1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/RuntimeLibcalls.h" 40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 41 #include "llvm/CodeGen/SelectionDAGNodes.h" 42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetLowering.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/ValueTypes.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MachineValueType.h" 66 #include "llvm/Support/ManagedStatic.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/Mutex.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Target/TargetOptions.h" 72 #include "llvm/Transforms/Utils/SizeOpts.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <cstdlib> 77 #include <limits> 78 #include <set> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 /// makeVTList - Return an instance of the SDVTList struct initialized with the 86 /// specified members. 87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 88 SDVTList Res = {VTs, NumVTs}; 89 return Res; 90 } 91 92 // Default null implementations of the callbacks. 93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 96 97 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 98 99 #define DEBUG_TYPE "selectiondag" 100 101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 102 cl::Hidden, cl::init(true), 103 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 104 105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 106 cl::desc("Number limit for gluing ld/st of memcpy."), 107 cl::Hidden, cl::init(0)); 108 109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 110 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 111 } 112 113 //===----------------------------------------------------------------------===// 114 // ConstantFPSDNode Class 115 //===----------------------------------------------------------------------===// 116 117 /// isExactlyValue - We don't rely on operator== working on double values, as 118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 119 /// As such, this method can be used to do an exact bit-for-bit comparison of 120 /// two floating point values. 121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 122 return getValueAPF().bitwiseIsEqual(V); 123 } 124 125 bool ConstantFPSDNode::isValueValidForType(EVT VT, 126 const APFloat& Val) { 127 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 128 129 // convert modifies in place, so make a copy. 130 APFloat Val2 = APFloat(Val); 131 bool losesInfo; 132 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 133 APFloat::rmNearestTiesToEven, 134 &losesInfo); 135 return !losesInfo; 136 } 137 138 //===----------------------------------------------------------------------===// 139 // ISD Namespace 140 //===----------------------------------------------------------------------===// 141 142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 143 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 144 unsigned EltSize = 145 N->getValueType(0).getVectorElementType().getSizeInBits(); 146 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 147 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 148 return true; 149 } 150 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 151 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 152 return true; 153 } 154 } 155 156 auto *BV = dyn_cast<BuildVectorSDNode>(N); 157 if (!BV) 158 return false; 159 160 APInt SplatUndef; 161 unsigned SplatBitSize; 162 bool HasUndefs; 163 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 164 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 165 EltSize) && 166 EltSize == SplatBitSize; 167 } 168 169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 170 // specializations of the more general isConstantSplatVector()? 171 172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 173 // Look through a bit convert. 174 while (N->getOpcode() == ISD::BITCAST) 175 N = N->getOperand(0).getNode(); 176 177 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 178 APInt SplatVal; 179 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 180 } 181 182 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 183 184 unsigned i = 0, e = N->getNumOperands(); 185 186 // Skip over all of the undef values. 187 while (i != e && N->getOperand(i).isUndef()) 188 ++i; 189 190 // Do not accept an all-undef vector. 191 if (i == e) return false; 192 193 // Do not accept build_vectors that aren't all constants or which have non-~0 194 // elements. We have to be a bit careful here, as the type of the constant 195 // may not be the same as the type of the vector elements due to type 196 // legalization (the elements are promoted to a legal type for the target and 197 // a vector of a type may be legal when the base element type is not). 198 // We only want to check enough bits to cover the vector elements, because 199 // we care if the resultant vector is all ones, not whether the individual 200 // constants are. 201 SDValue NotZero = N->getOperand(i); 202 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 203 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 204 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 205 return false; 206 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 207 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 208 return false; 209 } else 210 return false; 211 212 // Okay, we have at least one ~0 value, check to see if the rest match or are 213 // undefs. Even with the above element type twiddling, this should be OK, as 214 // the same type legalization should have applied to all the elements. 215 for (++i; i != e; ++i) 216 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 217 return false; 218 return true; 219 } 220 221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 222 // Look through a bit convert. 223 while (N->getOpcode() == ISD::BITCAST) 224 N = N->getOperand(0).getNode(); 225 226 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 227 APInt SplatVal; 228 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 229 } 230 231 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 232 233 bool IsAllUndef = true; 234 for (const SDValue &Op : N->op_values()) { 235 if (Op.isUndef()) 236 continue; 237 IsAllUndef = false; 238 // Do not accept build_vectors that aren't all constants or which have non-0 239 // elements. We have to be a bit careful here, as the type of the constant 240 // may not be the same as the type of the vector elements due to type 241 // legalization (the elements are promoted to a legal type for the target 242 // and a vector of a type may be legal when the base element type is not). 243 // We only want to check enough bits to cover the vector elements, because 244 // we care if the resultant vector is all zeros, not whether the individual 245 // constants are. 246 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 247 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 248 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 249 return false; 250 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 251 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 252 return false; 253 } else 254 return false; 255 } 256 257 // Do not accept an all-undef vector. 258 if (IsAllUndef) 259 return false; 260 return true; 261 } 262 263 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 264 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 265 } 266 267 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 268 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 269 } 270 271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 272 if (N->getOpcode() != ISD::BUILD_VECTOR) 273 return false; 274 275 for (const SDValue &Op : N->op_values()) { 276 if (Op.isUndef()) 277 continue; 278 if (!isa<ConstantSDNode>(Op)) 279 return false; 280 } 281 return true; 282 } 283 284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 285 if (N->getOpcode() != ISD::BUILD_VECTOR) 286 return false; 287 288 for (const SDValue &Op : N->op_values()) { 289 if (Op.isUndef()) 290 continue; 291 if (!isa<ConstantFPSDNode>(Op)) 292 return false; 293 } 294 return true; 295 } 296 297 bool ISD::allOperandsUndef(const SDNode *N) { 298 // Return false if the node has no operands. 299 // This is "logically inconsistent" with the definition of "all" but 300 // is probably the desired behavior. 301 if (N->getNumOperands() == 0) 302 return false; 303 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 304 } 305 306 bool ISD::matchUnaryPredicate(SDValue Op, 307 std::function<bool(ConstantSDNode *)> Match, 308 bool AllowUndefs) { 309 // FIXME: Add support for scalar UNDEF cases? 310 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 311 return Match(Cst); 312 313 // FIXME: Add support for vector UNDEF cases? 314 if (ISD::BUILD_VECTOR != Op.getOpcode() && 315 ISD::SPLAT_VECTOR != Op.getOpcode()) 316 return false; 317 318 EVT SVT = Op.getValueType().getScalarType(); 319 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 320 if (AllowUndefs && Op.getOperand(i).isUndef()) { 321 if (!Match(nullptr)) 322 return false; 323 continue; 324 } 325 326 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 327 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 328 return false; 329 } 330 return true; 331 } 332 333 bool ISD::matchBinaryPredicate( 334 SDValue LHS, SDValue RHS, 335 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 336 bool AllowUndefs, bool AllowTypeMismatch) { 337 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 338 return false; 339 340 // TODO: Add support for scalar UNDEF cases? 341 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 342 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 343 return Match(LHSCst, RHSCst); 344 345 // TODO: Add support for vector UNDEF cases? 346 if (LHS.getOpcode() != RHS.getOpcode() || 347 (LHS.getOpcode() != ISD::BUILD_VECTOR && 348 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 349 return false; 350 351 EVT SVT = LHS.getValueType().getScalarType(); 352 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 353 SDValue LHSOp = LHS.getOperand(i); 354 SDValue RHSOp = RHS.getOperand(i); 355 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 356 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 357 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 358 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 359 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 360 return false; 361 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 362 LHSOp.getValueType() != RHSOp.getValueType())) 363 return false; 364 if (!Match(LHSCst, RHSCst)) 365 return false; 366 } 367 return true; 368 } 369 370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 371 switch (VecReduceOpcode) { 372 default: 373 llvm_unreachable("Expected VECREDUCE opcode"); 374 case ISD::VECREDUCE_FADD: 375 case ISD::VECREDUCE_SEQ_FADD: 376 return ISD::FADD; 377 case ISD::VECREDUCE_FMUL: 378 case ISD::VECREDUCE_SEQ_FMUL: 379 return ISD::FMUL; 380 case ISD::VECREDUCE_ADD: 381 return ISD::ADD; 382 case ISD::VECREDUCE_MUL: 383 return ISD::MUL; 384 case ISD::VECREDUCE_AND: 385 return ISD::AND; 386 case ISD::VECREDUCE_OR: 387 return ISD::OR; 388 case ISD::VECREDUCE_XOR: 389 return ISD::XOR; 390 case ISD::VECREDUCE_SMAX: 391 return ISD::SMAX; 392 case ISD::VECREDUCE_SMIN: 393 return ISD::SMIN; 394 case ISD::VECREDUCE_UMAX: 395 return ISD::UMAX; 396 case ISD::VECREDUCE_UMIN: 397 return ISD::UMIN; 398 case ISD::VECREDUCE_FMAX: 399 return ISD::FMAXNUM; 400 case ISD::VECREDUCE_FMIN: 401 return ISD::FMINNUM; 402 } 403 } 404 405 bool ISD::isVPOpcode(unsigned Opcode) { 406 switch (Opcode) { 407 default: 408 return false; 409 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \ 410 case ISD::SDOPC: \ 411 return true; 412 #include "llvm/IR/VPIntrinsics.def" 413 } 414 } 415 416 bool ISD::isVPBinaryOp(unsigned Opcode) { 417 switch (Opcode) { 418 default: 419 return false; 420 #define PROPERTY_VP_BINARYOP_SDNODE(SDOPC) \ 421 case ISD::SDOPC: \ 422 return true; 423 #include "llvm/IR/VPIntrinsics.def" 424 } 425 } 426 427 bool ISD::isVPReduction(unsigned Opcode) { 428 switch (Opcode) { 429 default: 430 return false; 431 #define PROPERTY_VP_REDUCTION_SDNODE(SDOPC) \ 432 case ISD::SDOPC: \ 433 return true; 434 #include "llvm/IR/VPIntrinsics.def" 435 } 436 } 437 438 /// The operand position of the vector mask. 439 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 440 switch (Opcode) { 441 default: 442 return None; 443 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, ...) \ 444 case ISD::SDOPC: \ 445 return MASKPOS; 446 #include "llvm/IR/VPIntrinsics.def" 447 } 448 } 449 450 /// The operand position of the explicit vector length parameter. 451 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 452 switch (Opcode) { 453 default: 454 return None; 455 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 456 case ISD::SDOPC: \ 457 return EVLPOS; 458 #include "llvm/IR/VPIntrinsics.def" 459 } 460 } 461 462 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 463 switch (ExtType) { 464 case ISD::EXTLOAD: 465 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 466 case ISD::SEXTLOAD: 467 return ISD::SIGN_EXTEND; 468 case ISD::ZEXTLOAD: 469 return ISD::ZERO_EXTEND; 470 default: 471 break; 472 } 473 474 llvm_unreachable("Invalid LoadExtType"); 475 } 476 477 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 478 // To perform this operation, we just need to swap the L and G bits of the 479 // operation. 480 unsigned OldL = (Operation >> 2) & 1; 481 unsigned OldG = (Operation >> 1) & 1; 482 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 483 (OldL << 1) | // New G bit 484 (OldG << 2)); // New L bit. 485 } 486 487 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 488 unsigned Operation = Op; 489 if (isIntegerLike) 490 Operation ^= 7; // Flip L, G, E bits, but not U. 491 else 492 Operation ^= 15; // Flip all of the condition bits. 493 494 if (Operation > ISD::SETTRUE2) 495 Operation &= ~8; // Don't let N and U bits get set. 496 497 return ISD::CondCode(Operation); 498 } 499 500 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 501 return getSetCCInverseImpl(Op, Type.isInteger()); 502 } 503 504 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 505 bool isIntegerLike) { 506 return getSetCCInverseImpl(Op, isIntegerLike); 507 } 508 509 /// For an integer comparison, return 1 if the comparison is a signed operation 510 /// and 2 if the result is an unsigned comparison. Return zero if the operation 511 /// does not depend on the sign of the input (setne and seteq). 512 static int isSignedOp(ISD::CondCode Opcode) { 513 switch (Opcode) { 514 default: llvm_unreachable("Illegal integer setcc operation!"); 515 case ISD::SETEQ: 516 case ISD::SETNE: return 0; 517 case ISD::SETLT: 518 case ISD::SETLE: 519 case ISD::SETGT: 520 case ISD::SETGE: return 1; 521 case ISD::SETULT: 522 case ISD::SETULE: 523 case ISD::SETUGT: 524 case ISD::SETUGE: return 2; 525 } 526 } 527 528 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 529 EVT Type) { 530 bool IsInteger = Type.isInteger(); 531 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 532 // Cannot fold a signed integer setcc with an unsigned integer setcc. 533 return ISD::SETCC_INVALID; 534 535 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 536 537 // If the N and U bits get set, then the resultant comparison DOES suddenly 538 // care about orderedness, and it is true when ordered. 539 if (Op > ISD::SETTRUE2) 540 Op &= ~16; // Clear the U bit if the N bit is set. 541 542 // Canonicalize illegal integer setcc's. 543 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 544 Op = ISD::SETNE; 545 546 return ISD::CondCode(Op); 547 } 548 549 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 550 EVT Type) { 551 bool IsInteger = Type.isInteger(); 552 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 553 // Cannot fold a signed setcc with an unsigned setcc. 554 return ISD::SETCC_INVALID; 555 556 // Combine all of the condition bits. 557 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 558 559 // Canonicalize illegal integer setcc's. 560 if (IsInteger) { 561 switch (Result) { 562 default: break; 563 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 564 case ISD::SETOEQ: // SETEQ & SETU[LG]E 565 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 566 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 567 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 568 } 569 } 570 571 return Result; 572 } 573 574 //===----------------------------------------------------------------------===// 575 // SDNode Profile Support 576 //===----------------------------------------------------------------------===// 577 578 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 579 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 580 ID.AddInteger(OpC); 581 } 582 583 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 584 /// solely with their pointer. 585 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 586 ID.AddPointer(VTList.VTs); 587 } 588 589 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 590 static void AddNodeIDOperands(FoldingSetNodeID &ID, 591 ArrayRef<SDValue> Ops) { 592 for (auto& Op : Ops) { 593 ID.AddPointer(Op.getNode()); 594 ID.AddInteger(Op.getResNo()); 595 } 596 } 597 598 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 599 static void AddNodeIDOperands(FoldingSetNodeID &ID, 600 ArrayRef<SDUse> Ops) { 601 for (auto& Op : Ops) { 602 ID.AddPointer(Op.getNode()); 603 ID.AddInteger(Op.getResNo()); 604 } 605 } 606 607 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 608 SDVTList VTList, ArrayRef<SDValue> OpList) { 609 AddNodeIDOpcode(ID, OpC); 610 AddNodeIDValueTypes(ID, VTList); 611 AddNodeIDOperands(ID, OpList); 612 } 613 614 /// If this is an SDNode with special info, add this info to the NodeID data. 615 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 616 switch (N->getOpcode()) { 617 case ISD::TargetExternalSymbol: 618 case ISD::ExternalSymbol: 619 case ISD::MCSymbol: 620 llvm_unreachable("Should only be used on nodes with operands"); 621 default: break; // Normal nodes don't need extra info. 622 case ISD::TargetConstant: 623 case ISD::Constant: { 624 const ConstantSDNode *C = cast<ConstantSDNode>(N); 625 ID.AddPointer(C->getConstantIntValue()); 626 ID.AddBoolean(C->isOpaque()); 627 break; 628 } 629 case ISD::TargetConstantFP: 630 case ISD::ConstantFP: 631 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 632 break; 633 case ISD::TargetGlobalAddress: 634 case ISD::GlobalAddress: 635 case ISD::TargetGlobalTLSAddress: 636 case ISD::GlobalTLSAddress: { 637 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 638 ID.AddPointer(GA->getGlobal()); 639 ID.AddInteger(GA->getOffset()); 640 ID.AddInteger(GA->getTargetFlags()); 641 break; 642 } 643 case ISD::BasicBlock: 644 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 645 break; 646 case ISD::Register: 647 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 648 break; 649 case ISD::RegisterMask: 650 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 651 break; 652 case ISD::SRCVALUE: 653 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 654 break; 655 case ISD::FrameIndex: 656 case ISD::TargetFrameIndex: 657 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 658 break; 659 case ISD::LIFETIME_START: 660 case ISD::LIFETIME_END: 661 if (cast<LifetimeSDNode>(N)->hasOffset()) { 662 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 663 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 664 } 665 break; 666 case ISD::PSEUDO_PROBE: 667 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 668 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 669 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 670 break; 671 case ISD::JumpTable: 672 case ISD::TargetJumpTable: 673 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 674 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 675 break; 676 case ISD::ConstantPool: 677 case ISD::TargetConstantPool: { 678 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 679 ID.AddInteger(CP->getAlign().value()); 680 ID.AddInteger(CP->getOffset()); 681 if (CP->isMachineConstantPoolEntry()) 682 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 683 else 684 ID.AddPointer(CP->getConstVal()); 685 ID.AddInteger(CP->getTargetFlags()); 686 break; 687 } 688 case ISD::TargetIndex: { 689 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 690 ID.AddInteger(TI->getIndex()); 691 ID.AddInteger(TI->getOffset()); 692 ID.AddInteger(TI->getTargetFlags()); 693 break; 694 } 695 case ISD::LOAD: { 696 const LoadSDNode *LD = cast<LoadSDNode>(N); 697 ID.AddInteger(LD->getMemoryVT().getRawBits()); 698 ID.AddInteger(LD->getRawSubclassData()); 699 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 700 break; 701 } 702 case ISD::STORE: { 703 const StoreSDNode *ST = cast<StoreSDNode>(N); 704 ID.AddInteger(ST->getMemoryVT().getRawBits()); 705 ID.AddInteger(ST->getRawSubclassData()); 706 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 707 break; 708 } 709 case ISD::VP_LOAD: { 710 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 711 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 712 ID.AddInteger(ELD->getRawSubclassData()); 713 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 714 break; 715 } 716 case ISD::VP_STORE: { 717 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 718 ID.AddInteger(EST->getMemoryVT().getRawBits()); 719 ID.AddInteger(EST->getRawSubclassData()); 720 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 721 break; 722 } 723 case ISD::VP_GATHER: { 724 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 725 ID.AddInteger(EG->getMemoryVT().getRawBits()); 726 ID.AddInteger(EG->getRawSubclassData()); 727 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 728 break; 729 } 730 case ISD::VP_SCATTER: { 731 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 732 ID.AddInteger(ES->getMemoryVT().getRawBits()); 733 ID.AddInteger(ES->getRawSubclassData()); 734 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 735 break; 736 } 737 case ISD::MLOAD: { 738 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 739 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 740 ID.AddInteger(MLD->getRawSubclassData()); 741 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 742 break; 743 } 744 case ISD::MSTORE: { 745 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 746 ID.AddInteger(MST->getMemoryVT().getRawBits()); 747 ID.AddInteger(MST->getRawSubclassData()); 748 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 749 break; 750 } 751 case ISD::MGATHER: { 752 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 753 ID.AddInteger(MG->getMemoryVT().getRawBits()); 754 ID.AddInteger(MG->getRawSubclassData()); 755 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 756 break; 757 } 758 case ISD::MSCATTER: { 759 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 760 ID.AddInteger(MS->getMemoryVT().getRawBits()); 761 ID.AddInteger(MS->getRawSubclassData()); 762 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 763 break; 764 } 765 case ISD::ATOMIC_CMP_SWAP: 766 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 767 case ISD::ATOMIC_SWAP: 768 case ISD::ATOMIC_LOAD_ADD: 769 case ISD::ATOMIC_LOAD_SUB: 770 case ISD::ATOMIC_LOAD_AND: 771 case ISD::ATOMIC_LOAD_CLR: 772 case ISD::ATOMIC_LOAD_OR: 773 case ISD::ATOMIC_LOAD_XOR: 774 case ISD::ATOMIC_LOAD_NAND: 775 case ISD::ATOMIC_LOAD_MIN: 776 case ISD::ATOMIC_LOAD_MAX: 777 case ISD::ATOMIC_LOAD_UMIN: 778 case ISD::ATOMIC_LOAD_UMAX: 779 case ISD::ATOMIC_LOAD: 780 case ISD::ATOMIC_STORE: { 781 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 782 ID.AddInteger(AT->getMemoryVT().getRawBits()); 783 ID.AddInteger(AT->getRawSubclassData()); 784 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 785 break; 786 } 787 case ISD::PREFETCH: { 788 const MemSDNode *PF = cast<MemSDNode>(N); 789 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 790 break; 791 } 792 case ISD::VECTOR_SHUFFLE: { 793 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 794 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 795 i != e; ++i) 796 ID.AddInteger(SVN->getMaskElt(i)); 797 break; 798 } 799 case ISD::TargetBlockAddress: 800 case ISD::BlockAddress: { 801 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 802 ID.AddPointer(BA->getBlockAddress()); 803 ID.AddInteger(BA->getOffset()); 804 ID.AddInteger(BA->getTargetFlags()); 805 break; 806 } 807 } // end switch (N->getOpcode()) 808 809 // Target specific memory nodes could also have address spaces to check. 810 if (N->isTargetMemoryOpcode()) 811 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 812 } 813 814 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 815 /// data. 816 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 817 AddNodeIDOpcode(ID, N->getOpcode()); 818 // Add the return value info. 819 AddNodeIDValueTypes(ID, N->getVTList()); 820 // Add the operand info. 821 AddNodeIDOperands(ID, N->ops()); 822 823 // Handle SDNode leafs with special info. 824 AddNodeIDCustom(ID, N); 825 } 826 827 //===----------------------------------------------------------------------===// 828 // SelectionDAG Class 829 //===----------------------------------------------------------------------===// 830 831 /// doNotCSE - Return true if CSE should not be performed for this node. 832 static bool doNotCSE(SDNode *N) { 833 if (N->getValueType(0) == MVT::Glue) 834 return true; // Never CSE anything that produces a flag. 835 836 switch (N->getOpcode()) { 837 default: break; 838 case ISD::HANDLENODE: 839 case ISD::EH_LABEL: 840 return true; // Never CSE these nodes. 841 } 842 843 // Check that remaining values produced are not flags. 844 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 845 if (N->getValueType(i) == MVT::Glue) 846 return true; // Never CSE anything that produces a flag. 847 848 return false; 849 } 850 851 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 852 /// SelectionDAG. 853 void SelectionDAG::RemoveDeadNodes() { 854 // Create a dummy node (which is not added to allnodes), that adds a reference 855 // to the root node, preventing it from being deleted. 856 HandleSDNode Dummy(getRoot()); 857 858 SmallVector<SDNode*, 128> DeadNodes; 859 860 // Add all obviously-dead nodes to the DeadNodes worklist. 861 for (SDNode &Node : allnodes()) 862 if (Node.use_empty()) 863 DeadNodes.push_back(&Node); 864 865 RemoveDeadNodes(DeadNodes); 866 867 // If the root changed (e.g. it was a dead load, update the root). 868 setRoot(Dummy.getValue()); 869 } 870 871 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 872 /// given list, and any nodes that become unreachable as a result. 873 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 874 875 // Process the worklist, deleting the nodes and adding their uses to the 876 // worklist. 877 while (!DeadNodes.empty()) { 878 SDNode *N = DeadNodes.pop_back_val(); 879 // Skip to next node if we've already managed to delete the node. This could 880 // happen if replacing a node causes a node previously added to the node to 881 // be deleted. 882 if (N->getOpcode() == ISD::DELETED_NODE) 883 continue; 884 885 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 886 DUL->NodeDeleted(N, nullptr); 887 888 // Take the node out of the appropriate CSE map. 889 RemoveNodeFromCSEMaps(N); 890 891 // Next, brutally remove the operand list. This is safe to do, as there are 892 // no cycles in the graph. 893 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 894 SDUse &Use = *I++; 895 SDNode *Operand = Use.getNode(); 896 Use.set(SDValue()); 897 898 // Now that we removed this operand, see if there are no uses of it left. 899 if (Operand->use_empty()) 900 DeadNodes.push_back(Operand); 901 } 902 903 DeallocateNode(N); 904 } 905 } 906 907 void SelectionDAG::RemoveDeadNode(SDNode *N){ 908 SmallVector<SDNode*, 16> DeadNodes(1, N); 909 910 // Create a dummy node that adds a reference to the root node, preventing 911 // it from being deleted. (This matters if the root is an operand of the 912 // dead node.) 913 HandleSDNode Dummy(getRoot()); 914 915 RemoveDeadNodes(DeadNodes); 916 } 917 918 void SelectionDAG::DeleteNode(SDNode *N) { 919 // First take this out of the appropriate CSE map. 920 RemoveNodeFromCSEMaps(N); 921 922 // Finally, remove uses due to operands of this node, remove from the 923 // AllNodes list, and delete the node. 924 DeleteNodeNotInCSEMaps(N); 925 } 926 927 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 928 assert(N->getIterator() != AllNodes.begin() && 929 "Cannot delete the entry node!"); 930 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 931 932 // Drop all of the operands and decrement used node's use counts. 933 N->DropOperands(); 934 935 DeallocateNode(N); 936 } 937 938 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 939 assert(!(V->isVariadic() && isParameter)); 940 if (isParameter) 941 ByvalParmDbgValues.push_back(V); 942 else 943 DbgValues.push_back(V); 944 for (const SDNode *Node : V->getSDNodes()) 945 if (Node) 946 DbgValMap[Node].push_back(V); 947 } 948 949 void SDDbgInfo::erase(const SDNode *Node) { 950 DbgValMapType::iterator I = DbgValMap.find(Node); 951 if (I == DbgValMap.end()) 952 return; 953 for (auto &Val: I->second) 954 Val->setIsInvalidated(); 955 DbgValMap.erase(I); 956 } 957 958 void SelectionDAG::DeallocateNode(SDNode *N) { 959 // If we have operands, deallocate them. 960 removeOperands(N); 961 962 NodeAllocator.Deallocate(AllNodes.remove(N)); 963 964 // Set the opcode to DELETED_NODE to help catch bugs when node 965 // memory is reallocated. 966 // FIXME: There are places in SDag that have grown a dependency on the opcode 967 // value in the released node. 968 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 969 N->NodeType = ISD::DELETED_NODE; 970 971 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 972 // them and forget about that node. 973 DbgInfo->erase(N); 974 } 975 976 #ifndef NDEBUG 977 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 978 static void VerifySDNode(SDNode *N) { 979 switch (N->getOpcode()) { 980 default: 981 break; 982 case ISD::BUILD_PAIR: { 983 EVT VT = N->getValueType(0); 984 assert(N->getNumValues() == 1 && "Too many results!"); 985 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 986 "Wrong return type!"); 987 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 988 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 989 "Mismatched operand types!"); 990 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 991 "Wrong operand type!"); 992 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 993 "Wrong return type size"); 994 break; 995 } 996 case ISD::BUILD_VECTOR: { 997 assert(N->getNumValues() == 1 && "Too many results!"); 998 assert(N->getValueType(0).isVector() && "Wrong return type!"); 999 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1000 "Wrong number of operands!"); 1001 EVT EltVT = N->getValueType(0).getVectorElementType(); 1002 for (const SDUse &Op : N->ops()) { 1003 assert((Op.getValueType() == EltVT || 1004 (EltVT.isInteger() && Op.getValueType().isInteger() && 1005 EltVT.bitsLE(Op.getValueType()))) && 1006 "Wrong operand type!"); 1007 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1008 "Operands must all have the same type"); 1009 } 1010 break; 1011 } 1012 } 1013 } 1014 #endif // NDEBUG 1015 1016 /// Insert a newly allocated node into the DAG. 1017 /// 1018 /// Handles insertion into the all nodes list and CSE map, as well as 1019 /// verification and other common operations when a new node is allocated. 1020 void SelectionDAG::InsertNode(SDNode *N) { 1021 AllNodes.push_back(N); 1022 #ifndef NDEBUG 1023 N->PersistentId = NextPersistentId++; 1024 VerifySDNode(N); 1025 #endif 1026 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1027 DUL->NodeInserted(N); 1028 } 1029 1030 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1031 /// correspond to it. This is useful when we're about to delete or repurpose 1032 /// the node. We don't want future request for structurally identical nodes 1033 /// to return N anymore. 1034 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1035 bool Erased = false; 1036 switch (N->getOpcode()) { 1037 case ISD::HANDLENODE: return false; // noop. 1038 case ISD::CONDCODE: 1039 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1040 "Cond code doesn't exist!"); 1041 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1042 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1043 break; 1044 case ISD::ExternalSymbol: 1045 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1046 break; 1047 case ISD::TargetExternalSymbol: { 1048 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1049 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1050 ESN->getSymbol(), ESN->getTargetFlags())); 1051 break; 1052 } 1053 case ISD::MCSymbol: { 1054 auto *MCSN = cast<MCSymbolSDNode>(N); 1055 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1056 break; 1057 } 1058 case ISD::VALUETYPE: { 1059 EVT VT = cast<VTSDNode>(N)->getVT(); 1060 if (VT.isExtended()) { 1061 Erased = ExtendedValueTypeNodes.erase(VT); 1062 } else { 1063 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1064 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1065 } 1066 break; 1067 } 1068 default: 1069 // Remove it from the CSE Map. 1070 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1071 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1072 Erased = CSEMap.RemoveNode(N); 1073 break; 1074 } 1075 #ifndef NDEBUG 1076 // Verify that the node was actually in one of the CSE maps, unless it has a 1077 // flag result (which cannot be CSE'd) or is one of the special cases that are 1078 // not subject to CSE. 1079 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1080 !N->isMachineOpcode() && !doNotCSE(N)) { 1081 N->dump(this); 1082 dbgs() << "\n"; 1083 llvm_unreachable("Node is not in map!"); 1084 } 1085 #endif 1086 return Erased; 1087 } 1088 1089 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1090 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1091 /// node already exists, in which case transfer all its users to the existing 1092 /// node. This transfer can potentially trigger recursive merging. 1093 void 1094 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1095 // For node types that aren't CSE'd, just act as if no identical node 1096 // already exists. 1097 if (!doNotCSE(N)) { 1098 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1099 if (Existing != N) { 1100 // If there was already an existing matching node, use ReplaceAllUsesWith 1101 // to replace the dead one with the existing one. This can cause 1102 // recursive merging of other unrelated nodes down the line. 1103 ReplaceAllUsesWith(N, Existing); 1104 1105 // N is now dead. Inform the listeners and delete it. 1106 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1107 DUL->NodeDeleted(N, Existing); 1108 DeleteNodeNotInCSEMaps(N); 1109 return; 1110 } 1111 } 1112 1113 // If the node doesn't already exist, we updated it. Inform listeners. 1114 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1115 DUL->NodeUpdated(N); 1116 } 1117 1118 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1119 /// were replaced with those specified. If this node is never memoized, 1120 /// return null, otherwise return a pointer to the slot it would take. If a 1121 /// node already exists with these operands, the slot will be non-null. 1122 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1123 void *&InsertPos) { 1124 if (doNotCSE(N)) 1125 return nullptr; 1126 1127 SDValue Ops[] = { Op }; 1128 FoldingSetNodeID ID; 1129 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1130 AddNodeIDCustom(ID, N); 1131 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1132 if (Node) 1133 Node->intersectFlagsWith(N->getFlags()); 1134 return Node; 1135 } 1136 1137 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1138 /// were replaced with those specified. If this node is never memoized, 1139 /// return null, otherwise return a pointer to the slot it would take. If a 1140 /// node already exists with these operands, the slot will be non-null. 1141 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1142 SDValue Op1, SDValue Op2, 1143 void *&InsertPos) { 1144 if (doNotCSE(N)) 1145 return nullptr; 1146 1147 SDValue Ops[] = { Op1, Op2 }; 1148 FoldingSetNodeID ID; 1149 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1150 AddNodeIDCustom(ID, N); 1151 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1152 if (Node) 1153 Node->intersectFlagsWith(N->getFlags()); 1154 return Node; 1155 } 1156 1157 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1158 /// were replaced with those specified. If this node is never memoized, 1159 /// return null, otherwise return a pointer to the slot it would take. If a 1160 /// node already exists with these operands, the slot will be non-null. 1161 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1162 void *&InsertPos) { 1163 if (doNotCSE(N)) 1164 return nullptr; 1165 1166 FoldingSetNodeID ID; 1167 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1168 AddNodeIDCustom(ID, N); 1169 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1170 if (Node) 1171 Node->intersectFlagsWith(N->getFlags()); 1172 return Node; 1173 } 1174 1175 Align SelectionDAG::getEVTAlign(EVT VT) const { 1176 Type *Ty = VT == MVT::iPTR ? 1177 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1178 VT.getTypeForEVT(*getContext()); 1179 1180 return getDataLayout().getABITypeAlign(Ty); 1181 } 1182 1183 // EntryNode could meaningfully have debug info if we can find it... 1184 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1185 : TM(tm), OptLevel(OL), 1186 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1187 Root(getEntryNode()) { 1188 InsertNode(&EntryNode); 1189 DbgInfo = new SDDbgInfo(); 1190 } 1191 1192 void SelectionDAG::init(MachineFunction &NewMF, 1193 OptimizationRemarkEmitter &NewORE, 1194 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1195 LegacyDivergenceAnalysis * Divergence, 1196 ProfileSummaryInfo *PSIin, 1197 BlockFrequencyInfo *BFIin) { 1198 MF = &NewMF; 1199 SDAGISelPass = PassPtr; 1200 ORE = &NewORE; 1201 TLI = getSubtarget().getTargetLowering(); 1202 TSI = getSubtarget().getSelectionDAGInfo(); 1203 LibInfo = LibraryInfo; 1204 Context = &MF->getFunction().getContext(); 1205 DA = Divergence; 1206 PSI = PSIin; 1207 BFI = BFIin; 1208 } 1209 1210 SelectionDAG::~SelectionDAG() { 1211 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1212 allnodes_clear(); 1213 OperandRecycler.clear(OperandAllocator); 1214 delete DbgInfo; 1215 } 1216 1217 bool SelectionDAG::shouldOptForSize() const { 1218 return MF->getFunction().hasOptSize() || 1219 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1220 } 1221 1222 void SelectionDAG::allnodes_clear() { 1223 assert(&*AllNodes.begin() == &EntryNode); 1224 AllNodes.remove(AllNodes.begin()); 1225 while (!AllNodes.empty()) 1226 DeallocateNode(&AllNodes.front()); 1227 #ifndef NDEBUG 1228 NextPersistentId = 0; 1229 #endif 1230 } 1231 1232 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1233 void *&InsertPos) { 1234 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1235 if (N) { 1236 switch (N->getOpcode()) { 1237 default: break; 1238 case ISD::Constant: 1239 case ISD::ConstantFP: 1240 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1241 "debug location. Use another overload."); 1242 } 1243 } 1244 return N; 1245 } 1246 1247 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1248 const SDLoc &DL, void *&InsertPos) { 1249 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1250 if (N) { 1251 switch (N->getOpcode()) { 1252 case ISD::Constant: 1253 case ISD::ConstantFP: 1254 // Erase debug location from the node if the node is used at several 1255 // different places. Do not propagate one location to all uses as it 1256 // will cause a worse single stepping debugging experience. 1257 if (N->getDebugLoc() != DL.getDebugLoc()) 1258 N->setDebugLoc(DebugLoc()); 1259 break; 1260 default: 1261 // When the node's point of use is located earlier in the instruction 1262 // sequence than its prior point of use, update its debug info to the 1263 // earlier location. 1264 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1265 N->setDebugLoc(DL.getDebugLoc()); 1266 break; 1267 } 1268 } 1269 return N; 1270 } 1271 1272 void SelectionDAG::clear() { 1273 allnodes_clear(); 1274 OperandRecycler.clear(OperandAllocator); 1275 OperandAllocator.Reset(); 1276 CSEMap.clear(); 1277 1278 ExtendedValueTypeNodes.clear(); 1279 ExternalSymbols.clear(); 1280 TargetExternalSymbols.clear(); 1281 MCSymbols.clear(); 1282 SDCallSiteDbgInfo.clear(); 1283 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1284 static_cast<CondCodeSDNode*>(nullptr)); 1285 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1286 static_cast<SDNode*>(nullptr)); 1287 1288 EntryNode.UseList = nullptr; 1289 InsertNode(&EntryNode); 1290 Root = getEntryNode(); 1291 DbgInfo->clear(); 1292 } 1293 1294 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1295 return VT.bitsGT(Op.getValueType()) 1296 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1297 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1298 } 1299 1300 std::pair<SDValue, SDValue> 1301 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1302 const SDLoc &DL, EVT VT) { 1303 assert(!VT.bitsEq(Op.getValueType()) && 1304 "Strict no-op FP extend/round not allowed."); 1305 SDValue Res = 1306 VT.bitsGT(Op.getValueType()) 1307 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1308 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1309 {Chain, Op, getIntPtrConstant(0, DL)}); 1310 1311 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1312 } 1313 1314 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1315 return VT.bitsGT(Op.getValueType()) ? 1316 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1317 getNode(ISD::TRUNCATE, DL, VT, Op); 1318 } 1319 1320 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1321 return VT.bitsGT(Op.getValueType()) ? 1322 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1323 getNode(ISD::TRUNCATE, DL, VT, Op); 1324 } 1325 1326 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1327 return VT.bitsGT(Op.getValueType()) ? 1328 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1329 getNode(ISD::TRUNCATE, DL, VT, Op); 1330 } 1331 1332 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1333 EVT OpVT) { 1334 if (VT.bitsLE(Op.getValueType())) 1335 return getNode(ISD::TRUNCATE, SL, VT, Op); 1336 1337 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1338 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1339 } 1340 1341 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1342 EVT OpVT = Op.getValueType(); 1343 assert(VT.isInteger() && OpVT.isInteger() && 1344 "Cannot getZeroExtendInReg FP types"); 1345 assert(VT.isVector() == OpVT.isVector() && 1346 "getZeroExtendInReg type should be vector iff the operand " 1347 "type is vector!"); 1348 assert((!VT.isVector() || 1349 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1350 "Vector element counts must match in getZeroExtendInReg"); 1351 assert(VT.bitsLE(OpVT) && "Not extending!"); 1352 if (OpVT == VT) 1353 return Op; 1354 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1355 VT.getScalarSizeInBits()); 1356 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1357 } 1358 1359 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1360 // Only unsigned pointer semantics are supported right now. In the future this 1361 // might delegate to TLI to check pointer signedness. 1362 return getZExtOrTrunc(Op, DL, VT); 1363 } 1364 1365 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1366 // Only unsigned pointer semantics are supported right now. In the future this 1367 // might delegate to TLI to check pointer signedness. 1368 return getZeroExtendInReg(Op, DL, VT); 1369 } 1370 1371 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1372 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1373 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1374 } 1375 1376 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1377 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1378 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1379 } 1380 1381 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1382 EVT OpVT) { 1383 if (!V) 1384 return getConstant(0, DL, VT); 1385 1386 switch (TLI->getBooleanContents(OpVT)) { 1387 case TargetLowering::ZeroOrOneBooleanContent: 1388 case TargetLowering::UndefinedBooleanContent: 1389 return getConstant(1, DL, VT); 1390 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1391 return getAllOnesConstant(DL, VT); 1392 } 1393 llvm_unreachable("Unexpected boolean content enum!"); 1394 } 1395 1396 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1397 bool isT, bool isO) { 1398 EVT EltVT = VT.getScalarType(); 1399 assert((EltVT.getSizeInBits() >= 64 || 1400 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1401 "getConstant with a uint64_t value that doesn't fit in the type!"); 1402 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1403 } 1404 1405 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1406 bool isT, bool isO) { 1407 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1408 } 1409 1410 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1411 EVT VT, bool isT, bool isO) { 1412 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1413 1414 EVT EltVT = VT.getScalarType(); 1415 const ConstantInt *Elt = &Val; 1416 1417 // In some cases the vector type is legal but the element type is illegal and 1418 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1419 // inserted value (the type does not need to match the vector element type). 1420 // Any extra bits introduced will be truncated away. 1421 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1422 TargetLowering::TypePromoteInteger) { 1423 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1424 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1425 Elt = ConstantInt::get(*getContext(), NewVal); 1426 } 1427 // In other cases the element type is illegal and needs to be expanded, for 1428 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1429 // the value into n parts and use a vector type with n-times the elements. 1430 // Then bitcast to the type requested. 1431 // Legalizing constants too early makes the DAGCombiner's job harder so we 1432 // only legalize if the DAG tells us we must produce legal types. 1433 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1434 TLI->getTypeAction(*getContext(), EltVT) == 1435 TargetLowering::TypeExpandInteger) { 1436 const APInt &NewVal = Elt->getValue(); 1437 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1438 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1439 1440 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1441 if (VT.isScalableVector()) { 1442 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1443 "Can only handle an even split!"); 1444 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1445 1446 SmallVector<SDValue, 2> ScalarParts; 1447 for (unsigned i = 0; i != Parts; ++i) 1448 ScalarParts.push_back(getConstant( 1449 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1450 ViaEltVT, isT, isO)); 1451 1452 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1453 } 1454 1455 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1456 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1457 1458 // Check the temporary vector is the correct size. If this fails then 1459 // getTypeToTransformTo() probably returned a type whose size (in bits) 1460 // isn't a power-of-2 factor of the requested type size. 1461 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1462 1463 SmallVector<SDValue, 2> EltParts; 1464 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1465 EltParts.push_back(getConstant( 1466 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1467 ViaEltVT, isT, isO)); 1468 1469 // EltParts is currently in little endian order. If we actually want 1470 // big-endian order then reverse it now. 1471 if (getDataLayout().isBigEndian()) 1472 std::reverse(EltParts.begin(), EltParts.end()); 1473 1474 // The elements must be reversed when the element order is different 1475 // to the endianness of the elements (because the BITCAST is itself a 1476 // vector shuffle in this situation). However, we do not need any code to 1477 // perform this reversal because getConstant() is producing a vector 1478 // splat. 1479 // This situation occurs in MIPS MSA. 1480 1481 SmallVector<SDValue, 8> Ops; 1482 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1483 llvm::append_range(Ops, EltParts); 1484 1485 SDValue V = 1486 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1487 return V; 1488 } 1489 1490 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1491 "APInt size does not match type size!"); 1492 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1493 FoldingSetNodeID ID; 1494 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1495 ID.AddPointer(Elt); 1496 ID.AddBoolean(isO); 1497 void *IP = nullptr; 1498 SDNode *N = nullptr; 1499 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1500 if (!VT.isVector()) 1501 return SDValue(N, 0); 1502 1503 if (!N) { 1504 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1505 CSEMap.InsertNode(N, IP); 1506 InsertNode(N); 1507 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1508 } 1509 1510 SDValue Result(N, 0); 1511 if (VT.isScalableVector()) 1512 Result = getSplatVector(VT, DL, Result); 1513 else if (VT.isVector()) 1514 Result = getSplatBuildVector(VT, DL, Result); 1515 1516 return Result; 1517 } 1518 1519 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1520 bool isTarget) { 1521 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1522 } 1523 1524 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1525 const SDLoc &DL, bool LegalTypes) { 1526 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1527 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1528 return getConstant(Val, DL, ShiftVT); 1529 } 1530 1531 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1532 bool isTarget) { 1533 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1534 } 1535 1536 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1537 bool isTarget) { 1538 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1539 } 1540 1541 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1542 EVT VT, bool isTarget) { 1543 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1544 1545 EVT EltVT = VT.getScalarType(); 1546 1547 // Do the map lookup using the actual bit pattern for the floating point 1548 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1549 // we don't have issues with SNANs. 1550 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1551 FoldingSetNodeID ID; 1552 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1553 ID.AddPointer(&V); 1554 void *IP = nullptr; 1555 SDNode *N = nullptr; 1556 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1557 if (!VT.isVector()) 1558 return SDValue(N, 0); 1559 1560 if (!N) { 1561 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1562 CSEMap.InsertNode(N, IP); 1563 InsertNode(N); 1564 } 1565 1566 SDValue Result(N, 0); 1567 if (VT.isScalableVector()) 1568 Result = getSplatVector(VT, DL, Result); 1569 else if (VT.isVector()) 1570 Result = getSplatBuildVector(VT, DL, Result); 1571 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1572 return Result; 1573 } 1574 1575 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1576 bool isTarget) { 1577 EVT EltVT = VT.getScalarType(); 1578 if (EltVT == MVT::f32) 1579 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1580 if (EltVT == MVT::f64) 1581 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1582 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1583 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1584 bool Ignored; 1585 APFloat APF = APFloat(Val); 1586 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1587 &Ignored); 1588 return getConstantFP(APF, DL, VT, isTarget); 1589 } 1590 llvm_unreachable("Unsupported type in getConstantFP"); 1591 } 1592 1593 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1594 EVT VT, int64_t Offset, bool isTargetGA, 1595 unsigned TargetFlags) { 1596 assert((TargetFlags == 0 || isTargetGA) && 1597 "Cannot set target flags on target-independent globals"); 1598 1599 // Truncate (with sign-extension) the offset value to the pointer size. 1600 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1601 if (BitWidth < 64) 1602 Offset = SignExtend64(Offset, BitWidth); 1603 1604 unsigned Opc; 1605 if (GV->isThreadLocal()) 1606 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1607 else 1608 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1609 1610 FoldingSetNodeID ID; 1611 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1612 ID.AddPointer(GV); 1613 ID.AddInteger(Offset); 1614 ID.AddInteger(TargetFlags); 1615 void *IP = nullptr; 1616 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1617 return SDValue(E, 0); 1618 1619 auto *N = newSDNode<GlobalAddressSDNode>( 1620 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1621 CSEMap.InsertNode(N, IP); 1622 InsertNode(N); 1623 return SDValue(N, 0); 1624 } 1625 1626 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1627 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1628 FoldingSetNodeID ID; 1629 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1630 ID.AddInteger(FI); 1631 void *IP = nullptr; 1632 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1633 return SDValue(E, 0); 1634 1635 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1636 CSEMap.InsertNode(N, IP); 1637 InsertNode(N); 1638 return SDValue(N, 0); 1639 } 1640 1641 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1642 unsigned TargetFlags) { 1643 assert((TargetFlags == 0 || isTarget) && 1644 "Cannot set target flags on target-independent jump tables"); 1645 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1646 FoldingSetNodeID ID; 1647 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1648 ID.AddInteger(JTI); 1649 ID.AddInteger(TargetFlags); 1650 void *IP = nullptr; 1651 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1652 return SDValue(E, 0); 1653 1654 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1655 CSEMap.InsertNode(N, IP); 1656 InsertNode(N); 1657 return SDValue(N, 0); 1658 } 1659 1660 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1661 MaybeAlign Alignment, int Offset, 1662 bool isTarget, unsigned TargetFlags) { 1663 assert((TargetFlags == 0 || isTarget) && 1664 "Cannot set target flags on target-independent globals"); 1665 if (!Alignment) 1666 Alignment = shouldOptForSize() 1667 ? getDataLayout().getABITypeAlign(C->getType()) 1668 : getDataLayout().getPrefTypeAlign(C->getType()); 1669 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1670 FoldingSetNodeID ID; 1671 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1672 ID.AddInteger(Alignment->value()); 1673 ID.AddInteger(Offset); 1674 ID.AddPointer(C); 1675 ID.AddInteger(TargetFlags); 1676 void *IP = nullptr; 1677 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1678 return SDValue(E, 0); 1679 1680 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1681 TargetFlags); 1682 CSEMap.InsertNode(N, IP); 1683 InsertNode(N); 1684 SDValue V = SDValue(N, 0); 1685 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1686 return V; 1687 } 1688 1689 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1690 MaybeAlign Alignment, int Offset, 1691 bool isTarget, unsigned TargetFlags) { 1692 assert((TargetFlags == 0 || isTarget) && 1693 "Cannot set target flags on target-independent globals"); 1694 if (!Alignment) 1695 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1696 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1697 FoldingSetNodeID ID; 1698 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1699 ID.AddInteger(Alignment->value()); 1700 ID.AddInteger(Offset); 1701 C->addSelectionDAGCSEId(ID); 1702 ID.AddInteger(TargetFlags); 1703 void *IP = nullptr; 1704 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1705 return SDValue(E, 0); 1706 1707 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1708 TargetFlags); 1709 CSEMap.InsertNode(N, IP); 1710 InsertNode(N); 1711 return SDValue(N, 0); 1712 } 1713 1714 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1715 unsigned TargetFlags) { 1716 FoldingSetNodeID ID; 1717 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1718 ID.AddInteger(Index); 1719 ID.AddInteger(Offset); 1720 ID.AddInteger(TargetFlags); 1721 void *IP = nullptr; 1722 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1723 return SDValue(E, 0); 1724 1725 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1726 CSEMap.InsertNode(N, IP); 1727 InsertNode(N); 1728 return SDValue(N, 0); 1729 } 1730 1731 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1732 FoldingSetNodeID ID; 1733 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1734 ID.AddPointer(MBB); 1735 void *IP = nullptr; 1736 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1737 return SDValue(E, 0); 1738 1739 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1740 CSEMap.InsertNode(N, IP); 1741 InsertNode(N); 1742 return SDValue(N, 0); 1743 } 1744 1745 SDValue SelectionDAG::getValueType(EVT VT) { 1746 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1747 ValueTypeNodes.size()) 1748 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1749 1750 SDNode *&N = VT.isExtended() ? 1751 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1752 1753 if (N) return SDValue(N, 0); 1754 N = newSDNode<VTSDNode>(VT); 1755 InsertNode(N); 1756 return SDValue(N, 0); 1757 } 1758 1759 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1760 SDNode *&N = ExternalSymbols[Sym]; 1761 if (N) return SDValue(N, 0); 1762 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1763 InsertNode(N); 1764 return SDValue(N, 0); 1765 } 1766 1767 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1768 SDNode *&N = MCSymbols[Sym]; 1769 if (N) 1770 return SDValue(N, 0); 1771 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1772 InsertNode(N); 1773 return SDValue(N, 0); 1774 } 1775 1776 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1777 unsigned TargetFlags) { 1778 SDNode *&N = 1779 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1780 if (N) return SDValue(N, 0); 1781 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1782 InsertNode(N); 1783 return SDValue(N, 0); 1784 } 1785 1786 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1787 if ((unsigned)Cond >= CondCodeNodes.size()) 1788 CondCodeNodes.resize(Cond+1); 1789 1790 if (!CondCodeNodes[Cond]) { 1791 auto *N = newSDNode<CondCodeSDNode>(Cond); 1792 CondCodeNodes[Cond] = N; 1793 InsertNode(N); 1794 } 1795 1796 return SDValue(CondCodeNodes[Cond], 0); 1797 } 1798 1799 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1800 APInt One(ResVT.getScalarSizeInBits(), 1); 1801 return getStepVector(DL, ResVT, One); 1802 } 1803 1804 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1805 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1806 if (ResVT.isScalableVector()) 1807 return getNode( 1808 ISD::STEP_VECTOR, DL, ResVT, 1809 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1810 1811 SmallVector<SDValue, 16> OpsStepConstants; 1812 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1813 OpsStepConstants.push_back( 1814 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1815 return getBuildVector(ResVT, DL, OpsStepConstants); 1816 } 1817 1818 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1819 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1820 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1821 std::swap(N1, N2); 1822 ShuffleVectorSDNode::commuteMask(M); 1823 } 1824 1825 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1826 SDValue N2, ArrayRef<int> Mask) { 1827 assert(VT.getVectorNumElements() == Mask.size() && 1828 "Must have the same number of vector elements as mask elements!"); 1829 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1830 "Invalid VECTOR_SHUFFLE"); 1831 1832 // Canonicalize shuffle undef, undef -> undef 1833 if (N1.isUndef() && N2.isUndef()) 1834 return getUNDEF(VT); 1835 1836 // Validate that all indices in Mask are within the range of the elements 1837 // input to the shuffle. 1838 int NElts = Mask.size(); 1839 assert(llvm::all_of(Mask, 1840 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1841 "Index out of range"); 1842 1843 // Copy the mask so we can do any needed cleanup. 1844 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1845 1846 // Canonicalize shuffle v, v -> v, undef 1847 if (N1 == N2) { 1848 N2 = getUNDEF(VT); 1849 for (int i = 0; i != NElts; ++i) 1850 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1851 } 1852 1853 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1854 if (N1.isUndef()) 1855 commuteShuffle(N1, N2, MaskVec); 1856 1857 if (TLI->hasVectorBlend()) { 1858 // If shuffling a splat, try to blend the splat instead. We do this here so 1859 // that even when this arises during lowering we don't have to re-handle it. 1860 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1861 BitVector UndefElements; 1862 SDValue Splat = BV->getSplatValue(&UndefElements); 1863 if (!Splat) 1864 return; 1865 1866 for (int i = 0; i < NElts; ++i) { 1867 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1868 continue; 1869 1870 // If this input comes from undef, mark it as such. 1871 if (UndefElements[MaskVec[i] - Offset]) { 1872 MaskVec[i] = -1; 1873 continue; 1874 } 1875 1876 // If we can blend a non-undef lane, use that instead. 1877 if (!UndefElements[i]) 1878 MaskVec[i] = i + Offset; 1879 } 1880 }; 1881 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1882 BlendSplat(N1BV, 0); 1883 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1884 BlendSplat(N2BV, NElts); 1885 } 1886 1887 // Canonicalize all index into lhs, -> shuffle lhs, undef 1888 // Canonicalize all index into rhs, -> shuffle rhs, undef 1889 bool AllLHS = true, AllRHS = true; 1890 bool N2Undef = N2.isUndef(); 1891 for (int i = 0; i != NElts; ++i) { 1892 if (MaskVec[i] >= NElts) { 1893 if (N2Undef) 1894 MaskVec[i] = -1; 1895 else 1896 AllLHS = false; 1897 } else if (MaskVec[i] >= 0) { 1898 AllRHS = false; 1899 } 1900 } 1901 if (AllLHS && AllRHS) 1902 return getUNDEF(VT); 1903 if (AllLHS && !N2Undef) 1904 N2 = getUNDEF(VT); 1905 if (AllRHS) { 1906 N1 = getUNDEF(VT); 1907 commuteShuffle(N1, N2, MaskVec); 1908 } 1909 // Reset our undef status after accounting for the mask. 1910 N2Undef = N2.isUndef(); 1911 // Re-check whether both sides ended up undef. 1912 if (N1.isUndef() && N2Undef) 1913 return getUNDEF(VT); 1914 1915 // If Identity shuffle return that node. 1916 bool Identity = true, AllSame = true; 1917 for (int i = 0; i != NElts; ++i) { 1918 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1919 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1920 } 1921 if (Identity && NElts) 1922 return N1; 1923 1924 // Shuffling a constant splat doesn't change the result. 1925 if (N2Undef) { 1926 SDValue V = N1; 1927 1928 // Look through any bitcasts. We check that these don't change the number 1929 // (and size) of elements and just changes their types. 1930 while (V.getOpcode() == ISD::BITCAST) 1931 V = V->getOperand(0); 1932 1933 // A splat should always show up as a build vector node. 1934 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1935 BitVector UndefElements; 1936 SDValue Splat = BV->getSplatValue(&UndefElements); 1937 // If this is a splat of an undef, shuffling it is also undef. 1938 if (Splat && Splat.isUndef()) 1939 return getUNDEF(VT); 1940 1941 bool SameNumElts = 1942 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1943 1944 // We only have a splat which can skip shuffles if there is a splatted 1945 // value and no undef lanes rearranged by the shuffle. 1946 if (Splat && UndefElements.none()) { 1947 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1948 // number of elements match or the value splatted is a zero constant. 1949 if (SameNumElts) 1950 return N1; 1951 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1952 if (C->isZero()) 1953 return N1; 1954 } 1955 1956 // If the shuffle itself creates a splat, build the vector directly. 1957 if (AllSame && SameNumElts) { 1958 EVT BuildVT = BV->getValueType(0); 1959 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1960 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1961 1962 // We may have jumped through bitcasts, so the type of the 1963 // BUILD_VECTOR may not match the type of the shuffle. 1964 if (BuildVT != VT) 1965 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1966 return NewBV; 1967 } 1968 } 1969 } 1970 1971 FoldingSetNodeID ID; 1972 SDValue Ops[2] = { N1, N2 }; 1973 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1974 for (int i = 0; i != NElts; ++i) 1975 ID.AddInteger(MaskVec[i]); 1976 1977 void* IP = nullptr; 1978 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1979 return SDValue(E, 0); 1980 1981 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1982 // SDNode doesn't have access to it. This memory will be "leaked" when 1983 // the node is deallocated, but recovered when the NodeAllocator is released. 1984 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1985 llvm::copy(MaskVec, MaskAlloc); 1986 1987 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1988 dl.getDebugLoc(), MaskAlloc); 1989 createOperands(N, Ops); 1990 1991 CSEMap.InsertNode(N, IP); 1992 InsertNode(N); 1993 SDValue V = SDValue(N, 0); 1994 NewSDValueDbgMsg(V, "Creating new node: ", this); 1995 return V; 1996 } 1997 1998 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1999 EVT VT = SV.getValueType(0); 2000 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2001 ShuffleVectorSDNode::commuteMask(MaskVec); 2002 2003 SDValue Op0 = SV.getOperand(0); 2004 SDValue Op1 = SV.getOperand(1); 2005 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2006 } 2007 2008 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2009 FoldingSetNodeID ID; 2010 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2011 ID.AddInteger(RegNo); 2012 void *IP = nullptr; 2013 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2014 return SDValue(E, 0); 2015 2016 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2017 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2018 CSEMap.InsertNode(N, IP); 2019 InsertNode(N); 2020 return SDValue(N, 0); 2021 } 2022 2023 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2024 FoldingSetNodeID ID; 2025 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2026 ID.AddPointer(RegMask); 2027 void *IP = nullptr; 2028 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2029 return SDValue(E, 0); 2030 2031 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2032 CSEMap.InsertNode(N, IP); 2033 InsertNode(N); 2034 return SDValue(N, 0); 2035 } 2036 2037 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2038 MCSymbol *Label) { 2039 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2040 } 2041 2042 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2043 SDValue Root, MCSymbol *Label) { 2044 FoldingSetNodeID ID; 2045 SDValue Ops[] = { Root }; 2046 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2047 ID.AddPointer(Label); 2048 void *IP = nullptr; 2049 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2050 return SDValue(E, 0); 2051 2052 auto *N = 2053 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2054 createOperands(N, Ops); 2055 2056 CSEMap.InsertNode(N, IP); 2057 InsertNode(N); 2058 return SDValue(N, 0); 2059 } 2060 2061 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2062 int64_t Offset, bool isTarget, 2063 unsigned TargetFlags) { 2064 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2065 2066 FoldingSetNodeID ID; 2067 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2068 ID.AddPointer(BA); 2069 ID.AddInteger(Offset); 2070 ID.AddInteger(TargetFlags); 2071 void *IP = nullptr; 2072 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2073 return SDValue(E, 0); 2074 2075 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2076 CSEMap.InsertNode(N, IP); 2077 InsertNode(N); 2078 return SDValue(N, 0); 2079 } 2080 2081 SDValue SelectionDAG::getSrcValue(const Value *V) { 2082 FoldingSetNodeID ID; 2083 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2084 ID.AddPointer(V); 2085 2086 void *IP = nullptr; 2087 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2088 return SDValue(E, 0); 2089 2090 auto *N = newSDNode<SrcValueSDNode>(V); 2091 CSEMap.InsertNode(N, IP); 2092 InsertNode(N); 2093 return SDValue(N, 0); 2094 } 2095 2096 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2097 FoldingSetNodeID ID; 2098 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2099 ID.AddPointer(MD); 2100 2101 void *IP = nullptr; 2102 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2103 return SDValue(E, 0); 2104 2105 auto *N = newSDNode<MDNodeSDNode>(MD); 2106 CSEMap.InsertNode(N, IP); 2107 InsertNode(N); 2108 return SDValue(N, 0); 2109 } 2110 2111 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2112 if (VT == V.getValueType()) 2113 return V; 2114 2115 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2116 } 2117 2118 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2119 unsigned SrcAS, unsigned DestAS) { 2120 SDValue Ops[] = {Ptr}; 2121 FoldingSetNodeID ID; 2122 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2123 ID.AddInteger(SrcAS); 2124 ID.AddInteger(DestAS); 2125 2126 void *IP = nullptr; 2127 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2128 return SDValue(E, 0); 2129 2130 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2131 VT, SrcAS, DestAS); 2132 createOperands(N, Ops); 2133 2134 CSEMap.InsertNode(N, IP); 2135 InsertNode(N); 2136 return SDValue(N, 0); 2137 } 2138 2139 SDValue SelectionDAG::getFreeze(SDValue V) { 2140 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2141 } 2142 2143 /// getShiftAmountOperand - Return the specified value casted to 2144 /// the target's desired shift amount type. 2145 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2146 EVT OpTy = Op.getValueType(); 2147 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2148 if (OpTy == ShTy || OpTy.isVector()) return Op; 2149 2150 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2151 } 2152 2153 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2154 SDLoc dl(Node); 2155 const TargetLowering &TLI = getTargetLoweringInfo(); 2156 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2157 EVT VT = Node->getValueType(0); 2158 SDValue Tmp1 = Node->getOperand(0); 2159 SDValue Tmp2 = Node->getOperand(1); 2160 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2161 2162 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2163 Tmp2, MachinePointerInfo(V)); 2164 SDValue VAList = VAListLoad; 2165 2166 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2167 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2168 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2169 2170 VAList = 2171 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2172 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2173 } 2174 2175 // Increment the pointer, VAList, to the next vaarg 2176 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2177 getConstant(getDataLayout().getTypeAllocSize( 2178 VT.getTypeForEVT(*getContext())), 2179 dl, VAList.getValueType())); 2180 // Store the incremented VAList to the legalized pointer 2181 Tmp1 = 2182 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2183 // Load the actual argument out of the pointer VAList 2184 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2185 } 2186 2187 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2188 SDLoc dl(Node); 2189 const TargetLowering &TLI = getTargetLoweringInfo(); 2190 // This defaults to loading a pointer from the input and storing it to the 2191 // output, returning the chain. 2192 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2193 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2194 SDValue Tmp1 = 2195 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2196 Node->getOperand(2), MachinePointerInfo(VS)); 2197 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2198 MachinePointerInfo(VD)); 2199 } 2200 2201 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2202 const DataLayout &DL = getDataLayout(); 2203 Type *Ty = VT.getTypeForEVT(*getContext()); 2204 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2205 2206 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2207 return RedAlign; 2208 2209 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2210 const Align StackAlign = TFI->getStackAlign(); 2211 2212 // See if we can choose a smaller ABI alignment in cases where it's an 2213 // illegal vector type that will get broken down. 2214 if (RedAlign > StackAlign) { 2215 EVT IntermediateVT; 2216 MVT RegisterVT; 2217 unsigned NumIntermediates; 2218 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2219 NumIntermediates, RegisterVT); 2220 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2221 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2222 if (RedAlign2 < RedAlign) 2223 RedAlign = RedAlign2; 2224 } 2225 2226 return RedAlign; 2227 } 2228 2229 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2230 MachineFrameInfo &MFI = MF->getFrameInfo(); 2231 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2232 int StackID = 0; 2233 if (Bytes.isScalable()) 2234 StackID = TFI->getStackIDForScalableVectors(); 2235 // The stack id gives an indication of whether the object is scalable or 2236 // not, so it's safe to pass in the minimum size here. 2237 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2238 false, nullptr, StackID); 2239 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2240 } 2241 2242 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2243 Type *Ty = VT.getTypeForEVT(*getContext()); 2244 Align StackAlign = 2245 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2246 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2247 } 2248 2249 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2250 TypeSize VT1Size = VT1.getStoreSize(); 2251 TypeSize VT2Size = VT2.getStoreSize(); 2252 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2253 "Don't know how to choose the maximum size when creating a stack " 2254 "temporary"); 2255 TypeSize Bytes = 2256 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2257 2258 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2259 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2260 const DataLayout &DL = getDataLayout(); 2261 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2262 return CreateStackTemporary(Bytes, Align); 2263 } 2264 2265 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2266 ISD::CondCode Cond, const SDLoc &dl) { 2267 EVT OpVT = N1.getValueType(); 2268 2269 // These setcc operations always fold. 2270 switch (Cond) { 2271 default: break; 2272 case ISD::SETFALSE: 2273 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2274 case ISD::SETTRUE: 2275 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2276 2277 case ISD::SETOEQ: 2278 case ISD::SETOGT: 2279 case ISD::SETOGE: 2280 case ISD::SETOLT: 2281 case ISD::SETOLE: 2282 case ISD::SETONE: 2283 case ISD::SETO: 2284 case ISD::SETUO: 2285 case ISD::SETUEQ: 2286 case ISD::SETUNE: 2287 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2288 break; 2289 } 2290 2291 if (OpVT.isInteger()) { 2292 // For EQ and NE, we can always pick a value for the undef to make the 2293 // predicate pass or fail, so we can return undef. 2294 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2295 // icmp eq/ne X, undef -> undef. 2296 if ((N1.isUndef() || N2.isUndef()) && 2297 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2298 return getUNDEF(VT); 2299 2300 // If both operands are undef, we can return undef for int comparison. 2301 // icmp undef, undef -> undef. 2302 if (N1.isUndef() && N2.isUndef()) 2303 return getUNDEF(VT); 2304 2305 // icmp X, X -> true/false 2306 // icmp X, undef -> true/false because undef could be X. 2307 if (N1 == N2) 2308 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2309 } 2310 2311 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2312 const APInt &C2 = N2C->getAPIntValue(); 2313 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2314 const APInt &C1 = N1C->getAPIntValue(); 2315 2316 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2317 dl, VT, OpVT); 2318 } 2319 } 2320 2321 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2322 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2323 2324 if (N1CFP && N2CFP) { 2325 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2326 switch (Cond) { 2327 default: break; 2328 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2329 return getUNDEF(VT); 2330 LLVM_FALLTHROUGH; 2331 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2332 OpVT); 2333 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2334 return getUNDEF(VT); 2335 LLVM_FALLTHROUGH; 2336 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2337 R==APFloat::cmpLessThan, dl, VT, 2338 OpVT); 2339 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2340 return getUNDEF(VT); 2341 LLVM_FALLTHROUGH; 2342 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2343 OpVT); 2344 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2345 return getUNDEF(VT); 2346 LLVM_FALLTHROUGH; 2347 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2348 VT, OpVT); 2349 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2350 return getUNDEF(VT); 2351 LLVM_FALLTHROUGH; 2352 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2353 R==APFloat::cmpEqual, dl, VT, 2354 OpVT); 2355 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2356 return getUNDEF(VT); 2357 LLVM_FALLTHROUGH; 2358 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2359 R==APFloat::cmpEqual, dl, VT, OpVT); 2360 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2361 OpVT); 2362 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2363 OpVT); 2364 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2365 R==APFloat::cmpEqual, dl, VT, 2366 OpVT); 2367 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2368 OpVT); 2369 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2370 R==APFloat::cmpLessThan, dl, VT, 2371 OpVT); 2372 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2373 R==APFloat::cmpUnordered, dl, VT, 2374 OpVT); 2375 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2376 VT, OpVT); 2377 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2378 OpVT); 2379 } 2380 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2381 // Ensure that the constant occurs on the RHS. 2382 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2383 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2384 return SDValue(); 2385 return getSetCC(dl, VT, N2, N1, SwappedCond); 2386 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2387 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2388 // If an operand is known to be a nan (or undef that could be a nan), we can 2389 // fold it. 2390 // Choosing NaN for the undef will always make unordered comparison succeed 2391 // and ordered comparison fails. 2392 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2393 switch (ISD::getUnorderedFlavor(Cond)) { 2394 default: 2395 llvm_unreachable("Unknown flavor!"); 2396 case 0: // Known false. 2397 return getBoolConstant(false, dl, VT, OpVT); 2398 case 1: // Known true. 2399 return getBoolConstant(true, dl, VT, OpVT); 2400 case 2: // Undefined. 2401 return getUNDEF(VT); 2402 } 2403 } 2404 2405 // Could not fold it. 2406 return SDValue(); 2407 } 2408 2409 /// See if the specified operand can be simplified with the knowledge that only 2410 /// the bits specified by DemandedBits are used. 2411 /// TODO: really we should be making this into the DAG equivalent of 2412 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2413 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2414 EVT VT = V.getValueType(); 2415 2416 if (VT.isScalableVector()) 2417 return SDValue(); 2418 2419 APInt DemandedElts = VT.isVector() 2420 ? APInt::getAllOnes(VT.getVectorNumElements()) 2421 : APInt(1, 1); 2422 return GetDemandedBits(V, DemandedBits, DemandedElts); 2423 } 2424 2425 /// See if the specified operand can be simplified with the knowledge that only 2426 /// the bits specified by DemandedBits are used in the elements specified by 2427 /// DemandedElts. 2428 /// TODO: really we should be making this into the DAG equivalent of 2429 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2430 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2431 const APInt &DemandedElts) { 2432 switch (V.getOpcode()) { 2433 default: 2434 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2435 *this, 0); 2436 case ISD::Constant: { 2437 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2438 APInt NewVal = CVal & DemandedBits; 2439 if (NewVal != CVal) 2440 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2441 break; 2442 } 2443 case ISD::SRL: 2444 // Only look at single-use SRLs. 2445 if (!V.getNode()->hasOneUse()) 2446 break; 2447 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2448 // See if we can recursively simplify the LHS. 2449 unsigned Amt = RHSC->getZExtValue(); 2450 2451 // Watch out for shift count overflow though. 2452 if (Amt >= DemandedBits.getBitWidth()) 2453 break; 2454 APInt SrcDemandedBits = DemandedBits << Amt; 2455 if (SDValue SimplifyLHS = 2456 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2457 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2458 V.getOperand(1)); 2459 } 2460 break; 2461 } 2462 return SDValue(); 2463 } 2464 2465 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2466 /// use this predicate to simplify operations downstream. 2467 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2468 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2469 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2470 } 2471 2472 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2473 /// this predicate to simplify operations downstream. Mask is known to be zero 2474 /// for bits that V cannot have. 2475 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2476 unsigned Depth) const { 2477 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2478 } 2479 2480 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2481 /// DemandedElts. We use this predicate to simplify operations downstream. 2482 /// Mask is known to be zero for bits that V cannot have. 2483 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2484 const APInt &DemandedElts, 2485 unsigned Depth) const { 2486 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2487 } 2488 2489 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2490 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2491 unsigned Depth) const { 2492 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2493 } 2494 2495 /// isSplatValue - Return true if the vector V has the same value 2496 /// across all DemandedElts. For scalable vectors it does not make 2497 /// sense to specify which elements are demanded or undefined, therefore 2498 /// they are simply ignored. 2499 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2500 APInt &UndefElts, unsigned Depth) { 2501 EVT VT = V.getValueType(); 2502 assert(VT.isVector() && "Vector type expected"); 2503 2504 if (!VT.isScalableVector() && !DemandedElts) 2505 return false; // No demanded elts, better to assume we don't know anything. 2506 2507 if (Depth >= MaxRecursionDepth) 2508 return false; // Limit search depth. 2509 2510 // Deal with some common cases here that work for both fixed and scalable 2511 // vector types. 2512 switch (V.getOpcode()) { 2513 case ISD::SPLAT_VECTOR: 2514 UndefElts = V.getOperand(0).isUndef() 2515 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2516 : APInt(DemandedElts.getBitWidth(), 0); 2517 return true; 2518 case ISD::ADD: 2519 case ISD::SUB: 2520 case ISD::AND: 2521 case ISD::XOR: 2522 case ISD::OR: { 2523 APInt UndefLHS, UndefRHS; 2524 SDValue LHS = V.getOperand(0); 2525 SDValue RHS = V.getOperand(1); 2526 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2527 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2528 UndefElts = UndefLHS | UndefRHS; 2529 return true; 2530 } 2531 return false; 2532 } 2533 case ISD::ABS: 2534 case ISD::TRUNCATE: 2535 case ISD::SIGN_EXTEND: 2536 case ISD::ZERO_EXTEND: 2537 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2538 } 2539 2540 // We don't support other cases than those above for scalable vectors at 2541 // the moment. 2542 if (VT.isScalableVector()) 2543 return false; 2544 2545 unsigned NumElts = VT.getVectorNumElements(); 2546 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2547 UndefElts = APInt::getZero(NumElts); 2548 2549 switch (V.getOpcode()) { 2550 case ISD::BUILD_VECTOR: { 2551 SDValue Scl; 2552 for (unsigned i = 0; i != NumElts; ++i) { 2553 SDValue Op = V.getOperand(i); 2554 if (Op.isUndef()) { 2555 UndefElts.setBit(i); 2556 continue; 2557 } 2558 if (!DemandedElts[i]) 2559 continue; 2560 if (Scl && Scl != Op) 2561 return false; 2562 Scl = Op; 2563 } 2564 return true; 2565 } 2566 case ISD::VECTOR_SHUFFLE: { 2567 // Check if this is a shuffle node doing a splat. 2568 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2569 int SplatIndex = -1; 2570 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2571 for (int i = 0; i != (int)NumElts; ++i) { 2572 int M = Mask[i]; 2573 if (M < 0) { 2574 UndefElts.setBit(i); 2575 continue; 2576 } 2577 if (!DemandedElts[i]) 2578 continue; 2579 if (0 <= SplatIndex && SplatIndex != M) 2580 return false; 2581 SplatIndex = M; 2582 } 2583 return true; 2584 } 2585 case ISD::EXTRACT_SUBVECTOR: { 2586 // Offset the demanded elts by the subvector index. 2587 SDValue Src = V.getOperand(0); 2588 // We don't support scalable vectors at the moment. 2589 if (Src.getValueType().isScalableVector()) 2590 return false; 2591 uint64_t Idx = V.getConstantOperandVal(1); 2592 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2593 APInt UndefSrcElts; 2594 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2595 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2596 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2597 return true; 2598 } 2599 break; 2600 } 2601 } 2602 2603 return false; 2604 } 2605 2606 /// Helper wrapper to main isSplatValue function. 2607 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2608 EVT VT = V.getValueType(); 2609 assert(VT.isVector() && "Vector type expected"); 2610 2611 APInt UndefElts; 2612 APInt DemandedElts; 2613 2614 // For now we don't support this with scalable vectors. 2615 if (!VT.isScalableVector()) 2616 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2617 return isSplatValue(V, DemandedElts, UndefElts) && 2618 (AllowUndefs || !UndefElts); 2619 } 2620 2621 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2622 V = peekThroughExtractSubvectors(V); 2623 2624 EVT VT = V.getValueType(); 2625 unsigned Opcode = V.getOpcode(); 2626 switch (Opcode) { 2627 default: { 2628 APInt UndefElts; 2629 APInt DemandedElts; 2630 2631 if (!VT.isScalableVector()) 2632 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2633 2634 if (isSplatValue(V, DemandedElts, UndefElts)) { 2635 if (VT.isScalableVector()) { 2636 // DemandedElts and UndefElts are ignored for scalable vectors, since 2637 // the only supported cases are SPLAT_VECTOR nodes. 2638 SplatIdx = 0; 2639 } else { 2640 // Handle case where all demanded elements are UNDEF. 2641 if (DemandedElts.isSubsetOf(UndefElts)) { 2642 SplatIdx = 0; 2643 return getUNDEF(VT); 2644 } 2645 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2646 } 2647 return V; 2648 } 2649 break; 2650 } 2651 case ISD::SPLAT_VECTOR: 2652 SplatIdx = 0; 2653 return V; 2654 case ISD::VECTOR_SHUFFLE: { 2655 if (VT.isScalableVector()) 2656 return SDValue(); 2657 2658 // Check if this is a shuffle node doing a splat. 2659 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2660 // getTargetVShiftNode currently struggles without the splat source. 2661 auto *SVN = cast<ShuffleVectorSDNode>(V); 2662 if (!SVN->isSplat()) 2663 break; 2664 int Idx = SVN->getSplatIndex(); 2665 int NumElts = V.getValueType().getVectorNumElements(); 2666 SplatIdx = Idx % NumElts; 2667 return V.getOperand(Idx / NumElts); 2668 } 2669 } 2670 2671 return SDValue(); 2672 } 2673 2674 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2675 int SplatIdx; 2676 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2677 EVT SVT = SrcVector.getValueType().getScalarType(); 2678 EVT LegalSVT = SVT; 2679 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2680 if (!SVT.isInteger()) 2681 return SDValue(); 2682 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2683 if (LegalSVT.bitsLT(SVT)) 2684 return SDValue(); 2685 } 2686 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2687 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2688 } 2689 return SDValue(); 2690 } 2691 2692 const APInt * 2693 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2694 const APInt &DemandedElts) const { 2695 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2696 V.getOpcode() == ISD::SRA) && 2697 "Unknown shift node"); 2698 unsigned BitWidth = V.getScalarValueSizeInBits(); 2699 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2700 // Shifting more than the bitwidth is not valid. 2701 const APInt &ShAmt = SA->getAPIntValue(); 2702 if (ShAmt.ult(BitWidth)) 2703 return &ShAmt; 2704 } 2705 return nullptr; 2706 } 2707 2708 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2709 SDValue V, const APInt &DemandedElts) const { 2710 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2711 V.getOpcode() == ISD::SRA) && 2712 "Unknown shift node"); 2713 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2714 return ValidAmt; 2715 unsigned BitWidth = V.getScalarValueSizeInBits(); 2716 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2717 if (!BV) 2718 return nullptr; 2719 const APInt *MinShAmt = nullptr; 2720 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2721 if (!DemandedElts[i]) 2722 continue; 2723 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2724 if (!SA) 2725 return nullptr; 2726 // Shifting more than the bitwidth is not valid. 2727 const APInt &ShAmt = SA->getAPIntValue(); 2728 if (ShAmt.uge(BitWidth)) 2729 return nullptr; 2730 if (MinShAmt && MinShAmt->ule(ShAmt)) 2731 continue; 2732 MinShAmt = &ShAmt; 2733 } 2734 return MinShAmt; 2735 } 2736 2737 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2738 SDValue V, const APInt &DemandedElts) const { 2739 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2740 V.getOpcode() == ISD::SRA) && 2741 "Unknown shift node"); 2742 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2743 return ValidAmt; 2744 unsigned BitWidth = V.getScalarValueSizeInBits(); 2745 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2746 if (!BV) 2747 return nullptr; 2748 const APInt *MaxShAmt = nullptr; 2749 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2750 if (!DemandedElts[i]) 2751 continue; 2752 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2753 if (!SA) 2754 return nullptr; 2755 // Shifting more than the bitwidth is not valid. 2756 const APInt &ShAmt = SA->getAPIntValue(); 2757 if (ShAmt.uge(BitWidth)) 2758 return nullptr; 2759 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2760 continue; 2761 MaxShAmt = &ShAmt; 2762 } 2763 return MaxShAmt; 2764 } 2765 2766 /// Determine which bits of Op are known to be either zero or one and return 2767 /// them in Known. For vectors, the known bits are those that are shared by 2768 /// every vector element. 2769 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2770 EVT VT = Op.getValueType(); 2771 2772 // TOOD: Until we have a plan for how to represent demanded elements for 2773 // scalable vectors, we can just bail out for now. 2774 if (Op.getValueType().isScalableVector()) { 2775 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2776 return KnownBits(BitWidth); 2777 } 2778 2779 APInt DemandedElts = VT.isVector() 2780 ? APInt::getAllOnes(VT.getVectorNumElements()) 2781 : APInt(1, 1); 2782 return computeKnownBits(Op, DemandedElts, Depth); 2783 } 2784 2785 /// Determine which bits of Op are known to be either zero or one and return 2786 /// them in Known. The DemandedElts argument allows us to only collect the known 2787 /// bits that are shared by the requested vector elements. 2788 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2789 unsigned Depth) const { 2790 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2791 2792 KnownBits Known(BitWidth); // Don't know anything. 2793 2794 // TOOD: Until we have a plan for how to represent demanded elements for 2795 // scalable vectors, we can just bail out for now. 2796 if (Op.getValueType().isScalableVector()) 2797 return Known; 2798 2799 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2800 // We know all of the bits for a constant! 2801 return KnownBits::makeConstant(C->getAPIntValue()); 2802 } 2803 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2804 // We know all of the bits for a constant fp! 2805 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2806 } 2807 2808 if (Depth >= MaxRecursionDepth) 2809 return Known; // Limit search depth. 2810 2811 KnownBits Known2; 2812 unsigned NumElts = DemandedElts.getBitWidth(); 2813 assert((!Op.getValueType().isVector() || 2814 NumElts == Op.getValueType().getVectorNumElements()) && 2815 "Unexpected vector size"); 2816 2817 if (!DemandedElts) 2818 return Known; // No demanded elts, better to assume we don't know anything. 2819 2820 unsigned Opcode = Op.getOpcode(); 2821 switch (Opcode) { 2822 case ISD::BUILD_VECTOR: 2823 // Collect the known bits that are shared by every demanded vector element. 2824 Known.Zero.setAllBits(); Known.One.setAllBits(); 2825 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2826 if (!DemandedElts[i]) 2827 continue; 2828 2829 SDValue SrcOp = Op.getOperand(i); 2830 Known2 = computeKnownBits(SrcOp, Depth + 1); 2831 2832 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2833 if (SrcOp.getValueSizeInBits() != BitWidth) { 2834 assert(SrcOp.getValueSizeInBits() > BitWidth && 2835 "Expected BUILD_VECTOR implicit truncation"); 2836 Known2 = Known2.trunc(BitWidth); 2837 } 2838 2839 // Known bits are the values that are shared by every demanded element. 2840 Known = KnownBits::commonBits(Known, Known2); 2841 2842 // If we don't know any bits, early out. 2843 if (Known.isUnknown()) 2844 break; 2845 } 2846 break; 2847 case ISD::VECTOR_SHUFFLE: { 2848 // Collect the known bits that are shared by every vector element referenced 2849 // by the shuffle. 2850 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2851 Known.Zero.setAllBits(); Known.One.setAllBits(); 2852 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2853 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2854 for (unsigned i = 0; i != NumElts; ++i) { 2855 if (!DemandedElts[i]) 2856 continue; 2857 2858 int M = SVN->getMaskElt(i); 2859 if (M < 0) { 2860 // For UNDEF elements, we don't know anything about the common state of 2861 // the shuffle result. 2862 Known.resetAll(); 2863 DemandedLHS.clearAllBits(); 2864 DemandedRHS.clearAllBits(); 2865 break; 2866 } 2867 2868 if ((unsigned)M < NumElts) 2869 DemandedLHS.setBit((unsigned)M % NumElts); 2870 else 2871 DemandedRHS.setBit((unsigned)M % NumElts); 2872 } 2873 // Known bits are the values that are shared by every demanded element. 2874 if (!!DemandedLHS) { 2875 SDValue LHS = Op.getOperand(0); 2876 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2877 Known = KnownBits::commonBits(Known, Known2); 2878 } 2879 // If we don't know any bits, early out. 2880 if (Known.isUnknown()) 2881 break; 2882 if (!!DemandedRHS) { 2883 SDValue RHS = Op.getOperand(1); 2884 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2885 Known = KnownBits::commonBits(Known, Known2); 2886 } 2887 break; 2888 } 2889 case ISD::CONCAT_VECTORS: { 2890 // Split DemandedElts and test each of the demanded subvectors. 2891 Known.Zero.setAllBits(); Known.One.setAllBits(); 2892 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2893 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2894 unsigned NumSubVectors = Op.getNumOperands(); 2895 for (unsigned i = 0; i != NumSubVectors; ++i) { 2896 APInt DemandedSub = 2897 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 2898 if (!!DemandedSub) { 2899 SDValue Sub = Op.getOperand(i); 2900 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2901 Known = KnownBits::commonBits(Known, Known2); 2902 } 2903 // If we don't know any bits, early out. 2904 if (Known.isUnknown()) 2905 break; 2906 } 2907 break; 2908 } 2909 case ISD::INSERT_SUBVECTOR: { 2910 // Demand any elements from the subvector and the remainder from the src its 2911 // inserted into. 2912 SDValue Src = Op.getOperand(0); 2913 SDValue Sub = Op.getOperand(1); 2914 uint64_t Idx = Op.getConstantOperandVal(2); 2915 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2916 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2917 APInt DemandedSrcElts = DemandedElts; 2918 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2919 2920 Known.One.setAllBits(); 2921 Known.Zero.setAllBits(); 2922 if (!!DemandedSubElts) { 2923 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2924 if (Known.isUnknown()) 2925 break; // early-out. 2926 } 2927 if (!!DemandedSrcElts) { 2928 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2929 Known = KnownBits::commonBits(Known, Known2); 2930 } 2931 break; 2932 } 2933 case ISD::EXTRACT_SUBVECTOR: { 2934 // Offset the demanded elts by the subvector index. 2935 SDValue Src = Op.getOperand(0); 2936 // Bail until we can represent demanded elements for scalable vectors. 2937 if (Src.getValueType().isScalableVector()) 2938 break; 2939 uint64_t Idx = Op.getConstantOperandVal(1); 2940 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2941 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2942 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2943 break; 2944 } 2945 case ISD::SCALAR_TO_VECTOR: { 2946 // We know about scalar_to_vector as much as we know about it source, 2947 // which becomes the first element of otherwise unknown vector. 2948 if (DemandedElts != 1) 2949 break; 2950 2951 SDValue N0 = Op.getOperand(0); 2952 Known = computeKnownBits(N0, Depth + 1); 2953 if (N0.getValueSizeInBits() != BitWidth) 2954 Known = Known.trunc(BitWidth); 2955 2956 break; 2957 } 2958 case ISD::BITCAST: { 2959 SDValue N0 = Op.getOperand(0); 2960 EVT SubVT = N0.getValueType(); 2961 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2962 2963 // Ignore bitcasts from unsupported types. 2964 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2965 break; 2966 2967 // Fast handling of 'identity' bitcasts. 2968 if (BitWidth == SubBitWidth) { 2969 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2970 break; 2971 } 2972 2973 bool IsLE = getDataLayout().isLittleEndian(); 2974 2975 // Bitcast 'small element' vector to 'large element' scalar/vector. 2976 if ((BitWidth % SubBitWidth) == 0) { 2977 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2978 2979 // Collect known bits for the (larger) output by collecting the known 2980 // bits from each set of sub elements and shift these into place. 2981 // We need to separately call computeKnownBits for each set of 2982 // sub elements as the knownbits for each is likely to be different. 2983 unsigned SubScale = BitWidth / SubBitWidth; 2984 APInt SubDemandedElts(NumElts * SubScale, 0); 2985 for (unsigned i = 0; i != NumElts; ++i) 2986 if (DemandedElts[i]) 2987 SubDemandedElts.setBit(i * SubScale); 2988 2989 for (unsigned i = 0; i != SubScale; ++i) { 2990 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2991 Depth + 1); 2992 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2993 Known.insertBits(Known2, SubBitWidth * Shifts); 2994 } 2995 } 2996 2997 // Bitcast 'large element' scalar/vector to 'small element' vector. 2998 if ((SubBitWidth % BitWidth) == 0) { 2999 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3000 3001 // Collect known bits for the (smaller) output by collecting the known 3002 // bits from the overlapping larger input elements and extracting the 3003 // sub sections we actually care about. 3004 unsigned SubScale = SubBitWidth / BitWidth; 3005 APInt SubDemandedElts = 3006 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3007 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3008 3009 Known.Zero.setAllBits(); Known.One.setAllBits(); 3010 for (unsigned i = 0; i != NumElts; ++i) 3011 if (DemandedElts[i]) { 3012 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3013 unsigned Offset = (Shifts % SubScale) * BitWidth; 3014 Known = KnownBits::commonBits(Known, 3015 Known2.extractBits(BitWidth, Offset)); 3016 // If we don't know any bits, early out. 3017 if (Known.isUnknown()) 3018 break; 3019 } 3020 } 3021 break; 3022 } 3023 case ISD::AND: 3024 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3025 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3026 3027 Known &= Known2; 3028 break; 3029 case ISD::OR: 3030 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3031 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3032 3033 Known |= Known2; 3034 break; 3035 case ISD::XOR: 3036 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3037 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3038 3039 Known ^= Known2; 3040 break; 3041 case ISD::MUL: { 3042 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3043 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3044 Known = KnownBits::mul(Known, Known2); 3045 break; 3046 } 3047 case ISD::MULHU: { 3048 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3049 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3050 Known = KnownBits::mulhu(Known, Known2); 3051 break; 3052 } 3053 case ISD::MULHS: { 3054 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3055 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3056 Known = KnownBits::mulhs(Known, Known2); 3057 break; 3058 } 3059 case ISD::UMUL_LOHI: { 3060 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3061 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3062 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3063 if (Op.getResNo() == 0) 3064 Known = KnownBits::mul(Known, Known2); 3065 else 3066 Known = KnownBits::mulhu(Known, Known2); 3067 break; 3068 } 3069 case ISD::SMUL_LOHI: { 3070 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3071 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3072 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3073 if (Op.getResNo() == 0) 3074 Known = KnownBits::mul(Known, Known2); 3075 else 3076 Known = KnownBits::mulhs(Known, Known2); 3077 break; 3078 } 3079 case ISD::UDIV: { 3080 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3081 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3082 Known = KnownBits::udiv(Known, Known2); 3083 break; 3084 } 3085 case ISD::SELECT: 3086 case ISD::VSELECT: 3087 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3088 // If we don't know any bits, early out. 3089 if (Known.isUnknown()) 3090 break; 3091 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3092 3093 // Only known if known in both the LHS and RHS. 3094 Known = KnownBits::commonBits(Known, Known2); 3095 break; 3096 case ISD::SELECT_CC: 3097 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3098 // If we don't know any bits, early out. 3099 if (Known.isUnknown()) 3100 break; 3101 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3102 3103 // Only known if known in both the LHS and RHS. 3104 Known = KnownBits::commonBits(Known, Known2); 3105 break; 3106 case ISD::SMULO: 3107 case ISD::UMULO: 3108 if (Op.getResNo() != 1) 3109 break; 3110 // The boolean result conforms to getBooleanContents. 3111 // If we know the result of a setcc has the top bits zero, use this info. 3112 // We know that we have an integer-based boolean since these operations 3113 // are only available for integer. 3114 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3115 TargetLowering::ZeroOrOneBooleanContent && 3116 BitWidth > 1) 3117 Known.Zero.setBitsFrom(1); 3118 break; 3119 case ISD::SETCC: 3120 case ISD::STRICT_FSETCC: 3121 case ISD::STRICT_FSETCCS: { 3122 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3123 // If we know the result of a setcc has the top bits zero, use this info. 3124 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3125 TargetLowering::ZeroOrOneBooleanContent && 3126 BitWidth > 1) 3127 Known.Zero.setBitsFrom(1); 3128 break; 3129 } 3130 case ISD::SHL: 3131 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3132 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3133 Known = KnownBits::shl(Known, Known2); 3134 3135 // Minimum shift low bits are known zero. 3136 if (const APInt *ShMinAmt = 3137 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3138 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3139 break; 3140 case ISD::SRL: 3141 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3142 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3143 Known = KnownBits::lshr(Known, Known2); 3144 3145 // Minimum shift high bits are known zero. 3146 if (const APInt *ShMinAmt = 3147 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3148 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3149 break; 3150 case ISD::SRA: 3151 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3152 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3153 Known = KnownBits::ashr(Known, Known2); 3154 // TODO: Add minimum shift high known sign bits. 3155 break; 3156 case ISD::FSHL: 3157 case ISD::FSHR: 3158 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3159 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3160 3161 // For fshl, 0-shift returns the 1st arg. 3162 // For fshr, 0-shift returns the 2nd arg. 3163 if (Amt == 0) { 3164 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3165 DemandedElts, Depth + 1); 3166 break; 3167 } 3168 3169 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3170 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3171 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3172 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3173 if (Opcode == ISD::FSHL) { 3174 Known.One <<= Amt; 3175 Known.Zero <<= Amt; 3176 Known2.One.lshrInPlace(BitWidth - Amt); 3177 Known2.Zero.lshrInPlace(BitWidth - Amt); 3178 } else { 3179 Known.One <<= BitWidth - Amt; 3180 Known.Zero <<= BitWidth - Amt; 3181 Known2.One.lshrInPlace(Amt); 3182 Known2.Zero.lshrInPlace(Amt); 3183 } 3184 Known.One |= Known2.One; 3185 Known.Zero |= Known2.Zero; 3186 } 3187 break; 3188 case ISD::SIGN_EXTEND_INREG: { 3189 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3190 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3191 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3192 break; 3193 } 3194 case ISD::CTTZ: 3195 case ISD::CTTZ_ZERO_UNDEF: { 3196 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3197 // If we have a known 1, its position is our upper bound. 3198 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3199 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3200 Known.Zero.setBitsFrom(LowBits); 3201 break; 3202 } 3203 case ISD::CTLZ: 3204 case ISD::CTLZ_ZERO_UNDEF: { 3205 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3206 // If we have a known 1, its position is our upper bound. 3207 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3208 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3209 Known.Zero.setBitsFrom(LowBits); 3210 break; 3211 } 3212 case ISD::CTPOP: { 3213 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3214 // If we know some of the bits are zero, they can't be one. 3215 unsigned PossibleOnes = Known2.countMaxPopulation(); 3216 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3217 break; 3218 } 3219 case ISD::PARITY: { 3220 // Parity returns 0 everywhere but the LSB. 3221 Known.Zero.setBitsFrom(1); 3222 break; 3223 } 3224 case ISD::LOAD: { 3225 LoadSDNode *LD = cast<LoadSDNode>(Op); 3226 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3227 if (ISD::isNON_EXTLoad(LD) && Cst) { 3228 // Determine any common known bits from the loaded constant pool value. 3229 Type *CstTy = Cst->getType(); 3230 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3231 // If its a vector splat, then we can (quickly) reuse the scalar path. 3232 // NOTE: We assume all elements match and none are UNDEF. 3233 if (CstTy->isVectorTy()) { 3234 if (const Constant *Splat = Cst->getSplatValue()) { 3235 Cst = Splat; 3236 CstTy = Cst->getType(); 3237 } 3238 } 3239 // TODO - do we need to handle different bitwidths? 3240 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3241 // Iterate across all vector elements finding common known bits. 3242 Known.One.setAllBits(); 3243 Known.Zero.setAllBits(); 3244 for (unsigned i = 0; i != NumElts; ++i) { 3245 if (!DemandedElts[i]) 3246 continue; 3247 if (Constant *Elt = Cst->getAggregateElement(i)) { 3248 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3249 const APInt &Value = CInt->getValue(); 3250 Known.One &= Value; 3251 Known.Zero &= ~Value; 3252 continue; 3253 } 3254 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3255 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3256 Known.One &= Value; 3257 Known.Zero &= ~Value; 3258 continue; 3259 } 3260 } 3261 Known.One.clearAllBits(); 3262 Known.Zero.clearAllBits(); 3263 break; 3264 } 3265 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3266 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3267 Known = KnownBits::makeConstant(CInt->getValue()); 3268 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3269 Known = 3270 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3271 } 3272 } 3273 } 3274 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3275 // If this is a ZEXTLoad and we are looking at the loaded value. 3276 EVT VT = LD->getMemoryVT(); 3277 unsigned MemBits = VT.getScalarSizeInBits(); 3278 Known.Zero.setBitsFrom(MemBits); 3279 } else if (const MDNode *Ranges = LD->getRanges()) { 3280 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3281 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3282 } 3283 break; 3284 } 3285 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3286 EVT InVT = Op.getOperand(0).getValueType(); 3287 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3288 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3289 Known = Known.zext(BitWidth); 3290 break; 3291 } 3292 case ISD::ZERO_EXTEND: { 3293 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3294 Known = Known.zext(BitWidth); 3295 break; 3296 } 3297 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3298 EVT InVT = Op.getOperand(0).getValueType(); 3299 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3300 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3301 // If the sign bit is known to be zero or one, then sext will extend 3302 // it to the top bits, else it will just zext. 3303 Known = Known.sext(BitWidth); 3304 break; 3305 } 3306 case ISD::SIGN_EXTEND: { 3307 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3308 // If the sign bit is known to be zero or one, then sext will extend 3309 // it to the top bits, else it will just zext. 3310 Known = Known.sext(BitWidth); 3311 break; 3312 } 3313 case ISD::ANY_EXTEND_VECTOR_INREG: { 3314 EVT InVT = Op.getOperand(0).getValueType(); 3315 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3316 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3317 Known = Known.anyext(BitWidth); 3318 break; 3319 } 3320 case ISD::ANY_EXTEND: { 3321 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3322 Known = Known.anyext(BitWidth); 3323 break; 3324 } 3325 case ISD::TRUNCATE: { 3326 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3327 Known = Known.trunc(BitWidth); 3328 break; 3329 } 3330 case ISD::AssertZext: { 3331 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3332 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3333 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3334 Known.Zero |= (~InMask); 3335 Known.One &= (~Known.Zero); 3336 break; 3337 } 3338 case ISD::AssertAlign: { 3339 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3340 assert(LogOfAlign != 0); 3341 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3342 // well as clearing one bits. 3343 Known.Zero.setLowBits(LogOfAlign); 3344 Known.One.clearLowBits(LogOfAlign); 3345 break; 3346 } 3347 case ISD::FGETSIGN: 3348 // All bits are zero except the low bit. 3349 Known.Zero.setBitsFrom(1); 3350 break; 3351 case ISD::USUBO: 3352 case ISD::SSUBO: 3353 if (Op.getResNo() == 1) { 3354 // If we know the result of a setcc has the top bits zero, use this info. 3355 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3356 TargetLowering::ZeroOrOneBooleanContent && 3357 BitWidth > 1) 3358 Known.Zero.setBitsFrom(1); 3359 break; 3360 } 3361 LLVM_FALLTHROUGH; 3362 case ISD::SUB: 3363 case ISD::SUBC: { 3364 assert(Op.getResNo() == 0 && 3365 "We only compute knownbits for the difference here."); 3366 3367 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3368 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3369 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3370 Known, Known2); 3371 break; 3372 } 3373 case ISD::UADDO: 3374 case ISD::SADDO: 3375 case ISD::ADDCARRY: 3376 if (Op.getResNo() == 1) { 3377 // If we know the result of a setcc has the top bits zero, use this info. 3378 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3379 TargetLowering::ZeroOrOneBooleanContent && 3380 BitWidth > 1) 3381 Known.Zero.setBitsFrom(1); 3382 break; 3383 } 3384 LLVM_FALLTHROUGH; 3385 case ISD::ADD: 3386 case ISD::ADDC: 3387 case ISD::ADDE: { 3388 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3389 3390 // With ADDE and ADDCARRY, a carry bit may be added in. 3391 KnownBits Carry(1); 3392 if (Opcode == ISD::ADDE) 3393 // Can't track carry from glue, set carry to unknown. 3394 Carry.resetAll(); 3395 else if (Opcode == ISD::ADDCARRY) 3396 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3397 // the trouble (how often will we find a known carry bit). And I haven't 3398 // tested this very much yet, but something like this might work: 3399 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3400 // Carry = Carry.zextOrTrunc(1, false); 3401 Carry.resetAll(); 3402 else 3403 Carry.setAllZero(); 3404 3405 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3406 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3407 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3408 break; 3409 } 3410 case ISD::SREM: { 3411 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3412 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3413 Known = KnownBits::srem(Known, Known2); 3414 break; 3415 } 3416 case ISD::UREM: { 3417 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3418 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3419 Known = KnownBits::urem(Known, Known2); 3420 break; 3421 } 3422 case ISD::EXTRACT_ELEMENT: { 3423 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3424 const unsigned Index = Op.getConstantOperandVal(1); 3425 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3426 3427 // Remove low part of known bits mask 3428 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3429 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3430 3431 // Remove high part of known bit mask 3432 Known = Known.trunc(EltBitWidth); 3433 break; 3434 } 3435 case ISD::EXTRACT_VECTOR_ELT: { 3436 SDValue InVec = Op.getOperand(0); 3437 SDValue EltNo = Op.getOperand(1); 3438 EVT VecVT = InVec.getValueType(); 3439 // computeKnownBits not yet implemented for scalable vectors. 3440 if (VecVT.isScalableVector()) 3441 break; 3442 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3443 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3444 3445 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3446 // anything about the extended bits. 3447 if (BitWidth > EltBitWidth) 3448 Known = Known.trunc(EltBitWidth); 3449 3450 // If we know the element index, just demand that vector element, else for 3451 // an unknown element index, ignore DemandedElts and demand them all. 3452 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3453 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3454 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3455 DemandedSrcElts = 3456 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3457 3458 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3459 if (BitWidth > EltBitWidth) 3460 Known = Known.anyext(BitWidth); 3461 break; 3462 } 3463 case ISD::INSERT_VECTOR_ELT: { 3464 // If we know the element index, split the demand between the 3465 // source vector and the inserted element, otherwise assume we need 3466 // the original demanded vector elements and the value. 3467 SDValue InVec = Op.getOperand(0); 3468 SDValue InVal = Op.getOperand(1); 3469 SDValue EltNo = Op.getOperand(2); 3470 bool DemandedVal = true; 3471 APInt DemandedVecElts = DemandedElts; 3472 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3473 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3474 unsigned EltIdx = CEltNo->getZExtValue(); 3475 DemandedVal = !!DemandedElts[EltIdx]; 3476 DemandedVecElts.clearBit(EltIdx); 3477 } 3478 Known.One.setAllBits(); 3479 Known.Zero.setAllBits(); 3480 if (DemandedVal) { 3481 Known2 = computeKnownBits(InVal, Depth + 1); 3482 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3483 } 3484 if (!!DemandedVecElts) { 3485 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3486 Known = KnownBits::commonBits(Known, Known2); 3487 } 3488 break; 3489 } 3490 case ISD::BITREVERSE: { 3491 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3492 Known = Known2.reverseBits(); 3493 break; 3494 } 3495 case ISD::BSWAP: { 3496 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3497 Known = Known2.byteSwap(); 3498 break; 3499 } 3500 case ISD::ABS: { 3501 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3502 Known = Known2.abs(); 3503 break; 3504 } 3505 case ISD::USUBSAT: { 3506 // The result of usubsat will never be larger than the LHS. 3507 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3508 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3509 break; 3510 } 3511 case ISD::UMIN: { 3512 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3513 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3514 Known = KnownBits::umin(Known, Known2); 3515 break; 3516 } 3517 case ISD::UMAX: { 3518 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3519 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3520 Known = KnownBits::umax(Known, Known2); 3521 break; 3522 } 3523 case ISD::SMIN: 3524 case ISD::SMAX: { 3525 // If we have a clamp pattern, we know that the number of sign bits will be 3526 // the minimum of the clamp min/max range. 3527 bool IsMax = (Opcode == ISD::SMAX); 3528 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3529 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3530 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3531 CstHigh = 3532 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3533 if (CstLow && CstHigh) { 3534 if (!IsMax) 3535 std::swap(CstLow, CstHigh); 3536 3537 const APInt &ValueLow = CstLow->getAPIntValue(); 3538 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3539 if (ValueLow.sle(ValueHigh)) { 3540 unsigned LowSignBits = ValueLow.getNumSignBits(); 3541 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3542 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3543 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3544 Known.One.setHighBits(MinSignBits); 3545 break; 3546 } 3547 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3548 Known.Zero.setHighBits(MinSignBits); 3549 break; 3550 } 3551 } 3552 } 3553 3554 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3555 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3556 if (IsMax) 3557 Known = KnownBits::smax(Known, Known2); 3558 else 3559 Known = KnownBits::smin(Known, Known2); 3560 break; 3561 } 3562 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3563 if (Op.getResNo() == 1) { 3564 // The boolean result conforms to getBooleanContents. 3565 // If we know the result of a setcc has the top bits zero, use this info. 3566 // We know that we have an integer-based boolean since these operations 3567 // are only available for integer. 3568 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3569 TargetLowering::ZeroOrOneBooleanContent && 3570 BitWidth > 1) 3571 Known.Zero.setBitsFrom(1); 3572 break; 3573 } 3574 LLVM_FALLTHROUGH; 3575 case ISD::ATOMIC_CMP_SWAP: 3576 case ISD::ATOMIC_SWAP: 3577 case ISD::ATOMIC_LOAD_ADD: 3578 case ISD::ATOMIC_LOAD_SUB: 3579 case ISD::ATOMIC_LOAD_AND: 3580 case ISD::ATOMIC_LOAD_CLR: 3581 case ISD::ATOMIC_LOAD_OR: 3582 case ISD::ATOMIC_LOAD_XOR: 3583 case ISD::ATOMIC_LOAD_NAND: 3584 case ISD::ATOMIC_LOAD_MIN: 3585 case ISD::ATOMIC_LOAD_MAX: 3586 case ISD::ATOMIC_LOAD_UMIN: 3587 case ISD::ATOMIC_LOAD_UMAX: 3588 case ISD::ATOMIC_LOAD: { 3589 unsigned MemBits = 3590 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3591 // If we are looking at the loaded value. 3592 if (Op.getResNo() == 0) { 3593 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3594 Known.Zero.setBitsFrom(MemBits); 3595 } 3596 break; 3597 } 3598 case ISD::FrameIndex: 3599 case ISD::TargetFrameIndex: 3600 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3601 Known, getMachineFunction()); 3602 break; 3603 3604 default: 3605 if (Opcode < ISD::BUILTIN_OP_END) 3606 break; 3607 LLVM_FALLTHROUGH; 3608 case ISD::INTRINSIC_WO_CHAIN: 3609 case ISD::INTRINSIC_W_CHAIN: 3610 case ISD::INTRINSIC_VOID: 3611 // Allow the target to implement this method for its nodes. 3612 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3613 break; 3614 } 3615 3616 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3617 return Known; 3618 } 3619 3620 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3621 SDValue N1) const { 3622 // X + 0 never overflow 3623 if (isNullConstant(N1)) 3624 return OFK_Never; 3625 3626 KnownBits N1Known = computeKnownBits(N1); 3627 if (N1Known.Zero.getBoolValue()) { 3628 KnownBits N0Known = computeKnownBits(N0); 3629 3630 bool overflow; 3631 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3632 if (!overflow) 3633 return OFK_Never; 3634 } 3635 3636 // mulhi + 1 never overflow 3637 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3638 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3639 return OFK_Never; 3640 3641 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3642 KnownBits N0Known = computeKnownBits(N0); 3643 3644 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3645 return OFK_Never; 3646 } 3647 3648 return OFK_Sometime; 3649 } 3650 3651 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3652 EVT OpVT = Val.getValueType(); 3653 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3654 3655 // Is the constant a known power of 2? 3656 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3657 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3658 3659 // A left-shift of a constant one will have exactly one bit set because 3660 // shifting the bit off the end is undefined. 3661 if (Val.getOpcode() == ISD::SHL) { 3662 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3663 if (C && C->getAPIntValue() == 1) 3664 return true; 3665 } 3666 3667 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3668 // one bit set. 3669 if (Val.getOpcode() == ISD::SRL) { 3670 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3671 if (C && C->getAPIntValue().isSignMask()) 3672 return true; 3673 } 3674 3675 // Are all operands of a build vector constant powers of two? 3676 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3677 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3678 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3679 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3680 return false; 3681 })) 3682 return true; 3683 3684 // Is the operand of a splat vector a constant power of two? 3685 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3686 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3687 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3688 return true; 3689 3690 // More could be done here, though the above checks are enough 3691 // to handle some common cases. 3692 3693 // Fall back to computeKnownBits to catch other known cases. 3694 KnownBits Known = computeKnownBits(Val); 3695 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3696 } 3697 3698 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3699 EVT VT = Op.getValueType(); 3700 3701 // TODO: Assume we don't know anything for now. 3702 if (VT.isScalableVector()) 3703 return 1; 3704 3705 APInt DemandedElts = VT.isVector() 3706 ? APInt::getAllOnes(VT.getVectorNumElements()) 3707 : APInt(1, 1); 3708 return ComputeNumSignBits(Op, DemandedElts, Depth); 3709 } 3710 3711 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3712 unsigned Depth) const { 3713 EVT VT = Op.getValueType(); 3714 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3715 unsigned VTBits = VT.getScalarSizeInBits(); 3716 unsigned NumElts = DemandedElts.getBitWidth(); 3717 unsigned Tmp, Tmp2; 3718 unsigned FirstAnswer = 1; 3719 3720 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3721 const APInt &Val = C->getAPIntValue(); 3722 return Val.getNumSignBits(); 3723 } 3724 3725 if (Depth >= MaxRecursionDepth) 3726 return 1; // Limit search depth. 3727 3728 if (!DemandedElts || VT.isScalableVector()) 3729 return 1; // No demanded elts, better to assume we don't know anything. 3730 3731 unsigned Opcode = Op.getOpcode(); 3732 switch (Opcode) { 3733 default: break; 3734 case ISD::AssertSext: 3735 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3736 return VTBits-Tmp+1; 3737 case ISD::AssertZext: 3738 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3739 return VTBits-Tmp; 3740 3741 case ISD::BUILD_VECTOR: 3742 Tmp = VTBits; 3743 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3744 if (!DemandedElts[i]) 3745 continue; 3746 3747 SDValue SrcOp = Op.getOperand(i); 3748 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3749 3750 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3751 if (SrcOp.getValueSizeInBits() != VTBits) { 3752 assert(SrcOp.getValueSizeInBits() > VTBits && 3753 "Expected BUILD_VECTOR implicit truncation"); 3754 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3755 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3756 } 3757 Tmp = std::min(Tmp, Tmp2); 3758 } 3759 return Tmp; 3760 3761 case ISD::VECTOR_SHUFFLE: { 3762 // Collect the minimum number of sign bits that are shared by every vector 3763 // element referenced by the shuffle. 3764 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3765 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3766 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3767 for (unsigned i = 0; i != NumElts; ++i) { 3768 int M = SVN->getMaskElt(i); 3769 if (!DemandedElts[i]) 3770 continue; 3771 // For UNDEF elements, we don't know anything about the common state of 3772 // the shuffle result. 3773 if (M < 0) 3774 return 1; 3775 if ((unsigned)M < NumElts) 3776 DemandedLHS.setBit((unsigned)M % NumElts); 3777 else 3778 DemandedRHS.setBit((unsigned)M % NumElts); 3779 } 3780 Tmp = std::numeric_limits<unsigned>::max(); 3781 if (!!DemandedLHS) 3782 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3783 if (!!DemandedRHS) { 3784 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3785 Tmp = std::min(Tmp, Tmp2); 3786 } 3787 // If we don't know anything, early out and try computeKnownBits fall-back. 3788 if (Tmp == 1) 3789 break; 3790 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3791 return Tmp; 3792 } 3793 3794 case ISD::BITCAST: { 3795 SDValue N0 = Op.getOperand(0); 3796 EVT SrcVT = N0.getValueType(); 3797 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3798 3799 // Ignore bitcasts from unsupported types.. 3800 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3801 break; 3802 3803 // Fast handling of 'identity' bitcasts. 3804 if (VTBits == SrcBits) 3805 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3806 3807 bool IsLE = getDataLayout().isLittleEndian(); 3808 3809 // Bitcast 'large element' scalar/vector to 'small element' vector. 3810 if ((SrcBits % VTBits) == 0) { 3811 assert(VT.isVector() && "Expected bitcast to vector"); 3812 3813 unsigned Scale = SrcBits / VTBits; 3814 APInt SrcDemandedElts = 3815 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3816 3817 // Fast case - sign splat can be simply split across the small elements. 3818 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3819 if (Tmp == SrcBits) 3820 return VTBits; 3821 3822 // Slow case - determine how far the sign extends into each sub-element. 3823 Tmp2 = VTBits; 3824 for (unsigned i = 0; i != NumElts; ++i) 3825 if (DemandedElts[i]) { 3826 unsigned SubOffset = i % Scale; 3827 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3828 SubOffset = SubOffset * VTBits; 3829 if (Tmp <= SubOffset) 3830 return 1; 3831 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3832 } 3833 return Tmp2; 3834 } 3835 break; 3836 } 3837 3838 case ISD::SIGN_EXTEND: 3839 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3840 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3841 case ISD::SIGN_EXTEND_INREG: 3842 // Max of the input and what this extends. 3843 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3844 Tmp = VTBits-Tmp+1; 3845 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3846 return std::max(Tmp, Tmp2); 3847 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3848 SDValue Src = Op.getOperand(0); 3849 EVT SrcVT = Src.getValueType(); 3850 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3851 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3852 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3853 } 3854 case ISD::SRA: 3855 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3856 // SRA X, C -> adds C sign bits. 3857 if (const APInt *ShAmt = 3858 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3859 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3860 return Tmp; 3861 case ISD::SHL: 3862 if (const APInt *ShAmt = 3863 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3864 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3865 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3866 if (ShAmt->ult(Tmp)) 3867 return Tmp - ShAmt->getZExtValue(); 3868 } 3869 break; 3870 case ISD::AND: 3871 case ISD::OR: 3872 case ISD::XOR: // NOT is handled here. 3873 // Logical binary ops preserve the number of sign bits at the worst. 3874 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3875 if (Tmp != 1) { 3876 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3877 FirstAnswer = std::min(Tmp, Tmp2); 3878 // We computed what we know about the sign bits as our first 3879 // answer. Now proceed to the generic code that uses 3880 // computeKnownBits, and pick whichever answer is better. 3881 } 3882 break; 3883 3884 case ISD::SELECT: 3885 case ISD::VSELECT: 3886 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3887 if (Tmp == 1) return 1; // Early out. 3888 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3889 return std::min(Tmp, Tmp2); 3890 case ISD::SELECT_CC: 3891 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3892 if (Tmp == 1) return 1; // Early out. 3893 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3894 return std::min(Tmp, Tmp2); 3895 3896 case ISD::SMIN: 3897 case ISD::SMAX: { 3898 // If we have a clamp pattern, we know that the number of sign bits will be 3899 // the minimum of the clamp min/max range. 3900 bool IsMax = (Opcode == ISD::SMAX); 3901 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3902 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3903 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3904 CstHigh = 3905 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3906 if (CstLow && CstHigh) { 3907 if (!IsMax) 3908 std::swap(CstLow, CstHigh); 3909 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3910 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3911 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3912 return std::min(Tmp, Tmp2); 3913 } 3914 } 3915 3916 // Fallback - just get the minimum number of sign bits of the operands. 3917 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3918 if (Tmp == 1) 3919 return 1; // Early out. 3920 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3921 return std::min(Tmp, Tmp2); 3922 } 3923 case ISD::UMIN: 3924 case ISD::UMAX: 3925 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3926 if (Tmp == 1) 3927 return 1; // Early out. 3928 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3929 return std::min(Tmp, Tmp2); 3930 case ISD::SADDO: 3931 case ISD::UADDO: 3932 case ISD::SSUBO: 3933 case ISD::USUBO: 3934 case ISD::SMULO: 3935 case ISD::UMULO: 3936 if (Op.getResNo() != 1) 3937 break; 3938 // The boolean result conforms to getBooleanContents. Fall through. 3939 // If setcc returns 0/-1, all bits are sign bits. 3940 // We know that we have an integer-based boolean since these operations 3941 // are only available for integer. 3942 if (TLI->getBooleanContents(VT.isVector(), false) == 3943 TargetLowering::ZeroOrNegativeOneBooleanContent) 3944 return VTBits; 3945 break; 3946 case ISD::SETCC: 3947 case ISD::STRICT_FSETCC: 3948 case ISD::STRICT_FSETCCS: { 3949 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3950 // If setcc returns 0/-1, all bits are sign bits. 3951 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3952 TargetLowering::ZeroOrNegativeOneBooleanContent) 3953 return VTBits; 3954 break; 3955 } 3956 case ISD::ROTL: 3957 case ISD::ROTR: 3958 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3959 3960 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 3961 if (Tmp == VTBits) 3962 return VTBits; 3963 3964 if (ConstantSDNode *C = 3965 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 3966 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3967 3968 // Handle rotate right by N like a rotate left by 32-N. 3969 if (Opcode == ISD::ROTR) 3970 RotAmt = (VTBits - RotAmt) % VTBits; 3971 3972 // If we aren't rotating out all of the known-in sign bits, return the 3973 // number that are left. This handles rotl(sext(x), 1) for example. 3974 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3975 } 3976 break; 3977 case ISD::ADD: 3978 case ISD::ADDC: 3979 // Add can have at most one carry bit. Thus we know that the output 3980 // is, at worst, one more bit than the inputs. 3981 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3982 if (Tmp == 1) return 1; // Early out. 3983 3984 // Special case decrementing a value (ADD X, -1): 3985 if (ConstantSDNode *CRHS = 3986 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 3987 if (CRHS->isAllOnes()) { 3988 KnownBits Known = 3989 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3990 3991 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3992 // sign bits set. 3993 if ((Known.Zero | 1).isAllOnes()) 3994 return VTBits; 3995 3996 // If we are subtracting one from a positive number, there is no carry 3997 // out of the result. 3998 if (Known.isNonNegative()) 3999 return Tmp; 4000 } 4001 4002 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4003 if (Tmp2 == 1) return 1; // Early out. 4004 return std::min(Tmp, Tmp2) - 1; 4005 case ISD::SUB: 4006 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4007 if (Tmp2 == 1) return 1; // Early out. 4008 4009 // Handle NEG. 4010 if (ConstantSDNode *CLHS = 4011 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4012 if (CLHS->isZero()) { 4013 KnownBits Known = 4014 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4015 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4016 // sign bits set. 4017 if ((Known.Zero | 1).isAllOnes()) 4018 return VTBits; 4019 4020 // If the input is known to be positive (the sign bit is known clear), 4021 // the output of the NEG has the same number of sign bits as the input. 4022 if (Known.isNonNegative()) 4023 return Tmp2; 4024 4025 // Otherwise, we treat this like a SUB. 4026 } 4027 4028 // Sub can have at most one carry bit. Thus we know that the output 4029 // is, at worst, one more bit than the inputs. 4030 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4031 if (Tmp == 1) return 1; // Early out. 4032 return std::min(Tmp, Tmp2) - 1; 4033 case ISD::MUL: { 4034 // The output of the Mul can be at most twice the valid bits in the inputs. 4035 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4036 if (SignBitsOp0 == 1) 4037 break; 4038 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4039 if (SignBitsOp1 == 1) 4040 break; 4041 unsigned OutValidBits = 4042 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4043 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4044 } 4045 case ISD::SREM: 4046 // The sign bit is the LHS's sign bit, except when the result of the 4047 // remainder is zero. The magnitude of the result should be less than or 4048 // equal to the magnitude of the LHS. Therefore, the result should have 4049 // at least as many sign bits as the left hand side. 4050 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4051 case ISD::TRUNCATE: { 4052 // Check if the sign bits of source go down as far as the truncated value. 4053 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4054 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4055 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4056 return NumSrcSignBits - (NumSrcBits - VTBits); 4057 break; 4058 } 4059 case ISD::EXTRACT_ELEMENT: { 4060 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4061 const int BitWidth = Op.getValueSizeInBits(); 4062 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4063 4064 // Get reverse index (starting from 1), Op1 value indexes elements from 4065 // little end. Sign starts at big end. 4066 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4067 4068 // If the sign portion ends in our element the subtraction gives correct 4069 // result. Otherwise it gives either negative or > bitwidth result 4070 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4071 } 4072 case ISD::INSERT_VECTOR_ELT: { 4073 // If we know the element index, split the demand between the 4074 // source vector and the inserted element, otherwise assume we need 4075 // the original demanded vector elements and the value. 4076 SDValue InVec = Op.getOperand(0); 4077 SDValue InVal = Op.getOperand(1); 4078 SDValue EltNo = Op.getOperand(2); 4079 bool DemandedVal = true; 4080 APInt DemandedVecElts = DemandedElts; 4081 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4082 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4083 unsigned EltIdx = CEltNo->getZExtValue(); 4084 DemandedVal = !!DemandedElts[EltIdx]; 4085 DemandedVecElts.clearBit(EltIdx); 4086 } 4087 Tmp = std::numeric_limits<unsigned>::max(); 4088 if (DemandedVal) { 4089 // TODO - handle implicit truncation of inserted elements. 4090 if (InVal.getScalarValueSizeInBits() != VTBits) 4091 break; 4092 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4093 Tmp = std::min(Tmp, Tmp2); 4094 } 4095 if (!!DemandedVecElts) { 4096 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4097 Tmp = std::min(Tmp, Tmp2); 4098 } 4099 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4100 return Tmp; 4101 } 4102 case ISD::EXTRACT_VECTOR_ELT: { 4103 SDValue InVec = Op.getOperand(0); 4104 SDValue EltNo = Op.getOperand(1); 4105 EVT VecVT = InVec.getValueType(); 4106 // ComputeNumSignBits not yet implemented for scalable vectors. 4107 if (VecVT.isScalableVector()) 4108 break; 4109 const unsigned BitWidth = Op.getValueSizeInBits(); 4110 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4111 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4112 4113 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4114 // anything about sign bits. But if the sizes match we can derive knowledge 4115 // about sign bits from the vector operand. 4116 if (BitWidth != EltBitWidth) 4117 break; 4118 4119 // If we know the element index, just demand that vector element, else for 4120 // an unknown element index, ignore DemandedElts and demand them all. 4121 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4122 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4123 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4124 DemandedSrcElts = 4125 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4126 4127 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4128 } 4129 case ISD::EXTRACT_SUBVECTOR: { 4130 // Offset the demanded elts by the subvector index. 4131 SDValue Src = Op.getOperand(0); 4132 // Bail until we can represent demanded elements for scalable vectors. 4133 if (Src.getValueType().isScalableVector()) 4134 break; 4135 uint64_t Idx = Op.getConstantOperandVal(1); 4136 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4137 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4138 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4139 } 4140 case ISD::CONCAT_VECTORS: { 4141 // Determine the minimum number of sign bits across all demanded 4142 // elts of the input vectors. Early out if the result is already 1. 4143 Tmp = std::numeric_limits<unsigned>::max(); 4144 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4145 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4146 unsigned NumSubVectors = Op.getNumOperands(); 4147 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4148 APInt DemandedSub = 4149 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4150 if (!DemandedSub) 4151 continue; 4152 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4153 Tmp = std::min(Tmp, Tmp2); 4154 } 4155 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4156 return Tmp; 4157 } 4158 case ISD::INSERT_SUBVECTOR: { 4159 // Demand any elements from the subvector and the remainder from the src its 4160 // inserted into. 4161 SDValue Src = Op.getOperand(0); 4162 SDValue Sub = Op.getOperand(1); 4163 uint64_t Idx = Op.getConstantOperandVal(2); 4164 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4165 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4166 APInt DemandedSrcElts = DemandedElts; 4167 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4168 4169 Tmp = std::numeric_limits<unsigned>::max(); 4170 if (!!DemandedSubElts) { 4171 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4172 if (Tmp == 1) 4173 return 1; // early-out 4174 } 4175 if (!!DemandedSrcElts) { 4176 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4177 Tmp = std::min(Tmp, Tmp2); 4178 } 4179 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4180 return Tmp; 4181 } 4182 case ISD::ATOMIC_CMP_SWAP: 4183 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4184 case ISD::ATOMIC_SWAP: 4185 case ISD::ATOMIC_LOAD_ADD: 4186 case ISD::ATOMIC_LOAD_SUB: 4187 case ISD::ATOMIC_LOAD_AND: 4188 case ISD::ATOMIC_LOAD_CLR: 4189 case ISD::ATOMIC_LOAD_OR: 4190 case ISD::ATOMIC_LOAD_XOR: 4191 case ISD::ATOMIC_LOAD_NAND: 4192 case ISD::ATOMIC_LOAD_MIN: 4193 case ISD::ATOMIC_LOAD_MAX: 4194 case ISD::ATOMIC_LOAD_UMIN: 4195 case ISD::ATOMIC_LOAD_UMAX: 4196 case ISD::ATOMIC_LOAD: { 4197 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4198 // If we are looking at the loaded value. 4199 if (Op.getResNo() == 0) { 4200 if (Tmp == VTBits) 4201 return 1; // early-out 4202 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4203 return VTBits - Tmp + 1; 4204 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4205 return VTBits - Tmp; 4206 } 4207 break; 4208 } 4209 } 4210 4211 // If we are looking at the loaded value of the SDNode. 4212 if (Op.getResNo() == 0) { 4213 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4214 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4215 unsigned ExtType = LD->getExtensionType(); 4216 switch (ExtType) { 4217 default: break; 4218 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4219 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4220 return VTBits - Tmp + 1; 4221 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4222 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4223 return VTBits - Tmp; 4224 case ISD::NON_EXTLOAD: 4225 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4226 // We only need to handle vectors - computeKnownBits should handle 4227 // scalar cases. 4228 Type *CstTy = Cst->getType(); 4229 if (CstTy->isVectorTy() && 4230 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4231 Tmp = VTBits; 4232 for (unsigned i = 0; i != NumElts; ++i) { 4233 if (!DemandedElts[i]) 4234 continue; 4235 if (Constant *Elt = Cst->getAggregateElement(i)) { 4236 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4237 const APInt &Value = CInt->getValue(); 4238 Tmp = std::min(Tmp, Value.getNumSignBits()); 4239 continue; 4240 } 4241 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4242 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4243 Tmp = std::min(Tmp, Value.getNumSignBits()); 4244 continue; 4245 } 4246 } 4247 // Unknown type. Conservatively assume no bits match sign bit. 4248 return 1; 4249 } 4250 return Tmp; 4251 } 4252 } 4253 break; 4254 } 4255 } 4256 } 4257 4258 // Allow the target to implement this method for its nodes. 4259 if (Opcode >= ISD::BUILTIN_OP_END || 4260 Opcode == ISD::INTRINSIC_WO_CHAIN || 4261 Opcode == ISD::INTRINSIC_W_CHAIN || 4262 Opcode == ISD::INTRINSIC_VOID) { 4263 unsigned NumBits = 4264 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4265 if (NumBits > 1) 4266 FirstAnswer = std::max(FirstAnswer, NumBits); 4267 } 4268 4269 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4270 // use this information. 4271 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4272 4273 APInt Mask; 4274 if (Known.isNonNegative()) { // sign bit is 0 4275 Mask = Known.Zero; 4276 } else if (Known.isNegative()) { // sign bit is 1; 4277 Mask = Known.One; 4278 } else { 4279 // Nothing known. 4280 return FirstAnswer; 4281 } 4282 4283 // Okay, we know that the sign bit in Mask is set. Use CLO to determine 4284 // the number of identical bits in the top of the input value. 4285 Mask <<= Mask.getBitWidth()-VTBits; 4286 return std::max(FirstAnswer, Mask.countLeadingOnes()); 4287 } 4288 4289 unsigned SelectionDAG::ComputeMinSignedBits(SDValue Op, unsigned Depth) const { 4290 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4291 return Op.getScalarValueSizeInBits() - SignBits + 1; 4292 } 4293 4294 unsigned SelectionDAG::ComputeMinSignedBits(SDValue Op, 4295 const APInt &DemandedElts, 4296 unsigned Depth) const { 4297 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4298 return Op.getScalarValueSizeInBits() - SignBits + 1; 4299 } 4300 4301 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4302 unsigned Depth) const { 4303 // Early out for FREEZE. 4304 if (Op.getOpcode() == ISD::FREEZE) 4305 return true; 4306 4307 // TODO: Assume we don't know anything for now. 4308 EVT VT = Op.getValueType(); 4309 if (VT.isScalableVector()) 4310 return false; 4311 4312 APInt DemandedElts = VT.isVector() 4313 ? APInt::getAllOnes(VT.getVectorNumElements()) 4314 : APInt(1, 1); 4315 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4316 } 4317 4318 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4319 const APInt &DemandedElts, 4320 bool PoisonOnly, 4321 unsigned Depth) const { 4322 unsigned Opcode = Op.getOpcode(); 4323 4324 // Early out for FREEZE. 4325 if (Opcode == ISD::FREEZE) 4326 return true; 4327 4328 if (Depth >= MaxRecursionDepth) 4329 return false; // Limit search depth. 4330 4331 if (isIntOrFPConstant(Op)) 4332 return true; 4333 4334 switch (Opcode) { 4335 case ISD::UNDEF: 4336 return PoisonOnly; 4337 4338 case ISD::BUILD_VECTOR: 4339 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4340 // this shouldn't affect the result. 4341 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4342 if (!DemandedElts[i]) 4343 continue; 4344 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4345 Depth + 1)) 4346 return false; 4347 } 4348 return true; 4349 4350 // TODO: Search for noundef attributes from library functions. 4351 4352 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4353 4354 default: 4355 // Allow the target to implement this method for its nodes. 4356 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4357 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4358 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4359 Op, DemandedElts, *this, PoisonOnly, Depth); 4360 break; 4361 } 4362 4363 return false; 4364 } 4365 4366 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4367 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4368 !isa<ConstantSDNode>(Op.getOperand(1))) 4369 return false; 4370 4371 if (Op.getOpcode() == ISD::OR && 4372 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4373 return false; 4374 4375 return true; 4376 } 4377 4378 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4379 // If we're told that NaNs won't happen, assume they won't. 4380 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4381 return true; 4382 4383 if (Depth >= MaxRecursionDepth) 4384 return false; // Limit search depth. 4385 4386 // TODO: Handle vectors. 4387 // If the value is a constant, we can obviously see if it is a NaN or not. 4388 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4389 return !C->getValueAPF().isNaN() || 4390 (SNaN && !C->getValueAPF().isSignaling()); 4391 } 4392 4393 unsigned Opcode = Op.getOpcode(); 4394 switch (Opcode) { 4395 case ISD::FADD: 4396 case ISD::FSUB: 4397 case ISD::FMUL: 4398 case ISD::FDIV: 4399 case ISD::FREM: 4400 case ISD::FSIN: 4401 case ISD::FCOS: { 4402 if (SNaN) 4403 return true; 4404 // TODO: Need isKnownNeverInfinity 4405 return false; 4406 } 4407 case ISD::FCANONICALIZE: 4408 case ISD::FEXP: 4409 case ISD::FEXP2: 4410 case ISD::FTRUNC: 4411 case ISD::FFLOOR: 4412 case ISD::FCEIL: 4413 case ISD::FROUND: 4414 case ISD::FROUNDEVEN: 4415 case ISD::FRINT: 4416 case ISD::FNEARBYINT: { 4417 if (SNaN) 4418 return true; 4419 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4420 } 4421 case ISD::FABS: 4422 case ISD::FNEG: 4423 case ISD::FCOPYSIGN: { 4424 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4425 } 4426 case ISD::SELECT: 4427 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4428 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4429 case ISD::FP_EXTEND: 4430 case ISD::FP_ROUND: { 4431 if (SNaN) 4432 return true; 4433 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4434 } 4435 case ISD::SINT_TO_FP: 4436 case ISD::UINT_TO_FP: 4437 return true; 4438 case ISD::FMA: 4439 case ISD::FMAD: { 4440 if (SNaN) 4441 return true; 4442 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4443 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4444 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4445 } 4446 case ISD::FSQRT: // Need is known positive 4447 case ISD::FLOG: 4448 case ISD::FLOG2: 4449 case ISD::FLOG10: 4450 case ISD::FPOWI: 4451 case ISD::FPOW: { 4452 if (SNaN) 4453 return true; 4454 // TODO: Refine on operand 4455 return false; 4456 } 4457 case ISD::FMINNUM: 4458 case ISD::FMAXNUM: { 4459 // Only one needs to be known not-nan, since it will be returned if the 4460 // other ends up being one. 4461 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4462 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4463 } 4464 case ISD::FMINNUM_IEEE: 4465 case ISD::FMAXNUM_IEEE: { 4466 if (SNaN) 4467 return true; 4468 // This can return a NaN if either operand is an sNaN, or if both operands 4469 // are NaN. 4470 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4471 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4472 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4473 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4474 } 4475 case ISD::FMINIMUM: 4476 case ISD::FMAXIMUM: { 4477 // TODO: Does this quiet or return the origina NaN as-is? 4478 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4479 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4480 } 4481 case ISD::EXTRACT_VECTOR_ELT: { 4482 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4483 } 4484 default: 4485 if (Opcode >= ISD::BUILTIN_OP_END || 4486 Opcode == ISD::INTRINSIC_WO_CHAIN || 4487 Opcode == ISD::INTRINSIC_W_CHAIN || 4488 Opcode == ISD::INTRINSIC_VOID) { 4489 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4490 } 4491 4492 return false; 4493 } 4494 } 4495 4496 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4497 assert(Op.getValueType().isFloatingPoint() && 4498 "Floating point type expected"); 4499 4500 // If the value is a constant, we can obviously see if it is a zero or not. 4501 // TODO: Add BuildVector support. 4502 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4503 return !C->isZero(); 4504 return false; 4505 } 4506 4507 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4508 assert(!Op.getValueType().isFloatingPoint() && 4509 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4510 4511 // If the value is a constant, we can obviously see if it is a zero or not. 4512 if (ISD::matchUnaryPredicate(Op, 4513 [](ConstantSDNode *C) { return !C->isZero(); })) 4514 return true; 4515 4516 // TODO: Recognize more cases here. 4517 switch (Op.getOpcode()) { 4518 default: break; 4519 case ISD::OR: 4520 if (isKnownNeverZero(Op.getOperand(1)) || 4521 isKnownNeverZero(Op.getOperand(0))) 4522 return true; 4523 break; 4524 } 4525 4526 return false; 4527 } 4528 4529 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4530 // Check the obvious case. 4531 if (A == B) return true; 4532 4533 // For for negative and positive zero. 4534 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4535 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4536 if (CA->isZero() && CB->isZero()) return true; 4537 4538 // Otherwise they may not be equal. 4539 return false; 4540 } 4541 4542 // FIXME: unify with llvm::haveNoCommonBitsSet. 4543 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4544 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4545 assert(A.getValueType() == B.getValueType() && 4546 "Values must have the same type"); 4547 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4548 computeKnownBits(B)); 4549 } 4550 4551 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4552 SelectionDAG &DAG) { 4553 if (cast<ConstantSDNode>(Step)->isZero()) 4554 return DAG.getConstant(0, DL, VT); 4555 4556 return SDValue(); 4557 } 4558 4559 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4560 ArrayRef<SDValue> Ops, 4561 SelectionDAG &DAG) { 4562 int NumOps = Ops.size(); 4563 assert(NumOps != 0 && "Can't build an empty vector!"); 4564 assert(!VT.isScalableVector() && 4565 "BUILD_VECTOR cannot be used with scalable types"); 4566 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4567 "Incorrect element count in BUILD_VECTOR!"); 4568 4569 // BUILD_VECTOR of UNDEFs is UNDEF. 4570 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4571 return DAG.getUNDEF(VT); 4572 4573 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4574 SDValue IdentitySrc; 4575 bool IsIdentity = true; 4576 for (int i = 0; i != NumOps; ++i) { 4577 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4578 Ops[i].getOperand(0).getValueType() != VT || 4579 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4580 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4581 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4582 IsIdentity = false; 4583 break; 4584 } 4585 IdentitySrc = Ops[i].getOperand(0); 4586 } 4587 if (IsIdentity) 4588 return IdentitySrc; 4589 4590 return SDValue(); 4591 } 4592 4593 /// Try to simplify vector concatenation to an input value, undef, or build 4594 /// vector. 4595 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4596 ArrayRef<SDValue> Ops, 4597 SelectionDAG &DAG) { 4598 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4599 assert(llvm::all_of(Ops, 4600 [Ops](SDValue Op) { 4601 return Ops[0].getValueType() == Op.getValueType(); 4602 }) && 4603 "Concatenation of vectors with inconsistent value types!"); 4604 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4605 VT.getVectorElementCount() && 4606 "Incorrect element count in vector concatenation!"); 4607 4608 if (Ops.size() == 1) 4609 return Ops[0]; 4610 4611 // Concat of UNDEFs is UNDEF. 4612 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4613 return DAG.getUNDEF(VT); 4614 4615 // Scan the operands and look for extract operations from a single source 4616 // that correspond to insertion at the same location via this concatenation: 4617 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4618 SDValue IdentitySrc; 4619 bool IsIdentity = true; 4620 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4621 SDValue Op = Ops[i]; 4622 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4623 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4624 Op.getOperand(0).getValueType() != VT || 4625 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4626 Op.getConstantOperandVal(1) != IdentityIndex) { 4627 IsIdentity = false; 4628 break; 4629 } 4630 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4631 "Unexpected identity source vector for concat of extracts"); 4632 IdentitySrc = Op.getOperand(0); 4633 } 4634 if (IsIdentity) { 4635 assert(IdentitySrc && "Failed to set source vector of extracts"); 4636 return IdentitySrc; 4637 } 4638 4639 // The code below this point is only designed to work for fixed width 4640 // vectors, so we bail out for now. 4641 if (VT.isScalableVector()) 4642 return SDValue(); 4643 4644 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4645 // simplified to one big BUILD_VECTOR. 4646 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4647 EVT SVT = VT.getScalarType(); 4648 SmallVector<SDValue, 16> Elts; 4649 for (SDValue Op : Ops) { 4650 EVT OpVT = Op.getValueType(); 4651 if (Op.isUndef()) 4652 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4653 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4654 Elts.append(Op->op_begin(), Op->op_end()); 4655 else 4656 return SDValue(); 4657 } 4658 4659 // BUILD_VECTOR requires all inputs to be of the same type, find the 4660 // maximum type and extend them all. 4661 for (SDValue Op : Elts) 4662 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4663 4664 if (SVT.bitsGT(VT.getScalarType())) { 4665 for (SDValue &Op : Elts) { 4666 if (Op.isUndef()) 4667 Op = DAG.getUNDEF(SVT); 4668 else 4669 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4670 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4671 : DAG.getSExtOrTrunc(Op, DL, SVT); 4672 } 4673 } 4674 4675 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4676 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4677 return V; 4678 } 4679 4680 /// Gets or creates the specified node. 4681 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4682 FoldingSetNodeID ID; 4683 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4684 void *IP = nullptr; 4685 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4686 return SDValue(E, 0); 4687 4688 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4689 getVTList(VT)); 4690 CSEMap.InsertNode(N, IP); 4691 4692 InsertNode(N); 4693 SDValue V = SDValue(N, 0); 4694 NewSDValueDbgMsg(V, "Creating new node: ", this); 4695 return V; 4696 } 4697 4698 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4699 SDValue Operand) { 4700 SDNodeFlags Flags; 4701 if (Inserter) 4702 Flags = Inserter->getFlags(); 4703 return getNode(Opcode, DL, VT, Operand, Flags); 4704 } 4705 4706 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4707 SDValue Operand, const SDNodeFlags Flags) { 4708 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4709 "Operand is DELETED_NODE!"); 4710 // Constant fold unary operations with an integer constant operand. Even 4711 // opaque constant will be folded, because the folding of unary operations 4712 // doesn't create new constants with different values. Nevertheless, the 4713 // opaque flag is preserved during folding to prevent future folding with 4714 // other constants. 4715 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4716 const APInt &Val = C->getAPIntValue(); 4717 switch (Opcode) { 4718 default: break; 4719 case ISD::SIGN_EXTEND: 4720 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4721 C->isTargetOpcode(), C->isOpaque()); 4722 case ISD::TRUNCATE: 4723 if (C->isOpaque()) 4724 break; 4725 LLVM_FALLTHROUGH; 4726 case ISD::ZERO_EXTEND: 4727 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4728 C->isTargetOpcode(), C->isOpaque()); 4729 case ISD::ANY_EXTEND: 4730 // Some targets like RISCV prefer to sign extend some types. 4731 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4732 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4733 C->isTargetOpcode(), C->isOpaque()); 4734 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4735 C->isTargetOpcode(), C->isOpaque()); 4736 case ISD::UINT_TO_FP: 4737 case ISD::SINT_TO_FP: { 4738 APFloat apf(EVTToAPFloatSemantics(VT), 4739 APInt::getZero(VT.getSizeInBits())); 4740 (void)apf.convertFromAPInt(Val, 4741 Opcode==ISD::SINT_TO_FP, 4742 APFloat::rmNearestTiesToEven); 4743 return getConstantFP(apf, DL, VT); 4744 } 4745 case ISD::BITCAST: 4746 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4747 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4748 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4749 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4750 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4751 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4752 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4753 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4754 break; 4755 case ISD::ABS: 4756 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4757 C->isOpaque()); 4758 case ISD::BITREVERSE: 4759 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4760 C->isOpaque()); 4761 case ISD::BSWAP: 4762 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4763 C->isOpaque()); 4764 case ISD::CTPOP: 4765 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4766 C->isOpaque()); 4767 case ISD::CTLZ: 4768 case ISD::CTLZ_ZERO_UNDEF: 4769 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4770 C->isOpaque()); 4771 case ISD::CTTZ: 4772 case ISD::CTTZ_ZERO_UNDEF: 4773 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4774 C->isOpaque()); 4775 case ISD::FP16_TO_FP: { 4776 bool Ignored; 4777 APFloat FPV(APFloat::IEEEhalf(), 4778 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4779 4780 // This can return overflow, underflow, or inexact; we don't care. 4781 // FIXME need to be more flexible about rounding mode. 4782 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4783 APFloat::rmNearestTiesToEven, &Ignored); 4784 return getConstantFP(FPV, DL, VT); 4785 } 4786 case ISD::STEP_VECTOR: { 4787 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4788 return V; 4789 break; 4790 } 4791 } 4792 } 4793 4794 // Constant fold unary operations with a floating point constant operand. 4795 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4796 APFloat V = C->getValueAPF(); // make copy 4797 switch (Opcode) { 4798 case ISD::FNEG: 4799 V.changeSign(); 4800 return getConstantFP(V, DL, VT); 4801 case ISD::FABS: 4802 V.clearSign(); 4803 return getConstantFP(V, DL, VT); 4804 case ISD::FCEIL: { 4805 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4806 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4807 return getConstantFP(V, DL, VT); 4808 break; 4809 } 4810 case ISD::FTRUNC: { 4811 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4812 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4813 return getConstantFP(V, DL, VT); 4814 break; 4815 } 4816 case ISD::FFLOOR: { 4817 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4818 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4819 return getConstantFP(V, DL, VT); 4820 break; 4821 } 4822 case ISD::FP_EXTEND: { 4823 bool ignored; 4824 // This can return overflow, underflow, or inexact; we don't care. 4825 // FIXME need to be more flexible about rounding mode. 4826 (void)V.convert(EVTToAPFloatSemantics(VT), 4827 APFloat::rmNearestTiesToEven, &ignored); 4828 return getConstantFP(V, DL, VT); 4829 } 4830 case ISD::FP_TO_SINT: 4831 case ISD::FP_TO_UINT: { 4832 bool ignored; 4833 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4834 // FIXME need to be more flexible about rounding mode. 4835 APFloat::opStatus s = 4836 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4837 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4838 break; 4839 return getConstant(IntVal, DL, VT); 4840 } 4841 case ISD::BITCAST: 4842 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4843 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4844 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 4845 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4846 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4847 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4848 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4849 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4850 break; 4851 case ISD::FP_TO_FP16: { 4852 bool Ignored; 4853 // This can return overflow, underflow, or inexact; we don't care. 4854 // FIXME need to be more flexible about rounding mode. 4855 (void)V.convert(APFloat::IEEEhalf(), 4856 APFloat::rmNearestTiesToEven, &Ignored); 4857 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4858 } 4859 } 4860 } 4861 4862 // Constant fold unary operations with a vector integer or float operand. 4863 switch (Opcode) { 4864 default: 4865 // FIXME: Entirely reasonable to perform folding of other unary 4866 // operations here as the need arises. 4867 break; 4868 case ISD::FNEG: 4869 case ISD::FABS: 4870 case ISD::FCEIL: 4871 case ISD::FTRUNC: 4872 case ISD::FFLOOR: 4873 case ISD::FP_EXTEND: 4874 case ISD::FP_TO_SINT: 4875 case ISD::FP_TO_UINT: 4876 case ISD::TRUNCATE: 4877 case ISD::ANY_EXTEND: 4878 case ISD::ZERO_EXTEND: 4879 case ISD::SIGN_EXTEND: 4880 case ISD::UINT_TO_FP: 4881 case ISD::SINT_TO_FP: 4882 case ISD::ABS: 4883 case ISD::BITREVERSE: 4884 case ISD::BSWAP: 4885 case ISD::CTLZ: 4886 case ISD::CTLZ_ZERO_UNDEF: 4887 case ISD::CTTZ: 4888 case ISD::CTTZ_ZERO_UNDEF: 4889 case ISD::CTPOP: { 4890 SDValue Ops = {Operand}; 4891 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 4892 return Fold; 4893 } 4894 } 4895 4896 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4897 switch (Opcode) { 4898 case ISD::STEP_VECTOR: 4899 assert(VT.isScalableVector() && 4900 "STEP_VECTOR can only be used with scalable types"); 4901 assert(OpOpcode == ISD::TargetConstant && 4902 VT.getVectorElementType() == Operand.getValueType() && 4903 "Unexpected step operand"); 4904 break; 4905 case ISD::FREEZE: 4906 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4907 break; 4908 case ISD::TokenFactor: 4909 case ISD::MERGE_VALUES: 4910 case ISD::CONCAT_VECTORS: 4911 return Operand; // Factor, merge or concat of one node? No need. 4912 case ISD::BUILD_VECTOR: { 4913 // Attempt to simplify BUILD_VECTOR. 4914 SDValue Ops[] = {Operand}; 4915 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4916 return V; 4917 break; 4918 } 4919 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4920 case ISD::FP_EXTEND: 4921 assert(VT.isFloatingPoint() && 4922 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4923 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4924 assert((!VT.isVector() || 4925 VT.getVectorElementCount() == 4926 Operand.getValueType().getVectorElementCount()) && 4927 "Vector element count mismatch!"); 4928 assert(Operand.getValueType().bitsLT(VT) && 4929 "Invalid fpext node, dst < src!"); 4930 if (Operand.isUndef()) 4931 return getUNDEF(VT); 4932 break; 4933 case ISD::FP_TO_SINT: 4934 case ISD::FP_TO_UINT: 4935 if (Operand.isUndef()) 4936 return getUNDEF(VT); 4937 break; 4938 case ISD::SINT_TO_FP: 4939 case ISD::UINT_TO_FP: 4940 // [us]itofp(undef) = 0, because the result value is bounded. 4941 if (Operand.isUndef()) 4942 return getConstantFP(0.0, DL, VT); 4943 break; 4944 case ISD::SIGN_EXTEND: 4945 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4946 "Invalid SIGN_EXTEND!"); 4947 assert(VT.isVector() == Operand.getValueType().isVector() && 4948 "SIGN_EXTEND result type type should be vector iff the operand " 4949 "type is vector!"); 4950 if (Operand.getValueType() == VT) return Operand; // noop extension 4951 assert((!VT.isVector() || 4952 VT.getVectorElementCount() == 4953 Operand.getValueType().getVectorElementCount()) && 4954 "Vector element count mismatch!"); 4955 assert(Operand.getValueType().bitsLT(VT) && 4956 "Invalid sext node, dst < src!"); 4957 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4958 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4959 if (OpOpcode == ISD::UNDEF) 4960 // sext(undef) = 0, because the top bits will all be the same. 4961 return getConstant(0, DL, VT); 4962 break; 4963 case ISD::ZERO_EXTEND: 4964 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4965 "Invalid ZERO_EXTEND!"); 4966 assert(VT.isVector() == Operand.getValueType().isVector() && 4967 "ZERO_EXTEND result type type should be vector iff the operand " 4968 "type is vector!"); 4969 if (Operand.getValueType() == VT) return Operand; // noop extension 4970 assert((!VT.isVector() || 4971 VT.getVectorElementCount() == 4972 Operand.getValueType().getVectorElementCount()) && 4973 "Vector element count mismatch!"); 4974 assert(Operand.getValueType().bitsLT(VT) && 4975 "Invalid zext node, dst < src!"); 4976 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4977 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4978 if (OpOpcode == ISD::UNDEF) 4979 // zext(undef) = 0, because the top bits will be zero. 4980 return getConstant(0, DL, VT); 4981 break; 4982 case ISD::ANY_EXTEND: 4983 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4984 "Invalid ANY_EXTEND!"); 4985 assert(VT.isVector() == Operand.getValueType().isVector() && 4986 "ANY_EXTEND result type type should be vector iff the operand " 4987 "type is vector!"); 4988 if (Operand.getValueType() == VT) return Operand; // noop extension 4989 assert((!VT.isVector() || 4990 VT.getVectorElementCount() == 4991 Operand.getValueType().getVectorElementCount()) && 4992 "Vector element count mismatch!"); 4993 assert(Operand.getValueType().bitsLT(VT) && 4994 "Invalid anyext node, dst < src!"); 4995 4996 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4997 OpOpcode == ISD::ANY_EXTEND) 4998 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4999 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5000 if (OpOpcode == ISD::UNDEF) 5001 return getUNDEF(VT); 5002 5003 // (ext (trunc x)) -> x 5004 if (OpOpcode == ISD::TRUNCATE) { 5005 SDValue OpOp = Operand.getOperand(0); 5006 if (OpOp.getValueType() == VT) { 5007 transferDbgValues(Operand, OpOp); 5008 return OpOp; 5009 } 5010 } 5011 break; 5012 case ISD::TRUNCATE: 5013 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5014 "Invalid TRUNCATE!"); 5015 assert(VT.isVector() == Operand.getValueType().isVector() && 5016 "TRUNCATE result type type should be vector iff the operand " 5017 "type is vector!"); 5018 if (Operand.getValueType() == VT) return Operand; // noop truncate 5019 assert((!VT.isVector() || 5020 VT.getVectorElementCount() == 5021 Operand.getValueType().getVectorElementCount()) && 5022 "Vector element count mismatch!"); 5023 assert(Operand.getValueType().bitsGT(VT) && 5024 "Invalid truncate node, src < dst!"); 5025 if (OpOpcode == ISD::TRUNCATE) 5026 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5027 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5028 OpOpcode == ISD::ANY_EXTEND) { 5029 // If the source is smaller than the dest, we still need an extend. 5030 if (Operand.getOperand(0).getValueType().getScalarType() 5031 .bitsLT(VT.getScalarType())) 5032 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5033 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5034 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5035 return Operand.getOperand(0); 5036 } 5037 if (OpOpcode == ISD::UNDEF) 5038 return getUNDEF(VT); 5039 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5040 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5041 break; 5042 case ISD::ANY_EXTEND_VECTOR_INREG: 5043 case ISD::ZERO_EXTEND_VECTOR_INREG: 5044 case ISD::SIGN_EXTEND_VECTOR_INREG: 5045 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5046 assert(Operand.getValueType().bitsLE(VT) && 5047 "The input must be the same size or smaller than the result."); 5048 assert(VT.getVectorMinNumElements() < 5049 Operand.getValueType().getVectorMinNumElements() && 5050 "The destination vector type must have fewer lanes than the input."); 5051 break; 5052 case ISD::ABS: 5053 assert(VT.isInteger() && VT == Operand.getValueType() && 5054 "Invalid ABS!"); 5055 if (OpOpcode == ISD::UNDEF) 5056 return getUNDEF(VT); 5057 break; 5058 case ISD::BSWAP: 5059 assert(VT.isInteger() && VT == Operand.getValueType() && 5060 "Invalid BSWAP!"); 5061 assert((VT.getScalarSizeInBits() % 16 == 0) && 5062 "BSWAP types must be a multiple of 16 bits!"); 5063 if (OpOpcode == ISD::UNDEF) 5064 return getUNDEF(VT); 5065 break; 5066 case ISD::BITREVERSE: 5067 assert(VT.isInteger() && VT == Operand.getValueType() && 5068 "Invalid BITREVERSE!"); 5069 if (OpOpcode == ISD::UNDEF) 5070 return getUNDEF(VT); 5071 break; 5072 case ISD::BITCAST: 5073 // Basic sanity checking. 5074 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5075 "Cannot BITCAST between types of different sizes!"); 5076 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5077 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5078 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5079 if (OpOpcode == ISD::UNDEF) 5080 return getUNDEF(VT); 5081 break; 5082 case ISD::SCALAR_TO_VECTOR: 5083 assert(VT.isVector() && !Operand.getValueType().isVector() && 5084 (VT.getVectorElementType() == Operand.getValueType() || 5085 (VT.getVectorElementType().isInteger() && 5086 Operand.getValueType().isInteger() && 5087 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5088 "Illegal SCALAR_TO_VECTOR node!"); 5089 if (OpOpcode == ISD::UNDEF) 5090 return getUNDEF(VT); 5091 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5092 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5093 isa<ConstantSDNode>(Operand.getOperand(1)) && 5094 Operand.getConstantOperandVal(1) == 0 && 5095 Operand.getOperand(0).getValueType() == VT) 5096 return Operand.getOperand(0); 5097 break; 5098 case ISD::FNEG: 5099 // Negation of an unknown bag of bits is still completely undefined. 5100 if (OpOpcode == ISD::UNDEF) 5101 return getUNDEF(VT); 5102 5103 if (OpOpcode == ISD::FNEG) // --X -> X 5104 return Operand.getOperand(0); 5105 break; 5106 case ISD::FABS: 5107 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5108 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5109 break; 5110 case ISD::VSCALE: 5111 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5112 break; 5113 case ISD::CTPOP: 5114 if (Operand.getValueType().getScalarType() == MVT::i1) 5115 return Operand; 5116 break; 5117 case ISD::CTLZ: 5118 case ISD::CTTZ: 5119 if (Operand.getValueType().getScalarType() == MVT::i1) 5120 return getNOT(DL, Operand, Operand.getValueType()); 5121 break; 5122 case ISD::VECREDUCE_SMIN: 5123 case ISD::VECREDUCE_UMAX: 5124 if (Operand.getValueType().getScalarType() == MVT::i1) 5125 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5126 break; 5127 case ISD::VECREDUCE_SMAX: 5128 case ISD::VECREDUCE_UMIN: 5129 if (Operand.getValueType().getScalarType() == MVT::i1) 5130 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5131 break; 5132 } 5133 5134 SDNode *N; 5135 SDVTList VTs = getVTList(VT); 5136 SDValue Ops[] = {Operand}; 5137 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5138 FoldingSetNodeID ID; 5139 AddNodeIDNode(ID, Opcode, VTs, Ops); 5140 void *IP = nullptr; 5141 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5142 E->intersectFlagsWith(Flags); 5143 return SDValue(E, 0); 5144 } 5145 5146 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5147 N->setFlags(Flags); 5148 createOperands(N, Ops); 5149 CSEMap.InsertNode(N, IP); 5150 } else { 5151 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5152 createOperands(N, Ops); 5153 } 5154 5155 InsertNode(N); 5156 SDValue V = SDValue(N, 0); 5157 NewSDValueDbgMsg(V, "Creating new node: ", this); 5158 return V; 5159 } 5160 5161 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5162 const APInt &C2) { 5163 switch (Opcode) { 5164 case ISD::ADD: return C1 + C2; 5165 case ISD::SUB: return C1 - C2; 5166 case ISD::MUL: return C1 * C2; 5167 case ISD::AND: return C1 & C2; 5168 case ISD::OR: return C1 | C2; 5169 case ISD::XOR: return C1 ^ C2; 5170 case ISD::SHL: return C1 << C2; 5171 case ISD::SRL: return C1.lshr(C2); 5172 case ISD::SRA: return C1.ashr(C2); 5173 case ISD::ROTL: return C1.rotl(C2); 5174 case ISD::ROTR: return C1.rotr(C2); 5175 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5176 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5177 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5178 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5179 case ISD::SADDSAT: return C1.sadd_sat(C2); 5180 case ISD::UADDSAT: return C1.uadd_sat(C2); 5181 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5182 case ISD::USUBSAT: return C1.usub_sat(C2); 5183 case ISD::UDIV: 5184 if (!C2.getBoolValue()) 5185 break; 5186 return C1.udiv(C2); 5187 case ISD::UREM: 5188 if (!C2.getBoolValue()) 5189 break; 5190 return C1.urem(C2); 5191 case ISD::SDIV: 5192 if (!C2.getBoolValue()) 5193 break; 5194 return C1.sdiv(C2); 5195 case ISD::SREM: 5196 if (!C2.getBoolValue()) 5197 break; 5198 return C1.srem(C2); 5199 case ISD::MULHS: { 5200 unsigned FullWidth = C1.getBitWidth() * 2; 5201 APInt C1Ext = C1.sext(FullWidth); 5202 APInt C2Ext = C2.sext(FullWidth); 5203 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5204 } 5205 case ISD::MULHU: { 5206 unsigned FullWidth = C1.getBitWidth() * 2; 5207 APInt C1Ext = C1.zext(FullWidth); 5208 APInt C2Ext = C2.zext(FullWidth); 5209 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5210 } 5211 } 5212 return llvm::None; 5213 } 5214 5215 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5216 const GlobalAddressSDNode *GA, 5217 const SDNode *N2) { 5218 if (GA->getOpcode() != ISD::GlobalAddress) 5219 return SDValue(); 5220 if (!TLI->isOffsetFoldingLegal(GA)) 5221 return SDValue(); 5222 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5223 if (!C2) 5224 return SDValue(); 5225 int64_t Offset = C2->getSExtValue(); 5226 switch (Opcode) { 5227 case ISD::ADD: break; 5228 case ISD::SUB: Offset = -uint64_t(Offset); break; 5229 default: return SDValue(); 5230 } 5231 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5232 GA->getOffset() + uint64_t(Offset)); 5233 } 5234 5235 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5236 switch (Opcode) { 5237 case ISD::SDIV: 5238 case ISD::UDIV: 5239 case ISD::SREM: 5240 case ISD::UREM: { 5241 // If a divisor is zero/undef or any element of a divisor vector is 5242 // zero/undef, the whole op is undef. 5243 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5244 SDValue Divisor = Ops[1]; 5245 if (Divisor.isUndef() || isNullConstant(Divisor)) 5246 return true; 5247 5248 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5249 llvm::any_of(Divisor->op_values(), 5250 [](SDValue V) { return V.isUndef() || 5251 isNullConstant(V); }); 5252 // TODO: Handle signed overflow. 5253 } 5254 // TODO: Handle oversized shifts. 5255 default: 5256 return false; 5257 } 5258 } 5259 5260 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5261 EVT VT, ArrayRef<SDValue> Ops) { 5262 // If the opcode is a target-specific ISD node, there's nothing we can 5263 // do here and the operand rules may not line up with the below, so 5264 // bail early. 5265 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5266 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5267 // foldCONCAT_VECTORS in getNode before this is called. 5268 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5269 return SDValue(); 5270 5271 unsigned NumOps = Ops.size(); 5272 if (NumOps == 0) 5273 return SDValue(); 5274 5275 if (isUndef(Opcode, Ops)) 5276 return getUNDEF(VT); 5277 5278 // Handle the case of two scalars. 5279 if (NumOps == 2) { 5280 // TODO: Move foldConstantFPMath here? 5281 5282 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5283 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5284 if (C1->isOpaque() || C2->isOpaque()) 5285 return SDValue(); 5286 5287 Optional<APInt> FoldAttempt = 5288 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5289 if (!FoldAttempt) 5290 return SDValue(); 5291 5292 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5293 assert((!Folded || !VT.isVector()) && 5294 "Can't fold vectors ops with scalar operands"); 5295 return Folded; 5296 } 5297 } 5298 5299 // fold (add Sym, c) -> Sym+c 5300 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5301 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5302 if (TLI->isCommutativeBinOp(Opcode)) 5303 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5304 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5305 } 5306 5307 // This is for vector folding only from here on. 5308 if (!VT.isVector()) 5309 return SDValue(); 5310 5311 ElementCount NumElts = VT.getVectorElementCount(); 5312 5313 // See if we can fold through bitcasted integer ops. 5314 // TODO: Can we handle undef elements? 5315 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5316 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5317 Ops[0].getOpcode() == ISD::BITCAST && 5318 Ops[1].getOpcode() == ISD::BITCAST) { 5319 SDValue N1 = peekThroughBitcasts(Ops[0]); 5320 SDValue N2 = peekThroughBitcasts(Ops[1]); 5321 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5322 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5323 EVT BVVT = N1.getValueType(); 5324 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5325 bool IsLE = getDataLayout().isLittleEndian(); 5326 unsigned EltBits = VT.getScalarSizeInBits(); 5327 SmallVector<APInt> RawBits1, RawBits2; 5328 BitVector UndefElts1, UndefElts2; 5329 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5330 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5331 UndefElts1.none() && UndefElts2.none()) { 5332 SmallVector<APInt> RawBits; 5333 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5334 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5335 if (!Fold) 5336 break; 5337 RawBits.push_back(Fold.getValue()); 5338 } 5339 if (RawBits.size() == NumElts.getFixedValue()) { 5340 // We have constant folded, but we need to cast this again back to 5341 // the original (possibly legalized) type. 5342 SmallVector<APInt> DstBits; 5343 BitVector DstUndefs; 5344 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5345 DstBits, RawBits, DstUndefs, 5346 BitVector(RawBits.size(), false)); 5347 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5348 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5349 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5350 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5351 if (DstUndefs[I]) 5352 continue; 5353 Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT); 5354 } 5355 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5356 } 5357 } 5358 } 5359 } 5360 5361 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5362 return !Op.getValueType().isVector() || 5363 Op.getValueType().getVectorElementCount() == NumElts; 5364 }; 5365 5366 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5367 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5368 Op.getOpcode() == ISD::BUILD_VECTOR || 5369 Op.getOpcode() == ISD::SPLAT_VECTOR; 5370 }; 5371 5372 // All operands must be vector types with the same number of elements as 5373 // the result type and must be either UNDEF or a build/splat vector 5374 // or UNDEF scalars. 5375 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5376 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5377 return SDValue(); 5378 5379 // If we are comparing vectors, then the result needs to be a i1 boolean 5380 // that is then sign-extended back to the legal result type. 5381 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5382 5383 // Find legal integer scalar type for constant promotion and 5384 // ensure that its scalar size is at least as large as source. 5385 EVT LegalSVT = VT.getScalarType(); 5386 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5387 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5388 if (LegalSVT.bitsLT(VT.getScalarType())) 5389 return SDValue(); 5390 } 5391 5392 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5393 // only have one operand to check. For fixed-length vector types we may have 5394 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5395 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5396 5397 // Constant fold each scalar lane separately. 5398 SmallVector<SDValue, 4> ScalarResults; 5399 for (unsigned I = 0; I != NumVectorElts; I++) { 5400 SmallVector<SDValue, 4> ScalarOps; 5401 for (SDValue Op : Ops) { 5402 EVT InSVT = Op.getValueType().getScalarType(); 5403 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5404 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5405 if (Op.isUndef()) 5406 ScalarOps.push_back(getUNDEF(InSVT)); 5407 else 5408 ScalarOps.push_back(Op); 5409 continue; 5410 } 5411 5412 SDValue ScalarOp = 5413 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5414 EVT ScalarVT = ScalarOp.getValueType(); 5415 5416 // Build vector (integer) scalar operands may need implicit 5417 // truncation - do this before constant folding. 5418 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5419 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5420 5421 ScalarOps.push_back(ScalarOp); 5422 } 5423 5424 // Constant fold the scalar operands. 5425 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5426 5427 // Legalize the (integer) scalar constant if necessary. 5428 if (LegalSVT != SVT) 5429 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5430 5431 // Scalar folding only succeeded if the result is a constant or UNDEF. 5432 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5433 ScalarResult.getOpcode() != ISD::ConstantFP) 5434 return SDValue(); 5435 ScalarResults.push_back(ScalarResult); 5436 } 5437 5438 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5439 : getBuildVector(VT, DL, ScalarResults); 5440 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5441 return V; 5442 } 5443 5444 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5445 EVT VT, SDValue N1, SDValue N2) { 5446 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5447 // should. That will require dealing with a potentially non-default 5448 // rounding mode, checking the "opStatus" return value from the APFloat 5449 // math calculations, and possibly other variations. 5450 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5451 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5452 if (N1CFP && N2CFP) { 5453 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5454 switch (Opcode) { 5455 case ISD::FADD: 5456 C1.add(C2, APFloat::rmNearestTiesToEven); 5457 return getConstantFP(C1, DL, VT); 5458 case ISD::FSUB: 5459 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5460 return getConstantFP(C1, DL, VT); 5461 case ISD::FMUL: 5462 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5463 return getConstantFP(C1, DL, VT); 5464 case ISD::FDIV: 5465 C1.divide(C2, APFloat::rmNearestTiesToEven); 5466 return getConstantFP(C1, DL, VT); 5467 case ISD::FREM: 5468 C1.mod(C2); 5469 return getConstantFP(C1, DL, VT); 5470 case ISD::FCOPYSIGN: 5471 C1.copySign(C2); 5472 return getConstantFP(C1, DL, VT); 5473 default: break; 5474 } 5475 } 5476 if (N1CFP && Opcode == ISD::FP_ROUND) { 5477 APFloat C1 = N1CFP->getValueAPF(); // make copy 5478 bool Unused; 5479 // This can return overflow, underflow, or inexact; we don't care. 5480 // FIXME need to be more flexible about rounding mode. 5481 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5482 &Unused); 5483 return getConstantFP(C1, DL, VT); 5484 } 5485 5486 switch (Opcode) { 5487 case ISD::FSUB: 5488 // -0.0 - undef --> undef (consistent with "fneg undef") 5489 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef()) 5490 return getUNDEF(VT); 5491 LLVM_FALLTHROUGH; 5492 5493 case ISD::FADD: 5494 case ISD::FMUL: 5495 case ISD::FDIV: 5496 case ISD::FREM: 5497 // If both operands are undef, the result is undef. If 1 operand is undef, 5498 // the result is NaN. This should match the behavior of the IR optimizer. 5499 if (N1.isUndef() && N2.isUndef()) 5500 return getUNDEF(VT); 5501 if (N1.isUndef() || N2.isUndef()) 5502 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5503 } 5504 return SDValue(); 5505 } 5506 5507 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5508 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5509 5510 // There's no need to assert on a byte-aligned pointer. All pointers are at 5511 // least byte aligned. 5512 if (A == Align(1)) 5513 return Val; 5514 5515 FoldingSetNodeID ID; 5516 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5517 ID.AddInteger(A.value()); 5518 5519 void *IP = nullptr; 5520 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5521 return SDValue(E, 0); 5522 5523 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5524 Val.getValueType(), A); 5525 createOperands(N, {Val}); 5526 5527 CSEMap.InsertNode(N, IP); 5528 InsertNode(N); 5529 5530 SDValue V(N, 0); 5531 NewSDValueDbgMsg(V, "Creating new node: ", this); 5532 return V; 5533 } 5534 5535 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5536 SDValue N1, SDValue N2) { 5537 SDNodeFlags Flags; 5538 if (Inserter) 5539 Flags = Inserter->getFlags(); 5540 return getNode(Opcode, DL, VT, N1, N2, Flags); 5541 } 5542 5543 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5544 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5545 assert(N1.getOpcode() != ISD::DELETED_NODE && 5546 N2.getOpcode() != ISD::DELETED_NODE && 5547 "Operand is DELETED_NODE!"); 5548 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5549 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5550 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5551 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5552 5553 // Canonicalize constant to RHS if commutative. 5554 if (TLI->isCommutativeBinOp(Opcode)) { 5555 if (N1C && !N2C) { 5556 std::swap(N1C, N2C); 5557 std::swap(N1, N2); 5558 } else if (N1CFP && !N2CFP) { 5559 std::swap(N1CFP, N2CFP); 5560 std::swap(N1, N2); 5561 } 5562 } 5563 5564 switch (Opcode) { 5565 default: break; 5566 case ISD::TokenFactor: 5567 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5568 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5569 // Fold trivial token factors. 5570 if (N1.getOpcode() == ISD::EntryToken) return N2; 5571 if (N2.getOpcode() == ISD::EntryToken) return N1; 5572 if (N1 == N2) return N1; 5573 break; 5574 case ISD::BUILD_VECTOR: { 5575 // Attempt to simplify BUILD_VECTOR. 5576 SDValue Ops[] = {N1, N2}; 5577 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5578 return V; 5579 break; 5580 } 5581 case ISD::CONCAT_VECTORS: { 5582 SDValue Ops[] = {N1, N2}; 5583 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5584 return V; 5585 break; 5586 } 5587 case ISD::AND: 5588 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5589 assert(N1.getValueType() == N2.getValueType() && 5590 N1.getValueType() == VT && "Binary operator types must match!"); 5591 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5592 // worth handling here. 5593 if (N2C && N2C->isZero()) 5594 return N2; 5595 if (N2C && N2C->isAllOnes()) // X & -1 -> X 5596 return N1; 5597 break; 5598 case ISD::OR: 5599 case ISD::XOR: 5600 case ISD::ADD: 5601 case ISD::SUB: 5602 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5603 assert(N1.getValueType() == N2.getValueType() && 5604 N1.getValueType() == VT && "Binary operator types must match!"); 5605 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5606 // it's worth handling here. 5607 if (N2C && N2C->isZero()) 5608 return N1; 5609 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5610 VT.getVectorElementType() == MVT::i1) 5611 return getNode(ISD::XOR, DL, VT, N1, N2); 5612 break; 5613 case ISD::MUL: 5614 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5615 assert(N1.getValueType() == N2.getValueType() && 5616 N1.getValueType() == VT && "Binary operator types must match!"); 5617 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5618 return getNode(ISD::AND, DL, VT, N1, N2); 5619 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5620 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5621 const APInt &N2CImm = N2C->getAPIntValue(); 5622 return getVScale(DL, VT, MulImm * N2CImm); 5623 } 5624 break; 5625 case ISD::UDIV: 5626 case ISD::UREM: 5627 case ISD::MULHU: 5628 case ISD::MULHS: 5629 case ISD::SDIV: 5630 case ISD::SREM: 5631 case ISD::SADDSAT: 5632 case ISD::SSUBSAT: 5633 case ISD::UADDSAT: 5634 case ISD::USUBSAT: 5635 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5636 assert(N1.getValueType() == N2.getValueType() && 5637 N1.getValueType() == VT && "Binary operator types must match!"); 5638 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5639 // fold (add_sat x, y) -> (or x, y) for bool types. 5640 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5641 return getNode(ISD::OR, DL, VT, N1, N2); 5642 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5643 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5644 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5645 } 5646 break; 5647 case ISD::SMIN: 5648 case ISD::UMAX: 5649 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5650 assert(N1.getValueType() == N2.getValueType() && 5651 N1.getValueType() == VT && "Binary operator types must match!"); 5652 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5653 return getNode(ISD::OR, DL, VT, N1, N2); 5654 break; 5655 case ISD::SMAX: 5656 case ISD::UMIN: 5657 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5658 assert(N1.getValueType() == N2.getValueType() && 5659 N1.getValueType() == VT && "Binary operator types must match!"); 5660 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5661 return getNode(ISD::AND, DL, VT, N1, N2); 5662 break; 5663 case ISD::FADD: 5664 case ISD::FSUB: 5665 case ISD::FMUL: 5666 case ISD::FDIV: 5667 case ISD::FREM: 5668 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5669 assert(N1.getValueType() == N2.getValueType() && 5670 N1.getValueType() == VT && "Binary operator types must match!"); 5671 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5672 return V; 5673 break; 5674 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5675 assert(N1.getValueType() == VT && 5676 N1.getValueType().isFloatingPoint() && 5677 N2.getValueType().isFloatingPoint() && 5678 "Invalid FCOPYSIGN!"); 5679 break; 5680 case ISD::SHL: 5681 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5682 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5683 const APInt &ShiftImm = N2C->getAPIntValue(); 5684 return getVScale(DL, VT, MulImm << ShiftImm); 5685 } 5686 LLVM_FALLTHROUGH; 5687 case ISD::SRA: 5688 case ISD::SRL: 5689 if (SDValue V = simplifyShift(N1, N2)) 5690 return V; 5691 LLVM_FALLTHROUGH; 5692 case ISD::ROTL: 5693 case ISD::ROTR: 5694 assert(VT == N1.getValueType() && 5695 "Shift operators return type must be the same as their first arg"); 5696 assert(VT.isInteger() && N2.getValueType().isInteger() && 5697 "Shifts only work on integers"); 5698 assert((!VT.isVector() || VT == N2.getValueType()) && 5699 "Vector shift amounts must be in the same as their first arg"); 5700 // Verify that the shift amount VT is big enough to hold valid shift 5701 // amounts. This catches things like trying to shift an i1024 value by an 5702 // i8, which is easy to fall into in generic code that uses 5703 // TLI.getShiftAmount(). 5704 assert(N2.getValueType().getScalarSizeInBits() >= 5705 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5706 "Invalid use of small shift amount with oversized value!"); 5707 5708 // Always fold shifts of i1 values so the code generator doesn't need to 5709 // handle them. Since we know the size of the shift has to be less than the 5710 // size of the value, the shift/rotate count is guaranteed to be zero. 5711 if (VT == MVT::i1) 5712 return N1; 5713 if (N2C && N2C->isZero()) 5714 return N1; 5715 break; 5716 case ISD::FP_ROUND: 5717 assert(VT.isFloatingPoint() && 5718 N1.getValueType().isFloatingPoint() && 5719 VT.bitsLE(N1.getValueType()) && 5720 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5721 "Invalid FP_ROUND!"); 5722 if (N1.getValueType() == VT) return N1; // noop conversion. 5723 break; 5724 case ISD::AssertSext: 5725 case ISD::AssertZext: { 5726 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5727 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5728 assert(VT.isInteger() && EVT.isInteger() && 5729 "Cannot *_EXTEND_INREG FP types"); 5730 assert(!EVT.isVector() && 5731 "AssertSExt/AssertZExt type should be the vector element type " 5732 "rather than the vector type!"); 5733 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5734 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5735 break; 5736 } 5737 case ISD::SIGN_EXTEND_INREG: { 5738 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5739 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5740 assert(VT.isInteger() && EVT.isInteger() && 5741 "Cannot *_EXTEND_INREG FP types"); 5742 assert(EVT.isVector() == VT.isVector() && 5743 "SIGN_EXTEND_INREG type should be vector iff the operand " 5744 "type is vector!"); 5745 assert((!EVT.isVector() || 5746 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5747 "Vector element counts must match in SIGN_EXTEND_INREG"); 5748 assert(EVT.bitsLE(VT) && "Not extending!"); 5749 if (EVT == VT) return N1; // Not actually extending 5750 5751 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5752 unsigned FromBits = EVT.getScalarSizeInBits(); 5753 Val <<= Val.getBitWidth() - FromBits; 5754 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5755 return getConstant(Val, DL, ConstantVT); 5756 }; 5757 5758 if (N1C) { 5759 const APInt &Val = N1C->getAPIntValue(); 5760 return SignExtendInReg(Val, VT); 5761 } 5762 5763 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5764 SmallVector<SDValue, 8> Ops; 5765 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5766 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5767 SDValue Op = N1.getOperand(i); 5768 if (Op.isUndef()) { 5769 Ops.push_back(getUNDEF(OpVT)); 5770 continue; 5771 } 5772 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5773 APInt Val = C->getAPIntValue(); 5774 Ops.push_back(SignExtendInReg(Val, OpVT)); 5775 } 5776 return getBuildVector(VT, DL, Ops); 5777 } 5778 break; 5779 } 5780 case ISD::FP_TO_SINT_SAT: 5781 case ISD::FP_TO_UINT_SAT: { 5782 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 5783 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 5784 assert(N1.getValueType().isVector() == VT.isVector() && 5785 "FP_TO_*INT_SAT type should be vector iff the operand type is " 5786 "vector!"); 5787 assert((!VT.isVector() || VT.getVectorNumElements() == 5788 N1.getValueType().getVectorNumElements()) && 5789 "Vector element counts must match in FP_TO_*INT_SAT"); 5790 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 5791 "Type to saturate to must be a scalar."); 5792 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 5793 "Not extending!"); 5794 break; 5795 } 5796 case ISD::EXTRACT_VECTOR_ELT: 5797 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5798 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5799 element type of the vector."); 5800 5801 // Extract from an undefined value or using an undefined index is undefined. 5802 if (N1.isUndef() || N2.isUndef()) 5803 return getUNDEF(VT); 5804 5805 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5806 // vectors. For scalable vectors we will provide appropriate support for 5807 // dealing with arbitrary indices. 5808 if (N2C && N1.getValueType().isFixedLengthVector() && 5809 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5810 return getUNDEF(VT); 5811 5812 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5813 // expanding copies of large vectors from registers. This only works for 5814 // fixed length vectors, since we need to know the exact number of 5815 // elements. 5816 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5817 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5818 unsigned Factor = 5819 N1.getOperand(0).getValueType().getVectorNumElements(); 5820 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5821 N1.getOperand(N2C->getZExtValue() / Factor), 5822 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5823 } 5824 5825 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5826 // lowering is expanding large vector constants. 5827 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5828 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5829 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5830 N1.getValueType().isFixedLengthVector()) && 5831 "BUILD_VECTOR used for scalable vectors"); 5832 unsigned Index = 5833 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5834 SDValue Elt = N1.getOperand(Index); 5835 5836 if (VT != Elt.getValueType()) 5837 // If the vector element type is not legal, the BUILD_VECTOR operands 5838 // are promoted and implicitly truncated, and the result implicitly 5839 // extended. Make that explicit here. 5840 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5841 5842 return Elt; 5843 } 5844 5845 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5846 // operations are lowered to scalars. 5847 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5848 // If the indices are the same, return the inserted element else 5849 // if the indices are known different, extract the element from 5850 // the original vector. 5851 SDValue N1Op2 = N1.getOperand(2); 5852 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5853 5854 if (N1Op2C && N2C) { 5855 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5856 if (VT == N1.getOperand(1).getValueType()) 5857 return N1.getOperand(1); 5858 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5859 } 5860 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5861 } 5862 } 5863 5864 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5865 // when vector types are scalarized and v1iX is legal. 5866 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5867 // Here we are completely ignoring the extract element index (N2), 5868 // which is fine for fixed width vectors, since any index other than 0 5869 // is undefined anyway. However, this cannot be ignored for scalable 5870 // vectors - in theory we could support this, but we don't want to do this 5871 // without a profitability check. 5872 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5873 N1.getValueType().isFixedLengthVector() && 5874 N1.getValueType().getVectorNumElements() == 1) { 5875 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5876 N1.getOperand(1)); 5877 } 5878 break; 5879 case ISD::EXTRACT_ELEMENT: 5880 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5881 assert(!N1.getValueType().isVector() && !VT.isVector() && 5882 (N1.getValueType().isInteger() == VT.isInteger()) && 5883 N1.getValueType() != VT && 5884 "Wrong types for EXTRACT_ELEMENT!"); 5885 5886 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5887 // 64-bit integers into 32-bit parts. Instead of building the extract of 5888 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5889 if (N1.getOpcode() == ISD::BUILD_PAIR) 5890 return N1.getOperand(N2C->getZExtValue()); 5891 5892 // EXTRACT_ELEMENT of a constant int is also very common. 5893 if (N1C) { 5894 unsigned ElementSize = VT.getSizeInBits(); 5895 unsigned Shift = ElementSize * N2C->getZExtValue(); 5896 const APInt &Val = N1C->getAPIntValue(); 5897 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5898 } 5899 break; 5900 case ISD::EXTRACT_SUBVECTOR: { 5901 EVT N1VT = N1.getValueType(); 5902 assert(VT.isVector() && N1VT.isVector() && 5903 "Extract subvector VTs must be vectors!"); 5904 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 5905 "Extract subvector VTs must have the same element type!"); 5906 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 5907 "Cannot extract a scalable vector from a fixed length vector!"); 5908 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5909 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 5910 "Extract subvector must be from larger vector to smaller vector!"); 5911 assert(N2C && "Extract subvector index must be a constant"); 5912 assert((VT.isScalableVector() != N1VT.isScalableVector() || 5913 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 5914 N1VT.getVectorMinNumElements()) && 5915 "Extract subvector overflow!"); 5916 assert(N2C->getAPIntValue().getBitWidth() == 5917 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 5918 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 5919 5920 // Trivial extraction. 5921 if (VT == N1VT) 5922 return N1; 5923 5924 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5925 if (N1.isUndef()) 5926 return getUNDEF(VT); 5927 5928 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5929 // the concat have the same type as the extract. 5930 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 5931 VT == N1.getOperand(0).getValueType()) { 5932 unsigned Factor = VT.getVectorMinNumElements(); 5933 return N1.getOperand(N2C->getZExtValue() / Factor); 5934 } 5935 5936 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5937 // during shuffle legalization. 5938 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5939 VT == N1.getOperand(1).getValueType()) 5940 return N1.getOperand(1); 5941 break; 5942 } 5943 } 5944 5945 // Perform trivial constant folding. 5946 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 5947 return SV; 5948 5949 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5950 return V; 5951 5952 // Canonicalize an UNDEF to the RHS, even over a constant. 5953 if (N1.isUndef()) { 5954 if (TLI->isCommutativeBinOp(Opcode)) { 5955 std::swap(N1, N2); 5956 } else { 5957 switch (Opcode) { 5958 case ISD::SIGN_EXTEND_INREG: 5959 case ISD::SUB: 5960 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5961 case ISD::UDIV: 5962 case ISD::SDIV: 5963 case ISD::UREM: 5964 case ISD::SREM: 5965 case ISD::SSUBSAT: 5966 case ISD::USUBSAT: 5967 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5968 } 5969 } 5970 } 5971 5972 // Fold a bunch of operators when the RHS is undef. 5973 if (N2.isUndef()) { 5974 switch (Opcode) { 5975 case ISD::XOR: 5976 if (N1.isUndef()) 5977 // Handle undef ^ undef -> 0 special case. This is a common 5978 // idiom (misuse). 5979 return getConstant(0, DL, VT); 5980 LLVM_FALLTHROUGH; 5981 case ISD::ADD: 5982 case ISD::SUB: 5983 case ISD::UDIV: 5984 case ISD::SDIV: 5985 case ISD::UREM: 5986 case ISD::SREM: 5987 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5988 case ISD::MUL: 5989 case ISD::AND: 5990 case ISD::SSUBSAT: 5991 case ISD::USUBSAT: 5992 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5993 case ISD::OR: 5994 case ISD::SADDSAT: 5995 case ISD::UADDSAT: 5996 return getAllOnesConstant(DL, VT); 5997 } 5998 } 5999 6000 // Memoize this node if possible. 6001 SDNode *N; 6002 SDVTList VTs = getVTList(VT); 6003 SDValue Ops[] = {N1, N2}; 6004 if (VT != MVT::Glue) { 6005 FoldingSetNodeID ID; 6006 AddNodeIDNode(ID, Opcode, VTs, Ops); 6007 void *IP = nullptr; 6008 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6009 E->intersectFlagsWith(Flags); 6010 return SDValue(E, 0); 6011 } 6012 6013 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6014 N->setFlags(Flags); 6015 createOperands(N, Ops); 6016 CSEMap.InsertNode(N, IP); 6017 } else { 6018 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6019 createOperands(N, Ops); 6020 } 6021 6022 InsertNode(N); 6023 SDValue V = SDValue(N, 0); 6024 NewSDValueDbgMsg(V, "Creating new node: ", this); 6025 return V; 6026 } 6027 6028 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6029 SDValue N1, SDValue N2, SDValue N3) { 6030 SDNodeFlags Flags; 6031 if (Inserter) 6032 Flags = Inserter->getFlags(); 6033 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6034 } 6035 6036 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6037 SDValue N1, SDValue N2, SDValue N3, 6038 const SDNodeFlags Flags) { 6039 assert(N1.getOpcode() != ISD::DELETED_NODE && 6040 N2.getOpcode() != ISD::DELETED_NODE && 6041 N3.getOpcode() != ISD::DELETED_NODE && 6042 "Operand is DELETED_NODE!"); 6043 // Perform various simplifications. 6044 switch (Opcode) { 6045 case ISD::FMA: { 6046 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6047 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6048 N3.getValueType() == VT && "FMA types must match!"); 6049 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6050 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6051 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6052 if (N1CFP && N2CFP && N3CFP) { 6053 APFloat V1 = N1CFP->getValueAPF(); 6054 const APFloat &V2 = N2CFP->getValueAPF(); 6055 const APFloat &V3 = N3CFP->getValueAPF(); 6056 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6057 return getConstantFP(V1, DL, VT); 6058 } 6059 break; 6060 } 6061 case ISD::BUILD_VECTOR: { 6062 // Attempt to simplify BUILD_VECTOR. 6063 SDValue Ops[] = {N1, N2, N3}; 6064 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6065 return V; 6066 break; 6067 } 6068 case ISD::CONCAT_VECTORS: { 6069 SDValue Ops[] = {N1, N2, N3}; 6070 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6071 return V; 6072 break; 6073 } 6074 case ISD::SETCC: { 6075 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6076 assert(N1.getValueType() == N2.getValueType() && 6077 "SETCC operands must have the same type!"); 6078 assert(VT.isVector() == N1.getValueType().isVector() && 6079 "SETCC type should be vector iff the operand type is vector!"); 6080 assert((!VT.isVector() || VT.getVectorElementCount() == 6081 N1.getValueType().getVectorElementCount()) && 6082 "SETCC vector element counts must match!"); 6083 // Use FoldSetCC to simplify SETCC's. 6084 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6085 return V; 6086 // Vector constant folding. 6087 SDValue Ops[] = {N1, N2, N3}; 6088 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6089 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6090 return V; 6091 } 6092 break; 6093 } 6094 case ISD::SELECT: 6095 case ISD::VSELECT: 6096 if (SDValue V = simplifySelect(N1, N2, N3)) 6097 return V; 6098 break; 6099 case ISD::VECTOR_SHUFFLE: 6100 llvm_unreachable("should use getVectorShuffle constructor!"); 6101 case ISD::VECTOR_SPLICE: { 6102 if (cast<ConstantSDNode>(N3)->isNullValue()) 6103 return N1; 6104 break; 6105 } 6106 case ISD::INSERT_VECTOR_ELT: { 6107 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6108 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6109 // for scalable vectors where we will generate appropriate code to 6110 // deal with out-of-bounds cases correctly. 6111 if (N3C && N1.getValueType().isFixedLengthVector() && 6112 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6113 return getUNDEF(VT); 6114 6115 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6116 if (N3.isUndef()) 6117 return getUNDEF(VT); 6118 6119 // If the inserted element is an UNDEF, just use the input vector. 6120 if (N2.isUndef()) 6121 return N1; 6122 6123 break; 6124 } 6125 case ISD::INSERT_SUBVECTOR: { 6126 // Inserting undef into undef is still undef. 6127 if (N1.isUndef() && N2.isUndef()) 6128 return getUNDEF(VT); 6129 6130 EVT N2VT = N2.getValueType(); 6131 assert(VT == N1.getValueType() && 6132 "Dest and insert subvector source types must match!"); 6133 assert(VT.isVector() && N2VT.isVector() && 6134 "Insert subvector VTs must be vectors!"); 6135 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6136 "Cannot insert a scalable vector into a fixed length vector!"); 6137 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6138 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6139 "Insert subvector must be from smaller vector to larger vector!"); 6140 assert(isa<ConstantSDNode>(N3) && 6141 "Insert subvector index must be constant"); 6142 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6143 (N2VT.getVectorMinNumElements() + 6144 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6145 VT.getVectorMinNumElements()) && 6146 "Insert subvector overflow!"); 6147 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6148 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6149 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6150 6151 // Trivial insertion. 6152 if (VT == N2VT) 6153 return N2; 6154 6155 // If this is an insert of an extracted vector into an undef vector, we 6156 // can just use the input to the extract. 6157 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6158 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6159 return N2.getOperand(0); 6160 break; 6161 } 6162 case ISD::BITCAST: 6163 // Fold bit_convert nodes from a type to themselves. 6164 if (N1.getValueType() == VT) 6165 return N1; 6166 break; 6167 } 6168 6169 // Memoize node if it doesn't produce a flag. 6170 SDNode *N; 6171 SDVTList VTs = getVTList(VT); 6172 SDValue Ops[] = {N1, N2, N3}; 6173 if (VT != MVT::Glue) { 6174 FoldingSetNodeID ID; 6175 AddNodeIDNode(ID, Opcode, VTs, Ops); 6176 void *IP = nullptr; 6177 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6178 E->intersectFlagsWith(Flags); 6179 return SDValue(E, 0); 6180 } 6181 6182 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6183 N->setFlags(Flags); 6184 createOperands(N, Ops); 6185 CSEMap.InsertNode(N, IP); 6186 } else { 6187 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6188 createOperands(N, Ops); 6189 } 6190 6191 InsertNode(N); 6192 SDValue V = SDValue(N, 0); 6193 NewSDValueDbgMsg(V, "Creating new node: ", this); 6194 return V; 6195 } 6196 6197 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6198 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6199 SDValue Ops[] = { N1, N2, N3, N4 }; 6200 return getNode(Opcode, DL, VT, Ops); 6201 } 6202 6203 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6204 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6205 SDValue N5) { 6206 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6207 return getNode(Opcode, DL, VT, Ops); 6208 } 6209 6210 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6211 /// the incoming stack arguments to be loaded from the stack. 6212 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6213 SmallVector<SDValue, 8> ArgChains; 6214 6215 // Include the original chain at the beginning of the list. When this is 6216 // used by target LowerCall hooks, this helps legalize find the 6217 // CALLSEQ_BEGIN node. 6218 ArgChains.push_back(Chain); 6219 6220 // Add a chain value for each stack argument. 6221 for (SDNode *U : getEntryNode().getNode()->uses()) 6222 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6223 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6224 if (FI->getIndex() < 0) 6225 ArgChains.push_back(SDValue(L, 1)); 6226 6227 // Build a tokenfactor for all the chains. 6228 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6229 } 6230 6231 /// getMemsetValue - Vectorized representation of the memset value 6232 /// operand. 6233 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6234 const SDLoc &dl) { 6235 assert(!Value.isUndef()); 6236 6237 unsigned NumBits = VT.getScalarSizeInBits(); 6238 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6239 assert(C->getAPIntValue().getBitWidth() == 8); 6240 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6241 if (VT.isInteger()) { 6242 bool IsOpaque = VT.getSizeInBits() > 64 || 6243 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6244 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6245 } 6246 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6247 VT); 6248 } 6249 6250 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6251 EVT IntVT = VT.getScalarType(); 6252 if (!IntVT.isInteger()) 6253 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6254 6255 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6256 if (NumBits > 8) { 6257 // Use a multiplication with 0x010101... to extend the input to the 6258 // required length. 6259 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6260 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6261 DAG.getConstant(Magic, dl, IntVT)); 6262 } 6263 6264 if (VT != Value.getValueType() && !VT.isInteger()) 6265 Value = DAG.getBitcast(VT.getScalarType(), Value); 6266 if (VT != Value.getValueType()) 6267 Value = DAG.getSplatBuildVector(VT, dl, Value); 6268 6269 return Value; 6270 } 6271 6272 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6273 /// used when a memcpy is turned into a memset when the source is a constant 6274 /// string ptr. 6275 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6276 const TargetLowering &TLI, 6277 const ConstantDataArraySlice &Slice) { 6278 // Handle vector with all elements zero. 6279 if (Slice.Array == nullptr) { 6280 if (VT.isInteger()) 6281 return DAG.getConstant(0, dl, VT); 6282 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6283 return DAG.getConstantFP(0.0, dl, VT); 6284 if (VT.isVector()) { 6285 unsigned NumElts = VT.getVectorNumElements(); 6286 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6287 return DAG.getNode(ISD::BITCAST, dl, VT, 6288 DAG.getConstant(0, dl, 6289 EVT::getVectorVT(*DAG.getContext(), 6290 EltVT, NumElts))); 6291 } 6292 llvm_unreachable("Expected type!"); 6293 } 6294 6295 assert(!VT.isVector() && "Can't handle vector type here!"); 6296 unsigned NumVTBits = VT.getSizeInBits(); 6297 unsigned NumVTBytes = NumVTBits / 8; 6298 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6299 6300 APInt Val(NumVTBits, 0); 6301 if (DAG.getDataLayout().isLittleEndian()) { 6302 for (unsigned i = 0; i != NumBytes; ++i) 6303 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6304 } else { 6305 for (unsigned i = 0; i != NumBytes; ++i) 6306 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6307 } 6308 6309 // If the "cost" of materializing the integer immediate is less than the cost 6310 // of a load, then it is cost effective to turn the load into the immediate. 6311 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6312 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6313 return DAG.getConstant(Val, dl, VT); 6314 return SDValue(nullptr, 0); 6315 } 6316 6317 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6318 const SDLoc &DL, 6319 const SDNodeFlags Flags) { 6320 EVT VT = Base.getValueType(); 6321 SDValue Index; 6322 6323 if (Offset.isScalable()) 6324 Index = getVScale(DL, Base.getValueType(), 6325 APInt(Base.getValueSizeInBits().getFixedSize(), 6326 Offset.getKnownMinSize())); 6327 else 6328 Index = getConstant(Offset.getFixedSize(), DL, VT); 6329 6330 return getMemBasePlusOffset(Base, Index, DL, Flags); 6331 } 6332 6333 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6334 const SDLoc &DL, 6335 const SDNodeFlags Flags) { 6336 assert(Offset.getValueType().isInteger()); 6337 EVT BasePtrVT = Ptr.getValueType(); 6338 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6339 } 6340 6341 /// Returns true if memcpy source is constant data. 6342 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6343 uint64_t SrcDelta = 0; 6344 GlobalAddressSDNode *G = nullptr; 6345 if (Src.getOpcode() == ISD::GlobalAddress) 6346 G = cast<GlobalAddressSDNode>(Src); 6347 else if (Src.getOpcode() == ISD::ADD && 6348 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6349 Src.getOperand(1).getOpcode() == ISD::Constant) { 6350 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6351 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6352 } 6353 if (!G) 6354 return false; 6355 6356 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6357 SrcDelta + G->getOffset()); 6358 } 6359 6360 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6361 SelectionDAG &DAG) { 6362 // On Darwin, -Os means optimize for size without hurting performance, so 6363 // only really optimize for size when -Oz (MinSize) is used. 6364 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6365 return MF.getFunction().hasMinSize(); 6366 return DAG.shouldOptForSize(); 6367 } 6368 6369 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6370 SmallVector<SDValue, 32> &OutChains, unsigned From, 6371 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6372 SmallVector<SDValue, 16> &OutStoreChains) { 6373 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6374 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6375 SmallVector<SDValue, 16> GluedLoadChains; 6376 for (unsigned i = From; i < To; ++i) { 6377 OutChains.push_back(OutLoadChains[i]); 6378 GluedLoadChains.push_back(OutLoadChains[i]); 6379 } 6380 6381 // Chain for all loads. 6382 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6383 GluedLoadChains); 6384 6385 for (unsigned i = From; i < To; ++i) { 6386 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6387 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6388 ST->getBasePtr(), ST->getMemoryVT(), 6389 ST->getMemOperand()); 6390 OutChains.push_back(NewStore); 6391 } 6392 } 6393 6394 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6395 SDValue Chain, SDValue Dst, SDValue Src, 6396 uint64_t Size, Align Alignment, 6397 bool isVol, bool AlwaysInline, 6398 MachinePointerInfo DstPtrInfo, 6399 MachinePointerInfo SrcPtrInfo, 6400 const AAMDNodes &AAInfo) { 6401 // Turn a memcpy of undef to nop. 6402 // FIXME: We need to honor volatile even is Src is undef. 6403 if (Src.isUndef()) 6404 return Chain; 6405 6406 // Expand memcpy to a series of load and store ops if the size operand falls 6407 // below a certain threshold. 6408 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6409 // rather than maybe a humongous number of loads and stores. 6410 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6411 const DataLayout &DL = DAG.getDataLayout(); 6412 LLVMContext &C = *DAG.getContext(); 6413 std::vector<EVT> MemOps; 6414 bool DstAlignCanChange = false; 6415 MachineFunction &MF = DAG.getMachineFunction(); 6416 MachineFrameInfo &MFI = MF.getFrameInfo(); 6417 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6418 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6419 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6420 DstAlignCanChange = true; 6421 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6422 if (!SrcAlign || Alignment > *SrcAlign) 6423 SrcAlign = Alignment; 6424 assert(SrcAlign && "SrcAlign must be set"); 6425 ConstantDataArraySlice Slice; 6426 // If marked as volatile, perform a copy even when marked as constant. 6427 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6428 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6429 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6430 const MemOp Op = isZeroConstant 6431 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6432 /*IsZeroMemset*/ true, isVol) 6433 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6434 *SrcAlign, isVol, CopyFromConstant); 6435 if (!TLI.findOptimalMemOpLowering( 6436 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6437 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6438 return SDValue(); 6439 6440 if (DstAlignCanChange) { 6441 Type *Ty = MemOps[0].getTypeForEVT(C); 6442 Align NewAlign = DL.getABITypeAlign(Ty); 6443 6444 // Don't promote to an alignment that would require dynamic stack 6445 // realignment. 6446 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6447 if (!TRI->hasStackRealignment(MF)) 6448 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6449 NewAlign = NewAlign / 2; 6450 6451 if (NewAlign > Alignment) { 6452 // Give the stack frame object a larger alignment if needed. 6453 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6454 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6455 Alignment = NewAlign; 6456 } 6457 } 6458 6459 // Prepare AAInfo for loads/stores after lowering this memcpy. 6460 AAMDNodes NewAAInfo = AAInfo; 6461 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6462 6463 MachineMemOperand::Flags MMOFlags = 6464 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6465 SmallVector<SDValue, 16> OutLoadChains; 6466 SmallVector<SDValue, 16> OutStoreChains; 6467 SmallVector<SDValue, 32> OutChains; 6468 unsigned NumMemOps = MemOps.size(); 6469 uint64_t SrcOff = 0, DstOff = 0; 6470 for (unsigned i = 0; i != NumMemOps; ++i) { 6471 EVT VT = MemOps[i]; 6472 unsigned VTSize = VT.getSizeInBits() / 8; 6473 SDValue Value, Store; 6474 6475 if (VTSize > Size) { 6476 // Issuing an unaligned load / store pair that overlaps with the previous 6477 // pair. Adjust the offset accordingly. 6478 assert(i == NumMemOps-1 && i != 0); 6479 SrcOff -= VTSize - Size; 6480 DstOff -= VTSize - Size; 6481 } 6482 6483 if (CopyFromConstant && 6484 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6485 // It's unlikely a store of a vector immediate can be done in a single 6486 // instruction. It would require a load from a constantpool first. 6487 // We only handle zero vectors here. 6488 // FIXME: Handle other cases where store of vector immediate is done in 6489 // a single instruction. 6490 ConstantDataArraySlice SubSlice; 6491 if (SrcOff < Slice.Length) { 6492 SubSlice = Slice; 6493 SubSlice.move(SrcOff); 6494 } else { 6495 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6496 SubSlice.Array = nullptr; 6497 SubSlice.Offset = 0; 6498 SubSlice.Length = VTSize; 6499 } 6500 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6501 if (Value.getNode()) { 6502 Store = DAG.getStore( 6503 Chain, dl, Value, 6504 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6505 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6506 OutChains.push_back(Store); 6507 } 6508 } 6509 6510 if (!Store.getNode()) { 6511 // The type might not be legal for the target. This should only happen 6512 // if the type is smaller than a legal type, as on PPC, so the right 6513 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6514 // to Load/Store if NVT==VT. 6515 // FIXME does the case above also need this? 6516 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6517 assert(NVT.bitsGE(VT)); 6518 6519 bool isDereferenceable = 6520 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6521 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6522 if (isDereferenceable) 6523 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6524 6525 Value = DAG.getExtLoad( 6526 ISD::EXTLOAD, dl, NVT, Chain, 6527 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6528 SrcPtrInfo.getWithOffset(SrcOff), VT, 6529 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6530 OutLoadChains.push_back(Value.getValue(1)); 6531 6532 Store = DAG.getTruncStore( 6533 Chain, dl, Value, 6534 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6535 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6536 OutStoreChains.push_back(Store); 6537 } 6538 SrcOff += VTSize; 6539 DstOff += VTSize; 6540 Size -= VTSize; 6541 } 6542 6543 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6544 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6545 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6546 6547 if (NumLdStInMemcpy) { 6548 // It may be that memcpy might be converted to memset if it's memcpy 6549 // of constants. In such a case, we won't have loads and stores, but 6550 // just stores. In the absence of loads, there is nothing to gang up. 6551 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6552 // If target does not care, just leave as it. 6553 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6554 OutChains.push_back(OutLoadChains[i]); 6555 OutChains.push_back(OutStoreChains[i]); 6556 } 6557 } else { 6558 // Ld/St less than/equal limit set by target. 6559 if (NumLdStInMemcpy <= GluedLdStLimit) { 6560 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6561 NumLdStInMemcpy, OutLoadChains, 6562 OutStoreChains); 6563 } else { 6564 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6565 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6566 unsigned GlueIter = 0; 6567 6568 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6569 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6570 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6571 6572 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6573 OutLoadChains, OutStoreChains); 6574 GlueIter += GluedLdStLimit; 6575 } 6576 6577 // Residual ld/st. 6578 if (RemainingLdStInMemcpy) { 6579 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6580 RemainingLdStInMemcpy, OutLoadChains, 6581 OutStoreChains); 6582 } 6583 } 6584 } 6585 } 6586 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6587 } 6588 6589 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6590 SDValue Chain, SDValue Dst, SDValue Src, 6591 uint64_t Size, Align Alignment, 6592 bool isVol, bool AlwaysInline, 6593 MachinePointerInfo DstPtrInfo, 6594 MachinePointerInfo SrcPtrInfo, 6595 const AAMDNodes &AAInfo) { 6596 // Turn a memmove of undef to nop. 6597 // FIXME: We need to honor volatile even is Src is undef. 6598 if (Src.isUndef()) 6599 return Chain; 6600 6601 // Expand memmove to a series of load and store ops if the size operand falls 6602 // below a certain threshold. 6603 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6604 const DataLayout &DL = DAG.getDataLayout(); 6605 LLVMContext &C = *DAG.getContext(); 6606 std::vector<EVT> MemOps; 6607 bool DstAlignCanChange = false; 6608 MachineFunction &MF = DAG.getMachineFunction(); 6609 MachineFrameInfo &MFI = MF.getFrameInfo(); 6610 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6611 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6612 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6613 DstAlignCanChange = true; 6614 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6615 if (!SrcAlign || Alignment > *SrcAlign) 6616 SrcAlign = Alignment; 6617 assert(SrcAlign && "SrcAlign must be set"); 6618 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6619 if (!TLI.findOptimalMemOpLowering( 6620 MemOps, Limit, 6621 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6622 /*IsVolatile*/ true), 6623 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6624 MF.getFunction().getAttributes())) 6625 return SDValue(); 6626 6627 if (DstAlignCanChange) { 6628 Type *Ty = MemOps[0].getTypeForEVT(C); 6629 Align NewAlign = DL.getABITypeAlign(Ty); 6630 if (NewAlign > Alignment) { 6631 // Give the stack frame object a larger alignment if needed. 6632 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6633 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6634 Alignment = NewAlign; 6635 } 6636 } 6637 6638 // Prepare AAInfo for loads/stores after lowering this memmove. 6639 AAMDNodes NewAAInfo = AAInfo; 6640 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6641 6642 MachineMemOperand::Flags MMOFlags = 6643 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6644 uint64_t SrcOff = 0, DstOff = 0; 6645 SmallVector<SDValue, 8> LoadValues; 6646 SmallVector<SDValue, 8> LoadChains; 6647 SmallVector<SDValue, 8> OutChains; 6648 unsigned NumMemOps = MemOps.size(); 6649 for (unsigned i = 0; i < NumMemOps; i++) { 6650 EVT VT = MemOps[i]; 6651 unsigned VTSize = VT.getSizeInBits() / 8; 6652 SDValue Value; 6653 6654 bool isDereferenceable = 6655 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6656 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6657 if (isDereferenceable) 6658 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6659 6660 Value = DAG.getLoad( 6661 VT, dl, Chain, 6662 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6663 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6664 LoadValues.push_back(Value); 6665 LoadChains.push_back(Value.getValue(1)); 6666 SrcOff += VTSize; 6667 } 6668 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6669 OutChains.clear(); 6670 for (unsigned i = 0; i < NumMemOps; i++) { 6671 EVT VT = MemOps[i]; 6672 unsigned VTSize = VT.getSizeInBits() / 8; 6673 SDValue Store; 6674 6675 Store = DAG.getStore( 6676 Chain, dl, LoadValues[i], 6677 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6678 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6679 OutChains.push_back(Store); 6680 DstOff += VTSize; 6681 } 6682 6683 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6684 } 6685 6686 /// Lower the call to 'memset' intrinsic function into a series of store 6687 /// operations. 6688 /// 6689 /// \param DAG Selection DAG where lowered code is placed. 6690 /// \param dl Link to corresponding IR location. 6691 /// \param Chain Control flow dependency. 6692 /// \param Dst Pointer to destination memory location. 6693 /// \param Src Value of byte to write into the memory. 6694 /// \param Size Number of bytes to write. 6695 /// \param Alignment Alignment of the destination in bytes. 6696 /// \param isVol True if destination is volatile. 6697 /// \param DstPtrInfo IR information on the memory pointer. 6698 /// \returns New head in the control flow, if lowering was successful, empty 6699 /// SDValue otherwise. 6700 /// 6701 /// The function tries to replace 'llvm.memset' intrinsic with several store 6702 /// operations and value calculation code. This is usually profitable for small 6703 /// memory size. 6704 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6705 SDValue Chain, SDValue Dst, SDValue Src, 6706 uint64_t Size, Align Alignment, bool isVol, 6707 MachinePointerInfo DstPtrInfo, 6708 const AAMDNodes &AAInfo) { 6709 // Turn a memset of undef to nop. 6710 // FIXME: We need to honor volatile even is Src is undef. 6711 if (Src.isUndef()) 6712 return Chain; 6713 6714 // Expand memset to a series of load/store ops if the size operand 6715 // falls below a certain threshold. 6716 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6717 std::vector<EVT> MemOps; 6718 bool DstAlignCanChange = false; 6719 MachineFunction &MF = DAG.getMachineFunction(); 6720 MachineFrameInfo &MFI = MF.getFrameInfo(); 6721 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6722 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6723 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6724 DstAlignCanChange = true; 6725 bool IsZeroVal = 6726 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 6727 if (!TLI.findOptimalMemOpLowering( 6728 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6729 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6730 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6731 return SDValue(); 6732 6733 if (DstAlignCanChange) { 6734 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6735 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6736 if (NewAlign > Alignment) { 6737 // Give the stack frame object a larger alignment if needed. 6738 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6739 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6740 Alignment = NewAlign; 6741 } 6742 } 6743 6744 SmallVector<SDValue, 8> OutChains; 6745 uint64_t DstOff = 0; 6746 unsigned NumMemOps = MemOps.size(); 6747 6748 // Find the largest store and generate the bit pattern for it. 6749 EVT LargestVT = MemOps[0]; 6750 for (unsigned i = 1; i < NumMemOps; i++) 6751 if (MemOps[i].bitsGT(LargestVT)) 6752 LargestVT = MemOps[i]; 6753 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6754 6755 // Prepare AAInfo for loads/stores after lowering this memset. 6756 AAMDNodes NewAAInfo = AAInfo; 6757 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6758 6759 for (unsigned i = 0; i < NumMemOps; i++) { 6760 EVT VT = MemOps[i]; 6761 unsigned VTSize = VT.getSizeInBits() / 8; 6762 if (VTSize > Size) { 6763 // Issuing an unaligned load / store pair that overlaps with the previous 6764 // pair. Adjust the offset accordingly. 6765 assert(i == NumMemOps-1 && i != 0); 6766 DstOff -= VTSize - Size; 6767 } 6768 6769 // If this store is smaller than the largest store see whether we can get 6770 // the smaller value for free with a truncate. 6771 SDValue Value = MemSetValue; 6772 if (VT.bitsLT(LargestVT)) { 6773 if (!LargestVT.isVector() && !VT.isVector() && 6774 TLI.isTruncateFree(LargestVT, VT)) 6775 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6776 else 6777 Value = getMemsetValue(Src, VT, DAG, dl); 6778 } 6779 assert(Value.getValueType() == VT && "Value with wrong type."); 6780 SDValue Store = DAG.getStore( 6781 Chain, dl, Value, 6782 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6783 DstPtrInfo.getWithOffset(DstOff), Alignment, 6784 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 6785 NewAAInfo); 6786 OutChains.push_back(Store); 6787 DstOff += VT.getSizeInBits() / 8; 6788 Size -= VTSize; 6789 } 6790 6791 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6792 } 6793 6794 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6795 unsigned AS) { 6796 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6797 // pointer operands can be losslessly bitcasted to pointers of address space 0 6798 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6799 report_fatal_error("cannot lower memory intrinsic in address space " + 6800 Twine(AS)); 6801 } 6802 } 6803 6804 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6805 SDValue Src, SDValue Size, Align Alignment, 6806 bool isVol, bool AlwaysInline, bool isTailCall, 6807 MachinePointerInfo DstPtrInfo, 6808 MachinePointerInfo SrcPtrInfo, 6809 const AAMDNodes &AAInfo) { 6810 // Check to see if we should lower the memcpy to loads and stores first. 6811 // For cases within the target-specified limits, this is the best choice. 6812 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6813 if (ConstantSize) { 6814 // Memcpy with size zero? Just return the original chain. 6815 if (ConstantSize->isZero()) 6816 return Chain; 6817 6818 SDValue Result = getMemcpyLoadsAndStores( 6819 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6820 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6821 if (Result.getNode()) 6822 return Result; 6823 } 6824 6825 // Then check to see if we should lower the memcpy with target-specific 6826 // code. If the target chooses to do this, this is the next best. 6827 if (TSI) { 6828 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6829 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6830 DstPtrInfo, SrcPtrInfo); 6831 if (Result.getNode()) 6832 return Result; 6833 } 6834 6835 // If we really need inline code and the target declined to provide it, 6836 // use a (potentially long) sequence of loads and stores. 6837 if (AlwaysInline) { 6838 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6839 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6840 ConstantSize->getZExtValue(), Alignment, 6841 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 6842 } 6843 6844 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6845 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6846 6847 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6848 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6849 // respect volatile, so they may do things like read or write memory 6850 // beyond the given memory regions. But fixing this isn't easy, and most 6851 // people don't care. 6852 6853 // Emit a library call. 6854 TargetLowering::ArgListTy Args; 6855 TargetLowering::ArgListEntry Entry; 6856 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6857 Entry.Node = Dst; Args.push_back(Entry); 6858 Entry.Node = Src; Args.push_back(Entry); 6859 6860 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6861 Entry.Node = Size; Args.push_back(Entry); 6862 // FIXME: pass in SDLoc 6863 TargetLowering::CallLoweringInfo CLI(*this); 6864 CLI.setDebugLoc(dl) 6865 .setChain(Chain) 6866 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6867 Dst.getValueType().getTypeForEVT(*getContext()), 6868 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6869 TLI->getPointerTy(getDataLayout())), 6870 std::move(Args)) 6871 .setDiscardResult() 6872 .setTailCall(isTailCall); 6873 6874 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6875 return CallResult.second; 6876 } 6877 6878 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6879 SDValue Dst, unsigned DstAlign, 6880 SDValue Src, unsigned SrcAlign, 6881 SDValue Size, Type *SizeTy, 6882 unsigned ElemSz, bool isTailCall, 6883 MachinePointerInfo DstPtrInfo, 6884 MachinePointerInfo SrcPtrInfo) { 6885 // Emit a library call. 6886 TargetLowering::ArgListTy Args; 6887 TargetLowering::ArgListEntry Entry; 6888 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6889 Entry.Node = Dst; 6890 Args.push_back(Entry); 6891 6892 Entry.Node = Src; 6893 Args.push_back(Entry); 6894 6895 Entry.Ty = SizeTy; 6896 Entry.Node = Size; 6897 Args.push_back(Entry); 6898 6899 RTLIB::Libcall LibraryCall = 6900 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6901 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6902 report_fatal_error("Unsupported element size"); 6903 6904 TargetLowering::CallLoweringInfo CLI(*this); 6905 CLI.setDebugLoc(dl) 6906 .setChain(Chain) 6907 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6908 Type::getVoidTy(*getContext()), 6909 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6910 TLI->getPointerTy(getDataLayout())), 6911 std::move(Args)) 6912 .setDiscardResult() 6913 .setTailCall(isTailCall); 6914 6915 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6916 return CallResult.second; 6917 } 6918 6919 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6920 SDValue Src, SDValue Size, Align Alignment, 6921 bool isVol, bool isTailCall, 6922 MachinePointerInfo DstPtrInfo, 6923 MachinePointerInfo SrcPtrInfo, 6924 const AAMDNodes &AAInfo) { 6925 // Check to see if we should lower the memmove to loads and stores first. 6926 // For cases within the target-specified limits, this is the best choice. 6927 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6928 if (ConstantSize) { 6929 // Memmove with size zero? Just return the original chain. 6930 if (ConstantSize->isZero()) 6931 return Chain; 6932 6933 SDValue Result = getMemmoveLoadsAndStores( 6934 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6935 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6936 if (Result.getNode()) 6937 return Result; 6938 } 6939 6940 // Then check to see if we should lower the memmove with target-specific 6941 // code. If the target chooses to do this, this is the next best. 6942 if (TSI) { 6943 SDValue Result = 6944 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 6945 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 6946 if (Result.getNode()) 6947 return Result; 6948 } 6949 6950 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6951 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6952 6953 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6954 // not be safe. See memcpy above for more details. 6955 6956 // Emit a library call. 6957 TargetLowering::ArgListTy Args; 6958 TargetLowering::ArgListEntry Entry; 6959 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6960 Entry.Node = Dst; Args.push_back(Entry); 6961 Entry.Node = Src; Args.push_back(Entry); 6962 6963 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6964 Entry.Node = Size; Args.push_back(Entry); 6965 // FIXME: pass in SDLoc 6966 TargetLowering::CallLoweringInfo CLI(*this); 6967 CLI.setDebugLoc(dl) 6968 .setChain(Chain) 6969 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6970 Dst.getValueType().getTypeForEVT(*getContext()), 6971 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6972 TLI->getPointerTy(getDataLayout())), 6973 std::move(Args)) 6974 .setDiscardResult() 6975 .setTailCall(isTailCall); 6976 6977 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6978 return CallResult.second; 6979 } 6980 6981 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6982 SDValue Dst, unsigned DstAlign, 6983 SDValue Src, unsigned SrcAlign, 6984 SDValue Size, Type *SizeTy, 6985 unsigned ElemSz, bool isTailCall, 6986 MachinePointerInfo DstPtrInfo, 6987 MachinePointerInfo SrcPtrInfo) { 6988 // Emit a library call. 6989 TargetLowering::ArgListTy Args; 6990 TargetLowering::ArgListEntry Entry; 6991 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6992 Entry.Node = Dst; 6993 Args.push_back(Entry); 6994 6995 Entry.Node = Src; 6996 Args.push_back(Entry); 6997 6998 Entry.Ty = SizeTy; 6999 Entry.Node = Size; 7000 Args.push_back(Entry); 7001 7002 RTLIB::Libcall LibraryCall = 7003 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7004 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7005 report_fatal_error("Unsupported element size"); 7006 7007 TargetLowering::CallLoweringInfo CLI(*this); 7008 CLI.setDebugLoc(dl) 7009 .setChain(Chain) 7010 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7011 Type::getVoidTy(*getContext()), 7012 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7013 TLI->getPointerTy(getDataLayout())), 7014 std::move(Args)) 7015 .setDiscardResult() 7016 .setTailCall(isTailCall); 7017 7018 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7019 return CallResult.second; 7020 } 7021 7022 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7023 SDValue Src, SDValue Size, Align Alignment, 7024 bool isVol, bool isTailCall, 7025 MachinePointerInfo DstPtrInfo, 7026 const AAMDNodes &AAInfo) { 7027 // Check to see if we should lower the memset to stores first. 7028 // For cases within the target-specified limits, this is the best choice. 7029 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7030 if (ConstantSize) { 7031 // Memset with size zero? Just return the original chain. 7032 if (ConstantSize->isZero()) 7033 return Chain; 7034 7035 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7036 ConstantSize->getZExtValue(), Alignment, 7037 isVol, DstPtrInfo, AAInfo); 7038 7039 if (Result.getNode()) 7040 return Result; 7041 } 7042 7043 // Then check to see if we should lower the memset with target-specific 7044 // code. If the target chooses to do this, this is the next best. 7045 if (TSI) { 7046 SDValue Result = TSI->EmitTargetCodeForMemset( 7047 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7048 if (Result.getNode()) 7049 return Result; 7050 } 7051 7052 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7053 7054 // Emit a library call. 7055 TargetLowering::ArgListTy Args; 7056 TargetLowering::ArgListEntry Entry; 7057 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7058 Args.push_back(Entry); 7059 Entry.Node = Src; 7060 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7061 Args.push_back(Entry); 7062 Entry.Node = Size; 7063 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7064 Args.push_back(Entry); 7065 7066 // FIXME: pass in SDLoc 7067 TargetLowering::CallLoweringInfo CLI(*this); 7068 CLI.setDebugLoc(dl) 7069 .setChain(Chain) 7070 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7071 Dst.getValueType().getTypeForEVT(*getContext()), 7072 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7073 TLI->getPointerTy(getDataLayout())), 7074 std::move(Args)) 7075 .setDiscardResult() 7076 .setTailCall(isTailCall); 7077 7078 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7079 return CallResult.second; 7080 } 7081 7082 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7083 SDValue Dst, unsigned DstAlign, 7084 SDValue Value, SDValue Size, Type *SizeTy, 7085 unsigned ElemSz, bool isTailCall, 7086 MachinePointerInfo DstPtrInfo) { 7087 // Emit a library call. 7088 TargetLowering::ArgListTy Args; 7089 TargetLowering::ArgListEntry Entry; 7090 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7091 Entry.Node = Dst; 7092 Args.push_back(Entry); 7093 7094 Entry.Ty = Type::getInt8Ty(*getContext()); 7095 Entry.Node = Value; 7096 Args.push_back(Entry); 7097 7098 Entry.Ty = SizeTy; 7099 Entry.Node = Size; 7100 Args.push_back(Entry); 7101 7102 RTLIB::Libcall LibraryCall = 7103 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7104 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7105 report_fatal_error("Unsupported element size"); 7106 7107 TargetLowering::CallLoweringInfo CLI(*this); 7108 CLI.setDebugLoc(dl) 7109 .setChain(Chain) 7110 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7111 Type::getVoidTy(*getContext()), 7112 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7113 TLI->getPointerTy(getDataLayout())), 7114 std::move(Args)) 7115 .setDiscardResult() 7116 .setTailCall(isTailCall); 7117 7118 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7119 return CallResult.second; 7120 } 7121 7122 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7123 SDVTList VTList, ArrayRef<SDValue> Ops, 7124 MachineMemOperand *MMO) { 7125 FoldingSetNodeID ID; 7126 ID.AddInteger(MemVT.getRawBits()); 7127 AddNodeIDNode(ID, Opcode, VTList, Ops); 7128 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7129 void* IP = nullptr; 7130 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7131 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7132 return SDValue(E, 0); 7133 } 7134 7135 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7136 VTList, MemVT, MMO); 7137 createOperands(N, Ops); 7138 7139 CSEMap.InsertNode(N, IP); 7140 InsertNode(N); 7141 return SDValue(N, 0); 7142 } 7143 7144 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7145 EVT MemVT, SDVTList VTs, SDValue Chain, 7146 SDValue Ptr, SDValue Cmp, SDValue Swp, 7147 MachineMemOperand *MMO) { 7148 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7149 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7150 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7151 7152 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7153 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7154 } 7155 7156 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7157 SDValue Chain, SDValue Ptr, SDValue Val, 7158 MachineMemOperand *MMO) { 7159 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7160 Opcode == ISD::ATOMIC_LOAD_SUB || 7161 Opcode == ISD::ATOMIC_LOAD_AND || 7162 Opcode == ISD::ATOMIC_LOAD_CLR || 7163 Opcode == ISD::ATOMIC_LOAD_OR || 7164 Opcode == ISD::ATOMIC_LOAD_XOR || 7165 Opcode == ISD::ATOMIC_LOAD_NAND || 7166 Opcode == ISD::ATOMIC_LOAD_MIN || 7167 Opcode == ISD::ATOMIC_LOAD_MAX || 7168 Opcode == ISD::ATOMIC_LOAD_UMIN || 7169 Opcode == ISD::ATOMIC_LOAD_UMAX || 7170 Opcode == ISD::ATOMIC_LOAD_FADD || 7171 Opcode == ISD::ATOMIC_LOAD_FSUB || 7172 Opcode == ISD::ATOMIC_SWAP || 7173 Opcode == ISD::ATOMIC_STORE) && 7174 "Invalid Atomic Op"); 7175 7176 EVT VT = Val.getValueType(); 7177 7178 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7179 getVTList(VT, MVT::Other); 7180 SDValue Ops[] = {Chain, Ptr, Val}; 7181 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7182 } 7183 7184 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7185 EVT VT, SDValue Chain, SDValue Ptr, 7186 MachineMemOperand *MMO) { 7187 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7188 7189 SDVTList VTs = getVTList(VT, MVT::Other); 7190 SDValue Ops[] = {Chain, Ptr}; 7191 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7192 } 7193 7194 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7195 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7196 if (Ops.size() == 1) 7197 return Ops[0]; 7198 7199 SmallVector<EVT, 4> VTs; 7200 VTs.reserve(Ops.size()); 7201 for (const SDValue &Op : Ops) 7202 VTs.push_back(Op.getValueType()); 7203 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7204 } 7205 7206 SDValue SelectionDAG::getMemIntrinsicNode( 7207 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7208 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7209 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7210 if (!Size && MemVT.isScalableVector()) 7211 Size = MemoryLocation::UnknownSize; 7212 else if (!Size) 7213 Size = MemVT.getStoreSize(); 7214 7215 MachineFunction &MF = getMachineFunction(); 7216 MachineMemOperand *MMO = 7217 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7218 7219 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7220 } 7221 7222 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7223 SDVTList VTList, 7224 ArrayRef<SDValue> Ops, EVT MemVT, 7225 MachineMemOperand *MMO) { 7226 assert((Opcode == ISD::INTRINSIC_VOID || 7227 Opcode == ISD::INTRINSIC_W_CHAIN || 7228 Opcode == ISD::PREFETCH || 7229 ((int)Opcode <= std::numeric_limits<int>::max() && 7230 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7231 "Opcode is not a memory-accessing opcode!"); 7232 7233 // Memoize the node unless it returns a flag. 7234 MemIntrinsicSDNode *N; 7235 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7236 FoldingSetNodeID ID; 7237 AddNodeIDNode(ID, Opcode, VTList, Ops); 7238 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7239 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7240 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7241 void *IP = nullptr; 7242 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7243 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7244 return SDValue(E, 0); 7245 } 7246 7247 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7248 VTList, MemVT, MMO); 7249 createOperands(N, Ops); 7250 7251 CSEMap.InsertNode(N, IP); 7252 } else { 7253 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7254 VTList, MemVT, MMO); 7255 createOperands(N, Ops); 7256 } 7257 InsertNode(N); 7258 SDValue V(N, 0); 7259 NewSDValueDbgMsg(V, "Creating new node: ", this); 7260 return V; 7261 } 7262 7263 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7264 SDValue Chain, int FrameIndex, 7265 int64_t Size, int64_t Offset) { 7266 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7267 const auto VTs = getVTList(MVT::Other); 7268 SDValue Ops[2] = { 7269 Chain, 7270 getFrameIndex(FrameIndex, 7271 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7272 true)}; 7273 7274 FoldingSetNodeID ID; 7275 AddNodeIDNode(ID, Opcode, VTs, Ops); 7276 ID.AddInteger(FrameIndex); 7277 ID.AddInteger(Size); 7278 ID.AddInteger(Offset); 7279 void *IP = nullptr; 7280 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7281 return SDValue(E, 0); 7282 7283 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7284 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7285 createOperands(N, Ops); 7286 CSEMap.InsertNode(N, IP); 7287 InsertNode(N); 7288 SDValue V(N, 0); 7289 NewSDValueDbgMsg(V, "Creating new node: ", this); 7290 return V; 7291 } 7292 7293 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7294 uint64_t Guid, uint64_t Index, 7295 uint32_t Attr) { 7296 const unsigned Opcode = ISD::PSEUDO_PROBE; 7297 const auto VTs = getVTList(MVT::Other); 7298 SDValue Ops[] = {Chain}; 7299 FoldingSetNodeID ID; 7300 AddNodeIDNode(ID, Opcode, VTs, Ops); 7301 ID.AddInteger(Guid); 7302 ID.AddInteger(Index); 7303 void *IP = nullptr; 7304 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7305 return SDValue(E, 0); 7306 7307 auto *N = newSDNode<PseudoProbeSDNode>( 7308 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7309 createOperands(N, Ops); 7310 CSEMap.InsertNode(N, IP); 7311 InsertNode(N); 7312 SDValue V(N, 0); 7313 NewSDValueDbgMsg(V, "Creating new node: ", this); 7314 return V; 7315 } 7316 7317 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7318 /// MachinePointerInfo record from it. This is particularly useful because the 7319 /// code generator has many cases where it doesn't bother passing in a 7320 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7321 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7322 SelectionDAG &DAG, SDValue Ptr, 7323 int64_t Offset = 0) { 7324 // If this is FI+Offset, we can model it. 7325 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7326 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7327 FI->getIndex(), Offset); 7328 7329 // If this is (FI+Offset1)+Offset2, we can model it. 7330 if (Ptr.getOpcode() != ISD::ADD || 7331 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7332 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7333 return Info; 7334 7335 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7336 return MachinePointerInfo::getFixedStack( 7337 DAG.getMachineFunction(), FI, 7338 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7339 } 7340 7341 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7342 /// MachinePointerInfo record from it. This is particularly useful because the 7343 /// code generator has many cases where it doesn't bother passing in a 7344 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7345 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7346 SelectionDAG &DAG, SDValue Ptr, 7347 SDValue OffsetOp) { 7348 // If the 'Offset' value isn't a constant, we can't handle this. 7349 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7350 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7351 if (OffsetOp.isUndef()) 7352 return InferPointerInfo(Info, DAG, Ptr); 7353 return Info; 7354 } 7355 7356 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7357 EVT VT, const SDLoc &dl, SDValue Chain, 7358 SDValue Ptr, SDValue Offset, 7359 MachinePointerInfo PtrInfo, EVT MemVT, 7360 Align Alignment, 7361 MachineMemOperand::Flags MMOFlags, 7362 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7363 assert(Chain.getValueType() == MVT::Other && 7364 "Invalid chain type"); 7365 7366 MMOFlags |= MachineMemOperand::MOLoad; 7367 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7368 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7369 // clients. 7370 if (PtrInfo.V.isNull()) 7371 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7372 7373 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7374 MachineFunction &MF = getMachineFunction(); 7375 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7376 Alignment, AAInfo, Ranges); 7377 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7378 } 7379 7380 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7381 EVT VT, const SDLoc &dl, SDValue Chain, 7382 SDValue Ptr, SDValue Offset, EVT MemVT, 7383 MachineMemOperand *MMO) { 7384 if (VT == MemVT) { 7385 ExtType = ISD::NON_EXTLOAD; 7386 } else if (ExtType == ISD::NON_EXTLOAD) { 7387 assert(VT == MemVT && "Non-extending load from different memory type!"); 7388 } else { 7389 // Extending load. 7390 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7391 "Should only be an extending load, not truncating!"); 7392 assert(VT.isInteger() == MemVT.isInteger() && 7393 "Cannot convert from FP to Int or Int -> FP!"); 7394 assert(VT.isVector() == MemVT.isVector() && 7395 "Cannot use an ext load to convert to or from a vector!"); 7396 assert((!VT.isVector() || 7397 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7398 "Cannot use an ext load to change the number of vector elements!"); 7399 } 7400 7401 bool Indexed = AM != ISD::UNINDEXED; 7402 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7403 7404 SDVTList VTs = Indexed ? 7405 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7406 SDValue Ops[] = { Chain, Ptr, Offset }; 7407 FoldingSetNodeID ID; 7408 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7409 ID.AddInteger(MemVT.getRawBits()); 7410 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7411 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7412 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7413 void *IP = nullptr; 7414 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7415 cast<LoadSDNode>(E)->refineAlignment(MMO); 7416 return SDValue(E, 0); 7417 } 7418 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7419 ExtType, MemVT, MMO); 7420 createOperands(N, Ops); 7421 7422 CSEMap.InsertNode(N, IP); 7423 InsertNode(N); 7424 SDValue V(N, 0); 7425 NewSDValueDbgMsg(V, "Creating new node: ", this); 7426 return V; 7427 } 7428 7429 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7430 SDValue Ptr, MachinePointerInfo PtrInfo, 7431 MaybeAlign Alignment, 7432 MachineMemOperand::Flags MMOFlags, 7433 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7434 SDValue Undef = getUNDEF(Ptr.getValueType()); 7435 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7436 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7437 } 7438 7439 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7440 SDValue Ptr, MachineMemOperand *MMO) { 7441 SDValue Undef = getUNDEF(Ptr.getValueType()); 7442 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7443 VT, MMO); 7444 } 7445 7446 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7447 EVT VT, SDValue Chain, SDValue Ptr, 7448 MachinePointerInfo PtrInfo, EVT MemVT, 7449 MaybeAlign Alignment, 7450 MachineMemOperand::Flags MMOFlags, 7451 const AAMDNodes &AAInfo) { 7452 SDValue Undef = getUNDEF(Ptr.getValueType()); 7453 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7454 MemVT, Alignment, MMOFlags, AAInfo); 7455 } 7456 7457 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7458 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7459 MachineMemOperand *MMO) { 7460 SDValue Undef = getUNDEF(Ptr.getValueType()); 7461 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7462 MemVT, MMO); 7463 } 7464 7465 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7466 SDValue Base, SDValue Offset, 7467 ISD::MemIndexedMode AM) { 7468 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7469 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7470 // Don't propagate the invariant or dereferenceable flags. 7471 auto MMOFlags = 7472 LD->getMemOperand()->getFlags() & 7473 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7474 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7475 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7476 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7477 } 7478 7479 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7480 SDValue Ptr, MachinePointerInfo PtrInfo, 7481 Align Alignment, 7482 MachineMemOperand::Flags MMOFlags, 7483 const AAMDNodes &AAInfo) { 7484 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7485 7486 MMOFlags |= MachineMemOperand::MOStore; 7487 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7488 7489 if (PtrInfo.V.isNull()) 7490 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7491 7492 MachineFunction &MF = getMachineFunction(); 7493 uint64_t Size = 7494 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7495 MachineMemOperand *MMO = 7496 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7497 return getStore(Chain, dl, Val, Ptr, MMO); 7498 } 7499 7500 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7501 SDValue Ptr, MachineMemOperand *MMO) { 7502 assert(Chain.getValueType() == MVT::Other && 7503 "Invalid chain type"); 7504 EVT VT = Val.getValueType(); 7505 SDVTList VTs = getVTList(MVT::Other); 7506 SDValue Undef = getUNDEF(Ptr.getValueType()); 7507 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7508 FoldingSetNodeID ID; 7509 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7510 ID.AddInteger(VT.getRawBits()); 7511 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7512 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7513 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7514 void *IP = nullptr; 7515 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7516 cast<StoreSDNode>(E)->refineAlignment(MMO); 7517 return SDValue(E, 0); 7518 } 7519 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7520 ISD::UNINDEXED, false, VT, MMO); 7521 createOperands(N, Ops); 7522 7523 CSEMap.InsertNode(N, IP); 7524 InsertNode(N); 7525 SDValue V(N, 0); 7526 NewSDValueDbgMsg(V, "Creating new node: ", this); 7527 return V; 7528 } 7529 7530 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7531 SDValue Ptr, MachinePointerInfo PtrInfo, 7532 EVT SVT, Align Alignment, 7533 MachineMemOperand::Flags MMOFlags, 7534 const AAMDNodes &AAInfo) { 7535 assert(Chain.getValueType() == MVT::Other && 7536 "Invalid chain type"); 7537 7538 MMOFlags |= MachineMemOperand::MOStore; 7539 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7540 7541 if (PtrInfo.V.isNull()) 7542 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7543 7544 MachineFunction &MF = getMachineFunction(); 7545 MachineMemOperand *MMO = MF.getMachineMemOperand( 7546 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7547 Alignment, AAInfo); 7548 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7549 } 7550 7551 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7552 SDValue Ptr, EVT SVT, 7553 MachineMemOperand *MMO) { 7554 EVT VT = Val.getValueType(); 7555 7556 assert(Chain.getValueType() == MVT::Other && 7557 "Invalid chain type"); 7558 if (VT == SVT) 7559 return getStore(Chain, dl, Val, Ptr, MMO); 7560 7561 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7562 "Should only be a truncating store, not extending!"); 7563 assert(VT.isInteger() == SVT.isInteger() && 7564 "Can't do FP-INT conversion!"); 7565 assert(VT.isVector() == SVT.isVector() && 7566 "Cannot use trunc store to convert to or from a vector!"); 7567 assert((!VT.isVector() || 7568 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7569 "Cannot use trunc store to change the number of vector elements!"); 7570 7571 SDVTList VTs = getVTList(MVT::Other); 7572 SDValue Undef = getUNDEF(Ptr.getValueType()); 7573 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7574 FoldingSetNodeID ID; 7575 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7576 ID.AddInteger(SVT.getRawBits()); 7577 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7578 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7579 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7580 void *IP = nullptr; 7581 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7582 cast<StoreSDNode>(E)->refineAlignment(MMO); 7583 return SDValue(E, 0); 7584 } 7585 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7586 ISD::UNINDEXED, true, SVT, MMO); 7587 createOperands(N, Ops); 7588 7589 CSEMap.InsertNode(N, IP); 7590 InsertNode(N); 7591 SDValue V(N, 0); 7592 NewSDValueDbgMsg(V, "Creating new node: ", this); 7593 return V; 7594 } 7595 7596 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7597 SDValue Base, SDValue Offset, 7598 ISD::MemIndexedMode AM) { 7599 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7600 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7601 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7602 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7603 FoldingSetNodeID ID; 7604 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7605 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7606 ID.AddInteger(ST->getRawSubclassData()); 7607 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7608 void *IP = nullptr; 7609 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7610 return SDValue(E, 0); 7611 7612 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7613 ST->isTruncatingStore(), ST->getMemoryVT(), 7614 ST->getMemOperand()); 7615 createOperands(N, Ops); 7616 7617 CSEMap.InsertNode(N, IP); 7618 InsertNode(N); 7619 SDValue V(N, 0); 7620 NewSDValueDbgMsg(V, "Creating new node: ", this); 7621 return V; 7622 } 7623 7624 SDValue SelectionDAG::getLoadVP( 7625 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7626 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7627 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7628 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7629 const MDNode *Ranges, bool IsExpanding) { 7630 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7631 7632 MMOFlags |= MachineMemOperand::MOLoad; 7633 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7634 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7635 // clients. 7636 if (PtrInfo.V.isNull()) 7637 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7638 7639 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7640 MachineFunction &MF = getMachineFunction(); 7641 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7642 Alignment, AAInfo, Ranges); 7643 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7644 MMO, IsExpanding); 7645 } 7646 7647 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7648 ISD::LoadExtType ExtType, EVT VT, 7649 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7650 SDValue Offset, SDValue Mask, SDValue EVL, 7651 EVT MemVT, MachineMemOperand *MMO, 7652 bool IsExpanding) { 7653 if (VT == MemVT) { 7654 ExtType = ISD::NON_EXTLOAD; 7655 } else if (ExtType == ISD::NON_EXTLOAD) { 7656 assert(VT == MemVT && "Non-extending load from different memory type!"); 7657 } else { 7658 // Extending load. 7659 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7660 "Should only be an extending load, not truncating!"); 7661 assert(VT.isInteger() == MemVT.isInteger() && 7662 "Cannot convert from FP to Int or Int -> FP!"); 7663 assert(VT.isVector() == MemVT.isVector() && 7664 "Cannot use an ext load to convert to or from a vector!"); 7665 assert((!VT.isVector() || 7666 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7667 "Cannot use an ext load to change the number of vector elements!"); 7668 } 7669 7670 bool Indexed = AM != ISD::UNINDEXED; 7671 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7672 7673 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7674 : getVTList(VT, MVT::Other); 7675 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7676 FoldingSetNodeID ID; 7677 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7678 ID.AddInteger(VT.getRawBits()); 7679 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7680 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7681 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7682 void *IP = nullptr; 7683 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7684 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7685 return SDValue(E, 0); 7686 } 7687 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7688 ExtType, IsExpanding, MemVT, MMO); 7689 createOperands(N, Ops); 7690 7691 CSEMap.InsertNode(N, IP); 7692 InsertNode(N); 7693 SDValue V(N, 0); 7694 NewSDValueDbgMsg(V, "Creating new node: ", this); 7695 return V; 7696 } 7697 7698 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7699 SDValue Ptr, SDValue Mask, SDValue EVL, 7700 MachinePointerInfo PtrInfo, 7701 MaybeAlign Alignment, 7702 MachineMemOperand::Flags MMOFlags, 7703 const AAMDNodes &AAInfo, const MDNode *Ranges, 7704 bool IsExpanding) { 7705 SDValue Undef = getUNDEF(Ptr.getValueType()); 7706 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7707 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 7708 IsExpanding); 7709 } 7710 7711 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7712 SDValue Ptr, SDValue Mask, SDValue EVL, 7713 MachineMemOperand *MMO, bool IsExpanding) { 7714 SDValue Undef = getUNDEF(Ptr.getValueType()); 7715 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7716 Mask, EVL, VT, MMO, IsExpanding); 7717 } 7718 7719 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7720 EVT VT, SDValue Chain, SDValue Ptr, 7721 SDValue Mask, SDValue EVL, 7722 MachinePointerInfo PtrInfo, EVT MemVT, 7723 MaybeAlign Alignment, 7724 MachineMemOperand::Flags MMOFlags, 7725 const AAMDNodes &AAInfo, bool IsExpanding) { 7726 SDValue Undef = getUNDEF(Ptr.getValueType()); 7727 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7728 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 7729 IsExpanding); 7730 } 7731 7732 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7733 EVT VT, SDValue Chain, SDValue Ptr, 7734 SDValue Mask, SDValue EVL, EVT MemVT, 7735 MachineMemOperand *MMO, bool IsExpanding) { 7736 SDValue Undef = getUNDEF(Ptr.getValueType()); 7737 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7738 EVL, MemVT, MMO, IsExpanding); 7739 } 7740 7741 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 7742 SDValue Base, SDValue Offset, 7743 ISD::MemIndexedMode AM) { 7744 auto *LD = cast<VPLoadSDNode>(OrigLoad); 7745 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7746 // Don't propagate the invariant or dereferenceable flags. 7747 auto MMOFlags = 7748 LD->getMemOperand()->getFlags() & 7749 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7750 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7751 LD->getChain(), Base, Offset, LD->getMask(), 7752 LD->getVectorLength(), LD->getPointerInfo(), 7753 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 7754 nullptr, LD->isExpandingLoad()); 7755 } 7756 7757 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7758 SDValue Ptr, SDValue Mask, SDValue EVL, 7759 MachinePointerInfo PtrInfo, Align Alignment, 7760 MachineMemOperand::Flags MMOFlags, 7761 const AAMDNodes &AAInfo, bool IsCompressing) { 7762 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7763 7764 MMOFlags |= MachineMemOperand::MOStore; 7765 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7766 7767 if (PtrInfo.V.isNull()) 7768 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7769 7770 MachineFunction &MF = getMachineFunction(); 7771 uint64_t Size = 7772 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7773 MachineMemOperand *MMO = 7774 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7775 return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing); 7776 } 7777 7778 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7779 SDValue Ptr, SDValue Mask, SDValue EVL, 7780 MachineMemOperand *MMO, bool IsCompressing) { 7781 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7782 EVT VT = Val.getValueType(); 7783 SDVTList VTs = getVTList(MVT::Other); 7784 SDValue Undef = getUNDEF(Ptr.getValueType()); 7785 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7786 FoldingSetNodeID ID; 7787 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7788 ID.AddInteger(VT.getRawBits()); 7789 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7790 dl.getIROrder(), VTs, ISD::UNINDEXED, false, IsCompressing, VT, MMO)); 7791 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7792 void *IP = nullptr; 7793 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7794 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7795 return SDValue(E, 0); 7796 } 7797 auto *N = 7798 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7799 ISD::UNINDEXED, false, IsCompressing, VT, MMO); 7800 createOperands(N, Ops); 7801 7802 CSEMap.InsertNode(N, IP); 7803 InsertNode(N); 7804 SDValue V(N, 0); 7805 NewSDValueDbgMsg(V, "Creating new node: ", this); 7806 return V; 7807 } 7808 7809 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7810 SDValue Val, SDValue Ptr, SDValue Mask, 7811 SDValue EVL, MachinePointerInfo PtrInfo, 7812 EVT SVT, Align Alignment, 7813 MachineMemOperand::Flags MMOFlags, 7814 const AAMDNodes &AAInfo, 7815 bool IsCompressing) { 7816 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7817 7818 MMOFlags |= MachineMemOperand::MOStore; 7819 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7820 7821 if (PtrInfo.V.isNull()) 7822 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7823 7824 MachineFunction &MF = getMachineFunction(); 7825 MachineMemOperand *MMO = MF.getMachineMemOperand( 7826 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7827 Alignment, AAInfo); 7828 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 7829 IsCompressing); 7830 } 7831 7832 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7833 SDValue Val, SDValue Ptr, SDValue Mask, 7834 SDValue EVL, EVT SVT, 7835 MachineMemOperand *MMO, 7836 bool IsCompressing) { 7837 EVT VT = Val.getValueType(); 7838 7839 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7840 if (VT == SVT) 7841 return getStoreVP(Chain, dl, Val, Ptr, Mask, EVL, MMO, IsCompressing); 7842 7843 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7844 "Should only be a truncating store, not extending!"); 7845 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 7846 assert(VT.isVector() == SVT.isVector() && 7847 "Cannot use trunc store to convert to or from a vector!"); 7848 assert((!VT.isVector() || 7849 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7850 "Cannot use trunc store to change the number of vector elements!"); 7851 7852 SDVTList VTs = getVTList(MVT::Other); 7853 SDValue Undef = getUNDEF(Ptr.getValueType()); 7854 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7855 FoldingSetNodeID ID; 7856 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7857 ID.AddInteger(SVT.getRawBits()); 7858 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7859 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 7860 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7861 void *IP = nullptr; 7862 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7863 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7864 return SDValue(E, 0); 7865 } 7866 auto *N = 7867 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7868 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 7869 createOperands(N, Ops); 7870 7871 CSEMap.InsertNode(N, IP); 7872 InsertNode(N); 7873 SDValue V(N, 0); 7874 NewSDValueDbgMsg(V, "Creating new node: ", this); 7875 return V; 7876 } 7877 7878 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 7879 SDValue Base, SDValue Offset, 7880 ISD::MemIndexedMode AM) { 7881 auto *ST = cast<VPStoreSDNode>(OrigStore); 7882 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 7883 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7884 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 7885 Offset, ST->getMask(), ST->getVectorLength()}; 7886 FoldingSetNodeID ID; 7887 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7888 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7889 ID.AddInteger(ST->getRawSubclassData()); 7890 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7891 void *IP = nullptr; 7892 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7893 return SDValue(E, 0); 7894 7895 auto *N = newSDNode<VPStoreSDNode>( 7896 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 7897 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 7898 createOperands(N, Ops); 7899 7900 CSEMap.InsertNode(N, IP); 7901 InsertNode(N); 7902 SDValue V(N, 0); 7903 NewSDValueDbgMsg(V, "Creating new node: ", this); 7904 return V; 7905 } 7906 7907 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7908 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 7909 ISD::MemIndexType IndexType) { 7910 assert(Ops.size() == 6 && "Incompatible number of operands"); 7911 7912 FoldingSetNodeID ID; 7913 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 7914 ID.AddInteger(VT.getRawBits()); 7915 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 7916 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7917 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7918 void *IP = nullptr; 7919 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7920 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 7921 return SDValue(E, 0); 7922 } 7923 7924 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7925 VT, MMO, IndexType); 7926 createOperands(N, Ops); 7927 7928 assert(N->getMask().getValueType().getVectorElementCount() == 7929 N->getValueType(0).getVectorElementCount() && 7930 "Vector width mismatch between mask and data"); 7931 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7932 N->getValueType(0).getVectorElementCount().isScalable() && 7933 "Scalable flags of index and data do not match"); 7934 assert(ElementCount::isKnownGE( 7935 N->getIndex().getValueType().getVectorElementCount(), 7936 N->getValueType(0).getVectorElementCount()) && 7937 "Vector width mismatch between index and data"); 7938 assert(isa<ConstantSDNode>(N->getScale()) && 7939 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7940 "Scale should be a constant power of 2"); 7941 7942 CSEMap.InsertNode(N, IP); 7943 InsertNode(N); 7944 SDValue V(N, 0); 7945 NewSDValueDbgMsg(V, "Creating new node: ", this); 7946 return V; 7947 } 7948 7949 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7950 ArrayRef<SDValue> Ops, 7951 MachineMemOperand *MMO, 7952 ISD::MemIndexType IndexType) { 7953 assert(Ops.size() == 7 && "Incompatible number of operands"); 7954 7955 FoldingSetNodeID ID; 7956 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 7957 ID.AddInteger(VT.getRawBits()); 7958 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 7959 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7960 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7961 void *IP = nullptr; 7962 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7963 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 7964 return SDValue(E, 0); 7965 } 7966 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7967 VT, MMO, IndexType); 7968 createOperands(N, Ops); 7969 7970 assert(N->getMask().getValueType().getVectorElementCount() == 7971 N->getValue().getValueType().getVectorElementCount() && 7972 "Vector width mismatch between mask and data"); 7973 assert( 7974 N->getIndex().getValueType().getVectorElementCount().isScalable() == 7975 N->getValue().getValueType().getVectorElementCount().isScalable() && 7976 "Scalable flags of index and data do not match"); 7977 assert(ElementCount::isKnownGE( 7978 N->getIndex().getValueType().getVectorElementCount(), 7979 N->getValue().getValueType().getVectorElementCount()) && 7980 "Vector width mismatch between index and data"); 7981 assert(isa<ConstantSDNode>(N->getScale()) && 7982 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7983 "Scale should be a constant power of 2"); 7984 7985 CSEMap.InsertNode(N, IP); 7986 InsertNode(N); 7987 SDValue V(N, 0); 7988 NewSDValueDbgMsg(V, "Creating new node: ", this); 7989 return V; 7990 } 7991 7992 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7993 SDValue Base, SDValue Offset, SDValue Mask, 7994 SDValue PassThru, EVT MemVT, 7995 MachineMemOperand *MMO, 7996 ISD::MemIndexedMode AM, 7997 ISD::LoadExtType ExtTy, bool isExpanding) { 7998 bool Indexed = AM != ISD::UNINDEXED; 7999 assert((Indexed || Offset.isUndef()) && 8000 "Unindexed masked load with an offset!"); 8001 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8002 : getVTList(VT, MVT::Other); 8003 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8004 FoldingSetNodeID ID; 8005 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8006 ID.AddInteger(MemVT.getRawBits()); 8007 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8008 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8009 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8010 void *IP = nullptr; 8011 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8012 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8013 return SDValue(E, 0); 8014 } 8015 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8016 AM, ExtTy, isExpanding, MemVT, MMO); 8017 createOperands(N, Ops); 8018 8019 CSEMap.InsertNode(N, IP); 8020 InsertNode(N); 8021 SDValue V(N, 0); 8022 NewSDValueDbgMsg(V, "Creating new node: ", this); 8023 return V; 8024 } 8025 8026 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8027 SDValue Base, SDValue Offset, 8028 ISD::MemIndexedMode AM) { 8029 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8030 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8031 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8032 Offset, LD->getMask(), LD->getPassThru(), 8033 LD->getMemoryVT(), LD->getMemOperand(), AM, 8034 LD->getExtensionType(), LD->isExpandingLoad()); 8035 } 8036 8037 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8038 SDValue Val, SDValue Base, SDValue Offset, 8039 SDValue Mask, EVT MemVT, 8040 MachineMemOperand *MMO, 8041 ISD::MemIndexedMode AM, bool IsTruncating, 8042 bool IsCompressing) { 8043 assert(Chain.getValueType() == MVT::Other && 8044 "Invalid chain type"); 8045 bool Indexed = AM != ISD::UNINDEXED; 8046 assert((Indexed || Offset.isUndef()) && 8047 "Unindexed masked store with an offset!"); 8048 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8049 : getVTList(MVT::Other); 8050 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8051 FoldingSetNodeID ID; 8052 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8053 ID.AddInteger(MemVT.getRawBits()); 8054 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8055 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8056 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8057 void *IP = nullptr; 8058 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8059 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8060 return SDValue(E, 0); 8061 } 8062 auto *N = 8063 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8064 IsTruncating, IsCompressing, MemVT, MMO); 8065 createOperands(N, Ops); 8066 8067 CSEMap.InsertNode(N, IP); 8068 InsertNode(N); 8069 SDValue V(N, 0); 8070 NewSDValueDbgMsg(V, "Creating new node: ", this); 8071 return V; 8072 } 8073 8074 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8075 SDValue Base, SDValue Offset, 8076 ISD::MemIndexedMode AM) { 8077 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8078 assert(ST->getOffset().isUndef() && 8079 "Masked store is already a indexed store!"); 8080 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8081 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8082 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8083 } 8084 8085 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8086 ArrayRef<SDValue> Ops, 8087 MachineMemOperand *MMO, 8088 ISD::MemIndexType IndexType, 8089 ISD::LoadExtType ExtTy) { 8090 assert(Ops.size() == 6 && "Incompatible number of operands"); 8091 8092 FoldingSetNodeID ID; 8093 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8094 ID.AddInteger(MemVT.getRawBits()); 8095 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8096 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8097 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8098 void *IP = nullptr; 8099 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8100 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8101 return SDValue(E, 0); 8102 } 8103 8104 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8105 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8106 VTs, MemVT, MMO, IndexType, ExtTy); 8107 createOperands(N, Ops); 8108 8109 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8110 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8111 assert(N->getMask().getValueType().getVectorElementCount() == 8112 N->getValueType(0).getVectorElementCount() && 8113 "Vector width mismatch between mask and data"); 8114 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8115 N->getValueType(0).getVectorElementCount().isScalable() && 8116 "Scalable flags of index and data do not match"); 8117 assert(ElementCount::isKnownGE( 8118 N->getIndex().getValueType().getVectorElementCount(), 8119 N->getValueType(0).getVectorElementCount()) && 8120 "Vector width mismatch between index and data"); 8121 assert(isa<ConstantSDNode>(N->getScale()) && 8122 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8123 "Scale should be a constant power of 2"); 8124 8125 CSEMap.InsertNode(N, IP); 8126 InsertNode(N); 8127 SDValue V(N, 0); 8128 NewSDValueDbgMsg(V, "Creating new node: ", this); 8129 return V; 8130 } 8131 8132 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8133 ArrayRef<SDValue> Ops, 8134 MachineMemOperand *MMO, 8135 ISD::MemIndexType IndexType, 8136 bool IsTrunc) { 8137 assert(Ops.size() == 6 && "Incompatible number of operands"); 8138 8139 FoldingSetNodeID ID; 8140 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8141 ID.AddInteger(MemVT.getRawBits()); 8142 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8143 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8144 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8145 void *IP = nullptr; 8146 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8147 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8148 return SDValue(E, 0); 8149 } 8150 8151 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8152 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8153 VTs, MemVT, MMO, IndexType, IsTrunc); 8154 createOperands(N, Ops); 8155 8156 assert(N->getMask().getValueType().getVectorElementCount() == 8157 N->getValue().getValueType().getVectorElementCount() && 8158 "Vector width mismatch between mask and data"); 8159 assert( 8160 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8161 N->getValue().getValueType().getVectorElementCount().isScalable() && 8162 "Scalable flags of index and data do not match"); 8163 assert(ElementCount::isKnownGE( 8164 N->getIndex().getValueType().getVectorElementCount(), 8165 N->getValue().getValueType().getVectorElementCount()) && 8166 "Vector width mismatch between index and data"); 8167 assert(isa<ConstantSDNode>(N->getScale()) && 8168 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8169 "Scale should be a constant power of 2"); 8170 8171 CSEMap.InsertNode(N, IP); 8172 InsertNode(N); 8173 SDValue V(N, 0); 8174 NewSDValueDbgMsg(V, "Creating new node: ", this); 8175 return V; 8176 } 8177 8178 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8179 // select undef, T, F --> T (if T is a constant), otherwise F 8180 // select, ?, undef, F --> F 8181 // select, ?, T, undef --> T 8182 if (Cond.isUndef()) 8183 return isConstantValueOfAnyType(T) ? T : F; 8184 if (T.isUndef()) 8185 return F; 8186 if (F.isUndef()) 8187 return T; 8188 8189 // select true, T, F --> T 8190 // select false, T, F --> F 8191 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8192 return CondC->isZero() ? F : T; 8193 8194 // TODO: This should simplify VSELECT with constant condition using something 8195 // like this (but check boolean contents to be complete?): 8196 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8197 // return T; 8198 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8199 // return F; 8200 8201 // select ?, T, T --> T 8202 if (T == F) 8203 return T; 8204 8205 return SDValue(); 8206 } 8207 8208 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8209 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8210 if (X.isUndef()) 8211 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8212 // shift X, undef --> undef (because it may shift by the bitwidth) 8213 if (Y.isUndef()) 8214 return getUNDEF(X.getValueType()); 8215 8216 // shift 0, Y --> 0 8217 // shift X, 0 --> X 8218 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8219 return X; 8220 8221 // shift X, C >= bitwidth(X) --> undef 8222 // All vector elements must be too big (or undef) to avoid partial undefs. 8223 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8224 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8225 }; 8226 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8227 return getUNDEF(X.getValueType()); 8228 8229 return SDValue(); 8230 } 8231 8232 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8233 SDNodeFlags Flags) { 8234 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8235 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8236 // operation is poison. That result can be relaxed to undef. 8237 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8238 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8239 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8240 (YC && YC->getValueAPF().isNaN()); 8241 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8242 (YC && YC->getValueAPF().isInfinity()); 8243 8244 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8245 return getUNDEF(X.getValueType()); 8246 8247 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8248 return getUNDEF(X.getValueType()); 8249 8250 if (!YC) 8251 return SDValue(); 8252 8253 // X + -0.0 --> X 8254 if (Opcode == ISD::FADD) 8255 if (YC->getValueAPF().isNegZero()) 8256 return X; 8257 8258 // X - +0.0 --> X 8259 if (Opcode == ISD::FSUB) 8260 if (YC->getValueAPF().isPosZero()) 8261 return X; 8262 8263 // X * 1.0 --> X 8264 // X / 1.0 --> X 8265 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8266 if (YC->getValueAPF().isExactlyValue(1.0)) 8267 return X; 8268 8269 // X * 0.0 --> 0.0 8270 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8271 if (YC->getValueAPF().isZero()) 8272 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8273 8274 return SDValue(); 8275 } 8276 8277 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8278 SDValue Ptr, SDValue SV, unsigned Align) { 8279 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8280 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8281 } 8282 8283 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8284 ArrayRef<SDUse> Ops) { 8285 switch (Ops.size()) { 8286 case 0: return getNode(Opcode, DL, VT); 8287 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8288 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8289 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8290 default: break; 8291 } 8292 8293 // Copy from an SDUse array into an SDValue array for use with 8294 // the regular getNode logic. 8295 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8296 return getNode(Opcode, DL, VT, NewOps); 8297 } 8298 8299 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8300 ArrayRef<SDValue> Ops) { 8301 SDNodeFlags Flags; 8302 if (Inserter) 8303 Flags = Inserter->getFlags(); 8304 return getNode(Opcode, DL, VT, Ops, Flags); 8305 } 8306 8307 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8308 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8309 unsigned NumOps = Ops.size(); 8310 switch (NumOps) { 8311 case 0: return getNode(Opcode, DL, VT); 8312 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8313 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8314 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8315 default: break; 8316 } 8317 8318 #ifndef NDEBUG 8319 for (auto &Op : Ops) 8320 assert(Op.getOpcode() != ISD::DELETED_NODE && 8321 "Operand is DELETED_NODE!"); 8322 #endif 8323 8324 switch (Opcode) { 8325 default: break; 8326 case ISD::BUILD_VECTOR: 8327 // Attempt to simplify BUILD_VECTOR. 8328 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8329 return V; 8330 break; 8331 case ISD::CONCAT_VECTORS: 8332 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8333 return V; 8334 break; 8335 case ISD::SELECT_CC: 8336 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8337 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8338 "LHS and RHS of condition must have same type!"); 8339 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8340 "True and False arms of SelectCC must have same type!"); 8341 assert(Ops[2].getValueType() == VT && 8342 "select_cc node must be of same type as true and false value!"); 8343 break; 8344 case ISD::BR_CC: 8345 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8346 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8347 "LHS/RHS of comparison should match types!"); 8348 break; 8349 } 8350 8351 // Memoize nodes. 8352 SDNode *N; 8353 SDVTList VTs = getVTList(VT); 8354 8355 if (VT != MVT::Glue) { 8356 FoldingSetNodeID ID; 8357 AddNodeIDNode(ID, Opcode, VTs, Ops); 8358 void *IP = nullptr; 8359 8360 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8361 return SDValue(E, 0); 8362 8363 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8364 createOperands(N, Ops); 8365 8366 CSEMap.InsertNode(N, IP); 8367 } else { 8368 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8369 createOperands(N, Ops); 8370 } 8371 8372 N->setFlags(Flags); 8373 InsertNode(N); 8374 SDValue V(N, 0); 8375 NewSDValueDbgMsg(V, "Creating new node: ", this); 8376 return V; 8377 } 8378 8379 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8380 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8381 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8382 } 8383 8384 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8385 ArrayRef<SDValue> Ops) { 8386 SDNodeFlags Flags; 8387 if (Inserter) 8388 Flags = Inserter->getFlags(); 8389 return getNode(Opcode, DL, VTList, Ops, Flags); 8390 } 8391 8392 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8393 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8394 if (VTList.NumVTs == 1) 8395 return getNode(Opcode, DL, VTList.VTs[0], Ops); 8396 8397 #ifndef NDEBUG 8398 for (auto &Op : Ops) 8399 assert(Op.getOpcode() != ISD::DELETED_NODE && 8400 "Operand is DELETED_NODE!"); 8401 #endif 8402 8403 switch (Opcode) { 8404 case ISD::STRICT_FP_EXTEND: 8405 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8406 "Invalid STRICT_FP_EXTEND!"); 8407 assert(VTList.VTs[0].isFloatingPoint() && 8408 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8409 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8410 "STRICT_FP_EXTEND result type should be vector iff the operand " 8411 "type is vector!"); 8412 assert((!VTList.VTs[0].isVector() || 8413 VTList.VTs[0].getVectorNumElements() == 8414 Ops[1].getValueType().getVectorNumElements()) && 8415 "Vector element count mismatch!"); 8416 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8417 "Invalid fpext node, dst <= src!"); 8418 break; 8419 case ISD::STRICT_FP_ROUND: 8420 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 8421 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8422 "STRICT_FP_ROUND result type should be vector iff the operand " 8423 "type is vector!"); 8424 assert((!VTList.VTs[0].isVector() || 8425 VTList.VTs[0].getVectorNumElements() == 8426 Ops[1].getValueType().getVectorNumElements()) && 8427 "Vector element count mismatch!"); 8428 assert(VTList.VTs[0].isFloatingPoint() && 8429 Ops[1].getValueType().isFloatingPoint() && 8430 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8431 isa<ConstantSDNode>(Ops[2]) && 8432 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8433 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8434 "Invalid STRICT_FP_ROUND!"); 8435 break; 8436 #if 0 8437 // FIXME: figure out how to safely handle things like 8438 // int foo(int x) { return 1 << (x & 255); } 8439 // int bar() { return foo(256); } 8440 case ISD::SRA_PARTS: 8441 case ISD::SRL_PARTS: 8442 case ISD::SHL_PARTS: 8443 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8444 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8445 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8446 else if (N3.getOpcode() == ISD::AND) 8447 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 8448 // If the and is only masking out bits that cannot effect the shift, 8449 // eliminate the and. 8450 unsigned NumBits = VT.getScalarSizeInBits()*2; 8451 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 8452 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8453 } 8454 break; 8455 #endif 8456 } 8457 8458 // Memoize the node unless it returns a flag. 8459 SDNode *N; 8460 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8461 FoldingSetNodeID ID; 8462 AddNodeIDNode(ID, Opcode, VTList, Ops); 8463 void *IP = nullptr; 8464 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8465 return SDValue(E, 0); 8466 8467 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8468 createOperands(N, Ops); 8469 CSEMap.InsertNode(N, IP); 8470 } else { 8471 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8472 createOperands(N, Ops); 8473 } 8474 8475 N->setFlags(Flags); 8476 InsertNode(N); 8477 SDValue V(N, 0); 8478 NewSDValueDbgMsg(V, "Creating new node: ", this); 8479 return V; 8480 } 8481 8482 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8483 SDVTList VTList) { 8484 return getNode(Opcode, DL, VTList, None); 8485 } 8486 8487 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8488 SDValue N1) { 8489 SDValue Ops[] = { N1 }; 8490 return getNode(Opcode, DL, VTList, Ops); 8491 } 8492 8493 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8494 SDValue N1, SDValue N2) { 8495 SDValue Ops[] = { N1, N2 }; 8496 return getNode(Opcode, DL, VTList, Ops); 8497 } 8498 8499 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8500 SDValue N1, SDValue N2, SDValue N3) { 8501 SDValue Ops[] = { N1, N2, N3 }; 8502 return getNode(Opcode, DL, VTList, Ops); 8503 } 8504 8505 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8506 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 8507 SDValue Ops[] = { N1, N2, N3, N4 }; 8508 return getNode(Opcode, DL, VTList, Ops); 8509 } 8510 8511 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8512 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 8513 SDValue N5) { 8514 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 8515 return getNode(Opcode, DL, VTList, Ops); 8516 } 8517 8518 SDVTList SelectionDAG::getVTList(EVT VT) { 8519 return makeVTList(SDNode::getValueTypeList(VT), 1); 8520 } 8521 8522 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 8523 FoldingSetNodeID ID; 8524 ID.AddInteger(2U); 8525 ID.AddInteger(VT1.getRawBits()); 8526 ID.AddInteger(VT2.getRawBits()); 8527 8528 void *IP = nullptr; 8529 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8530 if (!Result) { 8531 EVT *Array = Allocator.Allocate<EVT>(2); 8532 Array[0] = VT1; 8533 Array[1] = VT2; 8534 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 8535 VTListMap.InsertNode(Result, IP); 8536 } 8537 return Result->getSDVTList(); 8538 } 8539 8540 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 8541 FoldingSetNodeID ID; 8542 ID.AddInteger(3U); 8543 ID.AddInteger(VT1.getRawBits()); 8544 ID.AddInteger(VT2.getRawBits()); 8545 ID.AddInteger(VT3.getRawBits()); 8546 8547 void *IP = nullptr; 8548 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8549 if (!Result) { 8550 EVT *Array = Allocator.Allocate<EVT>(3); 8551 Array[0] = VT1; 8552 Array[1] = VT2; 8553 Array[2] = VT3; 8554 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 8555 VTListMap.InsertNode(Result, IP); 8556 } 8557 return Result->getSDVTList(); 8558 } 8559 8560 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 8561 FoldingSetNodeID ID; 8562 ID.AddInteger(4U); 8563 ID.AddInteger(VT1.getRawBits()); 8564 ID.AddInteger(VT2.getRawBits()); 8565 ID.AddInteger(VT3.getRawBits()); 8566 ID.AddInteger(VT4.getRawBits()); 8567 8568 void *IP = nullptr; 8569 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8570 if (!Result) { 8571 EVT *Array = Allocator.Allocate<EVT>(4); 8572 Array[0] = VT1; 8573 Array[1] = VT2; 8574 Array[2] = VT3; 8575 Array[3] = VT4; 8576 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 8577 VTListMap.InsertNode(Result, IP); 8578 } 8579 return Result->getSDVTList(); 8580 } 8581 8582 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 8583 unsigned NumVTs = VTs.size(); 8584 FoldingSetNodeID ID; 8585 ID.AddInteger(NumVTs); 8586 for (unsigned index = 0; index < NumVTs; index++) { 8587 ID.AddInteger(VTs[index].getRawBits()); 8588 } 8589 8590 void *IP = nullptr; 8591 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8592 if (!Result) { 8593 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8594 llvm::copy(VTs, Array); 8595 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8596 VTListMap.InsertNode(Result, IP); 8597 } 8598 return Result->getSDVTList(); 8599 } 8600 8601 8602 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8603 /// specified operands. If the resultant node already exists in the DAG, 8604 /// this does not modify the specified node, instead it returns the node that 8605 /// already exists. If the resultant node does not exist in the DAG, the 8606 /// input node is returned. As a degenerate case, if you specify the same 8607 /// input operands as the node already has, the input node is returned. 8608 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8609 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8610 8611 // Check to see if there is no change. 8612 if (Op == N->getOperand(0)) return N; 8613 8614 // See if the modified node already exists. 8615 void *InsertPos = nullptr; 8616 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8617 return Existing; 8618 8619 // Nope it doesn't. Remove the node from its current place in the maps. 8620 if (InsertPos) 8621 if (!RemoveNodeFromCSEMaps(N)) 8622 InsertPos = nullptr; 8623 8624 // Now we update the operands. 8625 N->OperandList[0].set(Op); 8626 8627 updateDivergence(N); 8628 // If this gets put into a CSE map, add it. 8629 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8630 return N; 8631 } 8632 8633 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8634 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8635 8636 // Check to see if there is no change. 8637 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8638 return N; // No operands changed, just return the input node. 8639 8640 // See if the modified node already exists. 8641 void *InsertPos = nullptr; 8642 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8643 return Existing; 8644 8645 // Nope it doesn't. Remove the node from its current place in the maps. 8646 if (InsertPos) 8647 if (!RemoveNodeFromCSEMaps(N)) 8648 InsertPos = nullptr; 8649 8650 // Now we update the operands. 8651 if (N->OperandList[0] != Op1) 8652 N->OperandList[0].set(Op1); 8653 if (N->OperandList[1] != Op2) 8654 N->OperandList[1].set(Op2); 8655 8656 updateDivergence(N); 8657 // If this gets put into a CSE map, add it. 8658 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8659 return N; 8660 } 8661 8662 SDNode *SelectionDAG:: 8663 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8664 SDValue Ops[] = { Op1, Op2, Op3 }; 8665 return UpdateNodeOperands(N, Ops); 8666 } 8667 8668 SDNode *SelectionDAG:: 8669 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8670 SDValue Op3, SDValue Op4) { 8671 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8672 return UpdateNodeOperands(N, Ops); 8673 } 8674 8675 SDNode *SelectionDAG:: 8676 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8677 SDValue Op3, SDValue Op4, SDValue Op5) { 8678 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8679 return UpdateNodeOperands(N, Ops); 8680 } 8681 8682 SDNode *SelectionDAG:: 8683 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8684 unsigned NumOps = Ops.size(); 8685 assert(N->getNumOperands() == NumOps && 8686 "Update with wrong number of operands"); 8687 8688 // If no operands changed just return the input node. 8689 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8690 return N; 8691 8692 // See if the modified node already exists. 8693 void *InsertPos = nullptr; 8694 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8695 return Existing; 8696 8697 // Nope it doesn't. Remove the node from its current place in the maps. 8698 if (InsertPos) 8699 if (!RemoveNodeFromCSEMaps(N)) 8700 InsertPos = nullptr; 8701 8702 // Now we update the operands. 8703 for (unsigned i = 0; i != NumOps; ++i) 8704 if (N->OperandList[i] != Ops[i]) 8705 N->OperandList[i].set(Ops[i]); 8706 8707 updateDivergence(N); 8708 // If this gets put into a CSE map, add it. 8709 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8710 return N; 8711 } 8712 8713 /// DropOperands - Release the operands and set this node to have 8714 /// zero operands. 8715 void SDNode::DropOperands() { 8716 // Unlike the code in MorphNodeTo that does this, we don't need to 8717 // watch for dead nodes here. 8718 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8719 SDUse &Use = *I++; 8720 Use.set(SDValue()); 8721 } 8722 } 8723 8724 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8725 ArrayRef<MachineMemOperand *> NewMemRefs) { 8726 if (NewMemRefs.empty()) { 8727 N->clearMemRefs(); 8728 return; 8729 } 8730 8731 // Check if we can avoid allocating by storing a single reference directly. 8732 if (NewMemRefs.size() == 1) { 8733 N->MemRefs = NewMemRefs[0]; 8734 N->NumMemRefs = 1; 8735 return; 8736 } 8737 8738 MachineMemOperand **MemRefsBuffer = 8739 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8740 llvm::copy(NewMemRefs, MemRefsBuffer); 8741 N->MemRefs = MemRefsBuffer; 8742 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8743 } 8744 8745 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8746 /// machine opcode. 8747 /// 8748 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8749 EVT VT) { 8750 SDVTList VTs = getVTList(VT); 8751 return SelectNodeTo(N, MachineOpc, VTs, None); 8752 } 8753 8754 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8755 EVT VT, SDValue Op1) { 8756 SDVTList VTs = getVTList(VT); 8757 SDValue Ops[] = { Op1 }; 8758 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8759 } 8760 8761 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8762 EVT VT, SDValue Op1, 8763 SDValue Op2) { 8764 SDVTList VTs = getVTList(VT); 8765 SDValue Ops[] = { Op1, Op2 }; 8766 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8767 } 8768 8769 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8770 EVT VT, SDValue Op1, 8771 SDValue Op2, SDValue Op3) { 8772 SDVTList VTs = getVTList(VT); 8773 SDValue Ops[] = { Op1, Op2, Op3 }; 8774 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8775 } 8776 8777 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8778 EVT VT, ArrayRef<SDValue> Ops) { 8779 SDVTList VTs = getVTList(VT); 8780 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8781 } 8782 8783 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8784 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8785 SDVTList VTs = getVTList(VT1, VT2); 8786 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8787 } 8788 8789 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8790 EVT VT1, EVT VT2) { 8791 SDVTList VTs = getVTList(VT1, VT2); 8792 return SelectNodeTo(N, MachineOpc, VTs, None); 8793 } 8794 8795 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8796 EVT VT1, EVT VT2, EVT VT3, 8797 ArrayRef<SDValue> Ops) { 8798 SDVTList VTs = getVTList(VT1, VT2, VT3); 8799 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8800 } 8801 8802 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8803 EVT VT1, EVT VT2, 8804 SDValue Op1, SDValue Op2) { 8805 SDVTList VTs = getVTList(VT1, VT2); 8806 SDValue Ops[] = { Op1, Op2 }; 8807 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8808 } 8809 8810 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8811 SDVTList VTs,ArrayRef<SDValue> Ops) { 8812 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8813 // Reset the NodeID to -1. 8814 New->setNodeId(-1); 8815 if (New != N) { 8816 ReplaceAllUsesWith(N, New); 8817 RemoveDeadNode(N); 8818 } 8819 return New; 8820 } 8821 8822 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8823 /// the line number information on the merged node since it is not possible to 8824 /// preserve the information that operation is associated with multiple lines. 8825 /// This will make the debugger working better at -O0, were there is a higher 8826 /// probability having other instructions associated with that line. 8827 /// 8828 /// For IROrder, we keep the smaller of the two 8829 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8830 DebugLoc NLoc = N->getDebugLoc(); 8831 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8832 N->setDebugLoc(DebugLoc()); 8833 } 8834 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8835 N->setIROrder(Order); 8836 return N; 8837 } 8838 8839 /// MorphNodeTo - This *mutates* the specified node to have the specified 8840 /// return type, opcode, and operands. 8841 /// 8842 /// Note that MorphNodeTo returns the resultant node. If there is already a 8843 /// node of the specified opcode and operands, it returns that node instead of 8844 /// the current one. Note that the SDLoc need not be the same. 8845 /// 8846 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8847 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8848 /// node, and because it doesn't require CSE recalculation for any of 8849 /// the node's users. 8850 /// 8851 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8852 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8853 /// the legalizer which maintain worklists that would need to be updated when 8854 /// deleting things. 8855 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8856 SDVTList VTs, ArrayRef<SDValue> Ops) { 8857 // If an identical node already exists, use it. 8858 void *IP = nullptr; 8859 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8860 FoldingSetNodeID ID; 8861 AddNodeIDNode(ID, Opc, VTs, Ops); 8862 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8863 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8864 } 8865 8866 if (!RemoveNodeFromCSEMaps(N)) 8867 IP = nullptr; 8868 8869 // Start the morphing. 8870 N->NodeType = Opc; 8871 N->ValueList = VTs.VTs; 8872 N->NumValues = VTs.NumVTs; 8873 8874 // Clear the operands list, updating used nodes to remove this from their 8875 // use list. Keep track of any operands that become dead as a result. 8876 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8877 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8878 SDUse &Use = *I++; 8879 SDNode *Used = Use.getNode(); 8880 Use.set(SDValue()); 8881 if (Used->use_empty()) 8882 DeadNodeSet.insert(Used); 8883 } 8884 8885 // For MachineNode, initialize the memory references information. 8886 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8887 MN->clearMemRefs(); 8888 8889 // Swap for an appropriately sized array from the recycler. 8890 removeOperands(N); 8891 createOperands(N, Ops); 8892 8893 // Delete any nodes that are still dead after adding the uses for the 8894 // new operands. 8895 if (!DeadNodeSet.empty()) { 8896 SmallVector<SDNode *, 16> DeadNodes; 8897 for (SDNode *N : DeadNodeSet) 8898 if (N->use_empty()) 8899 DeadNodes.push_back(N); 8900 RemoveDeadNodes(DeadNodes); 8901 } 8902 8903 if (IP) 8904 CSEMap.InsertNode(N, IP); // Memoize the new node. 8905 return N; 8906 } 8907 8908 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8909 unsigned OrigOpc = Node->getOpcode(); 8910 unsigned NewOpc; 8911 switch (OrigOpc) { 8912 default: 8913 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8914 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8915 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8916 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8917 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8918 #include "llvm/IR/ConstrainedOps.def" 8919 } 8920 8921 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8922 8923 // We're taking this node out of the chain, so we need to re-link things. 8924 SDValue InputChain = Node->getOperand(0); 8925 SDValue OutputChain = SDValue(Node, 1); 8926 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8927 8928 SmallVector<SDValue, 3> Ops; 8929 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8930 Ops.push_back(Node->getOperand(i)); 8931 8932 SDVTList VTs = getVTList(Node->getValueType(0)); 8933 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8934 8935 // MorphNodeTo can operate in two ways: if an existing node with the 8936 // specified operands exists, it can just return it. Otherwise, it 8937 // updates the node in place to have the requested operands. 8938 if (Res == Node) { 8939 // If we updated the node in place, reset the node ID. To the isel, 8940 // this should be just like a newly allocated machine node. 8941 Res->setNodeId(-1); 8942 } else { 8943 ReplaceAllUsesWith(Node, Res); 8944 RemoveDeadNode(Node); 8945 } 8946 8947 return Res; 8948 } 8949 8950 /// getMachineNode - These are used for target selectors to create a new node 8951 /// with specified return type(s), MachineInstr opcode, and operands. 8952 /// 8953 /// Note that getMachineNode returns the resultant node. If there is already a 8954 /// node of the specified opcode and operands, it returns that node instead of 8955 /// the current one. 8956 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8957 EVT VT) { 8958 SDVTList VTs = getVTList(VT); 8959 return getMachineNode(Opcode, dl, VTs, None); 8960 } 8961 8962 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8963 EVT VT, SDValue Op1) { 8964 SDVTList VTs = getVTList(VT); 8965 SDValue Ops[] = { Op1 }; 8966 return getMachineNode(Opcode, dl, VTs, Ops); 8967 } 8968 8969 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8970 EVT VT, SDValue Op1, SDValue Op2) { 8971 SDVTList VTs = getVTList(VT); 8972 SDValue Ops[] = { Op1, Op2 }; 8973 return getMachineNode(Opcode, dl, VTs, Ops); 8974 } 8975 8976 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8977 EVT VT, SDValue Op1, SDValue Op2, 8978 SDValue Op3) { 8979 SDVTList VTs = getVTList(VT); 8980 SDValue Ops[] = { Op1, Op2, Op3 }; 8981 return getMachineNode(Opcode, dl, VTs, Ops); 8982 } 8983 8984 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8985 EVT VT, ArrayRef<SDValue> Ops) { 8986 SDVTList VTs = getVTList(VT); 8987 return getMachineNode(Opcode, dl, VTs, Ops); 8988 } 8989 8990 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8991 EVT VT1, EVT VT2, SDValue Op1, 8992 SDValue Op2) { 8993 SDVTList VTs = getVTList(VT1, VT2); 8994 SDValue Ops[] = { Op1, Op2 }; 8995 return getMachineNode(Opcode, dl, VTs, Ops); 8996 } 8997 8998 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8999 EVT VT1, EVT VT2, SDValue Op1, 9000 SDValue Op2, SDValue Op3) { 9001 SDVTList VTs = getVTList(VT1, VT2); 9002 SDValue Ops[] = { Op1, Op2, Op3 }; 9003 return getMachineNode(Opcode, dl, VTs, Ops); 9004 } 9005 9006 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9007 EVT VT1, EVT VT2, 9008 ArrayRef<SDValue> Ops) { 9009 SDVTList VTs = getVTList(VT1, VT2); 9010 return getMachineNode(Opcode, dl, VTs, Ops); 9011 } 9012 9013 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9014 EVT VT1, EVT VT2, EVT VT3, 9015 SDValue Op1, SDValue Op2) { 9016 SDVTList VTs = getVTList(VT1, VT2, VT3); 9017 SDValue Ops[] = { Op1, Op2 }; 9018 return getMachineNode(Opcode, dl, VTs, Ops); 9019 } 9020 9021 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9022 EVT VT1, EVT VT2, EVT VT3, 9023 SDValue Op1, SDValue Op2, 9024 SDValue Op3) { 9025 SDVTList VTs = getVTList(VT1, VT2, VT3); 9026 SDValue Ops[] = { Op1, Op2, Op3 }; 9027 return getMachineNode(Opcode, dl, VTs, Ops); 9028 } 9029 9030 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9031 EVT VT1, EVT VT2, EVT VT3, 9032 ArrayRef<SDValue> Ops) { 9033 SDVTList VTs = getVTList(VT1, VT2, VT3); 9034 return getMachineNode(Opcode, dl, VTs, Ops); 9035 } 9036 9037 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9038 ArrayRef<EVT> ResultTys, 9039 ArrayRef<SDValue> Ops) { 9040 SDVTList VTs = getVTList(ResultTys); 9041 return getMachineNode(Opcode, dl, VTs, Ops); 9042 } 9043 9044 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9045 SDVTList VTs, 9046 ArrayRef<SDValue> Ops) { 9047 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9048 MachineSDNode *N; 9049 void *IP = nullptr; 9050 9051 if (DoCSE) { 9052 FoldingSetNodeID ID; 9053 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9054 IP = nullptr; 9055 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9056 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9057 } 9058 } 9059 9060 // Allocate a new MachineSDNode. 9061 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9062 createOperands(N, Ops); 9063 9064 if (DoCSE) 9065 CSEMap.InsertNode(N, IP); 9066 9067 InsertNode(N); 9068 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9069 return N; 9070 } 9071 9072 /// getTargetExtractSubreg - A convenience function for creating 9073 /// TargetOpcode::EXTRACT_SUBREG nodes. 9074 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9075 SDValue Operand) { 9076 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9077 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9078 VT, Operand, SRIdxVal); 9079 return SDValue(Subreg, 0); 9080 } 9081 9082 /// getTargetInsertSubreg - A convenience function for creating 9083 /// TargetOpcode::INSERT_SUBREG nodes. 9084 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9085 SDValue Operand, SDValue Subreg) { 9086 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9087 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9088 VT, Operand, Subreg, SRIdxVal); 9089 return SDValue(Result, 0); 9090 } 9091 9092 /// getNodeIfExists - Get the specified node if it's already available, or 9093 /// else return NULL. 9094 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9095 ArrayRef<SDValue> Ops) { 9096 SDNodeFlags Flags; 9097 if (Inserter) 9098 Flags = Inserter->getFlags(); 9099 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9100 } 9101 9102 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9103 ArrayRef<SDValue> Ops, 9104 const SDNodeFlags Flags) { 9105 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9106 FoldingSetNodeID ID; 9107 AddNodeIDNode(ID, Opcode, VTList, Ops); 9108 void *IP = nullptr; 9109 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9110 E->intersectFlagsWith(Flags); 9111 return E; 9112 } 9113 } 9114 return nullptr; 9115 } 9116 9117 /// doesNodeExist - Check if a node exists without modifying its flags. 9118 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9119 ArrayRef<SDValue> Ops) { 9120 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9121 FoldingSetNodeID ID; 9122 AddNodeIDNode(ID, Opcode, VTList, Ops); 9123 void *IP = nullptr; 9124 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9125 return true; 9126 } 9127 return false; 9128 } 9129 9130 /// getDbgValue - Creates a SDDbgValue node. 9131 /// 9132 /// SDNode 9133 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9134 SDNode *N, unsigned R, bool IsIndirect, 9135 const DebugLoc &DL, unsigned O) { 9136 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9137 "Expected inlined-at fields to agree"); 9138 return new (DbgInfo->getAlloc()) 9139 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9140 {}, IsIndirect, DL, O, 9141 /*IsVariadic=*/false); 9142 } 9143 9144 /// Constant 9145 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9146 DIExpression *Expr, 9147 const Value *C, 9148 const DebugLoc &DL, unsigned O) { 9149 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9150 "Expected inlined-at fields to agree"); 9151 return new (DbgInfo->getAlloc()) 9152 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9153 /*IsIndirect=*/false, DL, O, 9154 /*IsVariadic=*/false); 9155 } 9156 9157 /// FrameIndex 9158 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9159 DIExpression *Expr, unsigned FI, 9160 bool IsIndirect, 9161 const DebugLoc &DL, 9162 unsigned O) { 9163 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9164 "Expected inlined-at fields to agree"); 9165 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9166 } 9167 9168 /// FrameIndex with dependencies 9169 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9170 DIExpression *Expr, unsigned FI, 9171 ArrayRef<SDNode *> Dependencies, 9172 bool IsIndirect, 9173 const DebugLoc &DL, 9174 unsigned O) { 9175 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9176 "Expected inlined-at fields to agree"); 9177 return new (DbgInfo->getAlloc()) 9178 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9179 Dependencies, IsIndirect, DL, O, 9180 /*IsVariadic=*/false); 9181 } 9182 9183 /// VReg 9184 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9185 unsigned VReg, bool IsIndirect, 9186 const DebugLoc &DL, unsigned O) { 9187 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9188 "Expected inlined-at fields to agree"); 9189 return new (DbgInfo->getAlloc()) 9190 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9191 {}, IsIndirect, DL, O, 9192 /*IsVariadic=*/false); 9193 } 9194 9195 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9196 ArrayRef<SDDbgOperand> Locs, 9197 ArrayRef<SDNode *> Dependencies, 9198 bool IsIndirect, const DebugLoc &DL, 9199 unsigned O, bool IsVariadic) { 9200 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9201 "Expected inlined-at fields to agree"); 9202 return new (DbgInfo->getAlloc()) 9203 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9204 DL, O, IsVariadic); 9205 } 9206 9207 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9208 unsigned OffsetInBits, unsigned SizeInBits, 9209 bool InvalidateDbg) { 9210 SDNode *FromNode = From.getNode(); 9211 SDNode *ToNode = To.getNode(); 9212 assert(FromNode && ToNode && "Can't modify dbg values"); 9213 9214 // PR35338 9215 // TODO: assert(From != To && "Redundant dbg value transfer"); 9216 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9217 if (From == To || FromNode == ToNode) 9218 return; 9219 9220 if (!FromNode->getHasDebugValue()) 9221 return; 9222 9223 SDDbgOperand FromLocOp = 9224 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9225 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9226 9227 SmallVector<SDDbgValue *, 2> ClonedDVs; 9228 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9229 if (Dbg->isInvalidated()) 9230 continue; 9231 9232 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9233 9234 // Create a new location ops vector that is equal to the old vector, but 9235 // with each instance of FromLocOp replaced with ToLocOp. 9236 bool Changed = false; 9237 auto NewLocOps = Dbg->copyLocationOps(); 9238 std::replace_if( 9239 NewLocOps.begin(), NewLocOps.end(), 9240 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9241 bool Match = Op == FromLocOp; 9242 Changed |= Match; 9243 return Match; 9244 }, 9245 ToLocOp); 9246 // Ignore this SDDbgValue if we didn't find a matching location. 9247 if (!Changed) 9248 continue; 9249 9250 DIVariable *Var = Dbg->getVariable(); 9251 auto *Expr = Dbg->getExpression(); 9252 // If a fragment is requested, update the expression. 9253 if (SizeInBits) { 9254 // When splitting a larger (e.g., sign-extended) value whose 9255 // lower bits are described with an SDDbgValue, do not attempt 9256 // to transfer the SDDbgValue to the upper bits. 9257 if (auto FI = Expr->getFragmentInfo()) 9258 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9259 continue; 9260 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9261 SizeInBits); 9262 if (!Fragment) 9263 continue; 9264 Expr = *Fragment; 9265 } 9266 9267 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9268 // Clone the SDDbgValue and move it to To. 9269 SDDbgValue *Clone = getDbgValueList( 9270 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9271 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9272 Dbg->isVariadic()); 9273 ClonedDVs.push_back(Clone); 9274 9275 if (InvalidateDbg) { 9276 // Invalidate value and indicate the SDDbgValue should not be emitted. 9277 Dbg->setIsInvalidated(); 9278 Dbg->setIsEmitted(); 9279 } 9280 } 9281 9282 for (SDDbgValue *Dbg : ClonedDVs) { 9283 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9284 "Transferred DbgValues should depend on the new SDNode"); 9285 AddDbgValue(Dbg, false); 9286 } 9287 } 9288 9289 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9290 if (!N.getHasDebugValue()) 9291 return; 9292 9293 SmallVector<SDDbgValue *, 2> ClonedDVs; 9294 for (auto DV : GetDbgValues(&N)) { 9295 if (DV->isInvalidated()) 9296 continue; 9297 switch (N.getOpcode()) { 9298 default: 9299 break; 9300 case ISD::ADD: 9301 SDValue N0 = N.getOperand(0); 9302 SDValue N1 = N.getOperand(1); 9303 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9304 isConstantIntBuildVectorOrConstantInt(N1)) { 9305 uint64_t Offset = N.getConstantOperandVal(1); 9306 9307 // Rewrite an ADD constant node into a DIExpression. Since we are 9308 // performing arithmetic to compute the variable's *value* in the 9309 // DIExpression, we need to mark the expression with a 9310 // DW_OP_stack_value. 9311 auto *DIExpr = DV->getExpression(); 9312 auto NewLocOps = DV->copyLocationOps(); 9313 bool Changed = false; 9314 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9315 // We're not given a ResNo to compare against because the whole 9316 // node is going away. We know that any ISD::ADD only has one 9317 // result, so we can assume any node match is using the result. 9318 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9319 NewLocOps[i].getSDNode() != &N) 9320 continue; 9321 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9322 SmallVector<uint64_t, 3> ExprOps; 9323 DIExpression::appendOffset(ExprOps, Offset); 9324 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9325 Changed = true; 9326 } 9327 (void)Changed; 9328 assert(Changed && "Salvage target doesn't use N"); 9329 9330 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9331 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9332 NewLocOps, AdditionalDependencies, 9333 DV->isIndirect(), DV->getDebugLoc(), 9334 DV->getOrder(), DV->isVariadic()); 9335 ClonedDVs.push_back(Clone); 9336 DV->setIsInvalidated(); 9337 DV->setIsEmitted(); 9338 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9339 N0.getNode()->dumprFull(this); 9340 dbgs() << " into " << *DIExpr << '\n'); 9341 } 9342 } 9343 } 9344 9345 for (SDDbgValue *Dbg : ClonedDVs) { 9346 assert(!Dbg->getSDNodes().empty() && 9347 "Salvaged DbgValue should depend on a new SDNode"); 9348 AddDbgValue(Dbg, false); 9349 } 9350 } 9351 9352 /// Creates a SDDbgLabel node. 9353 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9354 const DebugLoc &DL, unsigned O) { 9355 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9356 "Expected inlined-at fields to agree"); 9357 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9358 } 9359 9360 namespace { 9361 9362 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9363 /// pointed to by a use iterator is deleted, increment the use iterator 9364 /// so that it doesn't dangle. 9365 /// 9366 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9367 SDNode::use_iterator &UI; 9368 SDNode::use_iterator &UE; 9369 9370 void NodeDeleted(SDNode *N, SDNode *E) override { 9371 // Increment the iterator as needed. 9372 while (UI != UE && N == *UI) 9373 ++UI; 9374 } 9375 9376 public: 9377 RAUWUpdateListener(SelectionDAG &d, 9378 SDNode::use_iterator &ui, 9379 SDNode::use_iterator &ue) 9380 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9381 }; 9382 9383 } // end anonymous namespace 9384 9385 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9386 /// This can cause recursive merging of nodes in the DAG. 9387 /// 9388 /// This version assumes From has a single result value. 9389 /// 9390 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9391 SDNode *From = FromN.getNode(); 9392 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9393 "Cannot replace with this method!"); 9394 assert(From != To.getNode() && "Cannot replace uses of with self"); 9395 9396 // Preserve Debug Values 9397 transferDbgValues(FromN, To); 9398 9399 // Iterate over all the existing uses of From. New uses will be added 9400 // to the beginning of the use list, which we avoid visiting. 9401 // This specifically avoids visiting uses of From that arise while the 9402 // replacement is happening, because any such uses would be the result 9403 // of CSE: If an existing node looks like From after one of its operands 9404 // is replaced by To, we don't want to replace of all its users with To 9405 // too. See PR3018 for more info. 9406 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9407 RAUWUpdateListener Listener(*this, UI, UE); 9408 while (UI != UE) { 9409 SDNode *User = *UI; 9410 9411 // This node is about to morph, remove its old self from the CSE maps. 9412 RemoveNodeFromCSEMaps(User); 9413 9414 // A user can appear in a use list multiple times, and when this 9415 // happens the uses are usually next to each other in the list. 9416 // To help reduce the number of CSE recomputations, process all 9417 // the uses of this user that we can find this way. 9418 do { 9419 SDUse &Use = UI.getUse(); 9420 ++UI; 9421 Use.set(To); 9422 if (To->isDivergent() != From->isDivergent()) 9423 updateDivergence(User); 9424 } while (UI != UE && *UI == User); 9425 // Now that we have modified User, add it back to the CSE maps. If it 9426 // already exists there, recursively merge the results together. 9427 AddModifiedNodeToCSEMaps(User); 9428 } 9429 9430 // If we just RAUW'd the root, take note. 9431 if (FromN == getRoot()) 9432 setRoot(To); 9433 } 9434 9435 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9436 /// This can cause recursive merging of nodes in the DAG. 9437 /// 9438 /// This version assumes that for each value of From, there is a 9439 /// corresponding value in To in the same position with the same type. 9440 /// 9441 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9442 #ifndef NDEBUG 9443 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9444 assert((!From->hasAnyUseOfValue(i) || 9445 From->getValueType(i) == To->getValueType(i)) && 9446 "Cannot use this version of ReplaceAllUsesWith!"); 9447 #endif 9448 9449 // Handle the trivial case. 9450 if (From == To) 9451 return; 9452 9453 // Preserve Debug Info. Only do this if there's a use. 9454 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9455 if (From->hasAnyUseOfValue(i)) { 9456 assert((i < To->getNumValues()) && "Invalid To location"); 9457 transferDbgValues(SDValue(From, i), SDValue(To, i)); 9458 } 9459 9460 // Iterate over just the existing users of From. See the comments in 9461 // the ReplaceAllUsesWith above. 9462 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9463 RAUWUpdateListener Listener(*this, UI, UE); 9464 while (UI != UE) { 9465 SDNode *User = *UI; 9466 9467 // This node is about to morph, remove its old self from the CSE maps. 9468 RemoveNodeFromCSEMaps(User); 9469 9470 // A user can appear in a use list multiple times, and when this 9471 // happens the uses are usually next to each other in the list. 9472 // To help reduce the number of CSE recomputations, process all 9473 // the uses of this user that we can find this way. 9474 do { 9475 SDUse &Use = UI.getUse(); 9476 ++UI; 9477 Use.setNode(To); 9478 if (To->isDivergent() != From->isDivergent()) 9479 updateDivergence(User); 9480 } while (UI != UE && *UI == User); 9481 9482 // Now that we have modified User, add it back to the CSE maps. If it 9483 // already exists there, recursively merge the results together. 9484 AddModifiedNodeToCSEMaps(User); 9485 } 9486 9487 // If we just RAUW'd the root, take note. 9488 if (From == getRoot().getNode()) 9489 setRoot(SDValue(To, getRoot().getResNo())); 9490 } 9491 9492 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9493 /// This can cause recursive merging of nodes in the DAG. 9494 /// 9495 /// This version can replace From with any result values. To must match the 9496 /// number and types of values returned by From. 9497 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 9498 if (From->getNumValues() == 1) // Handle the simple case efficiently. 9499 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 9500 9501 // Preserve Debug Info. 9502 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9503 transferDbgValues(SDValue(From, i), To[i]); 9504 9505 // Iterate over just the existing users of From. See the comments in 9506 // the ReplaceAllUsesWith above. 9507 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9508 RAUWUpdateListener Listener(*this, UI, UE); 9509 while (UI != UE) { 9510 SDNode *User = *UI; 9511 9512 // This node is about to morph, remove its old self from the CSE maps. 9513 RemoveNodeFromCSEMaps(User); 9514 9515 // A user can appear in a use list multiple times, and when this happens the 9516 // uses are usually next to each other in the list. To help reduce the 9517 // number of CSE and divergence recomputations, process all the uses of this 9518 // user that we can find this way. 9519 bool To_IsDivergent = false; 9520 do { 9521 SDUse &Use = UI.getUse(); 9522 const SDValue &ToOp = To[Use.getResNo()]; 9523 ++UI; 9524 Use.set(ToOp); 9525 To_IsDivergent |= ToOp->isDivergent(); 9526 } while (UI != UE && *UI == User); 9527 9528 if (To_IsDivergent != From->isDivergent()) 9529 updateDivergence(User); 9530 9531 // Now that we have modified User, add it back to the CSE maps. If it 9532 // already exists there, recursively merge the results together. 9533 AddModifiedNodeToCSEMaps(User); 9534 } 9535 9536 // If we just RAUW'd the root, take note. 9537 if (From == getRoot().getNode()) 9538 setRoot(SDValue(To[getRoot().getResNo()])); 9539 } 9540 9541 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 9542 /// uses of other values produced by From.getNode() alone. The Deleted 9543 /// vector is handled the same way as for ReplaceAllUsesWith. 9544 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 9545 // Handle the really simple, really trivial case efficiently. 9546 if (From == To) return; 9547 9548 // Handle the simple, trivial, case efficiently. 9549 if (From.getNode()->getNumValues() == 1) { 9550 ReplaceAllUsesWith(From, To); 9551 return; 9552 } 9553 9554 // Preserve Debug Info. 9555 transferDbgValues(From, To); 9556 9557 // Iterate over just the existing users of From. See the comments in 9558 // the ReplaceAllUsesWith above. 9559 SDNode::use_iterator UI = From.getNode()->use_begin(), 9560 UE = From.getNode()->use_end(); 9561 RAUWUpdateListener Listener(*this, UI, UE); 9562 while (UI != UE) { 9563 SDNode *User = *UI; 9564 bool UserRemovedFromCSEMaps = false; 9565 9566 // A user can appear in a use list multiple times, and when this 9567 // happens the uses are usually next to each other in the list. 9568 // To help reduce the number of CSE recomputations, process all 9569 // the uses of this user that we can find this way. 9570 do { 9571 SDUse &Use = UI.getUse(); 9572 9573 // Skip uses of different values from the same node. 9574 if (Use.getResNo() != From.getResNo()) { 9575 ++UI; 9576 continue; 9577 } 9578 9579 // If this node hasn't been modified yet, it's still in the CSE maps, 9580 // so remove its old self from the CSE maps. 9581 if (!UserRemovedFromCSEMaps) { 9582 RemoveNodeFromCSEMaps(User); 9583 UserRemovedFromCSEMaps = true; 9584 } 9585 9586 ++UI; 9587 Use.set(To); 9588 if (To->isDivergent() != From->isDivergent()) 9589 updateDivergence(User); 9590 } while (UI != UE && *UI == User); 9591 // We are iterating over all uses of the From node, so if a use 9592 // doesn't use the specific value, no changes are made. 9593 if (!UserRemovedFromCSEMaps) 9594 continue; 9595 9596 // Now that we have modified User, add it back to the CSE maps. If it 9597 // already exists there, recursively merge the results together. 9598 AddModifiedNodeToCSEMaps(User); 9599 } 9600 9601 // If we just RAUW'd the root, take note. 9602 if (From == getRoot()) 9603 setRoot(To); 9604 } 9605 9606 namespace { 9607 9608 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9609 /// to record information about a use. 9610 struct UseMemo { 9611 SDNode *User; 9612 unsigned Index; 9613 SDUse *Use; 9614 }; 9615 9616 /// operator< - Sort Memos by User. 9617 bool operator<(const UseMemo &L, const UseMemo &R) { 9618 return (intptr_t)L.User < (intptr_t)R.User; 9619 } 9620 9621 } // end anonymous namespace 9622 9623 bool SelectionDAG::calculateDivergence(SDNode *N) { 9624 if (TLI->isSDNodeAlwaysUniform(N)) { 9625 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9626 "Conflicting divergence information!"); 9627 return false; 9628 } 9629 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9630 return true; 9631 for (auto &Op : N->ops()) { 9632 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9633 return true; 9634 } 9635 return false; 9636 } 9637 9638 void SelectionDAG::updateDivergence(SDNode *N) { 9639 SmallVector<SDNode *, 16> Worklist(1, N); 9640 do { 9641 N = Worklist.pop_back_val(); 9642 bool IsDivergent = calculateDivergence(N); 9643 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9644 N->SDNodeBits.IsDivergent = IsDivergent; 9645 llvm::append_range(Worklist, N->uses()); 9646 } 9647 } while (!Worklist.empty()); 9648 } 9649 9650 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9651 DenseMap<SDNode *, unsigned> Degree; 9652 Order.reserve(AllNodes.size()); 9653 for (auto &N : allnodes()) { 9654 unsigned NOps = N.getNumOperands(); 9655 Degree[&N] = NOps; 9656 if (0 == NOps) 9657 Order.push_back(&N); 9658 } 9659 for (size_t I = 0; I != Order.size(); ++I) { 9660 SDNode *N = Order[I]; 9661 for (auto U : N->uses()) { 9662 unsigned &UnsortedOps = Degree[U]; 9663 if (0 == --UnsortedOps) 9664 Order.push_back(U); 9665 } 9666 } 9667 } 9668 9669 #ifndef NDEBUG 9670 void SelectionDAG::VerifyDAGDivergence() { 9671 std::vector<SDNode *> TopoOrder; 9672 CreateTopologicalOrder(TopoOrder); 9673 for (auto *N : TopoOrder) { 9674 assert(calculateDivergence(N) == N->isDivergent() && 9675 "Divergence bit inconsistency detected"); 9676 } 9677 } 9678 #endif 9679 9680 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9681 /// uses of other values produced by From.getNode() alone. The same value 9682 /// may appear in both the From and To list. The Deleted vector is 9683 /// handled the same way as for ReplaceAllUsesWith. 9684 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9685 const SDValue *To, 9686 unsigned Num){ 9687 // Handle the simple, trivial case efficiently. 9688 if (Num == 1) 9689 return ReplaceAllUsesOfValueWith(*From, *To); 9690 9691 transferDbgValues(*From, *To); 9692 9693 // Read up all the uses and make records of them. This helps 9694 // processing new uses that are introduced during the 9695 // replacement process. 9696 SmallVector<UseMemo, 4> Uses; 9697 for (unsigned i = 0; i != Num; ++i) { 9698 unsigned FromResNo = From[i].getResNo(); 9699 SDNode *FromNode = From[i].getNode(); 9700 for (SDNode::use_iterator UI = FromNode->use_begin(), 9701 E = FromNode->use_end(); UI != E; ++UI) { 9702 SDUse &Use = UI.getUse(); 9703 if (Use.getResNo() == FromResNo) { 9704 UseMemo Memo = { *UI, i, &Use }; 9705 Uses.push_back(Memo); 9706 } 9707 } 9708 } 9709 9710 // Sort the uses, so that all the uses from a given User are together. 9711 llvm::sort(Uses); 9712 9713 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9714 UseIndex != UseIndexEnd; ) { 9715 // We know that this user uses some value of From. If it is the right 9716 // value, update it. 9717 SDNode *User = Uses[UseIndex].User; 9718 9719 // This node is about to morph, remove its old self from the CSE maps. 9720 RemoveNodeFromCSEMaps(User); 9721 9722 // The Uses array is sorted, so all the uses for a given User 9723 // are next to each other in the list. 9724 // To help reduce the number of CSE recomputations, process all 9725 // the uses of this user that we can find this way. 9726 do { 9727 unsigned i = Uses[UseIndex].Index; 9728 SDUse &Use = *Uses[UseIndex].Use; 9729 ++UseIndex; 9730 9731 Use.set(To[i]); 9732 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9733 9734 // Now that we have modified User, add it back to the CSE maps. If it 9735 // already exists there, recursively merge the results together. 9736 AddModifiedNodeToCSEMaps(User); 9737 } 9738 } 9739 9740 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9741 /// based on their topological order. It returns the maximum id and a vector 9742 /// of the SDNodes* in assigned order by reference. 9743 unsigned SelectionDAG::AssignTopologicalOrder() { 9744 unsigned DAGSize = 0; 9745 9746 // SortedPos tracks the progress of the algorithm. Nodes before it are 9747 // sorted, nodes after it are unsorted. When the algorithm completes 9748 // it is at the end of the list. 9749 allnodes_iterator SortedPos = allnodes_begin(); 9750 9751 // Visit all the nodes. Move nodes with no operands to the front of 9752 // the list immediately. Annotate nodes that do have operands with their 9753 // operand count. Before we do this, the Node Id fields of the nodes 9754 // may contain arbitrary values. After, the Node Id fields for nodes 9755 // before SortedPos will contain the topological sort index, and the 9756 // Node Id fields for nodes At SortedPos and after will contain the 9757 // count of outstanding operands. 9758 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 9759 checkForCycles(&N, this); 9760 unsigned Degree = N.getNumOperands(); 9761 if (Degree == 0) { 9762 // A node with no uses, add it to the result array immediately. 9763 N.setNodeId(DAGSize++); 9764 allnodes_iterator Q(&N); 9765 if (Q != SortedPos) 9766 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9767 assert(SortedPos != AllNodes.end() && "Overran node list"); 9768 ++SortedPos; 9769 } else { 9770 // Temporarily use the Node Id as scratch space for the degree count. 9771 N.setNodeId(Degree); 9772 } 9773 } 9774 9775 // Visit all the nodes. As we iterate, move nodes into sorted order, 9776 // such that by the time the end is reached all nodes will be sorted. 9777 for (SDNode &Node : allnodes()) { 9778 SDNode *N = &Node; 9779 checkForCycles(N, this); 9780 // N is in sorted position, so all its uses have one less operand 9781 // that needs to be sorted. 9782 for (SDNode *P : N->uses()) { 9783 unsigned Degree = P->getNodeId(); 9784 assert(Degree != 0 && "Invalid node degree"); 9785 --Degree; 9786 if (Degree == 0) { 9787 // All of P's operands are sorted, so P may sorted now. 9788 P->setNodeId(DAGSize++); 9789 if (P->getIterator() != SortedPos) 9790 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9791 assert(SortedPos != AllNodes.end() && "Overran node list"); 9792 ++SortedPos; 9793 } else { 9794 // Update P's outstanding operand count. 9795 P->setNodeId(Degree); 9796 } 9797 } 9798 if (Node.getIterator() == SortedPos) { 9799 #ifndef NDEBUG 9800 allnodes_iterator I(N); 9801 SDNode *S = &*++I; 9802 dbgs() << "Overran sorted position:\n"; 9803 S->dumprFull(this); dbgs() << "\n"; 9804 dbgs() << "Checking if this is due to cycles\n"; 9805 checkForCycles(this, true); 9806 #endif 9807 llvm_unreachable(nullptr); 9808 } 9809 } 9810 9811 assert(SortedPos == AllNodes.end() && 9812 "Topological sort incomplete!"); 9813 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9814 "First node in topological sort is not the entry token!"); 9815 assert(AllNodes.front().getNodeId() == 0 && 9816 "First node in topological sort has non-zero id!"); 9817 assert(AllNodes.front().getNumOperands() == 0 && 9818 "First node in topological sort has operands!"); 9819 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9820 "Last node in topologic sort has unexpected id!"); 9821 assert(AllNodes.back().use_empty() && 9822 "Last node in topologic sort has users!"); 9823 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9824 return DAGSize; 9825 } 9826 9827 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9828 /// value is produced by SD. 9829 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9830 for (SDNode *SD : DB->getSDNodes()) { 9831 if (!SD) 9832 continue; 9833 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9834 SD->setHasDebugValue(true); 9835 } 9836 DbgInfo->add(DB, isParameter); 9837 } 9838 9839 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9840 9841 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9842 SDValue NewMemOpChain) { 9843 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9844 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9845 // The new memory operation must have the same position as the old load in 9846 // terms of memory dependency. Create a TokenFactor for the old load and new 9847 // memory operation and update uses of the old load's output chain to use that 9848 // TokenFactor. 9849 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9850 return NewMemOpChain; 9851 9852 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9853 OldChain, NewMemOpChain); 9854 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9855 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9856 return TokenFactor; 9857 } 9858 9859 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9860 SDValue NewMemOp) { 9861 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9862 SDValue OldChain = SDValue(OldLoad, 1); 9863 SDValue NewMemOpChain = NewMemOp.getValue(1); 9864 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9865 } 9866 9867 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9868 Function **OutFunction) { 9869 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9870 9871 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9872 auto *Module = MF->getFunction().getParent(); 9873 auto *Function = Module->getFunction(Symbol); 9874 9875 if (OutFunction != nullptr) 9876 *OutFunction = Function; 9877 9878 if (Function != nullptr) { 9879 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9880 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9881 } 9882 9883 std::string ErrorStr; 9884 raw_string_ostream ErrorFormatter(ErrorStr); 9885 ErrorFormatter << "Undefined external symbol "; 9886 ErrorFormatter << '"' << Symbol << '"'; 9887 report_fatal_error(Twine(ErrorFormatter.str())); 9888 } 9889 9890 //===----------------------------------------------------------------------===// 9891 // SDNode Class 9892 //===----------------------------------------------------------------------===// 9893 9894 bool llvm::isNullConstant(SDValue V) { 9895 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9896 return Const != nullptr && Const->isZero(); 9897 } 9898 9899 bool llvm::isNullFPConstant(SDValue V) { 9900 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9901 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9902 } 9903 9904 bool llvm::isAllOnesConstant(SDValue V) { 9905 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9906 return Const != nullptr && Const->isAllOnes(); 9907 } 9908 9909 bool llvm::isOneConstant(SDValue V) { 9910 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9911 return Const != nullptr && Const->isOne(); 9912 } 9913 9914 SDValue llvm::peekThroughBitcasts(SDValue V) { 9915 while (V.getOpcode() == ISD::BITCAST) 9916 V = V.getOperand(0); 9917 return V; 9918 } 9919 9920 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9921 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9922 V = V.getOperand(0); 9923 return V; 9924 } 9925 9926 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9927 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9928 V = V.getOperand(0); 9929 return V; 9930 } 9931 9932 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9933 if (V.getOpcode() != ISD::XOR) 9934 return false; 9935 V = peekThroughBitcasts(V.getOperand(1)); 9936 unsigned NumBits = V.getScalarValueSizeInBits(); 9937 ConstantSDNode *C = 9938 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 9939 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 9940 } 9941 9942 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 9943 bool AllowTruncation) { 9944 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9945 return CN; 9946 9947 // SplatVectors can truncate their operands. Ignore that case here unless 9948 // AllowTruncation is set. 9949 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 9950 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 9951 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 9952 EVT CVT = CN->getValueType(0); 9953 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 9954 if (AllowTruncation || CVT == VecEltVT) 9955 return CN; 9956 } 9957 } 9958 9959 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9960 BitVector UndefElements; 9961 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 9962 9963 // BuildVectors can truncate their operands. Ignore that case here unless 9964 // AllowTruncation is set. 9965 if (CN && (UndefElements.none() || AllowUndefs)) { 9966 EVT CVT = CN->getValueType(0); 9967 EVT NSVT = N.getValueType().getScalarType(); 9968 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9969 if (AllowTruncation || (CVT == NSVT)) 9970 return CN; 9971 } 9972 } 9973 9974 return nullptr; 9975 } 9976 9977 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 9978 bool AllowUndefs, 9979 bool AllowTruncation) { 9980 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 9981 return CN; 9982 9983 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 9984 BitVector UndefElements; 9985 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 9986 9987 // BuildVectors can truncate their operands. Ignore that case here unless 9988 // AllowTruncation is set. 9989 if (CN && (UndefElements.none() || AllowUndefs)) { 9990 EVT CVT = CN->getValueType(0); 9991 EVT NSVT = N.getValueType().getScalarType(); 9992 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 9993 if (AllowTruncation || (CVT == NSVT)) 9994 return CN; 9995 } 9996 } 9997 9998 return nullptr; 9999 } 10000 10001 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10002 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10003 return CN; 10004 10005 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10006 BitVector UndefElements; 10007 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10008 if (CN && (UndefElements.none() || AllowUndefs)) 10009 return CN; 10010 } 10011 10012 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10013 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10014 return CN; 10015 10016 return nullptr; 10017 } 10018 10019 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10020 const APInt &DemandedElts, 10021 bool AllowUndefs) { 10022 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10023 return CN; 10024 10025 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10026 BitVector UndefElements; 10027 ConstantFPSDNode *CN = 10028 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10029 if (CN && (UndefElements.none() || AllowUndefs)) 10030 return CN; 10031 } 10032 10033 return nullptr; 10034 } 10035 10036 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10037 // TODO: may want to use peekThroughBitcast() here. 10038 ConstantSDNode *C = 10039 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10040 return C && C->isZero(); 10041 } 10042 10043 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10044 // TODO: may want to use peekThroughBitcast() here. 10045 unsigned BitWidth = N.getScalarValueSizeInBits(); 10046 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10047 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10048 } 10049 10050 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10051 N = peekThroughBitcasts(N); 10052 unsigned BitWidth = N.getScalarValueSizeInBits(); 10053 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10054 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10055 } 10056 10057 HandleSDNode::~HandleSDNode() { 10058 DropOperands(); 10059 } 10060 10061 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10062 const DebugLoc &DL, 10063 const GlobalValue *GA, EVT VT, 10064 int64_t o, unsigned TF) 10065 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10066 TheGlobal = GA; 10067 } 10068 10069 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10070 EVT VT, unsigned SrcAS, 10071 unsigned DestAS) 10072 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10073 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10074 10075 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10076 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10077 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10078 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10079 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10080 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10081 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10082 10083 // We check here that the size of the memory operand fits within the size of 10084 // the MMO. This is because the MMO might indicate only a possible address 10085 // range instead of specifying the affected memory addresses precisely. 10086 // TODO: Make MachineMemOperands aware of scalable vectors. 10087 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10088 "Size mismatch!"); 10089 } 10090 10091 /// Profile - Gather unique data for the node. 10092 /// 10093 void SDNode::Profile(FoldingSetNodeID &ID) const { 10094 AddNodeIDNode(ID, this); 10095 } 10096 10097 namespace { 10098 10099 struct EVTArray { 10100 std::vector<EVT> VTs; 10101 10102 EVTArray() { 10103 VTs.reserve(MVT::VALUETYPE_SIZE); 10104 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10105 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10106 } 10107 }; 10108 10109 } // end anonymous namespace 10110 10111 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10112 static ManagedStatic<EVTArray> SimpleVTArray; 10113 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10114 10115 /// getValueTypeList - Return a pointer to the specified value type. 10116 /// 10117 const EVT *SDNode::getValueTypeList(EVT VT) { 10118 if (VT.isExtended()) { 10119 sys::SmartScopedLock<true> Lock(*VTMutex); 10120 return &(*EVTs->insert(VT).first); 10121 } 10122 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10123 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10124 } 10125 10126 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10127 /// indicated value. This method ignores uses of other values defined by this 10128 /// operation. 10129 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10130 assert(Value < getNumValues() && "Bad value!"); 10131 10132 // TODO: Only iterate over uses of a given value of the node 10133 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10134 if (UI.getUse().getResNo() == Value) { 10135 if (NUses == 0) 10136 return false; 10137 --NUses; 10138 } 10139 } 10140 10141 // Found exactly the right number of uses? 10142 return NUses == 0; 10143 } 10144 10145 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10146 /// value. This method ignores uses of other values defined by this operation. 10147 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10148 assert(Value < getNumValues() && "Bad value!"); 10149 10150 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10151 if (UI.getUse().getResNo() == Value) 10152 return true; 10153 10154 return false; 10155 } 10156 10157 /// isOnlyUserOf - Return true if this node is the only use of N. 10158 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10159 bool Seen = false; 10160 for (const SDNode *User : N->uses()) { 10161 if (User == this) 10162 Seen = true; 10163 else 10164 return false; 10165 } 10166 10167 return Seen; 10168 } 10169 10170 /// Return true if the only users of N are contained in Nodes. 10171 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10172 bool Seen = false; 10173 for (const SDNode *User : N->uses()) { 10174 if (llvm::is_contained(Nodes, User)) 10175 Seen = true; 10176 else 10177 return false; 10178 } 10179 10180 return Seen; 10181 } 10182 10183 /// isOperand - Return true if this node is an operand of N. 10184 bool SDValue::isOperandOf(const SDNode *N) const { 10185 return is_contained(N->op_values(), *this); 10186 } 10187 10188 bool SDNode::isOperandOf(const SDNode *N) const { 10189 return any_of(N->op_values(), 10190 [this](SDValue Op) { return this == Op.getNode(); }); 10191 } 10192 10193 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10194 /// be a chain) reaches the specified operand without crossing any 10195 /// side-effecting instructions on any chain path. In practice, this looks 10196 /// through token factors and non-volatile loads. In order to remain efficient, 10197 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10198 /// 10199 /// Note that we only need to examine chains when we're searching for 10200 /// side-effects; SelectionDAG requires that all side-effects are represented 10201 /// by chains, even if another operand would force a specific ordering. This 10202 /// constraint is necessary to allow transformations like splitting loads. 10203 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10204 unsigned Depth) const { 10205 if (*this == Dest) return true; 10206 10207 // Don't search too deeply, we just want to be able to see through 10208 // TokenFactor's etc. 10209 if (Depth == 0) return false; 10210 10211 // If this is a token factor, all inputs to the TF happen in parallel. 10212 if (getOpcode() == ISD::TokenFactor) { 10213 // First, try a shallow search. 10214 if (is_contained((*this)->ops(), Dest)) { 10215 // We found the chain we want as an operand of this TokenFactor. 10216 // Essentially, we reach the chain without side-effects if we could 10217 // serialize the TokenFactor into a simple chain of operations with 10218 // Dest as the last operation. This is automatically true if the 10219 // chain has one use: there are no other ordering constraints. 10220 // If the chain has more than one use, we give up: some other 10221 // use of Dest might force a side-effect between Dest and the current 10222 // node. 10223 if (Dest.hasOneUse()) 10224 return true; 10225 } 10226 // Next, try a deep search: check whether every operand of the TokenFactor 10227 // reaches Dest. 10228 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10229 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10230 }); 10231 } 10232 10233 // Loads don't have side effects, look through them. 10234 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10235 if (Ld->isUnordered()) 10236 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10237 } 10238 return false; 10239 } 10240 10241 bool SDNode::hasPredecessor(const SDNode *N) const { 10242 SmallPtrSet<const SDNode *, 32> Visited; 10243 SmallVector<const SDNode *, 16> Worklist; 10244 Worklist.push_back(this); 10245 return hasPredecessorHelper(N, Visited, Worklist); 10246 } 10247 10248 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10249 this->Flags.intersectWith(Flags); 10250 } 10251 10252 SDValue 10253 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10254 ArrayRef<ISD::NodeType> CandidateBinOps, 10255 bool AllowPartials) { 10256 // The pattern must end in an extract from index 0. 10257 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10258 !isNullConstant(Extract->getOperand(1))) 10259 return SDValue(); 10260 10261 // Match against one of the candidate binary ops. 10262 SDValue Op = Extract->getOperand(0); 10263 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10264 return Op.getOpcode() == unsigned(BinOp); 10265 })) 10266 return SDValue(); 10267 10268 // Floating-point reductions may require relaxed constraints on the final step 10269 // of the reduction because they may reorder intermediate operations. 10270 unsigned CandidateBinOp = Op.getOpcode(); 10271 if (Op.getValueType().isFloatingPoint()) { 10272 SDNodeFlags Flags = Op->getFlags(); 10273 switch (CandidateBinOp) { 10274 case ISD::FADD: 10275 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10276 return SDValue(); 10277 break; 10278 default: 10279 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10280 } 10281 } 10282 10283 // Matching failed - attempt to see if we did enough stages that a partial 10284 // reduction from a subvector is possible. 10285 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10286 if (!AllowPartials || !Op) 10287 return SDValue(); 10288 EVT OpVT = Op.getValueType(); 10289 EVT OpSVT = OpVT.getScalarType(); 10290 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10291 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10292 return SDValue(); 10293 BinOp = (ISD::NodeType)CandidateBinOp; 10294 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10295 getVectorIdxConstant(0, SDLoc(Op))); 10296 }; 10297 10298 // At each stage, we're looking for something that looks like: 10299 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10300 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10301 // i32 undef, i32 undef, i32 undef, i32 undef> 10302 // %a = binop <8 x i32> %op, %s 10303 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10304 // we expect something like: 10305 // <4,5,6,7,u,u,u,u> 10306 // <2,3,u,u,u,u,u,u> 10307 // <1,u,u,u,u,u,u,u> 10308 // While a partial reduction match would be: 10309 // <2,3,u,u,u,u,u,u> 10310 // <1,u,u,u,u,u,u,u> 10311 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10312 SDValue PrevOp; 10313 for (unsigned i = 0; i < Stages; ++i) { 10314 unsigned MaskEnd = (1 << i); 10315 10316 if (Op.getOpcode() != CandidateBinOp) 10317 return PartialReduction(PrevOp, MaskEnd); 10318 10319 SDValue Op0 = Op.getOperand(0); 10320 SDValue Op1 = Op.getOperand(1); 10321 10322 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10323 if (Shuffle) { 10324 Op = Op1; 10325 } else { 10326 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10327 Op = Op0; 10328 } 10329 10330 // The first operand of the shuffle should be the same as the other operand 10331 // of the binop. 10332 if (!Shuffle || Shuffle->getOperand(0) != Op) 10333 return PartialReduction(PrevOp, MaskEnd); 10334 10335 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10336 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10337 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10338 return PartialReduction(PrevOp, MaskEnd); 10339 10340 PrevOp = Op; 10341 } 10342 10343 // Handle subvector reductions, which tend to appear after the shuffle 10344 // reduction stages. 10345 while (Op.getOpcode() == CandidateBinOp) { 10346 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10347 SDValue Op0 = Op.getOperand(0); 10348 SDValue Op1 = Op.getOperand(1); 10349 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10350 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10351 Op0.getOperand(0) != Op1.getOperand(0)) 10352 break; 10353 SDValue Src = Op0.getOperand(0); 10354 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10355 if (NumSrcElts != (2 * NumElts)) 10356 break; 10357 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10358 Op1.getConstantOperandAPInt(1) == NumElts) && 10359 !(Op1.getConstantOperandAPInt(1) == 0 && 10360 Op0.getConstantOperandAPInt(1) == NumElts)) 10361 break; 10362 Op = Src; 10363 } 10364 10365 BinOp = (ISD::NodeType)CandidateBinOp; 10366 return Op; 10367 } 10368 10369 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10370 assert(N->getNumValues() == 1 && 10371 "Can't unroll a vector with multiple results!"); 10372 10373 EVT VT = N->getValueType(0); 10374 unsigned NE = VT.getVectorNumElements(); 10375 EVT EltVT = VT.getVectorElementType(); 10376 SDLoc dl(N); 10377 10378 SmallVector<SDValue, 8> Scalars; 10379 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10380 10381 // If ResNE is 0, fully unroll the vector op. 10382 if (ResNE == 0) 10383 ResNE = NE; 10384 else if (NE > ResNE) 10385 NE = ResNE; 10386 10387 unsigned i; 10388 for (i= 0; i != NE; ++i) { 10389 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10390 SDValue Operand = N->getOperand(j); 10391 EVT OperandVT = Operand.getValueType(); 10392 if (OperandVT.isVector()) { 10393 // A vector operand; extract a single element. 10394 EVT OperandEltVT = OperandVT.getVectorElementType(); 10395 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 10396 Operand, getVectorIdxConstant(i, dl)); 10397 } else { 10398 // A scalar operand; just use it as is. 10399 Operands[j] = Operand; 10400 } 10401 } 10402 10403 switch (N->getOpcode()) { 10404 default: { 10405 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 10406 N->getFlags())); 10407 break; 10408 } 10409 case ISD::VSELECT: 10410 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 10411 break; 10412 case ISD::SHL: 10413 case ISD::SRA: 10414 case ISD::SRL: 10415 case ISD::ROTL: 10416 case ISD::ROTR: 10417 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 10418 getShiftAmountOperand(Operands[0].getValueType(), 10419 Operands[1]))); 10420 break; 10421 case ISD::SIGN_EXTEND_INREG: { 10422 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 10423 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 10424 Operands[0], 10425 getValueType(ExtVT))); 10426 } 10427 } 10428 } 10429 10430 for (; i < ResNE; ++i) 10431 Scalars.push_back(getUNDEF(EltVT)); 10432 10433 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 10434 return getBuildVector(VecVT, dl, Scalars); 10435 } 10436 10437 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 10438 SDNode *N, unsigned ResNE) { 10439 unsigned Opcode = N->getOpcode(); 10440 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 10441 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 10442 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 10443 "Expected an overflow opcode"); 10444 10445 EVT ResVT = N->getValueType(0); 10446 EVT OvVT = N->getValueType(1); 10447 EVT ResEltVT = ResVT.getVectorElementType(); 10448 EVT OvEltVT = OvVT.getVectorElementType(); 10449 SDLoc dl(N); 10450 10451 // If ResNE is 0, fully unroll the vector op. 10452 unsigned NE = ResVT.getVectorNumElements(); 10453 if (ResNE == 0) 10454 ResNE = NE; 10455 else if (NE > ResNE) 10456 NE = ResNE; 10457 10458 SmallVector<SDValue, 8> LHSScalars; 10459 SmallVector<SDValue, 8> RHSScalars; 10460 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 10461 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 10462 10463 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 10464 SDVTList VTs = getVTList(ResEltVT, SVT); 10465 SmallVector<SDValue, 8> ResScalars; 10466 SmallVector<SDValue, 8> OvScalars; 10467 for (unsigned i = 0; i < NE; ++i) { 10468 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 10469 SDValue Ov = 10470 getSelect(dl, OvEltVT, Res.getValue(1), 10471 getBoolConstant(true, dl, OvEltVT, ResVT), 10472 getConstant(0, dl, OvEltVT)); 10473 10474 ResScalars.push_back(Res); 10475 OvScalars.push_back(Ov); 10476 } 10477 10478 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 10479 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 10480 10481 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 10482 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 10483 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 10484 getBuildVector(NewOvVT, dl, OvScalars)); 10485 } 10486 10487 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 10488 LoadSDNode *Base, 10489 unsigned Bytes, 10490 int Dist) const { 10491 if (LD->isVolatile() || Base->isVolatile()) 10492 return false; 10493 // TODO: probably too restrictive for atomics, revisit 10494 if (!LD->isSimple()) 10495 return false; 10496 if (LD->isIndexed() || Base->isIndexed()) 10497 return false; 10498 if (LD->getChain() != Base->getChain()) 10499 return false; 10500 EVT VT = LD->getValueType(0); 10501 if (VT.getSizeInBits() / 8 != Bytes) 10502 return false; 10503 10504 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 10505 auto LocDecomp = BaseIndexOffset::match(LD, *this); 10506 10507 int64_t Offset = 0; 10508 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 10509 return (Dist * Bytes == Offset); 10510 return false; 10511 } 10512 10513 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 10514 /// if it cannot be inferred. 10515 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 10516 // If this is a GlobalAddress + cst, return the alignment. 10517 const GlobalValue *GV = nullptr; 10518 int64_t GVOffset = 0; 10519 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 10520 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 10521 KnownBits Known(PtrWidth); 10522 llvm::computeKnownBits(GV, Known, getDataLayout()); 10523 unsigned AlignBits = Known.countMinTrailingZeros(); 10524 if (AlignBits) 10525 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 10526 } 10527 10528 // If this is a direct reference to a stack slot, use information about the 10529 // stack slot's alignment. 10530 int FrameIdx = INT_MIN; 10531 int64_t FrameOffset = 0; 10532 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 10533 FrameIdx = FI->getIndex(); 10534 } else if (isBaseWithConstantOffset(Ptr) && 10535 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 10536 // Handle FI+Cst 10537 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 10538 FrameOffset = Ptr.getConstantOperandVal(1); 10539 } 10540 10541 if (FrameIdx != INT_MIN) { 10542 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 10543 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 10544 } 10545 10546 return None; 10547 } 10548 10549 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 10550 /// which is split (or expanded) into two not necessarily identical pieces. 10551 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 10552 // Currently all types are split in half. 10553 EVT LoVT, HiVT; 10554 if (!VT.isVector()) 10555 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 10556 else 10557 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 10558 10559 return std::make_pair(LoVT, HiVT); 10560 } 10561 10562 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 10563 /// type, dependent on an enveloping VT that has been split into two identical 10564 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 10565 std::pair<EVT, EVT> 10566 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 10567 bool *HiIsEmpty) const { 10568 EVT EltTp = VT.getVectorElementType(); 10569 // Examples: 10570 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 10571 // custom VL=9 with enveloping VL=8/8 yields 8/1 10572 // custom VL=10 with enveloping VL=8/8 yields 8/2 10573 // etc. 10574 ElementCount VTNumElts = VT.getVectorElementCount(); 10575 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 10576 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 10577 "Mixing fixed width and scalable vectors when enveloping a type"); 10578 EVT LoVT, HiVT; 10579 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10580 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10581 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10582 *HiIsEmpty = false; 10583 } else { 10584 // Flag that hi type has zero storage size, but return split envelop type 10585 // (this would be easier if vector types with zero elements were allowed). 10586 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10587 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10588 *HiIsEmpty = true; 10589 } 10590 return std::make_pair(LoVT, HiVT); 10591 } 10592 10593 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10594 /// low/high part. 10595 std::pair<SDValue, SDValue> 10596 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10597 const EVT &HiVT) { 10598 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10599 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10600 "Splitting vector with an invalid mixture of fixed and scalable " 10601 "vector types"); 10602 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10603 N.getValueType().getVectorMinNumElements() && 10604 "More vector elements requested than available!"); 10605 SDValue Lo, Hi; 10606 Lo = 10607 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10608 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10609 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10610 // IDX with the runtime scaling factor of the result vector type. For 10611 // fixed-width result vectors, that runtime scaling factor is 1. 10612 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10613 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10614 return std::make_pair(Lo, Hi); 10615 } 10616 10617 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10618 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10619 EVT VT = N.getValueType(); 10620 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10621 NextPowerOf2(VT.getVectorNumElements())); 10622 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10623 getVectorIdxConstant(0, DL)); 10624 } 10625 10626 void SelectionDAG::ExtractVectorElements(SDValue Op, 10627 SmallVectorImpl<SDValue> &Args, 10628 unsigned Start, unsigned Count, 10629 EVT EltVT) { 10630 EVT VT = Op.getValueType(); 10631 if (Count == 0) 10632 Count = VT.getVectorNumElements(); 10633 if (EltVT == EVT()) 10634 EltVT = VT.getVectorElementType(); 10635 SDLoc SL(Op); 10636 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10637 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10638 getVectorIdxConstant(i, SL))); 10639 } 10640 } 10641 10642 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10643 unsigned GlobalAddressSDNode::getAddressSpace() const { 10644 return getGlobal()->getType()->getAddressSpace(); 10645 } 10646 10647 Type *ConstantPoolSDNode::getType() const { 10648 if (isMachineConstantPoolEntry()) 10649 return Val.MachineCPVal->getType(); 10650 return Val.ConstVal->getType(); 10651 } 10652 10653 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10654 unsigned &SplatBitSize, 10655 bool &HasAnyUndefs, 10656 unsigned MinSplatBits, 10657 bool IsBigEndian) const { 10658 EVT VT = getValueType(0); 10659 assert(VT.isVector() && "Expected a vector type"); 10660 unsigned VecWidth = VT.getSizeInBits(); 10661 if (MinSplatBits > VecWidth) 10662 return false; 10663 10664 // FIXME: The widths are based on this node's type, but build vectors can 10665 // truncate their operands. 10666 SplatValue = APInt(VecWidth, 0); 10667 SplatUndef = APInt(VecWidth, 0); 10668 10669 // Get the bits. Bits with undefined values (when the corresponding element 10670 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10671 // in SplatValue. If any of the values are not constant, give up and return 10672 // false. 10673 unsigned int NumOps = getNumOperands(); 10674 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10675 unsigned EltWidth = VT.getScalarSizeInBits(); 10676 10677 for (unsigned j = 0; j < NumOps; ++j) { 10678 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10679 SDValue OpVal = getOperand(i); 10680 unsigned BitPos = j * EltWidth; 10681 10682 if (OpVal.isUndef()) 10683 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10684 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10685 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10686 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10687 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10688 else 10689 return false; 10690 } 10691 10692 // The build_vector is all constants or undefs. Find the smallest element 10693 // size that splats the vector. 10694 HasAnyUndefs = (SplatUndef != 0); 10695 10696 // FIXME: This does not work for vectors with elements less than 8 bits. 10697 while (VecWidth > 8) { 10698 unsigned HalfSize = VecWidth / 2; 10699 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 10700 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 10701 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 10702 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 10703 10704 // If the two halves do not match (ignoring undef bits), stop here. 10705 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10706 MinSplatBits > HalfSize) 10707 break; 10708 10709 SplatValue = HighValue | LowValue; 10710 SplatUndef = HighUndef & LowUndef; 10711 10712 VecWidth = HalfSize; 10713 } 10714 10715 SplatBitSize = VecWidth; 10716 return true; 10717 } 10718 10719 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10720 BitVector *UndefElements) const { 10721 unsigned NumOps = getNumOperands(); 10722 if (UndefElements) { 10723 UndefElements->clear(); 10724 UndefElements->resize(NumOps); 10725 } 10726 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10727 if (!DemandedElts) 10728 return SDValue(); 10729 SDValue Splatted; 10730 for (unsigned i = 0; i != NumOps; ++i) { 10731 if (!DemandedElts[i]) 10732 continue; 10733 SDValue Op = getOperand(i); 10734 if (Op.isUndef()) { 10735 if (UndefElements) 10736 (*UndefElements)[i] = true; 10737 } else if (!Splatted) { 10738 Splatted = Op; 10739 } else if (Splatted != Op) { 10740 return SDValue(); 10741 } 10742 } 10743 10744 if (!Splatted) { 10745 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10746 assert(getOperand(FirstDemandedIdx).isUndef() && 10747 "Can only have a splat without a constant for all undefs."); 10748 return getOperand(FirstDemandedIdx); 10749 } 10750 10751 return Splatted; 10752 } 10753 10754 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10755 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10756 return getSplatValue(DemandedElts, UndefElements); 10757 } 10758 10759 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10760 SmallVectorImpl<SDValue> &Sequence, 10761 BitVector *UndefElements) const { 10762 unsigned NumOps = getNumOperands(); 10763 Sequence.clear(); 10764 if (UndefElements) { 10765 UndefElements->clear(); 10766 UndefElements->resize(NumOps); 10767 } 10768 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10769 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10770 return false; 10771 10772 // Set the undefs even if we don't find a sequence (like getSplatValue). 10773 if (UndefElements) 10774 for (unsigned I = 0; I != NumOps; ++I) 10775 if (DemandedElts[I] && getOperand(I).isUndef()) 10776 (*UndefElements)[I] = true; 10777 10778 // Iteratively widen the sequence length looking for repetitions. 10779 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10780 Sequence.append(SeqLen, SDValue()); 10781 for (unsigned I = 0; I != NumOps; ++I) { 10782 if (!DemandedElts[I]) 10783 continue; 10784 SDValue &SeqOp = Sequence[I % SeqLen]; 10785 SDValue Op = getOperand(I); 10786 if (Op.isUndef()) { 10787 if (!SeqOp) 10788 SeqOp = Op; 10789 continue; 10790 } 10791 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10792 Sequence.clear(); 10793 break; 10794 } 10795 SeqOp = Op; 10796 } 10797 if (!Sequence.empty()) 10798 return true; 10799 } 10800 10801 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10802 return false; 10803 } 10804 10805 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10806 BitVector *UndefElements) const { 10807 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10808 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10809 } 10810 10811 ConstantSDNode * 10812 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10813 BitVector *UndefElements) const { 10814 return dyn_cast_or_null<ConstantSDNode>( 10815 getSplatValue(DemandedElts, UndefElements)); 10816 } 10817 10818 ConstantSDNode * 10819 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10820 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10821 } 10822 10823 ConstantFPSDNode * 10824 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10825 BitVector *UndefElements) const { 10826 return dyn_cast_or_null<ConstantFPSDNode>( 10827 getSplatValue(DemandedElts, UndefElements)); 10828 } 10829 10830 ConstantFPSDNode * 10831 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10832 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10833 } 10834 10835 int32_t 10836 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10837 uint32_t BitWidth) const { 10838 if (ConstantFPSDNode *CN = 10839 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10840 bool IsExact; 10841 APSInt IntVal(BitWidth); 10842 const APFloat &APF = CN->getValueAPF(); 10843 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10844 APFloat::opOK || 10845 !IsExact) 10846 return -1; 10847 10848 return IntVal.exactLogBase2(); 10849 } 10850 return -1; 10851 } 10852 10853 bool BuildVectorSDNode::getConstantRawBits( 10854 bool IsLittleEndian, unsigned DstEltSizeInBits, 10855 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 10856 // Early-out if this contains anything but Undef/Constant/ConstantFP. 10857 if (!isConstant()) 10858 return false; 10859 10860 unsigned NumSrcOps = getNumOperands(); 10861 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 10862 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10863 "Invalid bitcast scale"); 10864 10865 // Extract raw src bits. 10866 SmallVector<APInt> SrcBitElements(NumSrcOps, 10867 APInt::getNullValue(SrcEltSizeInBits)); 10868 BitVector SrcUndeElements(NumSrcOps, false); 10869 10870 for (unsigned I = 0; I != NumSrcOps; ++I) { 10871 SDValue Op = getOperand(I); 10872 if (Op.isUndef()) { 10873 SrcUndeElements.set(I); 10874 continue; 10875 } 10876 auto *CInt = dyn_cast<ConstantSDNode>(Op); 10877 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 10878 assert((CInt || CFP) && "Unknown constant"); 10879 SrcBitElements[I] = 10880 CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits) 10881 : CFP->getValueAPF().bitcastToAPInt(); 10882 } 10883 10884 // Recast to dst width. 10885 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 10886 SrcBitElements, UndefElements, SrcUndeElements); 10887 return true; 10888 } 10889 10890 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 10891 unsigned DstEltSizeInBits, 10892 SmallVectorImpl<APInt> &DstBitElements, 10893 ArrayRef<APInt> SrcBitElements, 10894 BitVector &DstUndefElements, 10895 const BitVector &SrcUndefElements) { 10896 unsigned NumSrcOps = SrcBitElements.size(); 10897 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 10898 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10899 "Invalid bitcast scale"); 10900 assert(NumSrcOps == SrcUndefElements.size() && 10901 "Vector size mismatch"); 10902 10903 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 10904 DstUndefElements.clear(); 10905 DstUndefElements.resize(NumDstOps, false); 10906 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 10907 10908 // Concatenate src elements constant bits together into dst element. 10909 if (SrcEltSizeInBits <= DstEltSizeInBits) { 10910 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 10911 for (unsigned I = 0; I != NumDstOps; ++I) { 10912 DstUndefElements.set(I); 10913 APInt &DstBits = DstBitElements[I]; 10914 for (unsigned J = 0; J != Scale; ++J) { 10915 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10916 if (SrcUndefElements[Idx]) 10917 continue; 10918 DstUndefElements.reset(I); 10919 const APInt &SrcBits = SrcBitElements[Idx]; 10920 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 10921 "Illegal constant bitwidths"); 10922 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 10923 } 10924 } 10925 return; 10926 } 10927 10928 // Split src element constant bits into dst elements. 10929 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 10930 for (unsigned I = 0; I != NumSrcOps; ++I) { 10931 if (SrcUndefElements[I]) { 10932 DstUndefElements.set(I * Scale, (I + 1) * Scale); 10933 continue; 10934 } 10935 const APInt &SrcBits = SrcBitElements[I]; 10936 for (unsigned J = 0; J != Scale; ++J) { 10937 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10938 APInt &DstBits = DstBitElements[Idx]; 10939 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 10940 } 10941 } 10942 } 10943 10944 bool BuildVectorSDNode::isConstant() const { 10945 for (const SDValue &Op : op_values()) { 10946 unsigned Opc = Op.getOpcode(); 10947 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 10948 return false; 10949 } 10950 return true; 10951 } 10952 10953 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 10954 // Find the first non-undef value in the shuffle mask. 10955 unsigned i, e; 10956 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 10957 /* search */; 10958 10959 // If all elements are undefined, this shuffle can be considered a splat 10960 // (although it should eventually get simplified away completely). 10961 if (i == e) 10962 return true; 10963 10964 // Make sure all remaining elements are either undef or the same as the first 10965 // non-undef value. 10966 for (int Idx = Mask[i]; i != e; ++i) 10967 if (Mask[i] >= 0 && Mask[i] != Idx) 10968 return false; 10969 return true; 10970 } 10971 10972 // Returns the SDNode if it is a constant integer BuildVector 10973 // or constant integer. 10974 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 10975 if (isa<ConstantSDNode>(N)) 10976 return N.getNode(); 10977 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 10978 return N.getNode(); 10979 // Treat a GlobalAddress supporting constant offset folding as a 10980 // constant integer. 10981 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 10982 if (GA->getOpcode() == ISD::GlobalAddress && 10983 TLI->isOffsetFoldingLegal(GA)) 10984 return GA; 10985 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 10986 isa<ConstantSDNode>(N.getOperand(0))) 10987 return N.getNode(); 10988 return nullptr; 10989 } 10990 10991 // Returns the SDNode if it is a constant float BuildVector 10992 // or constant float. 10993 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 10994 if (isa<ConstantFPSDNode>(N)) 10995 return N.getNode(); 10996 10997 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 10998 return N.getNode(); 10999 11000 return nullptr; 11001 } 11002 11003 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11004 assert(!Node->OperandList && "Node already has operands"); 11005 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11006 "too many operands to fit into SDNode"); 11007 SDUse *Ops = OperandRecycler.allocate( 11008 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11009 11010 bool IsDivergent = false; 11011 for (unsigned I = 0; I != Vals.size(); ++I) { 11012 Ops[I].setUser(Node); 11013 Ops[I].setInitial(Vals[I]); 11014 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11015 IsDivergent |= Ops[I].getNode()->isDivergent(); 11016 } 11017 Node->NumOperands = Vals.size(); 11018 Node->OperandList = Ops; 11019 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11020 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11021 Node->SDNodeBits.IsDivergent = IsDivergent; 11022 } 11023 checkForCycles(Node); 11024 } 11025 11026 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11027 SmallVectorImpl<SDValue> &Vals) { 11028 size_t Limit = SDNode::getMaxNumOperands(); 11029 while (Vals.size() > Limit) { 11030 unsigned SliceIdx = Vals.size() - Limit; 11031 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11032 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11033 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11034 Vals.emplace_back(NewTF); 11035 } 11036 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11037 } 11038 11039 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11040 EVT VT, SDNodeFlags Flags) { 11041 switch (Opcode) { 11042 default: 11043 return SDValue(); 11044 case ISD::ADD: 11045 case ISD::OR: 11046 case ISD::XOR: 11047 case ISD::UMAX: 11048 return getConstant(0, DL, VT); 11049 case ISD::MUL: 11050 return getConstant(1, DL, VT); 11051 case ISD::AND: 11052 case ISD::UMIN: 11053 return getAllOnesConstant(DL, VT); 11054 case ISD::SMAX: 11055 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11056 case ISD::SMIN: 11057 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11058 case ISD::FADD: 11059 return getConstantFP(-0.0, DL, VT); 11060 case ISD::FMUL: 11061 return getConstantFP(1.0, DL, VT); 11062 case ISD::FMINNUM: 11063 case ISD::FMAXNUM: { 11064 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11065 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11066 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11067 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11068 APFloat::getLargest(Semantics); 11069 if (Opcode == ISD::FMAXNUM) 11070 NeutralAF.changeSign(); 11071 11072 return getConstantFP(NeutralAF, DL, VT); 11073 } 11074 } 11075 } 11076 11077 #ifndef NDEBUG 11078 static void checkForCyclesHelper(const SDNode *N, 11079 SmallPtrSetImpl<const SDNode*> &Visited, 11080 SmallPtrSetImpl<const SDNode*> &Checked, 11081 const llvm::SelectionDAG *DAG) { 11082 // If this node has already been checked, don't check it again. 11083 if (Checked.count(N)) 11084 return; 11085 11086 // If a node has already been visited on this depth-first walk, reject it as 11087 // a cycle. 11088 if (!Visited.insert(N).second) { 11089 errs() << "Detected cycle in SelectionDAG\n"; 11090 dbgs() << "Offending node:\n"; 11091 N->dumprFull(DAG); dbgs() << "\n"; 11092 abort(); 11093 } 11094 11095 for (const SDValue &Op : N->op_values()) 11096 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11097 11098 Checked.insert(N); 11099 Visited.erase(N); 11100 } 11101 #endif 11102 11103 void llvm::checkForCycles(const llvm::SDNode *N, 11104 const llvm::SelectionDAG *DAG, 11105 bool force) { 11106 #ifndef NDEBUG 11107 bool check = force; 11108 #ifdef EXPENSIVE_CHECKS 11109 check = true; 11110 #endif // EXPENSIVE_CHECKS 11111 if (check) { 11112 assert(N && "Checking nonexistent SDNode"); 11113 SmallPtrSet<const SDNode*, 32> visited; 11114 SmallPtrSet<const SDNode*, 32> checked; 11115 checkForCyclesHelper(N, visited, checked, DAG); 11116 } 11117 #endif // !NDEBUG 11118 } 11119 11120 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11121 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11122 } 11123