1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/RuntimeLibcalls.h" 39 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 42 #include "llvm/CodeGen/TargetFrameLowering.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/ValueTypes.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CodeGen.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/KnownBits.h" 64 #include "llvm/Support/MachineValueType.h" 65 #include "llvm/Support/ManagedStatic.h" 66 #include "llvm/Support/MathExtras.h" 67 #include "llvm/Support/Mutex.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetOptions.h" 71 #include "llvm/Transforms/Utils/SizeOpts.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <cstdlib> 76 #include <limits> 77 #include <set> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 /// makeVTList - Return an instance of the SDVTList struct initialized with the 85 /// specified members. 86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 87 SDVTList Res = {VTs, NumVTs}; 88 return Res; 89 } 90 91 // Default null implementations of the callbacks. 92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 95 96 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 97 98 #define DEBUG_TYPE "selectiondag" 99 100 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 101 cl::Hidden, cl::init(true), 102 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 103 104 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 105 cl::desc("Number limit for gluing ld/st of memcpy."), 106 cl::Hidden, cl::init(0)); 107 108 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 109 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 110 } 111 112 //===----------------------------------------------------------------------===// 113 // ConstantFPSDNode Class 114 //===----------------------------------------------------------------------===// 115 116 /// isExactlyValue - We don't rely on operator== working on double values, as 117 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 118 /// As such, this method can be used to do an exact bit-for-bit comparison of 119 /// two floating point values. 120 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 121 return getValueAPF().bitwiseIsEqual(V); 122 } 123 124 bool ConstantFPSDNode::isValueValidForType(EVT VT, 125 const APFloat& Val) { 126 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 127 128 // convert modifies in place, so make a copy. 129 APFloat Val2 = APFloat(Val); 130 bool losesInfo; 131 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 132 APFloat::rmNearestTiesToEven, 133 &losesInfo); 134 return !losesInfo; 135 } 136 137 //===----------------------------------------------------------------------===// 138 // ISD Namespace 139 //===----------------------------------------------------------------------===// 140 141 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 142 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 143 unsigned EltSize = 144 N->getValueType(0).getVectorElementType().getSizeInBits(); 145 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 146 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 147 return true; 148 } 149 } 150 151 auto *BV = dyn_cast<BuildVectorSDNode>(N); 152 if (!BV) 153 return false; 154 155 APInt SplatUndef; 156 unsigned SplatBitSize; 157 bool HasUndefs; 158 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 159 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 160 EltSize) && 161 EltSize == SplatBitSize; 162 } 163 164 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 165 // specializations of the more general isConstantSplatVector()? 166 167 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 168 // Look through a bit convert. 169 while (N->getOpcode() == ISD::BITCAST) 170 N = N->getOperand(0).getNode(); 171 172 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 173 APInt SplatVal; 174 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnesValue(); 175 } 176 177 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 178 179 unsigned i = 0, e = N->getNumOperands(); 180 181 // Skip over all of the undef values. 182 while (i != e && N->getOperand(i).isUndef()) 183 ++i; 184 185 // Do not accept an all-undef vector. 186 if (i == e) return false; 187 188 // Do not accept build_vectors that aren't all constants or which have non-~0 189 // elements. We have to be a bit careful here, as the type of the constant 190 // may not be the same as the type of the vector elements due to type 191 // legalization (the elements are promoted to a legal type for the target and 192 // a vector of a type may be legal when the base element type is not). 193 // We only want to check enough bits to cover the vector elements, because 194 // we care if the resultant vector is all ones, not whether the individual 195 // constants are. 196 SDValue NotZero = N->getOperand(i); 197 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 198 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 199 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 200 return false; 201 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 202 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 203 return false; 204 } else 205 return false; 206 207 // Okay, we have at least one ~0 value, check to see if the rest match or are 208 // undefs. Even with the above element type twiddling, this should be OK, as 209 // the same type legalization should have applied to all the elements. 210 for (++i; i != e; ++i) 211 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 212 return false; 213 return true; 214 } 215 216 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 217 // Look through a bit convert. 218 while (N->getOpcode() == ISD::BITCAST) 219 N = N->getOperand(0).getNode(); 220 221 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 222 APInt SplatVal; 223 return isConstantSplatVector(N, SplatVal) && SplatVal.isNullValue(); 224 } 225 226 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 227 228 bool IsAllUndef = true; 229 for (const SDValue &Op : N->op_values()) { 230 if (Op.isUndef()) 231 continue; 232 IsAllUndef = false; 233 // Do not accept build_vectors that aren't all constants or which have non-0 234 // elements. We have to be a bit careful here, as the type of the constant 235 // may not be the same as the type of the vector elements due to type 236 // legalization (the elements are promoted to a legal type for the target 237 // and a vector of a type may be legal when the base element type is not). 238 // We only want to check enough bits to cover the vector elements, because 239 // we care if the resultant vector is all zeros, not whether the individual 240 // constants are. 241 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 242 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 243 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 244 return false; 245 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 246 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 247 return false; 248 } else 249 return false; 250 } 251 252 // Do not accept an all-undef vector. 253 if (IsAllUndef) 254 return false; 255 return true; 256 } 257 258 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 259 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 260 } 261 262 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 263 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 264 } 265 266 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 267 if (N->getOpcode() != ISD::BUILD_VECTOR) 268 return false; 269 270 for (const SDValue &Op : N->op_values()) { 271 if (Op.isUndef()) 272 continue; 273 if (!isa<ConstantSDNode>(Op)) 274 return false; 275 } 276 return true; 277 } 278 279 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 280 if (N->getOpcode() != ISD::BUILD_VECTOR) 281 return false; 282 283 for (const SDValue &Op : N->op_values()) { 284 if (Op.isUndef()) 285 continue; 286 if (!isa<ConstantFPSDNode>(Op)) 287 return false; 288 } 289 return true; 290 } 291 292 bool ISD::allOperandsUndef(const SDNode *N) { 293 // Return false if the node has no operands. 294 // This is "logically inconsistent" with the definition of "all" but 295 // is probably the desired behavior. 296 if (N->getNumOperands() == 0) 297 return false; 298 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 299 } 300 301 bool ISD::matchUnaryPredicate(SDValue Op, 302 std::function<bool(ConstantSDNode *)> Match, 303 bool AllowUndefs) { 304 // FIXME: Add support for scalar UNDEF cases? 305 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 306 return Match(Cst); 307 308 // FIXME: Add support for vector UNDEF cases? 309 if (ISD::BUILD_VECTOR != Op.getOpcode() && 310 ISD::SPLAT_VECTOR != Op.getOpcode()) 311 return false; 312 313 EVT SVT = Op.getValueType().getScalarType(); 314 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 315 if (AllowUndefs && Op.getOperand(i).isUndef()) { 316 if (!Match(nullptr)) 317 return false; 318 continue; 319 } 320 321 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 322 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 323 return false; 324 } 325 return true; 326 } 327 328 bool ISD::matchBinaryPredicate( 329 SDValue LHS, SDValue RHS, 330 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 331 bool AllowUndefs, bool AllowTypeMismatch) { 332 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 333 return false; 334 335 // TODO: Add support for scalar UNDEF cases? 336 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 337 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 338 return Match(LHSCst, RHSCst); 339 340 // TODO: Add support for vector UNDEF cases? 341 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 342 ISD::BUILD_VECTOR != RHS.getOpcode()) 343 return false; 344 345 EVT SVT = LHS.getValueType().getScalarType(); 346 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 347 SDValue LHSOp = LHS.getOperand(i); 348 SDValue RHSOp = RHS.getOperand(i); 349 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 350 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 351 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 352 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 353 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 354 return false; 355 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 356 LHSOp.getValueType() != RHSOp.getValueType())) 357 return false; 358 if (!Match(LHSCst, RHSCst)) 359 return false; 360 } 361 return true; 362 } 363 364 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 365 switch (VecReduceOpcode) { 366 default: 367 llvm_unreachable("Expected VECREDUCE opcode"); 368 case ISD::VECREDUCE_FADD: 369 case ISD::VECREDUCE_SEQ_FADD: 370 return ISD::FADD; 371 case ISD::VECREDUCE_FMUL: 372 case ISD::VECREDUCE_SEQ_FMUL: 373 return ISD::FMUL; 374 case ISD::VECREDUCE_ADD: 375 return ISD::ADD; 376 case ISD::VECREDUCE_MUL: 377 return ISD::MUL; 378 case ISD::VECREDUCE_AND: 379 return ISD::AND; 380 case ISD::VECREDUCE_OR: 381 return ISD::OR; 382 case ISD::VECREDUCE_XOR: 383 return ISD::XOR; 384 case ISD::VECREDUCE_SMAX: 385 return ISD::SMAX; 386 case ISD::VECREDUCE_SMIN: 387 return ISD::SMIN; 388 case ISD::VECREDUCE_UMAX: 389 return ISD::UMAX; 390 case ISD::VECREDUCE_UMIN: 391 return ISD::UMIN; 392 case ISD::VECREDUCE_FMAX: 393 return ISD::FMAXNUM; 394 case ISD::VECREDUCE_FMIN: 395 return ISD::FMINNUM; 396 } 397 } 398 399 bool ISD::isVPOpcode(unsigned Opcode) { 400 switch (Opcode) { 401 default: 402 return false; 403 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \ 404 case ISD::SDOPC: \ 405 return true; 406 #include "llvm/IR/VPIntrinsics.def" 407 } 408 } 409 410 /// The operand position of the vector mask. 411 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 412 switch (Opcode) { 413 default: 414 return None; 415 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...) \ 416 case ISD::SDOPC: \ 417 return MASKPOS; 418 #include "llvm/IR/VPIntrinsics.def" 419 } 420 } 421 422 /// The operand position of the explicit vector length parameter. 423 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 424 switch (Opcode) { 425 default: 426 return None; 427 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 428 case ISD::SDOPC: \ 429 return EVLPOS; 430 #include "llvm/IR/VPIntrinsics.def" 431 } 432 } 433 434 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 435 switch (ExtType) { 436 case ISD::EXTLOAD: 437 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 438 case ISD::SEXTLOAD: 439 return ISD::SIGN_EXTEND; 440 case ISD::ZEXTLOAD: 441 return ISD::ZERO_EXTEND; 442 default: 443 break; 444 } 445 446 llvm_unreachable("Invalid LoadExtType"); 447 } 448 449 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 450 // To perform this operation, we just need to swap the L and G bits of the 451 // operation. 452 unsigned OldL = (Operation >> 2) & 1; 453 unsigned OldG = (Operation >> 1) & 1; 454 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 455 (OldL << 1) | // New G bit 456 (OldG << 2)); // New L bit. 457 } 458 459 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 460 unsigned Operation = Op; 461 if (isIntegerLike) 462 Operation ^= 7; // Flip L, G, E bits, but not U. 463 else 464 Operation ^= 15; // Flip all of the condition bits. 465 466 if (Operation > ISD::SETTRUE2) 467 Operation &= ~8; // Don't let N and U bits get set. 468 469 return ISD::CondCode(Operation); 470 } 471 472 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 473 return getSetCCInverseImpl(Op, Type.isInteger()); 474 } 475 476 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 477 bool isIntegerLike) { 478 return getSetCCInverseImpl(Op, isIntegerLike); 479 } 480 481 /// For an integer comparison, return 1 if the comparison is a signed operation 482 /// and 2 if the result is an unsigned comparison. Return zero if the operation 483 /// does not depend on the sign of the input (setne and seteq). 484 static int isSignedOp(ISD::CondCode Opcode) { 485 switch (Opcode) { 486 default: llvm_unreachable("Illegal integer setcc operation!"); 487 case ISD::SETEQ: 488 case ISD::SETNE: return 0; 489 case ISD::SETLT: 490 case ISD::SETLE: 491 case ISD::SETGT: 492 case ISD::SETGE: return 1; 493 case ISD::SETULT: 494 case ISD::SETULE: 495 case ISD::SETUGT: 496 case ISD::SETUGE: return 2; 497 } 498 } 499 500 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 501 EVT Type) { 502 bool IsInteger = Type.isInteger(); 503 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 504 // Cannot fold a signed integer setcc with an unsigned integer setcc. 505 return ISD::SETCC_INVALID; 506 507 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 508 509 // If the N and U bits get set, then the resultant comparison DOES suddenly 510 // care about orderedness, and it is true when ordered. 511 if (Op > ISD::SETTRUE2) 512 Op &= ~16; // Clear the U bit if the N bit is set. 513 514 // Canonicalize illegal integer setcc's. 515 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 516 Op = ISD::SETNE; 517 518 return ISD::CondCode(Op); 519 } 520 521 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 522 EVT Type) { 523 bool IsInteger = Type.isInteger(); 524 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 525 // Cannot fold a signed setcc with an unsigned setcc. 526 return ISD::SETCC_INVALID; 527 528 // Combine all of the condition bits. 529 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 530 531 // Canonicalize illegal integer setcc's. 532 if (IsInteger) { 533 switch (Result) { 534 default: break; 535 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 536 case ISD::SETOEQ: // SETEQ & SETU[LG]E 537 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 538 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 539 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 540 } 541 } 542 543 return Result; 544 } 545 546 //===----------------------------------------------------------------------===// 547 // SDNode Profile Support 548 //===----------------------------------------------------------------------===// 549 550 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 551 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 552 ID.AddInteger(OpC); 553 } 554 555 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 556 /// solely with their pointer. 557 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 558 ID.AddPointer(VTList.VTs); 559 } 560 561 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 562 static void AddNodeIDOperands(FoldingSetNodeID &ID, 563 ArrayRef<SDValue> Ops) { 564 for (auto& Op : Ops) { 565 ID.AddPointer(Op.getNode()); 566 ID.AddInteger(Op.getResNo()); 567 } 568 } 569 570 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 571 static void AddNodeIDOperands(FoldingSetNodeID &ID, 572 ArrayRef<SDUse> Ops) { 573 for (auto& Op : Ops) { 574 ID.AddPointer(Op.getNode()); 575 ID.AddInteger(Op.getResNo()); 576 } 577 } 578 579 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 580 SDVTList VTList, ArrayRef<SDValue> OpList) { 581 AddNodeIDOpcode(ID, OpC); 582 AddNodeIDValueTypes(ID, VTList); 583 AddNodeIDOperands(ID, OpList); 584 } 585 586 /// If this is an SDNode with special info, add this info to the NodeID data. 587 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 588 switch (N->getOpcode()) { 589 case ISD::TargetExternalSymbol: 590 case ISD::ExternalSymbol: 591 case ISD::MCSymbol: 592 llvm_unreachable("Should only be used on nodes with operands"); 593 default: break; // Normal nodes don't need extra info. 594 case ISD::TargetConstant: 595 case ISD::Constant: { 596 const ConstantSDNode *C = cast<ConstantSDNode>(N); 597 ID.AddPointer(C->getConstantIntValue()); 598 ID.AddBoolean(C->isOpaque()); 599 break; 600 } 601 case ISD::TargetConstantFP: 602 case ISD::ConstantFP: 603 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 604 break; 605 case ISD::TargetGlobalAddress: 606 case ISD::GlobalAddress: 607 case ISD::TargetGlobalTLSAddress: 608 case ISD::GlobalTLSAddress: { 609 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 610 ID.AddPointer(GA->getGlobal()); 611 ID.AddInteger(GA->getOffset()); 612 ID.AddInteger(GA->getTargetFlags()); 613 break; 614 } 615 case ISD::BasicBlock: 616 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 617 break; 618 case ISD::Register: 619 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 620 break; 621 case ISD::RegisterMask: 622 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 623 break; 624 case ISD::SRCVALUE: 625 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 626 break; 627 case ISD::FrameIndex: 628 case ISD::TargetFrameIndex: 629 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 630 break; 631 case ISD::LIFETIME_START: 632 case ISD::LIFETIME_END: 633 if (cast<LifetimeSDNode>(N)->hasOffset()) { 634 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 635 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 636 } 637 break; 638 case ISD::PSEUDO_PROBE: 639 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 640 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 641 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 642 break; 643 case ISD::JumpTable: 644 case ISD::TargetJumpTable: 645 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 646 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 647 break; 648 case ISD::ConstantPool: 649 case ISD::TargetConstantPool: { 650 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 651 ID.AddInteger(CP->getAlign().value()); 652 ID.AddInteger(CP->getOffset()); 653 if (CP->isMachineConstantPoolEntry()) 654 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 655 else 656 ID.AddPointer(CP->getConstVal()); 657 ID.AddInteger(CP->getTargetFlags()); 658 break; 659 } 660 case ISD::TargetIndex: { 661 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 662 ID.AddInteger(TI->getIndex()); 663 ID.AddInteger(TI->getOffset()); 664 ID.AddInteger(TI->getTargetFlags()); 665 break; 666 } 667 case ISD::LOAD: { 668 const LoadSDNode *LD = cast<LoadSDNode>(N); 669 ID.AddInteger(LD->getMemoryVT().getRawBits()); 670 ID.AddInteger(LD->getRawSubclassData()); 671 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 672 break; 673 } 674 case ISD::STORE: { 675 const StoreSDNode *ST = cast<StoreSDNode>(N); 676 ID.AddInteger(ST->getMemoryVT().getRawBits()); 677 ID.AddInteger(ST->getRawSubclassData()); 678 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 679 break; 680 } 681 case ISD::MLOAD: { 682 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 683 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 684 ID.AddInteger(MLD->getRawSubclassData()); 685 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 686 break; 687 } 688 case ISD::MSTORE: { 689 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 690 ID.AddInteger(MST->getMemoryVT().getRawBits()); 691 ID.AddInteger(MST->getRawSubclassData()); 692 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 693 break; 694 } 695 case ISD::MGATHER: { 696 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 697 ID.AddInteger(MG->getMemoryVT().getRawBits()); 698 ID.AddInteger(MG->getRawSubclassData()); 699 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 700 break; 701 } 702 case ISD::MSCATTER: { 703 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 704 ID.AddInteger(MS->getMemoryVT().getRawBits()); 705 ID.AddInteger(MS->getRawSubclassData()); 706 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 707 break; 708 } 709 case ISD::ATOMIC_CMP_SWAP: 710 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 711 case ISD::ATOMIC_SWAP: 712 case ISD::ATOMIC_LOAD_ADD: 713 case ISD::ATOMIC_LOAD_SUB: 714 case ISD::ATOMIC_LOAD_AND: 715 case ISD::ATOMIC_LOAD_CLR: 716 case ISD::ATOMIC_LOAD_OR: 717 case ISD::ATOMIC_LOAD_XOR: 718 case ISD::ATOMIC_LOAD_NAND: 719 case ISD::ATOMIC_LOAD_MIN: 720 case ISD::ATOMIC_LOAD_MAX: 721 case ISD::ATOMIC_LOAD_UMIN: 722 case ISD::ATOMIC_LOAD_UMAX: 723 case ISD::ATOMIC_LOAD: 724 case ISD::ATOMIC_STORE: { 725 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 726 ID.AddInteger(AT->getMemoryVT().getRawBits()); 727 ID.AddInteger(AT->getRawSubclassData()); 728 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 729 break; 730 } 731 case ISD::PREFETCH: { 732 const MemSDNode *PF = cast<MemSDNode>(N); 733 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 734 break; 735 } 736 case ISD::VECTOR_SHUFFLE: { 737 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 738 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 739 i != e; ++i) 740 ID.AddInteger(SVN->getMaskElt(i)); 741 break; 742 } 743 case ISD::TargetBlockAddress: 744 case ISD::BlockAddress: { 745 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 746 ID.AddPointer(BA->getBlockAddress()); 747 ID.AddInteger(BA->getOffset()); 748 ID.AddInteger(BA->getTargetFlags()); 749 break; 750 } 751 } // end switch (N->getOpcode()) 752 753 // Target specific memory nodes could also have address spaces to check. 754 if (N->isTargetMemoryOpcode()) 755 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 756 } 757 758 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 759 /// data. 760 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 761 AddNodeIDOpcode(ID, N->getOpcode()); 762 // Add the return value info. 763 AddNodeIDValueTypes(ID, N->getVTList()); 764 // Add the operand info. 765 AddNodeIDOperands(ID, N->ops()); 766 767 // Handle SDNode leafs with special info. 768 AddNodeIDCustom(ID, N); 769 } 770 771 //===----------------------------------------------------------------------===// 772 // SelectionDAG Class 773 //===----------------------------------------------------------------------===// 774 775 /// doNotCSE - Return true if CSE should not be performed for this node. 776 static bool doNotCSE(SDNode *N) { 777 if (N->getValueType(0) == MVT::Glue) 778 return true; // Never CSE anything that produces a flag. 779 780 switch (N->getOpcode()) { 781 default: break; 782 case ISD::HANDLENODE: 783 case ISD::EH_LABEL: 784 return true; // Never CSE these nodes. 785 } 786 787 // Check that remaining values produced are not flags. 788 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 789 if (N->getValueType(i) == MVT::Glue) 790 return true; // Never CSE anything that produces a flag. 791 792 return false; 793 } 794 795 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 796 /// SelectionDAG. 797 void SelectionDAG::RemoveDeadNodes() { 798 // Create a dummy node (which is not added to allnodes), that adds a reference 799 // to the root node, preventing it from being deleted. 800 HandleSDNode Dummy(getRoot()); 801 802 SmallVector<SDNode*, 128> DeadNodes; 803 804 // Add all obviously-dead nodes to the DeadNodes worklist. 805 for (SDNode &Node : allnodes()) 806 if (Node.use_empty()) 807 DeadNodes.push_back(&Node); 808 809 RemoveDeadNodes(DeadNodes); 810 811 // If the root changed (e.g. it was a dead load, update the root). 812 setRoot(Dummy.getValue()); 813 } 814 815 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 816 /// given list, and any nodes that become unreachable as a result. 817 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 818 819 // Process the worklist, deleting the nodes and adding their uses to the 820 // worklist. 821 while (!DeadNodes.empty()) { 822 SDNode *N = DeadNodes.pop_back_val(); 823 // Skip to next node if we've already managed to delete the node. This could 824 // happen if replacing a node causes a node previously added to the node to 825 // be deleted. 826 if (N->getOpcode() == ISD::DELETED_NODE) 827 continue; 828 829 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 830 DUL->NodeDeleted(N, nullptr); 831 832 // Take the node out of the appropriate CSE map. 833 RemoveNodeFromCSEMaps(N); 834 835 // Next, brutally remove the operand list. This is safe to do, as there are 836 // no cycles in the graph. 837 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 838 SDUse &Use = *I++; 839 SDNode *Operand = Use.getNode(); 840 Use.set(SDValue()); 841 842 // Now that we removed this operand, see if there are no uses of it left. 843 if (Operand->use_empty()) 844 DeadNodes.push_back(Operand); 845 } 846 847 DeallocateNode(N); 848 } 849 } 850 851 void SelectionDAG::RemoveDeadNode(SDNode *N){ 852 SmallVector<SDNode*, 16> DeadNodes(1, N); 853 854 // Create a dummy node that adds a reference to the root node, preventing 855 // it from being deleted. (This matters if the root is an operand of the 856 // dead node.) 857 HandleSDNode Dummy(getRoot()); 858 859 RemoveDeadNodes(DeadNodes); 860 } 861 862 void SelectionDAG::DeleteNode(SDNode *N) { 863 // First take this out of the appropriate CSE map. 864 RemoveNodeFromCSEMaps(N); 865 866 // Finally, remove uses due to operands of this node, remove from the 867 // AllNodes list, and delete the node. 868 DeleteNodeNotInCSEMaps(N); 869 } 870 871 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 872 assert(N->getIterator() != AllNodes.begin() && 873 "Cannot delete the entry node!"); 874 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 875 876 // Drop all of the operands and decrement used node's use counts. 877 N->DropOperands(); 878 879 DeallocateNode(N); 880 } 881 882 void SDDbgInfo::erase(const SDNode *Node) { 883 DbgValMapType::iterator I = DbgValMap.find(Node); 884 if (I == DbgValMap.end()) 885 return; 886 for (auto &Val: I->second) 887 Val->setIsInvalidated(); 888 DbgValMap.erase(I); 889 } 890 891 void SelectionDAG::DeallocateNode(SDNode *N) { 892 // If we have operands, deallocate them. 893 removeOperands(N); 894 895 NodeAllocator.Deallocate(AllNodes.remove(N)); 896 897 // Set the opcode to DELETED_NODE to help catch bugs when node 898 // memory is reallocated. 899 // FIXME: There are places in SDag that have grown a dependency on the opcode 900 // value in the released node. 901 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 902 N->NodeType = ISD::DELETED_NODE; 903 904 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 905 // them and forget about that node. 906 DbgInfo->erase(N); 907 } 908 909 #ifndef NDEBUG 910 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 911 static void VerifySDNode(SDNode *N) { 912 switch (N->getOpcode()) { 913 default: 914 break; 915 case ISD::BUILD_PAIR: { 916 EVT VT = N->getValueType(0); 917 assert(N->getNumValues() == 1 && "Too many results!"); 918 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 919 "Wrong return type!"); 920 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 921 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 922 "Mismatched operand types!"); 923 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 924 "Wrong operand type!"); 925 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 926 "Wrong return type size"); 927 break; 928 } 929 case ISD::BUILD_VECTOR: { 930 assert(N->getNumValues() == 1 && "Too many results!"); 931 assert(N->getValueType(0).isVector() && "Wrong return type!"); 932 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 933 "Wrong number of operands!"); 934 EVT EltVT = N->getValueType(0).getVectorElementType(); 935 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 936 assert((I->getValueType() == EltVT || 937 (EltVT.isInteger() && I->getValueType().isInteger() && 938 EltVT.bitsLE(I->getValueType()))) && 939 "Wrong operand type!"); 940 assert(I->getValueType() == N->getOperand(0).getValueType() && 941 "Operands must all have the same type"); 942 } 943 break; 944 } 945 } 946 } 947 #endif // NDEBUG 948 949 /// Insert a newly allocated node into the DAG. 950 /// 951 /// Handles insertion into the all nodes list and CSE map, as well as 952 /// verification and other common operations when a new node is allocated. 953 void SelectionDAG::InsertNode(SDNode *N) { 954 AllNodes.push_back(N); 955 #ifndef NDEBUG 956 N->PersistentId = NextPersistentId++; 957 VerifySDNode(N); 958 #endif 959 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 960 DUL->NodeInserted(N); 961 } 962 963 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 964 /// correspond to it. This is useful when we're about to delete or repurpose 965 /// the node. We don't want future request for structurally identical nodes 966 /// to return N anymore. 967 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 968 bool Erased = false; 969 switch (N->getOpcode()) { 970 case ISD::HANDLENODE: return false; // noop. 971 case ISD::CONDCODE: 972 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 973 "Cond code doesn't exist!"); 974 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 975 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 976 break; 977 case ISD::ExternalSymbol: 978 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 979 break; 980 case ISD::TargetExternalSymbol: { 981 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 982 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 983 ESN->getSymbol(), ESN->getTargetFlags())); 984 break; 985 } 986 case ISD::MCSymbol: { 987 auto *MCSN = cast<MCSymbolSDNode>(N); 988 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 989 break; 990 } 991 case ISD::VALUETYPE: { 992 EVT VT = cast<VTSDNode>(N)->getVT(); 993 if (VT.isExtended()) { 994 Erased = ExtendedValueTypeNodes.erase(VT); 995 } else { 996 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 997 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 998 } 999 break; 1000 } 1001 default: 1002 // Remove it from the CSE Map. 1003 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1004 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1005 Erased = CSEMap.RemoveNode(N); 1006 break; 1007 } 1008 #ifndef NDEBUG 1009 // Verify that the node was actually in one of the CSE maps, unless it has a 1010 // flag result (which cannot be CSE'd) or is one of the special cases that are 1011 // not subject to CSE. 1012 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1013 !N->isMachineOpcode() && !doNotCSE(N)) { 1014 N->dump(this); 1015 dbgs() << "\n"; 1016 llvm_unreachable("Node is not in map!"); 1017 } 1018 #endif 1019 return Erased; 1020 } 1021 1022 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1023 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1024 /// node already exists, in which case transfer all its users to the existing 1025 /// node. This transfer can potentially trigger recursive merging. 1026 void 1027 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1028 // For node types that aren't CSE'd, just act as if no identical node 1029 // already exists. 1030 if (!doNotCSE(N)) { 1031 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1032 if (Existing != N) { 1033 // If there was already an existing matching node, use ReplaceAllUsesWith 1034 // to replace the dead one with the existing one. This can cause 1035 // recursive merging of other unrelated nodes down the line. 1036 ReplaceAllUsesWith(N, Existing); 1037 1038 // N is now dead. Inform the listeners and delete it. 1039 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1040 DUL->NodeDeleted(N, Existing); 1041 DeleteNodeNotInCSEMaps(N); 1042 return; 1043 } 1044 } 1045 1046 // If the node doesn't already exist, we updated it. Inform listeners. 1047 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1048 DUL->NodeUpdated(N); 1049 } 1050 1051 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1052 /// were replaced with those specified. If this node is never memoized, 1053 /// return null, otherwise return a pointer to the slot it would take. If a 1054 /// node already exists with these operands, the slot will be non-null. 1055 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1056 void *&InsertPos) { 1057 if (doNotCSE(N)) 1058 return nullptr; 1059 1060 SDValue Ops[] = { Op }; 1061 FoldingSetNodeID ID; 1062 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1063 AddNodeIDCustom(ID, N); 1064 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1065 if (Node) 1066 Node->intersectFlagsWith(N->getFlags()); 1067 return Node; 1068 } 1069 1070 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1071 /// were replaced with those specified. If this node is never memoized, 1072 /// return null, otherwise return a pointer to the slot it would take. If a 1073 /// node already exists with these operands, the slot will be non-null. 1074 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1075 SDValue Op1, SDValue Op2, 1076 void *&InsertPos) { 1077 if (doNotCSE(N)) 1078 return nullptr; 1079 1080 SDValue Ops[] = { Op1, Op2 }; 1081 FoldingSetNodeID ID; 1082 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1083 AddNodeIDCustom(ID, N); 1084 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1085 if (Node) 1086 Node->intersectFlagsWith(N->getFlags()); 1087 return Node; 1088 } 1089 1090 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1091 /// were replaced with those specified. If this node is never memoized, 1092 /// return null, otherwise return a pointer to the slot it would take. If a 1093 /// node already exists with these operands, the slot will be non-null. 1094 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1095 void *&InsertPos) { 1096 if (doNotCSE(N)) 1097 return nullptr; 1098 1099 FoldingSetNodeID ID; 1100 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1101 AddNodeIDCustom(ID, N); 1102 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1103 if (Node) 1104 Node->intersectFlagsWith(N->getFlags()); 1105 return Node; 1106 } 1107 1108 Align SelectionDAG::getEVTAlign(EVT VT) const { 1109 Type *Ty = VT == MVT::iPTR ? 1110 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1111 VT.getTypeForEVT(*getContext()); 1112 1113 return getDataLayout().getABITypeAlign(Ty); 1114 } 1115 1116 // EntryNode could meaningfully have debug info if we can find it... 1117 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1118 : TM(tm), OptLevel(OL), 1119 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1120 Root(getEntryNode()) { 1121 InsertNode(&EntryNode); 1122 DbgInfo = new SDDbgInfo(); 1123 } 1124 1125 void SelectionDAG::init(MachineFunction &NewMF, 1126 OptimizationRemarkEmitter &NewORE, 1127 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1128 LegacyDivergenceAnalysis * Divergence, 1129 ProfileSummaryInfo *PSIin, 1130 BlockFrequencyInfo *BFIin) { 1131 MF = &NewMF; 1132 SDAGISelPass = PassPtr; 1133 ORE = &NewORE; 1134 TLI = getSubtarget().getTargetLowering(); 1135 TSI = getSubtarget().getSelectionDAGInfo(); 1136 LibInfo = LibraryInfo; 1137 Context = &MF->getFunction().getContext(); 1138 DA = Divergence; 1139 PSI = PSIin; 1140 BFI = BFIin; 1141 } 1142 1143 SelectionDAG::~SelectionDAG() { 1144 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1145 allnodes_clear(); 1146 OperandRecycler.clear(OperandAllocator); 1147 delete DbgInfo; 1148 } 1149 1150 bool SelectionDAG::shouldOptForSize() const { 1151 return MF->getFunction().hasOptSize() || 1152 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1153 } 1154 1155 void SelectionDAG::allnodes_clear() { 1156 assert(&*AllNodes.begin() == &EntryNode); 1157 AllNodes.remove(AllNodes.begin()); 1158 while (!AllNodes.empty()) 1159 DeallocateNode(&AllNodes.front()); 1160 #ifndef NDEBUG 1161 NextPersistentId = 0; 1162 #endif 1163 } 1164 1165 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1166 void *&InsertPos) { 1167 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1168 if (N) { 1169 switch (N->getOpcode()) { 1170 default: break; 1171 case ISD::Constant: 1172 case ISD::ConstantFP: 1173 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1174 "debug location. Use another overload."); 1175 } 1176 } 1177 return N; 1178 } 1179 1180 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1181 const SDLoc &DL, void *&InsertPos) { 1182 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1183 if (N) { 1184 switch (N->getOpcode()) { 1185 case ISD::Constant: 1186 case ISD::ConstantFP: 1187 // Erase debug location from the node if the node is used at several 1188 // different places. Do not propagate one location to all uses as it 1189 // will cause a worse single stepping debugging experience. 1190 if (N->getDebugLoc() != DL.getDebugLoc()) 1191 N->setDebugLoc(DebugLoc()); 1192 break; 1193 default: 1194 // When the node's point of use is located earlier in the instruction 1195 // sequence than its prior point of use, update its debug info to the 1196 // earlier location. 1197 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1198 N->setDebugLoc(DL.getDebugLoc()); 1199 break; 1200 } 1201 } 1202 return N; 1203 } 1204 1205 void SelectionDAG::clear() { 1206 allnodes_clear(); 1207 OperandRecycler.clear(OperandAllocator); 1208 OperandAllocator.Reset(); 1209 CSEMap.clear(); 1210 1211 ExtendedValueTypeNodes.clear(); 1212 ExternalSymbols.clear(); 1213 TargetExternalSymbols.clear(); 1214 MCSymbols.clear(); 1215 SDCallSiteDbgInfo.clear(); 1216 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1217 static_cast<CondCodeSDNode*>(nullptr)); 1218 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1219 static_cast<SDNode*>(nullptr)); 1220 1221 EntryNode.UseList = nullptr; 1222 InsertNode(&EntryNode); 1223 Root = getEntryNode(); 1224 DbgInfo->clear(); 1225 } 1226 1227 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1228 return VT.bitsGT(Op.getValueType()) 1229 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1230 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1231 } 1232 1233 std::pair<SDValue, SDValue> 1234 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1235 const SDLoc &DL, EVT VT) { 1236 assert(!VT.bitsEq(Op.getValueType()) && 1237 "Strict no-op FP extend/round not allowed."); 1238 SDValue Res = 1239 VT.bitsGT(Op.getValueType()) 1240 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1241 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1242 {Chain, Op, getIntPtrConstant(0, DL)}); 1243 1244 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1245 } 1246 1247 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1248 return VT.bitsGT(Op.getValueType()) ? 1249 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1250 getNode(ISD::TRUNCATE, DL, VT, Op); 1251 } 1252 1253 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1254 return VT.bitsGT(Op.getValueType()) ? 1255 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1256 getNode(ISD::TRUNCATE, DL, VT, Op); 1257 } 1258 1259 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1260 return VT.bitsGT(Op.getValueType()) ? 1261 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1262 getNode(ISD::TRUNCATE, DL, VT, Op); 1263 } 1264 1265 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1266 EVT OpVT) { 1267 if (VT.bitsLE(Op.getValueType())) 1268 return getNode(ISD::TRUNCATE, SL, VT, Op); 1269 1270 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1271 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1272 } 1273 1274 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1275 EVT OpVT = Op.getValueType(); 1276 assert(VT.isInteger() && OpVT.isInteger() && 1277 "Cannot getZeroExtendInReg FP types"); 1278 assert(VT.isVector() == OpVT.isVector() && 1279 "getZeroExtendInReg type should be vector iff the operand " 1280 "type is vector!"); 1281 assert((!VT.isVector() || 1282 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1283 "Vector element counts must match in getZeroExtendInReg"); 1284 assert(VT.bitsLE(OpVT) && "Not extending!"); 1285 if (OpVT == VT) 1286 return Op; 1287 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1288 VT.getScalarSizeInBits()); 1289 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1290 } 1291 1292 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1293 // Only unsigned pointer semantics are supported right now. In the future this 1294 // might delegate to TLI to check pointer signedness. 1295 return getZExtOrTrunc(Op, DL, VT); 1296 } 1297 1298 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1299 // Only unsigned pointer semantics are supported right now. In the future this 1300 // might delegate to TLI to check pointer signedness. 1301 return getZeroExtendInReg(Op, DL, VT); 1302 } 1303 1304 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1305 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1306 EVT EltVT = VT.getScalarType(); 1307 SDValue NegOne = 1308 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1309 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1310 } 1311 1312 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1313 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1314 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1315 } 1316 1317 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1318 EVT OpVT) { 1319 if (!V) 1320 return getConstant(0, DL, VT); 1321 1322 switch (TLI->getBooleanContents(OpVT)) { 1323 case TargetLowering::ZeroOrOneBooleanContent: 1324 case TargetLowering::UndefinedBooleanContent: 1325 return getConstant(1, DL, VT); 1326 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1327 return getAllOnesConstant(DL, VT); 1328 } 1329 llvm_unreachable("Unexpected boolean content enum!"); 1330 } 1331 1332 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1333 bool isT, bool isO) { 1334 EVT EltVT = VT.getScalarType(); 1335 assert((EltVT.getSizeInBits() >= 64 || 1336 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1337 "getConstant with a uint64_t value that doesn't fit in the type!"); 1338 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1339 } 1340 1341 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1342 bool isT, bool isO) { 1343 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1344 } 1345 1346 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1347 EVT VT, bool isT, bool isO) { 1348 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1349 1350 EVT EltVT = VT.getScalarType(); 1351 const ConstantInt *Elt = &Val; 1352 1353 // In some cases the vector type is legal but the element type is illegal and 1354 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1355 // inserted value (the type does not need to match the vector element type). 1356 // Any extra bits introduced will be truncated away. 1357 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1358 TargetLowering::TypePromoteInteger) { 1359 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1360 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1361 Elt = ConstantInt::get(*getContext(), NewVal); 1362 } 1363 // In other cases the element type is illegal and needs to be expanded, for 1364 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1365 // the value into n parts and use a vector type with n-times the elements. 1366 // Then bitcast to the type requested. 1367 // Legalizing constants too early makes the DAGCombiner's job harder so we 1368 // only legalize if the DAG tells us we must produce legal types. 1369 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1370 TLI->getTypeAction(*getContext(), EltVT) == 1371 TargetLowering::TypeExpandInteger) { 1372 const APInt &NewVal = Elt->getValue(); 1373 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1374 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1375 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1376 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1377 1378 // Check the temporary vector is the correct size. If this fails then 1379 // getTypeToTransformTo() probably returned a type whose size (in bits) 1380 // isn't a power-of-2 factor of the requested type size. 1381 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1382 1383 SmallVector<SDValue, 2> EltParts; 1384 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1385 EltParts.push_back(getConstant( 1386 NewVal.lshr(i * ViaEltSizeInBits).zextOrTrunc(ViaEltSizeInBits), DL, 1387 ViaEltVT, isT, isO)); 1388 } 1389 1390 // EltParts is currently in little endian order. If we actually want 1391 // big-endian order then reverse it now. 1392 if (getDataLayout().isBigEndian()) 1393 std::reverse(EltParts.begin(), EltParts.end()); 1394 1395 // The elements must be reversed when the element order is different 1396 // to the endianness of the elements (because the BITCAST is itself a 1397 // vector shuffle in this situation). However, we do not need any code to 1398 // perform this reversal because getConstant() is producing a vector 1399 // splat. 1400 // This situation occurs in MIPS MSA. 1401 1402 SmallVector<SDValue, 8> Ops; 1403 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1404 llvm::append_range(Ops, EltParts); 1405 1406 SDValue V = 1407 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1408 return V; 1409 } 1410 1411 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1412 "APInt size does not match type size!"); 1413 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1414 FoldingSetNodeID ID; 1415 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1416 ID.AddPointer(Elt); 1417 ID.AddBoolean(isO); 1418 void *IP = nullptr; 1419 SDNode *N = nullptr; 1420 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1421 if (!VT.isVector()) 1422 return SDValue(N, 0); 1423 1424 if (!N) { 1425 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1426 CSEMap.InsertNode(N, IP); 1427 InsertNode(N); 1428 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1429 } 1430 1431 SDValue Result(N, 0); 1432 if (VT.isScalableVector()) 1433 Result = getSplatVector(VT, DL, Result); 1434 else if (VT.isVector()) 1435 Result = getSplatBuildVector(VT, DL, Result); 1436 1437 return Result; 1438 } 1439 1440 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1441 bool isTarget) { 1442 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1443 } 1444 1445 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1446 const SDLoc &DL, bool LegalTypes) { 1447 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1448 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1449 return getConstant(Val, DL, ShiftVT); 1450 } 1451 1452 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1453 bool isTarget) { 1454 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1455 } 1456 1457 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1458 bool isTarget) { 1459 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1460 } 1461 1462 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1463 EVT VT, bool isTarget) { 1464 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1465 1466 EVT EltVT = VT.getScalarType(); 1467 1468 // Do the map lookup using the actual bit pattern for the floating point 1469 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1470 // we don't have issues with SNANs. 1471 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1472 FoldingSetNodeID ID; 1473 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1474 ID.AddPointer(&V); 1475 void *IP = nullptr; 1476 SDNode *N = nullptr; 1477 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1478 if (!VT.isVector()) 1479 return SDValue(N, 0); 1480 1481 if (!N) { 1482 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1483 CSEMap.InsertNode(N, IP); 1484 InsertNode(N); 1485 } 1486 1487 SDValue Result(N, 0); 1488 if (VT.isScalableVector()) 1489 Result = getSplatVector(VT, DL, Result); 1490 else if (VT.isVector()) 1491 Result = getSplatBuildVector(VT, DL, Result); 1492 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1493 return Result; 1494 } 1495 1496 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1497 bool isTarget) { 1498 EVT EltVT = VT.getScalarType(); 1499 if (EltVT == MVT::f32) 1500 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1501 else if (EltVT == MVT::f64) 1502 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1503 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1504 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1505 bool Ignored; 1506 APFloat APF = APFloat(Val); 1507 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1508 &Ignored); 1509 return getConstantFP(APF, DL, VT, isTarget); 1510 } else 1511 llvm_unreachable("Unsupported type in getConstantFP"); 1512 } 1513 1514 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1515 EVT VT, int64_t Offset, bool isTargetGA, 1516 unsigned TargetFlags) { 1517 assert((TargetFlags == 0 || isTargetGA) && 1518 "Cannot set target flags on target-independent globals"); 1519 1520 // Truncate (with sign-extension) the offset value to the pointer size. 1521 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1522 if (BitWidth < 64) 1523 Offset = SignExtend64(Offset, BitWidth); 1524 1525 unsigned Opc; 1526 if (GV->isThreadLocal()) 1527 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1528 else 1529 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1530 1531 FoldingSetNodeID ID; 1532 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1533 ID.AddPointer(GV); 1534 ID.AddInteger(Offset); 1535 ID.AddInteger(TargetFlags); 1536 void *IP = nullptr; 1537 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1538 return SDValue(E, 0); 1539 1540 auto *N = newSDNode<GlobalAddressSDNode>( 1541 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1542 CSEMap.InsertNode(N, IP); 1543 InsertNode(N); 1544 return SDValue(N, 0); 1545 } 1546 1547 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1548 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1549 FoldingSetNodeID ID; 1550 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1551 ID.AddInteger(FI); 1552 void *IP = nullptr; 1553 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1554 return SDValue(E, 0); 1555 1556 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1557 CSEMap.InsertNode(N, IP); 1558 InsertNode(N); 1559 return SDValue(N, 0); 1560 } 1561 1562 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1563 unsigned TargetFlags) { 1564 assert((TargetFlags == 0 || isTarget) && 1565 "Cannot set target flags on target-independent jump tables"); 1566 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1567 FoldingSetNodeID ID; 1568 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1569 ID.AddInteger(JTI); 1570 ID.AddInteger(TargetFlags); 1571 void *IP = nullptr; 1572 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1573 return SDValue(E, 0); 1574 1575 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1576 CSEMap.InsertNode(N, IP); 1577 InsertNode(N); 1578 return SDValue(N, 0); 1579 } 1580 1581 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1582 MaybeAlign Alignment, int Offset, 1583 bool isTarget, unsigned TargetFlags) { 1584 assert((TargetFlags == 0 || isTarget) && 1585 "Cannot set target flags on target-independent globals"); 1586 if (!Alignment) 1587 Alignment = shouldOptForSize() 1588 ? getDataLayout().getABITypeAlign(C->getType()) 1589 : getDataLayout().getPrefTypeAlign(C->getType()); 1590 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1591 FoldingSetNodeID ID; 1592 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1593 ID.AddInteger(Alignment->value()); 1594 ID.AddInteger(Offset); 1595 ID.AddPointer(C); 1596 ID.AddInteger(TargetFlags); 1597 void *IP = nullptr; 1598 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1599 return SDValue(E, 0); 1600 1601 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1602 TargetFlags); 1603 CSEMap.InsertNode(N, IP); 1604 InsertNode(N); 1605 SDValue V = SDValue(N, 0); 1606 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1607 return V; 1608 } 1609 1610 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1611 MaybeAlign Alignment, int Offset, 1612 bool isTarget, unsigned TargetFlags) { 1613 assert((TargetFlags == 0 || isTarget) && 1614 "Cannot set target flags on target-independent globals"); 1615 if (!Alignment) 1616 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1617 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1618 FoldingSetNodeID ID; 1619 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1620 ID.AddInteger(Alignment->value()); 1621 ID.AddInteger(Offset); 1622 C->addSelectionDAGCSEId(ID); 1623 ID.AddInteger(TargetFlags); 1624 void *IP = nullptr; 1625 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1626 return SDValue(E, 0); 1627 1628 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1629 TargetFlags); 1630 CSEMap.InsertNode(N, IP); 1631 InsertNode(N); 1632 return SDValue(N, 0); 1633 } 1634 1635 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1636 unsigned TargetFlags) { 1637 FoldingSetNodeID ID; 1638 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1639 ID.AddInteger(Index); 1640 ID.AddInteger(Offset); 1641 ID.AddInteger(TargetFlags); 1642 void *IP = nullptr; 1643 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1644 return SDValue(E, 0); 1645 1646 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1647 CSEMap.InsertNode(N, IP); 1648 InsertNode(N); 1649 return SDValue(N, 0); 1650 } 1651 1652 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1653 FoldingSetNodeID ID; 1654 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1655 ID.AddPointer(MBB); 1656 void *IP = nullptr; 1657 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1658 return SDValue(E, 0); 1659 1660 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1661 CSEMap.InsertNode(N, IP); 1662 InsertNode(N); 1663 return SDValue(N, 0); 1664 } 1665 1666 SDValue SelectionDAG::getValueType(EVT VT) { 1667 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1668 ValueTypeNodes.size()) 1669 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1670 1671 SDNode *&N = VT.isExtended() ? 1672 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1673 1674 if (N) return SDValue(N, 0); 1675 N = newSDNode<VTSDNode>(VT); 1676 InsertNode(N); 1677 return SDValue(N, 0); 1678 } 1679 1680 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1681 SDNode *&N = ExternalSymbols[Sym]; 1682 if (N) return SDValue(N, 0); 1683 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1684 InsertNode(N); 1685 return SDValue(N, 0); 1686 } 1687 1688 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1689 SDNode *&N = MCSymbols[Sym]; 1690 if (N) 1691 return SDValue(N, 0); 1692 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1693 InsertNode(N); 1694 return SDValue(N, 0); 1695 } 1696 1697 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1698 unsigned TargetFlags) { 1699 SDNode *&N = 1700 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1701 if (N) return SDValue(N, 0); 1702 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1703 InsertNode(N); 1704 return SDValue(N, 0); 1705 } 1706 1707 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1708 if ((unsigned)Cond >= CondCodeNodes.size()) 1709 CondCodeNodes.resize(Cond+1); 1710 1711 if (!CondCodeNodes[Cond]) { 1712 auto *N = newSDNode<CondCodeSDNode>(Cond); 1713 CondCodeNodes[Cond] = N; 1714 InsertNode(N); 1715 } 1716 1717 return SDValue(CondCodeNodes[Cond], 0); 1718 } 1719 1720 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1721 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1722 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1723 std::swap(N1, N2); 1724 ShuffleVectorSDNode::commuteMask(M); 1725 } 1726 1727 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1728 SDValue N2, ArrayRef<int> Mask) { 1729 assert(VT.getVectorNumElements() == Mask.size() && 1730 "Must have the same number of vector elements as mask elements!"); 1731 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1732 "Invalid VECTOR_SHUFFLE"); 1733 1734 // Canonicalize shuffle undef, undef -> undef 1735 if (N1.isUndef() && N2.isUndef()) 1736 return getUNDEF(VT); 1737 1738 // Validate that all indices in Mask are within the range of the elements 1739 // input to the shuffle. 1740 int NElts = Mask.size(); 1741 assert(llvm::all_of(Mask, 1742 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1743 "Index out of range"); 1744 1745 // Copy the mask so we can do any needed cleanup. 1746 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1747 1748 // Canonicalize shuffle v, v -> v, undef 1749 if (N1 == N2) { 1750 N2 = getUNDEF(VT); 1751 for (int i = 0; i != NElts; ++i) 1752 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1753 } 1754 1755 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1756 if (N1.isUndef()) 1757 commuteShuffle(N1, N2, MaskVec); 1758 1759 if (TLI->hasVectorBlend()) { 1760 // If shuffling a splat, try to blend the splat instead. We do this here so 1761 // that even when this arises during lowering we don't have to re-handle it. 1762 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1763 BitVector UndefElements; 1764 SDValue Splat = BV->getSplatValue(&UndefElements); 1765 if (!Splat) 1766 return; 1767 1768 for (int i = 0; i < NElts; ++i) { 1769 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1770 continue; 1771 1772 // If this input comes from undef, mark it as such. 1773 if (UndefElements[MaskVec[i] - Offset]) { 1774 MaskVec[i] = -1; 1775 continue; 1776 } 1777 1778 // If we can blend a non-undef lane, use that instead. 1779 if (!UndefElements[i]) 1780 MaskVec[i] = i + Offset; 1781 } 1782 }; 1783 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1784 BlendSplat(N1BV, 0); 1785 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1786 BlendSplat(N2BV, NElts); 1787 } 1788 1789 // Canonicalize all index into lhs, -> shuffle lhs, undef 1790 // Canonicalize all index into rhs, -> shuffle rhs, undef 1791 bool AllLHS = true, AllRHS = true; 1792 bool N2Undef = N2.isUndef(); 1793 for (int i = 0; i != NElts; ++i) { 1794 if (MaskVec[i] >= NElts) { 1795 if (N2Undef) 1796 MaskVec[i] = -1; 1797 else 1798 AllLHS = false; 1799 } else if (MaskVec[i] >= 0) { 1800 AllRHS = false; 1801 } 1802 } 1803 if (AllLHS && AllRHS) 1804 return getUNDEF(VT); 1805 if (AllLHS && !N2Undef) 1806 N2 = getUNDEF(VT); 1807 if (AllRHS) { 1808 N1 = getUNDEF(VT); 1809 commuteShuffle(N1, N2, MaskVec); 1810 } 1811 // Reset our undef status after accounting for the mask. 1812 N2Undef = N2.isUndef(); 1813 // Re-check whether both sides ended up undef. 1814 if (N1.isUndef() && N2Undef) 1815 return getUNDEF(VT); 1816 1817 // If Identity shuffle return that node. 1818 bool Identity = true, AllSame = true; 1819 for (int i = 0; i != NElts; ++i) { 1820 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1821 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1822 } 1823 if (Identity && NElts) 1824 return N1; 1825 1826 // Shuffling a constant splat doesn't change the result. 1827 if (N2Undef) { 1828 SDValue V = N1; 1829 1830 // Look through any bitcasts. We check that these don't change the number 1831 // (and size) of elements and just changes their types. 1832 while (V.getOpcode() == ISD::BITCAST) 1833 V = V->getOperand(0); 1834 1835 // A splat should always show up as a build vector node. 1836 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1837 BitVector UndefElements; 1838 SDValue Splat = BV->getSplatValue(&UndefElements); 1839 // If this is a splat of an undef, shuffling it is also undef. 1840 if (Splat && Splat.isUndef()) 1841 return getUNDEF(VT); 1842 1843 bool SameNumElts = 1844 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1845 1846 // We only have a splat which can skip shuffles if there is a splatted 1847 // value and no undef lanes rearranged by the shuffle. 1848 if (Splat && UndefElements.none()) { 1849 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1850 // number of elements match or the value splatted is a zero constant. 1851 if (SameNumElts) 1852 return N1; 1853 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1854 if (C->isNullValue()) 1855 return N1; 1856 } 1857 1858 // If the shuffle itself creates a splat, build the vector directly. 1859 if (AllSame && SameNumElts) { 1860 EVT BuildVT = BV->getValueType(0); 1861 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1862 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1863 1864 // We may have jumped through bitcasts, so the type of the 1865 // BUILD_VECTOR may not match the type of the shuffle. 1866 if (BuildVT != VT) 1867 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1868 return NewBV; 1869 } 1870 } 1871 } 1872 1873 FoldingSetNodeID ID; 1874 SDValue Ops[2] = { N1, N2 }; 1875 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1876 for (int i = 0; i != NElts; ++i) 1877 ID.AddInteger(MaskVec[i]); 1878 1879 void* IP = nullptr; 1880 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1881 return SDValue(E, 0); 1882 1883 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1884 // SDNode doesn't have access to it. This memory will be "leaked" when 1885 // the node is deallocated, but recovered when the NodeAllocator is released. 1886 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1887 llvm::copy(MaskVec, MaskAlloc); 1888 1889 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1890 dl.getDebugLoc(), MaskAlloc); 1891 createOperands(N, Ops); 1892 1893 CSEMap.InsertNode(N, IP); 1894 InsertNode(N); 1895 SDValue V = SDValue(N, 0); 1896 NewSDValueDbgMsg(V, "Creating new node: ", this); 1897 return V; 1898 } 1899 1900 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1901 EVT VT = SV.getValueType(0); 1902 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1903 ShuffleVectorSDNode::commuteMask(MaskVec); 1904 1905 SDValue Op0 = SV.getOperand(0); 1906 SDValue Op1 = SV.getOperand(1); 1907 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1908 } 1909 1910 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1911 FoldingSetNodeID ID; 1912 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1913 ID.AddInteger(RegNo); 1914 void *IP = nullptr; 1915 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1916 return SDValue(E, 0); 1917 1918 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1919 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1920 CSEMap.InsertNode(N, IP); 1921 InsertNode(N); 1922 return SDValue(N, 0); 1923 } 1924 1925 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1926 FoldingSetNodeID ID; 1927 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1928 ID.AddPointer(RegMask); 1929 void *IP = nullptr; 1930 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1931 return SDValue(E, 0); 1932 1933 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1934 CSEMap.InsertNode(N, IP); 1935 InsertNode(N); 1936 return SDValue(N, 0); 1937 } 1938 1939 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1940 MCSymbol *Label) { 1941 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1942 } 1943 1944 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1945 SDValue Root, MCSymbol *Label) { 1946 FoldingSetNodeID ID; 1947 SDValue Ops[] = { Root }; 1948 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1949 ID.AddPointer(Label); 1950 void *IP = nullptr; 1951 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1952 return SDValue(E, 0); 1953 1954 auto *N = 1955 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1956 createOperands(N, Ops); 1957 1958 CSEMap.InsertNode(N, IP); 1959 InsertNode(N); 1960 return SDValue(N, 0); 1961 } 1962 1963 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1964 int64_t Offset, bool isTarget, 1965 unsigned TargetFlags) { 1966 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1967 1968 FoldingSetNodeID ID; 1969 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1970 ID.AddPointer(BA); 1971 ID.AddInteger(Offset); 1972 ID.AddInteger(TargetFlags); 1973 void *IP = nullptr; 1974 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1975 return SDValue(E, 0); 1976 1977 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1978 CSEMap.InsertNode(N, IP); 1979 InsertNode(N); 1980 return SDValue(N, 0); 1981 } 1982 1983 SDValue SelectionDAG::getSrcValue(const Value *V) { 1984 FoldingSetNodeID ID; 1985 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1986 ID.AddPointer(V); 1987 1988 void *IP = nullptr; 1989 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1990 return SDValue(E, 0); 1991 1992 auto *N = newSDNode<SrcValueSDNode>(V); 1993 CSEMap.InsertNode(N, IP); 1994 InsertNode(N); 1995 return SDValue(N, 0); 1996 } 1997 1998 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1999 FoldingSetNodeID ID; 2000 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2001 ID.AddPointer(MD); 2002 2003 void *IP = nullptr; 2004 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2005 return SDValue(E, 0); 2006 2007 auto *N = newSDNode<MDNodeSDNode>(MD); 2008 CSEMap.InsertNode(N, IP); 2009 InsertNode(N); 2010 return SDValue(N, 0); 2011 } 2012 2013 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2014 if (VT == V.getValueType()) 2015 return V; 2016 2017 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2018 } 2019 2020 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2021 unsigned SrcAS, unsigned DestAS) { 2022 SDValue Ops[] = {Ptr}; 2023 FoldingSetNodeID ID; 2024 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2025 ID.AddInteger(SrcAS); 2026 ID.AddInteger(DestAS); 2027 2028 void *IP = nullptr; 2029 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2030 return SDValue(E, 0); 2031 2032 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2033 VT, SrcAS, DestAS); 2034 createOperands(N, Ops); 2035 2036 CSEMap.InsertNode(N, IP); 2037 InsertNode(N); 2038 return SDValue(N, 0); 2039 } 2040 2041 SDValue SelectionDAG::getFreeze(SDValue V) { 2042 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2043 } 2044 2045 /// getShiftAmountOperand - Return the specified value casted to 2046 /// the target's desired shift amount type. 2047 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2048 EVT OpTy = Op.getValueType(); 2049 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2050 if (OpTy == ShTy || OpTy.isVector()) return Op; 2051 2052 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2053 } 2054 2055 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2056 SDLoc dl(Node); 2057 const TargetLowering &TLI = getTargetLoweringInfo(); 2058 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2059 EVT VT = Node->getValueType(0); 2060 SDValue Tmp1 = Node->getOperand(0); 2061 SDValue Tmp2 = Node->getOperand(1); 2062 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2063 2064 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2065 Tmp2, MachinePointerInfo(V)); 2066 SDValue VAList = VAListLoad; 2067 2068 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2069 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2070 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2071 2072 VAList = 2073 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2074 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2075 } 2076 2077 // Increment the pointer, VAList, to the next vaarg 2078 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2079 getConstant(getDataLayout().getTypeAllocSize( 2080 VT.getTypeForEVT(*getContext())), 2081 dl, VAList.getValueType())); 2082 // Store the incremented VAList to the legalized pointer 2083 Tmp1 = 2084 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2085 // Load the actual argument out of the pointer VAList 2086 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2087 } 2088 2089 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2090 SDLoc dl(Node); 2091 const TargetLowering &TLI = getTargetLoweringInfo(); 2092 // This defaults to loading a pointer from the input and storing it to the 2093 // output, returning the chain. 2094 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2095 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2096 SDValue Tmp1 = 2097 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2098 Node->getOperand(2), MachinePointerInfo(VS)); 2099 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2100 MachinePointerInfo(VD)); 2101 } 2102 2103 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2104 const DataLayout &DL = getDataLayout(); 2105 Type *Ty = VT.getTypeForEVT(*getContext()); 2106 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2107 2108 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2109 return RedAlign; 2110 2111 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2112 const Align StackAlign = TFI->getStackAlign(); 2113 2114 // See if we can choose a smaller ABI alignment in cases where it's an 2115 // illegal vector type that will get broken down. 2116 if (RedAlign > StackAlign) { 2117 EVT IntermediateVT; 2118 MVT RegisterVT; 2119 unsigned NumIntermediates; 2120 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2121 NumIntermediates, RegisterVT); 2122 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2123 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2124 if (RedAlign2 < RedAlign) 2125 RedAlign = RedAlign2; 2126 } 2127 2128 return RedAlign; 2129 } 2130 2131 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2132 MachineFrameInfo &MFI = MF->getFrameInfo(); 2133 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2134 int StackID = 0; 2135 if (Bytes.isScalable()) 2136 StackID = TFI->getStackIDForScalableVectors(); 2137 // The stack id gives an indication of whether the object is scalable or 2138 // not, so it's safe to pass in the minimum size here. 2139 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2140 false, nullptr, StackID); 2141 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2142 } 2143 2144 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2145 Type *Ty = VT.getTypeForEVT(*getContext()); 2146 Align StackAlign = 2147 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2148 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2149 } 2150 2151 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2152 TypeSize VT1Size = VT1.getStoreSize(); 2153 TypeSize VT2Size = VT2.getStoreSize(); 2154 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2155 "Don't know how to choose the maximum size when creating a stack " 2156 "temporary"); 2157 TypeSize Bytes = 2158 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2159 2160 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2161 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2162 const DataLayout &DL = getDataLayout(); 2163 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2164 return CreateStackTemporary(Bytes, Align); 2165 } 2166 2167 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2168 ISD::CondCode Cond, const SDLoc &dl) { 2169 EVT OpVT = N1.getValueType(); 2170 2171 // These setcc operations always fold. 2172 switch (Cond) { 2173 default: break; 2174 case ISD::SETFALSE: 2175 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2176 case ISD::SETTRUE: 2177 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2178 2179 case ISD::SETOEQ: 2180 case ISD::SETOGT: 2181 case ISD::SETOGE: 2182 case ISD::SETOLT: 2183 case ISD::SETOLE: 2184 case ISD::SETONE: 2185 case ISD::SETO: 2186 case ISD::SETUO: 2187 case ISD::SETUEQ: 2188 case ISD::SETUNE: 2189 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2190 break; 2191 } 2192 2193 if (OpVT.isInteger()) { 2194 // For EQ and NE, we can always pick a value for the undef to make the 2195 // predicate pass or fail, so we can return undef. 2196 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2197 // icmp eq/ne X, undef -> undef. 2198 if ((N1.isUndef() || N2.isUndef()) && 2199 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2200 return getUNDEF(VT); 2201 2202 // If both operands are undef, we can return undef for int comparison. 2203 // icmp undef, undef -> undef. 2204 if (N1.isUndef() && N2.isUndef()) 2205 return getUNDEF(VT); 2206 2207 // icmp X, X -> true/false 2208 // icmp X, undef -> true/false because undef could be X. 2209 if (N1 == N2) 2210 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2211 } 2212 2213 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2214 const APInt &C2 = N2C->getAPIntValue(); 2215 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2216 const APInt &C1 = N1C->getAPIntValue(); 2217 2218 switch (Cond) { 2219 default: llvm_unreachable("Unknown integer setcc!"); 2220 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2221 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2222 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2223 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2224 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2225 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2226 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2227 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2228 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2229 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2230 } 2231 } 2232 } 2233 2234 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2235 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2236 2237 if (N1CFP && N2CFP) { 2238 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2239 switch (Cond) { 2240 default: break; 2241 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2242 return getUNDEF(VT); 2243 LLVM_FALLTHROUGH; 2244 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2245 OpVT); 2246 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2247 return getUNDEF(VT); 2248 LLVM_FALLTHROUGH; 2249 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2250 R==APFloat::cmpLessThan, dl, VT, 2251 OpVT); 2252 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2253 return getUNDEF(VT); 2254 LLVM_FALLTHROUGH; 2255 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2256 OpVT); 2257 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2258 return getUNDEF(VT); 2259 LLVM_FALLTHROUGH; 2260 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2261 VT, OpVT); 2262 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2263 return getUNDEF(VT); 2264 LLVM_FALLTHROUGH; 2265 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2266 R==APFloat::cmpEqual, dl, VT, 2267 OpVT); 2268 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2269 return getUNDEF(VT); 2270 LLVM_FALLTHROUGH; 2271 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2272 R==APFloat::cmpEqual, dl, VT, OpVT); 2273 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2274 OpVT); 2275 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2276 OpVT); 2277 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2278 R==APFloat::cmpEqual, dl, VT, 2279 OpVT); 2280 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2281 OpVT); 2282 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2283 R==APFloat::cmpLessThan, dl, VT, 2284 OpVT); 2285 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2286 R==APFloat::cmpUnordered, dl, VT, 2287 OpVT); 2288 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2289 VT, OpVT); 2290 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2291 OpVT); 2292 } 2293 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2294 // Ensure that the constant occurs on the RHS. 2295 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2296 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2297 return SDValue(); 2298 return getSetCC(dl, VT, N2, N1, SwappedCond); 2299 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2300 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2301 // If an operand is known to be a nan (or undef that could be a nan), we can 2302 // fold it. 2303 // Choosing NaN for the undef will always make unordered comparison succeed 2304 // and ordered comparison fails. 2305 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2306 switch (ISD::getUnorderedFlavor(Cond)) { 2307 default: 2308 llvm_unreachable("Unknown flavor!"); 2309 case 0: // Known false. 2310 return getBoolConstant(false, dl, VT, OpVT); 2311 case 1: // Known true. 2312 return getBoolConstant(true, dl, VT, OpVT); 2313 case 2: // Undefined. 2314 return getUNDEF(VT); 2315 } 2316 } 2317 2318 // Could not fold it. 2319 return SDValue(); 2320 } 2321 2322 /// See if the specified operand can be simplified with the knowledge that only 2323 /// the bits specified by DemandedBits are used. 2324 /// TODO: really we should be making this into the DAG equivalent of 2325 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2326 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2327 EVT VT = V.getValueType(); 2328 2329 if (VT.isScalableVector()) 2330 return SDValue(); 2331 2332 APInt DemandedElts = VT.isVector() 2333 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2334 : APInt(1, 1); 2335 return GetDemandedBits(V, DemandedBits, DemandedElts); 2336 } 2337 2338 /// See if the specified operand can be simplified with the knowledge that only 2339 /// the bits specified by DemandedBits are used in the elements specified by 2340 /// DemandedElts. 2341 /// TODO: really we should be making this into the DAG equivalent of 2342 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2343 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2344 const APInt &DemandedElts) { 2345 switch (V.getOpcode()) { 2346 default: 2347 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2348 *this, 0); 2349 case ISD::Constant: { 2350 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2351 APInt NewVal = CVal & DemandedBits; 2352 if (NewVal != CVal) 2353 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2354 break; 2355 } 2356 case ISD::SRL: 2357 // Only look at single-use SRLs. 2358 if (!V.getNode()->hasOneUse()) 2359 break; 2360 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2361 // See if we can recursively simplify the LHS. 2362 unsigned Amt = RHSC->getZExtValue(); 2363 2364 // Watch out for shift count overflow though. 2365 if (Amt >= DemandedBits.getBitWidth()) 2366 break; 2367 APInt SrcDemandedBits = DemandedBits << Amt; 2368 if (SDValue SimplifyLHS = 2369 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2370 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2371 V.getOperand(1)); 2372 } 2373 break; 2374 } 2375 return SDValue(); 2376 } 2377 2378 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2379 /// use this predicate to simplify operations downstream. 2380 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2381 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2382 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2383 } 2384 2385 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2386 /// this predicate to simplify operations downstream. Mask is known to be zero 2387 /// for bits that V cannot have. 2388 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2389 unsigned Depth) const { 2390 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2391 } 2392 2393 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2394 /// DemandedElts. We use this predicate to simplify operations downstream. 2395 /// Mask is known to be zero for bits that V cannot have. 2396 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2397 const APInt &DemandedElts, 2398 unsigned Depth) const { 2399 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2400 } 2401 2402 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2403 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2404 unsigned Depth) const { 2405 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2406 } 2407 2408 /// isSplatValue - Return true if the vector V has the same value 2409 /// across all DemandedElts. For scalable vectors it does not make 2410 /// sense to specify which elements are demanded or undefined, therefore 2411 /// they are simply ignored. 2412 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2413 APInt &UndefElts, unsigned Depth) { 2414 EVT VT = V.getValueType(); 2415 assert(VT.isVector() && "Vector type expected"); 2416 2417 if (!VT.isScalableVector() && !DemandedElts) 2418 return false; // No demanded elts, better to assume we don't know anything. 2419 2420 if (Depth >= MaxRecursionDepth) 2421 return false; // Limit search depth. 2422 2423 // Deal with some common cases here that work for both fixed and scalable 2424 // vector types. 2425 switch (V.getOpcode()) { 2426 case ISD::SPLAT_VECTOR: 2427 UndefElts = V.getOperand(0).isUndef() 2428 ? APInt::getAllOnesValue(DemandedElts.getBitWidth()) 2429 : APInt(DemandedElts.getBitWidth(), 0); 2430 return true; 2431 case ISD::ADD: 2432 case ISD::SUB: 2433 case ISD::AND: { 2434 APInt UndefLHS, UndefRHS; 2435 SDValue LHS = V.getOperand(0); 2436 SDValue RHS = V.getOperand(1); 2437 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2438 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2439 UndefElts = UndefLHS | UndefRHS; 2440 return true; 2441 } 2442 break; 2443 } 2444 case ISD::TRUNCATE: 2445 case ISD::SIGN_EXTEND: 2446 case ISD::ZERO_EXTEND: 2447 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2448 } 2449 2450 // We don't support other cases than those above for scalable vectors at 2451 // the moment. 2452 if (VT.isScalableVector()) 2453 return false; 2454 2455 unsigned NumElts = VT.getVectorNumElements(); 2456 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2457 UndefElts = APInt::getNullValue(NumElts); 2458 2459 switch (V.getOpcode()) { 2460 case ISD::BUILD_VECTOR: { 2461 SDValue Scl; 2462 for (unsigned i = 0; i != NumElts; ++i) { 2463 SDValue Op = V.getOperand(i); 2464 if (Op.isUndef()) { 2465 UndefElts.setBit(i); 2466 continue; 2467 } 2468 if (!DemandedElts[i]) 2469 continue; 2470 if (Scl && Scl != Op) 2471 return false; 2472 Scl = Op; 2473 } 2474 return true; 2475 } 2476 case ISD::VECTOR_SHUFFLE: { 2477 // Check if this is a shuffle node doing a splat. 2478 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2479 int SplatIndex = -1; 2480 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2481 for (int i = 0; i != (int)NumElts; ++i) { 2482 int M = Mask[i]; 2483 if (M < 0) { 2484 UndefElts.setBit(i); 2485 continue; 2486 } 2487 if (!DemandedElts[i]) 2488 continue; 2489 if (0 <= SplatIndex && SplatIndex != M) 2490 return false; 2491 SplatIndex = M; 2492 } 2493 return true; 2494 } 2495 case ISD::EXTRACT_SUBVECTOR: { 2496 // Offset the demanded elts by the subvector index. 2497 SDValue Src = V.getOperand(0); 2498 uint64_t Idx = V.getConstantOperandVal(1); 2499 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2500 APInt UndefSrcElts; 2501 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2502 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2503 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2504 return true; 2505 } 2506 break; 2507 } 2508 } 2509 2510 return false; 2511 } 2512 2513 /// Helper wrapper to main isSplatValue function. 2514 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2515 EVT VT = V.getValueType(); 2516 assert(VT.isVector() && "Vector type expected"); 2517 2518 APInt UndefElts; 2519 APInt DemandedElts; 2520 2521 // For now we don't support this with scalable vectors. 2522 if (!VT.isScalableVector()) 2523 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2524 return isSplatValue(V, DemandedElts, UndefElts) && 2525 (AllowUndefs || !UndefElts); 2526 } 2527 2528 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2529 V = peekThroughExtractSubvectors(V); 2530 2531 EVT VT = V.getValueType(); 2532 unsigned Opcode = V.getOpcode(); 2533 switch (Opcode) { 2534 default: { 2535 APInt UndefElts; 2536 APInt DemandedElts; 2537 2538 if (!VT.isScalableVector()) 2539 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2540 2541 if (isSplatValue(V, DemandedElts, UndefElts)) { 2542 if (VT.isScalableVector()) { 2543 // DemandedElts and UndefElts are ignored for scalable vectors, since 2544 // the only supported cases are SPLAT_VECTOR nodes. 2545 SplatIdx = 0; 2546 } else { 2547 // Handle case where all demanded elements are UNDEF. 2548 if (DemandedElts.isSubsetOf(UndefElts)) { 2549 SplatIdx = 0; 2550 return getUNDEF(VT); 2551 } 2552 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2553 } 2554 return V; 2555 } 2556 break; 2557 } 2558 case ISD::SPLAT_VECTOR: 2559 SplatIdx = 0; 2560 return V; 2561 case ISD::VECTOR_SHUFFLE: { 2562 if (VT.isScalableVector()) 2563 return SDValue(); 2564 2565 // Check if this is a shuffle node doing a splat. 2566 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2567 // getTargetVShiftNode currently struggles without the splat source. 2568 auto *SVN = cast<ShuffleVectorSDNode>(V); 2569 if (!SVN->isSplat()) 2570 break; 2571 int Idx = SVN->getSplatIndex(); 2572 int NumElts = V.getValueType().getVectorNumElements(); 2573 SplatIdx = Idx % NumElts; 2574 return V.getOperand(Idx / NumElts); 2575 } 2576 } 2577 2578 return SDValue(); 2579 } 2580 2581 SDValue SelectionDAG::getSplatValue(SDValue V) { 2582 int SplatIdx; 2583 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2584 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2585 SrcVector.getValueType().getScalarType(), SrcVector, 2586 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2587 return SDValue(); 2588 } 2589 2590 const APInt * 2591 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2592 const APInt &DemandedElts) const { 2593 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2594 V.getOpcode() == ISD::SRA) && 2595 "Unknown shift node"); 2596 unsigned BitWidth = V.getScalarValueSizeInBits(); 2597 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2598 // Shifting more than the bitwidth is not valid. 2599 const APInt &ShAmt = SA->getAPIntValue(); 2600 if (ShAmt.ult(BitWidth)) 2601 return &ShAmt; 2602 } 2603 return nullptr; 2604 } 2605 2606 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2607 SDValue V, const APInt &DemandedElts) const { 2608 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2609 V.getOpcode() == ISD::SRA) && 2610 "Unknown shift node"); 2611 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2612 return ValidAmt; 2613 unsigned BitWidth = V.getScalarValueSizeInBits(); 2614 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2615 if (!BV) 2616 return nullptr; 2617 const APInt *MinShAmt = nullptr; 2618 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2619 if (!DemandedElts[i]) 2620 continue; 2621 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2622 if (!SA) 2623 return nullptr; 2624 // Shifting more than the bitwidth is not valid. 2625 const APInt &ShAmt = SA->getAPIntValue(); 2626 if (ShAmt.uge(BitWidth)) 2627 return nullptr; 2628 if (MinShAmt && MinShAmt->ule(ShAmt)) 2629 continue; 2630 MinShAmt = &ShAmt; 2631 } 2632 return MinShAmt; 2633 } 2634 2635 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2636 SDValue V, const APInt &DemandedElts) const { 2637 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2638 V.getOpcode() == ISD::SRA) && 2639 "Unknown shift node"); 2640 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2641 return ValidAmt; 2642 unsigned BitWidth = V.getScalarValueSizeInBits(); 2643 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2644 if (!BV) 2645 return nullptr; 2646 const APInt *MaxShAmt = nullptr; 2647 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2648 if (!DemandedElts[i]) 2649 continue; 2650 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2651 if (!SA) 2652 return nullptr; 2653 // Shifting more than the bitwidth is not valid. 2654 const APInt &ShAmt = SA->getAPIntValue(); 2655 if (ShAmt.uge(BitWidth)) 2656 return nullptr; 2657 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2658 continue; 2659 MaxShAmt = &ShAmt; 2660 } 2661 return MaxShAmt; 2662 } 2663 2664 /// Determine which bits of Op are known to be either zero or one and return 2665 /// them in Known. For vectors, the known bits are those that are shared by 2666 /// every vector element. 2667 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2668 EVT VT = Op.getValueType(); 2669 2670 // TOOD: Until we have a plan for how to represent demanded elements for 2671 // scalable vectors, we can just bail out for now. 2672 if (Op.getValueType().isScalableVector()) { 2673 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2674 return KnownBits(BitWidth); 2675 } 2676 2677 APInt DemandedElts = VT.isVector() 2678 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2679 : APInt(1, 1); 2680 return computeKnownBits(Op, DemandedElts, Depth); 2681 } 2682 2683 /// Determine which bits of Op are known to be either zero or one and return 2684 /// them in Known. The DemandedElts argument allows us to only collect the known 2685 /// bits that are shared by the requested vector elements. 2686 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2687 unsigned Depth) const { 2688 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2689 2690 KnownBits Known(BitWidth); // Don't know anything. 2691 2692 // TOOD: Until we have a plan for how to represent demanded elements for 2693 // scalable vectors, we can just bail out for now. 2694 if (Op.getValueType().isScalableVector()) 2695 return Known; 2696 2697 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2698 // We know all of the bits for a constant! 2699 return KnownBits::makeConstant(C->getAPIntValue()); 2700 } 2701 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2702 // We know all of the bits for a constant fp! 2703 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2704 } 2705 2706 if (Depth >= MaxRecursionDepth) 2707 return Known; // Limit search depth. 2708 2709 KnownBits Known2; 2710 unsigned NumElts = DemandedElts.getBitWidth(); 2711 assert((!Op.getValueType().isVector() || 2712 NumElts == Op.getValueType().getVectorNumElements()) && 2713 "Unexpected vector size"); 2714 2715 if (!DemandedElts) 2716 return Known; // No demanded elts, better to assume we don't know anything. 2717 2718 unsigned Opcode = Op.getOpcode(); 2719 switch (Opcode) { 2720 case ISD::BUILD_VECTOR: 2721 // Collect the known bits that are shared by every demanded vector element. 2722 Known.Zero.setAllBits(); Known.One.setAllBits(); 2723 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2724 if (!DemandedElts[i]) 2725 continue; 2726 2727 SDValue SrcOp = Op.getOperand(i); 2728 Known2 = computeKnownBits(SrcOp, Depth + 1); 2729 2730 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2731 if (SrcOp.getValueSizeInBits() != BitWidth) { 2732 assert(SrcOp.getValueSizeInBits() > BitWidth && 2733 "Expected BUILD_VECTOR implicit truncation"); 2734 Known2 = Known2.trunc(BitWidth); 2735 } 2736 2737 // Known bits are the values that are shared by every demanded element. 2738 Known = KnownBits::commonBits(Known, Known2); 2739 2740 // If we don't know any bits, early out. 2741 if (Known.isUnknown()) 2742 break; 2743 } 2744 break; 2745 case ISD::VECTOR_SHUFFLE: { 2746 // Collect the known bits that are shared by every vector element referenced 2747 // by the shuffle. 2748 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2749 Known.Zero.setAllBits(); Known.One.setAllBits(); 2750 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2751 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2752 for (unsigned i = 0; i != NumElts; ++i) { 2753 if (!DemandedElts[i]) 2754 continue; 2755 2756 int M = SVN->getMaskElt(i); 2757 if (M < 0) { 2758 // For UNDEF elements, we don't know anything about the common state of 2759 // the shuffle result. 2760 Known.resetAll(); 2761 DemandedLHS.clearAllBits(); 2762 DemandedRHS.clearAllBits(); 2763 break; 2764 } 2765 2766 if ((unsigned)M < NumElts) 2767 DemandedLHS.setBit((unsigned)M % NumElts); 2768 else 2769 DemandedRHS.setBit((unsigned)M % NumElts); 2770 } 2771 // Known bits are the values that are shared by every demanded element. 2772 if (!!DemandedLHS) { 2773 SDValue LHS = Op.getOperand(0); 2774 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2775 Known = KnownBits::commonBits(Known, Known2); 2776 } 2777 // If we don't know any bits, early out. 2778 if (Known.isUnknown()) 2779 break; 2780 if (!!DemandedRHS) { 2781 SDValue RHS = Op.getOperand(1); 2782 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2783 Known = KnownBits::commonBits(Known, Known2); 2784 } 2785 break; 2786 } 2787 case ISD::CONCAT_VECTORS: { 2788 // Split DemandedElts and test each of the demanded subvectors. 2789 Known.Zero.setAllBits(); Known.One.setAllBits(); 2790 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2791 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2792 unsigned NumSubVectors = Op.getNumOperands(); 2793 for (unsigned i = 0; i != NumSubVectors; ++i) { 2794 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2795 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2796 if (!!DemandedSub) { 2797 SDValue Sub = Op.getOperand(i); 2798 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2799 Known = KnownBits::commonBits(Known, Known2); 2800 } 2801 // If we don't know any bits, early out. 2802 if (Known.isUnknown()) 2803 break; 2804 } 2805 break; 2806 } 2807 case ISD::INSERT_SUBVECTOR: { 2808 // Demand any elements from the subvector and the remainder from the src its 2809 // inserted into. 2810 SDValue Src = Op.getOperand(0); 2811 SDValue Sub = Op.getOperand(1); 2812 uint64_t Idx = Op.getConstantOperandVal(2); 2813 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2814 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2815 APInt DemandedSrcElts = DemandedElts; 2816 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2817 2818 Known.One.setAllBits(); 2819 Known.Zero.setAllBits(); 2820 if (!!DemandedSubElts) { 2821 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2822 if (Known.isUnknown()) 2823 break; // early-out. 2824 } 2825 if (!!DemandedSrcElts) { 2826 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2827 Known = KnownBits::commonBits(Known, Known2); 2828 } 2829 break; 2830 } 2831 case ISD::EXTRACT_SUBVECTOR: { 2832 // Offset the demanded elts by the subvector index. 2833 SDValue Src = Op.getOperand(0); 2834 // Bail until we can represent demanded elements for scalable vectors. 2835 if (Src.getValueType().isScalableVector()) 2836 break; 2837 uint64_t Idx = Op.getConstantOperandVal(1); 2838 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2839 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2840 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2841 break; 2842 } 2843 case ISD::SCALAR_TO_VECTOR: { 2844 // We know about scalar_to_vector as much as we know about it source, 2845 // which becomes the first element of otherwise unknown vector. 2846 if (DemandedElts != 1) 2847 break; 2848 2849 SDValue N0 = Op.getOperand(0); 2850 Known = computeKnownBits(N0, Depth + 1); 2851 if (N0.getValueSizeInBits() != BitWidth) 2852 Known = Known.trunc(BitWidth); 2853 2854 break; 2855 } 2856 case ISD::BITCAST: { 2857 SDValue N0 = Op.getOperand(0); 2858 EVT SubVT = N0.getValueType(); 2859 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2860 2861 // Ignore bitcasts from unsupported types. 2862 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2863 break; 2864 2865 // Fast handling of 'identity' bitcasts. 2866 if (BitWidth == SubBitWidth) { 2867 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2868 break; 2869 } 2870 2871 bool IsLE = getDataLayout().isLittleEndian(); 2872 2873 // Bitcast 'small element' vector to 'large element' scalar/vector. 2874 if ((BitWidth % SubBitWidth) == 0) { 2875 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2876 2877 // Collect known bits for the (larger) output by collecting the known 2878 // bits from each set of sub elements and shift these into place. 2879 // We need to separately call computeKnownBits for each set of 2880 // sub elements as the knownbits for each is likely to be different. 2881 unsigned SubScale = BitWidth / SubBitWidth; 2882 APInt SubDemandedElts(NumElts * SubScale, 0); 2883 for (unsigned i = 0; i != NumElts; ++i) 2884 if (DemandedElts[i]) 2885 SubDemandedElts.setBit(i * SubScale); 2886 2887 for (unsigned i = 0; i != SubScale; ++i) { 2888 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2889 Depth + 1); 2890 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2891 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2892 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2893 } 2894 } 2895 2896 // Bitcast 'large element' scalar/vector to 'small element' vector. 2897 if ((SubBitWidth % BitWidth) == 0) { 2898 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2899 2900 // Collect known bits for the (smaller) output by collecting the known 2901 // bits from the overlapping larger input elements and extracting the 2902 // sub sections we actually care about. 2903 unsigned SubScale = SubBitWidth / BitWidth; 2904 APInt SubDemandedElts(NumElts / SubScale, 0); 2905 for (unsigned i = 0; i != NumElts; ++i) 2906 if (DemandedElts[i]) 2907 SubDemandedElts.setBit(i / SubScale); 2908 2909 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2910 2911 Known.Zero.setAllBits(); Known.One.setAllBits(); 2912 for (unsigned i = 0; i != NumElts; ++i) 2913 if (DemandedElts[i]) { 2914 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2915 unsigned Offset = (Shifts % SubScale) * BitWidth; 2916 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2917 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2918 // If we don't know any bits, early out. 2919 if (Known.isUnknown()) 2920 break; 2921 } 2922 } 2923 break; 2924 } 2925 case ISD::AND: 2926 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2927 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2928 2929 Known &= Known2; 2930 break; 2931 case ISD::OR: 2932 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2933 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2934 2935 Known |= Known2; 2936 break; 2937 case ISD::XOR: 2938 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2939 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2940 2941 Known ^= Known2; 2942 break; 2943 case ISD::MUL: { 2944 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2945 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2946 Known = KnownBits::computeForMul(Known, Known2); 2947 break; 2948 } 2949 case ISD::UDIV: { 2950 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2951 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2952 Known = KnownBits::udiv(Known, Known2); 2953 break; 2954 } 2955 case ISD::SELECT: 2956 case ISD::VSELECT: 2957 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2958 // If we don't know any bits, early out. 2959 if (Known.isUnknown()) 2960 break; 2961 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2962 2963 // Only known if known in both the LHS and RHS. 2964 Known = KnownBits::commonBits(Known, Known2); 2965 break; 2966 case ISD::SELECT_CC: 2967 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2968 // If we don't know any bits, early out. 2969 if (Known.isUnknown()) 2970 break; 2971 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2972 2973 // Only known if known in both the LHS and RHS. 2974 Known = KnownBits::commonBits(Known, Known2); 2975 break; 2976 case ISD::SMULO: 2977 case ISD::UMULO: 2978 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2979 if (Op.getResNo() != 1) 2980 break; 2981 // The boolean result conforms to getBooleanContents. 2982 // If we know the result of a setcc has the top bits zero, use this info. 2983 // We know that we have an integer-based boolean since these operations 2984 // are only available for integer. 2985 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2986 TargetLowering::ZeroOrOneBooleanContent && 2987 BitWidth > 1) 2988 Known.Zero.setBitsFrom(1); 2989 break; 2990 case ISD::SETCC: 2991 case ISD::STRICT_FSETCC: 2992 case ISD::STRICT_FSETCCS: { 2993 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2994 // If we know the result of a setcc has the top bits zero, use this info. 2995 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2996 TargetLowering::ZeroOrOneBooleanContent && 2997 BitWidth > 1) 2998 Known.Zero.setBitsFrom(1); 2999 break; 3000 } 3001 case ISD::SHL: 3002 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3003 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3004 Known = KnownBits::shl(Known, Known2); 3005 3006 // Minimum shift low bits are known zero. 3007 if (const APInt *ShMinAmt = 3008 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3009 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3010 break; 3011 case ISD::SRL: 3012 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3013 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3014 Known = KnownBits::lshr(Known, Known2); 3015 3016 // Minimum shift high bits are known zero. 3017 if (const APInt *ShMinAmt = 3018 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3019 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3020 break; 3021 case ISD::SRA: 3022 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3023 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3024 Known = KnownBits::ashr(Known, Known2); 3025 // TODO: Add minimum shift high known sign bits. 3026 break; 3027 case ISD::FSHL: 3028 case ISD::FSHR: 3029 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3030 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3031 3032 // For fshl, 0-shift returns the 1st arg. 3033 // For fshr, 0-shift returns the 2nd arg. 3034 if (Amt == 0) { 3035 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3036 DemandedElts, Depth + 1); 3037 break; 3038 } 3039 3040 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3041 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3042 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3043 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3044 if (Opcode == ISD::FSHL) { 3045 Known.One <<= Amt; 3046 Known.Zero <<= Amt; 3047 Known2.One.lshrInPlace(BitWidth - Amt); 3048 Known2.Zero.lshrInPlace(BitWidth - Amt); 3049 } else { 3050 Known.One <<= BitWidth - Amt; 3051 Known.Zero <<= BitWidth - Amt; 3052 Known2.One.lshrInPlace(Amt); 3053 Known2.Zero.lshrInPlace(Amt); 3054 } 3055 Known.One |= Known2.One; 3056 Known.Zero |= Known2.Zero; 3057 } 3058 break; 3059 case ISD::SIGN_EXTEND_INREG: { 3060 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3061 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3062 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3063 break; 3064 } 3065 case ISD::CTTZ: 3066 case ISD::CTTZ_ZERO_UNDEF: { 3067 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3068 // If we have a known 1, its position is our upper bound. 3069 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3070 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3071 Known.Zero.setBitsFrom(LowBits); 3072 break; 3073 } 3074 case ISD::CTLZ: 3075 case ISD::CTLZ_ZERO_UNDEF: { 3076 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3077 // If we have a known 1, its position is our upper bound. 3078 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3079 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3080 Known.Zero.setBitsFrom(LowBits); 3081 break; 3082 } 3083 case ISD::CTPOP: { 3084 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3085 // If we know some of the bits are zero, they can't be one. 3086 unsigned PossibleOnes = Known2.countMaxPopulation(); 3087 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3088 break; 3089 } 3090 case ISD::PARITY: { 3091 // Parity returns 0 everywhere but the LSB. 3092 Known.Zero.setBitsFrom(1); 3093 break; 3094 } 3095 case ISD::LOAD: { 3096 LoadSDNode *LD = cast<LoadSDNode>(Op); 3097 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3098 if (ISD::isNON_EXTLoad(LD) && Cst) { 3099 // Determine any common known bits from the loaded constant pool value. 3100 Type *CstTy = Cst->getType(); 3101 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3102 // If its a vector splat, then we can (quickly) reuse the scalar path. 3103 // NOTE: We assume all elements match and none are UNDEF. 3104 if (CstTy->isVectorTy()) { 3105 if (const Constant *Splat = Cst->getSplatValue()) { 3106 Cst = Splat; 3107 CstTy = Cst->getType(); 3108 } 3109 } 3110 // TODO - do we need to handle different bitwidths? 3111 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3112 // Iterate across all vector elements finding common known bits. 3113 Known.One.setAllBits(); 3114 Known.Zero.setAllBits(); 3115 for (unsigned i = 0; i != NumElts; ++i) { 3116 if (!DemandedElts[i]) 3117 continue; 3118 if (Constant *Elt = Cst->getAggregateElement(i)) { 3119 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3120 const APInt &Value = CInt->getValue(); 3121 Known.One &= Value; 3122 Known.Zero &= ~Value; 3123 continue; 3124 } 3125 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3126 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3127 Known.One &= Value; 3128 Known.Zero &= ~Value; 3129 continue; 3130 } 3131 } 3132 Known.One.clearAllBits(); 3133 Known.Zero.clearAllBits(); 3134 break; 3135 } 3136 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3137 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3138 Known = KnownBits::makeConstant(CInt->getValue()); 3139 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3140 Known = 3141 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3142 } 3143 } 3144 } 3145 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3146 // If this is a ZEXTLoad and we are looking at the loaded value. 3147 EVT VT = LD->getMemoryVT(); 3148 unsigned MemBits = VT.getScalarSizeInBits(); 3149 Known.Zero.setBitsFrom(MemBits); 3150 } else if (const MDNode *Ranges = LD->getRanges()) { 3151 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3152 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3153 } 3154 break; 3155 } 3156 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3157 EVT InVT = Op.getOperand(0).getValueType(); 3158 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3159 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3160 Known = Known.zext(BitWidth); 3161 break; 3162 } 3163 case ISD::ZERO_EXTEND: { 3164 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3165 Known = Known.zext(BitWidth); 3166 break; 3167 } 3168 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3169 EVT InVT = Op.getOperand(0).getValueType(); 3170 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3171 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3172 // If the sign bit is known to be zero or one, then sext will extend 3173 // it to the top bits, else it will just zext. 3174 Known = Known.sext(BitWidth); 3175 break; 3176 } 3177 case ISD::SIGN_EXTEND: { 3178 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3179 // If the sign bit is known to be zero or one, then sext will extend 3180 // it to the top bits, else it will just zext. 3181 Known = Known.sext(BitWidth); 3182 break; 3183 } 3184 case ISD::ANY_EXTEND_VECTOR_INREG: { 3185 EVT InVT = Op.getOperand(0).getValueType(); 3186 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3187 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3188 Known = Known.anyext(BitWidth); 3189 break; 3190 } 3191 case ISD::ANY_EXTEND: { 3192 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3193 Known = Known.anyext(BitWidth); 3194 break; 3195 } 3196 case ISD::TRUNCATE: { 3197 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3198 Known = Known.trunc(BitWidth); 3199 break; 3200 } 3201 case ISD::AssertZext: { 3202 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3203 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3204 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3205 Known.Zero |= (~InMask); 3206 Known.One &= (~Known.Zero); 3207 break; 3208 } 3209 case ISD::AssertAlign: { 3210 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3211 assert(LogOfAlign != 0); 3212 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3213 // well as clearing one bits. 3214 Known.Zero.setLowBits(LogOfAlign); 3215 Known.One.clearLowBits(LogOfAlign); 3216 break; 3217 } 3218 case ISD::FGETSIGN: 3219 // All bits are zero except the low bit. 3220 Known.Zero.setBitsFrom(1); 3221 break; 3222 case ISD::USUBO: 3223 case ISD::SSUBO: 3224 if (Op.getResNo() == 1) { 3225 // If we know the result of a setcc has the top bits zero, use this info. 3226 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3227 TargetLowering::ZeroOrOneBooleanContent && 3228 BitWidth > 1) 3229 Known.Zero.setBitsFrom(1); 3230 break; 3231 } 3232 LLVM_FALLTHROUGH; 3233 case ISD::SUB: 3234 case ISD::SUBC: { 3235 assert(Op.getResNo() == 0 && 3236 "We only compute knownbits for the difference here."); 3237 3238 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3239 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3240 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3241 Known, Known2); 3242 break; 3243 } 3244 case ISD::UADDO: 3245 case ISD::SADDO: 3246 case ISD::ADDCARRY: 3247 if (Op.getResNo() == 1) { 3248 // If we know the result of a setcc has the top bits zero, use this info. 3249 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3250 TargetLowering::ZeroOrOneBooleanContent && 3251 BitWidth > 1) 3252 Known.Zero.setBitsFrom(1); 3253 break; 3254 } 3255 LLVM_FALLTHROUGH; 3256 case ISD::ADD: 3257 case ISD::ADDC: 3258 case ISD::ADDE: { 3259 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3260 3261 // With ADDE and ADDCARRY, a carry bit may be added in. 3262 KnownBits Carry(1); 3263 if (Opcode == ISD::ADDE) 3264 // Can't track carry from glue, set carry to unknown. 3265 Carry.resetAll(); 3266 else if (Opcode == ISD::ADDCARRY) 3267 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3268 // the trouble (how often will we find a known carry bit). And I haven't 3269 // tested this very much yet, but something like this might work: 3270 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3271 // Carry = Carry.zextOrTrunc(1, false); 3272 Carry.resetAll(); 3273 else 3274 Carry.setAllZero(); 3275 3276 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3277 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3278 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3279 break; 3280 } 3281 case ISD::SREM: { 3282 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3283 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3284 Known = KnownBits::srem(Known, Known2); 3285 break; 3286 } 3287 case ISD::UREM: { 3288 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3289 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3290 Known = KnownBits::urem(Known, Known2); 3291 break; 3292 } 3293 case ISD::EXTRACT_ELEMENT: { 3294 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3295 const unsigned Index = Op.getConstantOperandVal(1); 3296 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3297 3298 // Remove low part of known bits mask 3299 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3300 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3301 3302 // Remove high part of known bit mask 3303 Known = Known.trunc(EltBitWidth); 3304 break; 3305 } 3306 case ISD::EXTRACT_VECTOR_ELT: { 3307 SDValue InVec = Op.getOperand(0); 3308 SDValue EltNo = Op.getOperand(1); 3309 EVT VecVT = InVec.getValueType(); 3310 // computeKnownBits not yet implemented for scalable vectors. 3311 if (VecVT.isScalableVector()) 3312 break; 3313 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3314 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3315 3316 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3317 // anything about the extended bits. 3318 if (BitWidth > EltBitWidth) 3319 Known = Known.trunc(EltBitWidth); 3320 3321 // If we know the element index, just demand that vector element, else for 3322 // an unknown element index, ignore DemandedElts and demand them all. 3323 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3324 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3325 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3326 DemandedSrcElts = 3327 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3328 3329 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3330 if (BitWidth > EltBitWidth) 3331 Known = Known.anyext(BitWidth); 3332 break; 3333 } 3334 case ISD::INSERT_VECTOR_ELT: { 3335 // If we know the element index, split the demand between the 3336 // source vector and the inserted element, otherwise assume we need 3337 // the original demanded vector elements and the value. 3338 SDValue InVec = Op.getOperand(0); 3339 SDValue InVal = Op.getOperand(1); 3340 SDValue EltNo = Op.getOperand(2); 3341 bool DemandedVal = true; 3342 APInt DemandedVecElts = DemandedElts; 3343 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3344 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3345 unsigned EltIdx = CEltNo->getZExtValue(); 3346 DemandedVal = !!DemandedElts[EltIdx]; 3347 DemandedVecElts.clearBit(EltIdx); 3348 } 3349 Known.One.setAllBits(); 3350 Known.Zero.setAllBits(); 3351 if (DemandedVal) { 3352 Known2 = computeKnownBits(InVal, Depth + 1); 3353 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3354 } 3355 if (!!DemandedVecElts) { 3356 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3357 Known = KnownBits::commonBits(Known, Known2); 3358 } 3359 break; 3360 } 3361 case ISD::BITREVERSE: { 3362 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3363 Known = Known2.reverseBits(); 3364 break; 3365 } 3366 case ISD::BSWAP: { 3367 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3368 Known = Known2.byteSwap(); 3369 break; 3370 } 3371 case ISD::ABS: { 3372 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3373 Known = Known2.abs(); 3374 break; 3375 } 3376 case ISD::UMIN: { 3377 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3378 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3379 Known = KnownBits::umin(Known, Known2); 3380 break; 3381 } 3382 case ISD::UMAX: { 3383 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3384 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3385 Known = KnownBits::umax(Known, Known2); 3386 break; 3387 } 3388 case ISD::SMIN: 3389 case ISD::SMAX: { 3390 // If we have a clamp pattern, we know that the number of sign bits will be 3391 // the minimum of the clamp min/max range. 3392 bool IsMax = (Opcode == ISD::SMAX); 3393 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3394 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3395 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3396 CstHigh = 3397 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3398 if (CstLow && CstHigh) { 3399 if (!IsMax) 3400 std::swap(CstLow, CstHigh); 3401 3402 const APInt &ValueLow = CstLow->getAPIntValue(); 3403 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3404 if (ValueLow.sle(ValueHigh)) { 3405 unsigned LowSignBits = ValueLow.getNumSignBits(); 3406 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3407 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3408 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3409 Known.One.setHighBits(MinSignBits); 3410 break; 3411 } 3412 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3413 Known.Zero.setHighBits(MinSignBits); 3414 break; 3415 } 3416 } 3417 } 3418 3419 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3420 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3421 if (IsMax) 3422 Known = KnownBits::smax(Known, Known2); 3423 else 3424 Known = KnownBits::smin(Known, Known2); 3425 break; 3426 } 3427 case ISD::FrameIndex: 3428 case ISD::TargetFrameIndex: 3429 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3430 Known, getMachineFunction()); 3431 break; 3432 3433 default: 3434 if (Opcode < ISD::BUILTIN_OP_END) 3435 break; 3436 LLVM_FALLTHROUGH; 3437 case ISD::INTRINSIC_WO_CHAIN: 3438 case ISD::INTRINSIC_W_CHAIN: 3439 case ISD::INTRINSIC_VOID: 3440 // Allow the target to implement this method for its nodes. 3441 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3442 break; 3443 } 3444 3445 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3446 return Known; 3447 } 3448 3449 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3450 SDValue N1) const { 3451 // X + 0 never overflow 3452 if (isNullConstant(N1)) 3453 return OFK_Never; 3454 3455 KnownBits N1Known = computeKnownBits(N1); 3456 if (N1Known.Zero.getBoolValue()) { 3457 KnownBits N0Known = computeKnownBits(N0); 3458 3459 bool overflow; 3460 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3461 if (!overflow) 3462 return OFK_Never; 3463 } 3464 3465 // mulhi + 1 never overflow 3466 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3467 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3468 return OFK_Never; 3469 3470 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3471 KnownBits N0Known = computeKnownBits(N0); 3472 3473 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3474 return OFK_Never; 3475 } 3476 3477 return OFK_Sometime; 3478 } 3479 3480 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3481 EVT OpVT = Val.getValueType(); 3482 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3483 3484 // Is the constant a known power of 2? 3485 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3486 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3487 3488 // A left-shift of a constant one will have exactly one bit set because 3489 // shifting the bit off the end is undefined. 3490 if (Val.getOpcode() == ISD::SHL) { 3491 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3492 if (C && C->getAPIntValue() == 1) 3493 return true; 3494 } 3495 3496 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3497 // one bit set. 3498 if (Val.getOpcode() == ISD::SRL) { 3499 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3500 if (C && C->getAPIntValue().isSignMask()) 3501 return true; 3502 } 3503 3504 // Are all operands of a build vector constant powers of two? 3505 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3506 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3507 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3508 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3509 return false; 3510 })) 3511 return true; 3512 3513 // More could be done here, though the above checks are enough 3514 // to handle some common cases. 3515 3516 // Fall back to computeKnownBits to catch other known cases. 3517 KnownBits Known = computeKnownBits(Val); 3518 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3519 } 3520 3521 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3522 EVT VT = Op.getValueType(); 3523 3524 // TODO: Assume we don't know anything for now. 3525 if (VT.isScalableVector()) 3526 return 1; 3527 3528 APInt DemandedElts = VT.isVector() 3529 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3530 : APInt(1, 1); 3531 return ComputeNumSignBits(Op, DemandedElts, Depth); 3532 } 3533 3534 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3535 unsigned Depth) const { 3536 EVT VT = Op.getValueType(); 3537 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3538 unsigned VTBits = VT.getScalarSizeInBits(); 3539 unsigned NumElts = DemandedElts.getBitWidth(); 3540 unsigned Tmp, Tmp2; 3541 unsigned FirstAnswer = 1; 3542 3543 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3544 const APInt &Val = C->getAPIntValue(); 3545 return Val.getNumSignBits(); 3546 } 3547 3548 if (Depth >= MaxRecursionDepth) 3549 return 1; // Limit search depth. 3550 3551 if (!DemandedElts || VT.isScalableVector()) 3552 return 1; // No demanded elts, better to assume we don't know anything. 3553 3554 unsigned Opcode = Op.getOpcode(); 3555 switch (Opcode) { 3556 default: break; 3557 case ISD::AssertSext: 3558 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3559 return VTBits-Tmp+1; 3560 case ISD::AssertZext: 3561 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3562 return VTBits-Tmp; 3563 3564 case ISD::BUILD_VECTOR: 3565 Tmp = VTBits; 3566 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3567 if (!DemandedElts[i]) 3568 continue; 3569 3570 SDValue SrcOp = Op.getOperand(i); 3571 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3572 3573 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3574 if (SrcOp.getValueSizeInBits() != VTBits) { 3575 assert(SrcOp.getValueSizeInBits() > VTBits && 3576 "Expected BUILD_VECTOR implicit truncation"); 3577 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3578 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3579 } 3580 Tmp = std::min(Tmp, Tmp2); 3581 } 3582 return Tmp; 3583 3584 case ISD::VECTOR_SHUFFLE: { 3585 // Collect the minimum number of sign bits that are shared by every vector 3586 // element referenced by the shuffle. 3587 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3588 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3589 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3590 for (unsigned i = 0; i != NumElts; ++i) { 3591 int M = SVN->getMaskElt(i); 3592 if (!DemandedElts[i]) 3593 continue; 3594 // For UNDEF elements, we don't know anything about the common state of 3595 // the shuffle result. 3596 if (M < 0) 3597 return 1; 3598 if ((unsigned)M < NumElts) 3599 DemandedLHS.setBit((unsigned)M % NumElts); 3600 else 3601 DemandedRHS.setBit((unsigned)M % NumElts); 3602 } 3603 Tmp = std::numeric_limits<unsigned>::max(); 3604 if (!!DemandedLHS) 3605 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3606 if (!!DemandedRHS) { 3607 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3608 Tmp = std::min(Tmp, Tmp2); 3609 } 3610 // If we don't know anything, early out and try computeKnownBits fall-back. 3611 if (Tmp == 1) 3612 break; 3613 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3614 return Tmp; 3615 } 3616 3617 case ISD::BITCAST: { 3618 SDValue N0 = Op.getOperand(0); 3619 EVT SrcVT = N0.getValueType(); 3620 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3621 3622 // Ignore bitcasts from unsupported types.. 3623 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3624 break; 3625 3626 // Fast handling of 'identity' bitcasts. 3627 if (VTBits == SrcBits) 3628 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3629 3630 bool IsLE = getDataLayout().isLittleEndian(); 3631 3632 // Bitcast 'large element' scalar/vector to 'small element' vector. 3633 if ((SrcBits % VTBits) == 0) { 3634 assert(VT.isVector() && "Expected bitcast to vector"); 3635 3636 unsigned Scale = SrcBits / VTBits; 3637 APInt SrcDemandedElts(NumElts / Scale, 0); 3638 for (unsigned i = 0; i != NumElts; ++i) 3639 if (DemandedElts[i]) 3640 SrcDemandedElts.setBit(i / Scale); 3641 3642 // Fast case - sign splat can be simply split across the small elements. 3643 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3644 if (Tmp == SrcBits) 3645 return VTBits; 3646 3647 // Slow case - determine how far the sign extends into each sub-element. 3648 Tmp2 = VTBits; 3649 for (unsigned i = 0; i != NumElts; ++i) 3650 if (DemandedElts[i]) { 3651 unsigned SubOffset = i % Scale; 3652 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3653 SubOffset = SubOffset * VTBits; 3654 if (Tmp <= SubOffset) 3655 return 1; 3656 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3657 } 3658 return Tmp2; 3659 } 3660 break; 3661 } 3662 3663 case ISD::SIGN_EXTEND: 3664 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3665 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3666 case ISD::SIGN_EXTEND_INREG: 3667 // Max of the input and what this extends. 3668 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3669 Tmp = VTBits-Tmp+1; 3670 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3671 return std::max(Tmp, Tmp2); 3672 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3673 SDValue Src = Op.getOperand(0); 3674 EVT SrcVT = Src.getValueType(); 3675 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3676 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3677 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3678 } 3679 case ISD::SRA: 3680 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3681 // SRA X, C -> adds C sign bits. 3682 if (const APInt *ShAmt = 3683 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3684 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3685 return Tmp; 3686 case ISD::SHL: 3687 if (const APInt *ShAmt = 3688 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3689 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3690 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3691 if (ShAmt->ult(Tmp)) 3692 return Tmp - ShAmt->getZExtValue(); 3693 } 3694 break; 3695 case ISD::AND: 3696 case ISD::OR: 3697 case ISD::XOR: // NOT is handled here. 3698 // Logical binary ops preserve the number of sign bits at the worst. 3699 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3700 if (Tmp != 1) { 3701 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3702 FirstAnswer = std::min(Tmp, Tmp2); 3703 // We computed what we know about the sign bits as our first 3704 // answer. Now proceed to the generic code that uses 3705 // computeKnownBits, and pick whichever answer is better. 3706 } 3707 break; 3708 3709 case ISD::SELECT: 3710 case ISD::VSELECT: 3711 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3712 if (Tmp == 1) return 1; // Early out. 3713 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3714 return std::min(Tmp, Tmp2); 3715 case ISD::SELECT_CC: 3716 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3717 if (Tmp == 1) return 1; // Early out. 3718 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3719 return std::min(Tmp, Tmp2); 3720 3721 case ISD::SMIN: 3722 case ISD::SMAX: { 3723 // If we have a clamp pattern, we know that the number of sign bits will be 3724 // the minimum of the clamp min/max range. 3725 bool IsMax = (Opcode == ISD::SMAX); 3726 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3727 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3728 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3729 CstHigh = 3730 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3731 if (CstLow && CstHigh) { 3732 if (!IsMax) 3733 std::swap(CstLow, CstHigh); 3734 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3735 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3736 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3737 return std::min(Tmp, Tmp2); 3738 } 3739 } 3740 3741 // Fallback - just get the minimum number of sign bits of the operands. 3742 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3743 if (Tmp == 1) 3744 return 1; // Early out. 3745 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3746 return std::min(Tmp, Tmp2); 3747 } 3748 case ISD::UMIN: 3749 case ISD::UMAX: 3750 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3751 if (Tmp == 1) 3752 return 1; // Early out. 3753 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3754 return std::min(Tmp, Tmp2); 3755 case ISD::SADDO: 3756 case ISD::UADDO: 3757 case ISD::SSUBO: 3758 case ISD::USUBO: 3759 case ISD::SMULO: 3760 case ISD::UMULO: 3761 if (Op.getResNo() != 1) 3762 break; 3763 // The boolean result conforms to getBooleanContents. Fall through. 3764 // If setcc returns 0/-1, all bits are sign bits. 3765 // We know that we have an integer-based boolean since these operations 3766 // are only available for integer. 3767 if (TLI->getBooleanContents(VT.isVector(), false) == 3768 TargetLowering::ZeroOrNegativeOneBooleanContent) 3769 return VTBits; 3770 break; 3771 case ISD::SETCC: 3772 case ISD::STRICT_FSETCC: 3773 case ISD::STRICT_FSETCCS: { 3774 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3775 // If setcc returns 0/-1, all bits are sign bits. 3776 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3777 TargetLowering::ZeroOrNegativeOneBooleanContent) 3778 return VTBits; 3779 break; 3780 } 3781 case ISD::ROTL: 3782 case ISD::ROTR: 3783 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3784 3785 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3786 if (Tmp == VTBits) 3787 return VTBits; 3788 3789 if (ConstantSDNode *C = 3790 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3791 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3792 3793 // Handle rotate right by N like a rotate left by 32-N. 3794 if (Opcode == ISD::ROTR) 3795 RotAmt = (VTBits - RotAmt) % VTBits; 3796 3797 // If we aren't rotating out all of the known-in sign bits, return the 3798 // number that are left. This handles rotl(sext(x), 1) for example. 3799 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3800 } 3801 break; 3802 case ISD::ADD: 3803 case ISD::ADDC: 3804 // Add can have at most one carry bit. Thus we know that the output 3805 // is, at worst, one more bit than the inputs. 3806 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3807 if (Tmp == 1) return 1; // Early out. 3808 3809 // Special case decrementing a value (ADD X, -1): 3810 if (ConstantSDNode *CRHS = 3811 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3812 if (CRHS->isAllOnesValue()) { 3813 KnownBits Known = 3814 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3815 3816 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3817 // sign bits set. 3818 if ((Known.Zero | 1).isAllOnesValue()) 3819 return VTBits; 3820 3821 // If we are subtracting one from a positive number, there is no carry 3822 // out of the result. 3823 if (Known.isNonNegative()) 3824 return Tmp; 3825 } 3826 3827 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3828 if (Tmp2 == 1) return 1; // Early out. 3829 return std::min(Tmp, Tmp2) - 1; 3830 case ISD::SUB: 3831 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3832 if (Tmp2 == 1) return 1; // Early out. 3833 3834 // Handle NEG. 3835 if (ConstantSDNode *CLHS = 3836 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 3837 if (CLHS->isNullValue()) { 3838 KnownBits Known = 3839 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3840 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3841 // sign bits set. 3842 if ((Known.Zero | 1).isAllOnesValue()) 3843 return VTBits; 3844 3845 // If the input is known to be positive (the sign bit is known clear), 3846 // the output of the NEG has the same number of sign bits as the input. 3847 if (Known.isNonNegative()) 3848 return Tmp2; 3849 3850 // Otherwise, we treat this like a SUB. 3851 } 3852 3853 // Sub can have at most one carry bit. Thus we know that the output 3854 // is, at worst, one more bit than the inputs. 3855 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3856 if (Tmp == 1) return 1; // Early out. 3857 return std::min(Tmp, Tmp2) - 1; 3858 case ISD::MUL: { 3859 // The output of the Mul can be at most twice the valid bits in the inputs. 3860 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3861 if (SignBitsOp0 == 1) 3862 break; 3863 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3864 if (SignBitsOp1 == 1) 3865 break; 3866 unsigned OutValidBits = 3867 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3868 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3869 } 3870 case ISD::TRUNCATE: { 3871 // Check if the sign bits of source go down as far as the truncated value. 3872 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3873 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3874 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3875 return NumSrcSignBits - (NumSrcBits - VTBits); 3876 break; 3877 } 3878 case ISD::EXTRACT_ELEMENT: { 3879 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3880 const int BitWidth = Op.getValueSizeInBits(); 3881 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3882 3883 // Get reverse index (starting from 1), Op1 value indexes elements from 3884 // little end. Sign starts at big end. 3885 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3886 3887 // If the sign portion ends in our element the subtraction gives correct 3888 // result. Otherwise it gives either negative or > bitwidth result 3889 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3890 } 3891 case ISD::INSERT_VECTOR_ELT: { 3892 // If we know the element index, split the demand between the 3893 // source vector and the inserted element, otherwise assume we need 3894 // the original demanded vector elements and the value. 3895 SDValue InVec = Op.getOperand(0); 3896 SDValue InVal = Op.getOperand(1); 3897 SDValue EltNo = Op.getOperand(2); 3898 bool DemandedVal = true; 3899 APInt DemandedVecElts = DemandedElts; 3900 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3901 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3902 unsigned EltIdx = CEltNo->getZExtValue(); 3903 DemandedVal = !!DemandedElts[EltIdx]; 3904 DemandedVecElts.clearBit(EltIdx); 3905 } 3906 Tmp = std::numeric_limits<unsigned>::max(); 3907 if (DemandedVal) { 3908 // TODO - handle implicit truncation of inserted elements. 3909 if (InVal.getScalarValueSizeInBits() != VTBits) 3910 break; 3911 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3912 Tmp = std::min(Tmp, Tmp2); 3913 } 3914 if (!!DemandedVecElts) { 3915 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 3916 Tmp = std::min(Tmp, Tmp2); 3917 } 3918 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3919 return Tmp; 3920 } 3921 case ISD::EXTRACT_VECTOR_ELT: { 3922 SDValue InVec = Op.getOperand(0); 3923 SDValue EltNo = Op.getOperand(1); 3924 EVT VecVT = InVec.getValueType(); 3925 const unsigned BitWidth = Op.getValueSizeInBits(); 3926 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3927 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3928 3929 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3930 // anything about sign bits. But if the sizes match we can derive knowledge 3931 // about sign bits from the vector operand. 3932 if (BitWidth != EltBitWidth) 3933 break; 3934 3935 // If we know the element index, just demand that vector element, else for 3936 // an unknown element index, ignore DemandedElts and demand them all. 3937 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3938 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3939 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3940 DemandedSrcElts = 3941 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3942 3943 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3944 } 3945 case ISD::EXTRACT_SUBVECTOR: { 3946 // Offset the demanded elts by the subvector index. 3947 SDValue Src = Op.getOperand(0); 3948 // Bail until we can represent demanded elements for scalable vectors. 3949 if (Src.getValueType().isScalableVector()) 3950 break; 3951 uint64_t Idx = Op.getConstantOperandVal(1); 3952 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3953 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3954 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3955 } 3956 case ISD::CONCAT_VECTORS: { 3957 // Determine the minimum number of sign bits across all demanded 3958 // elts of the input vectors. Early out if the result is already 1. 3959 Tmp = std::numeric_limits<unsigned>::max(); 3960 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3961 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3962 unsigned NumSubVectors = Op.getNumOperands(); 3963 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3964 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3965 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3966 if (!DemandedSub) 3967 continue; 3968 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3969 Tmp = std::min(Tmp, Tmp2); 3970 } 3971 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3972 return Tmp; 3973 } 3974 case ISD::INSERT_SUBVECTOR: { 3975 // Demand any elements from the subvector and the remainder from the src its 3976 // inserted into. 3977 SDValue Src = Op.getOperand(0); 3978 SDValue Sub = Op.getOperand(1); 3979 uint64_t Idx = Op.getConstantOperandVal(2); 3980 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3981 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3982 APInt DemandedSrcElts = DemandedElts; 3983 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 3984 3985 Tmp = std::numeric_limits<unsigned>::max(); 3986 if (!!DemandedSubElts) { 3987 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3988 if (Tmp == 1) 3989 return 1; // early-out 3990 } 3991 if (!!DemandedSrcElts) { 3992 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3993 Tmp = std::min(Tmp, Tmp2); 3994 } 3995 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3996 return Tmp; 3997 } 3998 } 3999 4000 // If we are looking at the loaded value of the SDNode. 4001 if (Op.getResNo() == 0) { 4002 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4003 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4004 unsigned ExtType = LD->getExtensionType(); 4005 switch (ExtType) { 4006 default: break; 4007 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4008 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4009 return VTBits - Tmp + 1; 4010 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4011 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4012 return VTBits - Tmp; 4013 case ISD::NON_EXTLOAD: 4014 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4015 // We only need to handle vectors - computeKnownBits should handle 4016 // scalar cases. 4017 Type *CstTy = Cst->getType(); 4018 if (CstTy->isVectorTy() && 4019 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4020 Tmp = VTBits; 4021 for (unsigned i = 0; i != NumElts; ++i) { 4022 if (!DemandedElts[i]) 4023 continue; 4024 if (Constant *Elt = Cst->getAggregateElement(i)) { 4025 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4026 const APInt &Value = CInt->getValue(); 4027 Tmp = std::min(Tmp, Value.getNumSignBits()); 4028 continue; 4029 } 4030 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4031 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4032 Tmp = std::min(Tmp, Value.getNumSignBits()); 4033 continue; 4034 } 4035 } 4036 // Unknown type. Conservatively assume no bits match sign bit. 4037 return 1; 4038 } 4039 return Tmp; 4040 } 4041 } 4042 break; 4043 } 4044 } 4045 } 4046 4047 // Allow the target to implement this method for its nodes. 4048 if (Opcode >= ISD::BUILTIN_OP_END || 4049 Opcode == ISD::INTRINSIC_WO_CHAIN || 4050 Opcode == ISD::INTRINSIC_W_CHAIN || 4051 Opcode == ISD::INTRINSIC_VOID) { 4052 unsigned NumBits = 4053 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4054 if (NumBits > 1) 4055 FirstAnswer = std::max(FirstAnswer, NumBits); 4056 } 4057 4058 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4059 // use this information. 4060 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4061 4062 APInt Mask; 4063 if (Known.isNonNegative()) { // sign bit is 0 4064 Mask = Known.Zero; 4065 } else if (Known.isNegative()) { // sign bit is 1; 4066 Mask = Known.One; 4067 } else { 4068 // Nothing known. 4069 return FirstAnswer; 4070 } 4071 4072 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4073 // the number of identical bits in the top of the input value. 4074 Mask <<= Mask.getBitWidth()-VTBits; 4075 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4076 } 4077 4078 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4079 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4080 !isa<ConstantSDNode>(Op.getOperand(1))) 4081 return false; 4082 4083 if (Op.getOpcode() == ISD::OR && 4084 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4085 return false; 4086 4087 return true; 4088 } 4089 4090 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4091 // If we're told that NaNs won't happen, assume they won't. 4092 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4093 return true; 4094 4095 if (Depth >= MaxRecursionDepth) 4096 return false; // Limit search depth. 4097 4098 // TODO: Handle vectors. 4099 // If the value is a constant, we can obviously see if it is a NaN or not. 4100 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4101 return !C->getValueAPF().isNaN() || 4102 (SNaN && !C->getValueAPF().isSignaling()); 4103 } 4104 4105 unsigned Opcode = Op.getOpcode(); 4106 switch (Opcode) { 4107 case ISD::FADD: 4108 case ISD::FSUB: 4109 case ISD::FMUL: 4110 case ISD::FDIV: 4111 case ISD::FREM: 4112 case ISD::FSIN: 4113 case ISD::FCOS: { 4114 if (SNaN) 4115 return true; 4116 // TODO: Need isKnownNeverInfinity 4117 return false; 4118 } 4119 case ISD::FCANONICALIZE: 4120 case ISD::FEXP: 4121 case ISD::FEXP2: 4122 case ISD::FTRUNC: 4123 case ISD::FFLOOR: 4124 case ISD::FCEIL: 4125 case ISD::FROUND: 4126 case ISD::FROUNDEVEN: 4127 case ISD::FRINT: 4128 case ISD::FNEARBYINT: { 4129 if (SNaN) 4130 return true; 4131 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4132 } 4133 case ISD::FABS: 4134 case ISD::FNEG: 4135 case ISD::FCOPYSIGN: { 4136 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4137 } 4138 case ISD::SELECT: 4139 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4140 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4141 case ISD::FP_EXTEND: 4142 case ISD::FP_ROUND: { 4143 if (SNaN) 4144 return true; 4145 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4146 } 4147 case ISD::SINT_TO_FP: 4148 case ISD::UINT_TO_FP: 4149 return true; 4150 case ISD::FMA: 4151 case ISD::FMAD: { 4152 if (SNaN) 4153 return true; 4154 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4155 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4156 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4157 } 4158 case ISD::FSQRT: // Need is known positive 4159 case ISD::FLOG: 4160 case ISD::FLOG2: 4161 case ISD::FLOG10: 4162 case ISD::FPOWI: 4163 case ISD::FPOW: { 4164 if (SNaN) 4165 return true; 4166 // TODO: Refine on operand 4167 return false; 4168 } 4169 case ISD::FMINNUM: 4170 case ISD::FMAXNUM: { 4171 // Only one needs to be known not-nan, since it will be returned if the 4172 // other ends up being one. 4173 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4174 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4175 } 4176 case ISD::FMINNUM_IEEE: 4177 case ISD::FMAXNUM_IEEE: { 4178 if (SNaN) 4179 return true; 4180 // This can return a NaN if either operand is an sNaN, or if both operands 4181 // are NaN. 4182 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4183 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4184 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4185 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4186 } 4187 case ISD::FMINIMUM: 4188 case ISD::FMAXIMUM: { 4189 // TODO: Does this quiet or return the origina NaN as-is? 4190 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4191 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4192 } 4193 case ISD::EXTRACT_VECTOR_ELT: { 4194 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4195 } 4196 default: 4197 if (Opcode >= ISD::BUILTIN_OP_END || 4198 Opcode == ISD::INTRINSIC_WO_CHAIN || 4199 Opcode == ISD::INTRINSIC_W_CHAIN || 4200 Opcode == ISD::INTRINSIC_VOID) { 4201 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4202 } 4203 4204 return false; 4205 } 4206 } 4207 4208 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4209 assert(Op.getValueType().isFloatingPoint() && 4210 "Floating point type expected"); 4211 4212 // If the value is a constant, we can obviously see if it is a zero or not. 4213 // TODO: Add BuildVector support. 4214 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4215 return !C->isZero(); 4216 return false; 4217 } 4218 4219 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4220 assert(!Op.getValueType().isFloatingPoint() && 4221 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4222 4223 // If the value is a constant, we can obviously see if it is a zero or not. 4224 if (ISD::matchUnaryPredicate( 4225 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4226 return true; 4227 4228 // TODO: Recognize more cases here. 4229 switch (Op.getOpcode()) { 4230 default: break; 4231 case ISD::OR: 4232 if (isKnownNeverZero(Op.getOperand(1)) || 4233 isKnownNeverZero(Op.getOperand(0))) 4234 return true; 4235 break; 4236 } 4237 4238 return false; 4239 } 4240 4241 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4242 // Check the obvious case. 4243 if (A == B) return true; 4244 4245 // For for negative and positive zero. 4246 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4247 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4248 if (CA->isZero() && CB->isZero()) return true; 4249 4250 // Otherwise they may not be equal. 4251 return false; 4252 } 4253 4254 // FIXME: unify with llvm::haveNoCommonBitsSet. 4255 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4256 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4257 assert(A.getValueType() == B.getValueType() && 4258 "Values must have the same type"); 4259 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4260 } 4261 4262 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4263 ArrayRef<SDValue> Ops, 4264 SelectionDAG &DAG) { 4265 int NumOps = Ops.size(); 4266 assert(NumOps != 0 && "Can't build an empty vector!"); 4267 assert(!VT.isScalableVector() && 4268 "BUILD_VECTOR cannot be used with scalable types"); 4269 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4270 "Incorrect element count in BUILD_VECTOR!"); 4271 4272 // BUILD_VECTOR of UNDEFs is UNDEF. 4273 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4274 return DAG.getUNDEF(VT); 4275 4276 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4277 SDValue IdentitySrc; 4278 bool IsIdentity = true; 4279 for (int i = 0; i != NumOps; ++i) { 4280 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4281 Ops[i].getOperand(0).getValueType() != VT || 4282 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4283 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4284 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4285 IsIdentity = false; 4286 break; 4287 } 4288 IdentitySrc = Ops[i].getOperand(0); 4289 } 4290 if (IsIdentity) 4291 return IdentitySrc; 4292 4293 return SDValue(); 4294 } 4295 4296 /// Try to simplify vector concatenation to an input value, undef, or build 4297 /// vector. 4298 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4299 ArrayRef<SDValue> Ops, 4300 SelectionDAG &DAG) { 4301 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4302 assert(llvm::all_of(Ops, 4303 [Ops](SDValue Op) { 4304 return Ops[0].getValueType() == Op.getValueType(); 4305 }) && 4306 "Concatenation of vectors with inconsistent value types!"); 4307 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4308 VT.getVectorElementCount() && 4309 "Incorrect element count in vector concatenation!"); 4310 4311 if (Ops.size() == 1) 4312 return Ops[0]; 4313 4314 // Concat of UNDEFs is UNDEF. 4315 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4316 return DAG.getUNDEF(VT); 4317 4318 // Scan the operands and look for extract operations from a single source 4319 // that correspond to insertion at the same location via this concatenation: 4320 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4321 SDValue IdentitySrc; 4322 bool IsIdentity = true; 4323 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4324 SDValue Op = Ops[i]; 4325 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4326 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4327 Op.getOperand(0).getValueType() != VT || 4328 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4329 Op.getConstantOperandVal(1) != IdentityIndex) { 4330 IsIdentity = false; 4331 break; 4332 } 4333 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4334 "Unexpected identity source vector for concat of extracts"); 4335 IdentitySrc = Op.getOperand(0); 4336 } 4337 if (IsIdentity) { 4338 assert(IdentitySrc && "Failed to set source vector of extracts"); 4339 return IdentitySrc; 4340 } 4341 4342 // The code below this point is only designed to work for fixed width 4343 // vectors, so we bail out for now. 4344 if (VT.isScalableVector()) 4345 return SDValue(); 4346 4347 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4348 // simplified to one big BUILD_VECTOR. 4349 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4350 EVT SVT = VT.getScalarType(); 4351 SmallVector<SDValue, 16> Elts; 4352 for (SDValue Op : Ops) { 4353 EVT OpVT = Op.getValueType(); 4354 if (Op.isUndef()) 4355 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4356 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4357 Elts.append(Op->op_begin(), Op->op_end()); 4358 else 4359 return SDValue(); 4360 } 4361 4362 // BUILD_VECTOR requires all inputs to be of the same type, find the 4363 // maximum type and extend them all. 4364 for (SDValue Op : Elts) 4365 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4366 4367 if (SVT.bitsGT(VT.getScalarType())) { 4368 for (SDValue &Op : Elts) { 4369 if (Op.isUndef()) 4370 Op = DAG.getUNDEF(SVT); 4371 else 4372 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4373 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4374 : DAG.getSExtOrTrunc(Op, DL, SVT); 4375 } 4376 } 4377 4378 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4379 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4380 return V; 4381 } 4382 4383 /// Gets or creates the specified node. 4384 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4385 FoldingSetNodeID ID; 4386 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4387 void *IP = nullptr; 4388 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4389 return SDValue(E, 0); 4390 4391 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4392 getVTList(VT)); 4393 CSEMap.InsertNode(N, IP); 4394 4395 InsertNode(N); 4396 SDValue V = SDValue(N, 0); 4397 NewSDValueDbgMsg(V, "Creating new node: ", this); 4398 return V; 4399 } 4400 4401 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4402 SDValue Operand) { 4403 SDNodeFlags Flags; 4404 if (Inserter) 4405 Flags = Inserter->getFlags(); 4406 return getNode(Opcode, DL, VT, Operand, Flags); 4407 } 4408 4409 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4410 SDValue Operand, const SDNodeFlags Flags) { 4411 // Constant fold unary operations with an integer constant operand. Even 4412 // opaque constant will be folded, because the folding of unary operations 4413 // doesn't create new constants with different values. Nevertheless, the 4414 // opaque flag is preserved during folding to prevent future folding with 4415 // other constants. 4416 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4417 const APInt &Val = C->getAPIntValue(); 4418 switch (Opcode) { 4419 default: break; 4420 case ISD::SIGN_EXTEND: 4421 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4422 C->isTargetOpcode(), C->isOpaque()); 4423 case ISD::TRUNCATE: 4424 if (C->isOpaque()) 4425 break; 4426 LLVM_FALLTHROUGH; 4427 case ISD::ANY_EXTEND: 4428 case ISD::ZERO_EXTEND: 4429 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4430 C->isTargetOpcode(), C->isOpaque()); 4431 case ISD::UINT_TO_FP: 4432 case ISD::SINT_TO_FP: { 4433 APFloat apf(EVTToAPFloatSemantics(VT), 4434 APInt::getNullValue(VT.getSizeInBits())); 4435 (void)apf.convertFromAPInt(Val, 4436 Opcode==ISD::SINT_TO_FP, 4437 APFloat::rmNearestTiesToEven); 4438 return getConstantFP(apf, DL, VT); 4439 } 4440 case ISD::BITCAST: 4441 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4442 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4443 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4444 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4445 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4446 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4447 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4448 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4449 break; 4450 case ISD::ABS: 4451 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4452 C->isOpaque()); 4453 case ISD::BITREVERSE: 4454 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4455 C->isOpaque()); 4456 case ISD::BSWAP: 4457 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4458 C->isOpaque()); 4459 case ISD::CTPOP: 4460 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4461 C->isOpaque()); 4462 case ISD::CTLZ: 4463 case ISD::CTLZ_ZERO_UNDEF: 4464 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4465 C->isOpaque()); 4466 case ISD::CTTZ: 4467 case ISD::CTTZ_ZERO_UNDEF: 4468 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4469 C->isOpaque()); 4470 case ISD::FP16_TO_FP: { 4471 bool Ignored; 4472 APFloat FPV(APFloat::IEEEhalf(), 4473 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4474 4475 // This can return overflow, underflow, or inexact; we don't care. 4476 // FIXME need to be more flexible about rounding mode. 4477 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4478 APFloat::rmNearestTiesToEven, &Ignored); 4479 return getConstantFP(FPV, DL, VT); 4480 } 4481 } 4482 } 4483 4484 // Constant fold unary operations with a floating point constant operand. 4485 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4486 APFloat V = C->getValueAPF(); // make copy 4487 switch (Opcode) { 4488 case ISD::FNEG: 4489 V.changeSign(); 4490 return getConstantFP(V, DL, VT); 4491 case ISD::FABS: 4492 V.clearSign(); 4493 return getConstantFP(V, DL, VT); 4494 case ISD::FCEIL: { 4495 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4496 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4497 return getConstantFP(V, DL, VT); 4498 break; 4499 } 4500 case ISD::FTRUNC: { 4501 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4502 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4503 return getConstantFP(V, DL, VT); 4504 break; 4505 } 4506 case ISD::FFLOOR: { 4507 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4508 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4509 return getConstantFP(V, DL, VT); 4510 break; 4511 } 4512 case ISD::FP_EXTEND: { 4513 bool ignored; 4514 // This can return overflow, underflow, or inexact; we don't care. 4515 // FIXME need to be more flexible about rounding mode. 4516 (void)V.convert(EVTToAPFloatSemantics(VT), 4517 APFloat::rmNearestTiesToEven, &ignored); 4518 return getConstantFP(V, DL, VT); 4519 } 4520 case ISD::FP_TO_SINT: 4521 case ISD::FP_TO_UINT: { 4522 bool ignored; 4523 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4524 // FIXME need to be more flexible about rounding mode. 4525 APFloat::opStatus s = 4526 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4527 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4528 break; 4529 return getConstant(IntVal, DL, VT); 4530 } 4531 case ISD::BITCAST: 4532 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4533 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4534 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4535 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4536 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4537 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4538 break; 4539 case ISD::FP_TO_FP16: { 4540 bool Ignored; 4541 // This can return overflow, underflow, or inexact; we don't care. 4542 // FIXME need to be more flexible about rounding mode. 4543 (void)V.convert(APFloat::IEEEhalf(), 4544 APFloat::rmNearestTiesToEven, &Ignored); 4545 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4546 } 4547 } 4548 } 4549 4550 // Constant fold unary operations with a vector integer or float operand. 4551 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4552 if (BV->isConstant()) { 4553 switch (Opcode) { 4554 default: 4555 // FIXME: Entirely reasonable to perform folding of other unary 4556 // operations here as the need arises. 4557 break; 4558 case ISD::FNEG: 4559 case ISD::FABS: 4560 case ISD::FCEIL: 4561 case ISD::FTRUNC: 4562 case ISD::FFLOOR: 4563 case ISD::FP_EXTEND: 4564 case ISD::FP_TO_SINT: 4565 case ISD::FP_TO_UINT: 4566 case ISD::TRUNCATE: 4567 case ISD::ANY_EXTEND: 4568 case ISD::ZERO_EXTEND: 4569 case ISD::SIGN_EXTEND: 4570 case ISD::UINT_TO_FP: 4571 case ISD::SINT_TO_FP: 4572 case ISD::ABS: 4573 case ISD::BITREVERSE: 4574 case ISD::BSWAP: 4575 case ISD::CTLZ: 4576 case ISD::CTLZ_ZERO_UNDEF: 4577 case ISD::CTTZ: 4578 case ISD::CTTZ_ZERO_UNDEF: 4579 case ISD::CTPOP: { 4580 SDValue Ops = { Operand }; 4581 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4582 return Fold; 4583 } 4584 } 4585 } 4586 } 4587 4588 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4589 switch (Opcode) { 4590 case ISD::FREEZE: 4591 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4592 break; 4593 case ISD::TokenFactor: 4594 case ISD::MERGE_VALUES: 4595 case ISD::CONCAT_VECTORS: 4596 return Operand; // Factor, merge or concat of one node? No need. 4597 case ISD::BUILD_VECTOR: { 4598 // Attempt to simplify BUILD_VECTOR. 4599 SDValue Ops[] = {Operand}; 4600 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4601 return V; 4602 break; 4603 } 4604 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4605 case ISD::FP_EXTEND: 4606 assert(VT.isFloatingPoint() && 4607 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4608 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4609 assert((!VT.isVector() || 4610 VT.getVectorElementCount() == 4611 Operand.getValueType().getVectorElementCount()) && 4612 "Vector element count mismatch!"); 4613 assert(Operand.getValueType().bitsLT(VT) && 4614 "Invalid fpext node, dst < src!"); 4615 if (Operand.isUndef()) 4616 return getUNDEF(VT); 4617 break; 4618 case ISD::FP_TO_SINT: 4619 case ISD::FP_TO_UINT: 4620 if (Operand.isUndef()) 4621 return getUNDEF(VT); 4622 break; 4623 case ISD::SINT_TO_FP: 4624 case ISD::UINT_TO_FP: 4625 // [us]itofp(undef) = 0, because the result value is bounded. 4626 if (Operand.isUndef()) 4627 return getConstantFP(0.0, DL, VT); 4628 break; 4629 case ISD::SIGN_EXTEND: 4630 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4631 "Invalid SIGN_EXTEND!"); 4632 assert(VT.isVector() == Operand.getValueType().isVector() && 4633 "SIGN_EXTEND result type type should be vector iff the operand " 4634 "type is vector!"); 4635 if (Operand.getValueType() == VT) return Operand; // noop extension 4636 assert((!VT.isVector() || 4637 VT.getVectorElementCount() == 4638 Operand.getValueType().getVectorElementCount()) && 4639 "Vector element count mismatch!"); 4640 assert(Operand.getValueType().bitsLT(VT) && 4641 "Invalid sext node, dst < src!"); 4642 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4643 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4644 else if (OpOpcode == ISD::UNDEF) 4645 // sext(undef) = 0, because the top bits will all be the same. 4646 return getConstant(0, DL, VT); 4647 break; 4648 case ISD::ZERO_EXTEND: 4649 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4650 "Invalid ZERO_EXTEND!"); 4651 assert(VT.isVector() == Operand.getValueType().isVector() && 4652 "ZERO_EXTEND result type type should be vector iff the operand " 4653 "type is vector!"); 4654 if (Operand.getValueType() == VT) return Operand; // noop extension 4655 assert((!VT.isVector() || 4656 VT.getVectorElementCount() == 4657 Operand.getValueType().getVectorElementCount()) && 4658 "Vector element count mismatch!"); 4659 assert(Operand.getValueType().bitsLT(VT) && 4660 "Invalid zext node, dst < src!"); 4661 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4662 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4663 else if (OpOpcode == ISD::UNDEF) 4664 // zext(undef) = 0, because the top bits will be zero. 4665 return getConstant(0, DL, VT); 4666 break; 4667 case ISD::ANY_EXTEND: 4668 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4669 "Invalid ANY_EXTEND!"); 4670 assert(VT.isVector() == Operand.getValueType().isVector() && 4671 "ANY_EXTEND result type type should be vector iff the operand " 4672 "type is vector!"); 4673 if (Operand.getValueType() == VT) return Operand; // noop extension 4674 assert((!VT.isVector() || 4675 VT.getVectorElementCount() == 4676 Operand.getValueType().getVectorElementCount()) && 4677 "Vector element count mismatch!"); 4678 assert(Operand.getValueType().bitsLT(VT) && 4679 "Invalid anyext node, dst < src!"); 4680 4681 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4682 OpOpcode == ISD::ANY_EXTEND) 4683 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4684 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4685 else if (OpOpcode == ISD::UNDEF) 4686 return getUNDEF(VT); 4687 4688 // (ext (trunc x)) -> x 4689 if (OpOpcode == ISD::TRUNCATE) { 4690 SDValue OpOp = Operand.getOperand(0); 4691 if (OpOp.getValueType() == VT) { 4692 transferDbgValues(Operand, OpOp); 4693 return OpOp; 4694 } 4695 } 4696 break; 4697 case ISD::TRUNCATE: 4698 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4699 "Invalid TRUNCATE!"); 4700 assert(VT.isVector() == Operand.getValueType().isVector() && 4701 "TRUNCATE result type type should be vector iff the operand " 4702 "type is vector!"); 4703 if (Operand.getValueType() == VT) return Operand; // noop truncate 4704 assert((!VT.isVector() || 4705 VT.getVectorElementCount() == 4706 Operand.getValueType().getVectorElementCount()) && 4707 "Vector element count mismatch!"); 4708 assert(Operand.getValueType().bitsGT(VT) && 4709 "Invalid truncate node, src < dst!"); 4710 if (OpOpcode == ISD::TRUNCATE) 4711 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4712 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4713 OpOpcode == ISD::ANY_EXTEND) { 4714 // If the source is smaller than the dest, we still need an extend. 4715 if (Operand.getOperand(0).getValueType().getScalarType() 4716 .bitsLT(VT.getScalarType())) 4717 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4718 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4719 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4720 return Operand.getOperand(0); 4721 } 4722 if (OpOpcode == ISD::UNDEF) 4723 return getUNDEF(VT); 4724 break; 4725 case ISD::ANY_EXTEND_VECTOR_INREG: 4726 case ISD::ZERO_EXTEND_VECTOR_INREG: 4727 case ISD::SIGN_EXTEND_VECTOR_INREG: 4728 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4729 assert(Operand.getValueType().bitsLE(VT) && 4730 "The input must be the same size or smaller than the result."); 4731 assert(VT.getVectorNumElements() < 4732 Operand.getValueType().getVectorNumElements() && 4733 "The destination vector type must have fewer lanes than the input."); 4734 break; 4735 case ISD::ABS: 4736 assert(VT.isInteger() && VT == Operand.getValueType() && 4737 "Invalid ABS!"); 4738 if (OpOpcode == ISD::UNDEF) 4739 return getUNDEF(VT); 4740 break; 4741 case ISD::BSWAP: 4742 assert(VT.isInteger() && VT == Operand.getValueType() && 4743 "Invalid BSWAP!"); 4744 assert((VT.getScalarSizeInBits() % 16 == 0) && 4745 "BSWAP types must be a multiple of 16 bits!"); 4746 if (OpOpcode == ISD::UNDEF) 4747 return getUNDEF(VT); 4748 break; 4749 case ISD::BITREVERSE: 4750 assert(VT.isInteger() && VT == Operand.getValueType() && 4751 "Invalid BITREVERSE!"); 4752 if (OpOpcode == ISD::UNDEF) 4753 return getUNDEF(VT); 4754 break; 4755 case ISD::BITCAST: 4756 // Basic sanity checking. 4757 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4758 "Cannot BITCAST between types of different sizes!"); 4759 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4760 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4761 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4762 if (OpOpcode == ISD::UNDEF) 4763 return getUNDEF(VT); 4764 break; 4765 case ISD::SCALAR_TO_VECTOR: 4766 assert(VT.isVector() && !Operand.getValueType().isVector() && 4767 (VT.getVectorElementType() == Operand.getValueType() || 4768 (VT.getVectorElementType().isInteger() && 4769 Operand.getValueType().isInteger() && 4770 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4771 "Illegal SCALAR_TO_VECTOR node!"); 4772 if (OpOpcode == ISD::UNDEF) 4773 return getUNDEF(VT); 4774 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4775 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4776 isa<ConstantSDNode>(Operand.getOperand(1)) && 4777 Operand.getConstantOperandVal(1) == 0 && 4778 Operand.getOperand(0).getValueType() == VT) 4779 return Operand.getOperand(0); 4780 break; 4781 case ISD::FNEG: 4782 // Negation of an unknown bag of bits is still completely undefined. 4783 if (OpOpcode == ISD::UNDEF) 4784 return getUNDEF(VT); 4785 4786 if (OpOpcode == ISD::FNEG) // --X -> X 4787 return Operand.getOperand(0); 4788 break; 4789 case ISD::FABS: 4790 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4791 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4792 break; 4793 case ISD::VSCALE: 4794 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4795 break; 4796 case ISD::CTPOP: 4797 if (Operand.getValueType().getScalarType() == MVT::i1) 4798 return Operand; 4799 break; 4800 case ISD::CTLZ: 4801 case ISD::CTTZ: 4802 if (Operand.getValueType().getScalarType() == MVT::i1) 4803 return getNOT(DL, Operand, Operand.getValueType()); 4804 break; 4805 case ISD::VECREDUCE_SMIN: 4806 case ISD::VECREDUCE_UMAX: 4807 if (Operand.getValueType().getScalarType() == MVT::i1) 4808 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 4809 break; 4810 case ISD::VECREDUCE_SMAX: 4811 case ISD::VECREDUCE_UMIN: 4812 if (Operand.getValueType().getScalarType() == MVT::i1) 4813 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 4814 break; 4815 } 4816 4817 SDNode *N; 4818 SDVTList VTs = getVTList(VT); 4819 SDValue Ops[] = {Operand}; 4820 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4821 FoldingSetNodeID ID; 4822 AddNodeIDNode(ID, Opcode, VTs, Ops); 4823 void *IP = nullptr; 4824 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4825 E->intersectFlagsWith(Flags); 4826 return SDValue(E, 0); 4827 } 4828 4829 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4830 N->setFlags(Flags); 4831 createOperands(N, Ops); 4832 CSEMap.InsertNode(N, IP); 4833 } else { 4834 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4835 createOperands(N, Ops); 4836 } 4837 4838 InsertNode(N); 4839 SDValue V = SDValue(N, 0); 4840 NewSDValueDbgMsg(V, "Creating new node: ", this); 4841 return V; 4842 } 4843 4844 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4845 const APInt &C2) { 4846 switch (Opcode) { 4847 case ISD::ADD: return C1 + C2; 4848 case ISD::SUB: return C1 - C2; 4849 case ISD::MUL: return C1 * C2; 4850 case ISD::AND: return C1 & C2; 4851 case ISD::OR: return C1 | C2; 4852 case ISD::XOR: return C1 ^ C2; 4853 case ISD::SHL: return C1 << C2; 4854 case ISD::SRL: return C1.lshr(C2); 4855 case ISD::SRA: return C1.ashr(C2); 4856 case ISD::ROTL: return C1.rotl(C2); 4857 case ISD::ROTR: return C1.rotr(C2); 4858 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4859 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4860 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4861 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4862 case ISD::SADDSAT: return C1.sadd_sat(C2); 4863 case ISD::UADDSAT: return C1.uadd_sat(C2); 4864 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4865 case ISD::USUBSAT: return C1.usub_sat(C2); 4866 case ISD::UDIV: 4867 if (!C2.getBoolValue()) 4868 break; 4869 return C1.udiv(C2); 4870 case ISD::UREM: 4871 if (!C2.getBoolValue()) 4872 break; 4873 return C1.urem(C2); 4874 case ISD::SDIV: 4875 if (!C2.getBoolValue()) 4876 break; 4877 return C1.sdiv(C2); 4878 case ISD::SREM: 4879 if (!C2.getBoolValue()) 4880 break; 4881 return C1.srem(C2); 4882 } 4883 return llvm::None; 4884 } 4885 4886 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4887 const GlobalAddressSDNode *GA, 4888 const SDNode *N2) { 4889 if (GA->getOpcode() != ISD::GlobalAddress) 4890 return SDValue(); 4891 if (!TLI->isOffsetFoldingLegal(GA)) 4892 return SDValue(); 4893 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4894 if (!C2) 4895 return SDValue(); 4896 int64_t Offset = C2->getSExtValue(); 4897 switch (Opcode) { 4898 case ISD::ADD: break; 4899 case ISD::SUB: Offset = -uint64_t(Offset); break; 4900 default: return SDValue(); 4901 } 4902 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4903 GA->getOffset() + uint64_t(Offset)); 4904 } 4905 4906 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4907 switch (Opcode) { 4908 case ISD::SDIV: 4909 case ISD::UDIV: 4910 case ISD::SREM: 4911 case ISD::UREM: { 4912 // If a divisor is zero/undef or any element of a divisor vector is 4913 // zero/undef, the whole op is undef. 4914 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4915 SDValue Divisor = Ops[1]; 4916 if (Divisor.isUndef() || isNullConstant(Divisor)) 4917 return true; 4918 4919 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4920 llvm::any_of(Divisor->op_values(), 4921 [](SDValue V) { return V.isUndef() || 4922 isNullConstant(V); }); 4923 // TODO: Handle signed overflow. 4924 } 4925 // TODO: Handle oversized shifts. 4926 default: 4927 return false; 4928 } 4929 } 4930 4931 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4932 EVT VT, ArrayRef<SDValue> Ops) { 4933 // If the opcode is a target-specific ISD node, there's nothing we can 4934 // do here and the operand rules may not line up with the below, so 4935 // bail early. 4936 if (Opcode >= ISD::BUILTIN_OP_END) 4937 return SDValue(); 4938 4939 // For now, the array Ops should only contain two values. 4940 // This enforcement will be removed once this function is merged with 4941 // FoldConstantVectorArithmetic 4942 if (Ops.size() != 2) 4943 return SDValue(); 4944 4945 if (isUndef(Opcode, Ops)) 4946 return getUNDEF(VT); 4947 4948 SDNode *N1 = Ops[0].getNode(); 4949 SDNode *N2 = Ops[1].getNode(); 4950 4951 // Handle the case of two scalars. 4952 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4953 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4954 if (C1->isOpaque() || C2->isOpaque()) 4955 return SDValue(); 4956 4957 Optional<APInt> FoldAttempt = 4958 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 4959 if (!FoldAttempt) 4960 return SDValue(); 4961 4962 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 4963 assert((!Folded || !VT.isVector()) && 4964 "Can't fold vectors ops with scalar operands"); 4965 return Folded; 4966 } 4967 } 4968 4969 // fold (add Sym, c) -> Sym+c 4970 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4971 return FoldSymbolOffset(Opcode, VT, GA, N2); 4972 if (TLI->isCommutativeBinOp(Opcode)) 4973 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4974 return FoldSymbolOffset(Opcode, VT, GA, N1); 4975 4976 // TODO: All the folds below are performed lane-by-lane and assume a fixed 4977 // vector width, however we should be able to do constant folds involving 4978 // splat vector nodes too. 4979 if (VT.isScalableVector()) 4980 return SDValue(); 4981 4982 // For fixed width vectors, extract each constant element and fold them 4983 // individually. Either input may be an undef value. 4984 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4985 if (!BV1 && !N1->isUndef()) 4986 return SDValue(); 4987 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4988 if (!BV2 && !N2->isUndef()) 4989 return SDValue(); 4990 // If both operands are undef, that's handled the same way as scalars. 4991 if (!BV1 && !BV2) 4992 return SDValue(); 4993 4994 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4995 "Vector binop with different number of elements in operands?"); 4996 4997 EVT SVT = VT.getScalarType(); 4998 EVT LegalSVT = SVT; 4999 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5000 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5001 if (LegalSVT.bitsLT(SVT)) 5002 return SDValue(); 5003 } 5004 SmallVector<SDValue, 4> Outputs; 5005 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 5006 for (unsigned I = 0; I != NumOps; ++I) { 5007 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 5008 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 5009 if (SVT.isInteger()) { 5010 if (V1->getValueType(0).bitsGT(SVT)) 5011 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 5012 if (V2->getValueType(0).bitsGT(SVT)) 5013 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 5014 } 5015 5016 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 5017 return SDValue(); 5018 5019 // Fold one vector element. 5020 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 5021 if (LegalSVT != SVT) 5022 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5023 5024 // Scalar folding only succeeded if the result is a constant or UNDEF. 5025 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5026 ScalarResult.getOpcode() != ISD::ConstantFP) 5027 return SDValue(); 5028 Outputs.push_back(ScalarResult); 5029 } 5030 5031 assert(VT.getVectorNumElements() == Outputs.size() && 5032 "Vector size mismatch!"); 5033 5034 // We may have a vector type but a scalar result. Create a splat. 5035 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 5036 5037 // Build a big vector out of the scalar elements we generated. 5038 return getBuildVector(VT, SDLoc(), Outputs); 5039 } 5040 5041 // TODO: Merge with FoldConstantArithmetic 5042 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 5043 const SDLoc &DL, EVT VT, 5044 ArrayRef<SDValue> Ops, 5045 const SDNodeFlags Flags) { 5046 // If the opcode is a target-specific ISD node, there's nothing we can 5047 // do here and the operand rules may not line up with the below, so 5048 // bail early. 5049 if (Opcode >= ISD::BUILTIN_OP_END) 5050 return SDValue(); 5051 5052 if (isUndef(Opcode, Ops)) 5053 return getUNDEF(VT); 5054 5055 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 5056 if (!VT.isVector()) 5057 return SDValue(); 5058 5059 // TODO: All the folds below are performed lane-by-lane and assume a fixed 5060 // vector width, however we should be able to do constant folds involving 5061 // splat vector nodes too. 5062 if (VT.isScalableVector()) 5063 return SDValue(); 5064 5065 // From this point onwards all vectors are assumed to be fixed width. 5066 unsigned NumElts = VT.getVectorNumElements(); 5067 5068 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 5069 return !Op.getValueType().isVector() || 5070 Op.getValueType().getVectorNumElements() == NumElts; 5071 }; 5072 5073 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 5074 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 5075 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 5076 (BV && BV->isConstant()); 5077 }; 5078 5079 // All operands must be vector types with the same number of elements as 5080 // the result type and must be either UNDEF or a build vector of constant 5081 // or UNDEF scalars. 5082 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5083 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5084 return SDValue(); 5085 5086 // If we are comparing vectors, then the result needs to be a i1 boolean 5087 // that is then sign-extended back to the legal result type. 5088 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5089 5090 // Find legal integer scalar type for constant promotion and 5091 // ensure that its scalar size is at least as large as source. 5092 EVT LegalSVT = VT.getScalarType(); 5093 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5094 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5095 if (LegalSVT.bitsLT(VT.getScalarType())) 5096 return SDValue(); 5097 } 5098 5099 // Constant fold each scalar lane separately. 5100 SmallVector<SDValue, 4> ScalarResults; 5101 for (unsigned i = 0; i != NumElts; i++) { 5102 SmallVector<SDValue, 4> ScalarOps; 5103 for (SDValue Op : Ops) { 5104 EVT InSVT = Op.getValueType().getScalarType(); 5105 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5106 if (!InBV) { 5107 // We've checked that this is UNDEF or a constant of some kind. 5108 if (Op.isUndef()) 5109 ScalarOps.push_back(getUNDEF(InSVT)); 5110 else 5111 ScalarOps.push_back(Op); 5112 continue; 5113 } 5114 5115 SDValue ScalarOp = InBV->getOperand(i); 5116 EVT ScalarVT = ScalarOp.getValueType(); 5117 5118 // Build vector (integer) scalar operands may need implicit 5119 // truncation - do this before constant folding. 5120 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5121 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5122 5123 ScalarOps.push_back(ScalarOp); 5124 } 5125 5126 // Constant fold the scalar operands. 5127 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5128 5129 // Legalize the (integer) scalar constant if necessary. 5130 if (LegalSVT != SVT) 5131 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5132 5133 // Scalar folding only succeeded if the result is a constant or UNDEF. 5134 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5135 ScalarResult.getOpcode() != ISD::ConstantFP) 5136 return SDValue(); 5137 ScalarResults.push_back(ScalarResult); 5138 } 5139 5140 SDValue V = getBuildVector(VT, DL, ScalarResults); 5141 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5142 return V; 5143 } 5144 5145 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5146 EVT VT, SDValue N1, SDValue N2) { 5147 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5148 // should. That will require dealing with a potentially non-default 5149 // rounding mode, checking the "opStatus" return value from the APFloat 5150 // math calculations, and possibly other variations. 5151 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5152 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5153 if (N1CFP && N2CFP) { 5154 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5155 switch (Opcode) { 5156 case ISD::FADD: 5157 C1.add(C2, APFloat::rmNearestTiesToEven); 5158 return getConstantFP(C1, DL, VT); 5159 case ISD::FSUB: 5160 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5161 return getConstantFP(C1, DL, VT); 5162 case ISD::FMUL: 5163 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5164 return getConstantFP(C1, DL, VT); 5165 case ISD::FDIV: 5166 C1.divide(C2, APFloat::rmNearestTiesToEven); 5167 return getConstantFP(C1, DL, VT); 5168 case ISD::FREM: 5169 C1.mod(C2); 5170 return getConstantFP(C1, DL, VT); 5171 case ISD::FCOPYSIGN: 5172 C1.copySign(C2); 5173 return getConstantFP(C1, DL, VT); 5174 default: break; 5175 } 5176 } 5177 if (N1CFP && Opcode == ISD::FP_ROUND) { 5178 APFloat C1 = N1CFP->getValueAPF(); // make copy 5179 bool Unused; 5180 // This can return overflow, underflow, or inexact; we don't care. 5181 // FIXME need to be more flexible about rounding mode. 5182 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5183 &Unused); 5184 return getConstantFP(C1, DL, VT); 5185 } 5186 5187 switch (Opcode) { 5188 case ISD::FSUB: 5189 // -0.0 - undef --> undef (consistent with "fneg undef") 5190 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5191 return getUNDEF(VT); 5192 LLVM_FALLTHROUGH; 5193 5194 case ISD::FADD: 5195 case ISD::FMUL: 5196 case ISD::FDIV: 5197 case ISD::FREM: 5198 // If both operands are undef, the result is undef. If 1 operand is undef, 5199 // the result is NaN. This should match the behavior of the IR optimizer. 5200 if (N1.isUndef() && N2.isUndef()) 5201 return getUNDEF(VT); 5202 if (N1.isUndef() || N2.isUndef()) 5203 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5204 } 5205 return SDValue(); 5206 } 5207 5208 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5209 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5210 5211 // There's no need to assert on a byte-aligned pointer. All pointers are at 5212 // least byte aligned. 5213 if (A == Align(1)) 5214 return Val; 5215 5216 FoldingSetNodeID ID; 5217 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5218 ID.AddInteger(A.value()); 5219 5220 void *IP = nullptr; 5221 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5222 return SDValue(E, 0); 5223 5224 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5225 Val.getValueType(), A); 5226 createOperands(N, {Val}); 5227 5228 CSEMap.InsertNode(N, IP); 5229 InsertNode(N); 5230 5231 SDValue V(N, 0); 5232 NewSDValueDbgMsg(V, "Creating new node: ", this); 5233 return V; 5234 } 5235 5236 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5237 SDValue N1, SDValue N2) { 5238 SDNodeFlags Flags; 5239 if (Inserter) 5240 Flags = Inserter->getFlags(); 5241 return getNode(Opcode, DL, VT, N1, N2, Flags); 5242 } 5243 5244 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5245 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5246 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5247 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5248 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5249 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5250 5251 // Canonicalize constant to RHS if commutative. 5252 if (TLI->isCommutativeBinOp(Opcode)) { 5253 if (N1C && !N2C) { 5254 std::swap(N1C, N2C); 5255 std::swap(N1, N2); 5256 } else if (N1CFP && !N2CFP) { 5257 std::swap(N1CFP, N2CFP); 5258 std::swap(N1, N2); 5259 } 5260 } 5261 5262 switch (Opcode) { 5263 default: break; 5264 case ISD::TokenFactor: 5265 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5266 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5267 // Fold trivial token factors. 5268 if (N1.getOpcode() == ISD::EntryToken) return N2; 5269 if (N2.getOpcode() == ISD::EntryToken) return N1; 5270 if (N1 == N2) return N1; 5271 break; 5272 case ISD::BUILD_VECTOR: { 5273 // Attempt to simplify BUILD_VECTOR. 5274 SDValue Ops[] = {N1, N2}; 5275 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5276 return V; 5277 break; 5278 } 5279 case ISD::CONCAT_VECTORS: { 5280 SDValue Ops[] = {N1, N2}; 5281 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5282 return V; 5283 break; 5284 } 5285 case ISD::AND: 5286 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5287 assert(N1.getValueType() == N2.getValueType() && 5288 N1.getValueType() == VT && "Binary operator types must match!"); 5289 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5290 // worth handling here. 5291 if (N2C && N2C->isNullValue()) 5292 return N2; 5293 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5294 return N1; 5295 break; 5296 case ISD::OR: 5297 case ISD::XOR: 5298 case ISD::ADD: 5299 case ISD::SUB: 5300 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5301 assert(N1.getValueType() == N2.getValueType() && 5302 N1.getValueType() == VT && "Binary operator types must match!"); 5303 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5304 // it's worth handling here. 5305 if (N2C && N2C->isNullValue()) 5306 return N1; 5307 break; 5308 case ISD::MUL: 5309 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5310 assert(N1.getValueType() == N2.getValueType() && 5311 N1.getValueType() == VT && "Binary operator types must match!"); 5312 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5313 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5314 APInt N2CImm = N2C->getAPIntValue(); 5315 return getVScale(DL, VT, MulImm * N2CImm); 5316 } 5317 break; 5318 case ISD::UDIV: 5319 case ISD::UREM: 5320 case ISD::MULHU: 5321 case ISD::MULHS: 5322 case ISD::SDIV: 5323 case ISD::SREM: 5324 case ISD::SADDSAT: 5325 case ISD::SSUBSAT: 5326 case ISD::UADDSAT: 5327 case ISD::USUBSAT: 5328 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5329 assert(N1.getValueType() == N2.getValueType() && 5330 N1.getValueType() == VT && "Binary operator types must match!"); 5331 break; 5332 case ISD::SMIN: 5333 case ISD::UMAX: 5334 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5335 assert(N1.getValueType() == N2.getValueType() && 5336 N1.getValueType() == VT && "Binary operator types must match!"); 5337 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5338 return getNode(ISD::OR, DL, VT, N1, N2); 5339 break; 5340 case ISD::SMAX: 5341 case ISD::UMIN: 5342 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5343 assert(N1.getValueType() == N2.getValueType() && 5344 N1.getValueType() == VT && "Binary operator types must match!"); 5345 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5346 return getNode(ISD::AND, DL, VT, N1, N2); 5347 break; 5348 case ISD::FADD: 5349 case ISD::FSUB: 5350 case ISD::FMUL: 5351 case ISD::FDIV: 5352 case ISD::FREM: 5353 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5354 assert(N1.getValueType() == N2.getValueType() && 5355 N1.getValueType() == VT && "Binary operator types must match!"); 5356 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5357 return V; 5358 break; 5359 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5360 assert(N1.getValueType() == VT && 5361 N1.getValueType().isFloatingPoint() && 5362 N2.getValueType().isFloatingPoint() && 5363 "Invalid FCOPYSIGN!"); 5364 break; 5365 case ISD::SHL: 5366 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5367 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue(); 5368 APInt ShiftImm = N2C->getAPIntValue(); 5369 return getVScale(DL, VT, MulImm << ShiftImm); 5370 } 5371 LLVM_FALLTHROUGH; 5372 case ISD::SRA: 5373 case ISD::SRL: 5374 if (SDValue V = simplifyShift(N1, N2)) 5375 return V; 5376 LLVM_FALLTHROUGH; 5377 case ISD::ROTL: 5378 case ISD::ROTR: 5379 assert(VT == N1.getValueType() && 5380 "Shift operators return type must be the same as their first arg"); 5381 assert(VT.isInteger() && N2.getValueType().isInteger() && 5382 "Shifts only work on integers"); 5383 assert((!VT.isVector() || VT == N2.getValueType()) && 5384 "Vector shift amounts must be in the same as their first arg"); 5385 // Verify that the shift amount VT is big enough to hold valid shift 5386 // amounts. This catches things like trying to shift an i1024 value by an 5387 // i8, which is easy to fall into in generic code that uses 5388 // TLI.getShiftAmount(). 5389 assert(N2.getValueType().getScalarSizeInBits() >= 5390 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5391 "Invalid use of small shift amount with oversized value!"); 5392 5393 // Always fold shifts of i1 values so the code generator doesn't need to 5394 // handle them. Since we know the size of the shift has to be less than the 5395 // size of the value, the shift/rotate count is guaranteed to be zero. 5396 if (VT == MVT::i1) 5397 return N1; 5398 if (N2C && N2C->isNullValue()) 5399 return N1; 5400 break; 5401 case ISD::FP_ROUND: 5402 assert(VT.isFloatingPoint() && 5403 N1.getValueType().isFloatingPoint() && 5404 VT.bitsLE(N1.getValueType()) && 5405 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5406 "Invalid FP_ROUND!"); 5407 if (N1.getValueType() == VT) return N1; // noop conversion. 5408 break; 5409 case ISD::AssertSext: 5410 case ISD::AssertZext: { 5411 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5412 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5413 assert(VT.isInteger() && EVT.isInteger() && 5414 "Cannot *_EXTEND_INREG FP types"); 5415 assert(!EVT.isVector() && 5416 "AssertSExt/AssertZExt type should be the vector element type " 5417 "rather than the vector type!"); 5418 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5419 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5420 break; 5421 } 5422 case ISD::SIGN_EXTEND_INREG: { 5423 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5424 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5425 assert(VT.isInteger() && EVT.isInteger() && 5426 "Cannot *_EXTEND_INREG FP types"); 5427 assert(EVT.isVector() == VT.isVector() && 5428 "SIGN_EXTEND_INREG type should be vector iff the operand " 5429 "type is vector!"); 5430 assert((!EVT.isVector() || 5431 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5432 "Vector element counts must match in SIGN_EXTEND_INREG"); 5433 assert(EVT.bitsLE(VT) && "Not extending!"); 5434 if (EVT == VT) return N1; // Not actually extending 5435 5436 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5437 unsigned FromBits = EVT.getScalarSizeInBits(); 5438 Val <<= Val.getBitWidth() - FromBits; 5439 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5440 return getConstant(Val, DL, ConstantVT); 5441 }; 5442 5443 if (N1C) { 5444 const APInt &Val = N1C->getAPIntValue(); 5445 return SignExtendInReg(Val, VT); 5446 } 5447 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5448 SmallVector<SDValue, 8> Ops; 5449 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5450 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5451 SDValue Op = N1.getOperand(i); 5452 if (Op.isUndef()) { 5453 Ops.push_back(getUNDEF(OpVT)); 5454 continue; 5455 } 5456 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5457 APInt Val = C->getAPIntValue(); 5458 Ops.push_back(SignExtendInReg(Val, OpVT)); 5459 } 5460 return getBuildVector(VT, DL, Ops); 5461 } 5462 break; 5463 } 5464 case ISD::EXTRACT_VECTOR_ELT: 5465 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5466 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5467 element type of the vector."); 5468 5469 // Extract from an undefined value or using an undefined index is undefined. 5470 if (N1.isUndef() || N2.isUndef()) 5471 return getUNDEF(VT); 5472 5473 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5474 // vectors. For scalable vectors we will provide appropriate support for 5475 // dealing with arbitrary indices. 5476 if (N2C && N1.getValueType().isFixedLengthVector() && 5477 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5478 return getUNDEF(VT); 5479 5480 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5481 // expanding copies of large vectors from registers. This only works for 5482 // fixed length vectors, since we need to know the exact number of 5483 // elements. 5484 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5485 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5486 unsigned Factor = 5487 N1.getOperand(0).getValueType().getVectorNumElements(); 5488 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5489 N1.getOperand(N2C->getZExtValue() / Factor), 5490 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5491 } 5492 5493 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5494 // lowering is expanding large vector constants. 5495 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5496 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5497 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5498 N1.getValueType().isFixedLengthVector()) && 5499 "BUILD_VECTOR used for scalable vectors"); 5500 unsigned Index = 5501 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5502 SDValue Elt = N1.getOperand(Index); 5503 5504 if (VT != Elt.getValueType()) 5505 // If the vector element type is not legal, the BUILD_VECTOR operands 5506 // are promoted and implicitly truncated, and the result implicitly 5507 // extended. Make that explicit here. 5508 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5509 5510 return Elt; 5511 } 5512 5513 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5514 // operations are lowered to scalars. 5515 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5516 // If the indices are the same, return the inserted element else 5517 // if the indices are known different, extract the element from 5518 // the original vector. 5519 SDValue N1Op2 = N1.getOperand(2); 5520 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5521 5522 if (N1Op2C && N2C) { 5523 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5524 if (VT == N1.getOperand(1).getValueType()) 5525 return N1.getOperand(1); 5526 else 5527 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5528 } 5529 5530 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5531 } 5532 } 5533 5534 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5535 // when vector types are scalarized and v1iX is legal. 5536 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5537 // Here we are completely ignoring the extract element index (N2), 5538 // which is fine for fixed width vectors, since any index other than 0 5539 // is undefined anyway. However, this cannot be ignored for scalable 5540 // vectors - in theory we could support this, but we don't want to do this 5541 // without a profitability check. 5542 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5543 N1.getValueType().isFixedLengthVector() && 5544 N1.getValueType().getVectorNumElements() == 1) { 5545 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5546 N1.getOperand(1)); 5547 } 5548 break; 5549 case ISD::EXTRACT_ELEMENT: 5550 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5551 assert(!N1.getValueType().isVector() && !VT.isVector() && 5552 (N1.getValueType().isInteger() == VT.isInteger()) && 5553 N1.getValueType() != VT && 5554 "Wrong types for EXTRACT_ELEMENT!"); 5555 5556 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5557 // 64-bit integers into 32-bit parts. Instead of building the extract of 5558 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5559 if (N1.getOpcode() == ISD::BUILD_PAIR) 5560 return N1.getOperand(N2C->getZExtValue()); 5561 5562 // EXTRACT_ELEMENT of a constant int is also very common. 5563 if (N1C) { 5564 unsigned ElementSize = VT.getSizeInBits(); 5565 unsigned Shift = ElementSize * N2C->getZExtValue(); 5566 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5567 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5568 } 5569 break; 5570 case ISD::EXTRACT_SUBVECTOR: 5571 EVT N1VT = N1.getValueType(); 5572 assert(VT.isVector() && N1VT.isVector() && 5573 "Extract subvector VTs must be vectors!"); 5574 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5575 "Extract subvector VTs must have the same element type!"); 5576 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5577 "Cannot extract a scalable vector from a fixed length vector!"); 5578 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5579 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5580 "Extract subvector must be from larger vector to smaller vector!"); 5581 assert(N2C && "Extract subvector index must be a constant"); 5582 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5583 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5584 N1VT.getVectorMinNumElements()) && 5585 "Extract subvector overflow!"); 5586 assert(N2C->getAPIntValue().getBitWidth() == 5587 TLI->getVectorIdxTy(getDataLayout()) 5588 .getSizeInBits() 5589 .getFixedSize() && 5590 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5591 5592 // Trivial extraction. 5593 if (VT == N1VT) 5594 return N1; 5595 5596 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5597 if (N1.isUndef()) 5598 return getUNDEF(VT); 5599 5600 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5601 // the concat have the same type as the extract. 5602 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5603 VT == N1.getOperand(0).getValueType()) { 5604 unsigned Factor = VT.getVectorMinNumElements(); 5605 return N1.getOperand(N2C->getZExtValue() / Factor); 5606 } 5607 5608 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5609 // during shuffle legalization. 5610 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5611 VT == N1.getOperand(1).getValueType()) 5612 return N1.getOperand(1); 5613 break; 5614 } 5615 5616 // Perform trivial constant folding. 5617 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5618 return SV; 5619 5620 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5621 return V; 5622 5623 // Canonicalize an UNDEF to the RHS, even over a constant. 5624 if (N1.isUndef()) { 5625 if (TLI->isCommutativeBinOp(Opcode)) { 5626 std::swap(N1, N2); 5627 } else { 5628 switch (Opcode) { 5629 case ISD::SIGN_EXTEND_INREG: 5630 case ISD::SUB: 5631 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5632 case ISD::UDIV: 5633 case ISD::SDIV: 5634 case ISD::UREM: 5635 case ISD::SREM: 5636 case ISD::SSUBSAT: 5637 case ISD::USUBSAT: 5638 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5639 } 5640 } 5641 } 5642 5643 // Fold a bunch of operators when the RHS is undef. 5644 if (N2.isUndef()) { 5645 switch (Opcode) { 5646 case ISD::XOR: 5647 if (N1.isUndef()) 5648 // Handle undef ^ undef -> 0 special case. This is a common 5649 // idiom (misuse). 5650 return getConstant(0, DL, VT); 5651 LLVM_FALLTHROUGH; 5652 case ISD::ADD: 5653 case ISD::SUB: 5654 case ISD::UDIV: 5655 case ISD::SDIV: 5656 case ISD::UREM: 5657 case ISD::SREM: 5658 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5659 case ISD::MUL: 5660 case ISD::AND: 5661 case ISD::SSUBSAT: 5662 case ISD::USUBSAT: 5663 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5664 case ISD::OR: 5665 case ISD::SADDSAT: 5666 case ISD::UADDSAT: 5667 return getAllOnesConstant(DL, VT); 5668 } 5669 } 5670 5671 // Memoize this node if possible. 5672 SDNode *N; 5673 SDVTList VTs = getVTList(VT); 5674 SDValue Ops[] = {N1, N2}; 5675 if (VT != MVT::Glue) { 5676 FoldingSetNodeID ID; 5677 AddNodeIDNode(ID, Opcode, VTs, Ops); 5678 void *IP = nullptr; 5679 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5680 E->intersectFlagsWith(Flags); 5681 return SDValue(E, 0); 5682 } 5683 5684 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5685 N->setFlags(Flags); 5686 createOperands(N, Ops); 5687 CSEMap.InsertNode(N, IP); 5688 } else { 5689 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5690 createOperands(N, Ops); 5691 } 5692 5693 InsertNode(N); 5694 SDValue V = SDValue(N, 0); 5695 NewSDValueDbgMsg(V, "Creating new node: ", this); 5696 return V; 5697 } 5698 5699 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5700 SDValue N1, SDValue N2, SDValue N3) { 5701 SDNodeFlags Flags; 5702 if (Inserter) 5703 Flags = Inserter->getFlags(); 5704 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 5705 } 5706 5707 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5708 SDValue N1, SDValue N2, SDValue N3, 5709 const SDNodeFlags Flags) { 5710 // Perform various simplifications. 5711 switch (Opcode) { 5712 case ISD::FMA: { 5713 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5714 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5715 N3.getValueType() == VT && "FMA types must match!"); 5716 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5717 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5718 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5719 if (N1CFP && N2CFP && N3CFP) { 5720 APFloat V1 = N1CFP->getValueAPF(); 5721 const APFloat &V2 = N2CFP->getValueAPF(); 5722 const APFloat &V3 = N3CFP->getValueAPF(); 5723 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5724 return getConstantFP(V1, DL, VT); 5725 } 5726 break; 5727 } 5728 case ISD::BUILD_VECTOR: { 5729 // Attempt to simplify BUILD_VECTOR. 5730 SDValue Ops[] = {N1, N2, N3}; 5731 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5732 return V; 5733 break; 5734 } 5735 case ISD::CONCAT_VECTORS: { 5736 SDValue Ops[] = {N1, N2, N3}; 5737 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5738 return V; 5739 break; 5740 } 5741 case ISD::SETCC: { 5742 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5743 assert(N1.getValueType() == N2.getValueType() && 5744 "SETCC operands must have the same type!"); 5745 assert(VT.isVector() == N1.getValueType().isVector() && 5746 "SETCC type should be vector iff the operand type is vector!"); 5747 assert((!VT.isVector() || VT.getVectorElementCount() == 5748 N1.getValueType().getVectorElementCount()) && 5749 "SETCC vector element counts must match!"); 5750 // Use FoldSetCC to simplify SETCC's. 5751 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5752 return V; 5753 // Vector constant folding. 5754 SDValue Ops[] = {N1, N2, N3}; 5755 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5756 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5757 return V; 5758 } 5759 break; 5760 } 5761 case ISD::SELECT: 5762 case ISD::VSELECT: 5763 if (SDValue V = simplifySelect(N1, N2, N3)) 5764 return V; 5765 break; 5766 case ISD::VECTOR_SHUFFLE: 5767 llvm_unreachable("should use getVectorShuffle constructor!"); 5768 case ISD::INSERT_VECTOR_ELT: { 5769 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5770 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 5771 // for scalable vectors where we will generate appropriate code to 5772 // deal with out-of-bounds cases correctly. 5773 if (N3C && N1.getValueType().isFixedLengthVector() && 5774 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5775 return getUNDEF(VT); 5776 5777 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5778 if (N3.isUndef()) 5779 return getUNDEF(VT); 5780 5781 // If the inserted element is an UNDEF, just use the input vector. 5782 if (N2.isUndef()) 5783 return N1; 5784 5785 break; 5786 } 5787 case ISD::INSERT_SUBVECTOR: { 5788 // Inserting undef into undef is still undef. 5789 if (N1.isUndef() && N2.isUndef()) 5790 return getUNDEF(VT); 5791 5792 EVT N2VT = N2.getValueType(); 5793 assert(VT == N1.getValueType() && 5794 "Dest and insert subvector source types must match!"); 5795 assert(VT.isVector() && N2VT.isVector() && 5796 "Insert subvector VTs must be vectors!"); 5797 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 5798 "Cannot insert a scalable vector into a fixed length vector!"); 5799 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5800 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 5801 "Insert subvector must be from smaller vector to larger vector!"); 5802 assert(isa<ConstantSDNode>(N3) && 5803 "Insert subvector index must be constant"); 5804 assert((VT.isScalableVector() != N2VT.isScalableVector() || 5805 (N2VT.getVectorMinNumElements() + 5806 cast<ConstantSDNode>(N3)->getZExtValue()) <= 5807 VT.getVectorMinNumElements()) && 5808 "Insert subvector overflow!"); 5809 5810 // Trivial insertion. 5811 if (VT == N2VT) 5812 return N2; 5813 5814 // If this is an insert of an extracted vector into an undef vector, we 5815 // can just use the input to the extract. 5816 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5817 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5818 return N2.getOperand(0); 5819 break; 5820 } 5821 case ISD::BITCAST: 5822 // Fold bit_convert nodes from a type to themselves. 5823 if (N1.getValueType() == VT) 5824 return N1; 5825 break; 5826 } 5827 5828 // Memoize node if it doesn't produce a flag. 5829 SDNode *N; 5830 SDVTList VTs = getVTList(VT); 5831 SDValue Ops[] = {N1, N2, N3}; 5832 if (VT != MVT::Glue) { 5833 FoldingSetNodeID ID; 5834 AddNodeIDNode(ID, Opcode, VTs, Ops); 5835 void *IP = nullptr; 5836 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5837 E->intersectFlagsWith(Flags); 5838 return SDValue(E, 0); 5839 } 5840 5841 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5842 N->setFlags(Flags); 5843 createOperands(N, Ops); 5844 CSEMap.InsertNode(N, IP); 5845 } else { 5846 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5847 createOperands(N, Ops); 5848 } 5849 5850 InsertNode(N); 5851 SDValue V = SDValue(N, 0); 5852 NewSDValueDbgMsg(V, "Creating new node: ", this); 5853 return V; 5854 } 5855 5856 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5857 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5858 SDValue Ops[] = { N1, N2, N3, N4 }; 5859 return getNode(Opcode, DL, VT, Ops); 5860 } 5861 5862 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5863 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5864 SDValue N5) { 5865 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5866 return getNode(Opcode, DL, VT, Ops); 5867 } 5868 5869 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5870 /// the incoming stack arguments to be loaded from the stack. 5871 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5872 SmallVector<SDValue, 8> ArgChains; 5873 5874 // Include the original chain at the beginning of the list. When this is 5875 // used by target LowerCall hooks, this helps legalize find the 5876 // CALLSEQ_BEGIN node. 5877 ArgChains.push_back(Chain); 5878 5879 // Add a chain value for each stack argument. 5880 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5881 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5882 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5883 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5884 if (FI->getIndex() < 0) 5885 ArgChains.push_back(SDValue(L, 1)); 5886 5887 // Build a tokenfactor for all the chains. 5888 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5889 } 5890 5891 /// getMemsetValue - Vectorized representation of the memset value 5892 /// operand. 5893 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5894 const SDLoc &dl) { 5895 assert(!Value.isUndef()); 5896 5897 unsigned NumBits = VT.getScalarSizeInBits(); 5898 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5899 assert(C->getAPIntValue().getBitWidth() == 8); 5900 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5901 if (VT.isInteger()) { 5902 bool IsOpaque = VT.getSizeInBits() > 64 || 5903 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5904 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5905 } 5906 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5907 VT); 5908 } 5909 5910 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5911 EVT IntVT = VT.getScalarType(); 5912 if (!IntVT.isInteger()) 5913 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5914 5915 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5916 if (NumBits > 8) { 5917 // Use a multiplication with 0x010101... to extend the input to the 5918 // required length. 5919 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5920 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5921 DAG.getConstant(Magic, dl, IntVT)); 5922 } 5923 5924 if (VT != Value.getValueType() && !VT.isInteger()) 5925 Value = DAG.getBitcast(VT.getScalarType(), Value); 5926 if (VT != Value.getValueType()) 5927 Value = DAG.getSplatBuildVector(VT, dl, Value); 5928 5929 return Value; 5930 } 5931 5932 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5933 /// used when a memcpy is turned into a memset when the source is a constant 5934 /// string ptr. 5935 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5936 const TargetLowering &TLI, 5937 const ConstantDataArraySlice &Slice) { 5938 // Handle vector with all elements zero. 5939 if (Slice.Array == nullptr) { 5940 if (VT.isInteger()) 5941 return DAG.getConstant(0, dl, VT); 5942 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5943 return DAG.getConstantFP(0.0, dl, VT); 5944 else if (VT.isVector()) { 5945 unsigned NumElts = VT.getVectorNumElements(); 5946 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5947 return DAG.getNode(ISD::BITCAST, dl, VT, 5948 DAG.getConstant(0, dl, 5949 EVT::getVectorVT(*DAG.getContext(), 5950 EltVT, NumElts))); 5951 } else 5952 llvm_unreachable("Expected type!"); 5953 } 5954 5955 assert(!VT.isVector() && "Can't handle vector type here!"); 5956 unsigned NumVTBits = VT.getSizeInBits(); 5957 unsigned NumVTBytes = NumVTBits / 8; 5958 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5959 5960 APInt Val(NumVTBits, 0); 5961 if (DAG.getDataLayout().isLittleEndian()) { 5962 for (unsigned i = 0; i != NumBytes; ++i) 5963 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5964 } else { 5965 for (unsigned i = 0; i != NumBytes; ++i) 5966 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5967 } 5968 5969 // If the "cost" of materializing the integer immediate is less than the cost 5970 // of a load, then it is cost effective to turn the load into the immediate. 5971 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5972 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5973 return DAG.getConstant(Val, dl, VT); 5974 return SDValue(nullptr, 0); 5975 } 5976 5977 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 5978 const SDLoc &DL, 5979 const SDNodeFlags Flags) { 5980 EVT VT = Base.getValueType(); 5981 SDValue Index; 5982 5983 if (Offset.isScalable()) 5984 Index = getVScale(DL, Base.getValueType(), 5985 APInt(Base.getValueSizeInBits().getFixedSize(), 5986 Offset.getKnownMinSize())); 5987 else 5988 Index = getConstant(Offset.getFixedSize(), DL, VT); 5989 5990 return getMemBasePlusOffset(Base, Index, DL, Flags); 5991 } 5992 5993 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5994 const SDLoc &DL, 5995 const SDNodeFlags Flags) { 5996 assert(Offset.getValueType().isInteger()); 5997 EVT BasePtrVT = Ptr.getValueType(); 5998 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 5999 } 6000 6001 /// Returns true if memcpy source is constant data. 6002 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6003 uint64_t SrcDelta = 0; 6004 GlobalAddressSDNode *G = nullptr; 6005 if (Src.getOpcode() == ISD::GlobalAddress) 6006 G = cast<GlobalAddressSDNode>(Src); 6007 else if (Src.getOpcode() == ISD::ADD && 6008 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6009 Src.getOperand(1).getOpcode() == ISD::Constant) { 6010 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6011 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6012 } 6013 if (!G) 6014 return false; 6015 6016 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6017 SrcDelta + G->getOffset()); 6018 } 6019 6020 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6021 SelectionDAG &DAG) { 6022 // On Darwin, -Os means optimize for size without hurting performance, so 6023 // only really optimize for size when -Oz (MinSize) is used. 6024 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6025 return MF.getFunction().hasMinSize(); 6026 return DAG.shouldOptForSize(); 6027 } 6028 6029 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6030 SmallVector<SDValue, 32> &OutChains, unsigned From, 6031 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6032 SmallVector<SDValue, 16> &OutStoreChains) { 6033 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6034 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6035 SmallVector<SDValue, 16> GluedLoadChains; 6036 for (unsigned i = From; i < To; ++i) { 6037 OutChains.push_back(OutLoadChains[i]); 6038 GluedLoadChains.push_back(OutLoadChains[i]); 6039 } 6040 6041 // Chain for all loads. 6042 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6043 GluedLoadChains); 6044 6045 for (unsigned i = From; i < To; ++i) { 6046 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6047 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6048 ST->getBasePtr(), ST->getMemoryVT(), 6049 ST->getMemOperand()); 6050 OutChains.push_back(NewStore); 6051 } 6052 } 6053 6054 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6055 SDValue Chain, SDValue Dst, SDValue Src, 6056 uint64_t Size, Align Alignment, 6057 bool isVol, bool AlwaysInline, 6058 MachinePointerInfo DstPtrInfo, 6059 MachinePointerInfo SrcPtrInfo) { 6060 // Turn a memcpy of undef to nop. 6061 // FIXME: We need to honor volatile even is Src is undef. 6062 if (Src.isUndef()) 6063 return Chain; 6064 6065 // Expand memcpy to a series of load and store ops if the size operand falls 6066 // below a certain threshold. 6067 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6068 // rather than maybe a humongous number of loads and stores. 6069 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6070 const DataLayout &DL = DAG.getDataLayout(); 6071 LLVMContext &C = *DAG.getContext(); 6072 std::vector<EVT> MemOps; 6073 bool DstAlignCanChange = false; 6074 MachineFunction &MF = DAG.getMachineFunction(); 6075 MachineFrameInfo &MFI = MF.getFrameInfo(); 6076 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6077 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6078 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6079 DstAlignCanChange = true; 6080 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6081 if (!SrcAlign || Alignment > *SrcAlign) 6082 SrcAlign = Alignment; 6083 assert(SrcAlign && "SrcAlign must be set"); 6084 ConstantDataArraySlice Slice; 6085 // If marked as volatile, perform a copy even when marked as constant. 6086 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6087 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6088 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6089 const MemOp Op = isZeroConstant 6090 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6091 /*IsZeroMemset*/ true, isVol) 6092 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6093 *SrcAlign, isVol, CopyFromConstant); 6094 if (!TLI.findOptimalMemOpLowering( 6095 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6096 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6097 return SDValue(); 6098 6099 if (DstAlignCanChange) { 6100 Type *Ty = MemOps[0].getTypeForEVT(C); 6101 Align NewAlign = DL.getABITypeAlign(Ty); 6102 6103 // Don't promote to an alignment that would require dynamic stack 6104 // realignment. 6105 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6106 if (!TRI->needsStackRealignment(MF)) 6107 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6108 NewAlign = NewAlign / 2; 6109 6110 if (NewAlign > Alignment) { 6111 // Give the stack frame object a larger alignment if needed. 6112 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6113 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6114 Alignment = NewAlign; 6115 } 6116 } 6117 6118 MachineMemOperand::Flags MMOFlags = 6119 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6120 SmallVector<SDValue, 16> OutLoadChains; 6121 SmallVector<SDValue, 16> OutStoreChains; 6122 SmallVector<SDValue, 32> OutChains; 6123 unsigned NumMemOps = MemOps.size(); 6124 uint64_t SrcOff = 0, DstOff = 0; 6125 for (unsigned i = 0; i != NumMemOps; ++i) { 6126 EVT VT = MemOps[i]; 6127 unsigned VTSize = VT.getSizeInBits() / 8; 6128 SDValue Value, Store; 6129 6130 if (VTSize > Size) { 6131 // Issuing an unaligned load / store pair that overlaps with the previous 6132 // pair. Adjust the offset accordingly. 6133 assert(i == NumMemOps-1 && i != 0); 6134 SrcOff -= VTSize - Size; 6135 DstOff -= VTSize - Size; 6136 } 6137 6138 if (CopyFromConstant && 6139 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6140 // It's unlikely a store of a vector immediate can be done in a single 6141 // instruction. It would require a load from a constantpool first. 6142 // We only handle zero vectors here. 6143 // FIXME: Handle other cases where store of vector immediate is done in 6144 // a single instruction. 6145 ConstantDataArraySlice SubSlice; 6146 if (SrcOff < Slice.Length) { 6147 SubSlice = Slice; 6148 SubSlice.move(SrcOff); 6149 } else { 6150 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6151 SubSlice.Array = nullptr; 6152 SubSlice.Offset = 0; 6153 SubSlice.Length = VTSize; 6154 } 6155 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6156 if (Value.getNode()) { 6157 Store = DAG.getStore( 6158 Chain, dl, Value, 6159 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6160 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6161 OutChains.push_back(Store); 6162 } 6163 } 6164 6165 if (!Store.getNode()) { 6166 // The type might not be legal for the target. This should only happen 6167 // if the type is smaller than a legal type, as on PPC, so the right 6168 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6169 // to Load/Store if NVT==VT. 6170 // FIXME does the case above also need this? 6171 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6172 assert(NVT.bitsGE(VT)); 6173 6174 bool isDereferenceable = 6175 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6176 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6177 if (isDereferenceable) 6178 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6179 6180 Value = DAG.getExtLoad( 6181 ISD::EXTLOAD, dl, NVT, Chain, 6182 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6183 SrcPtrInfo.getWithOffset(SrcOff), VT, 6184 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags); 6185 OutLoadChains.push_back(Value.getValue(1)); 6186 6187 Store = DAG.getTruncStore( 6188 Chain, dl, Value, 6189 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6190 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags); 6191 OutStoreChains.push_back(Store); 6192 } 6193 SrcOff += VTSize; 6194 DstOff += VTSize; 6195 Size -= VTSize; 6196 } 6197 6198 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6199 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6200 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6201 6202 if (NumLdStInMemcpy) { 6203 // It may be that memcpy might be converted to memset if it's memcpy 6204 // of constants. In such a case, we won't have loads and stores, but 6205 // just stores. In the absence of loads, there is nothing to gang up. 6206 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6207 // If target does not care, just leave as it. 6208 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6209 OutChains.push_back(OutLoadChains[i]); 6210 OutChains.push_back(OutStoreChains[i]); 6211 } 6212 } else { 6213 // Ld/St less than/equal limit set by target. 6214 if (NumLdStInMemcpy <= GluedLdStLimit) { 6215 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6216 NumLdStInMemcpy, OutLoadChains, 6217 OutStoreChains); 6218 } else { 6219 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6220 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6221 unsigned GlueIter = 0; 6222 6223 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6224 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6225 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6226 6227 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6228 OutLoadChains, OutStoreChains); 6229 GlueIter += GluedLdStLimit; 6230 } 6231 6232 // Residual ld/st. 6233 if (RemainingLdStInMemcpy) { 6234 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6235 RemainingLdStInMemcpy, OutLoadChains, 6236 OutStoreChains); 6237 } 6238 } 6239 } 6240 } 6241 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6242 } 6243 6244 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6245 SDValue Chain, SDValue Dst, SDValue Src, 6246 uint64_t Size, Align Alignment, 6247 bool isVol, bool AlwaysInline, 6248 MachinePointerInfo DstPtrInfo, 6249 MachinePointerInfo SrcPtrInfo) { 6250 // Turn a memmove of undef to nop. 6251 // FIXME: We need to honor volatile even is Src is undef. 6252 if (Src.isUndef()) 6253 return Chain; 6254 6255 // Expand memmove to a series of load and store ops if the size operand falls 6256 // below a certain threshold. 6257 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6258 const DataLayout &DL = DAG.getDataLayout(); 6259 LLVMContext &C = *DAG.getContext(); 6260 std::vector<EVT> MemOps; 6261 bool DstAlignCanChange = false; 6262 MachineFunction &MF = DAG.getMachineFunction(); 6263 MachineFrameInfo &MFI = MF.getFrameInfo(); 6264 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6265 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6266 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6267 DstAlignCanChange = true; 6268 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6269 if (!SrcAlign || Alignment > *SrcAlign) 6270 SrcAlign = Alignment; 6271 assert(SrcAlign && "SrcAlign must be set"); 6272 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6273 if (!TLI.findOptimalMemOpLowering( 6274 MemOps, Limit, 6275 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6276 /*IsVolatile*/ true), 6277 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6278 MF.getFunction().getAttributes())) 6279 return SDValue(); 6280 6281 if (DstAlignCanChange) { 6282 Type *Ty = MemOps[0].getTypeForEVT(C); 6283 Align NewAlign = DL.getABITypeAlign(Ty); 6284 if (NewAlign > Alignment) { 6285 // Give the stack frame object a larger alignment if needed. 6286 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6287 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6288 Alignment = NewAlign; 6289 } 6290 } 6291 6292 MachineMemOperand::Flags MMOFlags = 6293 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6294 uint64_t SrcOff = 0, DstOff = 0; 6295 SmallVector<SDValue, 8> LoadValues; 6296 SmallVector<SDValue, 8> LoadChains; 6297 SmallVector<SDValue, 8> OutChains; 6298 unsigned NumMemOps = MemOps.size(); 6299 for (unsigned i = 0; i < NumMemOps; i++) { 6300 EVT VT = MemOps[i]; 6301 unsigned VTSize = VT.getSizeInBits() / 8; 6302 SDValue Value; 6303 6304 bool isDereferenceable = 6305 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6306 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6307 if (isDereferenceable) 6308 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6309 6310 Value = 6311 DAG.getLoad(VT, dl, Chain, 6312 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6313 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags); 6314 LoadValues.push_back(Value); 6315 LoadChains.push_back(Value.getValue(1)); 6316 SrcOff += VTSize; 6317 } 6318 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6319 OutChains.clear(); 6320 for (unsigned i = 0; i < NumMemOps; i++) { 6321 EVT VT = MemOps[i]; 6322 unsigned VTSize = VT.getSizeInBits() / 8; 6323 SDValue Store; 6324 6325 Store = 6326 DAG.getStore(Chain, dl, LoadValues[i], 6327 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6328 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 6329 OutChains.push_back(Store); 6330 DstOff += VTSize; 6331 } 6332 6333 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6334 } 6335 6336 /// Lower the call to 'memset' intrinsic function into a series of store 6337 /// operations. 6338 /// 6339 /// \param DAG Selection DAG where lowered code is placed. 6340 /// \param dl Link to corresponding IR location. 6341 /// \param Chain Control flow dependency. 6342 /// \param Dst Pointer to destination memory location. 6343 /// \param Src Value of byte to write into the memory. 6344 /// \param Size Number of bytes to write. 6345 /// \param Alignment Alignment of the destination in bytes. 6346 /// \param isVol True if destination is volatile. 6347 /// \param DstPtrInfo IR information on the memory pointer. 6348 /// \returns New head in the control flow, if lowering was successful, empty 6349 /// SDValue otherwise. 6350 /// 6351 /// The function tries to replace 'llvm.memset' intrinsic with several store 6352 /// operations and value calculation code. This is usually profitable for small 6353 /// memory size. 6354 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6355 SDValue Chain, SDValue Dst, SDValue Src, 6356 uint64_t Size, Align Alignment, bool isVol, 6357 MachinePointerInfo DstPtrInfo) { 6358 // Turn a memset of undef to nop. 6359 // FIXME: We need to honor volatile even is Src is undef. 6360 if (Src.isUndef()) 6361 return Chain; 6362 6363 // Expand memset to a series of load/store ops if the size operand 6364 // falls below a certain threshold. 6365 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6366 std::vector<EVT> MemOps; 6367 bool DstAlignCanChange = false; 6368 MachineFunction &MF = DAG.getMachineFunction(); 6369 MachineFrameInfo &MFI = MF.getFrameInfo(); 6370 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6371 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6372 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6373 DstAlignCanChange = true; 6374 bool IsZeroVal = 6375 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6376 if (!TLI.findOptimalMemOpLowering( 6377 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6378 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6379 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6380 return SDValue(); 6381 6382 if (DstAlignCanChange) { 6383 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6384 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6385 if (NewAlign > Alignment) { 6386 // Give the stack frame object a larger alignment if needed. 6387 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6388 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6389 Alignment = NewAlign; 6390 } 6391 } 6392 6393 SmallVector<SDValue, 8> OutChains; 6394 uint64_t DstOff = 0; 6395 unsigned NumMemOps = MemOps.size(); 6396 6397 // Find the largest store and generate the bit pattern for it. 6398 EVT LargestVT = MemOps[0]; 6399 for (unsigned i = 1; i < NumMemOps; i++) 6400 if (MemOps[i].bitsGT(LargestVT)) 6401 LargestVT = MemOps[i]; 6402 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6403 6404 for (unsigned i = 0; i < NumMemOps; i++) { 6405 EVT VT = MemOps[i]; 6406 unsigned VTSize = VT.getSizeInBits() / 8; 6407 if (VTSize > Size) { 6408 // Issuing an unaligned load / store pair that overlaps with the previous 6409 // pair. Adjust the offset accordingly. 6410 assert(i == NumMemOps-1 && i != 0); 6411 DstOff -= VTSize - Size; 6412 } 6413 6414 // If this store is smaller than the largest store see whether we can get 6415 // the smaller value for free with a truncate. 6416 SDValue Value = MemSetValue; 6417 if (VT.bitsLT(LargestVT)) { 6418 if (!LargestVT.isVector() && !VT.isVector() && 6419 TLI.isTruncateFree(LargestVT, VT)) 6420 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6421 else 6422 Value = getMemsetValue(Src, VT, DAG, dl); 6423 } 6424 assert(Value.getValueType() == VT && "Value with wrong type."); 6425 SDValue Store = DAG.getStore( 6426 Chain, dl, Value, 6427 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6428 DstPtrInfo.getWithOffset(DstOff), Alignment, 6429 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6430 OutChains.push_back(Store); 6431 DstOff += VT.getSizeInBits() / 8; 6432 Size -= VTSize; 6433 } 6434 6435 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6436 } 6437 6438 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6439 unsigned AS) { 6440 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6441 // pointer operands can be losslessly bitcasted to pointers of address space 0 6442 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6443 report_fatal_error("cannot lower memory intrinsic in address space " + 6444 Twine(AS)); 6445 } 6446 } 6447 6448 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6449 SDValue Src, SDValue Size, Align Alignment, 6450 bool isVol, bool AlwaysInline, bool isTailCall, 6451 MachinePointerInfo DstPtrInfo, 6452 MachinePointerInfo SrcPtrInfo) { 6453 // Check to see if we should lower the memcpy to loads and stores first. 6454 // For cases within the target-specified limits, this is the best choice. 6455 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6456 if (ConstantSize) { 6457 // Memcpy with size zero? Just return the original chain. 6458 if (ConstantSize->isNullValue()) 6459 return Chain; 6460 6461 SDValue Result = getMemcpyLoadsAndStores( 6462 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6463 isVol, false, DstPtrInfo, SrcPtrInfo); 6464 if (Result.getNode()) 6465 return Result; 6466 } 6467 6468 // Then check to see if we should lower the memcpy with target-specific 6469 // code. If the target chooses to do this, this is the next best. 6470 if (TSI) { 6471 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6472 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6473 DstPtrInfo, SrcPtrInfo); 6474 if (Result.getNode()) 6475 return Result; 6476 } 6477 6478 // If we really need inline code and the target declined to provide it, 6479 // use a (potentially long) sequence of loads and stores. 6480 if (AlwaysInline) { 6481 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6482 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6483 ConstantSize->getZExtValue(), Alignment, 6484 isVol, true, DstPtrInfo, SrcPtrInfo); 6485 } 6486 6487 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6488 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6489 6490 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6491 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6492 // respect volatile, so they may do things like read or write memory 6493 // beyond the given memory regions. But fixing this isn't easy, and most 6494 // people don't care. 6495 6496 // Emit a library call. 6497 TargetLowering::ArgListTy Args; 6498 TargetLowering::ArgListEntry Entry; 6499 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6500 Entry.Node = Dst; Args.push_back(Entry); 6501 Entry.Node = Src; Args.push_back(Entry); 6502 6503 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6504 Entry.Node = Size; Args.push_back(Entry); 6505 // FIXME: pass in SDLoc 6506 TargetLowering::CallLoweringInfo CLI(*this); 6507 CLI.setDebugLoc(dl) 6508 .setChain(Chain) 6509 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6510 Dst.getValueType().getTypeForEVT(*getContext()), 6511 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6512 TLI->getPointerTy(getDataLayout())), 6513 std::move(Args)) 6514 .setDiscardResult() 6515 .setTailCall(isTailCall); 6516 6517 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6518 return CallResult.second; 6519 } 6520 6521 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6522 SDValue Dst, unsigned DstAlign, 6523 SDValue Src, unsigned SrcAlign, 6524 SDValue Size, Type *SizeTy, 6525 unsigned ElemSz, bool isTailCall, 6526 MachinePointerInfo DstPtrInfo, 6527 MachinePointerInfo SrcPtrInfo) { 6528 // Emit a library call. 6529 TargetLowering::ArgListTy Args; 6530 TargetLowering::ArgListEntry Entry; 6531 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6532 Entry.Node = Dst; 6533 Args.push_back(Entry); 6534 6535 Entry.Node = Src; 6536 Args.push_back(Entry); 6537 6538 Entry.Ty = SizeTy; 6539 Entry.Node = Size; 6540 Args.push_back(Entry); 6541 6542 RTLIB::Libcall LibraryCall = 6543 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6544 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6545 report_fatal_error("Unsupported element size"); 6546 6547 TargetLowering::CallLoweringInfo CLI(*this); 6548 CLI.setDebugLoc(dl) 6549 .setChain(Chain) 6550 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6551 Type::getVoidTy(*getContext()), 6552 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6553 TLI->getPointerTy(getDataLayout())), 6554 std::move(Args)) 6555 .setDiscardResult() 6556 .setTailCall(isTailCall); 6557 6558 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6559 return CallResult.second; 6560 } 6561 6562 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6563 SDValue Src, SDValue Size, Align Alignment, 6564 bool isVol, bool isTailCall, 6565 MachinePointerInfo DstPtrInfo, 6566 MachinePointerInfo SrcPtrInfo) { 6567 // Check to see if we should lower the memmove to loads and stores first. 6568 // For cases within the target-specified limits, this is the best choice. 6569 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6570 if (ConstantSize) { 6571 // Memmove with size zero? Just return the original chain. 6572 if (ConstantSize->isNullValue()) 6573 return Chain; 6574 6575 SDValue Result = getMemmoveLoadsAndStores( 6576 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6577 isVol, false, DstPtrInfo, SrcPtrInfo); 6578 if (Result.getNode()) 6579 return Result; 6580 } 6581 6582 // Then check to see if we should lower the memmove with target-specific 6583 // code. If the target chooses to do this, this is the next best. 6584 if (TSI) { 6585 SDValue Result = 6586 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6587 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6588 if (Result.getNode()) 6589 return Result; 6590 } 6591 6592 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6593 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6594 6595 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6596 // not be safe. See memcpy above for more details. 6597 6598 // Emit a library call. 6599 TargetLowering::ArgListTy Args; 6600 TargetLowering::ArgListEntry Entry; 6601 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6602 Entry.Node = Dst; Args.push_back(Entry); 6603 Entry.Node = Src; Args.push_back(Entry); 6604 6605 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6606 Entry.Node = Size; Args.push_back(Entry); 6607 // FIXME: pass in SDLoc 6608 TargetLowering::CallLoweringInfo CLI(*this); 6609 CLI.setDebugLoc(dl) 6610 .setChain(Chain) 6611 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6612 Dst.getValueType().getTypeForEVT(*getContext()), 6613 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6614 TLI->getPointerTy(getDataLayout())), 6615 std::move(Args)) 6616 .setDiscardResult() 6617 .setTailCall(isTailCall); 6618 6619 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6620 return CallResult.second; 6621 } 6622 6623 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6624 SDValue Dst, unsigned DstAlign, 6625 SDValue Src, unsigned SrcAlign, 6626 SDValue Size, Type *SizeTy, 6627 unsigned ElemSz, bool isTailCall, 6628 MachinePointerInfo DstPtrInfo, 6629 MachinePointerInfo SrcPtrInfo) { 6630 // Emit a library call. 6631 TargetLowering::ArgListTy Args; 6632 TargetLowering::ArgListEntry Entry; 6633 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6634 Entry.Node = Dst; 6635 Args.push_back(Entry); 6636 6637 Entry.Node = Src; 6638 Args.push_back(Entry); 6639 6640 Entry.Ty = SizeTy; 6641 Entry.Node = Size; 6642 Args.push_back(Entry); 6643 6644 RTLIB::Libcall LibraryCall = 6645 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6646 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6647 report_fatal_error("Unsupported element size"); 6648 6649 TargetLowering::CallLoweringInfo CLI(*this); 6650 CLI.setDebugLoc(dl) 6651 .setChain(Chain) 6652 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6653 Type::getVoidTy(*getContext()), 6654 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6655 TLI->getPointerTy(getDataLayout())), 6656 std::move(Args)) 6657 .setDiscardResult() 6658 .setTailCall(isTailCall); 6659 6660 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6661 return CallResult.second; 6662 } 6663 6664 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6665 SDValue Src, SDValue Size, Align Alignment, 6666 bool isVol, bool isTailCall, 6667 MachinePointerInfo DstPtrInfo) { 6668 // Check to see if we should lower the memset to stores first. 6669 // For cases within the target-specified limits, this is the best choice. 6670 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6671 if (ConstantSize) { 6672 // Memset with size zero? Just return the original chain. 6673 if (ConstantSize->isNullValue()) 6674 return Chain; 6675 6676 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 6677 ConstantSize->getZExtValue(), Alignment, 6678 isVol, DstPtrInfo); 6679 6680 if (Result.getNode()) 6681 return Result; 6682 } 6683 6684 // Then check to see if we should lower the memset with target-specific 6685 // code. If the target chooses to do this, this is the next best. 6686 if (TSI) { 6687 SDValue Result = TSI->EmitTargetCodeForMemset( 6688 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 6689 if (Result.getNode()) 6690 return Result; 6691 } 6692 6693 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6694 6695 // Emit a library call. 6696 TargetLowering::ArgListTy Args; 6697 TargetLowering::ArgListEntry Entry; 6698 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6699 Args.push_back(Entry); 6700 Entry.Node = Src; 6701 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6702 Args.push_back(Entry); 6703 Entry.Node = Size; 6704 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6705 Args.push_back(Entry); 6706 6707 // FIXME: pass in SDLoc 6708 TargetLowering::CallLoweringInfo CLI(*this); 6709 CLI.setDebugLoc(dl) 6710 .setChain(Chain) 6711 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6712 Dst.getValueType().getTypeForEVT(*getContext()), 6713 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6714 TLI->getPointerTy(getDataLayout())), 6715 std::move(Args)) 6716 .setDiscardResult() 6717 .setTailCall(isTailCall); 6718 6719 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6720 return CallResult.second; 6721 } 6722 6723 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6724 SDValue Dst, unsigned DstAlign, 6725 SDValue Value, SDValue Size, Type *SizeTy, 6726 unsigned ElemSz, bool isTailCall, 6727 MachinePointerInfo DstPtrInfo) { 6728 // Emit a library call. 6729 TargetLowering::ArgListTy Args; 6730 TargetLowering::ArgListEntry Entry; 6731 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6732 Entry.Node = Dst; 6733 Args.push_back(Entry); 6734 6735 Entry.Ty = Type::getInt8Ty(*getContext()); 6736 Entry.Node = Value; 6737 Args.push_back(Entry); 6738 6739 Entry.Ty = SizeTy; 6740 Entry.Node = Size; 6741 Args.push_back(Entry); 6742 6743 RTLIB::Libcall LibraryCall = 6744 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6745 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6746 report_fatal_error("Unsupported element size"); 6747 6748 TargetLowering::CallLoweringInfo CLI(*this); 6749 CLI.setDebugLoc(dl) 6750 .setChain(Chain) 6751 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6752 Type::getVoidTy(*getContext()), 6753 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6754 TLI->getPointerTy(getDataLayout())), 6755 std::move(Args)) 6756 .setDiscardResult() 6757 .setTailCall(isTailCall); 6758 6759 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6760 return CallResult.second; 6761 } 6762 6763 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6764 SDVTList VTList, ArrayRef<SDValue> Ops, 6765 MachineMemOperand *MMO) { 6766 FoldingSetNodeID ID; 6767 ID.AddInteger(MemVT.getRawBits()); 6768 AddNodeIDNode(ID, Opcode, VTList, Ops); 6769 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6770 void* IP = nullptr; 6771 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6772 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6773 return SDValue(E, 0); 6774 } 6775 6776 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6777 VTList, MemVT, MMO); 6778 createOperands(N, Ops); 6779 6780 CSEMap.InsertNode(N, IP); 6781 InsertNode(N); 6782 return SDValue(N, 0); 6783 } 6784 6785 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6786 EVT MemVT, SDVTList VTs, SDValue Chain, 6787 SDValue Ptr, SDValue Cmp, SDValue Swp, 6788 MachineMemOperand *MMO) { 6789 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6790 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6791 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6792 6793 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6794 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6795 } 6796 6797 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6798 SDValue Chain, SDValue Ptr, SDValue Val, 6799 MachineMemOperand *MMO) { 6800 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6801 Opcode == ISD::ATOMIC_LOAD_SUB || 6802 Opcode == ISD::ATOMIC_LOAD_AND || 6803 Opcode == ISD::ATOMIC_LOAD_CLR || 6804 Opcode == ISD::ATOMIC_LOAD_OR || 6805 Opcode == ISD::ATOMIC_LOAD_XOR || 6806 Opcode == ISD::ATOMIC_LOAD_NAND || 6807 Opcode == ISD::ATOMIC_LOAD_MIN || 6808 Opcode == ISD::ATOMIC_LOAD_MAX || 6809 Opcode == ISD::ATOMIC_LOAD_UMIN || 6810 Opcode == ISD::ATOMIC_LOAD_UMAX || 6811 Opcode == ISD::ATOMIC_LOAD_FADD || 6812 Opcode == ISD::ATOMIC_LOAD_FSUB || 6813 Opcode == ISD::ATOMIC_SWAP || 6814 Opcode == ISD::ATOMIC_STORE) && 6815 "Invalid Atomic Op"); 6816 6817 EVT VT = Val.getValueType(); 6818 6819 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6820 getVTList(VT, MVT::Other); 6821 SDValue Ops[] = {Chain, Ptr, Val}; 6822 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6823 } 6824 6825 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6826 EVT VT, SDValue Chain, SDValue Ptr, 6827 MachineMemOperand *MMO) { 6828 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6829 6830 SDVTList VTs = getVTList(VT, MVT::Other); 6831 SDValue Ops[] = {Chain, Ptr}; 6832 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6833 } 6834 6835 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6836 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6837 if (Ops.size() == 1) 6838 return Ops[0]; 6839 6840 SmallVector<EVT, 4> VTs; 6841 VTs.reserve(Ops.size()); 6842 for (unsigned i = 0; i < Ops.size(); ++i) 6843 VTs.push_back(Ops[i].getValueType()); 6844 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6845 } 6846 6847 SDValue SelectionDAG::getMemIntrinsicNode( 6848 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6849 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 6850 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6851 if (!Size && MemVT.isScalableVector()) 6852 Size = MemoryLocation::UnknownSize; 6853 else if (!Size) 6854 Size = MemVT.getStoreSize(); 6855 6856 MachineFunction &MF = getMachineFunction(); 6857 MachineMemOperand *MMO = 6858 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 6859 6860 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6861 } 6862 6863 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6864 SDVTList VTList, 6865 ArrayRef<SDValue> Ops, EVT MemVT, 6866 MachineMemOperand *MMO) { 6867 assert((Opcode == ISD::INTRINSIC_VOID || 6868 Opcode == ISD::INTRINSIC_W_CHAIN || 6869 Opcode == ISD::PREFETCH || 6870 ((int)Opcode <= std::numeric_limits<int>::max() && 6871 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6872 "Opcode is not a memory-accessing opcode!"); 6873 6874 // Memoize the node unless it returns a flag. 6875 MemIntrinsicSDNode *N; 6876 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6877 FoldingSetNodeID ID; 6878 AddNodeIDNode(ID, Opcode, VTList, Ops); 6879 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6880 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6881 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6882 void *IP = nullptr; 6883 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6884 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6885 return SDValue(E, 0); 6886 } 6887 6888 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6889 VTList, MemVT, MMO); 6890 createOperands(N, Ops); 6891 6892 CSEMap.InsertNode(N, IP); 6893 } else { 6894 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6895 VTList, MemVT, MMO); 6896 createOperands(N, Ops); 6897 } 6898 InsertNode(N); 6899 SDValue V(N, 0); 6900 NewSDValueDbgMsg(V, "Creating new node: ", this); 6901 return V; 6902 } 6903 6904 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6905 SDValue Chain, int FrameIndex, 6906 int64_t Size, int64_t Offset) { 6907 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6908 const auto VTs = getVTList(MVT::Other); 6909 SDValue Ops[2] = { 6910 Chain, 6911 getFrameIndex(FrameIndex, 6912 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6913 true)}; 6914 6915 FoldingSetNodeID ID; 6916 AddNodeIDNode(ID, Opcode, VTs, Ops); 6917 ID.AddInteger(FrameIndex); 6918 ID.AddInteger(Size); 6919 ID.AddInteger(Offset); 6920 void *IP = nullptr; 6921 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6922 return SDValue(E, 0); 6923 6924 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6925 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6926 createOperands(N, Ops); 6927 CSEMap.InsertNode(N, IP); 6928 InsertNode(N); 6929 SDValue V(N, 0); 6930 NewSDValueDbgMsg(V, "Creating new node: ", this); 6931 return V; 6932 } 6933 6934 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 6935 uint64_t Guid, uint64_t Index, 6936 uint32_t Attr) { 6937 const unsigned Opcode = ISD::PSEUDO_PROBE; 6938 const auto VTs = getVTList(MVT::Other); 6939 SDValue Ops[] = {Chain}; 6940 FoldingSetNodeID ID; 6941 AddNodeIDNode(ID, Opcode, VTs, Ops); 6942 ID.AddInteger(Guid); 6943 ID.AddInteger(Index); 6944 void *IP = nullptr; 6945 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 6946 return SDValue(E, 0); 6947 6948 auto *N = newSDNode<PseudoProbeSDNode>( 6949 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 6950 createOperands(N, Ops); 6951 CSEMap.InsertNode(N, IP); 6952 InsertNode(N); 6953 SDValue V(N, 0); 6954 NewSDValueDbgMsg(V, "Creating new node: ", this); 6955 return V; 6956 } 6957 6958 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6959 /// MachinePointerInfo record from it. This is particularly useful because the 6960 /// code generator has many cases where it doesn't bother passing in a 6961 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6962 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6963 SelectionDAG &DAG, SDValue Ptr, 6964 int64_t Offset = 0) { 6965 // If this is FI+Offset, we can model it. 6966 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6967 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6968 FI->getIndex(), Offset); 6969 6970 // If this is (FI+Offset1)+Offset2, we can model it. 6971 if (Ptr.getOpcode() != ISD::ADD || 6972 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6973 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6974 return Info; 6975 6976 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6977 return MachinePointerInfo::getFixedStack( 6978 DAG.getMachineFunction(), FI, 6979 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6980 } 6981 6982 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6983 /// MachinePointerInfo record from it. This is particularly useful because the 6984 /// code generator has many cases where it doesn't bother passing in a 6985 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6986 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6987 SelectionDAG &DAG, SDValue Ptr, 6988 SDValue OffsetOp) { 6989 // If the 'Offset' value isn't a constant, we can't handle this. 6990 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6991 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6992 if (OffsetOp.isUndef()) 6993 return InferPointerInfo(Info, DAG, Ptr); 6994 return Info; 6995 } 6996 6997 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6998 EVT VT, const SDLoc &dl, SDValue Chain, 6999 SDValue Ptr, SDValue Offset, 7000 MachinePointerInfo PtrInfo, EVT MemVT, 7001 Align Alignment, 7002 MachineMemOperand::Flags MMOFlags, 7003 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7004 assert(Chain.getValueType() == MVT::Other && 7005 "Invalid chain type"); 7006 7007 MMOFlags |= MachineMemOperand::MOLoad; 7008 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7009 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7010 // clients. 7011 if (PtrInfo.V.isNull()) 7012 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7013 7014 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7015 MachineFunction &MF = getMachineFunction(); 7016 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7017 Alignment, AAInfo, Ranges); 7018 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7019 } 7020 7021 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7022 EVT VT, const SDLoc &dl, SDValue Chain, 7023 SDValue Ptr, SDValue Offset, EVT MemVT, 7024 MachineMemOperand *MMO) { 7025 if (VT == MemVT) { 7026 ExtType = ISD::NON_EXTLOAD; 7027 } else if (ExtType == ISD::NON_EXTLOAD) { 7028 assert(VT == MemVT && "Non-extending load from different memory type!"); 7029 } else { 7030 // Extending load. 7031 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7032 "Should only be an extending load, not truncating!"); 7033 assert(VT.isInteger() == MemVT.isInteger() && 7034 "Cannot convert from FP to Int or Int -> FP!"); 7035 assert(VT.isVector() == MemVT.isVector() && 7036 "Cannot use an ext load to convert to or from a vector!"); 7037 assert((!VT.isVector() || 7038 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7039 "Cannot use an ext load to change the number of vector elements!"); 7040 } 7041 7042 bool Indexed = AM != ISD::UNINDEXED; 7043 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7044 7045 SDVTList VTs = Indexed ? 7046 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7047 SDValue Ops[] = { Chain, Ptr, Offset }; 7048 FoldingSetNodeID ID; 7049 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7050 ID.AddInteger(MemVT.getRawBits()); 7051 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7052 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7053 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7054 void *IP = nullptr; 7055 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7056 cast<LoadSDNode>(E)->refineAlignment(MMO); 7057 return SDValue(E, 0); 7058 } 7059 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7060 ExtType, MemVT, MMO); 7061 createOperands(N, Ops); 7062 7063 CSEMap.InsertNode(N, IP); 7064 InsertNode(N); 7065 SDValue V(N, 0); 7066 NewSDValueDbgMsg(V, "Creating new node: ", this); 7067 return V; 7068 } 7069 7070 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7071 SDValue Ptr, MachinePointerInfo PtrInfo, 7072 MaybeAlign Alignment, 7073 MachineMemOperand::Flags MMOFlags, 7074 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7075 SDValue Undef = getUNDEF(Ptr.getValueType()); 7076 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7077 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7078 } 7079 7080 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7081 SDValue Ptr, MachineMemOperand *MMO) { 7082 SDValue Undef = getUNDEF(Ptr.getValueType()); 7083 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7084 VT, MMO); 7085 } 7086 7087 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7088 EVT VT, SDValue Chain, SDValue Ptr, 7089 MachinePointerInfo PtrInfo, EVT MemVT, 7090 MaybeAlign Alignment, 7091 MachineMemOperand::Flags MMOFlags, 7092 const AAMDNodes &AAInfo) { 7093 SDValue Undef = getUNDEF(Ptr.getValueType()); 7094 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7095 MemVT, Alignment, MMOFlags, AAInfo); 7096 } 7097 7098 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7099 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7100 MachineMemOperand *MMO) { 7101 SDValue Undef = getUNDEF(Ptr.getValueType()); 7102 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7103 MemVT, MMO); 7104 } 7105 7106 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7107 SDValue Base, SDValue Offset, 7108 ISD::MemIndexedMode AM) { 7109 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7110 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7111 // Don't propagate the invariant or dereferenceable flags. 7112 auto MMOFlags = 7113 LD->getMemOperand()->getFlags() & 7114 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7115 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7116 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7117 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7118 } 7119 7120 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7121 SDValue Ptr, MachinePointerInfo PtrInfo, 7122 Align Alignment, 7123 MachineMemOperand::Flags MMOFlags, 7124 const AAMDNodes &AAInfo) { 7125 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7126 7127 MMOFlags |= MachineMemOperand::MOStore; 7128 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7129 7130 if (PtrInfo.V.isNull()) 7131 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7132 7133 MachineFunction &MF = getMachineFunction(); 7134 uint64_t Size = 7135 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7136 MachineMemOperand *MMO = 7137 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7138 return getStore(Chain, dl, Val, Ptr, MMO); 7139 } 7140 7141 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7142 SDValue Ptr, MachineMemOperand *MMO) { 7143 assert(Chain.getValueType() == MVT::Other && 7144 "Invalid chain type"); 7145 EVT VT = Val.getValueType(); 7146 SDVTList VTs = getVTList(MVT::Other); 7147 SDValue Undef = getUNDEF(Ptr.getValueType()); 7148 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7149 FoldingSetNodeID ID; 7150 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7151 ID.AddInteger(VT.getRawBits()); 7152 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7153 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7154 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7155 void *IP = nullptr; 7156 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7157 cast<StoreSDNode>(E)->refineAlignment(MMO); 7158 return SDValue(E, 0); 7159 } 7160 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7161 ISD::UNINDEXED, false, VT, MMO); 7162 createOperands(N, Ops); 7163 7164 CSEMap.InsertNode(N, IP); 7165 InsertNode(N); 7166 SDValue V(N, 0); 7167 NewSDValueDbgMsg(V, "Creating new node: ", this); 7168 return V; 7169 } 7170 7171 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7172 SDValue Ptr, MachinePointerInfo PtrInfo, 7173 EVT SVT, Align Alignment, 7174 MachineMemOperand::Flags MMOFlags, 7175 const AAMDNodes &AAInfo) { 7176 assert(Chain.getValueType() == MVT::Other && 7177 "Invalid chain type"); 7178 7179 MMOFlags |= MachineMemOperand::MOStore; 7180 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7181 7182 if (PtrInfo.V.isNull()) 7183 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7184 7185 MachineFunction &MF = getMachineFunction(); 7186 MachineMemOperand *MMO = MF.getMachineMemOperand( 7187 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7188 Alignment, AAInfo); 7189 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7190 } 7191 7192 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7193 SDValue Ptr, EVT SVT, 7194 MachineMemOperand *MMO) { 7195 EVT VT = Val.getValueType(); 7196 7197 assert(Chain.getValueType() == MVT::Other && 7198 "Invalid chain type"); 7199 if (VT == SVT) 7200 return getStore(Chain, dl, Val, Ptr, MMO); 7201 7202 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7203 "Should only be a truncating store, not extending!"); 7204 assert(VT.isInteger() == SVT.isInteger() && 7205 "Can't do FP-INT conversion!"); 7206 assert(VT.isVector() == SVT.isVector() && 7207 "Cannot use trunc store to convert to or from a vector!"); 7208 assert((!VT.isVector() || 7209 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7210 "Cannot use trunc store to change the number of vector elements!"); 7211 7212 SDVTList VTs = getVTList(MVT::Other); 7213 SDValue Undef = getUNDEF(Ptr.getValueType()); 7214 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7215 FoldingSetNodeID ID; 7216 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7217 ID.AddInteger(SVT.getRawBits()); 7218 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7219 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7220 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7221 void *IP = nullptr; 7222 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7223 cast<StoreSDNode>(E)->refineAlignment(MMO); 7224 return SDValue(E, 0); 7225 } 7226 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7227 ISD::UNINDEXED, true, SVT, MMO); 7228 createOperands(N, Ops); 7229 7230 CSEMap.InsertNode(N, IP); 7231 InsertNode(N); 7232 SDValue V(N, 0); 7233 NewSDValueDbgMsg(V, "Creating new node: ", this); 7234 return V; 7235 } 7236 7237 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7238 SDValue Base, SDValue Offset, 7239 ISD::MemIndexedMode AM) { 7240 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7241 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7242 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7243 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7244 FoldingSetNodeID ID; 7245 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7246 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7247 ID.AddInteger(ST->getRawSubclassData()); 7248 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7249 void *IP = nullptr; 7250 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7251 return SDValue(E, 0); 7252 7253 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7254 ST->isTruncatingStore(), ST->getMemoryVT(), 7255 ST->getMemOperand()); 7256 createOperands(N, Ops); 7257 7258 CSEMap.InsertNode(N, IP); 7259 InsertNode(N); 7260 SDValue V(N, 0); 7261 NewSDValueDbgMsg(V, "Creating new node: ", this); 7262 return V; 7263 } 7264 7265 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7266 SDValue Base, SDValue Offset, SDValue Mask, 7267 SDValue PassThru, EVT MemVT, 7268 MachineMemOperand *MMO, 7269 ISD::MemIndexedMode AM, 7270 ISD::LoadExtType ExtTy, bool isExpanding) { 7271 bool Indexed = AM != ISD::UNINDEXED; 7272 assert((Indexed || Offset.isUndef()) && 7273 "Unindexed masked load with an offset!"); 7274 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7275 : getVTList(VT, MVT::Other); 7276 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7277 FoldingSetNodeID ID; 7278 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7279 ID.AddInteger(MemVT.getRawBits()); 7280 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7281 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7282 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7283 void *IP = nullptr; 7284 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7285 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7286 return SDValue(E, 0); 7287 } 7288 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7289 AM, ExtTy, isExpanding, MemVT, MMO); 7290 createOperands(N, Ops); 7291 7292 CSEMap.InsertNode(N, IP); 7293 InsertNode(N); 7294 SDValue V(N, 0); 7295 NewSDValueDbgMsg(V, "Creating new node: ", this); 7296 return V; 7297 } 7298 7299 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7300 SDValue Base, SDValue Offset, 7301 ISD::MemIndexedMode AM) { 7302 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7303 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7304 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7305 Offset, LD->getMask(), LD->getPassThru(), 7306 LD->getMemoryVT(), LD->getMemOperand(), AM, 7307 LD->getExtensionType(), LD->isExpandingLoad()); 7308 } 7309 7310 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7311 SDValue Val, SDValue Base, SDValue Offset, 7312 SDValue Mask, EVT MemVT, 7313 MachineMemOperand *MMO, 7314 ISD::MemIndexedMode AM, bool IsTruncating, 7315 bool IsCompressing) { 7316 assert(Chain.getValueType() == MVT::Other && 7317 "Invalid chain type"); 7318 bool Indexed = AM != ISD::UNINDEXED; 7319 assert((Indexed || Offset.isUndef()) && 7320 "Unindexed masked store with an offset!"); 7321 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7322 : getVTList(MVT::Other); 7323 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7324 FoldingSetNodeID ID; 7325 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7326 ID.AddInteger(MemVT.getRawBits()); 7327 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7328 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7329 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7330 void *IP = nullptr; 7331 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7332 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7333 return SDValue(E, 0); 7334 } 7335 auto *N = 7336 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7337 IsTruncating, IsCompressing, MemVT, MMO); 7338 createOperands(N, Ops); 7339 7340 CSEMap.InsertNode(N, IP); 7341 InsertNode(N); 7342 SDValue V(N, 0); 7343 NewSDValueDbgMsg(V, "Creating new node: ", this); 7344 return V; 7345 } 7346 7347 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7348 SDValue Base, SDValue Offset, 7349 ISD::MemIndexedMode AM) { 7350 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7351 assert(ST->getOffset().isUndef() && 7352 "Masked store is already a indexed store!"); 7353 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7354 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7355 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7356 } 7357 7358 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7359 ArrayRef<SDValue> Ops, 7360 MachineMemOperand *MMO, 7361 ISD::MemIndexType IndexType, 7362 ISD::LoadExtType ExtTy) { 7363 assert(Ops.size() == 6 && "Incompatible number of operands"); 7364 7365 FoldingSetNodeID ID; 7366 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7367 ID.AddInteger(VT.getRawBits()); 7368 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7369 dl.getIROrder(), VTs, VT, MMO, IndexType, ExtTy)); 7370 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7371 void *IP = nullptr; 7372 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7373 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7374 return SDValue(E, 0); 7375 } 7376 7377 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7378 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7379 VTs, VT, MMO, IndexType, ExtTy); 7380 createOperands(N, Ops); 7381 7382 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7383 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7384 assert(N->getMask().getValueType().getVectorElementCount() == 7385 N->getValueType(0).getVectorElementCount() && 7386 "Vector width mismatch between mask and data"); 7387 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7388 N->getValueType(0).getVectorElementCount().isScalable() && 7389 "Scalable flags of index and data do not match"); 7390 assert(ElementCount::isKnownGE( 7391 N->getIndex().getValueType().getVectorElementCount(), 7392 N->getValueType(0).getVectorElementCount()) && 7393 "Vector width mismatch between index and data"); 7394 assert(isa<ConstantSDNode>(N->getScale()) && 7395 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7396 "Scale should be a constant power of 2"); 7397 7398 CSEMap.InsertNode(N, IP); 7399 InsertNode(N); 7400 SDValue V(N, 0); 7401 NewSDValueDbgMsg(V, "Creating new node: ", this); 7402 return V; 7403 } 7404 7405 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7406 ArrayRef<SDValue> Ops, 7407 MachineMemOperand *MMO, 7408 ISD::MemIndexType IndexType, 7409 bool IsTrunc) { 7410 assert(Ops.size() == 6 && "Incompatible number of operands"); 7411 7412 FoldingSetNodeID ID; 7413 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7414 ID.AddInteger(VT.getRawBits()); 7415 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7416 dl.getIROrder(), VTs, VT, MMO, IndexType, IsTrunc)); 7417 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7418 void *IP = nullptr; 7419 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7420 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7421 return SDValue(E, 0); 7422 } 7423 7424 IndexType = TLI->getCanonicalIndexType(IndexType, VT, Ops[4]); 7425 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7426 VTs, VT, MMO, IndexType, IsTrunc); 7427 createOperands(N, Ops); 7428 7429 assert(N->getMask().getValueType().getVectorElementCount() == 7430 N->getValue().getValueType().getVectorElementCount() && 7431 "Vector width mismatch between mask and data"); 7432 assert( 7433 N->getIndex().getValueType().getVectorElementCount().isScalable() == 7434 N->getValue().getValueType().getVectorElementCount().isScalable() && 7435 "Scalable flags of index and data do not match"); 7436 assert(ElementCount::isKnownGE( 7437 N->getIndex().getValueType().getVectorElementCount(), 7438 N->getValue().getValueType().getVectorElementCount()) && 7439 "Vector width mismatch between index and data"); 7440 assert(isa<ConstantSDNode>(N->getScale()) && 7441 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7442 "Scale should be a constant power of 2"); 7443 7444 CSEMap.InsertNode(N, IP); 7445 InsertNode(N); 7446 SDValue V(N, 0); 7447 NewSDValueDbgMsg(V, "Creating new node: ", this); 7448 return V; 7449 } 7450 7451 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7452 // select undef, T, F --> T (if T is a constant), otherwise F 7453 // select, ?, undef, F --> F 7454 // select, ?, T, undef --> T 7455 if (Cond.isUndef()) 7456 return isConstantValueOfAnyType(T) ? T : F; 7457 if (T.isUndef()) 7458 return F; 7459 if (F.isUndef()) 7460 return T; 7461 7462 // select true, T, F --> T 7463 // select false, T, F --> F 7464 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7465 return CondC->isNullValue() ? F : T; 7466 7467 // TODO: This should simplify VSELECT with constant condition using something 7468 // like this (but check boolean contents to be complete?): 7469 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7470 // return T; 7471 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7472 // return F; 7473 7474 // select ?, T, T --> T 7475 if (T == F) 7476 return T; 7477 7478 return SDValue(); 7479 } 7480 7481 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7482 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7483 if (X.isUndef()) 7484 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7485 // shift X, undef --> undef (because it may shift by the bitwidth) 7486 if (Y.isUndef()) 7487 return getUNDEF(X.getValueType()); 7488 7489 // shift 0, Y --> 0 7490 // shift X, 0 --> X 7491 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7492 return X; 7493 7494 // shift X, C >= bitwidth(X) --> undef 7495 // All vector elements must be too big (or undef) to avoid partial undefs. 7496 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7497 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7498 }; 7499 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7500 return getUNDEF(X.getValueType()); 7501 7502 return SDValue(); 7503 } 7504 7505 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 7506 SDNodeFlags Flags) { 7507 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 7508 // (an undef operand can be chosen to be Nan/Inf), then the result of this 7509 // operation is poison. That result can be relaxed to undef. 7510 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 7511 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7512 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 7513 (YC && YC->getValueAPF().isNaN()); 7514 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 7515 (YC && YC->getValueAPF().isInfinity()); 7516 7517 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 7518 return getUNDEF(X.getValueType()); 7519 7520 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 7521 return getUNDEF(X.getValueType()); 7522 7523 if (!YC) 7524 return SDValue(); 7525 7526 // X + -0.0 --> X 7527 if (Opcode == ISD::FADD) 7528 if (YC->getValueAPF().isNegZero()) 7529 return X; 7530 7531 // X - +0.0 --> X 7532 if (Opcode == ISD::FSUB) 7533 if (YC->getValueAPF().isPosZero()) 7534 return X; 7535 7536 // X * 1.0 --> X 7537 // X / 1.0 --> X 7538 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7539 if (YC->getValueAPF().isExactlyValue(1.0)) 7540 return X; 7541 7542 // X * 0.0 --> 0.0 7543 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 7544 if (YC->getValueAPF().isZero()) 7545 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 7546 7547 return SDValue(); 7548 } 7549 7550 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7551 SDValue Ptr, SDValue SV, unsigned Align) { 7552 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7553 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7554 } 7555 7556 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7557 ArrayRef<SDUse> Ops) { 7558 switch (Ops.size()) { 7559 case 0: return getNode(Opcode, DL, VT); 7560 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7561 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7562 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7563 default: break; 7564 } 7565 7566 // Copy from an SDUse array into an SDValue array for use with 7567 // the regular getNode logic. 7568 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7569 return getNode(Opcode, DL, VT, NewOps); 7570 } 7571 7572 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7573 ArrayRef<SDValue> Ops) { 7574 SDNodeFlags Flags; 7575 if (Inserter) 7576 Flags = Inserter->getFlags(); 7577 return getNode(Opcode, DL, VT, Ops, Flags); 7578 } 7579 7580 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7581 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7582 unsigned NumOps = Ops.size(); 7583 switch (NumOps) { 7584 case 0: return getNode(Opcode, DL, VT); 7585 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7586 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7587 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7588 default: break; 7589 } 7590 7591 switch (Opcode) { 7592 default: break; 7593 case ISD::BUILD_VECTOR: 7594 // Attempt to simplify BUILD_VECTOR. 7595 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7596 return V; 7597 break; 7598 case ISD::CONCAT_VECTORS: 7599 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7600 return V; 7601 break; 7602 case ISD::SELECT_CC: 7603 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7604 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7605 "LHS and RHS of condition must have same type!"); 7606 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7607 "True and False arms of SelectCC must have same type!"); 7608 assert(Ops[2].getValueType() == VT && 7609 "select_cc node must be of same type as true and false value!"); 7610 break; 7611 case ISD::BR_CC: 7612 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7613 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7614 "LHS/RHS of comparison should match types!"); 7615 break; 7616 } 7617 7618 // Memoize nodes. 7619 SDNode *N; 7620 SDVTList VTs = getVTList(VT); 7621 7622 if (VT != MVT::Glue) { 7623 FoldingSetNodeID ID; 7624 AddNodeIDNode(ID, Opcode, VTs, Ops); 7625 void *IP = nullptr; 7626 7627 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7628 return SDValue(E, 0); 7629 7630 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7631 createOperands(N, Ops); 7632 7633 CSEMap.InsertNode(N, IP); 7634 } else { 7635 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7636 createOperands(N, Ops); 7637 } 7638 7639 N->setFlags(Flags); 7640 InsertNode(N); 7641 SDValue V(N, 0); 7642 NewSDValueDbgMsg(V, "Creating new node: ", this); 7643 return V; 7644 } 7645 7646 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7647 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7648 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7649 } 7650 7651 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7652 ArrayRef<SDValue> Ops) { 7653 SDNodeFlags Flags; 7654 if (Inserter) 7655 Flags = Inserter->getFlags(); 7656 return getNode(Opcode, DL, VTList, Ops, Flags); 7657 } 7658 7659 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7660 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7661 if (VTList.NumVTs == 1) 7662 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7663 7664 switch (Opcode) { 7665 case ISD::STRICT_FP_EXTEND: 7666 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7667 "Invalid STRICT_FP_EXTEND!"); 7668 assert(VTList.VTs[0].isFloatingPoint() && 7669 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7670 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7671 "STRICT_FP_EXTEND result type should be vector iff the operand " 7672 "type is vector!"); 7673 assert((!VTList.VTs[0].isVector() || 7674 VTList.VTs[0].getVectorNumElements() == 7675 Ops[1].getValueType().getVectorNumElements()) && 7676 "Vector element count mismatch!"); 7677 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7678 "Invalid fpext node, dst <= src!"); 7679 break; 7680 case ISD::STRICT_FP_ROUND: 7681 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7682 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7683 "STRICT_FP_ROUND result type should be vector iff the operand " 7684 "type is vector!"); 7685 assert((!VTList.VTs[0].isVector() || 7686 VTList.VTs[0].getVectorNumElements() == 7687 Ops[1].getValueType().getVectorNumElements()) && 7688 "Vector element count mismatch!"); 7689 assert(VTList.VTs[0].isFloatingPoint() && 7690 Ops[1].getValueType().isFloatingPoint() && 7691 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7692 isa<ConstantSDNode>(Ops[2]) && 7693 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7694 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7695 "Invalid STRICT_FP_ROUND!"); 7696 break; 7697 #if 0 7698 // FIXME: figure out how to safely handle things like 7699 // int foo(int x) { return 1 << (x & 255); } 7700 // int bar() { return foo(256); } 7701 case ISD::SRA_PARTS: 7702 case ISD::SRL_PARTS: 7703 case ISD::SHL_PARTS: 7704 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7705 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7706 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7707 else if (N3.getOpcode() == ISD::AND) 7708 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7709 // If the and is only masking out bits that cannot effect the shift, 7710 // eliminate the and. 7711 unsigned NumBits = VT.getScalarSizeInBits()*2; 7712 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7713 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7714 } 7715 break; 7716 #endif 7717 } 7718 7719 // Memoize the node unless it returns a flag. 7720 SDNode *N; 7721 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7722 FoldingSetNodeID ID; 7723 AddNodeIDNode(ID, Opcode, VTList, Ops); 7724 void *IP = nullptr; 7725 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7726 return SDValue(E, 0); 7727 7728 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7729 createOperands(N, Ops); 7730 CSEMap.InsertNode(N, IP); 7731 } else { 7732 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7733 createOperands(N, Ops); 7734 } 7735 7736 N->setFlags(Flags); 7737 InsertNode(N); 7738 SDValue V(N, 0); 7739 NewSDValueDbgMsg(V, "Creating new node: ", this); 7740 return V; 7741 } 7742 7743 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7744 SDVTList VTList) { 7745 return getNode(Opcode, DL, VTList, None); 7746 } 7747 7748 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7749 SDValue N1) { 7750 SDValue Ops[] = { N1 }; 7751 return getNode(Opcode, DL, VTList, Ops); 7752 } 7753 7754 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7755 SDValue N1, SDValue N2) { 7756 SDValue Ops[] = { N1, N2 }; 7757 return getNode(Opcode, DL, VTList, Ops); 7758 } 7759 7760 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7761 SDValue N1, SDValue N2, SDValue N3) { 7762 SDValue Ops[] = { N1, N2, N3 }; 7763 return getNode(Opcode, DL, VTList, Ops); 7764 } 7765 7766 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7767 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7768 SDValue Ops[] = { N1, N2, N3, N4 }; 7769 return getNode(Opcode, DL, VTList, Ops); 7770 } 7771 7772 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7773 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7774 SDValue N5) { 7775 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7776 return getNode(Opcode, DL, VTList, Ops); 7777 } 7778 7779 SDVTList SelectionDAG::getVTList(EVT VT) { 7780 return makeVTList(SDNode::getValueTypeList(VT), 1); 7781 } 7782 7783 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7784 FoldingSetNodeID ID; 7785 ID.AddInteger(2U); 7786 ID.AddInteger(VT1.getRawBits()); 7787 ID.AddInteger(VT2.getRawBits()); 7788 7789 void *IP = nullptr; 7790 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7791 if (!Result) { 7792 EVT *Array = Allocator.Allocate<EVT>(2); 7793 Array[0] = VT1; 7794 Array[1] = VT2; 7795 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7796 VTListMap.InsertNode(Result, IP); 7797 } 7798 return Result->getSDVTList(); 7799 } 7800 7801 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7802 FoldingSetNodeID ID; 7803 ID.AddInteger(3U); 7804 ID.AddInteger(VT1.getRawBits()); 7805 ID.AddInteger(VT2.getRawBits()); 7806 ID.AddInteger(VT3.getRawBits()); 7807 7808 void *IP = nullptr; 7809 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7810 if (!Result) { 7811 EVT *Array = Allocator.Allocate<EVT>(3); 7812 Array[0] = VT1; 7813 Array[1] = VT2; 7814 Array[2] = VT3; 7815 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7816 VTListMap.InsertNode(Result, IP); 7817 } 7818 return Result->getSDVTList(); 7819 } 7820 7821 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7822 FoldingSetNodeID ID; 7823 ID.AddInteger(4U); 7824 ID.AddInteger(VT1.getRawBits()); 7825 ID.AddInteger(VT2.getRawBits()); 7826 ID.AddInteger(VT3.getRawBits()); 7827 ID.AddInteger(VT4.getRawBits()); 7828 7829 void *IP = nullptr; 7830 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7831 if (!Result) { 7832 EVT *Array = Allocator.Allocate<EVT>(4); 7833 Array[0] = VT1; 7834 Array[1] = VT2; 7835 Array[2] = VT3; 7836 Array[3] = VT4; 7837 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7838 VTListMap.InsertNode(Result, IP); 7839 } 7840 return Result->getSDVTList(); 7841 } 7842 7843 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7844 unsigned NumVTs = VTs.size(); 7845 FoldingSetNodeID ID; 7846 ID.AddInteger(NumVTs); 7847 for (unsigned index = 0; index < NumVTs; index++) { 7848 ID.AddInteger(VTs[index].getRawBits()); 7849 } 7850 7851 void *IP = nullptr; 7852 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7853 if (!Result) { 7854 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7855 llvm::copy(VTs, Array); 7856 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7857 VTListMap.InsertNode(Result, IP); 7858 } 7859 return Result->getSDVTList(); 7860 } 7861 7862 7863 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7864 /// specified operands. If the resultant node already exists in the DAG, 7865 /// this does not modify the specified node, instead it returns the node that 7866 /// already exists. If the resultant node does not exist in the DAG, the 7867 /// input node is returned. As a degenerate case, if you specify the same 7868 /// input operands as the node already has, the input node is returned. 7869 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7870 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7871 7872 // Check to see if there is no change. 7873 if (Op == N->getOperand(0)) return N; 7874 7875 // See if the modified node already exists. 7876 void *InsertPos = nullptr; 7877 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7878 return Existing; 7879 7880 // Nope it doesn't. Remove the node from its current place in the maps. 7881 if (InsertPos) 7882 if (!RemoveNodeFromCSEMaps(N)) 7883 InsertPos = nullptr; 7884 7885 // Now we update the operands. 7886 N->OperandList[0].set(Op); 7887 7888 updateDivergence(N); 7889 // If this gets put into a CSE map, add it. 7890 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7891 return N; 7892 } 7893 7894 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7895 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7896 7897 // Check to see if there is no change. 7898 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7899 return N; // No operands changed, just return the input node. 7900 7901 // See if the modified node already exists. 7902 void *InsertPos = nullptr; 7903 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7904 return Existing; 7905 7906 // Nope it doesn't. Remove the node from its current place in the maps. 7907 if (InsertPos) 7908 if (!RemoveNodeFromCSEMaps(N)) 7909 InsertPos = nullptr; 7910 7911 // Now we update the operands. 7912 if (N->OperandList[0] != Op1) 7913 N->OperandList[0].set(Op1); 7914 if (N->OperandList[1] != Op2) 7915 N->OperandList[1].set(Op2); 7916 7917 updateDivergence(N); 7918 // If this gets put into a CSE map, add it. 7919 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7920 return N; 7921 } 7922 7923 SDNode *SelectionDAG:: 7924 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7925 SDValue Ops[] = { Op1, Op2, Op3 }; 7926 return UpdateNodeOperands(N, Ops); 7927 } 7928 7929 SDNode *SelectionDAG:: 7930 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7931 SDValue Op3, SDValue Op4) { 7932 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7933 return UpdateNodeOperands(N, Ops); 7934 } 7935 7936 SDNode *SelectionDAG:: 7937 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7938 SDValue Op3, SDValue Op4, SDValue Op5) { 7939 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7940 return UpdateNodeOperands(N, Ops); 7941 } 7942 7943 SDNode *SelectionDAG:: 7944 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7945 unsigned NumOps = Ops.size(); 7946 assert(N->getNumOperands() == NumOps && 7947 "Update with wrong number of operands"); 7948 7949 // If no operands changed just return the input node. 7950 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7951 return N; 7952 7953 // See if the modified node already exists. 7954 void *InsertPos = nullptr; 7955 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7956 return Existing; 7957 7958 // Nope it doesn't. Remove the node from its current place in the maps. 7959 if (InsertPos) 7960 if (!RemoveNodeFromCSEMaps(N)) 7961 InsertPos = nullptr; 7962 7963 // Now we update the operands. 7964 for (unsigned i = 0; i != NumOps; ++i) 7965 if (N->OperandList[i] != Ops[i]) 7966 N->OperandList[i].set(Ops[i]); 7967 7968 updateDivergence(N); 7969 // If this gets put into a CSE map, add it. 7970 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7971 return N; 7972 } 7973 7974 /// DropOperands - Release the operands and set this node to have 7975 /// zero operands. 7976 void SDNode::DropOperands() { 7977 // Unlike the code in MorphNodeTo that does this, we don't need to 7978 // watch for dead nodes here. 7979 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7980 SDUse &Use = *I++; 7981 Use.set(SDValue()); 7982 } 7983 } 7984 7985 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7986 ArrayRef<MachineMemOperand *> NewMemRefs) { 7987 if (NewMemRefs.empty()) { 7988 N->clearMemRefs(); 7989 return; 7990 } 7991 7992 // Check if we can avoid allocating by storing a single reference directly. 7993 if (NewMemRefs.size() == 1) { 7994 N->MemRefs = NewMemRefs[0]; 7995 N->NumMemRefs = 1; 7996 return; 7997 } 7998 7999 MachineMemOperand **MemRefsBuffer = 8000 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8001 llvm::copy(NewMemRefs, MemRefsBuffer); 8002 N->MemRefs = MemRefsBuffer; 8003 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8004 } 8005 8006 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8007 /// machine opcode. 8008 /// 8009 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8010 EVT VT) { 8011 SDVTList VTs = getVTList(VT); 8012 return SelectNodeTo(N, MachineOpc, VTs, None); 8013 } 8014 8015 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8016 EVT VT, SDValue Op1) { 8017 SDVTList VTs = getVTList(VT); 8018 SDValue Ops[] = { Op1 }; 8019 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8020 } 8021 8022 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8023 EVT VT, SDValue Op1, 8024 SDValue Op2) { 8025 SDVTList VTs = getVTList(VT); 8026 SDValue Ops[] = { Op1, Op2 }; 8027 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8028 } 8029 8030 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8031 EVT VT, SDValue Op1, 8032 SDValue Op2, SDValue Op3) { 8033 SDVTList VTs = getVTList(VT); 8034 SDValue Ops[] = { Op1, Op2, Op3 }; 8035 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8036 } 8037 8038 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8039 EVT VT, ArrayRef<SDValue> Ops) { 8040 SDVTList VTs = getVTList(VT); 8041 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8042 } 8043 8044 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8045 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8046 SDVTList VTs = getVTList(VT1, VT2); 8047 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8048 } 8049 8050 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8051 EVT VT1, EVT VT2) { 8052 SDVTList VTs = getVTList(VT1, VT2); 8053 return SelectNodeTo(N, MachineOpc, VTs, None); 8054 } 8055 8056 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8057 EVT VT1, EVT VT2, EVT VT3, 8058 ArrayRef<SDValue> Ops) { 8059 SDVTList VTs = getVTList(VT1, VT2, VT3); 8060 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8061 } 8062 8063 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8064 EVT VT1, EVT VT2, 8065 SDValue Op1, SDValue Op2) { 8066 SDVTList VTs = getVTList(VT1, VT2); 8067 SDValue Ops[] = { Op1, Op2 }; 8068 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8069 } 8070 8071 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8072 SDVTList VTs,ArrayRef<SDValue> Ops) { 8073 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8074 // Reset the NodeID to -1. 8075 New->setNodeId(-1); 8076 if (New != N) { 8077 ReplaceAllUsesWith(N, New); 8078 RemoveDeadNode(N); 8079 } 8080 return New; 8081 } 8082 8083 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8084 /// the line number information on the merged node since it is not possible to 8085 /// preserve the information that operation is associated with multiple lines. 8086 /// This will make the debugger working better at -O0, were there is a higher 8087 /// probability having other instructions associated with that line. 8088 /// 8089 /// For IROrder, we keep the smaller of the two 8090 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8091 DebugLoc NLoc = N->getDebugLoc(); 8092 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8093 N->setDebugLoc(DebugLoc()); 8094 } 8095 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8096 N->setIROrder(Order); 8097 return N; 8098 } 8099 8100 /// MorphNodeTo - This *mutates* the specified node to have the specified 8101 /// return type, opcode, and operands. 8102 /// 8103 /// Note that MorphNodeTo returns the resultant node. If there is already a 8104 /// node of the specified opcode and operands, it returns that node instead of 8105 /// the current one. Note that the SDLoc need not be the same. 8106 /// 8107 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8108 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8109 /// node, and because it doesn't require CSE recalculation for any of 8110 /// the node's users. 8111 /// 8112 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8113 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8114 /// the legalizer which maintain worklists that would need to be updated when 8115 /// deleting things. 8116 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8117 SDVTList VTs, ArrayRef<SDValue> Ops) { 8118 // If an identical node already exists, use it. 8119 void *IP = nullptr; 8120 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8121 FoldingSetNodeID ID; 8122 AddNodeIDNode(ID, Opc, VTs, Ops); 8123 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8124 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8125 } 8126 8127 if (!RemoveNodeFromCSEMaps(N)) 8128 IP = nullptr; 8129 8130 // Start the morphing. 8131 N->NodeType = Opc; 8132 N->ValueList = VTs.VTs; 8133 N->NumValues = VTs.NumVTs; 8134 8135 // Clear the operands list, updating used nodes to remove this from their 8136 // use list. Keep track of any operands that become dead as a result. 8137 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8138 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8139 SDUse &Use = *I++; 8140 SDNode *Used = Use.getNode(); 8141 Use.set(SDValue()); 8142 if (Used->use_empty()) 8143 DeadNodeSet.insert(Used); 8144 } 8145 8146 // For MachineNode, initialize the memory references information. 8147 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8148 MN->clearMemRefs(); 8149 8150 // Swap for an appropriately sized array from the recycler. 8151 removeOperands(N); 8152 createOperands(N, Ops); 8153 8154 // Delete any nodes that are still dead after adding the uses for the 8155 // new operands. 8156 if (!DeadNodeSet.empty()) { 8157 SmallVector<SDNode *, 16> DeadNodes; 8158 for (SDNode *N : DeadNodeSet) 8159 if (N->use_empty()) 8160 DeadNodes.push_back(N); 8161 RemoveDeadNodes(DeadNodes); 8162 } 8163 8164 if (IP) 8165 CSEMap.InsertNode(N, IP); // Memoize the new node. 8166 return N; 8167 } 8168 8169 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8170 unsigned OrigOpc = Node->getOpcode(); 8171 unsigned NewOpc; 8172 switch (OrigOpc) { 8173 default: 8174 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8175 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8176 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8177 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8178 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8179 #include "llvm/IR/ConstrainedOps.def" 8180 } 8181 8182 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8183 8184 // We're taking this node out of the chain, so we need to re-link things. 8185 SDValue InputChain = Node->getOperand(0); 8186 SDValue OutputChain = SDValue(Node, 1); 8187 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8188 8189 SmallVector<SDValue, 3> Ops; 8190 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8191 Ops.push_back(Node->getOperand(i)); 8192 8193 SDVTList VTs = getVTList(Node->getValueType(0)); 8194 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8195 8196 // MorphNodeTo can operate in two ways: if an existing node with the 8197 // specified operands exists, it can just return it. Otherwise, it 8198 // updates the node in place to have the requested operands. 8199 if (Res == Node) { 8200 // If we updated the node in place, reset the node ID. To the isel, 8201 // this should be just like a newly allocated machine node. 8202 Res->setNodeId(-1); 8203 } else { 8204 ReplaceAllUsesWith(Node, Res); 8205 RemoveDeadNode(Node); 8206 } 8207 8208 return Res; 8209 } 8210 8211 /// getMachineNode - These are used for target selectors to create a new node 8212 /// with specified return type(s), MachineInstr opcode, and operands. 8213 /// 8214 /// Note that getMachineNode returns the resultant node. If there is already a 8215 /// node of the specified opcode and operands, it returns that node instead of 8216 /// the current one. 8217 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8218 EVT VT) { 8219 SDVTList VTs = getVTList(VT); 8220 return getMachineNode(Opcode, dl, VTs, None); 8221 } 8222 8223 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8224 EVT VT, SDValue Op1) { 8225 SDVTList VTs = getVTList(VT); 8226 SDValue Ops[] = { Op1 }; 8227 return getMachineNode(Opcode, dl, VTs, Ops); 8228 } 8229 8230 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8231 EVT VT, SDValue Op1, SDValue Op2) { 8232 SDVTList VTs = getVTList(VT); 8233 SDValue Ops[] = { Op1, Op2 }; 8234 return getMachineNode(Opcode, dl, VTs, Ops); 8235 } 8236 8237 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8238 EVT VT, SDValue Op1, SDValue Op2, 8239 SDValue Op3) { 8240 SDVTList VTs = getVTList(VT); 8241 SDValue Ops[] = { Op1, Op2, Op3 }; 8242 return getMachineNode(Opcode, dl, VTs, Ops); 8243 } 8244 8245 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8246 EVT VT, ArrayRef<SDValue> Ops) { 8247 SDVTList VTs = getVTList(VT); 8248 return getMachineNode(Opcode, dl, VTs, Ops); 8249 } 8250 8251 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8252 EVT VT1, EVT VT2, SDValue Op1, 8253 SDValue Op2) { 8254 SDVTList VTs = getVTList(VT1, VT2); 8255 SDValue Ops[] = { Op1, Op2 }; 8256 return getMachineNode(Opcode, dl, VTs, Ops); 8257 } 8258 8259 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8260 EVT VT1, EVT VT2, SDValue Op1, 8261 SDValue Op2, SDValue Op3) { 8262 SDVTList VTs = getVTList(VT1, VT2); 8263 SDValue Ops[] = { Op1, Op2, Op3 }; 8264 return getMachineNode(Opcode, dl, VTs, Ops); 8265 } 8266 8267 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8268 EVT VT1, EVT VT2, 8269 ArrayRef<SDValue> Ops) { 8270 SDVTList VTs = getVTList(VT1, VT2); 8271 return getMachineNode(Opcode, dl, VTs, Ops); 8272 } 8273 8274 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8275 EVT VT1, EVT VT2, EVT VT3, 8276 SDValue Op1, SDValue Op2) { 8277 SDVTList VTs = getVTList(VT1, VT2, VT3); 8278 SDValue Ops[] = { Op1, Op2 }; 8279 return getMachineNode(Opcode, dl, VTs, Ops); 8280 } 8281 8282 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8283 EVT VT1, EVT VT2, EVT VT3, 8284 SDValue Op1, SDValue Op2, 8285 SDValue Op3) { 8286 SDVTList VTs = getVTList(VT1, VT2, VT3); 8287 SDValue Ops[] = { Op1, Op2, Op3 }; 8288 return getMachineNode(Opcode, dl, VTs, Ops); 8289 } 8290 8291 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8292 EVT VT1, EVT VT2, EVT VT3, 8293 ArrayRef<SDValue> Ops) { 8294 SDVTList VTs = getVTList(VT1, VT2, VT3); 8295 return getMachineNode(Opcode, dl, VTs, Ops); 8296 } 8297 8298 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8299 ArrayRef<EVT> ResultTys, 8300 ArrayRef<SDValue> Ops) { 8301 SDVTList VTs = getVTList(ResultTys); 8302 return getMachineNode(Opcode, dl, VTs, Ops); 8303 } 8304 8305 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8306 SDVTList VTs, 8307 ArrayRef<SDValue> Ops) { 8308 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8309 MachineSDNode *N; 8310 void *IP = nullptr; 8311 8312 if (DoCSE) { 8313 FoldingSetNodeID ID; 8314 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8315 IP = nullptr; 8316 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8317 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8318 } 8319 } 8320 8321 // Allocate a new MachineSDNode. 8322 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8323 createOperands(N, Ops); 8324 8325 if (DoCSE) 8326 CSEMap.InsertNode(N, IP); 8327 8328 InsertNode(N); 8329 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8330 return N; 8331 } 8332 8333 /// getTargetExtractSubreg - A convenience function for creating 8334 /// TargetOpcode::EXTRACT_SUBREG nodes. 8335 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8336 SDValue Operand) { 8337 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8338 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8339 VT, Operand, SRIdxVal); 8340 return SDValue(Subreg, 0); 8341 } 8342 8343 /// getTargetInsertSubreg - A convenience function for creating 8344 /// TargetOpcode::INSERT_SUBREG nodes. 8345 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8346 SDValue Operand, SDValue Subreg) { 8347 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8348 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8349 VT, Operand, Subreg, SRIdxVal); 8350 return SDValue(Result, 0); 8351 } 8352 8353 /// getNodeIfExists - Get the specified node if it's already available, or 8354 /// else return NULL. 8355 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8356 ArrayRef<SDValue> Ops) { 8357 SDNodeFlags Flags; 8358 if (Inserter) 8359 Flags = Inserter->getFlags(); 8360 return getNodeIfExists(Opcode, VTList, Ops, Flags); 8361 } 8362 8363 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8364 ArrayRef<SDValue> Ops, 8365 const SDNodeFlags Flags) { 8366 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8367 FoldingSetNodeID ID; 8368 AddNodeIDNode(ID, Opcode, VTList, Ops); 8369 void *IP = nullptr; 8370 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8371 E->intersectFlagsWith(Flags); 8372 return E; 8373 } 8374 } 8375 return nullptr; 8376 } 8377 8378 /// doesNodeExist - Check if a node exists without modifying its flags. 8379 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 8380 ArrayRef<SDValue> Ops) { 8381 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8382 FoldingSetNodeID ID; 8383 AddNodeIDNode(ID, Opcode, VTList, Ops); 8384 void *IP = nullptr; 8385 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 8386 return true; 8387 } 8388 return false; 8389 } 8390 8391 /// getDbgValue - Creates a SDDbgValue node. 8392 /// 8393 /// SDNode 8394 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8395 SDNode *N, unsigned R, bool IsIndirect, 8396 const DebugLoc &DL, unsigned O) { 8397 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8398 "Expected inlined-at fields to agree"); 8399 return new (DbgInfo->getAlloc()) 8400 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8401 } 8402 8403 /// Constant 8404 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8405 DIExpression *Expr, 8406 const Value *C, 8407 const DebugLoc &DL, unsigned O) { 8408 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8409 "Expected inlined-at fields to agree"); 8410 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8411 } 8412 8413 /// FrameIndex 8414 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8415 DIExpression *Expr, unsigned FI, 8416 bool IsIndirect, 8417 const DebugLoc &DL, 8418 unsigned O) { 8419 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8420 "Expected inlined-at fields to agree"); 8421 return new (DbgInfo->getAlloc()) 8422 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8423 } 8424 8425 /// VReg 8426 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8427 DIExpression *Expr, 8428 unsigned VReg, bool IsIndirect, 8429 const DebugLoc &DL, unsigned O) { 8430 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8431 "Expected inlined-at fields to agree"); 8432 return new (DbgInfo->getAlloc()) 8433 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8434 } 8435 8436 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8437 unsigned OffsetInBits, unsigned SizeInBits, 8438 bool InvalidateDbg) { 8439 SDNode *FromNode = From.getNode(); 8440 SDNode *ToNode = To.getNode(); 8441 assert(FromNode && ToNode && "Can't modify dbg values"); 8442 8443 // PR35338 8444 // TODO: assert(From != To && "Redundant dbg value transfer"); 8445 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8446 if (From == To || FromNode == ToNode) 8447 return; 8448 8449 if (!FromNode->getHasDebugValue()) 8450 return; 8451 8452 SmallVector<SDDbgValue *, 2> ClonedDVs; 8453 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8454 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8455 continue; 8456 8457 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8458 8459 // Just transfer the dbg value attached to From. 8460 if (Dbg->getResNo() != From.getResNo()) 8461 continue; 8462 8463 DIVariable *Var = Dbg->getVariable(); 8464 auto *Expr = Dbg->getExpression(); 8465 // If a fragment is requested, update the expression. 8466 if (SizeInBits) { 8467 // When splitting a larger (e.g., sign-extended) value whose 8468 // lower bits are described with an SDDbgValue, do not attempt 8469 // to transfer the SDDbgValue to the upper bits. 8470 if (auto FI = Expr->getFragmentInfo()) 8471 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8472 continue; 8473 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8474 SizeInBits); 8475 if (!Fragment) 8476 continue; 8477 Expr = *Fragment; 8478 } 8479 // Clone the SDDbgValue and move it to To. 8480 SDDbgValue *Clone = getDbgValue( 8481 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8482 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8483 ClonedDVs.push_back(Clone); 8484 8485 if (InvalidateDbg) { 8486 // Invalidate value and indicate the SDDbgValue should not be emitted. 8487 Dbg->setIsInvalidated(); 8488 Dbg->setIsEmitted(); 8489 } 8490 } 8491 8492 for (SDDbgValue *Dbg : ClonedDVs) 8493 AddDbgValue(Dbg, ToNode, false); 8494 } 8495 8496 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8497 if (!N.getHasDebugValue()) 8498 return; 8499 8500 SmallVector<SDDbgValue *, 2> ClonedDVs; 8501 for (auto DV : GetDbgValues(&N)) { 8502 if (DV->isInvalidated()) 8503 continue; 8504 switch (N.getOpcode()) { 8505 default: 8506 break; 8507 case ISD::ADD: 8508 SDValue N0 = N.getOperand(0); 8509 SDValue N1 = N.getOperand(1); 8510 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8511 isConstantIntBuildVectorOrConstantInt(N1)) { 8512 uint64_t Offset = N.getConstantOperandVal(1); 8513 // Rewrite an ADD constant node into a DIExpression. Since we are 8514 // performing arithmetic to compute the variable's *value* in the 8515 // DIExpression, we need to mark the expression with a 8516 // DW_OP_stack_value. 8517 auto *DIExpr = DV->getExpression(); 8518 DIExpr = 8519 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8520 SDDbgValue *Clone = 8521 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8522 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8523 ClonedDVs.push_back(Clone); 8524 DV->setIsInvalidated(); 8525 DV->setIsEmitted(); 8526 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8527 N0.getNode()->dumprFull(this); 8528 dbgs() << " into " << *DIExpr << '\n'); 8529 } 8530 } 8531 } 8532 8533 for (SDDbgValue *Dbg : ClonedDVs) 8534 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8535 } 8536 8537 /// Creates a SDDbgLabel node. 8538 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8539 const DebugLoc &DL, unsigned O) { 8540 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8541 "Expected inlined-at fields to agree"); 8542 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8543 } 8544 8545 namespace { 8546 8547 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8548 /// pointed to by a use iterator is deleted, increment the use iterator 8549 /// so that it doesn't dangle. 8550 /// 8551 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8552 SDNode::use_iterator &UI; 8553 SDNode::use_iterator &UE; 8554 8555 void NodeDeleted(SDNode *N, SDNode *E) override { 8556 // Increment the iterator as needed. 8557 while (UI != UE && N == *UI) 8558 ++UI; 8559 } 8560 8561 public: 8562 RAUWUpdateListener(SelectionDAG &d, 8563 SDNode::use_iterator &ui, 8564 SDNode::use_iterator &ue) 8565 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8566 }; 8567 8568 } // end anonymous namespace 8569 8570 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8571 /// This can cause recursive merging of nodes in the DAG. 8572 /// 8573 /// This version assumes From has a single result value. 8574 /// 8575 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8576 SDNode *From = FromN.getNode(); 8577 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8578 "Cannot replace with this method!"); 8579 assert(From != To.getNode() && "Cannot replace uses of with self"); 8580 8581 // Preserve Debug Values 8582 transferDbgValues(FromN, To); 8583 8584 // Iterate over all the existing uses of From. New uses will be added 8585 // to the beginning of the use list, which we avoid visiting. 8586 // This specifically avoids visiting uses of From that arise while the 8587 // replacement is happening, because any such uses would be the result 8588 // of CSE: If an existing node looks like From after one of its operands 8589 // is replaced by To, we don't want to replace of all its users with To 8590 // too. See PR3018 for more info. 8591 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8592 RAUWUpdateListener Listener(*this, UI, UE); 8593 while (UI != UE) { 8594 SDNode *User = *UI; 8595 8596 // This node is about to morph, remove its old self from the CSE maps. 8597 RemoveNodeFromCSEMaps(User); 8598 8599 // A user can appear in a use list multiple times, and when this 8600 // happens the uses are usually next to each other in the list. 8601 // To help reduce the number of CSE recomputations, process all 8602 // the uses of this user that we can find this way. 8603 do { 8604 SDUse &Use = UI.getUse(); 8605 ++UI; 8606 Use.set(To); 8607 if (To->isDivergent() != From->isDivergent()) 8608 updateDivergence(User); 8609 } while (UI != UE && *UI == User); 8610 // Now that we have modified User, add it back to the CSE maps. If it 8611 // already exists there, recursively merge the results together. 8612 AddModifiedNodeToCSEMaps(User); 8613 } 8614 8615 // If we just RAUW'd the root, take note. 8616 if (FromN == getRoot()) 8617 setRoot(To); 8618 } 8619 8620 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8621 /// This can cause recursive merging of nodes in the DAG. 8622 /// 8623 /// This version assumes that for each value of From, there is a 8624 /// corresponding value in To in the same position with the same type. 8625 /// 8626 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8627 #ifndef NDEBUG 8628 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8629 assert((!From->hasAnyUseOfValue(i) || 8630 From->getValueType(i) == To->getValueType(i)) && 8631 "Cannot use this version of ReplaceAllUsesWith!"); 8632 #endif 8633 8634 // Handle the trivial case. 8635 if (From == To) 8636 return; 8637 8638 // Preserve Debug Info. Only do this if there's a use. 8639 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8640 if (From->hasAnyUseOfValue(i)) { 8641 assert((i < To->getNumValues()) && "Invalid To location"); 8642 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8643 } 8644 8645 // Iterate over just the existing users of From. See the comments in 8646 // the ReplaceAllUsesWith above. 8647 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8648 RAUWUpdateListener Listener(*this, UI, UE); 8649 while (UI != UE) { 8650 SDNode *User = *UI; 8651 8652 // This node is about to morph, remove its old self from the CSE maps. 8653 RemoveNodeFromCSEMaps(User); 8654 8655 // A user can appear in a use list multiple times, and when this 8656 // happens the uses are usually next to each other in the list. 8657 // To help reduce the number of CSE recomputations, process all 8658 // the uses of this user that we can find this way. 8659 do { 8660 SDUse &Use = UI.getUse(); 8661 ++UI; 8662 Use.setNode(To); 8663 if (To->isDivergent() != From->isDivergent()) 8664 updateDivergence(User); 8665 } while (UI != UE && *UI == User); 8666 8667 // Now that we have modified User, add it back to the CSE maps. If it 8668 // already exists there, recursively merge the results together. 8669 AddModifiedNodeToCSEMaps(User); 8670 } 8671 8672 // If we just RAUW'd the root, take note. 8673 if (From == getRoot().getNode()) 8674 setRoot(SDValue(To, getRoot().getResNo())); 8675 } 8676 8677 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8678 /// This can cause recursive merging of nodes in the DAG. 8679 /// 8680 /// This version can replace From with any result values. To must match the 8681 /// number and types of values returned by From. 8682 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8683 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8684 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8685 8686 // Preserve Debug Info. 8687 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8688 transferDbgValues(SDValue(From, i), To[i]); 8689 8690 // Iterate over just the existing users of From. See the comments in 8691 // the ReplaceAllUsesWith above. 8692 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8693 RAUWUpdateListener Listener(*this, UI, UE); 8694 while (UI != UE) { 8695 SDNode *User = *UI; 8696 8697 // This node is about to morph, remove its old self from the CSE maps. 8698 RemoveNodeFromCSEMaps(User); 8699 8700 // A user can appear in a use list multiple times, and when this happens the 8701 // uses are usually next to each other in the list. To help reduce the 8702 // number of CSE and divergence recomputations, process all the uses of this 8703 // user that we can find this way. 8704 bool To_IsDivergent = false; 8705 do { 8706 SDUse &Use = UI.getUse(); 8707 const SDValue &ToOp = To[Use.getResNo()]; 8708 ++UI; 8709 Use.set(ToOp); 8710 To_IsDivergent |= ToOp->isDivergent(); 8711 } while (UI != UE && *UI == User); 8712 8713 if (To_IsDivergent != From->isDivergent()) 8714 updateDivergence(User); 8715 8716 // Now that we have modified User, add it back to the CSE maps. If it 8717 // already exists there, recursively merge the results together. 8718 AddModifiedNodeToCSEMaps(User); 8719 } 8720 8721 // If we just RAUW'd the root, take note. 8722 if (From == getRoot().getNode()) 8723 setRoot(SDValue(To[getRoot().getResNo()])); 8724 } 8725 8726 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8727 /// uses of other values produced by From.getNode() alone. The Deleted 8728 /// vector is handled the same way as for ReplaceAllUsesWith. 8729 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8730 // Handle the really simple, really trivial case efficiently. 8731 if (From == To) return; 8732 8733 // Handle the simple, trivial, case efficiently. 8734 if (From.getNode()->getNumValues() == 1) { 8735 ReplaceAllUsesWith(From, To); 8736 return; 8737 } 8738 8739 // Preserve Debug Info. 8740 transferDbgValues(From, To); 8741 8742 // Iterate over just the existing users of From. See the comments in 8743 // the ReplaceAllUsesWith above. 8744 SDNode::use_iterator UI = From.getNode()->use_begin(), 8745 UE = From.getNode()->use_end(); 8746 RAUWUpdateListener Listener(*this, UI, UE); 8747 while (UI != UE) { 8748 SDNode *User = *UI; 8749 bool UserRemovedFromCSEMaps = false; 8750 8751 // A user can appear in a use list multiple times, and when this 8752 // happens the uses are usually next to each other in the list. 8753 // To help reduce the number of CSE recomputations, process all 8754 // the uses of this user that we can find this way. 8755 do { 8756 SDUse &Use = UI.getUse(); 8757 8758 // Skip uses of different values from the same node. 8759 if (Use.getResNo() != From.getResNo()) { 8760 ++UI; 8761 continue; 8762 } 8763 8764 // If this node hasn't been modified yet, it's still in the CSE maps, 8765 // so remove its old self from the CSE maps. 8766 if (!UserRemovedFromCSEMaps) { 8767 RemoveNodeFromCSEMaps(User); 8768 UserRemovedFromCSEMaps = true; 8769 } 8770 8771 ++UI; 8772 Use.set(To); 8773 if (To->isDivergent() != From->isDivergent()) 8774 updateDivergence(User); 8775 } while (UI != UE && *UI == User); 8776 // We are iterating over all uses of the From node, so if a use 8777 // doesn't use the specific value, no changes are made. 8778 if (!UserRemovedFromCSEMaps) 8779 continue; 8780 8781 // Now that we have modified User, add it back to the CSE maps. If it 8782 // already exists there, recursively merge the results together. 8783 AddModifiedNodeToCSEMaps(User); 8784 } 8785 8786 // If we just RAUW'd the root, take note. 8787 if (From == getRoot()) 8788 setRoot(To); 8789 } 8790 8791 namespace { 8792 8793 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8794 /// to record information about a use. 8795 struct UseMemo { 8796 SDNode *User; 8797 unsigned Index; 8798 SDUse *Use; 8799 }; 8800 8801 /// operator< - Sort Memos by User. 8802 bool operator<(const UseMemo &L, const UseMemo &R) { 8803 return (intptr_t)L.User < (intptr_t)R.User; 8804 } 8805 8806 } // end anonymous namespace 8807 8808 bool SelectionDAG::calculateDivergence(SDNode *N) { 8809 if (TLI->isSDNodeAlwaysUniform(N)) { 8810 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 8811 "Conflicting divergence information!"); 8812 return false; 8813 } 8814 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 8815 return true; 8816 for (auto &Op : N->ops()) { 8817 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 8818 return true; 8819 } 8820 return false; 8821 } 8822 8823 void SelectionDAG::updateDivergence(SDNode *N) { 8824 SmallVector<SDNode *, 16> Worklist(1, N); 8825 do { 8826 N = Worklist.pop_back_val(); 8827 bool IsDivergent = calculateDivergence(N); 8828 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8829 N->SDNodeBits.IsDivergent = IsDivergent; 8830 llvm::append_range(Worklist, N->uses()); 8831 } 8832 } while (!Worklist.empty()); 8833 } 8834 8835 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8836 DenseMap<SDNode *, unsigned> Degree; 8837 Order.reserve(AllNodes.size()); 8838 for (auto &N : allnodes()) { 8839 unsigned NOps = N.getNumOperands(); 8840 Degree[&N] = NOps; 8841 if (0 == NOps) 8842 Order.push_back(&N); 8843 } 8844 for (size_t I = 0; I != Order.size(); ++I) { 8845 SDNode *N = Order[I]; 8846 for (auto U : N->uses()) { 8847 unsigned &UnsortedOps = Degree[U]; 8848 if (0 == --UnsortedOps) 8849 Order.push_back(U); 8850 } 8851 } 8852 } 8853 8854 #ifndef NDEBUG 8855 void SelectionDAG::VerifyDAGDiverence() { 8856 std::vector<SDNode *> TopoOrder; 8857 CreateTopologicalOrder(TopoOrder); 8858 for (auto *N : TopoOrder) { 8859 assert(calculateDivergence(N) == N->isDivergent() && 8860 "Divergence bit inconsistency detected"); 8861 } 8862 } 8863 #endif 8864 8865 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8866 /// uses of other values produced by From.getNode() alone. The same value 8867 /// may appear in both the From and To list. The Deleted vector is 8868 /// handled the same way as for ReplaceAllUsesWith. 8869 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8870 const SDValue *To, 8871 unsigned Num){ 8872 // Handle the simple, trivial case efficiently. 8873 if (Num == 1) 8874 return ReplaceAllUsesOfValueWith(*From, *To); 8875 8876 transferDbgValues(*From, *To); 8877 8878 // Read up all the uses and make records of them. This helps 8879 // processing new uses that are introduced during the 8880 // replacement process. 8881 SmallVector<UseMemo, 4> Uses; 8882 for (unsigned i = 0; i != Num; ++i) { 8883 unsigned FromResNo = From[i].getResNo(); 8884 SDNode *FromNode = From[i].getNode(); 8885 for (SDNode::use_iterator UI = FromNode->use_begin(), 8886 E = FromNode->use_end(); UI != E; ++UI) { 8887 SDUse &Use = UI.getUse(); 8888 if (Use.getResNo() == FromResNo) { 8889 UseMemo Memo = { *UI, i, &Use }; 8890 Uses.push_back(Memo); 8891 } 8892 } 8893 } 8894 8895 // Sort the uses, so that all the uses from a given User are together. 8896 llvm::sort(Uses); 8897 8898 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8899 UseIndex != UseIndexEnd; ) { 8900 // We know that this user uses some value of From. If it is the right 8901 // value, update it. 8902 SDNode *User = Uses[UseIndex].User; 8903 8904 // This node is about to morph, remove its old self from the CSE maps. 8905 RemoveNodeFromCSEMaps(User); 8906 8907 // The Uses array is sorted, so all the uses for a given User 8908 // are next to each other in the list. 8909 // To help reduce the number of CSE recomputations, process all 8910 // the uses of this user that we can find this way. 8911 do { 8912 unsigned i = Uses[UseIndex].Index; 8913 SDUse &Use = *Uses[UseIndex].Use; 8914 ++UseIndex; 8915 8916 Use.set(To[i]); 8917 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8918 8919 // Now that we have modified User, add it back to the CSE maps. If it 8920 // already exists there, recursively merge the results together. 8921 AddModifiedNodeToCSEMaps(User); 8922 } 8923 } 8924 8925 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8926 /// based on their topological order. It returns the maximum id and a vector 8927 /// of the SDNodes* in assigned order by reference. 8928 unsigned SelectionDAG::AssignTopologicalOrder() { 8929 unsigned DAGSize = 0; 8930 8931 // SortedPos tracks the progress of the algorithm. Nodes before it are 8932 // sorted, nodes after it are unsorted. When the algorithm completes 8933 // it is at the end of the list. 8934 allnodes_iterator SortedPos = allnodes_begin(); 8935 8936 // Visit all the nodes. Move nodes with no operands to the front of 8937 // the list immediately. Annotate nodes that do have operands with their 8938 // operand count. Before we do this, the Node Id fields of the nodes 8939 // may contain arbitrary values. After, the Node Id fields for nodes 8940 // before SortedPos will contain the topological sort index, and the 8941 // Node Id fields for nodes At SortedPos and after will contain the 8942 // count of outstanding operands. 8943 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8944 SDNode *N = &*I++; 8945 checkForCycles(N, this); 8946 unsigned Degree = N->getNumOperands(); 8947 if (Degree == 0) { 8948 // A node with no uses, add it to the result array immediately. 8949 N->setNodeId(DAGSize++); 8950 allnodes_iterator Q(N); 8951 if (Q != SortedPos) 8952 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8953 assert(SortedPos != AllNodes.end() && "Overran node list"); 8954 ++SortedPos; 8955 } else { 8956 // Temporarily use the Node Id as scratch space for the degree count. 8957 N->setNodeId(Degree); 8958 } 8959 } 8960 8961 // Visit all the nodes. As we iterate, move nodes into sorted order, 8962 // such that by the time the end is reached all nodes will be sorted. 8963 for (SDNode &Node : allnodes()) { 8964 SDNode *N = &Node; 8965 checkForCycles(N, this); 8966 // N is in sorted position, so all its uses have one less operand 8967 // that needs to be sorted. 8968 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8969 UI != UE; ++UI) { 8970 SDNode *P = *UI; 8971 unsigned Degree = P->getNodeId(); 8972 assert(Degree != 0 && "Invalid node degree"); 8973 --Degree; 8974 if (Degree == 0) { 8975 // All of P's operands are sorted, so P may sorted now. 8976 P->setNodeId(DAGSize++); 8977 if (P->getIterator() != SortedPos) 8978 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8979 assert(SortedPos != AllNodes.end() && "Overran node list"); 8980 ++SortedPos; 8981 } else { 8982 // Update P's outstanding operand count. 8983 P->setNodeId(Degree); 8984 } 8985 } 8986 if (Node.getIterator() == SortedPos) { 8987 #ifndef NDEBUG 8988 allnodes_iterator I(N); 8989 SDNode *S = &*++I; 8990 dbgs() << "Overran sorted position:\n"; 8991 S->dumprFull(this); dbgs() << "\n"; 8992 dbgs() << "Checking if this is due to cycles\n"; 8993 checkForCycles(this, true); 8994 #endif 8995 llvm_unreachable(nullptr); 8996 } 8997 } 8998 8999 assert(SortedPos == AllNodes.end() && 9000 "Topological sort incomplete!"); 9001 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9002 "First node in topological sort is not the entry token!"); 9003 assert(AllNodes.front().getNodeId() == 0 && 9004 "First node in topological sort has non-zero id!"); 9005 assert(AllNodes.front().getNumOperands() == 0 && 9006 "First node in topological sort has operands!"); 9007 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9008 "Last node in topologic sort has unexpected id!"); 9009 assert(AllNodes.back().use_empty() && 9010 "Last node in topologic sort has users!"); 9011 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9012 return DAGSize; 9013 } 9014 9015 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9016 /// value is produced by SD. 9017 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 9018 if (SD) { 9019 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9020 SD->setHasDebugValue(true); 9021 } 9022 DbgInfo->add(DB, SD, isParameter); 9023 } 9024 9025 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 9026 DbgInfo->add(DB); 9027 } 9028 9029 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9030 SDValue NewMemOpChain) { 9031 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9032 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9033 // The new memory operation must have the same position as the old load in 9034 // terms of memory dependency. Create a TokenFactor for the old load and new 9035 // memory operation and update uses of the old load's output chain to use that 9036 // TokenFactor. 9037 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9038 return NewMemOpChain; 9039 9040 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9041 OldChain, NewMemOpChain); 9042 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9043 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9044 return TokenFactor; 9045 } 9046 9047 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9048 SDValue NewMemOp) { 9049 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9050 SDValue OldChain = SDValue(OldLoad, 1); 9051 SDValue NewMemOpChain = NewMemOp.getValue(1); 9052 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9053 } 9054 9055 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9056 Function **OutFunction) { 9057 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9058 9059 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9060 auto *Module = MF->getFunction().getParent(); 9061 auto *Function = Module->getFunction(Symbol); 9062 9063 if (OutFunction != nullptr) 9064 *OutFunction = Function; 9065 9066 if (Function != nullptr) { 9067 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9068 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9069 } 9070 9071 std::string ErrorStr; 9072 raw_string_ostream ErrorFormatter(ErrorStr); 9073 9074 ErrorFormatter << "Undefined external symbol "; 9075 ErrorFormatter << '"' << Symbol << '"'; 9076 ErrorFormatter.flush(); 9077 9078 report_fatal_error(ErrorStr); 9079 } 9080 9081 //===----------------------------------------------------------------------===// 9082 // SDNode Class 9083 //===----------------------------------------------------------------------===// 9084 9085 bool llvm::isNullConstant(SDValue V) { 9086 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9087 return Const != nullptr && Const->isNullValue(); 9088 } 9089 9090 bool llvm::isNullFPConstant(SDValue V) { 9091 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9092 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9093 } 9094 9095 bool llvm::isAllOnesConstant(SDValue V) { 9096 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9097 return Const != nullptr && Const->isAllOnesValue(); 9098 } 9099 9100 bool llvm::isOneConstant(SDValue V) { 9101 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9102 return Const != nullptr && Const->isOne(); 9103 } 9104 9105 SDValue llvm::peekThroughBitcasts(SDValue V) { 9106 while (V.getOpcode() == ISD::BITCAST) 9107 V = V.getOperand(0); 9108 return V; 9109 } 9110 9111 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9112 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9113 V = V.getOperand(0); 9114 return V; 9115 } 9116 9117 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9118 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9119 V = V.getOperand(0); 9120 return V; 9121 } 9122 9123 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9124 if (V.getOpcode() != ISD::XOR) 9125 return false; 9126 V = peekThroughBitcasts(V.getOperand(1)); 9127 unsigned NumBits = V.getScalarValueSizeInBits(); 9128 ConstantSDNode *C = 9129 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9130 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9131 } 9132 9133 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9134 bool AllowTruncation) { 9135 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9136 return CN; 9137 9138 // SplatVectors can truncate their operands. Ignore that case here unless 9139 // AllowTruncation is set. 9140 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9141 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9142 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9143 EVT CVT = CN->getValueType(0); 9144 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9145 if (AllowTruncation || CVT == VecEltVT) 9146 return CN; 9147 } 9148 } 9149 9150 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9151 BitVector UndefElements; 9152 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9153 9154 // BuildVectors can truncate their operands. Ignore that case here unless 9155 // AllowTruncation is set. 9156 if (CN && (UndefElements.none() || AllowUndefs)) { 9157 EVT CVT = CN->getValueType(0); 9158 EVT NSVT = N.getValueType().getScalarType(); 9159 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9160 if (AllowTruncation || (CVT == NSVT)) 9161 return CN; 9162 } 9163 } 9164 9165 return nullptr; 9166 } 9167 9168 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9169 bool AllowUndefs, 9170 bool AllowTruncation) { 9171 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9172 return CN; 9173 9174 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9175 BitVector UndefElements; 9176 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9177 9178 // BuildVectors can truncate their operands. Ignore that case here unless 9179 // AllowTruncation is set. 9180 if (CN && (UndefElements.none() || AllowUndefs)) { 9181 EVT CVT = CN->getValueType(0); 9182 EVT NSVT = N.getValueType().getScalarType(); 9183 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9184 if (AllowTruncation || (CVT == NSVT)) 9185 return CN; 9186 } 9187 } 9188 9189 return nullptr; 9190 } 9191 9192 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 9193 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9194 return CN; 9195 9196 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9197 BitVector UndefElements; 9198 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 9199 if (CN && (UndefElements.none() || AllowUndefs)) 9200 return CN; 9201 } 9202 9203 if (N.getOpcode() == ISD::SPLAT_VECTOR) 9204 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 9205 return CN; 9206 9207 return nullptr; 9208 } 9209 9210 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 9211 const APInt &DemandedElts, 9212 bool AllowUndefs) { 9213 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 9214 return CN; 9215 9216 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9217 BitVector UndefElements; 9218 ConstantFPSDNode *CN = 9219 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 9220 if (CN && (UndefElements.none() || AllowUndefs)) 9221 return CN; 9222 } 9223 9224 return nullptr; 9225 } 9226 9227 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 9228 // TODO: may want to use peekThroughBitcast() here. 9229 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 9230 return C && C->isNullValue(); 9231 } 9232 9233 bool llvm::isOneOrOneSplat(SDValue N) { 9234 // TODO: may want to use peekThroughBitcast() here. 9235 unsigned BitWidth = N.getScalarValueSizeInBits(); 9236 ConstantSDNode *C = isConstOrConstSplat(N); 9237 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 9238 } 9239 9240 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 9241 N = peekThroughBitcasts(N); 9242 unsigned BitWidth = N.getScalarValueSizeInBits(); 9243 ConstantSDNode *C = isConstOrConstSplat(N); 9244 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 9245 } 9246 9247 HandleSDNode::~HandleSDNode() { 9248 DropOperands(); 9249 } 9250 9251 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 9252 const DebugLoc &DL, 9253 const GlobalValue *GA, EVT VT, 9254 int64_t o, unsigned TF) 9255 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 9256 TheGlobal = GA; 9257 } 9258 9259 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 9260 EVT VT, unsigned SrcAS, 9261 unsigned DestAS) 9262 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 9263 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 9264 9265 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 9266 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 9267 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 9268 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 9269 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 9270 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 9271 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 9272 9273 // We check here that the size of the memory operand fits within the size of 9274 // the MMO. This is because the MMO might indicate only a possible address 9275 // range instead of specifying the affected memory addresses precisely. 9276 // TODO: Make MachineMemOperands aware of scalable vectors. 9277 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 9278 "Size mismatch!"); 9279 } 9280 9281 /// Profile - Gather unique data for the node. 9282 /// 9283 void SDNode::Profile(FoldingSetNodeID &ID) const { 9284 AddNodeIDNode(ID, this); 9285 } 9286 9287 namespace { 9288 9289 struct EVTArray { 9290 std::vector<EVT> VTs; 9291 9292 EVTArray() { 9293 VTs.reserve(MVT::LAST_VALUETYPE); 9294 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9295 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9296 } 9297 }; 9298 9299 } // end anonymous namespace 9300 9301 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9302 static ManagedStatic<EVTArray> SimpleVTArray; 9303 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9304 9305 /// getValueTypeList - Return a pointer to the specified value type. 9306 /// 9307 const EVT *SDNode::getValueTypeList(EVT VT) { 9308 if (VT.isExtended()) { 9309 sys::SmartScopedLock<true> Lock(*VTMutex); 9310 return &(*EVTs->insert(VT).first); 9311 } else { 9312 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9313 "Value type out of range!"); 9314 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9315 } 9316 } 9317 9318 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9319 /// indicated value. This method ignores uses of other values defined by this 9320 /// operation. 9321 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9322 assert(Value < getNumValues() && "Bad value!"); 9323 9324 // TODO: Only iterate over uses of a given value of the node 9325 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9326 if (UI.getUse().getResNo() == Value) { 9327 if (NUses == 0) 9328 return false; 9329 --NUses; 9330 } 9331 } 9332 9333 // Found exactly the right number of uses? 9334 return NUses == 0; 9335 } 9336 9337 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9338 /// value. This method ignores uses of other values defined by this operation. 9339 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9340 assert(Value < getNumValues() && "Bad value!"); 9341 9342 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9343 if (UI.getUse().getResNo() == Value) 9344 return true; 9345 9346 return false; 9347 } 9348 9349 /// isOnlyUserOf - Return true if this node is the only use of N. 9350 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9351 bool Seen = false; 9352 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9353 SDNode *User = *I; 9354 if (User == this) 9355 Seen = true; 9356 else 9357 return false; 9358 } 9359 9360 return Seen; 9361 } 9362 9363 /// Return true if the only users of N are contained in Nodes. 9364 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9365 bool Seen = false; 9366 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9367 SDNode *User = *I; 9368 if (llvm::is_contained(Nodes, User)) 9369 Seen = true; 9370 else 9371 return false; 9372 } 9373 9374 return Seen; 9375 } 9376 9377 /// isOperand - Return true if this node is an operand of N. 9378 bool SDValue::isOperandOf(const SDNode *N) const { 9379 return is_contained(N->op_values(), *this); 9380 } 9381 9382 bool SDNode::isOperandOf(const SDNode *N) const { 9383 return any_of(N->op_values(), 9384 [this](SDValue Op) { return this == Op.getNode(); }); 9385 } 9386 9387 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9388 /// be a chain) reaches the specified operand without crossing any 9389 /// side-effecting instructions on any chain path. In practice, this looks 9390 /// through token factors and non-volatile loads. In order to remain efficient, 9391 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9392 /// 9393 /// Note that we only need to examine chains when we're searching for 9394 /// side-effects; SelectionDAG requires that all side-effects are represented 9395 /// by chains, even if another operand would force a specific ordering. This 9396 /// constraint is necessary to allow transformations like splitting loads. 9397 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9398 unsigned Depth) const { 9399 if (*this == Dest) return true; 9400 9401 // Don't search too deeply, we just want to be able to see through 9402 // TokenFactor's etc. 9403 if (Depth == 0) return false; 9404 9405 // If this is a token factor, all inputs to the TF happen in parallel. 9406 if (getOpcode() == ISD::TokenFactor) { 9407 // First, try a shallow search. 9408 if (is_contained((*this)->ops(), Dest)) { 9409 // We found the chain we want as an operand of this TokenFactor. 9410 // Essentially, we reach the chain without side-effects if we could 9411 // serialize the TokenFactor into a simple chain of operations with 9412 // Dest as the last operation. This is automatically true if the 9413 // chain has one use: there are no other ordering constraints. 9414 // If the chain has more than one use, we give up: some other 9415 // use of Dest might force a side-effect between Dest and the current 9416 // node. 9417 if (Dest.hasOneUse()) 9418 return true; 9419 } 9420 // Next, try a deep search: check whether every operand of the TokenFactor 9421 // reaches Dest. 9422 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9423 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9424 }); 9425 } 9426 9427 // Loads don't have side effects, look through them. 9428 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9429 if (Ld->isUnordered()) 9430 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9431 } 9432 return false; 9433 } 9434 9435 bool SDNode::hasPredecessor(const SDNode *N) const { 9436 SmallPtrSet<const SDNode *, 32> Visited; 9437 SmallVector<const SDNode *, 16> Worklist; 9438 Worklist.push_back(this); 9439 return hasPredecessorHelper(N, Visited, Worklist); 9440 } 9441 9442 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9443 this->Flags.intersectWith(Flags); 9444 } 9445 9446 SDValue 9447 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9448 ArrayRef<ISD::NodeType> CandidateBinOps, 9449 bool AllowPartials) { 9450 // The pattern must end in an extract from index 0. 9451 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9452 !isNullConstant(Extract->getOperand(1))) 9453 return SDValue(); 9454 9455 // Match against one of the candidate binary ops. 9456 SDValue Op = Extract->getOperand(0); 9457 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9458 return Op.getOpcode() == unsigned(BinOp); 9459 })) 9460 return SDValue(); 9461 9462 // Floating-point reductions may require relaxed constraints on the final step 9463 // of the reduction because they may reorder intermediate operations. 9464 unsigned CandidateBinOp = Op.getOpcode(); 9465 if (Op.getValueType().isFloatingPoint()) { 9466 SDNodeFlags Flags = Op->getFlags(); 9467 switch (CandidateBinOp) { 9468 case ISD::FADD: 9469 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9470 return SDValue(); 9471 break; 9472 default: 9473 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9474 } 9475 } 9476 9477 // Matching failed - attempt to see if we did enough stages that a partial 9478 // reduction from a subvector is possible. 9479 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9480 if (!AllowPartials || !Op) 9481 return SDValue(); 9482 EVT OpVT = Op.getValueType(); 9483 EVT OpSVT = OpVT.getScalarType(); 9484 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9485 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9486 return SDValue(); 9487 BinOp = (ISD::NodeType)CandidateBinOp; 9488 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9489 getVectorIdxConstant(0, SDLoc(Op))); 9490 }; 9491 9492 // At each stage, we're looking for something that looks like: 9493 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9494 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9495 // i32 undef, i32 undef, i32 undef, i32 undef> 9496 // %a = binop <8 x i32> %op, %s 9497 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9498 // we expect something like: 9499 // <4,5,6,7,u,u,u,u> 9500 // <2,3,u,u,u,u,u,u> 9501 // <1,u,u,u,u,u,u,u> 9502 // While a partial reduction match would be: 9503 // <2,3,u,u,u,u,u,u> 9504 // <1,u,u,u,u,u,u,u> 9505 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9506 SDValue PrevOp; 9507 for (unsigned i = 0; i < Stages; ++i) { 9508 unsigned MaskEnd = (1 << i); 9509 9510 if (Op.getOpcode() != CandidateBinOp) 9511 return PartialReduction(PrevOp, MaskEnd); 9512 9513 SDValue Op0 = Op.getOperand(0); 9514 SDValue Op1 = Op.getOperand(1); 9515 9516 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9517 if (Shuffle) { 9518 Op = Op1; 9519 } else { 9520 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9521 Op = Op0; 9522 } 9523 9524 // The first operand of the shuffle should be the same as the other operand 9525 // of the binop. 9526 if (!Shuffle || Shuffle->getOperand(0) != Op) 9527 return PartialReduction(PrevOp, MaskEnd); 9528 9529 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9530 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9531 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9532 return PartialReduction(PrevOp, MaskEnd); 9533 9534 PrevOp = Op; 9535 } 9536 9537 // Handle subvector reductions, which tend to appear after the shuffle 9538 // reduction stages. 9539 while (Op.getOpcode() == CandidateBinOp) { 9540 unsigned NumElts = Op.getValueType().getVectorNumElements(); 9541 SDValue Op0 = Op.getOperand(0); 9542 SDValue Op1 = Op.getOperand(1); 9543 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9544 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 9545 Op0.getOperand(0) != Op1.getOperand(0)) 9546 break; 9547 SDValue Src = Op0.getOperand(0); 9548 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 9549 if (NumSrcElts != (2 * NumElts)) 9550 break; 9551 if (!(Op0.getConstantOperandAPInt(1) == 0 && 9552 Op1.getConstantOperandAPInt(1) == NumElts) && 9553 !(Op1.getConstantOperandAPInt(1) == 0 && 9554 Op0.getConstantOperandAPInt(1) == NumElts)) 9555 break; 9556 Op = Src; 9557 } 9558 9559 BinOp = (ISD::NodeType)CandidateBinOp; 9560 return Op; 9561 } 9562 9563 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9564 assert(N->getNumValues() == 1 && 9565 "Can't unroll a vector with multiple results!"); 9566 9567 EVT VT = N->getValueType(0); 9568 unsigned NE = VT.getVectorNumElements(); 9569 EVT EltVT = VT.getVectorElementType(); 9570 SDLoc dl(N); 9571 9572 SmallVector<SDValue, 8> Scalars; 9573 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9574 9575 // If ResNE is 0, fully unroll the vector op. 9576 if (ResNE == 0) 9577 ResNE = NE; 9578 else if (NE > ResNE) 9579 NE = ResNE; 9580 9581 unsigned i; 9582 for (i= 0; i != NE; ++i) { 9583 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9584 SDValue Operand = N->getOperand(j); 9585 EVT OperandVT = Operand.getValueType(); 9586 if (OperandVT.isVector()) { 9587 // A vector operand; extract a single element. 9588 EVT OperandEltVT = OperandVT.getVectorElementType(); 9589 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 9590 Operand, getVectorIdxConstant(i, dl)); 9591 } else { 9592 // A scalar operand; just use it as is. 9593 Operands[j] = Operand; 9594 } 9595 } 9596 9597 switch (N->getOpcode()) { 9598 default: { 9599 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9600 N->getFlags())); 9601 break; 9602 } 9603 case ISD::VSELECT: 9604 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9605 break; 9606 case ISD::SHL: 9607 case ISD::SRA: 9608 case ISD::SRL: 9609 case ISD::ROTL: 9610 case ISD::ROTR: 9611 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9612 getShiftAmountOperand(Operands[0].getValueType(), 9613 Operands[1]))); 9614 break; 9615 case ISD::SIGN_EXTEND_INREG: { 9616 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9617 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9618 Operands[0], 9619 getValueType(ExtVT))); 9620 } 9621 } 9622 } 9623 9624 for (; i < ResNE; ++i) 9625 Scalars.push_back(getUNDEF(EltVT)); 9626 9627 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9628 return getBuildVector(VecVT, dl, Scalars); 9629 } 9630 9631 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9632 SDNode *N, unsigned ResNE) { 9633 unsigned Opcode = N->getOpcode(); 9634 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9635 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9636 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9637 "Expected an overflow opcode"); 9638 9639 EVT ResVT = N->getValueType(0); 9640 EVT OvVT = N->getValueType(1); 9641 EVT ResEltVT = ResVT.getVectorElementType(); 9642 EVT OvEltVT = OvVT.getVectorElementType(); 9643 SDLoc dl(N); 9644 9645 // If ResNE is 0, fully unroll the vector op. 9646 unsigned NE = ResVT.getVectorNumElements(); 9647 if (ResNE == 0) 9648 ResNE = NE; 9649 else if (NE > ResNE) 9650 NE = ResNE; 9651 9652 SmallVector<SDValue, 8> LHSScalars; 9653 SmallVector<SDValue, 8> RHSScalars; 9654 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9655 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9656 9657 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9658 SDVTList VTs = getVTList(ResEltVT, SVT); 9659 SmallVector<SDValue, 8> ResScalars; 9660 SmallVector<SDValue, 8> OvScalars; 9661 for (unsigned i = 0; i < NE; ++i) { 9662 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9663 SDValue Ov = 9664 getSelect(dl, OvEltVT, Res.getValue(1), 9665 getBoolConstant(true, dl, OvEltVT, ResVT), 9666 getConstant(0, dl, OvEltVT)); 9667 9668 ResScalars.push_back(Res); 9669 OvScalars.push_back(Ov); 9670 } 9671 9672 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9673 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9674 9675 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9676 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9677 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9678 getBuildVector(NewOvVT, dl, OvScalars)); 9679 } 9680 9681 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9682 LoadSDNode *Base, 9683 unsigned Bytes, 9684 int Dist) const { 9685 if (LD->isVolatile() || Base->isVolatile()) 9686 return false; 9687 // TODO: probably too restrictive for atomics, revisit 9688 if (!LD->isSimple()) 9689 return false; 9690 if (LD->isIndexed() || Base->isIndexed()) 9691 return false; 9692 if (LD->getChain() != Base->getChain()) 9693 return false; 9694 EVT VT = LD->getValueType(0); 9695 if (VT.getSizeInBits() / 8 != Bytes) 9696 return false; 9697 9698 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9699 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9700 9701 int64_t Offset = 0; 9702 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9703 return (Dist * Bytes == Offset); 9704 return false; 9705 } 9706 9707 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 9708 /// if it cannot be inferred. 9709 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 9710 // If this is a GlobalAddress + cst, return the alignment. 9711 const GlobalValue *GV = nullptr; 9712 int64_t GVOffset = 0; 9713 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9714 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9715 KnownBits Known(PtrWidth); 9716 llvm::computeKnownBits(GV, Known, getDataLayout()); 9717 unsigned AlignBits = Known.countMinTrailingZeros(); 9718 if (AlignBits) 9719 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 9720 } 9721 9722 // If this is a direct reference to a stack slot, use information about the 9723 // stack slot's alignment. 9724 int FrameIdx = INT_MIN; 9725 int64_t FrameOffset = 0; 9726 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9727 FrameIdx = FI->getIndex(); 9728 } else if (isBaseWithConstantOffset(Ptr) && 9729 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9730 // Handle FI+Cst 9731 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9732 FrameOffset = Ptr.getConstantOperandVal(1); 9733 } 9734 9735 if (FrameIdx != INT_MIN) { 9736 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9737 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 9738 } 9739 9740 return None; 9741 } 9742 9743 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9744 /// which is split (or expanded) into two not necessarily identical pieces. 9745 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9746 // Currently all types are split in half. 9747 EVT LoVT, HiVT; 9748 if (!VT.isVector()) 9749 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9750 else 9751 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9752 9753 return std::make_pair(LoVT, HiVT); 9754 } 9755 9756 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 9757 /// type, dependent on an enveloping VT that has been split into two identical 9758 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 9759 std::pair<EVT, EVT> 9760 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 9761 bool *HiIsEmpty) const { 9762 EVT EltTp = VT.getVectorElementType(); 9763 // Examples: 9764 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 9765 // custom VL=9 with enveloping VL=8/8 yields 8/1 9766 // custom VL=10 with enveloping VL=8/8 yields 8/2 9767 // etc. 9768 ElementCount VTNumElts = VT.getVectorElementCount(); 9769 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 9770 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 9771 "Mixing fixed width and scalable vectors when enveloping a type"); 9772 EVT LoVT, HiVT; 9773 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 9774 LoVT = EnvVT; 9775 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 9776 *HiIsEmpty = false; 9777 } else { 9778 // Flag that hi type has zero storage size, but return split envelop type 9779 // (this would be easier if vector types with zero elements were allowed). 9780 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 9781 HiVT = EnvVT; 9782 *HiIsEmpty = true; 9783 } 9784 return std::make_pair(LoVT, HiVT); 9785 } 9786 9787 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9788 /// low/high part. 9789 std::pair<SDValue, SDValue> 9790 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9791 const EVT &HiVT) { 9792 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 9793 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 9794 "Splitting vector with an invalid mixture of fixed and scalable " 9795 "vector types"); 9796 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 9797 N.getValueType().getVectorMinNumElements() && 9798 "More vector elements requested than available!"); 9799 SDValue Lo, Hi; 9800 Lo = 9801 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 9802 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 9803 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 9804 // IDX with the runtime scaling factor of the result vector type. For 9805 // fixed-width result vectors, that runtime scaling factor is 1. 9806 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9807 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 9808 return std::make_pair(Lo, Hi); 9809 } 9810 9811 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9812 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9813 EVT VT = N.getValueType(); 9814 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9815 NextPowerOf2(VT.getVectorNumElements())); 9816 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9817 getVectorIdxConstant(0, DL)); 9818 } 9819 9820 void SelectionDAG::ExtractVectorElements(SDValue Op, 9821 SmallVectorImpl<SDValue> &Args, 9822 unsigned Start, unsigned Count, 9823 EVT EltVT) { 9824 EVT VT = Op.getValueType(); 9825 if (Count == 0) 9826 Count = VT.getVectorNumElements(); 9827 if (EltVT == EVT()) 9828 EltVT = VT.getVectorElementType(); 9829 SDLoc SL(Op); 9830 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9831 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 9832 getVectorIdxConstant(i, SL))); 9833 } 9834 } 9835 9836 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9837 unsigned GlobalAddressSDNode::getAddressSpace() const { 9838 return getGlobal()->getType()->getAddressSpace(); 9839 } 9840 9841 Type *ConstantPoolSDNode::getType() const { 9842 if (isMachineConstantPoolEntry()) 9843 return Val.MachineCPVal->getType(); 9844 return Val.ConstVal->getType(); 9845 } 9846 9847 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9848 unsigned &SplatBitSize, 9849 bool &HasAnyUndefs, 9850 unsigned MinSplatBits, 9851 bool IsBigEndian) const { 9852 EVT VT = getValueType(0); 9853 assert(VT.isVector() && "Expected a vector type"); 9854 unsigned VecWidth = VT.getSizeInBits(); 9855 if (MinSplatBits > VecWidth) 9856 return false; 9857 9858 // FIXME: The widths are based on this node's type, but build vectors can 9859 // truncate their operands. 9860 SplatValue = APInt(VecWidth, 0); 9861 SplatUndef = APInt(VecWidth, 0); 9862 9863 // Get the bits. Bits with undefined values (when the corresponding element 9864 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9865 // in SplatValue. If any of the values are not constant, give up and return 9866 // false. 9867 unsigned int NumOps = getNumOperands(); 9868 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9869 unsigned EltWidth = VT.getScalarSizeInBits(); 9870 9871 for (unsigned j = 0; j < NumOps; ++j) { 9872 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9873 SDValue OpVal = getOperand(i); 9874 unsigned BitPos = j * EltWidth; 9875 9876 if (OpVal.isUndef()) 9877 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9878 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9879 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9880 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9881 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9882 else 9883 return false; 9884 } 9885 9886 // The build_vector is all constants or undefs. Find the smallest element 9887 // size that splats the vector. 9888 HasAnyUndefs = (SplatUndef != 0); 9889 9890 // FIXME: This does not work for vectors with elements less than 8 bits. 9891 while (VecWidth > 8) { 9892 unsigned HalfSize = VecWidth / 2; 9893 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9894 APInt LowValue = SplatValue.trunc(HalfSize); 9895 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9896 APInt LowUndef = SplatUndef.trunc(HalfSize); 9897 9898 // If the two halves do not match (ignoring undef bits), stop here. 9899 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9900 MinSplatBits > HalfSize) 9901 break; 9902 9903 SplatValue = HighValue | LowValue; 9904 SplatUndef = HighUndef & LowUndef; 9905 9906 VecWidth = HalfSize; 9907 } 9908 9909 SplatBitSize = VecWidth; 9910 return true; 9911 } 9912 9913 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9914 BitVector *UndefElements) const { 9915 unsigned NumOps = getNumOperands(); 9916 if (UndefElements) { 9917 UndefElements->clear(); 9918 UndefElements->resize(NumOps); 9919 } 9920 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 9921 if (!DemandedElts) 9922 return SDValue(); 9923 SDValue Splatted; 9924 for (unsigned i = 0; i != NumOps; ++i) { 9925 if (!DemandedElts[i]) 9926 continue; 9927 SDValue Op = getOperand(i); 9928 if (Op.isUndef()) { 9929 if (UndefElements) 9930 (*UndefElements)[i] = true; 9931 } else if (!Splatted) { 9932 Splatted = Op; 9933 } else if (Splatted != Op) { 9934 return SDValue(); 9935 } 9936 } 9937 9938 if (!Splatted) { 9939 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9940 assert(getOperand(FirstDemandedIdx).isUndef() && 9941 "Can only have a splat without a constant for all undefs."); 9942 return getOperand(FirstDemandedIdx); 9943 } 9944 9945 return Splatted; 9946 } 9947 9948 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9949 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9950 return getSplatValue(DemandedElts, UndefElements); 9951 } 9952 9953 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 9954 SmallVectorImpl<SDValue> &Sequence, 9955 BitVector *UndefElements) const { 9956 unsigned NumOps = getNumOperands(); 9957 Sequence.clear(); 9958 if (UndefElements) { 9959 UndefElements->clear(); 9960 UndefElements->resize(NumOps); 9961 } 9962 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 9963 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 9964 return false; 9965 9966 // Set the undefs even if we don't find a sequence (like getSplatValue). 9967 if (UndefElements) 9968 for (unsigned I = 0; I != NumOps; ++I) 9969 if (DemandedElts[I] && getOperand(I).isUndef()) 9970 (*UndefElements)[I] = true; 9971 9972 // Iteratively widen the sequence length looking for repetitions. 9973 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 9974 Sequence.append(SeqLen, SDValue()); 9975 for (unsigned I = 0; I != NumOps; ++I) { 9976 if (!DemandedElts[I]) 9977 continue; 9978 SDValue &SeqOp = Sequence[I % SeqLen]; 9979 SDValue Op = getOperand(I); 9980 if (Op.isUndef()) { 9981 if (!SeqOp) 9982 SeqOp = Op; 9983 continue; 9984 } 9985 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 9986 Sequence.clear(); 9987 break; 9988 } 9989 SeqOp = Op; 9990 } 9991 if (!Sequence.empty()) 9992 return true; 9993 } 9994 9995 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 9996 return false; 9997 } 9998 9999 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10000 BitVector *UndefElements) const { 10001 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 10002 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10003 } 10004 10005 ConstantSDNode * 10006 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10007 BitVector *UndefElements) const { 10008 return dyn_cast_or_null<ConstantSDNode>( 10009 getSplatValue(DemandedElts, UndefElements)); 10010 } 10011 10012 ConstantSDNode * 10013 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10014 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10015 } 10016 10017 ConstantFPSDNode * 10018 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10019 BitVector *UndefElements) const { 10020 return dyn_cast_or_null<ConstantFPSDNode>( 10021 getSplatValue(DemandedElts, UndefElements)); 10022 } 10023 10024 ConstantFPSDNode * 10025 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10026 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10027 } 10028 10029 int32_t 10030 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10031 uint32_t BitWidth) const { 10032 if (ConstantFPSDNode *CN = 10033 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10034 bool IsExact; 10035 APSInt IntVal(BitWidth); 10036 const APFloat &APF = CN->getValueAPF(); 10037 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10038 APFloat::opOK || 10039 !IsExact) 10040 return -1; 10041 10042 return IntVal.exactLogBase2(); 10043 } 10044 return -1; 10045 } 10046 10047 bool BuildVectorSDNode::isConstant() const { 10048 for (const SDValue &Op : op_values()) { 10049 unsigned Opc = Op.getOpcode(); 10050 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10051 return false; 10052 } 10053 return true; 10054 } 10055 10056 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10057 // Find the first non-undef value in the shuffle mask. 10058 unsigned i, e; 10059 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10060 /* search */; 10061 10062 // If all elements are undefined, this shuffle can be considered a splat 10063 // (although it should eventually get simplified away completely). 10064 if (i == e) 10065 return true; 10066 10067 // Make sure all remaining elements are either undef or the same as the first 10068 // non-undef value. 10069 for (int Idx = Mask[i]; i != e; ++i) 10070 if (Mask[i] >= 0 && Mask[i] != Idx) 10071 return false; 10072 return true; 10073 } 10074 10075 // Returns the SDNode if it is a constant integer BuildVector 10076 // or constant integer. 10077 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 10078 if (isa<ConstantSDNode>(N)) 10079 return N.getNode(); 10080 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 10081 return N.getNode(); 10082 // Treat a GlobalAddress supporting constant offset folding as a 10083 // constant integer. 10084 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 10085 if (GA->getOpcode() == ISD::GlobalAddress && 10086 TLI->isOffsetFoldingLegal(GA)) 10087 return GA; 10088 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 10089 isa<ConstantSDNode>(N.getOperand(0))) 10090 return N.getNode(); 10091 return nullptr; 10092 } 10093 10094 // Returns the SDNode if it is a constant float BuildVector 10095 // or constant float. 10096 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 10097 if (isa<ConstantFPSDNode>(N)) 10098 return N.getNode(); 10099 10100 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 10101 return N.getNode(); 10102 10103 return nullptr; 10104 } 10105 10106 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 10107 assert(!Node->OperandList && "Node already has operands"); 10108 assert(SDNode::getMaxNumOperands() >= Vals.size() && 10109 "too many operands to fit into SDNode"); 10110 SDUse *Ops = OperandRecycler.allocate( 10111 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 10112 10113 bool IsDivergent = false; 10114 for (unsigned I = 0; I != Vals.size(); ++I) { 10115 Ops[I].setUser(Node); 10116 Ops[I].setInitial(Vals[I]); 10117 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 10118 IsDivergent |= Ops[I].getNode()->isDivergent(); 10119 } 10120 Node->NumOperands = Vals.size(); 10121 Node->OperandList = Ops; 10122 if (!TLI->isSDNodeAlwaysUniform(Node)) { 10123 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 10124 Node->SDNodeBits.IsDivergent = IsDivergent; 10125 } 10126 checkForCycles(Node); 10127 } 10128 10129 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 10130 SmallVectorImpl<SDValue> &Vals) { 10131 size_t Limit = SDNode::getMaxNumOperands(); 10132 while (Vals.size() > Limit) { 10133 unsigned SliceIdx = Vals.size() - Limit; 10134 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 10135 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 10136 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 10137 Vals.emplace_back(NewTF); 10138 } 10139 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 10140 } 10141 10142 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 10143 EVT VT, SDNodeFlags Flags) { 10144 switch (Opcode) { 10145 default: 10146 return SDValue(); 10147 case ISD::ADD: 10148 case ISD::OR: 10149 case ISD::XOR: 10150 case ISD::UMAX: 10151 return getConstant(0, DL, VT); 10152 case ISD::MUL: 10153 return getConstant(1, DL, VT); 10154 case ISD::AND: 10155 case ISD::UMIN: 10156 return getAllOnesConstant(DL, VT); 10157 case ISD::SMAX: 10158 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 10159 case ISD::SMIN: 10160 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 10161 case ISD::FADD: 10162 return getConstantFP(-0.0, DL, VT); 10163 case ISD::FMUL: 10164 return getConstantFP(1.0, DL, VT); 10165 case ISD::FMINNUM: 10166 case ISD::FMAXNUM: { 10167 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 10168 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 10169 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 10170 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 10171 APFloat::getLargest(Semantics); 10172 if (Opcode == ISD::FMAXNUM) 10173 NeutralAF.changeSign(); 10174 10175 return getConstantFP(NeutralAF, DL, VT); 10176 } 10177 } 10178 } 10179 10180 #ifndef NDEBUG 10181 static void checkForCyclesHelper(const SDNode *N, 10182 SmallPtrSetImpl<const SDNode*> &Visited, 10183 SmallPtrSetImpl<const SDNode*> &Checked, 10184 const llvm::SelectionDAG *DAG) { 10185 // If this node has already been checked, don't check it again. 10186 if (Checked.count(N)) 10187 return; 10188 10189 // If a node has already been visited on this depth-first walk, reject it as 10190 // a cycle. 10191 if (!Visited.insert(N).second) { 10192 errs() << "Detected cycle in SelectionDAG\n"; 10193 dbgs() << "Offending node:\n"; 10194 N->dumprFull(DAG); dbgs() << "\n"; 10195 abort(); 10196 } 10197 10198 for (const SDValue &Op : N->op_values()) 10199 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 10200 10201 Checked.insert(N); 10202 Visited.erase(N); 10203 } 10204 #endif 10205 10206 void llvm::checkForCycles(const llvm::SDNode *N, 10207 const llvm::SelectionDAG *DAG, 10208 bool force) { 10209 #ifndef NDEBUG 10210 bool check = force; 10211 #ifdef EXPENSIVE_CHECKS 10212 check = true; 10213 #endif // EXPENSIVE_CHECKS 10214 if (check) { 10215 assert(N && "Checking nonexistent SDNode"); 10216 SmallPtrSet<const SDNode*, 32> visited; 10217 SmallPtrSet<const SDNode*, 32> checked; 10218 checkForCyclesHelper(N, visited, checked, DAG); 10219 } 10220 #endif // !NDEBUG 10221 } 10222 10223 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 10224 checkForCycles(DAG->getRoot().getNode(), DAG, force); 10225 } 10226