xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/CodeGen/ISDOpcodes.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/RuntimeLibcalls.h"
35 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CodeGen.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/KnownBits.h"
59 #include "llvm/Support/MachineValueType.h"
60 #include "llvm/Support/ManagedStatic.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/Mutex.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetOptions.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <cstdlib>
70 #include <limits>
71 #include <set>
72 #include <string>
73 #include <utility>
74 #include <vector>
75 
76 using namespace llvm;
77 
78 /// makeVTList - Return an instance of the SDVTList struct initialized with the
79 /// specified members.
80 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
81   SDVTList Res = {VTs, NumVTs};
82   return Res;
83 }
84 
85 // Default null implementations of the callbacks.
86 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
87 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
88 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
89 
90 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
91 
92 #define DEBUG_TYPE "selectiondag"
93 
94 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
95        cl::Hidden, cl::init(true),
96        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
97 
98 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
99        cl::desc("Number limit for gluing ld/st of memcpy."),
100        cl::Hidden, cl::init(0));
101 
102 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
103   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
104 }
105 
106 //===----------------------------------------------------------------------===//
107 //                              ConstantFPSDNode Class
108 //===----------------------------------------------------------------------===//
109 
110 /// isExactlyValue - We don't rely on operator== working on double values, as
111 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
112 /// As such, this method can be used to do an exact bit-for-bit comparison of
113 /// two floating point values.
114 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
115   return getValueAPF().bitwiseIsEqual(V);
116 }
117 
118 bool ConstantFPSDNode::isValueValidForType(EVT VT,
119                                            const APFloat& Val) {
120   assert(VT.isFloatingPoint() && "Can only convert between FP types");
121 
122   // convert modifies in place, so make a copy.
123   APFloat Val2 = APFloat(Val);
124   bool losesInfo;
125   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
126                       APFloat::rmNearestTiesToEven,
127                       &losesInfo);
128   return !losesInfo;
129 }
130 
131 //===----------------------------------------------------------------------===//
132 //                              ISD Namespace
133 //===----------------------------------------------------------------------===//
134 
135 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
136   auto *BV = dyn_cast<BuildVectorSDNode>(N);
137   if (!BV)
138     return false;
139 
140   APInt SplatUndef;
141   unsigned SplatBitSize;
142   bool HasUndefs;
143   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
144   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
145                              EltSize) &&
146          EltSize == SplatBitSize;
147 }
148 
149 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
150 // specializations of the more general isConstantSplatVector()?
151 
152 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
153   // Look through a bit convert.
154   while (N->getOpcode() == ISD::BITCAST)
155     N = N->getOperand(0).getNode();
156 
157   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158 
159   unsigned i = 0, e = N->getNumOperands();
160 
161   // Skip over all of the undef values.
162   while (i != e && N->getOperand(i).isUndef())
163     ++i;
164 
165   // Do not accept an all-undef vector.
166   if (i == e) return false;
167 
168   // Do not accept build_vectors that aren't all constants or which have non-~0
169   // elements. We have to be a bit careful here, as the type of the constant
170   // may not be the same as the type of the vector elements due to type
171   // legalization (the elements are promoted to a legal type for the target and
172   // a vector of a type may be legal when the base element type is not).
173   // We only want to check enough bits to cover the vector elements, because
174   // we care if the resultant vector is all ones, not whether the individual
175   // constants are.
176   SDValue NotZero = N->getOperand(i);
177   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
178   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
179     if (CN->getAPIntValue().countTrailingOnes() < EltSize)
180       return false;
181   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
182     if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
183       return false;
184   } else
185     return false;
186 
187   // Okay, we have at least one ~0 value, check to see if the rest match or are
188   // undefs. Even with the above element type twiddling, this should be OK, as
189   // the same type legalization should have applied to all the elements.
190   for (++i; i != e; ++i)
191     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
192       return false;
193   return true;
194 }
195 
196 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
197   // Look through a bit convert.
198   while (N->getOpcode() == ISD::BITCAST)
199     N = N->getOperand(0).getNode();
200 
201   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
202 
203   bool IsAllUndef = true;
204   for (const SDValue &Op : N->op_values()) {
205     if (Op.isUndef())
206       continue;
207     IsAllUndef = false;
208     // Do not accept build_vectors that aren't all constants or which have non-0
209     // elements. We have to be a bit careful here, as the type of the constant
210     // may not be the same as the type of the vector elements due to type
211     // legalization (the elements are promoted to a legal type for the target
212     // and a vector of a type may be legal when the base element type is not).
213     // We only want to check enough bits to cover the vector elements, because
214     // we care if the resultant vector is all zeros, not whether the individual
215     // constants are.
216     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
217     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
218       if (CN->getAPIntValue().countTrailingZeros() < EltSize)
219         return false;
220     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
221       if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
222         return false;
223     } else
224       return false;
225   }
226 
227   // Do not accept an all-undef vector.
228   if (IsAllUndef)
229     return false;
230   return true;
231 }
232 
233 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
234   if (N->getOpcode() != ISD::BUILD_VECTOR)
235     return false;
236 
237   for (const SDValue &Op : N->op_values()) {
238     if (Op.isUndef())
239       continue;
240     if (!isa<ConstantSDNode>(Op))
241       return false;
242   }
243   return true;
244 }
245 
246 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
247   if (N->getOpcode() != ISD::BUILD_VECTOR)
248     return false;
249 
250   for (const SDValue &Op : N->op_values()) {
251     if (Op.isUndef())
252       continue;
253     if (!isa<ConstantFPSDNode>(Op))
254       return false;
255   }
256   return true;
257 }
258 
259 bool ISD::allOperandsUndef(const SDNode *N) {
260   // Return false if the node has no operands.
261   // This is "logically inconsistent" with the definition of "all" but
262   // is probably the desired behavior.
263   if (N->getNumOperands() == 0)
264     return false;
265   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
266 }
267 
268 bool ISD::matchUnaryPredicate(SDValue Op,
269                               std::function<bool(ConstantSDNode *)> Match,
270                               bool AllowUndefs) {
271   // FIXME: Add support for scalar UNDEF cases?
272   if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
273     return Match(Cst);
274 
275   // FIXME: Add support for vector UNDEF cases?
276   if (ISD::BUILD_VECTOR != Op.getOpcode())
277     return false;
278 
279   EVT SVT = Op.getValueType().getScalarType();
280   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
281     if (AllowUndefs && Op.getOperand(i).isUndef()) {
282       if (!Match(nullptr))
283         return false;
284       continue;
285     }
286 
287     auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
288     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
289       return false;
290   }
291   return true;
292 }
293 
294 bool ISD::matchBinaryPredicate(
295     SDValue LHS, SDValue RHS,
296     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
297     bool AllowUndefs, bool AllowTypeMismatch) {
298   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
299     return false;
300 
301   // TODO: Add support for scalar UNDEF cases?
302   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
303     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
304       return Match(LHSCst, RHSCst);
305 
306   // TODO: Add support for vector UNDEF cases?
307   if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
308       ISD::BUILD_VECTOR != RHS.getOpcode())
309     return false;
310 
311   EVT SVT = LHS.getValueType().getScalarType();
312   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
313     SDValue LHSOp = LHS.getOperand(i);
314     SDValue RHSOp = RHS.getOperand(i);
315     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
316     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
317     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
318     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
319     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
320       return false;
321     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
322                                LHSOp.getValueType() != RHSOp.getValueType()))
323       return false;
324     if (!Match(LHSCst, RHSCst))
325       return false;
326   }
327   return true;
328 }
329 
330 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
331   switch (ExtType) {
332   case ISD::EXTLOAD:
333     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
334   case ISD::SEXTLOAD:
335     return ISD::SIGN_EXTEND;
336   case ISD::ZEXTLOAD:
337     return ISD::ZERO_EXTEND;
338   default:
339     break;
340   }
341 
342   llvm_unreachable("Invalid LoadExtType");
343 }
344 
345 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
346   // To perform this operation, we just need to swap the L and G bits of the
347   // operation.
348   unsigned OldL = (Operation >> 2) & 1;
349   unsigned OldG = (Operation >> 1) & 1;
350   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
351                        (OldL << 1) |       // New G bit
352                        (OldG << 2));       // New L bit.
353 }
354 
355 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
356   unsigned Operation = Op;
357   if (isInteger)
358     Operation ^= 7;   // Flip L, G, E bits, but not U.
359   else
360     Operation ^= 15;  // Flip all of the condition bits.
361 
362   if (Operation > ISD::SETTRUE2)
363     Operation &= ~8;  // Don't let N and U bits get set.
364 
365   return ISD::CondCode(Operation);
366 }
367 
368 /// For an integer comparison, return 1 if the comparison is a signed operation
369 /// and 2 if the result is an unsigned comparison. Return zero if the operation
370 /// does not depend on the sign of the input (setne and seteq).
371 static int isSignedOp(ISD::CondCode Opcode) {
372   switch (Opcode) {
373   default: llvm_unreachable("Illegal integer setcc operation!");
374   case ISD::SETEQ:
375   case ISD::SETNE: return 0;
376   case ISD::SETLT:
377   case ISD::SETLE:
378   case ISD::SETGT:
379   case ISD::SETGE: return 1;
380   case ISD::SETULT:
381   case ISD::SETULE:
382   case ISD::SETUGT:
383   case ISD::SETUGE: return 2;
384   }
385 }
386 
387 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
388                                        bool IsInteger) {
389   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
390     // Cannot fold a signed integer setcc with an unsigned integer setcc.
391     return ISD::SETCC_INVALID;
392 
393   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
394 
395   // If the N and U bits get set, then the resultant comparison DOES suddenly
396   // care about orderedness, and it is true when ordered.
397   if (Op > ISD::SETTRUE2)
398     Op &= ~16;     // Clear the U bit if the N bit is set.
399 
400   // Canonicalize illegal integer setcc's.
401   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
402     Op = ISD::SETNE;
403 
404   return ISD::CondCode(Op);
405 }
406 
407 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
408                                         bool IsInteger) {
409   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
410     // Cannot fold a signed setcc with an unsigned setcc.
411     return ISD::SETCC_INVALID;
412 
413   // Combine all of the condition bits.
414   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
415 
416   // Canonicalize illegal integer setcc's.
417   if (IsInteger) {
418     switch (Result) {
419     default: break;
420     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
421     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
422     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
423     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
424     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
425     }
426   }
427 
428   return Result;
429 }
430 
431 //===----------------------------------------------------------------------===//
432 //                           SDNode Profile Support
433 //===----------------------------------------------------------------------===//
434 
435 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
436 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
437   ID.AddInteger(OpC);
438 }
439 
440 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
441 /// solely with their pointer.
442 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
443   ID.AddPointer(VTList.VTs);
444 }
445 
446 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
447 static void AddNodeIDOperands(FoldingSetNodeID &ID,
448                               ArrayRef<SDValue> Ops) {
449   for (auto& Op : Ops) {
450     ID.AddPointer(Op.getNode());
451     ID.AddInteger(Op.getResNo());
452   }
453 }
454 
455 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
456 static void AddNodeIDOperands(FoldingSetNodeID &ID,
457                               ArrayRef<SDUse> Ops) {
458   for (auto& Op : Ops) {
459     ID.AddPointer(Op.getNode());
460     ID.AddInteger(Op.getResNo());
461   }
462 }
463 
464 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
465                           SDVTList VTList, ArrayRef<SDValue> OpList) {
466   AddNodeIDOpcode(ID, OpC);
467   AddNodeIDValueTypes(ID, VTList);
468   AddNodeIDOperands(ID, OpList);
469 }
470 
471 /// If this is an SDNode with special info, add this info to the NodeID data.
472 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
473   switch (N->getOpcode()) {
474   case ISD::TargetExternalSymbol:
475   case ISD::ExternalSymbol:
476   case ISD::MCSymbol:
477     llvm_unreachable("Should only be used on nodes with operands");
478   default: break;  // Normal nodes don't need extra info.
479   case ISD::TargetConstant:
480   case ISD::Constant: {
481     const ConstantSDNode *C = cast<ConstantSDNode>(N);
482     ID.AddPointer(C->getConstantIntValue());
483     ID.AddBoolean(C->isOpaque());
484     break;
485   }
486   case ISD::TargetConstantFP:
487   case ISD::ConstantFP:
488     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
489     break;
490   case ISD::TargetGlobalAddress:
491   case ISD::GlobalAddress:
492   case ISD::TargetGlobalTLSAddress:
493   case ISD::GlobalTLSAddress: {
494     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
495     ID.AddPointer(GA->getGlobal());
496     ID.AddInteger(GA->getOffset());
497     ID.AddInteger(GA->getTargetFlags());
498     break;
499   }
500   case ISD::BasicBlock:
501     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
502     break;
503   case ISD::Register:
504     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
505     break;
506   case ISD::RegisterMask:
507     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
508     break;
509   case ISD::SRCVALUE:
510     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
511     break;
512   case ISD::FrameIndex:
513   case ISD::TargetFrameIndex:
514     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
515     break;
516   case ISD::LIFETIME_START:
517   case ISD::LIFETIME_END:
518     if (cast<LifetimeSDNode>(N)->hasOffset()) {
519       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
520       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
521     }
522     break;
523   case ISD::JumpTable:
524   case ISD::TargetJumpTable:
525     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
526     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
527     break;
528   case ISD::ConstantPool:
529   case ISD::TargetConstantPool: {
530     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
531     ID.AddInteger(CP->getAlignment());
532     ID.AddInteger(CP->getOffset());
533     if (CP->isMachineConstantPoolEntry())
534       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
535     else
536       ID.AddPointer(CP->getConstVal());
537     ID.AddInteger(CP->getTargetFlags());
538     break;
539   }
540   case ISD::TargetIndex: {
541     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
542     ID.AddInteger(TI->getIndex());
543     ID.AddInteger(TI->getOffset());
544     ID.AddInteger(TI->getTargetFlags());
545     break;
546   }
547   case ISD::LOAD: {
548     const LoadSDNode *LD = cast<LoadSDNode>(N);
549     ID.AddInteger(LD->getMemoryVT().getRawBits());
550     ID.AddInteger(LD->getRawSubclassData());
551     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
552     break;
553   }
554   case ISD::STORE: {
555     const StoreSDNode *ST = cast<StoreSDNode>(N);
556     ID.AddInteger(ST->getMemoryVT().getRawBits());
557     ID.AddInteger(ST->getRawSubclassData());
558     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
559     break;
560   }
561   case ISD::MLOAD: {
562     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
563     ID.AddInteger(MLD->getMemoryVT().getRawBits());
564     ID.AddInteger(MLD->getRawSubclassData());
565     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
566     break;
567   }
568   case ISD::MSTORE: {
569     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
570     ID.AddInteger(MST->getMemoryVT().getRawBits());
571     ID.AddInteger(MST->getRawSubclassData());
572     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
573     break;
574   }
575   case ISD::MGATHER: {
576     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
577     ID.AddInteger(MG->getMemoryVT().getRawBits());
578     ID.AddInteger(MG->getRawSubclassData());
579     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
580     break;
581   }
582   case ISD::MSCATTER: {
583     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
584     ID.AddInteger(MS->getMemoryVT().getRawBits());
585     ID.AddInteger(MS->getRawSubclassData());
586     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
587     break;
588   }
589   case ISD::ATOMIC_CMP_SWAP:
590   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
591   case ISD::ATOMIC_SWAP:
592   case ISD::ATOMIC_LOAD_ADD:
593   case ISD::ATOMIC_LOAD_SUB:
594   case ISD::ATOMIC_LOAD_AND:
595   case ISD::ATOMIC_LOAD_CLR:
596   case ISD::ATOMIC_LOAD_OR:
597   case ISD::ATOMIC_LOAD_XOR:
598   case ISD::ATOMIC_LOAD_NAND:
599   case ISD::ATOMIC_LOAD_MIN:
600   case ISD::ATOMIC_LOAD_MAX:
601   case ISD::ATOMIC_LOAD_UMIN:
602   case ISD::ATOMIC_LOAD_UMAX:
603   case ISD::ATOMIC_LOAD:
604   case ISD::ATOMIC_STORE: {
605     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
606     ID.AddInteger(AT->getMemoryVT().getRawBits());
607     ID.AddInteger(AT->getRawSubclassData());
608     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
609     break;
610   }
611   case ISD::PREFETCH: {
612     const MemSDNode *PF = cast<MemSDNode>(N);
613     ID.AddInteger(PF->getPointerInfo().getAddrSpace());
614     break;
615   }
616   case ISD::VECTOR_SHUFFLE: {
617     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
618     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
619          i != e; ++i)
620       ID.AddInteger(SVN->getMaskElt(i));
621     break;
622   }
623   case ISD::TargetBlockAddress:
624   case ISD::BlockAddress: {
625     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
626     ID.AddPointer(BA->getBlockAddress());
627     ID.AddInteger(BA->getOffset());
628     ID.AddInteger(BA->getTargetFlags());
629     break;
630   }
631   } // end switch (N->getOpcode())
632 
633   // Target specific memory nodes could also have address spaces to check.
634   if (N->isTargetMemoryOpcode())
635     ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
636 }
637 
638 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
639 /// data.
640 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
641   AddNodeIDOpcode(ID, N->getOpcode());
642   // Add the return value info.
643   AddNodeIDValueTypes(ID, N->getVTList());
644   // Add the operand info.
645   AddNodeIDOperands(ID, N->ops());
646 
647   // Handle SDNode leafs with special info.
648   AddNodeIDCustom(ID, N);
649 }
650 
651 //===----------------------------------------------------------------------===//
652 //                              SelectionDAG Class
653 //===----------------------------------------------------------------------===//
654 
655 /// doNotCSE - Return true if CSE should not be performed for this node.
656 static bool doNotCSE(SDNode *N) {
657   if (N->getValueType(0) == MVT::Glue)
658     return true; // Never CSE anything that produces a flag.
659 
660   switch (N->getOpcode()) {
661   default: break;
662   case ISD::HANDLENODE:
663   case ISD::EH_LABEL:
664     return true;   // Never CSE these nodes.
665   }
666 
667   // Check that remaining values produced are not flags.
668   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
669     if (N->getValueType(i) == MVT::Glue)
670       return true; // Never CSE anything that produces a flag.
671 
672   return false;
673 }
674 
675 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
676 /// SelectionDAG.
677 void SelectionDAG::RemoveDeadNodes() {
678   // Create a dummy node (which is not added to allnodes), that adds a reference
679   // to the root node, preventing it from being deleted.
680   HandleSDNode Dummy(getRoot());
681 
682   SmallVector<SDNode*, 128> DeadNodes;
683 
684   // Add all obviously-dead nodes to the DeadNodes worklist.
685   for (SDNode &Node : allnodes())
686     if (Node.use_empty())
687       DeadNodes.push_back(&Node);
688 
689   RemoveDeadNodes(DeadNodes);
690 
691   // If the root changed (e.g. it was a dead load, update the root).
692   setRoot(Dummy.getValue());
693 }
694 
695 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
696 /// given list, and any nodes that become unreachable as a result.
697 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
698 
699   // Process the worklist, deleting the nodes and adding their uses to the
700   // worklist.
701   while (!DeadNodes.empty()) {
702     SDNode *N = DeadNodes.pop_back_val();
703     // Skip to next node if we've already managed to delete the node. This could
704     // happen if replacing a node causes a node previously added to the node to
705     // be deleted.
706     if (N->getOpcode() == ISD::DELETED_NODE)
707       continue;
708 
709     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
710       DUL->NodeDeleted(N, nullptr);
711 
712     // Take the node out of the appropriate CSE map.
713     RemoveNodeFromCSEMaps(N);
714 
715     // Next, brutally remove the operand list.  This is safe to do, as there are
716     // no cycles in the graph.
717     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
718       SDUse &Use = *I++;
719       SDNode *Operand = Use.getNode();
720       Use.set(SDValue());
721 
722       // Now that we removed this operand, see if there are no uses of it left.
723       if (Operand->use_empty())
724         DeadNodes.push_back(Operand);
725     }
726 
727     DeallocateNode(N);
728   }
729 }
730 
731 void SelectionDAG::RemoveDeadNode(SDNode *N){
732   SmallVector<SDNode*, 16> DeadNodes(1, N);
733 
734   // Create a dummy node that adds a reference to the root node, preventing
735   // it from being deleted.  (This matters if the root is an operand of the
736   // dead node.)
737   HandleSDNode Dummy(getRoot());
738 
739   RemoveDeadNodes(DeadNodes);
740 }
741 
742 void SelectionDAG::DeleteNode(SDNode *N) {
743   // First take this out of the appropriate CSE map.
744   RemoveNodeFromCSEMaps(N);
745 
746   // Finally, remove uses due to operands of this node, remove from the
747   // AllNodes list, and delete the node.
748   DeleteNodeNotInCSEMaps(N);
749 }
750 
751 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
752   assert(N->getIterator() != AllNodes.begin() &&
753          "Cannot delete the entry node!");
754   assert(N->use_empty() && "Cannot delete a node that is not dead!");
755 
756   // Drop all of the operands and decrement used node's use counts.
757   N->DropOperands();
758 
759   DeallocateNode(N);
760 }
761 
762 void SDDbgInfo::erase(const SDNode *Node) {
763   DbgValMapType::iterator I = DbgValMap.find(Node);
764   if (I == DbgValMap.end())
765     return;
766   for (auto &Val: I->second)
767     Val->setIsInvalidated();
768   DbgValMap.erase(I);
769 }
770 
771 void SelectionDAG::DeallocateNode(SDNode *N) {
772   // If we have operands, deallocate them.
773   removeOperands(N);
774 
775   NodeAllocator.Deallocate(AllNodes.remove(N));
776 
777   // Set the opcode to DELETED_NODE to help catch bugs when node
778   // memory is reallocated.
779   // FIXME: There are places in SDag that have grown a dependency on the opcode
780   // value in the released node.
781   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
782   N->NodeType = ISD::DELETED_NODE;
783 
784   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
785   // them and forget about that node.
786   DbgInfo->erase(N);
787 }
788 
789 #ifndef NDEBUG
790 /// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
791 static void VerifySDNode(SDNode *N) {
792   switch (N->getOpcode()) {
793   default:
794     break;
795   case ISD::BUILD_PAIR: {
796     EVT VT = N->getValueType(0);
797     assert(N->getNumValues() == 1 && "Too many results!");
798     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
799            "Wrong return type!");
800     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
801     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
802            "Mismatched operand types!");
803     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
804            "Wrong operand type!");
805     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
806            "Wrong return type size");
807     break;
808   }
809   case ISD::BUILD_VECTOR: {
810     assert(N->getNumValues() == 1 && "Too many results!");
811     assert(N->getValueType(0).isVector() && "Wrong return type!");
812     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
813            "Wrong number of operands!");
814     EVT EltVT = N->getValueType(0).getVectorElementType();
815     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
816       assert((I->getValueType() == EltVT ||
817              (EltVT.isInteger() && I->getValueType().isInteger() &&
818               EltVT.bitsLE(I->getValueType()))) &&
819             "Wrong operand type!");
820       assert(I->getValueType() == N->getOperand(0).getValueType() &&
821              "Operands must all have the same type");
822     }
823     break;
824   }
825   }
826 }
827 #endif // NDEBUG
828 
829 /// Insert a newly allocated node into the DAG.
830 ///
831 /// Handles insertion into the all nodes list and CSE map, as well as
832 /// verification and other common operations when a new node is allocated.
833 void SelectionDAG::InsertNode(SDNode *N) {
834   AllNodes.push_back(N);
835 #ifndef NDEBUG
836   N->PersistentId = NextPersistentId++;
837   VerifySDNode(N);
838 #endif
839   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
840     DUL->NodeInserted(N);
841 }
842 
843 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
844 /// correspond to it.  This is useful when we're about to delete or repurpose
845 /// the node.  We don't want future request for structurally identical nodes
846 /// to return N anymore.
847 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
848   bool Erased = false;
849   switch (N->getOpcode()) {
850   case ISD::HANDLENODE: return false;  // noop.
851   case ISD::CONDCODE:
852     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
853            "Cond code doesn't exist!");
854     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
855     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
856     break;
857   case ISD::ExternalSymbol:
858     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
859     break;
860   case ISD::TargetExternalSymbol: {
861     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
862     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
863         ESN->getSymbol(), ESN->getTargetFlags()));
864     break;
865   }
866   case ISD::MCSymbol: {
867     auto *MCSN = cast<MCSymbolSDNode>(N);
868     Erased = MCSymbols.erase(MCSN->getMCSymbol());
869     break;
870   }
871   case ISD::VALUETYPE: {
872     EVT VT = cast<VTSDNode>(N)->getVT();
873     if (VT.isExtended()) {
874       Erased = ExtendedValueTypeNodes.erase(VT);
875     } else {
876       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
877       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
878     }
879     break;
880   }
881   default:
882     // Remove it from the CSE Map.
883     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
884     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
885     Erased = CSEMap.RemoveNode(N);
886     break;
887   }
888 #ifndef NDEBUG
889   // Verify that the node was actually in one of the CSE maps, unless it has a
890   // flag result (which cannot be CSE'd) or is one of the special cases that are
891   // not subject to CSE.
892   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
893       !N->isMachineOpcode() && !doNotCSE(N)) {
894     N->dump(this);
895     dbgs() << "\n";
896     llvm_unreachable("Node is not in map!");
897   }
898 #endif
899   return Erased;
900 }
901 
902 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
903 /// maps and modified in place. Add it back to the CSE maps, unless an identical
904 /// node already exists, in which case transfer all its users to the existing
905 /// node. This transfer can potentially trigger recursive merging.
906 void
907 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
908   // For node types that aren't CSE'd, just act as if no identical node
909   // already exists.
910   if (!doNotCSE(N)) {
911     SDNode *Existing = CSEMap.GetOrInsertNode(N);
912     if (Existing != N) {
913       // If there was already an existing matching node, use ReplaceAllUsesWith
914       // to replace the dead one with the existing one.  This can cause
915       // recursive merging of other unrelated nodes down the line.
916       ReplaceAllUsesWith(N, Existing);
917 
918       // N is now dead. Inform the listeners and delete it.
919       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
920         DUL->NodeDeleted(N, Existing);
921       DeleteNodeNotInCSEMaps(N);
922       return;
923     }
924   }
925 
926   // If the node doesn't already exist, we updated it.  Inform listeners.
927   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
928     DUL->NodeUpdated(N);
929 }
930 
931 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
932 /// were replaced with those specified.  If this node is never memoized,
933 /// return null, otherwise return a pointer to the slot it would take.  If a
934 /// node already exists with these operands, the slot will be non-null.
935 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
936                                            void *&InsertPos) {
937   if (doNotCSE(N))
938     return nullptr;
939 
940   SDValue Ops[] = { Op };
941   FoldingSetNodeID ID;
942   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
943   AddNodeIDCustom(ID, N);
944   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
945   if (Node)
946     Node->intersectFlagsWith(N->getFlags());
947   return Node;
948 }
949 
950 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
951 /// were replaced with those specified.  If this node is never memoized,
952 /// return null, otherwise return a pointer to the slot it would take.  If a
953 /// node already exists with these operands, the slot will be non-null.
954 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
955                                            SDValue Op1, SDValue Op2,
956                                            void *&InsertPos) {
957   if (doNotCSE(N))
958     return nullptr;
959 
960   SDValue Ops[] = { Op1, Op2 };
961   FoldingSetNodeID ID;
962   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
963   AddNodeIDCustom(ID, N);
964   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
965   if (Node)
966     Node->intersectFlagsWith(N->getFlags());
967   return Node;
968 }
969 
970 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
971 /// were replaced with those specified.  If this node is never memoized,
972 /// return null, otherwise return a pointer to the slot it would take.  If a
973 /// node already exists with these operands, the slot will be non-null.
974 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
975                                            void *&InsertPos) {
976   if (doNotCSE(N))
977     return nullptr;
978 
979   FoldingSetNodeID ID;
980   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
981   AddNodeIDCustom(ID, N);
982   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
983   if (Node)
984     Node->intersectFlagsWith(N->getFlags());
985   return Node;
986 }
987 
988 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
989   Type *Ty = VT == MVT::iPTR ?
990                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
991                    VT.getTypeForEVT(*getContext());
992 
993   return getDataLayout().getABITypeAlignment(Ty);
994 }
995 
996 // EntryNode could meaningfully have debug info if we can find it...
997 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
998     : TM(tm), OptLevel(OL),
999       EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1000       Root(getEntryNode()) {
1001   InsertNode(&EntryNode);
1002   DbgInfo = new SDDbgInfo();
1003 }
1004 
1005 void SelectionDAG::init(MachineFunction &NewMF,
1006                         OptimizationRemarkEmitter &NewORE,
1007                         Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1008                         LegacyDivergenceAnalysis * Divergence) {
1009   MF = &NewMF;
1010   SDAGISelPass = PassPtr;
1011   ORE = &NewORE;
1012   TLI = getSubtarget().getTargetLowering();
1013   TSI = getSubtarget().getSelectionDAGInfo();
1014   LibInfo = LibraryInfo;
1015   Context = &MF->getFunction().getContext();
1016   DA = Divergence;
1017 }
1018 
1019 SelectionDAG::~SelectionDAG() {
1020   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1021   allnodes_clear();
1022   OperandRecycler.clear(OperandAllocator);
1023   delete DbgInfo;
1024 }
1025 
1026 void SelectionDAG::allnodes_clear() {
1027   assert(&*AllNodes.begin() == &EntryNode);
1028   AllNodes.remove(AllNodes.begin());
1029   while (!AllNodes.empty())
1030     DeallocateNode(&AllNodes.front());
1031 #ifndef NDEBUG
1032   NextPersistentId = 0;
1033 #endif
1034 }
1035 
1036 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1037                                           void *&InsertPos) {
1038   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1039   if (N) {
1040     switch (N->getOpcode()) {
1041     default: break;
1042     case ISD::Constant:
1043     case ISD::ConstantFP:
1044       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1045                        "debug location.  Use another overload.");
1046     }
1047   }
1048   return N;
1049 }
1050 
1051 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1052                                           const SDLoc &DL, void *&InsertPos) {
1053   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1054   if (N) {
1055     switch (N->getOpcode()) {
1056     case ISD::Constant:
1057     case ISD::ConstantFP:
1058       // Erase debug location from the node if the node is used at several
1059       // different places. Do not propagate one location to all uses as it
1060       // will cause a worse single stepping debugging experience.
1061       if (N->getDebugLoc() != DL.getDebugLoc())
1062         N->setDebugLoc(DebugLoc());
1063       break;
1064     default:
1065       // When the node's point of use is located earlier in the instruction
1066       // sequence than its prior point of use, update its debug info to the
1067       // earlier location.
1068       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1069         N->setDebugLoc(DL.getDebugLoc());
1070       break;
1071     }
1072   }
1073   return N;
1074 }
1075 
1076 void SelectionDAG::clear() {
1077   allnodes_clear();
1078   OperandRecycler.clear(OperandAllocator);
1079   OperandAllocator.Reset();
1080   CSEMap.clear();
1081 
1082   ExtendedValueTypeNodes.clear();
1083   ExternalSymbols.clear();
1084   TargetExternalSymbols.clear();
1085   MCSymbols.clear();
1086   SDCallSiteDbgInfo.clear();
1087   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1088             static_cast<CondCodeSDNode*>(nullptr));
1089   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1090             static_cast<SDNode*>(nullptr));
1091 
1092   EntryNode.UseList = nullptr;
1093   InsertNode(&EntryNode);
1094   Root = getEntryNode();
1095   DbgInfo->clear();
1096 }
1097 
1098 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1099   return VT.bitsGT(Op.getValueType())
1100              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1101              : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1102 }
1103 
1104 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1105   return VT.bitsGT(Op.getValueType()) ?
1106     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1107     getNode(ISD::TRUNCATE, DL, VT, Op);
1108 }
1109 
1110 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1111   return VT.bitsGT(Op.getValueType()) ?
1112     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1113     getNode(ISD::TRUNCATE, DL, VT, Op);
1114 }
1115 
1116 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1117   return VT.bitsGT(Op.getValueType()) ?
1118     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1119     getNode(ISD::TRUNCATE, DL, VT, Op);
1120 }
1121 
1122 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1123                                         EVT OpVT) {
1124   if (VT.bitsLE(Op.getValueType()))
1125     return getNode(ISD::TRUNCATE, SL, VT, Op);
1126 
1127   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1128   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1129 }
1130 
1131 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1132   assert(!VT.isVector() &&
1133          "getZeroExtendInReg should use the vector element type instead of "
1134          "the vector type!");
1135   if (Op.getValueType().getScalarType() == VT) return Op;
1136   unsigned BitWidth = Op.getScalarValueSizeInBits();
1137   APInt Imm = APInt::getLowBitsSet(BitWidth,
1138                                    VT.getSizeInBits());
1139   return getNode(ISD::AND, DL, Op.getValueType(), Op,
1140                  getConstant(Imm, DL, Op.getValueType()));
1141 }
1142 
1143 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1144   // Only unsigned pointer semantics are supported right now. In the future this
1145   // might delegate to TLI to check pointer signedness.
1146   return getZExtOrTrunc(Op, DL, VT);
1147 }
1148 
1149 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1150   // Only unsigned pointer semantics are supported right now. In the future this
1151   // might delegate to TLI to check pointer signedness.
1152   return getZeroExtendInReg(Op, DL, VT);
1153 }
1154 
1155 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1156 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1157   EVT EltVT = VT.getScalarType();
1158   SDValue NegOne =
1159     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1160   return getNode(ISD::XOR, DL, VT, Val, NegOne);
1161 }
1162 
1163 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1164   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1165   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1166 }
1167 
1168 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1169                                       EVT OpVT) {
1170   if (!V)
1171     return getConstant(0, DL, VT);
1172 
1173   switch (TLI->getBooleanContents(OpVT)) {
1174   case TargetLowering::ZeroOrOneBooleanContent:
1175   case TargetLowering::UndefinedBooleanContent:
1176     return getConstant(1, DL, VT);
1177   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1178     return getAllOnesConstant(DL, VT);
1179   }
1180   llvm_unreachable("Unexpected boolean content enum!");
1181 }
1182 
1183 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1184                                   bool isT, bool isO) {
1185   EVT EltVT = VT.getScalarType();
1186   assert((EltVT.getSizeInBits() >= 64 ||
1187          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1188          "getConstant with a uint64_t value that doesn't fit in the type!");
1189   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1190 }
1191 
1192 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1193                                   bool isT, bool isO) {
1194   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1195 }
1196 
1197 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1198                                   EVT VT, bool isT, bool isO) {
1199   assert(VT.isInteger() && "Cannot create FP integer constant!");
1200 
1201   EVT EltVT = VT.getScalarType();
1202   const ConstantInt *Elt = &Val;
1203 
1204   // In some cases the vector type is legal but the element type is illegal and
1205   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1206   // inserted value (the type does not need to match the vector element type).
1207   // Any extra bits introduced will be truncated away.
1208   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1209       TargetLowering::TypePromoteInteger) {
1210    EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1211    APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1212    Elt = ConstantInt::get(*getContext(), NewVal);
1213   }
1214   // In other cases the element type is illegal and needs to be expanded, for
1215   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1216   // the value into n parts and use a vector type with n-times the elements.
1217   // Then bitcast to the type requested.
1218   // Legalizing constants too early makes the DAGCombiner's job harder so we
1219   // only legalize if the DAG tells us we must produce legal types.
1220   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1221            TLI->getTypeAction(*getContext(), EltVT) ==
1222            TargetLowering::TypeExpandInteger) {
1223     const APInt &NewVal = Elt->getValue();
1224     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1225     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1226     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1227     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1228 
1229     // Check the temporary vector is the correct size. If this fails then
1230     // getTypeToTransformTo() probably returned a type whose size (in bits)
1231     // isn't a power-of-2 factor of the requested type size.
1232     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1233 
1234     SmallVector<SDValue, 2> EltParts;
1235     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1236       EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1237                                            .zextOrTrunc(ViaEltSizeInBits), DL,
1238                                      ViaEltVT, isT, isO));
1239     }
1240 
1241     // EltParts is currently in little endian order. If we actually want
1242     // big-endian order then reverse it now.
1243     if (getDataLayout().isBigEndian())
1244       std::reverse(EltParts.begin(), EltParts.end());
1245 
1246     // The elements must be reversed when the element order is different
1247     // to the endianness of the elements (because the BITCAST is itself a
1248     // vector shuffle in this situation). However, we do not need any code to
1249     // perform this reversal because getConstant() is producing a vector
1250     // splat.
1251     // This situation occurs in MIPS MSA.
1252 
1253     SmallVector<SDValue, 8> Ops;
1254     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1255       Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1256 
1257     SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1258     return V;
1259   }
1260 
1261   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1262          "APInt size does not match type size!");
1263   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1264   FoldingSetNodeID ID;
1265   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1266   ID.AddPointer(Elt);
1267   ID.AddBoolean(isO);
1268   void *IP = nullptr;
1269   SDNode *N = nullptr;
1270   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1271     if (!VT.isVector())
1272       return SDValue(N, 0);
1273 
1274   if (!N) {
1275     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1276     CSEMap.InsertNode(N, IP);
1277     InsertNode(N);
1278     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1279   }
1280 
1281   SDValue Result(N, 0);
1282   if (VT.isVector())
1283     Result = getSplatBuildVector(VT, DL, Result);
1284 
1285   return Result;
1286 }
1287 
1288 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1289                                         bool isTarget) {
1290   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1291 }
1292 
1293 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1294                                              const SDLoc &DL, bool LegalTypes) {
1295   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1296   return getConstant(Val, DL, ShiftVT);
1297 }
1298 
1299 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1300                                     bool isTarget) {
1301   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1302 }
1303 
1304 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1305                                     EVT VT, bool isTarget) {
1306   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1307 
1308   EVT EltVT = VT.getScalarType();
1309 
1310   // Do the map lookup using the actual bit pattern for the floating point
1311   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1312   // we don't have issues with SNANs.
1313   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1314   FoldingSetNodeID ID;
1315   AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1316   ID.AddPointer(&V);
1317   void *IP = nullptr;
1318   SDNode *N = nullptr;
1319   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1320     if (!VT.isVector())
1321       return SDValue(N, 0);
1322 
1323   if (!N) {
1324     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1325     CSEMap.InsertNode(N, IP);
1326     InsertNode(N);
1327   }
1328 
1329   SDValue Result(N, 0);
1330   if (VT.isVector())
1331     Result = getSplatBuildVector(VT, DL, Result);
1332   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1333   return Result;
1334 }
1335 
1336 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1337                                     bool isTarget) {
1338   EVT EltVT = VT.getScalarType();
1339   if (EltVT == MVT::f32)
1340     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1341   else if (EltVT == MVT::f64)
1342     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1343   else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1344            EltVT == MVT::f16) {
1345     bool Ignored;
1346     APFloat APF = APFloat(Val);
1347     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1348                 &Ignored);
1349     return getConstantFP(APF, DL, VT, isTarget);
1350   } else
1351     llvm_unreachable("Unsupported type in getConstantFP");
1352 }
1353 
1354 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1355                                        EVT VT, int64_t Offset, bool isTargetGA,
1356                                        unsigned TargetFlags) {
1357   assert((TargetFlags == 0 || isTargetGA) &&
1358          "Cannot set target flags on target-independent globals");
1359 
1360   // Truncate (with sign-extension) the offset value to the pointer size.
1361   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1362   if (BitWidth < 64)
1363     Offset = SignExtend64(Offset, BitWidth);
1364 
1365   unsigned Opc;
1366   if (GV->isThreadLocal())
1367     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1368   else
1369     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1370 
1371   FoldingSetNodeID ID;
1372   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1373   ID.AddPointer(GV);
1374   ID.AddInteger(Offset);
1375   ID.AddInteger(TargetFlags);
1376   void *IP = nullptr;
1377   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1378     return SDValue(E, 0);
1379 
1380   auto *N = newSDNode<GlobalAddressSDNode>(
1381       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1382   CSEMap.InsertNode(N, IP);
1383     InsertNode(N);
1384   return SDValue(N, 0);
1385 }
1386 
1387 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1388   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1389   FoldingSetNodeID ID;
1390   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1391   ID.AddInteger(FI);
1392   void *IP = nullptr;
1393   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1394     return SDValue(E, 0);
1395 
1396   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1397   CSEMap.InsertNode(N, IP);
1398   InsertNode(N);
1399   return SDValue(N, 0);
1400 }
1401 
1402 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1403                                    unsigned TargetFlags) {
1404   assert((TargetFlags == 0 || isTarget) &&
1405          "Cannot set target flags on target-independent jump tables");
1406   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1407   FoldingSetNodeID ID;
1408   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1409   ID.AddInteger(JTI);
1410   ID.AddInteger(TargetFlags);
1411   void *IP = nullptr;
1412   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1413     return SDValue(E, 0);
1414 
1415   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1416   CSEMap.InsertNode(N, IP);
1417   InsertNode(N);
1418   return SDValue(N, 0);
1419 }
1420 
1421 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1422                                       unsigned Alignment, int Offset,
1423                                       bool isTarget,
1424                                       unsigned TargetFlags) {
1425   assert((TargetFlags == 0 || isTarget) &&
1426          "Cannot set target flags on target-independent globals");
1427   if (Alignment == 0)
1428     Alignment = MF->getFunction().hasOptSize()
1429                     ? getDataLayout().getABITypeAlignment(C->getType())
1430                     : getDataLayout().getPrefTypeAlignment(C->getType());
1431   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1432   FoldingSetNodeID ID;
1433   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1434   ID.AddInteger(Alignment);
1435   ID.AddInteger(Offset);
1436   ID.AddPointer(C);
1437   ID.AddInteger(TargetFlags);
1438   void *IP = nullptr;
1439   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1440     return SDValue(E, 0);
1441 
1442   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1443                                           TargetFlags);
1444   CSEMap.InsertNode(N, IP);
1445   InsertNode(N);
1446   return SDValue(N, 0);
1447 }
1448 
1449 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1450                                       unsigned Alignment, int Offset,
1451                                       bool isTarget,
1452                                       unsigned TargetFlags) {
1453   assert((TargetFlags == 0 || isTarget) &&
1454          "Cannot set target flags on target-independent globals");
1455   if (Alignment == 0)
1456     Alignment = getDataLayout().getPrefTypeAlignment(C->getType());
1457   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1458   FoldingSetNodeID ID;
1459   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1460   ID.AddInteger(Alignment);
1461   ID.AddInteger(Offset);
1462   C->addSelectionDAGCSEId(ID);
1463   ID.AddInteger(TargetFlags);
1464   void *IP = nullptr;
1465   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1466     return SDValue(E, 0);
1467 
1468   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment,
1469                                           TargetFlags);
1470   CSEMap.InsertNode(N, IP);
1471   InsertNode(N);
1472   return SDValue(N, 0);
1473 }
1474 
1475 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1476                                      unsigned TargetFlags) {
1477   FoldingSetNodeID ID;
1478   AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1479   ID.AddInteger(Index);
1480   ID.AddInteger(Offset);
1481   ID.AddInteger(TargetFlags);
1482   void *IP = nullptr;
1483   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1484     return SDValue(E, 0);
1485 
1486   auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1487   CSEMap.InsertNode(N, IP);
1488   InsertNode(N);
1489   return SDValue(N, 0);
1490 }
1491 
1492 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1493   FoldingSetNodeID ID;
1494   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1495   ID.AddPointer(MBB);
1496   void *IP = nullptr;
1497   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1498     return SDValue(E, 0);
1499 
1500   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1501   CSEMap.InsertNode(N, IP);
1502   InsertNode(N);
1503   return SDValue(N, 0);
1504 }
1505 
1506 SDValue SelectionDAG::getValueType(EVT VT) {
1507   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1508       ValueTypeNodes.size())
1509     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1510 
1511   SDNode *&N = VT.isExtended() ?
1512     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1513 
1514   if (N) return SDValue(N, 0);
1515   N = newSDNode<VTSDNode>(VT);
1516   InsertNode(N);
1517   return SDValue(N, 0);
1518 }
1519 
1520 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1521   SDNode *&N = ExternalSymbols[Sym];
1522   if (N) return SDValue(N, 0);
1523   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1524   InsertNode(N);
1525   return SDValue(N, 0);
1526 }
1527 
1528 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1529   SDNode *&N = MCSymbols[Sym];
1530   if (N)
1531     return SDValue(N, 0);
1532   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1533   InsertNode(N);
1534   return SDValue(N, 0);
1535 }
1536 
1537 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1538                                               unsigned TargetFlags) {
1539   SDNode *&N =
1540       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1541   if (N) return SDValue(N, 0);
1542   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1543   InsertNode(N);
1544   return SDValue(N, 0);
1545 }
1546 
1547 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1548   if ((unsigned)Cond >= CondCodeNodes.size())
1549     CondCodeNodes.resize(Cond+1);
1550 
1551   if (!CondCodeNodes[Cond]) {
1552     auto *N = newSDNode<CondCodeSDNode>(Cond);
1553     CondCodeNodes[Cond] = N;
1554     InsertNode(N);
1555   }
1556 
1557   return SDValue(CondCodeNodes[Cond], 0);
1558 }
1559 
1560 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1561 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1562 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1563   std::swap(N1, N2);
1564   ShuffleVectorSDNode::commuteMask(M);
1565 }
1566 
1567 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1568                                        SDValue N2, ArrayRef<int> Mask) {
1569   assert(VT.getVectorNumElements() == Mask.size() &&
1570            "Must have the same number of vector elements as mask elements!");
1571   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1572          "Invalid VECTOR_SHUFFLE");
1573 
1574   // Canonicalize shuffle undef, undef -> undef
1575   if (N1.isUndef() && N2.isUndef())
1576     return getUNDEF(VT);
1577 
1578   // Validate that all indices in Mask are within the range of the elements
1579   // input to the shuffle.
1580   int NElts = Mask.size();
1581   assert(llvm::all_of(Mask,
1582                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1583          "Index out of range");
1584 
1585   // Copy the mask so we can do any needed cleanup.
1586   SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1587 
1588   // Canonicalize shuffle v, v -> v, undef
1589   if (N1 == N2) {
1590     N2 = getUNDEF(VT);
1591     for (int i = 0; i != NElts; ++i)
1592       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1593   }
1594 
1595   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1596   if (N1.isUndef())
1597     commuteShuffle(N1, N2, MaskVec);
1598 
1599   if (TLI->hasVectorBlend()) {
1600     // If shuffling a splat, try to blend the splat instead. We do this here so
1601     // that even when this arises during lowering we don't have to re-handle it.
1602     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1603       BitVector UndefElements;
1604       SDValue Splat = BV->getSplatValue(&UndefElements);
1605       if (!Splat)
1606         return;
1607 
1608       for (int i = 0; i < NElts; ++i) {
1609         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1610           continue;
1611 
1612         // If this input comes from undef, mark it as such.
1613         if (UndefElements[MaskVec[i] - Offset]) {
1614           MaskVec[i] = -1;
1615           continue;
1616         }
1617 
1618         // If we can blend a non-undef lane, use that instead.
1619         if (!UndefElements[i])
1620           MaskVec[i] = i + Offset;
1621       }
1622     };
1623     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1624       BlendSplat(N1BV, 0);
1625     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1626       BlendSplat(N2BV, NElts);
1627   }
1628 
1629   // Canonicalize all index into lhs, -> shuffle lhs, undef
1630   // Canonicalize all index into rhs, -> shuffle rhs, undef
1631   bool AllLHS = true, AllRHS = true;
1632   bool N2Undef = N2.isUndef();
1633   for (int i = 0; i != NElts; ++i) {
1634     if (MaskVec[i] >= NElts) {
1635       if (N2Undef)
1636         MaskVec[i] = -1;
1637       else
1638         AllLHS = false;
1639     } else if (MaskVec[i] >= 0) {
1640       AllRHS = false;
1641     }
1642   }
1643   if (AllLHS && AllRHS)
1644     return getUNDEF(VT);
1645   if (AllLHS && !N2Undef)
1646     N2 = getUNDEF(VT);
1647   if (AllRHS) {
1648     N1 = getUNDEF(VT);
1649     commuteShuffle(N1, N2, MaskVec);
1650   }
1651   // Reset our undef status after accounting for the mask.
1652   N2Undef = N2.isUndef();
1653   // Re-check whether both sides ended up undef.
1654   if (N1.isUndef() && N2Undef)
1655     return getUNDEF(VT);
1656 
1657   // If Identity shuffle return that node.
1658   bool Identity = true, AllSame = true;
1659   for (int i = 0; i != NElts; ++i) {
1660     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1661     if (MaskVec[i] != MaskVec[0]) AllSame = false;
1662   }
1663   if (Identity && NElts)
1664     return N1;
1665 
1666   // Shuffling a constant splat doesn't change the result.
1667   if (N2Undef) {
1668     SDValue V = N1;
1669 
1670     // Look through any bitcasts. We check that these don't change the number
1671     // (and size) of elements and just changes their types.
1672     while (V.getOpcode() == ISD::BITCAST)
1673       V = V->getOperand(0);
1674 
1675     // A splat should always show up as a build vector node.
1676     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1677       BitVector UndefElements;
1678       SDValue Splat = BV->getSplatValue(&UndefElements);
1679       // If this is a splat of an undef, shuffling it is also undef.
1680       if (Splat && Splat.isUndef())
1681         return getUNDEF(VT);
1682 
1683       bool SameNumElts =
1684           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1685 
1686       // We only have a splat which can skip shuffles if there is a splatted
1687       // value and no undef lanes rearranged by the shuffle.
1688       if (Splat && UndefElements.none()) {
1689         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1690         // number of elements match or the value splatted is a zero constant.
1691         if (SameNumElts)
1692           return N1;
1693         if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1694           if (C->isNullValue())
1695             return N1;
1696       }
1697 
1698       // If the shuffle itself creates a splat, build the vector directly.
1699       if (AllSame && SameNumElts) {
1700         EVT BuildVT = BV->getValueType(0);
1701         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1702         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1703 
1704         // We may have jumped through bitcasts, so the type of the
1705         // BUILD_VECTOR may not match the type of the shuffle.
1706         if (BuildVT != VT)
1707           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1708         return NewBV;
1709       }
1710     }
1711   }
1712 
1713   FoldingSetNodeID ID;
1714   SDValue Ops[2] = { N1, N2 };
1715   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1716   for (int i = 0; i != NElts; ++i)
1717     ID.AddInteger(MaskVec[i]);
1718 
1719   void* IP = nullptr;
1720   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1721     return SDValue(E, 0);
1722 
1723   // Allocate the mask array for the node out of the BumpPtrAllocator, since
1724   // SDNode doesn't have access to it.  This memory will be "leaked" when
1725   // the node is deallocated, but recovered when the NodeAllocator is released.
1726   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1727   llvm::copy(MaskVec, MaskAlloc);
1728 
1729   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1730                                            dl.getDebugLoc(), MaskAlloc);
1731   createOperands(N, Ops);
1732 
1733   CSEMap.InsertNode(N, IP);
1734   InsertNode(N);
1735   SDValue V = SDValue(N, 0);
1736   NewSDValueDbgMsg(V, "Creating new node: ", this);
1737   return V;
1738 }
1739 
1740 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1741   EVT VT = SV.getValueType(0);
1742   SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1743   ShuffleVectorSDNode::commuteMask(MaskVec);
1744 
1745   SDValue Op0 = SV.getOperand(0);
1746   SDValue Op1 = SV.getOperand(1);
1747   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1748 }
1749 
1750 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1751   FoldingSetNodeID ID;
1752   AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1753   ID.AddInteger(RegNo);
1754   void *IP = nullptr;
1755   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1756     return SDValue(E, 0);
1757 
1758   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1759   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1760   CSEMap.InsertNode(N, IP);
1761   InsertNode(N);
1762   return SDValue(N, 0);
1763 }
1764 
1765 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1766   FoldingSetNodeID ID;
1767   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1768   ID.AddPointer(RegMask);
1769   void *IP = nullptr;
1770   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1771     return SDValue(E, 0);
1772 
1773   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1774   CSEMap.InsertNode(N, IP);
1775   InsertNode(N);
1776   return SDValue(N, 0);
1777 }
1778 
1779 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1780                                  MCSymbol *Label) {
1781   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1782 }
1783 
1784 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1785                                    SDValue Root, MCSymbol *Label) {
1786   FoldingSetNodeID ID;
1787   SDValue Ops[] = { Root };
1788   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1789   ID.AddPointer(Label);
1790   void *IP = nullptr;
1791   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1792     return SDValue(E, 0);
1793 
1794   auto *N =
1795       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1796   createOperands(N, Ops);
1797 
1798   CSEMap.InsertNode(N, IP);
1799   InsertNode(N);
1800   return SDValue(N, 0);
1801 }
1802 
1803 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1804                                       int64_t Offset, bool isTarget,
1805                                       unsigned TargetFlags) {
1806   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1807 
1808   FoldingSetNodeID ID;
1809   AddNodeIDNode(ID, Opc, getVTList(VT), None);
1810   ID.AddPointer(BA);
1811   ID.AddInteger(Offset);
1812   ID.AddInteger(TargetFlags);
1813   void *IP = nullptr;
1814   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1815     return SDValue(E, 0);
1816 
1817   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1818   CSEMap.InsertNode(N, IP);
1819   InsertNode(N);
1820   return SDValue(N, 0);
1821 }
1822 
1823 SDValue SelectionDAG::getSrcValue(const Value *V) {
1824   assert((!V || V->getType()->isPointerTy()) &&
1825          "SrcValue is not a pointer?");
1826 
1827   FoldingSetNodeID ID;
1828   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1829   ID.AddPointer(V);
1830 
1831   void *IP = nullptr;
1832   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1833     return SDValue(E, 0);
1834 
1835   auto *N = newSDNode<SrcValueSDNode>(V);
1836   CSEMap.InsertNode(N, IP);
1837   InsertNode(N);
1838   return SDValue(N, 0);
1839 }
1840 
1841 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1842   FoldingSetNodeID ID;
1843   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1844   ID.AddPointer(MD);
1845 
1846   void *IP = nullptr;
1847   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1848     return SDValue(E, 0);
1849 
1850   auto *N = newSDNode<MDNodeSDNode>(MD);
1851   CSEMap.InsertNode(N, IP);
1852   InsertNode(N);
1853   return SDValue(N, 0);
1854 }
1855 
1856 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1857   if (VT == V.getValueType())
1858     return V;
1859 
1860   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1861 }
1862 
1863 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1864                                        unsigned SrcAS, unsigned DestAS) {
1865   SDValue Ops[] = {Ptr};
1866   FoldingSetNodeID ID;
1867   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1868   ID.AddInteger(SrcAS);
1869   ID.AddInteger(DestAS);
1870 
1871   void *IP = nullptr;
1872   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1873     return SDValue(E, 0);
1874 
1875   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1876                                            VT, SrcAS, DestAS);
1877   createOperands(N, Ops);
1878 
1879   CSEMap.InsertNode(N, IP);
1880   InsertNode(N);
1881   return SDValue(N, 0);
1882 }
1883 
1884 /// getShiftAmountOperand - Return the specified value casted to
1885 /// the target's desired shift amount type.
1886 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1887   EVT OpTy = Op.getValueType();
1888   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1889   if (OpTy == ShTy || OpTy.isVector()) return Op;
1890 
1891   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1892 }
1893 
1894 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1895   SDLoc dl(Node);
1896   const TargetLowering &TLI = getTargetLoweringInfo();
1897   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1898   EVT VT = Node->getValueType(0);
1899   SDValue Tmp1 = Node->getOperand(0);
1900   SDValue Tmp2 = Node->getOperand(1);
1901   const MaybeAlign MA(Node->getConstantOperandVal(3));
1902 
1903   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
1904                                Tmp2, MachinePointerInfo(V));
1905   SDValue VAList = VAListLoad;
1906 
1907   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
1908     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1909                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
1910 
1911     VAList =
1912         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
1913                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
1914   }
1915 
1916   // Increment the pointer, VAList, to the next vaarg
1917   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1918                  getConstant(getDataLayout().getTypeAllocSize(
1919                                                VT.getTypeForEVT(*getContext())),
1920                              dl, VAList.getValueType()));
1921   // Store the incremented VAList to the legalized pointer
1922   Tmp1 =
1923       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
1924   // Load the actual argument out of the pointer VAList
1925   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
1926 }
1927 
1928 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
1929   SDLoc dl(Node);
1930   const TargetLowering &TLI = getTargetLoweringInfo();
1931   // This defaults to loading a pointer from the input and storing it to the
1932   // output, returning the chain.
1933   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
1934   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
1935   SDValue Tmp1 =
1936       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
1937               Node->getOperand(2), MachinePointerInfo(VS));
1938   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
1939                   MachinePointerInfo(VD));
1940 }
1941 
1942 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1943   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1944   unsigned ByteSize = VT.getStoreSize();
1945   Type *Ty = VT.getTypeForEVT(*getContext());
1946   unsigned StackAlign =
1947       std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign);
1948 
1949   int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
1950   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1951 }
1952 
1953 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1954   unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
1955   Type *Ty1 = VT1.getTypeForEVT(*getContext());
1956   Type *Ty2 = VT2.getTypeForEVT(*getContext());
1957   const DataLayout &DL = getDataLayout();
1958   unsigned Align =
1959       std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2));
1960 
1961   MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
1962   int FrameIdx = MFI.CreateStackObject(Bytes, Align, false);
1963   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
1964 }
1965 
1966 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
1967                                 ISD::CondCode Cond, const SDLoc &dl) {
1968   EVT OpVT = N1.getValueType();
1969 
1970   // These setcc operations always fold.
1971   switch (Cond) {
1972   default: break;
1973   case ISD::SETFALSE:
1974   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
1975   case ISD::SETTRUE:
1976   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
1977 
1978   case ISD::SETOEQ:
1979   case ISD::SETOGT:
1980   case ISD::SETOGE:
1981   case ISD::SETOLT:
1982   case ISD::SETOLE:
1983   case ISD::SETONE:
1984   case ISD::SETO:
1985   case ISD::SETUO:
1986   case ISD::SETUEQ:
1987   case ISD::SETUNE:
1988     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
1989     break;
1990   }
1991 
1992   if (OpVT.isInteger()) {
1993     // For EQ and NE, we can always pick a value for the undef to make the
1994     // predicate pass or fail, so we can return undef.
1995     // Matches behavior in llvm::ConstantFoldCompareInstruction.
1996     // icmp eq/ne X, undef -> undef.
1997     if ((N1.isUndef() || N2.isUndef()) &&
1998         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
1999       return getUNDEF(VT);
2000 
2001     // If both operands are undef, we can return undef for int comparison.
2002     // icmp undef, undef -> undef.
2003     if (N1.isUndef() && N2.isUndef())
2004       return getUNDEF(VT);
2005 
2006     // icmp X, X -> true/false
2007     // icmp X, undef -> true/false because undef could be X.
2008     if (N1 == N2)
2009       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2010   }
2011 
2012   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2013     const APInt &C2 = N2C->getAPIntValue();
2014     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2015       const APInt &C1 = N1C->getAPIntValue();
2016 
2017       switch (Cond) {
2018       default: llvm_unreachable("Unknown integer setcc!");
2019       case ISD::SETEQ:  return getBoolConstant(C1 == C2, dl, VT, OpVT);
2020       case ISD::SETNE:  return getBoolConstant(C1 != C2, dl, VT, OpVT);
2021       case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2022       case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2023       case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2024       case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2025       case ISD::SETLT:  return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2026       case ISD::SETGT:  return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2027       case ISD::SETLE:  return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2028       case ISD::SETGE:  return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2029       }
2030     }
2031   }
2032 
2033   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2034   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2035 
2036   if (N1CFP && N2CFP) {
2037     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2038     switch (Cond) {
2039     default: break;
2040     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2041                         return getUNDEF(VT);
2042                       LLVM_FALLTHROUGH;
2043     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2044                                              OpVT);
2045     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2046                         return getUNDEF(VT);
2047                       LLVM_FALLTHROUGH;
2048     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2049                                              R==APFloat::cmpLessThan, dl, VT,
2050                                              OpVT);
2051     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2052                         return getUNDEF(VT);
2053                       LLVM_FALLTHROUGH;
2054     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2055                                              OpVT);
2056     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2057                         return getUNDEF(VT);
2058                       LLVM_FALLTHROUGH;
2059     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2060                                              VT, OpVT);
2061     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2062                         return getUNDEF(VT);
2063                       LLVM_FALLTHROUGH;
2064     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2065                                              R==APFloat::cmpEqual, dl, VT,
2066                                              OpVT);
2067     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2068                         return getUNDEF(VT);
2069                       LLVM_FALLTHROUGH;
2070     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2071                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2072     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2073                                              OpVT);
2074     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2075                                              OpVT);
2076     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2077                                              R==APFloat::cmpEqual, dl, VT,
2078                                              OpVT);
2079     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2080                                              OpVT);
2081     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2082                                              R==APFloat::cmpLessThan, dl, VT,
2083                                              OpVT);
2084     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2085                                              R==APFloat::cmpUnordered, dl, VT,
2086                                              OpVT);
2087     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2088                                              VT, OpVT);
2089     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2090                                              OpVT);
2091     }
2092   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2093     // Ensure that the constant occurs on the RHS.
2094     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2095     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2096       return SDValue();
2097     return getSetCC(dl, VT, N2, N1, SwappedCond);
2098   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2099              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2100     // If an operand is known to be a nan (or undef that could be a nan), we can
2101     // fold it.
2102     // Choosing NaN for the undef will always make unordered comparison succeed
2103     // and ordered comparison fails.
2104     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2105     switch (ISD::getUnorderedFlavor(Cond)) {
2106     default:
2107       llvm_unreachable("Unknown flavor!");
2108     case 0: // Known false.
2109       return getBoolConstant(false, dl, VT, OpVT);
2110     case 1: // Known true.
2111       return getBoolConstant(true, dl, VT, OpVT);
2112     case 2: // Undefined.
2113       return getUNDEF(VT);
2114     }
2115   }
2116 
2117   // Could not fold it.
2118   return SDValue();
2119 }
2120 
2121 /// See if the specified operand can be simplified with the knowledge that only
2122 /// the bits specified by DemandedBits are used.
2123 /// TODO: really we should be making this into the DAG equivalent of
2124 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2125 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2126   EVT VT = V.getValueType();
2127   APInt DemandedElts = VT.isVector()
2128                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2129                            : APInt(1, 1);
2130   return GetDemandedBits(V, DemandedBits, DemandedElts);
2131 }
2132 
2133 /// See if the specified operand can be simplified with the knowledge that only
2134 /// the bits specified by DemandedBits are used in the elements specified by
2135 /// DemandedElts.
2136 /// TODO: really we should be making this into the DAG equivalent of
2137 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
2138 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2139                                       const APInt &DemandedElts) {
2140   switch (V.getOpcode()) {
2141   default:
2142     break;
2143   case ISD::Constant: {
2144     auto *CV = cast<ConstantSDNode>(V.getNode());
2145     assert(CV && "Const value should be ConstSDNode.");
2146     const APInt &CVal = CV->getAPIntValue();
2147     APInt NewVal = CVal & DemandedBits;
2148     if (NewVal != CVal)
2149       return getConstant(NewVal, SDLoc(V), V.getValueType());
2150     break;
2151   }
2152   case ISD::OR:
2153   case ISD::XOR:
2154   case ISD::SIGN_EXTEND_INREG:
2155     return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2156                                                 *this, 0);
2157   case ISD::SRL:
2158     // Only look at single-use SRLs.
2159     if (!V.getNode()->hasOneUse())
2160       break;
2161     if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2162       // See if we can recursively simplify the LHS.
2163       unsigned Amt = RHSC->getZExtValue();
2164 
2165       // Watch out for shift count overflow though.
2166       if (Amt >= DemandedBits.getBitWidth())
2167         break;
2168       APInt SrcDemandedBits = DemandedBits << Amt;
2169       if (SDValue SimplifyLHS =
2170               GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2171         return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2172                        V.getOperand(1));
2173     }
2174     break;
2175   case ISD::AND: {
2176     // X & -1 -> X (ignoring bits which aren't demanded).
2177     // Also handle the case where masked out bits in X are known to be zero.
2178     if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2179       const APInt &AndVal = RHSC->getAPIntValue();
2180       if (DemandedBits.isSubsetOf(AndVal) ||
2181           DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero |
2182                                   AndVal))
2183         return V.getOperand(0);
2184     }
2185     break;
2186   }
2187   case ISD::ANY_EXTEND: {
2188     SDValue Src = V.getOperand(0);
2189     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
2190     // Being conservative here - only peek through if we only demand bits in the
2191     // non-extended source (even though the extended bits are technically
2192     // undef).
2193     if (DemandedBits.getActiveBits() > SrcBitWidth)
2194       break;
2195     APInt SrcDemandedBits = DemandedBits.trunc(SrcBitWidth);
2196     if (SDValue DemandedSrc = GetDemandedBits(Src, SrcDemandedBits))
2197       return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc);
2198     break;
2199   }
2200   }
2201   return SDValue();
2202 }
2203 
2204 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2205 /// use this predicate to simplify operations downstream.
2206 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2207   unsigned BitWidth = Op.getScalarValueSizeInBits();
2208   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2209 }
2210 
2211 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2212 /// this predicate to simplify operations downstream.  Mask is known to be zero
2213 /// for bits that V cannot have.
2214 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2215                                      unsigned Depth) const {
2216   EVT VT = V.getValueType();
2217   APInt DemandedElts = VT.isVector()
2218                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2219                            : APInt(1, 1);
2220   return MaskedValueIsZero(V, Mask, DemandedElts, Depth);
2221 }
2222 
2223 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2224 /// DemandedElts.  We use this predicate to simplify operations downstream.
2225 /// Mask is known to be zero for bits that V cannot have.
2226 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2227                                      const APInt &DemandedElts,
2228                                      unsigned Depth) const {
2229   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2230 }
2231 
2232 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2233 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2234                                         unsigned Depth) const {
2235   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2236 }
2237 
2238 /// isSplatValue - Return true if the vector V has the same value
2239 /// across all DemandedElts.
2240 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2241                                 APInt &UndefElts) {
2242   if (!DemandedElts)
2243     return false; // No demanded elts, better to assume we don't know anything.
2244 
2245   EVT VT = V.getValueType();
2246   assert(VT.isVector() && "Vector type expected");
2247 
2248   unsigned NumElts = VT.getVectorNumElements();
2249   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2250   UndefElts = APInt::getNullValue(NumElts);
2251 
2252   switch (V.getOpcode()) {
2253   case ISD::BUILD_VECTOR: {
2254     SDValue Scl;
2255     for (unsigned i = 0; i != NumElts; ++i) {
2256       SDValue Op = V.getOperand(i);
2257       if (Op.isUndef()) {
2258         UndefElts.setBit(i);
2259         continue;
2260       }
2261       if (!DemandedElts[i])
2262         continue;
2263       if (Scl && Scl != Op)
2264         return false;
2265       Scl = Op;
2266     }
2267     return true;
2268   }
2269   case ISD::VECTOR_SHUFFLE: {
2270     // Check if this is a shuffle node doing a splat.
2271     // TODO: Do we need to handle shuffle(splat, undef, mask)?
2272     int SplatIndex = -1;
2273     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2274     for (int i = 0; i != (int)NumElts; ++i) {
2275       int M = Mask[i];
2276       if (M < 0) {
2277         UndefElts.setBit(i);
2278         continue;
2279       }
2280       if (!DemandedElts[i])
2281         continue;
2282       if (0 <= SplatIndex && SplatIndex != M)
2283         return false;
2284       SplatIndex = M;
2285     }
2286     return true;
2287   }
2288   case ISD::EXTRACT_SUBVECTOR: {
2289     SDValue Src = V.getOperand(0);
2290     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1));
2291     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2292     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2293       // Offset the demanded elts by the subvector index.
2294       uint64_t Idx = SubIdx->getZExtValue();
2295       APInt UndefSrcElts;
2296       APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2297       if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) {
2298         UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2299         return true;
2300       }
2301     }
2302     break;
2303   }
2304   case ISD::ADD:
2305   case ISD::SUB:
2306   case ISD::AND: {
2307     APInt UndefLHS, UndefRHS;
2308     SDValue LHS = V.getOperand(0);
2309     SDValue RHS = V.getOperand(1);
2310     if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2311         isSplatValue(RHS, DemandedElts, UndefRHS)) {
2312       UndefElts = UndefLHS | UndefRHS;
2313       return true;
2314     }
2315     break;
2316   }
2317   }
2318 
2319   return false;
2320 }
2321 
2322 /// Helper wrapper to main isSplatValue function.
2323 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2324   EVT VT = V.getValueType();
2325   assert(VT.isVector() && "Vector type expected");
2326   unsigned NumElts = VT.getVectorNumElements();
2327 
2328   APInt UndefElts;
2329   APInt DemandedElts = APInt::getAllOnesValue(NumElts);
2330   return isSplatValue(V, DemandedElts, UndefElts) &&
2331          (AllowUndefs || !UndefElts);
2332 }
2333 
2334 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2335   V = peekThroughExtractSubvectors(V);
2336 
2337   EVT VT = V.getValueType();
2338   unsigned Opcode = V.getOpcode();
2339   switch (Opcode) {
2340   default: {
2341     APInt UndefElts;
2342     APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2343     if (isSplatValue(V, DemandedElts, UndefElts)) {
2344       // Handle case where all demanded elements are UNDEF.
2345       if (DemandedElts.isSubsetOf(UndefElts)) {
2346         SplatIdx = 0;
2347         return getUNDEF(VT);
2348       }
2349       SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2350       return V;
2351     }
2352     break;
2353   }
2354   case ISD::VECTOR_SHUFFLE: {
2355     // Check if this is a shuffle node doing a splat.
2356     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2357     // getTargetVShiftNode currently struggles without the splat source.
2358     auto *SVN = cast<ShuffleVectorSDNode>(V);
2359     if (!SVN->isSplat())
2360       break;
2361     int Idx = SVN->getSplatIndex();
2362     int NumElts = V.getValueType().getVectorNumElements();
2363     SplatIdx = Idx % NumElts;
2364     return V.getOperand(Idx / NumElts);
2365   }
2366   }
2367 
2368   return SDValue();
2369 }
2370 
2371 SDValue SelectionDAG::getSplatValue(SDValue V) {
2372   int SplatIdx;
2373   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2374     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2375                    SrcVector.getValueType().getScalarType(), SrcVector,
2376                    getIntPtrConstant(SplatIdx, SDLoc(V)));
2377   return SDValue();
2378 }
2379 
2380 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2381 /// is less than the element bit-width of the shift node, return it.
2382 static const APInt *getValidShiftAmountConstant(SDValue V) {
2383   unsigned BitWidth = V.getScalarValueSizeInBits();
2384   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) {
2385     // Shifting more than the bitwidth is not valid.
2386     const APInt &ShAmt = SA->getAPIntValue();
2387     if (ShAmt.ult(BitWidth))
2388       return &ShAmt;
2389   }
2390   return nullptr;
2391 }
2392 
2393 /// If a SHL/SRA/SRL node has constant vector shift amounts that are all less
2394 /// than the element bit-width of the shift node, return the minimum value.
2395 static const APInt *getValidMinimumShiftAmountConstant(SDValue V) {
2396   unsigned BitWidth = V.getScalarValueSizeInBits();
2397   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2398   if (!BV)
2399     return nullptr;
2400   const APInt *MinShAmt = nullptr;
2401   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2402     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2403     if (!SA)
2404       return nullptr;
2405     // Shifting more than the bitwidth is not valid.
2406     const APInt &ShAmt = SA->getAPIntValue();
2407     if (ShAmt.uge(BitWidth))
2408       return nullptr;
2409     if (MinShAmt && MinShAmt->ule(ShAmt))
2410       continue;
2411     MinShAmt = &ShAmt;
2412   }
2413   return MinShAmt;
2414 }
2415 
2416 /// Determine which bits of Op are known to be either zero or one and return
2417 /// them in Known. For vectors, the known bits are those that are shared by
2418 /// every vector element.
2419 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2420   EVT VT = Op.getValueType();
2421   APInt DemandedElts = VT.isVector()
2422                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
2423                            : APInt(1, 1);
2424   return computeKnownBits(Op, DemandedElts, Depth);
2425 }
2426 
2427 /// Determine which bits of Op are known to be either zero or one and return
2428 /// them in Known. The DemandedElts argument allows us to only collect the known
2429 /// bits that are shared by the requested vector elements.
2430 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2431                                          unsigned Depth) const {
2432   unsigned BitWidth = Op.getScalarValueSizeInBits();
2433 
2434   KnownBits Known(BitWidth);   // Don't know anything.
2435 
2436   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2437     // We know all of the bits for a constant!
2438     Known.One = C->getAPIntValue();
2439     Known.Zero = ~Known.One;
2440     return Known;
2441   }
2442   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2443     // We know all of the bits for a constant fp!
2444     Known.One = C->getValueAPF().bitcastToAPInt();
2445     Known.Zero = ~Known.One;
2446     return Known;
2447   }
2448 
2449   if (Depth >= MaxRecursionDepth)
2450     return Known;  // Limit search depth.
2451 
2452   KnownBits Known2;
2453   unsigned NumElts = DemandedElts.getBitWidth();
2454   assert((!Op.getValueType().isVector() ||
2455           NumElts == Op.getValueType().getVectorNumElements()) &&
2456          "Unexpected vector size");
2457 
2458   if (!DemandedElts)
2459     return Known;  // No demanded elts, better to assume we don't know anything.
2460 
2461   unsigned Opcode = Op.getOpcode();
2462   switch (Opcode) {
2463   case ISD::BUILD_VECTOR:
2464     // Collect the known bits that are shared by every demanded vector element.
2465     Known.Zero.setAllBits(); Known.One.setAllBits();
2466     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2467       if (!DemandedElts[i])
2468         continue;
2469 
2470       SDValue SrcOp = Op.getOperand(i);
2471       Known2 = computeKnownBits(SrcOp, Depth + 1);
2472 
2473       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2474       if (SrcOp.getValueSizeInBits() != BitWidth) {
2475         assert(SrcOp.getValueSizeInBits() > BitWidth &&
2476                "Expected BUILD_VECTOR implicit truncation");
2477         Known2 = Known2.trunc(BitWidth);
2478       }
2479 
2480       // Known bits are the values that are shared by every demanded element.
2481       Known.One &= Known2.One;
2482       Known.Zero &= Known2.Zero;
2483 
2484       // If we don't know any bits, early out.
2485       if (Known.isUnknown())
2486         break;
2487     }
2488     break;
2489   case ISD::VECTOR_SHUFFLE: {
2490     // Collect the known bits that are shared by every vector element referenced
2491     // by the shuffle.
2492     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2493     Known.Zero.setAllBits(); Known.One.setAllBits();
2494     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2495     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2496     for (unsigned i = 0; i != NumElts; ++i) {
2497       if (!DemandedElts[i])
2498         continue;
2499 
2500       int M = SVN->getMaskElt(i);
2501       if (M < 0) {
2502         // For UNDEF elements, we don't know anything about the common state of
2503         // the shuffle result.
2504         Known.resetAll();
2505         DemandedLHS.clearAllBits();
2506         DemandedRHS.clearAllBits();
2507         break;
2508       }
2509 
2510       if ((unsigned)M < NumElts)
2511         DemandedLHS.setBit((unsigned)M % NumElts);
2512       else
2513         DemandedRHS.setBit((unsigned)M % NumElts);
2514     }
2515     // Known bits are the values that are shared by every demanded element.
2516     if (!!DemandedLHS) {
2517       SDValue LHS = Op.getOperand(0);
2518       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2519       Known.One &= Known2.One;
2520       Known.Zero &= Known2.Zero;
2521     }
2522     // If we don't know any bits, early out.
2523     if (Known.isUnknown())
2524       break;
2525     if (!!DemandedRHS) {
2526       SDValue RHS = Op.getOperand(1);
2527       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2528       Known.One &= Known2.One;
2529       Known.Zero &= Known2.Zero;
2530     }
2531     break;
2532   }
2533   case ISD::CONCAT_VECTORS: {
2534     // Split DemandedElts and test each of the demanded subvectors.
2535     Known.Zero.setAllBits(); Known.One.setAllBits();
2536     EVT SubVectorVT = Op.getOperand(0).getValueType();
2537     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2538     unsigned NumSubVectors = Op.getNumOperands();
2539     for (unsigned i = 0; i != NumSubVectors; ++i) {
2540       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2541       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2542       if (!!DemandedSub) {
2543         SDValue Sub = Op.getOperand(i);
2544         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2545         Known.One &= Known2.One;
2546         Known.Zero &= Known2.Zero;
2547       }
2548       // If we don't know any bits, early out.
2549       if (Known.isUnknown())
2550         break;
2551     }
2552     break;
2553   }
2554   case ISD::INSERT_SUBVECTOR: {
2555     // If we know the element index, demand any elements from the subvector and
2556     // the remainder from the src its inserted into, otherwise demand them all.
2557     SDValue Src = Op.getOperand(0);
2558     SDValue Sub = Op.getOperand(1);
2559     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2560     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2561     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
2562       Known.One.setAllBits();
2563       Known.Zero.setAllBits();
2564       uint64_t Idx = SubIdx->getZExtValue();
2565       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2566       if (!!DemandedSubElts) {
2567         Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2568         if (Known.isUnknown())
2569           break; // early-out.
2570       }
2571       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
2572       APInt DemandedSrcElts = DemandedElts & ~SubMask;
2573       if (!!DemandedSrcElts) {
2574         Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2575         Known.One &= Known2.One;
2576         Known.Zero &= Known2.Zero;
2577       }
2578     } else {
2579       Known = computeKnownBits(Sub, Depth + 1);
2580       if (Known.isUnknown())
2581         break; // early-out.
2582       Known2 = computeKnownBits(Src, Depth + 1);
2583       Known.One &= Known2.One;
2584       Known.Zero &= Known2.Zero;
2585     }
2586     break;
2587   }
2588   case ISD::EXTRACT_SUBVECTOR: {
2589     // If we know the element index, just demand that subvector elements,
2590     // otherwise demand them all.
2591     SDValue Src = Op.getOperand(0);
2592     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2593     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2594     APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts);
2595     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2596       // Offset the demanded elts by the subvector index.
2597       uint64_t Idx = SubIdx->getZExtValue();
2598       DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2599     }
2600     Known = computeKnownBits(Src, DemandedSrc, Depth + 1);
2601     break;
2602   }
2603   case ISD::SCALAR_TO_VECTOR: {
2604     // We know about scalar_to_vector as much as we know about it source,
2605     // which becomes the first element of otherwise unknown vector.
2606     if (DemandedElts != 1)
2607       break;
2608 
2609     SDValue N0 = Op.getOperand(0);
2610     Known = computeKnownBits(N0, Depth + 1);
2611     if (N0.getValueSizeInBits() != BitWidth)
2612       Known = Known.trunc(BitWidth);
2613 
2614     break;
2615   }
2616   case ISD::BITCAST: {
2617     SDValue N0 = Op.getOperand(0);
2618     EVT SubVT = N0.getValueType();
2619     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2620 
2621     // Ignore bitcasts from unsupported types.
2622     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2623       break;
2624 
2625     // Fast handling of 'identity' bitcasts.
2626     if (BitWidth == SubBitWidth) {
2627       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2628       break;
2629     }
2630 
2631     bool IsLE = getDataLayout().isLittleEndian();
2632 
2633     // Bitcast 'small element' vector to 'large element' scalar/vector.
2634     if ((BitWidth % SubBitWidth) == 0) {
2635       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2636 
2637       // Collect known bits for the (larger) output by collecting the known
2638       // bits from each set of sub elements and shift these into place.
2639       // We need to separately call computeKnownBits for each set of
2640       // sub elements as the knownbits for each is likely to be different.
2641       unsigned SubScale = BitWidth / SubBitWidth;
2642       APInt SubDemandedElts(NumElts * SubScale, 0);
2643       for (unsigned i = 0; i != NumElts; ++i)
2644         if (DemandedElts[i])
2645           SubDemandedElts.setBit(i * SubScale);
2646 
2647       for (unsigned i = 0; i != SubScale; ++i) {
2648         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2649                          Depth + 1);
2650         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2651         Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2652         Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2653       }
2654     }
2655 
2656     // Bitcast 'large element' scalar/vector to 'small element' vector.
2657     if ((SubBitWidth % BitWidth) == 0) {
2658       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2659 
2660       // Collect known bits for the (smaller) output by collecting the known
2661       // bits from the overlapping larger input elements and extracting the
2662       // sub sections we actually care about.
2663       unsigned SubScale = SubBitWidth / BitWidth;
2664       APInt SubDemandedElts(NumElts / SubScale, 0);
2665       for (unsigned i = 0; i != NumElts; ++i)
2666         if (DemandedElts[i])
2667           SubDemandedElts.setBit(i / SubScale);
2668 
2669       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2670 
2671       Known.Zero.setAllBits(); Known.One.setAllBits();
2672       for (unsigned i = 0; i != NumElts; ++i)
2673         if (DemandedElts[i]) {
2674           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2675           unsigned Offset = (Shifts % SubScale) * BitWidth;
2676           Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2677           Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2678           // If we don't know any bits, early out.
2679           if (Known.isUnknown())
2680             break;
2681         }
2682     }
2683     break;
2684   }
2685   case ISD::AND:
2686     // If either the LHS or the RHS are Zero, the result is zero.
2687     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2688     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2689 
2690     // Output known-1 bits are only known if set in both the LHS & RHS.
2691     Known.One &= Known2.One;
2692     // Output known-0 are known to be clear if zero in either the LHS | RHS.
2693     Known.Zero |= Known2.Zero;
2694     break;
2695   case ISD::OR:
2696     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2697     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2698 
2699     // Output known-0 bits are only known if clear in both the LHS & RHS.
2700     Known.Zero &= Known2.Zero;
2701     // Output known-1 are known to be set if set in either the LHS | RHS.
2702     Known.One |= Known2.One;
2703     break;
2704   case ISD::XOR: {
2705     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2706     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2707 
2708     // Output known-0 bits are known if clear or set in both the LHS & RHS.
2709     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
2710     // Output known-1 are known to be set if set in only one of the LHS, RHS.
2711     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
2712     Known.Zero = KnownZeroOut;
2713     break;
2714   }
2715   case ISD::MUL: {
2716     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2717     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2718 
2719     // If low bits are zero in either operand, output low known-0 bits.
2720     // Also compute a conservative estimate for high known-0 bits.
2721     // More trickiness is possible, but this is sufficient for the
2722     // interesting case of alignment computation.
2723     unsigned TrailZ = Known.countMinTrailingZeros() +
2724                       Known2.countMinTrailingZeros();
2725     unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
2726                                Known2.countMinLeadingZeros(),
2727                                BitWidth) - BitWidth;
2728 
2729     Known.resetAll();
2730     Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2731     Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2732     break;
2733   }
2734   case ISD::UDIV: {
2735     // For the purposes of computing leading zeros we can conservatively
2736     // treat a udiv as a logical right shift by the power of 2 known to
2737     // be less than the denominator.
2738     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2739     unsigned LeadZ = Known2.countMinLeadingZeros();
2740 
2741     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2742     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2743     if (RHSMaxLeadingZeros != BitWidth)
2744       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2745 
2746     Known.Zero.setHighBits(LeadZ);
2747     break;
2748   }
2749   case ISD::SELECT:
2750   case ISD::VSELECT:
2751     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2752     // If we don't know any bits, early out.
2753     if (Known.isUnknown())
2754       break;
2755     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2756 
2757     // Only known if known in both the LHS and RHS.
2758     Known.One &= Known2.One;
2759     Known.Zero &= Known2.Zero;
2760     break;
2761   case ISD::SELECT_CC:
2762     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2763     // If we don't know any bits, early out.
2764     if (Known.isUnknown())
2765       break;
2766     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2767 
2768     // Only known if known in both the LHS and RHS.
2769     Known.One &= Known2.One;
2770     Known.Zero &= Known2.Zero;
2771     break;
2772   case ISD::SMULO:
2773   case ISD::UMULO:
2774   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2775     if (Op.getResNo() != 1)
2776       break;
2777     // The boolean result conforms to getBooleanContents.
2778     // If we know the result of a setcc has the top bits zero, use this info.
2779     // We know that we have an integer-based boolean since these operations
2780     // are only available for integer.
2781     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2782             TargetLowering::ZeroOrOneBooleanContent &&
2783         BitWidth > 1)
2784       Known.Zero.setBitsFrom(1);
2785     break;
2786   case ISD::SETCC:
2787     // If we know the result of a setcc has the top bits zero, use this info.
2788     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
2789             TargetLowering::ZeroOrOneBooleanContent &&
2790         BitWidth > 1)
2791       Known.Zero.setBitsFrom(1);
2792     break;
2793   case ISD::SHL:
2794     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2795       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2796       unsigned Shift = ShAmt->getZExtValue();
2797       Known.Zero <<= Shift;
2798       Known.One <<= Shift;
2799       // Low bits are known zero.
2800       Known.Zero.setLowBits(Shift);
2801     }
2802     break;
2803   case ISD::SRL:
2804     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2805       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2806       unsigned Shift = ShAmt->getZExtValue();
2807       Known.Zero.lshrInPlace(Shift);
2808       Known.One.lshrInPlace(Shift);
2809       // High bits are known zero.
2810       Known.Zero.setHighBits(Shift);
2811     } else if (const APInt *ShMinAmt = getValidMinimumShiftAmountConstant(Op)) {
2812       // Minimum shift high bits are known zero.
2813       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
2814     }
2815     break;
2816   case ISD::SRA:
2817     if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) {
2818       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2819       unsigned Shift = ShAmt->getZExtValue();
2820       // Sign extend known zero/one bit (else is unknown).
2821       Known.Zero.ashrInPlace(Shift);
2822       Known.One.ashrInPlace(Shift);
2823     }
2824     break;
2825   case ISD::FSHL:
2826   case ISD::FSHR:
2827     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
2828       unsigned Amt = C->getAPIntValue().urem(BitWidth);
2829 
2830       // For fshl, 0-shift returns the 1st arg.
2831       // For fshr, 0-shift returns the 2nd arg.
2832       if (Amt == 0) {
2833         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
2834                                  DemandedElts, Depth + 1);
2835         break;
2836       }
2837 
2838       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2839       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2840       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2841       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2842       if (Opcode == ISD::FSHL) {
2843         Known.One <<= Amt;
2844         Known.Zero <<= Amt;
2845         Known2.One.lshrInPlace(BitWidth - Amt);
2846         Known2.Zero.lshrInPlace(BitWidth - Amt);
2847       } else {
2848         Known.One <<= BitWidth - Amt;
2849         Known.Zero <<= BitWidth - Amt;
2850         Known2.One.lshrInPlace(Amt);
2851         Known2.Zero.lshrInPlace(Amt);
2852       }
2853       Known.One |= Known2.One;
2854       Known.Zero |= Known2.Zero;
2855     }
2856     break;
2857   case ISD::SIGN_EXTEND_INREG: {
2858     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2859     unsigned EBits = EVT.getScalarSizeInBits();
2860 
2861     // Sign extension.  Compute the demanded bits in the result that are not
2862     // present in the input.
2863     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
2864 
2865     APInt InSignMask = APInt::getSignMask(EBits);
2866     APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
2867 
2868     // If the sign extended bits are demanded, we know that the sign
2869     // bit is demanded.
2870     InSignMask = InSignMask.zext(BitWidth);
2871     if (NewBits.getBoolValue())
2872       InputDemandedBits |= InSignMask;
2873 
2874     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2875     Known.One &= InputDemandedBits;
2876     Known.Zero &= InputDemandedBits;
2877 
2878     // If the sign bit of the input is known set or clear, then we know the
2879     // top bits of the result.
2880     if (Known.Zero.intersects(InSignMask)) {        // Input sign bit known clear
2881       Known.Zero |= NewBits;
2882       Known.One  &= ~NewBits;
2883     } else if (Known.One.intersects(InSignMask)) {  // Input sign bit known set
2884       Known.One  |= NewBits;
2885       Known.Zero &= ~NewBits;
2886     } else {                              // Input sign bit unknown
2887       Known.Zero &= ~NewBits;
2888       Known.One  &= ~NewBits;
2889     }
2890     break;
2891   }
2892   case ISD::CTTZ:
2893   case ISD::CTTZ_ZERO_UNDEF: {
2894     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2895     // If we have a known 1, its position is our upper bound.
2896     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2897     unsigned LowBits = Log2_32(PossibleTZ) + 1;
2898     Known.Zero.setBitsFrom(LowBits);
2899     break;
2900   }
2901   case ISD::CTLZ:
2902   case ISD::CTLZ_ZERO_UNDEF: {
2903     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2904     // If we have a known 1, its position is our upper bound.
2905     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2906     unsigned LowBits = Log2_32(PossibleLZ) + 1;
2907     Known.Zero.setBitsFrom(LowBits);
2908     break;
2909   }
2910   case ISD::CTPOP: {
2911     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2912     // If we know some of the bits are zero, they can't be one.
2913     unsigned PossibleOnes = Known2.countMaxPopulation();
2914     Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
2915     break;
2916   }
2917   case ISD::LOAD: {
2918     LoadSDNode *LD = cast<LoadSDNode>(Op);
2919     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
2920     if (ISD::isNON_EXTLoad(LD) && Cst) {
2921       // Determine any common known bits from the loaded constant pool value.
2922       Type *CstTy = Cst->getType();
2923       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
2924         // If its a vector splat, then we can (quickly) reuse the scalar path.
2925         // NOTE: We assume all elements match and none are UNDEF.
2926         if (CstTy->isVectorTy()) {
2927           if (const Constant *Splat = Cst->getSplatValue()) {
2928             Cst = Splat;
2929             CstTy = Cst->getType();
2930           }
2931         }
2932         // TODO - do we need to handle different bitwidths?
2933         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
2934           // Iterate across all vector elements finding common known bits.
2935           Known.One.setAllBits();
2936           Known.Zero.setAllBits();
2937           for (unsigned i = 0; i != NumElts; ++i) {
2938             if (!DemandedElts[i])
2939               continue;
2940             if (Constant *Elt = Cst->getAggregateElement(i)) {
2941               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
2942                 const APInt &Value = CInt->getValue();
2943                 Known.One &= Value;
2944                 Known.Zero &= ~Value;
2945                 continue;
2946               }
2947               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
2948                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
2949                 Known.One &= Value;
2950                 Known.Zero &= ~Value;
2951                 continue;
2952               }
2953             }
2954             Known.One.clearAllBits();
2955             Known.Zero.clearAllBits();
2956             break;
2957           }
2958         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
2959           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
2960             const APInt &Value = CInt->getValue();
2961             Known.One = Value;
2962             Known.Zero = ~Value;
2963           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
2964             APInt Value = CFP->getValueAPF().bitcastToAPInt();
2965             Known.One = Value;
2966             Known.Zero = ~Value;
2967           }
2968         }
2969       }
2970     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
2971       // If this is a ZEXTLoad and we are looking at the loaded value.
2972       EVT VT = LD->getMemoryVT();
2973       unsigned MemBits = VT.getScalarSizeInBits();
2974       Known.Zero.setBitsFrom(MemBits);
2975     } else if (const MDNode *Ranges = LD->getRanges()) {
2976       if (LD->getExtensionType() == ISD::NON_EXTLOAD)
2977         computeKnownBitsFromRangeMetadata(*Ranges, Known);
2978     }
2979     break;
2980   }
2981   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2982     EVT InVT = Op.getOperand(0).getValueType();
2983     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2984     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2985     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
2986     break;
2987   }
2988   case ISD::ZERO_EXTEND: {
2989     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2990     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
2991     break;
2992   }
2993   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2994     EVT InVT = Op.getOperand(0).getValueType();
2995     APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
2996     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
2997     // If the sign bit is known to be zero or one, then sext will extend
2998     // it to the top bits, else it will just zext.
2999     Known = Known.sext(BitWidth);
3000     break;
3001   }
3002   case ISD::SIGN_EXTEND: {
3003     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3004     // If the sign bit is known to be zero or one, then sext will extend
3005     // it to the top bits, else it will just zext.
3006     Known = Known.sext(BitWidth);
3007     break;
3008   }
3009   case ISD::ANY_EXTEND: {
3010     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3011     Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */);
3012     break;
3013   }
3014   case ISD::TRUNCATE: {
3015     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3016     Known = Known.trunc(BitWidth);
3017     break;
3018   }
3019   case ISD::AssertZext: {
3020     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3021     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3022     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3023     Known.Zero |= (~InMask);
3024     Known.One  &= (~Known.Zero);
3025     break;
3026   }
3027   case ISD::FGETSIGN:
3028     // All bits are zero except the low bit.
3029     Known.Zero.setBitsFrom(1);
3030     break;
3031   case ISD::USUBO:
3032   case ISD::SSUBO:
3033     if (Op.getResNo() == 1) {
3034       // If we know the result of a setcc has the top bits zero, use this info.
3035       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3036               TargetLowering::ZeroOrOneBooleanContent &&
3037           BitWidth > 1)
3038         Known.Zero.setBitsFrom(1);
3039       break;
3040     }
3041     LLVM_FALLTHROUGH;
3042   case ISD::SUB:
3043   case ISD::SUBC: {
3044     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3045     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3046     Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3047                                         Known, Known2);
3048     break;
3049   }
3050   case ISD::UADDO:
3051   case ISD::SADDO:
3052   case ISD::ADDCARRY:
3053     if (Op.getResNo() == 1) {
3054       // If we know the result of a setcc has the top bits zero, use this info.
3055       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3056               TargetLowering::ZeroOrOneBooleanContent &&
3057           BitWidth > 1)
3058         Known.Zero.setBitsFrom(1);
3059       break;
3060     }
3061     LLVM_FALLTHROUGH;
3062   case ISD::ADD:
3063   case ISD::ADDC:
3064   case ISD::ADDE: {
3065     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3066 
3067     // With ADDE and ADDCARRY, a carry bit may be added in.
3068     KnownBits Carry(1);
3069     if (Opcode == ISD::ADDE)
3070       // Can't track carry from glue, set carry to unknown.
3071       Carry.resetAll();
3072     else if (Opcode == ISD::ADDCARRY)
3073       // TODO: Compute known bits for the carry operand. Not sure if it is worth
3074       // the trouble (how often will we find a known carry bit). And I haven't
3075       // tested this very much yet, but something like this might work:
3076       //   Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3077       //   Carry = Carry.zextOrTrunc(1, false);
3078       Carry.resetAll();
3079     else
3080       Carry.setAllZero();
3081 
3082     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3083     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3084     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3085     break;
3086   }
3087   case ISD::SREM:
3088     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3089       const APInt &RA = Rem->getAPIntValue().abs();
3090       if (RA.isPowerOf2()) {
3091         APInt LowBits = RA - 1;
3092         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3093 
3094         // The low bits of the first operand are unchanged by the srem.
3095         Known.Zero = Known2.Zero & LowBits;
3096         Known.One = Known2.One & LowBits;
3097 
3098         // If the first operand is non-negative or has all low bits zero, then
3099         // the upper bits are all zero.
3100         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3101           Known.Zero |= ~LowBits;
3102 
3103         // If the first operand is negative and not all low bits are zero, then
3104         // the upper bits are all one.
3105         if (Known2.isNegative() && LowBits.intersects(Known2.One))
3106           Known.One |= ~LowBits;
3107         assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3108       }
3109     }
3110     break;
3111   case ISD::UREM: {
3112     if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3113       const APInt &RA = Rem->getAPIntValue();
3114       if (RA.isPowerOf2()) {
3115         APInt LowBits = (RA - 1);
3116         Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3117 
3118         // The upper bits are all zero, the lower ones are unchanged.
3119         Known.Zero = Known2.Zero | ~LowBits;
3120         Known.One = Known2.One & LowBits;
3121         break;
3122       }
3123     }
3124 
3125     // Since the result is less than or equal to either operand, any leading
3126     // zero bits in either operand must also exist in the result.
3127     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3128     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3129 
3130     uint32_t Leaders =
3131         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3132     Known.resetAll();
3133     Known.Zero.setHighBits(Leaders);
3134     break;
3135   }
3136   case ISD::EXTRACT_ELEMENT: {
3137     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3138     const unsigned Index = Op.getConstantOperandVal(1);
3139     const unsigned EltBitWidth = Op.getValueSizeInBits();
3140 
3141     // Remove low part of known bits mask
3142     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3143     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3144 
3145     // Remove high part of known bit mask
3146     Known = Known.trunc(EltBitWidth);
3147     break;
3148   }
3149   case ISD::EXTRACT_VECTOR_ELT: {
3150     SDValue InVec = Op.getOperand(0);
3151     SDValue EltNo = Op.getOperand(1);
3152     EVT VecVT = InVec.getValueType();
3153     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3154     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3155     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3156     // anything about the extended bits.
3157     if (BitWidth > EltBitWidth)
3158       Known = Known.trunc(EltBitWidth);
3159     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3160     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) {
3161       // If we know the element index, just demand that vector element.
3162       unsigned Idx = ConstEltNo->getZExtValue();
3163       APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
3164       Known = computeKnownBits(InVec, DemandedElt, Depth + 1);
3165     } else {
3166       // Unknown element index, so ignore DemandedElts and demand them all.
3167       Known = computeKnownBits(InVec, Depth + 1);
3168     }
3169     if (BitWidth > EltBitWidth)
3170       Known = Known.zext(BitWidth, false /* => any extend */);
3171     break;
3172   }
3173   case ISD::INSERT_VECTOR_ELT: {
3174     SDValue InVec = Op.getOperand(0);
3175     SDValue InVal = Op.getOperand(1);
3176     SDValue EltNo = Op.getOperand(2);
3177 
3178     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3179     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3180       // If we know the element index, split the demand between the
3181       // source vector and the inserted element.
3182       Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth);
3183       unsigned EltIdx = CEltNo->getZExtValue();
3184 
3185       // If we demand the inserted element then add its common known bits.
3186       if (DemandedElts[EltIdx]) {
3187         Known2 = computeKnownBits(InVal, Depth + 1);
3188         Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3189         Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3190       }
3191 
3192       // If we demand the source vector then add its common known bits, ensuring
3193       // that we don't demand the inserted element.
3194       APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx));
3195       if (!!VectorElts) {
3196         Known2 = computeKnownBits(InVec, VectorElts, Depth + 1);
3197         Known.One &= Known2.One;
3198         Known.Zero &= Known2.Zero;
3199       }
3200     } else {
3201       // Unknown element index, so ignore DemandedElts and demand them all.
3202       Known = computeKnownBits(InVec, Depth + 1);
3203       Known2 = computeKnownBits(InVal, Depth + 1);
3204       Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth());
3205       Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth());
3206     }
3207     break;
3208   }
3209   case ISD::BITREVERSE: {
3210     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3211     Known.Zero = Known2.Zero.reverseBits();
3212     Known.One = Known2.One.reverseBits();
3213     break;
3214   }
3215   case ISD::BSWAP: {
3216     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3217     Known.Zero = Known2.Zero.byteSwap();
3218     Known.One = Known2.One.byteSwap();
3219     break;
3220   }
3221   case ISD::ABS: {
3222     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3223 
3224     // If the source's MSB is zero then we know the rest of the bits already.
3225     if (Known2.isNonNegative()) {
3226       Known.Zero = Known2.Zero;
3227       Known.One = Known2.One;
3228       break;
3229     }
3230 
3231     // We only know that the absolute values's MSB will be zero iff there is
3232     // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3233     Known2.One.clearSignBit();
3234     if (Known2.One.getBoolValue()) {
3235       Known.Zero = APInt::getSignMask(BitWidth);
3236       break;
3237     }
3238     break;
3239   }
3240   case ISD::UMIN: {
3241     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3242     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3243 
3244     // UMIN - we know that the result will have the maximum of the
3245     // known zero leading bits of the inputs.
3246     unsigned LeadZero = Known.countMinLeadingZeros();
3247     LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3248 
3249     Known.Zero &= Known2.Zero;
3250     Known.One &= Known2.One;
3251     Known.Zero.setHighBits(LeadZero);
3252     break;
3253   }
3254   case ISD::UMAX: {
3255     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3256     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3257 
3258     // UMAX - we know that the result will have the maximum of the
3259     // known one leading bits of the inputs.
3260     unsigned LeadOne = Known.countMinLeadingOnes();
3261     LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3262 
3263     Known.Zero &= Known2.Zero;
3264     Known.One &= Known2.One;
3265     Known.One.setHighBits(LeadOne);
3266     break;
3267   }
3268   case ISD::SMIN:
3269   case ISD::SMAX: {
3270     // If we have a clamp pattern, we know that the number of sign bits will be
3271     // the minimum of the clamp min/max range.
3272     bool IsMax = (Opcode == ISD::SMAX);
3273     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3274     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3275       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3276         CstHigh =
3277             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3278     if (CstLow && CstHigh) {
3279       if (!IsMax)
3280         std::swap(CstLow, CstHigh);
3281 
3282       const APInt &ValueLow = CstLow->getAPIntValue();
3283       const APInt &ValueHigh = CstHigh->getAPIntValue();
3284       if (ValueLow.sle(ValueHigh)) {
3285         unsigned LowSignBits = ValueLow.getNumSignBits();
3286         unsigned HighSignBits = ValueHigh.getNumSignBits();
3287         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3288         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3289           Known.One.setHighBits(MinSignBits);
3290           break;
3291         }
3292         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3293           Known.Zero.setHighBits(MinSignBits);
3294           break;
3295         }
3296       }
3297     }
3298 
3299     // Fallback - just get the shared known bits of the operands.
3300     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3301     if (Known.isUnknown()) break; // Early-out
3302     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3303     Known.Zero &= Known2.Zero;
3304     Known.One &= Known2.One;
3305     break;
3306   }
3307   case ISD::FrameIndex:
3308   case ISD::TargetFrameIndex:
3309     TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth);
3310     break;
3311 
3312   default:
3313     if (Opcode < ISD::BUILTIN_OP_END)
3314       break;
3315     LLVM_FALLTHROUGH;
3316   case ISD::INTRINSIC_WO_CHAIN:
3317   case ISD::INTRINSIC_W_CHAIN:
3318   case ISD::INTRINSIC_VOID:
3319     // Allow the target to implement this method for its nodes.
3320     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3321     break;
3322   }
3323 
3324   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3325   return Known;
3326 }
3327 
3328 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3329                                                              SDValue N1) const {
3330   // X + 0 never overflow
3331   if (isNullConstant(N1))
3332     return OFK_Never;
3333 
3334   KnownBits N1Known = computeKnownBits(N1);
3335   if (N1Known.Zero.getBoolValue()) {
3336     KnownBits N0Known = computeKnownBits(N0);
3337 
3338     bool overflow;
3339     (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow);
3340     if (!overflow)
3341       return OFK_Never;
3342   }
3343 
3344   // mulhi + 1 never overflow
3345   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3346       (~N1Known.Zero & 0x01) == ~N1Known.Zero)
3347     return OFK_Never;
3348 
3349   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3350     KnownBits N0Known = computeKnownBits(N0);
3351 
3352     if ((~N0Known.Zero & 0x01) == ~N0Known.Zero)
3353       return OFK_Never;
3354   }
3355 
3356   return OFK_Sometime;
3357 }
3358 
3359 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3360   EVT OpVT = Val.getValueType();
3361   unsigned BitWidth = OpVT.getScalarSizeInBits();
3362 
3363   // Is the constant a known power of 2?
3364   if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3365     return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3366 
3367   // A left-shift of a constant one will have exactly one bit set because
3368   // shifting the bit off the end is undefined.
3369   if (Val.getOpcode() == ISD::SHL) {
3370     auto *C = isConstOrConstSplat(Val.getOperand(0));
3371     if (C && C->getAPIntValue() == 1)
3372       return true;
3373   }
3374 
3375   // Similarly, a logical right-shift of a constant sign-bit will have exactly
3376   // one bit set.
3377   if (Val.getOpcode() == ISD::SRL) {
3378     auto *C = isConstOrConstSplat(Val.getOperand(0));
3379     if (C && C->getAPIntValue().isSignMask())
3380       return true;
3381   }
3382 
3383   // Are all operands of a build vector constant powers of two?
3384   if (Val.getOpcode() == ISD::BUILD_VECTOR)
3385     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3386           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3387             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3388           return false;
3389         }))
3390       return true;
3391 
3392   // More could be done here, though the above checks are enough
3393   // to handle some common cases.
3394 
3395   // Fall back to computeKnownBits to catch other known cases.
3396   KnownBits Known = computeKnownBits(Val);
3397   return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3398 }
3399 
3400 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3401   EVT VT = Op.getValueType();
3402   APInt DemandedElts = VT.isVector()
3403                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
3404                            : APInt(1, 1);
3405   return ComputeNumSignBits(Op, DemandedElts, Depth);
3406 }
3407 
3408 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3409                                           unsigned Depth) const {
3410   EVT VT = Op.getValueType();
3411   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3412   unsigned VTBits = VT.getScalarSizeInBits();
3413   unsigned NumElts = DemandedElts.getBitWidth();
3414   unsigned Tmp, Tmp2;
3415   unsigned FirstAnswer = 1;
3416 
3417   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3418     const APInt &Val = C->getAPIntValue();
3419     return Val.getNumSignBits();
3420   }
3421 
3422   if (Depth >= MaxRecursionDepth)
3423     return 1;  // Limit search depth.
3424 
3425   if (!DemandedElts)
3426     return 1;  // No demanded elts, better to assume we don't know anything.
3427 
3428   unsigned Opcode = Op.getOpcode();
3429   switch (Opcode) {
3430   default: break;
3431   case ISD::AssertSext:
3432     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3433     return VTBits-Tmp+1;
3434   case ISD::AssertZext:
3435     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3436     return VTBits-Tmp;
3437 
3438   case ISD::BUILD_VECTOR:
3439     Tmp = VTBits;
3440     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3441       if (!DemandedElts[i])
3442         continue;
3443 
3444       SDValue SrcOp = Op.getOperand(i);
3445       Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1);
3446 
3447       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3448       if (SrcOp.getValueSizeInBits() != VTBits) {
3449         assert(SrcOp.getValueSizeInBits() > VTBits &&
3450                "Expected BUILD_VECTOR implicit truncation");
3451         unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3452         Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3453       }
3454       Tmp = std::min(Tmp, Tmp2);
3455     }
3456     return Tmp;
3457 
3458   case ISD::VECTOR_SHUFFLE: {
3459     // Collect the minimum number of sign bits that are shared by every vector
3460     // element referenced by the shuffle.
3461     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3462     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3463     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3464     for (unsigned i = 0; i != NumElts; ++i) {
3465       int M = SVN->getMaskElt(i);
3466       if (!DemandedElts[i])
3467         continue;
3468       // For UNDEF elements, we don't know anything about the common state of
3469       // the shuffle result.
3470       if (M < 0)
3471         return 1;
3472       if ((unsigned)M < NumElts)
3473         DemandedLHS.setBit((unsigned)M % NumElts);
3474       else
3475         DemandedRHS.setBit((unsigned)M % NumElts);
3476     }
3477     Tmp = std::numeric_limits<unsigned>::max();
3478     if (!!DemandedLHS)
3479       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3480     if (!!DemandedRHS) {
3481       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3482       Tmp = std::min(Tmp, Tmp2);
3483     }
3484     // If we don't know anything, early out and try computeKnownBits fall-back.
3485     if (Tmp == 1)
3486       break;
3487     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3488     return Tmp;
3489   }
3490 
3491   case ISD::BITCAST: {
3492     SDValue N0 = Op.getOperand(0);
3493     EVT SrcVT = N0.getValueType();
3494     unsigned SrcBits = SrcVT.getScalarSizeInBits();
3495 
3496     // Ignore bitcasts from unsupported types..
3497     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3498       break;
3499 
3500     // Fast handling of 'identity' bitcasts.
3501     if (VTBits == SrcBits)
3502       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3503 
3504     bool IsLE = getDataLayout().isLittleEndian();
3505 
3506     // Bitcast 'large element' scalar/vector to 'small element' vector.
3507     if ((SrcBits % VTBits) == 0) {
3508       assert(VT.isVector() && "Expected bitcast to vector");
3509 
3510       unsigned Scale = SrcBits / VTBits;
3511       APInt SrcDemandedElts(NumElts / Scale, 0);
3512       for (unsigned i = 0; i != NumElts; ++i)
3513         if (DemandedElts[i])
3514           SrcDemandedElts.setBit(i / Scale);
3515 
3516       // Fast case - sign splat can be simply split across the small elements.
3517       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3518       if (Tmp == SrcBits)
3519         return VTBits;
3520 
3521       // Slow case - determine how far the sign extends into each sub-element.
3522       Tmp2 = VTBits;
3523       for (unsigned i = 0; i != NumElts; ++i)
3524         if (DemandedElts[i]) {
3525           unsigned SubOffset = i % Scale;
3526           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3527           SubOffset = SubOffset * VTBits;
3528           if (Tmp <= SubOffset)
3529             return 1;
3530           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3531         }
3532       return Tmp2;
3533     }
3534     break;
3535   }
3536 
3537   case ISD::SIGN_EXTEND:
3538     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3539     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3540   case ISD::SIGN_EXTEND_INREG:
3541     // Max of the input and what this extends.
3542     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3543     Tmp = VTBits-Tmp+1;
3544     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3545     return std::max(Tmp, Tmp2);
3546   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3547     SDValue Src = Op.getOperand(0);
3548     EVT SrcVT = Src.getValueType();
3549     APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3550     Tmp = VTBits - SrcVT.getScalarSizeInBits();
3551     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3552   }
3553 
3554   case ISD::SRA:
3555     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3556     // SRA X, C   -> adds C sign bits.
3557     if (ConstantSDNode *C =
3558             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3559       APInt ShiftVal = C->getAPIntValue();
3560       ShiftVal += Tmp;
3561       Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
3562     }
3563     return Tmp;
3564   case ISD::SHL:
3565     if (ConstantSDNode *C =
3566             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3567       // shl destroys sign bits.
3568       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3569       if (C->getAPIntValue().uge(VTBits) ||      // Bad shift.
3570           C->getAPIntValue().uge(Tmp)) break;    // Shifted all sign bits out.
3571       return Tmp - C->getZExtValue();
3572     }
3573     break;
3574   case ISD::AND:
3575   case ISD::OR:
3576   case ISD::XOR:    // NOT is handled here.
3577     // Logical binary ops preserve the number of sign bits at the worst.
3578     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3579     if (Tmp != 1) {
3580       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3581       FirstAnswer = std::min(Tmp, Tmp2);
3582       // We computed what we know about the sign bits as our first
3583       // answer. Now proceed to the generic code that uses
3584       // computeKnownBits, and pick whichever answer is better.
3585     }
3586     break;
3587 
3588   case ISD::SELECT:
3589   case ISD::VSELECT:
3590     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3591     if (Tmp == 1) return 1;  // Early out.
3592     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3593     return std::min(Tmp, Tmp2);
3594   case ISD::SELECT_CC:
3595     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3596     if (Tmp == 1) return 1;  // Early out.
3597     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3598     return std::min(Tmp, Tmp2);
3599 
3600   case ISD::SMIN:
3601   case ISD::SMAX: {
3602     // If we have a clamp pattern, we know that the number of sign bits will be
3603     // the minimum of the clamp min/max range.
3604     bool IsMax = (Opcode == ISD::SMAX);
3605     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3606     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3607       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3608         CstHigh =
3609             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3610     if (CstLow && CstHigh) {
3611       if (!IsMax)
3612         std::swap(CstLow, CstHigh);
3613       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3614         Tmp = CstLow->getAPIntValue().getNumSignBits();
3615         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3616         return std::min(Tmp, Tmp2);
3617       }
3618     }
3619 
3620     // Fallback - just get the minimum number of sign bits of the operands.
3621     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3622     if (Tmp == 1)
3623       return 1;  // Early out.
3624     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3625     return std::min(Tmp, Tmp2);
3626   }
3627   case ISD::UMIN:
3628   case ISD::UMAX:
3629     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3630     if (Tmp == 1)
3631       return 1;  // Early out.
3632     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3633     return std::min(Tmp, Tmp2);
3634   case ISD::SADDO:
3635   case ISD::UADDO:
3636   case ISD::SSUBO:
3637   case ISD::USUBO:
3638   case ISD::SMULO:
3639   case ISD::UMULO:
3640     if (Op.getResNo() != 1)
3641       break;
3642     // The boolean result conforms to getBooleanContents.  Fall through.
3643     // If setcc returns 0/-1, all bits are sign bits.
3644     // We know that we have an integer-based boolean since these operations
3645     // are only available for integer.
3646     if (TLI->getBooleanContents(VT.isVector(), false) ==
3647         TargetLowering::ZeroOrNegativeOneBooleanContent)
3648       return VTBits;
3649     break;
3650   case ISD::SETCC:
3651     // If setcc returns 0/-1, all bits are sign bits.
3652     if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3653         TargetLowering::ZeroOrNegativeOneBooleanContent)
3654       return VTBits;
3655     break;
3656   case ISD::ROTL:
3657   case ISD::ROTR:
3658     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3659       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3660 
3661       // Handle rotate right by N like a rotate left by 32-N.
3662       if (Opcode == ISD::ROTR)
3663         RotAmt = (VTBits - RotAmt) % VTBits;
3664 
3665       // If we aren't rotating out all of the known-in sign bits, return the
3666       // number that are left.  This handles rotl(sext(x), 1) for example.
3667       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3668       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3669     }
3670     break;
3671   case ISD::ADD:
3672   case ISD::ADDC:
3673     // Add can have at most one carry bit.  Thus we know that the output
3674     // is, at worst, one more bit than the inputs.
3675     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3676     if (Tmp == 1) return 1;  // Early out.
3677 
3678     // Special case decrementing a value (ADD X, -1):
3679     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
3680       if (CRHS->isAllOnesValue()) {
3681         KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1);
3682 
3683         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3684         // sign bits set.
3685         if ((Known.Zero | 1).isAllOnesValue())
3686           return VTBits;
3687 
3688         // If we are subtracting one from a positive number, there is no carry
3689         // out of the result.
3690         if (Known.isNonNegative())
3691           return Tmp;
3692       }
3693 
3694     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3695     if (Tmp2 == 1) return 1;
3696     return std::min(Tmp, Tmp2)-1;
3697 
3698   case ISD::SUB:
3699     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
3700     if (Tmp2 == 1) return 1;
3701 
3702     // Handle NEG.
3703     if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0)))
3704       if (CLHS->isNullValue()) {
3705         KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1);
3706         // If the input is known to be 0 or 1, the output is 0/-1, which is all
3707         // sign bits set.
3708         if ((Known.Zero | 1).isAllOnesValue())
3709           return VTBits;
3710 
3711         // If the input is known to be positive (the sign bit is known clear),
3712         // the output of the NEG has the same number of sign bits as the input.
3713         if (Known.isNonNegative())
3714           return Tmp2;
3715 
3716         // Otherwise, we treat this like a SUB.
3717       }
3718 
3719     // Sub can have at most one carry bit.  Thus we know that the output
3720     // is, at worst, one more bit than the inputs.
3721     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3722     if (Tmp == 1) return 1;  // Early out.
3723     return std::min(Tmp, Tmp2)-1;
3724   case ISD::MUL: {
3725     // The output of the Mul can be at most twice the valid bits in the inputs.
3726     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3727     if (SignBitsOp0 == 1)
3728       break;
3729     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3730     if (SignBitsOp1 == 1)
3731       break;
3732     unsigned OutValidBits =
3733         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3734     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3735   }
3736   case ISD::TRUNCATE: {
3737     // Check if the sign bits of source go down as far as the truncated value.
3738     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3739     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3740     if (NumSrcSignBits > (NumSrcBits - VTBits))
3741       return NumSrcSignBits - (NumSrcBits - VTBits);
3742     break;
3743   }
3744   case ISD::EXTRACT_ELEMENT: {
3745     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3746     const int BitWidth = Op.getValueSizeInBits();
3747     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3748 
3749     // Get reverse index (starting from 1), Op1 value indexes elements from
3750     // little end. Sign starts at big end.
3751     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3752 
3753     // If the sign portion ends in our element the subtraction gives correct
3754     // result. Otherwise it gives either negative or > bitwidth result
3755     return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3756   }
3757   case ISD::INSERT_VECTOR_ELT: {
3758     SDValue InVec = Op.getOperand(0);
3759     SDValue InVal = Op.getOperand(1);
3760     SDValue EltNo = Op.getOperand(2);
3761 
3762     ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3763     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3764       // If we know the element index, split the demand between the
3765       // source vector and the inserted element.
3766       unsigned EltIdx = CEltNo->getZExtValue();
3767 
3768       // If we demand the inserted element then get its sign bits.
3769       Tmp = std::numeric_limits<unsigned>::max();
3770       if (DemandedElts[EltIdx]) {
3771         // TODO - handle implicit truncation of inserted elements.
3772         if (InVal.getScalarValueSizeInBits() != VTBits)
3773           break;
3774         Tmp = ComputeNumSignBits(InVal, Depth + 1);
3775       }
3776 
3777       // If we demand the source vector then get its sign bits, and determine
3778       // the minimum.
3779       APInt VectorElts = DemandedElts;
3780       VectorElts.clearBit(EltIdx);
3781       if (!!VectorElts) {
3782         Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1);
3783         Tmp = std::min(Tmp, Tmp2);
3784       }
3785     } else {
3786       // Unknown element index, so ignore DemandedElts and demand them all.
3787       Tmp = ComputeNumSignBits(InVec, Depth + 1);
3788       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3789       Tmp = std::min(Tmp, Tmp2);
3790     }
3791     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3792     return Tmp;
3793   }
3794   case ISD::EXTRACT_VECTOR_ELT: {
3795     SDValue InVec = Op.getOperand(0);
3796     SDValue EltNo = Op.getOperand(1);
3797     EVT VecVT = InVec.getValueType();
3798     const unsigned BitWidth = Op.getValueSizeInBits();
3799     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3800     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3801 
3802     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3803     // anything about sign bits. But if the sizes match we can derive knowledge
3804     // about sign bits from the vector operand.
3805     if (BitWidth != EltBitWidth)
3806       break;
3807 
3808     // If we know the element index, just demand that vector element, else for
3809     // an unknown element index, ignore DemandedElts and demand them all.
3810     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3811     ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3812     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3813       DemandedSrcElts =
3814           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3815 
3816     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
3817   }
3818   case ISD::EXTRACT_SUBVECTOR: {
3819     // If we know the element index, just demand that subvector elements,
3820     // otherwise demand them all.
3821     SDValue Src = Op.getOperand(0);
3822     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3823     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3824     APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts);
3825     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
3826       // Offset the demanded elts by the subvector index.
3827       uint64_t Idx = SubIdx->getZExtValue();
3828       DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
3829     }
3830     return ComputeNumSignBits(Src, DemandedSrc, Depth + 1);
3831   }
3832   case ISD::CONCAT_VECTORS: {
3833     // Determine the minimum number of sign bits across all demanded
3834     // elts of the input vectors. Early out if the result is already 1.
3835     Tmp = std::numeric_limits<unsigned>::max();
3836     EVT SubVectorVT = Op.getOperand(0).getValueType();
3837     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3838     unsigned NumSubVectors = Op.getNumOperands();
3839     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
3840       APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
3841       DemandedSub = DemandedSub.trunc(NumSubVectorElts);
3842       if (!DemandedSub)
3843         continue;
3844       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
3845       Tmp = std::min(Tmp, Tmp2);
3846     }
3847     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3848     return Tmp;
3849   }
3850   case ISD::INSERT_SUBVECTOR: {
3851     // If we know the element index, demand any elements from the subvector and
3852     // the remainder from the src its inserted into, otherwise demand them all.
3853     SDValue Src = Op.getOperand(0);
3854     SDValue Sub = Op.getOperand(1);
3855     auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3856     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3857     if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) {
3858       Tmp = std::numeric_limits<unsigned>::max();
3859       uint64_t Idx = SubIdx->getZExtValue();
3860       APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3861       if (!!DemandedSubElts) {
3862         Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
3863         if (Tmp == 1) return 1; // early-out
3864       }
3865       APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts);
3866       APInt DemandedSrcElts = DemandedElts & ~SubMask;
3867       if (!!DemandedSrcElts) {
3868         Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
3869         Tmp = std::min(Tmp, Tmp2);
3870       }
3871       assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3872       return Tmp;
3873     }
3874 
3875     // Not able to determine the index so just assume worst case.
3876     Tmp = ComputeNumSignBits(Sub, Depth + 1);
3877     if (Tmp == 1) return 1; // early-out
3878     Tmp2 = ComputeNumSignBits(Src, Depth + 1);
3879     Tmp = std::min(Tmp, Tmp2);
3880     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3881     return Tmp;
3882   }
3883   }
3884 
3885   // If we are looking at the loaded value of the SDNode.
3886   if (Op.getResNo() == 0) {
3887     // Handle LOADX separately here. EXTLOAD case will fallthrough.
3888     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
3889       unsigned ExtType = LD->getExtensionType();
3890       switch (ExtType) {
3891       default: break;
3892       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
3893         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3894         return VTBits - Tmp + 1;
3895       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
3896         Tmp = LD->getMemoryVT().getScalarSizeInBits();
3897         return VTBits - Tmp;
3898       case ISD::NON_EXTLOAD:
3899         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
3900           // We only need to handle vectors - computeKnownBits should handle
3901           // scalar cases.
3902           Type *CstTy = Cst->getType();
3903           if (CstTy->isVectorTy() &&
3904               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
3905             Tmp = VTBits;
3906             for (unsigned i = 0; i != NumElts; ++i) {
3907               if (!DemandedElts[i])
3908                 continue;
3909               if (Constant *Elt = Cst->getAggregateElement(i)) {
3910                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3911                   const APInt &Value = CInt->getValue();
3912                   Tmp = std::min(Tmp, Value.getNumSignBits());
3913                   continue;
3914                 }
3915                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3916                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
3917                   Tmp = std::min(Tmp, Value.getNumSignBits());
3918                   continue;
3919                 }
3920               }
3921               // Unknown type. Conservatively assume no bits match sign bit.
3922               return 1;
3923             }
3924             return Tmp;
3925           }
3926         }
3927         break;
3928       }
3929     }
3930   }
3931 
3932   // Allow the target to implement this method for its nodes.
3933   if (Opcode >= ISD::BUILTIN_OP_END ||
3934       Opcode == ISD::INTRINSIC_WO_CHAIN ||
3935       Opcode == ISD::INTRINSIC_W_CHAIN ||
3936       Opcode == ISD::INTRINSIC_VOID) {
3937     unsigned NumBits =
3938         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
3939     if (NumBits > 1)
3940       FirstAnswer = std::max(FirstAnswer, NumBits);
3941   }
3942 
3943   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3944   // use this information.
3945   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
3946 
3947   APInt Mask;
3948   if (Known.isNonNegative()) {        // sign bit is 0
3949     Mask = Known.Zero;
3950   } else if (Known.isNegative()) {  // sign bit is 1;
3951     Mask = Known.One;
3952   } else {
3953     // Nothing known.
3954     return FirstAnswer;
3955   }
3956 
3957   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
3958   // the number of identical bits in the top of the input value.
3959   Mask = ~Mask;
3960   Mask <<= Mask.getBitWidth()-VTBits;
3961   // Return # leading zeros.  We use 'min' here in case Val was zero before
3962   // shifting.  We don't want to return '64' as for an i32 "0".
3963   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
3964 }
3965 
3966 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
3967   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
3968       !isa<ConstantSDNode>(Op.getOperand(1)))
3969     return false;
3970 
3971   if (Op.getOpcode() == ISD::OR &&
3972       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
3973     return false;
3974 
3975   return true;
3976 }
3977 
3978 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
3979   // If we're told that NaNs won't happen, assume they won't.
3980   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
3981     return true;
3982 
3983   if (Depth >= MaxRecursionDepth)
3984     return false; // Limit search depth.
3985 
3986   // TODO: Handle vectors.
3987   // If the value is a constant, we can obviously see if it is a NaN or not.
3988   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
3989     return !C->getValueAPF().isNaN() ||
3990            (SNaN && !C->getValueAPF().isSignaling());
3991   }
3992 
3993   unsigned Opcode = Op.getOpcode();
3994   switch (Opcode) {
3995   case ISD::FADD:
3996   case ISD::FSUB:
3997   case ISD::FMUL:
3998   case ISD::FDIV:
3999   case ISD::FREM:
4000   case ISD::FSIN:
4001   case ISD::FCOS: {
4002     if (SNaN)
4003       return true;
4004     // TODO: Need isKnownNeverInfinity
4005     return false;
4006   }
4007   case ISD::FCANONICALIZE:
4008   case ISD::FEXP:
4009   case ISD::FEXP2:
4010   case ISD::FTRUNC:
4011   case ISD::FFLOOR:
4012   case ISD::FCEIL:
4013   case ISD::FROUND:
4014   case ISD::FRINT:
4015   case ISD::FNEARBYINT: {
4016     if (SNaN)
4017       return true;
4018     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4019   }
4020   case ISD::FABS:
4021   case ISD::FNEG:
4022   case ISD::FCOPYSIGN: {
4023     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4024   }
4025   case ISD::SELECT:
4026     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4027            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4028   case ISD::FP_EXTEND:
4029   case ISD::FP_ROUND: {
4030     if (SNaN)
4031       return true;
4032     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4033   }
4034   case ISD::SINT_TO_FP:
4035   case ISD::UINT_TO_FP:
4036     return true;
4037   case ISD::FMA:
4038   case ISD::FMAD: {
4039     if (SNaN)
4040       return true;
4041     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4042            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4043            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4044   }
4045   case ISD::FSQRT: // Need is known positive
4046   case ISD::FLOG:
4047   case ISD::FLOG2:
4048   case ISD::FLOG10:
4049   case ISD::FPOWI:
4050   case ISD::FPOW: {
4051     if (SNaN)
4052       return true;
4053     // TODO: Refine on operand
4054     return false;
4055   }
4056   case ISD::FMINNUM:
4057   case ISD::FMAXNUM: {
4058     // Only one needs to be known not-nan, since it will be returned if the
4059     // other ends up being one.
4060     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4061            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4062   }
4063   case ISD::FMINNUM_IEEE:
4064   case ISD::FMAXNUM_IEEE: {
4065     if (SNaN)
4066       return true;
4067     // This can return a NaN if either operand is an sNaN, or if both operands
4068     // are NaN.
4069     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4070             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4071            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4072             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4073   }
4074   case ISD::FMINIMUM:
4075   case ISD::FMAXIMUM: {
4076     // TODO: Does this quiet or return the origina NaN as-is?
4077     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4078            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4079   }
4080   case ISD::EXTRACT_VECTOR_ELT: {
4081     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4082   }
4083   default:
4084     if (Opcode >= ISD::BUILTIN_OP_END ||
4085         Opcode == ISD::INTRINSIC_WO_CHAIN ||
4086         Opcode == ISD::INTRINSIC_W_CHAIN ||
4087         Opcode == ISD::INTRINSIC_VOID) {
4088       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4089     }
4090 
4091     return false;
4092   }
4093 }
4094 
4095 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4096   assert(Op.getValueType().isFloatingPoint() &&
4097          "Floating point type expected");
4098 
4099   // If the value is a constant, we can obviously see if it is a zero or not.
4100   // TODO: Add BuildVector support.
4101   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4102     return !C->isZero();
4103   return false;
4104 }
4105 
4106 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4107   assert(!Op.getValueType().isFloatingPoint() &&
4108          "Floating point types unsupported - use isKnownNeverZeroFloat");
4109 
4110   // If the value is a constant, we can obviously see if it is a zero or not.
4111   if (ISD::matchUnaryPredicate(
4112           Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4113     return true;
4114 
4115   // TODO: Recognize more cases here.
4116   switch (Op.getOpcode()) {
4117   default: break;
4118   case ISD::OR:
4119     if (isKnownNeverZero(Op.getOperand(1)) ||
4120         isKnownNeverZero(Op.getOperand(0)))
4121       return true;
4122     break;
4123   }
4124 
4125   return false;
4126 }
4127 
4128 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4129   // Check the obvious case.
4130   if (A == B) return true;
4131 
4132   // For for negative and positive zero.
4133   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4134     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4135       if (CA->isZero() && CB->isZero()) return true;
4136 
4137   // Otherwise they may not be equal.
4138   return false;
4139 }
4140 
4141 // FIXME: unify with llvm::haveNoCommonBitsSet.
4142 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
4143 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4144   assert(A.getValueType() == B.getValueType() &&
4145          "Values must have the same type");
4146   return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4147 }
4148 
4149 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4150                                 ArrayRef<SDValue> Ops,
4151                                 SelectionDAG &DAG) {
4152   int NumOps = Ops.size();
4153   assert(NumOps != 0 && "Can't build an empty vector!");
4154   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4155          "Incorrect element count in BUILD_VECTOR!");
4156 
4157   // BUILD_VECTOR of UNDEFs is UNDEF.
4158   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4159     return DAG.getUNDEF(VT);
4160 
4161   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4162   SDValue IdentitySrc;
4163   bool IsIdentity = true;
4164   for (int i = 0; i != NumOps; ++i) {
4165     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4166         Ops[i].getOperand(0).getValueType() != VT ||
4167         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4168         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4169         cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4170       IsIdentity = false;
4171       break;
4172     }
4173     IdentitySrc = Ops[i].getOperand(0);
4174   }
4175   if (IsIdentity)
4176     return IdentitySrc;
4177 
4178   return SDValue();
4179 }
4180 
4181 /// Try to simplify vector concatenation to an input value, undef, or build
4182 /// vector.
4183 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4184                                   ArrayRef<SDValue> Ops,
4185                                   SelectionDAG &DAG) {
4186   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4187   assert(llvm::all_of(Ops,
4188                       [Ops](SDValue Op) {
4189                         return Ops[0].getValueType() == Op.getValueType();
4190                       }) &&
4191          "Concatenation of vectors with inconsistent value types!");
4192   assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) ==
4193              VT.getVectorNumElements() &&
4194          "Incorrect element count in vector concatenation!");
4195 
4196   if (Ops.size() == 1)
4197     return Ops[0];
4198 
4199   // Concat of UNDEFs is UNDEF.
4200   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4201     return DAG.getUNDEF(VT);
4202 
4203   // Scan the operands and look for extract operations from a single source
4204   // that correspond to insertion at the same location via this concatenation:
4205   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4206   SDValue IdentitySrc;
4207   bool IsIdentity = true;
4208   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4209     SDValue Op = Ops[i];
4210     unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements();
4211     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4212         Op.getOperand(0).getValueType() != VT ||
4213         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4214         !isa<ConstantSDNode>(Op.getOperand(1)) ||
4215         Op.getConstantOperandVal(1) != IdentityIndex) {
4216       IsIdentity = false;
4217       break;
4218     }
4219     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4220            "Unexpected identity source vector for concat of extracts");
4221     IdentitySrc = Op.getOperand(0);
4222   }
4223   if (IsIdentity) {
4224     assert(IdentitySrc && "Failed to set source vector of extracts");
4225     return IdentitySrc;
4226   }
4227 
4228   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4229   // simplified to one big BUILD_VECTOR.
4230   // FIXME: Add support for SCALAR_TO_VECTOR as well.
4231   EVT SVT = VT.getScalarType();
4232   SmallVector<SDValue, 16> Elts;
4233   for (SDValue Op : Ops) {
4234     EVT OpVT = Op.getValueType();
4235     if (Op.isUndef())
4236       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4237     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4238       Elts.append(Op->op_begin(), Op->op_end());
4239     else
4240       return SDValue();
4241   }
4242 
4243   // BUILD_VECTOR requires all inputs to be of the same type, find the
4244   // maximum type and extend them all.
4245   for (SDValue Op : Elts)
4246     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4247 
4248   if (SVT.bitsGT(VT.getScalarType()))
4249     for (SDValue &Op : Elts)
4250       Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4251                ? DAG.getZExtOrTrunc(Op, DL, SVT)
4252                : DAG.getSExtOrTrunc(Op, DL, SVT);
4253 
4254   SDValue V = DAG.getBuildVector(VT, DL, Elts);
4255   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4256   return V;
4257 }
4258 
4259 /// Gets or creates the specified node.
4260 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4261   FoldingSetNodeID ID;
4262   AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4263   void *IP = nullptr;
4264   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4265     return SDValue(E, 0);
4266 
4267   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4268                               getVTList(VT));
4269   CSEMap.InsertNode(N, IP);
4270 
4271   InsertNode(N);
4272   SDValue V = SDValue(N, 0);
4273   NewSDValueDbgMsg(V, "Creating new node: ", this);
4274   return V;
4275 }
4276 
4277 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4278                               SDValue Operand, const SDNodeFlags Flags) {
4279   // Constant fold unary operations with an integer constant operand. Even
4280   // opaque constant will be folded, because the folding of unary operations
4281   // doesn't create new constants with different values. Nevertheless, the
4282   // opaque flag is preserved during folding to prevent future folding with
4283   // other constants.
4284   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4285     const APInt &Val = C->getAPIntValue();
4286     switch (Opcode) {
4287     default: break;
4288     case ISD::SIGN_EXTEND:
4289       return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4290                          C->isTargetOpcode(), C->isOpaque());
4291     case ISD::TRUNCATE:
4292       if (C->isOpaque())
4293         break;
4294       LLVM_FALLTHROUGH;
4295     case ISD::ANY_EXTEND:
4296     case ISD::ZERO_EXTEND:
4297       return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4298                          C->isTargetOpcode(), C->isOpaque());
4299     case ISD::UINT_TO_FP:
4300     case ISD::SINT_TO_FP: {
4301       APFloat apf(EVTToAPFloatSemantics(VT),
4302                   APInt::getNullValue(VT.getSizeInBits()));
4303       (void)apf.convertFromAPInt(Val,
4304                                  Opcode==ISD::SINT_TO_FP,
4305                                  APFloat::rmNearestTiesToEven);
4306       return getConstantFP(apf, DL, VT);
4307     }
4308     case ISD::BITCAST:
4309       if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4310         return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4311       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4312         return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4313       if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4314         return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4315       if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4316         return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4317       break;
4318     case ISD::ABS:
4319       return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4320                          C->isOpaque());
4321     case ISD::BITREVERSE:
4322       return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4323                          C->isOpaque());
4324     case ISD::BSWAP:
4325       return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4326                          C->isOpaque());
4327     case ISD::CTPOP:
4328       return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4329                          C->isOpaque());
4330     case ISD::CTLZ:
4331     case ISD::CTLZ_ZERO_UNDEF:
4332       return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4333                          C->isOpaque());
4334     case ISD::CTTZ:
4335     case ISD::CTTZ_ZERO_UNDEF:
4336       return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4337                          C->isOpaque());
4338     case ISD::FP16_TO_FP: {
4339       bool Ignored;
4340       APFloat FPV(APFloat::IEEEhalf(),
4341                   (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4342 
4343       // This can return overflow, underflow, or inexact; we don't care.
4344       // FIXME need to be more flexible about rounding mode.
4345       (void)FPV.convert(EVTToAPFloatSemantics(VT),
4346                         APFloat::rmNearestTiesToEven, &Ignored);
4347       return getConstantFP(FPV, DL, VT);
4348     }
4349     }
4350   }
4351 
4352   // Constant fold unary operations with a floating point constant operand.
4353   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4354     APFloat V = C->getValueAPF();    // make copy
4355     switch (Opcode) {
4356     case ISD::FNEG:
4357       V.changeSign();
4358       return getConstantFP(V, DL, VT);
4359     case ISD::FABS:
4360       V.clearSign();
4361       return getConstantFP(V, DL, VT);
4362     case ISD::FCEIL: {
4363       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4364       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4365         return getConstantFP(V, DL, VT);
4366       break;
4367     }
4368     case ISD::FTRUNC: {
4369       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4370       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4371         return getConstantFP(V, DL, VT);
4372       break;
4373     }
4374     case ISD::FFLOOR: {
4375       APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4376       if (fs == APFloat::opOK || fs == APFloat::opInexact)
4377         return getConstantFP(V, DL, VT);
4378       break;
4379     }
4380     case ISD::FP_EXTEND: {
4381       bool ignored;
4382       // This can return overflow, underflow, or inexact; we don't care.
4383       // FIXME need to be more flexible about rounding mode.
4384       (void)V.convert(EVTToAPFloatSemantics(VT),
4385                       APFloat::rmNearestTiesToEven, &ignored);
4386       return getConstantFP(V, DL, VT);
4387     }
4388     case ISD::FP_TO_SINT:
4389     case ISD::FP_TO_UINT: {
4390       bool ignored;
4391       APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4392       // FIXME need to be more flexible about rounding mode.
4393       APFloat::opStatus s =
4394           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4395       if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4396         break;
4397       return getConstant(IntVal, DL, VT);
4398     }
4399     case ISD::BITCAST:
4400       if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4401         return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4402       else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4403         return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4404       else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4405         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4406       break;
4407     case ISD::FP_TO_FP16: {
4408       bool Ignored;
4409       // This can return overflow, underflow, or inexact; we don't care.
4410       // FIXME need to be more flexible about rounding mode.
4411       (void)V.convert(APFloat::IEEEhalf(),
4412                       APFloat::rmNearestTiesToEven, &Ignored);
4413       return getConstant(V.bitcastToAPInt(), DL, VT);
4414     }
4415     }
4416   }
4417 
4418   // Constant fold unary operations with a vector integer or float operand.
4419   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4420     if (BV->isConstant()) {
4421       switch (Opcode) {
4422       default:
4423         // FIXME: Entirely reasonable to perform folding of other unary
4424         // operations here as the need arises.
4425         break;
4426       case ISD::FNEG:
4427       case ISD::FABS:
4428       case ISD::FCEIL:
4429       case ISD::FTRUNC:
4430       case ISD::FFLOOR:
4431       case ISD::FP_EXTEND:
4432       case ISD::FP_TO_SINT:
4433       case ISD::FP_TO_UINT:
4434       case ISD::TRUNCATE:
4435       case ISD::ANY_EXTEND:
4436       case ISD::ZERO_EXTEND:
4437       case ISD::SIGN_EXTEND:
4438       case ISD::UINT_TO_FP:
4439       case ISD::SINT_TO_FP:
4440       case ISD::ABS:
4441       case ISD::BITREVERSE:
4442       case ISD::BSWAP:
4443       case ISD::CTLZ:
4444       case ISD::CTLZ_ZERO_UNDEF:
4445       case ISD::CTTZ:
4446       case ISD::CTTZ_ZERO_UNDEF:
4447       case ISD::CTPOP: {
4448         SDValue Ops = { Operand };
4449         if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4450           return Fold;
4451       }
4452       }
4453     }
4454   }
4455 
4456   unsigned OpOpcode = Operand.getNode()->getOpcode();
4457   switch (Opcode) {
4458   case ISD::TokenFactor:
4459   case ISD::MERGE_VALUES:
4460   case ISD::CONCAT_VECTORS:
4461     return Operand;         // Factor, merge or concat of one node?  No need.
4462   case ISD::BUILD_VECTOR: {
4463     // Attempt to simplify BUILD_VECTOR.
4464     SDValue Ops[] = {Operand};
4465     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4466       return V;
4467     break;
4468   }
4469   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4470   case ISD::FP_EXTEND:
4471     assert(VT.isFloatingPoint() &&
4472            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4473     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
4474     assert((!VT.isVector() ||
4475             VT.getVectorNumElements() ==
4476             Operand.getValueType().getVectorNumElements()) &&
4477            "Vector element count mismatch!");
4478     assert(Operand.getValueType().bitsLT(VT) &&
4479            "Invalid fpext node, dst < src!");
4480     if (Operand.isUndef())
4481       return getUNDEF(VT);
4482     break;
4483   case ISD::FP_TO_SINT:
4484   case ISD::FP_TO_UINT:
4485     if (Operand.isUndef())
4486       return getUNDEF(VT);
4487     break;
4488   case ISD::SINT_TO_FP:
4489   case ISD::UINT_TO_FP:
4490     // [us]itofp(undef) = 0, because the result value is bounded.
4491     if (Operand.isUndef())
4492       return getConstantFP(0.0, DL, VT);
4493     break;
4494   case ISD::SIGN_EXTEND:
4495     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4496            "Invalid SIGN_EXTEND!");
4497     assert(VT.isVector() == Operand.getValueType().isVector() &&
4498            "SIGN_EXTEND result type type should be vector iff the operand "
4499            "type is vector!");
4500     if (Operand.getValueType() == VT) return Operand;   // noop extension
4501     assert((!VT.isVector() ||
4502             VT.getVectorNumElements() ==
4503             Operand.getValueType().getVectorNumElements()) &&
4504            "Vector element count mismatch!");
4505     assert(Operand.getValueType().bitsLT(VT) &&
4506            "Invalid sext node, dst < src!");
4507     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4508       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4509     else if (OpOpcode == ISD::UNDEF)
4510       // sext(undef) = 0, because the top bits will all be the same.
4511       return getConstant(0, DL, VT);
4512     break;
4513   case ISD::ZERO_EXTEND:
4514     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4515            "Invalid ZERO_EXTEND!");
4516     assert(VT.isVector() == Operand.getValueType().isVector() &&
4517            "ZERO_EXTEND result type type should be vector iff the operand "
4518            "type is vector!");
4519     if (Operand.getValueType() == VT) return Operand;   // noop extension
4520     assert((!VT.isVector() ||
4521             VT.getVectorNumElements() ==
4522             Operand.getValueType().getVectorNumElements()) &&
4523            "Vector element count mismatch!");
4524     assert(Operand.getValueType().bitsLT(VT) &&
4525            "Invalid zext node, dst < src!");
4526     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
4527       return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4528     else if (OpOpcode == ISD::UNDEF)
4529       // zext(undef) = 0, because the top bits will be zero.
4530       return getConstant(0, DL, VT);
4531     break;
4532   case ISD::ANY_EXTEND:
4533     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4534            "Invalid ANY_EXTEND!");
4535     assert(VT.isVector() == Operand.getValueType().isVector() &&
4536            "ANY_EXTEND result type type should be vector iff the operand "
4537            "type is vector!");
4538     if (Operand.getValueType() == VT) return Operand;   // noop extension
4539     assert((!VT.isVector() ||
4540             VT.getVectorNumElements() ==
4541             Operand.getValueType().getVectorNumElements()) &&
4542            "Vector element count mismatch!");
4543     assert(Operand.getValueType().bitsLT(VT) &&
4544            "Invalid anyext node, dst < src!");
4545 
4546     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4547         OpOpcode == ISD::ANY_EXTEND)
4548       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
4549       return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4550     else if (OpOpcode == ISD::UNDEF)
4551       return getUNDEF(VT);
4552 
4553     // (ext (trunc x)) -> x
4554     if (OpOpcode == ISD::TRUNCATE) {
4555       SDValue OpOp = Operand.getOperand(0);
4556       if (OpOp.getValueType() == VT) {
4557         transferDbgValues(Operand, OpOp);
4558         return OpOp;
4559       }
4560     }
4561     break;
4562   case ISD::TRUNCATE:
4563     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4564            "Invalid TRUNCATE!");
4565     assert(VT.isVector() == Operand.getValueType().isVector() &&
4566            "TRUNCATE result type type should be vector iff the operand "
4567            "type is vector!");
4568     if (Operand.getValueType() == VT) return Operand;   // noop truncate
4569     assert((!VT.isVector() ||
4570             VT.getVectorNumElements() ==
4571             Operand.getValueType().getVectorNumElements()) &&
4572            "Vector element count mismatch!");
4573     assert(Operand.getValueType().bitsGT(VT) &&
4574            "Invalid truncate node, src < dst!");
4575     if (OpOpcode == ISD::TRUNCATE)
4576       return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4577     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4578         OpOpcode == ISD::ANY_EXTEND) {
4579       // If the source is smaller than the dest, we still need an extend.
4580       if (Operand.getOperand(0).getValueType().getScalarType()
4581             .bitsLT(VT.getScalarType()))
4582         return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4583       if (Operand.getOperand(0).getValueType().bitsGT(VT))
4584         return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4585       return Operand.getOperand(0);
4586     }
4587     if (OpOpcode == ISD::UNDEF)
4588       return getUNDEF(VT);
4589     break;
4590   case ISD::ANY_EXTEND_VECTOR_INREG:
4591   case ISD::ZERO_EXTEND_VECTOR_INREG:
4592   case ISD::SIGN_EXTEND_VECTOR_INREG:
4593     assert(VT.isVector() && "This DAG node is restricted to vector types.");
4594     assert(Operand.getValueType().bitsLE(VT) &&
4595            "The input must be the same size or smaller than the result.");
4596     assert(VT.getVectorNumElements() <
4597              Operand.getValueType().getVectorNumElements() &&
4598            "The destination vector type must have fewer lanes than the input.");
4599     break;
4600   case ISD::ABS:
4601     assert(VT.isInteger() && VT == Operand.getValueType() &&
4602            "Invalid ABS!");
4603     if (OpOpcode == ISD::UNDEF)
4604       return getUNDEF(VT);
4605     break;
4606   case ISD::BSWAP:
4607     assert(VT.isInteger() && VT == Operand.getValueType() &&
4608            "Invalid BSWAP!");
4609     assert((VT.getScalarSizeInBits() % 16 == 0) &&
4610            "BSWAP types must be a multiple of 16 bits!");
4611     if (OpOpcode == ISD::UNDEF)
4612       return getUNDEF(VT);
4613     break;
4614   case ISD::BITREVERSE:
4615     assert(VT.isInteger() && VT == Operand.getValueType() &&
4616            "Invalid BITREVERSE!");
4617     if (OpOpcode == ISD::UNDEF)
4618       return getUNDEF(VT);
4619     break;
4620   case ISD::BITCAST:
4621     // Basic sanity checking.
4622     assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4623            "Cannot BITCAST between types of different sizes!");
4624     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
4625     if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
4626       return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4627     if (OpOpcode == ISD::UNDEF)
4628       return getUNDEF(VT);
4629     break;
4630   case ISD::SCALAR_TO_VECTOR:
4631     assert(VT.isVector() && !Operand.getValueType().isVector() &&
4632            (VT.getVectorElementType() == Operand.getValueType() ||
4633             (VT.getVectorElementType().isInteger() &&
4634              Operand.getValueType().isInteger() &&
4635              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4636            "Illegal SCALAR_TO_VECTOR node!");
4637     if (OpOpcode == ISD::UNDEF)
4638       return getUNDEF(VT);
4639     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4640     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4641         isa<ConstantSDNode>(Operand.getOperand(1)) &&
4642         Operand.getConstantOperandVal(1) == 0 &&
4643         Operand.getOperand(0).getValueType() == VT)
4644       return Operand.getOperand(0);
4645     break;
4646   case ISD::FNEG:
4647     // Negation of an unknown bag of bits is still completely undefined.
4648     if (OpOpcode == ISD::UNDEF)
4649       return getUNDEF(VT);
4650 
4651     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
4652     if ((getTarget().Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) &&
4653         OpOpcode == ISD::FSUB)
4654       return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1),
4655                      Operand.getOperand(0), Flags);
4656     if (OpOpcode == ISD::FNEG)  // --X -> X
4657       return Operand.getOperand(0);
4658     break;
4659   case ISD::FABS:
4660     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
4661       return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4662     break;
4663   }
4664 
4665   SDNode *N;
4666   SDVTList VTs = getVTList(VT);
4667   SDValue Ops[] = {Operand};
4668   if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4669     FoldingSetNodeID ID;
4670     AddNodeIDNode(ID, Opcode, VTs, Ops);
4671     void *IP = nullptr;
4672     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4673       E->intersectFlagsWith(Flags);
4674       return SDValue(E, 0);
4675     }
4676 
4677     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4678     N->setFlags(Flags);
4679     createOperands(N, Ops);
4680     CSEMap.InsertNode(N, IP);
4681   } else {
4682     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4683     createOperands(N, Ops);
4684   }
4685 
4686   InsertNode(N);
4687   SDValue V = SDValue(N, 0);
4688   NewSDValueDbgMsg(V, "Creating new node: ", this);
4689   return V;
4690 }
4691 
4692 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1,
4693                                         const APInt &C2) {
4694   switch (Opcode) {
4695   case ISD::ADD:  return std::make_pair(C1 + C2, true);
4696   case ISD::SUB:  return std::make_pair(C1 - C2, true);
4697   case ISD::MUL:  return std::make_pair(C1 * C2, true);
4698   case ISD::AND:  return std::make_pair(C1 & C2, true);
4699   case ISD::OR:   return std::make_pair(C1 | C2, true);
4700   case ISD::XOR:  return std::make_pair(C1 ^ C2, true);
4701   case ISD::SHL:  return std::make_pair(C1 << C2, true);
4702   case ISD::SRL:  return std::make_pair(C1.lshr(C2), true);
4703   case ISD::SRA:  return std::make_pair(C1.ashr(C2), true);
4704   case ISD::ROTL: return std::make_pair(C1.rotl(C2), true);
4705   case ISD::ROTR: return std::make_pair(C1.rotr(C2), true);
4706   case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true);
4707   case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true);
4708   case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true);
4709   case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true);
4710   case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true);
4711   case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true);
4712   case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true);
4713   case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true);
4714   case ISD::UDIV:
4715     if (!C2.getBoolValue())
4716       break;
4717     return std::make_pair(C1.udiv(C2), true);
4718   case ISD::UREM:
4719     if (!C2.getBoolValue())
4720       break;
4721     return std::make_pair(C1.urem(C2), true);
4722   case ISD::SDIV:
4723     if (!C2.getBoolValue())
4724       break;
4725     return std::make_pair(C1.sdiv(C2), true);
4726   case ISD::SREM:
4727     if (!C2.getBoolValue())
4728       break;
4729     return std::make_pair(C1.srem(C2), true);
4730   }
4731   return std::make_pair(APInt(1, 0), false);
4732 }
4733 
4734 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4735                                              EVT VT, const ConstantSDNode *C1,
4736                                              const ConstantSDNode *C2) {
4737   if (C1->isOpaque() || C2->isOpaque())
4738     return SDValue();
4739 
4740   std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(),
4741                                             C2->getAPIntValue());
4742   if (!Folded.second)
4743     return SDValue();
4744   return getConstant(Folded.first, DL, VT);
4745 }
4746 
4747 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4748                                        const GlobalAddressSDNode *GA,
4749                                        const SDNode *N2) {
4750   if (GA->getOpcode() != ISD::GlobalAddress)
4751     return SDValue();
4752   if (!TLI->isOffsetFoldingLegal(GA))
4753     return SDValue();
4754   auto *C2 = dyn_cast<ConstantSDNode>(N2);
4755   if (!C2)
4756     return SDValue();
4757   int64_t Offset = C2->getSExtValue();
4758   switch (Opcode) {
4759   case ISD::ADD: break;
4760   case ISD::SUB: Offset = -uint64_t(Offset); break;
4761   default: return SDValue();
4762   }
4763   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4764                           GA->getOffset() + uint64_t(Offset));
4765 }
4766 
4767 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4768   switch (Opcode) {
4769   case ISD::SDIV:
4770   case ISD::UDIV:
4771   case ISD::SREM:
4772   case ISD::UREM: {
4773     // If a divisor is zero/undef or any element of a divisor vector is
4774     // zero/undef, the whole op is undef.
4775     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4776     SDValue Divisor = Ops[1];
4777     if (Divisor.isUndef() || isNullConstant(Divisor))
4778       return true;
4779 
4780     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4781            llvm::any_of(Divisor->op_values(),
4782                         [](SDValue V) { return V.isUndef() ||
4783                                         isNullConstant(V); });
4784     // TODO: Handle signed overflow.
4785   }
4786   // TODO: Handle oversized shifts.
4787   default:
4788     return false;
4789   }
4790 }
4791 
4792 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4793                                              EVT VT, SDNode *N1, SDNode *N2) {
4794   // If the opcode is a target-specific ISD node, there's nothing we can
4795   // do here and the operand rules may not line up with the below, so
4796   // bail early.
4797   if (Opcode >= ISD::BUILTIN_OP_END)
4798     return SDValue();
4799 
4800   if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)}))
4801     return getUNDEF(VT);
4802 
4803   // Handle the case of two scalars.
4804   if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4805     if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4806       SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2);
4807       assert((!Folded || !VT.isVector()) &&
4808              "Can't fold vectors ops with scalar operands");
4809       return Folded;
4810     }
4811   }
4812 
4813   // fold (add Sym, c) -> Sym+c
4814   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
4815     return FoldSymbolOffset(Opcode, VT, GA, N2);
4816   if (TLI->isCommutativeBinOp(Opcode))
4817     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
4818       return FoldSymbolOffset(Opcode, VT, GA, N1);
4819 
4820   // For vectors, extract each constant element and fold them individually.
4821   // Either input may be an undef value.
4822   auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
4823   if (!BV1 && !N1->isUndef())
4824     return SDValue();
4825   auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
4826   if (!BV2 && !N2->isUndef())
4827     return SDValue();
4828   // If both operands are undef, that's handled the same way as scalars.
4829   if (!BV1 && !BV2)
4830     return SDValue();
4831 
4832   assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
4833          "Vector binop with different number of elements in operands?");
4834 
4835   EVT SVT = VT.getScalarType();
4836   EVT LegalSVT = SVT;
4837   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4838     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4839     if (LegalSVT.bitsLT(SVT))
4840       return SDValue();
4841   }
4842   SmallVector<SDValue, 4> Outputs;
4843   unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
4844   for (unsigned I = 0; I != NumOps; ++I) {
4845     SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
4846     SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
4847     if (SVT.isInteger()) {
4848       if (V1->getValueType(0).bitsGT(SVT))
4849         V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
4850       if (V2->getValueType(0).bitsGT(SVT))
4851         V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
4852     }
4853 
4854     if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
4855       return SDValue();
4856 
4857     // Fold one vector element.
4858     SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
4859     if (LegalSVT != SVT)
4860       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4861 
4862     // Scalar folding only succeeded if the result is a constant or UNDEF.
4863     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4864         ScalarResult.getOpcode() != ISD::ConstantFP)
4865       return SDValue();
4866     Outputs.push_back(ScalarResult);
4867   }
4868 
4869   assert(VT.getVectorNumElements() == Outputs.size() &&
4870          "Vector size mismatch!");
4871 
4872   // We may have a vector type but a scalar result. Create a splat.
4873   Outputs.resize(VT.getVectorNumElements(), Outputs.back());
4874 
4875   // Build a big vector out of the scalar elements we generated.
4876   return getBuildVector(VT, SDLoc(), Outputs);
4877 }
4878 
4879 // TODO: Merge with FoldConstantArithmetic
4880 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
4881                                                    const SDLoc &DL, EVT VT,
4882                                                    ArrayRef<SDValue> Ops,
4883                                                    const SDNodeFlags Flags) {
4884   // If the opcode is a target-specific ISD node, there's nothing we can
4885   // do here and the operand rules may not line up with the below, so
4886   // bail early.
4887   if (Opcode >= ISD::BUILTIN_OP_END)
4888     return SDValue();
4889 
4890   if (isUndef(Opcode, Ops))
4891     return getUNDEF(VT);
4892 
4893   // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4894   if (!VT.isVector())
4895     return SDValue();
4896 
4897   unsigned NumElts = VT.getVectorNumElements();
4898 
4899   auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
4900     return !Op.getValueType().isVector() ||
4901            Op.getValueType().getVectorNumElements() == NumElts;
4902   };
4903 
4904   auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
4905     BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
4906     return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
4907            (BV && BV->isConstant());
4908   };
4909 
4910   // All operands must be vector types with the same number of elements as
4911   // the result type and must be either UNDEF or a build vector of constant
4912   // or UNDEF scalars.
4913   if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
4914       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
4915     return SDValue();
4916 
4917   // If we are comparing vectors, then the result needs to be a i1 boolean
4918   // that is then sign-extended back to the legal result type.
4919   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
4920 
4921   // Find legal integer scalar type for constant promotion and
4922   // ensure that its scalar size is at least as large as source.
4923   EVT LegalSVT = VT.getScalarType();
4924   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
4925     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
4926     if (LegalSVT.bitsLT(VT.getScalarType()))
4927       return SDValue();
4928   }
4929 
4930   // Constant fold each scalar lane separately.
4931   SmallVector<SDValue, 4> ScalarResults;
4932   for (unsigned i = 0; i != NumElts; i++) {
4933     SmallVector<SDValue, 4> ScalarOps;
4934     for (SDValue Op : Ops) {
4935       EVT InSVT = Op.getValueType().getScalarType();
4936       BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
4937       if (!InBV) {
4938         // We've checked that this is UNDEF or a constant of some kind.
4939         if (Op.isUndef())
4940           ScalarOps.push_back(getUNDEF(InSVT));
4941         else
4942           ScalarOps.push_back(Op);
4943         continue;
4944       }
4945 
4946       SDValue ScalarOp = InBV->getOperand(i);
4947       EVT ScalarVT = ScalarOp.getValueType();
4948 
4949       // Build vector (integer) scalar operands may need implicit
4950       // truncation - do this before constant folding.
4951       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
4952         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
4953 
4954       ScalarOps.push_back(ScalarOp);
4955     }
4956 
4957     // Constant fold the scalar operands.
4958     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
4959 
4960     // Legalize the (integer) scalar constant if necessary.
4961     if (LegalSVT != SVT)
4962       ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
4963 
4964     // Scalar folding only succeeded if the result is a constant or UNDEF.
4965     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
4966         ScalarResult.getOpcode() != ISD::ConstantFP)
4967       return SDValue();
4968     ScalarResults.push_back(ScalarResult);
4969   }
4970 
4971   SDValue V = getBuildVector(VT, DL, ScalarResults);
4972   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
4973   return V;
4974 }
4975 
4976 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
4977                                          EVT VT, SDValue N1, SDValue N2) {
4978   // TODO: We don't do any constant folding for strict FP opcodes here, but we
4979   //       should. That will require dealing with a potentially non-default
4980   //       rounding mode, checking the "opStatus" return value from the APFloat
4981   //       math calculations, and possibly other variations.
4982   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
4983   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
4984   if (N1CFP && N2CFP) {
4985     APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
4986     switch (Opcode) {
4987     case ISD::FADD:
4988       C1.add(C2, APFloat::rmNearestTiesToEven);
4989       return getConstantFP(C1, DL, VT);
4990     case ISD::FSUB:
4991       C1.subtract(C2, APFloat::rmNearestTiesToEven);
4992       return getConstantFP(C1, DL, VT);
4993     case ISD::FMUL:
4994       C1.multiply(C2, APFloat::rmNearestTiesToEven);
4995       return getConstantFP(C1, DL, VT);
4996     case ISD::FDIV:
4997       C1.divide(C2, APFloat::rmNearestTiesToEven);
4998       return getConstantFP(C1, DL, VT);
4999     case ISD::FREM:
5000       C1.mod(C2);
5001       return getConstantFP(C1, DL, VT);
5002     case ISD::FCOPYSIGN:
5003       C1.copySign(C2);
5004       return getConstantFP(C1, DL, VT);
5005     default: break;
5006     }
5007   }
5008   if (N1CFP && Opcode == ISD::FP_ROUND) {
5009     APFloat C1 = N1CFP->getValueAPF();    // make copy
5010     bool Unused;
5011     // This can return overflow, underflow, or inexact; we don't care.
5012     // FIXME need to be more flexible about rounding mode.
5013     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5014                       &Unused);
5015     return getConstantFP(C1, DL, VT);
5016   }
5017 
5018   switch (Opcode) {
5019   case ISD::FADD:
5020   case ISD::FSUB:
5021   case ISD::FMUL:
5022   case ISD::FDIV:
5023   case ISD::FREM:
5024     // If both operands are undef, the result is undef. If 1 operand is undef,
5025     // the result is NaN. This should match the behavior of the IR optimizer.
5026     if (N1.isUndef() && N2.isUndef())
5027       return getUNDEF(VT);
5028     if (N1.isUndef() || N2.isUndef())
5029       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5030   }
5031   return SDValue();
5032 }
5033 
5034 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5035                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5036   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5037   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5038   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5039   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5040 
5041   // Canonicalize constant to RHS if commutative.
5042   if (TLI->isCommutativeBinOp(Opcode)) {
5043     if (N1C && !N2C) {
5044       std::swap(N1C, N2C);
5045       std::swap(N1, N2);
5046     } else if (N1CFP && !N2CFP) {
5047       std::swap(N1CFP, N2CFP);
5048       std::swap(N1, N2);
5049     }
5050   }
5051 
5052   switch (Opcode) {
5053   default: break;
5054   case ISD::TokenFactor:
5055     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5056            N2.getValueType() == MVT::Other && "Invalid token factor!");
5057     // Fold trivial token factors.
5058     if (N1.getOpcode() == ISD::EntryToken) return N2;
5059     if (N2.getOpcode() == ISD::EntryToken) return N1;
5060     if (N1 == N2) return N1;
5061     break;
5062   case ISD::BUILD_VECTOR: {
5063     // Attempt to simplify BUILD_VECTOR.
5064     SDValue Ops[] = {N1, N2};
5065     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5066       return V;
5067     break;
5068   }
5069   case ISD::CONCAT_VECTORS: {
5070     SDValue Ops[] = {N1, N2};
5071     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5072       return V;
5073     break;
5074   }
5075   case ISD::AND:
5076     assert(VT.isInteger() && "This operator does not apply to FP types!");
5077     assert(N1.getValueType() == N2.getValueType() &&
5078            N1.getValueType() == VT && "Binary operator types must match!");
5079     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
5080     // worth handling here.
5081     if (N2C && N2C->isNullValue())
5082       return N2;
5083     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
5084       return N1;
5085     break;
5086   case ISD::OR:
5087   case ISD::XOR:
5088   case ISD::ADD:
5089   case ISD::SUB:
5090     assert(VT.isInteger() && "This operator does not apply to FP types!");
5091     assert(N1.getValueType() == N2.getValueType() &&
5092            N1.getValueType() == VT && "Binary operator types must match!");
5093     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
5094     // it's worth handling here.
5095     if (N2C && N2C->isNullValue())
5096       return N1;
5097     break;
5098   case ISD::UDIV:
5099   case ISD::UREM:
5100   case ISD::MULHU:
5101   case ISD::MULHS:
5102   case ISD::MUL:
5103   case ISD::SDIV:
5104   case ISD::SREM:
5105   case ISD::SMIN:
5106   case ISD::SMAX:
5107   case ISD::UMIN:
5108   case ISD::UMAX:
5109   case ISD::SADDSAT:
5110   case ISD::SSUBSAT:
5111   case ISD::UADDSAT:
5112   case ISD::USUBSAT:
5113     assert(VT.isInteger() && "This operator does not apply to FP types!");
5114     assert(N1.getValueType() == N2.getValueType() &&
5115            N1.getValueType() == VT && "Binary operator types must match!");
5116     break;
5117   case ISD::FADD:
5118   case ISD::FSUB:
5119   case ISD::FMUL:
5120   case ISD::FDIV:
5121   case ISD::FREM:
5122     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5123     assert(N1.getValueType() == N2.getValueType() &&
5124            N1.getValueType() == VT && "Binary operator types must match!");
5125     if (SDValue V = simplifyFPBinop(Opcode, N1, N2))
5126       return V;
5127     break;
5128   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
5129     assert(N1.getValueType() == VT &&
5130            N1.getValueType().isFloatingPoint() &&
5131            N2.getValueType().isFloatingPoint() &&
5132            "Invalid FCOPYSIGN!");
5133     break;
5134   case ISD::SHL:
5135   case ISD::SRA:
5136   case ISD::SRL:
5137     if (SDValue V = simplifyShift(N1, N2))
5138       return V;
5139     LLVM_FALLTHROUGH;
5140   case ISD::ROTL:
5141   case ISD::ROTR:
5142     assert(VT == N1.getValueType() &&
5143            "Shift operators return type must be the same as their first arg");
5144     assert(VT.isInteger() && N2.getValueType().isInteger() &&
5145            "Shifts only work on integers");
5146     assert((!VT.isVector() || VT == N2.getValueType()) &&
5147            "Vector shift amounts must be in the same as their first arg");
5148     // Verify that the shift amount VT is big enough to hold valid shift
5149     // amounts.  This catches things like trying to shift an i1024 value by an
5150     // i8, which is easy to fall into in generic code that uses
5151     // TLI.getShiftAmount().
5152     assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) &&
5153            "Invalid use of small shift amount with oversized value!");
5154 
5155     // Always fold shifts of i1 values so the code generator doesn't need to
5156     // handle them.  Since we know the size of the shift has to be less than the
5157     // size of the value, the shift/rotate count is guaranteed to be zero.
5158     if (VT == MVT::i1)
5159       return N1;
5160     if (N2C && N2C->isNullValue())
5161       return N1;
5162     break;
5163   case ISD::FP_ROUND:
5164     assert(VT.isFloatingPoint() &&
5165            N1.getValueType().isFloatingPoint() &&
5166            VT.bitsLE(N1.getValueType()) &&
5167            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5168            "Invalid FP_ROUND!");
5169     if (N1.getValueType() == VT) return N1;  // noop conversion.
5170     break;
5171   case ISD::AssertSext:
5172   case ISD::AssertZext: {
5173     EVT EVT = cast<VTSDNode>(N2)->getVT();
5174     assert(VT == N1.getValueType() && "Not an inreg extend!");
5175     assert(VT.isInteger() && EVT.isInteger() &&
5176            "Cannot *_EXTEND_INREG FP types");
5177     assert(!EVT.isVector() &&
5178            "AssertSExt/AssertZExt type should be the vector element type "
5179            "rather than the vector type!");
5180     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5181     if (VT.getScalarType() == EVT) return N1; // noop assertion.
5182     break;
5183   }
5184   case ISD::SIGN_EXTEND_INREG: {
5185     EVT EVT = cast<VTSDNode>(N2)->getVT();
5186     assert(VT == N1.getValueType() && "Not an inreg extend!");
5187     assert(VT.isInteger() && EVT.isInteger() &&
5188            "Cannot *_EXTEND_INREG FP types");
5189     assert(EVT.isVector() == VT.isVector() &&
5190            "SIGN_EXTEND_INREG type should be vector iff the operand "
5191            "type is vector!");
5192     assert((!EVT.isVector() ||
5193             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
5194            "Vector element counts must match in SIGN_EXTEND_INREG");
5195     assert(EVT.bitsLE(VT) && "Not extending!");
5196     if (EVT == VT) return N1;  // Not actually extending
5197 
5198     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5199       unsigned FromBits = EVT.getScalarSizeInBits();
5200       Val <<= Val.getBitWidth() - FromBits;
5201       Val.ashrInPlace(Val.getBitWidth() - FromBits);
5202       return getConstant(Val, DL, ConstantVT);
5203     };
5204 
5205     if (N1C) {
5206       const APInt &Val = N1C->getAPIntValue();
5207       return SignExtendInReg(Val, VT);
5208     }
5209     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5210       SmallVector<SDValue, 8> Ops;
5211       llvm::EVT OpVT = N1.getOperand(0).getValueType();
5212       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5213         SDValue Op = N1.getOperand(i);
5214         if (Op.isUndef()) {
5215           Ops.push_back(getUNDEF(OpVT));
5216           continue;
5217         }
5218         ConstantSDNode *C = cast<ConstantSDNode>(Op);
5219         APInt Val = C->getAPIntValue();
5220         Ops.push_back(SignExtendInReg(Val, OpVT));
5221       }
5222       return getBuildVector(VT, DL, Ops);
5223     }
5224     break;
5225   }
5226   case ISD::EXTRACT_VECTOR_ELT:
5227     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5228            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5229              element type of the vector.");
5230 
5231     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
5232     if (N1.isUndef())
5233       return getUNDEF(VT);
5234 
5235     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
5236     if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5237       return getUNDEF(VT);
5238 
5239     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5240     // expanding copies of large vectors from registers.
5241     if (N2C &&
5242         N1.getOpcode() == ISD::CONCAT_VECTORS &&
5243         N1.getNumOperands() > 0) {
5244       unsigned Factor =
5245         N1.getOperand(0).getValueType().getVectorNumElements();
5246       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5247                      N1.getOperand(N2C->getZExtValue() / Factor),
5248                      getConstant(N2C->getZExtValue() % Factor, DL,
5249                                  N2.getValueType()));
5250     }
5251 
5252     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
5253     // expanding large vector constants.
5254     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
5255       SDValue Elt = N1.getOperand(N2C->getZExtValue());
5256 
5257       if (VT != Elt.getValueType())
5258         // If the vector element type is not legal, the BUILD_VECTOR operands
5259         // are promoted and implicitly truncated, and the result implicitly
5260         // extended. Make that explicit here.
5261         Elt = getAnyExtOrTrunc(Elt, DL, VT);
5262 
5263       return Elt;
5264     }
5265 
5266     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5267     // operations are lowered to scalars.
5268     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5269       // If the indices are the same, return the inserted element else
5270       // if the indices are known different, extract the element from
5271       // the original vector.
5272       SDValue N1Op2 = N1.getOperand(2);
5273       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5274 
5275       if (N1Op2C && N2C) {
5276         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5277           if (VT == N1.getOperand(1).getValueType())
5278             return N1.getOperand(1);
5279           else
5280             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5281         }
5282 
5283         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5284       }
5285     }
5286 
5287     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5288     // when vector types are scalarized and v1iX is legal.
5289     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5290     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5291         N1.getValueType().getVectorNumElements() == 1) {
5292       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5293                      N1.getOperand(1));
5294     }
5295     break;
5296   case ISD::EXTRACT_ELEMENT:
5297     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5298     assert(!N1.getValueType().isVector() && !VT.isVector() &&
5299            (N1.getValueType().isInteger() == VT.isInteger()) &&
5300            N1.getValueType() != VT &&
5301            "Wrong types for EXTRACT_ELEMENT!");
5302 
5303     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5304     // 64-bit integers into 32-bit parts.  Instead of building the extract of
5305     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5306     if (N1.getOpcode() == ISD::BUILD_PAIR)
5307       return N1.getOperand(N2C->getZExtValue());
5308 
5309     // EXTRACT_ELEMENT of a constant int is also very common.
5310     if (N1C) {
5311       unsigned ElementSize = VT.getSizeInBits();
5312       unsigned Shift = ElementSize * N2C->getZExtValue();
5313       APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5314       return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5315     }
5316     break;
5317   case ISD::EXTRACT_SUBVECTOR:
5318     if (VT.isSimple() && N1.getValueType().isSimple()) {
5319       assert(VT.isVector() && N1.getValueType().isVector() &&
5320              "Extract subvector VTs must be a vectors!");
5321       assert(VT.getVectorElementType() ==
5322              N1.getValueType().getVectorElementType() &&
5323              "Extract subvector VTs must have the same element type!");
5324       assert(VT.getSimpleVT() <= N1.getSimpleValueType() &&
5325              "Extract subvector must be from larger vector to smaller vector!");
5326 
5327       if (N2C) {
5328         assert((VT.getVectorNumElements() + N2C->getZExtValue()
5329                 <= N1.getValueType().getVectorNumElements())
5330                && "Extract subvector overflow!");
5331       }
5332 
5333       // Trivial extraction.
5334       if (VT.getSimpleVT() == N1.getSimpleValueType())
5335         return N1;
5336 
5337       // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5338       if (N1.isUndef())
5339         return getUNDEF(VT);
5340 
5341       // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5342       // the concat have the same type as the extract.
5343       if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5344           N1.getNumOperands() > 0 &&
5345           VT == N1.getOperand(0).getValueType()) {
5346         unsigned Factor = VT.getVectorNumElements();
5347         return N1.getOperand(N2C->getZExtValue() / Factor);
5348       }
5349 
5350       // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5351       // during shuffle legalization.
5352       if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5353           VT == N1.getOperand(1).getValueType())
5354         return N1.getOperand(1);
5355     }
5356     break;
5357   }
5358 
5359   // Perform trivial constant folding.
5360   if (SDValue SV =
5361           FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode()))
5362     return SV;
5363 
5364   if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5365     return V;
5366 
5367   // Canonicalize an UNDEF to the RHS, even over a constant.
5368   if (N1.isUndef()) {
5369     if (TLI->isCommutativeBinOp(Opcode)) {
5370       std::swap(N1, N2);
5371     } else {
5372       switch (Opcode) {
5373       case ISD::SIGN_EXTEND_INREG:
5374       case ISD::SUB:
5375         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
5376       case ISD::UDIV:
5377       case ISD::SDIV:
5378       case ISD::UREM:
5379       case ISD::SREM:
5380       case ISD::SSUBSAT:
5381       case ISD::USUBSAT:
5382         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
5383       }
5384     }
5385   }
5386 
5387   // Fold a bunch of operators when the RHS is undef.
5388   if (N2.isUndef()) {
5389     switch (Opcode) {
5390     case ISD::XOR:
5391       if (N1.isUndef())
5392         // Handle undef ^ undef -> 0 special case. This is a common
5393         // idiom (misuse).
5394         return getConstant(0, DL, VT);
5395       LLVM_FALLTHROUGH;
5396     case ISD::ADD:
5397     case ISD::SUB:
5398     case ISD::UDIV:
5399     case ISD::SDIV:
5400     case ISD::UREM:
5401     case ISD::SREM:
5402       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
5403     case ISD::MUL:
5404     case ISD::AND:
5405     case ISD::SSUBSAT:
5406     case ISD::USUBSAT:
5407       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
5408     case ISD::OR:
5409     case ISD::SADDSAT:
5410     case ISD::UADDSAT:
5411       return getAllOnesConstant(DL, VT);
5412     }
5413   }
5414 
5415   // Memoize this node if possible.
5416   SDNode *N;
5417   SDVTList VTs = getVTList(VT);
5418   SDValue Ops[] = {N1, N2};
5419   if (VT != MVT::Glue) {
5420     FoldingSetNodeID ID;
5421     AddNodeIDNode(ID, Opcode, VTs, Ops);
5422     void *IP = nullptr;
5423     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5424       E->intersectFlagsWith(Flags);
5425       return SDValue(E, 0);
5426     }
5427 
5428     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5429     N->setFlags(Flags);
5430     createOperands(N, Ops);
5431     CSEMap.InsertNode(N, IP);
5432   } else {
5433     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5434     createOperands(N, Ops);
5435   }
5436 
5437   InsertNode(N);
5438   SDValue V = SDValue(N, 0);
5439   NewSDValueDbgMsg(V, "Creating new node: ", this);
5440   return V;
5441 }
5442 
5443 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5444                               SDValue N1, SDValue N2, SDValue N3,
5445                               const SDNodeFlags Flags) {
5446   // Perform various simplifications.
5447   switch (Opcode) {
5448   case ISD::FMA: {
5449     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5450     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5451            N3.getValueType() == VT && "FMA types must match!");
5452     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5453     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5454     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5455     if (N1CFP && N2CFP && N3CFP) {
5456       APFloat  V1 = N1CFP->getValueAPF();
5457       const APFloat &V2 = N2CFP->getValueAPF();
5458       const APFloat &V3 = N3CFP->getValueAPF();
5459       V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5460       return getConstantFP(V1, DL, VT);
5461     }
5462     break;
5463   }
5464   case ISD::BUILD_VECTOR: {
5465     // Attempt to simplify BUILD_VECTOR.
5466     SDValue Ops[] = {N1, N2, N3};
5467     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5468       return V;
5469     break;
5470   }
5471   case ISD::CONCAT_VECTORS: {
5472     SDValue Ops[] = {N1, N2, N3};
5473     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5474       return V;
5475     break;
5476   }
5477   case ISD::SETCC: {
5478     assert(VT.isInteger() && "SETCC result type must be an integer!");
5479     assert(N1.getValueType() == N2.getValueType() &&
5480            "SETCC operands must have the same type!");
5481     assert(VT.isVector() == N1.getValueType().isVector() &&
5482            "SETCC type should be vector iff the operand type is vector!");
5483     assert((!VT.isVector() ||
5484             VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) &&
5485            "SETCC vector element counts must match!");
5486     // Use FoldSetCC to simplify SETCC's.
5487     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5488       return V;
5489     // Vector constant folding.
5490     SDValue Ops[] = {N1, N2, N3};
5491     if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5492       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5493       return V;
5494     }
5495     break;
5496   }
5497   case ISD::SELECT:
5498   case ISD::VSELECT:
5499     if (SDValue V = simplifySelect(N1, N2, N3))
5500       return V;
5501     break;
5502   case ISD::VECTOR_SHUFFLE:
5503     llvm_unreachable("should use getVectorShuffle constructor!");
5504   case ISD::INSERT_VECTOR_ELT: {
5505     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5506     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5507     if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5508       return getUNDEF(VT);
5509     break;
5510   }
5511   case ISD::INSERT_SUBVECTOR: {
5512     // Inserting undef into undef is still undef.
5513     if (N1.isUndef() && N2.isUndef())
5514       return getUNDEF(VT);
5515     SDValue Index = N3;
5516     if (VT.isSimple() && N1.getValueType().isSimple()
5517         && N2.getValueType().isSimple()) {
5518       assert(VT.isVector() && N1.getValueType().isVector() &&
5519              N2.getValueType().isVector() &&
5520              "Insert subvector VTs must be a vectors");
5521       assert(VT == N1.getValueType() &&
5522              "Dest and insert subvector source types must match!");
5523       assert(N2.getSimpleValueType() <= N1.getSimpleValueType() &&
5524              "Insert subvector must be from smaller vector to larger vector!");
5525       if (isa<ConstantSDNode>(Index)) {
5526         assert((N2.getValueType().getVectorNumElements() +
5527                 cast<ConstantSDNode>(Index)->getZExtValue()
5528                 <= VT.getVectorNumElements())
5529                && "Insert subvector overflow!");
5530       }
5531 
5532       // Trivial insertion.
5533       if (VT.getSimpleVT() == N2.getSimpleValueType())
5534         return N2;
5535 
5536       // If this is an insert of an extracted vector into an undef vector, we
5537       // can just use the input to the extract.
5538       if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5539           N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5540         return N2.getOperand(0);
5541     }
5542     break;
5543   }
5544   case ISD::BITCAST:
5545     // Fold bit_convert nodes from a type to themselves.
5546     if (N1.getValueType() == VT)
5547       return N1;
5548     break;
5549   }
5550 
5551   // Memoize node if it doesn't produce a flag.
5552   SDNode *N;
5553   SDVTList VTs = getVTList(VT);
5554   SDValue Ops[] = {N1, N2, N3};
5555   if (VT != MVT::Glue) {
5556     FoldingSetNodeID ID;
5557     AddNodeIDNode(ID, Opcode, VTs, Ops);
5558     void *IP = nullptr;
5559     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5560       E->intersectFlagsWith(Flags);
5561       return SDValue(E, 0);
5562     }
5563 
5564     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5565     N->setFlags(Flags);
5566     createOperands(N, Ops);
5567     CSEMap.InsertNode(N, IP);
5568   } else {
5569     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5570     createOperands(N, Ops);
5571   }
5572 
5573   InsertNode(N);
5574   SDValue V = SDValue(N, 0);
5575   NewSDValueDbgMsg(V, "Creating new node: ", this);
5576   return V;
5577 }
5578 
5579 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5580                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5581   SDValue Ops[] = { N1, N2, N3, N4 };
5582   return getNode(Opcode, DL, VT, Ops);
5583 }
5584 
5585 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5586                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5587                               SDValue N5) {
5588   SDValue Ops[] = { N1, N2, N3, N4, N5 };
5589   return getNode(Opcode, DL, VT, Ops);
5590 }
5591 
5592 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5593 /// the incoming stack arguments to be loaded from the stack.
5594 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5595   SmallVector<SDValue, 8> ArgChains;
5596 
5597   // Include the original chain at the beginning of the list. When this is
5598   // used by target LowerCall hooks, this helps legalize find the
5599   // CALLSEQ_BEGIN node.
5600   ArgChains.push_back(Chain);
5601 
5602   // Add a chain value for each stack argument.
5603   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5604        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5605     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5606       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5607         if (FI->getIndex() < 0)
5608           ArgChains.push_back(SDValue(L, 1));
5609 
5610   // Build a tokenfactor for all the chains.
5611   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5612 }
5613 
5614 /// getMemsetValue - Vectorized representation of the memset value
5615 /// operand.
5616 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5617                               const SDLoc &dl) {
5618   assert(!Value.isUndef());
5619 
5620   unsigned NumBits = VT.getScalarSizeInBits();
5621   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5622     assert(C->getAPIntValue().getBitWidth() == 8);
5623     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5624     if (VT.isInteger()) {
5625       bool IsOpaque = VT.getSizeInBits() > 64 ||
5626           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5627       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5628     }
5629     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5630                              VT);
5631   }
5632 
5633   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5634   EVT IntVT = VT.getScalarType();
5635   if (!IntVT.isInteger())
5636     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5637 
5638   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5639   if (NumBits > 8) {
5640     // Use a multiplication with 0x010101... to extend the input to the
5641     // required length.
5642     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5643     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5644                         DAG.getConstant(Magic, dl, IntVT));
5645   }
5646 
5647   if (VT != Value.getValueType() && !VT.isInteger())
5648     Value = DAG.getBitcast(VT.getScalarType(), Value);
5649   if (VT != Value.getValueType())
5650     Value = DAG.getSplatBuildVector(VT, dl, Value);
5651 
5652   return Value;
5653 }
5654 
5655 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5656 /// used when a memcpy is turned into a memset when the source is a constant
5657 /// string ptr.
5658 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5659                                   const TargetLowering &TLI,
5660                                   const ConstantDataArraySlice &Slice) {
5661   // Handle vector with all elements zero.
5662   if (Slice.Array == nullptr) {
5663     if (VT.isInteger())
5664       return DAG.getConstant(0, dl, VT);
5665     else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5666       return DAG.getConstantFP(0.0, dl, VT);
5667     else if (VT.isVector()) {
5668       unsigned NumElts = VT.getVectorNumElements();
5669       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5670       return DAG.getNode(ISD::BITCAST, dl, VT,
5671                          DAG.getConstant(0, dl,
5672                                          EVT::getVectorVT(*DAG.getContext(),
5673                                                           EltVT, NumElts)));
5674     } else
5675       llvm_unreachable("Expected type!");
5676   }
5677 
5678   assert(!VT.isVector() && "Can't handle vector type here!");
5679   unsigned NumVTBits = VT.getSizeInBits();
5680   unsigned NumVTBytes = NumVTBits / 8;
5681   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5682 
5683   APInt Val(NumVTBits, 0);
5684   if (DAG.getDataLayout().isLittleEndian()) {
5685     for (unsigned i = 0; i != NumBytes; ++i)
5686       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5687   } else {
5688     for (unsigned i = 0; i != NumBytes; ++i)
5689       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5690   }
5691 
5692   // If the "cost" of materializing the integer immediate is less than the cost
5693   // of a load, then it is cost effective to turn the load into the immediate.
5694   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5695   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5696     return DAG.getConstant(Val, dl, VT);
5697   return SDValue(nullptr, 0);
5698 }
5699 
5700 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset,
5701                                            const SDLoc &DL) {
5702   EVT VT = Base.getValueType();
5703   return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT));
5704 }
5705 
5706 /// Returns true if memcpy source is constant data.
5707 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
5708   uint64_t SrcDelta = 0;
5709   GlobalAddressSDNode *G = nullptr;
5710   if (Src.getOpcode() == ISD::GlobalAddress)
5711     G = cast<GlobalAddressSDNode>(Src);
5712   else if (Src.getOpcode() == ISD::ADD &&
5713            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
5714            Src.getOperand(1).getOpcode() == ISD::Constant) {
5715     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
5716     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
5717   }
5718   if (!G)
5719     return false;
5720 
5721   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
5722                                   SrcDelta + G->getOffset());
5723 }
5724 
5725 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
5726   // On Darwin, -Os means optimize for size without hurting performance, so
5727   // only really optimize for size when -Oz (MinSize) is used.
5728   if (MF.getTarget().getTargetTriple().isOSDarwin())
5729     return MF.getFunction().hasMinSize();
5730   return MF.getFunction().hasOptSize();
5731 }
5732 
5733 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
5734                           SmallVector<SDValue, 32> &OutChains, unsigned From,
5735                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
5736                           SmallVector<SDValue, 16> &OutStoreChains) {
5737   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
5738   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
5739   SmallVector<SDValue, 16> GluedLoadChains;
5740   for (unsigned i = From; i < To; ++i) {
5741     OutChains.push_back(OutLoadChains[i]);
5742     GluedLoadChains.push_back(OutLoadChains[i]);
5743   }
5744 
5745   // Chain for all loads.
5746   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5747                                   GluedLoadChains);
5748 
5749   for (unsigned i = From; i < To; ++i) {
5750     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
5751     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
5752                                   ST->getBasePtr(), ST->getMemoryVT(),
5753                                   ST->getMemOperand());
5754     OutChains.push_back(NewStore);
5755   }
5756 }
5757 
5758 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5759                                        SDValue Chain, SDValue Dst, SDValue Src,
5760                                        uint64_t Size, unsigned Alignment,
5761                                        bool isVol, bool AlwaysInline,
5762                                        MachinePointerInfo DstPtrInfo,
5763                                        MachinePointerInfo SrcPtrInfo) {
5764   // Turn a memcpy of undef to nop.
5765   // FIXME: We need to honor volatile even is Src is undef.
5766   if (Src.isUndef())
5767     return Chain;
5768 
5769   // Expand memcpy to a series of load and store ops if the size operand falls
5770   // below a certain threshold.
5771   // TODO: In the AlwaysInline case, if the size is big then generate a loop
5772   // rather than maybe a humongous number of loads and stores.
5773   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5774   const DataLayout &DL = DAG.getDataLayout();
5775   LLVMContext &C = *DAG.getContext();
5776   std::vector<EVT> MemOps;
5777   bool DstAlignCanChange = false;
5778   MachineFunction &MF = DAG.getMachineFunction();
5779   MachineFrameInfo &MFI = MF.getFrameInfo();
5780   bool OptSize = shouldLowerMemFuncForSize(MF);
5781   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5782   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5783     DstAlignCanChange = true;
5784   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5785   if (Alignment > SrcAlign)
5786     SrcAlign = Alignment;
5787   ConstantDataArraySlice Slice;
5788   bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
5789   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
5790   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
5791 
5792   if (!TLI.findOptimalMemOpLowering(
5793           MemOps, Limit, Size, (DstAlignCanChange ? 0 : Alignment),
5794           (isZeroConstant ? 0 : SrcAlign), /*IsMemset=*/false,
5795           /*ZeroMemset=*/false, /*MemcpyStrSrc=*/CopyFromConstant,
5796           /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(),
5797           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
5798     return SDValue();
5799 
5800   if (DstAlignCanChange) {
5801     Type *Ty = MemOps[0].getTypeForEVT(C);
5802     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5803 
5804     // Don't promote to an alignment that would require dynamic stack
5805     // realignment.
5806     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
5807     if (!TRI->needsStackRealignment(MF))
5808       while (NewAlign > Alignment &&
5809              DL.exceedsNaturalStackAlignment(Align(NewAlign)))
5810         NewAlign /= 2;
5811 
5812     if (NewAlign > Alignment) {
5813       // Give the stack frame object a larger alignment if needed.
5814       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5815         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5816       Alignment = NewAlign;
5817     }
5818   }
5819 
5820   MachineMemOperand::Flags MMOFlags =
5821       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5822   SmallVector<SDValue, 16> OutLoadChains;
5823   SmallVector<SDValue, 16> OutStoreChains;
5824   SmallVector<SDValue, 32> OutChains;
5825   unsigned NumMemOps = MemOps.size();
5826   uint64_t SrcOff = 0, DstOff = 0;
5827   for (unsigned i = 0; i != NumMemOps; ++i) {
5828     EVT VT = MemOps[i];
5829     unsigned VTSize = VT.getSizeInBits() / 8;
5830     SDValue Value, Store;
5831 
5832     if (VTSize > Size) {
5833       // Issuing an unaligned load / store pair  that overlaps with the previous
5834       // pair. Adjust the offset accordingly.
5835       assert(i == NumMemOps-1 && i != 0);
5836       SrcOff -= VTSize - Size;
5837       DstOff -= VTSize - Size;
5838     }
5839 
5840     if (CopyFromConstant &&
5841         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
5842       // It's unlikely a store of a vector immediate can be done in a single
5843       // instruction. It would require a load from a constantpool first.
5844       // We only handle zero vectors here.
5845       // FIXME: Handle other cases where store of vector immediate is done in
5846       // a single instruction.
5847       ConstantDataArraySlice SubSlice;
5848       if (SrcOff < Slice.Length) {
5849         SubSlice = Slice;
5850         SubSlice.move(SrcOff);
5851       } else {
5852         // This is an out-of-bounds access and hence UB. Pretend we read zero.
5853         SubSlice.Array = nullptr;
5854         SubSlice.Offset = 0;
5855         SubSlice.Length = VTSize;
5856       }
5857       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
5858       if (Value.getNode()) {
5859         Store = DAG.getStore(
5860             Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5861             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags);
5862         OutChains.push_back(Store);
5863       }
5864     }
5865 
5866     if (!Store.getNode()) {
5867       // The type might not be legal for the target.  This should only happen
5868       // if the type is smaller than a legal type, as on PPC, so the right
5869       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
5870       // to Load/Store if NVT==VT.
5871       // FIXME does the case above also need this?
5872       EVT NVT = TLI.getTypeToTransformTo(C, VT);
5873       assert(NVT.bitsGE(VT));
5874 
5875       bool isDereferenceable =
5876         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
5877       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
5878       if (isDereferenceable)
5879         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
5880 
5881       Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
5882                              DAG.getMemBasePlusOffset(Src, SrcOff, dl),
5883                              SrcPtrInfo.getWithOffset(SrcOff), VT,
5884                              MinAlign(SrcAlign, SrcOff), SrcMMOFlags);
5885       OutLoadChains.push_back(Value.getValue(1));
5886 
5887       Store = DAG.getTruncStore(
5888           Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
5889           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags);
5890       OutStoreChains.push_back(Store);
5891     }
5892     SrcOff += VTSize;
5893     DstOff += VTSize;
5894     Size -= VTSize;
5895   }
5896 
5897   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
5898                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
5899   unsigned NumLdStInMemcpy = OutStoreChains.size();
5900 
5901   if (NumLdStInMemcpy) {
5902     // It may be that memcpy might be converted to memset if it's memcpy
5903     // of constants. In such a case, we won't have loads and stores, but
5904     // just stores. In the absence of loads, there is nothing to gang up.
5905     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
5906       // If target does not care, just leave as it.
5907       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
5908         OutChains.push_back(OutLoadChains[i]);
5909         OutChains.push_back(OutStoreChains[i]);
5910       }
5911     } else {
5912       // Ld/St less than/equal limit set by target.
5913       if (NumLdStInMemcpy <= GluedLdStLimit) {
5914           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5915                                         NumLdStInMemcpy, OutLoadChains,
5916                                         OutStoreChains);
5917       } else {
5918         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
5919         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
5920         unsigned GlueIter = 0;
5921 
5922         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
5923           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
5924           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
5925 
5926           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
5927                                        OutLoadChains, OutStoreChains);
5928           GlueIter += GluedLdStLimit;
5929         }
5930 
5931         // Residual ld/st.
5932         if (RemainingLdStInMemcpy) {
5933           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
5934                                         RemainingLdStInMemcpy, OutLoadChains,
5935                                         OutStoreChains);
5936         }
5937       }
5938     }
5939   }
5940   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
5941 }
5942 
5943 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
5944                                         SDValue Chain, SDValue Dst, SDValue Src,
5945                                         uint64_t Size, unsigned Align,
5946                                         bool isVol, bool AlwaysInline,
5947                                         MachinePointerInfo DstPtrInfo,
5948                                         MachinePointerInfo SrcPtrInfo) {
5949   // Turn a memmove of undef to nop.
5950   // FIXME: We need to honor volatile even is Src is undef.
5951   if (Src.isUndef())
5952     return Chain;
5953 
5954   // Expand memmove to a series of load and store ops if the size operand falls
5955   // below a certain threshold.
5956   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5957   const DataLayout &DL = DAG.getDataLayout();
5958   LLVMContext &C = *DAG.getContext();
5959   std::vector<EVT> MemOps;
5960   bool DstAlignCanChange = false;
5961   MachineFunction &MF = DAG.getMachineFunction();
5962   MachineFrameInfo &MFI = MF.getFrameInfo();
5963   bool OptSize = shouldLowerMemFuncForSize(MF);
5964   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
5965   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
5966     DstAlignCanChange = true;
5967   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
5968   if (Align > SrcAlign)
5969     SrcAlign = Align;
5970   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
5971   // FIXME: `AllowOverlap` should really be `!isVol` but there is a bug in
5972   // findOptimalMemOpLowering. Meanwhile, setting it to `false` produces the
5973   // correct code.
5974   bool AllowOverlap = false;
5975   if (!TLI.findOptimalMemOpLowering(
5976           MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), SrcAlign,
5977           /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false,
5978           AllowOverlap, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
5979           MF.getFunction().getAttributes()))
5980     return SDValue();
5981 
5982   if (DstAlignCanChange) {
5983     Type *Ty = MemOps[0].getTypeForEVT(C);
5984     unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty);
5985     if (NewAlign > Align) {
5986       // Give the stack frame object a larger alignment if needed.
5987       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
5988         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
5989       Align = NewAlign;
5990     }
5991   }
5992 
5993   MachineMemOperand::Flags MMOFlags =
5994       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
5995   uint64_t SrcOff = 0, DstOff = 0;
5996   SmallVector<SDValue, 8> LoadValues;
5997   SmallVector<SDValue, 8> LoadChains;
5998   SmallVector<SDValue, 8> OutChains;
5999   unsigned NumMemOps = MemOps.size();
6000   for (unsigned i = 0; i < NumMemOps; i++) {
6001     EVT VT = MemOps[i];
6002     unsigned VTSize = VT.getSizeInBits() / 8;
6003     SDValue Value;
6004 
6005     bool isDereferenceable =
6006       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6007     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6008     if (isDereferenceable)
6009       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6010 
6011     Value =
6012         DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6013                     SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags);
6014     LoadValues.push_back(Value);
6015     LoadChains.push_back(Value.getValue(1));
6016     SrcOff += VTSize;
6017   }
6018   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6019   OutChains.clear();
6020   for (unsigned i = 0; i < NumMemOps; i++) {
6021     EVT VT = MemOps[i];
6022     unsigned VTSize = VT.getSizeInBits() / 8;
6023     SDValue Store;
6024 
6025     Store = DAG.getStore(Chain, dl, LoadValues[i],
6026                          DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6027                          DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags);
6028     OutChains.push_back(Store);
6029     DstOff += VTSize;
6030   }
6031 
6032   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6033 }
6034 
6035 /// Lower the call to 'memset' intrinsic function into a series of store
6036 /// operations.
6037 ///
6038 /// \param DAG Selection DAG where lowered code is placed.
6039 /// \param dl Link to corresponding IR location.
6040 /// \param Chain Control flow dependency.
6041 /// \param Dst Pointer to destination memory location.
6042 /// \param Src Value of byte to write into the memory.
6043 /// \param Size Number of bytes to write.
6044 /// \param Align Alignment of the destination in bytes.
6045 /// \param isVol True if destination is volatile.
6046 /// \param DstPtrInfo IR information on the memory pointer.
6047 /// \returns New head in the control flow, if lowering was successful, empty
6048 /// SDValue otherwise.
6049 ///
6050 /// The function tries to replace 'llvm.memset' intrinsic with several store
6051 /// operations and value calculation code. This is usually profitable for small
6052 /// memory size.
6053 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6054                                SDValue Chain, SDValue Dst, SDValue Src,
6055                                uint64_t Size, unsigned Align, bool isVol,
6056                                MachinePointerInfo DstPtrInfo) {
6057   // Turn a memset of undef to nop.
6058   // FIXME: We need to honor volatile even is Src is undef.
6059   if (Src.isUndef())
6060     return Chain;
6061 
6062   // Expand memset to a series of load/store ops if the size operand
6063   // falls below a certain threshold.
6064   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6065   std::vector<EVT> MemOps;
6066   bool DstAlignCanChange = false;
6067   MachineFunction &MF = DAG.getMachineFunction();
6068   MachineFrameInfo &MFI = MF.getFrameInfo();
6069   bool OptSize = shouldLowerMemFuncForSize(MF);
6070   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6071   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6072     DstAlignCanChange = true;
6073   bool IsZeroVal =
6074     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6075   if (!TLI.findOptimalMemOpLowering(
6076           MemOps, TLI.getMaxStoresPerMemset(OptSize), Size,
6077           (DstAlignCanChange ? 0 : Align), 0, /*IsMemset=*/true,
6078           /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false,
6079           /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), ~0u,
6080           MF.getFunction().getAttributes()))
6081     return SDValue();
6082 
6083   if (DstAlignCanChange) {
6084     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6085     unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty);
6086     if (NewAlign > Align) {
6087       // Give the stack frame object a larger alignment if needed.
6088       if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign)
6089         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6090       Align = NewAlign;
6091     }
6092   }
6093 
6094   SmallVector<SDValue, 8> OutChains;
6095   uint64_t DstOff = 0;
6096   unsigned NumMemOps = MemOps.size();
6097 
6098   // Find the largest store and generate the bit pattern for it.
6099   EVT LargestVT = MemOps[0];
6100   for (unsigned i = 1; i < NumMemOps; i++)
6101     if (MemOps[i].bitsGT(LargestVT))
6102       LargestVT = MemOps[i];
6103   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6104 
6105   for (unsigned i = 0; i < NumMemOps; i++) {
6106     EVT VT = MemOps[i];
6107     unsigned VTSize = VT.getSizeInBits() / 8;
6108     if (VTSize > Size) {
6109       // Issuing an unaligned load / store pair  that overlaps with the previous
6110       // pair. Adjust the offset accordingly.
6111       assert(i == NumMemOps-1 && i != 0);
6112       DstOff -= VTSize - Size;
6113     }
6114 
6115     // If this store is smaller than the largest store see whether we can get
6116     // the smaller value for free with a truncate.
6117     SDValue Value = MemSetValue;
6118     if (VT.bitsLT(LargestVT)) {
6119       if (!LargestVT.isVector() && !VT.isVector() &&
6120           TLI.isTruncateFree(LargestVT, VT))
6121         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6122       else
6123         Value = getMemsetValue(Src, VT, DAG, dl);
6124     }
6125     assert(Value.getValueType() == VT && "Value with wrong type.");
6126     SDValue Store = DAG.getStore(
6127         Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6128         DstPtrInfo.getWithOffset(DstOff), Align,
6129         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6130     OutChains.push_back(Store);
6131     DstOff += VT.getSizeInBits() / 8;
6132     Size -= VTSize;
6133   }
6134 
6135   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6136 }
6137 
6138 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6139                                             unsigned AS) {
6140   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6141   // pointer operands can be losslessly bitcasted to pointers of address space 0
6142   if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6143     report_fatal_error("cannot lower memory intrinsic in address space " +
6144                        Twine(AS));
6145   }
6146 }
6147 
6148 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6149                                 SDValue Src, SDValue Size, unsigned Align,
6150                                 bool isVol, bool AlwaysInline, bool isTailCall,
6151                                 MachinePointerInfo DstPtrInfo,
6152                                 MachinePointerInfo SrcPtrInfo) {
6153   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6154 
6155   // Check to see if we should lower the memcpy to loads and stores first.
6156   // For cases within the target-specified limits, this is the best choice.
6157   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6158   if (ConstantSize) {
6159     // Memcpy with size zero? Just return the original chain.
6160     if (ConstantSize->isNullValue())
6161       return Chain;
6162 
6163     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6164                                              ConstantSize->getZExtValue(),Align,
6165                                 isVol, false, DstPtrInfo, SrcPtrInfo);
6166     if (Result.getNode())
6167       return Result;
6168   }
6169 
6170   // Then check to see if we should lower the memcpy with target-specific
6171   // code. If the target chooses to do this, this is the next best.
6172   if (TSI) {
6173     SDValue Result = TSI->EmitTargetCodeForMemcpy(
6174         *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline,
6175         DstPtrInfo, SrcPtrInfo);
6176     if (Result.getNode())
6177       return Result;
6178   }
6179 
6180   // If we really need inline code and the target declined to provide it,
6181   // use a (potentially long) sequence of loads and stores.
6182   if (AlwaysInline) {
6183     assert(ConstantSize && "AlwaysInline requires a constant size!");
6184     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6185                                    ConstantSize->getZExtValue(), Align, isVol,
6186                                    true, DstPtrInfo, SrcPtrInfo);
6187   }
6188 
6189   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6190   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6191 
6192   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6193   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6194   // respect volatile, so they may do things like read or write memory
6195   // beyond the given memory regions. But fixing this isn't easy, and most
6196   // people don't care.
6197 
6198   // Emit a library call.
6199   TargetLowering::ArgListTy Args;
6200   TargetLowering::ArgListEntry Entry;
6201   Entry.Ty = Type::getInt8PtrTy(*getContext());
6202   Entry.Node = Dst; Args.push_back(Entry);
6203   Entry.Node = Src; Args.push_back(Entry);
6204 
6205   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6206   Entry.Node = Size; Args.push_back(Entry);
6207   // FIXME: pass in SDLoc
6208   TargetLowering::CallLoweringInfo CLI(*this);
6209   CLI.setDebugLoc(dl)
6210       .setChain(Chain)
6211       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6212                     Dst.getValueType().getTypeForEVT(*getContext()),
6213                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
6214                                       TLI->getPointerTy(getDataLayout())),
6215                     std::move(Args))
6216       .setDiscardResult()
6217       .setTailCall(isTailCall);
6218 
6219   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6220   return CallResult.second;
6221 }
6222 
6223 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6224                                       SDValue Dst, unsigned DstAlign,
6225                                       SDValue Src, unsigned SrcAlign,
6226                                       SDValue Size, Type *SizeTy,
6227                                       unsigned ElemSz, bool isTailCall,
6228                                       MachinePointerInfo DstPtrInfo,
6229                                       MachinePointerInfo SrcPtrInfo) {
6230   // Emit a library call.
6231   TargetLowering::ArgListTy Args;
6232   TargetLowering::ArgListEntry Entry;
6233   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6234   Entry.Node = Dst;
6235   Args.push_back(Entry);
6236 
6237   Entry.Node = Src;
6238   Args.push_back(Entry);
6239 
6240   Entry.Ty = SizeTy;
6241   Entry.Node = Size;
6242   Args.push_back(Entry);
6243 
6244   RTLIB::Libcall LibraryCall =
6245       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6246   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6247     report_fatal_error("Unsupported element size");
6248 
6249   TargetLowering::CallLoweringInfo CLI(*this);
6250   CLI.setDebugLoc(dl)
6251       .setChain(Chain)
6252       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6253                     Type::getVoidTy(*getContext()),
6254                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6255                                       TLI->getPointerTy(getDataLayout())),
6256                     std::move(Args))
6257       .setDiscardResult()
6258       .setTailCall(isTailCall);
6259 
6260   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6261   return CallResult.second;
6262 }
6263 
6264 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6265                                  SDValue Src, SDValue Size, unsigned Align,
6266                                  bool isVol, bool isTailCall,
6267                                  MachinePointerInfo DstPtrInfo,
6268                                  MachinePointerInfo SrcPtrInfo) {
6269   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6270 
6271   // Check to see if we should lower the memmove to loads and stores first.
6272   // For cases within the target-specified limits, this is the best choice.
6273   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6274   if (ConstantSize) {
6275     // Memmove with size zero? Just return the original chain.
6276     if (ConstantSize->isNullValue())
6277       return Chain;
6278 
6279     SDValue Result =
6280       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
6281                                ConstantSize->getZExtValue(), Align, isVol,
6282                                false, DstPtrInfo, SrcPtrInfo);
6283     if (Result.getNode())
6284       return Result;
6285   }
6286 
6287   // Then check to see if we should lower the memmove with target-specific
6288   // code. If the target chooses to do this, this is the next best.
6289   if (TSI) {
6290     SDValue Result = TSI->EmitTargetCodeForMemmove(
6291         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo);
6292     if (Result.getNode())
6293       return Result;
6294   }
6295 
6296   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6297   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6298 
6299   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6300   // not be safe.  See memcpy above for more details.
6301 
6302   // Emit a library call.
6303   TargetLowering::ArgListTy Args;
6304   TargetLowering::ArgListEntry Entry;
6305   Entry.Ty = Type::getInt8PtrTy(*getContext());
6306   Entry.Node = Dst; Args.push_back(Entry);
6307   Entry.Node = Src; Args.push_back(Entry);
6308 
6309   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6310   Entry.Node = Size; Args.push_back(Entry);
6311   // FIXME:  pass in SDLoc
6312   TargetLowering::CallLoweringInfo CLI(*this);
6313   CLI.setDebugLoc(dl)
6314       .setChain(Chain)
6315       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6316                     Dst.getValueType().getTypeForEVT(*getContext()),
6317                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
6318                                       TLI->getPointerTy(getDataLayout())),
6319                     std::move(Args))
6320       .setDiscardResult()
6321       .setTailCall(isTailCall);
6322 
6323   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6324   return CallResult.second;
6325 }
6326 
6327 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6328                                        SDValue Dst, unsigned DstAlign,
6329                                        SDValue Src, unsigned SrcAlign,
6330                                        SDValue Size, Type *SizeTy,
6331                                        unsigned ElemSz, bool isTailCall,
6332                                        MachinePointerInfo DstPtrInfo,
6333                                        MachinePointerInfo SrcPtrInfo) {
6334   // Emit a library call.
6335   TargetLowering::ArgListTy Args;
6336   TargetLowering::ArgListEntry Entry;
6337   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6338   Entry.Node = Dst;
6339   Args.push_back(Entry);
6340 
6341   Entry.Node = Src;
6342   Args.push_back(Entry);
6343 
6344   Entry.Ty = SizeTy;
6345   Entry.Node = Size;
6346   Args.push_back(Entry);
6347 
6348   RTLIB::Libcall LibraryCall =
6349       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6350   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6351     report_fatal_error("Unsupported element size");
6352 
6353   TargetLowering::CallLoweringInfo CLI(*this);
6354   CLI.setDebugLoc(dl)
6355       .setChain(Chain)
6356       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6357                     Type::getVoidTy(*getContext()),
6358                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6359                                       TLI->getPointerTy(getDataLayout())),
6360                     std::move(Args))
6361       .setDiscardResult()
6362       .setTailCall(isTailCall);
6363 
6364   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6365   return CallResult.second;
6366 }
6367 
6368 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6369                                 SDValue Src, SDValue Size, unsigned Align,
6370                                 bool isVol, bool isTailCall,
6371                                 MachinePointerInfo DstPtrInfo) {
6372   assert(Align && "The SDAG layer expects explicit alignment and reserves 0");
6373 
6374   // Check to see if we should lower the memset to stores first.
6375   // For cases within the target-specified limits, this is the best choice.
6376   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6377   if (ConstantSize) {
6378     // Memset with size zero? Just return the original chain.
6379     if (ConstantSize->isNullValue())
6380       return Chain;
6381 
6382     SDValue Result =
6383       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
6384                       Align, isVol, DstPtrInfo);
6385 
6386     if (Result.getNode())
6387       return Result;
6388   }
6389 
6390   // Then check to see if we should lower the memset with target-specific
6391   // code. If the target chooses to do this, this is the next best.
6392   if (TSI) {
6393     SDValue Result = TSI->EmitTargetCodeForMemset(
6394         *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo);
6395     if (Result.getNode())
6396       return Result;
6397   }
6398 
6399   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6400 
6401   // Emit a library call.
6402   TargetLowering::ArgListTy Args;
6403   TargetLowering::ArgListEntry Entry;
6404   Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext());
6405   Args.push_back(Entry);
6406   Entry.Node = Src;
6407   Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6408   Args.push_back(Entry);
6409   Entry.Node = Size;
6410   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6411   Args.push_back(Entry);
6412 
6413   // FIXME: pass in SDLoc
6414   TargetLowering::CallLoweringInfo CLI(*this);
6415   CLI.setDebugLoc(dl)
6416       .setChain(Chain)
6417       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
6418                     Dst.getValueType().getTypeForEVT(*getContext()),
6419                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
6420                                       TLI->getPointerTy(getDataLayout())),
6421                     std::move(Args))
6422       .setDiscardResult()
6423       .setTailCall(isTailCall);
6424 
6425   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6426   return CallResult.second;
6427 }
6428 
6429 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6430                                       SDValue Dst, unsigned DstAlign,
6431                                       SDValue Value, SDValue Size, Type *SizeTy,
6432                                       unsigned ElemSz, bool isTailCall,
6433                                       MachinePointerInfo DstPtrInfo) {
6434   // Emit a library call.
6435   TargetLowering::ArgListTy Args;
6436   TargetLowering::ArgListEntry Entry;
6437   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6438   Entry.Node = Dst;
6439   Args.push_back(Entry);
6440 
6441   Entry.Ty = Type::getInt8Ty(*getContext());
6442   Entry.Node = Value;
6443   Args.push_back(Entry);
6444 
6445   Entry.Ty = SizeTy;
6446   Entry.Node = Size;
6447   Args.push_back(Entry);
6448 
6449   RTLIB::Libcall LibraryCall =
6450       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6451   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6452     report_fatal_error("Unsupported element size");
6453 
6454   TargetLowering::CallLoweringInfo CLI(*this);
6455   CLI.setDebugLoc(dl)
6456       .setChain(Chain)
6457       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6458                     Type::getVoidTy(*getContext()),
6459                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
6460                                       TLI->getPointerTy(getDataLayout())),
6461                     std::move(Args))
6462       .setDiscardResult()
6463       .setTailCall(isTailCall);
6464 
6465   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6466   return CallResult.second;
6467 }
6468 
6469 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6470                                 SDVTList VTList, ArrayRef<SDValue> Ops,
6471                                 MachineMemOperand *MMO) {
6472   FoldingSetNodeID ID;
6473   ID.AddInteger(MemVT.getRawBits());
6474   AddNodeIDNode(ID, Opcode, VTList, Ops);
6475   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6476   void* IP = nullptr;
6477   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6478     cast<AtomicSDNode>(E)->refineAlignment(MMO);
6479     return SDValue(E, 0);
6480   }
6481 
6482   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6483                                     VTList, MemVT, MMO);
6484   createOperands(N, Ops);
6485 
6486   CSEMap.InsertNode(N, IP);
6487   InsertNode(N);
6488   return SDValue(N, 0);
6489 }
6490 
6491 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6492                                        EVT MemVT, SDVTList VTs, SDValue Chain,
6493                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
6494                                        MachineMemOperand *MMO) {
6495   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6496          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6497   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6498 
6499   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6500   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6501 }
6502 
6503 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6504                                 SDValue Chain, SDValue Ptr, SDValue Val,
6505                                 MachineMemOperand *MMO) {
6506   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6507           Opcode == ISD::ATOMIC_LOAD_SUB ||
6508           Opcode == ISD::ATOMIC_LOAD_AND ||
6509           Opcode == ISD::ATOMIC_LOAD_CLR ||
6510           Opcode == ISD::ATOMIC_LOAD_OR ||
6511           Opcode == ISD::ATOMIC_LOAD_XOR ||
6512           Opcode == ISD::ATOMIC_LOAD_NAND ||
6513           Opcode == ISD::ATOMIC_LOAD_MIN ||
6514           Opcode == ISD::ATOMIC_LOAD_MAX ||
6515           Opcode == ISD::ATOMIC_LOAD_UMIN ||
6516           Opcode == ISD::ATOMIC_LOAD_UMAX ||
6517           Opcode == ISD::ATOMIC_LOAD_FADD ||
6518           Opcode == ISD::ATOMIC_LOAD_FSUB ||
6519           Opcode == ISD::ATOMIC_SWAP ||
6520           Opcode == ISD::ATOMIC_STORE) &&
6521          "Invalid Atomic Op");
6522 
6523   EVT VT = Val.getValueType();
6524 
6525   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6526                                                getVTList(VT, MVT::Other);
6527   SDValue Ops[] = {Chain, Ptr, Val};
6528   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6529 }
6530 
6531 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6532                                 EVT VT, SDValue Chain, SDValue Ptr,
6533                                 MachineMemOperand *MMO) {
6534   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6535 
6536   SDVTList VTs = getVTList(VT, MVT::Other);
6537   SDValue Ops[] = {Chain, Ptr};
6538   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6539 }
6540 
6541 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6542 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6543   if (Ops.size() == 1)
6544     return Ops[0];
6545 
6546   SmallVector<EVT, 4> VTs;
6547   VTs.reserve(Ops.size());
6548   for (unsigned i = 0; i < Ops.size(); ++i)
6549     VTs.push_back(Ops[i].getValueType());
6550   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
6551 }
6552 
6553 SDValue SelectionDAG::getMemIntrinsicNode(
6554     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
6555     EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align,
6556     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
6557   if (Align == 0)  // Ensure that codegen never sees alignment 0
6558     Align = getEVTAlignment(MemVT);
6559 
6560   if (!Size)
6561     Size = MemVT.getStoreSize();
6562 
6563   MachineFunction &MF = getMachineFunction();
6564   MachineMemOperand *MMO =
6565       MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo);
6566 
6567   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
6568 }
6569 
6570 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
6571                                           SDVTList VTList,
6572                                           ArrayRef<SDValue> Ops, EVT MemVT,
6573                                           MachineMemOperand *MMO) {
6574   assert((Opcode == ISD::INTRINSIC_VOID ||
6575           Opcode == ISD::INTRINSIC_W_CHAIN ||
6576           Opcode == ISD::PREFETCH ||
6577           Opcode == ISD::LIFETIME_START ||
6578           Opcode == ISD::LIFETIME_END ||
6579           ((int)Opcode <= std::numeric_limits<int>::max() &&
6580            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
6581          "Opcode is not a memory-accessing opcode!");
6582 
6583   // Memoize the node unless it returns a flag.
6584   MemIntrinsicSDNode *N;
6585   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
6586     FoldingSetNodeID ID;
6587     AddNodeIDNode(ID, Opcode, VTList, Ops);
6588     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
6589         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
6590     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6591     void *IP = nullptr;
6592     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6593       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
6594       return SDValue(E, 0);
6595     }
6596 
6597     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6598                                       VTList, MemVT, MMO);
6599     createOperands(N, Ops);
6600 
6601   CSEMap.InsertNode(N, IP);
6602   } else {
6603     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6604                                       VTList, MemVT, MMO);
6605     createOperands(N, Ops);
6606   }
6607   InsertNode(N);
6608   SDValue V(N, 0);
6609   NewSDValueDbgMsg(V, "Creating new node: ", this);
6610   return V;
6611 }
6612 
6613 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
6614                                       SDValue Chain, int FrameIndex,
6615                                       int64_t Size, int64_t Offset) {
6616   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
6617   const auto VTs = getVTList(MVT::Other);
6618   SDValue Ops[2] = {
6619       Chain,
6620       getFrameIndex(FrameIndex,
6621                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6622                     true)};
6623 
6624   FoldingSetNodeID ID;
6625   AddNodeIDNode(ID, Opcode, VTs, Ops);
6626   ID.AddInteger(FrameIndex);
6627   ID.AddInteger(Size);
6628   ID.AddInteger(Offset);
6629   void *IP = nullptr;
6630   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6631     return SDValue(E, 0);
6632 
6633   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
6634       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
6635   createOperands(N, Ops);
6636   CSEMap.InsertNode(N, IP);
6637   InsertNode(N);
6638   SDValue V(N, 0);
6639   NewSDValueDbgMsg(V, "Creating new node: ", this);
6640   return V;
6641 }
6642 
6643 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6644 /// MachinePointerInfo record from it.  This is particularly useful because the
6645 /// code generator has many cases where it doesn't bother passing in a
6646 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6647 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6648                                            SelectionDAG &DAG, SDValue Ptr,
6649                                            int64_t Offset = 0) {
6650   // If this is FI+Offset, we can model it.
6651   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
6652     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
6653                                              FI->getIndex(), Offset);
6654 
6655   // If this is (FI+Offset1)+Offset2, we can model it.
6656   if (Ptr.getOpcode() != ISD::ADD ||
6657       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
6658       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
6659     return Info;
6660 
6661   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6662   return MachinePointerInfo::getFixedStack(
6663       DAG.getMachineFunction(), FI,
6664       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
6665 }
6666 
6667 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6668 /// MachinePointerInfo record from it.  This is particularly useful because the
6669 /// code generator has many cases where it doesn't bother passing in a
6670 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6671 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
6672                                            SelectionDAG &DAG, SDValue Ptr,
6673                                            SDValue OffsetOp) {
6674   // If the 'Offset' value isn't a constant, we can't handle this.
6675   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
6676     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
6677   if (OffsetOp.isUndef())
6678     return InferPointerInfo(Info, DAG, Ptr);
6679   return Info;
6680 }
6681 
6682 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6683                               EVT VT, const SDLoc &dl, SDValue Chain,
6684                               SDValue Ptr, SDValue Offset,
6685                               MachinePointerInfo PtrInfo, EVT MemVT,
6686                               unsigned Alignment,
6687                               MachineMemOperand::Flags MMOFlags,
6688                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6689   assert(Chain.getValueType() == MVT::Other &&
6690         "Invalid chain type");
6691   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6692     Alignment = getEVTAlignment(MemVT);
6693 
6694   MMOFlags |= MachineMemOperand::MOLoad;
6695   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
6696   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6697   // clients.
6698   if (PtrInfo.V.isNull())
6699     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
6700 
6701   MachineFunction &MF = getMachineFunction();
6702   MachineMemOperand *MMO = MF.getMachineMemOperand(
6703       PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges);
6704   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
6705 }
6706 
6707 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
6708                               EVT VT, const SDLoc &dl, SDValue Chain,
6709                               SDValue Ptr, SDValue Offset, EVT MemVT,
6710                               MachineMemOperand *MMO) {
6711   if (VT == MemVT) {
6712     ExtType = ISD::NON_EXTLOAD;
6713   } else if (ExtType == ISD::NON_EXTLOAD) {
6714     assert(VT == MemVT && "Non-extending load from different memory type!");
6715   } else {
6716     // Extending load.
6717     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
6718            "Should only be an extending load, not truncating!");
6719     assert(VT.isInteger() == MemVT.isInteger() &&
6720            "Cannot convert from FP to Int or Int -> FP!");
6721     assert(VT.isVector() == MemVT.isVector() &&
6722            "Cannot use an ext load to convert to or from a vector!");
6723     assert((!VT.isVector() ||
6724             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
6725            "Cannot use an ext load to change the number of vector elements!");
6726   }
6727 
6728   bool Indexed = AM != ISD::UNINDEXED;
6729   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
6730 
6731   SDVTList VTs = Indexed ?
6732     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
6733   SDValue Ops[] = { Chain, Ptr, Offset };
6734   FoldingSetNodeID ID;
6735   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
6736   ID.AddInteger(MemVT.getRawBits());
6737   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
6738       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
6739   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6740   void *IP = nullptr;
6741   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6742     cast<LoadSDNode>(E)->refineAlignment(MMO);
6743     return SDValue(E, 0);
6744   }
6745   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6746                                   ExtType, MemVT, MMO);
6747   createOperands(N, Ops);
6748 
6749   CSEMap.InsertNode(N, IP);
6750   InsertNode(N);
6751   SDValue V(N, 0);
6752   NewSDValueDbgMsg(V, "Creating new node: ", this);
6753   return V;
6754 }
6755 
6756 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6757                               SDValue Ptr, MachinePointerInfo PtrInfo,
6758                               unsigned Alignment,
6759                               MachineMemOperand::Flags MMOFlags,
6760                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
6761   SDValue Undef = getUNDEF(Ptr.getValueType());
6762   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6763                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
6764 }
6765 
6766 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6767                               SDValue Ptr, MachineMemOperand *MMO) {
6768   SDValue Undef = getUNDEF(Ptr.getValueType());
6769   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
6770                  VT, MMO);
6771 }
6772 
6773 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6774                                  EVT VT, SDValue Chain, SDValue Ptr,
6775                                  MachinePointerInfo PtrInfo, EVT MemVT,
6776                                  unsigned Alignment,
6777                                  MachineMemOperand::Flags MMOFlags,
6778                                  const AAMDNodes &AAInfo) {
6779   SDValue Undef = getUNDEF(Ptr.getValueType());
6780   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
6781                  MemVT, Alignment, MMOFlags, AAInfo);
6782 }
6783 
6784 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
6785                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
6786                                  MachineMemOperand *MMO) {
6787   SDValue Undef = getUNDEF(Ptr.getValueType());
6788   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
6789                  MemVT, MMO);
6790 }
6791 
6792 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
6793                                      SDValue Base, SDValue Offset,
6794                                      ISD::MemIndexedMode AM) {
6795   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
6796   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
6797   // Don't propagate the invariant or dereferenceable flags.
6798   auto MMOFlags =
6799       LD->getMemOperand()->getFlags() &
6800       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
6801   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
6802                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
6803                  LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
6804                  LD->getAAInfo());
6805 }
6806 
6807 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6808                                SDValue Ptr, MachinePointerInfo PtrInfo,
6809                                unsigned Alignment,
6810                                MachineMemOperand::Flags MMOFlags,
6811                                const AAMDNodes &AAInfo) {
6812   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
6813   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6814     Alignment = getEVTAlignment(Val.getValueType());
6815 
6816   MMOFlags |= MachineMemOperand::MOStore;
6817   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6818 
6819   if (PtrInfo.V.isNull())
6820     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6821 
6822   MachineFunction &MF = getMachineFunction();
6823   MachineMemOperand *MMO = MF.getMachineMemOperand(
6824       PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo);
6825   return getStore(Chain, dl, Val, Ptr, MMO);
6826 }
6827 
6828 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6829                                SDValue Ptr, MachineMemOperand *MMO) {
6830   assert(Chain.getValueType() == MVT::Other &&
6831         "Invalid chain type");
6832   EVT VT = Val.getValueType();
6833   SDVTList VTs = getVTList(MVT::Other);
6834   SDValue Undef = getUNDEF(Ptr.getValueType());
6835   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6836   FoldingSetNodeID ID;
6837   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6838   ID.AddInteger(VT.getRawBits());
6839   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6840       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
6841   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6842   void *IP = nullptr;
6843   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6844     cast<StoreSDNode>(E)->refineAlignment(MMO);
6845     return SDValue(E, 0);
6846   }
6847   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6848                                    ISD::UNINDEXED, false, VT, MMO);
6849   createOperands(N, Ops);
6850 
6851   CSEMap.InsertNode(N, IP);
6852   InsertNode(N);
6853   SDValue V(N, 0);
6854   NewSDValueDbgMsg(V, "Creating new node: ", this);
6855   return V;
6856 }
6857 
6858 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6859                                     SDValue Ptr, MachinePointerInfo PtrInfo,
6860                                     EVT SVT, unsigned Alignment,
6861                                     MachineMemOperand::Flags MMOFlags,
6862                                     const AAMDNodes &AAInfo) {
6863   assert(Chain.getValueType() == MVT::Other &&
6864         "Invalid chain type");
6865   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
6866     Alignment = getEVTAlignment(SVT);
6867 
6868   MMOFlags |= MachineMemOperand::MOStore;
6869   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
6870 
6871   if (PtrInfo.V.isNull())
6872     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
6873 
6874   MachineFunction &MF = getMachineFunction();
6875   MachineMemOperand *MMO = MF.getMachineMemOperand(
6876       PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
6877   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
6878 }
6879 
6880 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
6881                                     SDValue Ptr, EVT SVT,
6882                                     MachineMemOperand *MMO) {
6883   EVT VT = Val.getValueType();
6884 
6885   assert(Chain.getValueType() == MVT::Other &&
6886         "Invalid chain type");
6887   if (VT == SVT)
6888     return getStore(Chain, dl, Val, Ptr, MMO);
6889 
6890   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
6891          "Should only be a truncating store, not extending!");
6892   assert(VT.isInteger() == SVT.isInteger() &&
6893          "Can't do FP-INT conversion!");
6894   assert(VT.isVector() == SVT.isVector() &&
6895          "Cannot use trunc store to convert to or from a vector!");
6896   assert((!VT.isVector() ||
6897           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
6898          "Cannot use trunc store to change the number of vector elements!");
6899 
6900   SDVTList VTs = getVTList(MVT::Other);
6901   SDValue Undef = getUNDEF(Ptr.getValueType());
6902   SDValue Ops[] = { Chain, Val, Ptr, Undef };
6903   FoldingSetNodeID ID;
6904   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6905   ID.AddInteger(SVT.getRawBits());
6906   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
6907       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
6908   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6909   void *IP = nullptr;
6910   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6911     cast<StoreSDNode>(E)->refineAlignment(MMO);
6912     return SDValue(E, 0);
6913   }
6914   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6915                                    ISD::UNINDEXED, true, SVT, MMO);
6916   createOperands(N, Ops);
6917 
6918   CSEMap.InsertNode(N, IP);
6919   InsertNode(N);
6920   SDValue V(N, 0);
6921   NewSDValueDbgMsg(V, "Creating new node: ", this);
6922   return V;
6923 }
6924 
6925 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
6926                                       SDValue Base, SDValue Offset,
6927                                       ISD::MemIndexedMode AM) {
6928   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
6929   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
6930   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
6931   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
6932   FoldingSetNodeID ID;
6933   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
6934   ID.AddInteger(ST->getMemoryVT().getRawBits());
6935   ID.AddInteger(ST->getRawSubclassData());
6936   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
6937   void *IP = nullptr;
6938   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
6939     return SDValue(E, 0);
6940 
6941   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
6942                                    ST->isTruncatingStore(), ST->getMemoryVT(),
6943                                    ST->getMemOperand());
6944   createOperands(N, Ops);
6945 
6946   CSEMap.InsertNode(N, IP);
6947   InsertNode(N);
6948   SDValue V(N, 0);
6949   NewSDValueDbgMsg(V, "Creating new node: ", this);
6950   return V;
6951 }
6952 
6953 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
6954                                     SDValue Ptr, SDValue Mask, SDValue PassThru,
6955                                     EVT MemVT, MachineMemOperand *MMO,
6956                                     ISD::LoadExtType ExtTy, bool isExpanding) {
6957   SDVTList VTs = getVTList(VT, MVT::Other);
6958   SDValue Ops[] = { Chain, Ptr, Mask, PassThru };
6959   FoldingSetNodeID ID;
6960   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
6961   ID.AddInteger(MemVT.getRawBits());
6962   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
6963       dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO));
6964   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6965   void *IP = nullptr;
6966   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6967     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
6968     return SDValue(E, 0);
6969   }
6970   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
6971                                         ExtTy, isExpanding, MemVT, MMO);
6972   createOperands(N, Ops);
6973 
6974   CSEMap.InsertNode(N, IP);
6975   InsertNode(N);
6976   SDValue V(N, 0);
6977   NewSDValueDbgMsg(V, "Creating new node: ", this);
6978   return V;
6979 }
6980 
6981 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
6982                                      SDValue Val, SDValue Ptr, SDValue Mask,
6983                                      EVT MemVT, MachineMemOperand *MMO,
6984                                      bool IsTruncating, bool IsCompressing) {
6985   assert(Chain.getValueType() == MVT::Other &&
6986         "Invalid chain type");
6987   SDVTList VTs = getVTList(MVT::Other);
6988   SDValue Ops[] = { Chain, Val, Ptr, Mask };
6989   FoldingSetNodeID ID;
6990   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
6991   ID.AddInteger(MemVT.getRawBits());
6992   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
6993       dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO));
6994   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6995   void *IP = nullptr;
6996   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6997     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
6998     return SDValue(E, 0);
6999   }
7000   auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7001                                          IsTruncating, IsCompressing, MemVT, MMO);
7002   createOperands(N, Ops);
7003 
7004   CSEMap.InsertNode(N, IP);
7005   InsertNode(N);
7006   SDValue V(N, 0);
7007   NewSDValueDbgMsg(V, "Creating new node: ", this);
7008   return V;
7009 }
7010 
7011 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7012                                       ArrayRef<SDValue> Ops,
7013                                       MachineMemOperand *MMO,
7014                                       ISD::MemIndexType IndexType) {
7015   assert(Ops.size() == 6 && "Incompatible number of operands");
7016 
7017   FoldingSetNodeID ID;
7018   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7019   ID.AddInteger(VT.getRawBits());
7020   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7021       dl.getIROrder(), VTs, VT, MMO, IndexType));
7022   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7023   void *IP = nullptr;
7024   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7025     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7026     return SDValue(E, 0);
7027   }
7028 
7029   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7030                                           VTs, VT, MMO, IndexType);
7031   createOperands(N, Ops);
7032 
7033   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7034          "Incompatible type of the PassThru value in MaskedGatherSDNode");
7035   assert(N->getMask().getValueType().getVectorNumElements() ==
7036              N->getValueType(0).getVectorNumElements() &&
7037          "Vector width mismatch between mask and data");
7038   assert(N->getIndex().getValueType().getVectorNumElements() >=
7039              N->getValueType(0).getVectorNumElements() &&
7040          "Vector width mismatch between index and data");
7041   assert(isa<ConstantSDNode>(N->getScale()) &&
7042          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7043          "Scale should be a constant power of 2");
7044 
7045   CSEMap.InsertNode(N, IP);
7046   InsertNode(N);
7047   SDValue V(N, 0);
7048   NewSDValueDbgMsg(V, "Creating new node: ", this);
7049   return V;
7050 }
7051 
7052 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7053                                        ArrayRef<SDValue> Ops,
7054                                        MachineMemOperand *MMO,
7055                                        ISD::MemIndexType IndexType) {
7056   assert(Ops.size() == 6 && "Incompatible number of operands");
7057 
7058   FoldingSetNodeID ID;
7059   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7060   ID.AddInteger(VT.getRawBits());
7061   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7062       dl.getIROrder(), VTs, VT, MMO, IndexType));
7063   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7064   void *IP = nullptr;
7065   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7066     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7067     return SDValue(E, 0);
7068   }
7069   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7070                                            VTs, VT, MMO, IndexType);
7071   createOperands(N, Ops);
7072 
7073   assert(N->getMask().getValueType().getVectorNumElements() ==
7074              N->getValue().getValueType().getVectorNumElements() &&
7075          "Vector width mismatch between mask and data");
7076   assert(N->getIndex().getValueType().getVectorNumElements() >=
7077              N->getValue().getValueType().getVectorNumElements() &&
7078          "Vector width mismatch between index and data");
7079   assert(isa<ConstantSDNode>(N->getScale()) &&
7080          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7081          "Scale should be a constant power of 2");
7082 
7083   CSEMap.InsertNode(N, IP);
7084   InsertNode(N);
7085   SDValue V(N, 0);
7086   NewSDValueDbgMsg(V, "Creating new node: ", this);
7087   return V;
7088 }
7089 
7090 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7091   // select undef, T, F --> T (if T is a constant), otherwise F
7092   // select, ?, undef, F --> F
7093   // select, ?, T, undef --> T
7094   if (Cond.isUndef())
7095     return isConstantValueOfAnyType(T) ? T : F;
7096   if (T.isUndef())
7097     return F;
7098   if (F.isUndef())
7099     return T;
7100 
7101   // select true, T, F --> T
7102   // select false, T, F --> F
7103   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7104     return CondC->isNullValue() ? F : T;
7105 
7106   // TODO: This should simplify VSELECT with constant condition using something
7107   // like this (but check boolean contents to be complete?):
7108   //  if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7109   //    return T;
7110   //  if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7111   //    return F;
7112 
7113   // select ?, T, T --> T
7114   if (T == F)
7115     return T;
7116 
7117   return SDValue();
7118 }
7119 
7120 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7121   // shift undef, Y --> 0 (can always assume that the undef value is 0)
7122   if (X.isUndef())
7123     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7124   // shift X, undef --> undef (because it may shift by the bitwidth)
7125   if (Y.isUndef())
7126     return getUNDEF(X.getValueType());
7127 
7128   // shift 0, Y --> 0
7129   // shift X, 0 --> X
7130   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7131     return X;
7132 
7133   // shift X, C >= bitwidth(X) --> undef
7134   // All vector elements must be too big (or undef) to avoid partial undefs.
7135   auto isShiftTooBig = [X](ConstantSDNode *Val) {
7136     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7137   };
7138   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7139     return getUNDEF(X.getValueType());
7140 
7141   return SDValue();
7142 }
7143 
7144 // TODO: Use fast-math-flags to enable more simplifications.
7145 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) {
7146   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7147   if (!YC)
7148     return SDValue();
7149 
7150   // X + -0.0 --> X
7151   if (Opcode == ISD::FADD)
7152     if (YC->getValueAPF().isNegZero())
7153       return X;
7154 
7155   // X - +0.0 --> X
7156   if (Opcode == ISD::FSUB)
7157     if (YC->getValueAPF().isPosZero())
7158       return X;
7159 
7160   // X * 1.0 --> X
7161   // X / 1.0 --> X
7162   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7163     if (YC->getValueAPF().isExactlyValue(1.0))
7164       return X;
7165 
7166   return SDValue();
7167 }
7168 
7169 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7170                                SDValue Ptr, SDValue SV, unsigned Align) {
7171   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7172   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7173 }
7174 
7175 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7176                               ArrayRef<SDUse> Ops) {
7177   switch (Ops.size()) {
7178   case 0: return getNode(Opcode, DL, VT);
7179   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7180   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7181   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7182   default: break;
7183   }
7184 
7185   // Copy from an SDUse array into an SDValue array for use with
7186   // the regular getNode logic.
7187   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7188   return getNode(Opcode, DL, VT, NewOps);
7189 }
7190 
7191 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7192                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7193   unsigned NumOps = Ops.size();
7194   switch (NumOps) {
7195   case 0: return getNode(Opcode, DL, VT);
7196   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7197   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7198   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7199   default: break;
7200   }
7201 
7202   switch (Opcode) {
7203   default: break;
7204   case ISD::BUILD_VECTOR:
7205     // Attempt to simplify BUILD_VECTOR.
7206     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7207       return V;
7208     break;
7209   case ISD::CONCAT_VECTORS:
7210     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7211       return V;
7212     break;
7213   case ISD::SELECT_CC:
7214     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7215     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7216            "LHS and RHS of condition must have same type!");
7217     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7218            "True and False arms of SelectCC must have same type!");
7219     assert(Ops[2].getValueType() == VT &&
7220            "select_cc node must be of same type as true and false value!");
7221     break;
7222   case ISD::BR_CC:
7223     assert(NumOps == 5 && "BR_CC takes 5 operands!");
7224     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7225            "LHS/RHS of comparison should match types!");
7226     break;
7227   }
7228 
7229   // Memoize nodes.
7230   SDNode *N;
7231   SDVTList VTs = getVTList(VT);
7232 
7233   if (VT != MVT::Glue) {
7234     FoldingSetNodeID ID;
7235     AddNodeIDNode(ID, Opcode, VTs, Ops);
7236     void *IP = nullptr;
7237 
7238     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7239       return SDValue(E, 0);
7240 
7241     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7242     createOperands(N, Ops);
7243 
7244     CSEMap.InsertNode(N, IP);
7245   } else {
7246     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7247     createOperands(N, Ops);
7248   }
7249 
7250   InsertNode(N);
7251   SDValue V(N, 0);
7252   NewSDValueDbgMsg(V, "Creating new node: ", this);
7253   return V;
7254 }
7255 
7256 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7257                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7258   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7259 }
7260 
7261 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7262                               ArrayRef<SDValue> Ops) {
7263   if (VTList.NumVTs == 1)
7264     return getNode(Opcode, DL, VTList.VTs[0], Ops);
7265 
7266 #if 0
7267   switch (Opcode) {
7268   // FIXME: figure out how to safely handle things like
7269   // int foo(int x) { return 1 << (x & 255); }
7270   // int bar() { return foo(256); }
7271   case ISD::SRA_PARTS:
7272   case ISD::SRL_PARTS:
7273   case ISD::SHL_PARTS:
7274     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7275         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7276       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7277     else if (N3.getOpcode() == ISD::AND)
7278       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7279         // If the and is only masking out bits that cannot effect the shift,
7280         // eliminate the and.
7281         unsigned NumBits = VT.getScalarSizeInBits()*2;
7282         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7283           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7284       }
7285     break;
7286   }
7287 #endif
7288 
7289   // Memoize the node unless it returns a flag.
7290   SDNode *N;
7291   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7292     FoldingSetNodeID ID;
7293     AddNodeIDNode(ID, Opcode, VTList, Ops);
7294     void *IP = nullptr;
7295     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7296       return SDValue(E, 0);
7297 
7298     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7299     createOperands(N, Ops);
7300     CSEMap.InsertNode(N, IP);
7301   } else {
7302     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7303     createOperands(N, Ops);
7304   }
7305   InsertNode(N);
7306   SDValue V(N, 0);
7307   NewSDValueDbgMsg(V, "Creating new node: ", this);
7308   return V;
7309 }
7310 
7311 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7312                               SDVTList VTList) {
7313   return getNode(Opcode, DL, VTList, None);
7314 }
7315 
7316 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7317                               SDValue N1) {
7318   SDValue Ops[] = { N1 };
7319   return getNode(Opcode, DL, VTList, Ops);
7320 }
7321 
7322 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7323                               SDValue N1, SDValue N2) {
7324   SDValue Ops[] = { N1, N2 };
7325   return getNode(Opcode, DL, VTList, Ops);
7326 }
7327 
7328 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7329                               SDValue N1, SDValue N2, SDValue N3) {
7330   SDValue Ops[] = { N1, N2, N3 };
7331   return getNode(Opcode, DL, VTList, Ops);
7332 }
7333 
7334 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7335                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7336   SDValue Ops[] = { N1, N2, N3, N4 };
7337   return getNode(Opcode, DL, VTList, Ops);
7338 }
7339 
7340 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7341                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7342                               SDValue N5) {
7343   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7344   return getNode(Opcode, DL, VTList, Ops);
7345 }
7346 
7347 SDVTList SelectionDAG::getVTList(EVT VT) {
7348   return makeVTList(SDNode::getValueTypeList(VT), 1);
7349 }
7350 
7351 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7352   FoldingSetNodeID ID;
7353   ID.AddInteger(2U);
7354   ID.AddInteger(VT1.getRawBits());
7355   ID.AddInteger(VT2.getRawBits());
7356 
7357   void *IP = nullptr;
7358   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7359   if (!Result) {
7360     EVT *Array = Allocator.Allocate<EVT>(2);
7361     Array[0] = VT1;
7362     Array[1] = VT2;
7363     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7364     VTListMap.InsertNode(Result, IP);
7365   }
7366   return Result->getSDVTList();
7367 }
7368 
7369 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7370   FoldingSetNodeID ID;
7371   ID.AddInteger(3U);
7372   ID.AddInteger(VT1.getRawBits());
7373   ID.AddInteger(VT2.getRawBits());
7374   ID.AddInteger(VT3.getRawBits());
7375 
7376   void *IP = nullptr;
7377   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7378   if (!Result) {
7379     EVT *Array = Allocator.Allocate<EVT>(3);
7380     Array[0] = VT1;
7381     Array[1] = VT2;
7382     Array[2] = VT3;
7383     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7384     VTListMap.InsertNode(Result, IP);
7385   }
7386   return Result->getSDVTList();
7387 }
7388 
7389 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7390   FoldingSetNodeID ID;
7391   ID.AddInteger(4U);
7392   ID.AddInteger(VT1.getRawBits());
7393   ID.AddInteger(VT2.getRawBits());
7394   ID.AddInteger(VT3.getRawBits());
7395   ID.AddInteger(VT4.getRawBits());
7396 
7397   void *IP = nullptr;
7398   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7399   if (!Result) {
7400     EVT *Array = Allocator.Allocate<EVT>(4);
7401     Array[0] = VT1;
7402     Array[1] = VT2;
7403     Array[2] = VT3;
7404     Array[3] = VT4;
7405     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7406     VTListMap.InsertNode(Result, IP);
7407   }
7408   return Result->getSDVTList();
7409 }
7410 
7411 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7412   unsigned NumVTs = VTs.size();
7413   FoldingSetNodeID ID;
7414   ID.AddInteger(NumVTs);
7415   for (unsigned index = 0; index < NumVTs; index++) {
7416     ID.AddInteger(VTs[index].getRawBits());
7417   }
7418 
7419   void *IP = nullptr;
7420   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7421   if (!Result) {
7422     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7423     llvm::copy(VTs, Array);
7424     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7425     VTListMap.InsertNode(Result, IP);
7426   }
7427   return Result->getSDVTList();
7428 }
7429 
7430 
7431 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7432 /// specified operands.  If the resultant node already exists in the DAG,
7433 /// this does not modify the specified node, instead it returns the node that
7434 /// already exists.  If the resultant node does not exist in the DAG, the
7435 /// input node is returned.  As a degenerate case, if you specify the same
7436 /// input operands as the node already has, the input node is returned.
7437 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7438   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7439 
7440   // Check to see if there is no change.
7441   if (Op == N->getOperand(0)) return N;
7442 
7443   // See if the modified node already exists.
7444   void *InsertPos = nullptr;
7445   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7446     return Existing;
7447 
7448   // Nope it doesn't.  Remove the node from its current place in the maps.
7449   if (InsertPos)
7450     if (!RemoveNodeFromCSEMaps(N))
7451       InsertPos = nullptr;
7452 
7453   // Now we update the operands.
7454   N->OperandList[0].set(Op);
7455 
7456   updateDivergence(N);
7457   // If this gets put into a CSE map, add it.
7458   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7459   return N;
7460 }
7461 
7462 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7463   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7464 
7465   // Check to see if there is no change.
7466   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
7467     return N;   // No operands changed, just return the input node.
7468 
7469   // See if the modified node already exists.
7470   void *InsertPos = nullptr;
7471   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
7472     return Existing;
7473 
7474   // Nope it doesn't.  Remove the node from its current place in the maps.
7475   if (InsertPos)
7476     if (!RemoveNodeFromCSEMaps(N))
7477       InsertPos = nullptr;
7478 
7479   // Now we update the operands.
7480   if (N->OperandList[0] != Op1)
7481     N->OperandList[0].set(Op1);
7482   if (N->OperandList[1] != Op2)
7483     N->OperandList[1].set(Op2);
7484 
7485   updateDivergence(N);
7486   // If this gets put into a CSE map, add it.
7487   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7488   return N;
7489 }
7490 
7491 SDNode *SelectionDAG::
7492 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
7493   SDValue Ops[] = { Op1, Op2, Op3 };
7494   return UpdateNodeOperands(N, Ops);
7495 }
7496 
7497 SDNode *SelectionDAG::
7498 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7499                    SDValue Op3, SDValue Op4) {
7500   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
7501   return UpdateNodeOperands(N, Ops);
7502 }
7503 
7504 SDNode *SelectionDAG::
7505 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
7506                    SDValue Op3, SDValue Op4, SDValue Op5) {
7507   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
7508   return UpdateNodeOperands(N, Ops);
7509 }
7510 
7511 SDNode *SelectionDAG::
7512 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
7513   unsigned NumOps = Ops.size();
7514   assert(N->getNumOperands() == NumOps &&
7515          "Update with wrong number of operands");
7516 
7517   // If no operands changed just return the input node.
7518   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
7519     return N;
7520 
7521   // See if the modified node already exists.
7522   void *InsertPos = nullptr;
7523   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
7524     return Existing;
7525 
7526   // Nope it doesn't.  Remove the node from its current place in the maps.
7527   if (InsertPos)
7528     if (!RemoveNodeFromCSEMaps(N))
7529       InsertPos = nullptr;
7530 
7531   // Now we update the operands.
7532   for (unsigned i = 0; i != NumOps; ++i)
7533     if (N->OperandList[i] != Ops[i])
7534       N->OperandList[i].set(Ops[i]);
7535 
7536   updateDivergence(N);
7537   // If this gets put into a CSE map, add it.
7538   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7539   return N;
7540 }
7541 
7542 /// DropOperands - Release the operands and set this node to have
7543 /// zero operands.
7544 void SDNode::DropOperands() {
7545   // Unlike the code in MorphNodeTo that does this, we don't need to
7546   // watch for dead nodes here.
7547   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
7548     SDUse &Use = *I++;
7549     Use.set(SDValue());
7550   }
7551 }
7552 
7553 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
7554                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
7555   if (NewMemRefs.empty()) {
7556     N->clearMemRefs();
7557     return;
7558   }
7559 
7560   // Check if we can avoid allocating by storing a single reference directly.
7561   if (NewMemRefs.size() == 1) {
7562     N->MemRefs = NewMemRefs[0];
7563     N->NumMemRefs = 1;
7564     return;
7565   }
7566 
7567   MachineMemOperand **MemRefsBuffer =
7568       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
7569   llvm::copy(NewMemRefs, MemRefsBuffer);
7570   N->MemRefs = MemRefsBuffer;
7571   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
7572 }
7573 
7574 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7575 /// machine opcode.
7576 ///
7577 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7578                                    EVT VT) {
7579   SDVTList VTs = getVTList(VT);
7580   return SelectNodeTo(N, MachineOpc, VTs, None);
7581 }
7582 
7583 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7584                                    EVT VT, SDValue Op1) {
7585   SDVTList VTs = getVTList(VT);
7586   SDValue Ops[] = { Op1 };
7587   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7588 }
7589 
7590 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7591                                    EVT VT, SDValue Op1,
7592                                    SDValue Op2) {
7593   SDVTList VTs = getVTList(VT);
7594   SDValue Ops[] = { Op1, Op2 };
7595   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7596 }
7597 
7598 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7599                                    EVT VT, SDValue Op1,
7600                                    SDValue Op2, SDValue Op3) {
7601   SDVTList VTs = getVTList(VT);
7602   SDValue Ops[] = { Op1, Op2, Op3 };
7603   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7604 }
7605 
7606 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7607                                    EVT VT, ArrayRef<SDValue> Ops) {
7608   SDVTList VTs = getVTList(VT);
7609   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7610 }
7611 
7612 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7613                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
7614   SDVTList VTs = getVTList(VT1, VT2);
7615   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7616 }
7617 
7618 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7619                                    EVT VT1, EVT VT2) {
7620   SDVTList VTs = getVTList(VT1, VT2);
7621   return SelectNodeTo(N, MachineOpc, VTs, None);
7622 }
7623 
7624 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7625                                    EVT VT1, EVT VT2, EVT VT3,
7626                                    ArrayRef<SDValue> Ops) {
7627   SDVTList VTs = getVTList(VT1, VT2, VT3);
7628   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7629 }
7630 
7631 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7632                                    EVT VT1, EVT VT2,
7633                                    SDValue Op1, SDValue Op2) {
7634   SDVTList VTs = getVTList(VT1, VT2);
7635   SDValue Ops[] = { Op1, Op2 };
7636   return SelectNodeTo(N, MachineOpc, VTs, Ops);
7637 }
7638 
7639 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
7640                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
7641   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
7642   // Reset the NodeID to -1.
7643   New->setNodeId(-1);
7644   if (New != N) {
7645     ReplaceAllUsesWith(N, New);
7646     RemoveDeadNode(N);
7647   }
7648   return New;
7649 }
7650 
7651 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7652 /// the line number information on the merged node since it is not possible to
7653 /// preserve the information that operation is associated with multiple lines.
7654 /// This will make the debugger working better at -O0, were there is a higher
7655 /// probability having other instructions associated with that line.
7656 ///
7657 /// For IROrder, we keep the smaller of the two
7658 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
7659   DebugLoc NLoc = N->getDebugLoc();
7660   if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
7661     N->setDebugLoc(DebugLoc());
7662   }
7663   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
7664   N->setIROrder(Order);
7665   return N;
7666 }
7667 
7668 /// MorphNodeTo - This *mutates* the specified node to have the specified
7669 /// return type, opcode, and operands.
7670 ///
7671 /// Note that MorphNodeTo returns the resultant node.  If there is already a
7672 /// node of the specified opcode and operands, it returns that node instead of
7673 /// the current one.  Note that the SDLoc need not be the same.
7674 ///
7675 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7676 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7677 /// node, and because it doesn't require CSE recalculation for any of
7678 /// the node's users.
7679 ///
7680 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7681 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7682 /// the legalizer which maintain worklists that would need to be updated when
7683 /// deleting things.
7684 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
7685                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
7686   // If an identical node already exists, use it.
7687   void *IP = nullptr;
7688   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
7689     FoldingSetNodeID ID;
7690     AddNodeIDNode(ID, Opc, VTs, Ops);
7691     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
7692       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
7693   }
7694 
7695   if (!RemoveNodeFromCSEMaps(N))
7696     IP = nullptr;
7697 
7698   // Start the morphing.
7699   N->NodeType = Opc;
7700   N->ValueList = VTs.VTs;
7701   N->NumValues = VTs.NumVTs;
7702 
7703   // Clear the operands list, updating used nodes to remove this from their
7704   // use list.  Keep track of any operands that become dead as a result.
7705   SmallPtrSet<SDNode*, 16> DeadNodeSet;
7706   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
7707     SDUse &Use = *I++;
7708     SDNode *Used = Use.getNode();
7709     Use.set(SDValue());
7710     if (Used->use_empty())
7711       DeadNodeSet.insert(Used);
7712   }
7713 
7714   // For MachineNode, initialize the memory references information.
7715   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
7716     MN->clearMemRefs();
7717 
7718   // Swap for an appropriately sized array from the recycler.
7719   removeOperands(N);
7720   createOperands(N, Ops);
7721 
7722   // Delete any nodes that are still dead after adding the uses for the
7723   // new operands.
7724   if (!DeadNodeSet.empty()) {
7725     SmallVector<SDNode *, 16> DeadNodes;
7726     for (SDNode *N : DeadNodeSet)
7727       if (N->use_empty())
7728         DeadNodes.push_back(N);
7729     RemoveDeadNodes(DeadNodes);
7730   }
7731 
7732   if (IP)
7733     CSEMap.InsertNode(N, IP);   // Memoize the new node.
7734   return N;
7735 }
7736 
7737 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
7738   unsigned OrigOpc = Node->getOpcode();
7739   unsigned NewOpc;
7740   switch (OrigOpc) {
7741   default:
7742     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7743   case ISD::STRICT_FADD:       NewOpc = ISD::FADD;       break;
7744   case ISD::STRICT_FSUB:       NewOpc = ISD::FSUB;       break;
7745   case ISD::STRICT_FMUL:       NewOpc = ISD::FMUL;       break;
7746   case ISD::STRICT_FDIV:       NewOpc = ISD::FDIV;       break;
7747   case ISD::STRICT_FREM:       NewOpc = ISD::FREM;       break;
7748   case ISD::STRICT_FMA:        NewOpc = ISD::FMA;        break;
7749   case ISD::STRICT_FSQRT:      NewOpc = ISD::FSQRT;      break;
7750   case ISD::STRICT_FPOW:       NewOpc = ISD::FPOW;       break;
7751   case ISD::STRICT_FPOWI:      NewOpc = ISD::FPOWI;      break;
7752   case ISD::STRICT_FSIN:       NewOpc = ISD::FSIN;       break;
7753   case ISD::STRICT_FCOS:       NewOpc = ISD::FCOS;       break;
7754   case ISD::STRICT_FEXP:       NewOpc = ISD::FEXP;       break;
7755   case ISD::STRICT_FEXP2:      NewOpc = ISD::FEXP2;      break;
7756   case ISD::STRICT_FLOG:       NewOpc = ISD::FLOG;       break;
7757   case ISD::STRICT_FLOG10:     NewOpc = ISD::FLOG10;     break;
7758   case ISD::STRICT_FLOG2:      NewOpc = ISD::FLOG2;      break;
7759   case ISD::STRICT_LRINT:      NewOpc = ISD::LRINT;      break;
7760   case ISD::STRICT_LLRINT:     NewOpc = ISD::LLRINT;     break;
7761   case ISD::STRICT_FRINT:      NewOpc = ISD::FRINT;      break;
7762   case ISD::STRICT_FNEARBYINT: NewOpc = ISD::FNEARBYINT; break;
7763   case ISD::STRICT_FMAXNUM:    NewOpc = ISD::FMAXNUM;    break;
7764   case ISD::STRICT_FMINNUM:    NewOpc = ISD::FMINNUM;    break;
7765   case ISD::STRICT_FCEIL:      NewOpc = ISD::FCEIL;      break;
7766   case ISD::STRICT_FFLOOR:     NewOpc = ISD::FFLOOR;     break;
7767   case ISD::STRICT_LROUND:     NewOpc = ISD::LROUND;     break;
7768   case ISD::STRICT_LLROUND:    NewOpc = ISD::LLROUND;    break;
7769   case ISD::STRICT_FROUND:     NewOpc = ISD::FROUND;     break;
7770   case ISD::STRICT_FTRUNC:     NewOpc = ISD::FTRUNC;     break;
7771   case ISD::STRICT_FP_ROUND:   NewOpc = ISD::FP_ROUND;   break;
7772   case ISD::STRICT_FP_EXTEND:  NewOpc = ISD::FP_EXTEND;  break;
7773   case ISD::STRICT_FP_TO_SINT: NewOpc = ISD::FP_TO_SINT; break;
7774   case ISD::STRICT_FP_TO_UINT: NewOpc = ISD::FP_TO_UINT; break;
7775   }
7776 
7777   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
7778 
7779   // We're taking this node out of the chain, so we need to re-link things.
7780   SDValue InputChain = Node->getOperand(0);
7781   SDValue OutputChain = SDValue(Node, 1);
7782   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
7783 
7784   SmallVector<SDValue, 3> Ops;
7785   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
7786     Ops.push_back(Node->getOperand(i));
7787 
7788   SDVTList VTs = getVTList(Node->getValueType(0));
7789   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
7790 
7791   // MorphNodeTo can operate in two ways: if an existing node with the
7792   // specified operands exists, it can just return it.  Otherwise, it
7793   // updates the node in place to have the requested operands.
7794   if (Res == Node) {
7795     // If we updated the node in place, reset the node ID.  To the isel,
7796     // this should be just like a newly allocated machine node.
7797     Res->setNodeId(-1);
7798   } else {
7799     ReplaceAllUsesWith(Node, Res);
7800     RemoveDeadNode(Node);
7801   }
7802 
7803   return Res;
7804 }
7805 
7806 /// getMachineNode - These are used for target selectors to create a new node
7807 /// with specified return type(s), MachineInstr opcode, and operands.
7808 ///
7809 /// Note that getMachineNode returns the resultant node.  If there is already a
7810 /// node of the specified opcode and operands, it returns that node instead of
7811 /// the current one.
7812 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7813                                             EVT VT) {
7814   SDVTList VTs = getVTList(VT);
7815   return getMachineNode(Opcode, dl, VTs, None);
7816 }
7817 
7818 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7819                                             EVT VT, SDValue Op1) {
7820   SDVTList VTs = getVTList(VT);
7821   SDValue Ops[] = { Op1 };
7822   return getMachineNode(Opcode, dl, VTs, Ops);
7823 }
7824 
7825 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7826                                             EVT VT, SDValue Op1, SDValue Op2) {
7827   SDVTList VTs = getVTList(VT);
7828   SDValue Ops[] = { Op1, Op2 };
7829   return getMachineNode(Opcode, dl, VTs, Ops);
7830 }
7831 
7832 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7833                                             EVT VT, SDValue Op1, SDValue Op2,
7834                                             SDValue Op3) {
7835   SDVTList VTs = getVTList(VT);
7836   SDValue Ops[] = { Op1, Op2, Op3 };
7837   return getMachineNode(Opcode, dl, VTs, Ops);
7838 }
7839 
7840 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7841                                             EVT VT, ArrayRef<SDValue> Ops) {
7842   SDVTList VTs = getVTList(VT);
7843   return getMachineNode(Opcode, dl, VTs, Ops);
7844 }
7845 
7846 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7847                                             EVT VT1, EVT VT2, SDValue Op1,
7848                                             SDValue Op2) {
7849   SDVTList VTs = getVTList(VT1, VT2);
7850   SDValue Ops[] = { Op1, Op2 };
7851   return getMachineNode(Opcode, dl, VTs, Ops);
7852 }
7853 
7854 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7855                                             EVT VT1, EVT VT2, SDValue Op1,
7856                                             SDValue Op2, SDValue Op3) {
7857   SDVTList VTs = getVTList(VT1, VT2);
7858   SDValue Ops[] = { Op1, Op2, Op3 };
7859   return getMachineNode(Opcode, dl, VTs, Ops);
7860 }
7861 
7862 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7863                                             EVT VT1, EVT VT2,
7864                                             ArrayRef<SDValue> Ops) {
7865   SDVTList VTs = getVTList(VT1, VT2);
7866   return getMachineNode(Opcode, dl, VTs, Ops);
7867 }
7868 
7869 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7870                                             EVT VT1, EVT VT2, EVT VT3,
7871                                             SDValue Op1, SDValue Op2) {
7872   SDVTList VTs = getVTList(VT1, VT2, VT3);
7873   SDValue Ops[] = { Op1, Op2 };
7874   return getMachineNode(Opcode, dl, VTs, Ops);
7875 }
7876 
7877 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7878                                             EVT VT1, EVT VT2, EVT VT3,
7879                                             SDValue Op1, SDValue Op2,
7880                                             SDValue Op3) {
7881   SDVTList VTs = getVTList(VT1, VT2, VT3);
7882   SDValue Ops[] = { Op1, Op2, Op3 };
7883   return getMachineNode(Opcode, dl, VTs, Ops);
7884 }
7885 
7886 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7887                                             EVT VT1, EVT VT2, EVT VT3,
7888                                             ArrayRef<SDValue> Ops) {
7889   SDVTList VTs = getVTList(VT1, VT2, VT3);
7890   return getMachineNode(Opcode, dl, VTs, Ops);
7891 }
7892 
7893 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
7894                                             ArrayRef<EVT> ResultTys,
7895                                             ArrayRef<SDValue> Ops) {
7896   SDVTList VTs = getVTList(ResultTys);
7897   return getMachineNode(Opcode, dl, VTs, Ops);
7898 }
7899 
7900 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
7901                                             SDVTList VTs,
7902                                             ArrayRef<SDValue> Ops) {
7903   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
7904   MachineSDNode *N;
7905   void *IP = nullptr;
7906 
7907   if (DoCSE) {
7908     FoldingSetNodeID ID;
7909     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
7910     IP = nullptr;
7911     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7912       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
7913     }
7914   }
7915 
7916   // Allocate a new MachineSDNode.
7917   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7918   createOperands(N, Ops);
7919 
7920   if (DoCSE)
7921     CSEMap.InsertNode(N, IP);
7922 
7923   InsertNode(N);
7924   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
7925   return N;
7926 }
7927 
7928 /// getTargetExtractSubreg - A convenience function for creating
7929 /// TargetOpcode::EXTRACT_SUBREG nodes.
7930 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7931                                              SDValue Operand) {
7932   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7933   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
7934                                   VT, Operand, SRIdxVal);
7935   return SDValue(Subreg, 0);
7936 }
7937 
7938 /// getTargetInsertSubreg - A convenience function for creating
7939 /// TargetOpcode::INSERT_SUBREG nodes.
7940 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
7941                                             SDValue Operand, SDValue Subreg) {
7942   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
7943   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
7944                                   VT, Operand, Subreg, SRIdxVal);
7945   return SDValue(Result, 0);
7946 }
7947 
7948 /// getNodeIfExists - Get the specified node if it's already available, or
7949 /// else return NULL.
7950 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
7951                                       ArrayRef<SDValue> Ops,
7952                                       const SDNodeFlags Flags) {
7953   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
7954     FoldingSetNodeID ID;
7955     AddNodeIDNode(ID, Opcode, VTList, Ops);
7956     void *IP = nullptr;
7957     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
7958       E->intersectFlagsWith(Flags);
7959       return E;
7960     }
7961   }
7962   return nullptr;
7963 }
7964 
7965 /// getDbgValue - Creates a SDDbgValue node.
7966 ///
7967 /// SDNode
7968 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
7969                                       SDNode *N, unsigned R, bool IsIndirect,
7970                                       const DebugLoc &DL, unsigned O) {
7971   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7972          "Expected inlined-at fields to agree");
7973   return new (DbgInfo->getAlloc())
7974       SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
7975 }
7976 
7977 /// Constant
7978 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
7979                                               DIExpression *Expr,
7980                                               const Value *C,
7981                                               const DebugLoc &DL, unsigned O) {
7982   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7983          "Expected inlined-at fields to agree");
7984   return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
7985 }
7986 
7987 /// FrameIndex
7988 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
7989                                                 DIExpression *Expr, unsigned FI,
7990                                                 bool IsIndirect,
7991                                                 const DebugLoc &DL,
7992                                                 unsigned O) {
7993   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
7994          "Expected inlined-at fields to agree");
7995   return new (DbgInfo->getAlloc())
7996       SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
7997 }
7998 
7999 /// VReg
8000 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8001                                           DIExpression *Expr,
8002                                           unsigned VReg, bool IsIndirect,
8003                                           const DebugLoc &DL, unsigned O) {
8004   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8005          "Expected inlined-at fields to agree");
8006   return new (DbgInfo->getAlloc())
8007       SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8008 }
8009 
8010 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8011                                      unsigned OffsetInBits, unsigned SizeInBits,
8012                                      bool InvalidateDbg) {
8013   SDNode *FromNode = From.getNode();
8014   SDNode *ToNode = To.getNode();
8015   assert(FromNode && ToNode && "Can't modify dbg values");
8016 
8017   // PR35338
8018   // TODO: assert(From != To && "Redundant dbg value transfer");
8019   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8020   if (From == To || FromNode == ToNode)
8021     return;
8022 
8023   if (!FromNode->getHasDebugValue())
8024     return;
8025 
8026   SmallVector<SDDbgValue *, 2> ClonedDVs;
8027   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8028     if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8029       continue;
8030 
8031     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8032 
8033     // Just transfer the dbg value attached to From.
8034     if (Dbg->getResNo() != From.getResNo())
8035       continue;
8036 
8037     DIVariable *Var = Dbg->getVariable();
8038     auto *Expr = Dbg->getExpression();
8039     // If a fragment is requested, update the expression.
8040     if (SizeInBits) {
8041       // When splitting a larger (e.g., sign-extended) value whose
8042       // lower bits are described with an SDDbgValue, do not attempt
8043       // to transfer the SDDbgValue to the upper bits.
8044       if (auto FI = Expr->getFragmentInfo())
8045         if (OffsetInBits + SizeInBits > FI->SizeInBits)
8046           continue;
8047       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8048                                                              SizeInBits);
8049       if (!Fragment)
8050         continue;
8051       Expr = *Fragment;
8052     }
8053     // Clone the SDDbgValue and move it to To.
8054     SDDbgValue *Clone =
8055         getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(),
8056                     Dbg->getDebugLoc(), Dbg->getOrder());
8057     ClonedDVs.push_back(Clone);
8058 
8059     if (InvalidateDbg) {
8060       // Invalidate value and indicate the SDDbgValue should not be emitted.
8061       Dbg->setIsInvalidated();
8062       Dbg->setIsEmitted();
8063     }
8064   }
8065 
8066   for (SDDbgValue *Dbg : ClonedDVs)
8067     AddDbgValue(Dbg, ToNode, false);
8068 }
8069 
8070 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8071   if (!N.getHasDebugValue())
8072     return;
8073 
8074   SmallVector<SDDbgValue *, 2> ClonedDVs;
8075   for (auto DV : GetDbgValues(&N)) {
8076     if (DV->isInvalidated())
8077       continue;
8078     switch (N.getOpcode()) {
8079     default:
8080       break;
8081     case ISD::ADD:
8082       SDValue N0 = N.getOperand(0);
8083       SDValue N1 = N.getOperand(1);
8084       if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8085           isConstantIntBuildVectorOrConstantInt(N1)) {
8086         uint64_t Offset = N.getConstantOperandVal(1);
8087         // Rewrite an ADD constant node into a DIExpression. Since we are
8088         // performing arithmetic to compute the variable's *value* in the
8089         // DIExpression, we need to mark the expression with a
8090         // DW_OP_stack_value.
8091         auto *DIExpr = DV->getExpression();
8092         DIExpr =
8093             DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8094         SDDbgValue *Clone =
8095             getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8096                         DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8097         ClonedDVs.push_back(Clone);
8098         DV->setIsInvalidated();
8099         DV->setIsEmitted();
8100         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8101                    N0.getNode()->dumprFull(this);
8102                    dbgs() << " into " << *DIExpr << '\n');
8103       }
8104     }
8105   }
8106 
8107   for (SDDbgValue *Dbg : ClonedDVs)
8108     AddDbgValue(Dbg, Dbg->getSDNode(), false);
8109 }
8110 
8111 /// Creates a SDDbgLabel node.
8112 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8113                                       const DebugLoc &DL, unsigned O) {
8114   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8115          "Expected inlined-at fields to agree");
8116   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8117 }
8118 
8119 namespace {
8120 
8121 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8122 /// pointed to by a use iterator is deleted, increment the use iterator
8123 /// so that it doesn't dangle.
8124 ///
8125 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8126   SDNode::use_iterator &UI;
8127   SDNode::use_iterator &UE;
8128 
8129   void NodeDeleted(SDNode *N, SDNode *E) override {
8130     // Increment the iterator as needed.
8131     while (UI != UE && N == *UI)
8132       ++UI;
8133   }
8134 
8135 public:
8136   RAUWUpdateListener(SelectionDAG &d,
8137                      SDNode::use_iterator &ui,
8138                      SDNode::use_iterator &ue)
8139     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8140 };
8141 
8142 } // end anonymous namespace
8143 
8144 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8145 /// This can cause recursive merging of nodes in the DAG.
8146 ///
8147 /// This version assumes From has a single result value.
8148 ///
8149 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8150   SDNode *From = FromN.getNode();
8151   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8152          "Cannot replace with this method!");
8153   assert(From != To.getNode() && "Cannot replace uses of with self");
8154 
8155   // Preserve Debug Values
8156   transferDbgValues(FromN, To);
8157 
8158   // Iterate over all the existing uses of From. New uses will be added
8159   // to the beginning of the use list, which we avoid visiting.
8160   // This specifically avoids visiting uses of From that arise while the
8161   // replacement is happening, because any such uses would be the result
8162   // of CSE: If an existing node looks like From after one of its operands
8163   // is replaced by To, we don't want to replace of all its users with To
8164   // too. See PR3018 for more info.
8165   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8166   RAUWUpdateListener Listener(*this, UI, UE);
8167   while (UI != UE) {
8168     SDNode *User = *UI;
8169 
8170     // This node is about to morph, remove its old self from the CSE maps.
8171     RemoveNodeFromCSEMaps(User);
8172 
8173     // A user can appear in a use list multiple times, and when this
8174     // happens the uses are usually next to each other in the list.
8175     // To help reduce the number of CSE recomputations, process all
8176     // the uses of this user that we can find this way.
8177     do {
8178       SDUse &Use = UI.getUse();
8179       ++UI;
8180       Use.set(To);
8181       if (To->isDivergent() != From->isDivergent())
8182         updateDivergence(User);
8183     } while (UI != UE && *UI == User);
8184     // Now that we have modified User, add it back to the CSE maps.  If it
8185     // already exists there, recursively merge the results together.
8186     AddModifiedNodeToCSEMaps(User);
8187   }
8188 
8189   // If we just RAUW'd the root, take note.
8190   if (FromN == getRoot())
8191     setRoot(To);
8192 }
8193 
8194 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8195 /// This can cause recursive merging of nodes in the DAG.
8196 ///
8197 /// This version assumes that for each value of From, there is a
8198 /// corresponding value in To in the same position with the same type.
8199 ///
8200 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8201 #ifndef NDEBUG
8202   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8203     assert((!From->hasAnyUseOfValue(i) ||
8204             From->getValueType(i) == To->getValueType(i)) &&
8205            "Cannot use this version of ReplaceAllUsesWith!");
8206 #endif
8207 
8208   // Handle the trivial case.
8209   if (From == To)
8210     return;
8211 
8212   // Preserve Debug Info. Only do this if there's a use.
8213   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8214     if (From->hasAnyUseOfValue(i)) {
8215       assert((i < To->getNumValues()) && "Invalid To location");
8216       transferDbgValues(SDValue(From, i), SDValue(To, i));
8217     }
8218 
8219   // Iterate over just the existing users of From. See the comments in
8220   // the ReplaceAllUsesWith above.
8221   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8222   RAUWUpdateListener Listener(*this, UI, UE);
8223   while (UI != UE) {
8224     SDNode *User = *UI;
8225 
8226     // This node is about to morph, remove its old self from the CSE maps.
8227     RemoveNodeFromCSEMaps(User);
8228 
8229     // A user can appear in a use list multiple times, and when this
8230     // happens the uses are usually next to each other in the list.
8231     // To help reduce the number of CSE recomputations, process all
8232     // the uses of this user that we can find this way.
8233     do {
8234       SDUse &Use = UI.getUse();
8235       ++UI;
8236       Use.setNode(To);
8237       if (To->isDivergent() != From->isDivergent())
8238         updateDivergence(User);
8239     } while (UI != UE && *UI == User);
8240 
8241     // Now that we have modified User, add it back to the CSE maps.  If it
8242     // already exists there, recursively merge the results together.
8243     AddModifiedNodeToCSEMaps(User);
8244   }
8245 
8246   // If we just RAUW'd the root, take note.
8247   if (From == getRoot().getNode())
8248     setRoot(SDValue(To, getRoot().getResNo()));
8249 }
8250 
8251 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8252 /// This can cause recursive merging of nodes in the DAG.
8253 ///
8254 /// This version can replace From with any result values.  To must match the
8255 /// number and types of values returned by From.
8256 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8257   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
8258     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8259 
8260   // Preserve Debug Info.
8261   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8262     transferDbgValues(SDValue(From, i), To[i]);
8263 
8264   // Iterate over just the existing users of From. See the comments in
8265   // the ReplaceAllUsesWith above.
8266   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8267   RAUWUpdateListener Listener(*this, UI, UE);
8268   while (UI != UE) {
8269     SDNode *User = *UI;
8270 
8271     // This node is about to morph, remove its old self from the CSE maps.
8272     RemoveNodeFromCSEMaps(User);
8273 
8274     // A user can appear in a use list multiple times, and when this happens the
8275     // uses are usually next to each other in the list.  To help reduce the
8276     // number of CSE and divergence recomputations, process all the uses of this
8277     // user that we can find this way.
8278     bool To_IsDivergent = false;
8279     do {
8280       SDUse &Use = UI.getUse();
8281       const SDValue &ToOp = To[Use.getResNo()];
8282       ++UI;
8283       Use.set(ToOp);
8284       To_IsDivergent |= ToOp->isDivergent();
8285     } while (UI != UE && *UI == User);
8286 
8287     if (To_IsDivergent != From->isDivergent())
8288       updateDivergence(User);
8289 
8290     // Now that we have modified User, add it back to the CSE maps.  If it
8291     // already exists there, recursively merge the results together.
8292     AddModifiedNodeToCSEMaps(User);
8293   }
8294 
8295   // If we just RAUW'd the root, take note.
8296   if (From == getRoot().getNode())
8297     setRoot(SDValue(To[getRoot().getResNo()]));
8298 }
8299 
8300 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8301 /// uses of other values produced by From.getNode() alone.  The Deleted
8302 /// vector is handled the same way as for ReplaceAllUsesWith.
8303 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8304   // Handle the really simple, really trivial case efficiently.
8305   if (From == To) return;
8306 
8307   // Handle the simple, trivial, case efficiently.
8308   if (From.getNode()->getNumValues() == 1) {
8309     ReplaceAllUsesWith(From, To);
8310     return;
8311   }
8312 
8313   // Preserve Debug Info.
8314   transferDbgValues(From, To);
8315 
8316   // Iterate over just the existing users of From. See the comments in
8317   // the ReplaceAllUsesWith above.
8318   SDNode::use_iterator UI = From.getNode()->use_begin(),
8319                        UE = From.getNode()->use_end();
8320   RAUWUpdateListener Listener(*this, UI, UE);
8321   while (UI != UE) {
8322     SDNode *User = *UI;
8323     bool UserRemovedFromCSEMaps = false;
8324 
8325     // A user can appear in a use list multiple times, and when this
8326     // happens the uses are usually next to each other in the list.
8327     // To help reduce the number of CSE recomputations, process all
8328     // the uses of this user that we can find this way.
8329     do {
8330       SDUse &Use = UI.getUse();
8331 
8332       // Skip uses of different values from the same node.
8333       if (Use.getResNo() != From.getResNo()) {
8334         ++UI;
8335         continue;
8336       }
8337 
8338       // If this node hasn't been modified yet, it's still in the CSE maps,
8339       // so remove its old self from the CSE maps.
8340       if (!UserRemovedFromCSEMaps) {
8341         RemoveNodeFromCSEMaps(User);
8342         UserRemovedFromCSEMaps = true;
8343       }
8344 
8345       ++UI;
8346       Use.set(To);
8347       if (To->isDivergent() != From->isDivergent())
8348         updateDivergence(User);
8349     } while (UI != UE && *UI == User);
8350     // We are iterating over all uses of the From node, so if a use
8351     // doesn't use the specific value, no changes are made.
8352     if (!UserRemovedFromCSEMaps)
8353       continue;
8354 
8355     // Now that we have modified User, add it back to the CSE maps.  If it
8356     // already exists there, recursively merge the results together.
8357     AddModifiedNodeToCSEMaps(User);
8358   }
8359 
8360   // If we just RAUW'd the root, take note.
8361   if (From == getRoot())
8362     setRoot(To);
8363 }
8364 
8365 namespace {
8366 
8367   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8368   /// to record information about a use.
8369   struct UseMemo {
8370     SDNode *User;
8371     unsigned Index;
8372     SDUse *Use;
8373   };
8374 
8375   /// operator< - Sort Memos by User.
8376   bool operator<(const UseMemo &L, const UseMemo &R) {
8377     return (intptr_t)L.User < (intptr_t)R.User;
8378   }
8379 
8380 } // end anonymous namespace
8381 
8382 void SelectionDAG::updateDivergence(SDNode * N)
8383 {
8384   if (TLI->isSDNodeAlwaysUniform(N))
8385     return;
8386   bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8387   for (auto &Op : N->ops()) {
8388     if (Op.Val.getValueType() != MVT::Other)
8389       IsDivergent |= Op.getNode()->isDivergent();
8390   }
8391   if (N->SDNodeBits.IsDivergent != IsDivergent) {
8392     N->SDNodeBits.IsDivergent = IsDivergent;
8393     for (auto U : N->uses()) {
8394       updateDivergence(U);
8395     }
8396   }
8397 }
8398 
8399 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8400   DenseMap<SDNode *, unsigned> Degree;
8401   Order.reserve(AllNodes.size());
8402   for (auto &N : allnodes()) {
8403     unsigned NOps = N.getNumOperands();
8404     Degree[&N] = NOps;
8405     if (0 == NOps)
8406       Order.push_back(&N);
8407   }
8408   for (size_t I = 0; I != Order.size(); ++I) {
8409     SDNode *N = Order[I];
8410     for (auto U : N->uses()) {
8411       unsigned &UnsortedOps = Degree[U];
8412       if (0 == --UnsortedOps)
8413         Order.push_back(U);
8414     }
8415   }
8416 }
8417 
8418 #ifndef NDEBUG
8419 void SelectionDAG::VerifyDAGDiverence() {
8420   std::vector<SDNode *> TopoOrder;
8421   CreateTopologicalOrder(TopoOrder);
8422   const TargetLowering &TLI = getTargetLoweringInfo();
8423   DenseMap<const SDNode *, bool> DivergenceMap;
8424   for (auto &N : allnodes()) {
8425     DivergenceMap[&N] = false;
8426   }
8427   for (auto N : TopoOrder) {
8428     bool IsDivergent = DivergenceMap[N];
8429     bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8430     for (auto &Op : N->ops()) {
8431       if (Op.Val.getValueType() != MVT::Other)
8432         IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8433     }
8434     if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8435       DivergenceMap[N] = true;
8436     }
8437   }
8438   for (auto &N : allnodes()) {
8439     (void)N;
8440     assert(DivergenceMap[&N] == N.isDivergent() &&
8441            "Divergence bit inconsistency detected\n");
8442   }
8443 }
8444 #endif
8445 
8446 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8447 /// uses of other values produced by From.getNode() alone.  The same value
8448 /// may appear in both the From and To list.  The Deleted vector is
8449 /// handled the same way as for ReplaceAllUsesWith.
8450 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8451                                               const SDValue *To,
8452                                               unsigned Num){
8453   // Handle the simple, trivial case efficiently.
8454   if (Num == 1)
8455     return ReplaceAllUsesOfValueWith(*From, *To);
8456 
8457   transferDbgValues(*From, *To);
8458 
8459   // Read up all the uses and make records of them. This helps
8460   // processing new uses that are introduced during the
8461   // replacement process.
8462   SmallVector<UseMemo, 4> Uses;
8463   for (unsigned i = 0; i != Num; ++i) {
8464     unsigned FromResNo = From[i].getResNo();
8465     SDNode *FromNode = From[i].getNode();
8466     for (SDNode::use_iterator UI = FromNode->use_begin(),
8467          E = FromNode->use_end(); UI != E; ++UI) {
8468       SDUse &Use = UI.getUse();
8469       if (Use.getResNo() == FromResNo) {
8470         UseMemo Memo = { *UI, i, &Use };
8471         Uses.push_back(Memo);
8472       }
8473     }
8474   }
8475 
8476   // Sort the uses, so that all the uses from a given User are together.
8477   llvm::sort(Uses);
8478 
8479   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8480        UseIndex != UseIndexEnd; ) {
8481     // We know that this user uses some value of From.  If it is the right
8482     // value, update it.
8483     SDNode *User = Uses[UseIndex].User;
8484 
8485     // This node is about to morph, remove its old self from the CSE maps.
8486     RemoveNodeFromCSEMaps(User);
8487 
8488     // The Uses array is sorted, so all the uses for a given User
8489     // are next to each other in the list.
8490     // To help reduce the number of CSE recomputations, process all
8491     // the uses of this user that we can find this way.
8492     do {
8493       unsigned i = Uses[UseIndex].Index;
8494       SDUse &Use = *Uses[UseIndex].Use;
8495       ++UseIndex;
8496 
8497       Use.set(To[i]);
8498     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
8499 
8500     // Now that we have modified User, add it back to the CSE maps.  If it
8501     // already exists there, recursively merge the results together.
8502     AddModifiedNodeToCSEMaps(User);
8503   }
8504 }
8505 
8506 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8507 /// based on their topological order. It returns the maximum id and a vector
8508 /// of the SDNodes* in assigned order by reference.
8509 unsigned SelectionDAG::AssignTopologicalOrder() {
8510   unsigned DAGSize = 0;
8511 
8512   // SortedPos tracks the progress of the algorithm. Nodes before it are
8513   // sorted, nodes after it are unsorted. When the algorithm completes
8514   // it is at the end of the list.
8515   allnodes_iterator SortedPos = allnodes_begin();
8516 
8517   // Visit all the nodes. Move nodes with no operands to the front of
8518   // the list immediately. Annotate nodes that do have operands with their
8519   // operand count. Before we do this, the Node Id fields of the nodes
8520   // may contain arbitrary values. After, the Node Id fields for nodes
8521   // before SortedPos will contain the topological sort index, and the
8522   // Node Id fields for nodes At SortedPos and after will contain the
8523   // count of outstanding operands.
8524   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
8525     SDNode *N = &*I++;
8526     checkForCycles(N, this);
8527     unsigned Degree = N->getNumOperands();
8528     if (Degree == 0) {
8529       // A node with no uses, add it to the result array immediately.
8530       N->setNodeId(DAGSize++);
8531       allnodes_iterator Q(N);
8532       if (Q != SortedPos)
8533         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
8534       assert(SortedPos != AllNodes.end() && "Overran node list");
8535       ++SortedPos;
8536     } else {
8537       // Temporarily use the Node Id as scratch space for the degree count.
8538       N->setNodeId(Degree);
8539     }
8540   }
8541 
8542   // Visit all the nodes. As we iterate, move nodes into sorted order,
8543   // such that by the time the end is reached all nodes will be sorted.
8544   for (SDNode &Node : allnodes()) {
8545     SDNode *N = &Node;
8546     checkForCycles(N, this);
8547     // N is in sorted position, so all its uses have one less operand
8548     // that needs to be sorted.
8549     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8550          UI != UE; ++UI) {
8551       SDNode *P = *UI;
8552       unsigned Degree = P->getNodeId();
8553       assert(Degree != 0 && "Invalid node degree");
8554       --Degree;
8555       if (Degree == 0) {
8556         // All of P's operands are sorted, so P may sorted now.
8557         P->setNodeId(DAGSize++);
8558         if (P->getIterator() != SortedPos)
8559           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
8560         assert(SortedPos != AllNodes.end() && "Overran node list");
8561         ++SortedPos;
8562       } else {
8563         // Update P's outstanding operand count.
8564         P->setNodeId(Degree);
8565       }
8566     }
8567     if (Node.getIterator() == SortedPos) {
8568 #ifndef NDEBUG
8569       allnodes_iterator I(N);
8570       SDNode *S = &*++I;
8571       dbgs() << "Overran sorted position:\n";
8572       S->dumprFull(this); dbgs() << "\n";
8573       dbgs() << "Checking if this is due to cycles\n";
8574       checkForCycles(this, true);
8575 #endif
8576       llvm_unreachable(nullptr);
8577     }
8578   }
8579 
8580   assert(SortedPos == AllNodes.end() &&
8581          "Topological sort incomplete!");
8582   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
8583          "First node in topological sort is not the entry token!");
8584   assert(AllNodes.front().getNodeId() == 0 &&
8585          "First node in topological sort has non-zero id!");
8586   assert(AllNodes.front().getNumOperands() == 0 &&
8587          "First node in topological sort has operands!");
8588   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
8589          "Last node in topologic sort has unexpected id!");
8590   assert(AllNodes.back().use_empty() &&
8591          "Last node in topologic sort has users!");
8592   assert(DAGSize == allnodes_size() && "Node count mismatch!");
8593   return DAGSize;
8594 }
8595 
8596 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8597 /// value is produced by SD.
8598 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
8599   if (SD) {
8600     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
8601     SD->setHasDebugValue(true);
8602   }
8603   DbgInfo->add(DB, SD, isParameter);
8604 }
8605 
8606 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
8607   DbgInfo->add(DB);
8608 }
8609 
8610 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
8611                                                    SDValue NewMemOp) {
8612   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
8613   // The new memory operation must have the same position as the old load in
8614   // terms of memory dependency. Create a TokenFactor for the old load and new
8615   // memory operation and update uses of the old load's output chain to use that
8616   // TokenFactor.
8617   SDValue OldChain = SDValue(OldLoad, 1);
8618   SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
8619   if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
8620     return NewChain;
8621 
8622   SDValue TokenFactor =
8623       getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
8624   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
8625   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
8626   return TokenFactor;
8627 }
8628 
8629 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
8630                                                      Function **OutFunction) {
8631   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
8632 
8633   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
8634   auto *Module = MF->getFunction().getParent();
8635   auto *Function = Module->getFunction(Symbol);
8636 
8637   if (OutFunction != nullptr)
8638       *OutFunction = Function;
8639 
8640   if (Function != nullptr) {
8641     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
8642     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
8643   }
8644 
8645   std::string ErrorStr;
8646   raw_string_ostream ErrorFormatter(ErrorStr);
8647 
8648   ErrorFormatter << "Undefined external symbol ";
8649   ErrorFormatter << '"' << Symbol << '"';
8650   ErrorFormatter.flush();
8651 
8652   report_fatal_error(ErrorStr);
8653 }
8654 
8655 //===----------------------------------------------------------------------===//
8656 //                              SDNode Class
8657 //===----------------------------------------------------------------------===//
8658 
8659 bool llvm::isNullConstant(SDValue V) {
8660   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8661   return Const != nullptr && Const->isNullValue();
8662 }
8663 
8664 bool llvm::isNullFPConstant(SDValue V) {
8665   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
8666   return Const != nullptr && Const->isZero() && !Const->isNegative();
8667 }
8668 
8669 bool llvm::isAllOnesConstant(SDValue V) {
8670   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8671   return Const != nullptr && Const->isAllOnesValue();
8672 }
8673 
8674 bool llvm::isOneConstant(SDValue V) {
8675   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
8676   return Const != nullptr && Const->isOne();
8677 }
8678 
8679 SDValue llvm::peekThroughBitcasts(SDValue V) {
8680   while (V.getOpcode() == ISD::BITCAST)
8681     V = V.getOperand(0);
8682   return V;
8683 }
8684 
8685 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
8686   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
8687     V = V.getOperand(0);
8688   return V;
8689 }
8690 
8691 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
8692   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8693     V = V.getOperand(0);
8694   return V;
8695 }
8696 
8697 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
8698   if (V.getOpcode() != ISD::XOR)
8699     return false;
8700   V = peekThroughBitcasts(V.getOperand(1));
8701   unsigned NumBits = V.getScalarValueSizeInBits();
8702   ConstantSDNode *C =
8703       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
8704   return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
8705 }
8706 
8707 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
8708                                           bool AllowTruncation) {
8709   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8710     return CN;
8711 
8712   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8713     BitVector UndefElements;
8714     ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
8715 
8716     // BuildVectors can truncate their operands. Ignore that case here unless
8717     // AllowTruncation is set.
8718     if (CN && (UndefElements.none() || AllowUndefs)) {
8719       EVT CVT = CN->getValueType(0);
8720       EVT NSVT = N.getValueType().getScalarType();
8721       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8722       if (AllowTruncation || (CVT == NSVT))
8723         return CN;
8724     }
8725   }
8726 
8727   return nullptr;
8728 }
8729 
8730 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
8731                                           bool AllowUndefs,
8732                                           bool AllowTruncation) {
8733   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
8734     return CN;
8735 
8736   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8737     BitVector UndefElements;
8738     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
8739 
8740     // BuildVectors can truncate their operands. Ignore that case here unless
8741     // AllowTruncation is set.
8742     if (CN && (UndefElements.none() || AllowUndefs)) {
8743       EVT CVT = CN->getValueType(0);
8744       EVT NSVT = N.getValueType().getScalarType();
8745       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
8746       if (AllowTruncation || (CVT == NSVT))
8747         return CN;
8748     }
8749   }
8750 
8751   return nullptr;
8752 }
8753 
8754 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
8755   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8756     return CN;
8757 
8758   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8759     BitVector UndefElements;
8760     ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
8761     if (CN && (UndefElements.none() || AllowUndefs))
8762       return CN;
8763   }
8764 
8765   return nullptr;
8766 }
8767 
8768 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
8769                                               const APInt &DemandedElts,
8770                                               bool AllowUndefs) {
8771   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
8772     return CN;
8773 
8774   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
8775     BitVector UndefElements;
8776     ConstantFPSDNode *CN =
8777         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
8778     if (CN && (UndefElements.none() || AllowUndefs))
8779       return CN;
8780   }
8781 
8782   return nullptr;
8783 }
8784 
8785 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
8786   // TODO: may want to use peekThroughBitcast() here.
8787   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
8788   return C && C->isNullValue();
8789 }
8790 
8791 bool llvm::isOneOrOneSplat(SDValue N) {
8792   // TODO: may want to use peekThroughBitcast() here.
8793   unsigned BitWidth = N.getScalarValueSizeInBits();
8794   ConstantSDNode *C = isConstOrConstSplat(N);
8795   return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
8796 }
8797 
8798 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
8799   N = peekThroughBitcasts(N);
8800   unsigned BitWidth = N.getScalarValueSizeInBits();
8801   ConstantSDNode *C = isConstOrConstSplat(N);
8802   return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
8803 }
8804 
8805 HandleSDNode::~HandleSDNode() {
8806   DropOperands();
8807 }
8808 
8809 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
8810                                          const DebugLoc &DL,
8811                                          const GlobalValue *GA, EVT VT,
8812                                          int64_t o, unsigned TF)
8813     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
8814   TheGlobal = GA;
8815 }
8816 
8817 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
8818                                          EVT VT, unsigned SrcAS,
8819                                          unsigned DestAS)
8820     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
8821       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
8822 
8823 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
8824                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
8825     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
8826   MemSDNodeBits.IsVolatile = MMO->isVolatile();
8827   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
8828   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
8829   MemSDNodeBits.IsInvariant = MMO->isInvariant();
8830 
8831   // We check here that the size of the memory operand fits within the size of
8832   // the MMO. This is because the MMO might indicate only a possible address
8833   // range instead of specifying the affected memory addresses precisely.
8834   assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!");
8835 }
8836 
8837 /// Profile - Gather unique data for the node.
8838 ///
8839 void SDNode::Profile(FoldingSetNodeID &ID) const {
8840   AddNodeIDNode(ID, this);
8841 }
8842 
8843 namespace {
8844 
8845   struct EVTArray {
8846     std::vector<EVT> VTs;
8847 
8848     EVTArray() {
8849       VTs.reserve(MVT::LAST_VALUETYPE);
8850       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
8851         VTs.push_back(MVT((MVT::SimpleValueType)i));
8852     }
8853   };
8854 
8855 } // end anonymous namespace
8856 
8857 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
8858 static ManagedStatic<EVTArray> SimpleVTArray;
8859 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
8860 
8861 /// getValueTypeList - Return a pointer to the specified value type.
8862 ///
8863 const EVT *SDNode::getValueTypeList(EVT VT) {
8864   if (VT.isExtended()) {
8865     sys::SmartScopedLock<true> Lock(*VTMutex);
8866     return &(*EVTs->insert(VT).first);
8867   } else {
8868     assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
8869            "Value type out of range!");
8870     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
8871   }
8872 }
8873 
8874 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
8875 /// indicated value.  This method ignores uses of other values defined by this
8876 /// operation.
8877 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
8878   assert(Value < getNumValues() && "Bad value!");
8879 
8880   // TODO: Only iterate over uses of a given value of the node
8881   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
8882     if (UI.getUse().getResNo() == Value) {
8883       if (NUses == 0)
8884         return false;
8885       --NUses;
8886     }
8887   }
8888 
8889   // Found exactly the right number of uses?
8890   return NUses == 0;
8891 }
8892 
8893 /// hasAnyUseOfValue - Return true if there are any use of the indicated
8894 /// value. This method ignores uses of other values defined by this operation.
8895 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
8896   assert(Value < getNumValues() && "Bad value!");
8897 
8898   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
8899     if (UI.getUse().getResNo() == Value)
8900       return true;
8901 
8902   return false;
8903 }
8904 
8905 /// isOnlyUserOf - Return true if this node is the only use of N.
8906 bool SDNode::isOnlyUserOf(const SDNode *N) const {
8907   bool Seen = false;
8908   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8909     SDNode *User = *I;
8910     if (User == this)
8911       Seen = true;
8912     else
8913       return false;
8914   }
8915 
8916   return Seen;
8917 }
8918 
8919 /// Return true if the only users of N are contained in Nodes.
8920 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
8921   bool Seen = false;
8922   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
8923     SDNode *User = *I;
8924     if (llvm::any_of(Nodes,
8925                      [&User](const SDNode *Node) { return User == Node; }))
8926       Seen = true;
8927     else
8928       return false;
8929   }
8930 
8931   return Seen;
8932 }
8933 
8934 /// isOperand - Return true if this node is an operand of N.
8935 bool SDValue::isOperandOf(const SDNode *N) const {
8936   return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
8937 }
8938 
8939 bool SDNode::isOperandOf(const SDNode *N) const {
8940   return any_of(N->op_values(),
8941                 [this](SDValue Op) { return this == Op.getNode(); });
8942 }
8943 
8944 /// reachesChainWithoutSideEffects - Return true if this operand (which must
8945 /// be a chain) reaches the specified operand without crossing any
8946 /// side-effecting instructions on any chain path.  In practice, this looks
8947 /// through token factors and non-volatile loads.  In order to remain efficient,
8948 /// this only looks a couple of nodes in, it does not do an exhaustive search.
8949 ///
8950 /// Note that we only need to examine chains when we're searching for
8951 /// side-effects; SelectionDAG requires that all side-effects are represented
8952 /// by chains, even if another operand would force a specific ordering. This
8953 /// constraint is necessary to allow transformations like splitting loads.
8954 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
8955                                              unsigned Depth) const {
8956   if (*this == Dest) return true;
8957 
8958   // Don't search too deeply, we just want to be able to see through
8959   // TokenFactor's etc.
8960   if (Depth == 0) return false;
8961 
8962   // If this is a token factor, all inputs to the TF happen in parallel.
8963   if (getOpcode() == ISD::TokenFactor) {
8964     // First, try a shallow search.
8965     if (is_contained((*this)->ops(), Dest)) {
8966       // We found the chain we want as an operand of this TokenFactor.
8967       // Essentially, we reach the chain without side-effects if we could
8968       // serialize the TokenFactor into a simple chain of operations with
8969       // Dest as the last operation. This is automatically true if the
8970       // chain has one use: there are no other ordering constraints.
8971       // If the chain has more than one use, we give up: some other
8972       // use of Dest might force a side-effect between Dest and the current
8973       // node.
8974       if (Dest.hasOneUse())
8975         return true;
8976     }
8977     // Next, try a deep search: check whether every operand of the TokenFactor
8978     // reaches Dest.
8979     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
8980       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
8981     });
8982   }
8983 
8984   // Loads don't have side effects, look through them.
8985   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
8986     if (Ld->isUnordered())
8987       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
8988   }
8989   return false;
8990 }
8991 
8992 bool SDNode::hasPredecessor(const SDNode *N) const {
8993   SmallPtrSet<const SDNode *, 32> Visited;
8994   SmallVector<const SDNode *, 16> Worklist;
8995   Worklist.push_back(this);
8996   return hasPredecessorHelper(N, Visited, Worklist);
8997 }
8998 
8999 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9000   this->Flags.intersectWith(Flags);
9001 }
9002 
9003 SDValue
9004 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9005                                   ArrayRef<ISD::NodeType> CandidateBinOps,
9006                                   bool AllowPartials) {
9007   // The pattern must end in an extract from index 0.
9008   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9009       !isNullConstant(Extract->getOperand(1)))
9010     return SDValue();
9011 
9012   // Match against one of the candidate binary ops.
9013   SDValue Op = Extract->getOperand(0);
9014   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9015         return Op.getOpcode() == unsigned(BinOp);
9016       }))
9017     return SDValue();
9018 
9019   // Floating-point reductions may require relaxed constraints on the final step
9020   // of the reduction because they may reorder intermediate operations.
9021   unsigned CandidateBinOp = Op.getOpcode();
9022   if (Op.getValueType().isFloatingPoint()) {
9023     SDNodeFlags Flags = Op->getFlags();
9024     switch (CandidateBinOp) {
9025     case ISD::FADD:
9026       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9027         return SDValue();
9028       break;
9029     default:
9030       llvm_unreachable("Unhandled FP opcode for binop reduction");
9031     }
9032   }
9033 
9034   // Matching failed - attempt to see if we did enough stages that a partial
9035   // reduction from a subvector is possible.
9036   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9037     if (!AllowPartials || !Op)
9038       return SDValue();
9039     EVT OpVT = Op.getValueType();
9040     EVT OpSVT = OpVT.getScalarType();
9041     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9042     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9043       return SDValue();
9044     BinOp = (ISD::NodeType)CandidateBinOp;
9045     return getNode(
9046         ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9047         getConstant(0, SDLoc(Op), TLI->getVectorIdxTy(getDataLayout())));
9048   };
9049 
9050   // At each stage, we're looking for something that looks like:
9051   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9052   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9053   //                               i32 undef, i32 undef, i32 undef, i32 undef>
9054   // %a = binop <8 x i32> %op, %s
9055   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9056   // we expect something like:
9057   // <4,5,6,7,u,u,u,u>
9058   // <2,3,u,u,u,u,u,u>
9059   // <1,u,u,u,u,u,u,u>
9060   // While a partial reduction match would be:
9061   // <2,3,u,u,u,u,u,u>
9062   // <1,u,u,u,u,u,u,u>
9063   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9064   SDValue PrevOp;
9065   for (unsigned i = 0; i < Stages; ++i) {
9066     unsigned MaskEnd = (1 << i);
9067 
9068     if (Op.getOpcode() != CandidateBinOp)
9069       return PartialReduction(PrevOp, MaskEnd);
9070 
9071     SDValue Op0 = Op.getOperand(0);
9072     SDValue Op1 = Op.getOperand(1);
9073 
9074     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9075     if (Shuffle) {
9076       Op = Op1;
9077     } else {
9078       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9079       Op = Op0;
9080     }
9081 
9082     // The first operand of the shuffle should be the same as the other operand
9083     // of the binop.
9084     if (!Shuffle || Shuffle->getOperand(0) != Op)
9085       return PartialReduction(PrevOp, MaskEnd);
9086 
9087     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9088     for (int Index = 0; Index < (int)MaskEnd; ++Index)
9089       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9090         return PartialReduction(PrevOp, MaskEnd);
9091 
9092     PrevOp = Op;
9093   }
9094 
9095   BinOp = (ISD::NodeType)CandidateBinOp;
9096   return Op;
9097 }
9098 
9099 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9100   assert(N->getNumValues() == 1 &&
9101          "Can't unroll a vector with multiple results!");
9102 
9103   EVT VT = N->getValueType(0);
9104   unsigned NE = VT.getVectorNumElements();
9105   EVT EltVT = VT.getVectorElementType();
9106   SDLoc dl(N);
9107 
9108   SmallVector<SDValue, 8> Scalars;
9109   SmallVector<SDValue, 4> Operands(N->getNumOperands());
9110 
9111   // If ResNE is 0, fully unroll the vector op.
9112   if (ResNE == 0)
9113     ResNE = NE;
9114   else if (NE > ResNE)
9115     NE = ResNE;
9116 
9117   unsigned i;
9118   for (i= 0; i != NE; ++i) {
9119     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9120       SDValue Operand = N->getOperand(j);
9121       EVT OperandVT = Operand.getValueType();
9122       if (OperandVT.isVector()) {
9123         // A vector operand; extract a single element.
9124         EVT OperandEltVT = OperandVT.getVectorElementType();
9125         Operands[j] =
9126             getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand,
9127                     getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout())));
9128       } else {
9129         // A scalar operand; just use it as is.
9130         Operands[j] = Operand;
9131       }
9132     }
9133 
9134     switch (N->getOpcode()) {
9135     default: {
9136       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9137                                 N->getFlags()));
9138       break;
9139     }
9140     case ISD::VSELECT:
9141       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9142       break;
9143     case ISD::SHL:
9144     case ISD::SRA:
9145     case ISD::SRL:
9146     case ISD::ROTL:
9147     case ISD::ROTR:
9148       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9149                                getShiftAmountOperand(Operands[0].getValueType(),
9150                                                      Operands[1])));
9151       break;
9152     case ISD::SIGN_EXTEND_INREG: {
9153       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9154       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9155                                 Operands[0],
9156                                 getValueType(ExtVT)));
9157     }
9158     }
9159   }
9160 
9161   for (; i < ResNE; ++i)
9162     Scalars.push_back(getUNDEF(EltVT));
9163 
9164   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9165   return getBuildVector(VecVT, dl, Scalars);
9166 }
9167 
9168 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9169     SDNode *N, unsigned ResNE) {
9170   unsigned Opcode = N->getOpcode();
9171   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9172           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9173           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9174          "Expected an overflow opcode");
9175 
9176   EVT ResVT = N->getValueType(0);
9177   EVT OvVT = N->getValueType(1);
9178   EVT ResEltVT = ResVT.getVectorElementType();
9179   EVT OvEltVT = OvVT.getVectorElementType();
9180   SDLoc dl(N);
9181 
9182   // If ResNE is 0, fully unroll the vector op.
9183   unsigned NE = ResVT.getVectorNumElements();
9184   if (ResNE == 0)
9185     ResNE = NE;
9186   else if (NE > ResNE)
9187     NE = ResNE;
9188 
9189   SmallVector<SDValue, 8> LHSScalars;
9190   SmallVector<SDValue, 8> RHSScalars;
9191   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9192   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9193 
9194   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9195   SDVTList VTs = getVTList(ResEltVT, SVT);
9196   SmallVector<SDValue, 8> ResScalars;
9197   SmallVector<SDValue, 8> OvScalars;
9198   for (unsigned i = 0; i < NE; ++i) {
9199     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9200     SDValue Ov =
9201         getSelect(dl, OvEltVT, Res.getValue(1),
9202                   getBoolConstant(true, dl, OvEltVT, ResVT),
9203                   getConstant(0, dl, OvEltVT));
9204 
9205     ResScalars.push_back(Res);
9206     OvScalars.push_back(Ov);
9207   }
9208 
9209   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9210   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9211 
9212   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9213   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9214   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9215                         getBuildVector(NewOvVT, dl, OvScalars));
9216 }
9217 
9218 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9219                                                   LoadSDNode *Base,
9220                                                   unsigned Bytes,
9221                                                   int Dist) const {
9222   if (LD->isVolatile() || Base->isVolatile())
9223     return false;
9224   // TODO: probably too restrictive for atomics, revisit
9225   if (!LD->isSimple())
9226     return false;
9227   if (LD->isIndexed() || Base->isIndexed())
9228     return false;
9229   if (LD->getChain() != Base->getChain())
9230     return false;
9231   EVT VT = LD->getValueType(0);
9232   if (VT.getSizeInBits() / 8 != Bytes)
9233     return false;
9234 
9235   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9236   auto LocDecomp = BaseIndexOffset::match(LD, *this);
9237 
9238   int64_t Offset = 0;
9239   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9240     return (Dist * Bytes == Offset);
9241   return false;
9242 }
9243 
9244 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
9245 /// it cannot be inferred.
9246 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
9247   // If this is a GlobalAddress + cst, return the alignment.
9248   const GlobalValue *GV;
9249   int64_t GVOffset = 0;
9250   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9251     unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
9252     KnownBits Known(IdxWidth);
9253     llvm::computeKnownBits(GV, Known, getDataLayout());
9254     unsigned AlignBits = Known.countMinTrailingZeros();
9255     unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
9256     if (Align)
9257       return MinAlign(Align, GVOffset);
9258   }
9259 
9260   // If this is a direct reference to a stack slot, use information about the
9261   // stack slot's alignment.
9262   int FrameIdx = INT_MIN;
9263   int64_t FrameOffset = 0;
9264   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9265     FrameIdx = FI->getIndex();
9266   } else if (isBaseWithConstantOffset(Ptr) &&
9267              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9268     // Handle FI+Cst
9269     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9270     FrameOffset = Ptr.getConstantOperandVal(1);
9271   }
9272 
9273   if (FrameIdx != INT_MIN) {
9274     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9275     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
9276                                     FrameOffset);
9277     return FIInfoAlign;
9278   }
9279 
9280   return 0;
9281 }
9282 
9283 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9284 /// which is split (or expanded) into two not necessarily identical pieces.
9285 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9286   // Currently all types are split in half.
9287   EVT LoVT, HiVT;
9288   if (!VT.isVector())
9289     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9290   else
9291     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9292 
9293   return std::make_pair(LoVT, HiVT);
9294 }
9295 
9296 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9297 /// low/high part.
9298 std::pair<SDValue, SDValue>
9299 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9300                           const EVT &HiVT) {
9301   assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <=
9302          N.getValueType().getVectorNumElements() &&
9303          "More vector elements requested than available!");
9304   SDValue Lo, Hi;
9305   Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
9306                getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9307   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9308                getConstant(LoVT.getVectorNumElements(), DL,
9309                            TLI->getVectorIdxTy(getDataLayout())));
9310   return std::make_pair(Lo, Hi);
9311 }
9312 
9313 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
9314 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9315   EVT VT = N.getValueType();
9316   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9317                                 NextPowerOf2(VT.getVectorNumElements()));
9318   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9319                  getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout())));
9320 }
9321 
9322 void SelectionDAG::ExtractVectorElements(SDValue Op,
9323                                          SmallVectorImpl<SDValue> &Args,
9324                                          unsigned Start, unsigned Count) {
9325   EVT VT = Op.getValueType();
9326   if (Count == 0)
9327     Count = VT.getVectorNumElements();
9328 
9329   EVT EltVT = VT.getVectorElementType();
9330   EVT IdxTy = TLI->getVectorIdxTy(getDataLayout());
9331   SDLoc SL(Op);
9332   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9333     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9334                            Op, getConstant(i, SL, IdxTy)));
9335   }
9336 }
9337 
9338 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9339 unsigned GlobalAddressSDNode::getAddressSpace() const {
9340   return getGlobal()->getType()->getAddressSpace();
9341 }
9342 
9343 Type *ConstantPoolSDNode::getType() const {
9344   if (isMachineConstantPoolEntry())
9345     return Val.MachineCPVal->getType();
9346   return Val.ConstVal->getType();
9347 }
9348 
9349 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9350                                         unsigned &SplatBitSize,
9351                                         bool &HasAnyUndefs,
9352                                         unsigned MinSplatBits,
9353                                         bool IsBigEndian) const {
9354   EVT VT = getValueType(0);
9355   assert(VT.isVector() && "Expected a vector type");
9356   unsigned VecWidth = VT.getSizeInBits();
9357   if (MinSplatBits > VecWidth)
9358     return false;
9359 
9360   // FIXME: The widths are based on this node's type, but build vectors can
9361   // truncate their operands.
9362   SplatValue = APInt(VecWidth, 0);
9363   SplatUndef = APInt(VecWidth, 0);
9364 
9365   // Get the bits. Bits with undefined values (when the corresponding element
9366   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9367   // in SplatValue. If any of the values are not constant, give up and return
9368   // false.
9369   unsigned int NumOps = getNumOperands();
9370   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9371   unsigned EltWidth = VT.getScalarSizeInBits();
9372 
9373   for (unsigned j = 0; j < NumOps; ++j) {
9374     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9375     SDValue OpVal = getOperand(i);
9376     unsigned BitPos = j * EltWidth;
9377 
9378     if (OpVal.isUndef())
9379       SplatUndef.setBits(BitPos, BitPos + EltWidth);
9380     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9381       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9382     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9383       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9384     else
9385       return false;
9386   }
9387 
9388   // The build_vector is all constants or undefs. Find the smallest element
9389   // size that splats the vector.
9390   HasAnyUndefs = (SplatUndef != 0);
9391 
9392   // FIXME: This does not work for vectors with elements less than 8 bits.
9393   while (VecWidth > 8) {
9394     unsigned HalfSize = VecWidth / 2;
9395     APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9396     APInt LowValue = SplatValue.trunc(HalfSize);
9397     APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9398     APInt LowUndef = SplatUndef.trunc(HalfSize);
9399 
9400     // If the two halves do not match (ignoring undef bits), stop here.
9401     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9402         MinSplatBits > HalfSize)
9403       break;
9404 
9405     SplatValue = HighValue | LowValue;
9406     SplatUndef = HighUndef & LowUndef;
9407 
9408     VecWidth = HalfSize;
9409   }
9410 
9411   SplatBitSize = VecWidth;
9412   return true;
9413 }
9414 
9415 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9416                                          BitVector *UndefElements) const {
9417   if (UndefElements) {
9418     UndefElements->clear();
9419     UndefElements->resize(getNumOperands());
9420   }
9421   assert(getNumOperands() == DemandedElts.getBitWidth() &&
9422          "Unexpected vector size");
9423   if (!DemandedElts)
9424     return SDValue();
9425   SDValue Splatted;
9426   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9427     if (!DemandedElts[i])
9428       continue;
9429     SDValue Op = getOperand(i);
9430     if (Op.isUndef()) {
9431       if (UndefElements)
9432         (*UndefElements)[i] = true;
9433     } else if (!Splatted) {
9434       Splatted = Op;
9435     } else if (Splatted != Op) {
9436       return SDValue();
9437     }
9438   }
9439 
9440   if (!Splatted) {
9441     unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
9442     assert(getOperand(FirstDemandedIdx).isUndef() &&
9443            "Can only have a splat without a constant for all undefs.");
9444     return getOperand(FirstDemandedIdx);
9445   }
9446 
9447   return Splatted;
9448 }
9449 
9450 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
9451   APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
9452   return getSplatValue(DemandedElts, UndefElements);
9453 }
9454 
9455 ConstantSDNode *
9456 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
9457                                         BitVector *UndefElements) const {
9458   return dyn_cast_or_null<ConstantSDNode>(
9459       getSplatValue(DemandedElts, UndefElements));
9460 }
9461 
9462 ConstantSDNode *
9463 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
9464   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
9465 }
9466 
9467 ConstantFPSDNode *
9468 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
9469                                           BitVector *UndefElements) const {
9470   return dyn_cast_or_null<ConstantFPSDNode>(
9471       getSplatValue(DemandedElts, UndefElements));
9472 }
9473 
9474 ConstantFPSDNode *
9475 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
9476   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
9477 }
9478 
9479 int32_t
9480 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
9481                                                    uint32_t BitWidth) const {
9482   if (ConstantFPSDNode *CN =
9483           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
9484     bool IsExact;
9485     APSInt IntVal(BitWidth);
9486     const APFloat &APF = CN->getValueAPF();
9487     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
9488             APFloat::opOK ||
9489         !IsExact)
9490       return -1;
9491 
9492     return IntVal.exactLogBase2();
9493   }
9494   return -1;
9495 }
9496 
9497 bool BuildVectorSDNode::isConstant() const {
9498   for (const SDValue &Op : op_values()) {
9499     unsigned Opc = Op.getOpcode();
9500     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
9501       return false;
9502   }
9503   return true;
9504 }
9505 
9506 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
9507   // Find the first non-undef value in the shuffle mask.
9508   unsigned i, e;
9509   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
9510     /* search */;
9511 
9512   // If all elements are undefined, this shuffle can be considered a splat
9513   // (although it should eventually get simplified away completely).
9514   if (i == e)
9515     return true;
9516 
9517   // Make sure all remaining elements are either undef or the same as the first
9518   // non-undef value.
9519   for (int Idx = Mask[i]; i != e; ++i)
9520     if (Mask[i] >= 0 && Mask[i] != Idx)
9521       return false;
9522   return true;
9523 }
9524 
9525 // Returns the SDNode if it is a constant integer BuildVector
9526 // or constant integer.
9527 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
9528   if (isa<ConstantSDNode>(N))
9529     return N.getNode();
9530   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
9531     return N.getNode();
9532   // Treat a GlobalAddress supporting constant offset folding as a
9533   // constant integer.
9534   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
9535     if (GA->getOpcode() == ISD::GlobalAddress &&
9536         TLI->isOffsetFoldingLegal(GA))
9537       return GA;
9538   return nullptr;
9539 }
9540 
9541 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
9542   if (isa<ConstantFPSDNode>(N))
9543     return N.getNode();
9544 
9545   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
9546     return N.getNode();
9547 
9548   return nullptr;
9549 }
9550 
9551 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
9552   assert(!Node->OperandList && "Node already has operands");
9553   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
9554          "too many operands to fit into SDNode");
9555   SDUse *Ops = OperandRecycler.allocate(
9556       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
9557 
9558   bool IsDivergent = false;
9559   for (unsigned I = 0; I != Vals.size(); ++I) {
9560     Ops[I].setUser(Node);
9561     Ops[I].setInitial(Vals[I]);
9562     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
9563       IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
9564   }
9565   Node->NumOperands = Vals.size();
9566   Node->OperandList = Ops;
9567   IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
9568   if (!TLI->isSDNodeAlwaysUniform(Node))
9569     Node->SDNodeBits.IsDivergent = IsDivergent;
9570   checkForCycles(Node);
9571 }
9572 
9573 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
9574                                      SmallVectorImpl<SDValue> &Vals) {
9575   size_t Limit = SDNode::getMaxNumOperands();
9576   while (Vals.size() > Limit) {
9577     unsigned SliceIdx = Vals.size() - Limit;
9578     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
9579     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
9580     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
9581     Vals.emplace_back(NewTF);
9582   }
9583   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
9584 }
9585 
9586 #ifndef NDEBUG
9587 static void checkForCyclesHelper(const SDNode *N,
9588                                  SmallPtrSetImpl<const SDNode*> &Visited,
9589                                  SmallPtrSetImpl<const SDNode*> &Checked,
9590                                  const llvm::SelectionDAG *DAG) {
9591   // If this node has already been checked, don't check it again.
9592   if (Checked.count(N))
9593     return;
9594 
9595   // If a node has already been visited on this depth-first walk, reject it as
9596   // a cycle.
9597   if (!Visited.insert(N).second) {
9598     errs() << "Detected cycle in SelectionDAG\n";
9599     dbgs() << "Offending node:\n";
9600     N->dumprFull(DAG); dbgs() << "\n";
9601     abort();
9602   }
9603 
9604   for (const SDValue &Op : N->op_values())
9605     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
9606 
9607   Checked.insert(N);
9608   Visited.erase(N);
9609 }
9610 #endif
9611 
9612 void llvm::checkForCycles(const llvm::SDNode *N,
9613                           const llvm::SelectionDAG *DAG,
9614                           bool force) {
9615 #ifndef NDEBUG
9616   bool check = force;
9617 #ifdef EXPENSIVE_CHECKS
9618   check = true;
9619 #endif  // EXPENSIVE_CHECKS
9620   if (check) {
9621     assert(N && "Checking nonexistent SDNode");
9622     SmallPtrSet<const SDNode*, 32> visited;
9623     SmallPtrSet<const SDNode*, 32> checked;
9624     checkForCyclesHelper(N, visited, checked, DAG);
9625   }
9626 #endif  // !NDEBUG
9627 }
9628 
9629 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
9630   checkForCycles(DAG->getRoot().getNode(), DAG, force);
9631 }
9632