSDNode *Base, 9220 unsigned Bytes, 9221 int Dist) const { 9222 if (LD->isVolatile() || Base->isVolatile()) 9223 return false; 9224 // TODO: probably too restrictive for atomics, revisit 9225 if (!LD->isSimple()) 9226 return false; 9227 if (LD->isIndexed() || Base->isIndexed()) 9228 return false; 9229 if (LD->getChain() != Base->getChain()) 9230 return false; 9231 EVT VT = LD->getValueType(0); 9232 if (VT.getSizeInBits() / 8 != Bytes) 9233 return false; 9234 9235 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9236 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9237 9238 int64_t Offset = 0; 9239 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9240 return (Dist * Bytes == Offset); 9241 return false; 9242 } 9243 9244 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 9245 /// it cannot be inferred. 9246 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 9247 // If this is a GlobalAddress + cst, return the alignment. 9248 const GlobalValue *GV; 9249 int64_t GVOffset = 0; 9250 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9251 unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType()); 9252 KnownBits Known(IdxWidth); 9253 llvm::computeKnownBits(GV, Known, getDataLayout()); 9254 unsigned AlignBits = Known.countMinTrailingZeros(); 9255 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 9256 if (Align) 9257 return MinAlign(Align, GVOffset); 9258 } 9259 9260 // If this is a direct reference to a stack slot, use information about the 9261 // stack slot's alignment. 9262 int FrameIdx = INT_MIN; 9263 int64_t FrameOffset = 0; 9264 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9265 FrameIdx = FI->getIndex(); 9266 } else if (isBaseWithConstantOffset(Ptr) && 9267 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9268 // Handle FI+Cst 9269 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9270 FrameOffset = Ptr.getConstantOperandVal(1); 9271 } 9272 9273 if (FrameIdx != INT_MIN) { 9274 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9275 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 9276 FrameOffset); 9277 return FIInfoAlign; 9278 } 9279 9280 return 0; 9281 } 9282 9283 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9284 /// which is split (or expanded) into two not necessarily identical pieces. 9285 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9286 // Currently all types are split in half. 9287 EVT LoVT, HiVT; 9288 if (!VT.isVector()) 9289 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9290 else 9291 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9292 9293 return std::make_pair(LoVT, HiVT); 9294 } 9295 9296 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9297 /// low/high part. 9298 std::pair<SDValue, SDValue> 9299 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9300 const EVT &HiVT) { 9301 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 9302 N.getValueType().getVectorNumElements() && 9303 "More vector elements requested than available!"); 9304 SDValue Lo, Hi; 9305 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 9306 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 9307 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9308 getConstant(LoVT.getVectorNumElements(), DL, 9309 TLI->getVectorIdxTy(getDataLayout()))); 9310 return std::make_pair(Lo, Hi); 9311 } 9312 9313 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9314 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9315 EVT VT = N.getValueType(); 9316 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9317 NextPowerOf2(VT.getVectorNumElements())); 9318 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9319 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 9320 } 9321 9322 void SelectionDAG::ExtractVectorElements(SDValue Op, 9323 SmallVectorImpl<SDValue> &Args, 9324 unsigned Start, unsigned Count) { 9325 EVT VT = Op.getValueType(); 9326 if (Count == 0) 9327 Count = VT.getVectorNumElements(); 9328 9329 EVT EltVT = VT.getVectorElementType(); 9330 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 9331 SDLoc SL(Op); 9332 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9333 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9334 Op, getConstant(i, SL, IdxTy))); 9335 } 9336 } 9337 9338 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9339 unsigned GlobalAddressSDNode::getAddressSpace() const { 9340 return getGlobal()->getType()->getAddressSpace(); 9341 } 9342 9343 Type *ConstantPoolSDNode::getType() const { 9344 if (isMachineConstantPoolEntry()) 9345 return Val.MachineCPVal->getType(); 9346 return Val.ConstVal->getType(); 9347 } 9348 9349 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9350 unsigned &SplatBitSize, 9351 bool &HasAnyUndefs, 9352 unsigned MinSplatBits, 9353 bool IsBigEndian) const { 9354 EVT VT = getValueType(0); 9355 assert(VT.isVector() && "Expected a vector type"); 9356 unsigned VecWidth = VT.getSizeInBits(); 9357 if (MinSplatBits > VecWidth) 9358 return false; 9359 9360 // FIXME: The widths are based on this node's type, but build vectors can 9361 // truncate their operands. 9362 SplatValue = APInt(VecWidth, 0); 9363 SplatUndef = APInt(VecWidth, 0); 9364 9365 // Get the bits. Bits with undefined values (when the corresponding element 9366 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9367 // in SplatValue. If any of the values are not constant, give up and return 9368 // false. 9369 unsigned int NumOps = getNumOperands(); 9370 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9371 unsigned EltWidth = VT.getScalarSizeInBits(); 9372 9373 for (unsigned j = 0; j < NumOps; ++j) { 9374 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9375 SDValue OpVal = getOperand(i); 9376 unsigned BitPos = j * EltWidth; 9377 9378 if (OpVal.isUndef()) 9379 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9380 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9381 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9382 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9383 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9384 else 9385 return false; 9386 } 9387 9388 // The build_vector is all constants or undefs. Find the smallest element 9389 // size that splats the vector. 9390 HasAnyUndefs = (SplatUndef != 0); 9391 9392 // FIXME: This does not work for vectors with elements less than 8 bits. 9393 while (VecWidth > 8) { 9394 unsigned HalfSize = VecWidth / 2; 9395 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9396 APInt LowValue = SplatValue.trunc(HalfSize); 9397 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9398 APInt LowUndef = SplatUndef.trunc(HalfSize); 9399 9400 // If the two halves do not match (ignoring undef bits), stop here. 9401 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9402 MinSplatBits > HalfSize) 9403 break; 9404 9405 SplatValue = HighValue | LowValue; 9406 SplatUndef = HighUndef & LowUndef; 9407 9408 VecWidth = HalfSize; 9409 } 9410 9411 SplatBitSize = VecWidth; 9412 return true; 9413 } 9414 9415 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9416 BitVector *UndefElements) const { 9417 if (UndefElements) { 9418 UndefElements->clear(); 9419 UndefElements->resize(getNumOperands()); 9420 } 9421 assert(getNumOperands() == DemandedElts.getBitWidth() && 9422 "Unexpected vector size"); 9423 if (!DemandedElts) 9424 return SDValue(); 9425 SDValue Splatted; 9426 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9427 if (!DemandedElts[i]) 9428 continue; 9429 SDValue Op = getOperand(i); 9430 if (Op.isUndef()) { 9431 if (UndefElements) 9432 (*UndefElements)[i] = true; 9433 } else if (!Splatted) { 9434 Splatted = Op; 9435 } else if (Splatted != Op) { 9436 return SDValue(); 9437 } 9438 } 9439 9440 if (!Splatted) { 9441 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9442 assert(getOperand(FirstDemandedIdx).isUndef() && 9443 "Can only have a splat without a constant for all undefs."); 9444 return getOperand(FirstDemandedIdx); 9445 } 9446 9447 return Splatted; 9448 } 9449 9450 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9451 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9452 return getSplatValue(DemandedElts, UndefElements); 9453 } 9454 9455 ConstantSDNode * 9456 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9457 BitVector *UndefElements) const { 9458 return dyn_cast_or_null<ConstantSDNode>( 9459 getSplatValue(DemandedElts, UndefElements)); 9460 } 9461 9462 ConstantSDNode * 9463 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9464 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9465 } 9466 9467 ConstantFPSDNode * 9468 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9469 BitVector *UndefElements) const { 9470 return dyn_cast_or_null<ConstantFPSDNode>( 9471 getSplatValue(DemandedElts, UndefElements)); 9472 } 9473 9474 ConstantFPSDNode * 9475 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9476 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9477 } 9478 9479 int32_t 9480 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9481 uint32_t BitWidth) const { 9482 if (ConstantFPSDNode *CN = 9483 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9484 bool IsExact; 9485 APSInt IntVal(BitWidth); 9486 const APFloat &APF = CN->getValueAPF(); 9487 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9488 APFloat::opOK || 9489 !IsExact) 9490 return -1; 9491 9492 return IntVal.exactLogBase2(); 9493 } 9494 return -1; 9495 } 9496 9497 bool BuildVectorSDNode::isConstant() const { 9498 for (const SDValue &Op : op_values()) { 9499 unsigned Opc = Op.getOpcode(); 9500 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9501 return false; 9502 } 9503 return true; 9504 } 9505 9506 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9507 // Find the first non-undef value in the shuffle mask. 9508 unsigned i, e; 9509 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9510 /* search */; 9511 9512 // If all elements are undefined, this shuffle can be considered a splat 9513 // (although it should eventually get simplified away completely). 9514 if (i == e) 9515 return true; 9516 9517 // Make sure all remaining elements are either undef or the same as the first 9518 // non-undef value. 9519 for (int Idx = Mask[i]; i != e; ++i) 9520 if (Mask[i] >= 0 && Mask[i] != Idx) 9521 return false; 9522 return true; 9523 } 9524 9525 // Returns the SDNode if it is a constant integer BuildVector 9526 // or constant integer. 9527 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9528 if (isa<ConstantSDNode>(N)) 9529 return N.getNode(); 9530 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9531 return N.getNode(); 9532 // Treat a GlobalAddress supporting constant offset folding as a 9533 // constant integer. 9534 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9535 if (GA->getOpcode() == ISD::GlobalAddress && 9536 TLI->isOffsetFoldingLegal(GA)) 9537 return GA; 9538 return nullptr; 9539 } 9540 9541 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9542 if (isa<ConstantFPSDNode>(N)) 9543 return N.getNode(); 9544 9545 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9546 return N.getNode(); 9547 9548 return nullptr; 9549 } 9550 9551 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9552 assert(!Node->OperandList && "Node already has operands"); 9553 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9554 "too many operands to fit into SDNode"); 9555 SDUse *Ops = OperandRecycler.allocate( 9556 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9557 9558 bool IsDivergent = false; 9559 for (unsigned I = 0; I != Vals.size(); ++I) { 9560 Ops[I].setUser(Node); 9561 Ops[I].setInitial(Vals[I]); 9562 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9563 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9564 } 9565 Node->NumOperands = Vals.size(); 9566 Node->OperandList = Ops; 9567 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9568 if (!TLI->isSDNodeAlwaysUniform(Node)) 9569 Node->SDNodeBits.IsDivergent = IsDivergent; 9570 checkForCycles(Node); 9571 } 9572 9573 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9574 SmallVectorImpl<SDValue> &Vals) { 9575 size_t Limit = SDNode::getMaxNumOperands(); 9576 while (Vals.size() > Limit) { 9577 unsigned SliceIdx = Vals.size() - Limit; 9578 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9579 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9580 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9581 Vals.emplace_back(NewTF); 9582 } 9583 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9584 } 9585 9586 #ifndef NDEBUG 9587 static void checkForCyclesHelper(const SDNode *N, 9588 SmallPtrSetImpl<const SDNode*> &Visited, 9589 SmallPtrSetImpl<const SDNode*> &Checked, 9590 const llvm::SelectionDAG *DAG) { 9591 // If this node has already been checked, don't check it again. 9592 if (Checked.count(N)) 9593 return; 9594 9595 // If a node has already been visited on this depth-first walk, reject it as 9596 // a cycle. 9597 if (!Visited.insert(N).second) { 9598 errs() << "Detected cycle in SelectionDAG\n"; 9599 dbgs() << "Offending node:\n"; 9600 N->dumprFull(DAG); dbgs() << "\n"; 9601 abort(); 9602 } 9603 9604 for (const SDValue &Op : N->op_values()) 9605 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9606 9607 Checked.insert(N); 9608 Visited.erase(N); 9609 } 9610 #endif 9611 9612 void llvm::checkForCycles(const llvm::SDNode *N, 9613 const llvm::SelectionDAG *DAG, 9614 bool force) { 9615 #ifndef NDEBUG 9616 bool check = force; 9617 #ifdef EXPENSIVE_CHECKS 9618 check = true; 9619 #endif // EXPENSIVE_CHECKS 9620 if (check) { 9621 assert(N && "Checking nonexistent SDNode"); 9622 SmallPtrSet<const SDNode*, 32> visited; 9623 SmallPtrSet<const SDNode*, 32> checked; 9624 checkForCyclesHelper(N, visited, checked, DAG); 9625 } 9626 #endif // !NDEBUG 9627 } 9628 9629 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 9630 checkForCycles(DAG->getRoot().getNode(), DAG, force); 9631 } 9632