1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/CodeGen/ISDOpcodes.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/RuntimeLibcalls.h" 35 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/IR/Constant.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CodeGen.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/KnownBits.h" 59 #include "llvm/Support/MachineValueType.h" 60 #include "llvm/Support/ManagedStatic.h" 61 #include "llvm/Support/MathExtras.h" 62 #include "llvm/Support/Mutex.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetMachine.h" 65 #include "llvm/Target/TargetOptions.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstdint> 69 #include <cstdlib> 70 #include <limits> 71 #include <set> 72 #include <string> 73 #include <utility> 74 #include <vector> 75 76 using namespace llvm; 77 78 /// makeVTList - Return an instance of the SDVTList struct initialized with the 79 /// specified members. 80 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 81 SDVTList Res = {VTs, NumVTs}; 82 return Res; 83 } 84 85 // Default null implementations of the callbacks. 86 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 87 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 88 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 89 90 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 91 92 #define DEBUG_TYPE "selectiondag" 93 94 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 95 cl::Hidden, cl::init(true), 96 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 97 98 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 99 cl::desc("Number limit for gluing ld/st of memcpy."), 100 cl::Hidden, cl::init(0)); 101 102 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 103 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 104 } 105 106 //===----------------------------------------------------------------------===// 107 // ConstantFPSDNode Class 108 //===----------------------------------------------------------------------===// 109 110 /// isExactlyValue - We don't rely on operator== working on double values, as 111 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 112 /// As such, this method can be used to do an exact bit-for-bit comparison of 113 /// two floating point values. 114 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 115 return getValueAPF().bitwiseIsEqual(V); 116 } 117 118 bool ConstantFPSDNode::isValueValidForType(EVT VT, 119 const APFloat& Val) { 120 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 121 122 // convert modifies in place, so make a copy. 123 APFloat Val2 = APFloat(Val); 124 bool losesInfo; 125 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 126 APFloat::rmNearestTiesToEven, 127 &losesInfo); 128 return !losesInfo; 129 } 130 131 //===----------------------------------------------------------------------===// 132 // ISD Namespace 133 //===----------------------------------------------------------------------===// 134 135 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 136 auto *BV = dyn_cast<BuildVectorSDNode>(N); 137 if (!BV) 138 return false; 139 140 APInt SplatUndef; 141 unsigned SplatBitSize; 142 bool HasUndefs; 143 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 144 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 145 EltSize) && 146 EltSize == SplatBitSize; 147 } 148 149 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 150 // specializations of the more general isConstantSplatVector()? 151 152 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 153 // Look through a bit convert. 154 while (N->getOpcode() == ISD::BITCAST) 155 N = N->getOperand(0).getNode(); 156 157 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 158 159 unsigned i = 0, e = N->getNumOperands(); 160 161 // Skip over all of the undef values. 162 while (i != e && N->getOperand(i).isUndef()) 163 ++i; 164 165 // Do not accept an all-undef vector. 166 if (i == e) return false; 167 168 // Do not accept build_vectors that aren't all constants or which have non-~0 169 // elements. We have to be a bit careful here, as the type of the constant 170 // may not be the same as the type of the vector elements due to type 171 // legalization (the elements are promoted to a legal type for the target and 172 // a vector of a type may be legal when the base element type is not). 173 // We only want to check enough bits to cover the vector elements, because 174 // we care if the resultant vector is all ones, not whether the individual 175 // constants are. 176 SDValue NotZero = N->getOperand(i); 177 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 178 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 179 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 180 return false; 181 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 182 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 183 return false; 184 } else 185 return false; 186 187 // Okay, we have at least one ~0 value, check to see if the rest match or are 188 // undefs. Even with the above element type twiddling, this should be OK, as 189 // the same type legalization should have applied to all the elements. 190 for (++i; i != e; ++i) 191 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 192 return false; 193 return true; 194 } 195 196 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 197 // Look through a bit convert. 198 while (N->getOpcode() == ISD::BITCAST) 199 N = N->getOperand(0).getNode(); 200 201 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 202 203 bool IsAllUndef = true; 204 for (const SDValue &Op : N->op_values()) { 205 if (Op.isUndef()) 206 continue; 207 IsAllUndef = false; 208 // Do not accept build_vectors that aren't all constants or which have non-0 209 // elements. We have to be a bit careful here, as the type of the constant 210 // may not be the same as the type of the vector elements due to type 211 // legalization (the elements are promoted to a legal type for the target 212 // and a vector of a type may be legal when the base element type is not). 213 // We only want to check enough bits to cover the vector elements, because 214 // we care if the resultant vector is all zeros, not whether the individual 215 // constants are. 216 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 217 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 218 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 219 return false; 220 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 221 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 222 return false; 223 } else 224 return false; 225 } 226 227 // Do not accept an all-undef vector. 228 if (IsAllUndef) 229 return false; 230 return true; 231 } 232 233 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 234 if (N->getOpcode() != ISD::BUILD_VECTOR) 235 return false; 236 237 for (const SDValue &Op : N->op_values()) { 238 if (Op.isUndef()) 239 continue; 240 if (!isa<ConstantSDNode>(Op)) 241 return false; 242 } 243 return true; 244 } 245 246 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 247 if (N->getOpcode() != ISD::BUILD_VECTOR) 248 return false; 249 250 for (const SDValue &Op : N->op_values()) { 251 if (Op.isUndef()) 252 continue; 253 if (!isa<ConstantFPSDNode>(Op)) 254 return false; 255 } 256 return true; 257 } 258 259 bool ISD::allOperandsUndef(const SDNode *N) { 260 // Return false if the node has no operands. 261 // This is "logically inconsistent" with the definition of "all" but 262 // is probably the desired behavior. 263 if (N->getNumOperands() == 0) 264 return false; 265 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 266 } 267 268 bool ISD::matchUnaryPredicate(SDValue Op, 269 std::function<bool(ConstantSDNode *)> Match, 270 bool AllowUndefs) { 271 // FIXME: Add support for scalar UNDEF cases? 272 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 273 return Match(Cst); 274 275 // FIXME: Add support for vector UNDEF cases? 276 if (ISD::BUILD_VECTOR != Op.getOpcode()) 277 return false; 278 279 EVT SVT = Op.getValueType().getScalarType(); 280 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 281 if (AllowUndefs && Op.getOperand(i).isUndef()) { 282 if (!Match(nullptr)) 283 return false; 284 continue; 285 } 286 287 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 288 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 289 return false; 290 } 291 return true; 292 } 293 294 bool ISD::matchBinaryPredicate( 295 SDValue LHS, SDValue RHS, 296 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 297 bool AllowUndefs, bool AllowTypeMismatch) { 298 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 299 return false; 300 301 // TODO: Add support for scalar UNDEF cases? 302 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 303 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 304 return Match(LHSCst, RHSCst); 305 306 // TODO: Add support for vector UNDEF cases? 307 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 308 ISD::BUILD_VECTOR != RHS.getOpcode()) 309 return false; 310 311 EVT SVT = LHS.getValueType().getScalarType(); 312 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 313 SDValue LHSOp = LHS.getOperand(i); 314 SDValue RHSOp = RHS.getOperand(i); 315 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 316 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 317 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 318 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 319 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 320 return false; 321 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 322 LHSOp.getValueType() != RHSOp.getValueType())) 323 return false; 324 if (!Match(LHSCst, RHSCst)) 325 return false; 326 } 327 return true; 328 } 329 330 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 331 switch (ExtType) { 332 case ISD::EXTLOAD: 333 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 334 case ISD::SEXTLOAD: 335 return ISD::SIGN_EXTEND; 336 case ISD::ZEXTLOAD: 337 return ISD::ZERO_EXTEND; 338 default: 339 break; 340 } 341 342 llvm_unreachable("Invalid LoadExtType"); 343 } 344 345 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 346 // To perform this operation, we just need to swap the L and G bits of the 347 // operation. 348 unsigned OldL = (Operation >> 2) & 1; 349 unsigned OldG = (Operation >> 1) & 1; 350 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 351 (OldL << 1) | // New G bit 352 (OldG << 2)); // New L bit. 353 } 354 355 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { 356 unsigned Operation = Op; 357 if (isInteger) 358 Operation ^= 7; // Flip L, G, E bits, but not U. 359 else 360 Operation ^= 15; // Flip all of the condition bits. 361 362 if (Operation > ISD::SETTRUE2) 363 Operation &= ~8; // Don't let N and U bits get set. 364 365 return ISD::CondCode(Operation); 366 } 367 368 /// For an integer comparison, return 1 if the comparison is a signed operation 369 /// and 2 if the result is an unsigned comparison. Return zero if the operation 370 /// does not depend on the sign of the input (setne and seteq). 371 static int isSignedOp(ISD::CondCode Opcode) { 372 switch (Opcode) { 373 default: llvm_unreachable("Illegal integer setcc operation!"); 374 case ISD::SETEQ: 375 case ISD::SETNE: return 0; 376 case ISD::SETLT: 377 case ISD::SETLE: 378 case ISD::SETGT: 379 case ISD::SETGE: return 1; 380 case ISD::SETULT: 381 case ISD::SETULE: 382 case ISD::SETUGT: 383 case ISD::SETUGE: return 2; 384 } 385 } 386 387 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 388 bool IsInteger) { 389 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 390 // Cannot fold a signed integer setcc with an unsigned integer setcc. 391 return ISD::SETCC_INVALID; 392 393 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 394 395 // If the N and U bits get set, then the resultant comparison DOES suddenly 396 // care about orderedness, and it is true when ordered. 397 if (Op > ISD::SETTRUE2) 398 Op &= ~16; // Clear the U bit if the N bit is set. 399 400 // Canonicalize illegal integer setcc's. 401 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 402 Op = ISD::SETNE; 403 404 return ISD::CondCode(Op); 405 } 406 407 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 408 bool IsInteger) { 409 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 410 // Cannot fold a signed setcc with an unsigned setcc. 411 return ISD::SETCC_INVALID; 412 413 // Combine all of the condition bits. 414 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 415 416 // Canonicalize illegal integer setcc's. 417 if (IsInteger) { 418 switch (Result) { 419 default: break; 420 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 421 case ISD::SETOEQ: // SETEQ & SETU[LG]E 422 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 423 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 424 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 425 } 426 } 427 428 return Result; 429 } 430 431 //===----------------------------------------------------------------------===// 432 // SDNode Profile Support 433 //===----------------------------------------------------------------------===// 434 435 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 436 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 437 ID.AddInteger(OpC); 438 } 439 440 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 441 /// solely with their pointer. 442 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 443 ID.AddPointer(VTList.VTs); 444 } 445 446 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 447 static void AddNodeIDOperands(FoldingSetNodeID &ID, 448 ArrayRef<SDValue> Ops) { 449 for (auto& Op : Ops) { 450 ID.AddPointer(Op.getNode()); 451 ID.AddInteger(Op.getResNo()); 452 } 453 } 454 455 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 456 static void AddNodeIDOperands(FoldingSetNodeID &ID, 457 ArrayRef<SDUse> Ops) { 458 for (auto& Op : Ops) { 459 ID.AddPointer(Op.getNode()); 460 ID.AddInteger(Op.getResNo()); 461 } 462 } 463 464 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 465 SDVTList VTList, ArrayRef<SDValue> OpList) { 466 AddNodeIDOpcode(ID, OpC); 467 AddNodeIDValueTypes(ID, VTList); 468 AddNodeIDOperands(ID, OpList); 469 } 470 471 /// If this is an SDNode with special info, add this info to the NodeID data. 472 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 473 switch (N->getOpcode()) { 474 case ISD::TargetExternalSymbol: 475 case ISD::ExternalSymbol: 476 case ISD::MCSymbol: 477 llvm_unreachable("Should only be used on nodes with operands"); 478 default: break; // Normal nodes don't need extra info. 479 case ISD::TargetConstant: 480 case ISD::Constant: { 481 const ConstantSDNode *C = cast<ConstantSDNode>(N); 482 ID.AddPointer(C->getConstantIntValue()); 483 ID.AddBoolean(C->isOpaque()); 484 break; 485 } 486 case ISD::TargetConstantFP: 487 case ISD::ConstantFP: 488 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 489 break; 490 case ISD::TargetGlobalAddress: 491 case ISD::GlobalAddress: 492 case ISD::TargetGlobalTLSAddress: 493 case ISD::GlobalTLSAddress: { 494 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 495 ID.AddPointer(GA->getGlobal()); 496 ID.AddInteger(GA->getOffset()); 497 ID.AddInteger(GA->getTargetFlags()); 498 break; 499 } 500 case ISD::BasicBlock: 501 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 502 break; 503 case ISD::Register: 504 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 505 break; 506 case ISD::RegisterMask: 507 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 508 break; 509 case ISD::SRCVALUE: 510 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 511 break; 512 case ISD::FrameIndex: 513 case ISD::TargetFrameIndex: 514 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 515 break; 516 case ISD::LIFETIME_START: 517 case ISD::LIFETIME_END: 518 if (cast<LifetimeSDNode>(N)->hasOffset()) { 519 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 520 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 521 } 522 break; 523 case ISD::JumpTable: 524 case ISD::TargetJumpTable: 525 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 526 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 527 break; 528 case ISD::ConstantPool: 529 case ISD::TargetConstantPool: { 530 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 531 ID.AddInteger(CP->getAlignment()); 532 ID.AddInteger(CP->getOffset()); 533 if (CP->isMachineConstantPoolEntry()) 534 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 535 else 536 ID.AddPointer(CP->getConstVal()); 537 ID.AddInteger(CP->getTargetFlags()); 538 break; 539 } 540 case ISD::TargetIndex: { 541 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 542 ID.AddInteger(TI->getIndex()); 543 ID.AddInteger(TI->getOffset()); 544 ID.AddInteger(TI->getTargetFlags()); 545 break; 546 } 547 case ISD::LOAD: { 548 const LoadSDNode *LD = cast<LoadSDNode>(N); 549 ID.AddInteger(LD->getMemoryVT().getRawBits()); 550 ID.AddInteger(LD->getRawSubclassData()); 551 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 552 break; 553 } 554 case ISD::STORE: { 555 const StoreSDNode *ST = cast<StoreSDNode>(N); 556 ID.AddInteger(ST->getMemoryVT().getRawBits()); 557 ID.AddInteger(ST->getRawSubclassData()); 558 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 559 break; 560 } 561 case ISD::MLOAD: { 562 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 563 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 564 ID.AddInteger(MLD->getRawSubclassData()); 565 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 566 break; 567 } 568 case ISD::MSTORE: { 569 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 570 ID.AddInteger(MST->getMemoryVT().getRawBits()); 571 ID.AddInteger(MST->getRawSubclassData()); 572 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 573 break; 574 } 575 case ISD::MGATHER: { 576 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 577 ID.AddInteger(MG->getMemoryVT().getRawBits()); 578 ID.AddInteger(MG->getRawSubclassData()); 579 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 580 break; 581 } 582 case ISD::MSCATTER: { 583 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 584 ID.AddInteger(MS->getMemoryVT().getRawBits()); 585 ID.AddInteger(MS->getRawSubclassData()); 586 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 587 break; 588 } 589 case ISD::ATOMIC_CMP_SWAP: 590 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 591 case ISD::ATOMIC_SWAP: 592 case ISD::ATOMIC_LOAD_ADD: 593 case ISD::ATOMIC_LOAD_SUB: 594 case ISD::ATOMIC_LOAD_AND: 595 case ISD::ATOMIC_LOAD_CLR: 596 case ISD::ATOMIC_LOAD_OR: 597 case ISD::ATOMIC_LOAD_XOR: 598 case ISD::ATOMIC_LOAD_NAND: 599 case ISD::ATOMIC_LOAD_MIN: 600 case ISD::ATOMIC_LOAD_MAX: 601 case ISD::ATOMIC_LOAD_UMIN: 602 case ISD::ATOMIC_LOAD_UMAX: 603 case ISD::ATOMIC_LOAD: 604 case ISD::ATOMIC_STORE: { 605 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 606 ID.AddInteger(AT->getMemoryVT().getRawBits()); 607 ID.AddInteger(AT->getRawSubclassData()); 608 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 609 break; 610 } 611 case ISD::PREFETCH: { 612 const MemSDNode *PF = cast<MemSDNode>(N); 613 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 614 break; 615 } 616 case ISD::VECTOR_SHUFFLE: { 617 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 618 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 619 i != e; ++i) 620 ID.AddInteger(SVN->getMaskElt(i)); 621 break; 622 } 623 case ISD::TargetBlockAddress: 624 case ISD::BlockAddress: { 625 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 626 ID.AddPointer(BA->getBlockAddress()); 627 ID.AddInteger(BA->getOffset()); 628 ID.AddInteger(BA->getTargetFlags()); 629 break; 630 } 631 } // end switch (N->getOpcode()) 632 633 // Target specific memory nodes could also have address spaces to check. 634 if (N->isTargetMemoryOpcode()) 635 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 636 } 637 638 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 639 /// data. 640 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 641 AddNodeIDOpcode(ID, N->getOpcode()); 642 // Add the return value info. 643 AddNodeIDValueTypes(ID, N->getVTList()); 644 // Add the operand info. 645 AddNodeIDOperands(ID, N->ops()); 646 647 // Handle SDNode leafs with special info. 648 AddNodeIDCustom(ID, N); 649 } 650 651 //===----------------------------------------------------------------------===// 652 // SelectionDAG Class 653 //===----------------------------------------------------------------------===// 654 655 /// doNotCSE - Return true if CSE should not be performed for this node. 656 static bool doNotCSE(SDNode *N) { 657 if (N->getValueType(0) == MVT::Glue) 658 return true; // Never CSE anything that produces a flag. 659 660 switch (N->getOpcode()) { 661 default: break; 662 case ISD::HANDLENODE: 663 case ISD::EH_LABEL: 664 return true; // Never CSE these nodes. 665 } 666 667 // Check that remaining values produced are not flags. 668 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 669 if (N->getValueType(i) == MVT::Glue) 670 return true; // Never CSE anything that produces a flag. 671 672 return false; 673 } 674 675 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 676 /// SelectionDAG. 677 void SelectionDAG::RemoveDeadNodes() { 678 // Create a dummy node (which is not added to allnodes), that adds a reference 679 // to the root node, preventing it from being deleted. 680 HandleSDNode Dummy(getRoot()); 681 682 SmallVector<SDNode*, 128> DeadNodes; 683 684 // Add all obviously-dead nodes to the DeadNodes worklist. 685 for (SDNode &Node : allnodes()) 686 if (Node.use_empty()) 687 DeadNodes.push_back(&Node); 688 689 RemoveDeadNodes(DeadNodes); 690 691 // If the root changed (e.g. it was a dead load, update the root). 692 setRoot(Dummy.getValue()); 693 } 694 695 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 696 /// given list, and any nodes that become unreachable as a result. 697 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 698 699 // Process the worklist, deleting the nodes and adding their uses to the 700 // worklist. 701 while (!DeadNodes.empty()) { 702 SDNode *N = DeadNodes.pop_back_val(); 703 // Skip to next node if we've already managed to delete the node. This could 704 // happen if replacing a node causes a node previously added to the node to 705 // be deleted. 706 if (N->getOpcode() == ISD::DELETED_NODE) 707 continue; 708 709 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 710 DUL->NodeDeleted(N, nullptr); 711 712 // Take the node out of the appropriate CSE map. 713 RemoveNodeFromCSEMaps(N); 714 715 // Next, brutally remove the operand list. This is safe to do, as there are 716 // no cycles in the graph. 717 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 718 SDUse &Use = *I++; 719 SDNode *Operand = Use.getNode(); 720 Use.set(SDValue()); 721 722 // Now that we removed this operand, see if there are no uses of it left. 723 if (Operand->use_empty()) 724 DeadNodes.push_back(Operand); 725 } 726 727 DeallocateNode(N); 728 } 729 } 730 731 void SelectionDAG::RemoveDeadNode(SDNode *N){ 732 SmallVector<SDNode*, 16> DeadNodes(1, N); 733 734 // Create a dummy node that adds a reference to the root node, preventing 735 // it from being deleted. (This matters if the root is an operand of the 736 // dead node.) 737 HandleSDNode Dummy(getRoot()); 738 739 RemoveDeadNodes(DeadNodes); 740 } 741 742 void SelectionDAG::DeleteNode(SDNode *N) { 743 // First take this out of the appropriate CSE map. 744 RemoveNodeFromCSEMaps(N); 745 746 // Finally, remove uses due to operands of this node, remove from the 747 // AllNodes list, and delete the node. 748 DeleteNodeNotInCSEMaps(N); 749 } 750 751 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 752 assert(N->getIterator() != AllNodes.begin() && 753 "Cannot delete the entry node!"); 754 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 755 756 // Drop all of the operands and decrement used node's use counts. 757 N->DropOperands(); 758 759 DeallocateNode(N); 760 } 761 762 void SDDbgInfo::erase(const SDNode *Node) { 763 DbgValMapType::iterator I = DbgValMap.find(Node); 764 if (I == DbgValMap.end()) 765 return; 766 for (auto &Val: I->second) 767 Val->setIsInvalidated(); 768 DbgValMap.erase(I); 769 } 770 771 void SelectionDAG::DeallocateNode(SDNode *N) { 772 // If we have operands, deallocate them. 773 removeOperands(N); 774 775 NodeAllocator.Deallocate(AllNodes.remove(N)); 776 777 // Set the opcode to DELETED_NODE to help catch bugs when node 778 // memory is reallocated. 779 // FIXME: There are places in SDag that have grown a dependency on the opcode 780 // value in the released node. 781 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 782 N->NodeType = ISD::DELETED_NODE; 783 784 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 785 // them and forget about that node. 786 DbgInfo->erase(N); 787 } 788 789 #ifndef NDEBUG 790 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 791 static void VerifySDNode(SDNode *N) { 792 switch (N->getOpcode()) { 793 default: 794 break; 795 case ISD::BUILD_PAIR: { 796 EVT VT = N->getValueType(0); 797 assert(N->getNumValues() == 1 && "Too many results!"); 798 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 799 "Wrong return type!"); 800 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 801 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 802 "Mismatched operand types!"); 803 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 804 "Wrong operand type!"); 805 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 806 "Wrong return type size"); 807 break; 808 } 809 case ISD::BUILD_VECTOR: { 810 assert(N->getNumValues() == 1 && "Too many results!"); 811 assert(N->getValueType(0).isVector() && "Wrong return type!"); 812 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 813 "Wrong number of operands!"); 814 EVT EltVT = N->getValueType(0).getVectorElementType(); 815 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 816 assert((I->getValueType() == EltVT || 817 (EltVT.isInteger() && I->getValueType().isInteger() && 818 EltVT.bitsLE(I->getValueType()))) && 819 "Wrong operand type!"); 820 assert(I->getValueType() == N->getOperand(0).getValueType() && 821 "Operands must all have the same type"); 822 } 823 break; 824 } 825 } 826 } 827 #endif // NDEBUG 828 829 /// Insert a newly allocated node into the DAG. 830 /// 831 /// Handles insertion into the all nodes list and CSE map, as well as 832 /// verification and other common operations when a new node is allocated. 833 void SelectionDAG::InsertNode(SDNode *N) { 834 AllNodes.push_back(N); 835 #ifndef NDEBUG 836 N->PersistentId = NextPersistentId++; 837 VerifySDNode(N); 838 #endif 839 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 840 DUL->NodeInserted(N); 841 } 842 843 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 844 /// correspond to it. This is useful when we're about to delete or repurpose 845 /// the node. We don't want future request for structurally identical nodes 846 /// to return N anymore. 847 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 848 bool Erased = false; 849 switch (N->getOpcode()) { 850 case ISD::HANDLENODE: return false; // noop. 851 case ISD::CONDCODE: 852 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 853 "Cond code doesn't exist!"); 854 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 855 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 856 break; 857 case ISD::ExternalSymbol: 858 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 859 break; 860 case ISD::TargetExternalSymbol: { 861 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 862 Erased = TargetExternalSymbols.erase( 863 std::pair<std::string,unsigned char>(ESN->getSymbol(), 864 ESN->getTargetFlags())); 865 break; 866 } 867 case ISD::MCSymbol: { 868 auto *MCSN = cast<MCSymbolSDNode>(N); 869 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 870 break; 871 } 872 case ISD::VALUETYPE: { 873 EVT VT = cast<VTSDNode>(N)->getVT(); 874 if (VT.isExtended()) { 875 Erased = ExtendedValueTypeNodes.erase(VT); 876 } else { 877 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 878 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 879 } 880 break; 881 } 882 default: 883 // Remove it from the CSE Map. 884 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 885 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 886 Erased = CSEMap.RemoveNode(N); 887 break; 888 } 889 #ifndef NDEBUG 890 // Verify that the node was actually in one of the CSE maps, unless it has a 891 // flag result (which cannot be CSE'd) or is one of the special cases that are 892 // not subject to CSE. 893 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 894 !N->isMachineOpcode() && !doNotCSE(N)) { 895 N->dump(this); 896 dbgs() << "\n"; 897 llvm_unreachable("Node is not in map!"); 898 } 899 #endif 900 return Erased; 901 } 902 903 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 904 /// maps and modified in place. Add it back to the CSE maps, unless an identical 905 /// node already exists, in which case transfer all its users to the existing 906 /// node. This transfer can potentially trigger recursive merging. 907 void 908 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 909 // For node types that aren't CSE'd, just act as if no identical node 910 // already exists. 911 if (!doNotCSE(N)) { 912 SDNode *Existing = CSEMap.GetOrInsertNode(N); 913 if (Existing != N) { 914 // If there was already an existing matching node, use ReplaceAllUsesWith 915 // to replace the dead one with the existing one. This can cause 916 // recursive merging of other unrelated nodes down the line. 917 ReplaceAllUsesWith(N, Existing); 918 919 // N is now dead. Inform the listeners and delete it. 920 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 921 DUL->NodeDeleted(N, Existing); 922 DeleteNodeNotInCSEMaps(N); 923 return; 924 } 925 } 926 927 // If the node doesn't already exist, we updated it. Inform listeners. 928 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 929 DUL->NodeUpdated(N); 930 } 931 932 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 933 /// were replaced with those specified. If this node is never memoized, 934 /// return null, otherwise return a pointer to the slot it would take. If a 935 /// node already exists with these operands, the slot will be non-null. 936 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 937 void *&InsertPos) { 938 if (doNotCSE(N)) 939 return nullptr; 940 941 SDValue Ops[] = { Op }; 942 FoldingSetNodeID ID; 943 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 944 AddNodeIDCustom(ID, N); 945 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 946 if (Node) 947 Node->intersectFlagsWith(N->getFlags()); 948 return Node; 949 } 950 951 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 952 /// were replaced with those specified. If this node is never memoized, 953 /// return null, otherwise return a pointer to the slot it would take. If a 954 /// node already exists with these operands, the slot will be non-null. 955 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 956 SDValue Op1, SDValue Op2, 957 void *&InsertPos) { 958 if (doNotCSE(N)) 959 return nullptr; 960 961 SDValue Ops[] = { Op1, Op2 }; 962 FoldingSetNodeID ID; 963 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 964 AddNodeIDCustom(ID, N); 965 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 966 if (Node) 967 Node->intersectFlagsWith(N->getFlags()); 968 return Node; 969 } 970 971 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 972 /// were replaced with those specified. If this node is never memoized, 973 /// return null, otherwise return a pointer to the slot it would take. If a 974 /// node already exists with these operands, the slot will be non-null. 975 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 976 void *&InsertPos) { 977 if (doNotCSE(N)) 978 return nullptr; 979 980 FoldingSetNodeID ID; 981 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 982 AddNodeIDCustom(ID, N); 983 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 984 if (Node) 985 Node->intersectFlagsWith(N->getFlags()); 986 return Node; 987 } 988 989 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 990 Type *Ty = VT == MVT::iPTR ? 991 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 992 VT.getTypeForEVT(*getContext()); 993 994 return getDataLayout().getABITypeAlignment(Ty); 995 } 996 997 // EntryNode could meaningfully have debug info if we can find it... 998 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 999 : TM(tm), OptLevel(OL), 1000 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1001 Root(getEntryNode()) { 1002 InsertNode(&EntryNode); 1003 DbgInfo = new SDDbgInfo(); 1004 } 1005 1006 void SelectionDAG::init(MachineFunction &NewMF, 1007 OptimizationRemarkEmitter &NewORE, 1008 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1009 LegacyDivergenceAnalysis * Divergence) { 1010 MF = &NewMF; 1011 SDAGISelPass = PassPtr; 1012 ORE = &NewORE; 1013 TLI = getSubtarget().getTargetLowering(); 1014 TSI = getSubtarget().getSelectionDAGInfo(); 1015 LibInfo = LibraryInfo; 1016 Context = &MF->getFunction().getContext(); 1017 DA = Divergence; 1018 } 1019 1020 SelectionDAG::~SelectionDAG() { 1021 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1022 allnodes_clear(); 1023 OperandRecycler.clear(OperandAllocator); 1024 delete DbgInfo; 1025 } 1026 1027 void SelectionDAG::allnodes_clear() { 1028 assert(&*AllNodes.begin() == &EntryNode); 1029 AllNodes.remove(AllNodes.begin()); 1030 while (!AllNodes.empty()) 1031 DeallocateNode(&AllNodes.front()); 1032 #ifndef NDEBUG 1033 NextPersistentId = 0; 1034 #endif 1035 } 1036 1037 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1038 void *&InsertPos) { 1039 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1040 if (N) { 1041 switch (N->getOpcode()) { 1042 default: break; 1043 case ISD::Constant: 1044 case ISD::ConstantFP: 1045 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1046 "debug location. Use another overload."); 1047 } 1048 } 1049 return N; 1050 } 1051 1052 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1053 const SDLoc &DL, void *&InsertPos) { 1054 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1055 if (N) { 1056 switch (N->getOpcode()) { 1057 case ISD::Constant: 1058 case ISD::ConstantFP: 1059 // Erase debug location from the node if the node is used at several 1060 // different places. Do not propagate one location to all uses as it 1061 // will cause a worse single stepping debugging experience. 1062 if (N->getDebugLoc() != DL.getDebugLoc()) 1063 N->setDebugLoc(DebugLoc()); 1064 break; 1065 default: 1066 // When the node's point of use is located earlier in the instruction 1067 // sequence than its prior point of use, update its debug info to the 1068 // earlier location. 1069 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1070 N->setDebugLoc(DL.getDebugLoc()); 1071 break; 1072 } 1073 } 1074 return N; 1075 } 1076 1077 void SelectionDAG::clear() { 1078 allnodes_clear(); 1079 OperandRecycler.clear(OperandAllocator); 1080 OperandAllocator.Reset(); 1081 CSEMap.clear(); 1082 1083 ExtendedValueTypeNodes.clear(); 1084 ExternalSymbols.clear(); 1085 TargetExternalSymbols.clear(); 1086 MCSymbols.clear(); 1087 SDCallSiteDbgInfo.clear(); 1088 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1089 static_cast<CondCodeSDNode*>(nullptr)); 1090 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1091 static_cast<SDNode*>(nullptr)); 1092 1093 EntryNode.UseList = nullptr; 1094 InsertNode(&EntryNode); 1095 Root = getEntryNode(); 1096 DbgInfo->clear(); 1097 } 1098 1099 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1100 return VT.bitsGT(Op.getValueType()) 1101 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1102 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1103 } 1104 1105 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1106 return VT.bitsGT(Op.getValueType()) ? 1107 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1108 getNode(ISD::TRUNCATE, DL, VT, Op); 1109 } 1110 1111 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1112 return VT.bitsGT(Op.getValueType()) ? 1113 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1114 getNode(ISD::TRUNCATE, DL, VT, Op); 1115 } 1116 1117 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1118 return VT.bitsGT(Op.getValueType()) ? 1119 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1120 getNode(ISD::TRUNCATE, DL, VT, Op); 1121 } 1122 1123 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1124 EVT OpVT) { 1125 if (VT.bitsLE(Op.getValueType())) 1126 return getNode(ISD::TRUNCATE, SL, VT, Op); 1127 1128 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1129 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1130 } 1131 1132 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1133 assert(!VT.isVector() && 1134 "getZeroExtendInReg should use the vector element type instead of " 1135 "the vector type!"); 1136 if (Op.getValueType().getScalarType() == VT) return Op; 1137 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1138 APInt Imm = APInt::getLowBitsSet(BitWidth, 1139 VT.getSizeInBits()); 1140 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1141 getConstant(Imm, DL, Op.getValueType())); 1142 } 1143 1144 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1145 // Only unsigned pointer semantics are supported right now. In the future this 1146 // might delegate to TLI to check pointer signedness. 1147 return getZExtOrTrunc(Op, DL, VT); 1148 } 1149 1150 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1151 // Only unsigned pointer semantics are supported right now. In the future this 1152 // might delegate to TLI to check pointer signedness. 1153 return getZeroExtendInReg(Op, DL, VT); 1154 } 1155 1156 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1157 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1158 EVT EltVT = VT.getScalarType(); 1159 SDValue NegOne = 1160 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1161 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1162 } 1163 1164 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1165 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1166 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1167 } 1168 1169 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1170 EVT OpVT) { 1171 if (!V) 1172 return getConstant(0, DL, VT); 1173 1174 switch (TLI->getBooleanContents(OpVT)) { 1175 case TargetLowering::ZeroOrOneBooleanContent: 1176 case TargetLowering::UndefinedBooleanContent: 1177 return getConstant(1, DL, VT); 1178 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1179 return getAllOnesConstant(DL, VT); 1180 } 1181 llvm_unreachable("Unexpected boolean content enum!"); 1182 } 1183 1184 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1185 bool isT, bool isO) { 1186 EVT EltVT = VT.getScalarType(); 1187 assert((EltVT.getSizeInBits() >= 64 || 1188 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1189 "getConstant with a uint64_t value that doesn't fit in the type!"); 1190 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1191 } 1192 1193 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1194 bool isT, bool isO) { 1195 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1196 } 1197 1198 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1199 EVT VT, bool isT, bool isO) { 1200 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1201 1202 EVT EltVT = VT.getScalarType(); 1203 const ConstantInt *Elt = &Val; 1204 1205 // In some cases the vector type is legal but the element type is illegal and 1206 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1207 // inserted value (the type does not need to match the vector element type). 1208 // Any extra bits introduced will be truncated away. 1209 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1210 TargetLowering::TypePromoteInteger) { 1211 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1212 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1213 Elt = ConstantInt::get(*getContext(), NewVal); 1214 } 1215 // In other cases the element type is illegal and needs to be expanded, for 1216 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1217 // the value into n parts and use a vector type with n-times the elements. 1218 // Then bitcast to the type requested. 1219 // Legalizing constants too early makes the DAGCombiner's job harder so we 1220 // only legalize if the DAG tells us we must produce legal types. 1221 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1222 TLI->getTypeAction(*getContext(), EltVT) == 1223 TargetLowering::TypeExpandInteger) { 1224 const APInt &NewVal = Elt->getValue(); 1225 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1226 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1227 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1228 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1229 1230 // Check the temporary vector is the correct size. If this fails then 1231 // getTypeToTransformTo() probably returned a type whose size (in bits) 1232 // isn't a power-of-2 factor of the requested type size. 1233 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1234 1235 SmallVector<SDValue, 2> EltParts; 1236 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1237 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1238 .zextOrTrunc(ViaEltSizeInBits), DL, 1239 ViaEltVT, isT, isO)); 1240 } 1241 1242 // EltParts is currently in little endian order. If we actually want 1243 // big-endian order then reverse it now. 1244 if (getDataLayout().isBigEndian()) 1245 std::reverse(EltParts.begin(), EltParts.end()); 1246 1247 // The elements must be reversed when the element order is different 1248 // to the endianness of the elements (because the BITCAST is itself a 1249 // vector shuffle in this situation). However, we do not need any code to 1250 // perform this reversal because getConstant() is producing a vector 1251 // splat. 1252 // This situation occurs in MIPS MSA. 1253 1254 SmallVector<SDValue, 8> Ops; 1255 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1256 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1257 1258 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1259 return V; 1260 } 1261 1262 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1263 "APInt size does not match type size!"); 1264 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1265 FoldingSetNodeID ID; 1266 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1267 ID.AddPointer(Elt); 1268 ID.AddBoolean(isO); 1269 void *IP = nullptr; 1270 SDNode *N = nullptr; 1271 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1272 if (!VT.isVector()) 1273 return SDValue(N, 0); 1274 1275 if (!N) { 1276 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1277 CSEMap.InsertNode(N, IP); 1278 InsertNode(N); 1279 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1280 } 1281 1282 SDValue Result(N, 0); 1283 if (VT.isVector()) 1284 Result = getSplatBuildVector(VT, DL, Result); 1285 1286 return Result; 1287 } 1288 1289 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1290 bool isTarget) { 1291 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1292 } 1293 1294 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1295 const SDLoc &DL, bool LegalTypes) { 1296 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1297 return getConstant(Val, DL, ShiftVT); 1298 } 1299 1300 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1301 bool isTarget) { 1302 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1303 } 1304 1305 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1306 EVT VT, bool isTarget) { 1307 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1308 1309 EVT EltVT = VT.getScalarType(); 1310 1311 // Do the map lookup using the actual bit pattern for the floating point 1312 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1313 // we don't have issues with SNANs. 1314 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1315 FoldingSetNodeID ID; 1316 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1317 ID.AddPointer(&V); 1318 void *IP = nullptr; 1319 SDNode *N = nullptr; 1320 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1321 if (!VT.isVector()) 1322 return SDValue(N, 0); 1323 1324 if (!N) { 1325 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1326 CSEMap.InsertNode(N, IP); 1327 InsertNode(N); 1328 } 1329 1330 SDValue Result(N, 0); 1331 if (VT.isVector()) 1332 Result = getSplatBuildVector(VT, DL, Result); 1333 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1334 return Result; 1335 } 1336 1337 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1338 bool isTarget) { 1339 EVT EltVT = VT.getScalarType(); 1340 if (EltVT == MVT::f32) 1341 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1342 else if (EltVT == MVT::f64) 1343 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1344 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1345 EltVT == MVT::f16) { 1346 bool Ignored; 1347 APFloat APF = APFloat(Val); 1348 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1349 &Ignored); 1350 return getConstantFP(APF, DL, VT, isTarget); 1351 } else 1352 llvm_unreachable("Unsupported type in getConstantFP"); 1353 } 1354 1355 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1356 EVT VT, int64_t Offset, bool isTargetGA, 1357 unsigned char TargetFlags) { 1358 assert((TargetFlags == 0 || isTargetGA) && 1359 "Cannot set target flags on target-independent globals"); 1360 1361 // Truncate (with sign-extension) the offset value to the pointer size. 1362 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1363 if (BitWidth < 64) 1364 Offset = SignExtend64(Offset, BitWidth); 1365 1366 unsigned Opc; 1367 if (GV->isThreadLocal()) 1368 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1369 else 1370 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1371 1372 FoldingSetNodeID ID; 1373 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1374 ID.AddPointer(GV); 1375 ID.AddInteger(Offset); 1376 ID.AddInteger(TargetFlags); 1377 void *IP = nullptr; 1378 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1379 return SDValue(E, 0); 1380 1381 auto *N = newSDNode<GlobalAddressSDNode>( 1382 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1383 CSEMap.InsertNode(N, IP); 1384 InsertNode(N); 1385 return SDValue(N, 0); 1386 } 1387 1388 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1389 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1390 FoldingSetNodeID ID; 1391 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1392 ID.AddInteger(FI); 1393 void *IP = nullptr; 1394 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1395 return SDValue(E, 0); 1396 1397 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1398 CSEMap.InsertNode(N, IP); 1399 InsertNode(N); 1400 return SDValue(N, 0); 1401 } 1402 1403 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1404 unsigned char TargetFlags) { 1405 assert((TargetFlags == 0 || isTarget) && 1406 "Cannot set target flags on target-independent jump tables"); 1407 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1408 FoldingSetNodeID ID; 1409 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1410 ID.AddInteger(JTI); 1411 ID.AddInteger(TargetFlags); 1412 void *IP = nullptr; 1413 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1414 return SDValue(E, 0); 1415 1416 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1417 CSEMap.InsertNode(N, IP); 1418 InsertNode(N); 1419 return SDValue(N, 0); 1420 } 1421 1422 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1423 unsigned Alignment, int Offset, 1424 bool isTarget, 1425 unsigned char TargetFlags) { 1426 assert((TargetFlags == 0 || isTarget) && 1427 "Cannot set target flags on target-independent globals"); 1428 if (Alignment == 0) 1429 Alignment = MF->getFunction().hasOptSize() 1430 ? getDataLayout().getABITypeAlignment(C->getType()) 1431 : getDataLayout().getPrefTypeAlignment(C->getType()); 1432 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1433 FoldingSetNodeID ID; 1434 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1435 ID.AddInteger(Alignment); 1436 ID.AddInteger(Offset); 1437 ID.AddPointer(C); 1438 ID.AddInteger(TargetFlags); 1439 void *IP = nullptr; 1440 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1441 return SDValue(E, 0); 1442 1443 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1444 TargetFlags); 1445 CSEMap.InsertNode(N, IP); 1446 InsertNode(N); 1447 return SDValue(N, 0); 1448 } 1449 1450 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1451 unsigned Alignment, int Offset, 1452 bool isTarget, 1453 unsigned char TargetFlags) { 1454 assert((TargetFlags == 0 || isTarget) && 1455 "Cannot set target flags on target-independent globals"); 1456 if (Alignment == 0) 1457 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1458 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1459 FoldingSetNodeID ID; 1460 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1461 ID.AddInteger(Alignment); 1462 ID.AddInteger(Offset); 1463 C->addSelectionDAGCSEId(ID); 1464 ID.AddInteger(TargetFlags); 1465 void *IP = nullptr; 1466 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1467 return SDValue(E, 0); 1468 1469 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1470 TargetFlags); 1471 CSEMap.InsertNode(N, IP); 1472 InsertNode(N); 1473 return SDValue(N, 0); 1474 } 1475 1476 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1477 unsigned char TargetFlags) { 1478 FoldingSetNodeID ID; 1479 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1480 ID.AddInteger(Index); 1481 ID.AddInteger(Offset); 1482 ID.AddInteger(TargetFlags); 1483 void *IP = nullptr; 1484 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1485 return SDValue(E, 0); 1486 1487 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1488 CSEMap.InsertNode(N, IP); 1489 InsertNode(N); 1490 return SDValue(N, 0); 1491 } 1492 1493 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1494 FoldingSetNodeID ID; 1495 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1496 ID.AddPointer(MBB); 1497 void *IP = nullptr; 1498 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1499 return SDValue(E, 0); 1500 1501 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1502 CSEMap.InsertNode(N, IP); 1503 InsertNode(N); 1504 return SDValue(N, 0); 1505 } 1506 1507 SDValue SelectionDAG::getValueType(EVT VT) { 1508 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1509 ValueTypeNodes.size()) 1510 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1511 1512 SDNode *&N = VT.isExtended() ? 1513 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1514 1515 if (N) return SDValue(N, 0); 1516 N = newSDNode<VTSDNode>(VT); 1517 InsertNode(N); 1518 return SDValue(N, 0); 1519 } 1520 1521 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1522 SDNode *&N = ExternalSymbols[Sym]; 1523 if (N) return SDValue(N, 0); 1524 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1525 InsertNode(N); 1526 return SDValue(N, 0); 1527 } 1528 1529 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1530 SDNode *&N = MCSymbols[Sym]; 1531 if (N) 1532 return SDValue(N, 0); 1533 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1534 InsertNode(N); 1535 return SDValue(N, 0); 1536 } 1537 1538 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1539 unsigned char TargetFlags) { 1540 SDNode *&N = 1541 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, 1542 TargetFlags)]; 1543 if (N) return SDValue(N, 0); 1544 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1545 InsertNode(N); 1546 return SDValue(N, 0); 1547 } 1548 1549 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1550 if ((unsigned)Cond >= CondCodeNodes.size()) 1551 CondCodeNodes.resize(Cond+1); 1552 1553 if (!CondCodeNodes[Cond]) { 1554 auto *N = newSDNode<CondCodeSDNode>(Cond); 1555 CondCodeNodes[Cond] = N; 1556 InsertNode(N); 1557 } 1558 1559 return SDValue(CondCodeNodes[Cond], 0); 1560 } 1561 1562 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1563 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1564 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1565 std::swap(N1, N2); 1566 ShuffleVectorSDNode::commuteMask(M); 1567 } 1568 1569 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1570 SDValue N2, ArrayRef<int> Mask) { 1571 assert(VT.getVectorNumElements() == Mask.size() && 1572 "Must have the same number of vector elements as mask elements!"); 1573 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1574 "Invalid VECTOR_SHUFFLE"); 1575 1576 // Canonicalize shuffle undef, undef -> undef 1577 if (N1.isUndef() && N2.isUndef()) 1578 return getUNDEF(VT); 1579 1580 // Validate that all indices in Mask are within the range of the elements 1581 // input to the shuffle. 1582 int NElts = Mask.size(); 1583 assert(llvm::all_of(Mask, 1584 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1585 "Index out of range"); 1586 1587 // Copy the mask so we can do any needed cleanup. 1588 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1589 1590 // Canonicalize shuffle v, v -> v, undef 1591 if (N1 == N2) { 1592 N2 = getUNDEF(VT); 1593 for (int i = 0; i != NElts; ++i) 1594 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1595 } 1596 1597 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1598 if (N1.isUndef()) 1599 commuteShuffle(N1, N2, MaskVec); 1600 1601 if (TLI->hasVectorBlend()) { 1602 // If shuffling a splat, try to blend the splat instead. We do this here so 1603 // that even when this arises during lowering we don't have to re-handle it. 1604 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1605 BitVector UndefElements; 1606 SDValue Splat = BV->getSplatValue(&UndefElements); 1607 if (!Splat) 1608 return; 1609 1610 for (int i = 0; i < NElts; ++i) { 1611 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1612 continue; 1613 1614 // If this input comes from undef, mark it as such. 1615 if (UndefElements[MaskVec[i] - Offset]) { 1616 MaskVec[i] = -1; 1617 continue; 1618 } 1619 1620 // If we can blend a non-undef lane, use that instead. 1621 if (!UndefElements[i]) 1622 MaskVec[i] = i + Offset; 1623 } 1624 }; 1625 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1626 BlendSplat(N1BV, 0); 1627 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1628 BlendSplat(N2BV, NElts); 1629 } 1630 1631 // Canonicalize all index into lhs, -> shuffle lhs, undef 1632 // Canonicalize all index into rhs, -> shuffle rhs, undef 1633 bool AllLHS = true, AllRHS = true; 1634 bool N2Undef = N2.isUndef(); 1635 for (int i = 0; i != NElts; ++i) { 1636 if (MaskVec[i] >= NElts) { 1637 if (N2Undef) 1638 MaskVec[i] = -1; 1639 else 1640 AllLHS = false; 1641 } else if (MaskVec[i] >= 0) { 1642 AllRHS = false; 1643 } 1644 } 1645 if (AllLHS && AllRHS) 1646 return getUNDEF(VT); 1647 if (AllLHS && !N2Undef) 1648 N2 = getUNDEF(VT); 1649 if (AllRHS) { 1650 N1 = getUNDEF(VT); 1651 commuteShuffle(N1, N2, MaskVec); 1652 } 1653 // Reset our undef status after accounting for the mask. 1654 N2Undef = N2.isUndef(); 1655 // Re-check whether both sides ended up undef. 1656 if (N1.isUndef() && N2Undef) 1657 return getUNDEF(VT); 1658 1659 // If Identity shuffle return that node. 1660 bool Identity = true, AllSame = true; 1661 for (int i = 0; i != NElts; ++i) { 1662 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1663 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1664 } 1665 if (Identity && NElts) 1666 return N1; 1667 1668 // Shuffling a constant splat doesn't change the result. 1669 if (N2Undef) { 1670 SDValue V = N1; 1671 1672 // Look through any bitcasts. We check that these don't change the number 1673 // (and size) of elements and just changes their types. 1674 while (V.getOpcode() == ISD::BITCAST) 1675 V = V->getOperand(0); 1676 1677 // A splat should always show up as a build vector node. 1678 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1679 BitVector UndefElements; 1680 SDValue Splat = BV->getSplatValue(&UndefElements); 1681 // If this is a splat of an undef, shuffling it is also undef. 1682 if (Splat && Splat.isUndef()) 1683 return getUNDEF(VT); 1684 1685 bool SameNumElts = 1686 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1687 1688 // We only have a splat which can skip shuffles if there is a splatted 1689 // value and no undef lanes rearranged by the shuffle. 1690 if (Splat && UndefElements.none()) { 1691 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1692 // number of elements match or the value splatted is a zero constant. 1693 if (SameNumElts) 1694 return N1; 1695 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1696 if (C->isNullValue()) 1697 return N1; 1698 } 1699 1700 // If the shuffle itself creates a splat, build the vector directly. 1701 if (AllSame && SameNumElts) { 1702 EVT BuildVT = BV->getValueType(0); 1703 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1704 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1705 1706 // We may have jumped through bitcasts, so the type of the 1707 // BUILD_VECTOR may not match the type of the shuffle. 1708 if (BuildVT != VT) 1709 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1710 return NewBV; 1711 } 1712 } 1713 } 1714 1715 FoldingSetNodeID ID; 1716 SDValue Ops[2] = { N1, N2 }; 1717 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1718 for (int i = 0; i != NElts; ++i) 1719 ID.AddInteger(MaskVec[i]); 1720 1721 void* IP = nullptr; 1722 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1723 return SDValue(E, 0); 1724 1725 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1726 // SDNode doesn't have access to it. This memory will be "leaked" when 1727 // the node is deallocated, but recovered when the NodeAllocator is released. 1728 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1729 llvm::copy(MaskVec, MaskAlloc); 1730 1731 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1732 dl.getDebugLoc(), MaskAlloc); 1733 createOperands(N, Ops); 1734 1735 CSEMap.InsertNode(N, IP); 1736 InsertNode(N); 1737 SDValue V = SDValue(N, 0); 1738 NewSDValueDbgMsg(V, "Creating new node: ", this); 1739 return V; 1740 } 1741 1742 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1743 EVT VT = SV.getValueType(0); 1744 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1745 ShuffleVectorSDNode::commuteMask(MaskVec); 1746 1747 SDValue Op0 = SV.getOperand(0); 1748 SDValue Op1 = SV.getOperand(1); 1749 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1750 } 1751 1752 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1753 FoldingSetNodeID ID; 1754 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1755 ID.AddInteger(RegNo); 1756 void *IP = nullptr; 1757 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1758 return SDValue(E, 0); 1759 1760 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1761 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1762 CSEMap.InsertNode(N, IP); 1763 InsertNode(N); 1764 return SDValue(N, 0); 1765 } 1766 1767 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1768 FoldingSetNodeID ID; 1769 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1770 ID.AddPointer(RegMask); 1771 void *IP = nullptr; 1772 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1773 return SDValue(E, 0); 1774 1775 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1776 CSEMap.InsertNode(N, IP); 1777 InsertNode(N); 1778 return SDValue(N, 0); 1779 } 1780 1781 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1782 MCSymbol *Label) { 1783 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1784 } 1785 1786 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1787 SDValue Root, MCSymbol *Label) { 1788 FoldingSetNodeID ID; 1789 SDValue Ops[] = { Root }; 1790 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1791 ID.AddPointer(Label); 1792 void *IP = nullptr; 1793 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1794 return SDValue(E, 0); 1795 1796 auto *N = 1797 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1798 createOperands(N, Ops); 1799 1800 CSEMap.InsertNode(N, IP); 1801 InsertNode(N); 1802 return SDValue(N, 0); 1803 } 1804 1805 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1806 int64_t Offset, 1807 bool isTarget, 1808 unsigned char TargetFlags) { 1809 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1810 1811 FoldingSetNodeID ID; 1812 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1813 ID.AddPointer(BA); 1814 ID.AddInteger(Offset); 1815 ID.AddInteger(TargetFlags); 1816 void *IP = nullptr; 1817 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1818 return SDValue(E, 0); 1819 1820 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1821 CSEMap.InsertNode(N, IP); 1822 InsertNode(N); 1823 return SDValue(N, 0); 1824 } 1825 1826 SDValue SelectionDAG::getSrcValue(const Value *V) { 1827 assert((!V || V->getType()->isPointerTy()) && 1828 "SrcValue is not a pointer?"); 1829 1830 FoldingSetNodeID ID; 1831 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1832 ID.AddPointer(V); 1833 1834 void *IP = nullptr; 1835 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1836 return SDValue(E, 0); 1837 1838 auto *N = newSDNode<SrcValueSDNode>(V); 1839 CSEMap.InsertNode(N, IP); 1840 InsertNode(N); 1841 return SDValue(N, 0); 1842 } 1843 1844 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1845 FoldingSetNodeID ID; 1846 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1847 ID.AddPointer(MD); 1848 1849 void *IP = nullptr; 1850 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1851 return SDValue(E, 0); 1852 1853 auto *N = newSDNode<MDNodeSDNode>(MD); 1854 CSEMap.InsertNode(N, IP); 1855 InsertNode(N); 1856 return SDValue(N, 0); 1857 } 1858 1859 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1860 if (VT == V.getValueType()) 1861 return V; 1862 1863 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1864 } 1865 1866 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1867 unsigned SrcAS, unsigned DestAS) { 1868 SDValue Ops[] = {Ptr}; 1869 FoldingSetNodeID ID; 1870 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1871 ID.AddInteger(SrcAS); 1872 ID.AddInteger(DestAS); 1873 1874 void *IP = nullptr; 1875 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1876 return SDValue(E, 0); 1877 1878 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1879 VT, SrcAS, DestAS); 1880 createOperands(N, Ops); 1881 1882 CSEMap.InsertNode(N, IP); 1883 InsertNode(N); 1884 return SDValue(N, 0); 1885 } 1886 1887 /// getShiftAmountOperand - Return the specified value casted to 1888 /// the target's desired shift amount type. 1889 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1890 EVT OpTy = Op.getValueType(); 1891 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1892 if (OpTy == ShTy || OpTy.isVector()) return Op; 1893 1894 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1895 } 1896 1897 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1898 SDLoc dl(Node); 1899 const TargetLowering &TLI = getTargetLoweringInfo(); 1900 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1901 EVT VT = Node->getValueType(0); 1902 SDValue Tmp1 = Node->getOperand(0); 1903 SDValue Tmp2 = Node->getOperand(1); 1904 unsigned Align = Node->getConstantOperandVal(3); 1905 1906 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1907 Tmp2, MachinePointerInfo(V)); 1908 SDValue VAList = VAListLoad; 1909 1910 if (Align > TLI.getMinStackArgumentAlignment()) { 1911 assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); 1912 1913 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1914 getConstant(Align - 1, dl, VAList.getValueType())); 1915 1916 VAList = getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1917 getConstant(-(int64_t)Align, dl, VAList.getValueType())); 1918 } 1919 1920 // Increment the pointer, VAList, to the next vaarg 1921 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1922 getConstant(getDataLayout().getTypeAllocSize( 1923 VT.getTypeForEVT(*getContext())), 1924 dl, VAList.getValueType())); 1925 // Store the incremented VAList to the legalized pointer 1926 Tmp1 = 1927 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1928 // Load the actual argument out of the pointer VAList 1929 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1930 } 1931 1932 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1933 SDLoc dl(Node); 1934 const TargetLowering &TLI = getTargetLoweringInfo(); 1935 // This defaults to loading a pointer from the input and storing it to the 1936 // output, returning the chain. 1937 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1938 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1939 SDValue Tmp1 = 1940 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1941 Node->getOperand(2), MachinePointerInfo(VS)); 1942 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1943 MachinePointerInfo(VD)); 1944 } 1945 1946 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1947 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1948 unsigned ByteSize = VT.getStoreSize(); 1949 Type *Ty = VT.getTypeForEVT(*getContext()); 1950 unsigned StackAlign = 1951 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1952 1953 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1954 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1955 } 1956 1957 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1958 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1959 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1960 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1961 const DataLayout &DL = getDataLayout(); 1962 unsigned Align = 1963 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 1964 1965 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1966 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 1967 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1968 } 1969 1970 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 1971 ISD::CondCode Cond, const SDLoc &dl) { 1972 EVT OpVT = N1.getValueType(); 1973 1974 // These setcc operations always fold. 1975 switch (Cond) { 1976 default: break; 1977 case ISD::SETFALSE: 1978 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 1979 case ISD::SETTRUE: 1980 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 1981 1982 case ISD::SETOEQ: 1983 case ISD::SETOGT: 1984 case ISD::SETOGE: 1985 case ISD::SETOLT: 1986 case ISD::SETOLE: 1987 case ISD::SETONE: 1988 case ISD::SETO: 1989 case ISD::SETUO: 1990 case ISD::SETUEQ: 1991 case ISD::SETUNE: 1992 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 1993 break; 1994 } 1995 1996 if (OpVT.isInteger()) { 1997 // For EQ and NE, we can always pick a value for the undef to make the 1998 // predicate pass or fail, so we can return undef. 1999 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2000 // icmp eq/ne X, undef -> undef. 2001 if ((N1.isUndef() || N2.isUndef()) && 2002 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2003 return getUNDEF(VT); 2004 2005 // If both operands are undef, we can return undef for int comparison. 2006 // icmp undef, undef -> undef. 2007 if (N1.isUndef() && N2.isUndef()) 2008 return getUNDEF(VT); 2009 2010 // icmp X, X -> true/false 2011 // icmp X, undef -> true/false because undef could be X. 2012 if (N1 == N2) 2013 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2014 } 2015 2016 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2017 const APInt &C2 = N2C->getAPIntValue(); 2018 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2019 const APInt &C1 = N1C->getAPIntValue(); 2020 2021 switch (Cond) { 2022 default: llvm_unreachable("Unknown integer setcc!"); 2023 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2024 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2025 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2026 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2027 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2028 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2029 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2030 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2031 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2032 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2033 } 2034 } 2035 } 2036 2037 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2038 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2039 2040 if (N1CFP && N2CFP) { 2041 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2042 switch (Cond) { 2043 default: break; 2044 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2045 return getUNDEF(VT); 2046 LLVM_FALLTHROUGH; 2047 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2048 OpVT); 2049 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2050 return getUNDEF(VT); 2051 LLVM_FALLTHROUGH; 2052 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2053 R==APFloat::cmpLessThan, dl, VT, 2054 OpVT); 2055 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2056 return getUNDEF(VT); 2057 LLVM_FALLTHROUGH; 2058 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2059 OpVT); 2060 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2061 return getUNDEF(VT); 2062 LLVM_FALLTHROUGH; 2063 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2064 VT, OpVT); 2065 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2066 return getUNDEF(VT); 2067 LLVM_FALLTHROUGH; 2068 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2069 R==APFloat::cmpEqual, dl, VT, 2070 OpVT); 2071 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2072 return getUNDEF(VT); 2073 LLVM_FALLTHROUGH; 2074 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2075 R==APFloat::cmpEqual, dl, VT, OpVT); 2076 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2077 OpVT); 2078 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2079 OpVT); 2080 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2081 R==APFloat::cmpEqual, dl, VT, 2082 OpVT); 2083 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2084 OpVT); 2085 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2086 R==APFloat::cmpLessThan, dl, VT, 2087 OpVT); 2088 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2089 R==APFloat::cmpUnordered, dl, VT, 2090 OpVT); 2091 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2092 VT, OpVT); 2093 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2094 OpVT); 2095 } 2096 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2097 // Ensure that the constant occurs on the RHS. 2098 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2099 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2100 return SDValue(); 2101 return getSetCC(dl, VT, N2, N1, SwappedCond); 2102 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2103 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2104 // If an operand is known to be a nan (or undef that could be a nan), we can 2105 // fold it. 2106 // Choosing NaN for the undef will always make unordered comparison succeed 2107 // and ordered comparison fails. 2108 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2109 switch (ISD::getUnorderedFlavor(Cond)) { 2110 default: 2111 llvm_unreachable("Unknown flavor!"); 2112 case 0: // Known false. 2113 return getBoolConstant(false, dl, VT, OpVT); 2114 case 1: // Known true. 2115 return getBoolConstant(true, dl, VT, OpVT); 2116 case 2: // Undefined. 2117 return getUNDEF(VT); 2118 } 2119 } 2120 2121 // Could not fold it. 2122 return SDValue(); 2123 } 2124 2125 /// See if the specified operand can be simplified with the knowledge that only 2126 /// the bits specified by DemandedBits are used. 2127 /// TODO: really we should be making this into the DAG equivalent of 2128 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2129 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2130 EVT VT = V.getValueType(); 2131 APInt DemandedElts = VT.isVector() 2132 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2133 : APInt(1, 1); 2134 return GetDemandedBits(V, DemandedBits, DemandedElts); 2135 } 2136 2137 /// See if the specified operand can be simplified with the knowledge that only 2138 /// the bits specified by DemandedBits are used in the elements specified by 2139 /// DemandedElts. 2140 /// TODO: really we should be making this into the DAG equivalent of 2141 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2142 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2143 const APInt &DemandedElts) { 2144 switch (V.getOpcode()) { 2145 default: 2146 break; 2147 case ISD::Constant: { 2148 auto *CV = cast<ConstantSDNode>(V.getNode()); 2149 assert(CV && "Const value should be ConstSDNode."); 2150 const APInt &CVal = CV->getAPIntValue(); 2151 APInt NewVal = CVal & DemandedBits; 2152 if (NewVal != CVal) 2153 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2154 break; 2155 } 2156 case ISD::OR: 2157 case ISD::XOR: 2158 // If the LHS or RHS don't contribute bits to the or, drop them. 2159 if (MaskedValueIsZero(V.getOperand(0), DemandedBits)) 2160 return V.getOperand(1); 2161 if (MaskedValueIsZero(V.getOperand(1), DemandedBits)) 2162 return V.getOperand(0); 2163 break; 2164 case ISD::SRL: 2165 // Only look at single-use SRLs. 2166 if (!V.getNode()->hasOneUse()) 2167 break; 2168 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2169 // See if we can recursively simplify the LHS. 2170 unsigned Amt = RHSC->getZExtValue(); 2171 2172 // Watch out for shift count overflow though. 2173 if (Amt >= DemandedBits.getBitWidth()) 2174 break; 2175 APInt SrcDemandedBits = DemandedBits << Amt; 2176 if (SDValue SimplifyLHS = 2177 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2178 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2179 V.getOperand(1)); 2180 } 2181 break; 2182 case ISD::AND: { 2183 // X & -1 -> X (ignoring bits which aren't demanded). 2184 // Also handle the case where masked out bits in X are known to be zero. 2185 if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { 2186 const APInt &AndVal = RHSC->getAPIntValue(); 2187 if (DemandedBits.isSubsetOf(AndVal) || 2188 DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | 2189 AndVal)) 2190 return V.getOperand(0); 2191 } 2192 break; 2193 } 2194 case ISD::ANY_EXTEND: { 2195 SDValue Src = V.getOperand(0); 2196 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 2197 // Being conservative here - only peek through if we only demand bits in the 2198 // non-extended source (even though the extended bits are technically 2199 // undef). 2200 if (DemandedBits.getActiveBits() > SrcBitWidth) 2201 break; 2202 APInt SrcDemandedBits = DemandedBits.trunc(SrcBitWidth); 2203 if (SDValue DemandedSrc = GetDemandedBits(Src, SrcDemandedBits)) 2204 return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc); 2205 break; 2206 } 2207 case ISD::SIGN_EXTEND_INREG: 2208 EVT ExVT = cast<VTSDNode>(V.getOperand(1))->getVT(); 2209 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2210 2211 // If none of the extended bits are demanded, eliminate the sextinreg. 2212 if (DemandedBits.getActiveBits() <= ExVTBits) 2213 return V.getOperand(0); 2214 2215 break; 2216 } 2217 return SDValue(); 2218 } 2219 2220 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2221 /// use this predicate to simplify operations downstream. 2222 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2223 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2224 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2225 } 2226 2227 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2228 /// this predicate to simplify operations downstream. Mask is known to be zero 2229 /// for bits that V cannot have. 2230 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2231 unsigned Depth) const { 2232 EVT VT = V.getValueType(); 2233 APInt DemandedElts = VT.isVector() 2234 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2235 : APInt(1, 1); 2236 return MaskedValueIsZero(V, Mask, DemandedElts, Depth); 2237 } 2238 2239 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2240 /// DemandedElts. We use this predicate to simplify operations downstream. 2241 /// Mask is known to be zero for bits that V cannot have. 2242 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2243 const APInt &DemandedElts, 2244 unsigned Depth) const { 2245 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2246 } 2247 2248 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2249 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2250 unsigned Depth) const { 2251 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2252 } 2253 2254 /// isSplatValue - Return true if the vector V has the same value 2255 /// across all DemandedElts. 2256 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2257 APInt &UndefElts) { 2258 if (!DemandedElts) 2259 return false; // No demanded elts, better to assume we don't know anything. 2260 2261 EVT VT = V.getValueType(); 2262 assert(VT.isVector() && "Vector type expected"); 2263 2264 unsigned NumElts = VT.getVectorNumElements(); 2265 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2266 UndefElts = APInt::getNullValue(NumElts); 2267 2268 switch (V.getOpcode()) { 2269 case ISD::BUILD_VECTOR: { 2270 SDValue Scl; 2271 for (unsigned i = 0; i != NumElts; ++i) { 2272 SDValue Op = V.getOperand(i); 2273 if (Op.isUndef()) { 2274 UndefElts.setBit(i); 2275 continue; 2276 } 2277 if (!DemandedElts[i]) 2278 continue; 2279 if (Scl && Scl != Op) 2280 return false; 2281 Scl = Op; 2282 } 2283 return true; 2284 } 2285 case ISD::VECTOR_SHUFFLE: { 2286 // Check if this is a shuffle node doing a splat. 2287 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2288 int SplatIndex = -1; 2289 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2290 for (int i = 0; i != (int)NumElts; ++i) { 2291 int M = Mask[i]; 2292 if (M < 0) { 2293 UndefElts.setBit(i); 2294 continue; 2295 } 2296 if (!DemandedElts[i]) 2297 continue; 2298 if (0 <= SplatIndex && SplatIndex != M) 2299 return false; 2300 SplatIndex = M; 2301 } 2302 return true; 2303 } 2304 case ISD::EXTRACT_SUBVECTOR: { 2305 SDValue Src = V.getOperand(0); 2306 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1)); 2307 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2308 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2309 // Offset the demanded elts by the subvector index. 2310 uint64_t Idx = SubIdx->getZExtValue(); 2311 APInt UndefSrcElts; 2312 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2313 if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) { 2314 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2315 return true; 2316 } 2317 } 2318 break; 2319 } 2320 case ISD::ADD: 2321 case ISD::SUB: 2322 case ISD::AND: { 2323 APInt UndefLHS, UndefRHS; 2324 SDValue LHS = V.getOperand(0); 2325 SDValue RHS = V.getOperand(1); 2326 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2327 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2328 UndefElts = UndefLHS | UndefRHS; 2329 return true; 2330 } 2331 break; 2332 } 2333 } 2334 2335 return false; 2336 } 2337 2338 /// Helper wrapper to main isSplatValue function. 2339 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2340 EVT VT = V.getValueType(); 2341 assert(VT.isVector() && "Vector type expected"); 2342 unsigned NumElts = VT.getVectorNumElements(); 2343 2344 APInt UndefElts; 2345 APInt DemandedElts = APInt::getAllOnesValue(NumElts); 2346 return isSplatValue(V, DemandedElts, UndefElts) && 2347 (AllowUndefs || !UndefElts); 2348 } 2349 2350 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2351 V = peekThroughExtractSubvectors(V); 2352 2353 EVT VT = V.getValueType(); 2354 unsigned Opcode = V.getOpcode(); 2355 switch (Opcode) { 2356 default: { 2357 APInt UndefElts; 2358 APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2359 if (isSplatValue(V, DemandedElts, UndefElts)) { 2360 // Handle case where all demanded elements are UNDEF. 2361 if (DemandedElts.isSubsetOf(UndefElts)) { 2362 SplatIdx = 0; 2363 return getUNDEF(VT); 2364 } 2365 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2366 return V; 2367 } 2368 break; 2369 } 2370 case ISD::VECTOR_SHUFFLE: { 2371 // Check if this is a shuffle node doing a splat. 2372 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2373 // getTargetVShiftNode currently struggles without the splat source. 2374 auto *SVN = cast<ShuffleVectorSDNode>(V); 2375 if (!SVN->isSplat()) 2376 break; 2377 int Idx = SVN->getSplatIndex(); 2378 int NumElts = V.getValueType().getVectorNumElements(); 2379 SplatIdx = Idx % NumElts; 2380 return V.getOperand(Idx / NumElts); 2381 } 2382 } 2383 2384 return SDValue(); 2385 } 2386 2387 SDValue SelectionDAG::getSplatValue(SDValue V) { 2388 int SplatIdx; 2389 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2390 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2391 SrcVector.getValueType().getScalarType(), SrcVector, 2392 getIntPtrConstant(SplatIdx, SDLoc(V))); 2393 return SDValue(); 2394 } 2395 2396 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 2397 /// is less than the element bit-width of the shift node, return it. 2398 static const APInt *getValidShiftAmountConstant(SDValue V) { 2399 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1))) { 2400 // Shifting more than the bitwidth is not valid. 2401 const APInt &ShAmt = SA->getAPIntValue(); 2402 if (ShAmt.ult(V.getScalarValueSizeInBits())) 2403 return &ShAmt; 2404 } 2405 return nullptr; 2406 } 2407 2408 /// Determine which bits of Op are known to be either zero or one and return 2409 /// them in Known. For vectors, the known bits are those that are shared by 2410 /// every vector element. 2411 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2412 EVT VT = Op.getValueType(); 2413 APInt DemandedElts = VT.isVector() 2414 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2415 : APInt(1, 1); 2416 return computeKnownBits(Op, DemandedElts, Depth); 2417 } 2418 2419 /// Determine which bits of Op are known to be either zero or one and return 2420 /// them in Known. The DemandedElts argument allows us to only collect the known 2421 /// bits that are shared by the requested vector elements. 2422 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2423 unsigned Depth) const { 2424 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2425 2426 KnownBits Known(BitWidth); // Don't know anything. 2427 2428 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2429 // We know all of the bits for a constant! 2430 Known.One = C->getAPIntValue(); 2431 Known.Zero = ~Known.One; 2432 return Known; 2433 } 2434 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2435 // We know all of the bits for a constant fp! 2436 Known.One = C->getValueAPF().bitcastToAPInt(); 2437 Known.Zero = ~Known.One; 2438 return Known; 2439 } 2440 2441 if (Depth == 6) 2442 return Known; // Limit search depth. 2443 2444 KnownBits Known2; 2445 unsigned NumElts = DemandedElts.getBitWidth(); 2446 assert((!Op.getValueType().isVector() || 2447 NumElts == Op.getValueType().getVectorNumElements()) && 2448 "Unexpected vector size"); 2449 2450 if (!DemandedElts) 2451 return Known; // No demanded elts, better to assume we don't know anything. 2452 2453 unsigned Opcode = Op.getOpcode(); 2454 switch (Opcode) { 2455 case ISD::BUILD_VECTOR: 2456 // Collect the known bits that are shared by every demanded vector element. 2457 Known.Zero.setAllBits(); Known.One.setAllBits(); 2458 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2459 if (!DemandedElts[i]) 2460 continue; 2461 2462 SDValue SrcOp = Op.getOperand(i); 2463 Known2 = computeKnownBits(SrcOp, Depth + 1); 2464 2465 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2466 if (SrcOp.getValueSizeInBits() != BitWidth) { 2467 assert(SrcOp.getValueSizeInBits() > BitWidth && 2468 "Expected BUILD_VECTOR implicit truncation"); 2469 Known2 = Known2.trunc(BitWidth); 2470 } 2471 2472 // Known bits are the values that are shared by every demanded element. 2473 Known.One &= Known2.One; 2474 Known.Zero &= Known2.Zero; 2475 2476 // If we don't know any bits, early out. 2477 if (Known.isUnknown()) 2478 break; 2479 } 2480 break; 2481 case ISD::VECTOR_SHUFFLE: { 2482 // Collect the known bits that are shared by every vector element referenced 2483 // by the shuffle. 2484 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2485 Known.Zero.setAllBits(); Known.One.setAllBits(); 2486 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2487 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2488 for (unsigned i = 0; i != NumElts; ++i) { 2489 if (!DemandedElts[i]) 2490 continue; 2491 2492 int M = SVN->getMaskElt(i); 2493 if (M < 0) { 2494 // For UNDEF elements, we don't know anything about the common state of 2495 // the shuffle result. 2496 Known.resetAll(); 2497 DemandedLHS.clearAllBits(); 2498 DemandedRHS.clearAllBits(); 2499 break; 2500 } 2501 2502 if ((unsigned)M < NumElts) 2503 DemandedLHS.setBit((unsigned)M % NumElts); 2504 else 2505 DemandedRHS.setBit((unsigned)M % NumElts); 2506 } 2507 // Known bits are the values that are shared by every demanded element. 2508 if (!!DemandedLHS) { 2509 SDValue LHS = Op.getOperand(0); 2510 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2511 Known.One &= Known2.One; 2512 Known.Zero &= Known2.Zero; 2513 } 2514 // If we don't know any bits, early out. 2515 if (Known.isUnknown()) 2516 break; 2517 if (!!DemandedRHS) { 2518 SDValue RHS = Op.getOperand(1); 2519 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2520 Known.One &= Known2.One; 2521 Known.Zero &= Known2.Zero; 2522 } 2523 break; 2524 } 2525 case ISD::CONCAT_VECTORS: { 2526 // Split DemandedElts and test each of the demanded subvectors. 2527 Known.Zero.setAllBits(); Known.One.setAllBits(); 2528 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2529 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2530 unsigned NumSubVectors = Op.getNumOperands(); 2531 for (unsigned i = 0; i != NumSubVectors; ++i) { 2532 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2533 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2534 if (!!DemandedSub) { 2535 SDValue Sub = Op.getOperand(i); 2536 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2537 Known.One &= Known2.One; 2538 Known.Zero &= Known2.Zero; 2539 } 2540 // If we don't know any bits, early out. 2541 if (Known.isUnknown()) 2542 break; 2543 } 2544 break; 2545 } 2546 case ISD::INSERT_SUBVECTOR: { 2547 // If we know the element index, demand any elements from the subvector and 2548 // the remainder from the src its inserted into, otherwise demand them all. 2549 SDValue Src = Op.getOperand(0); 2550 SDValue Sub = Op.getOperand(1); 2551 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2552 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2553 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 2554 Known.One.setAllBits(); 2555 Known.Zero.setAllBits(); 2556 uint64_t Idx = SubIdx->getZExtValue(); 2557 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2558 if (!!DemandedSubElts) { 2559 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2560 if (Known.isUnknown()) 2561 break; // early-out. 2562 } 2563 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 2564 APInt DemandedSrcElts = DemandedElts & ~SubMask; 2565 if (!!DemandedSrcElts) { 2566 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2567 Known.One &= Known2.One; 2568 Known.Zero &= Known2.Zero; 2569 } 2570 } else { 2571 Known = computeKnownBits(Sub, Depth + 1); 2572 if (Known.isUnknown()) 2573 break; // early-out. 2574 Known2 = computeKnownBits(Src, Depth + 1); 2575 Known.One &= Known2.One; 2576 Known.Zero &= Known2.Zero; 2577 } 2578 break; 2579 } 2580 case ISD::EXTRACT_SUBVECTOR: { 2581 // If we know the element index, just demand that subvector elements, 2582 // otherwise demand them all. 2583 SDValue Src = Op.getOperand(0); 2584 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2585 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2586 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2587 // Offset the demanded elts by the subvector index. 2588 uint64_t Idx = SubIdx->getZExtValue(); 2589 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2590 Known = computeKnownBits(Src, DemandedSrc, Depth + 1); 2591 } else { 2592 Known = computeKnownBits(Src, Depth + 1); 2593 } 2594 break; 2595 } 2596 case ISD::SCALAR_TO_VECTOR: { 2597 // We know about scalar_to_vector as much as we know about it source, 2598 // which becomes the first element of otherwise unknown vector. 2599 if (DemandedElts != 1) 2600 break; 2601 2602 SDValue N0 = Op.getOperand(0); 2603 Known = computeKnownBits(N0, Depth + 1); 2604 if (N0.getValueSizeInBits() != BitWidth) 2605 Known = Known.trunc(BitWidth); 2606 2607 break; 2608 } 2609 case ISD::BITCAST: { 2610 SDValue N0 = Op.getOperand(0); 2611 EVT SubVT = N0.getValueType(); 2612 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2613 2614 // Ignore bitcasts from unsupported types. 2615 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2616 break; 2617 2618 // Fast handling of 'identity' bitcasts. 2619 if (BitWidth == SubBitWidth) { 2620 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2621 break; 2622 } 2623 2624 bool IsLE = getDataLayout().isLittleEndian(); 2625 2626 // Bitcast 'small element' vector to 'large element' scalar/vector. 2627 if ((BitWidth % SubBitWidth) == 0) { 2628 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2629 2630 // Collect known bits for the (larger) output by collecting the known 2631 // bits from each set of sub elements and shift these into place. 2632 // We need to separately call computeKnownBits for each set of 2633 // sub elements as the knownbits for each is likely to be different. 2634 unsigned SubScale = BitWidth / SubBitWidth; 2635 APInt SubDemandedElts(NumElts * SubScale, 0); 2636 for (unsigned i = 0; i != NumElts; ++i) 2637 if (DemandedElts[i]) 2638 SubDemandedElts.setBit(i * SubScale); 2639 2640 for (unsigned i = 0; i != SubScale; ++i) { 2641 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2642 Depth + 1); 2643 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2644 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2645 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2646 } 2647 } 2648 2649 // Bitcast 'large element' scalar/vector to 'small element' vector. 2650 if ((SubBitWidth % BitWidth) == 0) { 2651 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2652 2653 // Collect known bits for the (smaller) output by collecting the known 2654 // bits from the overlapping larger input elements and extracting the 2655 // sub sections we actually care about. 2656 unsigned SubScale = SubBitWidth / BitWidth; 2657 APInt SubDemandedElts(NumElts / SubScale, 0); 2658 for (unsigned i = 0; i != NumElts; ++i) 2659 if (DemandedElts[i]) 2660 SubDemandedElts.setBit(i / SubScale); 2661 2662 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2663 2664 Known.Zero.setAllBits(); Known.One.setAllBits(); 2665 for (unsigned i = 0; i != NumElts; ++i) 2666 if (DemandedElts[i]) { 2667 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2668 unsigned Offset = (Shifts % SubScale) * BitWidth; 2669 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2670 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2671 // If we don't know any bits, early out. 2672 if (Known.isUnknown()) 2673 break; 2674 } 2675 } 2676 break; 2677 } 2678 case ISD::AND: 2679 // If either the LHS or the RHS are Zero, the result is zero. 2680 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2681 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2682 2683 // Output known-1 bits are only known if set in both the LHS & RHS. 2684 Known.One &= Known2.One; 2685 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2686 Known.Zero |= Known2.Zero; 2687 break; 2688 case ISD::OR: 2689 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2690 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2691 2692 // Output known-0 bits are only known if clear in both the LHS & RHS. 2693 Known.Zero &= Known2.Zero; 2694 // Output known-1 are known to be set if set in either the LHS | RHS. 2695 Known.One |= Known2.One; 2696 break; 2697 case ISD::XOR: { 2698 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2699 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2700 2701 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2702 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 2703 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2704 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 2705 Known.Zero = KnownZeroOut; 2706 break; 2707 } 2708 case ISD::MUL: { 2709 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2710 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2711 2712 // If low bits are zero in either operand, output low known-0 bits. 2713 // Also compute a conservative estimate for high known-0 bits. 2714 // More trickiness is possible, but this is sufficient for the 2715 // interesting case of alignment computation. 2716 unsigned TrailZ = Known.countMinTrailingZeros() + 2717 Known2.countMinTrailingZeros(); 2718 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2719 Known2.countMinLeadingZeros(), 2720 BitWidth) - BitWidth; 2721 2722 Known.resetAll(); 2723 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2724 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2725 break; 2726 } 2727 case ISD::UDIV: { 2728 // For the purposes of computing leading zeros we can conservatively 2729 // treat a udiv as a logical right shift by the power of 2 known to 2730 // be less than the denominator. 2731 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2732 unsigned LeadZ = Known2.countMinLeadingZeros(); 2733 2734 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2735 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2736 if (RHSMaxLeadingZeros != BitWidth) 2737 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2738 2739 Known.Zero.setHighBits(LeadZ); 2740 break; 2741 } 2742 case ISD::SELECT: 2743 case ISD::VSELECT: 2744 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2745 // If we don't know any bits, early out. 2746 if (Known.isUnknown()) 2747 break; 2748 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2749 2750 // Only known if known in both the LHS and RHS. 2751 Known.One &= Known2.One; 2752 Known.Zero &= Known2.Zero; 2753 break; 2754 case ISD::SELECT_CC: 2755 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2756 // If we don't know any bits, early out. 2757 if (Known.isUnknown()) 2758 break; 2759 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2760 2761 // Only known if known in both the LHS and RHS. 2762 Known.One &= Known2.One; 2763 Known.Zero &= Known2.Zero; 2764 break; 2765 case ISD::SMULO: 2766 case ISD::UMULO: 2767 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2768 if (Op.getResNo() != 1) 2769 break; 2770 // The boolean result conforms to getBooleanContents. 2771 // If we know the result of a setcc has the top bits zero, use this info. 2772 // We know that we have an integer-based boolean since these operations 2773 // are only available for integer. 2774 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2775 TargetLowering::ZeroOrOneBooleanContent && 2776 BitWidth > 1) 2777 Known.Zero.setBitsFrom(1); 2778 break; 2779 case ISD::SETCC: 2780 // If we know the result of a setcc has the top bits zero, use this info. 2781 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 2782 TargetLowering::ZeroOrOneBooleanContent && 2783 BitWidth > 1) 2784 Known.Zero.setBitsFrom(1); 2785 break; 2786 case ISD::SHL: 2787 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2788 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2789 unsigned Shift = ShAmt->getZExtValue(); 2790 Known.Zero <<= Shift; 2791 Known.One <<= Shift; 2792 // Low bits are known zero. 2793 Known.Zero.setLowBits(Shift); 2794 } 2795 break; 2796 case ISD::SRL: 2797 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2798 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2799 unsigned Shift = ShAmt->getZExtValue(); 2800 Known.Zero.lshrInPlace(Shift); 2801 Known.One.lshrInPlace(Shift); 2802 // High bits are known zero. 2803 Known.Zero.setHighBits(Shift); 2804 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(Op.getOperand(1))) { 2805 // If the shift amount is a vector of constants see if we can bound 2806 // the number of upper zero bits. 2807 unsigned ShiftAmountMin = BitWidth; 2808 for (unsigned i = 0; i != BV->getNumOperands(); ++i) { 2809 if (auto *C = dyn_cast<ConstantSDNode>(BV->getOperand(i))) { 2810 const APInt &ShAmt = C->getAPIntValue(); 2811 if (ShAmt.ult(BitWidth)) { 2812 ShiftAmountMin = std::min<unsigned>(ShiftAmountMin, 2813 ShAmt.getZExtValue()); 2814 continue; 2815 } 2816 } 2817 // Don't know anything. 2818 ShiftAmountMin = 0; 2819 break; 2820 } 2821 2822 Known.Zero.setHighBits(ShiftAmountMin); 2823 } 2824 break; 2825 case ISD::SRA: 2826 if (const APInt *ShAmt = getValidShiftAmountConstant(Op)) { 2827 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2828 unsigned Shift = ShAmt->getZExtValue(); 2829 // Sign extend known zero/one bit (else is unknown). 2830 Known.Zero.ashrInPlace(Shift); 2831 Known.One.ashrInPlace(Shift); 2832 } 2833 break; 2834 case ISD::FSHL: 2835 case ISD::FSHR: 2836 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2837 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2838 2839 // For fshl, 0-shift returns the 1st arg. 2840 // For fshr, 0-shift returns the 2nd arg. 2841 if (Amt == 0) { 2842 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2843 DemandedElts, Depth + 1); 2844 break; 2845 } 2846 2847 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2848 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2849 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2850 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2851 if (Opcode == ISD::FSHL) { 2852 Known.One <<= Amt; 2853 Known.Zero <<= Amt; 2854 Known2.One.lshrInPlace(BitWidth - Amt); 2855 Known2.Zero.lshrInPlace(BitWidth - Amt); 2856 } else { 2857 Known.One <<= BitWidth - Amt; 2858 Known.Zero <<= BitWidth - Amt; 2859 Known2.One.lshrInPlace(Amt); 2860 Known2.Zero.lshrInPlace(Amt); 2861 } 2862 Known.One |= Known2.One; 2863 Known.Zero |= Known2.Zero; 2864 } 2865 break; 2866 case ISD::SIGN_EXTEND_INREG: { 2867 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2868 unsigned EBits = EVT.getScalarSizeInBits(); 2869 2870 // Sign extension. Compute the demanded bits in the result that are not 2871 // present in the input. 2872 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2873 2874 APInt InSignMask = APInt::getSignMask(EBits); 2875 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2876 2877 // If the sign extended bits are demanded, we know that the sign 2878 // bit is demanded. 2879 InSignMask = InSignMask.zext(BitWidth); 2880 if (NewBits.getBoolValue()) 2881 InputDemandedBits |= InSignMask; 2882 2883 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2884 Known.One &= InputDemandedBits; 2885 Known.Zero &= InputDemandedBits; 2886 2887 // If the sign bit of the input is known set or clear, then we know the 2888 // top bits of the result. 2889 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2890 Known.Zero |= NewBits; 2891 Known.One &= ~NewBits; 2892 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2893 Known.One |= NewBits; 2894 Known.Zero &= ~NewBits; 2895 } else { // Input sign bit unknown 2896 Known.Zero &= ~NewBits; 2897 Known.One &= ~NewBits; 2898 } 2899 break; 2900 } 2901 case ISD::CTTZ: 2902 case ISD::CTTZ_ZERO_UNDEF: { 2903 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2904 // If we have a known 1, its position is our upper bound. 2905 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2906 unsigned LowBits = Log2_32(PossibleTZ) + 1; 2907 Known.Zero.setBitsFrom(LowBits); 2908 break; 2909 } 2910 case ISD::CTLZ: 2911 case ISD::CTLZ_ZERO_UNDEF: { 2912 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2913 // If we have a known 1, its position is our upper bound. 2914 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 2915 unsigned LowBits = Log2_32(PossibleLZ) + 1; 2916 Known.Zero.setBitsFrom(LowBits); 2917 break; 2918 } 2919 case ISD::CTPOP: { 2920 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2921 // If we know some of the bits are zero, they can't be one. 2922 unsigned PossibleOnes = Known2.countMaxPopulation(); 2923 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 2924 break; 2925 } 2926 case ISD::LOAD: { 2927 LoadSDNode *LD = cast<LoadSDNode>(Op); 2928 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 2929 if (ISD::isNON_EXTLoad(LD) && Cst) { 2930 // Determine any common known bits from the loaded constant pool value. 2931 Type *CstTy = Cst->getType(); 2932 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 2933 // If its a vector splat, then we can (quickly) reuse the scalar path. 2934 // NOTE: We assume all elements match and none are UNDEF. 2935 if (CstTy->isVectorTy()) { 2936 if (const Constant *Splat = Cst->getSplatValue()) { 2937 Cst = Splat; 2938 CstTy = Cst->getType(); 2939 } 2940 } 2941 // TODO - do we need to handle different bitwidths? 2942 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 2943 // Iterate across all vector elements finding common known bits. 2944 Known.One.setAllBits(); 2945 Known.Zero.setAllBits(); 2946 for (unsigned i = 0; i != NumElts; ++i) { 2947 if (!DemandedElts[i]) 2948 continue; 2949 if (Constant *Elt = Cst->getAggregateElement(i)) { 2950 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 2951 const APInt &Value = CInt->getValue(); 2952 Known.One &= Value; 2953 Known.Zero &= ~Value; 2954 continue; 2955 } 2956 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 2957 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 2958 Known.One &= Value; 2959 Known.Zero &= ~Value; 2960 continue; 2961 } 2962 } 2963 Known.One.clearAllBits(); 2964 Known.Zero.clearAllBits(); 2965 break; 2966 } 2967 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 2968 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 2969 const APInt &Value = CInt->getValue(); 2970 Known.One = Value; 2971 Known.Zero = ~Value; 2972 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 2973 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 2974 Known.One = Value; 2975 Known.Zero = ~Value; 2976 } 2977 } 2978 } 2979 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 2980 // If this is a ZEXTLoad and we are looking at the loaded value. 2981 EVT VT = LD->getMemoryVT(); 2982 unsigned MemBits = VT.getScalarSizeInBits(); 2983 Known.Zero.setBitsFrom(MemBits); 2984 } else if (const MDNode *Ranges = LD->getRanges()) { 2985 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 2986 computeKnownBitsFromRangeMetadata(*Ranges, Known); 2987 } 2988 break; 2989 } 2990 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2991 EVT InVT = Op.getOperand(0).getValueType(); 2992 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 2993 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 2994 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 2995 break; 2996 } 2997 case ISD::ZERO_EXTEND: { 2998 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2999 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 3000 break; 3001 } 3002 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3003 EVT InVT = Op.getOperand(0).getValueType(); 3004 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3005 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3006 // If the sign bit is known to be zero or one, then sext will extend 3007 // it to the top bits, else it will just zext. 3008 Known = Known.sext(BitWidth); 3009 break; 3010 } 3011 case ISD::SIGN_EXTEND: { 3012 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3013 // If the sign bit is known to be zero or one, then sext will extend 3014 // it to the top bits, else it will just zext. 3015 Known = Known.sext(BitWidth); 3016 break; 3017 } 3018 case ISD::ANY_EXTEND: { 3019 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3020 Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */); 3021 break; 3022 } 3023 case ISD::TRUNCATE: { 3024 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3025 Known = Known.trunc(BitWidth); 3026 break; 3027 } 3028 case ISD::AssertZext: { 3029 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3030 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3031 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3032 Known.Zero |= (~InMask); 3033 Known.One &= (~Known.Zero); 3034 break; 3035 } 3036 case ISD::FGETSIGN: 3037 // All bits are zero except the low bit. 3038 Known.Zero.setBitsFrom(1); 3039 break; 3040 case ISD::USUBO: 3041 case ISD::SSUBO: 3042 if (Op.getResNo() == 1) { 3043 // If we know the result of a setcc has the top bits zero, use this info. 3044 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3045 TargetLowering::ZeroOrOneBooleanContent && 3046 BitWidth > 1) 3047 Known.Zero.setBitsFrom(1); 3048 break; 3049 } 3050 LLVM_FALLTHROUGH; 3051 case ISD::SUB: 3052 case ISD::SUBC: { 3053 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3054 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3055 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3056 Known, Known2); 3057 break; 3058 } 3059 case ISD::UADDO: 3060 case ISD::SADDO: 3061 case ISD::ADDCARRY: 3062 if (Op.getResNo() == 1) { 3063 // If we know the result of a setcc has the top bits zero, use this info. 3064 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3065 TargetLowering::ZeroOrOneBooleanContent && 3066 BitWidth > 1) 3067 Known.Zero.setBitsFrom(1); 3068 break; 3069 } 3070 LLVM_FALLTHROUGH; 3071 case ISD::ADD: 3072 case ISD::ADDC: 3073 case ISD::ADDE: { 3074 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3075 3076 // With ADDE and ADDCARRY, a carry bit may be added in. 3077 KnownBits Carry(1); 3078 if (Opcode == ISD::ADDE) 3079 // Can't track carry from glue, set carry to unknown. 3080 Carry.resetAll(); 3081 else if (Opcode == ISD::ADDCARRY) 3082 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3083 // the trouble (how often will we find a known carry bit). And I haven't 3084 // tested this very much yet, but something like this might work: 3085 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3086 // Carry = Carry.zextOrTrunc(1, false); 3087 Carry.resetAll(); 3088 else 3089 Carry.setAllZero(); 3090 3091 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3092 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3093 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3094 break; 3095 } 3096 case ISD::SREM: 3097 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3098 const APInt &RA = Rem->getAPIntValue().abs(); 3099 if (RA.isPowerOf2()) { 3100 APInt LowBits = RA - 1; 3101 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3102 3103 // The low bits of the first operand are unchanged by the srem. 3104 Known.Zero = Known2.Zero & LowBits; 3105 Known.One = Known2.One & LowBits; 3106 3107 // If the first operand is non-negative or has all low bits zero, then 3108 // the upper bits are all zero. 3109 if (Known2.Zero[BitWidth-1] || ((Known2.Zero & LowBits) == LowBits)) 3110 Known.Zero |= ~LowBits; 3111 3112 // If the first operand is negative and not all low bits are zero, then 3113 // the upper bits are all one. 3114 if (Known2.One[BitWidth-1] && ((Known2.One & LowBits) != 0)) 3115 Known.One |= ~LowBits; 3116 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3117 } 3118 } 3119 break; 3120 case ISD::UREM: { 3121 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3122 const APInt &RA = Rem->getAPIntValue(); 3123 if (RA.isPowerOf2()) { 3124 APInt LowBits = (RA - 1); 3125 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3126 3127 // The upper bits are all zero, the lower ones are unchanged. 3128 Known.Zero = Known2.Zero | ~LowBits; 3129 Known.One = Known2.One & LowBits; 3130 break; 3131 } 3132 } 3133 3134 // Since the result is less than or equal to either operand, any leading 3135 // zero bits in either operand must also exist in the result. 3136 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3137 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3138 3139 uint32_t Leaders = 3140 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3141 Known.resetAll(); 3142 Known.Zero.setHighBits(Leaders); 3143 break; 3144 } 3145 case ISD::EXTRACT_ELEMENT: { 3146 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3147 const unsigned Index = Op.getConstantOperandVal(1); 3148 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3149 3150 // Remove low part of known bits mask 3151 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3152 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3153 3154 // Remove high part of known bit mask 3155 Known = Known.trunc(EltBitWidth); 3156 break; 3157 } 3158 case ISD::EXTRACT_VECTOR_ELT: { 3159 SDValue InVec = Op.getOperand(0); 3160 SDValue EltNo = Op.getOperand(1); 3161 EVT VecVT = InVec.getValueType(); 3162 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3163 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3164 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3165 // anything about the extended bits. 3166 if (BitWidth > EltBitWidth) 3167 Known = Known.trunc(EltBitWidth); 3168 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3169 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 3170 // If we know the element index, just demand that vector element. 3171 unsigned Idx = ConstEltNo->getZExtValue(); 3172 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 3173 Known = computeKnownBits(InVec, DemandedElt, Depth + 1); 3174 } else { 3175 // Unknown element index, so ignore DemandedElts and demand them all. 3176 Known = computeKnownBits(InVec, Depth + 1); 3177 } 3178 if (BitWidth > EltBitWidth) 3179 Known = Known.zext(BitWidth, false /* => any extend */); 3180 break; 3181 } 3182 case ISD::INSERT_VECTOR_ELT: { 3183 SDValue InVec = Op.getOperand(0); 3184 SDValue InVal = Op.getOperand(1); 3185 SDValue EltNo = Op.getOperand(2); 3186 3187 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3188 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3189 // If we know the element index, split the demand between the 3190 // source vector and the inserted element. 3191 Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth); 3192 unsigned EltIdx = CEltNo->getZExtValue(); 3193 3194 // If we demand the inserted element then add its common known bits. 3195 if (DemandedElts[EltIdx]) { 3196 Known2 = computeKnownBits(InVal, Depth + 1); 3197 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 3198 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 3199 } 3200 3201 // If we demand the source vector then add its common known bits, ensuring 3202 // that we don't demand the inserted element. 3203 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); 3204 if (!!VectorElts) { 3205 Known2 = computeKnownBits(InVec, VectorElts, Depth + 1); 3206 Known.One &= Known2.One; 3207 Known.Zero &= Known2.Zero; 3208 } 3209 } else { 3210 // Unknown element index, so ignore DemandedElts and demand them all. 3211 Known = computeKnownBits(InVec, Depth + 1); 3212 Known2 = computeKnownBits(InVal, Depth + 1); 3213 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 3214 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 3215 } 3216 break; 3217 } 3218 case ISD::BITREVERSE: { 3219 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3220 Known.Zero = Known2.Zero.reverseBits(); 3221 Known.One = Known2.One.reverseBits(); 3222 break; 3223 } 3224 case ISD::BSWAP: { 3225 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3226 Known.Zero = Known2.Zero.byteSwap(); 3227 Known.One = Known2.One.byteSwap(); 3228 break; 3229 } 3230 case ISD::ABS: { 3231 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3232 3233 // If the source's MSB is zero then we know the rest of the bits already. 3234 if (Known2.isNonNegative()) { 3235 Known.Zero = Known2.Zero; 3236 Known.One = Known2.One; 3237 break; 3238 } 3239 3240 // We only know that the absolute values's MSB will be zero iff there is 3241 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3242 Known2.One.clearSignBit(); 3243 if (Known2.One.getBoolValue()) { 3244 Known.Zero = APInt::getSignMask(BitWidth); 3245 break; 3246 } 3247 break; 3248 } 3249 case ISD::UMIN: { 3250 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3251 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3252 3253 // UMIN - we know that the result will have the maximum of the 3254 // known zero leading bits of the inputs. 3255 unsigned LeadZero = Known.countMinLeadingZeros(); 3256 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3257 3258 Known.Zero &= Known2.Zero; 3259 Known.One &= Known2.One; 3260 Known.Zero.setHighBits(LeadZero); 3261 break; 3262 } 3263 case ISD::UMAX: { 3264 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3265 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3266 3267 // UMAX - we know that the result will have the maximum of the 3268 // known one leading bits of the inputs. 3269 unsigned LeadOne = Known.countMinLeadingOnes(); 3270 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3271 3272 Known.Zero &= Known2.Zero; 3273 Known.One &= Known2.One; 3274 Known.One.setHighBits(LeadOne); 3275 break; 3276 } 3277 case ISD::SMIN: 3278 case ISD::SMAX: { 3279 // If we have a clamp pattern, we know that the number of sign bits will be 3280 // the minimum of the clamp min/max range. 3281 bool IsMax = (Opcode == ISD::SMAX); 3282 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3283 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3284 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3285 CstHigh = 3286 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3287 if (CstLow && CstHigh) { 3288 if (!IsMax) 3289 std::swap(CstLow, CstHigh); 3290 3291 const APInt &ValueLow = CstLow->getAPIntValue(); 3292 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3293 if (ValueLow.sle(ValueHigh)) { 3294 unsigned LowSignBits = ValueLow.getNumSignBits(); 3295 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3296 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3297 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3298 Known.One.setHighBits(MinSignBits); 3299 break; 3300 } 3301 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3302 Known.Zero.setHighBits(MinSignBits); 3303 break; 3304 } 3305 } 3306 } 3307 3308 // Fallback - just get the shared known bits of the operands. 3309 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3310 if (Known.isUnknown()) break; // Early-out 3311 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3312 Known.Zero &= Known2.Zero; 3313 Known.One &= Known2.One; 3314 break; 3315 } 3316 case ISD::FrameIndex: 3317 case ISD::TargetFrameIndex: 3318 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 3319 break; 3320 3321 default: 3322 if (Opcode < ISD::BUILTIN_OP_END) 3323 break; 3324 LLVM_FALLTHROUGH; 3325 case ISD::INTRINSIC_WO_CHAIN: 3326 case ISD::INTRINSIC_W_CHAIN: 3327 case ISD::INTRINSIC_VOID: 3328 // Allow the target to implement this method for its nodes. 3329 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3330 break; 3331 } 3332 3333 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3334 return Known; 3335 } 3336 3337 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3338 SDValue N1) const { 3339 // X + 0 never overflow 3340 if (isNullConstant(N1)) 3341 return OFK_Never; 3342 3343 KnownBits N1Known = computeKnownBits(N1); 3344 if (N1Known.Zero.getBoolValue()) { 3345 KnownBits N0Known = computeKnownBits(N0); 3346 3347 bool overflow; 3348 (void)(~N0Known.Zero).uadd_ov(~N1Known.Zero, overflow); 3349 if (!overflow) 3350 return OFK_Never; 3351 } 3352 3353 // mulhi + 1 never overflow 3354 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3355 (~N1Known.Zero & 0x01) == ~N1Known.Zero) 3356 return OFK_Never; 3357 3358 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3359 KnownBits N0Known = computeKnownBits(N0); 3360 3361 if ((~N0Known.Zero & 0x01) == ~N0Known.Zero) 3362 return OFK_Never; 3363 } 3364 3365 return OFK_Sometime; 3366 } 3367 3368 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3369 EVT OpVT = Val.getValueType(); 3370 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3371 3372 // Is the constant a known power of 2? 3373 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3374 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3375 3376 // A left-shift of a constant one will have exactly one bit set because 3377 // shifting the bit off the end is undefined. 3378 if (Val.getOpcode() == ISD::SHL) { 3379 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3380 if (C && C->getAPIntValue() == 1) 3381 return true; 3382 } 3383 3384 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3385 // one bit set. 3386 if (Val.getOpcode() == ISD::SRL) { 3387 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3388 if (C && C->getAPIntValue().isSignMask()) 3389 return true; 3390 } 3391 3392 // Are all operands of a build vector constant powers of two? 3393 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3394 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3395 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3396 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3397 return false; 3398 })) 3399 return true; 3400 3401 // More could be done here, though the above checks are enough 3402 // to handle some common cases. 3403 3404 // Fall back to computeKnownBits to catch other known cases. 3405 KnownBits Known = computeKnownBits(Val); 3406 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3407 } 3408 3409 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3410 EVT VT = Op.getValueType(); 3411 APInt DemandedElts = VT.isVector() 3412 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3413 : APInt(1, 1); 3414 return ComputeNumSignBits(Op, DemandedElts, Depth); 3415 } 3416 3417 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3418 unsigned Depth) const { 3419 EVT VT = Op.getValueType(); 3420 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3421 unsigned VTBits = VT.getScalarSizeInBits(); 3422 unsigned NumElts = DemandedElts.getBitWidth(); 3423 unsigned Tmp, Tmp2; 3424 unsigned FirstAnswer = 1; 3425 3426 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3427 const APInt &Val = C->getAPIntValue(); 3428 return Val.getNumSignBits(); 3429 } 3430 3431 if (Depth == 6) 3432 return 1; // Limit search depth. 3433 3434 if (!DemandedElts) 3435 return 1; // No demanded elts, better to assume we don't know anything. 3436 3437 unsigned Opcode = Op.getOpcode(); 3438 switch (Opcode) { 3439 default: break; 3440 case ISD::AssertSext: 3441 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3442 return VTBits-Tmp+1; 3443 case ISD::AssertZext: 3444 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3445 return VTBits-Tmp; 3446 3447 case ISD::BUILD_VECTOR: 3448 Tmp = VTBits; 3449 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3450 if (!DemandedElts[i]) 3451 continue; 3452 3453 SDValue SrcOp = Op.getOperand(i); 3454 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3455 3456 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3457 if (SrcOp.getValueSizeInBits() != VTBits) { 3458 assert(SrcOp.getValueSizeInBits() > VTBits && 3459 "Expected BUILD_VECTOR implicit truncation"); 3460 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3461 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3462 } 3463 Tmp = std::min(Tmp, Tmp2); 3464 } 3465 return Tmp; 3466 3467 case ISD::VECTOR_SHUFFLE: { 3468 // Collect the minimum number of sign bits that are shared by every vector 3469 // element referenced by the shuffle. 3470 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3471 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3472 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3473 for (unsigned i = 0; i != NumElts; ++i) { 3474 int M = SVN->getMaskElt(i); 3475 if (!DemandedElts[i]) 3476 continue; 3477 // For UNDEF elements, we don't know anything about the common state of 3478 // the shuffle result. 3479 if (M < 0) 3480 return 1; 3481 if ((unsigned)M < NumElts) 3482 DemandedLHS.setBit((unsigned)M % NumElts); 3483 else 3484 DemandedRHS.setBit((unsigned)M % NumElts); 3485 } 3486 Tmp = std::numeric_limits<unsigned>::max(); 3487 if (!!DemandedLHS) 3488 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3489 if (!!DemandedRHS) { 3490 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3491 Tmp = std::min(Tmp, Tmp2); 3492 } 3493 // If we don't know anything, early out and try computeKnownBits fall-back. 3494 if (Tmp == 1) 3495 break; 3496 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3497 return Tmp; 3498 } 3499 3500 case ISD::BITCAST: { 3501 SDValue N0 = Op.getOperand(0); 3502 EVT SrcVT = N0.getValueType(); 3503 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3504 3505 // Ignore bitcasts from unsupported types.. 3506 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3507 break; 3508 3509 // Fast handling of 'identity' bitcasts. 3510 if (VTBits == SrcBits) 3511 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3512 3513 bool IsLE = getDataLayout().isLittleEndian(); 3514 3515 // Bitcast 'large element' scalar/vector to 'small element' vector. 3516 if ((SrcBits % VTBits) == 0) { 3517 assert(VT.isVector() && "Expected bitcast to vector"); 3518 3519 unsigned Scale = SrcBits / VTBits; 3520 APInt SrcDemandedElts(NumElts / Scale, 0); 3521 for (unsigned i = 0; i != NumElts; ++i) 3522 if (DemandedElts[i]) 3523 SrcDemandedElts.setBit(i / Scale); 3524 3525 // Fast case - sign splat can be simply split across the small elements. 3526 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3527 if (Tmp == SrcBits) 3528 return VTBits; 3529 3530 // Slow case - determine how far the sign extends into each sub-element. 3531 Tmp2 = VTBits; 3532 for (unsigned i = 0; i != NumElts; ++i) 3533 if (DemandedElts[i]) { 3534 unsigned SubOffset = i % Scale; 3535 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3536 SubOffset = SubOffset * VTBits; 3537 if (Tmp <= SubOffset) 3538 return 1; 3539 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3540 } 3541 return Tmp2; 3542 } 3543 break; 3544 } 3545 3546 case ISD::SIGN_EXTEND: 3547 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3548 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3549 case ISD::SIGN_EXTEND_INREG: 3550 // Max of the input and what this extends. 3551 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3552 Tmp = VTBits-Tmp+1; 3553 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3554 return std::max(Tmp, Tmp2); 3555 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3556 SDValue Src = Op.getOperand(0); 3557 EVT SrcVT = Src.getValueType(); 3558 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3559 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3560 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3561 } 3562 3563 case ISD::SRA: 3564 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3565 // SRA X, C -> adds C sign bits. 3566 if (ConstantSDNode *C = 3567 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3568 APInt ShiftVal = C->getAPIntValue(); 3569 ShiftVal += Tmp; 3570 Tmp = ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue(); 3571 } 3572 return Tmp; 3573 case ISD::SHL: 3574 if (ConstantSDNode *C = 3575 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3576 // shl destroys sign bits. 3577 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3578 if (C->getAPIntValue().uge(VTBits) || // Bad shift. 3579 C->getAPIntValue().uge(Tmp)) break; // Shifted all sign bits out. 3580 return Tmp - C->getZExtValue(); 3581 } 3582 break; 3583 case ISD::AND: 3584 case ISD::OR: 3585 case ISD::XOR: // NOT is handled here. 3586 // Logical binary ops preserve the number of sign bits at the worst. 3587 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3588 if (Tmp != 1) { 3589 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3590 FirstAnswer = std::min(Tmp, Tmp2); 3591 // We computed what we know about the sign bits as our first 3592 // answer. Now proceed to the generic code that uses 3593 // computeKnownBits, and pick whichever answer is better. 3594 } 3595 break; 3596 3597 case ISD::SELECT: 3598 case ISD::VSELECT: 3599 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3600 if (Tmp == 1) return 1; // Early out. 3601 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3602 return std::min(Tmp, Tmp2); 3603 case ISD::SELECT_CC: 3604 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3605 if (Tmp == 1) return 1; // Early out. 3606 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3607 return std::min(Tmp, Tmp2); 3608 3609 case ISD::SMIN: 3610 case ISD::SMAX: { 3611 // If we have a clamp pattern, we know that the number of sign bits will be 3612 // the minimum of the clamp min/max range. 3613 bool IsMax = (Opcode == ISD::SMAX); 3614 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3615 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3616 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3617 CstHigh = 3618 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3619 if (CstLow && CstHigh) { 3620 if (!IsMax) 3621 std::swap(CstLow, CstHigh); 3622 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3623 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3624 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3625 return std::min(Tmp, Tmp2); 3626 } 3627 } 3628 3629 // Fallback - just get the minimum number of sign bits of the operands. 3630 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3631 if (Tmp == 1) 3632 return 1; // Early out. 3633 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3634 return std::min(Tmp, Tmp2); 3635 } 3636 case ISD::UMIN: 3637 case ISD::UMAX: 3638 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3639 if (Tmp == 1) 3640 return 1; // Early out. 3641 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3642 return std::min(Tmp, Tmp2); 3643 case ISD::SADDO: 3644 case ISD::UADDO: 3645 case ISD::SSUBO: 3646 case ISD::USUBO: 3647 case ISD::SMULO: 3648 case ISD::UMULO: 3649 if (Op.getResNo() != 1) 3650 break; 3651 // The boolean result conforms to getBooleanContents. Fall through. 3652 // If setcc returns 0/-1, all bits are sign bits. 3653 // We know that we have an integer-based boolean since these operations 3654 // are only available for integer. 3655 if (TLI->getBooleanContents(VT.isVector(), false) == 3656 TargetLowering::ZeroOrNegativeOneBooleanContent) 3657 return VTBits; 3658 break; 3659 case ISD::SETCC: 3660 // If setcc returns 0/-1, all bits are sign bits. 3661 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3662 TargetLowering::ZeroOrNegativeOneBooleanContent) 3663 return VTBits; 3664 break; 3665 case ISD::ROTL: 3666 case ISD::ROTR: 3667 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3668 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3669 3670 // Handle rotate right by N like a rotate left by 32-N. 3671 if (Opcode == ISD::ROTR) 3672 RotAmt = (VTBits - RotAmt) % VTBits; 3673 3674 // If we aren't rotating out all of the known-in sign bits, return the 3675 // number that are left. This handles rotl(sext(x), 1) for example. 3676 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3677 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3678 } 3679 break; 3680 case ISD::ADD: 3681 case ISD::ADDC: 3682 // Add can have at most one carry bit. Thus we know that the output 3683 // is, at worst, one more bit than the inputs. 3684 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3685 if (Tmp == 1) return 1; // Early out. 3686 3687 // Special case decrementing a value (ADD X, -1): 3688 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3689 if (CRHS->isAllOnesValue()) { 3690 KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1); 3691 3692 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3693 // sign bits set. 3694 if ((Known.Zero | 1).isAllOnesValue()) 3695 return VTBits; 3696 3697 // If we are subtracting one from a positive number, there is no carry 3698 // out of the result. 3699 if (Known.isNonNegative()) 3700 return Tmp; 3701 } 3702 3703 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3704 if (Tmp2 == 1) return 1; 3705 return std::min(Tmp, Tmp2)-1; 3706 3707 case ISD::SUB: 3708 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3709 if (Tmp2 == 1) return 1; 3710 3711 // Handle NEG. 3712 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 3713 if (CLHS->isNullValue()) { 3714 KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1); 3715 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3716 // sign bits set. 3717 if ((Known.Zero | 1).isAllOnesValue()) 3718 return VTBits; 3719 3720 // If the input is known to be positive (the sign bit is known clear), 3721 // the output of the NEG has the same number of sign bits as the input. 3722 if (Known.isNonNegative()) 3723 return Tmp2; 3724 3725 // Otherwise, we treat this like a SUB. 3726 } 3727 3728 // Sub can have at most one carry bit. Thus we know that the output 3729 // is, at worst, one more bit than the inputs. 3730 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3731 if (Tmp == 1) return 1; // Early out. 3732 return std::min(Tmp, Tmp2)-1; 3733 case ISD::TRUNCATE: { 3734 // Check if the sign bits of source go down as far as the truncated value. 3735 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3736 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3737 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3738 return NumSrcSignBits - (NumSrcBits - VTBits); 3739 break; 3740 } 3741 case ISD::EXTRACT_ELEMENT: { 3742 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3743 const int BitWidth = Op.getValueSizeInBits(); 3744 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3745 3746 // Get reverse index (starting from 1), Op1 value indexes elements from 3747 // little end. Sign starts at big end. 3748 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3749 3750 // If the sign portion ends in our element the subtraction gives correct 3751 // result. Otherwise it gives either negative or > bitwidth result 3752 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3753 } 3754 case ISD::INSERT_VECTOR_ELT: { 3755 SDValue InVec = Op.getOperand(0); 3756 SDValue InVal = Op.getOperand(1); 3757 SDValue EltNo = Op.getOperand(2); 3758 3759 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3760 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3761 // If we know the element index, split the demand between the 3762 // source vector and the inserted element. 3763 unsigned EltIdx = CEltNo->getZExtValue(); 3764 3765 // If we demand the inserted element then get its sign bits. 3766 Tmp = std::numeric_limits<unsigned>::max(); 3767 if (DemandedElts[EltIdx]) { 3768 // TODO - handle implicit truncation of inserted elements. 3769 if (InVal.getScalarValueSizeInBits() != VTBits) 3770 break; 3771 Tmp = ComputeNumSignBits(InVal, Depth + 1); 3772 } 3773 3774 // If we demand the source vector then get its sign bits, and determine 3775 // the minimum. 3776 APInt VectorElts = DemandedElts; 3777 VectorElts.clearBit(EltIdx); 3778 if (!!VectorElts) { 3779 Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1); 3780 Tmp = std::min(Tmp, Tmp2); 3781 } 3782 } else { 3783 // Unknown element index, so ignore DemandedElts and demand them all. 3784 Tmp = ComputeNumSignBits(InVec, Depth + 1); 3785 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3786 Tmp = std::min(Tmp, Tmp2); 3787 } 3788 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3789 return Tmp; 3790 } 3791 case ISD::EXTRACT_VECTOR_ELT: { 3792 SDValue InVec = Op.getOperand(0); 3793 SDValue EltNo = Op.getOperand(1); 3794 EVT VecVT = InVec.getValueType(); 3795 const unsigned BitWidth = Op.getValueSizeInBits(); 3796 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3797 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3798 3799 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3800 // anything about sign bits. But if the sizes match we can derive knowledge 3801 // about sign bits from the vector operand. 3802 if (BitWidth != EltBitWidth) 3803 break; 3804 3805 // If we know the element index, just demand that vector element, else for 3806 // an unknown element index, ignore DemandedElts and demand them all. 3807 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3808 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3809 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3810 DemandedSrcElts = 3811 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3812 3813 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3814 } 3815 case ISD::EXTRACT_SUBVECTOR: { 3816 // If we know the element index, just demand that subvector elements, 3817 // otherwise demand them all. 3818 SDValue Src = Op.getOperand(0); 3819 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3820 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3821 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 3822 // Offset the demanded elts by the subvector index. 3823 uint64_t Idx = SubIdx->getZExtValue(); 3824 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3825 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); 3826 } 3827 return ComputeNumSignBits(Src, Depth + 1); 3828 } 3829 case ISD::CONCAT_VECTORS: { 3830 // Determine the minimum number of sign bits across all demanded 3831 // elts of the input vectors. Early out if the result is already 1. 3832 Tmp = std::numeric_limits<unsigned>::max(); 3833 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3834 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3835 unsigned NumSubVectors = Op.getNumOperands(); 3836 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3837 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3838 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3839 if (!DemandedSub) 3840 continue; 3841 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3842 Tmp = std::min(Tmp, Tmp2); 3843 } 3844 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3845 return Tmp; 3846 } 3847 case ISD::INSERT_SUBVECTOR: { 3848 // If we know the element index, demand any elements from the subvector and 3849 // the remainder from the src its inserted into, otherwise demand them all. 3850 SDValue Src = Op.getOperand(0); 3851 SDValue Sub = Op.getOperand(1); 3852 auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3853 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3854 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 3855 Tmp = std::numeric_limits<unsigned>::max(); 3856 uint64_t Idx = SubIdx->getZExtValue(); 3857 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3858 if (!!DemandedSubElts) { 3859 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3860 if (Tmp == 1) return 1; // early-out 3861 } 3862 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 3863 APInt DemandedSrcElts = DemandedElts & ~SubMask; 3864 if (!!DemandedSrcElts) { 3865 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3866 Tmp = std::min(Tmp, Tmp2); 3867 } 3868 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3869 return Tmp; 3870 } 3871 3872 // Not able to determine the index so just assume worst case. 3873 Tmp = ComputeNumSignBits(Sub, Depth + 1); 3874 if (Tmp == 1) return 1; // early-out 3875 Tmp2 = ComputeNumSignBits(Src, Depth + 1); 3876 Tmp = std::min(Tmp, Tmp2); 3877 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3878 return Tmp; 3879 } 3880 } 3881 3882 // If we are looking at the loaded value of the SDNode. 3883 if (Op.getResNo() == 0) { 3884 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3885 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3886 unsigned ExtType = LD->getExtensionType(); 3887 switch (ExtType) { 3888 default: break; 3889 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 3890 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3891 return VTBits - Tmp + 1; 3892 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 3893 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3894 return VTBits - Tmp; 3895 case ISD::NON_EXTLOAD: 3896 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 3897 // We only need to handle vectors - computeKnownBits should handle 3898 // scalar cases. 3899 Type *CstTy = Cst->getType(); 3900 if (CstTy->isVectorTy() && 3901 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 3902 Tmp = VTBits; 3903 for (unsigned i = 0; i != NumElts; ++i) { 3904 if (!DemandedElts[i]) 3905 continue; 3906 if (Constant *Elt = Cst->getAggregateElement(i)) { 3907 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3908 const APInt &Value = CInt->getValue(); 3909 Tmp = std::min(Tmp, Value.getNumSignBits()); 3910 continue; 3911 } 3912 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3913 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3914 Tmp = std::min(Tmp, Value.getNumSignBits()); 3915 continue; 3916 } 3917 } 3918 // Unknown type. Conservatively assume no bits match sign bit. 3919 return 1; 3920 } 3921 return Tmp; 3922 } 3923 } 3924 break; 3925 } 3926 } 3927 } 3928 3929 // Allow the target to implement this method for its nodes. 3930 if (Opcode >= ISD::BUILTIN_OP_END || 3931 Opcode == ISD::INTRINSIC_WO_CHAIN || 3932 Opcode == ISD::INTRINSIC_W_CHAIN || 3933 Opcode == ISD::INTRINSIC_VOID) { 3934 unsigned NumBits = 3935 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 3936 if (NumBits > 1) 3937 FirstAnswer = std::max(FirstAnswer, NumBits); 3938 } 3939 3940 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3941 // use this information. 3942 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 3943 3944 APInt Mask; 3945 if (Known.isNonNegative()) { // sign bit is 0 3946 Mask = Known.Zero; 3947 } else if (Known.isNegative()) { // sign bit is 1; 3948 Mask = Known.One; 3949 } else { 3950 // Nothing known. 3951 return FirstAnswer; 3952 } 3953 3954 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 3955 // the number of identical bits in the top of the input value. 3956 Mask = ~Mask; 3957 Mask <<= Mask.getBitWidth()-VTBits; 3958 // Return # leading zeros. We use 'min' here in case Val was zero before 3959 // shifting. We don't want to return '64' as for an i32 "0". 3960 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 3961 } 3962 3963 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 3964 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 3965 !isa<ConstantSDNode>(Op.getOperand(1))) 3966 return false; 3967 3968 if (Op.getOpcode() == ISD::OR && 3969 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 3970 return false; 3971 3972 return true; 3973 } 3974 3975 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 3976 // If we're told that NaNs won't happen, assume they won't. 3977 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 3978 return true; 3979 3980 if (Depth == 6) 3981 return false; // Limit search depth. 3982 3983 // TODO: Handle vectors. 3984 // If the value is a constant, we can obviously see if it is a NaN or not. 3985 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 3986 return !C->getValueAPF().isNaN() || 3987 (SNaN && !C->getValueAPF().isSignaling()); 3988 } 3989 3990 unsigned Opcode = Op.getOpcode(); 3991 switch (Opcode) { 3992 case ISD::FADD: 3993 case ISD::FSUB: 3994 case ISD::FMUL: 3995 case ISD::FDIV: 3996 case ISD::FREM: 3997 case ISD::FSIN: 3998 case ISD::FCOS: { 3999 if (SNaN) 4000 return true; 4001 // TODO: Need isKnownNeverInfinity 4002 return false; 4003 } 4004 case ISD::FCANONICALIZE: 4005 case ISD::FEXP: 4006 case ISD::FEXP2: 4007 case ISD::FTRUNC: 4008 case ISD::FFLOOR: 4009 case ISD::FCEIL: 4010 case ISD::FROUND: 4011 case ISD::FRINT: 4012 case ISD::FNEARBYINT: { 4013 if (SNaN) 4014 return true; 4015 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4016 } 4017 case ISD::FABS: 4018 case ISD::FNEG: 4019 case ISD::FCOPYSIGN: { 4020 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4021 } 4022 case ISD::SELECT: 4023 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4024 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4025 case ISD::FP_EXTEND: 4026 case ISD::FP_ROUND: { 4027 if (SNaN) 4028 return true; 4029 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4030 } 4031 case ISD::SINT_TO_FP: 4032 case ISD::UINT_TO_FP: 4033 return true; 4034 case ISD::FMA: 4035 case ISD::FMAD: { 4036 if (SNaN) 4037 return true; 4038 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4039 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4040 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4041 } 4042 case ISD::FSQRT: // Need is known positive 4043 case ISD::FLOG: 4044 case ISD::FLOG2: 4045 case ISD::FLOG10: 4046 case ISD::FPOWI: 4047 case ISD::FPOW: { 4048 if (SNaN) 4049 return true; 4050 // TODO: Refine on operand 4051 return false; 4052 } 4053 case ISD::FMINNUM: 4054 case ISD::FMAXNUM: { 4055 // Only one needs to be known not-nan, since it will be returned if the 4056 // other ends up being one. 4057 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4058 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4059 } 4060 case ISD::FMINNUM_IEEE: 4061 case ISD::FMAXNUM_IEEE: { 4062 if (SNaN) 4063 return true; 4064 // This can return a NaN if either operand is an sNaN, or if both operands 4065 // are NaN. 4066 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4067 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4068 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4069 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4070 } 4071 case ISD::FMINIMUM: 4072 case ISD::FMAXIMUM: { 4073 // TODO: Does this quiet or return the origina NaN as-is? 4074 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4075 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4076 } 4077 case ISD::EXTRACT_VECTOR_ELT: { 4078 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4079 } 4080 default: 4081 if (Opcode >= ISD::BUILTIN_OP_END || 4082 Opcode == ISD::INTRINSIC_WO_CHAIN || 4083 Opcode == ISD::INTRINSIC_W_CHAIN || 4084 Opcode == ISD::INTRINSIC_VOID) { 4085 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4086 } 4087 4088 return false; 4089 } 4090 } 4091 4092 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4093 assert(Op.getValueType().isFloatingPoint() && 4094 "Floating point type expected"); 4095 4096 // If the value is a constant, we can obviously see if it is a zero or not. 4097 // TODO: Add BuildVector support. 4098 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4099 return !C->isZero(); 4100 return false; 4101 } 4102 4103 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4104 assert(!Op.getValueType().isFloatingPoint() && 4105 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4106 4107 // If the value is a constant, we can obviously see if it is a zero or not. 4108 if (ISD::matchUnaryPredicate( 4109 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4110 return true; 4111 4112 // TODO: Recognize more cases here. 4113 switch (Op.getOpcode()) { 4114 default: break; 4115 case ISD::OR: 4116 if (isKnownNeverZero(Op.getOperand(1)) || 4117 isKnownNeverZero(Op.getOperand(0))) 4118 return true; 4119 break; 4120 } 4121 4122 return false; 4123 } 4124 4125 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4126 // Check the obvious case. 4127 if (A == B) return true; 4128 4129 // For for negative and positive zero. 4130 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4131 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4132 if (CA->isZero() && CB->isZero()) return true; 4133 4134 // Otherwise they may not be equal. 4135 return false; 4136 } 4137 4138 // FIXME: unify with llvm::haveNoCommonBitsSet. 4139 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4140 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4141 assert(A.getValueType() == B.getValueType() && 4142 "Values must have the same type"); 4143 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4144 } 4145 4146 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4147 ArrayRef<SDValue> Ops, 4148 SelectionDAG &DAG) { 4149 int NumOps = Ops.size(); 4150 assert(NumOps != 0 && "Can't build an empty vector!"); 4151 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4152 "Incorrect element count in BUILD_VECTOR!"); 4153 4154 // BUILD_VECTOR of UNDEFs is UNDEF. 4155 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4156 return DAG.getUNDEF(VT); 4157 4158 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4159 SDValue IdentitySrc; 4160 bool IsIdentity = true; 4161 for (int i = 0; i != NumOps; ++i) { 4162 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4163 Ops[i].getOperand(0).getValueType() != VT || 4164 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4165 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4166 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4167 IsIdentity = false; 4168 break; 4169 } 4170 IdentitySrc = Ops[i].getOperand(0); 4171 } 4172 if (IsIdentity) 4173 return IdentitySrc; 4174 4175 return SDValue(); 4176 } 4177 4178 /// Try to simplify vector concatenation to an input value, undef, or build 4179 /// vector. 4180 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4181 ArrayRef<SDValue> Ops, 4182 SelectionDAG &DAG) { 4183 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4184 assert(llvm::all_of(Ops, 4185 [Ops](SDValue Op) { 4186 return Ops[0].getValueType() == Op.getValueType(); 4187 }) && 4188 "Concatenation of vectors with inconsistent value types!"); 4189 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 4190 VT.getVectorNumElements() && 4191 "Incorrect element count in vector concatenation!"); 4192 4193 if (Ops.size() == 1) 4194 return Ops[0]; 4195 4196 // Concat of UNDEFs is UNDEF. 4197 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4198 return DAG.getUNDEF(VT); 4199 4200 // Scan the operands and look for extract operations from a single source 4201 // that correspond to insertion at the same location via this concatenation: 4202 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4203 SDValue IdentitySrc; 4204 bool IsIdentity = true; 4205 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4206 SDValue Op = Ops[i]; 4207 unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements(); 4208 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4209 Op.getOperand(0).getValueType() != VT || 4210 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4211 !isa<ConstantSDNode>(Op.getOperand(1)) || 4212 Op.getConstantOperandVal(1) != IdentityIndex) { 4213 IsIdentity = false; 4214 break; 4215 } 4216 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4217 "Unexpected identity source vector for concat of extracts"); 4218 IdentitySrc = Op.getOperand(0); 4219 } 4220 if (IsIdentity) { 4221 assert(IdentitySrc && "Failed to set source vector of extracts"); 4222 return IdentitySrc; 4223 } 4224 4225 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4226 // simplified to one big BUILD_VECTOR. 4227 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4228 EVT SVT = VT.getScalarType(); 4229 SmallVector<SDValue, 16> Elts; 4230 for (SDValue Op : Ops) { 4231 EVT OpVT = Op.getValueType(); 4232 if (Op.isUndef()) 4233 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4234 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4235 Elts.append(Op->op_begin(), Op->op_end()); 4236 else 4237 return SDValue(); 4238 } 4239 4240 // BUILD_VECTOR requires all inputs to be of the same type, find the 4241 // maximum type and extend them all. 4242 for (SDValue Op : Elts) 4243 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4244 4245 if (SVT.bitsGT(VT.getScalarType())) 4246 for (SDValue &Op : Elts) 4247 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4248 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4249 : DAG.getSExtOrTrunc(Op, DL, SVT); 4250 4251 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4252 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4253 return V; 4254 } 4255 4256 /// Gets or creates the specified node. 4257 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4258 FoldingSetNodeID ID; 4259 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4260 void *IP = nullptr; 4261 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4262 return SDValue(E, 0); 4263 4264 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4265 getVTList(VT)); 4266 CSEMap.InsertNode(N, IP); 4267 4268 InsertNode(N); 4269 SDValue V = SDValue(N, 0); 4270 NewSDValueDbgMsg(V, "Creating new node: ", this); 4271 return V; 4272 } 4273 4274 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4275 SDValue Operand, const SDNodeFlags Flags) { 4276 // Constant fold unary operations with an integer constant operand. Even 4277 // opaque constant will be folded, because the folding of unary operations 4278 // doesn't create new constants with different values. Nevertheless, the 4279 // opaque flag is preserved during folding to prevent future folding with 4280 // other constants. 4281 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4282 const APInt &Val = C->getAPIntValue(); 4283 switch (Opcode) { 4284 default: break; 4285 case ISD::SIGN_EXTEND: 4286 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4287 C->isTargetOpcode(), C->isOpaque()); 4288 case ISD::TRUNCATE: 4289 if (C->isOpaque()) 4290 break; 4291 LLVM_FALLTHROUGH; 4292 case ISD::ANY_EXTEND: 4293 case ISD::ZERO_EXTEND: 4294 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4295 C->isTargetOpcode(), C->isOpaque()); 4296 case ISD::UINT_TO_FP: 4297 case ISD::SINT_TO_FP: { 4298 APFloat apf(EVTToAPFloatSemantics(VT), 4299 APInt::getNullValue(VT.getSizeInBits())); 4300 (void)apf.convertFromAPInt(Val, 4301 Opcode==ISD::SINT_TO_FP, 4302 APFloat::rmNearestTiesToEven); 4303 return getConstantFP(apf, DL, VT); 4304 } 4305 case ISD::BITCAST: 4306 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4307 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4308 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4309 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4310 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4311 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4312 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4313 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4314 break; 4315 case ISD::ABS: 4316 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4317 C->isOpaque()); 4318 case ISD::BITREVERSE: 4319 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4320 C->isOpaque()); 4321 case ISD::BSWAP: 4322 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4323 C->isOpaque()); 4324 case ISD::CTPOP: 4325 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4326 C->isOpaque()); 4327 case ISD::CTLZ: 4328 case ISD::CTLZ_ZERO_UNDEF: 4329 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4330 C->isOpaque()); 4331 case ISD::CTTZ: 4332 case ISD::CTTZ_ZERO_UNDEF: 4333 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4334 C->isOpaque()); 4335 case ISD::FP16_TO_FP: { 4336 bool Ignored; 4337 APFloat FPV(APFloat::IEEEhalf(), 4338 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4339 4340 // This can return overflow, underflow, or inexact; we don't care. 4341 // FIXME need to be more flexible about rounding mode. 4342 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4343 APFloat::rmNearestTiesToEven, &Ignored); 4344 return getConstantFP(FPV, DL, VT); 4345 } 4346 } 4347 } 4348 4349 // Constant fold unary operations with a floating point constant operand. 4350 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4351 APFloat V = C->getValueAPF(); // make copy 4352 switch (Opcode) { 4353 case ISD::FNEG: 4354 V.changeSign(); 4355 return getConstantFP(V, DL, VT); 4356 case ISD::FABS: 4357 V.clearSign(); 4358 return getConstantFP(V, DL, VT); 4359 case ISD::FCEIL: { 4360 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4361 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4362 return getConstantFP(V, DL, VT); 4363 break; 4364 } 4365 case ISD::FTRUNC: { 4366 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4367 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4368 return getConstantFP(V, DL, VT); 4369 break; 4370 } 4371 case ISD::FFLOOR: { 4372 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4373 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4374 return getConstantFP(V, DL, VT); 4375 break; 4376 } 4377 case ISD::FP_EXTEND: { 4378 bool ignored; 4379 // This can return overflow, underflow, or inexact; we don't care. 4380 // FIXME need to be more flexible about rounding mode. 4381 (void)V.convert(EVTToAPFloatSemantics(VT), 4382 APFloat::rmNearestTiesToEven, &ignored); 4383 return getConstantFP(V, DL, VT); 4384 } 4385 case ISD::FP_TO_SINT: 4386 case ISD::FP_TO_UINT: { 4387 bool ignored; 4388 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4389 // FIXME need to be more flexible about rounding mode. 4390 APFloat::opStatus s = 4391 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4392 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4393 break; 4394 return getConstant(IntVal, DL, VT); 4395 } 4396 case ISD::BITCAST: 4397 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4398 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4399 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4400 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4401 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4402 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4403 break; 4404 case ISD::FP_TO_FP16: { 4405 bool Ignored; 4406 // This can return overflow, underflow, or inexact; we don't care. 4407 // FIXME need to be more flexible about rounding mode. 4408 (void)V.convert(APFloat::IEEEhalf(), 4409 APFloat::rmNearestTiesToEven, &Ignored); 4410 return getConstant(V.bitcastToAPInt(), DL, VT); 4411 } 4412 } 4413 } 4414 4415 // Constant fold unary operations with a vector integer or float operand. 4416 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4417 if (BV->isConstant()) { 4418 switch (Opcode) { 4419 default: 4420 // FIXME: Entirely reasonable to perform folding of other unary 4421 // operations here as the need arises. 4422 break; 4423 case ISD::FNEG: 4424 case ISD::FABS: 4425 case ISD::FCEIL: 4426 case ISD::FTRUNC: 4427 case ISD::FFLOOR: 4428 case ISD::FP_EXTEND: 4429 case ISD::FP_TO_SINT: 4430 case ISD::FP_TO_UINT: 4431 case ISD::TRUNCATE: 4432 case ISD::ANY_EXTEND: 4433 case ISD::ZERO_EXTEND: 4434 case ISD::SIGN_EXTEND: 4435 case ISD::UINT_TO_FP: 4436 case ISD::SINT_TO_FP: 4437 case ISD::ABS: 4438 case ISD::BITREVERSE: 4439 case ISD::BSWAP: 4440 case ISD::CTLZ: 4441 case ISD::CTLZ_ZERO_UNDEF: 4442 case ISD::CTTZ: 4443 case ISD::CTTZ_ZERO_UNDEF: 4444 case ISD::CTPOP: { 4445 SDValue Ops = { Operand }; 4446 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4447 return Fold; 4448 } 4449 } 4450 } 4451 } 4452 4453 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4454 switch (Opcode) { 4455 case ISD::TokenFactor: 4456 case ISD::MERGE_VALUES: 4457 case ISD::CONCAT_VECTORS: 4458 return Operand; // Factor, merge or concat of one node? No need. 4459 case ISD::BUILD_VECTOR: { 4460 // Attempt to simplify BUILD_VECTOR. 4461 SDValue Ops[] = {Operand}; 4462 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4463 return V; 4464 break; 4465 } 4466 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4467 case ISD::FP_EXTEND: 4468 assert(VT.isFloatingPoint() && 4469 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4470 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4471 assert((!VT.isVector() || 4472 VT.getVectorNumElements() == 4473 Operand.getValueType().getVectorNumElements()) && 4474 "Vector element count mismatch!"); 4475 assert(Operand.getValueType().bitsLT(VT) && 4476 "Invalid fpext node, dst < src!"); 4477 if (Operand.isUndef()) 4478 return getUNDEF(VT); 4479 break; 4480 case ISD::FP_TO_SINT: 4481 case ISD::FP_TO_UINT: 4482 if (Operand.isUndef()) 4483 return getUNDEF(VT); 4484 break; 4485 case ISD::SINT_TO_FP: 4486 case ISD::UINT_TO_FP: 4487 // [us]itofp(undef) = 0, because the result value is bounded. 4488 if (Operand.isUndef()) 4489 return getConstantFP(0.0, DL, VT); 4490 break; 4491 case ISD::SIGN_EXTEND: 4492 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4493 "Invalid SIGN_EXTEND!"); 4494 assert(VT.isVector() == Operand.getValueType().isVector() && 4495 "SIGN_EXTEND result type type should be vector iff the operand " 4496 "type is vector!"); 4497 if (Operand.getValueType() == VT) return Operand; // noop extension 4498 assert((!VT.isVector() || 4499 VT.getVectorNumElements() == 4500 Operand.getValueType().getVectorNumElements()) && 4501 "Vector element count mismatch!"); 4502 assert(Operand.getValueType().bitsLT(VT) && 4503 "Invalid sext node, dst < src!"); 4504 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4505 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4506 else if (OpOpcode == ISD::UNDEF) 4507 // sext(undef) = 0, because the top bits will all be the same. 4508 return getConstant(0, DL, VT); 4509 break; 4510 case ISD::ZERO_EXTEND: 4511 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4512 "Invalid ZERO_EXTEND!"); 4513 assert(VT.isVector() == Operand.getValueType().isVector() && 4514 "ZERO_EXTEND result type type should be vector iff the operand " 4515 "type is vector!"); 4516 if (Operand.getValueType() == VT) return Operand; // noop extension 4517 assert((!VT.isVector() || 4518 VT.getVectorNumElements() == 4519 Operand.getValueType().getVectorNumElements()) && 4520 "Vector element count mismatch!"); 4521 assert(Operand.getValueType().bitsLT(VT) && 4522 "Invalid zext node, dst < src!"); 4523 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4524 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4525 else if (OpOpcode == ISD::UNDEF) 4526 // zext(undef) = 0, because the top bits will be zero. 4527 return getConstant(0, DL, VT); 4528 break; 4529 case ISD::ANY_EXTEND: 4530 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4531 "Invalid ANY_EXTEND!"); 4532 assert(VT.isVector() == Operand.getValueType().isVector() && 4533 "ANY_EXTEND result type type should be vector iff the operand " 4534 "type is vector!"); 4535 if (Operand.getValueType() == VT) return Operand; // noop extension 4536 assert((!VT.isVector() || 4537 VT.getVectorNumElements() == 4538 Operand.getValueType().getVectorNumElements()) && 4539 "Vector element count mismatch!"); 4540 assert(Operand.getValueType().bitsLT(VT) && 4541 "Invalid anyext node, dst < src!"); 4542 4543 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4544 OpOpcode == ISD::ANY_EXTEND) 4545 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4546 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4547 else if (OpOpcode == ISD::UNDEF) 4548 return getUNDEF(VT); 4549 4550 // (ext (trunc x)) -> x 4551 if (OpOpcode == ISD::TRUNCATE) { 4552 SDValue OpOp = Operand.getOperand(0); 4553 if (OpOp.getValueType() == VT) { 4554 transferDbgValues(Operand, OpOp); 4555 return OpOp; 4556 } 4557 } 4558 break; 4559 case ISD::TRUNCATE: 4560 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4561 "Invalid TRUNCATE!"); 4562 assert(VT.isVector() == Operand.getValueType().isVector() && 4563 "TRUNCATE result type type should be vector iff the operand " 4564 "type is vector!"); 4565 if (Operand.getValueType() == VT) return Operand; // noop truncate 4566 assert((!VT.isVector() || 4567 VT.getVectorNumElements() == 4568 Operand.getValueType().getVectorNumElements()) && 4569 "Vector element count mismatch!"); 4570 assert(Operand.getValueType().bitsGT(VT) && 4571 "Invalid truncate node, src < dst!"); 4572 if (OpOpcode == ISD::TRUNCATE) 4573 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4574 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4575 OpOpcode == ISD::ANY_EXTEND) { 4576 // If the source is smaller than the dest, we still need an extend. 4577 if (Operand.getOperand(0).getValueType().getScalarType() 4578 .bitsLT(VT.getScalarType())) 4579 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4580 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4581 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4582 return Operand.getOperand(0); 4583 } 4584 if (OpOpcode == ISD::UNDEF) 4585 return getUNDEF(VT); 4586 break; 4587 case ISD::ANY_EXTEND_VECTOR_INREG: 4588 case ISD::ZERO_EXTEND_VECTOR_INREG: 4589 case ISD::SIGN_EXTEND_VECTOR_INREG: 4590 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4591 assert(Operand.getValueType().bitsLE(VT) && 4592 "The input must be the same size or smaller than the result."); 4593 assert(VT.getVectorNumElements() < 4594 Operand.getValueType().getVectorNumElements() && 4595 "The destination vector type must have fewer lanes than the input."); 4596 break; 4597 case ISD::ABS: 4598 assert(VT.isInteger() && VT == Operand.getValueType() && 4599 "Invalid ABS!"); 4600 if (OpOpcode == ISD::UNDEF) 4601 return getUNDEF(VT); 4602 break; 4603 case ISD::BSWAP: 4604 assert(VT.isInteger() && VT == Operand.getValueType() && 4605 "Invalid BSWAP!"); 4606 assert((VT.getScalarSizeInBits() % 16 == 0) && 4607 "BSWAP types must be a multiple of 16 bits!"); 4608 if (OpOpcode == ISD::UNDEF) 4609 return getUNDEF(VT); 4610 break; 4611 case ISD::BITREVERSE: 4612 assert(VT.isInteger() && VT == Operand.getValueType() && 4613 "Invalid BITREVERSE!"); 4614 if (OpOpcode == ISD::UNDEF) 4615 return getUNDEF(VT); 4616 break; 4617 case ISD::BITCAST: 4618 // Basic sanity checking. 4619 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4620 "Cannot BITCAST between types of different sizes!"); 4621 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4622 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4623 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4624 if (OpOpcode == ISD::UNDEF) 4625 return getUNDEF(VT); 4626 break; 4627 case ISD::SCALAR_TO_VECTOR: 4628 assert(VT.isVector() && !Operand.getValueType().isVector() && 4629 (VT.getVectorElementType() == Operand.getValueType() || 4630 (VT.getVectorElementType().isInteger() && 4631 Operand.getValueType().isInteger() && 4632 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4633 "Illegal SCALAR_TO_VECTOR node!"); 4634 if (OpOpcode == ISD::UNDEF) 4635 return getUNDEF(VT); 4636 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4637 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4638 isa<ConstantSDNode>(Operand.getOperand(1)) && 4639 Operand.getConstantOperandVal(1) == 0 && 4640 Operand.getOperand(0).getValueType() == VT) 4641 return Operand.getOperand(0); 4642 break; 4643 case ISD::FNEG: 4644 // Negation of an unknown bag of bits is still completely undefined. 4645 if (OpOpcode == ISD::UNDEF) 4646 return getUNDEF(VT); 4647 4648 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 4649 if ((getTarget().Options.UnsafeFPMath || Flags.hasNoSignedZeros()) && 4650 OpOpcode == ISD::FSUB) 4651 return getNode(ISD::FSUB, DL, VT, Operand.getOperand(1), 4652 Operand.getOperand(0), Flags); 4653 if (OpOpcode == ISD::FNEG) // --X -> X 4654 return Operand.getOperand(0); 4655 break; 4656 case ISD::FABS: 4657 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4658 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4659 break; 4660 } 4661 4662 SDNode *N; 4663 SDVTList VTs = getVTList(VT); 4664 SDValue Ops[] = {Operand}; 4665 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4666 FoldingSetNodeID ID; 4667 AddNodeIDNode(ID, Opcode, VTs, Ops); 4668 void *IP = nullptr; 4669 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4670 E->intersectFlagsWith(Flags); 4671 return SDValue(E, 0); 4672 } 4673 4674 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4675 N->setFlags(Flags); 4676 createOperands(N, Ops); 4677 CSEMap.InsertNode(N, IP); 4678 } else { 4679 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4680 createOperands(N, Ops); 4681 } 4682 4683 InsertNode(N); 4684 SDValue V = SDValue(N, 0); 4685 NewSDValueDbgMsg(V, "Creating new node: ", this); 4686 return V; 4687 } 4688 4689 static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, 4690 const APInt &C2) { 4691 switch (Opcode) { 4692 case ISD::ADD: return std::make_pair(C1 + C2, true); 4693 case ISD::SUB: return std::make_pair(C1 - C2, true); 4694 case ISD::MUL: return std::make_pair(C1 * C2, true); 4695 case ISD::AND: return std::make_pair(C1 & C2, true); 4696 case ISD::OR: return std::make_pair(C1 | C2, true); 4697 case ISD::XOR: return std::make_pair(C1 ^ C2, true); 4698 case ISD::SHL: return std::make_pair(C1 << C2, true); 4699 case ISD::SRL: return std::make_pair(C1.lshr(C2), true); 4700 case ISD::SRA: return std::make_pair(C1.ashr(C2), true); 4701 case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); 4702 case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); 4703 case ISD::SMIN: return std::make_pair(C1.sle(C2) ? C1 : C2, true); 4704 case ISD::SMAX: return std::make_pair(C1.sge(C2) ? C1 : C2, true); 4705 case ISD::UMIN: return std::make_pair(C1.ule(C2) ? C1 : C2, true); 4706 case ISD::UMAX: return std::make_pair(C1.uge(C2) ? C1 : C2, true); 4707 case ISD::SADDSAT: return std::make_pair(C1.sadd_sat(C2), true); 4708 case ISD::UADDSAT: return std::make_pair(C1.uadd_sat(C2), true); 4709 case ISD::SSUBSAT: return std::make_pair(C1.ssub_sat(C2), true); 4710 case ISD::USUBSAT: return std::make_pair(C1.usub_sat(C2), true); 4711 case ISD::UDIV: 4712 if (!C2.getBoolValue()) 4713 break; 4714 return std::make_pair(C1.udiv(C2), true); 4715 case ISD::UREM: 4716 if (!C2.getBoolValue()) 4717 break; 4718 return std::make_pair(C1.urem(C2), true); 4719 case ISD::SDIV: 4720 if (!C2.getBoolValue()) 4721 break; 4722 return std::make_pair(C1.sdiv(C2), true); 4723 case ISD::SREM: 4724 if (!C2.getBoolValue()) 4725 break; 4726 return std::make_pair(C1.srem(C2), true); 4727 } 4728 return std::make_pair(APInt(1, 0), false); 4729 } 4730 4731 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4732 EVT VT, const ConstantSDNode *C1, 4733 const ConstantSDNode *C2) { 4734 if (C1->isOpaque() || C2->isOpaque()) 4735 return SDValue(); 4736 4737 std::pair<APInt, bool> Folded = FoldValue(Opcode, C1->getAPIntValue(), 4738 C2->getAPIntValue()); 4739 if (!Folded.second) 4740 return SDValue(); 4741 return getConstant(Folded.first, DL, VT); 4742 } 4743 4744 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4745 const GlobalAddressSDNode *GA, 4746 const SDNode *N2) { 4747 if (GA->getOpcode() != ISD::GlobalAddress) 4748 return SDValue(); 4749 if (!TLI->isOffsetFoldingLegal(GA)) 4750 return SDValue(); 4751 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4752 if (!C2) 4753 return SDValue(); 4754 int64_t Offset = C2->getSExtValue(); 4755 switch (Opcode) { 4756 case ISD::ADD: break; 4757 case ISD::SUB: Offset = -uint64_t(Offset); break; 4758 default: return SDValue(); 4759 } 4760 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4761 GA->getOffset() + uint64_t(Offset)); 4762 } 4763 4764 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4765 switch (Opcode) { 4766 case ISD::SDIV: 4767 case ISD::UDIV: 4768 case ISD::SREM: 4769 case ISD::UREM: { 4770 // If a divisor is zero/undef or any element of a divisor vector is 4771 // zero/undef, the whole op is undef. 4772 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4773 SDValue Divisor = Ops[1]; 4774 if (Divisor.isUndef() || isNullConstant(Divisor)) 4775 return true; 4776 4777 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4778 llvm::any_of(Divisor->op_values(), 4779 [](SDValue V) { return V.isUndef() || 4780 isNullConstant(V); }); 4781 // TODO: Handle signed overflow. 4782 } 4783 // TODO: Handle oversized shifts. 4784 default: 4785 return false; 4786 } 4787 } 4788 4789 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4790 EVT VT, SDNode *N1, SDNode *N2) { 4791 // If the opcode is a target-specific ISD node, there's nothing we can 4792 // do here and the operand rules may not line up with the below, so 4793 // bail early. 4794 if (Opcode >= ISD::BUILTIN_OP_END) 4795 return SDValue(); 4796 4797 if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)})) 4798 return getUNDEF(VT); 4799 4800 // Handle the case of two scalars. 4801 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4802 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4803 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2); 4804 assert((!Folded || !VT.isVector()) && 4805 "Can't fold vectors ops with scalar operands"); 4806 return Folded; 4807 } 4808 } 4809 4810 // fold (add Sym, c) -> Sym+c 4811 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4812 return FoldSymbolOffset(Opcode, VT, GA, N2); 4813 if (TLI->isCommutativeBinOp(Opcode)) 4814 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4815 return FoldSymbolOffset(Opcode, VT, GA, N1); 4816 4817 // For vectors, extract each constant element and fold them individually. 4818 // Either input may be an undef value. 4819 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4820 if (!BV1 && !N1->isUndef()) 4821 return SDValue(); 4822 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4823 if (!BV2 && !N2->isUndef()) 4824 return SDValue(); 4825 // If both operands are undef, that's handled the same way as scalars. 4826 if (!BV1 && !BV2) 4827 return SDValue(); 4828 4829 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4830 "Vector binop with different number of elements in operands?"); 4831 4832 EVT SVT = VT.getScalarType(); 4833 EVT LegalSVT = SVT; 4834 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4835 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4836 if (LegalSVT.bitsLT(SVT)) 4837 return SDValue(); 4838 } 4839 SmallVector<SDValue, 4> Outputs; 4840 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4841 for (unsigned I = 0; I != NumOps; ++I) { 4842 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4843 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4844 if (SVT.isInteger()) { 4845 if (V1->getValueType(0).bitsGT(SVT)) 4846 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4847 if (V2->getValueType(0).bitsGT(SVT)) 4848 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4849 } 4850 4851 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4852 return SDValue(); 4853 4854 // Fold one vector element. 4855 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4856 if (LegalSVT != SVT) 4857 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4858 4859 // Scalar folding only succeeded if the result is a constant or UNDEF. 4860 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4861 ScalarResult.getOpcode() != ISD::ConstantFP) 4862 return SDValue(); 4863 Outputs.push_back(ScalarResult); 4864 } 4865 4866 assert(VT.getVectorNumElements() == Outputs.size() && 4867 "Vector size mismatch!"); 4868 4869 // We may have a vector type but a scalar result. Create a splat. 4870 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4871 4872 // Build a big vector out of the scalar elements we generated. 4873 return getBuildVector(VT, SDLoc(), Outputs); 4874 } 4875 4876 // TODO: Merge with FoldConstantArithmetic 4877 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4878 const SDLoc &DL, EVT VT, 4879 ArrayRef<SDValue> Ops, 4880 const SDNodeFlags Flags) { 4881 // If the opcode is a target-specific ISD node, there's nothing we can 4882 // do here and the operand rules may not line up with the below, so 4883 // bail early. 4884 if (Opcode >= ISD::BUILTIN_OP_END) 4885 return SDValue(); 4886 4887 if (isUndef(Opcode, Ops)) 4888 return getUNDEF(VT); 4889 4890 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4891 if (!VT.isVector()) 4892 return SDValue(); 4893 4894 unsigned NumElts = VT.getVectorNumElements(); 4895 4896 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 4897 return !Op.getValueType().isVector() || 4898 Op.getValueType().getVectorNumElements() == NumElts; 4899 }; 4900 4901 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 4902 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 4903 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 4904 (BV && BV->isConstant()); 4905 }; 4906 4907 // All operands must be vector types with the same number of elements as 4908 // the result type and must be either UNDEF or a build vector of constant 4909 // or UNDEF scalars. 4910 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 4911 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 4912 return SDValue(); 4913 4914 // If we are comparing vectors, then the result needs to be a i1 boolean 4915 // that is then sign-extended back to the legal result type. 4916 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 4917 4918 // Find legal integer scalar type for constant promotion and 4919 // ensure that its scalar size is at least as large as source. 4920 EVT LegalSVT = VT.getScalarType(); 4921 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4922 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4923 if (LegalSVT.bitsLT(VT.getScalarType())) 4924 return SDValue(); 4925 } 4926 4927 // Constant fold each scalar lane separately. 4928 SmallVector<SDValue, 4> ScalarResults; 4929 for (unsigned i = 0; i != NumElts; i++) { 4930 SmallVector<SDValue, 4> ScalarOps; 4931 for (SDValue Op : Ops) { 4932 EVT InSVT = Op.getValueType().getScalarType(); 4933 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 4934 if (!InBV) { 4935 // We've checked that this is UNDEF or a constant of some kind. 4936 if (Op.isUndef()) 4937 ScalarOps.push_back(getUNDEF(InSVT)); 4938 else 4939 ScalarOps.push_back(Op); 4940 continue; 4941 } 4942 4943 SDValue ScalarOp = InBV->getOperand(i); 4944 EVT ScalarVT = ScalarOp.getValueType(); 4945 4946 // Build vector (integer) scalar operands may need implicit 4947 // truncation - do this before constant folding. 4948 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 4949 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 4950 4951 ScalarOps.push_back(ScalarOp); 4952 } 4953 4954 // Constant fold the scalar operands. 4955 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 4956 4957 // Legalize the (integer) scalar constant if necessary. 4958 if (LegalSVT != SVT) 4959 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4960 4961 // Scalar folding only succeeded if the result is a constant or UNDEF. 4962 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4963 ScalarResult.getOpcode() != ISD::ConstantFP) 4964 return SDValue(); 4965 ScalarResults.push_back(ScalarResult); 4966 } 4967 4968 SDValue V = getBuildVector(VT, DL, ScalarResults); 4969 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 4970 return V; 4971 } 4972 4973 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 4974 EVT VT, SDValue N1, SDValue N2) { 4975 // TODO: We don't do any constant folding for strict FP opcodes here, but we 4976 // should. That will require dealing with a potentially non-default 4977 // rounding mode, checking the "opStatus" return value from the APFloat 4978 // math calculations, and possibly other variations. 4979 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 4980 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 4981 if (N1CFP && N2CFP) { 4982 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 4983 switch (Opcode) { 4984 case ISD::FADD: 4985 C1.add(C2, APFloat::rmNearestTiesToEven); 4986 return getConstantFP(C1, DL, VT); 4987 case ISD::FSUB: 4988 C1.subtract(C2, APFloat::rmNearestTiesToEven); 4989 return getConstantFP(C1, DL, VT); 4990 case ISD::FMUL: 4991 C1.multiply(C2, APFloat::rmNearestTiesToEven); 4992 return getConstantFP(C1, DL, VT); 4993 case ISD::FDIV: 4994 C1.divide(C2, APFloat::rmNearestTiesToEven); 4995 return getConstantFP(C1, DL, VT); 4996 case ISD::FREM: 4997 C1.mod(C2); 4998 return getConstantFP(C1, DL, VT); 4999 case ISD::FCOPYSIGN: 5000 C1.copySign(C2); 5001 return getConstantFP(C1, DL, VT); 5002 default: break; 5003 } 5004 } 5005 if (N1CFP && Opcode == ISD::FP_ROUND) { 5006 APFloat C1 = N1CFP->getValueAPF(); // make copy 5007 bool Unused; 5008 // This can return overflow, underflow, or inexact; we don't care. 5009 // FIXME need to be more flexible about rounding mode. 5010 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5011 &Unused); 5012 return getConstantFP(C1, DL, VT); 5013 } 5014 5015 switch (Opcode) { 5016 case ISD::FADD: 5017 case ISD::FSUB: 5018 case ISD::FMUL: 5019 case ISD::FDIV: 5020 case ISD::FREM: 5021 // If both operands are undef, the result is undef. If 1 operand is undef, 5022 // the result is NaN. This should match the behavior of the IR optimizer. 5023 if (N1.isUndef() && N2.isUndef()) 5024 return getUNDEF(VT); 5025 if (N1.isUndef() || N2.isUndef()) 5026 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5027 } 5028 return SDValue(); 5029 } 5030 5031 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5032 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5033 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5034 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5035 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5036 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5037 5038 // Canonicalize constant to RHS if commutative. 5039 if (TLI->isCommutativeBinOp(Opcode)) { 5040 if (N1C && !N2C) { 5041 std::swap(N1C, N2C); 5042 std::swap(N1, N2); 5043 } else if (N1CFP && !N2CFP) { 5044 std::swap(N1CFP, N2CFP); 5045 std::swap(N1, N2); 5046 } 5047 } 5048 5049 switch (Opcode) { 5050 default: break; 5051 case ISD::TokenFactor: 5052 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5053 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5054 // Fold trivial token factors. 5055 if (N1.getOpcode() == ISD::EntryToken) return N2; 5056 if (N2.getOpcode() == ISD::EntryToken) return N1; 5057 if (N1 == N2) return N1; 5058 break; 5059 case ISD::BUILD_VECTOR: { 5060 // Attempt to simplify BUILD_VECTOR. 5061 SDValue Ops[] = {N1, N2}; 5062 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5063 return V; 5064 break; 5065 } 5066 case ISD::CONCAT_VECTORS: { 5067 SDValue Ops[] = {N1, N2}; 5068 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5069 return V; 5070 break; 5071 } 5072 case ISD::AND: 5073 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5074 assert(N1.getValueType() == N2.getValueType() && 5075 N1.getValueType() == VT && "Binary operator types must match!"); 5076 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5077 // worth handling here. 5078 if (N2C && N2C->isNullValue()) 5079 return N2; 5080 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5081 return N1; 5082 break; 5083 case ISD::OR: 5084 case ISD::XOR: 5085 case ISD::ADD: 5086 case ISD::SUB: 5087 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5088 assert(N1.getValueType() == N2.getValueType() && 5089 N1.getValueType() == VT && "Binary operator types must match!"); 5090 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5091 // it's worth handling here. 5092 if (N2C && N2C->isNullValue()) 5093 return N1; 5094 break; 5095 case ISD::UDIV: 5096 case ISD::UREM: 5097 case ISD::MULHU: 5098 case ISD::MULHS: 5099 case ISD::MUL: 5100 case ISD::SDIV: 5101 case ISD::SREM: 5102 case ISD::SMIN: 5103 case ISD::SMAX: 5104 case ISD::UMIN: 5105 case ISD::UMAX: 5106 case ISD::SADDSAT: 5107 case ISD::SSUBSAT: 5108 case ISD::UADDSAT: 5109 case ISD::USUBSAT: 5110 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5111 assert(N1.getValueType() == N2.getValueType() && 5112 N1.getValueType() == VT && "Binary operator types must match!"); 5113 break; 5114 case ISD::FADD: 5115 case ISD::FSUB: 5116 case ISD::FMUL: 5117 case ISD::FDIV: 5118 case ISD::FREM: 5119 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5120 assert(N1.getValueType() == N2.getValueType() && 5121 N1.getValueType() == VT && "Binary operator types must match!"); 5122 if (SDValue V = simplifyFPBinop(Opcode, N1, N2)) 5123 return V; 5124 break; 5125 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5126 assert(N1.getValueType() == VT && 5127 N1.getValueType().isFloatingPoint() && 5128 N2.getValueType().isFloatingPoint() && 5129 "Invalid FCOPYSIGN!"); 5130 break; 5131 case ISD::SHL: 5132 case ISD::SRA: 5133 case ISD::SRL: 5134 if (SDValue V = simplifyShift(N1, N2)) 5135 return V; 5136 LLVM_FALLTHROUGH; 5137 case ISD::ROTL: 5138 case ISD::ROTR: 5139 assert(VT == N1.getValueType() && 5140 "Shift operators return type must be the same as their first arg"); 5141 assert(VT.isInteger() && N2.getValueType().isInteger() && 5142 "Shifts only work on integers"); 5143 assert((!VT.isVector() || VT == N2.getValueType()) && 5144 "Vector shift amounts must be in the same as their first arg"); 5145 // Verify that the shift amount VT is big enough to hold valid shift 5146 // amounts. This catches things like trying to shift an i1024 value by an 5147 // i8, which is easy to fall into in generic code that uses 5148 // TLI.getShiftAmount(). 5149 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 5150 "Invalid use of small shift amount with oversized value!"); 5151 5152 // Always fold shifts of i1 values so the code generator doesn't need to 5153 // handle them. Since we know the size of the shift has to be less than the 5154 // size of the value, the shift/rotate count is guaranteed to be zero. 5155 if (VT == MVT::i1) 5156 return N1; 5157 if (N2C && N2C->isNullValue()) 5158 return N1; 5159 break; 5160 case ISD::FP_ROUND_INREG: { 5161 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5162 assert(VT == N1.getValueType() && "Not an inreg round!"); 5163 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && 5164 "Cannot FP_ROUND_INREG integer types"); 5165 assert(EVT.isVector() == VT.isVector() && 5166 "FP_ROUND_INREG type should be vector iff the operand " 5167 "type is vector!"); 5168 assert((!EVT.isVector() || 5169 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 5170 "Vector element counts must match in FP_ROUND_INREG"); 5171 assert(EVT.bitsLE(VT) && "Not rounding down!"); 5172 (void)EVT; 5173 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. 5174 break; 5175 } 5176 case ISD::FP_ROUND: 5177 assert(VT.isFloatingPoint() && 5178 N1.getValueType().isFloatingPoint() && 5179 VT.bitsLE(N1.getValueType()) && 5180 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5181 "Invalid FP_ROUND!"); 5182 if (N1.getValueType() == VT) return N1; // noop conversion. 5183 break; 5184 case ISD::AssertSext: 5185 case ISD::AssertZext: { 5186 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5187 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5188 assert(VT.isInteger() && EVT.isInteger() && 5189 "Cannot *_EXTEND_INREG FP types"); 5190 assert(!EVT.isVector() && 5191 "AssertSExt/AssertZExt type should be the vector element type " 5192 "rather than the vector type!"); 5193 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5194 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5195 break; 5196 } 5197 case ISD::SIGN_EXTEND_INREG: { 5198 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5199 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5200 assert(VT.isInteger() && EVT.isInteger() && 5201 "Cannot *_EXTEND_INREG FP types"); 5202 assert(EVT.isVector() == VT.isVector() && 5203 "SIGN_EXTEND_INREG type should be vector iff the operand " 5204 "type is vector!"); 5205 assert((!EVT.isVector() || 5206 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 5207 "Vector element counts must match in SIGN_EXTEND_INREG"); 5208 assert(EVT.bitsLE(VT) && "Not extending!"); 5209 if (EVT == VT) return N1; // Not actually extending 5210 5211 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5212 unsigned FromBits = EVT.getScalarSizeInBits(); 5213 Val <<= Val.getBitWidth() - FromBits; 5214 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5215 return getConstant(Val, DL, ConstantVT); 5216 }; 5217 5218 if (N1C) { 5219 const APInt &Val = N1C->getAPIntValue(); 5220 return SignExtendInReg(Val, VT); 5221 } 5222 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5223 SmallVector<SDValue, 8> Ops; 5224 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5225 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5226 SDValue Op = N1.getOperand(i); 5227 if (Op.isUndef()) { 5228 Ops.push_back(getUNDEF(OpVT)); 5229 continue; 5230 } 5231 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5232 APInt Val = C->getAPIntValue(); 5233 Ops.push_back(SignExtendInReg(Val, OpVT)); 5234 } 5235 return getBuildVector(VT, DL, Ops); 5236 } 5237 break; 5238 } 5239 case ISD::EXTRACT_VECTOR_ELT: 5240 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5241 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5242 element type of the vector."); 5243 5244 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. 5245 if (N1.isUndef()) 5246 return getUNDEF(VT); 5247 5248 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 5249 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5250 return getUNDEF(VT); 5251 5252 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5253 // expanding copies of large vectors from registers. 5254 if (N2C && 5255 N1.getOpcode() == ISD::CONCAT_VECTORS && 5256 N1.getNumOperands() > 0) { 5257 unsigned Factor = 5258 N1.getOperand(0).getValueType().getVectorNumElements(); 5259 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5260 N1.getOperand(N2C->getZExtValue() / Factor), 5261 getConstant(N2C->getZExtValue() % Factor, DL, 5262 N2.getValueType())); 5263 } 5264 5265 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 5266 // expanding large vector constants. 5267 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 5268 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 5269 5270 if (VT != Elt.getValueType()) 5271 // If the vector element type is not legal, the BUILD_VECTOR operands 5272 // are promoted and implicitly truncated, and the result implicitly 5273 // extended. Make that explicit here. 5274 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5275 5276 return Elt; 5277 } 5278 5279 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5280 // operations are lowered to scalars. 5281 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5282 // If the indices are the same, return the inserted element else 5283 // if the indices are known different, extract the element from 5284 // the original vector. 5285 SDValue N1Op2 = N1.getOperand(2); 5286 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5287 5288 if (N1Op2C && N2C) { 5289 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5290 if (VT == N1.getOperand(1).getValueType()) 5291 return N1.getOperand(1); 5292 else 5293 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5294 } 5295 5296 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5297 } 5298 } 5299 5300 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5301 // when vector types are scalarized and v1iX is legal. 5302 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 5303 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5304 N1.getValueType().getVectorNumElements() == 1) { 5305 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5306 N1.getOperand(1)); 5307 } 5308 break; 5309 case ISD::EXTRACT_ELEMENT: 5310 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5311 assert(!N1.getValueType().isVector() && !VT.isVector() && 5312 (N1.getValueType().isInteger() == VT.isInteger()) && 5313 N1.getValueType() != VT && 5314 "Wrong types for EXTRACT_ELEMENT!"); 5315 5316 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5317 // 64-bit integers into 32-bit parts. Instead of building the extract of 5318 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5319 if (N1.getOpcode() == ISD::BUILD_PAIR) 5320 return N1.getOperand(N2C->getZExtValue()); 5321 5322 // EXTRACT_ELEMENT of a constant int is also very common. 5323 if (N1C) { 5324 unsigned ElementSize = VT.getSizeInBits(); 5325 unsigned Shift = ElementSize * N2C->getZExtValue(); 5326 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5327 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5328 } 5329 break; 5330 case ISD::EXTRACT_SUBVECTOR: 5331 if (VT.isSimple() && N1.getValueType().isSimple()) { 5332 assert(VT.isVector() && N1.getValueType().isVector() && 5333 "Extract subvector VTs must be a vectors!"); 5334 assert(VT.getVectorElementType() == 5335 N1.getValueType().getVectorElementType() && 5336 "Extract subvector VTs must have the same element type!"); 5337 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 5338 "Extract subvector must be from larger vector to smaller vector!"); 5339 5340 if (N2C) { 5341 assert((VT.getVectorNumElements() + N2C->getZExtValue() 5342 <= N1.getValueType().getVectorNumElements()) 5343 && "Extract subvector overflow!"); 5344 } 5345 5346 // Trivial extraction. 5347 if (VT.getSimpleVT() == N1.getSimpleValueType()) 5348 return N1; 5349 5350 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5351 if (N1.isUndef()) 5352 return getUNDEF(VT); 5353 5354 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5355 // the concat have the same type as the extract. 5356 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5357 N1.getNumOperands() > 0 && 5358 VT == N1.getOperand(0).getValueType()) { 5359 unsigned Factor = VT.getVectorNumElements(); 5360 return N1.getOperand(N2C->getZExtValue() / Factor); 5361 } 5362 5363 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5364 // during shuffle legalization. 5365 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5366 VT == N1.getOperand(1).getValueType()) 5367 return N1.getOperand(1); 5368 } 5369 break; 5370 } 5371 5372 // Perform trivial constant folding. 5373 if (SDValue SV = 5374 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 5375 return SV; 5376 5377 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5378 return V; 5379 5380 // Canonicalize an UNDEF to the RHS, even over a constant. 5381 if (N1.isUndef()) { 5382 if (TLI->isCommutativeBinOp(Opcode)) { 5383 std::swap(N1, N2); 5384 } else { 5385 switch (Opcode) { 5386 case ISD::FP_ROUND_INREG: 5387 case ISD::SIGN_EXTEND_INREG: 5388 case ISD::SUB: 5389 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5390 case ISD::UDIV: 5391 case ISD::SDIV: 5392 case ISD::UREM: 5393 case ISD::SREM: 5394 case ISD::SSUBSAT: 5395 case ISD::USUBSAT: 5396 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5397 } 5398 } 5399 } 5400 5401 // Fold a bunch of operators when the RHS is undef. 5402 if (N2.isUndef()) { 5403 switch (Opcode) { 5404 case ISD::XOR: 5405 if (N1.isUndef()) 5406 // Handle undef ^ undef -> 0 special case. This is a common 5407 // idiom (misuse). 5408 return getConstant(0, DL, VT); 5409 LLVM_FALLTHROUGH; 5410 case ISD::ADD: 5411 case ISD::SUB: 5412 case ISD::UDIV: 5413 case ISD::SDIV: 5414 case ISD::UREM: 5415 case ISD::SREM: 5416 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5417 case ISD::MUL: 5418 case ISD::AND: 5419 case ISD::SSUBSAT: 5420 case ISD::USUBSAT: 5421 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5422 case ISD::OR: 5423 case ISD::SADDSAT: 5424 case ISD::UADDSAT: 5425 return getAllOnesConstant(DL, VT); 5426 } 5427 } 5428 5429 // Memoize this node if possible. 5430 SDNode *N; 5431 SDVTList VTs = getVTList(VT); 5432 SDValue Ops[] = {N1, N2}; 5433 if (VT != MVT::Glue) { 5434 FoldingSetNodeID ID; 5435 AddNodeIDNode(ID, Opcode, VTs, Ops); 5436 void *IP = nullptr; 5437 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5438 E->intersectFlagsWith(Flags); 5439 return SDValue(E, 0); 5440 } 5441 5442 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5443 N->setFlags(Flags); 5444 createOperands(N, Ops); 5445 CSEMap.InsertNode(N, IP); 5446 } else { 5447 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5448 createOperands(N, Ops); 5449 } 5450 5451 InsertNode(N); 5452 SDValue V = SDValue(N, 0); 5453 NewSDValueDbgMsg(V, "Creating new node: ", this); 5454 return V; 5455 } 5456 5457 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5458 SDValue N1, SDValue N2, SDValue N3, 5459 const SDNodeFlags Flags) { 5460 // Perform various simplifications. 5461 switch (Opcode) { 5462 case ISD::FMA: { 5463 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5464 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5465 N3.getValueType() == VT && "FMA types must match!"); 5466 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5467 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5468 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5469 if (N1CFP && N2CFP && N3CFP) { 5470 APFloat V1 = N1CFP->getValueAPF(); 5471 const APFloat &V2 = N2CFP->getValueAPF(); 5472 const APFloat &V3 = N3CFP->getValueAPF(); 5473 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5474 return getConstantFP(V1, DL, VT); 5475 } 5476 break; 5477 } 5478 case ISD::BUILD_VECTOR: { 5479 // Attempt to simplify BUILD_VECTOR. 5480 SDValue Ops[] = {N1, N2, N3}; 5481 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5482 return V; 5483 break; 5484 } 5485 case ISD::CONCAT_VECTORS: { 5486 SDValue Ops[] = {N1, N2, N3}; 5487 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5488 return V; 5489 break; 5490 } 5491 case ISD::SETCC: { 5492 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5493 assert(N1.getValueType() == N2.getValueType() && 5494 "SETCC operands must have the same type!"); 5495 assert(VT.isVector() == N1.getValueType().isVector() && 5496 "SETCC type should be vector iff the operand type is vector!"); 5497 assert((!VT.isVector() || 5498 VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) && 5499 "SETCC vector element counts must match!"); 5500 // Use FoldSetCC to simplify SETCC's. 5501 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5502 return V; 5503 // Vector constant folding. 5504 SDValue Ops[] = {N1, N2, N3}; 5505 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5506 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5507 return V; 5508 } 5509 break; 5510 } 5511 case ISD::SELECT: 5512 case ISD::VSELECT: 5513 if (SDValue V = simplifySelect(N1, N2, N3)) 5514 return V; 5515 break; 5516 case ISD::VECTOR_SHUFFLE: 5517 llvm_unreachable("should use getVectorShuffle constructor!"); 5518 case ISD::INSERT_VECTOR_ELT: { 5519 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5520 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 5521 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5522 return getUNDEF(VT); 5523 break; 5524 } 5525 case ISD::INSERT_SUBVECTOR: { 5526 // Inserting undef into undef is still undef. 5527 if (N1.isUndef() && N2.isUndef()) 5528 return getUNDEF(VT); 5529 SDValue Index = N3; 5530 if (VT.isSimple() && N1.getValueType().isSimple() 5531 && N2.getValueType().isSimple()) { 5532 assert(VT.isVector() && N1.getValueType().isVector() && 5533 N2.getValueType().isVector() && 5534 "Insert subvector VTs must be a vectors"); 5535 assert(VT == N1.getValueType() && 5536 "Dest and insert subvector source types must match!"); 5537 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 5538 "Insert subvector must be from smaller vector to larger vector!"); 5539 if (isa<ConstantSDNode>(Index)) { 5540 assert((N2.getValueType().getVectorNumElements() + 5541 cast<ConstantSDNode>(Index)->getZExtValue() 5542 <= VT.getVectorNumElements()) 5543 && "Insert subvector overflow!"); 5544 } 5545 5546 // Trivial insertion. 5547 if (VT.getSimpleVT() == N2.getSimpleValueType()) 5548 return N2; 5549 5550 // If this is an insert of an extracted vector into an undef vector, we 5551 // can just use the input to the extract. 5552 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5553 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5554 return N2.getOperand(0); 5555 } 5556 break; 5557 } 5558 case ISD::BITCAST: 5559 // Fold bit_convert nodes from a type to themselves. 5560 if (N1.getValueType() == VT) 5561 return N1; 5562 break; 5563 } 5564 5565 // Memoize node if it doesn't produce a flag. 5566 SDNode *N; 5567 SDVTList VTs = getVTList(VT); 5568 SDValue Ops[] = {N1, N2, N3}; 5569 if (VT != MVT::Glue) { 5570 FoldingSetNodeID ID; 5571 AddNodeIDNode(ID, Opcode, VTs, Ops); 5572 void *IP = nullptr; 5573 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5574 E->intersectFlagsWith(Flags); 5575 return SDValue(E, 0); 5576 } 5577 5578 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5579 N->setFlags(Flags); 5580 createOperands(N, Ops); 5581 CSEMap.InsertNode(N, IP); 5582 } else { 5583 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5584 createOperands(N, Ops); 5585 } 5586 5587 InsertNode(N); 5588 SDValue V = SDValue(N, 0); 5589 NewSDValueDbgMsg(V, "Creating new node: ", this); 5590 return V; 5591 } 5592 5593 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5594 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5595 SDValue Ops[] = { N1, N2, N3, N4 }; 5596 return getNode(Opcode, DL, VT, Ops); 5597 } 5598 5599 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5600 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5601 SDValue N5) { 5602 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5603 return getNode(Opcode, DL, VT, Ops); 5604 } 5605 5606 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5607 /// the incoming stack arguments to be loaded from the stack. 5608 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5609 SmallVector<SDValue, 8> ArgChains; 5610 5611 // Include the original chain at the beginning of the list. When this is 5612 // used by target LowerCall hooks, this helps legalize find the 5613 // CALLSEQ_BEGIN node. 5614 ArgChains.push_back(Chain); 5615 5616 // Add a chain value for each stack argument. 5617 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5618 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5619 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5620 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5621 if (FI->getIndex() < 0) 5622 ArgChains.push_back(SDValue(L, 1)); 5623 5624 // Build a tokenfactor for all the chains. 5625 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5626 } 5627 5628 /// getMemsetValue - Vectorized representation of the memset value 5629 /// operand. 5630 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5631 const SDLoc &dl) { 5632 assert(!Value.isUndef()); 5633 5634 unsigned NumBits = VT.getScalarSizeInBits(); 5635 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5636 assert(C->getAPIntValue().getBitWidth() == 8); 5637 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5638 if (VT.isInteger()) { 5639 bool IsOpaque = VT.getSizeInBits() > 64 || 5640 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5641 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5642 } 5643 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5644 VT); 5645 } 5646 5647 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5648 EVT IntVT = VT.getScalarType(); 5649 if (!IntVT.isInteger()) 5650 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5651 5652 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5653 if (NumBits > 8) { 5654 // Use a multiplication with 0x010101... to extend the input to the 5655 // required length. 5656 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5657 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5658 DAG.getConstant(Magic, dl, IntVT)); 5659 } 5660 5661 if (VT != Value.getValueType() && !VT.isInteger()) 5662 Value = DAG.getBitcast(VT.getScalarType(), Value); 5663 if (VT != Value.getValueType()) 5664 Value = DAG.getSplatBuildVector(VT, dl, Value); 5665 5666 return Value; 5667 } 5668 5669 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5670 /// used when a memcpy is turned into a memset when the source is a constant 5671 /// string ptr. 5672 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5673 const TargetLowering &TLI, 5674 const ConstantDataArraySlice &Slice) { 5675 // Handle vector with all elements zero. 5676 if (Slice.Array == nullptr) { 5677 if (VT.isInteger()) 5678 return DAG.getConstant(0, dl, VT); 5679 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5680 return DAG.getConstantFP(0.0, dl, VT); 5681 else if (VT.isVector()) { 5682 unsigned NumElts = VT.getVectorNumElements(); 5683 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5684 return DAG.getNode(ISD::BITCAST, dl, VT, 5685 DAG.getConstant(0, dl, 5686 EVT::getVectorVT(*DAG.getContext(), 5687 EltVT, NumElts))); 5688 } else 5689 llvm_unreachable("Expected type!"); 5690 } 5691 5692 assert(!VT.isVector() && "Can't handle vector type here!"); 5693 unsigned NumVTBits = VT.getSizeInBits(); 5694 unsigned NumVTBytes = NumVTBits / 8; 5695 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5696 5697 APInt Val(NumVTBits, 0); 5698 if (DAG.getDataLayout().isLittleEndian()) { 5699 for (unsigned i = 0; i != NumBytes; ++i) 5700 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5701 } else { 5702 for (unsigned i = 0; i != NumBytes; ++i) 5703 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5704 } 5705 5706 // If the "cost" of materializing the integer immediate is less than the cost 5707 // of a load, then it is cost effective to turn the load into the immediate. 5708 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5709 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5710 return DAG.getConstant(Val, dl, VT); 5711 return SDValue(nullptr, 0); 5712 } 5713 5714 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, unsigned Offset, 5715 const SDLoc &DL) { 5716 EVT VT = Base.getValueType(); 5717 return getNode(ISD::ADD, DL, VT, Base, getConstant(Offset, DL, VT)); 5718 } 5719 5720 /// Returns true if memcpy source is constant data. 5721 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5722 uint64_t SrcDelta = 0; 5723 GlobalAddressSDNode *G = nullptr; 5724 if (Src.getOpcode() == ISD::GlobalAddress) 5725 G = cast<GlobalAddressSDNode>(Src); 5726 else if (Src.getOpcode() == ISD::ADD && 5727 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5728 Src.getOperand(1).getOpcode() == ISD::Constant) { 5729 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5730 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5731 } 5732 if (!G) 5733 return false; 5734 5735 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5736 SrcDelta + G->getOffset()); 5737 } 5738 5739 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { 5740 // On Darwin, -Os means optimize for size without hurting performance, so 5741 // only really optimize for size when -Oz (MinSize) is used. 5742 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5743 return MF.getFunction().hasMinSize(); 5744 return MF.getFunction().hasOptSize(); 5745 } 5746 5747 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5748 SmallVector<SDValue, 32> &OutChains, unsigned From, 5749 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5750 SmallVector<SDValue, 16> &OutStoreChains) { 5751 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5752 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5753 SmallVector<SDValue, 16> GluedLoadChains; 5754 for (unsigned i = From; i < To; ++i) { 5755 OutChains.push_back(OutLoadChains[i]); 5756 GluedLoadChains.push_back(OutLoadChains[i]); 5757 } 5758 5759 // Chain for all loads. 5760 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5761 GluedLoadChains); 5762 5763 for (unsigned i = From; i < To; ++i) { 5764 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5765 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5766 ST->getBasePtr(), ST->getMemoryVT(), 5767 ST->getMemOperand()); 5768 OutChains.push_back(NewStore); 5769 } 5770 } 5771 5772 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5773 SDValue Chain, SDValue Dst, SDValue Src, 5774 uint64_t Size, unsigned Align, 5775 bool isVol, bool AlwaysInline, 5776 MachinePointerInfo DstPtrInfo, 5777 MachinePointerInfo SrcPtrInfo) { 5778 // Turn a memcpy of undef to nop. 5779 // FIXME: We need to honor volatile even is Src is undef. 5780 if (Src.isUndef()) 5781 return Chain; 5782 5783 // Expand memcpy to a series of load and store ops if the size operand falls 5784 // below a certain threshold. 5785 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5786 // rather than maybe a humongous number of loads and stores. 5787 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5788 const DataLayout &DL = DAG.getDataLayout(); 5789 LLVMContext &C = *DAG.getContext(); 5790 std::vector<EVT> MemOps; 5791 bool DstAlignCanChange = false; 5792 MachineFunction &MF = DAG.getMachineFunction(); 5793 MachineFrameInfo &MFI = MF.getFrameInfo(); 5794 bool OptSize = shouldLowerMemFuncForSize(MF); 5795 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5796 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5797 DstAlignCanChange = true; 5798 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5799 if (Align > SrcAlign) 5800 SrcAlign = Align; 5801 ConstantDataArraySlice Slice; 5802 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5803 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5804 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5805 5806 if (!TLI.findOptimalMemOpLowering( 5807 MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), 5808 (isZeroConstant ? 0 : SrcAlign), /*IsMemset=*/false, 5809 /*ZeroMemset=*/false, /*MemcpyStrSrc=*/CopyFromConstant, 5810 /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), 5811 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 5812 return SDValue(); 5813 5814 if (DstAlignCanChange) { 5815 Type *Ty = MemOps[0].getTypeForEVT(C); 5816 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5817 5818 // Don't promote to an alignment that would require dynamic stack 5819 // realignment. 5820 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5821 if (!TRI->needsStackRealignment(MF)) 5822 while (NewAlign > Align && 5823 DL.exceedsNaturalStackAlignment(NewAlign)) 5824 NewAlign /= 2; 5825 5826 if (NewAlign > Align) { 5827 // Give the stack frame object a larger alignment if needed. 5828 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5829 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5830 Align = NewAlign; 5831 } 5832 } 5833 5834 MachineMemOperand::Flags MMOFlags = 5835 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5836 SmallVector<SDValue, 16> OutLoadChains; 5837 SmallVector<SDValue, 16> OutStoreChains; 5838 SmallVector<SDValue, 32> OutChains; 5839 unsigned NumMemOps = MemOps.size(); 5840 uint64_t SrcOff = 0, DstOff = 0; 5841 for (unsigned i = 0; i != NumMemOps; ++i) { 5842 EVT VT = MemOps[i]; 5843 unsigned VTSize = VT.getSizeInBits() / 8; 5844 SDValue Value, Store; 5845 5846 if (VTSize > Size) { 5847 // Issuing an unaligned load / store pair that overlaps with the previous 5848 // pair. Adjust the offset accordingly. 5849 assert(i == NumMemOps-1 && i != 0); 5850 SrcOff -= VTSize - Size; 5851 DstOff -= VTSize - Size; 5852 } 5853 5854 if (CopyFromConstant && 5855 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5856 // It's unlikely a store of a vector immediate can be done in a single 5857 // instruction. It would require a load from a constantpool first. 5858 // We only handle zero vectors here. 5859 // FIXME: Handle other cases where store of vector immediate is done in 5860 // a single instruction. 5861 ConstantDataArraySlice SubSlice; 5862 if (SrcOff < Slice.Length) { 5863 SubSlice = Slice; 5864 SubSlice.move(SrcOff); 5865 } else { 5866 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5867 SubSlice.Array = nullptr; 5868 SubSlice.Offset = 0; 5869 SubSlice.Length = VTSize; 5870 } 5871 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5872 if (Value.getNode()) { 5873 Store = DAG.getStore(Chain, dl, Value, 5874 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5875 DstPtrInfo.getWithOffset(DstOff), Align, 5876 MMOFlags); 5877 OutChains.push_back(Store); 5878 } 5879 } 5880 5881 if (!Store.getNode()) { 5882 // The type might not be legal for the target. This should only happen 5883 // if the type is smaller than a legal type, as on PPC, so the right 5884 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 5885 // to Load/Store if NVT==VT. 5886 // FIXME does the case above also need this? 5887 EVT NVT = TLI.getTypeToTransformTo(C, VT); 5888 assert(NVT.bitsGE(VT)); 5889 5890 bool isDereferenceable = 5891 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5892 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5893 if (isDereferenceable) 5894 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5895 5896 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 5897 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5898 SrcPtrInfo.getWithOffset(SrcOff), VT, 5899 MinAlign(SrcAlign, SrcOff), SrcMMOFlags); 5900 OutLoadChains.push_back(Value.getValue(1)); 5901 5902 Store = DAG.getTruncStore( 5903 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5904 DstPtrInfo.getWithOffset(DstOff), VT, Align, MMOFlags); 5905 OutStoreChains.push_back(Store); 5906 } 5907 SrcOff += VTSize; 5908 DstOff += VTSize; 5909 Size -= VTSize; 5910 } 5911 5912 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 5913 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 5914 unsigned NumLdStInMemcpy = OutStoreChains.size(); 5915 5916 if (NumLdStInMemcpy) { 5917 // It may be that memcpy might be converted to memset if it's memcpy 5918 // of constants. In such a case, we won't have loads and stores, but 5919 // just stores. In the absence of loads, there is nothing to gang up. 5920 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 5921 // If target does not care, just leave as it. 5922 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 5923 OutChains.push_back(OutLoadChains[i]); 5924 OutChains.push_back(OutStoreChains[i]); 5925 } 5926 } else { 5927 // Ld/St less than/equal limit set by target. 5928 if (NumLdStInMemcpy <= GluedLdStLimit) { 5929 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 5930 NumLdStInMemcpy, OutLoadChains, 5931 OutStoreChains); 5932 } else { 5933 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 5934 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 5935 unsigned GlueIter = 0; 5936 5937 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 5938 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 5939 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 5940 5941 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 5942 OutLoadChains, OutStoreChains); 5943 GlueIter += GluedLdStLimit; 5944 } 5945 5946 // Residual ld/st. 5947 if (RemainingLdStInMemcpy) { 5948 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 5949 RemainingLdStInMemcpy, OutLoadChains, 5950 OutStoreChains); 5951 } 5952 } 5953 } 5954 } 5955 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 5956 } 5957 5958 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5959 SDValue Chain, SDValue Dst, SDValue Src, 5960 uint64_t Size, unsigned Align, 5961 bool isVol, bool AlwaysInline, 5962 MachinePointerInfo DstPtrInfo, 5963 MachinePointerInfo SrcPtrInfo) { 5964 // Turn a memmove of undef to nop. 5965 // FIXME: We need to honor volatile even is Src is undef. 5966 if (Src.isUndef()) 5967 return Chain; 5968 5969 // Expand memmove to a series of load and store ops if the size operand falls 5970 // below a certain threshold. 5971 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5972 const DataLayout &DL = DAG.getDataLayout(); 5973 LLVMContext &C = *DAG.getContext(); 5974 std::vector<EVT> MemOps; 5975 bool DstAlignCanChange = false; 5976 MachineFunction &MF = DAG.getMachineFunction(); 5977 MachineFrameInfo &MFI = MF.getFrameInfo(); 5978 bool OptSize = shouldLowerMemFuncForSize(MF); 5979 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5980 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5981 DstAlignCanChange = true; 5982 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5983 if (Align > SrcAlign) 5984 SrcAlign = Align; 5985 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 5986 // FIXME: `AllowOverlap` should really be `!isVol` but there is a bug in 5987 // findOptimalMemOpLowering. Meanwhile, setting it to `false` produces the 5988 // correct code. 5989 bool AllowOverlap = false; 5990 if (!TLI.findOptimalMemOpLowering( 5991 MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), SrcAlign, 5992 /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false, 5993 AllowOverlap, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 5994 MF.getFunction().getAttributes())) 5995 return SDValue(); 5996 5997 if (DstAlignCanChange) { 5998 Type *Ty = MemOps[0].getTypeForEVT(C); 5999 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 6000 if (NewAlign > Align) { 6001 // Give the stack frame object a larger alignment if needed. 6002 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 6003 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6004 Align = NewAlign; 6005 } 6006 } 6007 6008 MachineMemOperand::Flags MMOFlags = 6009 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6010 uint64_t SrcOff = 0, DstOff = 0; 6011 SmallVector<SDValue, 8> LoadValues; 6012 SmallVector<SDValue, 8> LoadChains; 6013 SmallVector<SDValue, 8> OutChains; 6014 unsigned NumMemOps = MemOps.size(); 6015 for (unsigned i = 0; i < NumMemOps; i++) { 6016 EVT VT = MemOps[i]; 6017 unsigned VTSize = VT.getSizeInBits() / 8; 6018 SDValue Value; 6019 6020 bool isDereferenceable = 6021 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6022 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6023 if (isDereferenceable) 6024 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6025 6026 Value = 6027 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6028 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags); 6029 LoadValues.push_back(Value); 6030 LoadChains.push_back(Value.getValue(1)); 6031 SrcOff += VTSize; 6032 } 6033 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6034 OutChains.clear(); 6035 for (unsigned i = 0; i < NumMemOps; i++) { 6036 EVT VT = MemOps[i]; 6037 unsigned VTSize = VT.getSizeInBits() / 8; 6038 SDValue Store; 6039 6040 Store = DAG.getStore(Chain, dl, LoadValues[i], 6041 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6042 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 6043 OutChains.push_back(Store); 6044 DstOff += VTSize; 6045 } 6046 6047 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6048 } 6049 6050 /// Lower the call to 'memset' intrinsic function into a series of store 6051 /// operations. 6052 /// 6053 /// \param DAG Selection DAG where lowered code is placed. 6054 /// \param dl Link to corresponding IR location. 6055 /// \param Chain Control flow dependency. 6056 /// \param Dst Pointer to destination memory location. 6057 /// \param Src Value of byte to write into the memory. 6058 /// \param Size Number of bytes to write. 6059 /// \param Align Alignment of the destination in bytes. 6060 /// \param isVol True if destination is volatile. 6061 /// \param DstPtrInfo IR information on the memory pointer. 6062 /// \returns New head in the control flow, if lowering was successful, empty 6063 /// SDValue otherwise. 6064 /// 6065 /// The function tries to replace 'llvm.memset' intrinsic with several store 6066 /// operations and value calculation code. This is usually profitable for small 6067 /// memory size. 6068 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6069 SDValue Chain, SDValue Dst, SDValue Src, 6070 uint64_t Size, unsigned Align, bool isVol, 6071 MachinePointerInfo DstPtrInfo) { 6072 // Turn a memset of undef to nop. 6073 // FIXME: We need to honor volatile even is Src is undef. 6074 if (Src.isUndef()) 6075 return Chain; 6076 6077 // Expand memset to a series of load/store ops if the size operand 6078 // falls below a certain threshold. 6079 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6080 std::vector<EVT> MemOps; 6081 bool DstAlignCanChange = false; 6082 MachineFunction &MF = DAG.getMachineFunction(); 6083 MachineFrameInfo &MFI = MF.getFrameInfo(); 6084 bool OptSize = shouldLowerMemFuncForSize(MF); 6085 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6086 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6087 DstAlignCanChange = true; 6088 bool IsZeroVal = 6089 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6090 if (!TLI.findOptimalMemOpLowering( 6091 MemOps, TLI.getMaxStoresPerMemset(OptSize), Size, 6092 (DstAlignCanChange ? 0 : Align), 0, /*IsMemset=*/true, 6093 /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false, 6094 /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), ~0u, 6095 MF.getFunction().getAttributes())) 6096 return SDValue(); 6097 6098 if (DstAlignCanChange) { 6099 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6100 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 6101 if (NewAlign > Align) { 6102 // Give the stack frame object a larger alignment if needed. 6103 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 6104 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6105 Align = NewAlign; 6106 } 6107 } 6108 6109 SmallVector<SDValue, 8> OutChains; 6110 uint64_t DstOff = 0; 6111 unsigned NumMemOps = MemOps.size(); 6112 6113 // Find the largest store and generate the bit pattern for it. 6114 EVT LargestVT = MemOps[0]; 6115 for (unsigned i = 1; i < NumMemOps; i++) 6116 if (MemOps[i].bitsGT(LargestVT)) 6117 LargestVT = MemOps[i]; 6118 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6119 6120 for (unsigned i = 0; i < NumMemOps; i++) { 6121 EVT VT = MemOps[i]; 6122 unsigned VTSize = VT.getSizeInBits() / 8; 6123 if (VTSize > Size) { 6124 // Issuing an unaligned load / store pair that overlaps with the previous 6125 // pair. Adjust the offset accordingly. 6126 assert(i == NumMemOps-1 && i != 0); 6127 DstOff -= VTSize - Size; 6128 } 6129 6130 // If this store is smaller than the largest store see whether we can get 6131 // the smaller value for free with a truncate. 6132 SDValue Value = MemSetValue; 6133 if (VT.bitsLT(LargestVT)) { 6134 if (!LargestVT.isVector() && !VT.isVector() && 6135 TLI.isTruncateFree(LargestVT, VT)) 6136 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6137 else 6138 Value = getMemsetValue(Src, VT, DAG, dl); 6139 } 6140 assert(Value.getValueType() == VT && "Value with wrong type."); 6141 SDValue Store = DAG.getStore( 6142 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6143 DstPtrInfo.getWithOffset(DstOff), Align, 6144 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6145 OutChains.push_back(Store); 6146 DstOff += VT.getSizeInBits() / 8; 6147 Size -= VTSize; 6148 } 6149 6150 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6151 } 6152 6153 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6154 unsigned AS) { 6155 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6156 // pointer operands can be losslessly bitcasted to pointers of address space 0 6157 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 6158 report_fatal_error("cannot lower memory intrinsic in address space " + 6159 Twine(AS)); 6160 } 6161 } 6162 6163 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6164 SDValue Src, SDValue Size, unsigned Align, 6165 bool isVol, bool AlwaysInline, bool isTailCall, 6166 MachinePointerInfo DstPtrInfo, 6167 MachinePointerInfo SrcPtrInfo) { 6168 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6169 6170 // Check to see if we should lower the memcpy to loads and stores first. 6171 // For cases within the target-specified limits, this is the best choice. 6172 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6173 if (ConstantSize) { 6174 // Memcpy with size zero? Just return the original chain. 6175 if (ConstantSize->isNullValue()) 6176 return Chain; 6177 6178 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6179 ConstantSize->getZExtValue(),Align, 6180 isVol, false, DstPtrInfo, SrcPtrInfo); 6181 if (Result.getNode()) 6182 return Result; 6183 } 6184 6185 // Then check to see if we should lower the memcpy with target-specific 6186 // code. If the target chooses to do this, this is the next best. 6187 if (TSI) { 6188 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6189 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 6190 DstPtrInfo, SrcPtrInfo); 6191 if (Result.getNode()) 6192 return Result; 6193 } 6194 6195 // If we really need inline code and the target declined to provide it, 6196 // use a (potentially long) sequence of loads and stores. 6197 if (AlwaysInline) { 6198 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6199 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6200 ConstantSize->getZExtValue(), Align, isVol, 6201 true, DstPtrInfo, SrcPtrInfo); 6202 } 6203 6204 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6205 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6206 6207 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6208 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6209 // respect volatile, so they may do things like read or write memory 6210 // beyond the given memory regions. But fixing this isn't easy, and most 6211 // people don't care. 6212 6213 // Emit a library call. 6214 TargetLowering::ArgListTy Args; 6215 TargetLowering::ArgListEntry Entry; 6216 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6217 Entry.Node = Dst; Args.push_back(Entry); 6218 Entry.Node = Src; Args.push_back(Entry); 6219 6220 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6221 Entry.Node = Size; Args.push_back(Entry); 6222 // FIXME: pass in SDLoc 6223 TargetLowering::CallLoweringInfo CLI(*this); 6224 CLI.setDebugLoc(dl) 6225 .setChain(Chain) 6226 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6227 Dst.getValueType().getTypeForEVT(*getContext()), 6228 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6229 TLI->getPointerTy(getDataLayout())), 6230 std::move(Args)) 6231 .setDiscardResult() 6232 .setTailCall(isTailCall); 6233 6234 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6235 return CallResult.second; 6236 } 6237 6238 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6239 SDValue Dst, unsigned DstAlign, 6240 SDValue Src, unsigned SrcAlign, 6241 SDValue Size, Type *SizeTy, 6242 unsigned ElemSz, bool isTailCall, 6243 MachinePointerInfo DstPtrInfo, 6244 MachinePointerInfo SrcPtrInfo) { 6245 // Emit a library call. 6246 TargetLowering::ArgListTy Args; 6247 TargetLowering::ArgListEntry Entry; 6248 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6249 Entry.Node = Dst; 6250 Args.push_back(Entry); 6251 6252 Entry.Node = Src; 6253 Args.push_back(Entry); 6254 6255 Entry.Ty = SizeTy; 6256 Entry.Node = Size; 6257 Args.push_back(Entry); 6258 6259 RTLIB::Libcall LibraryCall = 6260 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6261 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6262 report_fatal_error("Unsupported element size"); 6263 6264 TargetLowering::CallLoweringInfo CLI(*this); 6265 CLI.setDebugLoc(dl) 6266 .setChain(Chain) 6267 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6268 Type::getVoidTy(*getContext()), 6269 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6270 TLI->getPointerTy(getDataLayout())), 6271 std::move(Args)) 6272 .setDiscardResult() 6273 .setTailCall(isTailCall); 6274 6275 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6276 return CallResult.second; 6277 } 6278 6279 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6280 SDValue Src, SDValue Size, unsigned Align, 6281 bool isVol, bool isTailCall, 6282 MachinePointerInfo DstPtrInfo, 6283 MachinePointerInfo SrcPtrInfo) { 6284 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6285 6286 // Check to see if we should lower the memmove to loads and stores first. 6287 // For cases within the target-specified limits, this is the best choice. 6288 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6289 if (ConstantSize) { 6290 // Memmove with size zero? Just return the original chain. 6291 if (ConstantSize->isNullValue()) 6292 return Chain; 6293 6294 SDValue Result = 6295 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 6296 ConstantSize->getZExtValue(), Align, isVol, 6297 false, DstPtrInfo, SrcPtrInfo); 6298 if (Result.getNode()) 6299 return Result; 6300 } 6301 6302 // Then check to see if we should lower the memmove with target-specific 6303 // code. If the target chooses to do this, this is the next best. 6304 if (TSI) { 6305 SDValue Result = TSI->EmitTargetCodeForMemmove( 6306 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 6307 if (Result.getNode()) 6308 return Result; 6309 } 6310 6311 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6312 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6313 6314 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6315 // not be safe. See memcpy above for more details. 6316 6317 // Emit a library call. 6318 TargetLowering::ArgListTy Args; 6319 TargetLowering::ArgListEntry Entry; 6320 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6321 Entry.Node = Dst; Args.push_back(Entry); 6322 Entry.Node = Src; Args.push_back(Entry); 6323 6324 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6325 Entry.Node = Size; Args.push_back(Entry); 6326 // FIXME: pass in SDLoc 6327 TargetLowering::CallLoweringInfo CLI(*this); 6328 CLI.setDebugLoc(dl) 6329 .setChain(Chain) 6330 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6331 Dst.getValueType().getTypeForEVT(*getContext()), 6332 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6333 TLI->getPointerTy(getDataLayout())), 6334 std::move(Args)) 6335 .setDiscardResult() 6336 .setTailCall(isTailCall); 6337 6338 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6339 return CallResult.second; 6340 } 6341 6342 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6343 SDValue Dst, unsigned DstAlign, 6344 SDValue Src, unsigned SrcAlign, 6345 SDValue Size, Type *SizeTy, 6346 unsigned ElemSz, bool isTailCall, 6347 MachinePointerInfo DstPtrInfo, 6348 MachinePointerInfo SrcPtrInfo) { 6349 // Emit a library call. 6350 TargetLowering::ArgListTy Args; 6351 TargetLowering::ArgListEntry Entry; 6352 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6353 Entry.Node = Dst; 6354 Args.push_back(Entry); 6355 6356 Entry.Node = Src; 6357 Args.push_back(Entry); 6358 6359 Entry.Ty = SizeTy; 6360 Entry.Node = Size; 6361 Args.push_back(Entry); 6362 6363 RTLIB::Libcall LibraryCall = 6364 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6365 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6366 report_fatal_error("Unsupported element size"); 6367 6368 TargetLowering::CallLoweringInfo CLI(*this); 6369 CLI.setDebugLoc(dl) 6370 .setChain(Chain) 6371 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6372 Type::getVoidTy(*getContext()), 6373 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6374 TLI->getPointerTy(getDataLayout())), 6375 std::move(Args)) 6376 .setDiscardResult() 6377 .setTailCall(isTailCall); 6378 6379 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6380 return CallResult.second; 6381 } 6382 6383 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6384 SDValue Src, SDValue Size, unsigned Align, 6385 bool isVol, bool isTailCall, 6386 MachinePointerInfo DstPtrInfo) { 6387 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6388 6389 // Check to see if we should lower the memset to stores first. 6390 // For cases within the target-specified limits, this is the best choice. 6391 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6392 if (ConstantSize) { 6393 // Memset with size zero? Just return the original chain. 6394 if (ConstantSize->isNullValue()) 6395 return Chain; 6396 6397 SDValue Result = 6398 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 6399 Align, isVol, DstPtrInfo); 6400 6401 if (Result.getNode()) 6402 return Result; 6403 } 6404 6405 // Then check to see if we should lower the memset with target-specific 6406 // code. If the target chooses to do this, this is the next best. 6407 if (TSI) { 6408 SDValue Result = TSI->EmitTargetCodeForMemset( 6409 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 6410 if (Result.getNode()) 6411 return Result; 6412 } 6413 6414 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6415 6416 // Emit a library call. 6417 TargetLowering::ArgListTy Args; 6418 TargetLowering::ArgListEntry Entry; 6419 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6420 Args.push_back(Entry); 6421 Entry.Node = Src; 6422 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6423 Args.push_back(Entry); 6424 Entry.Node = Size; 6425 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6426 Args.push_back(Entry); 6427 6428 // FIXME: pass in SDLoc 6429 TargetLowering::CallLoweringInfo CLI(*this); 6430 CLI.setDebugLoc(dl) 6431 .setChain(Chain) 6432 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6433 Dst.getValueType().getTypeForEVT(*getContext()), 6434 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6435 TLI->getPointerTy(getDataLayout())), 6436 std::move(Args)) 6437 .setDiscardResult() 6438 .setTailCall(isTailCall); 6439 6440 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6441 return CallResult.second; 6442 } 6443 6444 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6445 SDValue Dst, unsigned DstAlign, 6446 SDValue Value, SDValue Size, Type *SizeTy, 6447 unsigned ElemSz, bool isTailCall, 6448 MachinePointerInfo DstPtrInfo) { 6449 // Emit a library call. 6450 TargetLowering::ArgListTy Args; 6451 TargetLowering::ArgListEntry Entry; 6452 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6453 Entry.Node = Dst; 6454 Args.push_back(Entry); 6455 6456 Entry.Ty = Type::getInt8Ty(*getContext()); 6457 Entry.Node = Value; 6458 Args.push_back(Entry); 6459 6460 Entry.Ty = SizeTy; 6461 Entry.Node = Size; 6462 Args.push_back(Entry); 6463 6464 RTLIB::Libcall LibraryCall = 6465 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6466 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6467 report_fatal_error("Unsupported element size"); 6468 6469 TargetLowering::CallLoweringInfo CLI(*this); 6470 CLI.setDebugLoc(dl) 6471 .setChain(Chain) 6472 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6473 Type::getVoidTy(*getContext()), 6474 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6475 TLI->getPointerTy(getDataLayout())), 6476 std::move(Args)) 6477 .setDiscardResult() 6478 .setTailCall(isTailCall); 6479 6480 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6481 return CallResult.second; 6482 } 6483 6484 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6485 SDVTList VTList, ArrayRef<SDValue> Ops, 6486 MachineMemOperand *MMO) { 6487 FoldingSetNodeID ID; 6488 ID.AddInteger(MemVT.getRawBits()); 6489 AddNodeIDNode(ID, Opcode, VTList, Ops); 6490 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6491 void* IP = nullptr; 6492 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6493 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6494 return SDValue(E, 0); 6495 } 6496 6497 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6498 VTList, MemVT, MMO); 6499 createOperands(N, Ops); 6500 6501 CSEMap.InsertNode(N, IP); 6502 InsertNode(N); 6503 return SDValue(N, 0); 6504 } 6505 6506 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6507 EVT MemVT, SDVTList VTs, SDValue Chain, 6508 SDValue Ptr, SDValue Cmp, SDValue Swp, 6509 MachineMemOperand *MMO) { 6510 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6511 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6512 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6513 6514 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6515 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6516 } 6517 6518 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6519 SDValue Chain, SDValue Ptr, SDValue Val, 6520 MachineMemOperand *MMO) { 6521 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6522 Opcode == ISD::ATOMIC_LOAD_SUB || 6523 Opcode == ISD::ATOMIC_LOAD_AND || 6524 Opcode == ISD::ATOMIC_LOAD_CLR || 6525 Opcode == ISD::ATOMIC_LOAD_OR || 6526 Opcode == ISD::ATOMIC_LOAD_XOR || 6527 Opcode == ISD::ATOMIC_LOAD_NAND || 6528 Opcode == ISD::ATOMIC_LOAD_MIN || 6529 Opcode == ISD::ATOMIC_LOAD_MAX || 6530 Opcode == ISD::ATOMIC_LOAD_UMIN || 6531 Opcode == ISD::ATOMIC_LOAD_UMAX || 6532 Opcode == ISD::ATOMIC_LOAD_FADD || 6533 Opcode == ISD::ATOMIC_LOAD_FSUB || 6534 Opcode == ISD::ATOMIC_SWAP || 6535 Opcode == ISD::ATOMIC_STORE) && 6536 "Invalid Atomic Op"); 6537 6538 EVT VT = Val.getValueType(); 6539 6540 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6541 getVTList(VT, MVT::Other); 6542 SDValue Ops[] = {Chain, Ptr, Val}; 6543 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6544 } 6545 6546 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6547 EVT VT, SDValue Chain, SDValue Ptr, 6548 MachineMemOperand *MMO) { 6549 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6550 6551 SDVTList VTs = getVTList(VT, MVT::Other); 6552 SDValue Ops[] = {Chain, Ptr}; 6553 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6554 } 6555 6556 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6557 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6558 if (Ops.size() == 1) 6559 return Ops[0]; 6560 6561 SmallVector<EVT, 4> VTs; 6562 VTs.reserve(Ops.size()); 6563 for (unsigned i = 0; i < Ops.size(); ++i) 6564 VTs.push_back(Ops[i].getValueType()); 6565 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6566 } 6567 6568 SDValue SelectionDAG::getMemIntrinsicNode( 6569 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6570 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, 6571 MachineMemOperand::Flags Flags, unsigned Size, const AAMDNodes &AAInfo) { 6572 if (Align == 0) // Ensure that codegen never sees alignment 0 6573 Align = getEVTAlignment(MemVT); 6574 6575 if (!Size) 6576 Size = MemVT.getStoreSize(); 6577 6578 MachineFunction &MF = getMachineFunction(); 6579 MachineMemOperand *MMO = 6580 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo); 6581 6582 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6583 } 6584 6585 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6586 SDVTList VTList, 6587 ArrayRef<SDValue> Ops, EVT MemVT, 6588 MachineMemOperand *MMO) { 6589 assert((Opcode == ISD::INTRINSIC_VOID || 6590 Opcode == ISD::INTRINSIC_W_CHAIN || 6591 Opcode == ISD::PREFETCH || 6592 Opcode == ISD::LIFETIME_START || 6593 Opcode == ISD::LIFETIME_END || 6594 ((int)Opcode <= std::numeric_limits<int>::max() && 6595 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6596 "Opcode is not a memory-accessing opcode!"); 6597 6598 // Memoize the node unless it returns a flag. 6599 MemIntrinsicSDNode *N; 6600 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6601 FoldingSetNodeID ID; 6602 AddNodeIDNode(ID, Opcode, VTList, Ops); 6603 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6604 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6605 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6606 void *IP = nullptr; 6607 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6608 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6609 return SDValue(E, 0); 6610 } 6611 6612 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6613 VTList, MemVT, MMO); 6614 createOperands(N, Ops); 6615 6616 CSEMap.InsertNode(N, IP); 6617 } else { 6618 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6619 VTList, MemVT, MMO); 6620 createOperands(N, Ops); 6621 } 6622 InsertNode(N); 6623 return SDValue(N, 0); 6624 } 6625 6626 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6627 SDValue Chain, int FrameIndex, 6628 int64_t Size, int64_t Offset) { 6629 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6630 const auto VTs = getVTList(MVT::Other); 6631 SDValue Ops[2] = { 6632 Chain, 6633 getFrameIndex(FrameIndex, 6634 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6635 true)}; 6636 6637 FoldingSetNodeID ID; 6638 AddNodeIDNode(ID, Opcode, VTs, Ops); 6639 ID.AddInteger(FrameIndex); 6640 ID.AddInteger(Size); 6641 ID.AddInteger(Offset); 6642 void *IP = nullptr; 6643 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6644 return SDValue(E, 0); 6645 6646 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6647 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6648 createOperands(N, Ops); 6649 CSEMap.InsertNode(N, IP); 6650 InsertNode(N); 6651 SDValue V(N, 0); 6652 NewSDValueDbgMsg(V, "Creating new node: ", this); 6653 return V; 6654 } 6655 6656 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6657 /// MachinePointerInfo record from it. This is particularly useful because the 6658 /// code generator has many cases where it doesn't bother passing in a 6659 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6660 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6661 SelectionDAG &DAG, SDValue Ptr, 6662 int64_t Offset = 0) { 6663 // If this is FI+Offset, we can model it. 6664 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6665 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6666 FI->getIndex(), Offset); 6667 6668 // If this is (FI+Offset1)+Offset2, we can model it. 6669 if (Ptr.getOpcode() != ISD::ADD || 6670 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6671 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6672 return Info; 6673 6674 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6675 return MachinePointerInfo::getFixedStack( 6676 DAG.getMachineFunction(), FI, 6677 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6678 } 6679 6680 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6681 /// MachinePointerInfo record from it. This is particularly useful because the 6682 /// code generator has many cases where it doesn't bother passing in a 6683 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6684 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6685 SelectionDAG &DAG, SDValue Ptr, 6686 SDValue OffsetOp) { 6687 // If the 'Offset' value isn't a constant, we can't handle this. 6688 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6689 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6690 if (OffsetOp.isUndef()) 6691 return InferPointerInfo(Info, DAG, Ptr); 6692 return Info; 6693 } 6694 6695 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6696 EVT VT, const SDLoc &dl, SDValue Chain, 6697 SDValue Ptr, SDValue Offset, 6698 MachinePointerInfo PtrInfo, EVT MemVT, 6699 unsigned Alignment, 6700 MachineMemOperand::Flags MMOFlags, 6701 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6702 assert(Chain.getValueType() == MVT::Other && 6703 "Invalid chain type"); 6704 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6705 Alignment = getEVTAlignment(MemVT); 6706 6707 MMOFlags |= MachineMemOperand::MOLoad; 6708 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6709 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6710 // clients. 6711 if (PtrInfo.V.isNull()) 6712 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6713 6714 MachineFunction &MF = getMachineFunction(); 6715 MachineMemOperand *MMO = MF.getMachineMemOperand( 6716 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 6717 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6718 } 6719 6720 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6721 EVT VT, const SDLoc &dl, SDValue Chain, 6722 SDValue Ptr, SDValue Offset, EVT MemVT, 6723 MachineMemOperand *MMO) { 6724 if (VT == MemVT) { 6725 ExtType = ISD::NON_EXTLOAD; 6726 } else if (ExtType == ISD::NON_EXTLOAD) { 6727 assert(VT == MemVT && "Non-extending load from different memory type!"); 6728 } else { 6729 // Extending load. 6730 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6731 "Should only be an extending load, not truncating!"); 6732 assert(VT.isInteger() == MemVT.isInteger() && 6733 "Cannot convert from FP to Int or Int -> FP!"); 6734 assert(VT.isVector() == MemVT.isVector() && 6735 "Cannot use an ext load to convert to or from a vector!"); 6736 assert((!VT.isVector() || 6737 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6738 "Cannot use an ext load to change the number of vector elements!"); 6739 } 6740 6741 bool Indexed = AM != ISD::UNINDEXED; 6742 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6743 6744 SDVTList VTs = Indexed ? 6745 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6746 SDValue Ops[] = { Chain, Ptr, Offset }; 6747 FoldingSetNodeID ID; 6748 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6749 ID.AddInteger(MemVT.getRawBits()); 6750 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6751 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6752 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6753 void *IP = nullptr; 6754 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6755 cast<LoadSDNode>(E)->refineAlignment(MMO); 6756 return SDValue(E, 0); 6757 } 6758 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6759 ExtType, MemVT, MMO); 6760 createOperands(N, Ops); 6761 6762 CSEMap.InsertNode(N, IP); 6763 InsertNode(N); 6764 SDValue V(N, 0); 6765 NewSDValueDbgMsg(V, "Creating new node: ", this); 6766 return V; 6767 } 6768 6769 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6770 SDValue Ptr, MachinePointerInfo PtrInfo, 6771 unsigned Alignment, 6772 MachineMemOperand::Flags MMOFlags, 6773 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6774 SDValue Undef = getUNDEF(Ptr.getValueType()); 6775 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6776 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 6777 } 6778 6779 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6780 SDValue Ptr, MachineMemOperand *MMO) { 6781 SDValue Undef = getUNDEF(Ptr.getValueType()); 6782 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6783 VT, MMO); 6784 } 6785 6786 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6787 EVT VT, SDValue Chain, SDValue Ptr, 6788 MachinePointerInfo PtrInfo, EVT MemVT, 6789 unsigned Alignment, 6790 MachineMemOperand::Flags MMOFlags, 6791 const AAMDNodes &AAInfo) { 6792 SDValue Undef = getUNDEF(Ptr.getValueType()); 6793 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 6794 MemVT, Alignment, MMOFlags, AAInfo); 6795 } 6796 6797 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6798 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 6799 MachineMemOperand *MMO) { 6800 SDValue Undef = getUNDEF(Ptr.getValueType()); 6801 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 6802 MemVT, MMO); 6803 } 6804 6805 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 6806 SDValue Base, SDValue Offset, 6807 ISD::MemIndexedMode AM) { 6808 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 6809 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 6810 // Don't propagate the invariant or dereferenceable flags. 6811 auto MMOFlags = 6812 LD->getMemOperand()->getFlags() & 6813 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 6814 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 6815 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6816 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6817 LD->getAAInfo()); 6818 } 6819 6820 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6821 SDValue Ptr, MachinePointerInfo PtrInfo, 6822 unsigned Alignment, 6823 MachineMemOperand::Flags MMOFlags, 6824 const AAMDNodes &AAInfo) { 6825 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6826 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6827 Alignment = getEVTAlignment(Val.getValueType()); 6828 6829 MMOFlags |= MachineMemOperand::MOStore; 6830 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6831 6832 if (PtrInfo.V.isNull()) 6833 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6834 6835 MachineFunction &MF = getMachineFunction(); 6836 MachineMemOperand *MMO = MF.getMachineMemOperand( 6837 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 6838 return getStore(Chain, dl, Val, Ptr, MMO); 6839 } 6840 6841 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6842 SDValue Ptr, MachineMemOperand *MMO) { 6843 assert(Chain.getValueType() == MVT::Other && 6844 "Invalid chain type"); 6845 EVT VT = Val.getValueType(); 6846 SDVTList VTs = getVTList(MVT::Other); 6847 SDValue Undef = getUNDEF(Ptr.getValueType()); 6848 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6849 FoldingSetNodeID ID; 6850 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6851 ID.AddInteger(VT.getRawBits()); 6852 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6853 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6854 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6855 void *IP = nullptr; 6856 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6857 cast<StoreSDNode>(E)->refineAlignment(MMO); 6858 return SDValue(E, 0); 6859 } 6860 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6861 ISD::UNINDEXED, false, VT, MMO); 6862 createOperands(N, Ops); 6863 6864 CSEMap.InsertNode(N, IP); 6865 InsertNode(N); 6866 SDValue V(N, 0); 6867 NewSDValueDbgMsg(V, "Creating new node: ", this); 6868 return V; 6869 } 6870 6871 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6872 SDValue Ptr, MachinePointerInfo PtrInfo, 6873 EVT SVT, unsigned Alignment, 6874 MachineMemOperand::Flags MMOFlags, 6875 const AAMDNodes &AAInfo) { 6876 assert(Chain.getValueType() == MVT::Other && 6877 "Invalid chain type"); 6878 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6879 Alignment = getEVTAlignment(SVT); 6880 6881 MMOFlags |= MachineMemOperand::MOStore; 6882 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6883 6884 if (PtrInfo.V.isNull()) 6885 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6886 6887 MachineFunction &MF = getMachineFunction(); 6888 MachineMemOperand *MMO = MF.getMachineMemOperand( 6889 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 6890 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 6891 } 6892 6893 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6894 SDValue Ptr, EVT SVT, 6895 MachineMemOperand *MMO) { 6896 EVT VT = Val.getValueType(); 6897 6898 assert(Chain.getValueType() == MVT::Other && 6899 "Invalid chain type"); 6900 if (VT == SVT) 6901 return getStore(Chain, dl, Val, Ptr, MMO); 6902 6903 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 6904 "Should only be a truncating store, not extending!"); 6905 assert(VT.isInteger() == SVT.isInteger() && 6906 "Can't do FP-INT conversion!"); 6907 assert(VT.isVector() == SVT.isVector() && 6908 "Cannot use trunc store to convert to or from a vector!"); 6909 assert((!VT.isVector() || 6910 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 6911 "Cannot use trunc store to change the number of vector elements!"); 6912 6913 SDVTList VTs = getVTList(MVT::Other); 6914 SDValue Undef = getUNDEF(Ptr.getValueType()); 6915 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6916 FoldingSetNodeID ID; 6917 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6918 ID.AddInteger(SVT.getRawBits()); 6919 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6920 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 6921 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6922 void *IP = nullptr; 6923 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6924 cast<StoreSDNode>(E)->refineAlignment(MMO); 6925 return SDValue(E, 0); 6926 } 6927 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6928 ISD::UNINDEXED, true, SVT, MMO); 6929 createOperands(N, Ops); 6930 6931 CSEMap.InsertNode(N, IP); 6932 InsertNode(N); 6933 SDValue V(N, 0); 6934 NewSDValueDbgMsg(V, "Creating new node: ", this); 6935 return V; 6936 } 6937 6938 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 6939 SDValue Base, SDValue Offset, 6940 ISD::MemIndexedMode AM) { 6941 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 6942 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 6943 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 6944 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 6945 FoldingSetNodeID ID; 6946 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6947 ID.AddInteger(ST->getMemoryVT().getRawBits()); 6948 ID.AddInteger(ST->getRawSubclassData()); 6949 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 6950 void *IP = nullptr; 6951 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6952 return SDValue(E, 0); 6953 6954 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6955 ST->isTruncatingStore(), ST->getMemoryVT(), 6956 ST->getMemOperand()); 6957 createOperands(N, Ops); 6958 6959 CSEMap.InsertNode(N, IP); 6960 InsertNode(N); 6961 SDValue V(N, 0); 6962 NewSDValueDbgMsg(V, "Creating new node: ", this); 6963 return V; 6964 } 6965 6966 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6967 SDValue Ptr, SDValue Mask, SDValue PassThru, 6968 EVT MemVT, MachineMemOperand *MMO, 6969 ISD::LoadExtType ExtTy, bool isExpanding) { 6970 SDVTList VTs = getVTList(VT, MVT::Other); 6971 SDValue Ops[] = { Chain, Ptr, Mask, PassThru }; 6972 FoldingSetNodeID ID; 6973 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 6974 ID.AddInteger(MemVT.getRawBits()); 6975 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 6976 dl.getIROrder(), VTs, ExtTy, isExpanding, MemVT, MMO)); 6977 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6978 void *IP = nullptr; 6979 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6980 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 6981 return SDValue(E, 0); 6982 } 6983 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6984 ExtTy, isExpanding, MemVT, MMO); 6985 createOperands(N, Ops); 6986 6987 CSEMap.InsertNode(N, IP); 6988 InsertNode(N); 6989 SDValue V(N, 0); 6990 NewSDValueDbgMsg(V, "Creating new node: ", this); 6991 return V; 6992 } 6993 6994 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 6995 SDValue Val, SDValue Ptr, SDValue Mask, 6996 EVT MemVT, MachineMemOperand *MMO, 6997 bool IsTruncating, bool IsCompressing) { 6998 assert(Chain.getValueType() == MVT::Other && 6999 "Invalid chain type"); 7000 SDVTList VTs = getVTList(MVT::Other); 7001 SDValue Ops[] = { Chain, Val, Ptr, Mask }; 7002 FoldingSetNodeID ID; 7003 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7004 ID.AddInteger(MemVT.getRawBits()); 7005 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7006 dl.getIROrder(), VTs, IsTruncating, IsCompressing, MemVT, MMO)); 7007 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7008 void *IP = nullptr; 7009 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7010 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7011 return SDValue(E, 0); 7012 } 7013 auto *N = newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7014 IsTruncating, IsCompressing, MemVT, MMO); 7015 createOperands(N, Ops); 7016 7017 CSEMap.InsertNode(N, IP); 7018 InsertNode(N); 7019 SDValue V(N, 0); 7020 NewSDValueDbgMsg(V, "Creating new node: ", this); 7021 return V; 7022 } 7023 7024 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7025 ArrayRef<SDValue> Ops, 7026 MachineMemOperand *MMO) { 7027 assert(Ops.size() == 6 && "Incompatible number of operands"); 7028 7029 FoldingSetNodeID ID; 7030 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7031 ID.AddInteger(VT.getRawBits()); 7032 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7033 dl.getIROrder(), VTs, VT, MMO)); 7034 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7035 void *IP = nullptr; 7036 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7037 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7038 return SDValue(E, 0); 7039 } 7040 7041 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7042 VTs, VT, MMO); 7043 createOperands(N, Ops); 7044 7045 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7046 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7047 assert(N->getMask().getValueType().getVectorNumElements() == 7048 N->getValueType(0).getVectorNumElements() && 7049 "Vector width mismatch between mask and data"); 7050 assert(N->getIndex().getValueType().getVectorNumElements() >= 7051 N->getValueType(0).getVectorNumElements() && 7052 "Vector width mismatch between index and data"); 7053 assert(isa<ConstantSDNode>(N->getScale()) && 7054 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7055 "Scale should be a constant power of 2"); 7056 7057 CSEMap.InsertNode(N, IP); 7058 InsertNode(N); 7059 SDValue V(N, 0); 7060 NewSDValueDbgMsg(V, "Creating new node: ", this); 7061 return V; 7062 } 7063 7064 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7065 ArrayRef<SDValue> Ops, 7066 MachineMemOperand *MMO) { 7067 assert(Ops.size() == 6 && "Incompatible number of operands"); 7068 7069 FoldingSetNodeID ID; 7070 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7071 ID.AddInteger(VT.getRawBits()); 7072 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7073 dl.getIROrder(), VTs, VT, MMO)); 7074 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7075 void *IP = nullptr; 7076 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7077 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7078 return SDValue(E, 0); 7079 } 7080 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7081 VTs, VT, MMO); 7082 createOperands(N, Ops); 7083 7084 assert(N->getMask().getValueType().getVectorNumElements() == 7085 N->getValue().getValueType().getVectorNumElements() && 7086 "Vector width mismatch between mask and data"); 7087 assert(N->getIndex().getValueType().getVectorNumElements() >= 7088 N->getValue().getValueType().getVectorNumElements() && 7089 "Vector width mismatch between index and data"); 7090 assert(isa<ConstantSDNode>(N->getScale()) && 7091 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7092 "Scale should be a constant power of 2"); 7093 7094 CSEMap.InsertNode(N, IP); 7095 InsertNode(N); 7096 SDValue V(N, 0); 7097 NewSDValueDbgMsg(V, "Creating new node: ", this); 7098 return V; 7099 } 7100 7101 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7102 // select undef, T, F --> T (if T is a constant), otherwise F 7103 // select, ?, undef, F --> F 7104 // select, ?, T, undef --> T 7105 if (Cond.isUndef()) 7106 return isConstantValueOfAnyType(T) ? T : F; 7107 if (T.isUndef()) 7108 return F; 7109 if (F.isUndef()) 7110 return T; 7111 7112 // select true, T, F --> T 7113 // select false, T, F --> F 7114 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7115 return CondC->isNullValue() ? F : T; 7116 7117 // TODO: This should simplify VSELECT with constant condition using something 7118 // like this (but check boolean contents to be complete?): 7119 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7120 // return T; 7121 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7122 // return F; 7123 7124 // select ?, T, T --> T 7125 if (T == F) 7126 return T; 7127 7128 return SDValue(); 7129 } 7130 7131 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7132 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7133 if (X.isUndef()) 7134 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7135 // shift X, undef --> undef (because it may shift by the bitwidth) 7136 if (Y.isUndef()) 7137 return getUNDEF(X.getValueType()); 7138 7139 // shift 0, Y --> 0 7140 // shift X, 0 --> X 7141 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7142 return X; 7143 7144 // shift X, C >= bitwidth(X) --> undef 7145 // All vector elements must be too big (or undef) to avoid partial undefs. 7146 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7147 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7148 }; 7149 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7150 return getUNDEF(X.getValueType()); 7151 7152 return SDValue(); 7153 } 7154 7155 // TODO: Use fast-math-flags to enable more simplifications. 7156 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) { 7157 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7158 if (!YC) 7159 return SDValue(); 7160 7161 // X + -0.0 --> X 7162 if (Opcode == ISD::FADD) 7163 if (YC->getValueAPF().isNegZero()) 7164 return X; 7165 7166 // X - +0.0 --> X 7167 if (Opcode == ISD::FSUB) 7168 if (YC->getValueAPF().isPosZero()) 7169 return X; 7170 7171 // X * 1.0 --> X 7172 // X / 1.0 --> X 7173 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7174 if (YC->getValueAPF().isExactlyValue(1.0)) 7175 return X; 7176 7177 return SDValue(); 7178 } 7179 7180 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7181 SDValue Ptr, SDValue SV, unsigned Align) { 7182 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7183 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7184 } 7185 7186 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7187 ArrayRef<SDUse> Ops) { 7188 switch (Ops.size()) { 7189 case 0: return getNode(Opcode, DL, VT); 7190 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7191 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7192 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7193 default: break; 7194 } 7195 7196 // Copy from an SDUse array into an SDValue array for use with 7197 // the regular getNode logic. 7198 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7199 return getNode(Opcode, DL, VT, NewOps); 7200 } 7201 7202 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7203 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7204 unsigned NumOps = Ops.size(); 7205 switch (NumOps) { 7206 case 0: return getNode(Opcode, DL, VT); 7207 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7208 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7209 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7210 default: break; 7211 } 7212 7213 switch (Opcode) { 7214 default: break; 7215 case ISD::BUILD_VECTOR: 7216 // Attempt to simplify BUILD_VECTOR. 7217 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7218 return V; 7219 break; 7220 case ISD::CONCAT_VECTORS: 7221 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7222 return V; 7223 break; 7224 case ISD::SELECT_CC: 7225 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7226 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7227 "LHS and RHS of condition must have same type!"); 7228 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7229 "True and False arms of SelectCC must have same type!"); 7230 assert(Ops[2].getValueType() == VT && 7231 "select_cc node must be of same type as true and false value!"); 7232 break; 7233 case ISD::BR_CC: 7234 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7235 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7236 "LHS/RHS of comparison should match types!"); 7237 break; 7238 } 7239 7240 // Memoize nodes. 7241 SDNode *N; 7242 SDVTList VTs = getVTList(VT); 7243 7244 if (VT != MVT::Glue) { 7245 FoldingSetNodeID ID; 7246 AddNodeIDNode(ID, Opcode, VTs, Ops); 7247 void *IP = nullptr; 7248 7249 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7250 return SDValue(E, 0); 7251 7252 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7253 createOperands(N, Ops); 7254 7255 CSEMap.InsertNode(N, IP); 7256 } else { 7257 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7258 createOperands(N, Ops); 7259 } 7260 7261 InsertNode(N); 7262 SDValue V(N, 0); 7263 NewSDValueDbgMsg(V, "Creating new node: ", this); 7264 return V; 7265 } 7266 7267 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7268 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7269 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7270 } 7271 7272 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7273 ArrayRef<SDValue> Ops) { 7274 if (VTList.NumVTs == 1) 7275 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7276 7277 #if 0 7278 switch (Opcode) { 7279 // FIXME: figure out how to safely handle things like 7280 // int foo(int x) { return 1 << (x & 255); } 7281 // int bar() { return foo(256); } 7282 case ISD::SRA_PARTS: 7283 case ISD::SRL_PARTS: 7284 case ISD::SHL_PARTS: 7285 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7286 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7287 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7288 else if (N3.getOpcode() == ISD::AND) 7289 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7290 // If the and is only masking out bits that cannot effect the shift, 7291 // eliminate the and. 7292 unsigned NumBits = VT.getScalarSizeInBits()*2; 7293 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7294 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7295 } 7296 break; 7297 } 7298 #endif 7299 7300 // Memoize the node unless it returns a flag. 7301 SDNode *N; 7302 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7303 FoldingSetNodeID ID; 7304 AddNodeIDNode(ID, Opcode, VTList, Ops); 7305 void *IP = nullptr; 7306 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7307 return SDValue(E, 0); 7308 7309 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7310 createOperands(N, Ops); 7311 CSEMap.InsertNode(N, IP); 7312 } else { 7313 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7314 createOperands(N, Ops); 7315 } 7316 InsertNode(N); 7317 SDValue V(N, 0); 7318 NewSDValueDbgMsg(V, "Creating new node: ", this); 7319 return V; 7320 } 7321 7322 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7323 SDVTList VTList) { 7324 return getNode(Opcode, DL, VTList, None); 7325 } 7326 7327 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7328 SDValue N1) { 7329 SDValue Ops[] = { N1 }; 7330 return getNode(Opcode, DL, VTList, Ops); 7331 } 7332 7333 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7334 SDValue N1, SDValue N2) { 7335 SDValue Ops[] = { N1, N2 }; 7336 return getNode(Opcode, DL, VTList, Ops); 7337 } 7338 7339 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7340 SDValue N1, SDValue N2, SDValue N3) { 7341 SDValue Ops[] = { N1, N2, N3 }; 7342 return getNode(Opcode, DL, VTList, Ops); 7343 } 7344 7345 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7346 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7347 SDValue Ops[] = { N1, N2, N3, N4 }; 7348 return getNode(Opcode, DL, VTList, Ops); 7349 } 7350 7351 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7352 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7353 SDValue N5) { 7354 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7355 return getNode(Opcode, DL, VTList, Ops); 7356 } 7357 7358 SDVTList SelectionDAG::getVTList(EVT VT) { 7359 return makeVTList(SDNode::getValueTypeList(VT), 1); 7360 } 7361 7362 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7363 FoldingSetNodeID ID; 7364 ID.AddInteger(2U); 7365 ID.AddInteger(VT1.getRawBits()); 7366 ID.AddInteger(VT2.getRawBits()); 7367 7368 void *IP = nullptr; 7369 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7370 if (!Result) { 7371 EVT *Array = Allocator.Allocate<EVT>(2); 7372 Array[0] = VT1; 7373 Array[1] = VT2; 7374 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7375 VTListMap.InsertNode(Result, IP); 7376 } 7377 return Result->getSDVTList(); 7378 } 7379 7380 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7381 FoldingSetNodeID ID; 7382 ID.AddInteger(3U); 7383 ID.AddInteger(VT1.getRawBits()); 7384 ID.AddInteger(VT2.getRawBits()); 7385 ID.AddInteger(VT3.getRawBits()); 7386 7387 void *IP = nullptr; 7388 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7389 if (!Result) { 7390 EVT *Array = Allocator.Allocate<EVT>(3); 7391 Array[0] = VT1; 7392 Array[1] = VT2; 7393 Array[2] = VT3; 7394 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7395 VTListMap.InsertNode(Result, IP); 7396 } 7397 return Result->getSDVTList(); 7398 } 7399 7400 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7401 FoldingSetNodeID ID; 7402 ID.AddInteger(4U); 7403 ID.AddInteger(VT1.getRawBits()); 7404 ID.AddInteger(VT2.getRawBits()); 7405 ID.AddInteger(VT3.getRawBits()); 7406 ID.AddInteger(VT4.getRawBits()); 7407 7408 void *IP = nullptr; 7409 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7410 if (!Result) { 7411 EVT *Array = Allocator.Allocate<EVT>(4); 7412 Array[0] = VT1; 7413 Array[1] = VT2; 7414 Array[2] = VT3; 7415 Array[3] = VT4; 7416 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7417 VTListMap.InsertNode(Result, IP); 7418 } 7419 return Result->getSDVTList(); 7420 } 7421 7422 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7423 unsigned NumVTs = VTs.size(); 7424 FoldingSetNodeID ID; 7425 ID.AddInteger(NumVTs); 7426 for (unsigned index = 0; index < NumVTs; index++) { 7427 ID.AddInteger(VTs[index].getRawBits()); 7428 } 7429 7430 void *IP = nullptr; 7431 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7432 if (!Result) { 7433 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7434 llvm::copy(VTs, Array); 7435 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7436 VTListMap.InsertNode(Result, IP); 7437 } 7438 return Result->getSDVTList(); 7439 } 7440 7441 7442 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7443 /// specified operands. If the resultant node already exists in the DAG, 7444 /// this does not modify the specified node, instead it returns the node that 7445 /// already exists. If the resultant node does not exist in the DAG, the 7446 /// input node is returned. As a degenerate case, if you specify the same 7447 /// input operands as the node already has, the input node is returned. 7448 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7449 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7450 7451 // Check to see if there is no change. 7452 if (Op == N->getOperand(0)) return N; 7453 7454 // See if the modified node already exists. 7455 void *InsertPos = nullptr; 7456 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7457 return Existing; 7458 7459 // Nope it doesn't. Remove the node from its current place in the maps. 7460 if (InsertPos) 7461 if (!RemoveNodeFromCSEMaps(N)) 7462 InsertPos = nullptr; 7463 7464 // Now we update the operands. 7465 N->OperandList[0].set(Op); 7466 7467 updateDivergence(N); 7468 // If this gets put into a CSE map, add it. 7469 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7470 return N; 7471 } 7472 7473 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7474 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7475 7476 // Check to see if there is no change. 7477 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7478 return N; // No operands changed, just return the input node. 7479 7480 // See if the modified node already exists. 7481 void *InsertPos = nullptr; 7482 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7483 return Existing; 7484 7485 // Nope it doesn't. Remove the node from its current place in the maps. 7486 if (InsertPos) 7487 if (!RemoveNodeFromCSEMaps(N)) 7488 InsertPos = nullptr; 7489 7490 // Now we update the operands. 7491 if (N->OperandList[0] != Op1) 7492 N->OperandList[0].set(Op1); 7493 if (N->OperandList[1] != Op2) 7494 N->OperandList[1].set(Op2); 7495 7496 updateDivergence(N); 7497 // If this gets put into a CSE map, add it. 7498 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7499 return N; 7500 } 7501 7502 SDNode *SelectionDAG:: 7503 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7504 SDValue Ops[] = { Op1, Op2, Op3 }; 7505 return UpdateNodeOperands(N, Ops); 7506 } 7507 7508 SDNode *SelectionDAG:: 7509 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7510 SDValue Op3, SDValue Op4) { 7511 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7512 return UpdateNodeOperands(N, Ops); 7513 } 7514 7515 SDNode *SelectionDAG:: 7516 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7517 SDValue Op3, SDValue Op4, SDValue Op5) { 7518 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7519 return UpdateNodeOperands(N, Ops); 7520 } 7521 7522 SDNode *SelectionDAG:: 7523 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7524 unsigned NumOps = Ops.size(); 7525 assert(N->getNumOperands() == NumOps && 7526 "Update with wrong number of operands"); 7527 7528 // If no operands changed just return the input node. 7529 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7530 return N; 7531 7532 // See if the modified node already exists. 7533 void *InsertPos = nullptr; 7534 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7535 return Existing; 7536 7537 // Nope it doesn't. Remove the node from its current place in the maps. 7538 if (InsertPos) 7539 if (!RemoveNodeFromCSEMaps(N)) 7540 InsertPos = nullptr; 7541 7542 // Now we update the operands. 7543 for (unsigned i = 0; i != NumOps; ++i) 7544 if (N->OperandList[i] != Ops[i]) 7545 N->OperandList[i].set(Ops[i]); 7546 7547 updateDivergence(N); 7548 // If this gets put into a CSE map, add it. 7549 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7550 return N; 7551 } 7552 7553 /// DropOperands - Release the operands and set this node to have 7554 /// zero operands. 7555 void SDNode::DropOperands() { 7556 // Unlike the code in MorphNodeTo that does this, we don't need to 7557 // watch for dead nodes here. 7558 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7559 SDUse &Use = *I++; 7560 Use.set(SDValue()); 7561 } 7562 } 7563 7564 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7565 ArrayRef<MachineMemOperand *> NewMemRefs) { 7566 if (NewMemRefs.empty()) { 7567 N->clearMemRefs(); 7568 return; 7569 } 7570 7571 // Check if we can avoid allocating by storing a single reference directly. 7572 if (NewMemRefs.size() == 1) { 7573 N->MemRefs = NewMemRefs[0]; 7574 N->NumMemRefs = 1; 7575 return; 7576 } 7577 7578 MachineMemOperand **MemRefsBuffer = 7579 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7580 llvm::copy(NewMemRefs, MemRefsBuffer); 7581 N->MemRefs = MemRefsBuffer; 7582 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7583 } 7584 7585 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7586 /// machine opcode. 7587 /// 7588 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7589 EVT VT) { 7590 SDVTList VTs = getVTList(VT); 7591 return SelectNodeTo(N, MachineOpc, VTs, None); 7592 } 7593 7594 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7595 EVT VT, SDValue Op1) { 7596 SDVTList VTs = getVTList(VT); 7597 SDValue Ops[] = { Op1 }; 7598 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7599 } 7600 7601 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7602 EVT VT, SDValue Op1, 7603 SDValue Op2) { 7604 SDVTList VTs = getVTList(VT); 7605 SDValue Ops[] = { Op1, Op2 }; 7606 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7607 } 7608 7609 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7610 EVT VT, SDValue Op1, 7611 SDValue Op2, SDValue Op3) { 7612 SDVTList VTs = getVTList(VT); 7613 SDValue Ops[] = { Op1, Op2, Op3 }; 7614 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7615 } 7616 7617 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7618 EVT VT, ArrayRef<SDValue> Ops) { 7619 SDVTList VTs = getVTList(VT); 7620 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7621 } 7622 7623 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7624 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7625 SDVTList VTs = getVTList(VT1, VT2); 7626 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7627 } 7628 7629 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7630 EVT VT1, EVT VT2) { 7631 SDVTList VTs = getVTList(VT1, VT2); 7632 return SelectNodeTo(N, MachineOpc, VTs, None); 7633 } 7634 7635 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7636 EVT VT1, EVT VT2, EVT VT3, 7637 ArrayRef<SDValue> Ops) { 7638 SDVTList VTs = getVTList(VT1, VT2, VT3); 7639 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7640 } 7641 7642 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7643 EVT VT1, EVT VT2, 7644 SDValue Op1, SDValue Op2) { 7645 SDVTList VTs = getVTList(VT1, VT2); 7646 SDValue Ops[] = { Op1, Op2 }; 7647 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7648 } 7649 7650 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7651 SDVTList VTs,ArrayRef<SDValue> Ops) { 7652 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7653 // Reset the NodeID to -1. 7654 New->setNodeId(-1); 7655 if (New != N) { 7656 ReplaceAllUsesWith(N, New); 7657 RemoveDeadNode(N); 7658 } 7659 return New; 7660 } 7661 7662 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7663 /// the line number information on the merged node since it is not possible to 7664 /// preserve the information that operation is associated with multiple lines. 7665 /// This will make the debugger working better at -O0, were there is a higher 7666 /// probability having other instructions associated with that line. 7667 /// 7668 /// For IROrder, we keep the smaller of the two 7669 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7670 DebugLoc NLoc = N->getDebugLoc(); 7671 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 7672 N->setDebugLoc(DebugLoc()); 7673 } 7674 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 7675 N->setIROrder(Order); 7676 return N; 7677 } 7678 7679 /// MorphNodeTo - This *mutates* the specified node to have the specified 7680 /// return type, opcode, and operands. 7681 /// 7682 /// Note that MorphNodeTo returns the resultant node. If there is already a 7683 /// node of the specified opcode and operands, it returns that node instead of 7684 /// the current one. Note that the SDLoc need not be the same. 7685 /// 7686 /// Using MorphNodeTo is faster than creating a new node and swapping it in 7687 /// with ReplaceAllUsesWith both because it often avoids allocating a new 7688 /// node, and because it doesn't require CSE recalculation for any of 7689 /// the node's users. 7690 /// 7691 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 7692 /// As a consequence it isn't appropriate to use from within the DAG combiner or 7693 /// the legalizer which maintain worklists that would need to be updated when 7694 /// deleting things. 7695 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 7696 SDVTList VTs, ArrayRef<SDValue> Ops) { 7697 // If an identical node already exists, use it. 7698 void *IP = nullptr; 7699 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 7700 FoldingSetNodeID ID; 7701 AddNodeIDNode(ID, Opc, VTs, Ops); 7702 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 7703 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 7704 } 7705 7706 if (!RemoveNodeFromCSEMaps(N)) 7707 IP = nullptr; 7708 7709 // Start the morphing. 7710 N->NodeType = Opc; 7711 N->ValueList = VTs.VTs; 7712 N->NumValues = VTs.NumVTs; 7713 7714 // Clear the operands list, updating used nodes to remove this from their 7715 // use list. Keep track of any operands that become dead as a result. 7716 SmallPtrSet<SDNode*, 16> DeadNodeSet; 7717 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 7718 SDUse &Use = *I++; 7719 SDNode *Used = Use.getNode(); 7720 Use.set(SDValue()); 7721 if (Used->use_empty()) 7722 DeadNodeSet.insert(Used); 7723 } 7724 7725 // For MachineNode, initialize the memory references information. 7726 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 7727 MN->clearMemRefs(); 7728 7729 // Swap for an appropriately sized array from the recycler. 7730 removeOperands(N); 7731 createOperands(N, Ops); 7732 7733 // Delete any nodes that are still dead after adding the uses for the 7734 // new operands. 7735 if (!DeadNodeSet.empty()) { 7736 SmallVector<SDNode *, 16> DeadNodes; 7737 for (SDNode *N : DeadNodeSet) 7738 if (N->use_empty()) 7739 DeadNodes.push_back(N); 7740 RemoveDeadNodes(DeadNodes); 7741 } 7742 7743 if (IP) 7744 CSEMap.InsertNode(N, IP); // Memoize the new node. 7745 return N; 7746 } 7747 7748 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 7749 unsigned OrigOpc = Node->getOpcode(); 7750 unsigned NewOpc; 7751 switch (OrigOpc) { 7752 default: 7753 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 7754 case ISD::STRICT_FADD: NewOpc = ISD::FADD; break; 7755 case ISD::STRICT_FSUB: NewOpc = ISD::FSUB; break; 7756 case ISD::STRICT_FMUL: NewOpc = ISD::FMUL; break; 7757 case ISD::STRICT_FDIV: NewOpc = ISD::FDIV; break; 7758 case ISD::STRICT_FREM: NewOpc = ISD::FREM; break; 7759 case ISD::STRICT_FMA: NewOpc = ISD::FMA; break; 7760 case ISD::STRICT_FSQRT: NewOpc = ISD::FSQRT; break; 7761 case ISD::STRICT_FPOW: NewOpc = ISD::FPOW; break; 7762 case ISD::STRICT_FPOWI: NewOpc = ISD::FPOWI; break; 7763 case ISD::STRICT_FSIN: NewOpc = ISD::FSIN; break; 7764 case ISD::STRICT_FCOS: NewOpc = ISD::FCOS; break; 7765 case ISD::STRICT_FEXP: NewOpc = ISD::FEXP; break; 7766 case ISD::STRICT_FEXP2: NewOpc = ISD::FEXP2; break; 7767 case ISD::STRICT_FLOG: NewOpc = ISD::FLOG; break; 7768 case ISD::STRICT_FLOG10: NewOpc = ISD::FLOG10; break; 7769 case ISD::STRICT_FLOG2: NewOpc = ISD::FLOG2; break; 7770 case ISD::STRICT_FRINT: NewOpc = ISD::FRINT; break; 7771 case ISD::STRICT_FNEARBYINT: NewOpc = ISD::FNEARBYINT; break; 7772 case ISD::STRICT_FMAXNUM: NewOpc = ISD::FMAXNUM; break; 7773 case ISD::STRICT_FMINNUM: NewOpc = ISD::FMINNUM; break; 7774 case ISD::STRICT_FCEIL: NewOpc = ISD::FCEIL; break; 7775 case ISD::STRICT_FFLOOR: NewOpc = ISD::FFLOOR; break; 7776 case ISD::STRICT_FROUND: NewOpc = ISD::FROUND; break; 7777 case ISD::STRICT_FTRUNC: NewOpc = ISD::FTRUNC; break; 7778 case ISD::STRICT_FP_ROUND: NewOpc = ISD::FP_ROUND; break; 7779 case ISD::STRICT_FP_EXTEND: NewOpc = ISD::FP_EXTEND; break; 7780 } 7781 7782 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 7783 7784 // We're taking this node out of the chain, so we need to re-link things. 7785 SDValue InputChain = Node->getOperand(0); 7786 SDValue OutputChain = SDValue(Node, 1); 7787 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 7788 7789 SmallVector<SDValue, 3> Ops; 7790 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 7791 Ops.push_back(Node->getOperand(i)); 7792 7793 SDVTList VTs = getVTList(Node->getValueType(0)); 7794 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 7795 7796 // MorphNodeTo can operate in two ways: if an existing node with the 7797 // specified operands exists, it can just return it. Otherwise, it 7798 // updates the node in place to have the requested operands. 7799 if (Res == Node) { 7800 // If we updated the node in place, reset the node ID. To the isel, 7801 // this should be just like a newly allocated machine node. 7802 Res->setNodeId(-1); 7803 } else { 7804 ReplaceAllUsesWith(Node, Res); 7805 RemoveDeadNode(Node); 7806 } 7807 7808 return Res; 7809 } 7810 7811 /// getMachineNode - These are used for target selectors to create a new node 7812 /// with specified return type(s), MachineInstr opcode, and operands. 7813 /// 7814 /// Note that getMachineNode returns the resultant node. If there is already a 7815 /// node of the specified opcode and operands, it returns that node instead of 7816 /// the current one. 7817 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7818 EVT VT) { 7819 SDVTList VTs = getVTList(VT); 7820 return getMachineNode(Opcode, dl, VTs, None); 7821 } 7822 7823 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7824 EVT VT, SDValue Op1) { 7825 SDVTList VTs = getVTList(VT); 7826 SDValue Ops[] = { Op1 }; 7827 return getMachineNode(Opcode, dl, VTs, Ops); 7828 } 7829 7830 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7831 EVT VT, SDValue Op1, SDValue Op2) { 7832 SDVTList VTs = getVTList(VT); 7833 SDValue Ops[] = { Op1, Op2 }; 7834 return getMachineNode(Opcode, dl, VTs, Ops); 7835 } 7836 7837 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7838 EVT VT, SDValue Op1, SDValue Op2, 7839 SDValue Op3) { 7840 SDVTList VTs = getVTList(VT); 7841 SDValue Ops[] = { Op1, Op2, Op3 }; 7842 return getMachineNode(Opcode, dl, VTs, Ops); 7843 } 7844 7845 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7846 EVT VT, ArrayRef<SDValue> Ops) { 7847 SDVTList VTs = getVTList(VT); 7848 return getMachineNode(Opcode, dl, VTs, Ops); 7849 } 7850 7851 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7852 EVT VT1, EVT VT2, SDValue Op1, 7853 SDValue Op2) { 7854 SDVTList VTs = getVTList(VT1, VT2); 7855 SDValue Ops[] = { Op1, Op2 }; 7856 return getMachineNode(Opcode, dl, VTs, Ops); 7857 } 7858 7859 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7860 EVT VT1, EVT VT2, SDValue Op1, 7861 SDValue Op2, SDValue Op3) { 7862 SDVTList VTs = getVTList(VT1, VT2); 7863 SDValue Ops[] = { Op1, Op2, Op3 }; 7864 return getMachineNode(Opcode, dl, VTs, Ops); 7865 } 7866 7867 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7868 EVT VT1, EVT VT2, 7869 ArrayRef<SDValue> Ops) { 7870 SDVTList VTs = getVTList(VT1, VT2); 7871 return getMachineNode(Opcode, dl, VTs, Ops); 7872 } 7873 7874 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7875 EVT VT1, EVT VT2, EVT VT3, 7876 SDValue Op1, SDValue Op2) { 7877 SDVTList VTs = getVTList(VT1, VT2, VT3); 7878 SDValue Ops[] = { Op1, Op2 }; 7879 return getMachineNode(Opcode, dl, VTs, Ops); 7880 } 7881 7882 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7883 EVT VT1, EVT VT2, EVT VT3, 7884 SDValue Op1, SDValue Op2, 7885 SDValue Op3) { 7886 SDVTList VTs = getVTList(VT1, VT2, VT3); 7887 SDValue Ops[] = { Op1, Op2, Op3 }; 7888 return getMachineNode(Opcode, dl, VTs, Ops); 7889 } 7890 7891 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7892 EVT VT1, EVT VT2, EVT VT3, 7893 ArrayRef<SDValue> Ops) { 7894 SDVTList VTs = getVTList(VT1, VT2, VT3); 7895 return getMachineNode(Opcode, dl, VTs, Ops); 7896 } 7897 7898 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7899 ArrayRef<EVT> ResultTys, 7900 ArrayRef<SDValue> Ops) { 7901 SDVTList VTs = getVTList(ResultTys); 7902 return getMachineNode(Opcode, dl, VTs, Ops); 7903 } 7904 7905 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 7906 SDVTList VTs, 7907 ArrayRef<SDValue> Ops) { 7908 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 7909 MachineSDNode *N; 7910 void *IP = nullptr; 7911 7912 if (DoCSE) { 7913 FoldingSetNodeID ID; 7914 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 7915 IP = nullptr; 7916 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 7917 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 7918 } 7919 } 7920 7921 // Allocate a new MachineSDNode. 7922 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7923 createOperands(N, Ops); 7924 7925 if (DoCSE) 7926 CSEMap.InsertNode(N, IP); 7927 7928 InsertNode(N); 7929 return N; 7930 } 7931 7932 /// getTargetExtractSubreg - A convenience function for creating 7933 /// TargetOpcode::EXTRACT_SUBREG nodes. 7934 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7935 SDValue Operand) { 7936 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7937 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 7938 VT, Operand, SRIdxVal); 7939 return SDValue(Subreg, 0); 7940 } 7941 7942 /// getTargetInsertSubreg - A convenience function for creating 7943 /// TargetOpcode::INSERT_SUBREG nodes. 7944 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 7945 SDValue Operand, SDValue Subreg) { 7946 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 7947 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 7948 VT, Operand, Subreg, SRIdxVal); 7949 return SDValue(Result, 0); 7950 } 7951 7952 /// getNodeIfExists - Get the specified node if it's already available, or 7953 /// else return NULL. 7954 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 7955 ArrayRef<SDValue> Ops, 7956 const SDNodeFlags Flags) { 7957 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 7958 FoldingSetNodeID ID; 7959 AddNodeIDNode(ID, Opcode, VTList, Ops); 7960 void *IP = nullptr; 7961 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 7962 E->intersectFlagsWith(Flags); 7963 return E; 7964 } 7965 } 7966 return nullptr; 7967 } 7968 7969 /// getDbgValue - Creates a SDDbgValue node. 7970 /// 7971 /// SDNode 7972 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 7973 SDNode *N, unsigned R, bool IsIndirect, 7974 const DebugLoc &DL, unsigned O) { 7975 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7976 "Expected inlined-at fields to agree"); 7977 return new (DbgInfo->getAlloc()) 7978 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 7979 } 7980 7981 /// Constant 7982 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 7983 DIExpression *Expr, 7984 const Value *C, 7985 const DebugLoc &DL, unsigned O) { 7986 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7987 "Expected inlined-at fields to agree"); 7988 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 7989 } 7990 7991 /// FrameIndex 7992 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 7993 DIExpression *Expr, unsigned FI, 7994 bool IsIndirect, 7995 const DebugLoc &DL, 7996 unsigned O) { 7997 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 7998 "Expected inlined-at fields to agree"); 7999 return new (DbgInfo->getAlloc()) 8000 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8001 } 8002 8003 /// VReg 8004 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8005 DIExpression *Expr, 8006 unsigned VReg, bool IsIndirect, 8007 const DebugLoc &DL, unsigned O) { 8008 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8009 "Expected inlined-at fields to agree"); 8010 return new (DbgInfo->getAlloc()) 8011 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8012 } 8013 8014 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8015 unsigned OffsetInBits, unsigned SizeInBits, 8016 bool InvalidateDbg) { 8017 SDNode *FromNode = From.getNode(); 8018 SDNode *ToNode = To.getNode(); 8019 assert(FromNode && ToNode && "Can't modify dbg values"); 8020 8021 // PR35338 8022 // TODO: assert(From != To && "Redundant dbg value transfer"); 8023 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8024 if (From == To || FromNode == ToNode) 8025 return; 8026 8027 if (!FromNode->getHasDebugValue()) 8028 return; 8029 8030 SmallVector<SDDbgValue *, 2> ClonedDVs; 8031 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8032 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8033 continue; 8034 8035 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8036 8037 // Just transfer the dbg value attached to From. 8038 if (Dbg->getResNo() != From.getResNo()) 8039 continue; 8040 8041 DIVariable *Var = Dbg->getVariable(); 8042 auto *Expr = Dbg->getExpression(); 8043 // If a fragment is requested, update the expression. 8044 if (SizeInBits) { 8045 // When splitting a larger (e.g., sign-extended) value whose 8046 // lower bits are described with an SDDbgValue, do not attempt 8047 // to transfer the SDDbgValue to the upper bits. 8048 if (auto FI = Expr->getFragmentInfo()) 8049 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8050 continue; 8051 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8052 SizeInBits); 8053 if (!Fragment) 8054 continue; 8055 Expr = *Fragment; 8056 } 8057 // Clone the SDDbgValue and move it to To. 8058 SDDbgValue *Clone = 8059 getDbgValue(Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), 8060 Dbg->getDebugLoc(), Dbg->getOrder()); 8061 ClonedDVs.push_back(Clone); 8062 8063 if (InvalidateDbg) { 8064 // Invalidate value and indicate the SDDbgValue should not be emitted. 8065 Dbg->setIsInvalidated(); 8066 Dbg->setIsEmitted(); 8067 } 8068 } 8069 8070 for (SDDbgValue *Dbg : ClonedDVs) 8071 AddDbgValue(Dbg, ToNode, false); 8072 } 8073 8074 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8075 if (!N.getHasDebugValue()) 8076 return; 8077 8078 SmallVector<SDDbgValue *, 2> ClonedDVs; 8079 for (auto DV : GetDbgValues(&N)) { 8080 if (DV->isInvalidated()) 8081 continue; 8082 switch (N.getOpcode()) { 8083 default: 8084 break; 8085 case ISD::ADD: 8086 SDValue N0 = N.getOperand(0); 8087 SDValue N1 = N.getOperand(1); 8088 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8089 isConstantIntBuildVectorOrConstantInt(N1)) { 8090 uint64_t Offset = N.getConstantOperandVal(1); 8091 // Rewrite an ADD constant node into a DIExpression. Since we are 8092 // performing arithmetic to compute the variable's *value* in the 8093 // DIExpression, we need to mark the expression with a 8094 // DW_OP_stack_value. 8095 auto *DIExpr = DV->getExpression(); 8096 DIExpr = 8097 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8098 SDDbgValue *Clone = 8099 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8100 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8101 ClonedDVs.push_back(Clone); 8102 DV->setIsInvalidated(); 8103 DV->setIsEmitted(); 8104 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8105 N0.getNode()->dumprFull(this); 8106 dbgs() << " into " << *DIExpr << '\n'); 8107 } 8108 } 8109 } 8110 8111 for (SDDbgValue *Dbg : ClonedDVs) 8112 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8113 } 8114 8115 /// Creates a SDDbgLabel node. 8116 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8117 const DebugLoc &DL, unsigned O) { 8118 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8119 "Expected inlined-at fields to agree"); 8120 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8121 } 8122 8123 namespace { 8124 8125 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8126 /// pointed to by a use iterator is deleted, increment the use iterator 8127 /// so that it doesn't dangle. 8128 /// 8129 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8130 SDNode::use_iterator &UI; 8131 SDNode::use_iterator &UE; 8132 8133 void NodeDeleted(SDNode *N, SDNode *E) override { 8134 // Increment the iterator as needed. 8135 while (UI != UE && N == *UI) 8136 ++UI; 8137 } 8138 8139 public: 8140 RAUWUpdateListener(SelectionDAG &d, 8141 SDNode::use_iterator &ui, 8142 SDNode::use_iterator &ue) 8143 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8144 }; 8145 8146 } // end anonymous namespace 8147 8148 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8149 /// This can cause recursive merging of nodes in the DAG. 8150 /// 8151 /// This version assumes From has a single result value. 8152 /// 8153 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8154 SDNode *From = FromN.getNode(); 8155 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8156 "Cannot replace with this method!"); 8157 assert(From != To.getNode() && "Cannot replace uses of with self"); 8158 8159 // Preserve Debug Values 8160 transferDbgValues(FromN, To); 8161 8162 // Iterate over all the existing uses of From. New uses will be added 8163 // to the beginning of the use list, which we avoid visiting. 8164 // This specifically avoids visiting uses of From that arise while the 8165 // replacement is happening, because any such uses would be the result 8166 // of CSE: If an existing node looks like From after one of its operands 8167 // is replaced by To, we don't want to replace of all its users with To 8168 // too. See PR3018 for more info. 8169 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8170 RAUWUpdateListener Listener(*this, UI, UE); 8171 while (UI != UE) { 8172 SDNode *User = *UI; 8173 8174 // This node is about to morph, remove its old self from the CSE maps. 8175 RemoveNodeFromCSEMaps(User); 8176 8177 // A user can appear in a use list multiple times, and when this 8178 // happens the uses are usually next to each other in the list. 8179 // To help reduce the number of CSE recomputations, process all 8180 // the uses of this user that we can find this way. 8181 do { 8182 SDUse &Use = UI.getUse(); 8183 ++UI; 8184 Use.set(To); 8185 if (To->isDivergent() != From->isDivergent()) 8186 updateDivergence(User); 8187 } while (UI != UE && *UI == User); 8188 // Now that we have modified User, add it back to the CSE maps. If it 8189 // already exists there, recursively merge the results together. 8190 AddModifiedNodeToCSEMaps(User); 8191 } 8192 8193 // If we just RAUW'd the root, take note. 8194 if (FromN == getRoot()) 8195 setRoot(To); 8196 } 8197 8198 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8199 /// This can cause recursive merging of nodes in the DAG. 8200 /// 8201 /// This version assumes that for each value of From, there is a 8202 /// corresponding value in To in the same position with the same type. 8203 /// 8204 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8205 #ifndef NDEBUG 8206 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8207 assert((!From->hasAnyUseOfValue(i) || 8208 From->getValueType(i) == To->getValueType(i)) && 8209 "Cannot use this version of ReplaceAllUsesWith!"); 8210 #endif 8211 8212 // Handle the trivial case. 8213 if (From == To) 8214 return; 8215 8216 // Preserve Debug Info. Only do this if there's a use. 8217 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8218 if (From->hasAnyUseOfValue(i)) { 8219 assert((i < To->getNumValues()) && "Invalid To location"); 8220 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8221 } 8222 8223 // Iterate over just the existing users of From. See the comments in 8224 // the ReplaceAllUsesWith above. 8225 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8226 RAUWUpdateListener Listener(*this, UI, UE); 8227 while (UI != UE) { 8228 SDNode *User = *UI; 8229 8230 // This node is about to morph, remove its old self from the CSE maps. 8231 RemoveNodeFromCSEMaps(User); 8232 8233 // A user can appear in a use list multiple times, and when this 8234 // happens the uses are usually next to each other in the list. 8235 // To help reduce the number of CSE recomputations, process all 8236 // the uses of this user that we can find this way. 8237 do { 8238 SDUse &Use = UI.getUse(); 8239 ++UI; 8240 Use.setNode(To); 8241 if (To->isDivergent() != From->isDivergent()) 8242 updateDivergence(User); 8243 } while (UI != UE && *UI == User); 8244 8245 // Now that we have modified User, add it back to the CSE maps. If it 8246 // already exists there, recursively merge the results together. 8247 AddModifiedNodeToCSEMaps(User); 8248 } 8249 8250 // If we just RAUW'd the root, take note. 8251 if (From == getRoot().getNode()) 8252 setRoot(SDValue(To, getRoot().getResNo())); 8253 } 8254 8255 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8256 /// This can cause recursive merging of nodes in the DAG. 8257 /// 8258 /// This version can replace From with any result values. To must match the 8259 /// number and types of values returned by From. 8260 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8261 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8262 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8263 8264 // Preserve Debug Info. 8265 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8266 transferDbgValues(SDValue(From, i), To[i]); 8267 8268 // Iterate over just the existing users of From. See the comments in 8269 // the ReplaceAllUsesWith above. 8270 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8271 RAUWUpdateListener Listener(*this, UI, UE); 8272 while (UI != UE) { 8273 SDNode *User = *UI; 8274 8275 // This node is about to morph, remove its old self from the CSE maps. 8276 RemoveNodeFromCSEMaps(User); 8277 8278 // A user can appear in a use list multiple times, and when this happens the 8279 // uses are usually next to each other in the list. To help reduce the 8280 // number of CSE and divergence recomputations, process all the uses of this 8281 // user that we can find this way. 8282 bool To_IsDivergent = false; 8283 do { 8284 SDUse &Use = UI.getUse(); 8285 const SDValue &ToOp = To[Use.getResNo()]; 8286 ++UI; 8287 Use.set(ToOp); 8288 To_IsDivergent |= ToOp->isDivergent(); 8289 } while (UI != UE && *UI == User); 8290 8291 if (To_IsDivergent != From->isDivergent()) 8292 updateDivergence(User); 8293 8294 // Now that we have modified User, add it back to the CSE maps. If it 8295 // already exists there, recursively merge the results together. 8296 AddModifiedNodeToCSEMaps(User); 8297 } 8298 8299 // If we just RAUW'd the root, take note. 8300 if (From == getRoot().getNode()) 8301 setRoot(SDValue(To[getRoot().getResNo()])); 8302 } 8303 8304 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8305 /// uses of other values produced by From.getNode() alone. The Deleted 8306 /// vector is handled the same way as for ReplaceAllUsesWith. 8307 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8308 // Handle the really simple, really trivial case efficiently. 8309 if (From == To) return; 8310 8311 // Handle the simple, trivial, case efficiently. 8312 if (From.getNode()->getNumValues() == 1) { 8313 ReplaceAllUsesWith(From, To); 8314 return; 8315 } 8316 8317 // Preserve Debug Info. 8318 transferDbgValues(From, To); 8319 8320 // Iterate over just the existing users of From. See the comments in 8321 // the ReplaceAllUsesWith above. 8322 SDNode::use_iterator UI = From.getNode()->use_begin(), 8323 UE = From.getNode()->use_end(); 8324 RAUWUpdateListener Listener(*this, UI, UE); 8325 while (UI != UE) { 8326 SDNode *User = *UI; 8327 bool UserRemovedFromCSEMaps = false; 8328 8329 // A user can appear in a use list multiple times, and when this 8330 // happens the uses are usually next to each other in the list. 8331 // To help reduce the number of CSE recomputations, process all 8332 // the uses of this user that we can find this way. 8333 do { 8334 SDUse &Use = UI.getUse(); 8335 8336 // Skip uses of different values from the same node. 8337 if (Use.getResNo() != From.getResNo()) { 8338 ++UI; 8339 continue; 8340 } 8341 8342 // If this node hasn't been modified yet, it's still in the CSE maps, 8343 // so remove its old self from the CSE maps. 8344 if (!UserRemovedFromCSEMaps) { 8345 RemoveNodeFromCSEMaps(User); 8346 UserRemovedFromCSEMaps = true; 8347 } 8348 8349 ++UI; 8350 Use.set(To); 8351 if (To->isDivergent() != From->isDivergent()) 8352 updateDivergence(User); 8353 } while (UI != UE && *UI == User); 8354 // We are iterating over all uses of the From node, so if a use 8355 // doesn't use the specific value, no changes are made. 8356 if (!UserRemovedFromCSEMaps) 8357 continue; 8358 8359 // Now that we have modified User, add it back to the CSE maps. If it 8360 // already exists there, recursively merge the results together. 8361 AddModifiedNodeToCSEMaps(User); 8362 } 8363 8364 // If we just RAUW'd the root, take note. 8365 if (From == getRoot()) 8366 setRoot(To); 8367 } 8368 8369 namespace { 8370 8371 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8372 /// to record information about a use. 8373 struct UseMemo { 8374 SDNode *User; 8375 unsigned Index; 8376 SDUse *Use; 8377 }; 8378 8379 /// operator< - Sort Memos by User. 8380 bool operator<(const UseMemo &L, const UseMemo &R) { 8381 return (intptr_t)L.User < (intptr_t)R.User; 8382 } 8383 8384 } // end anonymous namespace 8385 8386 void SelectionDAG::updateDivergence(SDNode * N) 8387 { 8388 if (TLI->isSDNodeAlwaysUniform(N)) 8389 return; 8390 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8391 for (auto &Op : N->ops()) { 8392 if (Op.Val.getValueType() != MVT::Other) 8393 IsDivergent |= Op.getNode()->isDivergent(); 8394 } 8395 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8396 N->SDNodeBits.IsDivergent = IsDivergent; 8397 for (auto U : N->uses()) { 8398 updateDivergence(U); 8399 } 8400 } 8401 } 8402 8403 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8404 DenseMap<SDNode *, unsigned> Degree; 8405 Order.reserve(AllNodes.size()); 8406 for (auto &N : allnodes()) { 8407 unsigned NOps = N.getNumOperands(); 8408 Degree[&N] = NOps; 8409 if (0 == NOps) 8410 Order.push_back(&N); 8411 } 8412 for (size_t I = 0; I != Order.size(); ++I) { 8413 SDNode *N = Order[I]; 8414 for (auto U : N->uses()) { 8415 unsigned &UnsortedOps = Degree[U]; 8416 if (0 == --UnsortedOps) 8417 Order.push_back(U); 8418 } 8419 } 8420 } 8421 8422 #ifndef NDEBUG 8423 void SelectionDAG::VerifyDAGDiverence() { 8424 std::vector<SDNode *> TopoOrder; 8425 CreateTopologicalOrder(TopoOrder); 8426 const TargetLowering &TLI = getTargetLoweringInfo(); 8427 DenseMap<const SDNode *, bool> DivergenceMap; 8428 for (auto &N : allnodes()) { 8429 DivergenceMap[&N] = false; 8430 } 8431 for (auto N : TopoOrder) { 8432 bool IsDivergent = DivergenceMap[N]; 8433 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8434 for (auto &Op : N->ops()) { 8435 if (Op.Val.getValueType() != MVT::Other) 8436 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8437 } 8438 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8439 DivergenceMap[N] = true; 8440 } 8441 } 8442 for (auto &N : allnodes()) { 8443 (void)N; 8444 assert(DivergenceMap[&N] == N.isDivergent() && 8445 "Divergence bit inconsistency detected\n"); 8446 } 8447 } 8448 #endif 8449 8450 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8451 /// uses of other values produced by From.getNode() alone. The same value 8452 /// may appear in both the From and To list. The Deleted vector is 8453 /// handled the same way as for ReplaceAllUsesWith. 8454 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8455 const SDValue *To, 8456 unsigned Num){ 8457 // Handle the simple, trivial case efficiently. 8458 if (Num == 1) 8459 return ReplaceAllUsesOfValueWith(*From, *To); 8460 8461 transferDbgValues(*From, *To); 8462 8463 // Read up all the uses and make records of them. This helps 8464 // processing new uses that are introduced during the 8465 // replacement process. 8466 SmallVector<UseMemo, 4> Uses; 8467 for (unsigned i = 0; i != Num; ++i) { 8468 unsigned FromResNo = From[i].getResNo(); 8469 SDNode *FromNode = From[i].getNode(); 8470 for (SDNode::use_iterator UI = FromNode->use_begin(), 8471 E = FromNode->use_end(); UI != E; ++UI) { 8472 SDUse &Use = UI.getUse(); 8473 if (Use.getResNo() == FromResNo) { 8474 UseMemo Memo = { *UI, i, &Use }; 8475 Uses.push_back(Memo); 8476 } 8477 } 8478 } 8479 8480 // Sort the uses, so that all the uses from a given User are together. 8481 llvm::sort(Uses); 8482 8483 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8484 UseIndex != UseIndexEnd; ) { 8485 // We know that this user uses some value of From. If it is the right 8486 // value, update it. 8487 SDNode *User = Uses[UseIndex].User; 8488 8489 // This node is about to morph, remove its old self from the CSE maps. 8490 RemoveNodeFromCSEMaps(User); 8491 8492 // The Uses array is sorted, so all the uses for a given User 8493 // are next to each other in the list. 8494 // To help reduce the number of CSE recomputations, process all 8495 // the uses of this user that we can find this way. 8496 do { 8497 unsigned i = Uses[UseIndex].Index; 8498 SDUse &Use = *Uses[UseIndex].Use; 8499 ++UseIndex; 8500 8501 Use.set(To[i]); 8502 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8503 8504 // Now that we have modified User, add it back to the CSE maps. If it 8505 // already exists there, recursively merge the results together. 8506 AddModifiedNodeToCSEMaps(User); 8507 } 8508 } 8509 8510 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8511 /// based on their topological order. It returns the maximum id and a vector 8512 /// of the SDNodes* in assigned order by reference. 8513 unsigned SelectionDAG::AssignTopologicalOrder() { 8514 unsigned DAGSize = 0; 8515 8516 // SortedPos tracks the progress of the algorithm. Nodes before it are 8517 // sorted, nodes after it are unsorted. When the algorithm completes 8518 // it is at the end of the list. 8519 allnodes_iterator SortedPos = allnodes_begin(); 8520 8521 // Visit all the nodes. Move nodes with no operands to the front of 8522 // the list immediately. Annotate nodes that do have operands with their 8523 // operand count. Before we do this, the Node Id fields of the nodes 8524 // may contain arbitrary values. After, the Node Id fields for nodes 8525 // before SortedPos will contain the topological sort index, and the 8526 // Node Id fields for nodes At SortedPos and after will contain the 8527 // count of outstanding operands. 8528 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8529 SDNode *N = &*I++; 8530 checkForCycles(N, this); 8531 unsigned Degree = N->getNumOperands(); 8532 if (Degree == 0) { 8533 // A node with no uses, add it to the result array immediately. 8534 N->setNodeId(DAGSize++); 8535 allnodes_iterator Q(N); 8536 if (Q != SortedPos) 8537 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8538 assert(SortedPos != AllNodes.end() && "Overran node list"); 8539 ++SortedPos; 8540 } else { 8541 // Temporarily use the Node Id as scratch space for the degree count. 8542 N->setNodeId(Degree); 8543 } 8544 } 8545 8546 // Visit all the nodes. As we iterate, move nodes into sorted order, 8547 // such that by the time the end is reached all nodes will be sorted. 8548 for (SDNode &Node : allnodes()) { 8549 SDNode *N = &Node; 8550 checkForCycles(N, this); 8551 // N is in sorted position, so all its uses have one less operand 8552 // that needs to be sorted. 8553 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8554 UI != UE; ++UI) { 8555 SDNode *P = *UI; 8556 unsigned Degree = P->getNodeId(); 8557 assert(Degree != 0 && "Invalid node degree"); 8558 --Degree; 8559 if (Degree == 0) { 8560 // All of P's operands are sorted, so P may sorted now. 8561 P->setNodeId(DAGSize++); 8562 if (P->getIterator() != SortedPos) 8563 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8564 assert(SortedPos != AllNodes.end() && "Overran node list"); 8565 ++SortedPos; 8566 } else { 8567 // Update P's outstanding operand count. 8568 P->setNodeId(Degree); 8569 } 8570 } 8571 if (Node.getIterator() == SortedPos) { 8572 #ifndef NDEBUG 8573 allnodes_iterator I(N); 8574 SDNode *S = &*++I; 8575 dbgs() << "Overran sorted position:\n"; 8576 S->dumprFull(this); dbgs() << "\n"; 8577 dbgs() << "Checking if this is due to cycles\n"; 8578 checkForCycles(this, true); 8579 #endif 8580 llvm_unreachable(nullptr); 8581 } 8582 } 8583 8584 assert(SortedPos == AllNodes.end() && 8585 "Topological sort incomplete!"); 8586 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8587 "First node in topological sort is not the entry token!"); 8588 assert(AllNodes.front().getNodeId() == 0 && 8589 "First node in topological sort has non-zero id!"); 8590 assert(AllNodes.front().getNumOperands() == 0 && 8591 "First node in topological sort has operands!"); 8592 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8593 "Last node in topologic sort has unexpected id!"); 8594 assert(AllNodes.back().use_empty() && 8595 "Last node in topologic sort has users!"); 8596 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8597 return DAGSize; 8598 } 8599 8600 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8601 /// value is produced by SD. 8602 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8603 if (SD) { 8604 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8605 SD->setHasDebugValue(true); 8606 } 8607 DbgInfo->add(DB, SD, isParameter); 8608 } 8609 8610 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8611 DbgInfo->add(DB); 8612 } 8613 8614 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8615 SDValue NewMemOp) { 8616 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8617 // The new memory operation must have the same position as the old load in 8618 // terms of memory dependency. Create a TokenFactor for the old load and new 8619 // memory operation and update uses of the old load's output chain to use that 8620 // TokenFactor. 8621 SDValue OldChain = SDValue(OldLoad, 1); 8622 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8623 if (!OldLoad->hasAnyUseOfValue(1)) 8624 return NewChain; 8625 8626 SDValue TokenFactor = 8627 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8628 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8629 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8630 return TokenFactor; 8631 } 8632 8633 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8634 Function **OutFunction) { 8635 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8636 8637 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8638 auto *Module = MF->getFunction().getParent(); 8639 auto *Function = Module->getFunction(Symbol); 8640 8641 if (OutFunction != nullptr) 8642 *OutFunction = Function; 8643 8644 if (Function != nullptr) { 8645 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8646 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8647 } 8648 8649 std::string ErrorStr; 8650 raw_string_ostream ErrorFormatter(ErrorStr); 8651 8652 ErrorFormatter << "Undefined external symbol "; 8653 ErrorFormatter << '"' << Symbol << '"'; 8654 ErrorFormatter.flush(); 8655 8656 report_fatal_error(ErrorStr); 8657 } 8658 8659 //===----------------------------------------------------------------------===// 8660 // SDNode Class 8661 //===----------------------------------------------------------------------===// 8662 8663 bool llvm::isNullConstant(SDValue V) { 8664 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8665 return Const != nullptr && Const->isNullValue(); 8666 } 8667 8668 bool llvm::isNullFPConstant(SDValue V) { 8669 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8670 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8671 } 8672 8673 bool llvm::isAllOnesConstant(SDValue V) { 8674 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8675 return Const != nullptr && Const->isAllOnesValue(); 8676 } 8677 8678 bool llvm::isOneConstant(SDValue V) { 8679 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8680 return Const != nullptr && Const->isOne(); 8681 } 8682 8683 SDValue llvm::peekThroughBitcasts(SDValue V) { 8684 while (V.getOpcode() == ISD::BITCAST) 8685 V = V.getOperand(0); 8686 return V; 8687 } 8688 8689 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 8690 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 8691 V = V.getOperand(0); 8692 return V; 8693 } 8694 8695 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 8696 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 8697 V = V.getOperand(0); 8698 return V; 8699 } 8700 8701 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 8702 if (V.getOpcode() != ISD::XOR) 8703 return false; 8704 V = peekThroughBitcasts(V.getOperand(1)); 8705 unsigned NumBits = V.getScalarValueSizeInBits(); 8706 ConstantSDNode *C = 8707 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 8708 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 8709 } 8710 8711 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 8712 bool AllowTruncation) { 8713 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8714 return CN; 8715 8716 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8717 BitVector UndefElements; 8718 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 8719 8720 // BuildVectors can truncate their operands. Ignore that case here unless 8721 // AllowTruncation is set. 8722 if (CN && (UndefElements.none() || AllowUndefs)) { 8723 EVT CVT = CN->getValueType(0); 8724 EVT NSVT = N.getValueType().getScalarType(); 8725 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8726 if (AllowTruncation || (CVT == NSVT)) 8727 return CN; 8728 } 8729 } 8730 8731 return nullptr; 8732 } 8733 8734 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 8735 bool AllowUndefs, 8736 bool AllowTruncation) { 8737 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8738 return CN; 8739 8740 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8741 BitVector UndefElements; 8742 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 8743 8744 // BuildVectors can truncate their operands. Ignore that case here unless 8745 // AllowTruncation is set. 8746 if (CN && (UndefElements.none() || AllowUndefs)) { 8747 EVT CVT = CN->getValueType(0); 8748 EVT NSVT = N.getValueType().getScalarType(); 8749 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8750 if (AllowTruncation || (CVT == NSVT)) 8751 return CN; 8752 } 8753 } 8754 8755 return nullptr; 8756 } 8757 8758 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 8759 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8760 return CN; 8761 8762 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8763 BitVector UndefElements; 8764 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 8765 if (CN && (UndefElements.none() || AllowUndefs)) 8766 return CN; 8767 } 8768 8769 return nullptr; 8770 } 8771 8772 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 8773 const APInt &DemandedElts, 8774 bool AllowUndefs) { 8775 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8776 return CN; 8777 8778 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8779 BitVector UndefElements; 8780 ConstantFPSDNode *CN = 8781 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 8782 if (CN && (UndefElements.none() || AllowUndefs)) 8783 return CN; 8784 } 8785 8786 return nullptr; 8787 } 8788 8789 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 8790 // TODO: may want to use peekThroughBitcast() here. 8791 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 8792 return C && C->isNullValue(); 8793 } 8794 8795 bool llvm::isOneOrOneSplat(SDValue N) { 8796 // TODO: may want to use peekThroughBitcast() here. 8797 unsigned BitWidth = N.getScalarValueSizeInBits(); 8798 ConstantSDNode *C = isConstOrConstSplat(N); 8799 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 8800 } 8801 8802 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 8803 N = peekThroughBitcasts(N); 8804 unsigned BitWidth = N.getScalarValueSizeInBits(); 8805 ConstantSDNode *C = isConstOrConstSplat(N); 8806 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 8807 } 8808 8809 HandleSDNode::~HandleSDNode() { 8810 DropOperands(); 8811 } 8812 8813 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 8814 const DebugLoc &DL, 8815 const GlobalValue *GA, EVT VT, 8816 int64_t o, unsigned char TF) 8817 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 8818 TheGlobal = GA; 8819 } 8820 8821 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 8822 EVT VT, unsigned SrcAS, 8823 unsigned DestAS) 8824 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 8825 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 8826 8827 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 8828 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 8829 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 8830 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 8831 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 8832 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 8833 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 8834 8835 // We check here that the size of the memory operand fits within the size of 8836 // the MMO. This is because the MMO might indicate only a possible address 8837 // range instead of specifying the affected memory addresses precisely. 8838 assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); 8839 } 8840 8841 /// Profile - Gather unique data for the node. 8842 /// 8843 void SDNode::Profile(FoldingSetNodeID &ID) const { 8844 AddNodeIDNode(ID, this); 8845 } 8846 8847 namespace { 8848 8849 struct EVTArray { 8850 std::vector<EVT> VTs; 8851 8852 EVTArray() { 8853 VTs.reserve(MVT::LAST_VALUETYPE); 8854 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 8855 VTs.push_back(MVT((MVT::SimpleValueType)i)); 8856 } 8857 }; 8858 8859 } // end anonymous namespace 8860 8861 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 8862 static ManagedStatic<EVTArray> SimpleVTArray; 8863 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 8864 8865 /// getValueTypeList - Return a pointer to the specified value type. 8866 /// 8867 const EVT *SDNode::getValueTypeList(EVT VT) { 8868 if (VT.isExtended()) { 8869 sys::SmartScopedLock<true> Lock(*VTMutex); 8870 return &(*EVTs->insert(VT).first); 8871 } else { 8872 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 8873 "Value type out of range!"); 8874 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 8875 } 8876 } 8877 8878 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 8879 /// indicated value. This method ignores uses of other values defined by this 8880 /// operation. 8881 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 8882 assert(Value < getNumValues() && "Bad value!"); 8883 8884 // TODO: Only iterate over uses of a given value of the node 8885 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 8886 if (UI.getUse().getResNo() == Value) { 8887 if (NUses == 0) 8888 return false; 8889 --NUses; 8890 } 8891 } 8892 8893 // Found exactly the right number of uses? 8894 return NUses == 0; 8895 } 8896 8897 /// hasAnyUseOfValue - Return true if there are any use of the indicated 8898 /// value. This method ignores uses of other values defined by this operation. 8899 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 8900 assert(Value < getNumValues() && "Bad value!"); 8901 8902 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 8903 if (UI.getUse().getResNo() == Value) 8904 return true; 8905 8906 return false; 8907 } 8908 8909 /// isOnlyUserOf - Return true if this node is the only use of N. 8910 bool SDNode::isOnlyUserOf(const SDNode *N) const { 8911 bool Seen = false; 8912 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 8913 SDNode *User = *I; 8914 if (User == this) 8915 Seen = true; 8916 else 8917 return false; 8918 } 8919 8920 return Seen; 8921 } 8922 8923 /// Return true if the only users of N are contained in Nodes. 8924 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 8925 bool Seen = false; 8926 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 8927 SDNode *User = *I; 8928 if (llvm::any_of(Nodes, 8929 [&User](const SDNode *Node) { return User == Node; })) 8930 Seen = true; 8931 else 8932 return false; 8933 } 8934 8935 return Seen; 8936 } 8937 8938 /// isOperand - Return true if this node is an operand of N. 8939 bool SDValue::isOperandOf(const SDNode *N) const { 8940 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 8941 } 8942 8943 bool SDNode::isOperandOf(const SDNode *N) const { 8944 return any_of(N->op_values(), 8945 [this](SDValue Op) { return this == Op.getNode(); }); 8946 } 8947 8948 /// reachesChainWithoutSideEffects - Return true if this operand (which must 8949 /// be a chain) reaches the specified operand without crossing any 8950 /// side-effecting instructions on any chain path. In practice, this looks 8951 /// through token factors and non-volatile loads. In order to remain efficient, 8952 /// this only looks a couple of nodes in, it does not do an exhaustive search. 8953 /// 8954 /// Note that we only need to examine chains when we're searching for 8955 /// side-effects; SelectionDAG requires that all side-effects are represented 8956 /// by chains, even if another operand would force a specific ordering. This 8957 /// constraint is necessary to allow transformations like splitting loads. 8958 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 8959 unsigned Depth) const { 8960 if (*this == Dest) return true; 8961 8962 // Don't search too deeply, we just want to be able to see through 8963 // TokenFactor's etc. 8964 if (Depth == 0) return false; 8965 8966 // If this is a token factor, all inputs to the TF happen in parallel. 8967 if (getOpcode() == ISD::TokenFactor) { 8968 // First, try a shallow search. 8969 if (is_contained((*this)->ops(), Dest)) { 8970 // We found the chain we want as an operand of this TokenFactor. 8971 // Essentially, we reach the chain without side-effects if we could 8972 // serialize the TokenFactor into a simple chain of operations with 8973 // Dest as the last operation. This is automatically true if the 8974 // chain has one use: there are no other ordering constraints. 8975 // If the chain has more than one use, we give up: some other 8976 // use of Dest might force a side-effect between Dest and the current 8977 // node. 8978 if (Dest.hasOneUse()) 8979 return true; 8980 } 8981 // Next, try a deep search: check whether every operand of the TokenFactor 8982 // reaches Dest. 8983 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 8984 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 8985 }); 8986 } 8987 8988 // Loads don't have side effects, look through them. 8989 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 8990 if (!Ld->isVolatile()) 8991 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 8992 } 8993 return false; 8994 } 8995 8996 bool SDNode::hasPredecessor(const SDNode *N) const { 8997 SmallPtrSet<const SDNode *, 32> Visited; 8998 SmallVector<const SDNode *, 16> Worklist; 8999 Worklist.push_back(this); 9000 return hasPredecessorHelper(N, Visited, Worklist); 9001 } 9002 9003 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9004 this->Flags.intersectWith(Flags); 9005 } 9006 9007 SDValue 9008 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9009 ArrayRef<ISD::NodeType> CandidateBinOps) { 9010 // The pattern must end in an extract from index 0. 9011 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9012 !isNullConstant(Extract->getOperand(1))) 9013 return SDValue(); 9014 9015 SDValue Op = Extract->getOperand(0); 9016 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9017 9018 // Match against one of the candidate binary ops. 9019 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9020 return Op.getOpcode() == unsigned(BinOp); 9021 })) 9022 return SDValue(); 9023 9024 // At each stage, we're looking for something that looks like: 9025 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9026 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9027 // i32 undef, i32 undef, i32 undef, i32 undef> 9028 // %a = binop <8 x i32> %op, %s 9029 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9030 // we expect something like: 9031 // <4,5,6,7,u,u,u,u> 9032 // <2,3,u,u,u,u,u,u> 9033 // <1,u,u,u,u,u,u,u> 9034 unsigned CandidateBinOp = Op.getOpcode(); 9035 for (unsigned i = 0; i < Stages; ++i) { 9036 if (Op.getOpcode() != CandidateBinOp) 9037 return SDValue(); 9038 9039 SDValue Op0 = Op.getOperand(0); 9040 SDValue Op1 = Op.getOperand(1); 9041 9042 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9043 if (Shuffle) { 9044 Op = Op1; 9045 } else { 9046 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9047 Op = Op0; 9048 } 9049 9050 // The first operand of the shuffle should be the same as the other operand 9051 // of the binop. 9052 if (!Shuffle || Shuffle->getOperand(0) != Op) 9053 return SDValue(); 9054 9055 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9056 for (int Index = 0, MaskEnd = 1 << i; Index < MaskEnd; ++Index) 9057 if (Shuffle->getMaskElt(Index) != MaskEnd + Index) 9058 return SDValue(); 9059 } 9060 9061 BinOp = (ISD::NodeType)CandidateBinOp; 9062 return Op; 9063 } 9064 9065 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9066 assert(N->getNumValues() == 1 && 9067 "Can't unroll a vector with multiple results!"); 9068 9069 EVT VT = N->getValueType(0); 9070 unsigned NE = VT.getVectorNumElements(); 9071 EVT EltVT = VT.getVectorElementType(); 9072 SDLoc dl(N); 9073 9074 SmallVector<SDValue, 8> Scalars; 9075 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9076 9077 // If ResNE is 0, fully unroll the vector op. 9078 if (ResNE == 0) 9079 ResNE = NE; 9080 else if (NE > ResNE) 9081 NE = ResNE; 9082 9083 unsigned i; 9084 for (i= 0; i != NE; ++i) { 9085 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9086 SDValue Operand = N->getOperand(j); 9087 EVT OperandVT = Operand.getValueType(); 9088 if (OperandVT.isVector()) { 9089 // A vector operand; extract a single element. 9090 EVT OperandEltVT = OperandVT.getVectorElementType(); 9091 Operands[j] = 9092 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 9093 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 9094 } else { 9095 // A scalar operand; just use it as is. 9096 Operands[j] = Operand; 9097 } 9098 } 9099 9100 switch (N->getOpcode()) { 9101 default: { 9102 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9103 N->getFlags())); 9104 break; 9105 } 9106 case ISD::VSELECT: 9107 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9108 break; 9109 case ISD::SHL: 9110 case ISD::SRA: 9111 case ISD::SRL: 9112 case ISD::ROTL: 9113 case ISD::ROTR: 9114 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9115 getShiftAmountOperand(Operands[0].getValueType(), 9116 Operands[1]))); 9117 break; 9118 case ISD::SIGN_EXTEND_INREG: 9119 case ISD::FP_ROUND_INREG: { 9120 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9121 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9122 Operands[0], 9123 getValueType(ExtVT))); 9124 } 9125 } 9126 } 9127 9128 for (; i < ResNE; ++i) 9129 Scalars.push_back(getUNDEF(EltVT)); 9130 9131 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9132 return getBuildVector(VecVT, dl, Scalars); 9133 } 9134 9135 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9136 SDNode *N, unsigned ResNE) { 9137 unsigned Opcode = N->getOpcode(); 9138 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9139 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9140 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9141 "Expected an overflow opcode"); 9142 9143 EVT ResVT = N->getValueType(0); 9144 EVT OvVT = N->getValueType(1); 9145 EVT ResEltVT = ResVT.getVectorElementType(); 9146 EVT OvEltVT = OvVT.getVectorElementType(); 9147 SDLoc dl(N); 9148 9149 // If ResNE is 0, fully unroll the vector op. 9150 unsigned NE = ResVT.getVectorNumElements(); 9151 if (ResNE == 0) 9152 ResNE = NE; 9153 else if (NE > ResNE) 9154 NE = ResNE; 9155 9156 SmallVector<SDValue, 8> LHSScalars; 9157 SmallVector<SDValue, 8> RHSScalars; 9158 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9159 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9160 9161 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9162 SDVTList VTs = getVTList(ResEltVT, SVT); 9163 SmallVector<SDValue, 8> ResScalars; 9164 SmallVector<SDValue, 8> OvScalars; 9165 for (unsigned i = 0; i < NE; ++i) { 9166 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9167 SDValue Ov = 9168 getSelect(dl, OvEltVT, Res.getValue(1), 9169 getBoolConstant(true, dl, OvEltVT, ResVT), 9170 getConstant(0, dl, OvEltVT)); 9171 9172 ResScalars.push_back(Res); 9173 OvScalars.push_back(Ov); 9174 } 9175 9176 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9177 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9178 9179 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9180 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9181 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9182 getBuildVector(NewOvVT, dl, OvScalars)); 9183 } 9184 9185 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9186 LoadSDNode *Base, 9187 unsigned Bytes, 9188 int Dist) const { 9189 if (LD->isVolatile() || Base->isVolatile()) 9190 return false; 9191 if (LD->isIndexed() || Base->isIndexed()) 9192 return false; 9193 if (LD->getChain() != Base->getChain()) 9194 return false; 9195 EVT VT = LD->getValueType(0); 9196 if (VT.getSizeInBits() / 8 != Bytes) 9197 return false; 9198 9199 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9200 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9201 9202 int64_t Offset = 0; 9203 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9204 return (Dist * Bytes == Offset); 9205 return false; 9206 } 9207 9208 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 9209 /// it cannot be inferred. 9210 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 9211 // If this is a GlobalAddress + cst, return the alignment. 9212 const GlobalValue *GV; 9213 int64_t GVOffset = 0; 9214 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9215 unsigned IdxWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType()); 9216 KnownBits Known(IdxWidth); 9217 llvm::computeKnownBits(GV, Known, getDataLayout()); 9218 unsigned AlignBits = Known.countMinTrailingZeros(); 9219 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 9220 if (Align) 9221 return MinAlign(Align, GVOffset); 9222 } 9223 9224 // If this is a direct reference to a stack slot, use information about the 9225 // stack slot's alignment. 9226 int FrameIdx = INT_MIN; 9227 int64_t FrameOffset = 0; 9228 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9229 FrameIdx = FI->getIndex(); 9230 } else if (isBaseWithConstantOffset(Ptr) && 9231 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9232 // Handle FI+Cst 9233 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9234 FrameOffset = Ptr.getConstantOperandVal(1); 9235 } 9236 9237 if (FrameIdx != INT_MIN) { 9238 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9239 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 9240 FrameOffset); 9241 return FIInfoAlign; 9242 } 9243 9244 return 0; 9245 } 9246 9247 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9248 /// which is split (or expanded) into two not necessarily identical pieces. 9249 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9250 // Currently all types are split in half. 9251 EVT LoVT, HiVT; 9252 if (!VT.isVector()) 9253 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9254 else 9255 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9256 9257 return std::make_pair(LoVT, HiVT); 9258 } 9259 9260 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9261 /// low/high part. 9262 std::pair<SDValue, SDValue> 9263 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9264 const EVT &HiVT) { 9265 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 9266 N.getValueType().getVectorNumElements() && 9267 "More vector elements requested than available!"); 9268 SDValue Lo, Hi; 9269 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 9270 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 9271 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9272 getConstant(LoVT.getVectorNumElements(), DL, 9273 TLI->getVectorIdxTy(getDataLayout()))); 9274 return std::make_pair(Lo, Hi); 9275 } 9276 9277 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9278 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9279 EVT VT = N.getValueType(); 9280 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9281 NextPowerOf2(VT.getVectorNumElements())); 9282 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9283 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 9284 } 9285 9286 void SelectionDAG::ExtractVectorElements(SDValue Op, 9287 SmallVectorImpl<SDValue> &Args, 9288 unsigned Start, unsigned Count) { 9289 EVT VT = Op.getValueType(); 9290 if (Count == 0) 9291 Count = VT.getVectorNumElements(); 9292 9293 EVT EltVT = VT.getVectorElementType(); 9294 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 9295 SDLoc SL(Op); 9296 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9297 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9298 Op, getConstant(i, SL, IdxTy))); 9299 } 9300 } 9301 9302 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9303 unsigned GlobalAddressSDNode::getAddressSpace() const { 9304 return getGlobal()->getType()->getAddressSpace(); 9305 } 9306 9307 Type *ConstantPoolSDNode::getType() const { 9308 if (isMachineConstantPoolEntry()) 9309 return Val.MachineCPVal->getType(); 9310 return Val.ConstVal->getType(); 9311 } 9312 9313 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9314 unsigned &SplatBitSize, 9315 bool &HasAnyUndefs, 9316 unsigned MinSplatBits, 9317 bool IsBigEndian) const { 9318 EVT VT = getValueType(0); 9319 assert(VT.isVector() && "Expected a vector type"); 9320 unsigned VecWidth = VT.getSizeInBits(); 9321 if (MinSplatBits > VecWidth) 9322 return false; 9323 9324 // FIXME: The widths are based on this node's type, but build vectors can 9325 // truncate their operands. 9326 SplatValue = APInt(VecWidth, 0); 9327 SplatUndef = APInt(VecWidth, 0); 9328 9329 // Get the bits. Bits with undefined values (when the corresponding element 9330 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9331 // in SplatValue. If any of the values are not constant, give up and return 9332 // false. 9333 unsigned int NumOps = getNumOperands(); 9334 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9335 unsigned EltWidth = VT.getScalarSizeInBits(); 9336 9337 for (unsigned j = 0; j < NumOps; ++j) { 9338 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9339 SDValue OpVal = getOperand(i); 9340 unsigned BitPos = j * EltWidth; 9341 9342 if (OpVal.isUndef()) 9343 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9344 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9345 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9346 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9347 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9348 else 9349 return false; 9350 } 9351 9352 // The build_vector is all constants or undefs. Find the smallest element 9353 // size that splats the vector. 9354 HasAnyUndefs = (SplatUndef != 0); 9355 9356 // FIXME: This does not work for vectors with elements less than 8 bits. 9357 while (VecWidth > 8) { 9358 unsigned HalfSize = VecWidth / 2; 9359 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9360 APInt LowValue = SplatValue.trunc(HalfSize); 9361 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9362 APInt LowUndef = SplatUndef.trunc(HalfSize); 9363 9364 // If the two halves do not match (ignoring undef bits), stop here. 9365 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9366 MinSplatBits > HalfSize) 9367 break; 9368 9369 SplatValue = HighValue | LowValue; 9370 SplatUndef = HighUndef & LowUndef; 9371 9372 VecWidth = HalfSize; 9373 } 9374 9375 SplatBitSize = VecWidth; 9376 return true; 9377 } 9378 9379 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9380 BitVector *UndefElements) const { 9381 if (UndefElements) { 9382 UndefElements->clear(); 9383 UndefElements->resize(getNumOperands()); 9384 } 9385 assert(getNumOperands() == DemandedElts.getBitWidth() && 9386 "Unexpected vector size"); 9387 if (!DemandedElts) 9388 return SDValue(); 9389 SDValue Splatted; 9390 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9391 if (!DemandedElts[i]) 9392 continue; 9393 SDValue Op = getOperand(i); 9394 if (Op.isUndef()) { 9395 if (UndefElements) 9396 (*UndefElements)[i] = true; 9397 } else if (!Splatted) { 9398 Splatted = Op; 9399 } else if (Splatted != Op) { 9400 return SDValue(); 9401 } 9402 } 9403 9404 if (!Splatted) { 9405 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9406 assert(getOperand(FirstDemandedIdx).isUndef() && 9407 "Can only have a splat without a constant for all undefs."); 9408 return getOperand(FirstDemandedIdx); 9409 } 9410 9411 return Splatted; 9412 } 9413 9414 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9415 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9416 return getSplatValue(DemandedElts, UndefElements); 9417 } 9418 9419 ConstantSDNode * 9420 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9421 BitVector *UndefElements) const { 9422 return dyn_cast_or_null<ConstantSDNode>( 9423 getSplatValue(DemandedElts, UndefElements)); 9424 } 9425 9426 ConstantSDNode * 9427 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9428 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9429 } 9430 9431 ConstantFPSDNode * 9432 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9433 BitVector *UndefElements) const { 9434 return dyn_cast_or_null<ConstantFPSDNode>( 9435 getSplatValue(DemandedElts, UndefElements)); 9436 } 9437 9438 ConstantFPSDNode * 9439 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9440 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9441 } 9442 9443 int32_t 9444 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9445 uint32_t BitWidth) const { 9446 if (ConstantFPSDNode *CN = 9447 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9448 bool IsExact; 9449 APSInt IntVal(BitWidth); 9450 const APFloat &APF = CN->getValueAPF(); 9451 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9452 APFloat::opOK || 9453 !IsExact) 9454 return -1; 9455 9456 return IntVal.exactLogBase2(); 9457 } 9458 return -1; 9459 } 9460 9461 bool BuildVectorSDNode::isConstant() const { 9462 for (const SDValue &Op : op_values()) { 9463 unsigned Opc = Op.getOpcode(); 9464 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9465 return false; 9466 } 9467 return true; 9468 } 9469 9470 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9471 // Find the first non-undef value in the shuffle mask. 9472 unsigned i, e; 9473 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9474 /* search */; 9475 9476 // If all elements are undefined, this shuffle can be considered a splat 9477 // (although it should eventually get simplified away completely). 9478 if (i == e) 9479 return true; 9480 9481 // Make sure all remaining elements are either undef or the same as the first 9482 // non-undef value. 9483 for (int Idx = Mask[i]; i != e; ++i) 9484 if (Mask[i] >= 0 && Mask[i] != Idx) 9485 return false; 9486 return true; 9487 } 9488 9489 // Returns the SDNode if it is a constant integer BuildVector 9490 // or constant integer. 9491 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9492 if (isa<ConstantSDNode>(N)) 9493 return N.getNode(); 9494 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9495 return N.getNode(); 9496 // Treat a GlobalAddress supporting constant offset folding as a 9497 // constant integer. 9498 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9499 if (GA->getOpcode() == ISD::GlobalAddress && 9500 TLI->isOffsetFoldingLegal(GA)) 9501 return GA; 9502 return nullptr; 9503 } 9504 9505 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9506 if (isa<ConstantFPSDNode>(N)) 9507 return N.getNode(); 9508 9509 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9510 return N.getNode(); 9511 9512 return nullptr; 9513 } 9514 9515 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9516 assert(!Node->OperandList && "Node already has operands"); 9517 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9518 "too many operands to fit into SDNode"); 9519 SDUse *Ops = OperandRecycler.allocate( 9520 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9521 9522 bool IsDivergent = false; 9523 for (unsigned I = 0; I != Vals.size(); ++I) { 9524 Ops[I].setUser(Node); 9525 Ops[I].setInitial(Vals[I]); 9526 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9527 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9528 } 9529 Node->NumOperands = Vals.size(); 9530 Node->OperandList = Ops; 9531 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9532 if (!TLI->isSDNodeAlwaysUniform(Node)) 9533 Node->SDNodeBits.IsDivergent = IsDivergent; 9534 checkForCycles(Node); 9535 } 9536 9537 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9538 SmallVectorImpl<SDValue> &Vals) { 9539 size_t Limit = SDNode::getMaxNumOperands(); 9540 while (Vals.size() > Limit) { 9541 unsigned SliceIdx = Vals.size() - Limit; 9542 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9543 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9544 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9545 Vals.emplace_back(NewTF); 9546 } 9547 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9548 } 9549 9550 #ifndef NDEBUG 9551 static void checkForCyclesHelper(const SDNode *N, 9552 SmallPtrSetImpl<const SDNode*> &Visited, 9553 SmallPtrSetImpl<const SDNode*> &Checked, 9554 const llvm::SelectionDAG *DAG) { 9555 // If this node has already been checked, don't check it again. 9556 if (Checked.count(N)) 9557 return; 9558 9559 // If a node has already been visited on this depth-first walk, reject it as 9560 // a cycle. 9561 if (!Visited.insert(N).second) { 9562 errs() << "Detected cycle in SelectionDAG\n"; 9563 dbgs() << "Offending node:\n"; 9564 N->dumprFull(DAG); dbgs() << "\n"; 9565 abort(); 9566 } 9567 9568 for (const SDValue &Op : N->op_values()) 9569 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9570 9571 Checked.insert(N); 9572 Visited.erase(N); 9573 } 9574 #endif 9575 9576 void llvm::checkForCycles(const llvm::SDNode *N, 9577 const llvm::SelectionDAG *DAG, 9578 bool force) { 9579 #ifndef NDEBUG 9580 bool check = force; 9581 #ifdef EXPENSIVE_CHECKS 9582 check = true; 9583 #endif // EXPENSIVE_CHECKS 9584 if (check) { 9585 assert(N && "Checking nonexistent SDNode"); 9586 SmallPtrSet<const SDNode*, 32> visited; 9587 SmallPtrSet<const SDNode*, 32> checked; 9588 checkForCyclesHelper(N, visited, checked, DAG); 9589 } 9590 #endif // !NDEBUG 9591 } 9592 9593 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 9594 checkForCycles(DAG->getRoot().getNode(), DAG, force); 9595 } 9596