1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/RuntimeLibcalls.h" 40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 41 #include "llvm/CodeGen/SelectionDAGNodes.h" 42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetLowering.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/ValueTypes.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MachineValueType.h" 66 #include "llvm/Support/ManagedStatic.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/Mutex.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include "llvm/Target/TargetOptions.h" 72 #include "llvm/Transforms/Utils/SizeOpts.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <cstdlib> 77 #include <limits> 78 #include <set> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 /// makeVTList - Return an instance of the SDVTList struct initialized with the 86 /// specified members. 87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 88 SDVTList Res = {VTs, NumVTs}; 89 return Res; 90 } 91 92 // Default null implementations of the callbacks. 93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 96 97 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 98 99 #define DEBUG_TYPE "selectiondag" 100 101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 102 cl::Hidden, cl::init(true), 103 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 104 105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 106 cl::desc("Number limit for gluing ld/st of memcpy."), 107 cl::Hidden, cl::init(0)); 108 109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 110 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 111 } 112 113 //===----------------------------------------------------------------------===// 114 // ConstantFPSDNode Class 115 //===----------------------------------------------------------------------===// 116 117 /// isExactlyValue - We don't rely on operator== working on double values, as 118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 119 /// As such, this method can be used to do an exact bit-for-bit comparison of 120 /// two floating point values. 121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 122 return getValueAPF().bitwiseIsEqual(V); 123 } 124 125 bool ConstantFPSDNode::isValueValidForType(EVT VT, 126 const APFloat& Val) { 127 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 128 129 // convert modifies in place, so make a copy. 130 APFloat Val2 = APFloat(Val); 131 bool losesInfo; 132 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 133 APFloat::rmNearestTiesToEven, 134 &losesInfo); 135 return !losesInfo; 136 } 137 138 //===----------------------------------------------------------------------===// 139 // ISD Namespace 140 //===----------------------------------------------------------------------===// 141 142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 143 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 144 unsigned EltSize = 145 N->getValueType(0).getVectorElementType().getSizeInBits(); 146 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 147 SplatVal = Op0->getAPIntValue().truncOrSelf(EltSize); 148 return true; 149 } 150 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 151 SplatVal = Op0->getValueAPF().bitcastToAPInt().truncOrSelf(EltSize); 152 return true; 153 } 154 } 155 156 auto *BV = dyn_cast<BuildVectorSDNode>(N); 157 if (!BV) 158 return false; 159 160 APInt SplatUndef; 161 unsigned SplatBitSize; 162 bool HasUndefs; 163 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 164 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 165 EltSize) && 166 EltSize == SplatBitSize; 167 } 168 169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 170 // specializations of the more general isConstantSplatVector()? 171 172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 173 // Look through a bit convert. 174 while (N->getOpcode() == ISD::BITCAST) 175 N = N->getOperand(0).getNode(); 176 177 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 178 APInt SplatVal; 179 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 180 } 181 182 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 183 184 unsigned i = 0, e = N->getNumOperands(); 185 186 // Skip over all of the undef values. 187 while (i != e && N->getOperand(i).isUndef()) 188 ++i; 189 190 // Do not accept an all-undef vector. 191 if (i == e) return false; 192 193 // Do not accept build_vectors that aren't all constants or which have non-~0 194 // elements. We have to be a bit careful here, as the type of the constant 195 // may not be the same as the type of the vector elements due to type 196 // legalization (the elements are promoted to a legal type for the target and 197 // a vector of a type may be legal when the base element type is not). 198 // We only want to check enough bits to cover the vector elements, because 199 // we care if the resultant vector is all ones, not whether the individual 200 // constants are. 201 SDValue NotZero = N->getOperand(i); 202 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 203 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 204 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 205 return false; 206 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 207 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 208 return false; 209 } else 210 return false; 211 212 // Okay, we have at least one ~0 value, check to see if the rest match or are 213 // undefs. Even with the above element type twiddling, this should be OK, as 214 // the same type legalization should have applied to all the elements. 215 for (++i; i != e; ++i) 216 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 217 return false; 218 return true; 219 } 220 221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 222 // Look through a bit convert. 223 while (N->getOpcode() == ISD::BITCAST) 224 N = N->getOperand(0).getNode(); 225 226 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 227 APInt SplatVal; 228 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 229 } 230 231 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 232 233 bool IsAllUndef = true; 234 for (const SDValue &Op : N->op_values()) { 235 if (Op.isUndef()) 236 continue; 237 IsAllUndef = false; 238 // Do not accept build_vectors that aren't all constants or which have non-0 239 // elements. We have to be a bit careful here, as the type of the constant 240 // may not be the same as the type of the vector elements due to type 241 // legalization (the elements are promoted to a legal type for the target 242 // and a vector of a type may be legal when the base element type is not). 243 // We only want to check enough bits to cover the vector elements, because 244 // we care if the resultant vector is all zeros, not whether the individual 245 // constants are. 246 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 247 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 248 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 249 return false; 250 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 251 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 252 return false; 253 } else 254 return false; 255 } 256 257 // Do not accept an all-undef vector. 258 if (IsAllUndef) 259 return false; 260 return true; 261 } 262 263 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 264 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 265 } 266 267 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 268 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 269 } 270 271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 272 if (N->getOpcode() != ISD::BUILD_VECTOR) 273 return false; 274 275 for (const SDValue &Op : N->op_values()) { 276 if (Op.isUndef()) 277 continue; 278 if (!isa<ConstantSDNode>(Op)) 279 return false; 280 } 281 return true; 282 } 283 284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 285 if (N->getOpcode() != ISD::BUILD_VECTOR) 286 return false; 287 288 for (const SDValue &Op : N->op_values()) { 289 if (Op.isUndef()) 290 continue; 291 if (!isa<ConstantFPSDNode>(Op)) 292 return false; 293 } 294 return true; 295 } 296 297 bool ISD::allOperandsUndef(const SDNode *N) { 298 // Return false if the node has no operands. 299 // This is "logically inconsistent" with the definition of "all" but 300 // is probably the desired behavior. 301 if (N->getNumOperands() == 0) 302 return false; 303 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 304 } 305 306 bool ISD::matchUnaryPredicate(SDValue Op, 307 std::function<bool(ConstantSDNode *)> Match, 308 bool AllowUndefs) { 309 // FIXME: Add support for scalar UNDEF cases? 310 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 311 return Match(Cst); 312 313 // FIXME: Add support for vector UNDEF cases? 314 if (ISD::BUILD_VECTOR != Op.getOpcode() && 315 ISD::SPLAT_VECTOR != Op.getOpcode()) 316 return false; 317 318 EVT SVT = Op.getValueType().getScalarType(); 319 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 320 if (AllowUndefs && Op.getOperand(i).isUndef()) { 321 if (!Match(nullptr)) 322 return false; 323 continue; 324 } 325 326 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 327 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 328 return false; 329 } 330 return true; 331 } 332 333 bool ISD::matchBinaryPredicate( 334 SDValue LHS, SDValue RHS, 335 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 336 bool AllowUndefs, bool AllowTypeMismatch) { 337 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 338 return false; 339 340 // TODO: Add support for scalar UNDEF cases? 341 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 342 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 343 return Match(LHSCst, RHSCst); 344 345 // TODO: Add support for vector UNDEF cases? 346 if (LHS.getOpcode() != RHS.getOpcode() || 347 (LHS.getOpcode() != ISD::BUILD_VECTOR && 348 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 349 return false; 350 351 EVT SVT = LHS.getValueType().getScalarType(); 352 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 353 SDValue LHSOp = LHS.getOperand(i); 354 SDValue RHSOp = RHS.getOperand(i); 355 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 356 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 357 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 358 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 359 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 360 return false; 361 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 362 LHSOp.getValueType() != RHSOp.getValueType())) 363 return false; 364 if (!Match(LHSCst, RHSCst)) 365 return false; 366 } 367 return true; 368 } 369 370 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 371 switch (VecReduceOpcode) { 372 default: 373 llvm_unreachable("Expected VECREDUCE opcode"); 374 case ISD::VECREDUCE_FADD: 375 case ISD::VECREDUCE_SEQ_FADD: 376 case ISD::VP_REDUCE_FADD: 377 case ISD::VP_REDUCE_SEQ_FADD: 378 return ISD::FADD; 379 case ISD::VECREDUCE_FMUL: 380 case ISD::VECREDUCE_SEQ_FMUL: 381 case ISD::VP_REDUCE_FMUL: 382 case ISD::VP_REDUCE_SEQ_FMUL: 383 return ISD::FMUL; 384 case ISD::VECREDUCE_ADD: 385 case ISD::VP_REDUCE_ADD: 386 return ISD::ADD; 387 case ISD::VECREDUCE_MUL: 388 case ISD::VP_REDUCE_MUL: 389 return ISD::MUL; 390 case ISD::VECREDUCE_AND: 391 case ISD::VP_REDUCE_AND: 392 return ISD::AND; 393 case ISD::VECREDUCE_OR: 394 case ISD::VP_REDUCE_OR: 395 return ISD::OR; 396 case ISD::VECREDUCE_XOR: 397 case ISD::VP_REDUCE_XOR: 398 return ISD::XOR; 399 case ISD::VECREDUCE_SMAX: 400 case ISD::VP_REDUCE_SMAX: 401 return ISD::SMAX; 402 case ISD::VECREDUCE_SMIN: 403 case ISD::VP_REDUCE_SMIN: 404 return ISD::SMIN; 405 case ISD::VECREDUCE_UMAX: 406 case ISD::VP_REDUCE_UMAX: 407 return ISD::UMAX; 408 case ISD::VECREDUCE_UMIN: 409 case ISD::VP_REDUCE_UMIN: 410 return ISD::UMIN; 411 case ISD::VECREDUCE_FMAX: 412 case ISD::VP_REDUCE_FMAX: 413 return ISD::FMAXNUM; 414 case ISD::VECREDUCE_FMIN: 415 case ISD::VP_REDUCE_FMIN: 416 return ISD::FMINNUM; 417 } 418 } 419 420 bool ISD::isVPOpcode(unsigned Opcode) { 421 switch (Opcode) { 422 default: 423 return false; 424 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 425 case ISD::VPSD: \ 426 return true; 427 #include "llvm/IR/VPIntrinsics.def" 428 } 429 } 430 431 bool ISD::isVPBinaryOp(unsigned Opcode) { 432 switch (Opcode) { 433 default: 434 break; 435 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 436 #define VP_PROPERTY_BINARYOP return true; 437 #define END_REGISTER_VP_SDNODE(VPSD) break; 438 #include "llvm/IR/VPIntrinsics.def" 439 } 440 return false; 441 } 442 443 bool ISD::isVPReduction(unsigned Opcode) { 444 switch (Opcode) { 445 default: 446 break; 447 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 448 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 449 #define END_REGISTER_VP_SDNODE(VPSD) break; 450 #include "llvm/IR/VPIntrinsics.def" 451 } 452 return false; 453 } 454 455 /// The operand position of the vector mask. 456 Optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 457 switch (Opcode) { 458 default: 459 return None; 460 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 461 case ISD::VPSD: \ 462 return MASKPOS; 463 #include "llvm/IR/VPIntrinsics.def" 464 } 465 } 466 467 /// The operand position of the explicit vector length parameter. 468 Optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 469 switch (Opcode) { 470 default: 471 return None; 472 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 473 case ISD::VPSD: \ 474 return EVLPOS; 475 #include "llvm/IR/VPIntrinsics.def" 476 } 477 } 478 479 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 480 switch (ExtType) { 481 case ISD::EXTLOAD: 482 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 483 case ISD::SEXTLOAD: 484 return ISD::SIGN_EXTEND; 485 case ISD::ZEXTLOAD: 486 return ISD::ZERO_EXTEND; 487 default: 488 break; 489 } 490 491 llvm_unreachable("Invalid LoadExtType"); 492 } 493 494 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 495 // To perform this operation, we just need to swap the L and G bits of the 496 // operation. 497 unsigned OldL = (Operation >> 2) & 1; 498 unsigned OldG = (Operation >> 1) & 1; 499 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 500 (OldL << 1) | // New G bit 501 (OldG << 2)); // New L bit. 502 } 503 504 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 505 unsigned Operation = Op; 506 if (isIntegerLike) 507 Operation ^= 7; // Flip L, G, E bits, but not U. 508 else 509 Operation ^= 15; // Flip all of the condition bits. 510 511 if (Operation > ISD::SETTRUE2) 512 Operation &= ~8; // Don't let N and U bits get set. 513 514 return ISD::CondCode(Operation); 515 } 516 517 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 518 return getSetCCInverseImpl(Op, Type.isInteger()); 519 } 520 521 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 522 bool isIntegerLike) { 523 return getSetCCInverseImpl(Op, isIntegerLike); 524 } 525 526 /// For an integer comparison, return 1 if the comparison is a signed operation 527 /// and 2 if the result is an unsigned comparison. Return zero if the operation 528 /// does not depend on the sign of the input (setne and seteq). 529 static int isSignedOp(ISD::CondCode Opcode) { 530 switch (Opcode) { 531 default: llvm_unreachable("Illegal integer setcc operation!"); 532 case ISD::SETEQ: 533 case ISD::SETNE: return 0; 534 case ISD::SETLT: 535 case ISD::SETLE: 536 case ISD::SETGT: 537 case ISD::SETGE: return 1; 538 case ISD::SETULT: 539 case ISD::SETULE: 540 case ISD::SETUGT: 541 case ISD::SETUGE: return 2; 542 } 543 } 544 545 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 546 EVT Type) { 547 bool IsInteger = Type.isInteger(); 548 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 549 // Cannot fold a signed integer setcc with an unsigned integer setcc. 550 return ISD::SETCC_INVALID; 551 552 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 553 554 // If the N and U bits get set, then the resultant comparison DOES suddenly 555 // care about orderedness, and it is true when ordered. 556 if (Op > ISD::SETTRUE2) 557 Op &= ~16; // Clear the U bit if the N bit is set. 558 559 // Canonicalize illegal integer setcc's. 560 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 561 Op = ISD::SETNE; 562 563 return ISD::CondCode(Op); 564 } 565 566 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 567 EVT Type) { 568 bool IsInteger = Type.isInteger(); 569 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 570 // Cannot fold a signed setcc with an unsigned setcc. 571 return ISD::SETCC_INVALID; 572 573 // Combine all of the condition bits. 574 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 575 576 // Canonicalize illegal integer setcc's. 577 if (IsInteger) { 578 switch (Result) { 579 default: break; 580 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 581 case ISD::SETOEQ: // SETEQ & SETU[LG]E 582 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 583 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 584 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 585 } 586 } 587 588 return Result; 589 } 590 591 //===----------------------------------------------------------------------===// 592 // SDNode Profile Support 593 //===----------------------------------------------------------------------===// 594 595 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 596 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 597 ID.AddInteger(OpC); 598 } 599 600 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 601 /// solely with their pointer. 602 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 603 ID.AddPointer(VTList.VTs); 604 } 605 606 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 607 static void AddNodeIDOperands(FoldingSetNodeID &ID, 608 ArrayRef<SDValue> Ops) { 609 for (auto& Op : Ops) { 610 ID.AddPointer(Op.getNode()); 611 ID.AddInteger(Op.getResNo()); 612 } 613 } 614 615 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 616 static void AddNodeIDOperands(FoldingSetNodeID &ID, 617 ArrayRef<SDUse> Ops) { 618 for (auto& Op : Ops) { 619 ID.AddPointer(Op.getNode()); 620 ID.AddInteger(Op.getResNo()); 621 } 622 } 623 624 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 625 SDVTList VTList, ArrayRef<SDValue> OpList) { 626 AddNodeIDOpcode(ID, OpC); 627 AddNodeIDValueTypes(ID, VTList); 628 AddNodeIDOperands(ID, OpList); 629 } 630 631 /// If this is an SDNode with special info, add this info to the NodeID data. 632 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 633 switch (N->getOpcode()) { 634 case ISD::TargetExternalSymbol: 635 case ISD::ExternalSymbol: 636 case ISD::MCSymbol: 637 llvm_unreachable("Should only be used on nodes with operands"); 638 default: break; // Normal nodes don't need extra info. 639 case ISD::TargetConstant: 640 case ISD::Constant: { 641 const ConstantSDNode *C = cast<ConstantSDNode>(N); 642 ID.AddPointer(C->getConstantIntValue()); 643 ID.AddBoolean(C->isOpaque()); 644 break; 645 } 646 case ISD::TargetConstantFP: 647 case ISD::ConstantFP: 648 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 649 break; 650 case ISD::TargetGlobalAddress: 651 case ISD::GlobalAddress: 652 case ISD::TargetGlobalTLSAddress: 653 case ISD::GlobalTLSAddress: { 654 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 655 ID.AddPointer(GA->getGlobal()); 656 ID.AddInteger(GA->getOffset()); 657 ID.AddInteger(GA->getTargetFlags()); 658 break; 659 } 660 case ISD::BasicBlock: 661 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 662 break; 663 case ISD::Register: 664 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 665 break; 666 case ISD::RegisterMask: 667 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 668 break; 669 case ISD::SRCVALUE: 670 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 671 break; 672 case ISD::FrameIndex: 673 case ISD::TargetFrameIndex: 674 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 675 break; 676 case ISD::LIFETIME_START: 677 case ISD::LIFETIME_END: 678 if (cast<LifetimeSDNode>(N)->hasOffset()) { 679 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 680 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 681 } 682 break; 683 case ISD::PSEUDO_PROBE: 684 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 685 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 686 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 687 break; 688 case ISD::JumpTable: 689 case ISD::TargetJumpTable: 690 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 691 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 692 break; 693 case ISD::ConstantPool: 694 case ISD::TargetConstantPool: { 695 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 696 ID.AddInteger(CP->getAlign().value()); 697 ID.AddInteger(CP->getOffset()); 698 if (CP->isMachineConstantPoolEntry()) 699 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 700 else 701 ID.AddPointer(CP->getConstVal()); 702 ID.AddInteger(CP->getTargetFlags()); 703 break; 704 } 705 case ISD::TargetIndex: { 706 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 707 ID.AddInteger(TI->getIndex()); 708 ID.AddInteger(TI->getOffset()); 709 ID.AddInteger(TI->getTargetFlags()); 710 break; 711 } 712 case ISD::LOAD: { 713 const LoadSDNode *LD = cast<LoadSDNode>(N); 714 ID.AddInteger(LD->getMemoryVT().getRawBits()); 715 ID.AddInteger(LD->getRawSubclassData()); 716 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 717 break; 718 } 719 case ISD::STORE: { 720 const StoreSDNode *ST = cast<StoreSDNode>(N); 721 ID.AddInteger(ST->getMemoryVT().getRawBits()); 722 ID.AddInteger(ST->getRawSubclassData()); 723 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 724 break; 725 } 726 case ISD::VP_LOAD: { 727 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 728 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 729 ID.AddInteger(ELD->getRawSubclassData()); 730 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 731 break; 732 } 733 case ISD::VP_STORE: { 734 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 735 ID.AddInteger(EST->getMemoryVT().getRawBits()); 736 ID.AddInteger(EST->getRawSubclassData()); 737 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 738 break; 739 } 740 case ISD::VP_GATHER: { 741 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 742 ID.AddInteger(EG->getMemoryVT().getRawBits()); 743 ID.AddInteger(EG->getRawSubclassData()); 744 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 745 break; 746 } 747 case ISD::VP_SCATTER: { 748 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 749 ID.AddInteger(ES->getMemoryVT().getRawBits()); 750 ID.AddInteger(ES->getRawSubclassData()); 751 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 752 break; 753 } 754 case ISD::MLOAD: { 755 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 756 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 757 ID.AddInteger(MLD->getRawSubclassData()); 758 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 759 break; 760 } 761 case ISD::MSTORE: { 762 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 763 ID.AddInteger(MST->getMemoryVT().getRawBits()); 764 ID.AddInteger(MST->getRawSubclassData()); 765 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 766 break; 767 } 768 case ISD::MGATHER: { 769 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 770 ID.AddInteger(MG->getMemoryVT().getRawBits()); 771 ID.AddInteger(MG->getRawSubclassData()); 772 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 773 break; 774 } 775 case ISD::MSCATTER: { 776 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 777 ID.AddInteger(MS->getMemoryVT().getRawBits()); 778 ID.AddInteger(MS->getRawSubclassData()); 779 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 780 break; 781 } 782 case ISD::ATOMIC_CMP_SWAP: 783 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 784 case ISD::ATOMIC_SWAP: 785 case ISD::ATOMIC_LOAD_ADD: 786 case ISD::ATOMIC_LOAD_SUB: 787 case ISD::ATOMIC_LOAD_AND: 788 case ISD::ATOMIC_LOAD_CLR: 789 case ISD::ATOMIC_LOAD_OR: 790 case ISD::ATOMIC_LOAD_XOR: 791 case ISD::ATOMIC_LOAD_NAND: 792 case ISD::ATOMIC_LOAD_MIN: 793 case ISD::ATOMIC_LOAD_MAX: 794 case ISD::ATOMIC_LOAD_UMIN: 795 case ISD::ATOMIC_LOAD_UMAX: 796 case ISD::ATOMIC_LOAD: 797 case ISD::ATOMIC_STORE: { 798 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 799 ID.AddInteger(AT->getMemoryVT().getRawBits()); 800 ID.AddInteger(AT->getRawSubclassData()); 801 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 802 break; 803 } 804 case ISD::PREFETCH: { 805 const MemSDNode *PF = cast<MemSDNode>(N); 806 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 807 break; 808 } 809 case ISD::VECTOR_SHUFFLE: { 810 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 811 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 812 i != e; ++i) 813 ID.AddInteger(SVN->getMaskElt(i)); 814 break; 815 } 816 case ISD::TargetBlockAddress: 817 case ISD::BlockAddress: { 818 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 819 ID.AddPointer(BA->getBlockAddress()); 820 ID.AddInteger(BA->getOffset()); 821 ID.AddInteger(BA->getTargetFlags()); 822 break; 823 } 824 } // end switch (N->getOpcode()) 825 826 // Target specific memory nodes could also have address spaces to check. 827 if (N->isTargetMemoryOpcode()) 828 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 829 } 830 831 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 832 /// data. 833 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 834 AddNodeIDOpcode(ID, N->getOpcode()); 835 // Add the return value info. 836 AddNodeIDValueTypes(ID, N->getVTList()); 837 // Add the operand info. 838 AddNodeIDOperands(ID, N->ops()); 839 840 // Handle SDNode leafs with special info. 841 AddNodeIDCustom(ID, N); 842 } 843 844 //===----------------------------------------------------------------------===// 845 // SelectionDAG Class 846 //===----------------------------------------------------------------------===// 847 848 /// doNotCSE - Return true if CSE should not be performed for this node. 849 static bool doNotCSE(SDNode *N) { 850 if (N->getValueType(0) == MVT::Glue) 851 return true; // Never CSE anything that produces a flag. 852 853 switch (N->getOpcode()) { 854 default: break; 855 case ISD::HANDLENODE: 856 case ISD::EH_LABEL: 857 return true; // Never CSE these nodes. 858 } 859 860 // Check that remaining values produced are not flags. 861 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 862 if (N->getValueType(i) == MVT::Glue) 863 return true; // Never CSE anything that produces a flag. 864 865 return false; 866 } 867 868 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 869 /// SelectionDAG. 870 void SelectionDAG::RemoveDeadNodes() { 871 // Create a dummy node (which is not added to allnodes), that adds a reference 872 // to the root node, preventing it from being deleted. 873 HandleSDNode Dummy(getRoot()); 874 875 SmallVector<SDNode*, 128> DeadNodes; 876 877 // Add all obviously-dead nodes to the DeadNodes worklist. 878 for (SDNode &Node : allnodes()) 879 if (Node.use_empty()) 880 DeadNodes.push_back(&Node); 881 882 RemoveDeadNodes(DeadNodes); 883 884 // If the root changed (e.g. it was a dead load, update the root). 885 setRoot(Dummy.getValue()); 886 } 887 888 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 889 /// given list, and any nodes that become unreachable as a result. 890 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 891 892 // Process the worklist, deleting the nodes and adding their uses to the 893 // worklist. 894 while (!DeadNodes.empty()) { 895 SDNode *N = DeadNodes.pop_back_val(); 896 // Skip to next node if we've already managed to delete the node. This could 897 // happen if replacing a node causes a node previously added to the node to 898 // be deleted. 899 if (N->getOpcode() == ISD::DELETED_NODE) 900 continue; 901 902 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 903 DUL->NodeDeleted(N, nullptr); 904 905 // Take the node out of the appropriate CSE map. 906 RemoveNodeFromCSEMaps(N); 907 908 // Next, brutally remove the operand list. This is safe to do, as there are 909 // no cycles in the graph. 910 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 911 SDUse &Use = *I++; 912 SDNode *Operand = Use.getNode(); 913 Use.set(SDValue()); 914 915 // Now that we removed this operand, see if there are no uses of it left. 916 if (Operand->use_empty()) 917 DeadNodes.push_back(Operand); 918 } 919 920 DeallocateNode(N); 921 } 922 } 923 924 void SelectionDAG::RemoveDeadNode(SDNode *N){ 925 SmallVector<SDNode*, 16> DeadNodes(1, N); 926 927 // Create a dummy node that adds a reference to the root node, preventing 928 // it from being deleted. (This matters if the root is an operand of the 929 // dead node.) 930 HandleSDNode Dummy(getRoot()); 931 932 RemoveDeadNodes(DeadNodes); 933 } 934 935 void SelectionDAG::DeleteNode(SDNode *N) { 936 // First take this out of the appropriate CSE map. 937 RemoveNodeFromCSEMaps(N); 938 939 // Finally, remove uses due to operands of this node, remove from the 940 // AllNodes list, and delete the node. 941 DeleteNodeNotInCSEMaps(N); 942 } 943 944 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 945 assert(N->getIterator() != AllNodes.begin() && 946 "Cannot delete the entry node!"); 947 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 948 949 // Drop all of the operands and decrement used node's use counts. 950 N->DropOperands(); 951 952 DeallocateNode(N); 953 } 954 955 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 956 assert(!(V->isVariadic() && isParameter)); 957 if (isParameter) 958 ByvalParmDbgValues.push_back(V); 959 else 960 DbgValues.push_back(V); 961 for (const SDNode *Node : V->getSDNodes()) 962 if (Node) 963 DbgValMap[Node].push_back(V); 964 } 965 966 void SDDbgInfo::erase(const SDNode *Node) { 967 DbgValMapType::iterator I = DbgValMap.find(Node); 968 if (I == DbgValMap.end()) 969 return; 970 for (auto &Val: I->second) 971 Val->setIsInvalidated(); 972 DbgValMap.erase(I); 973 } 974 975 void SelectionDAG::DeallocateNode(SDNode *N) { 976 // If we have operands, deallocate them. 977 removeOperands(N); 978 979 NodeAllocator.Deallocate(AllNodes.remove(N)); 980 981 // Set the opcode to DELETED_NODE to help catch bugs when node 982 // memory is reallocated. 983 // FIXME: There are places in SDag that have grown a dependency on the opcode 984 // value in the released node. 985 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 986 N->NodeType = ISD::DELETED_NODE; 987 988 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 989 // them and forget about that node. 990 DbgInfo->erase(N); 991 } 992 993 #ifndef NDEBUG 994 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 995 static void VerifySDNode(SDNode *N) { 996 switch (N->getOpcode()) { 997 default: 998 break; 999 case ISD::BUILD_PAIR: { 1000 EVT VT = N->getValueType(0); 1001 assert(N->getNumValues() == 1 && "Too many results!"); 1002 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 1003 "Wrong return type!"); 1004 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 1005 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 1006 "Mismatched operand types!"); 1007 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 1008 "Wrong operand type!"); 1009 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 1010 "Wrong return type size"); 1011 break; 1012 } 1013 case ISD::BUILD_VECTOR: { 1014 assert(N->getNumValues() == 1 && "Too many results!"); 1015 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1016 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1017 "Wrong number of operands!"); 1018 EVT EltVT = N->getValueType(0).getVectorElementType(); 1019 for (const SDUse &Op : N->ops()) { 1020 assert((Op.getValueType() == EltVT || 1021 (EltVT.isInteger() && Op.getValueType().isInteger() && 1022 EltVT.bitsLE(Op.getValueType()))) && 1023 "Wrong operand type!"); 1024 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1025 "Operands must all have the same type"); 1026 } 1027 break; 1028 } 1029 } 1030 } 1031 #endif // NDEBUG 1032 1033 /// Insert a newly allocated node into the DAG. 1034 /// 1035 /// Handles insertion into the all nodes list and CSE map, as well as 1036 /// verification and other common operations when a new node is allocated. 1037 void SelectionDAG::InsertNode(SDNode *N) { 1038 AllNodes.push_back(N); 1039 #ifndef NDEBUG 1040 N->PersistentId = NextPersistentId++; 1041 VerifySDNode(N); 1042 #endif 1043 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1044 DUL->NodeInserted(N); 1045 } 1046 1047 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1048 /// correspond to it. This is useful when we're about to delete or repurpose 1049 /// the node. We don't want future request for structurally identical nodes 1050 /// to return N anymore. 1051 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1052 bool Erased = false; 1053 switch (N->getOpcode()) { 1054 case ISD::HANDLENODE: return false; // noop. 1055 case ISD::CONDCODE: 1056 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1057 "Cond code doesn't exist!"); 1058 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1059 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1060 break; 1061 case ISD::ExternalSymbol: 1062 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1063 break; 1064 case ISD::TargetExternalSymbol: { 1065 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1066 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1067 ESN->getSymbol(), ESN->getTargetFlags())); 1068 break; 1069 } 1070 case ISD::MCSymbol: { 1071 auto *MCSN = cast<MCSymbolSDNode>(N); 1072 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1073 break; 1074 } 1075 case ISD::VALUETYPE: { 1076 EVT VT = cast<VTSDNode>(N)->getVT(); 1077 if (VT.isExtended()) { 1078 Erased = ExtendedValueTypeNodes.erase(VT); 1079 } else { 1080 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1081 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1082 } 1083 break; 1084 } 1085 default: 1086 // Remove it from the CSE Map. 1087 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1088 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1089 Erased = CSEMap.RemoveNode(N); 1090 break; 1091 } 1092 #ifndef NDEBUG 1093 // Verify that the node was actually in one of the CSE maps, unless it has a 1094 // flag result (which cannot be CSE'd) or is one of the special cases that are 1095 // not subject to CSE. 1096 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1097 !N->isMachineOpcode() && !doNotCSE(N)) { 1098 N->dump(this); 1099 dbgs() << "\n"; 1100 llvm_unreachable("Node is not in map!"); 1101 } 1102 #endif 1103 return Erased; 1104 } 1105 1106 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1107 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1108 /// node already exists, in which case transfer all its users to the existing 1109 /// node. This transfer can potentially trigger recursive merging. 1110 void 1111 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1112 // For node types that aren't CSE'd, just act as if no identical node 1113 // already exists. 1114 if (!doNotCSE(N)) { 1115 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1116 if (Existing != N) { 1117 // If there was already an existing matching node, use ReplaceAllUsesWith 1118 // to replace the dead one with the existing one. This can cause 1119 // recursive merging of other unrelated nodes down the line. 1120 ReplaceAllUsesWith(N, Existing); 1121 1122 // N is now dead. Inform the listeners and delete it. 1123 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1124 DUL->NodeDeleted(N, Existing); 1125 DeleteNodeNotInCSEMaps(N); 1126 return; 1127 } 1128 } 1129 1130 // If the node doesn't already exist, we updated it. Inform listeners. 1131 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1132 DUL->NodeUpdated(N); 1133 } 1134 1135 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1136 /// were replaced with those specified. If this node is never memoized, 1137 /// return null, otherwise return a pointer to the slot it would take. If a 1138 /// node already exists with these operands, the slot will be non-null. 1139 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1140 void *&InsertPos) { 1141 if (doNotCSE(N)) 1142 return nullptr; 1143 1144 SDValue Ops[] = { Op }; 1145 FoldingSetNodeID ID; 1146 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1147 AddNodeIDCustom(ID, N); 1148 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1149 if (Node) 1150 Node->intersectFlagsWith(N->getFlags()); 1151 return Node; 1152 } 1153 1154 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1155 /// were replaced with those specified. If this node is never memoized, 1156 /// return null, otherwise return a pointer to the slot it would take. If a 1157 /// node already exists with these operands, the slot will be non-null. 1158 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1159 SDValue Op1, SDValue Op2, 1160 void *&InsertPos) { 1161 if (doNotCSE(N)) 1162 return nullptr; 1163 1164 SDValue Ops[] = { Op1, Op2 }; 1165 FoldingSetNodeID ID; 1166 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1167 AddNodeIDCustom(ID, N); 1168 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1169 if (Node) 1170 Node->intersectFlagsWith(N->getFlags()); 1171 return Node; 1172 } 1173 1174 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1175 /// were replaced with those specified. If this node is never memoized, 1176 /// return null, otherwise return a pointer to the slot it would take. If a 1177 /// node already exists with these operands, the slot will be non-null. 1178 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1179 void *&InsertPos) { 1180 if (doNotCSE(N)) 1181 return nullptr; 1182 1183 FoldingSetNodeID ID; 1184 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1185 AddNodeIDCustom(ID, N); 1186 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1187 if (Node) 1188 Node->intersectFlagsWith(N->getFlags()); 1189 return Node; 1190 } 1191 1192 Align SelectionDAG::getEVTAlign(EVT VT) const { 1193 Type *Ty = VT == MVT::iPTR ? 1194 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1195 VT.getTypeForEVT(*getContext()); 1196 1197 return getDataLayout().getABITypeAlign(Ty); 1198 } 1199 1200 // EntryNode could meaningfully have debug info if we can find it... 1201 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1202 : TM(tm), OptLevel(OL), 1203 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1204 Root(getEntryNode()) { 1205 InsertNode(&EntryNode); 1206 DbgInfo = new SDDbgInfo(); 1207 } 1208 1209 void SelectionDAG::init(MachineFunction &NewMF, 1210 OptimizationRemarkEmitter &NewORE, 1211 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1212 LegacyDivergenceAnalysis * Divergence, 1213 ProfileSummaryInfo *PSIin, 1214 BlockFrequencyInfo *BFIin) { 1215 MF = &NewMF; 1216 SDAGISelPass = PassPtr; 1217 ORE = &NewORE; 1218 TLI = getSubtarget().getTargetLowering(); 1219 TSI = getSubtarget().getSelectionDAGInfo(); 1220 LibInfo = LibraryInfo; 1221 Context = &MF->getFunction().getContext(); 1222 DA = Divergence; 1223 PSI = PSIin; 1224 BFI = BFIin; 1225 } 1226 1227 SelectionDAG::~SelectionDAG() { 1228 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1229 allnodes_clear(); 1230 OperandRecycler.clear(OperandAllocator); 1231 delete DbgInfo; 1232 } 1233 1234 bool SelectionDAG::shouldOptForSize() const { 1235 return MF->getFunction().hasOptSize() || 1236 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1237 } 1238 1239 void SelectionDAG::allnodes_clear() { 1240 assert(&*AllNodes.begin() == &EntryNode); 1241 AllNodes.remove(AllNodes.begin()); 1242 while (!AllNodes.empty()) 1243 DeallocateNode(&AllNodes.front()); 1244 #ifndef NDEBUG 1245 NextPersistentId = 0; 1246 #endif 1247 } 1248 1249 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1250 void *&InsertPos) { 1251 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1252 if (N) { 1253 switch (N->getOpcode()) { 1254 default: break; 1255 case ISD::Constant: 1256 case ISD::ConstantFP: 1257 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1258 "debug location. Use another overload."); 1259 } 1260 } 1261 return N; 1262 } 1263 1264 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1265 const SDLoc &DL, void *&InsertPos) { 1266 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1267 if (N) { 1268 switch (N->getOpcode()) { 1269 case ISD::Constant: 1270 case ISD::ConstantFP: 1271 // Erase debug location from the node if the node is used at several 1272 // different places. Do not propagate one location to all uses as it 1273 // will cause a worse single stepping debugging experience. 1274 if (N->getDebugLoc() != DL.getDebugLoc()) 1275 N->setDebugLoc(DebugLoc()); 1276 break; 1277 default: 1278 // When the node's point of use is located earlier in the instruction 1279 // sequence than its prior point of use, update its debug info to the 1280 // earlier location. 1281 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1282 N->setDebugLoc(DL.getDebugLoc()); 1283 break; 1284 } 1285 } 1286 return N; 1287 } 1288 1289 void SelectionDAG::clear() { 1290 allnodes_clear(); 1291 OperandRecycler.clear(OperandAllocator); 1292 OperandAllocator.Reset(); 1293 CSEMap.clear(); 1294 1295 ExtendedValueTypeNodes.clear(); 1296 ExternalSymbols.clear(); 1297 TargetExternalSymbols.clear(); 1298 MCSymbols.clear(); 1299 SDCallSiteDbgInfo.clear(); 1300 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1301 static_cast<CondCodeSDNode*>(nullptr)); 1302 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1303 static_cast<SDNode*>(nullptr)); 1304 1305 EntryNode.UseList = nullptr; 1306 InsertNode(&EntryNode); 1307 Root = getEntryNode(); 1308 DbgInfo->clear(); 1309 } 1310 1311 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1312 return VT.bitsGT(Op.getValueType()) 1313 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1314 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1315 } 1316 1317 std::pair<SDValue, SDValue> 1318 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1319 const SDLoc &DL, EVT VT) { 1320 assert(!VT.bitsEq(Op.getValueType()) && 1321 "Strict no-op FP extend/round not allowed."); 1322 SDValue Res = 1323 VT.bitsGT(Op.getValueType()) 1324 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1325 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1326 {Chain, Op, getIntPtrConstant(0, DL)}); 1327 1328 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1329 } 1330 1331 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1332 return VT.bitsGT(Op.getValueType()) ? 1333 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1334 getNode(ISD::TRUNCATE, DL, VT, Op); 1335 } 1336 1337 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1338 return VT.bitsGT(Op.getValueType()) ? 1339 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1340 getNode(ISD::TRUNCATE, DL, VT, Op); 1341 } 1342 1343 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1344 return VT.bitsGT(Op.getValueType()) ? 1345 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1346 getNode(ISD::TRUNCATE, DL, VT, Op); 1347 } 1348 1349 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1350 EVT OpVT) { 1351 if (VT.bitsLE(Op.getValueType())) 1352 return getNode(ISD::TRUNCATE, SL, VT, Op); 1353 1354 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1355 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1356 } 1357 1358 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1359 EVT OpVT = Op.getValueType(); 1360 assert(VT.isInteger() && OpVT.isInteger() && 1361 "Cannot getZeroExtendInReg FP types"); 1362 assert(VT.isVector() == OpVT.isVector() && 1363 "getZeroExtendInReg type should be vector iff the operand " 1364 "type is vector!"); 1365 assert((!VT.isVector() || 1366 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1367 "Vector element counts must match in getZeroExtendInReg"); 1368 assert(VT.bitsLE(OpVT) && "Not extending!"); 1369 if (OpVT == VT) 1370 return Op; 1371 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1372 VT.getScalarSizeInBits()); 1373 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1374 } 1375 1376 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1377 // Only unsigned pointer semantics are supported right now. In the future this 1378 // might delegate to TLI to check pointer signedness. 1379 return getZExtOrTrunc(Op, DL, VT); 1380 } 1381 1382 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1383 // Only unsigned pointer semantics are supported right now. In the future this 1384 // might delegate to TLI to check pointer signedness. 1385 return getZeroExtendInReg(Op, DL, VT); 1386 } 1387 1388 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1389 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1390 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1391 } 1392 1393 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1394 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1395 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1396 } 1397 1398 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1399 EVT OpVT) { 1400 if (!V) 1401 return getConstant(0, DL, VT); 1402 1403 switch (TLI->getBooleanContents(OpVT)) { 1404 case TargetLowering::ZeroOrOneBooleanContent: 1405 case TargetLowering::UndefinedBooleanContent: 1406 return getConstant(1, DL, VT); 1407 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1408 return getAllOnesConstant(DL, VT); 1409 } 1410 llvm_unreachable("Unexpected boolean content enum!"); 1411 } 1412 1413 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1414 bool isT, bool isO) { 1415 EVT EltVT = VT.getScalarType(); 1416 assert((EltVT.getSizeInBits() >= 64 || 1417 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1418 "getConstant with a uint64_t value that doesn't fit in the type!"); 1419 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1420 } 1421 1422 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1423 bool isT, bool isO) { 1424 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1425 } 1426 1427 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1428 EVT VT, bool isT, bool isO) { 1429 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1430 1431 EVT EltVT = VT.getScalarType(); 1432 const ConstantInt *Elt = &Val; 1433 1434 // In some cases the vector type is legal but the element type is illegal and 1435 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1436 // inserted value (the type does not need to match the vector element type). 1437 // Any extra bits introduced will be truncated away. 1438 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1439 TargetLowering::TypePromoteInteger) { 1440 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1441 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1442 Elt = ConstantInt::get(*getContext(), NewVal); 1443 } 1444 // In other cases the element type is illegal and needs to be expanded, for 1445 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1446 // the value into n parts and use a vector type with n-times the elements. 1447 // Then bitcast to the type requested. 1448 // Legalizing constants too early makes the DAGCombiner's job harder so we 1449 // only legalize if the DAG tells us we must produce legal types. 1450 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1451 TLI->getTypeAction(*getContext(), EltVT) == 1452 TargetLowering::TypeExpandInteger) { 1453 const APInt &NewVal = Elt->getValue(); 1454 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1455 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1456 1457 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1458 if (VT.isScalableVector()) { 1459 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1460 "Can only handle an even split!"); 1461 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1462 1463 SmallVector<SDValue, 2> ScalarParts; 1464 for (unsigned i = 0; i != Parts; ++i) 1465 ScalarParts.push_back(getConstant( 1466 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1467 ViaEltVT, isT, isO)); 1468 1469 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1470 } 1471 1472 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1473 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1474 1475 // Check the temporary vector is the correct size. If this fails then 1476 // getTypeToTransformTo() probably returned a type whose size (in bits) 1477 // isn't a power-of-2 factor of the requested type size. 1478 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1479 1480 SmallVector<SDValue, 2> EltParts; 1481 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1482 EltParts.push_back(getConstant( 1483 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1484 ViaEltVT, isT, isO)); 1485 1486 // EltParts is currently in little endian order. If we actually want 1487 // big-endian order then reverse it now. 1488 if (getDataLayout().isBigEndian()) 1489 std::reverse(EltParts.begin(), EltParts.end()); 1490 1491 // The elements must be reversed when the element order is different 1492 // to the endianness of the elements (because the BITCAST is itself a 1493 // vector shuffle in this situation). However, we do not need any code to 1494 // perform this reversal because getConstant() is producing a vector 1495 // splat. 1496 // This situation occurs in MIPS MSA. 1497 1498 SmallVector<SDValue, 8> Ops; 1499 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1500 llvm::append_range(Ops, EltParts); 1501 1502 SDValue V = 1503 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1504 return V; 1505 } 1506 1507 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1508 "APInt size does not match type size!"); 1509 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1510 FoldingSetNodeID ID; 1511 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1512 ID.AddPointer(Elt); 1513 ID.AddBoolean(isO); 1514 void *IP = nullptr; 1515 SDNode *N = nullptr; 1516 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1517 if (!VT.isVector()) 1518 return SDValue(N, 0); 1519 1520 if (!N) { 1521 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1522 CSEMap.InsertNode(N, IP); 1523 InsertNode(N); 1524 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1525 } 1526 1527 SDValue Result(N, 0); 1528 if (VT.isScalableVector()) 1529 Result = getSplatVector(VT, DL, Result); 1530 else if (VT.isVector()) 1531 Result = getSplatBuildVector(VT, DL, Result); 1532 1533 return Result; 1534 } 1535 1536 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1537 bool isTarget) { 1538 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1539 } 1540 1541 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1542 const SDLoc &DL, bool LegalTypes) { 1543 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1544 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1545 return getConstant(Val, DL, ShiftVT); 1546 } 1547 1548 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1549 bool isTarget) { 1550 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1551 } 1552 1553 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1554 bool isTarget) { 1555 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1556 } 1557 1558 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1559 EVT VT, bool isTarget) { 1560 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1561 1562 EVT EltVT = VT.getScalarType(); 1563 1564 // Do the map lookup using the actual bit pattern for the floating point 1565 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1566 // we don't have issues with SNANs. 1567 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1568 FoldingSetNodeID ID; 1569 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1570 ID.AddPointer(&V); 1571 void *IP = nullptr; 1572 SDNode *N = nullptr; 1573 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1574 if (!VT.isVector()) 1575 return SDValue(N, 0); 1576 1577 if (!N) { 1578 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1579 CSEMap.InsertNode(N, IP); 1580 InsertNode(N); 1581 } 1582 1583 SDValue Result(N, 0); 1584 if (VT.isScalableVector()) 1585 Result = getSplatVector(VT, DL, Result); 1586 else if (VT.isVector()) 1587 Result = getSplatBuildVector(VT, DL, Result); 1588 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1589 return Result; 1590 } 1591 1592 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1593 bool isTarget) { 1594 EVT EltVT = VT.getScalarType(); 1595 if (EltVT == MVT::f32) 1596 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1597 if (EltVT == MVT::f64) 1598 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1599 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1600 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1601 bool Ignored; 1602 APFloat APF = APFloat(Val); 1603 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1604 &Ignored); 1605 return getConstantFP(APF, DL, VT, isTarget); 1606 } 1607 llvm_unreachable("Unsupported type in getConstantFP"); 1608 } 1609 1610 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1611 EVT VT, int64_t Offset, bool isTargetGA, 1612 unsigned TargetFlags) { 1613 assert((TargetFlags == 0 || isTargetGA) && 1614 "Cannot set target flags on target-independent globals"); 1615 1616 // Truncate (with sign-extension) the offset value to the pointer size. 1617 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1618 if (BitWidth < 64) 1619 Offset = SignExtend64(Offset, BitWidth); 1620 1621 unsigned Opc; 1622 if (GV->isThreadLocal()) 1623 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1624 else 1625 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1626 1627 FoldingSetNodeID ID; 1628 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1629 ID.AddPointer(GV); 1630 ID.AddInteger(Offset); 1631 ID.AddInteger(TargetFlags); 1632 void *IP = nullptr; 1633 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1634 return SDValue(E, 0); 1635 1636 auto *N = newSDNode<GlobalAddressSDNode>( 1637 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1638 CSEMap.InsertNode(N, IP); 1639 InsertNode(N); 1640 return SDValue(N, 0); 1641 } 1642 1643 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1644 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1645 FoldingSetNodeID ID; 1646 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1647 ID.AddInteger(FI); 1648 void *IP = nullptr; 1649 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1650 return SDValue(E, 0); 1651 1652 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1653 CSEMap.InsertNode(N, IP); 1654 InsertNode(N); 1655 return SDValue(N, 0); 1656 } 1657 1658 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1659 unsigned TargetFlags) { 1660 assert((TargetFlags == 0 || isTarget) && 1661 "Cannot set target flags on target-independent jump tables"); 1662 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1663 FoldingSetNodeID ID; 1664 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1665 ID.AddInteger(JTI); 1666 ID.AddInteger(TargetFlags); 1667 void *IP = nullptr; 1668 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1669 return SDValue(E, 0); 1670 1671 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1672 CSEMap.InsertNode(N, IP); 1673 InsertNode(N); 1674 return SDValue(N, 0); 1675 } 1676 1677 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1678 MaybeAlign Alignment, int Offset, 1679 bool isTarget, unsigned TargetFlags) { 1680 assert((TargetFlags == 0 || isTarget) && 1681 "Cannot set target flags on target-independent globals"); 1682 if (!Alignment) 1683 Alignment = shouldOptForSize() 1684 ? getDataLayout().getABITypeAlign(C->getType()) 1685 : getDataLayout().getPrefTypeAlign(C->getType()); 1686 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1687 FoldingSetNodeID ID; 1688 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1689 ID.AddInteger(Alignment->value()); 1690 ID.AddInteger(Offset); 1691 ID.AddPointer(C); 1692 ID.AddInteger(TargetFlags); 1693 void *IP = nullptr; 1694 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1695 return SDValue(E, 0); 1696 1697 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1698 TargetFlags); 1699 CSEMap.InsertNode(N, IP); 1700 InsertNode(N); 1701 SDValue V = SDValue(N, 0); 1702 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1703 return V; 1704 } 1705 1706 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1707 MaybeAlign Alignment, int Offset, 1708 bool isTarget, unsigned TargetFlags) { 1709 assert((TargetFlags == 0 || isTarget) && 1710 "Cannot set target flags on target-independent globals"); 1711 if (!Alignment) 1712 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1713 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1714 FoldingSetNodeID ID; 1715 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1716 ID.AddInteger(Alignment->value()); 1717 ID.AddInteger(Offset); 1718 C->addSelectionDAGCSEId(ID); 1719 ID.AddInteger(TargetFlags); 1720 void *IP = nullptr; 1721 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1722 return SDValue(E, 0); 1723 1724 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1725 TargetFlags); 1726 CSEMap.InsertNode(N, IP); 1727 InsertNode(N); 1728 return SDValue(N, 0); 1729 } 1730 1731 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1732 unsigned TargetFlags) { 1733 FoldingSetNodeID ID; 1734 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1735 ID.AddInteger(Index); 1736 ID.AddInteger(Offset); 1737 ID.AddInteger(TargetFlags); 1738 void *IP = nullptr; 1739 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1740 return SDValue(E, 0); 1741 1742 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1743 CSEMap.InsertNode(N, IP); 1744 InsertNode(N); 1745 return SDValue(N, 0); 1746 } 1747 1748 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1749 FoldingSetNodeID ID; 1750 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1751 ID.AddPointer(MBB); 1752 void *IP = nullptr; 1753 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1754 return SDValue(E, 0); 1755 1756 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1757 CSEMap.InsertNode(N, IP); 1758 InsertNode(N); 1759 return SDValue(N, 0); 1760 } 1761 1762 SDValue SelectionDAG::getValueType(EVT VT) { 1763 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1764 ValueTypeNodes.size()) 1765 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1766 1767 SDNode *&N = VT.isExtended() ? 1768 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1769 1770 if (N) return SDValue(N, 0); 1771 N = newSDNode<VTSDNode>(VT); 1772 InsertNode(N); 1773 return SDValue(N, 0); 1774 } 1775 1776 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1777 SDNode *&N = ExternalSymbols[Sym]; 1778 if (N) return SDValue(N, 0); 1779 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1780 InsertNode(N); 1781 return SDValue(N, 0); 1782 } 1783 1784 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1785 SDNode *&N = MCSymbols[Sym]; 1786 if (N) 1787 return SDValue(N, 0); 1788 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1789 InsertNode(N); 1790 return SDValue(N, 0); 1791 } 1792 1793 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1794 unsigned TargetFlags) { 1795 SDNode *&N = 1796 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1797 if (N) return SDValue(N, 0); 1798 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1799 InsertNode(N); 1800 return SDValue(N, 0); 1801 } 1802 1803 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1804 if ((unsigned)Cond >= CondCodeNodes.size()) 1805 CondCodeNodes.resize(Cond+1); 1806 1807 if (!CondCodeNodes[Cond]) { 1808 auto *N = newSDNode<CondCodeSDNode>(Cond); 1809 CondCodeNodes[Cond] = N; 1810 InsertNode(N); 1811 } 1812 1813 return SDValue(CondCodeNodes[Cond], 0); 1814 } 1815 1816 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1817 APInt One(ResVT.getScalarSizeInBits(), 1); 1818 return getStepVector(DL, ResVT, One); 1819 } 1820 1821 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1822 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1823 if (ResVT.isScalableVector()) 1824 return getNode( 1825 ISD::STEP_VECTOR, DL, ResVT, 1826 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1827 1828 SmallVector<SDValue, 16> OpsStepConstants; 1829 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1830 OpsStepConstants.push_back( 1831 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1832 return getBuildVector(ResVT, DL, OpsStepConstants); 1833 } 1834 1835 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1836 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1837 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1838 std::swap(N1, N2); 1839 ShuffleVectorSDNode::commuteMask(M); 1840 } 1841 1842 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1843 SDValue N2, ArrayRef<int> Mask) { 1844 assert(VT.getVectorNumElements() == Mask.size() && 1845 "Must have the same number of vector elements as mask elements!"); 1846 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1847 "Invalid VECTOR_SHUFFLE"); 1848 1849 // Canonicalize shuffle undef, undef -> undef 1850 if (N1.isUndef() && N2.isUndef()) 1851 return getUNDEF(VT); 1852 1853 // Validate that all indices in Mask are within the range of the elements 1854 // input to the shuffle. 1855 int NElts = Mask.size(); 1856 assert(llvm::all_of(Mask, 1857 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1858 "Index out of range"); 1859 1860 // Copy the mask so we can do any needed cleanup. 1861 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1862 1863 // Canonicalize shuffle v, v -> v, undef 1864 if (N1 == N2) { 1865 N2 = getUNDEF(VT); 1866 for (int i = 0; i != NElts; ++i) 1867 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1868 } 1869 1870 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1871 if (N1.isUndef()) 1872 commuteShuffle(N1, N2, MaskVec); 1873 1874 if (TLI->hasVectorBlend()) { 1875 // If shuffling a splat, try to blend the splat instead. We do this here so 1876 // that even when this arises during lowering we don't have to re-handle it. 1877 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1878 BitVector UndefElements; 1879 SDValue Splat = BV->getSplatValue(&UndefElements); 1880 if (!Splat) 1881 return; 1882 1883 for (int i = 0; i < NElts; ++i) { 1884 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1885 continue; 1886 1887 // If this input comes from undef, mark it as such. 1888 if (UndefElements[MaskVec[i] - Offset]) { 1889 MaskVec[i] = -1; 1890 continue; 1891 } 1892 1893 // If we can blend a non-undef lane, use that instead. 1894 if (!UndefElements[i]) 1895 MaskVec[i] = i + Offset; 1896 } 1897 }; 1898 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1899 BlendSplat(N1BV, 0); 1900 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1901 BlendSplat(N2BV, NElts); 1902 } 1903 1904 // Canonicalize all index into lhs, -> shuffle lhs, undef 1905 // Canonicalize all index into rhs, -> shuffle rhs, undef 1906 bool AllLHS = true, AllRHS = true; 1907 bool N2Undef = N2.isUndef(); 1908 for (int i = 0; i != NElts; ++i) { 1909 if (MaskVec[i] >= NElts) { 1910 if (N2Undef) 1911 MaskVec[i] = -1; 1912 else 1913 AllLHS = false; 1914 } else if (MaskVec[i] >= 0) { 1915 AllRHS = false; 1916 } 1917 } 1918 if (AllLHS && AllRHS) 1919 return getUNDEF(VT); 1920 if (AllLHS && !N2Undef) 1921 N2 = getUNDEF(VT); 1922 if (AllRHS) { 1923 N1 = getUNDEF(VT); 1924 commuteShuffle(N1, N2, MaskVec); 1925 } 1926 // Reset our undef status after accounting for the mask. 1927 N2Undef = N2.isUndef(); 1928 // Re-check whether both sides ended up undef. 1929 if (N1.isUndef() && N2Undef) 1930 return getUNDEF(VT); 1931 1932 // If Identity shuffle return that node. 1933 bool Identity = true, AllSame = true; 1934 for (int i = 0; i != NElts; ++i) { 1935 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1936 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1937 } 1938 if (Identity && NElts) 1939 return N1; 1940 1941 // Shuffling a constant splat doesn't change the result. 1942 if (N2Undef) { 1943 SDValue V = N1; 1944 1945 // Look through any bitcasts. We check that these don't change the number 1946 // (and size) of elements and just changes their types. 1947 while (V.getOpcode() == ISD::BITCAST) 1948 V = V->getOperand(0); 1949 1950 // A splat should always show up as a build vector node. 1951 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1952 BitVector UndefElements; 1953 SDValue Splat = BV->getSplatValue(&UndefElements); 1954 // If this is a splat of an undef, shuffling it is also undef. 1955 if (Splat && Splat.isUndef()) 1956 return getUNDEF(VT); 1957 1958 bool SameNumElts = 1959 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1960 1961 // We only have a splat which can skip shuffles if there is a splatted 1962 // value and no undef lanes rearranged by the shuffle. 1963 if (Splat && UndefElements.none()) { 1964 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1965 // number of elements match or the value splatted is a zero constant. 1966 if (SameNumElts) 1967 return N1; 1968 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1969 if (C->isZero()) 1970 return N1; 1971 } 1972 1973 // If the shuffle itself creates a splat, build the vector directly. 1974 if (AllSame && SameNumElts) { 1975 EVT BuildVT = BV->getValueType(0); 1976 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1977 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1978 1979 // We may have jumped through bitcasts, so the type of the 1980 // BUILD_VECTOR may not match the type of the shuffle. 1981 if (BuildVT != VT) 1982 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1983 return NewBV; 1984 } 1985 } 1986 } 1987 1988 FoldingSetNodeID ID; 1989 SDValue Ops[2] = { N1, N2 }; 1990 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1991 for (int i = 0; i != NElts; ++i) 1992 ID.AddInteger(MaskVec[i]); 1993 1994 void* IP = nullptr; 1995 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1996 return SDValue(E, 0); 1997 1998 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1999 // SDNode doesn't have access to it. This memory will be "leaked" when 2000 // the node is deallocated, but recovered when the NodeAllocator is released. 2001 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 2002 llvm::copy(MaskVec, MaskAlloc); 2003 2004 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 2005 dl.getDebugLoc(), MaskAlloc); 2006 createOperands(N, Ops); 2007 2008 CSEMap.InsertNode(N, IP); 2009 InsertNode(N); 2010 SDValue V = SDValue(N, 0); 2011 NewSDValueDbgMsg(V, "Creating new node: ", this); 2012 return V; 2013 } 2014 2015 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2016 EVT VT = SV.getValueType(0); 2017 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 2018 ShuffleVectorSDNode::commuteMask(MaskVec); 2019 2020 SDValue Op0 = SV.getOperand(0); 2021 SDValue Op1 = SV.getOperand(1); 2022 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2023 } 2024 2025 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2026 FoldingSetNodeID ID; 2027 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 2028 ID.AddInteger(RegNo); 2029 void *IP = nullptr; 2030 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2031 return SDValue(E, 0); 2032 2033 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2034 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 2035 CSEMap.InsertNode(N, IP); 2036 InsertNode(N); 2037 return SDValue(N, 0); 2038 } 2039 2040 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2041 FoldingSetNodeID ID; 2042 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 2043 ID.AddPointer(RegMask); 2044 void *IP = nullptr; 2045 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2046 return SDValue(E, 0); 2047 2048 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2049 CSEMap.InsertNode(N, IP); 2050 InsertNode(N); 2051 return SDValue(N, 0); 2052 } 2053 2054 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2055 MCSymbol *Label) { 2056 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2057 } 2058 2059 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2060 SDValue Root, MCSymbol *Label) { 2061 FoldingSetNodeID ID; 2062 SDValue Ops[] = { Root }; 2063 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2064 ID.AddPointer(Label); 2065 void *IP = nullptr; 2066 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2067 return SDValue(E, 0); 2068 2069 auto *N = 2070 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2071 createOperands(N, Ops); 2072 2073 CSEMap.InsertNode(N, IP); 2074 InsertNode(N); 2075 return SDValue(N, 0); 2076 } 2077 2078 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2079 int64_t Offset, bool isTarget, 2080 unsigned TargetFlags) { 2081 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2082 2083 FoldingSetNodeID ID; 2084 AddNodeIDNode(ID, Opc, getVTList(VT), None); 2085 ID.AddPointer(BA); 2086 ID.AddInteger(Offset); 2087 ID.AddInteger(TargetFlags); 2088 void *IP = nullptr; 2089 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2090 return SDValue(E, 0); 2091 2092 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2093 CSEMap.InsertNode(N, IP); 2094 InsertNode(N); 2095 return SDValue(N, 0); 2096 } 2097 2098 SDValue SelectionDAG::getSrcValue(const Value *V) { 2099 FoldingSetNodeID ID; 2100 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 2101 ID.AddPointer(V); 2102 2103 void *IP = nullptr; 2104 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2105 return SDValue(E, 0); 2106 2107 auto *N = newSDNode<SrcValueSDNode>(V); 2108 CSEMap.InsertNode(N, IP); 2109 InsertNode(N); 2110 return SDValue(N, 0); 2111 } 2112 2113 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2114 FoldingSetNodeID ID; 2115 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 2116 ID.AddPointer(MD); 2117 2118 void *IP = nullptr; 2119 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2120 return SDValue(E, 0); 2121 2122 auto *N = newSDNode<MDNodeSDNode>(MD); 2123 CSEMap.InsertNode(N, IP); 2124 InsertNode(N); 2125 return SDValue(N, 0); 2126 } 2127 2128 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2129 if (VT == V.getValueType()) 2130 return V; 2131 2132 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2133 } 2134 2135 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2136 unsigned SrcAS, unsigned DestAS) { 2137 SDValue Ops[] = {Ptr}; 2138 FoldingSetNodeID ID; 2139 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2140 ID.AddInteger(SrcAS); 2141 ID.AddInteger(DestAS); 2142 2143 void *IP = nullptr; 2144 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2145 return SDValue(E, 0); 2146 2147 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2148 VT, SrcAS, DestAS); 2149 createOperands(N, Ops); 2150 2151 CSEMap.InsertNode(N, IP); 2152 InsertNode(N); 2153 return SDValue(N, 0); 2154 } 2155 2156 SDValue SelectionDAG::getFreeze(SDValue V) { 2157 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2158 } 2159 2160 /// getShiftAmountOperand - Return the specified value casted to 2161 /// the target's desired shift amount type. 2162 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2163 EVT OpTy = Op.getValueType(); 2164 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2165 if (OpTy == ShTy || OpTy.isVector()) return Op; 2166 2167 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2168 } 2169 2170 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2171 SDLoc dl(Node); 2172 const TargetLowering &TLI = getTargetLoweringInfo(); 2173 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2174 EVT VT = Node->getValueType(0); 2175 SDValue Tmp1 = Node->getOperand(0); 2176 SDValue Tmp2 = Node->getOperand(1); 2177 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2178 2179 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2180 Tmp2, MachinePointerInfo(V)); 2181 SDValue VAList = VAListLoad; 2182 2183 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2184 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2185 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2186 2187 VAList = 2188 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2189 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2190 } 2191 2192 // Increment the pointer, VAList, to the next vaarg 2193 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2194 getConstant(getDataLayout().getTypeAllocSize( 2195 VT.getTypeForEVT(*getContext())), 2196 dl, VAList.getValueType())); 2197 // Store the incremented VAList to the legalized pointer 2198 Tmp1 = 2199 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2200 // Load the actual argument out of the pointer VAList 2201 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2202 } 2203 2204 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2205 SDLoc dl(Node); 2206 const TargetLowering &TLI = getTargetLoweringInfo(); 2207 // This defaults to loading a pointer from the input and storing it to the 2208 // output, returning the chain. 2209 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2210 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2211 SDValue Tmp1 = 2212 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2213 Node->getOperand(2), MachinePointerInfo(VS)); 2214 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2215 MachinePointerInfo(VD)); 2216 } 2217 2218 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2219 const DataLayout &DL = getDataLayout(); 2220 Type *Ty = VT.getTypeForEVT(*getContext()); 2221 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2222 2223 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2224 return RedAlign; 2225 2226 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2227 const Align StackAlign = TFI->getStackAlign(); 2228 2229 // See if we can choose a smaller ABI alignment in cases where it's an 2230 // illegal vector type that will get broken down. 2231 if (RedAlign > StackAlign) { 2232 EVT IntermediateVT; 2233 MVT RegisterVT; 2234 unsigned NumIntermediates; 2235 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2236 NumIntermediates, RegisterVT); 2237 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2238 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2239 if (RedAlign2 < RedAlign) 2240 RedAlign = RedAlign2; 2241 } 2242 2243 return RedAlign; 2244 } 2245 2246 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2247 MachineFrameInfo &MFI = MF->getFrameInfo(); 2248 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2249 int StackID = 0; 2250 if (Bytes.isScalable()) 2251 StackID = TFI->getStackIDForScalableVectors(); 2252 // The stack id gives an indication of whether the object is scalable or 2253 // not, so it's safe to pass in the minimum size here. 2254 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinSize(), Alignment, 2255 false, nullptr, StackID); 2256 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2257 } 2258 2259 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2260 Type *Ty = VT.getTypeForEVT(*getContext()); 2261 Align StackAlign = 2262 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2263 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2264 } 2265 2266 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2267 TypeSize VT1Size = VT1.getStoreSize(); 2268 TypeSize VT2Size = VT2.getStoreSize(); 2269 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2270 "Don't know how to choose the maximum size when creating a stack " 2271 "temporary"); 2272 TypeSize Bytes = 2273 VT1Size.getKnownMinSize() > VT2Size.getKnownMinSize() ? VT1Size : VT2Size; 2274 2275 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2276 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2277 const DataLayout &DL = getDataLayout(); 2278 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2279 return CreateStackTemporary(Bytes, Align); 2280 } 2281 2282 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2283 ISD::CondCode Cond, const SDLoc &dl) { 2284 EVT OpVT = N1.getValueType(); 2285 2286 // These setcc operations always fold. 2287 switch (Cond) { 2288 default: break; 2289 case ISD::SETFALSE: 2290 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2291 case ISD::SETTRUE: 2292 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2293 2294 case ISD::SETOEQ: 2295 case ISD::SETOGT: 2296 case ISD::SETOGE: 2297 case ISD::SETOLT: 2298 case ISD::SETOLE: 2299 case ISD::SETONE: 2300 case ISD::SETO: 2301 case ISD::SETUO: 2302 case ISD::SETUEQ: 2303 case ISD::SETUNE: 2304 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2305 break; 2306 } 2307 2308 if (OpVT.isInteger()) { 2309 // For EQ and NE, we can always pick a value for the undef to make the 2310 // predicate pass or fail, so we can return undef. 2311 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2312 // icmp eq/ne X, undef -> undef. 2313 if ((N1.isUndef() || N2.isUndef()) && 2314 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2315 return getUNDEF(VT); 2316 2317 // If both operands are undef, we can return undef for int comparison. 2318 // icmp undef, undef -> undef. 2319 if (N1.isUndef() && N2.isUndef()) 2320 return getUNDEF(VT); 2321 2322 // icmp X, X -> true/false 2323 // icmp X, undef -> true/false because undef could be X. 2324 if (N1 == N2) 2325 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2326 } 2327 2328 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2329 const APInt &C2 = N2C->getAPIntValue(); 2330 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2331 const APInt &C1 = N1C->getAPIntValue(); 2332 2333 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2334 dl, VT, OpVT); 2335 } 2336 } 2337 2338 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2339 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2340 2341 if (N1CFP && N2CFP) { 2342 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2343 switch (Cond) { 2344 default: break; 2345 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2346 return getUNDEF(VT); 2347 LLVM_FALLTHROUGH; 2348 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2349 OpVT); 2350 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2351 return getUNDEF(VT); 2352 LLVM_FALLTHROUGH; 2353 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2354 R==APFloat::cmpLessThan, dl, VT, 2355 OpVT); 2356 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2357 return getUNDEF(VT); 2358 LLVM_FALLTHROUGH; 2359 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2360 OpVT); 2361 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2362 return getUNDEF(VT); 2363 LLVM_FALLTHROUGH; 2364 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2365 VT, OpVT); 2366 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2367 return getUNDEF(VT); 2368 LLVM_FALLTHROUGH; 2369 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2370 R==APFloat::cmpEqual, dl, VT, 2371 OpVT); 2372 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2373 return getUNDEF(VT); 2374 LLVM_FALLTHROUGH; 2375 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2376 R==APFloat::cmpEqual, dl, VT, OpVT); 2377 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2378 OpVT); 2379 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2380 OpVT); 2381 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2382 R==APFloat::cmpEqual, dl, VT, 2383 OpVT); 2384 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2385 OpVT); 2386 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2387 R==APFloat::cmpLessThan, dl, VT, 2388 OpVT); 2389 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2390 R==APFloat::cmpUnordered, dl, VT, 2391 OpVT); 2392 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2393 VT, OpVT); 2394 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2395 OpVT); 2396 } 2397 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2398 // Ensure that the constant occurs on the RHS. 2399 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2400 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2401 return SDValue(); 2402 return getSetCC(dl, VT, N2, N1, SwappedCond); 2403 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2404 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2405 // If an operand is known to be a nan (or undef that could be a nan), we can 2406 // fold it. 2407 // Choosing NaN for the undef will always make unordered comparison succeed 2408 // and ordered comparison fails. 2409 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2410 switch (ISD::getUnorderedFlavor(Cond)) { 2411 default: 2412 llvm_unreachable("Unknown flavor!"); 2413 case 0: // Known false. 2414 return getBoolConstant(false, dl, VT, OpVT); 2415 case 1: // Known true. 2416 return getBoolConstant(true, dl, VT, OpVT); 2417 case 2: // Undefined. 2418 return getUNDEF(VT); 2419 } 2420 } 2421 2422 // Could not fold it. 2423 return SDValue(); 2424 } 2425 2426 /// See if the specified operand can be simplified with the knowledge that only 2427 /// the bits specified by DemandedBits are used. 2428 /// TODO: really we should be making this into the DAG equivalent of 2429 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2430 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2431 EVT VT = V.getValueType(); 2432 2433 if (VT.isScalableVector()) 2434 return SDValue(); 2435 2436 APInt DemandedElts = VT.isVector() 2437 ? APInt::getAllOnes(VT.getVectorNumElements()) 2438 : APInt(1, 1); 2439 return GetDemandedBits(V, DemandedBits, DemandedElts); 2440 } 2441 2442 /// See if the specified operand can be simplified with the knowledge that only 2443 /// the bits specified by DemandedBits are used in the elements specified by 2444 /// DemandedElts. 2445 /// TODO: really we should be making this into the DAG equivalent of 2446 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2447 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2448 const APInt &DemandedElts) { 2449 switch (V.getOpcode()) { 2450 default: 2451 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2452 *this); 2453 case ISD::Constant: { 2454 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue(); 2455 APInt NewVal = CVal & DemandedBits; 2456 if (NewVal != CVal) 2457 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2458 break; 2459 } 2460 case ISD::SRL: 2461 // Only look at single-use SRLs. 2462 if (!V.getNode()->hasOneUse()) 2463 break; 2464 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2465 // See if we can recursively simplify the LHS. 2466 unsigned Amt = RHSC->getZExtValue(); 2467 2468 // Watch out for shift count overflow though. 2469 if (Amt >= DemandedBits.getBitWidth()) 2470 break; 2471 APInt SrcDemandedBits = DemandedBits << Amt; 2472 if (SDValue SimplifyLHS = 2473 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2474 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2475 V.getOperand(1)); 2476 } 2477 break; 2478 } 2479 return SDValue(); 2480 } 2481 2482 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2483 /// use this predicate to simplify operations downstream. 2484 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2485 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2486 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2487 } 2488 2489 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2490 /// this predicate to simplify operations downstream. Mask is known to be zero 2491 /// for bits that V cannot have. 2492 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2493 unsigned Depth) const { 2494 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2495 } 2496 2497 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2498 /// DemandedElts. We use this predicate to simplify operations downstream. 2499 /// Mask is known to be zero for bits that V cannot have. 2500 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2501 const APInt &DemandedElts, 2502 unsigned Depth) const { 2503 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2504 } 2505 2506 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2507 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2508 unsigned Depth) const { 2509 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2510 } 2511 2512 /// isSplatValue - Return true if the vector V has the same value 2513 /// across all DemandedElts. For scalable vectors it does not make 2514 /// sense to specify which elements are demanded or undefined, therefore 2515 /// they are simply ignored. 2516 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2517 APInt &UndefElts, unsigned Depth) const { 2518 unsigned Opcode = V.getOpcode(); 2519 EVT VT = V.getValueType(); 2520 assert(VT.isVector() && "Vector type expected"); 2521 2522 if (!VT.isScalableVector() && !DemandedElts) 2523 return false; // No demanded elts, better to assume we don't know anything. 2524 2525 if (Depth >= MaxRecursionDepth) 2526 return false; // Limit search depth. 2527 2528 // Deal with some common cases here that work for both fixed and scalable 2529 // vector types. 2530 switch (Opcode) { 2531 case ISD::SPLAT_VECTOR: 2532 UndefElts = V.getOperand(0).isUndef() 2533 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2534 : APInt(DemandedElts.getBitWidth(), 0); 2535 return true; 2536 case ISD::ADD: 2537 case ISD::SUB: 2538 case ISD::AND: 2539 case ISD::XOR: 2540 case ISD::OR: { 2541 APInt UndefLHS, UndefRHS; 2542 SDValue LHS = V.getOperand(0); 2543 SDValue RHS = V.getOperand(1); 2544 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2545 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2546 UndefElts = UndefLHS | UndefRHS; 2547 return true; 2548 } 2549 return false; 2550 } 2551 case ISD::ABS: 2552 case ISD::TRUNCATE: 2553 case ISD::SIGN_EXTEND: 2554 case ISD::ZERO_EXTEND: 2555 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2556 default: 2557 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2558 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2559 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, Depth); 2560 break; 2561 } 2562 2563 // We don't support other cases than those above for scalable vectors at 2564 // the moment. 2565 if (VT.isScalableVector()) 2566 return false; 2567 2568 unsigned NumElts = VT.getVectorNumElements(); 2569 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2570 UndefElts = APInt::getZero(NumElts); 2571 2572 switch (Opcode) { 2573 case ISD::BUILD_VECTOR: { 2574 SDValue Scl; 2575 for (unsigned i = 0; i != NumElts; ++i) { 2576 SDValue Op = V.getOperand(i); 2577 if (Op.isUndef()) { 2578 UndefElts.setBit(i); 2579 continue; 2580 } 2581 if (!DemandedElts[i]) 2582 continue; 2583 if (Scl && Scl != Op) 2584 return false; 2585 Scl = Op; 2586 } 2587 return true; 2588 } 2589 case ISD::VECTOR_SHUFFLE: { 2590 // Check if this is a shuffle node doing a splat. 2591 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2592 int SplatIndex = -1; 2593 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2594 for (int i = 0; i != (int)NumElts; ++i) { 2595 int M = Mask[i]; 2596 if (M < 0) { 2597 UndefElts.setBit(i); 2598 continue; 2599 } 2600 if (!DemandedElts[i]) 2601 continue; 2602 if (0 <= SplatIndex && SplatIndex != M) 2603 return false; 2604 SplatIndex = M; 2605 } 2606 return true; 2607 } 2608 case ISD::EXTRACT_SUBVECTOR: { 2609 // Offset the demanded elts by the subvector index. 2610 SDValue Src = V.getOperand(0); 2611 // We don't support scalable vectors at the moment. 2612 if (Src.getValueType().isScalableVector()) 2613 return false; 2614 uint64_t Idx = V.getConstantOperandVal(1); 2615 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2616 APInt UndefSrcElts; 2617 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2618 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2619 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2620 return true; 2621 } 2622 break; 2623 } 2624 case ISD::ANY_EXTEND_VECTOR_INREG: 2625 case ISD::SIGN_EXTEND_VECTOR_INREG: 2626 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2627 // Widen the demanded elts by the src element count. 2628 SDValue Src = V.getOperand(0); 2629 // We don't support scalable vectors at the moment. 2630 if (Src.getValueType().isScalableVector()) 2631 return false; 2632 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2633 APInt UndefSrcElts; 2634 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2635 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2636 UndefElts = UndefSrcElts.truncOrSelf(NumElts); 2637 return true; 2638 } 2639 break; 2640 } 2641 } 2642 2643 return false; 2644 } 2645 2646 /// Helper wrapper to main isSplatValue function. 2647 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2648 EVT VT = V.getValueType(); 2649 assert(VT.isVector() && "Vector type expected"); 2650 2651 APInt UndefElts; 2652 APInt DemandedElts; 2653 2654 // For now we don't support this with scalable vectors. 2655 if (!VT.isScalableVector()) 2656 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2657 return isSplatValue(V, DemandedElts, UndefElts) && 2658 (AllowUndefs || !UndefElts); 2659 } 2660 2661 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2662 V = peekThroughExtractSubvectors(V); 2663 2664 EVT VT = V.getValueType(); 2665 unsigned Opcode = V.getOpcode(); 2666 switch (Opcode) { 2667 default: { 2668 APInt UndefElts; 2669 APInt DemandedElts; 2670 2671 if (!VT.isScalableVector()) 2672 DemandedElts = APInt::getAllOnes(VT.getVectorNumElements()); 2673 2674 if (isSplatValue(V, DemandedElts, UndefElts)) { 2675 if (VT.isScalableVector()) { 2676 // DemandedElts and UndefElts are ignored for scalable vectors, since 2677 // the only supported cases are SPLAT_VECTOR nodes. 2678 SplatIdx = 0; 2679 } else { 2680 // Handle case where all demanded elements are UNDEF. 2681 if (DemandedElts.isSubsetOf(UndefElts)) { 2682 SplatIdx = 0; 2683 return getUNDEF(VT); 2684 } 2685 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2686 } 2687 return V; 2688 } 2689 break; 2690 } 2691 case ISD::SPLAT_VECTOR: 2692 SplatIdx = 0; 2693 return V; 2694 case ISD::VECTOR_SHUFFLE: { 2695 if (VT.isScalableVector()) 2696 return SDValue(); 2697 2698 // Check if this is a shuffle node doing a splat. 2699 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2700 // getTargetVShiftNode currently struggles without the splat source. 2701 auto *SVN = cast<ShuffleVectorSDNode>(V); 2702 if (!SVN->isSplat()) 2703 break; 2704 int Idx = SVN->getSplatIndex(); 2705 int NumElts = V.getValueType().getVectorNumElements(); 2706 SplatIdx = Idx % NumElts; 2707 return V.getOperand(Idx / NumElts); 2708 } 2709 } 2710 2711 return SDValue(); 2712 } 2713 2714 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2715 int SplatIdx; 2716 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2717 EVT SVT = SrcVector.getValueType().getScalarType(); 2718 EVT LegalSVT = SVT; 2719 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2720 if (!SVT.isInteger()) 2721 return SDValue(); 2722 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2723 if (LegalSVT.bitsLT(SVT)) 2724 return SDValue(); 2725 } 2726 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2727 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2728 } 2729 return SDValue(); 2730 } 2731 2732 const APInt * 2733 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2734 const APInt &DemandedElts) const { 2735 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2736 V.getOpcode() == ISD::SRA) && 2737 "Unknown shift node"); 2738 unsigned BitWidth = V.getScalarValueSizeInBits(); 2739 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2740 // Shifting more than the bitwidth is not valid. 2741 const APInt &ShAmt = SA->getAPIntValue(); 2742 if (ShAmt.ult(BitWidth)) 2743 return &ShAmt; 2744 } 2745 return nullptr; 2746 } 2747 2748 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2749 SDValue V, const APInt &DemandedElts) const { 2750 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2751 V.getOpcode() == ISD::SRA) && 2752 "Unknown shift node"); 2753 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2754 return ValidAmt; 2755 unsigned BitWidth = V.getScalarValueSizeInBits(); 2756 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2757 if (!BV) 2758 return nullptr; 2759 const APInt *MinShAmt = nullptr; 2760 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2761 if (!DemandedElts[i]) 2762 continue; 2763 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2764 if (!SA) 2765 return nullptr; 2766 // Shifting more than the bitwidth is not valid. 2767 const APInt &ShAmt = SA->getAPIntValue(); 2768 if (ShAmt.uge(BitWidth)) 2769 return nullptr; 2770 if (MinShAmt && MinShAmt->ule(ShAmt)) 2771 continue; 2772 MinShAmt = &ShAmt; 2773 } 2774 return MinShAmt; 2775 } 2776 2777 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2778 SDValue V, const APInt &DemandedElts) const { 2779 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2780 V.getOpcode() == ISD::SRA) && 2781 "Unknown shift node"); 2782 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2783 return ValidAmt; 2784 unsigned BitWidth = V.getScalarValueSizeInBits(); 2785 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2786 if (!BV) 2787 return nullptr; 2788 const APInt *MaxShAmt = nullptr; 2789 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2790 if (!DemandedElts[i]) 2791 continue; 2792 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2793 if (!SA) 2794 return nullptr; 2795 // Shifting more than the bitwidth is not valid. 2796 const APInt &ShAmt = SA->getAPIntValue(); 2797 if (ShAmt.uge(BitWidth)) 2798 return nullptr; 2799 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2800 continue; 2801 MaxShAmt = &ShAmt; 2802 } 2803 return MaxShAmt; 2804 } 2805 2806 /// Determine which bits of Op are known to be either zero or one and return 2807 /// them in Known. For vectors, the known bits are those that are shared by 2808 /// every vector element. 2809 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2810 EVT VT = Op.getValueType(); 2811 2812 // TOOD: Until we have a plan for how to represent demanded elements for 2813 // scalable vectors, we can just bail out for now. 2814 if (Op.getValueType().isScalableVector()) { 2815 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2816 return KnownBits(BitWidth); 2817 } 2818 2819 APInt DemandedElts = VT.isVector() 2820 ? APInt::getAllOnes(VT.getVectorNumElements()) 2821 : APInt(1, 1); 2822 return computeKnownBits(Op, DemandedElts, Depth); 2823 } 2824 2825 /// Determine which bits of Op are known to be either zero or one and return 2826 /// them in Known. The DemandedElts argument allows us to only collect the known 2827 /// bits that are shared by the requested vector elements. 2828 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2829 unsigned Depth) const { 2830 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2831 2832 KnownBits Known(BitWidth); // Don't know anything. 2833 2834 // TOOD: Until we have a plan for how to represent demanded elements for 2835 // scalable vectors, we can just bail out for now. 2836 if (Op.getValueType().isScalableVector()) 2837 return Known; 2838 2839 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2840 // We know all of the bits for a constant! 2841 return KnownBits::makeConstant(C->getAPIntValue()); 2842 } 2843 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2844 // We know all of the bits for a constant fp! 2845 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 2846 } 2847 2848 if (Depth >= MaxRecursionDepth) 2849 return Known; // Limit search depth. 2850 2851 KnownBits Known2; 2852 unsigned NumElts = DemandedElts.getBitWidth(); 2853 assert((!Op.getValueType().isVector() || 2854 NumElts == Op.getValueType().getVectorNumElements()) && 2855 "Unexpected vector size"); 2856 2857 if (!DemandedElts) 2858 return Known; // No demanded elts, better to assume we don't know anything. 2859 2860 unsigned Opcode = Op.getOpcode(); 2861 switch (Opcode) { 2862 case ISD::BUILD_VECTOR: 2863 // Collect the known bits that are shared by every demanded vector element. 2864 Known.Zero.setAllBits(); Known.One.setAllBits(); 2865 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2866 if (!DemandedElts[i]) 2867 continue; 2868 2869 SDValue SrcOp = Op.getOperand(i); 2870 Known2 = computeKnownBits(SrcOp, Depth + 1); 2871 2872 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2873 if (SrcOp.getValueSizeInBits() != BitWidth) { 2874 assert(SrcOp.getValueSizeInBits() > BitWidth && 2875 "Expected BUILD_VECTOR implicit truncation"); 2876 Known2 = Known2.trunc(BitWidth); 2877 } 2878 2879 // Known bits are the values that are shared by every demanded element. 2880 Known = KnownBits::commonBits(Known, Known2); 2881 2882 // If we don't know any bits, early out. 2883 if (Known.isUnknown()) 2884 break; 2885 } 2886 break; 2887 case ISD::VECTOR_SHUFFLE: { 2888 // Collect the known bits that are shared by every vector element referenced 2889 // by the shuffle. 2890 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2891 Known.Zero.setAllBits(); Known.One.setAllBits(); 2892 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2893 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2894 for (unsigned i = 0; i != NumElts; ++i) { 2895 if (!DemandedElts[i]) 2896 continue; 2897 2898 int M = SVN->getMaskElt(i); 2899 if (M < 0) { 2900 // For UNDEF elements, we don't know anything about the common state of 2901 // the shuffle result. 2902 Known.resetAll(); 2903 DemandedLHS.clearAllBits(); 2904 DemandedRHS.clearAllBits(); 2905 break; 2906 } 2907 2908 if ((unsigned)M < NumElts) 2909 DemandedLHS.setBit((unsigned)M % NumElts); 2910 else 2911 DemandedRHS.setBit((unsigned)M % NumElts); 2912 } 2913 // Known bits are the values that are shared by every demanded element. 2914 if (!!DemandedLHS) { 2915 SDValue LHS = Op.getOperand(0); 2916 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2917 Known = KnownBits::commonBits(Known, Known2); 2918 } 2919 // If we don't know any bits, early out. 2920 if (Known.isUnknown()) 2921 break; 2922 if (!!DemandedRHS) { 2923 SDValue RHS = Op.getOperand(1); 2924 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2925 Known = KnownBits::commonBits(Known, Known2); 2926 } 2927 break; 2928 } 2929 case ISD::CONCAT_VECTORS: { 2930 // Split DemandedElts and test each of the demanded subvectors. 2931 Known.Zero.setAllBits(); Known.One.setAllBits(); 2932 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2933 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2934 unsigned NumSubVectors = Op.getNumOperands(); 2935 for (unsigned i = 0; i != NumSubVectors; ++i) { 2936 APInt DemandedSub = 2937 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 2938 if (!!DemandedSub) { 2939 SDValue Sub = Op.getOperand(i); 2940 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2941 Known = KnownBits::commonBits(Known, Known2); 2942 } 2943 // If we don't know any bits, early out. 2944 if (Known.isUnknown()) 2945 break; 2946 } 2947 break; 2948 } 2949 case ISD::INSERT_SUBVECTOR: { 2950 // Demand any elements from the subvector and the remainder from the src its 2951 // inserted into. 2952 SDValue Src = Op.getOperand(0); 2953 SDValue Sub = Op.getOperand(1); 2954 uint64_t Idx = Op.getConstantOperandVal(2); 2955 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2956 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2957 APInt DemandedSrcElts = DemandedElts; 2958 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2959 2960 Known.One.setAllBits(); 2961 Known.Zero.setAllBits(); 2962 if (!!DemandedSubElts) { 2963 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2964 if (Known.isUnknown()) 2965 break; // early-out. 2966 } 2967 if (!!DemandedSrcElts) { 2968 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2969 Known = KnownBits::commonBits(Known, Known2); 2970 } 2971 break; 2972 } 2973 case ISD::EXTRACT_SUBVECTOR: { 2974 // Offset the demanded elts by the subvector index. 2975 SDValue Src = Op.getOperand(0); 2976 // Bail until we can represent demanded elements for scalable vectors. 2977 if (Src.getValueType().isScalableVector()) 2978 break; 2979 uint64_t Idx = Op.getConstantOperandVal(1); 2980 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2981 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2982 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2983 break; 2984 } 2985 case ISD::SCALAR_TO_VECTOR: { 2986 // We know about scalar_to_vector as much as we know about it source, 2987 // which becomes the first element of otherwise unknown vector. 2988 if (DemandedElts != 1) 2989 break; 2990 2991 SDValue N0 = Op.getOperand(0); 2992 Known = computeKnownBits(N0, Depth + 1); 2993 if (N0.getValueSizeInBits() != BitWidth) 2994 Known = Known.trunc(BitWidth); 2995 2996 break; 2997 } 2998 case ISD::BITCAST: { 2999 SDValue N0 = Op.getOperand(0); 3000 EVT SubVT = N0.getValueType(); 3001 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 3002 3003 // Ignore bitcasts from unsupported types. 3004 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 3005 break; 3006 3007 // Fast handling of 'identity' bitcasts. 3008 if (BitWidth == SubBitWidth) { 3009 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 3010 break; 3011 } 3012 3013 bool IsLE = getDataLayout().isLittleEndian(); 3014 3015 // Bitcast 'small element' vector to 'large element' scalar/vector. 3016 if ((BitWidth % SubBitWidth) == 0) { 3017 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3018 3019 // Collect known bits for the (larger) output by collecting the known 3020 // bits from each set of sub elements and shift these into place. 3021 // We need to separately call computeKnownBits for each set of 3022 // sub elements as the knownbits for each is likely to be different. 3023 unsigned SubScale = BitWidth / SubBitWidth; 3024 APInt SubDemandedElts(NumElts * SubScale, 0); 3025 for (unsigned i = 0; i != NumElts; ++i) 3026 if (DemandedElts[i]) 3027 SubDemandedElts.setBit(i * SubScale); 3028 3029 for (unsigned i = 0; i != SubScale; ++i) { 3030 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3031 Depth + 1); 3032 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3033 Known.insertBits(Known2, SubBitWidth * Shifts); 3034 } 3035 } 3036 3037 // Bitcast 'large element' scalar/vector to 'small element' vector. 3038 if ((SubBitWidth % BitWidth) == 0) { 3039 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3040 3041 // Collect known bits for the (smaller) output by collecting the known 3042 // bits from the overlapping larger input elements and extracting the 3043 // sub sections we actually care about. 3044 unsigned SubScale = SubBitWidth / BitWidth; 3045 APInt SubDemandedElts = 3046 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3047 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3048 3049 Known.Zero.setAllBits(); Known.One.setAllBits(); 3050 for (unsigned i = 0; i != NumElts; ++i) 3051 if (DemandedElts[i]) { 3052 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3053 unsigned Offset = (Shifts % SubScale) * BitWidth; 3054 Known = KnownBits::commonBits(Known, 3055 Known2.extractBits(BitWidth, Offset)); 3056 // If we don't know any bits, early out. 3057 if (Known.isUnknown()) 3058 break; 3059 } 3060 } 3061 break; 3062 } 3063 case ISD::AND: 3064 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3065 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3066 3067 Known &= Known2; 3068 break; 3069 case ISD::OR: 3070 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3071 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3072 3073 Known |= Known2; 3074 break; 3075 case ISD::XOR: 3076 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3077 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3078 3079 Known ^= Known2; 3080 break; 3081 case ISD::MUL: { 3082 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3083 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3084 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3085 // TODO: SelfMultiply can be poison, but not undef. 3086 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison( 3087 Op.getOperand(0), DemandedElts, false, Depth + 1); 3088 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3089 break; 3090 } 3091 case ISD::MULHU: { 3092 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3093 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3094 Known = KnownBits::mulhu(Known, Known2); 3095 break; 3096 } 3097 case ISD::MULHS: { 3098 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3099 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3100 Known = KnownBits::mulhs(Known, Known2); 3101 break; 3102 } 3103 case ISD::UMUL_LOHI: { 3104 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3105 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3106 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3107 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3108 if (Op.getResNo() == 0) 3109 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3110 else 3111 Known = KnownBits::mulhu(Known, Known2); 3112 break; 3113 } 3114 case ISD::SMUL_LOHI: { 3115 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3116 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3117 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3118 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3119 if (Op.getResNo() == 0) 3120 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3121 else 3122 Known = KnownBits::mulhs(Known, Known2); 3123 break; 3124 } 3125 case ISD::UDIV: { 3126 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3127 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3128 Known = KnownBits::udiv(Known, Known2); 3129 break; 3130 } 3131 case ISD::SELECT: 3132 case ISD::VSELECT: 3133 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3134 // If we don't know any bits, early out. 3135 if (Known.isUnknown()) 3136 break; 3137 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3138 3139 // Only known if known in both the LHS and RHS. 3140 Known = KnownBits::commonBits(Known, Known2); 3141 break; 3142 case ISD::SELECT_CC: 3143 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3144 // If we don't know any bits, early out. 3145 if (Known.isUnknown()) 3146 break; 3147 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3148 3149 // Only known if known in both the LHS and RHS. 3150 Known = KnownBits::commonBits(Known, Known2); 3151 break; 3152 case ISD::SMULO: 3153 case ISD::UMULO: 3154 if (Op.getResNo() != 1) 3155 break; 3156 // The boolean result conforms to getBooleanContents. 3157 // If we know the result of a setcc has the top bits zero, use this info. 3158 // We know that we have an integer-based boolean since these operations 3159 // are only available for integer. 3160 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3161 TargetLowering::ZeroOrOneBooleanContent && 3162 BitWidth > 1) 3163 Known.Zero.setBitsFrom(1); 3164 break; 3165 case ISD::SETCC: 3166 case ISD::STRICT_FSETCC: 3167 case ISD::STRICT_FSETCCS: { 3168 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3169 // If we know the result of a setcc has the top bits zero, use this info. 3170 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3171 TargetLowering::ZeroOrOneBooleanContent && 3172 BitWidth > 1) 3173 Known.Zero.setBitsFrom(1); 3174 break; 3175 } 3176 case ISD::SHL: 3177 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3178 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3179 Known = KnownBits::shl(Known, Known2); 3180 3181 // Minimum shift low bits are known zero. 3182 if (const APInt *ShMinAmt = 3183 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3184 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3185 break; 3186 case ISD::SRL: 3187 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3188 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3189 Known = KnownBits::lshr(Known, Known2); 3190 3191 // Minimum shift high bits are known zero. 3192 if (const APInt *ShMinAmt = 3193 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3194 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3195 break; 3196 case ISD::SRA: 3197 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3198 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3199 Known = KnownBits::ashr(Known, Known2); 3200 // TODO: Add minimum shift high known sign bits. 3201 break; 3202 case ISD::FSHL: 3203 case ISD::FSHR: 3204 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3205 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3206 3207 // For fshl, 0-shift returns the 1st arg. 3208 // For fshr, 0-shift returns the 2nd arg. 3209 if (Amt == 0) { 3210 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3211 DemandedElts, Depth + 1); 3212 break; 3213 } 3214 3215 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3216 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3217 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3218 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3219 if (Opcode == ISD::FSHL) { 3220 Known.One <<= Amt; 3221 Known.Zero <<= Amt; 3222 Known2.One.lshrInPlace(BitWidth - Amt); 3223 Known2.Zero.lshrInPlace(BitWidth - Amt); 3224 } else { 3225 Known.One <<= BitWidth - Amt; 3226 Known.Zero <<= BitWidth - Amt; 3227 Known2.One.lshrInPlace(Amt); 3228 Known2.Zero.lshrInPlace(Amt); 3229 } 3230 Known.One |= Known2.One; 3231 Known.Zero |= Known2.Zero; 3232 } 3233 break; 3234 case ISD::SIGN_EXTEND_INREG: { 3235 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3236 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3237 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3238 break; 3239 } 3240 case ISD::CTTZ: 3241 case ISD::CTTZ_ZERO_UNDEF: { 3242 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3243 // If we have a known 1, its position is our upper bound. 3244 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3245 unsigned LowBits = Log2_32(PossibleTZ) + 1; 3246 Known.Zero.setBitsFrom(LowBits); 3247 break; 3248 } 3249 case ISD::CTLZ: 3250 case ISD::CTLZ_ZERO_UNDEF: { 3251 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3252 // If we have a known 1, its position is our upper bound. 3253 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3254 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3255 Known.Zero.setBitsFrom(LowBits); 3256 break; 3257 } 3258 case ISD::CTPOP: { 3259 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3260 // If we know some of the bits are zero, they can't be one. 3261 unsigned PossibleOnes = Known2.countMaxPopulation(); 3262 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3263 break; 3264 } 3265 case ISD::PARITY: { 3266 // Parity returns 0 everywhere but the LSB. 3267 Known.Zero.setBitsFrom(1); 3268 break; 3269 } 3270 case ISD::LOAD: { 3271 LoadSDNode *LD = cast<LoadSDNode>(Op); 3272 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3273 if (ISD::isNON_EXTLoad(LD) && Cst) { 3274 // Determine any common known bits from the loaded constant pool value. 3275 Type *CstTy = Cst->getType(); 3276 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3277 // If its a vector splat, then we can (quickly) reuse the scalar path. 3278 // NOTE: We assume all elements match and none are UNDEF. 3279 if (CstTy->isVectorTy()) { 3280 if (const Constant *Splat = Cst->getSplatValue()) { 3281 Cst = Splat; 3282 CstTy = Cst->getType(); 3283 } 3284 } 3285 // TODO - do we need to handle different bitwidths? 3286 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3287 // Iterate across all vector elements finding common known bits. 3288 Known.One.setAllBits(); 3289 Known.Zero.setAllBits(); 3290 for (unsigned i = 0; i != NumElts; ++i) { 3291 if (!DemandedElts[i]) 3292 continue; 3293 if (Constant *Elt = Cst->getAggregateElement(i)) { 3294 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3295 const APInt &Value = CInt->getValue(); 3296 Known.One &= Value; 3297 Known.Zero &= ~Value; 3298 continue; 3299 } 3300 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3301 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3302 Known.One &= Value; 3303 Known.Zero &= ~Value; 3304 continue; 3305 } 3306 } 3307 Known.One.clearAllBits(); 3308 Known.Zero.clearAllBits(); 3309 break; 3310 } 3311 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3312 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3313 Known = KnownBits::makeConstant(CInt->getValue()); 3314 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3315 Known = 3316 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3317 } 3318 } 3319 } 3320 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3321 // If this is a ZEXTLoad and we are looking at the loaded value. 3322 EVT VT = LD->getMemoryVT(); 3323 unsigned MemBits = VT.getScalarSizeInBits(); 3324 Known.Zero.setBitsFrom(MemBits); 3325 } else if (const MDNode *Ranges = LD->getRanges()) { 3326 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3327 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3328 } 3329 break; 3330 } 3331 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3332 EVT InVT = Op.getOperand(0).getValueType(); 3333 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3334 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3335 Known = Known.zext(BitWidth); 3336 break; 3337 } 3338 case ISD::ZERO_EXTEND: { 3339 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3340 Known = Known.zext(BitWidth); 3341 break; 3342 } 3343 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3344 EVT InVT = Op.getOperand(0).getValueType(); 3345 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3346 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3347 // If the sign bit is known to be zero or one, then sext will extend 3348 // it to the top bits, else it will just zext. 3349 Known = Known.sext(BitWidth); 3350 break; 3351 } 3352 case ISD::SIGN_EXTEND: { 3353 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3354 // If the sign bit is known to be zero or one, then sext will extend 3355 // it to the top bits, else it will just zext. 3356 Known = Known.sext(BitWidth); 3357 break; 3358 } 3359 case ISD::ANY_EXTEND_VECTOR_INREG: { 3360 EVT InVT = Op.getOperand(0).getValueType(); 3361 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3362 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3363 Known = Known.anyext(BitWidth); 3364 break; 3365 } 3366 case ISD::ANY_EXTEND: { 3367 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3368 Known = Known.anyext(BitWidth); 3369 break; 3370 } 3371 case ISD::TRUNCATE: { 3372 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3373 Known = Known.trunc(BitWidth); 3374 break; 3375 } 3376 case ISD::AssertZext: { 3377 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3378 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3379 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3380 Known.Zero |= (~InMask); 3381 Known.One &= (~Known.Zero); 3382 break; 3383 } 3384 case ISD::AssertAlign: { 3385 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3386 assert(LogOfAlign != 0); 3387 3388 // TODO: Should use maximum with source 3389 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3390 // well as clearing one bits. 3391 Known.Zero.setLowBits(LogOfAlign); 3392 Known.One.clearLowBits(LogOfAlign); 3393 break; 3394 } 3395 case ISD::FGETSIGN: 3396 // All bits are zero except the low bit. 3397 Known.Zero.setBitsFrom(1); 3398 break; 3399 case ISD::USUBO: 3400 case ISD::SSUBO: 3401 if (Op.getResNo() == 1) { 3402 // If we know the result of a setcc has the top bits zero, use this info. 3403 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3404 TargetLowering::ZeroOrOneBooleanContent && 3405 BitWidth > 1) 3406 Known.Zero.setBitsFrom(1); 3407 break; 3408 } 3409 LLVM_FALLTHROUGH; 3410 case ISD::SUB: 3411 case ISD::SUBC: { 3412 assert(Op.getResNo() == 0 && 3413 "We only compute knownbits for the difference here."); 3414 3415 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3416 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3417 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3418 Known, Known2); 3419 break; 3420 } 3421 case ISD::UADDO: 3422 case ISD::SADDO: 3423 case ISD::ADDCARRY: 3424 if (Op.getResNo() == 1) { 3425 // If we know the result of a setcc has the top bits zero, use this info. 3426 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3427 TargetLowering::ZeroOrOneBooleanContent && 3428 BitWidth > 1) 3429 Known.Zero.setBitsFrom(1); 3430 break; 3431 } 3432 LLVM_FALLTHROUGH; 3433 case ISD::ADD: 3434 case ISD::ADDC: 3435 case ISD::ADDE: { 3436 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3437 3438 // With ADDE and ADDCARRY, a carry bit may be added in. 3439 KnownBits Carry(1); 3440 if (Opcode == ISD::ADDE) 3441 // Can't track carry from glue, set carry to unknown. 3442 Carry.resetAll(); 3443 else if (Opcode == ISD::ADDCARRY) 3444 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3445 // the trouble (how often will we find a known carry bit). And I haven't 3446 // tested this very much yet, but something like this might work: 3447 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3448 // Carry = Carry.zextOrTrunc(1, false); 3449 Carry.resetAll(); 3450 else 3451 Carry.setAllZero(); 3452 3453 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3454 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3455 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3456 break; 3457 } 3458 case ISD::SREM: { 3459 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3460 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3461 Known = KnownBits::srem(Known, Known2); 3462 break; 3463 } 3464 case ISD::UREM: { 3465 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3466 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3467 Known = KnownBits::urem(Known, Known2); 3468 break; 3469 } 3470 case ISD::EXTRACT_ELEMENT: { 3471 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3472 const unsigned Index = Op.getConstantOperandVal(1); 3473 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3474 3475 // Remove low part of known bits mask 3476 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3477 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3478 3479 // Remove high part of known bit mask 3480 Known = Known.trunc(EltBitWidth); 3481 break; 3482 } 3483 case ISD::EXTRACT_VECTOR_ELT: { 3484 SDValue InVec = Op.getOperand(0); 3485 SDValue EltNo = Op.getOperand(1); 3486 EVT VecVT = InVec.getValueType(); 3487 // computeKnownBits not yet implemented for scalable vectors. 3488 if (VecVT.isScalableVector()) 3489 break; 3490 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3491 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3492 3493 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3494 // anything about the extended bits. 3495 if (BitWidth > EltBitWidth) 3496 Known = Known.trunc(EltBitWidth); 3497 3498 // If we know the element index, just demand that vector element, else for 3499 // an unknown element index, ignore DemandedElts and demand them all. 3500 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3501 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3502 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3503 DemandedSrcElts = 3504 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3505 3506 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3507 if (BitWidth > EltBitWidth) 3508 Known = Known.anyext(BitWidth); 3509 break; 3510 } 3511 case ISD::INSERT_VECTOR_ELT: { 3512 // If we know the element index, split the demand between the 3513 // source vector and the inserted element, otherwise assume we need 3514 // the original demanded vector elements and the value. 3515 SDValue InVec = Op.getOperand(0); 3516 SDValue InVal = Op.getOperand(1); 3517 SDValue EltNo = Op.getOperand(2); 3518 bool DemandedVal = true; 3519 APInt DemandedVecElts = DemandedElts; 3520 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3521 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3522 unsigned EltIdx = CEltNo->getZExtValue(); 3523 DemandedVal = !!DemandedElts[EltIdx]; 3524 DemandedVecElts.clearBit(EltIdx); 3525 } 3526 Known.One.setAllBits(); 3527 Known.Zero.setAllBits(); 3528 if (DemandedVal) { 3529 Known2 = computeKnownBits(InVal, Depth + 1); 3530 Known = KnownBits::commonBits(Known, Known2.zextOrTrunc(BitWidth)); 3531 } 3532 if (!!DemandedVecElts) { 3533 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3534 Known = KnownBits::commonBits(Known, Known2); 3535 } 3536 break; 3537 } 3538 case ISD::BITREVERSE: { 3539 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3540 Known = Known2.reverseBits(); 3541 break; 3542 } 3543 case ISD::BSWAP: { 3544 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3545 Known = Known2.byteSwap(); 3546 break; 3547 } 3548 case ISD::ABS: { 3549 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3550 Known = Known2.abs(); 3551 break; 3552 } 3553 case ISD::USUBSAT: { 3554 // The result of usubsat will never be larger than the LHS. 3555 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3556 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3557 break; 3558 } 3559 case ISD::UMIN: { 3560 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3561 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3562 Known = KnownBits::umin(Known, Known2); 3563 break; 3564 } 3565 case ISD::UMAX: { 3566 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3567 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3568 Known = KnownBits::umax(Known, Known2); 3569 break; 3570 } 3571 case ISD::SMIN: 3572 case ISD::SMAX: { 3573 // If we have a clamp pattern, we know that the number of sign bits will be 3574 // the minimum of the clamp min/max range. 3575 bool IsMax = (Opcode == ISD::SMAX); 3576 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3577 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3578 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3579 CstHigh = 3580 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3581 if (CstLow && CstHigh) { 3582 if (!IsMax) 3583 std::swap(CstLow, CstHigh); 3584 3585 const APInt &ValueLow = CstLow->getAPIntValue(); 3586 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3587 if (ValueLow.sle(ValueHigh)) { 3588 unsigned LowSignBits = ValueLow.getNumSignBits(); 3589 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3590 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3591 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3592 Known.One.setHighBits(MinSignBits); 3593 break; 3594 } 3595 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3596 Known.Zero.setHighBits(MinSignBits); 3597 break; 3598 } 3599 } 3600 } 3601 3602 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3603 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3604 if (IsMax) 3605 Known = KnownBits::smax(Known, Known2); 3606 else 3607 Known = KnownBits::smin(Known, Known2); 3608 break; 3609 } 3610 case ISD::FP_TO_UINT_SAT: { 3611 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT. 3612 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3613 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits()); 3614 break; 3615 } 3616 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3617 if (Op.getResNo() == 1) { 3618 // The boolean result conforms to getBooleanContents. 3619 // If we know the result of a setcc has the top bits zero, use this info. 3620 // We know that we have an integer-based boolean since these operations 3621 // are only available for integer. 3622 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3623 TargetLowering::ZeroOrOneBooleanContent && 3624 BitWidth > 1) 3625 Known.Zero.setBitsFrom(1); 3626 break; 3627 } 3628 LLVM_FALLTHROUGH; 3629 case ISD::ATOMIC_CMP_SWAP: 3630 case ISD::ATOMIC_SWAP: 3631 case ISD::ATOMIC_LOAD_ADD: 3632 case ISD::ATOMIC_LOAD_SUB: 3633 case ISD::ATOMIC_LOAD_AND: 3634 case ISD::ATOMIC_LOAD_CLR: 3635 case ISD::ATOMIC_LOAD_OR: 3636 case ISD::ATOMIC_LOAD_XOR: 3637 case ISD::ATOMIC_LOAD_NAND: 3638 case ISD::ATOMIC_LOAD_MIN: 3639 case ISD::ATOMIC_LOAD_MAX: 3640 case ISD::ATOMIC_LOAD_UMIN: 3641 case ISD::ATOMIC_LOAD_UMAX: 3642 case ISD::ATOMIC_LOAD: { 3643 unsigned MemBits = 3644 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3645 // If we are looking at the loaded value. 3646 if (Op.getResNo() == 0) { 3647 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3648 Known.Zero.setBitsFrom(MemBits); 3649 } 3650 break; 3651 } 3652 case ISD::FrameIndex: 3653 case ISD::TargetFrameIndex: 3654 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3655 Known, getMachineFunction()); 3656 break; 3657 3658 default: 3659 if (Opcode < ISD::BUILTIN_OP_END) 3660 break; 3661 LLVM_FALLTHROUGH; 3662 case ISD::INTRINSIC_WO_CHAIN: 3663 case ISD::INTRINSIC_W_CHAIN: 3664 case ISD::INTRINSIC_VOID: 3665 // Allow the target to implement this method for its nodes. 3666 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3667 break; 3668 } 3669 3670 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3671 return Known; 3672 } 3673 3674 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3675 SDValue N1) const { 3676 // X + 0 never overflow 3677 if (isNullConstant(N1)) 3678 return OFK_Never; 3679 3680 KnownBits N1Known = computeKnownBits(N1); 3681 if (N1Known.Zero.getBoolValue()) { 3682 KnownBits N0Known = computeKnownBits(N0); 3683 3684 bool overflow; 3685 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3686 if (!overflow) 3687 return OFK_Never; 3688 } 3689 3690 // mulhi + 1 never overflow 3691 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3692 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3693 return OFK_Never; 3694 3695 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3696 KnownBits N0Known = computeKnownBits(N0); 3697 3698 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3699 return OFK_Never; 3700 } 3701 3702 return OFK_Sometime; 3703 } 3704 3705 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3706 EVT OpVT = Val.getValueType(); 3707 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3708 3709 // Is the constant a known power of 2? 3710 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3711 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3712 3713 // A left-shift of a constant one will have exactly one bit set because 3714 // shifting the bit off the end is undefined. 3715 if (Val.getOpcode() == ISD::SHL) { 3716 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3717 if (C && C->getAPIntValue() == 1) 3718 return true; 3719 } 3720 3721 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3722 // one bit set. 3723 if (Val.getOpcode() == ISD::SRL) { 3724 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3725 if (C && C->getAPIntValue().isSignMask()) 3726 return true; 3727 } 3728 3729 // Are all operands of a build vector constant powers of two? 3730 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3731 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3732 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3733 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3734 return false; 3735 })) 3736 return true; 3737 3738 // Is the operand of a splat vector a constant power of two? 3739 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 3740 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 3741 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 3742 return true; 3743 3744 // More could be done here, though the above checks are enough 3745 // to handle some common cases. 3746 3747 // Fall back to computeKnownBits to catch other known cases. 3748 KnownBits Known = computeKnownBits(Val); 3749 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3750 } 3751 3752 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3753 EVT VT = Op.getValueType(); 3754 3755 // TODO: Assume we don't know anything for now. 3756 if (VT.isScalableVector()) 3757 return 1; 3758 3759 APInt DemandedElts = VT.isVector() 3760 ? APInt::getAllOnes(VT.getVectorNumElements()) 3761 : APInt(1, 1); 3762 return ComputeNumSignBits(Op, DemandedElts, Depth); 3763 } 3764 3765 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3766 unsigned Depth) const { 3767 EVT VT = Op.getValueType(); 3768 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3769 unsigned VTBits = VT.getScalarSizeInBits(); 3770 unsigned NumElts = DemandedElts.getBitWidth(); 3771 unsigned Tmp, Tmp2; 3772 unsigned FirstAnswer = 1; 3773 3774 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3775 const APInt &Val = C->getAPIntValue(); 3776 return Val.getNumSignBits(); 3777 } 3778 3779 if (Depth >= MaxRecursionDepth) 3780 return 1; // Limit search depth. 3781 3782 if (!DemandedElts || VT.isScalableVector()) 3783 return 1; // No demanded elts, better to assume we don't know anything. 3784 3785 unsigned Opcode = Op.getOpcode(); 3786 switch (Opcode) { 3787 default: break; 3788 case ISD::AssertSext: 3789 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3790 return VTBits-Tmp+1; 3791 case ISD::AssertZext: 3792 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3793 return VTBits-Tmp; 3794 3795 case ISD::BUILD_VECTOR: 3796 Tmp = VTBits; 3797 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3798 if (!DemandedElts[i]) 3799 continue; 3800 3801 SDValue SrcOp = Op.getOperand(i); 3802 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 3803 3804 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3805 if (SrcOp.getValueSizeInBits() != VTBits) { 3806 assert(SrcOp.getValueSizeInBits() > VTBits && 3807 "Expected BUILD_VECTOR implicit truncation"); 3808 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3809 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3810 } 3811 Tmp = std::min(Tmp, Tmp2); 3812 } 3813 return Tmp; 3814 3815 case ISD::VECTOR_SHUFFLE: { 3816 // Collect the minimum number of sign bits that are shared by every vector 3817 // element referenced by the shuffle. 3818 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3819 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3820 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3821 for (unsigned i = 0; i != NumElts; ++i) { 3822 int M = SVN->getMaskElt(i); 3823 if (!DemandedElts[i]) 3824 continue; 3825 // For UNDEF elements, we don't know anything about the common state of 3826 // the shuffle result. 3827 if (M < 0) 3828 return 1; 3829 if ((unsigned)M < NumElts) 3830 DemandedLHS.setBit((unsigned)M % NumElts); 3831 else 3832 DemandedRHS.setBit((unsigned)M % NumElts); 3833 } 3834 Tmp = std::numeric_limits<unsigned>::max(); 3835 if (!!DemandedLHS) 3836 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3837 if (!!DemandedRHS) { 3838 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3839 Tmp = std::min(Tmp, Tmp2); 3840 } 3841 // If we don't know anything, early out and try computeKnownBits fall-back. 3842 if (Tmp == 1) 3843 break; 3844 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3845 return Tmp; 3846 } 3847 3848 case ISD::BITCAST: { 3849 SDValue N0 = Op.getOperand(0); 3850 EVT SrcVT = N0.getValueType(); 3851 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3852 3853 // Ignore bitcasts from unsupported types.. 3854 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3855 break; 3856 3857 // Fast handling of 'identity' bitcasts. 3858 if (VTBits == SrcBits) 3859 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3860 3861 bool IsLE = getDataLayout().isLittleEndian(); 3862 3863 // Bitcast 'large element' scalar/vector to 'small element' vector. 3864 if ((SrcBits % VTBits) == 0) { 3865 assert(VT.isVector() && "Expected bitcast to vector"); 3866 3867 unsigned Scale = SrcBits / VTBits; 3868 APInt SrcDemandedElts = 3869 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 3870 3871 // Fast case - sign splat can be simply split across the small elements. 3872 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3873 if (Tmp == SrcBits) 3874 return VTBits; 3875 3876 // Slow case - determine how far the sign extends into each sub-element. 3877 Tmp2 = VTBits; 3878 for (unsigned i = 0; i != NumElts; ++i) 3879 if (DemandedElts[i]) { 3880 unsigned SubOffset = i % Scale; 3881 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3882 SubOffset = SubOffset * VTBits; 3883 if (Tmp <= SubOffset) 3884 return 1; 3885 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3886 } 3887 return Tmp2; 3888 } 3889 break; 3890 } 3891 3892 case ISD::FP_TO_SINT_SAT: 3893 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT. 3894 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3895 return VTBits - Tmp + 1; 3896 case ISD::SIGN_EXTEND: 3897 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3898 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3899 case ISD::SIGN_EXTEND_INREG: 3900 // Max of the input and what this extends. 3901 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3902 Tmp = VTBits-Tmp+1; 3903 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3904 return std::max(Tmp, Tmp2); 3905 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3906 SDValue Src = Op.getOperand(0); 3907 EVT SrcVT = Src.getValueType(); 3908 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3909 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3910 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3911 } 3912 case ISD::SRA: 3913 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3914 // SRA X, C -> adds C sign bits. 3915 if (const APInt *ShAmt = 3916 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3917 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3918 return Tmp; 3919 case ISD::SHL: 3920 if (const APInt *ShAmt = 3921 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3922 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3923 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3924 if (ShAmt->ult(Tmp)) 3925 return Tmp - ShAmt->getZExtValue(); 3926 } 3927 break; 3928 case ISD::AND: 3929 case ISD::OR: 3930 case ISD::XOR: // NOT is handled here. 3931 // Logical binary ops preserve the number of sign bits at the worst. 3932 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3933 if (Tmp != 1) { 3934 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3935 FirstAnswer = std::min(Tmp, Tmp2); 3936 // We computed what we know about the sign bits as our first 3937 // answer. Now proceed to the generic code that uses 3938 // computeKnownBits, and pick whichever answer is better. 3939 } 3940 break; 3941 3942 case ISD::SELECT: 3943 case ISD::VSELECT: 3944 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3945 if (Tmp == 1) return 1; // Early out. 3946 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3947 return std::min(Tmp, Tmp2); 3948 case ISD::SELECT_CC: 3949 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3950 if (Tmp == 1) return 1; // Early out. 3951 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3952 return std::min(Tmp, Tmp2); 3953 3954 case ISD::SMIN: 3955 case ISD::SMAX: { 3956 // If we have a clamp pattern, we know that the number of sign bits will be 3957 // the minimum of the clamp min/max range. 3958 bool IsMax = (Opcode == ISD::SMAX); 3959 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3960 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3961 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3962 CstHigh = 3963 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3964 if (CstLow && CstHigh) { 3965 if (!IsMax) 3966 std::swap(CstLow, CstHigh); 3967 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3968 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3969 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3970 return std::min(Tmp, Tmp2); 3971 } 3972 } 3973 3974 // Fallback - just get the minimum number of sign bits of the operands. 3975 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3976 if (Tmp == 1) 3977 return 1; // Early out. 3978 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3979 return std::min(Tmp, Tmp2); 3980 } 3981 case ISD::UMIN: 3982 case ISD::UMAX: 3983 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3984 if (Tmp == 1) 3985 return 1; // Early out. 3986 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 3987 return std::min(Tmp, Tmp2); 3988 case ISD::SADDO: 3989 case ISD::UADDO: 3990 case ISD::SSUBO: 3991 case ISD::USUBO: 3992 case ISD::SMULO: 3993 case ISD::UMULO: 3994 if (Op.getResNo() != 1) 3995 break; 3996 // The boolean result conforms to getBooleanContents. Fall through. 3997 // If setcc returns 0/-1, all bits are sign bits. 3998 // We know that we have an integer-based boolean since these operations 3999 // are only available for integer. 4000 if (TLI->getBooleanContents(VT.isVector(), false) == 4001 TargetLowering::ZeroOrNegativeOneBooleanContent) 4002 return VTBits; 4003 break; 4004 case ISD::SETCC: 4005 case ISD::STRICT_FSETCC: 4006 case ISD::STRICT_FSETCCS: { 4007 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 4008 // If setcc returns 0/-1, all bits are sign bits. 4009 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 4010 TargetLowering::ZeroOrNegativeOneBooleanContent) 4011 return VTBits; 4012 break; 4013 } 4014 case ISD::ROTL: 4015 case ISD::ROTR: 4016 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4017 4018 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 4019 if (Tmp == VTBits) 4020 return VTBits; 4021 4022 if (ConstantSDNode *C = 4023 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 4024 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 4025 4026 // Handle rotate right by N like a rotate left by 32-N. 4027 if (Opcode == ISD::ROTR) 4028 RotAmt = (VTBits - RotAmt) % VTBits; 4029 4030 // If we aren't rotating out all of the known-in sign bits, return the 4031 // number that are left. This handles rotl(sext(x), 1) for example. 4032 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4033 } 4034 break; 4035 case ISD::ADD: 4036 case ISD::ADDC: 4037 // Add can have at most one carry bit. Thus we know that the output 4038 // is, at worst, one more bit than the inputs. 4039 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4040 if (Tmp == 1) return 1; // Early out. 4041 4042 // Special case decrementing a value (ADD X, -1): 4043 if (ConstantSDNode *CRHS = 4044 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4045 if (CRHS->isAllOnes()) { 4046 KnownBits Known = 4047 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4048 4049 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4050 // sign bits set. 4051 if ((Known.Zero | 1).isAllOnes()) 4052 return VTBits; 4053 4054 // If we are subtracting one from a positive number, there is no carry 4055 // out of the result. 4056 if (Known.isNonNegative()) 4057 return Tmp; 4058 } 4059 4060 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4061 if (Tmp2 == 1) return 1; // Early out. 4062 return std::min(Tmp, Tmp2) - 1; 4063 case ISD::SUB: 4064 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4065 if (Tmp2 == 1) return 1; // Early out. 4066 4067 // Handle NEG. 4068 if (ConstantSDNode *CLHS = 4069 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4070 if (CLHS->isZero()) { 4071 KnownBits Known = 4072 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4073 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4074 // sign bits set. 4075 if ((Known.Zero | 1).isAllOnes()) 4076 return VTBits; 4077 4078 // If the input is known to be positive (the sign bit is known clear), 4079 // the output of the NEG has the same number of sign bits as the input. 4080 if (Known.isNonNegative()) 4081 return Tmp2; 4082 4083 // Otherwise, we treat this like a SUB. 4084 } 4085 4086 // Sub can have at most one carry bit. Thus we know that the output 4087 // is, at worst, one more bit than the inputs. 4088 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4089 if (Tmp == 1) return 1; // Early out. 4090 return std::min(Tmp, Tmp2) - 1; 4091 case ISD::MUL: { 4092 // The output of the Mul can be at most twice the valid bits in the inputs. 4093 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4094 if (SignBitsOp0 == 1) 4095 break; 4096 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4097 if (SignBitsOp1 == 1) 4098 break; 4099 unsigned OutValidBits = 4100 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4101 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4102 } 4103 case ISD::SREM: 4104 // The sign bit is the LHS's sign bit, except when the result of the 4105 // remainder is zero. The magnitude of the result should be less than or 4106 // equal to the magnitude of the LHS. Therefore, the result should have 4107 // at least as many sign bits as the left hand side. 4108 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4109 case ISD::TRUNCATE: { 4110 // Check if the sign bits of source go down as far as the truncated value. 4111 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4112 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4113 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4114 return NumSrcSignBits - (NumSrcBits - VTBits); 4115 break; 4116 } 4117 case ISD::EXTRACT_ELEMENT: { 4118 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4119 const int BitWidth = Op.getValueSizeInBits(); 4120 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4121 4122 // Get reverse index (starting from 1), Op1 value indexes elements from 4123 // little end. Sign starts at big end. 4124 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4125 4126 // If the sign portion ends in our element the subtraction gives correct 4127 // result. Otherwise it gives either negative or > bitwidth result 4128 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 4129 } 4130 case ISD::INSERT_VECTOR_ELT: { 4131 // If we know the element index, split the demand between the 4132 // source vector and the inserted element, otherwise assume we need 4133 // the original demanded vector elements and the value. 4134 SDValue InVec = Op.getOperand(0); 4135 SDValue InVal = Op.getOperand(1); 4136 SDValue EltNo = Op.getOperand(2); 4137 bool DemandedVal = true; 4138 APInt DemandedVecElts = DemandedElts; 4139 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4140 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4141 unsigned EltIdx = CEltNo->getZExtValue(); 4142 DemandedVal = !!DemandedElts[EltIdx]; 4143 DemandedVecElts.clearBit(EltIdx); 4144 } 4145 Tmp = std::numeric_limits<unsigned>::max(); 4146 if (DemandedVal) { 4147 // TODO - handle implicit truncation of inserted elements. 4148 if (InVal.getScalarValueSizeInBits() != VTBits) 4149 break; 4150 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4151 Tmp = std::min(Tmp, Tmp2); 4152 } 4153 if (!!DemandedVecElts) { 4154 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4155 Tmp = std::min(Tmp, Tmp2); 4156 } 4157 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4158 return Tmp; 4159 } 4160 case ISD::EXTRACT_VECTOR_ELT: { 4161 SDValue InVec = Op.getOperand(0); 4162 SDValue EltNo = Op.getOperand(1); 4163 EVT VecVT = InVec.getValueType(); 4164 // ComputeNumSignBits not yet implemented for scalable vectors. 4165 if (VecVT.isScalableVector()) 4166 break; 4167 const unsigned BitWidth = Op.getValueSizeInBits(); 4168 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4169 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4170 4171 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4172 // anything about sign bits. But if the sizes match we can derive knowledge 4173 // about sign bits from the vector operand. 4174 if (BitWidth != EltBitWidth) 4175 break; 4176 4177 // If we know the element index, just demand that vector element, else for 4178 // an unknown element index, ignore DemandedElts and demand them all. 4179 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4180 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4181 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4182 DemandedSrcElts = 4183 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4184 4185 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4186 } 4187 case ISD::EXTRACT_SUBVECTOR: { 4188 // Offset the demanded elts by the subvector index. 4189 SDValue Src = Op.getOperand(0); 4190 // Bail until we can represent demanded elements for scalable vectors. 4191 if (Src.getValueType().isScalableVector()) 4192 break; 4193 uint64_t Idx = Op.getConstantOperandVal(1); 4194 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4195 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 4196 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4197 } 4198 case ISD::CONCAT_VECTORS: { 4199 // Determine the minimum number of sign bits across all demanded 4200 // elts of the input vectors. Early out if the result is already 1. 4201 Tmp = std::numeric_limits<unsigned>::max(); 4202 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4203 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4204 unsigned NumSubVectors = Op.getNumOperands(); 4205 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4206 APInt DemandedSub = 4207 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4208 if (!DemandedSub) 4209 continue; 4210 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4211 Tmp = std::min(Tmp, Tmp2); 4212 } 4213 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4214 return Tmp; 4215 } 4216 case ISD::INSERT_SUBVECTOR: { 4217 // Demand any elements from the subvector and the remainder from the src its 4218 // inserted into. 4219 SDValue Src = Op.getOperand(0); 4220 SDValue Sub = Op.getOperand(1); 4221 uint64_t Idx = Op.getConstantOperandVal(2); 4222 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4223 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4224 APInt DemandedSrcElts = DemandedElts; 4225 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4226 4227 Tmp = std::numeric_limits<unsigned>::max(); 4228 if (!!DemandedSubElts) { 4229 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4230 if (Tmp == 1) 4231 return 1; // early-out 4232 } 4233 if (!!DemandedSrcElts) { 4234 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4235 Tmp = std::min(Tmp, Tmp2); 4236 } 4237 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4238 return Tmp; 4239 } 4240 case ISD::ATOMIC_CMP_SWAP: 4241 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4242 case ISD::ATOMIC_SWAP: 4243 case ISD::ATOMIC_LOAD_ADD: 4244 case ISD::ATOMIC_LOAD_SUB: 4245 case ISD::ATOMIC_LOAD_AND: 4246 case ISD::ATOMIC_LOAD_CLR: 4247 case ISD::ATOMIC_LOAD_OR: 4248 case ISD::ATOMIC_LOAD_XOR: 4249 case ISD::ATOMIC_LOAD_NAND: 4250 case ISD::ATOMIC_LOAD_MIN: 4251 case ISD::ATOMIC_LOAD_MAX: 4252 case ISD::ATOMIC_LOAD_UMIN: 4253 case ISD::ATOMIC_LOAD_UMAX: 4254 case ISD::ATOMIC_LOAD: { 4255 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4256 // If we are looking at the loaded value. 4257 if (Op.getResNo() == 0) { 4258 if (Tmp == VTBits) 4259 return 1; // early-out 4260 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4261 return VTBits - Tmp + 1; 4262 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4263 return VTBits - Tmp; 4264 } 4265 break; 4266 } 4267 } 4268 4269 // If we are looking at the loaded value of the SDNode. 4270 if (Op.getResNo() == 0) { 4271 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4272 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4273 unsigned ExtType = LD->getExtensionType(); 4274 switch (ExtType) { 4275 default: break; 4276 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4277 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4278 return VTBits - Tmp + 1; 4279 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4280 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4281 return VTBits - Tmp; 4282 case ISD::NON_EXTLOAD: 4283 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4284 // We only need to handle vectors - computeKnownBits should handle 4285 // scalar cases. 4286 Type *CstTy = Cst->getType(); 4287 if (CstTy->isVectorTy() && 4288 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() && 4289 VTBits == CstTy->getScalarSizeInBits()) { 4290 Tmp = VTBits; 4291 for (unsigned i = 0; i != NumElts; ++i) { 4292 if (!DemandedElts[i]) 4293 continue; 4294 if (Constant *Elt = Cst->getAggregateElement(i)) { 4295 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4296 const APInt &Value = CInt->getValue(); 4297 Tmp = std::min(Tmp, Value.getNumSignBits()); 4298 continue; 4299 } 4300 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4301 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4302 Tmp = std::min(Tmp, Value.getNumSignBits()); 4303 continue; 4304 } 4305 } 4306 // Unknown type. Conservatively assume no bits match sign bit. 4307 return 1; 4308 } 4309 return Tmp; 4310 } 4311 } 4312 break; 4313 } 4314 } 4315 } 4316 4317 // Allow the target to implement this method for its nodes. 4318 if (Opcode >= ISD::BUILTIN_OP_END || 4319 Opcode == ISD::INTRINSIC_WO_CHAIN || 4320 Opcode == ISD::INTRINSIC_W_CHAIN || 4321 Opcode == ISD::INTRINSIC_VOID) { 4322 unsigned NumBits = 4323 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4324 if (NumBits > 1) 4325 FirstAnswer = std::max(FirstAnswer, NumBits); 4326 } 4327 4328 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4329 // use this information. 4330 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4331 return std::max(FirstAnswer, Known.countMinSignBits()); 4332 } 4333 4334 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4335 unsigned Depth) const { 4336 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4337 return Op.getScalarValueSizeInBits() - SignBits + 1; 4338 } 4339 4340 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4341 const APInt &DemandedElts, 4342 unsigned Depth) const { 4343 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4344 return Op.getScalarValueSizeInBits() - SignBits + 1; 4345 } 4346 4347 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4348 unsigned Depth) const { 4349 // Early out for FREEZE. 4350 if (Op.getOpcode() == ISD::FREEZE) 4351 return true; 4352 4353 // TODO: Assume we don't know anything for now. 4354 EVT VT = Op.getValueType(); 4355 if (VT.isScalableVector()) 4356 return false; 4357 4358 APInt DemandedElts = VT.isVector() 4359 ? APInt::getAllOnes(VT.getVectorNumElements()) 4360 : APInt(1, 1); 4361 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4362 } 4363 4364 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4365 const APInt &DemandedElts, 4366 bool PoisonOnly, 4367 unsigned Depth) const { 4368 unsigned Opcode = Op.getOpcode(); 4369 4370 // Early out for FREEZE. 4371 if (Opcode == ISD::FREEZE) 4372 return true; 4373 4374 if (Depth >= MaxRecursionDepth) 4375 return false; // Limit search depth. 4376 4377 if (isIntOrFPConstant(Op)) 4378 return true; 4379 4380 switch (Opcode) { 4381 case ISD::UNDEF: 4382 return PoisonOnly; 4383 4384 case ISD::BUILD_VECTOR: 4385 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4386 // this shouldn't affect the result. 4387 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4388 if (!DemandedElts[i]) 4389 continue; 4390 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4391 Depth + 1)) 4392 return false; 4393 } 4394 return true; 4395 4396 // TODO: Search for noundef attributes from library functions. 4397 4398 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4399 4400 default: 4401 // Allow the target to implement this method for its nodes. 4402 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4403 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4404 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4405 Op, DemandedElts, *this, PoisonOnly, Depth); 4406 break; 4407 } 4408 4409 return false; 4410 } 4411 4412 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4413 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4414 !isa<ConstantSDNode>(Op.getOperand(1))) 4415 return false; 4416 4417 if (Op.getOpcode() == ISD::OR && 4418 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4419 return false; 4420 4421 return true; 4422 } 4423 4424 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4425 // If we're told that NaNs won't happen, assume they won't. 4426 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4427 return true; 4428 4429 if (Depth >= MaxRecursionDepth) 4430 return false; // Limit search depth. 4431 4432 // TODO: Handle vectors. 4433 // If the value is a constant, we can obviously see if it is a NaN or not. 4434 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4435 return !C->getValueAPF().isNaN() || 4436 (SNaN && !C->getValueAPF().isSignaling()); 4437 } 4438 4439 unsigned Opcode = Op.getOpcode(); 4440 switch (Opcode) { 4441 case ISD::FADD: 4442 case ISD::FSUB: 4443 case ISD::FMUL: 4444 case ISD::FDIV: 4445 case ISD::FREM: 4446 case ISD::FSIN: 4447 case ISD::FCOS: { 4448 if (SNaN) 4449 return true; 4450 // TODO: Need isKnownNeverInfinity 4451 return false; 4452 } 4453 case ISD::FCANONICALIZE: 4454 case ISD::FEXP: 4455 case ISD::FEXP2: 4456 case ISD::FTRUNC: 4457 case ISD::FFLOOR: 4458 case ISD::FCEIL: 4459 case ISD::FROUND: 4460 case ISD::FROUNDEVEN: 4461 case ISD::FRINT: 4462 case ISD::FNEARBYINT: { 4463 if (SNaN) 4464 return true; 4465 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4466 } 4467 case ISD::FABS: 4468 case ISD::FNEG: 4469 case ISD::FCOPYSIGN: { 4470 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4471 } 4472 case ISD::SELECT: 4473 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4474 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4475 case ISD::FP_EXTEND: 4476 case ISD::FP_ROUND: { 4477 if (SNaN) 4478 return true; 4479 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4480 } 4481 case ISD::SINT_TO_FP: 4482 case ISD::UINT_TO_FP: 4483 return true; 4484 case ISD::FMA: 4485 case ISD::FMAD: { 4486 if (SNaN) 4487 return true; 4488 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4489 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4490 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4491 } 4492 case ISD::FSQRT: // Need is known positive 4493 case ISD::FLOG: 4494 case ISD::FLOG2: 4495 case ISD::FLOG10: 4496 case ISD::FPOWI: 4497 case ISD::FPOW: { 4498 if (SNaN) 4499 return true; 4500 // TODO: Refine on operand 4501 return false; 4502 } 4503 case ISD::FMINNUM: 4504 case ISD::FMAXNUM: { 4505 // Only one needs to be known not-nan, since it will be returned if the 4506 // other ends up being one. 4507 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4508 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4509 } 4510 case ISD::FMINNUM_IEEE: 4511 case ISD::FMAXNUM_IEEE: { 4512 if (SNaN) 4513 return true; 4514 // This can return a NaN if either operand is an sNaN, or if both operands 4515 // are NaN. 4516 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4517 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4518 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4519 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4520 } 4521 case ISD::FMINIMUM: 4522 case ISD::FMAXIMUM: { 4523 // TODO: Does this quiet or return the origina NaN as-is? 4524 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4525 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4526 } 4527 case ISD::EXTRACT_VECTOR_ELT: { 4528 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4529 } 4530 default: 4531 if (Opcode >= ISD::BUILTIN_OP_END || 4532 Opcode == ISD::INTRINSIC_WO_CHAIN || 4533 Opcode == ISD::INTRINSIC_W_CHAIN || 4534 Opcode == ISD::INTRINSIC_VOID) { 4535 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4536 } 4537 4538 return false; 4539 } 4540 } 4541 4542 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4543 assert(Op.getValueType().isFloatingPoint() && 4544 "Floating point type expected"); 4545 4546 // If the value is a constant, we can obviously see if it is a zero or not. 4547 // TODO: Add BuildVector support. 4548 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4549 return !C->isZero(); 4550 return false; 4551 } 4552 4553 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4554 assert(!Op.getValueType().isFloatingPoint() && 4555 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4556 4557 // If the value is a constant, we can obviously see if it is a zero or not. 4558 if (ISD::matchUnaryPredicate(Op, 4559 [](ConstantSDNode *C) { return !C->isZero(); })) 4560 return true; 4561 4562 // TODO: Recognize more cases here. 4563 switch (Op.getOpcode()) { 4564 default: break; 4565 case ISD::OR: 4566 if (isKnownNeverZero(Op.getOperand(1)) || 4567 isKnownNeverZero(Op.getOperand(0))) 4568 return true; 4569 break; 4570 } 4571 4572 return false; 4573 } 4574 4575 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4576 // Check the obvious case. 4577 if (A == B) return true; 4578 4579 // For for negative and positive zero. 4580 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4581 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4582 if (CA->isZero() && CB->isZero()) return true; 4583 4584 // Otherwise they may not be equal. 4585 return false; 4586 } 4587 4588 // FIXME: unify with llvm::haveNoCommonBitsSet. 4589 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4590 assert(A.getValueType() == B.getValueType() && 4591 "Values must have the same type"); 4592 // Match masked merge pattern (X & ~M) op (Y & M) 4593 if (A->getOpcode() == ISD::AND && B->getOpcode() == ISD::AND) { 4594 auto MatchNoCommonBitsPattern = [&](SDValue NotM, SDValue And) { 4595 if (isBitwiseNot(NotM, true)) { 4596 SDValue NotOperand = NotM->getOperand(0); 4597 return NotOperand == And->getOperand(0) || 4598 NotOperand == And->getOperand(1); 4599 } 4600 return false; 4601 }; 4602 if (MatchNoCommonBitsPattern(A->getOperand(0), B) || 4603 MatchNoCommonBitsPattern(A->getOperand(1), B) || 4604 MatchNoCommonBitsPattern(B->getOperand(0), A) || 4605 MatchNoCommonBitsPattern(B->getOperand(1), A)) 4606 return true; 4607 } 4608 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 4609 computeKnownBits(B)); 4610 } 4611 4612 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 4613 SelectionDAG &DAG) { 4614 if (cast<ConstantSDNode>(Step)->isZero()) 4615 return DAG.getConstant(0, DL, VT); 4616 4617 return SDValue(); 4618 } 4619 4620 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4621 ArrayRef<SDValue> Ops, 4622 SelectionDAG &DAG) { 4623 int NumOps = Ops.size(); 4624 assert(NumOps != 0 && "Can't build an empty vector!"); 4625 assert(!VT.isScalableVector() && 4626 "BUILD_VECTOR cannot be used with scalable types"); 4627 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4628 "Incorrect element count in BUILD_VECTOR!"); 4629 4630 // BUILD_VECTOR of UNDEFs is UNDEF. 4631 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4632 return DAG.getUNDEF(VT); 4633 4634 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4635 SDValue IdentitySrc; 4636 bool IsIdentity = true; 4637 for (int i = 0; i != NumOps; ++i) { 4638 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4639 Ops[i].getOperand(0).getValueType() != VT || 4640 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4641 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4642 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4643 IsIdentity = false; 4644 break; 4645 } 4646 IdentitySrc = Ops[i].getOperand(0); 4647 } 4648 if (IsIdentity) 4649 return IdentitySrc; 4650 4651 return SDValue(); 4652 } 4653 4654 /// Try to simplify vector concatenation to an input value, undef, or build 4655 /// vector. 4656 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4657 ArrayRef<SDValue> Ops, 4658 SelectionDAG &DAG) { 4659 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4660 assert(llvm::all_of(Ops, 4661 [Ops](SDValue Op) { 4662 return Ops[0].getValueType() == Op.getValueType(); 4663 }) && 4664 "Concatenation of vectors with inconsistent value types!"); 4665 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 4666 VT.getVectorElementCount() && 4667 "Incorrect element count in vector concatenation!"); 4668 4669 if (Ops.size() == 1) 4670 return Ops[0]; 4671 4672 // Concat of UNDEFs is UNDEF. 4673 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4674 return DAG.getUNDEF(VT); 4675 4676 // Scan the operands and look for extract operations from a single source 4677 // that correspond to insertion at the same location via this concatenation: 4678 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4679 SDValue IdentitySrc; 4680 bool IsIdentity = true; 4681 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4682 SDValue Op = Ops[i]; 4683 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 4684 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4685 Op.getOperand(0).getValueType() != VT || 4686 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4687 Op.getConstantOperandVal(1) != IdentityIndex) { 4688 IsIdentity = false; 4689 break; 4690 } 4691 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4692 "Unexpected identity source vector for concat of extracts"); 4693 IdentitySrc = Op.getOperand(0); 4694 } 4695 if (IsIdentity) { 4696 assert(IdentitySrc && "Failed to set source vector of extracts"); 4697 return IdentitySrc; 4698 } 4699 4700 // The code below this point is only designed to work for fixed width 4701 // vectors, so we bail out for now. 4702 if (VT.isScalableVector()) 4703 return SDValue(); 4704 4705 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4706 // simplified to one big BUILD_VECTOR. 4707 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4708 EVT SVT = VT.getScalarType(); 4709 SmallVector<SDValue, 16> Elts; 4710 for (SDValue Op : Ops) { 4711 EVT OpVT = Op.getValueType(); 4712 if (Op.isUndef()) 4713 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4714 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4715 Elts.append(Op->op_begin(), Op->op_end()); 4716 else 4717 return SDValue(); 4718 } 4719 4720 // BUILD_VECTOR requires all inputs to be of the same type, find the 4721 // maximum type and extend them all. 4722 for (SDValue Op : Elts) 4723 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4724 4725 if (SVT.bitsGT(VT.getScalarType())) { 4726 for (SDValue &Op : Elts) { 4727 if (Op.isUndef()) 4728 Op = DAG.getUNDEF(SVT); 4729 else 4730 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4731 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4732 : DAG.getSExtOrTrunc(Op, DL, SVT); 4733 } 4734 } 4735 4736 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4737 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4738 return V; 4739 } 4740 4741 /// Gets or creates the specified node. 4742 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4743 FoldingSetNodeID ID; 4744 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4745 void *IP = nullptr; 4746 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4747 return SDValue(E, 0); 4748 4749 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4750 getVTList(VT)); 4751 CSEMap.InsertNode(N, IP); 4752 4753 InsertNode(N); 4754 SDValue V = SDValue(N, 0); 4755 NewSDValueDbgMsg(V, "Creating new node: ", this); 4756 return V; 4757 } 4758 4759 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4760 SDValue Operand) { 4761 SDNodeFlags Flags; 4762 if (Inserter) 4763 Flags = Inserter->getFlags(); 4764 return getNode(Opcode, DL, VT, Operand, Flags); 4765 } 4766 4767 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4768 SDValue Operand, const SDNodeFlags Flags) { 4769 assert(Operand.getOpcode() != ISD::DELETED_NODE && 4770 "Operand is DELETED_NODE!"); 4771 // Constant fold unary operations with an integer constant operand. Even 4772 // opaque constant will be folded, because the folding of unary operations 4773 // doesn't create new constants with different values. Nevertheless, the 4774 // opaque flag is preserved during folding to prevent future folding with 4775 // other constants. 4776 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4777 const APInt &Val = C->getAPIntValue(); 4778 switch (Opcode) { 4779 default: break; 4780 case ISD::SIGN_EXTEND: 4781 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4782 C->isTargetOpcode(), C->isOpaque()); 4783 case ISD::TRUNCATE: 4784 if (C->isOpaque()) 4785 break; 4786 LLVM_FALLTHROUGH; 4787 case ISD::ZERO_EXTEND: 4788 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4789 C->isTargetOpcode(), C->isOpaque()); 4790 case ISD::ANY_EXTEND: 4791 // Some targets like RISCV prefer to sign extend some types. 4792 if (TLI->isSExtCheaperThanZExt(Operand.getValueType(), VT)) 4793 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4794 C->isTargetOpcode(), C->isOpaque()); 4795 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4796 C->isTargetOpcode(), C->isOpaque()); 4797 case ISD::UINT_TO_FP: 4798 case ISD::SINT_TO_FP: { 4799 APFloat apf(EVTToAPFloatSemantics(VT), 4800 APInt::getZero(VT.getSizeInBits())); 4801 (void)apf.convertFromAPInt(Val, 4802 Opcode==ISD::SINT_TO_FP, 4803 APFloat::rmNearestTiesToEven); 4804 return getConstantFP(apf, DL, VT); 4805 } 4806 case ISD::BITCAST: 4807 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4808 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4809 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4810 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4811 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4812 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4813 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4814 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4815 break; 4816 case ISD::ABS: 4817 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4818 C->isOpaque()); 4819 case ISD::BITREVERSE: 4820 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4821 C->isOpaque()); 4822 case ISD::BSWAP: 4823 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4824 C->isOpaque()); 4825 case ISD::CTPOP: 4826 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4827 C->isOpaque()); 4828 case ISD::CTLZ: 4829 case ISD::CTLZ_ZERO_UNDEF: 4830 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4831 C->isOpaque()); 4832 case ISD::CTTZ: 4833 case ISD::CTTZ_ZERO_UNDEF: 4834 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4835 C->isOpaque()); 4836 case ISD::FP16_TO_FP: { 4837 bool Ignored; 4838 APFloat FPV(APFloat::IEEEhalf(), 4839 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4840 4841 // This can return overflow, underflow, or inexact; we don't care. 4842 // FIXME need to be more flexible about rounding mode. 4843 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4844 APFloat::rmNearestTiesToEven, &Ignored); 4845 return getConstantFP(FPV, DL, VT); 4846 } 4847 case ISD::STEP_VECTOR: { 4848 if (SDValue V = FoldSTEP_VECTOR(DL, VT, Operand, *this)) 4849 return V; 4850 break; 4851 } 4852 } 4853 } 4854 4855 // Constant fold unary operations with a floating point constant operand. 4856 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4857 APFloat V = C->getValueAPF(); // make copy 4858 switch (Opcode) { 4859 case ISD::FNEG: 4860 V.changeSign(); 4861 return getConstantFP(V, DL, VT); 4862 case ISD::FABS: 4863 V.clearSign(); 4864 return getConstantFP(V, DL, VT); 4865 case ISD::FCEIL: { 4866 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4867 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4868 return getConstantFP(V, DL, VT); 4869 break; 4870 } 4871 case ISD::FTRUNC: { 4872 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4873 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4874 return getConstantFP(V, DL, VT); 4875 break; 4876 } 4877 case ISD::FFLOOR: { 4878 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4879 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4880 return getConstantFP(V, DL, VT); 4881 break; 4882 } 4883 case ISD::FP_EXTEND: { 4884 bool ignored; 4885 // This can return overflow, underflow, or inexact; we don't care. 4886 // FIXME need to be more flexible about rounding mode. 4887 (void)V.convert(EVTToAPFloatSemantics(VT), 4888 APFloat::rmNearestTiesToEven, &ignored); 4889 return getConstantFP(V, DL, VT); 4890 } 4891 case ISD::FP_TO_SINT: 4892 case ISD::FP_TO_UINT: { 4893 bool ignored; 4894 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4895 // FIXME need to be more flexible about rounding mode. 4896 APFloat::opStatus s = 4897 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4898 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4899 break; 4900 return getConstant(IntVal, DL, VT); 4901 } 4902 case ISD::BITCAST: 4903 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4904 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4905 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 4906 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4907 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4908 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4909 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4910 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4911 break; 4912 case ISD::FP_TO_FP16: { 4913 bool Ignored; 4914 // This can return overflow, underflow, or inexact; we don't care. 4915 // FIXME need to be more flexible about rounding mode. 4916 (void)V.convert(APFloat::IEEEhalf(), 4917 APFloat::rmNearestTiesToEven, &Ignored); 4918 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4919 } 4920 } 4921 } 4922 4923 // Constant fold unary operations with a vector integer or float operand. 4924 switch (Opcode) { 4925 default: 4926 // FIXME: Entirely reasonable to perform folding of other unary 4927 // operations here as the need arises. 4928 break; 4929 case ISD::FNEG: 4930 case ISD::FABS: 4931 case ISD::FCEIL: 4932 case ISD::FTRUNC: 4933 case ISD::FFLOOR: 4934 case ISD::FP_EXTEND: 4935 case ISD::FP_TO_SINT: 4936 case ISD::FP_TO_UINT: 4937 case ISD::TRUNCATE: 4938 case ISD::ANY_EXTEND: 4939 case ISD::ZERO_EXTEND: 4940 case ISD::SIGN_EXTEND: 4941 case ISD::UINT_TO_FP: 4942 case ISD::SINT_TO_FP: 4943 case ISD::ABS: 4944 case ISD::BITREVERSE: 4945 case ISD::BSWAP: 4946 case ISD::CTLZ: 4947 case ISD::CTLZ_ZERO_UNDEF: 4948 case ISD::CTTZ: 4949 case ISD::CTTZ_ZERO_UNDEF: 4950 case ISD::CTPOP: { 4951 SDValue Ops = {Operand}; 4952 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 4953 return Fold; 4954 } 4955 } 4956 4957 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4958 switch (Opcode) { 4959 case ISD::STEP_VECTOR: 4960 assert(VT.isScalableVector() && 4961 "STEP_VECTOR can only be used with scalable types"); 4962 assert(OpOpcode == ISD::TargetConstant && 4963 VT.getVectorElementType() == Operand.getValueType() && 4964 "Unexpected step operand"); 4965 break; 4966 case ISD::FREEZE: 4967 assert(VT == Operand.getValueType() && "Unexpected VT!"); 4968 break; 4969 case ISD::TokenFactor: 4970 case ISD::MERGE_VALUES: 4971 case ISD::CONCAT_VECTORS: 4972 return Operand; // Factor, merge or concat of one node? No need. 4973 case ISD::BUILD_VECTOR: { 4974 // Attempt to simplify BUILD_VECTOR. 4975 SDValue Ops[] = {Operand}; 4976 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4977 return V; 4978 break; 4979 } 4980 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4981 case ISD::FP_EXTEND: 4982 assert(VT.isFloatingPoint() && 4983 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4984 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4985 assert((!VT.isVector() || 4986 VT.getVectorElementCount() == 4987 Operand.getValueType().getVectorElementCount()) && 4988 "Vector element count mismatch!"); 4989 assert(Operand.getValueType().bitsLT(VT) && 4990 "Invalid fpext node, dst < src!"); 4991 if (Operand.isUndef()) 4992 return getUNDEF(VT); 4993 break; 4994 case ISD::FP_TO_SINT: 4995 case ISD::FP_TO_UINT: 4996 if (Operand.isUndef()) 4997 return getUNDEF(VT); 4998 break; 4999 case ISD::SINT_TO_FP: 5000 case ISD::UINT_TO_FP: 5001 // [us]itofp(undef) = 0, because the result value is bounded. 5002 if (Operand.isUndef()) 5003 return getConstantFP(0.0, DL, VT); 5004 break; 5005 case ISD::SIGN_EXTEND: 5006 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5007 "Invalid SIGN_EXTEND!"); 5008 assert(VT.isVector() == Operand.getValueType().isVector() && 5009 "SIGN_EXTEND result type type should be vector iff the operand " 5010 "type is vector!"); 5011 if (Operand.getValueType() == VT) return Operand; // noop extension 5012 assert((!VT.isVector() || 5013 VT.getVectorElementCount() == 5014 Operand.getValueType().getVectorElementCount()) && 5015 "Vector element count mismatch!"); 5016 assert(Operand.getValueType().bitsLT(VT) && 5017 "Invalid sext node, dst < src!"); 5018 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 5019 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5020 if (OpOpcode == ISD::UNDEF) 5021 // sext(undef) = 0, because the top bits will all be the same. 5022 return getConstant(0, DL, VT); 5023 break; 5024 case ISD::ZERO_EXTEND: 5025 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5026 "Invalid ZERO_EXTEND!"); 5027 assert(VT.isVector() == Operand.getValueType().isVector() && 5028 "ZERO_EXTEND result type type should be vector iff the operand " 5029 "type is vector!"); 5030 if (Operand.getValueType() == VT) return Operand; // noop extension 5031 assert((!VT.isVector() || 5032 VT.getVectorElementCount() == 5033 Operand.getValueType().getVectorElementCount()) && 5034 "Vector element count mismatch!"); 5035 assert(Operand.getValueType().bitsLT(VT) && 5036 "Invalid zext node, dst < src!"); 5037 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5038 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 5039 if (OpOpcode == ISD::UNDEF) 5040 // zext(undef) = 0, because the top bits will be zero. 5041 return getConstant(0, DL, VT); 5042 break; 5043 case ISD::ANY_EXTEND: 5044 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5045 "Invalid ANY_EXTEND!"); 5046 assert(VT.isVector() == Operand.getValueType().isVector() && 5047 "ANY_EXTEND result type type should be vector iff the operand " 5048 "type is vector!"); 5049 if (Operand.getValueType() == VT) return Operand; // noop extension 5050 assert((!VT.isVector() || 5051 VT.getVectorElementCount() == 5052 Operand.getValueType().getVectorElementCount()) && 5053 "Vector element count mismatch!"); 5054 assert(Operand.getValueType().bitsLT(VT) && 5055 "Invalid anyext node, dst < src!"); 5056 5057 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5058 OpOpcode == ISD::ANY_EXTEND) 5059 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5060 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5061 if (OpOpcode == ISD::UNDEF) 5062 return getUNDEF(VT); 5063 5064 // (ext (trunc x)) -> x 5065 if (OpOpcode == ISD::TRUNCATE) { 5066 SDValue OpOp = Operand.getOperand(0); 5067 if (OpOp.getValueType() == VT) { 5068 transferDbgValues(Operand, OpOp); 5069 return OpOp; 5070 } 5071 } 5072 break; 5073 case ISD::TRUNCATE: 5074 assert(VT.isInteger() && Operand.getValueType().isInteger() && 5075 "Invalid TRUNCATE!"); 5076 assert(VT.isVector() == Operand.getValueType().isVector() && 5077 "TRUNCATE result type type should be vector iff the operand " 5078 "type is vector!"); 5079 if (Operand.getValueType() == VT) return Operand; // noop truncate 5080 assert((!VT.isVector() || 5081 VT.getVectorElementCount() == 5082 Operand.getValueType().getVectorElementCount()) && 5083 "Vector element count mismatch!"); 5084 assert(Operand.getValueType().bitsGT(VT) && 5085 "Invalid truncate node, src < dst!"); 5086 if (OpOpcode == ISD::TRUNCATE) 5087 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5088 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5089 OpOpcode == ISD::ANY_EXTEND) { 5090 // If the source is smaller than the dest, we still need an extend. 5091 if (Operand.getOperand(0).getValueType().getScalarType() 5092 .bitsLT(VT.getScalarType())) 5093 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 5094 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 5095 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 5096 return Operand.getOperand(0); 5097 } 5098 if (OpOpcode == ISD::UNDEF) 5099 return getUNDEF(VT); 5100 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5101 return getVScale(DL, VT, Operand.getConstantOperandAPInt(0)); 5102 break; 5103 case ISD::ANY_EXTEND_VECTOR_INREG: 5104 case ISD::ZERO_EXTEND_VECTOR_INREG: 5105 case ISD::SIGN_EXTEND_VECTOR_INREG: 5106 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5107 assert(Operand.getValueType().bitsLE(VT) && 5108 "The input must be the same size or smaller than the result."); 5109 assert(VT.getVectorMinNumElements() < 5110 Operand.getValueType().getVectorMinNumElements() && 5111 "The destination vector type must have fewer lanes than the input."); 5112 break; 5113 case ISD::ABS: 5114 assert(VT.isInteger() && VT == Operand.getValueType() && 5115 "Invalid ABS!"); 5116 if (OpOpcode == ISD::UNDEF) 5117 return getUNDEF(VT); 5118 break; 5119 case ISD::BSWAP: 5120 assert(VT.isInteger() && VT == Operand.getValueType() && 5121 "Invalid BSWAP!"); 5122 assert((VT.getScalarSizeInBits() % 16 == 0) && 5123 "BSWAP types must be a multiple of 16 bits!"); 5124 if (OpOpcode == ISD::UNDEF) 5125 return getUNDEF(VT); 5126 // bswap(bswap(X)) -> X. 5127 if (OpOpcode == ISD::BSWAP) 5128 return Operand.getOperand(0); 5129 break; 5130 case ISD::BITREVERSE: 5131 assert(VT.isInteger() && VT == Operand.getValueType() && 5132 "Invalid BITREVERSE!"); 5133 if (OpOpcode == ISD::UNDEF) 5134 return getUNDEF(VT); 5135 break; 5136 case ISD::BITCAST: 5137 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 5138 "Cannot BITCAST between types of different sizes!"); 5139 if (VT == Operand.getValueType()) return Operand; // noop conversion. 5140 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5141 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 5142 if (OpOpcode == ISD::UNDEF) 5143 return getUNDEF(VT); 5144 break; 5145 case ISD::SCALAR_TO_VECTOR: 5146 assert(VT.isVector() && !Operand.getValueType().isVector() && 5147 (VT.getVectorElementType() == Operand.getValueType() || 5148 (VT.getVectorElementType().isInteger() && 5149 Operand.getValueType().isInteger() && 5150 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 5151 "Illegal SCALAR_TO_VECTOR node!"); 5152 if (OpOpcode == ISD::UNDEF) 5153 return getUNDEF(VT); 5154 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5155 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5156 isa<ConstantSDNode>(Operand.getOperand(1)) && 5157 Operand.getConstantOperandVal(1) == 0 && 5158 Operand.getOperand(0).getValueType() == VT) 5159 return Operand.getOperand(0); 5160 break; 5161 case ISD::FNEG: 5162 // Negation of an unknown bag of bits is still completely undefined. 5163 if (OpOpcode == ISD::UNDEF) 5164 return getUNDEF(VT); 5165 5166 if (OpOpcode == ISD::FNEG) // --X -> X 5167 return Operand.getOperand(0); 5168 break; 5169 case ISD::FABS: 5170 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5171 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 5172 break; 5173 case ISD::VSCALE: 5174 assert(VT == Operand.getValueType() && "Unexpected VT!"); 5175 break; 5176 case ISD::CTPOP: 5177 if (Operand.getValueType().getScalarType() == MVT::i1) 5178 return Operand; 5179 break; 5180 case ISD::CTLZ: 5181 case ISD::CTTZ: 5182 if (Operand.getValueType().getScalarType() == MVT::i1) 5183 return getNOT(DL, Operand, Operand.getValueType()); 5184 break; 5185 case ISD::VECREDUCE_SMIN: 5186 case ISD::VECREDUCE_UMAX: 5187 if (Operand.getValueType().getScalarType() == MVT::i1) 5188 return getNode(ISD::VECREDUCE_OR, DL, VT, Operand); 5189 break; 5190 case ISD::VECREDUCE_SMAX: 5191 case ISD::VECREDUCE_UMIN: 5192 if (Operand.getValueType().getScalarType() == MVT::i1) 5193 return getNode(ISD::VECREDUCE_AND, DL, VT, Operand); 5194 break; 5195 } 5196 5197 SDNode *N; 5198 SDVTList VTs = getVTList(VT); 5199 SDValue Ops[] = {Operand}; 5200 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5201 FoldingSetNodeID ID; 5202 AddNodeIDNode(ID, Opcode, VTs, Ops); 5203 void *IP = nullptr; 5204 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5205 E->intersectFlagsWith(Flags); 5206 return SDValue(E, 0); 5207 } 5208 5209 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5210 N->setFlags(Flags); 5211 createOperands(N, Ops); 5212 CSEMap.InsertNode(N, IP); 5213 } else { 5214 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5215 createOperands(N, Ops); 5216 } 5217 5218 InsertNode(N); 5219 SDValue V = SDValue(N, 0); 5220 NewSDValueDbgMsg(V, "Creating new node: ", this); 5221 return V; 5222 } 5223 5224 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5225 const APInt &C2) { 5226 switch (Opcode) { 5227 case ISD::ADD: return C1 + C2; 5228 case ISD::SUB: return C1 - C2; 5229 case ISD::MUL: return C1 * C2; 5230 case ISD::AND: return C1 & C2; 5231 case ISD::OR: return C1 | C2; 5232 case ISD::XOR: return C1 ^ C2; 5233 case ISD::SHL: return C1 << C2; 5234 case ISD::SRL: return C1.lshr(C2); 5235 case ISD::SRA: return C1.ashr(C2); 5236 case ISD::ROTL: return C1.rotl(C2); 5237 case ISD::ROTR: return C1.rotr(C2); 5238 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5239 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5240 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5241 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5242 case ISD::SADDSAT: return C1.sadd_sat(C2); 5243 case ISD::UADDSAT: return C1.uadd_sat(C2); 5244 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5245 case ISD::USUBSAT: return C1.usub_sat(C2); 5246 case ISD::SSHLSAT: return C1.sshl_sat(C2); 5247 case ISD::USHLSAT: return C1.ushl_sat(C2); 5248 case ISD::UDIV: 5249 if (!C2.getBoolValue()) 5250 break; 5251 return C1.udiv(C2); 5252 case ISD::UREM: 5253 if (!C2.getBoolValue()) 5254 break; 5255 return C1.urem(C2); 5256 case ISD::SDIV: 5257 if (!C2.getBoolValue()) 5258 break; 5259 return C1.sdiv(C2); 5260 case ISD::SREM: 5261 if (!C2.getBoolValue()) 5262 break; 5263 return C1.srem(C2); 5264 case ISD::MULHS: { 5265 unsigned FullWidth = C1.getBitWidth() * 2; 5266 APInt C1Ext = C1.sext(FullWidth); 5267 APInt C2Ext = C2.sext(FullWidth); 5268 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5269 } 5270 case ISD::MULHU: { 5271 unsigned FullWidth = C1.getBitWidth() * 2; 5272 APInt C1Ext = C1.zext(FullWidth); 5273 APInt C2Ext = C2.zext(FullWidth); 5274 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5275 } 5276 } 5277 return llvm::None; 5278 } 5279 5280 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5281 const GlobalAddressSDNode *GA, 5282 const SDNode *N2) { 5283 if (GA->getOpcode() != ISD::GlobalAddress) 5284 return SDValue(); 5285 if (!TLI->isOffsetFoldingLegal(GA)) 5286 return SDValue(); 5287 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5288 if (!C2) 5289 return SDValue(); 5290 int64_t Offset = C2->getSExtValue(); 5291 switch (Opcode) { 5292 case ISD::ADD: break; 5293 case ISD::SUB: Offset = -uint64_t(Offset); break; 5294 default: return SDValue(); 5295 } 5296 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5297 GA->getOffset() + uint64_t(Offset)); 5298 } 5299 5300 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5301 switch (Opcode) { 5302 case ISD::SDIV: 5303 case ISD::UDIV: 5304 case ISD::SREM: 5305 case ISD::UREM: { 5306 // If a divisor is zero/undef or any element of a divisor vector is 5307 // zero/undef, the whole op is undef. 5308 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 5309 SDValue Divisor = Ops[1]; 5310 if (Divisor.isUndef() || isNullConstant(Divisor)) 5311 return true; 5312 5313 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 5314 llvm::any_of(Divisor->op_values(), 5315 [](SDValue V) { return V.isUndef() || 5316 isNullConstant(V); }); 5317 // TODO: Handle signed overflow. 5318 } 5319 // TODO: Handle oversized shifts. 5320 default: 5321 return false; 5322 } 5323 } 5324 5325 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 5326 EVT VT, ArrayRef<SDValue> Ops) { 5327 // If the opcode is a target-specific ISD node, there's nothing we can 5328 // do here and the operand rules may not line up with the below, so 5329 // bail early. 5330 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 5331 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 5332 // foldCONCAT_VECTORS in getNode before this is called. 5333 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 5334 return SDValue(); 5335 5336 unsigned NumOps = Ops.size(); 5337 if (NumOps == 0) 5338 return SDValue(); 5339 5340 if (isUndef(Opcode, Ops)) 5341 return getUNDEF(VT); 5342 5343 // Handle binops special cases. 5344 if (NumOps == 2) { 5345 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 5346 return CFP; 5347 5348 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 5349 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 5350 if (C1->isOpaque() || C2->isOpaque()) 5351 return SDValue(); 5352 5353 Optional<APInt> FoldAttempt = 5354 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 5355 if (!FoldAttempt) 5356 return SDValue(); 5357 5358 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT); 5359 assert((!Folded || !VT.isVector()) && 5360 "Can't fold vectors ops with scalar operands"); 5361 return Folded; 5362 } 5363 } 5364 5365 // fold (add Sym, c) -> Sym+c 5366 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 5367 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 5368 if (TLI->isCommutativeBinOp(Opcode)) 5369 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 5370 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 5371 } 5372 5373 // This is for vector folding only from here on. 5374 if (!VT.isVector()) 5375 return SDValue(); 5376 5377 ElementCount NumElts = VT.getVectorElementCount(); 5378 5379 // See if we can fold through bitcasted integer ops. 5380 // TODO: Can we handle undef elements? 5381 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 5382 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 5383 Ops[0].getOpcode() == ISD::BITCAST && 5384 Ops[1].getOpcode() == ISD::BITCAST) { 5385 SDValue N1 = peekThroughBitcasts(Ops[0]); 5386 SDValue N2 = peekThroughBitcasts(Ops[1]); 5387 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 5388 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 5389 EVT BVVT = N1.getValueType(); 5390 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 5391 bool IsLE = getDataLayout().isLittleEndian(); 5392 unsigned EltBits = VT.getScalarSizeInBits(); 5393 SmallVector<APInt> RawBits1, RawBits2; 5394 BitVector UndefElts1, UndefElts2; 5395 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 5396 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2) && 5397 UndefElts1.none() && UndefElts2.none()) { 5398 SmallVector<APInt> RawBits; 5399 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 5400 Optional<APInt> Fold = FoldValue(Opcode, RawBits1[I], RawBits2[I]); 5401 if (!Fold) 5402 break; 5403 RawBits.push_back(Fold.getValue()); 5404 } 5405 if (RawBits.size() == NumElts.getFixedValue()) { 5406 // We have constant folded, but we need to cast this again back to 5407 // the original (possibly legalized) type. 5408 SmallVector<APInt> DstBits; 5409 BitVector DstUndefs; 5410 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 5411 DstBits, RawBits, DstUndefs, 5412 BitVector(RawBits.size(), false)); 5413 EVT BVEltVT = BV1->getOperand(0).getValueType(); 5414 unsigned BVEltBits = BVEltVT.getSizeInBits(); 5415 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 5416 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 5417 if (DstUndefs[I]) 5418 continue; 5419 Ops[I] = getConstant(DstBits[I].sextOrSelf(BVEltBits), DL, BVEltVT); 5420 } 5421 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 5422 } 5423 } 5424 } 5425 } 5426 5427 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 5428 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1)) 5429 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) && 5430 Ops[0].getOpcode() == ISD::STEP_VECTOR) { 5431 APInt RHSVal; 5432 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) { 5433 APInt NewStep = Opcode == ISD::MUL 5434 ? Ops[0].getConstantOperandAPInt(0) * RHSVal 5435 : Ops[0].getConstantOperandAPInt(0) << RHSVal; 5436 return getStepVector(DL, VT, NewStep); 5437 } 5438 } 5439 5440 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 5441 return !Op.getValueType().isVector() || 5442 Op.getValueType().getVectorElementCount() == NumElts; 5443 }; 5444 5445 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 5446 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 5447 Op.getOpcode() == ISD::BUILD_VECTOR || 5448 Op.getOpcode() == ISD::SPLAT_VECTOR; 5449 }; 5450 5451 // All operands must be vector types with the same number of elements as 5452 // the result type and must be either UNDEF or a build/splat vector 5453 // or UNDEF scalars. 5454 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 5455 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5456 return SDValue(); 5457 5458 // If we are comparing vectors, then the result needs to be a i1 boolean 5459 // that is then sign-extended back to the legal result type. 5460 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5461 5462 // Find legal integer scalar type for constant promotion and 5463 // ensure that its scalar size is at least as large as source. 5464 EVT LegalSVT = VT.getScalarType(); 5465 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5466 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5467 if (LegalSVT.bitsLT(VT.getScalarType())) 5468 return SDValue(); 5469 } 5470 5471 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 5472 // only have one operand to check. For fixed-length vector types we may have 5473 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 5474 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 5475 5476 // Constant fold each scalar lane separately. 5477 SmallVector<SDValue, 4> ScalarResults; 5478 for (unsigned I = 0; I != NumVectorElts; I++) { 5479 SmallVector<SDValue, 4> ScalarOps; 5480 for (SDValue Op : Ops) { 5481 EVT InSVT = Op.getValueType().getScalarType(); 5482 if (Op.getOpcode() != ISD::BUILD_VECTOR && 5483 Op.getOpcode() != ISD::SPLAT_VECTOR) { 5484 if (Op.isUndef()) 5485 ScalarOps.push_back(getUNDEF(InSVT)); 5486 else 5487 ScalarOps.push_back(Op); 5488 continue; 5489 } 5490 5491 SDValue ScalarOp = 5492 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 5493 EVT ScalarVT = ScalarOp.getValueType(); 5494 5495 // Build vector (integer) scalar operands may need implicit 5496 // truncation - do this before constant folding. 5497 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) { 5498 // Don't create illegally-typed nodes unless they're constants or undef 5499 // - if we fail to constant fold we can't guarantee the (dead) nodes 5500 // we're creating will be cleaned up before being visited for 5501 // legalization. 5502 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() && 5503 !isa<ConstantSDNode>(ScalarOp) && 5504 TLI->getTypeAction(*getContext(), InSVT) != 5505 TargetLowering::TypeLegal) 5506 return SDValue(); 5507 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5508 } 5509 5510 ScalarOps.push_back(ScalarOp); 5511 } 5512 5513 // Constant fold the scalar operands. 5514 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 5515 5516 // Legalize the (integer) scalar constant if necessary. 5517 if (LegalSVT != SVT) 5518 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5519 5520 // Scalar folding only succeeded if the result is a constant or UNDEF. 5521 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5522 ScalarResult.getOpcode() != ISD::ConstantFP) 5523 return SDValue(); 5524 ScalarResults.push_back(ScalarResult); 5525 } 5526 5527 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 5528 : getBuildVector(VT, DL, ScalarResults); 5529 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5530 return V; 5531 } 5532 5533 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5534 EVT VT, SDValue N1, SDValue N2) { 5535 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5536 // should. That will require dealing with a potentially non-default 5537 // rounding mode, checking the "opStatus" return value from the APFloat 5538 // math calculations, and possibly other variations. 5539 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 5540 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 5541 if (N1CFP && N2CFP) { 5542 APFloat C1 = N1CFP->getValueAPF(); // make copy 5543 const APFloat &C2 = N2CFP->getValueAPF(); 5544 switch (Opcode) { 5545 case ISD::FADD: 5546 C1.add(C2, APFloat::rmNearestTiesToEven); 5547 return getConstantFP(C1, DL, VT); 5548 case ISD::FSUB: 5549 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5550 return getConstantFP(C1, DL, VT); 5551 case ISD::FMUL: 5552 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5553 return getConstantFP(C1, DL, VT); 5554 case ISD::FDIV: 5555 C1.divide(C2, APFloat::rmNearestTiesToEven); 5556 return getConstantFP(C1, DL, VT); 5557 case ISD::FREM: 5558 C1.mod(C2); 5559 return getConstantFP(C1, DL, VT); 5560 case ISD::FCOPYSIGN: 5561 C1.copySign(C2); 5562 return getConstantFP(C1, DL, VT); 5563 case ISD::FMINNUM: 5564 return getConstantFP(minnum(C1, C2), DL, VT); 5565 case ISD::FMAXNUM: 5566 return getConstantFP(maxnum(C1, C2), DL, VT); 5567 case ISD::FMINIMUM: 5568 return getConstantFP(minimum(C1, C2), DL, VT); 5569 case ISD::FMAXIMUM: 5570 return getConstantFP(maximum(C1, C2), DL, VT); 5571 default: break; 5572 } 5573 } 5574 if (N1CFP && Opcode == ISD::FP_ROUND) { 5575 APFloat C1 = N1CFP->getValueAPF(); // make copy 5576 bool Unused; 5577 // This can return overflow, underflow, or inexact; we don't care. 5578 // FIXME need to be more flexible about rounding mode. 5579 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5580 &Unused); 5581 return getConstantFP(C1, DL, VT); 5582 } 5583 5584 switch (Opcode) { 5585 case ISD::FSUB: 5586 // -0.0 - undef --> undef (consistent with "fneg undef") 5587 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 5588 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 5589 return getUNDEF(VT); 5590 LLVM_FALLTHROUGH; 5591 5592 case ISD::FADD: 5593 case ISD::FMUL: 5594 case ISD::FDIV: 5595 case ISD::FREM: 5596 // If both operands are undef, the result is undef. If 1 operand is undef, 5597 // the result is NaN. This should match the behavior of the IR optimizer. 5598 if (N1.isUndef() && N2.isUndef()) 5599 return getUNDEF(VT); 5600 if (N1.isUndef() || N2.isUndef()) 5601 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5602 } 5603 return SDValue(); 5604 } 5605 5606 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 5607 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 5608 5609 // There's no need to assert on a byte-aligned pointer. All pointers are at 5610 // least byte aligned. 5611 if (A == Align(1)) 5612 return Val; 5613 5614 FoldingSetNodeID ID; 5615 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 5616 ID.AddInteger(A.value()); 5617 5618 void *IP = nullptr; 5619 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5620 return SDValue(E, 0); 5621 5622 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 5623 Val.getValueType(), A); 5624 createOperands(N, {Val}); 5625 5626 CSEMap.InsertNode(N, IP); 5627 InsertNode(N); 5628 5629 SDValue V(N, 0); 5630 NewSDValueDbgMsg(V, "Creating new node: ", this); 5631 return V; 5632 } 5633 5634 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5635 SDValue N1, SDValue N2) { 5636 SDNodeFlags Flags; 5637 if (Inserter) 5638 Flags = Inserter->getFlags(); 5639 return getNode(Opcode, DL, VT, N1, N2, Flags); 5640 } 5641 5642 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5643 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5644 assert(N1.getOpcode() != ISD::DELETED_NODE && 5645 N2.getOpcode() != ISD::DELETED_NODE && 5646 "Operand is DELETED_NODE!"); 5647 // Canonicalize constant to RHS if commutative. 5648 if (TLI->isCommutativeBinOp(Opcode)) { 5649 bool IsN1C = isConstantIntBuildVectorOrConstantInt(N1); 5650 bool IsN2C = isConstantIntBuildVectorOrConstantInt(N2); 5651 bool IsN1CFP = isConstantFPBuildVectorOrConstantFP(N1); 5652 bool IsN2CFP = isConstantFPBuildVectorOrConstantFP(N2); 5653 if ((IsN1C && !IsN2C) || (IsN1CFP && !IsN2CFP)) 5654 std::swap(N1, N2); 5655 } 5656 5657 auto *N1C = dyn_cast<ConstantSDNode>(N1); 5658 auto *N2C = dyn_cast<ConstantSDNode>(N2); 5659 5660 // Don't allow undefs in vector splats - we might be returning N2 when folding 5661 // to zero etc. 5662 ConstantSDNode *N2CV = 5663 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true); 5664 5665 switch (Opcode) { 5666 default: break; 5667 case ISD::TokenFactor: 5668 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5669 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5670 // Fold trivial token factors. 5671 if (N1.getOpcode() == ISD::EntryToken) return N2; 5672 if (N2.getOpcode() == ISD::EntryToken) return N1; 5673 if (N1 == N2) return N1; 5674 break; 5675 case ISD::BUILD_VECTOR: { 5676 // Attempt to simplify BUILD_VECTOR. 5677 SDValue Ops[] = {N1, N2}; 5678 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5679 return V; 5680 break; 5681 } 5682 case ISD::CONCAT_VECTORS: { 5683 SDValue Ops[] = {N1, N2}; 5684 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5685 return V; 5686 break; 5687 } 5688 case ISD::AND: 5689 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5690 assert(N1.getValueType() == N2.getValueType() && 5691 N1.getValueType() == VT && "Binary operator types must match!"); 5692 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5693 // worth handling here. 5694 if (N2CV && N2CV->isZero()) 5695 return N2; 5696 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X 5697 return N1; 5698 break; 5699 case ISD::OR: 5700 case ISD::XOR: 5701 case ISD::ADD: 5702 case ISD::SUB: 5703 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5704 assert(N1.getValueType() == N2.getValueType() && 5705 N1.getValueType() == VT && "Binary operator types must match!"); 5706 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5707 // it's worth handling here. 5708 if (N2CV && N2CV->isZero()) 5709 return N1; 5710 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 5711 VT.getVectorElementType() == MVT::i1) 5712 return getNode(ISD::XOR, DL, VT, N1, N2); 5713 break; 5714 case ISD::MUL: 5715 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5716 assert(N1.getValueType() == N2.getValueType() && 5717 N1.getValueType() == VT && "Binary operator types must match!"); 5718 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5719 return getNode(ISD::AND, DL, VT, N1, N2); 5720 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5721 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5722 const APInt &N2CImm = N2C->getAPIntValue(); 5723 return getVScale(DL, VT, MulImm * N2CImm); 5724 } 5725 break; 5726 case ISD::UDIV: 5727 case ISD::UREM: 5728 case ISD::MULHU: 5729 case ISD::MULHS: 5730 case ISD::SDIV: 5731 case ISD::SREM: 5732 case ISD::SADDSAT: 5733 case ISD::SSUBSAT: 5734 case ISD::UADDSAT: 5735 case ISD::USUBSAT: 5736 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5737 assert(N1.getValueType() == N2.getValueType() && 5738 N1.getValueType() == VT && "Binary operator types must match!"); 5739 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 5740 // fold (add_sat x, y) -> (or x, y) for bool types. 5741 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 5742 return getNode(ISD::OR, DL, VT, N1, N2); 5743 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 5744 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 5745 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 5746 } 5747 break; 5748 case ISD::SMIN: 5749 case ISD::UMAX: 5750 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5751 assert(N1.getValueType() == N2.getValueType() && 5752 N1.getValueType() == VT && "Binary operator types must match!"); 5753 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5754 return getNode(ISD::OR, DL, VT, N1, N2); 5755 break; 5756 case ISD::SMAX: 5757 case ISD::UMIN: 5758 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5759 assert(N1.getValueType() == N2.getValueType() && 5760 N1.getValueType() == VT && "Binary operator types must match!"); 5761 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 5762 return getNode(ISD::AND, DL, VT, N1, N2); 5763 break; 5764 case ISD::FADD: 5765 case ISD::FSUB: 5766 case ISD::FMUL: 5767 case ISD::FDIV: 5768 case ISD::FREM: 5769 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5770 assert(N1.getValueType() == N2.getValueType() && 5771 N1.getValueType() == VT && "Binary operator types must match!"); 5772 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 5773 return V; 5774 break; 5775 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5776 assert(N1.getValueType() == VT && 5777 N1.getValueType().isFloatingPoint() && 5778 N2.getValueType().isFloatingPoint() && 5779 "Invalid FCOPYSIGN!"); 5780 break; 5781 case ISD::SHL: 5782 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 5783 const APInt &MulImm = N1->getConstantOperandAPInt(0); 5784 const APInt &ShiftImm = N2C->getAPIntValue(); 5785 return getVScale(DL, VT, MulImm << ShiftImm); 5786 } 5787 LLVM_FALLTHROUGH; 5788 case ISD::SRA: 5789 case ISD::SRL: 5790 if (SDValue V = simplifyShift(N1, N2)) 5791 return V; 5792 LLVM_FALLTHROUGH; 5793 case ISD::ROTL: 5794 case ISD::ROTR: 5795 assert(VT == N1.getValueType() && 5796 "Shift operators return type must be the same as their first arg"); 5797 assert(VT.isInteger() && N2.getValueType().isInteger() && 5798 "Shifts only work on integers"); 5799 assert((!VT.isVector() || VT == N2.getValueType()) && 5800 "Vector shift amounts must be in the same as their first arg"); 5801 // Verify that the shift amount VT is big enough to hold valid shift 5802 // amounts. This catches things like trying to shift an i1024 value by an 5803 // i8, which is easy to fall into in generic code that uses 5804 // TLI.getShiftAmount(). 5805 assert(N2.getValueType().getScalarSizeInBits() >= 5806 Log2_32_Ceil(VT.getScalarSizeInBits()) && 5807 "Invalid use of small shift amount with oversized value!"); 5808 5809 // Always fold shifts of i1 values so the code generator doesn't need to 5810 // handle them. Since we know the size of the shift has to be less than the 5811 // size of the value, the shift/rotate count is guaranteed to be zero. 5812 if (VT == MVT::i1) 5813 return N1; 5814 if (N2CV && N2CV->isZero()) 5815 return N1; 5816 break; 5817 case ISD::FP_ROUND: 5818 assert(VT.isFloatingPoint() && 5819 N1.getValueType().isFloatingPoint() && 5820 VT.bitsLE(N1.getValueType()) && 5821 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5822 "Invalid FP_ROUND!"); 5823 if (N1.getValueType() == VT) return N1; // noop conversion. 5824 break; 5825 case ISD::AssertSext: 5826 case ISD::AssertZext: { 5827 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5828 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5829 assert(VT.isInteger() && EVT.isInteger() && 5830 "Cannot *_EXTEND_INREG FP types"); 5831 assert(!EVT.isVector() && 5832 "AssertSExt/AssertZExt type should be the vector element type " 5833 "rather than the vector type!"); 5834 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5835 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5836 break; 5837 } 5838 case ISD::SIGN_EXTEND_INREG: { 5839 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5840 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5841 assert(VT.isInteger() && EVT.isInteger() && 5842 "Cannot *_EXTEND_INREG FP types"); 5843 assert(EVT.isVector() == VT.isVector() && 5844 "SIGN_EXTEND_INREG type should be vector iff the operand " 5845 "type is vector!"); 5846 assert((!EVT.isVector() || 5847 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 5848 "Vector element counts must match in SIGN_EXTEND_INREG"); 5849 assert(EVT.bitsLE(VT) && "Not extending!"); 5850 if (EVT == VT) return N1; // Not actually extending 5851 5852 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5853 unsigned FromBits = EVT.getScalarSizeInBits(); 5854 Val <<= Val.getBitWidth() - FromBits; 5855 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5856 return getConstant(Val, DL, ConstantVT); 5857 }; 5858 5859 if (N1C) { 5860 const APInt &Val = N1C->getAPIntValue(); 5861 return SignExtendInReg(Val, VT); 5862 } 5863 5864 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5865 SmallVector<SDValue, 8> Ops; 5866 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5867 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5868 SDValue Op = N1.getOperand(i); 5869 if (Op.isUndef()) { 5870 Ops.push_back(getUNDEF(OpVT)); 5871 continue; 5872 } 5873 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5874 APInt Val = C->getAPIntValue(); 5875 Ops.push_back(SignExtendInReg(Val, OpVT)); 5876 } 5877 return getBuildVector(VT, DL, Ops); 5878 } 5879 break; 5880 } 5881 case ISD::FP_TO_SINT_SAT: 5882 case ISD::FP_TO_UINT_SAT: { 5883 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 5884 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 5885 assert(N1.getValueType().isVector() == VT.isVector() && 5886 "FP_TO_*INT_SAT type should be vector iff the operand type is " 5887 "vector!"); 5888 assert((!VT.isVector() || VT.getVectorNumElements() == 5889 N1.getValueType().getVectorNumElements()) && 5890 "Vector element counts must match in FP_TO_*INT_SAT"); 5891 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 5892 "Type to saturate to must be a scalar."); 5893 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 5894 "Not extending!"); 5895 break; 5896 } 5897 case ISD::EXTRACT_VECTOR_ELT: 5898 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5899 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5900 element type of the vector."); 5901 5902 // Extract from an undefined value or using an undefined index is undefined. 5903 if (N1.isUndef() || N2.isUndef()) 5904 return getUNDEF(VT); 5905 5906 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 5907 // vectors. For scalable vectors we will provide appropriate support for 5908 // dealing with arbitrary indices. 5909 if (N2C && N1.getValueType().isFixedLengthVector() && 5910 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5911 return getUNDEF(VT); 5912 5913 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5914 // expanding copies of large vectors from registers. This only works for 5915 // fixed length vectors, since we need to know the exact number of 5916 // elements. 5917 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 5918 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 5919 unsigned Factor = 5920 N1.getOperand(0).getValueType().getVectorNumElements(); 5921 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5922 N1.getOperand(N2C->getZExtValue() / Factor), 5923 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 5924 } 5925 5926 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 5927 // lowering is expanding large vector constants. 5928 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 5929 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 5930 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 5931 N1.getValueType().isFixedLengthVector()) && 5932 "BUILD_VECTOR used for scalable vectors"); 5933 unsigned Index = 5934 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 5935 SDValue Elt = N1.getOperand(Index); 5936 5937 if (VT != Elt.getValueType()) 5938 // If the vector element type is not legal, the BUILD_VECTOR operands 5939 // are promoted and implicitly truncated, and the result implicitly 5940 // extended. Make that explicit here. 5941 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5942 5943 return Elt; 5944 } 5945 5946 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5947 // operations are lowered to scalars. 5948 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5949 // If the indices are the same, return the inserted element else 5950 // if the indices are known different, extract the element from 5951 // the original vector. 5952 SDValue N1Op2 = N1.getOperand(2); 5953 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5954 5955 if (N1Op2C && N2C) { 5956 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5957 if (VT == N1.getOperand(1).getValueType()) 5958 return N1.getOperand(1); 5959 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5960 } 5961 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5962 } 5963 } 5964 5965 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5966 // when vector types are scalarized and v1iX is legal. 5967 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 5968 // Here we are completely ignoring the extract element index (N2), 5969 // which is fine for fixed width vectors, since any index other than 0 5970 // is undefined anyway. However, this cannot be ignored for scalable 5971 // vectors - in theory we could support this, but we don't want to do this 5972 // without a profitability check. 5973 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5974 N1.getValueType().isFixedLengthVector() && 5975 N1.getValueType().getVectorNumElements() == 1) { 5976 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5977 N1.getOperand(1)); 5978 } 5979 break; 5980 case ISD::EXTRACT_ELEMENT: 5981 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5982 assert(!N1.getValueType().isVector() && !VT.isVector() && 5983 (N1.getValueType().isInteger() == VT.isInteger()) && 5984 N1.getValueType() != VT && 5985 "Wrong types for EXTRACT_ELEMENT!"); 5986 5987 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5988 // 64-bit integers into 32-bit parts. Instead of building the extract of 5989 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5990 if (N1.getOpcode() == ISD::BUILD_PAIR) 5991 return N1.getOperand(N2C->getZExtValue()); 5992 5993 // EXTRACT_ELEMENT of a constant int is also very common. 5994 if (N1C) { 5995 unsigned ElementSize = VT.getSizeInBits(); 5996 unsigned Shift = ElementSize * N2C->getZExtValue(); 5997 const APInt &Val = N1C->getAPIntValue(); 5998 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 5999 } 6000 break; 6001 case ISD::EXTRACT_SUBVECTOR: { 6002 EVT N1VT = N1.getValueType(); 6003 assert(VT.isVector() && N1VT.isVector() && 6004 "Extract subvector VTs must be vectors!"); 6005 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 6006 "Extract subvector VTs must have the same element type!"); 6007 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 6008 "Cannot extract a scalable vector from a fixed length vector!"); 6009 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6010 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 6011 "Extract subvector must be from larger vector to smaller vector!"); 6012 assert(N2C && "Extract subvector index must be a constant"); 6013 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6014 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 6015 N1VT.getVectorMinNumElements()) && 6016 "Extract subvector overflow!"); 6017 assert(N2C->getAPIntValue().getBitWidth() == 6018 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6019 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 6020 6021 // Trivial extraction. 6022 if (VT == N1VT) 6023 return N1; 6024 6025 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 6026 if (N1.isUndef()) 6027 return getUNDEF(VT); 6028 6029 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 6030 // the concat have the same type as the extract. 6031 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 6032 VT == N1.getOperand(0).getValueType()) { 6033 unsigned Factor = VT.getVectorMinNumElements(); 6034 return N1.getOperand(N2C->getZExtValue() / Factor); 6035 } 6036 6037 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 6038 // during shuffle legalization. 6039 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 6040 VT == N1.getOperand(1).getValueType()) 6041 return N1.getOperand(1); 6042 break; 6043 } 6044 } 6045 6046 // Perform trivial constant folding. 6047 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 6048 return SV; 6049 6050 // Canonicalize an UNDEF to the RHS, even over a constant. 6051 if (N1.isUndef()) { 6052 if (TLI->isCommutativeBinOp(Opcode)) { 6053 std::swap(N1, N2); 6054 } else { 6055 switch (Opcode) { 6056 case ISD::SIGN_EXTEND_INREG: 6057 case ISD::SUB: 6058 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6059 case ISD::UDIV: 6060 case ISD::SDIV: 6061 case ISD::UREM: 6062 case ISD::SREM: 6063 case ISD::SSUBSAT: 6064 case ISD::USUBSAT: 6065 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6066 } 6067 } 6068 } 6069 6070 // Fold a bunch of operators when the RHS is undef. 6071 if (N2.isUndef()) { 6072 switch (Opcode) { 6073 case ISD::XOR: 6074 if (N1.isUndef()) 6075 // Handle undef ^ undef -> 0 special case. This is a common 6076 // idiom (misuse). 6077 return getConstant(0, DL, VT); 6078 LLVM_FALLTHROUGH; 6079 case ISD::ADD: 6080 case ISD::SUB: 6081 case ISD::UDIV: 6082 case ISD::SDIV: 6083 case ISD::UREM: 6084 case ISD::SREM: 6085 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6086 case ISD::MUL: 6087 case ISD::AND: 6088 case ISD::SSUBSAT: 6089 case ISD::USUBSAT: 6090 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6091 case ISD::OR: 6092 case ISD::SADDSAT: 6093 case ISD::UADDSAT: 6094 return getAllOnesConstant(DL, VT); 6095 } 6096 } 6097 6098 // Memoize this node if possible. 6099 SDNode *N; 6100 SDVTList VTs = getVTList(VT); 6101 SDValue Ops[] = {N1, N2}; 6102 if (VT != MVT::Glue) { 6103 FoldingSetNodeID ID; 6104 AddNodeIDNode(ID, Opcode, VTs, Ops); 6105 void *IP = nullptr; 6106 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6107 E->intersectFlagsWith(Flags); 6108 return SDValue(E, 0); 6109 } 6110 6111 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6112 N->setFlags(Flags); 6113 createOperands(N, Ops); 6114 CSEMap.InsertNode(N, IP); 6115 } else { 6116 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6117 createOperands(N, Ops); 6118 } 6119 6120 InsertNode(N); 6121 SDValue V = SDValue(N, 0); 6122 NewSDValueDbgMsg(V, "Creating new node: ", this); 6123 return V; 6124 } 6125 6126 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6127 SDValue N1, SDValue N2, SDValue N3) { 6128 SDNodeFlags Flags; 6129 if (Inserter) 6130 Flags = Inserter->getFlags(); 6131 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6132 } 6133 6134 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6135 SDValue N1, SDValue N2, SDValue N3, 6136 const SDNodeFlags Flags) { 6137 assert(N1.getOpcode() != ISD::DELETED_NODE && 6138 N2.getOpcode() != ISD::DELETED_NODE && 6139 N3.getOpcode() != ISD::DELETED_NODE && 6140 "Operand is DELETED_NODE!"); 6141 // Perform various simplifications. 6142 switch (Opcode) { 6143 case ISD::FMA: { 6144 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6145 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6146 N3.getValueType() == VT && "FMA types must match!"); 6147 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6148 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6149 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6150 if (N1CFP && N2CFP && N3CFP) { 6151 APFloat V1 = N1CFP->getValueAPF(); 6152 const APFloat &V2 = N2CFP->getValueAPF(); 6153 const APFloat &V3 = N3CFP->getValueAPF(); 6154 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6155 return getConstantFP(V1, DL, VT); 6156 } 6157 break; 6158 } 6159 case ISD::BUILD_VECTOR: { 6160 // Attempt to simplify BUILD_VECTOR. 6161 SDValue Ops[] = {N1, N2, N3}; 6162 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6163 return V; 6164 break; 6165 } 6166 case ISD::CONCAT_VECTORS: { 6167 SDValue Ops[] = {N1, N2, N3}; 6168 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6169 return V; 6170 break; 6171 } 6172 case ISD::SETCC: { 6173 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6174 assert(N1.getValueType() == N2.getValueType() && 6175 "SETCC operands must have the same type!"); 6176 assert(VT.isVector() == N1.getValueType().isVector() && 6177 "SETCC type should be vector iff the operand type is vector!"); 6178 assert((!VT.isVector() || VT.getVectorElementCount() == 6179 N1.getValueType().getVectorElementCount()) && 6180 "SETCC vector element counts must match!"); 6181 // Use FoldSetCC to simplify SETCC's. 6182 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6183 return V; 6184 // Vector constant folding. 6185 SDValue Ops[] = {N1, N2, N3}; 6186 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6187 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6188 return V; 6189 } 6190 break; 6191 } 6192 case ISD::SELECT: 6193 case ISD::VSELECT: 6194 if (SDValue V = simplifySelect(N1, N2, N3)) 6195 return V; 6196 break; 6197 case ISD::VECTOR_SHUFFLE: 6198 llvm_unreachable("should use getVectorShuffle constructor!"); 6199 case ISD::VECTOR_SPLICE: { 6200 if (cast<ConstantSDNode>(N3)->isNullValue()) 6201 return N1; 6202 break; 6203 } 6204 case ISD::INSERT_VECTOR_ELT: { 6205 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6206 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6207 // for scalable vectors where we will generate appropriate code to 6208 // deal with out-of-bounds cases correctly. 6209 if (N3C && N1.getValueType().isFixedLengthVector() && 6210 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6211 return getUNDEF(VT); 6212 6213 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6214 if (N3.isUndef()) 6215 return getUNDEF(VT); 6216 6217 // If the inserted element is an UNDEF, just use the input vector. 6218 if (N2.isUndef()) 6219 return N1; 6220 6221 break; 6222 } 6223 case ISD::INSERT_SUBVECTOR: { 6224 // Inserting undef into undef is still undef. 6225 if (N1.isUndef() && N2.isUndef()) 6226 return getUNDEF(VT); 6227 6228 EVT N2VT = N2.getValueType(); 6229 assert(VT == N1.getValueType() && 6230 "Dest and insert subvector source types must match!"); 6231 assert(VT.isVector() && N2VT.isVector() && 6232 "Insert subvector VTs must be vectors!"); 6233 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6234 "Cannot insert a scalable vector into a fixed length vector!"); 6235 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6236 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6237 "Insert subvector must be from smaller vector to larger vector!"); 6238 assert(isa<ConstantSDNode>(N3) && 6239 "Insert subvector index must be constant"); 6240 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6241 (N2VT.getVectorMinNumElements() + 6242 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6243 VT.getVectorMinNumElements()) && 6244 "Insert subvector overflow!"); 6245 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6246 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6247 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6248 6249 // Trivial insertion. 6250 if (VT == N2VT) 6251 return N2; 6252 6253 // If this is an insert of an extracted vector into an undef vector, we 6254 // can just use the input to the extract. 6255 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6256 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6257 return N2.getOperand(0); 6258 break; 6259 } 6260 case ISD::BITCAST: 6261 // Fold bit_convert nodes from a type to themselves. 6262 if (N1.getValueType() == VT) 6263 return N1; 6264 break; 6265 } 6266 6267 // Memoize node if it doesn't produce a flag. 6268 SDNode *N; 6269 SDVTList VTs = getVTList(VT); 6270 SDValue Ops[] = {N1, N2, N3}; 6271 if (VT != MVT::Glue) { 6272 FoldingSetNodeID ID; 6273 AddNodeIDNode(ID, Opcode, VTs, Ops); 6274 void *IP = nullptr; 6275 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6276 E->intersectFlagsWith(Flags); 6277 return SDValue(E, 0); 6278 } 6279 6280 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6281 N->setFlags(Flags); 6282 createOperands(N, Ops); 6283 CSEMap.InsertNode(N, IP); 6284 } else { 6285 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6286 createOperands(N, Ops); 6287 } 6288 6289 InsertNode(N); 6290 SDValue V = SDValue(N, 0); 6291 NewSDValueDbgMsg(V, "Creating new node: ", this); 6292 return V; 6293 } 6294 6295 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6296 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 6297 SDValue Ops[] = { N1, N2, N3, N4 }; 6298 return getNode(Opcode, DL, VT, Ops); 6299 } 6300 6301 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6302 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 6303 SDValue N5) { 6304 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 6305 return getNode(Opcode, DL, VT, Ops); 6306 } 6307 6308 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 6309 /// the incoming stack arguments to be loaded from the stack. 6310 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 6311 SmallVector<SDValue, 8> ArgChains; 6312 6313 // Include the original chain at the beginning of the list. When this is 6314 // used by target LowerCall hooks, this helps legalize find the 6315 // CALLSEQ_BEGIN node. 6316 ArgChains.push_back(Chain); 6317 6318 // Add a chain value for each stack argument. 6319 for (SDNode *U : getEntryNode().getNode()->uses()) 6320 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 6321 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 6322 if (FI->getIndex() < 0) 6323 ArgChains.push_back(SDValue(L, 1)); 6324 6325 // Build a tokenfactor for all the chains. 6326 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 6327 } 6328 6329 /// getMemsetValue - Vectorized representation of the memset value 6330 /// operand. 6331 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 6332 const SDLoc &dl) { 6333 assert(!Value.isUndef()); 6334 6335 unsigned NumBits = VT.getScalarSizeInBits(); 6336 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 6337 assert(C->getAPIntValue().getBitWidth() == 8); 6338 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 6339 if (VT.isInteger()) { 6340 bool IsOpaque = VT.getSizeInBits() > 64 || 6341 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 6342 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 6343 } 6344 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 6345 VT); 6346 } 6347 6348 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 6349 EVT IntVT = VT.getScalarType(); 6350 if (!IntVT.isInteger()) 6351 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 6352 6353 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 6354 if (NumBits > 8) { 6355 // Use a multiplication with 0x010101... to extend the input to the 6356 // required length. 6357 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 6358 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 6359 DAG.getConstant(Magic, dl, IntVT)); 6360 } 6361 6362 if (VT != Value.getValueType() && !VT.isInteger()) 6363 Value = DAG.getBitcast(VT.getScalarType(), Value); 6364 if (VT != Value.getValueType()) 6365 Value = DAG.getSplatBuildVector(VT, dl, Value); 6366 6367 return Value; 6368 } 6369 6370 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 6371 /// used when a memcpy is turned into a memset when the source is a constant 6372 /// string ptr. 6373 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 6374 const TargetLowering &TLI, 6375 const ConstantDataArraySlice &Slice) { 6376 // Handle vector with all elements zero. 6377 if (Slice.Array == nullptr) { 6378 if (VT.isInteger()) 6379 return DAG.getConstant(0, dl, VT); 6380 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 6381 return DAG.getConstantFP(0.0, dl, VT); 6382 if (VT.isVector()) { 6383 unsigned NumElts = VT.getVectorNumElements(); 6384 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 6385 return DAG.getNode(ISD::BITCAST, dl, VT, 6386 DAG.getConstant(0, dl, 6387 EVT::getVectorVT(*DAG.getContext(), 6388 EltVT, NumElts))); 6389 } 6390 llvm_unreachable("Expected type!"); 6391 } 6392 6393 assert(!VT.isVector() && "Can't handle vector type here!"); 6394 unsigned NumVTBits = VT.getSizeInBits(); 6395 unsigned NumVTBytes = NumVTBits / 8; 6396 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 6397 6398 APInt Val(NumVTBits, 0); 6399 if (DAG.getDataLayout().isLittleEndian()) { 6400 for (unsigned i = 0; i != NumBytes; ++i) 6401 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 6402 } else { 6403 for (unsigned i = 0; i != NumBytes; ++i) 6404 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 6405 } 6406 6407 // If the "cost" of materializing the integer immediate is less than the cost 6408 // of a load, then it is cost effective to turn the load into the immediate. 6409 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 6410 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 6411 return DAG.getConstant(Val, dl, VT); 6412 return SDValue(); 6413 } 6414 6415 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 6416 const SDLoc &DL, 6417 const SDNodeFlags Flags) { 6418 EVT VT = Base.getValueType(); 6419 SDValue Index; 6420 6421 if (Offset.isScalable()) 6422 Index = getVScale(DL, Base.getValueType(), 6423 APInt(Base.getValueSizeInBits().getFixedSize(), 6424 Offset.getKnownMinSize())); 6425 else 6426 Index = getConstant(Offset.getFixedSize(), DL, VT); 6427 6428 return getMemBasePlusOffset(Base, Index, DL, Flags); 6429 } 6430 6431 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 6432 const SDLoc &DL, 6433 const SDNodeFlags Flags) { 6434 assert(Offset.getValueType().isInteger()); 6435 EVT BasePtrVT = Ptr.getValueType(); 6436 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 6437 } 6438 6439 /// Returns true if memcpy source is constant data. 6440 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 6441 uint64_t SrcDelta = 0; 6442 GlobalAddressSDNode *G = nullptr; 6443 if (Src.getOpcode() == ISD::GlobalAddress) 6444 G = cast<GlobalAddressSDNode>(Src); 6445 else if (Src.getOpcode() == ISD::ADD && 6446 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 6447 Src.getOperand(1).getOpcode() == ISD::Constant) { 6448 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 6449 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 6450 } 6451 if (!G) 6452 return false; 6453 6454 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 6455 SrcDelta + G->getOffset()); 6456 } 6457 6458 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 6459 SelectionDAG &DAG) { 6460 // On Darwin, -Os means optimize for size without hurting performance, so 6461 // only really optimize for size when -Oz (MinSize) is used. 6462 if (MF.getTarget().getTargetTriple().isOSDarwin()) 6463 return MF.getFunction().hasMinSize(); 6464 return DAG.shouldOptForSize(); 6465 } 6466 6467 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 6468 SmallVector<SDValue, 32> &OutChains, unsigned From, 6469 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 6470 SmallVector<SDValue, 16> &OutStoreChains) { 6471 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 6472 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 6473 SmallVector<SDValue, 16> GluedLoadChains; 6474 for (unsigned i = From; i < To; ++i) { 6475 OutChains.push_back(OutLoadChains[i]); 6476 GluedLoadChains.push_back(OutLoadChains[i]); 6477 } 6478 6479 // Chain for all loads. 6480 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 6481 GluedLoadChains); 6482 6483 for (unsigned i = From; i < To; ++i) { 6484 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 6485 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 6486 ST->getBasePtr(), ST->getMemoryVT(), 6487 ST->getMemOperand()); 6488 OutChains.push_back(NewStore); 6489 } 6490 } 6491 6492 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6493 SDValue Chain, SDValue Dst, SDValue Src, 6494 uint64_t Size, Align Alignment, 6495 bool isVol, bool AlwaysInline, 6496 MachinePointerInfo DstPtrInfo, 6497 MachinePointerInfo SrcPtrInfo, 6498 const AAMDNodes &AAInfo) { 6499 // Turn a memcpy of undef to nop. 6500 // FIXME: We need to honor volatile even is Src is undef. 6501 if (Src.isUndef()) 6502 return Chain; 6503 6504 // Expand memcpy to a series of load and store ops if the size operand falls 6505 // below a certain threshold. 6506 // TODO: In the AlwaysInline case, if the size is big then generate a loop 6507 // rather than maybe a humongous number of loads and stores. 6508 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6509 const DataLayout &DL = DAG.getDataLayout(); 6510 LLVMContext &C = *DAG.getContext(); 6511 std::vector<EVT> MemOps; 6512 bool DstAlignCanChange = false; 6513 MachineFunction &MF = DAG.getMachineFunction(); 6514 MachineFrameInfo &MFI = MF.getFrameInfo(); 6515 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6516 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6517 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6518 DstAlignCanChange = true; 6519 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6520 if (!SrcAlign || Alignment > *SrcAlign) 6521 SrcAlign = Alignment; 6522 assert(SrcAlign && "SrcAlign must be set"); 6523 ConstantDataArraySlice Slice; 6524 // If marked as volatile, perform a copy even when marked as constant. 6525 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 6526 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 6527 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 6528 const MemOp Op = isZeroConstant 6529 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 6530 /*IsZeroMemset*/ true, isVol) 6531 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 6532 *SrcAlign, isVol, CopyFromConstant); 6533 if (!TLI.findOptimalMemOpLowering( 6534 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 6535 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 6536 return SDValue(); 6537 6538 if (DstAlignCanChange) { 6539 Type *Ty = MemOps[0].getTypeForEVT(C); 6540 Align NewAlign = DL.getABITypeAlign(Ty); 6541 6542 // Don't promote to an alignment that would require dynamic stack 6543 // realignment. 6544 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 6545 if (!TRI->hasStackRealignment(MF)) 6546 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 6547 NewAlign = NewAlign / 2; 6548 6549 if (NewAlign > Alignment) { 6550 // Give the stack frame object a larger alignment if needed. 6551 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6552 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6553 Alignment = NewAlign; 6554 } 6555 } 6556 6557 // Prepare AAInfo for loads/stores after lowering this memcpy. 6558 AAMDNodes NewAAInfo = AAInfo; 6559 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6560 6561 MachineMemOperand::Flags MMOFlags = 6562 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6563 SmallVector<SDValue, 16> OutLoadChains; 6564 SmallVector<SDValue, 16> OutStoreChains; 6565 SmallVector<SDValue, 32> OutChains; 6566 unsigned NumMemOps = MemOps.size(); 6567 uint64_t SrcOff = 0, DstOff = 0; 6568 for (unsigned i = 0; i != NumMemOps; ++i) { 6569 EVT VT = MemOps[i]; 6570 unsigned VTSize = VT.getSizeInBits() / 8; 6571 SDValue Value, Store; 6572 6573 if (VTSize > Size) { 6574 // Issuing an unaligned load / store pair that overlaps with the previous 6575 // pair. Adjust the offset accordingly. 6576 assert(i == NumMemOps-1 && i != 0); 6577 SrcOff -= VTSize - Size; 6578 DstOff -= VTSize - Size; 6579 } 6580 6581 if (CopyFromConstant && 6582 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 6583 // It's unlikely a store of a vector immediate can be done in a single 6584 // instruction. It would require a load from a constantpool first. 6585 // We only handle zero vectors here. 6586 // FIXME: Handle other cases where store of vector immediate is done in 6587 // a single instruction. 6588 ConstantDataArraySlice SubSlice; 6589 if (SrcOff < Slice.Length) { 6590 SubSlice = Slice; 6591 SubSlice.move(SrcOff); 6592 } else { 6593 // This is an out-of-bounds access and hence UB. Pretend we read zero. 6594 SubSlice.Array = nullptr; 6595 SubSlice.Offset = 0; 6596 SubSlice.Length = VTSize; 6597 } 6598 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 6599 if (Value.getNode()) { 6600 Store = DAG.getStore( 6601 Chain, dl, Value, 6602 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6603 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6604 OutChains.push_back(Store); 6605 } 6606 } 6607 6608 if (!Store.getNode()) { 6609 // The type might not be legal for the target. This should only happen 6610 // if the type is smaller than a legal type, as on PPC, so the right 6611 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 6612 // to Load/Store if NVT==VT. 6613 // FIXME does the case above also need this? 6614 EVT NVT = TLI.getTypeToTransformTo(C, VT); 6615 assert(NVT.bitsGE(VT)); 6616 6617 bool isDereferenceable = 6618 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6619 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6620 if (isDereferenceable) 6621 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6622 6623 Value = DAG.getExtLoad( 6624 ISD::EXTLOAD, dl, NVT, Chain, 6625 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6626 SrcPtrInfo.getWithOffset(SrcOff), VT, 6627 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 6628 OutLoadChains.push_back(Value.getValue(1)); 6629 6630 Store = DAG.getTruncStore( 6631 Chain, dl, Value, 6632 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6633 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 6634 OutStoreChains.push_back(Store); 6635 } 6636 SrcOff += VTSize; 6637 DstOff += VTSize; 6638 Size -= VTSize; 6639 } 6640 6641 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6642 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6643 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6644 6645 if (NumLdStInMemcpy) { 6646 // It may be that memcpy might be converted to memset if it's memcpy 6647 // of constants. In such a case, we won't have loads and stores, but 6648 // just stores. In the absence of loads, there is nothing to gang up. 6649 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6650 // If target does not care, just leave as it. 6651 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6652 OutChains.push_back(OutLoadChains[i]); 6653 OutChains.push_back(OutStoreChains[i]); 6654 } 6655 } else { 6656 // Ld/St less than/equal limit set by target. 6657 if (NumLdStInMemcpy <= GluedLdStLimit) { 6658 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6659 NumLdStInMemcpy, OutLoadChains, 6660 OutStoreChains); 6661 } else { 6662 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6663 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6664 unsigned GlueIter = 0; 6665 6666 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6667 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6668 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6669 6670 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6671 OutLoadChains, OutStoreChains); 6672 GlueIter += GluedLdStLimit; 6673 } 6674 6675 // Residual ld/st. 6676 if (RemainingLdStInMemcpy) { 6677 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6678 RemainingLdStInMemcpy, OutLoadChains, 6679 OutStoreChains); 6680 } 6681 } 6682 } 6683 } 6684 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6685 } 6686 6687 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6688 SDValue Chain, SDValue Dst, SDValue Src, 6689 uint64_t Size, Align Alignment, 6690 bool isVol, bool AlwaysInline, 6691 MachinePointerInfo DstPtrInfo, 6692 MachinePointerInfo SrcPtrInfo, 6693 const AAMDNodes &AAInfo) { 6694 // Turn a memmove of undef to nop. 6695 // FIXME: We need to honor volatile even is Src is undef. 6696 if (Src.isUndef()) 6697 return Chain; 6698 6699 // Expand memmove to a series of load and store ops if the size operand falls 6700 // below a certain threshold. 6701 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6702 const DataLayout &DL = DAG.getDataLayout(); 6703 LLVMContext &C = *DAG.getContext(); 6704 std::vector<EVT> MemOps; 6705 bool DstAlignCanChange = false; 6706 MachineFunction &MF = DAG.getMachineFunction(); 6707 MachineFrameInfo &MFI = MF.getFrameInfo(); 6708 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6709 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6710 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6711 DstAlignCanChange = true; 6712 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 6713 if (!SrcAlign || Alignment > *SrcAlign) 6714 SrcAlign = Alignment; 6715 assert(SrcAlign && "SrcAlign must be set"); 6716 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6717 if (!TLI.findOptimalMemOpLowering( 6718 MemOps, Limit, 6719 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 6720 /*IsVolatile*/ true), 6721 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6722 MF.getFunction().getAttributes())) 6723 return SDValue(); 6724 6725 if (DstAlignCanChange) { 6726 Type *Ty = MemOps[0].getTypeForEVT(C); 6727 Align NewAlign = DL.getABITypeAlign(Ty); 6728 if (NewAlign > Alignment) { 6729 // Give the stack frame object a larger alignment if needed. 6730 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6731 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6732 Alignment = NewAlign; 6733 } 6734 } 6735 6736 // Prepare AAInfo for loads/stores after lowering this memmove. 6737 AAMDNodes NewAAInfo = AAInfo; 6738 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6739 6740 MachineMemOperand::Flags MMOFlags = 6741 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6742 uint64_t SrcOff = 0, DstOff = 0; 6743 SmallVector<SDValue, 8> LoadValues; 6744 SmallVector<SDValue, 8> LoadChains; 6745 SmallVector<SDValue, 8> OutChains; 6746 unsigned NumMemOps = MemOps.size(); 6747 for (unsigned i = 0; i < NumMemOps; i++) { 6748 EVT VT = MemOps[i]; 6749 unsigned VTSize = VT.getSizeInBits() / 8; 6750 SDValue Value; 6751 6752 bool isDereferenceable = 6753 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6754 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6755 if (isDereferenceable) 6756 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6757 6758 Value = DAG.getLoad( 6759 VT, dl, Chain, 6760 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 6761 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 6762 LoadValues.push_back(Value); 6763 LoadChains.push_back(Value.getValue(1)); 6764 SrcOff += VTSize; 6765 } 6766 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6767 OutChains.clear(); 6768 for (unsigned i = 0; i < NumMemOps; i++) { 6769 EVT VT = MemOps[i]; 6770 unsigned VTSize = VT.getSizeInBits() / 8; 6771 SDValue Store; 6772 6773 Store = DAG.getStore( 6774 Chain, dl, LoadValues[i], 6775 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6776 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 6777 OutChains.push_back(Store); 6778 DstOff += VTSize; 6779 } 6780 6781 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6782 } 6783 6784 /// Lower the call to 'memset' intrinsic function into a series of store 6785 /// operations. 6786 /// 6787 /// \param DAG Selection DAG where lowered code is placed. 6788 /// \param dl Link to corresponding IR location. 6789 /// \param Chain Control flow dependency. 6790 /// \param Dst Pointer to destination memory location. 6791 /// \param Src Value of byte to write into the memory. 6792 /// \param Size Number of bytes to write. 6793 /// \param Alignment Alignment of the destination in bytes. 6794 /// \param isVol True if destination is volatile. 6795 /// \param DstPtrInfo IR information on the memory pointer. 6796 /// \returns New head in the control flow, if lowering was successful, empty 6797 /// SDValue otherwise. 6798 /// 6799 /// The function tries to replace 'llvm.memset' intrinsic with several store 6800 /// operations and value calculation code. This is usually profitable for small 6801 /// memory size. 6802 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6803 SDValue Chain, SDValue Dst, SDValue Src, 6804 uint64_t Size, Align Alignment, bool isVol, 6805 MachinePointerInfo DstPtrInfo, 6806 const AAMDNodes &AAInfo) { 6807 // Turn a memset of undef to nop. 6808 // FIXME: We need to honor volatile even is Src is undef. 6809 if (Src.isUndef()) 6810 return Chain; 6811 6812 // Expand memset to a series of load/store ops if the size operand 6813 // falls below a certain threshold. 6814 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6815 std::vector<EVT> MemOps; 6816 bool DstAlignCanChange = false; 6817 MachineFunction &MF = DAG.getMachineFunction(); 6818 MachineFrameInfo &MFI = MF.getFrameInfo(); 6819 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6820 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6821 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6822 DstAlignCanChange = true; 6823 bool IsZeroVal = 6824 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isZero(); 6825 if (!TLI.findOptimalMemOpLowering( 6826 MemOps, TLI.getMaxStoresPerMemset(OptSize), 6827 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 6828 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 6829 return SDValue(); 6830 6831 if (DstAlignCanChange) { 6832 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6833 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty); 6834 if (NewAlign > Alignment) { 6835 // Give the stack frame object a larger alignment if needed. 6836 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 6837 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6838 Alignment = NewAlign; 6839 } 6840 } 6841 6842 SmallVector<SDValue, 8> OutChains; 6843 uint64_t DstOff = 0; 6844 unsigned NumMemOps = MemOps.size(); 6845 6846 // Find the largest store and generate the bit pattern for it. 6847 EVT LargestVT = MemOps[0]; 6848 for (unsigned i = 1; i < NumMemOps; i++) 6849 if (MemOps[i].bitsGT(LargestVT)) 6850 LargestVT = MemOps[i]; 6851 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6852 6853 // Prepare AAInfo for loads/stores after lowering this memset. 6854 AAMDNodes NewAAInfo = AAInfo; 6855 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 6856 6857 for (unsigned i = 0; i < NumMemOps; i++) { 6858 EVT VT = MemOps[i]; 6859 unsigned VTSize = VT.getSizeInBits() / 8; 6860 if (VTSize > Size) { 6861 // Issuing an unaligned load / store pair that overlaps with the previous 6862 // pair. Adjust the offset accordingly. 6863 assert(i == NumMemOps-1 && i != 0); 6864 DstOff -= VTSize - Size; 6865 } 6866 6867 // If this store is smaller than the largest store see whether we can get 6868 // the smaller value for free with a truncate. 6869 SDValue Value = MemSetValue; 6870 if (VT.bitsLT(LargestVT)) { 6871 if (!LargestVT.isVector() && !VT.isVector() && 6872 TLI.isTruncateFree(LargestVT, VT)) 6873 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6874 else 6875 Value = getMemsetValue(Src, VT, DAG, dl); 6876 } 6877 assert(Value.getValueType() == VT && "Value with wrong type."); 6878 SDValue Store = DAG.getStore( 6879 Chain, dl, Value, 6880 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 6881 DstPtrInfo.getWithOffset(DstOff), Alignment, 6882 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 6883 NewAAInfo); 6884 OutChains.push_back(Store); 6885 DstOff += VT.getSizeInBits() / 8; 6886 Size -= VTSize; 6887 } 6888 6889 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6890 } 6891 6892 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6893 unsigned AS) { 6894 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6895 // pointer operands can be losslessly bitcasted to pointers of address space 0 6896 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 6897 report_fatal_error("cannot lower memory intrinsic in address space " + 6898 Twine(AS)); 6899 } 6900 } 6901 6902 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6903 SDValue Src, SDValue Size, Align Alignment, 6904 bool isVol, bool AlwaysInline, bool isTailCall, 6905 MachinePointerInfo DstPtrInfo, 6906 MachinePointerInfo SrcPtrInfo, 6907 const AAMDNodes &AAInfo) { 6908 // Check to see if we should lower the memcpy to loads and stores first. 6909 // For cases within the target-specified limits, this is the best choice. 6910 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6911 if (ConstantSize) { 6912 // Memcpy with size zero? Just return the original chain. 6913 if (ConstantSize->isZero()) 6914 return Chain; 6915 6916 SDValue Result = getMemcpyLoadsAndStores( 6917 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 6918 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 6919 if (Result.getNode()) 6920 return Result; 6921 } 6922 6923 // Then check to see if we should lower the memcpy with target-specific 6924 // code. If the target chooses to do this, this is the next best. 6925 if (TSI) { 6926 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6927 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 6928 DstPtrInfo, SrcPtrInfo); 6929 if (Result.getNode()) 6930 return Result; 6931 } 6932 6933 // If we really need inline code and the target declined to provide it, 6934 // use a (potentially long) sequence of loads and stores. 6935 if (AlwaysInline) { 6936 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6937 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6938 ConstantSize->getZExtValue(), Alignment, 6939 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo); 6940 } 6941 6942 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6943 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6944 6945 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6946 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6947 // respect volatile, so they may do things like read or write memory 6948 // beyond the given memory regions. But fixing this isn't easy, and most 6949 // people don't care. 6950 6951 // Emit a library call. 6952 TargetLowering::ArgListTy Args; 6953 TargetLowering::ArgListEntry Entry; 6954 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6955 Entry.Node = Dst; Args.push_back(Entry); 6956 Entry.Node = Src; Args.push_back(Entry); 6957 6958 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6959 Entry.Node = Size; Args.push_back(Entry); 6960 // FIXME: pass in SDLoc 6961 TargetLowering::CallLoweringInfo CLI(*this); 6962 CLI.setDebugLoc(dl) 6963 .setChain(Chain) 6964 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6965 Dst.getValueType().getTypeForEVT(*getContext()), 6966 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6967 TLI->getPointerTy(getDataLayout())), 6968 std::move(Args)) 6969 .setDiscardResult() 6970 .setTailCall(isTailCall); 6971 6972 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6973 return CallResult.second; 6974 } 6975 6976 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6977 SDValue Dst, unsigned DstAlign, 6978 SDValue Src, unsigned SrcAlign, 6979 SDValue Size, Type *SizeTy, 6980 unsigned ElemSz, bool isTailCall, 6981 MachinePointerInfo DstPtrInfo, 6982 MachinePointerInfo SrcPtrInfo) { 6983 // Emit a library call. 6984 TargetLowering::ArgListTy Args; 6985 TargetLowering::ArgListEntry Entry; 6986 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6987 Entry.Node = Dst; 6988 Args.push_back(Entry); 6989 6990 Entry.Node = Src; 6991 Args.push_back(Entry); 6992 6993 Entry.Ty = SizeTy; 6994 Entry.Node = Size; 6995 Args.push_back(Entry); 6996 6997 RTLIB::Libcall LibraryCall = 6998 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6999 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7000 report_fatal_error("Unsupported element size"); 7001 7002 TargetLowering::CallLoweringInfo CLI(*this); 7003 CLI.setDebugLoc(dl) 7004 .setChain(Chain) 7005 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7006 Type::getVoidTy(*getContext()), 7007 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7008 TLI->getPointerTy(getDataLayout())), 7009 std::move(Args)) 7010 .setDiscardResult() 7011 .setTailCall(isTailCall); 7012 7013 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7014 return CallResult.second; 7015 } 7016 7017 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 7018 SDValue Src, SDValue Size, Align Alignment, 7019 bool isVol, bool isTailCall, 7020 MachinePointerInfo DstPtrInfo, 7021 MachinePointerInfo SrcPtrInfo, 7022 const AAMDNodes &AAInfo) { 7023 // Check to see if we should lower the memmove to loads and stores first. 7024 // For cases within the target-specified limits, this is the best choice. 7025 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7026 if (ConstantSize) { 7027 // Memmove with size zero? Just return the original chain. 7028 if (ConstantSize->isZero()) 7029 return Chain; 7030 7031 SDValue Result = getMemmoveLoadsAndStores( 7032 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7033 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7034 if (Result.getNode()) 7035 return Result; 7036 } 7037 7038 // Then check to see if we should lower the memmove with target-specific 7039 // code. If the target chooses to do this, this is the next best. 7040 if (TSI) { 7041 SDValue Result = 7042 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 7043 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 7044 if (Result.getNode()) 7045 return Result; 7046 } 7047 7048 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7049 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7050 7051 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 7052 // not be safe. See memcpy above for more details. 7053 7054 // Emit a library call. 7055 TargetLowering::ArgListTy Args; 7056 TargetLowering::ArgListEntry Entry; 7057 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7058 Entry.Node = Dst; Args.push_back(Entry); 7059 Entry.Node = Src; Args.push_back(Entry); 7060 7061 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7062 Entry.Node = Size; Args.push_back(Entry); 7063 // FIXME: pass in SDLoc 7064 TargetLowering::CallLoweringInfo CLI(*this); 7065 CLI.setDebugLoc(dl) 7066 .setChain(Chain) 7067 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7068 Dst.getValueType().getTypeForEVT(*getContext()), 7069 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7070 TLI->getPointerTy(getDataLayout())), 7071 std::move(Args)) 7072 .setDiscardResult() 7073 .setTailCall(isTailCall); 7074 7075 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7076 return CallResult.second; 7077 } 7078 7079 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7080 SDValue Dst, unsigned DstAlign, 7081 SDValue Src, unsigned SrcAlign, 7082 SDValue Size, Type *SizeTy, 7083 unsigned ElemSz, bool isTailCall, 7084 MachinePointerInfo DstPtrInfo, 7085 MachinePointerInfo SrcPtrInfo) { 7086 // Emit a library call. 7087 TargetLowering::ArgListTy Args; 7088 TargetLowering::ArgListEntry Entry; 7089 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7090 Entry.Node = Dst; 7091 Args.push_back(Entry); 7092 7093 Entry.Node = Src; 7094 Args.push_back(Entry); 7095 7096 Entry.Ty = SizeTy; 7097 Entry.Node = Size; 7098 Args.push_back(Entry); 7099 7100 RTLIB::Libcall LibraryCall = 7101 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7102 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7103 report_fatal_error("Unsupported element size"); 7104 7105 TargetLowering::CallLoweringInfo CLI(*this); 7106 CLI.setDebugLoc(dl) 7107 .setChain(Chain) 7108 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7109 Type::getVoidTy(*getContext()), 7110 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7111 TLI->getPointerTy(getDataLayout())), 7112 std::move(Args)) 7113 .setDiscardResult() 7114 .setTailCall(isTailCall); 7115 7116 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7117 return CallResult.second; 7118 } 7119 7120 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7121 SDValue Src, SDValue Size, Align Alignment, 7122 bool isVol, bool isTailCall, 7123 MachinePointerInfo DstPtrInfo, 7124 const AAMDNodes &AAInfo) { 7125 // Check to see if we should lower the memset to stores first. 7126 // For cases within the target-specified limits, this is the best choice. 7127 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7128 if (ConstantSize) { 7129 // Memset with size zero? Just return the original chain. 7130 if (ConstantSize->isZero()) 7131 return Chain; 7132 7133 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7134 ConstantSize->getZExtValue(), Alignment, 7135 isVol, DstPtrInfo, AAInfo); 7136 7137 if (Result.getNode()) 7138 return Result; 7139 } 7140 7141 // Then check to see if we should lower the memset with target-specific 7142 // code. If the target chooses to do this, this is the next best. 7143 if (TSI) { 7144 SDValue Result = TSI->EmitTargetCodeForMemset( 7145 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo); 7146 if (Result.getNode()) 7147 return Result; 7148 } 7149 7150 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7151 7152 // Emit a library call. 7153 TargetLowering::ArgListTy Args; 7154 TargetLowering::ArgListEntry Entry; 7155 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 7156 Args.push_back(Entry); 7157 Entry.Node = Src; 7158 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 7159 Args.push_back(Entry); 7160 Entry.Node = Size; 7161 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7162 Args.push_back(Entry); 7163 7164 // FIXME: pass in SDLoc 7165 TargetLowering::CallLoweringInfo CLI(*this); 7166 CLI.setDebugLoc(dl) 7167 .setChain(Chain) 7168 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7169 Dst.getValueType().getTypeForEVT(*getContext()), 7170 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7171 TLI->getPointerTy(getDataLayout())), 7172 std::move(Args)) 7173 .setDiscardResult() 7174 .setTailCall(isTailCall); 7175 7176 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7177 return CallResult.second; 7178 } 7179 7180 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7181 SDValue Dst, unsigned DstAlign, 7182 SDValue Value, SDValue Size, Type *SizeTy, 7183 unsigned ElemSz, bool isTailCall, 7184 MachinePointerInfo DstPtrInfo) { 7185 // Emit a library call. 7186 TargetLowering::ArgListTy Args; 7187 TargetLowering::ArgListEntry Entry; 7188 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7189 Entry.Node = Dst; 7190 Args.push_back(Entry); 7191 7192 Entry.Ty = Type::getInt8Ty(*getContext()); 7193 Entry.Node = Value; 7194 Args.push_back(Entry); 7195 7196 Entry.Ty = SizeTy; 7197 Entry.Node = Size; 7198 Args.push_back(Entry); 7199 7200 RTLIB::Libcall LibraryCall = 7201 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7202 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7203 report_fatal_error("Unsupported element size"); 7204 7205 TargetLowering::CallLoweringInfo CLI(*this); 7206 CLI.setDebugLoc(dl) 7207 .setChain(Chain) 7208 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7209 Type::getVoidTy(*getContext()), 7210 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7211 TLI->getPointerTy(getDataLayout())), 7212 std::move(Args)) 7213 .setDiscardResult() 7214 .setTailCall(isTailCall); 7215 7216 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7217 return CallResult.second; 7218 } 7219 7220 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7221 SDVTList VTList, ArrayRef<SDValue> Ops, 7222 MachineMemOperand *MMO) { 7223 FoldingSetNodeID ID; 7224 ID.AddInteger(MemVT.getRawBits()); 7225 AddNodeIDNode(ID, Opcode, VTList, Ops); 7226 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7227 void* IP = nullptr; 7228 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7229 cast<AtomicSDNode>(E)->refineAlignment(MMO); 7230 return SDValue(E, 0); 7231 } 7232 7233 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7234 VTList, MemVT, MMO); 7235 createOperands(N, Ops); 7236 7237 CSEMap.InsertNode(N, IP); 7238 InsertNode(N); 7239 return SDValue(N, 0); 7240 } 7241 7242 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 7243 EVT MemVT, SDVTList VTs, SDValue Chain, 7244 SDValue Ptr, SDValue Cmp, SDValue Swp, 7245 MachineMemOperand *MMO) { 7246 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 7247 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 7248 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 7249 7250 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 7251 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7252 } 7253 7254 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7255 SDValue Chain, SDValue Ptr, SDValue Val, 7256 MachineMemOperand *MMO) { 7257 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 7258 Opcode == ISD::ATOMIC_LOAD_SUB || 7259 Opcode == ISD::ATOMIC_LOAD_AND || 7260 Opcode == ISD::ATOMIC_LOAD_CLR || 7261 Opcode == ISD::ATOMIC_LOAD_OR || 7262 Opcode == ISD::ATOMIC_LOAD_XOR || 7263 Opcode == ISD::ATOMIC_LOAD_NAND || 7264 Opcode == ISD::ATOMIC_LOAD_MIN || 7265 Opcode == ISD::ATOMIC_LOAD_MAX || 7266 Opcode == ISD::ATOMIC_LOAD_UMIN || 7267 Opcode == ISD::ATOMIC_LOAD_UMAX || 7268 Opcode == ISD::ATOMIC_LOAD_FADD || 7269 Opcode == ISD::ATOMIC_LOAD_FSUB || 7270 Opcode == ISD::ATOMIC_SWAP || 7271 Opcode == ISD::ATOMIC_STORE) && 7272 "Invalid Atomic Op"); 7273 7274 EVT VT = Val.getValueType(); 7275 7276 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 7277 getVTList(VT, MVT::Other); 7278 SDValue Ops[] = {Chain, Ptr, Val}; 7279 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7280 } 7281 7282 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 7283 EVT VT, SDValue Chain, SDValue Ptr, 7284 MachineMemOperand *MMO) { 7285 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 7286 7287 SDVTList VTs = getVTList(VT, MVT::Other); 7288 SDValue Ops[] = {Chain, Ptr}; 7289 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 7290 } 7291 7292 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 7293 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 7294 if (Ops.size() == 1) 7295 return Ops[0]; 7296 7297 SmallVector<EVT, 4> VTs; 7298 VTs.reserve(Ops.size()); 7299 for (const SDValue &Op : Ops) 7300 VTs.push_back(Op.getValueType()); 7301 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 7302 } 7303 7304 SDValue SelectionDAG::getMemIntrinsicNode( 7305 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 7306 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 7307 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 7308 if (!Size && MemVT.isScalableVector()) 7309 Size = MemoryLocation::UnknownSize; 7310 else if (!Size) 7311 Size = MemVT.getStoreSize(); 7312 7313 MachineFunction &MF = getMachineFunction(); 7314 MachineMemOperand *MMO = 7315 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 7316 7317 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 7318 } 7319 7320 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 7321 SDVTList VTList, 7322 ArrayRef<SDValue> Ops, EVT MemVT, 7323 MachineMemOperand *MMO) { 7324 assert((Opcode == ISD::INTRINSIC_VOID || 7325 Opcode == ISD::INTRINSIC_W_CHAIN || 7326 Opcode == ISD::PREFETCH || 7327 ((int)Opcode <= std::numeric_limits<int>::max() && 7328 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 7329 "Opcode is not a memory-accessing opcode!"); 7330 7331 // Memoize the node unless it returns a flag. 7332 MemIntrinsicSDNode *N; 7333 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7334 FoldingSetNodeID ID; 7335 AddNodeIDNode(ID, Opcode, VTList, Ops); 7336 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 7337 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 7338 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7339 void *IP = nullptr; 7340 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7341 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 7342 return SDValue(E, 0); 7343 } 7344 7345 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7346 VTList, MemVT, MMO); 7347 createOperands(N, Ops); 7348 7349 CSEMap.InsertNode(N, IP); 7350 } else { 7351 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 7352 VTList, MemVT, MMO); 7353 createOperands(N, Ops); 7354 } 7355 InsertNode(N); 7356 SDValue V(N, 0); 7357 NewSDValueDbgMsg(V, "Creating new node: ", this); 7358 return V; 7359 } 7360 7361 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 7362 SDValue Chain, int FrameIndex, 7363 int64_t Size, int64_t Offset) { 7364 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 7365 const auto VTs = getVTList(MVT::Other); 7366 SDValue Ops[2] = { 7367 Chain, 7368 getFrameIndex(FrameIndex, 7369 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 7370 true)}; 7371 7372 FoldingSetNodeID ID; 7373 AddNodeIDNode(ID, Opcode, VTs, Ops); 7374 ID.AddInteger(FrameIndex); 7375 ID.AddInteger(Size); 7376 ID.AddInteger(Offset); 7377 void *IP = nullptr; 7378 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7379 return SDValue(E, 0); 7380 7381 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 7382 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 7383 createOperands(N, Ops); 7384 CSEMap.InsertNode(N, IP); 7385 InsertNode(N); 7386 SDValue V(N, 0); 7387 NewSDValueDbgMsg(V, "Creating new node: ", this); 7388 return V; 7389 } 7390 7391 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 7392 uint64_t Guid, uint64_t Index, 7393 uint32_t Attr) { 7394 const unsigned Opcode = ISD::PSEUDO_PROBE; 7395 const auto VTs = getVTList(MVT::Other); 7396 SDValue Ops[] = {Chain}; 7397 FoldingSetNodeID ID; 7398 AddNodeIDNode(ID, Opcode, VTs, Ops); 7399 ID.AddInteger(Guid); 7400 ID.AddInteger(Index); 7401 void *IP = nullptr; 7402 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 7403 return SDValue(E, 0); 7404 7405 auto *N = newSDNode<PseudoProbeSDNode>( 7406 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 7407 createOperands(N, Ops); 7408 CSEMap.InsertNode(N, IP); 7409 InsertNode(N); 7410 SDValue V(N, 0); 7411 NewSDValueDbgMsg(V, "Creating new node: ", this); 7412 return V; 7413 } 7414 7415 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7416 /// MachinePointerInfo record from it. This is particularly useful because the 7417 /// code generator has many cases where it doesn't bother passing in a 7418 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7419 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7420 SelectionDAG &DAG, SDValue Ptr, 7421 int64_t Offset = 0) { 7422 // If this is FI+Offset, we can model it. 7423 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 7424 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 7425 FI->getIndex(), Offset); 7426 7427 // If this is (FI+Offset1)+Offset2, we can model it. 7428 if (Ptr.getOpcode() != ISD::ADD || 7429 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 7430 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 7431 return Info; 7432 7433 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 7434 return MachinePointerInfo::getFixedStack( 7435 DAG.getMachineFunction(), FI, 7436 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 7437 } 7438 7439 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 7440 /// MachinePointerInfo record from it. This is particularly useful because the 7441 /// code generator has many cases where it doesn't bother passing in a 7442 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 7443 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 7444 SelectionDAG &DAG, SDValue Ptr, 7445 SDValue OffsetOp) { 7446 // If the 'Offset' value isn't a constant, we can't handle this. 7447 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 7448 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 7449 if (OffsetOp.isUndef()) 7450 return InferPointerInfo(Info, DAG, Ptr); 7451 return Info; 7452 } 7453 7454 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7455 EVT VT, const SDLoc &dl, SDValue Chain, 7456 SDValue Ptr, SDValue Offset, 7457 MachinePointerInfo PtrInfo, EVT MemVT, 7458 Align Alignment, 7459 MachineMemOperand::Flags MMOFlags, 7460 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7461 assert(Chain.getValueType() == MVT::Other && 7462 "Invalid chain type"); 7463 7464 MMOFlags |= MachineMemOperand::MOLoad; 7465 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7466 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7467 // clients. 7468 if (PtrInfo.V.isNull()) 7469 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7470 7471 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7472 MachineFunction &MF = getMachineFunction(); 7473 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7474 Alignment, AAInfo, Ranges); 7475 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 7476 } 7477 7478 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 7479 EVT VT, const SDLoc &dl, SDValue Chain, 7480 SDValue Ptr, SDValue Offset, EVT MemVT, 7481 MachineMemOperand *MMO) { 7482 if (VT == MemVT) { 7483 ExtType = ISD::NON_EXTLOAD; 7484 } else if (ExtType == ISD::NON_EXTLOAD) { 7485 assert(VT == MemVT && "Non-extending load from different memory type!"); 7486 } else { 7487 // Extending load. 7488 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 7489 "Should only be an extending load, not truncating!"); 7490 assert(VT.isInteger() == MemVT.isInteger() && 7491 "Cannot convert from FP to Int or Int -> FP!"); 7492 assert(VT.isVector() == MemVT.isVector() && 7493 "Cannot use an ext load to convert to or from a vector!"); 7494 assert((!VT.isVector() || 7495 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 7496 "Cannot use an ext load to change the number of vector elements!"); 7497 } 7498 7499 bool Indexed = AM != ISD::UNINDEXED; 7500 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7501 7502 SDVTList VTs = Indexed ? 7503 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 7504 SDValue Ops[] = { Chain, Ptr, Offset }; 7505 FoldingSetNodeID ID; 7506 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 7507 ID.AddInteger(MemVT.getRawBits()); 7508 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 7509 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 7510 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7511 void *IP = nullptr; 7512 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7513 cast<LoadSDNode>(E)->refineAlignment(MMO); 7514 return SDValue(E, 0); 7515 } 7516 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7517 ExtType, MemVT, MMO); 7518 createOperands(N, Ops); 7519 7520 CSEMap.InsertNode(N, IP); 7521 InsertNode(N); 7522 SDValue V(N, 0); 7523 NewSDValueDbgMsg(V, "Creating new node: ", this); 7524 return V; 7525 } 7526 7527 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7528 SDValue Ptr, MachinePointerInfo PtrInfo, 7529 MaybeAlign Alignment, 7530 MachineMemOperand::Flags MMOFlags, 7531 const AAMDNodes &AAInfo, const MDNode *Ranges) { 7532 SDValue Undef = getUNDEF(Ptr.getValueType()); 7533 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7534 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 7535 } 7536 7537 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7538 SDValue Ptr, MachineMemOperand *MMO) { 7539 SDValue Undef = getUNDEF(Ptr.getValueType()); 7540 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7541 VT, MMO); 7542 } 7543 7544 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7545 EVT VT, SDValue Chain, SDValue Ptr, 7546 MachinePointerInfo PtrInfo, EVT MemVT, 7547 MaybeAlign Alignment, 7548 MachineMemOperand::Flags MMOFlags, 7549 const AAMDNodes &AAInfo) { 7550 SDValue Undef = getUNDEF(Ptr.getValueType()); 7551 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 7552 MemVT, Alignment, MMOFlags, AAInfo); 7553 } 7554 7555 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 7556 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 7557 MachineMemOperand *MMO) { 7558 SDValue Undef = getUNDEF(Ptr.getValueType()); 7559 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 7560 MemVT, MMO); 7561 } 7562 7563 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 7564 SDValue Base, SDValue Offset, 7565 ISD::MemIndexedMode AM) { 7566 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 7567 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7568 // Don't propagate the invariant or dereferenceable flags. 7569 auto MMOFlags = 7570 LD->getMemOperand()->getFlags() & 7571 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7572 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7573 LD->getChain(), Base, Offset, LD->getPointerInfo(), 7574 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 7575 } 7576 7577 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7578 SDValue Ptr, MachinePointerInfo PtrInfo, 7579 Align Alignment, 7580 MachineMemOperand::Flags MMOFlags, 7581 const AAMDNodes &AAInfo) { 7582 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7583 7584 MMOFlags |= MachineMemOperand::MOStore; 7585 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7586 7587 if (PtrInfo.V.isNull()) 7588 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7589 7590 MachineFunction &MF = getMachineFunction(); 7591 uint64_t Size = 7592 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 7593 MachineMemOperand *MMO = 7594 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 7595 return getStore(Chain, dl, Val, Ptr, MMO); 7596 } 7597 7598 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7599 SDValue Ptr, MachineMemOperand *MMO) { 7600 assert(Chain.getValueType() == MVT::Other && 7601 "Invalid chain type"); 7602 EVT VT = Val.getValueType(); 7603 SDVTList VTs = getVTList(MVT::Other); 7604 SDValue Undef = getUNDEF(Ptr.getValueType()); 7605 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7606 FoldingSetNodeID ID; 7607 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7608 ID.AddInteger(VT.getRawBits()); 7609 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7610 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 7611 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7612 void *IP = nullptr; 7613 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7614 cast<StoreSDNode>(E)->refineAlignment(MMO); 7615 return SDValue(E, 0); 7616 } 7617 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7618 ISD::UNINDEXED, false, VT, MMO); 7619 createOperands(N, Ops); 7620 7621 CSEMap.InsertNode(N, IP); 7622 InsertNode(N); 7623 SDValue V(N, 0); 7624 NewSDValueDbgMsg(V, "Creating new node: ", this); 7625 return V; 7626 } 7627 7628 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7629 SDValue Ptr, MachinePointerInfo PtrInfo, 7630 EVT SVT, Align Alignment, 7631 MachineMemOperand::Flags MMOFlags, 7632 const AAMDNodes &AAInfo) { 7633 assert(Chain.getValueType() == MVT::Other && 7634 "Invalid chain type"); 7635 7636 MMOFlags |= MachineMemOperand::MOStore; 7637 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7638 7639 if (PtrInfo.V.isNull()) 7640 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7641 7642 MachineFunction &MF = getMachineFunction(); 7643 MachineMemOperand *MMO = MF.getMachineMemOperand( 7644 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7645 Alignment, AAInfo); 7646 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 7647 } 7648 7649 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 7650 SDValue Ptr, EVT SVT, 7651 MachineMemOperand *MMO) { 7652 EVT VT = Val.getValueType(); 7653 7654 assert(Chain.getValueType() == MVT::Other && 7655 "Invalid chain type"); 7656 if (VT == SVT) 7657 return getStore(Chain, dl, Val, Ptr, MMO); 7658 7659 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7660 "Should only be a truncating store, not extending!"); 7661 assert(VT.isInteger() == SVT.isInteger() && 7662 "Can't do FP-INT conversion!"); 7663 assert(VT.isVector() == SVT.isVector() && 7664 "Cannot use trunc store to convert to or from a vector!"); 7665 assert((!VT.isVector() || 7666 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7667 "Cannot use trunc store to change the number of vector elements!"); 7668 7669 SDVTList VTs = getVTList(MVT::Other); 7670 SDValue Undef = getUNDEF(Ptr.getValueType()); 7671 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7672 FoldingSetNodeID ID; 7673 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7674 ID.AddInteger(SVT.getRawBits()); 7675 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7676 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7677 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7678 void *IP = nullptr; 7679 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7680 cast<StoreSDNode>(E)->refineAlignment(MMO); 7681 return SDValue(E, 0); 7682 } 7683 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7684 ISD::UNINDEXED, true, SVT, MMO); 7685 createOperands(N, Ops); 7686 7687 CSEMap.InsertNode(N, IP); 7688 InsertNode(N); 7689 SDValue V(N, 0); 7690 NewSDValueDbgMsg(V, "Creating new node: ", this); 7691 return V; 7692 } 7693 7694 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7695 SDValue Base, SDValue Offset, 7696 ISD::MemIndexedMode AM) { 7697 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7698 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7699 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7700 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7701 FoldingSetNodeID ID; 7702 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7703 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7704 ID.AddInteger(ST->getRawSubclassData()); 7705 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7706 void *IP = nullptr; 7707 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7708 return SDValue(E, 0); 7709 7710 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7711 ST->isTruncatingStore(), ST->getMemoryVT(), 7712 ST->getMemOperand()); 7713 createOperands(N, Ops); 7714 7715 CSEMap.InsertNode(N, IP); 7716 InsertNode(N); 7717 SDValue V(N, 0); 7718 NewSDValueDbgMsg(V, "Creating new node: ", this); 7719 return V; 7720 } 7721 7722 SDValue SelectionDAG::getLoadVP( 7723 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 7724 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 7725 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 7726 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 7727 const MDNode *Ranges, bool IsExpanding) { 7728 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7729 7730 MMOFlags |= MachineMemOperand::MOLoad; 7731 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 7732 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 7733 // clients. 7734 if (PtrInfo.V.isNull()) 7735 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 7736 7737 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 7738 MachineFunction &MF = getMachineFunction(); 7739 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 7740 Alignment, AAInfo, Ranges); 7741 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 7742 MMO, IsExpanding); 7743 } 7744 7745 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 7746 ISD::LoadExtType ExtType, EVT VT, 7747 const SDLoc &dl, SDValue Chain, SDValue Ptr, 7748 SDValue Offset, SDValue Mask, SDValue EVL, 7749 EVT MemVT, MachineMemOperand *MMO, 7750 bool IsExpanding) { 7751 bool Indexed = AM != ISD::UNINDEXED; 7752 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 7753 7754 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 7755 : getVTList(VT, MVT::Other); 7756 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 7757 FoldingSetNodeID ID; 7758 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 7759 ID.AddInteger(VT.getRawBits()); 7760 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 7761 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 7762 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7763 void *IP = nullptr; 7764 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7765 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 7766 return SDValue(E, 0); 7767 } 7768 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7769 ExtType, IsExpanding, MemVT, MMO); 7770 createOperands(N, Ops); 7771 7772 CSEMap.InsertNode(N, IP); 7773 InsertNode(N); 7774 SDValue V(N, 0); 7775 NewSDValueDbgMsg(V, "Creating new node: ", this); 7776 return V; 7777 } 7778 7779 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7780 SDValue Ptr, SDValue Mask, SDValue EVL, 7781 MachinePointerInfo PtrInfo, 7782 MaybeAlign Alignment, 7783 MachineMemOperand::Flags MMOFlags, 7784 const AAMDNodes &AAInfo, const MDNode *Ranges, 7785 bool IsExpanding) { 7786 SDValue Undef = getUNDEF(Ptr.getValueType()); 7787 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7788 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 7789 IsExpanding); 7790 } 7791 7792 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 7793 SDValue Ptr, SDValue Mask, SDValue EVL, 7794 MachineMemOperand *MMO, bool IsExpanding) { 7795 SDValue Undef = getUNDEF(Ptr.getValueType()); 7796 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 7797 Mask, EVL, VT, MMO, IsExpanding); 7798 } 7799 7800 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7801 EVT VT, SDValue Chain, SDValue Ptr, 7802 SDValue Mask, SDValue EVL, 7803 MachinePointerInfo PtrInfo, EVT MemVT, 7804 MaybeAlign Alignment, 7805 MachineMemOperand::Flags MMOFlags, 7806 const AAMDNodes &AAInfo, bool IsExpanding) { 7807 SDValue Undef = getUNDEF(Ptr.getValueType()); 7808 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7809 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 7810 IsExpanding); 7811 } 7812 7813 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 7814 EVT VT, SDValue Chain, SDValue Ptr, 7815 SDValue Mask, SDValue EVL, EVT MemVT, 7816 MachineMemOperand *MMO, bool IsExpanding) { 7817 SDValue Undef = getUNDEF(Ptr.getValueType()); 7818 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 7819 EVL, MemVT, MMO, IsExpanding); 7820 } 7821 7822 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 7823 SDValue Base, SDValue Offset, 7824 ISD::MemIndexedMode AM) { 7825 auto *LD = cast<VPLoadSDNode>(OrigLoad); 7826 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 7827 // Don't propagate the invariant or dereferenceable flags. 7828 auto MMOFlags = 7829 LD->getMemOperand()->getFlags() & 7830 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 7831 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 7832 LD->getChain(), Base, Offset, LD->getMask(), 7833 LD->getVectorLength(), LD->getPointerInfo(), 7834 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 7835 nullptr, LD->isExpandingLoad()); 7836 } 7837 7838 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 7839 SDValue Ptr, SDValue Offset, SDValue Mask, 7840 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, 7841 ISD::MemIndexedMode AM, bool IsTruncating, 7842 bool IsCompressing) { 7843 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7844 bool Indexed = AM != ISD::UNINDEXED; 7845 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 7846 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 7847 : getVTList(MVT::Other); 7848 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL}; 7849 FoldingSetNodeID ID; 7850 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7851 ID.AddInteger(MemVT.getRawBits()); 7852 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7853 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7854 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7855 void *IP = nullptr; 7856 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7857 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7858 return SDValue(E, 0); 7859 } 7860 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7861 IsTruncating, IsCompressing, MemVT, MMO); 7862 createOperands(N, Ops); 7863 7864 CSEMap.InsertNode(N, IP); 7865 InsertNode(N); 7866 SDValue V(N, 0); 7867 NewSDValueDbgMsg(V, "Creating new node: ", this); 7868 return V; 7869 } 7870 7871 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7872 SDValue Val, SDValue Ptr, SDValue Mask, 7873 SDValue EVL, MachinePointerInfo PtrInfo, 7874 EVT SVT, Align Alignment, 7875 MachineMemOperand::Flags MMOFlags, 7876 const AAMDNodes &AAInfo, 7877 bool IsCompressing) { 7878 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7879 7880 MMOFlags |= MachineMemOperand::MOStore; 7881 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 7882 7883 if (PtrInfo.V.isNull()) 7884 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 7885 7886 MachineFunction &MF = getMachineFunction(); 7887 MachineMemOperand *MMO = MF.getMachineMemOperand( 7888 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 7889 Alignment, AAInfo); 7890 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 7891 IsCompressing); 7892 } 7893 7894 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 7895 SDValue Val, SDValue Ptr, SDValue Mask, 7896 SDValue EVL, EVT SVT, 7897 MachineMemOperand *MMO, 7898 bool IsCompressing) { 7899 EVT VT = Val.getValueType(); 7900 7901 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 7902 if (VT == SVT) 7903 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask, 7904 EVL, VT, MMO, ISD::UNINDEXED, 7905 /*IsTruncating*/ false, IsCompressing); 7906 7907 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7908 "Should only be a truncating store, not extending!"); 7909 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 7910 assert(VT.isVector() == SVT.isVector() && 7911 "Cannot use trunc store to convert to or from a vector!"); 7912 assert((!VT.isVector() || 7913 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 7914 "Cannot use trunc store to change the number of vector elements!"); 7915 7916 SDVTList VTs = getVTList(MVT::Other); 7917 SDValue Undef = getUNDEF(Ptr.getValueType()); 7918 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 7919 FoldingSetNodeID ID; 7920 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7921 ID.AddInteger(SVT.getRawBits()); 7922 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 7923 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 7924 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7925 void *IP = nullptr; 7926 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7927 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 7928 return SDValue(E, 0); 7929 } 7930 auto *N = 7931 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7932 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 7933 createOperands(N, Ops); 7934 7935 CSEMap.InsertNode(N, IP); 7936 InsertNode(N); 7937 SDValue V(N, 0); 7938 NewSDValueDbgMsg(V, "Creating new node: ", this); 7939 return V; 7940 } 7941 7942 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 7943 SDValue Base, SDValue Offset, 7944 ISD::MemIndexedMode AM) { 7945 auto *ST = cast<VPStoreSDNode>(OrigStore); 7946 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 7947 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7948 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 7949 Offset, ST->getMask(), ST->getVectorLength()}; 7950 FoldingSetNodeID ID; 7951 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 7952 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7953 ID.AddInteger(ST->getRawSubclassData()); 7954 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7955 void *IP = nullptr; 7956 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7957 return SDValue(E, 0); 7958 7959 auto *N = newSDNode<VPStoreSDNode>( 7960 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 7961 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 7962 createOperands(N, Ops); 7963 7964 CSEMap.InsertNode(N, IP); 7965 InsertNode(N); 7966 SDValue V(N, 0); 7967 NewSDValueDbgMsg(V, "Creating new node: ", this); 7968 return V; 7969 } 7970 7971 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 7972 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 7973 ISD::MemIndexType IndexType) { 7974 assert(Ops.size() == 6 && "Incompatible number of operands"); 7975 7976 FoldingSetNodeID ID; 7977 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 7978 ID.AddInteger(VT.getRawBits()); 7979 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 7980 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7981 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7982 void *IP = nullptr; 7983 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7984 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 7985 return SDValue(E, 0); 7986 } 7987 7988 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7989 VT, MMO, IndexType); 7990 createOperands(N, Ops); 7991 7992 assert(N->getMask().getValueType().getVectorElementCount() == 7993 N->getValueType(0).getVectorElementCount() && 7994 "Vector width mismatch between mask and data"); 7995 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 7996 N->getValueType(0).getVectorElementCount().isScalable() && 7997 "Scalable flags of index and data do not match"); 7998 assert(ElementCount::isKnownGE( 7999 N->getIndex().getValueType().getVectorElementCount(), 8000 N->getValueType(0).getVectorElementCount()) && 8001 "Vector width mismatch between index and data"); 8002 assert(isa<ConstantSDNode>(N->getScale()) && 8003 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8004 "Scale should be a constant power of 2"); 8005 8006 CSEMap.InsertNode(N, IP); 8007 InsertNode(N); 8008 SDValue V(N, 0); 8009 NewSDValueDbgMsg(V, "Creating new node: ", this); 8010 return V; 8011 } 8012 8013 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 8014 ArrayRef<SDValue> Ops, 8015 MachineMemOperand *MMO, 8016 ISD::MemIndexType IndexType) { 8017 assert(Ops.size() == 7 && "Incompatible number of operands"); 8018 8019 FoldingSetNodeID ID; 8020 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 8021 ID.AddInteger(VT.getRawBits()); 8022 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 8023 dl.getIROrder(), VTs, VT, MMO, IndexType)); 8024 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8025 void *IP = nullptr; 8026 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8027 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 8028 return SDValue(E, 0); 8029 } 8030 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8031 VT, MMO, IndexType); 8032 createOperands(N, Ops); 8033 8034 assert(N->getMask().getValueType().getVectorElementCount() == 8035 N->getValue().getValueType().getVectorElementCount() && 8036 "Vector width mismatch between mask and data"); 8037 assert( 8038 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8039 N->getValue().getValueType().getVectorElementCount().isScalable() && 8040 "Scalable flags of index and data do not match"); 8041 assert(ElementCount::isKnownGE( 8042 N->getIndex().getValueType().getVectorElementCount(), 8043 N->getValue().getValueType().getVectorElementCount()) && 8044 "Vector width mismatch between index and data"); 8045 assert(isa<ConstantSDNode>(N->getScale()) && 8046 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8047 "Scale should be a constant power of 2"); 8048 8049 CSEMap.InsertNode(N, IP); 8050 InsertNode(N); 8051 SDValue V(N, 0); 8052 NewSDValueDbgMsg(V, "Creating new node: ", this); 8053 return V; 8054 } 8055 8056 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8057 SDValue Base, SDValue Offset, SDValue Mask, 8058 SDValue PassThru, EVT MemVT, 8059 MachineMemOperand *MMO, 8060 ISD::MemIndexedMode AM, 8061 ISD::LoadExtType ExtTy, bool isExpanding) { 8062 bool Indexed = AM != ISD::UNINDEXED; 8063 assert((Indexed || Offset.isUndef()) && 8064 "Unindexed masked load with an offset!"); 8065 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 8066 : getVTList(VT, MVT::Other); 8067 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 8068 FoldingSetNodeID ID; 8069 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 8070 ID.AddInteger(MemVT.getRawBits()); 8071 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 8072 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 8073 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8074 void *IP = nullptr; 8075 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8076 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 8077 return SDValue(E, 0); 8078 } 8079 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8080 AM, ExtTy, isExpanding, MemVT, MMO); 8081 createOperands(N, Ops); 8082 8083 CSEMap.InsertNode(N, IP); 8084 InsertNode(N); 8085 SDValue V(N, 0); 8086 NewSDValueDbgMsg(V, "Creating new node: ", this); 8087 return V; 8088 } 8089 8090 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 8091 SDValue Base, SDValue Offset, 8092 ISD::MemIndexedMode AM) { 8093 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 8094 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 8095 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 8096 Offset, LD->getMask(), LD->getPassThru(), 8097 LD->getMemoryVT(), LD->getMemOperand(), AM, 8098 LD->getExtensionType(), LD->isExpandingLoad()); 8099 } 8100 8101 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 8102 SDValue Val, SDValue Base, SDValue Offset, 8103 SDValue Mask, EVT MemVT, 8104 MachineMemOperand *MMO, 8105 ISD::MemIndexedMode AM, bool IsTruncating, 8106 bool IsCompressing) { 8107 assert(Chain.getValueType() == MVT::Other && 8108 "Invalid chain type"); 8109 bool Indexed = AM != ISD::UNINDEXED; 8110 assert((Indexed || Offset.isUndef()) && 8111 "Unindexed masked store with an offset!"); 8112 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 8113 : getVTList(MVT::Other); 8114 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 8115 FoldingSetNodeID ID; 8116 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 8117 ID.AddInteger(MemVT.getRawBits()); 8118 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 8119 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8120 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8121 void *IP = nullptr; 8122 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8123 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 8124 return SDValue(E, 0); 8125 } 8126 auto *N = 8127 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8128 IsTruncating, IsCompressing, MemVT, MMO); 8129 createOperands(N, Ops); 8130 8131 CSEMap.InsertNode(N, IP); 8132 InsertNode(N); 8133 SDValue V(N, 0); 8134 NewSDValueDbgMsg(V, "Creating new node: ", this); 8135 return V; 8136 } 8137 8138 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 8139 SDValue Base, SDValue Offset, 8140 ISD::MemIndexedMode AM) { 8141 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 8142 assert(ST->getOffset().isUndef() && 8143 "Masked store is already a indexed store!"); 8144 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 8145 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 8146 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 8147 } 8148 8149 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8150 ArrayRef<SDValue> Ops, 8151 MachineMemOperand *MMO, 8152 ISD::MemIndexType IndexType, 8153 ISD::LoadExtType ExtTy) { 8154 assert(Ops.size() == 6 && "Incompatible number of operands"); 8155 8156 FoldingSetNodeID ID; 8157 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 8158 ID.AddInteger(MemVT.getRawBits()); 8159 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 8160 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 8161 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8162 void *IP = nullptr; 8163 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8164 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 8165 return SDValue(E, 0); 8166 } 8167 8168 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8169 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8170 VTs, MemVT, MMO, IndexType, ExtTy); 8171 createOperands(N, Ops); 8172 8173 assert(N->getPassThru().getValueType() == N->getValueType(0) && 8174 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 8175 assert(N->getMask().getValueType().getVectorElementCount() == 8176 N->getValueType(0).getVectorElementCount() && 8177 "Vector width mismatch between mask and data"); 8178 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 8179 N->getValueType(0).getVectorElementCount().isScalable() && 8180 "Scalable flags of index and data do not match"); 8181 assert(ElementCount::isKnownGE( 8182 N->getIndex().getValueType().getVectorElementCount(), 8183 N->getValueType(0).getVectorElementCount()) && 8184 "Vector width mismatch between index and data"); 8185 assert(isa<ConstantSDNode>(N->getScale()) && 8186 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8187 "Scale should be a constant power of 2"); 8188 8189 CSEMap.InsertNode(N, IP); 8190 InsertNode(N); 8191 SDValue V(N, 0); 8192 NewSDValueDbgMsg(V, "Creating new node: ", this); 8193 return V; 8194 } 8195 8196 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 8197 ArrayRef<SDValue> Ops, 8198 MachineMemOperand *MMO, 8199 ISD::MemIndexType IndexType, 8200 bool IsTrunc) { 8201 assert(Ops.size() == 6 && "Incompatible number of operands"); 8202 8203 FoldingSetNodeID ID; 8204 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 8205 ID.AddInteger(MemVT.getRawBits()); 8206 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 8207 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 8208 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8209 void *IP = nullptr; 8210 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8211 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 8212 return SDValue(E, 0); 8213 } 8214 8215 IndexType = TLI->getCanonicalIndexType(IndexType, MemVT, Ops[4]); 8216 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 8217 VTs, MemVT, MMO, IndexType, IsTrunc); 8218 createOperands(N, Ops); 8219 8220 assert(N->getMask().getValueType().getVectorElementCount() == 8221 N->getValue().getValueType().getVectorElementCount() && 8222 "Vector width mismatch between mask and data"); 8223 assert( 8224 N->getIndex().getValueType().getVectorElementCount().isScalable() == 8225 N->getValue().getValueType().getVectorElementCount().isScalable() && 8226 "Scalable flags of index and data do not match"); 8227 assert(ElementCount::isKnownGE( 8228 N->getIndex().getValueType().getVectorElementCount(), 8229 N->getValue().getValueType().getVectorElementCount()) && 8230 "Vector width mismatch between index and data"); 8231 assert(isa<ConstantSDNode>(N->getScale()) && 8232 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 8233 "Scale should be a constant power of 2"); 8234 8235 CSEMap.InsertNode(N, IP); 8236 InsertNode(N); 8237 SDValue V(N, 0); 8238 NewSDValueDbgMsg(V, "Creating new node: ", this); 8239 return V; 8240 } 8241 8242 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 8243 // select undef, T, F --> T (if T is a constant), otherwise F 8244 // select, ?, undef, F --> F 8245 // select, ?, T, undef --> T 8246 if (Cond.isUndef()) 8247 return isConstantValueOfAnyType(T) ? T : F; 8248 if (T.isUndef()) 8249 return F; 8250 if (F.isUndef()) 8251 return T; 8252 8253 // select true, T, F --> T 8254 // select false, T, F --> F 8255 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 8256 return CondC->isZero() ? F : T; 8257 8258 // TODO: This should simplify VSELECT with constant condition using something 8259 // like this (but check boolean contents to be complete?): 8260 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 8261 // return T; 8262 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 8263 // return F; 8264 8265 // select ?, T, T --> T 8266 if (T == F) 8267 return T; 8268 8269 return SDValue(); 8270 } 8271 8272 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 8273 // shift undef, Y --> 0 (can always assume that the undef value is 0) 8274 if (X.isUndef()) 8275 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 8276 // shift X, undef --> undef (because it may shift by the bitwidth) 8277 if (Y.isUndef()) 8278 return getUNDEF(X.getValueType()); 8279 8280 // shift 0, Y --> 0 8281 // shift X, 0 --> X 8282 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 8283 return X; 8284 8285 // shift X, C >= bitwidth(X) --> undef 8286 // All vector elements must be too big (or undef) to avoid partial undefs. 8287 auto isShiftTooBig = [X](ConstantSDNode *Val) { 8288 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 8289 }; 8290 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 8291 return getUNDEF(X.getValueType()); 8292 8293 return SDValue(); 8294 } 8295 8296 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 8297 SDNodeFlags Flags) { 8298 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 8299 // (an undef operand can be chosen to be Nan/Inf), then the result of this 8300 // operation is poison. That result can be relaxed to undef. 8301 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 8302 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 8303 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 8304 (YC && YC->getValueAPF().isNaN()); 8305 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 8306 (YC && YC->getValueAPF().isInfinity()); 8307 8308 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 8309 return getUNDEF(X.getValueType()); 8310 8311 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 8312 return getUNDEF(X.getValueType()); 8313 8314 if (!YC) 8315 return SDValue(); 8316 8317 // X + -0.0 --> X 8318 if (Opcode == ISD::FADD) 8319 if (YC->getValueAPF().isNegZero()) 8320 return X; 8321 8322 // X - +0.0 --> X 8323 if (Opcode == ISD::FSUB) 8324 if (YC->getValueAPF().isPosZero()) 8325 return X; 8326 8327 // X * 1.0 --> X 8328 // X / 1.0 --> X 8329 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 8330 if (YC->getValueAPF().isExactlyValue(1.0)) 8331 return X; 8332 8333 // X * 0.0 --> 0.0 8334 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 8335 if (YC->getValueAPF().isZero()) 8336 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 8337 8338 return SDValue(); 8339 } 8340 8341 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 8342 SDValue Ptr, SDValue SV, unsigned Align) { 8343 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 8344 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 8345 } 8346 8347 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8348 ArrayRef<SDUse> Ops) { 8349 switch (Ops.size()) { 8350 case 0: return getNode(Opcode, DL, VT); 8351 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 8352 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 8353 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 8354 default: break; 8355 } 8356 8357 // Copy from an SDUse array into an SDValue array for use with 8358 // the regular getNode logic. 8359 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 8360 return getNode(Opcode, DL, VT, NewOps); 8361 } 8362 8363 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8364 ArrayRef<SDValue> Ops) { 8365 SDNodeFlags Flags; 8366 if (Inserter) 8367 Flags = Inserter->getFlags(); 8368 return getNode(Opcode, DL, VT, Ops, Flags); 8369 } 8370 8371 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 8372 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8373 unsigned NumOps = Ops.size(); 8374 switch (NumOps) { 8375 case 0: return getNode(Opcode, DL, VT); 8376 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 8377 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 8378 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 8379 default: break; 8380 } 8381 8382 #ifndef NDEBUG 8383 for (auto &Op : Ops) 8384 assert(Op.getOpcode() != ISD::DELETED_NODE && 8385 "Operand is DELETED_NODE!"); 8386 #endif 8387 8388 switch (Opcode) { 8389 default: break; 8390 case ISD::BUILD_VECTOR: 8391 // Attempt to simplify BUILD_VECTOR. 8392 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 8393 return V; 8394 break; 8395 case ISD::CONCAT_VECTORS: 8396 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 8397 return V; 8398 break; 8399 case ISD::SELECT_CC: 8400 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 8401 assert(Ops[0].getValueType() == Ops[1].getValueType() && 8402 "LHS and RHS of condition must have same type!"); 8403 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8404 "True and False arms of SelectCC must have same type!"); 8405 assert(Ops[2].getValueType() == VT && 8406 "select_cc node must be of same type as true and false value!"); 8407 break; 8408 case ISD::BR_CC: 8409 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 8410 assert(Ops[2].getValueType() == Ops[3].getValueType() && 8411 "LHS/RHS of comparison should match types!"); 8412 break; 8413 } 8414 8415 // Memoize nodes. 8416 SDNode *N; 8417 SDVTList VTs = getVTList(VT); 8418 8419 if (VT != MVT::Glue) { 8420 FoldingSetNodeID ID; 8421 AddNodeIDNode(ID, Opcode, VTs, Ops); 8422 void *IP = nullptr; 8423 8424 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8425 return SDValue(E, 0); 8426 8427 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8428 createOperands(N, Ops); 8429 8430 CSEMap.InsertNode(N, IP); 8431 } else { 8432 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8433 createOperands(N, Ops); 8434 } 8435 8436 N->setFlags(Flags); 8437 InsertNode(N); 8438 SDValue V(N, 0); 8439 NewSDValueDbgMsg(V, "Creating new node: ", this); 8440 return V; 8441 } 8442 8443 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8444 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 8445 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 8446 } 8447 8448 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8449 ArrayRef<SDValue> Ops) { 8450 SDNodeFlags Flags; 8451 if (Inserter) 8452 Flags = Inserter->getFlags(); 8453 return getNode(Opcode, DL, VTList, Ops, Flags); 8454 } 8455 8456 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8457 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 8458 if (VTList.NumVTs == 1) 8459 return getNode(Opcode, DL, VTList.VTs[0], Ops); 8460 8461 #ifndef NDEBUG 8462 for (auto &Op : Ops) 8463 assert(Op.getOpcode() != ISD::DELETED_NODE && 8464 "Operand is DELETED_NODE!"); 8465 #endif 8466 8467 switch (Opcode) { 8468 case ISD::STRICT_FP_EXTEND: 8469 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 8470 "Invalid STRICT_FP_EXTEND!"); 8471 assert(VTList.VTs[0].isFloatingPoint() && 8472 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 8473 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8474 "STRICT_FP_EXTEND result type should be vector iff the operand " 8475 "type is vector!"); 8476 assert((!VTList.VTs[0].isVector() || 8477 VTList.VTs[0].getVectorNumElements() == 8478 Ops[1].getValueType().getVectorNumElements()) && 8479 "Vector element count mismatch!"); 8480 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 8481 "Invalid fpext node, dst <= src!"); 8482 break; 8483 case ISD::STRICT_FP_ROUND: 8484 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 8485 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 8486 "STRICT_FP_ROUND result type should be vector iff the operand " 8487 "type is vector!"); 8488 assert((!VTList.VTs[0].isVector() || 8489 VTList.VTs[0].getVectorNumElements() == 8490 Ops[1].getValueType().getVectorNumElements()) && 8491 "Vector element count mismatch!"); 8492 assert(VTList.VTs[0].isFloatingPoint() && 8493 Ops[1].getValueType().isFloatingPoint() && 8494 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 8495 isa<ConstantSDNode>(Ops[2]) && 8496 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 8497 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 8498 "Invalid STRICT_FP_ROUND!"); 8499 break; 8500 #if 0 8501 // FIXME: figure out how to safely handle things like 8502 // int foo(int x) { return 1 << (x & 255); } 8503 // int bar() { return foo(256); } 8504 case ISD::SRA_PARTS: 8505 case ISD::SRL_PARTS: 8506 case ISD::SHL_PARTS: 8507 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 8508 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 8509 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8510 else if (N3.getOpcode() == ISD::AND) 8511 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 8512 // If the and is only masking out bits that cannot effect the shift, 8513 // eliminate the and. 8514 unsigned NumBits = VT.getScalarSizeInBits()*2; 8515 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 8516 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 8517 } 8518 break; 8519 #endif 8520 } 8521 8522 // Memoize the node unless it returns a flag. 8523 SDNode *N; 8524 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8525 FoldingSetNodeID ID; 8526 AddNodeIDNode(ID, Opcode, VTList, Ops); 8527 void *IP = nullptr; 8528 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 8529 return SDValue(E, 0); 8530 8531 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8532 createOperands(N, Ops); 8533 CSEMap.InsertNode(N, IP); 8534 } else { 8535 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 8536 createOperands(N, Ops); 8537 } 8538 8539 N->setFlags(Flags); 8540 InsertNode(N); 8541 SDValue V(N, 0); 8542 NewSDValueDbgMsg(V, "Creating new node: ", this); 8543 return V; 8544 } 8545 8546 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 8547 SDVTList VTList) { 8548 return getNode(Opcode, DL, VTList, None); 8549 } 8550 8551 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8552 SDValue N1) { 8553 SDValue Ops[] = { N1 }; 8554 return getNode(Opcode, DL, VTList, Ops); 8555 } 8556 8557 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8558 SDValue N1, SDValue N2) { 8559 SDValue Ops[] = { N1, N2 }; 8560 return getNode(Opcode, DL, VTList, Ops); 8561 } 8562 8563 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8564 SDValue N1, SDValue N2, SDValue N3) { 8565 SDValue Ops[] = { N1, N2, N3 }; 8566 return getNode(Opcode, DL, VTList, Ops); 8567 } 8568 8569 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8570 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 8571 SDValue Ops[] = { N1, N2, N3, N4 }; 8572 return getNode(Opcode, DL, VTList, Ops); 8573 } 8574 8575 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 8576 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 8577 SDValue N5) { 8578 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 8579 return getNode(Opcode, DL, VTList, Ops); 8580 } 8581 8582 SDVTList SelectionDAG::getVTList(EVT VT) { 8583 return makeVTList(SDNode::getValueTypeList(VT), 1); 8584 } 8585 8586 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 8587 FoldingSetNodeID ID; 8588 ID.AddInteger(2U); 8589 ID.AddInteger(VT1.getRawBits()); 8590 ID.AddInteger(VT2.getRawBits()); 8591 8592 void *IP = nullptr; 8593 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8594 if (!Result) { 8595 EVT *Array = Allocator.Allocate<EVT>(2); 8596 Array[0] = VT1; 8597 Array[1] = VT2; 8598 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 8599 VTListMap.InsertNode(Result, IP); 8600 } 8601 return Result->getSDVTList(); 8602 } 8603 8604 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 8605 FoldingSetNodeID ID; 8606 ID.AddInteger(3U); 8607 ID.AddInteger(VT1.getRawBits()); 8608 ID.AddInteger(VT2.getRawBits()); 8609 ID.AddInteger(VT3.getRawBits()); 8610 8611 void *IP = nullptr; 8612 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8613 if (!Result) { 8614 EVT *Array = Allocator.Allocate<EVT>(3); 8615 Array[0] = VT1; 8616 Array[1] = VT2; 8617 Array[2] = VT3; 8618 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 8619 VTListMap.InsertNode(Result, IP); 8620 } 8621 return Result->getSDVTList(); 8622 } 8623 8624 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 8625 FoldingSetNodeID ID; 8626 ID.AddInteger(4U); 8627 ID.AddInteger(VT1.getRawBits()); 8628 ID.AddInteger(VT2.getRawBits()); 8629 ID.AddInteger(VT3.getRawBits()); 8630 ID.AddInteger(VT4.getRawBits()); 8631 8632 void *IP = nullptr; 8633 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8634 if (!Result) { 8635 EVT *Array = Allocator.Allocate<EVT>(4); 8636 Array[0] = VT1; 8637 Array[1] = VT2; 8638 Array[2] = VT3; 8639 Array[3] = VT4; 8640 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 8641 VTListMap.InsertNode(Result, IP); 8642 } 8643 return Result->getSDVTList(); 8644 } 8645 8646 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 8647 unsigned NumVTs = VTs.size(); 8648 FoldingSetNodeID ID; 8649 ID.AddInteger(NumVTs); 8650 for (unsigned index = 0; index < NumVTs; index++) { 8651 ID.AddInteger(VTs[index].getRawBits()); 8652 } 8653 8654 void *IP = nullptr; 8655 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 8656 if (!Result) { 8657 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 8658 llvm::copy(VTs, Array); 8659 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 8660 VTListMap.InsertNode(Result, IP); 8661 } 8662 return Result->getSDVTList(); 8663 } 8664 8665 8666 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 8667 /// specified operands. If the resultant node already exists in the DAG, 8668 /// this does not modify the specified node, instead it returns the node that 8669 /// already exists. If the resultant node does not exist in the DAG, the 8670 /// input node is returned. As a degenerate case, if you specify the same 8671 /// input operands as the node already has, the input node is returned. 8672 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 8673 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 8674 8675 // Check to see if there is no change. 8676 if (Op == N->getOperand(0)) return N; 8677 8678 // See if the modified node already exists. 8679 void *InsertPos = nullptr; 8680 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 8681 return Existing; 8682 8683 // Nope it doesn't. Remove the node from its current place in the maps. 8684 if (InsertPos) 8685 if (!RemoveNodeFromCSEMaps(N)) 8686 InsertPos = nullptr; 8687 8688 // Now we update the operands. 8689 N->OperandList[0].set(Op); 8690 8691 updateDivergence(N); 8692 // If this gets put into a CSE map, add it. 8693 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8694 return N; 8695 } 8696 8697 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 8698 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 8699 8700 // Check to see if there is no change. 8701 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 8702 return N; // No operands changed, just return the input node. 8703 8704 // See if the modified node already exists. 8705 void *InsertPos = nullptr; 8706 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 8707 return Existing; 8708 8709 // Nope it doesn't. Remove the node from its current place in the maps. 8710 if (InsertPos) 8711 if (!RemoveNodeFromCSEMaps(N)) 8712 InsertPos = nullptr; 8713 8714 // Now we update the operands. 8715 if (N->OperandList[0] != Op1) 8716 N->OperandList[0].set(Op1); 8717 if (N->OperandList[1] != Op2) 8718 N->OperandList[1].set(Op2); 8719 8720 updateDivergence(N); 8721 // If this gets put into a CSE map, add it. 8722 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8723 return N; 8724 } 8725 8726 SDNode *SelectionDAG:: 8727 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 8728 SDValue Ops[] = { Op1, Op2, Op3 }; 8729 return UpdateNodeOperands(N, Ops); 8730 } 8731 8732 SDNode *SelectionDAG:: 8733 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8734 SDValue Op3, SDValue Op4) { 8735 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 8736 return UpdateNodeOperands(N, Ops); 8737 } 8738 8739 SDNode *SelectionDAG:: 8740 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 8741 SDValue Op3, SDValue Op4, SDValue Op5) { 8742 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 8743 return UpdateNodeOperands(N, Ops); 8744 } 8745 8746 SDNode *SelectionDAG:: 8747 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 8748 unsigned NumOps = Ops.size(); 8749 assert(N->getNumOperands() == NumOps && 8750 "Update with wrong number of operands"); 8751 8752 // If no operands changed just return the input node. 8753 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 8754 return N; 8755 8756 // See if the modified node already exists. 8757 void *InsertPos = nullptr; 8758 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 8759 return Existing; 8760 8761 // Nope it doesn't. Remove the node from its current place in the maps. 8762 if (InsertPos) 8763 if (!RemoveNodeFromCSEMaps(N)) 8764 InsertPos = nullptr; 8765 8766 // Now we update the operands. 8767 for (unsigned i = 0; i != NumOps; ++i) 8768 if (N->OperandList[i] != Ops[i]) 8769 N->OperandList[i].set(Ops[i]); 8770 8771 updateDivergence(N); 8772 // If this gets put into a CSE map, add it. 8773 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 8774 return N; 8775 } 8776 8777 /// DropOperands - Release the operands and set this node to have 8778 /// zero operands. 8779 void SDNode::DropOperands() { 8780 // Unlike the code in MorphNodeTo that does this, we don't need to 8781 // watch for dead nodes here. 8782 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 8783 SDUse &Use = *I++; 8784 Use.set(SDValue()); 8785 } 8786 } 8787 8788 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 8789 ArrayRef<MachineMemOperand *> NewMemRefs) { 8790 if (NewMemRefs.empty()) { 8791 N->clearMemRefs(); 8792 return; 8793 } 8794 8795 // Check if we can avoid allocating by storing a single reference directly. 8796 if (NewMemRefs.size() == 1) { 8797 N->MemRefs = NewMemRefs[0]; 8798 N->NumMemRefs = 1; 8799 return; 8800 } 8801 8802 MachineMemOperand **MemRefsBuffer = 8803 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 8804 llvm::copy(NewMemRefs, MemRefsBuffer); 8805 N->MemRefs = MemRefsBuffer; 8806 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 8807 } 8808 8809 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 8810 /// machine opcode. 8811 /// 8812 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8813 EVT VT) { 8814 SDVTList VTs = getVTList(VT); 8815 return SelectNodeTo(N, MachineOpc, VTs, None); 8816 } 8817 8818 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8819 EVT VT, SDValue Op1) { 8820 SDVTList VTs = getVTList(VT); 8821 SDValue Ops[] = { Op1 }; 8822 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8823 } 8824 8825 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8826 EVT VT, SDValue Op1, 8827 SDValue Op2) { 8828 SDVTList VTs = getVTList(VT); 8829 SDValue Ops[] = { Op1, Op2 }; 8830 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8831 } 8832 8833 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8834 EVT VT, SDValue Op1, 8835 SDValue Op2, SDValue Op3) { 8836 SDVTList VTs = getVTList(VT); 8837 SDValue Ops[] = { Op1, Op2, Op3 }; 8838 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8839 } 8840 8841 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8842 EVT VT, ArrayRef<SDValue> Ops) { 8843 SDVTList VTs = getVTList(VT); 8844 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8845 } 8846 8847 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8848 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 8849 SDVTList VTs = getVTList(VT1, VT2); 8850 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8851 } 8852 8853 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8854 EVT VT1, EVT VT2) { 8855 SDVTList VTs = getVTList(VT1, VT2); 8856 return SelectNodeTo(N, MachineOpc, VTs, None); 8857 } 8858 8859 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8860 EVT VT1, EVT VT2, EVT VT3, 8861 ArrayRef<SDValue> Ops) { 8862 SDVTList VTs = getVTList(VT1, VT2, VT3); 8863 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8864 } 8865 8866 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8867 EVT VT1, EVT VT2, 8868 SDValue Op1, SDValue Op2) { 8869 SDVTList VTs = getVTList(VT1, VT2); 8870 SDValue Ops[] = { Op1, Op2 }; 8871 return SelectNodeTo(N, MachineOpc, VTs, Ops); 8872 } 8873 8874 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 8875 SDVTList VTs,ArrayRef<SDValue> Ops) { 8876 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 8877 // Reset the NodeID to -1. 8878 New->setNodeId(-1); 8879 if (New != N) { 8880 ReplaceAllUsesWith(N, New); 8881 RemoveDeadNode(N); 8882 } 8883 return New; 8884 } 8885 8886 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 8887 /// the line number information on the merged node since it is not possible to 8888 /// preserve the information that operation is associated with multiple lines. 8889 /// This will make the debugger working better at -O0, were there is a higher 8890 /// probability having other instructions associated with that line. 8891 /// 8892 /// For IROrder, we keep the smaller of the two 8893 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 8894 DebugLoc NLoc = N->getDebugLoc(); 8895 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 8896 N->setDebugLoc(DebugLoc()); 8897 } 8898 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 8899 N->setIROrder(Order); 8900 return N; 8901 } 8902 8903 /// MorphNodeTo - This *mutates* the specified node to have the specified 8904 /// return type, opcode, and operands. 8905 /// 8906 /// Note that MorphNodeTo returns the resultant node. If there is already a 8907 /// node of the specified opcode and operands, it returns that node instead of 8908 /// the current one. Note that the SDLoc need not be the same. 8909 /// 8910 /// Using MorphNodeTo is faster than creating a new node and swapping it in 8911 /// with ReplaceAllUsesWith both because it often avoids allocating a new 8912 /// node, and because it doesn't require CSE recalculation for any of 8913 /// the node's users. 8914 /// 8915 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 8916 /// As a consequence it isn't appropriate to use from within the DAG combiner or 8917 /// the legalizer which maintain worklists that would need to be updated when 8918 /// deleting things. 8919 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 8920 SDVTList VTs, ArrayRef<SDValue> Ops) { 8921 // If an identical node already exists, use it. 8922 void *IP = nullptr; 8923 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 8924 FoldingSetNodeID ID; 8925 AddNodeIDNode(ID, Opc, VTs, Ops); 8926 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 8927 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 8928 } 8929 8930 if (!RemoveNodeFromCSEMaps(N)) 8931 IP = nullptr; 8932 8933 // Start the morphing. 8934 N->NodeType = Opc; 8935 N->ValueList = VTs.VTs; 8936 N->NumValues = VTs.NumVTs; 8937 8938 // Clear the operands list, updating used nodes to remove this from their 8939 // use list. Keep track of any operands that become dead as a result. 8940 SmallPtrSet<SDNode*, 16> DeadNodeSet; 8941 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 8942 SDUse &Use = *I++; 8943 SDNode *Used = Use.getNode(); 8944 Use.set(SDValue()); 8945 if (Used->use_empty()) 8946 DeadNodeSet.insert(Used); 8947 } 8948 8949 // For MachineNode, initialize the memory references information. 8950 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 8951 MN->clearMemRefs(); 8952 8953 // Swap for an appropriately sized array from the recycler. 8954 removeOperands(N); 8955 createOperands(N, Ops); 8956 8957 // Delete any nodes that are still dead after adding the uses for the 8958 // new operands. 8959 if (!DeadNodeSet.empty()) { 8960 SmallVector<SDNode *, 16> DeadNodes; 8961 for (SDNode *N : DeadNodeSet) 8962 if (N->use_empty()) 8963 DeadNodes.push_back(N); 8964 RemoveDeadNodes(DeadNodes); 8965 } 8966 8967 if (IP) 8968 CSEMap.InsertNode(N, IP); // Memoize the new node. 8969 return N; 8970 } 8971 8972 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 8973 unsigned OrigOpc = Node->getOpcode(); 8974 unsigned NewOpc; 8975 switch (OrigOpc) { 8976 default: 8977 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 8978 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8979 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 8980 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8981 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 8982 #include "llvm/IR/ConstrainedOps.def" 8983 } 8984 8985 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 8986 8987 // We're taking this node out of the chain, so we need to re-link things. 8988 SDValue InputChain = Node->getOperand(0); 8989 SDValue OutputChain = SDValue(Node, 1); 8990 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 8991 8992 SmallVector<SDValue, 3> Ops; 8993 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 8994 Ops.push_back(Node->getOperand(i)); 8995 8996 SDVTList VTs = getVTList(Node->getValueType(0)); 8997 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 8998 8999 // MorphNodeTo can operate in two ways: if an existing node with the 9000 // specified operands exists, it can just return it. Otherwise, it 9001 // updates the node in place to have the requested operands. 9002 if (Res == Node) { 9003 // If we updated the node in place, reset the node ID. To the isel, 9004 // this should be just like a newly allocated machine node. 9005 Res->setNodeId(-1); 9006 } else { 9007 ReplaceAllUsesWith(Node, Res); 9008 RemoveDeadNode(Node); 9009 } 9010 9011 return Res; 9012 } 9013 9014 /// getMachineNode - These are used for target selectors to create a new node 9015 /// with specified return type(s), MachineInstr opcode, and operands. 9016 /// 9017 /// Note that getMachineNode returns the resultant node. If there is already a 9018 /// node of the specified opcode and operands, it returns that node instead of 9019 /// the current one. 9020 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9021 EVT VT) { 9022 SDVTList VTs = getVTList(VT); 9023 return getMachineNode(Opcode, dl, VTs, None); 9024 } 9025 9026 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9027 EVT VT, SDValue Op1) { 9028 SDVTList VTs = getVTList(VT); 9029 SDValue Ops[] = { Op1 }; 9030 return getMachineNode(Opcode, dl, VTs, Ops); 9031 } 9032 9033 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9034 EVT VT, SDValue Op1, SDValue Op2) { 9035 SDVTList VTs = getVTList(VT); 9036 SDValue Ops[] = { Op1, Op2 }; 9037 return getMachineNode(Opcode, dl, VTs, Ops); 9038 } 9039 9040 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9041 EVT VT, SDValue Op1, SDValue Op2, 9042 SDValue Op3) { 9043 SDVTList VTs = getVTList(VT); 9044 SDValue Ops[] = { Op1, Op2, Op3 }; 9045 return getMachineNode(Opcode, dl, VTs, Ops); 9046 } 9047 9048 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9049 EVT VT, ArrayRef<SDValue> Ops) { 9050 SDVTList VTs = getVTList(VT); 9051 return getMachineNode(Opcode, dl, VTs, Ops); 9052 } 9053 9054 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9055 EVT VT1, EVT VT2, SDValue Op1, 9056 SDValue Op2) { 9057 SDVTList VTs = getVTList(VT1, VT2); 9058 SDValue Ops[] = { Op1, Op2 }; 9059 return getMachineNode(Opcode, dl, VTs, Ops); 9060 } 9061 9062 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9063 EVT VT1, EVT VT2, SDValue Op1, 9064 SDValue Op2, SDValue Op3) { 9065 SDVTList VTs = getVTList(VT1, VT2); 9066 SDValue Ops[] = { Op1, Op2, Op3 }; 9067 return getMachineNode(Opcode, dl, VTs, Ops); 9068 } 9069 9070 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9071 EVT VT1, EVT VT2, 9072 ArrayRef<SDValue> Ops) { 9073 SDVTList VTs = getVTList(VT1, VT2); 9074 return getMachineNode(Opcode, dl, VTs, Ops); 9075 } 9076 9077 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9078 EVT VT1, EVT VT2, EVT VT3, 9079 SDValue Op1, SDValue Op2) { 9080 SDVTList VTs = getVTList(VT1, VT2, VT3); 9081 SDValue Ops[] = { Op1, Op2 }; 9082 return getMachineNode(Opcode, dl, VTs, Ops); 9083 } 9084 9085 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9086 EVT VT1, EVT VT2, EVT VT3, 9087 SDValue Op1, SDValue Op2, 9088 SDValue Op3) { 9089 SDVTList VTs = getVTList(VT1, VT2, VT3); 9090 SDValue Ops[] = { Op1, Op2, Op3 }; 9091 return getMachineNode(Opcode, dl, VTs, Ops); 9092 } 9093 9094 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9095 EVT VT1, EVT VT2, EVT VT3, 9096 ArrayRef<SDValue> Ops) { 9097 SDVTList VTs = getVTList(VT1, VT2, VT3); 9098 return getMachineNode(Opcode, dl, VTs, Ops); 9099 } 9100 9101 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 9102 ArrayRef<EVT> ResultTys, 9103 ArrayRef<SDValue> Ops) { 9104 SDVTList VTs = getVTList(ResultTys); 9105 return getMachineNode(Opcode, dl, VTs, Ops); 9106 } 9107 9108 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 9109 SDVTList VTs, 9110 ArrayRef<SDValue> Ops) { 9111 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 9112 MachineSDNode *N; 9113 void *IP = nullptr; 9114 9115 if (DoCSE) { 9116 FoldingSetNodeID ID; 9117 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 9118 IP = nullptr; 9119 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 9120 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 9121 } 9122 } 9123 9124 // Allocate a new MachineSDNode. 9125 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9126 createOperands(N, Ops); 9127 9128 if (DoCSE) 9129 CSEMap.InsertNode(N, IP); 9130 9131 InsertNode(N); 9132 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 9133 return N; 9134 } 9135 9136 /// getTargetExtractSubreg - A convenience function for creating 9137 /// TargetOpcode::EXTRACT_SUBREG nodes. 9138 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9139 SDValue Operand) { 9140 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9141 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 9142 VT, Operand, SRIdxVal); 9143 return SDValue(Subreg, 0); 9144 } 9145 9146 /// getTargetInsertSubreg - A convenience function for creating 9147 /// TargetOpcode::INSERT_SUBREG nodes. 9148 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 9149 SDValue Operand, SDValue Subreg) { 9150 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 9151 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 9152 VT, Operand, Subreg, SRIdxVal); 9153 return SDValue(Result, 0); 9154 } 9155 9156 /// getNodeIfExists - Get the specified node if it's already available, or 9157 /// else return NULL. 9158 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9159 ArrayRef<SDValue> Ops) { 9160 SDNodeFlags Flags; 9161 if (Inserter) 9162 Flags = Inserter->getFlags(); 9163 return getNodeIfExists(Opcode, VTList, Ops, Flags); 9164 } 9165 9166 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 9167 ArrayRef<SDValue> Ops, 9168 const SDNodeFlags Flags) { 9169 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9170 FoldingSetNodeID ID; 9171 AddNodeIDNode(ID, Opcode, VTList, Ops); 9172 void *IP = nullptr; 9173 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 9174 E->intersectFlagsWith(Flags); 9175 return E; 9176 } 9177 } 9178 return nullptr; 9179 } 9180 9181 /// doesNodeExist - Check if a node exists without modifying its flags. 9182 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 9183 ArrayRef<SDValue> Ops) { 9184 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 9185 FoldingSetNodeID ID; 9186 AddNodeIDNode(ID, Opcode, VTList, Ops); 9187 void *IP = nullptr; 9188 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 9189 return true; 9190 } 9191 return false; 9192 } 9193 9194 /// getDbgValue - Creates a SDDbgValue node. 9195 /// 9196 /// SDNode 9197 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 9198 SDNode *N, unsigned R, bool IsIndirect, 9199 const DebugLoc &DL, unsigned O) { 9200 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9201 "Expected inlined-at fields to agree"); 9202 return new (DbgInfo->getAlloc()) 9203 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 9204 {}, IsIndirect, DL, O, 9205 /*IsVariadic=*/false); 9206 } 9207 9208 /// Constant 9209 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 9210 DIExpression *Expr, 9211 const Value *C, 9212 const DebugLoc &DL, unsigned O) { 9213 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9214 "Expected inlined-at fields to agree"); 9215 return new (DbgInfo->getAlloc()) 9216 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 9217 /*IsIndirect=*/false, DL, O, 9218 /*IsVariadic=*/false); 9219 } 9220 9221 /// FrameIndex 9222 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9223 DIExpression *Expr, unsigned FI, 9224 bool IsIndirect, 9225 const DebugLoc &DL, 9226 unsigned O) { 9227 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9228 "Expected inlined-at fields to agree"); 9229 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 9230 } 9231 9232 /// FrameIndex with dependencies 9233 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 9234 DIExpression *Expr, unsigned FI, 9235 ArrayRef<SDNode *> Dependencies, 9236 bool IsIndirect, 9237 const DebugLoc &DL, 9238 unsigned O) { 9239 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9240 "Expected inlined-at fields to agree"); 9241 return new (DbgInfo->getAlloc()) 9242 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 9243 Dependencies, IsIndirect, DL, O, 9244 /*IsVariadic=*/false); 9245 } 9246 9247 /// VReg 9248 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 9249 unsigned VReg, bool IsIndirect, 9250 const DebugLoc &DL, unsigned O) { 9251 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9252 "Expected inlined-at fields to agree"); 9253 return new (DbgInfo->getAlloc()) 9254 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 9255 {}, IsIndirect, DL, O, 9256 /*IsVariadic=*/false); 9257 } 9258 9259 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 9260 ArrayRef<SDDbgOperand> Locs, 9261 ArrayRef<SDNode *> Dependencies, 9262 bool IsIndirect, const DebugLoc &DL, 9263 unsigned O, bool IsVariadic) { 9264 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 9265 "Expected inlined-at fields to agree"); 9266 return new (DbgInfo->getAlloc()) 9267 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 9268 DL, O, IsVariadic); 9269 } 9270 9271 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 9272 unsigned OffsetInBits, unsigned SizeInBits, 9273 bool InvalidateDbg) { 9274 SDNode *FromNode = From.getNode(); 9275 SDNode *ToNode = To.getNode(); 9276 assert(FromNode && ToNode && "Can't modify dbg values"); 9277 9278 // PR35338 9279 // TODO: assert(From != To && "Redundant dbg value transfer"); 9280 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 9281 if (From == To || FromNode == ToNode) 9282 return; 9283 9284 if (!FromNode->getHasDebugValue()) 9285 return; 9286 9287 SDDbgOperand FromLocOp = 9288 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 9289 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 9290 9291 SmallVector<SDDbgValue *, 2> ClonedDVs; 9292 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 9293 if (Dbg->isInvalidated()) 9294 continue; 9295 9296 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 9297 9298 // Create a new location ops vector that is equal to the old vector, but 9299 // with each instance of FromLocOp replaced with ToLocOp. 9300 bool Changed = false; 9301 auto NewLocOps = Dbg->copyLocationOps(); 9302 std::replace_if( 9303 NewLocOps.begin(), NewLocOps.end(), 9304 [&Changed, FromLocOp](const SDDbgOperand &Op) { 9305 bool Match = Op == FromLocOp; 9306 Changed |= Match; 9307 return Match; 9308 }, 9309 ToLocOp); 9310 // Ignore this SDDbgValue if we didn't find a matching location. 9311 if (!Changed) 9312 continue; 9313 9314 DIVariable *Var = Dbg->getVariable(); 9315 auto *Expr = Dbg->getExpression(); 9316 // If a fragment is requested, update the expression. 9317 if (SizeInBits) { 9318 // When splitting a larger (e.g., sign-extended) value whose 9319 // lower bits are described with an SDDbgValue, do not attempt 9320 // to transfer the SDDbgValue to the upper bits. 9321 if (auto FI = Expr->getFragmentInfo()) 9322 if (OffsetInBits + SizeInBits > FI->SizeInBits) 9323 continue; 9324 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 9325 SizeInBits); 9326 if (!Fragment) 9327 continue; 9328 Expr = *Fragment; 9329 } 9330 9331 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 9332 // Clone the SDDbgValue and move it to To. 9333 SDDbgValue *Clone = getDbgValueList( 9334 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 9335 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 9336 Dbg->isVariadic()); 9337 ClonedDVs.push_back(Clone); 9338 9339 if (InvalidateDbg) { 9340 // Invalidate value and indicate the SDDbgValue should not be emitted. 9341 Dbg->setIsInvalidated(); 9342 Dbg->setIsEmitted(); 9343 } 9344 } 9345 9346 for (SDDbgValue *Dbg : ClonedDVs) { 9347 assert(is_contained(Dbg->getSDNodes(), ToNode) && 9348 "Transferred DbgValues should depend on the new SDNode"); 9349 AddDbgValue(Dbg, false); 9350 } 9351 } 9352 9353 void SelectionDAG::salvageDebugInfo(SDNode &N) { 9354 if (!N.getHasDebugValue()) 9355 return; 9356 9357 SmallVector<SDDbgValue *, 2> ClonedDVs; 9358 for (auto DV : GetDbgValues(&N)) { 9359 if (DV->isInvalidated()) 9360 continue; 9361 switch (N.getOpcode()) { 9362 default: 9363 break; 9364 case ISD::ADD: 9365 SDValue N0 = N.getOperand(0); 9366 SDValue N1 = N.getOperand(1); 9367 if (!isConstantIntBuildVectorOrConstantInt(N0) && 9368 isConstantIntBuildVectorOrConstantInt(N1)) { 9369 uint64_t Offset = N.getConstantOperandVal(1); 9370 9371 // Rewrite an ADD constant node into a DIExpression. Since we are 9372 // performing arithmetic to compute the variable's *value* in the 9373 // DIExpression, we need to mark the expression with a 9374 // DW_OP_stack_value. 9375 auto *DIExpr = DV->getExpression(); 9376 auto NewLocOps = DV->copyLocationOps(); 9377 bool Changed = false; 9378 for (size_t i = 0; i < NewLocOps.size(); ++i) { 9379 // We're not given a ResNo to compare against because the whole 9380 // node is going away. We know that any ISD::ADD only has one 9381 // result, so we can assume any node match is using the result. 9382 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 9383 NewLocOps[i].getSDNode() != &N) 9384 continue; 9385 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 9386 SmallVector<uint64_t, 3> ExprOps; 9387 DIExpression::appendOffset(ExprOps, Offset); 9388 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 9389 Changed = true; 9390 } 9391 (void)Changed; 9392 assert(Changed && "Salvage target doesn't use N"); 9393 9394 auto AdditionalDependencies = DV->getAdditionalDependencies(); 9395 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 9396 NewLocOps, AdditionalDependencies, 9397 DV->isIndirect(), DV->getDebugLoc(), 9398 DV->getOrder(), DV->isVariadic()); 9399 ClonedDVs.push_back(Clone); 9400 DV->setIsInvalidated(); 9401 DV->setIsEmitted(); 9402 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 9403 N0.getNode()->dumprFull(this); 9404 dbgs() << " into " << *DIExpr << '\n'); 9405 } 9406 } 9407 } 9408 9409 for (SDDbgValue *Dbg : ClonedDVs) { 9410 assert(!Dbg->getSDNodes().empty() && 9411 "Salvaged DbgValue should depend on a new SDNode"); 9412 AddDbgValue(Dbg, false); 9413 } 9414 } 9415 9416 /// Creates a SDDbgLabel node. 9417 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 9418 const DebugLoc &DL, unsigned O) { 9419 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 9420 "Expected inlined-at fields to agree"); 9421 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 9422 } 9423 9424 namespace { 9425 9426 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 9427 /// pointed to by a use iterator is deleted, increment the use iterator 9428 /// so that it doesn't dangle. 9429 /// 9430 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 9431 SDNode::use_iterator &UI; 9432 SDNode::use_iterator &UE; 9433 9434 void NodeDeleted(SDNode *N, SDNode *E) override { 9435 // Increment the iterator as needed. 9436 while (UI != UE && N == *UI) 9437 ++UI; 9438 } 9439 9440 public: 9441 RAUWUpdateListener(SelectionDAG &d, 9442 SDNode::use_iterator &ui, 9443 SDNode::use_iterator &ue) 9444 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 9445 }; 9446 9447 } // end anonymous namespace 9448 9449 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9450 /// This can cause recursive merging of nodes in the DAG. 9451 /// 9452 /// This version assumes From has a single result value. 9453 /// 9454 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 9455 SDNode *From = FromN.getNode(); 9456 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 9457 "Cannot replace with this method!"); 9458 assert(From != To.getNode() && "Cannot replace uses of with self"); 9459 9460 // Preserve Debug Values 9461 transferDbgValues(FromN, To); 9462 9463 // Iterate over all the existing uses of From. New uses will be added 9464 // to the beginning of the use list, which we avoid visiting. 9465 // This specifically avoids visiting uses of From that arise while the 9466 // replacement is happening, because any such uses would be the result 9467 // of CSE: If an existing node looks like From after one of its operands 9468 // is replaced by To, we don't want to replace of all its users with To 9469 // too. See PR3018 for more info. 9470 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9471 RAUWUpdateListener Listener(*this, UI, UE); 9472 while (UI != UE) { 9473 SDNode *User = *UI; 9474 9475 // This node is about to morph, remove its old self from the CSE maps. 9476 RemoveNodeFromCSEMaps(User); 9477 9478 // A user can appear in a use list multiple times, and when this 9479 // happens the uses are usually next to each other in the list. 9480 // To help reduce the number of CSE recomputations, process all 9481 // the uses of this user that we can find this way. 9482 do { 9483 SDUse &Use = UI.getUse(); 9484 ++UI; 9485 Use.set(To); 9486 if (To->isDivergent() != From->isDivergent()) 9487 updateDivergence(User); 9488 } while (UI != UE && *UI == User); 9489 // Now that we have modified User, add it back to the CSE maps. If it 9490 // already exists there, recursively merge the results together. 9491 AddModifiedNodeToCSEMaps(User); 9492 } 9493 9494 // If we just RAUW'd the root, take note. 9495 if (FromN == getRoot()) 9496 setRoot(To); 9497 } 9498 9499 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9500 /// This can cause recursive merging of nodes in the DAG. 9501 /// 9502 /// This version assumes that for each value of From, there is a 9503 /// corresponding value in To in the same position with the same type. 9504 /// 9505 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 9506 #ifndef NDEBUG 9507 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9508 assert((!From->hasAnyUseOfValue(i) || 9509 From->getValueType(i) == To->getValueType(i)) && 9510 "Cannot use this version of ReplaceAllUsesWith!"); 9511 #endif 9512 9513 // Handle the trivial case. 9514 if (From == To) 9515 return; 9516 9517 // Preserve Debug Info. Only do this if there's a use. 9518 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9519 if (From->hasAnyUseOfValue(i)) { 9520 assert((i < To->getNumValues()) && "Invalid To location"); 9521 transferDbgValues(SDValue(From, i), SDValue(To, i)); 9522 } 9523 9524 // Iterate over just the existing users of From. See the comments in 9525 // the ReplaceAllUsesWith above. 9526 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9527 RAUWUpdateListener Listener(*this, UI, UE); 9528 while (UI != UE) { 9529 SDNode *User = *UI; 9530 9531 // This node is about to morph, remove its old self from the CSE maps. 9532 RemoveNodeFromCSEMaps(User); 9533 9534 // A user can appear in a use list multiple times, and when this 9535 // happens the uses are usually next to each other in the list. 9536 // To help reduce the number of CSE recomputations, process all 9537 // the uses of this user that we can find this way. 9538 do { 9539 SDUse &Use = UI.getUse(); 9540 ++UI; 9541 Use.setNode(To); 9542 if (To->isDivergent() != From->isDivergent()) 9543 updateDivergence(User); 9544 } while (UI != UE && *UI == User); 9545 9546 // Now that we have modified User, add it back to the CSE maps. If it 9547 // already exists there, recursively merge the results together. 9548 AddModifiedNodeToCSEMaps(User); 9549 } 9550 9551 // If we just RAUW'd the root, take note. 9552 if (From == getRoot().getNode()) 9553 setRoot(SDValue(To, getRoot().getResNo())); 9554 } 9555 9556 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 9557 /// This can cause recursive merging of nodes in the DAG. 9558 /// 9559 /// This version can replace From with any result values. To must match the 9560 /// number and types of values returned by From. 9561 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 9562 if (From->getNumValues() == 1) // Handle the simple case efficiently. 9563 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 9564 9565 // Preserve Debug Info. 9566 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 9567 transferDbgValues(SDValue(From, i), To[i]); 9568 9569 // Iterate over just the existing users of From. See the comments in 9570 // the ReplaceAllUsesWith above. 9571 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 9572 RAUWUpdateListener Listener(*this, UI, UE); 9573 while (UI != UE) { 9574 SDNode *User = *UI; 9575 9576 // This node is about to morph, remove its old self from the CSE maps. 9577 RemoveNodeFromCSEMaps(User); 9578 9579 // A user can appear in a use list multiple times, and when this happens the 9580 // uses are usually next to each other in the list. To help reduce the 9581 // number of CSE and divergence recomputations, process all the uses of this 9582 // user that we can find this way. 9583 bool To_IsDivergent = false; 9584 do { 9585 SDUse &Use = UI.getUse(); 9586 const SDValue &ToOp = To[Use.getResNo()]; 9587 ++UI; 9588 Use.set(ToOp); 9589 To_IsDivergent |= ToOp->isDivergent(); 9590 } while (UI != UE && *UI == User); 9591 9592 if (To_IsDivergent != From->isDivergent()) 9593 updateDivergence(User); 9594 9595 // Now that we have modified User, add it back to the CSE maps. If it 9596 // already exists there, recursively merge the results together. 9597 AddModifiedNodeToCSEMaps(User); 9598 } 9599 9600 // If we just RAUW'd the root, take note. 9601 if (From == getRoot().getNode()) 9602 setRoot(SDValue(To[getRoot().getResNo()])); 9603 } 9604 9605 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 9606 /// uses of other values produced by From.getNode() alone. The Deleted 9607 /// vector is handled the same way as for ReplaceAllUsesWith. 9608 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 9609 // Handle the really simple, really trivial case efficiently. 9610 if (From == To) return; 9611 9612 // Handle the simple, trivial, case efficiently. 9613 if (From.getNode()->getNumValues() == 1) { 9614 ReplaceAllUsesWith(From, To); 9615 return; 9616 } 9617 9618 // Preserve Debug Info. 9619 transferDbgValues(From, To); 9620 9621 // Iterate over just the existing users of From. See the comments in 9622 // the ReplaceAllUsesWith above. 9623 SDNode::use_iterator UI = From.getNode()->use_begin(), 9624 UE = From.getNode()->use_end(); 9625 RAUWUpdateListener Listener(*this, UI, UE); 9626 while (UI != UE) { 9627 SDNode *User = *UI; 9628 bool UserRemovedFromCSEMaps = false; 9629 9630 // A user can appear in a use list multiple times, and when this 9631 // happens the uses are usually next to each other in the list. 9632 // To help reduce the number of CSE recomputations, process all 9633 // the uses of this user that we can find this way. 9634 do { 9635 SDUse &Use = UI.getUse(); 9636 9637 // Skip uses of different values from the same node. 9638 if (Use.getResNo() != From.getResNo()) { 9639 ++UI; 9640 continue; 9641 } 9642 9643 // If this node hasn't been modified yet, it's still in the CSE maps, 9644 // so remove its old self from the CSE maps. 9645 if (!UserRemovedFromCSEMaps) { 9646 RemoveNodeFromCSEMaps(User); 9647 UserRemovedFromCSEMaps = true; 9648 } 9649 9650 ++UI; 9651 Use.set(To); 9652 if (To->isDivergent() != From->isDivergent()) 9653 updateDivergence(User); 9654 } while (UI != UE && *UI == User); 9655 // We are iterating over all uses of the From node, so if a use 9656 // doesn't use the specific value, no changes are made. 9657 if (!UserRemovedFromCSEMaps) 9658 continue; 9659 9660 // Now that we have modified User, add it back to the CSE maps. If it 9661 // already exists there, recursively merge the results together. 9662 AddModifiedNodeToCSEMaps(User); 9663 } 9664 9665 // If we just RAUW'd the root, take note. 9666 if (From == getRoot()) 9667 setRoot(To); 9668 } 9669 9670 namespace { 9671 9672 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 9673 /// to record information about a use. 9674 struct UseMemo { 9675 SDNode *User; 9676 unsigned Index; 9677 SDUse *Use; 9678 }; 9679 9680 /// operator< - Sort Memos by User. 9681 bool operator<(const UseMemo &L, const UseMemo &R) { 9682 return (intptr_t)L.User < (intptr_t)R.User; 9683 } 9684 9685 } // end anonymous namespace 9686 9687 bool SelectionDAG::calculateDivergence(SDNode *N) { 9688 if (TLI->isSDNodeAlwaysUniform(N)) { 9689 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, DA) && 9690 "Conflicting divergence information!"); 9691 return false; 9692 } 9693 if (TLI->isSDNodeSourceOfDivergence(N, FLI, DA)) 9694 return true; 9695 for (auto &Op : N->ops()) { 9696 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 9697 return true; 9698 } 9699 return false; 9700 } 9701 9702 void SelectionDAG::updateDivergence(SDNode *N) { 9703 SmallVector<SDNode *, 16> Worklist(1, N); 9704 do { 9705 N = Worklist.pop_back_val(); 9706 bool IsDivergent = calculateDivergence(N); 9707 if (N->SDNodeBits.IsDivergent != IsDivergent) { 9708 N->SDNodeBits.IsDivergent = IsDivergent; 9709 llvm::append_range(Worklist, N->uses()); 9710 } 9711 } while (!Worklist.empty()); 9712 } 9713 9714 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 9715 DenseMap<SDNode *, unsigned> Degree; 9716 Order.reserve(AllNodes.size()); 9717 for (auto &N : allnodes()) { 9718 unsigned NOps = N.getNumOperands(); 9719 Degree[&N] = NOps; 9720 if (0 == NOps) 9721 Order.push_back(&N); 9722 } 9723 for (size_t I = 0; I != Order.size(); ++I) { 9724 SDNode *N = Order[I]; 9725 for (auto U : N->uses()) { 9726 unsigned &UnsortedOps = Degree[U]; 9727 if (0 == --UnsortedOps) 9728 Order.push_back(U); 9729 } 9730 } 9731 } 9732 9733 #ifndef NDEBUG 9734 void SelectionDAG::VerifyDAGDivergence() { 9735 std::vector<SDNode *> TopoOrder; 9736 CreateTopologicalOrder(TopoOrder); 9737 for (auto *N : TopoOrder) { 9738 assert(calculateDivergence(N) == N->isDivergent() && 9739 "Divergence bit inconsistency detected"); 9740 } 9741 } 9742 #endif 9743 9744 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 9745 /// uses of other values produced by From.getNode() alone. The same value 9746 /// may appear in both the From and To list. The Deleted vector is 9747 /// handled the same way as for ReplaceAllUsesWith. 9748 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 9749 const SDValue *To, 9750 unsigned Num){ 9751 // Handle the simple, trivial case efficiently. 9752 if (Num == 1) 9753 return ReplaceAllUsesOfValueWith(*From, *To); 9754 9755 transferDbgValues(*From, *To); 9756 9757 // Read up all the uses and make records of them. This helps 9758 // processing new uses that are introduced during the 9759 // replacement process. 9760 SmallVector<UseMemo, 4> Uses; 9761 for (unsigned i = 0; i != Num; ++i) { 9762 unsigned FromResNo = From[i].getResNo(); 9763 SDNode *FromNode = From[i].getNode(); 9764 for (SDNode::use_iterator UI = FromNode->use_begin(), 9765 E = FromNode->use_end(); UI != E; ++UI) { 9766 SDUse &Use = UI.getUse(); 9767 if (Use.getResNo() == FromResNo) { 9768 UseMemo Memo = { *UI, i, &Use }; 9769 Uses.push_back(Memo); 9770 } 9771 } 9772 } 9773 9774 // Sort the uses, so that all the uses from a given User are together. 9775 llvm::sort(Uses); 9776 9777 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 9778 UseIndex != UseIndexEnd; ) { 9779 // We know that this user uses some value of From. If it is the right 9780 // value, update it. 9781 SDNode *User = Uses[UseIndex].User; 9782 9783 // This node is about to morph, remove its old self from the CSE maps. 9784 RemoveNodeFromCSEMaps(User); 9785 9786 // The Uses array is sorted, so all the uses for a given User 9787 // are next to each other in the list. 9788 // To help reduce the number of CSE recomputations, process all 9789 // the uses of this user that we can find this way. 9790 do { 9791 unsigned i = Uses[UseIndex].Index; 9792 SDUse &Use = *Uses[UseIndex].Use; 9793 ++UseIndex; 9794 9795 Use.set(To[i]); 9796 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 9797 9798 // Now that we have modified User, add it back to the CSE maps. If it 9799 // already exists there, recursively merge the results together. 9800 AddModifiedNodeToCSEMaps(User); 9801 } 9802 } 9803 9804 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 9805 /// based on their topological order. It returns the maximum id and a vector 9806 /// of the SDNodes* in assigned order by reference. 9807 unsigned SelectionDAG::AssignTopologicalOrder() { 9808 unsigned DAGSize = 0; 9809 9810 // SortedPos tracks the progress of the algorithm. Nodes before it are 9811 // sorted, nodes after it are unsorted. When the algorithm completes 9812 // it is at the end of the list. 9813 allnodes_iterator SortedPos = allnodes_begin(); 9814 9815 // Visit all the nodes. Move nodes with no operands to the front of 9816 // the list immediately. Annotate nodes that do have operands with their 9817 // operand count. Before we do this, the Node Id fields of the nodes 9818 // may contain arbitrary values. After, the Node Id fields for nodes 9819 // before SortedPos will contain the topological sort index, and the 9820 // Node Id fields for nodes At SortedPos and after will contain the 9821 // count of outstanding operands. 9822 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 9823 checkForCycles(&N, this); 9824 unsigned Degree = N.getNumOperands(); 9825 if (Degree == 0) { 9826 // A node with no uses, add it to the result array immediately. 9827 N.setNodeId(DAGSize++); 9828 allnodes_iterator Q(&N); 9829 if (Q != SortedPos) 9830 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 9831 assert(SortedPos != AllNodes.end() && "Overran node list"); 9832 ++SortedPos; 9833 } else { 9834 // Temporarily use the Node Id as scratch space for the degree count. 9835 N.setNodeId(Degree); 9836 } 9837 } 9838 9839 // Visit all the nodes. As we iterate, move nodes into sorted order, 9840 // such that by the time the end is reached all nodes will be sorted. 9841 for (SDNode &Node : allnodes()) { 9842 SDNode *N = &Node; 9843 checkForCycles(N, this); 9844 // N is in sorted position, so all its uses have one less operand 9845 // that needs to be sorted. 9846 for (SDNode *P : N->uses()) { 9847 unsigned Degree = P->getNodeId(); 9848 assert(Degree != 0 && "Invalid node degree"); 9849 --Degree; 9850 if (Degree == 0) { 9851 // All of P's operands are sorted, so P may sorted now. 9852 P->setNodeId(DAGSize++); 9853 if (P->getIterator() != SortedPos) 9854 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 9855 assert(SortedPos != AllNodes.end() && "Overran node list"); 9856 ++SortedPos; 9857 } else { 9858 // Update P's outstanding operand count. 9859 P->setNodeId(Degree); 9860 } 9861 } 9862 if (Node.getIterator() == SortedPos) { 9863 #ifndef NDEBUG 9864 allnodes_iterator I(N); 9865 SDNode *S = &*++I; 9866 dbgs() << "Overran sorted position:\n"; 9867 S->dumprFull(this); dbgs() << "\n"; 9868 dbgs() << "Checking if this is due to cycles\n"; 9869 checkForCycles(this, true); 9870 #endif 9871 llvm_unreachable(nullptr); 9872 } 9873 } 9874 9875 assert(SortedPos == AllNodes.end() && 9876 "Topological sort incomplete!"); 9877 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 9878 "First node in topological sort is not the entry token!"); 9879 assert(AllNodes.front().getNodeId() == 0 && 9880 "First node in topological sort has non-zero id!"); 9881 assert(AllNodes.front().getNumOperands() == 0 && 9882 "First node in topological sort has operands!"); 9883 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 9884 "Last node in topologic sort has unexpected id!"); 9885 assert(AllNodes.back().use_empty() && 9886 "Last node in topologic sort has users!"); 9887 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 9888 return DAGSize; 9889 } 9890 9891 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 9892 /// value is produced by SD. 9893 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 9894 for (SDNode *SD : DB->getSDNodes()) { 9895 if (!SD) 9896 continue; 9897 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 9898 SD->setHasDebugValue(true); 9899 } 9900 DbgInfo->add(DB, isParameter); 9901 } 9902 9903 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 9904 9905 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 9906 SDValue NewMemOpChain) { 9907 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 9908 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 9909 // The new memory operation must have the same position as the old load in 9910 // terms of memory dependency. Create a TokenFactor for the old load and new 9911 // memory operation and update uses of the old load's output chain to use that 9912 // TokenFactor. 9913 if (OldChain == NewMemOpChain || OldChain.use_empty()) 9914 return NewMemOpChain; 9915 9916 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 9917 OldChain, NewMemOpChain); 9918 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 9919 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 9920 return TokenFactor; 9921 } 9922 9923 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 9924 SDValue NewMemOp) { 9925 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 9926 SDValue OldChain = SDValue(OldLoad, 1); 9927 SDValue NewMemOpChain = NewMemOp.getValue(1); 9928 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 9929 } 9930 9931 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 9932 Function **OutFunction) { 9933 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 9934 9935 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 9936 auto *Module = MF->getFunction().getParent(); 9937 auto *Function = Module->getFunction(Symbol); 9938 9939 if (OutFunction != nullptr) 9940 *OutFunction = Function; 9941 9942 if (Function != nullptr) { 9943 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 9944 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 9945 } 9946 9947 std::string ErrorStr; 9948 raw_string_ostream ErrorFormatter(ErrorStr); 9949 ErrorFormatter << "Undefined external symbol "; 9950 ErrorFormatter << '"' << Symbol << '"'; 9951 report_fatal_error(Twine(ErrorFormatter.str())); 9952 } 9953 9954 //===----------------------------------------------------------------------===// 9955 // SDNode Class 9956 //===----------------------------------------------------------------------===// 9957 9958 bool llvm::isNullConstant(SDValue V) { 9959 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9960 return Const != nullptr && Const->isZero(); 9961 } 9962 9963 bool llvm::isNullFPConstant(SDValue V) { 9964 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 9965 return Const != nullptr && Const->isZero() && !Const->isNegative(); 9966 } 9967 9968 bool llvm::isAllOnesConstant(SDValue V) { 9969 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9970 return Const != nullptr && Const->isAllOnes(); 9971 } 9972 9973 bool llvm::isOneConstant(SDValue V) { 9974 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 9975 return Const != nullptr && Const->isOne(); 9976 } 9977 9978 SDValue llvm::peekThroughBitcasts(SDValue V) { 9979 while (V.getOpcode() == ISD::BITCAST) 9980 V = V.getOperand(0); 9981 return V; 9982 } 9983 9984 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 9985 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 9986 V = V.getOperand(0); 9987 return V; 9988 } 9989 9990 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 9991 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 9992 V = V.getOperand(0); 9993 return V; 9994 } 9995 9996 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 9997 if (V.getOpcode() != ISD::XOR) 9998 return false; 9999 V = peekThroughBitcasts(V.getOperand(1)); 10000 unsigned NumBits = V.getScalarValueSizeInBits(); 10001 ConstantSDNode *C = 10002 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 10003 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 10004 } 10005 10006 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 10007 bool AllowTruncation) { 10008 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10009 return CN; 10010 10011 // SplatVectors can truncate their operands. Ignore that case here unless 10012 // AllowTruncation is set. 10013 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 10014 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 10015 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10016 EVT CVT = CN->getValueType(0); 10017 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 10018 if (AllowTruncation || CVT == VecEltVT) 10019 return CN; 10020 } 10021 } 10022 10023 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10024 BitVector UndefElements; 10025 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 10026 10027 // BuildVectors can truncate their operands. Ignore that case here unless 10028 // AllowTruncation is set. 10029 if (CN && (UndefElements.none() || AllowUndefs)) { 10030 EVT CVT = CN->getValueType(0); 10031 EVT NSVT = N.getValueType().getScalarType(); 10032 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10033 if (AllowTruncation || (CVT == NSVT)) 10034 return CN; 10035 } 10036 } 10037 10038 return nullptr; 10039 } 10040 10041 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 10042 bool AllowUndefs, 10043 bool AllowTruncation) { 10044 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 10045 return CN; 10046 10047 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10048 BitVector UndefElements; 10049 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 10050 10051 // BuildVectors can truncate their operands. Ignore that case here unless 10052 // AllowTruncation is set. 10053 if (CN && (UndefElements.none() || AllowUndefs)) { 10054 EVT CVT = CN->getValueType(0); 10055 EVT NSVT = N.getValueType().getScalarType(); 10056 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 10057 if (AllowTruncation || (CVT == NSVT)) 10058 return CN; 10059 } 10060 } 10061 10062 return nullptr; 10063 } 10064 10065 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 10066 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10067 return CN; 10068 10069 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10070 BitVector UndefElements; 10071 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 10072 if (CN && (UndefElements.none() || AllowUndefs)) 10073 return CN; 10074 } 10075 10076 if (N.getOpcode() == ISD::SPLAT_VECTOR) 10077 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 10078 return CN; 10079 10080 return nullptr; 10081 } 10082 10083 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 10084 const APInt &DemandedElts, 10085 bool AllowUndefs) { 10086 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 10087 return CN; 10088 10089 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 10090 BitVector UndefElements; 10091 ConstantFPSDNode *CN = 10092 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 10093 if (CN && (UndefElements.none() || AllowUndefs)) 10094 return CN; 10095 } 10096 10097 return nullptr; 10098 } 10099 10100 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 10101 // TODO: may want to use peekThroughBitcast() here. 10102 ConstantSDNode *C = 10103 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 10104 return C && C->isZero(); 10105 } 10106 10107 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 10108 // TODO: may want to use peekThroughBitcast() here. 10109 unsigned BitWidth = N.getScalarValueSizeInBits(); 10110 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10111 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 10112 } 10113 10114 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 10115 N = peekThroughBitcasts(N); 10116 unsigned BitWidth = N.getScalarValueSizeInBits(); 10117 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 10118 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 10119 } 10120 10121 HandleSDNode::~HandleSDNode() { 10122 DropOperands(); 10123 } 10124 10125 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 10126 const DebugLoc &DL, 10127 const GlobalValue *GA, EVT VT, 10128 int64_t o, unsigned TF) 10129 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 10130 TheGlobal = GA; 10131 } 10132 10133 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 10134 EVT VT, unsigned SrcAS, 10135 unsigned DestAS) 10136 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 10137 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 10138 10139 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 10140 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 10141 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 10142 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 10143 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 10144 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 10145 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 10146 10147 // We check here that the size of the memory operand fits within the size of 10148 // the MMO. This is because the MMO might indicate only a possible address 10149 // range instead of specifying the affected memory addresses precisely. 10150 // TODO: Make MachineMemOperands aware of scalable vectors. 10151 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 10152 "Size mismatch!"); 10153 } 10154 10155 /// Profile - Gather unique data for the node. 10156 /// 10157 void SDNode::Profile(FoldingSetNodeID &ID) const { 10158 AddNodeIDNode(ID, this); 10159 } 10160 10161 namespace { 10162 10163 struct EVTArray { 10164 std::vector<EVT> VTs; 10165 10166 EVTArray() { 10167 VTs.reserve(MVT::VALUETYPE_SIZE); 10168 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 10169 VTs.push_back(MVT((MVT::SimpleValueType)i)); 10170 } 10171 }; 10172 10173 } // end anonymous namespace 10174 10175 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 10176 static ManagedStatic<EVTArray> SimpleVTArray; 10177 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 10178 10179 /// getValueTypeList - Return a pointer to the specified value type. 10180 /// 10181 const EVT *SDNode::getValueTypeList(EVT VT) { 10182 if (VT.isExtended()) { 10183 sys::SmartScopedLock<true> Lock(*VTMutex); 10184 return &(*EVTs->insert(VT).first); 10185 } 10186 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 10187 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 10188 } 10189 10190 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 10191 /// indicated value. This method ignores uses of other values defined by this 10192 /// operation. 10193 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 10194 assert(Value < getNumValues() && "Bad value!"); 10195 10196 // TODO: Only iterate over uses of a given value of the node 10197 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 10198 if (UI.getUse().getResNo() == Value) { 10199 if (NUses == 0) 10200 return false; 10201 --NUses; 10202 } 10203 } 10204 10205 // Found exactly the right number of uses? 10206 return NUses == 0; 10207 } 10208 10209 /// hasAnyUseOfValue - Return true if there are any use of the indicated 10210 /// value. This method ignores uses of other values defined by this operation. 10211 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 10212 assert(Value < getNumValues() && "Bad value!"); 10213 10214 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 10215 if (UI.getUse().getResNo() == Value) 10216 return true; 10217 10218 return false; 10219 } 10220 10221 /// isOnlyUserOf - Return true if this node is the only use of N. 10222 bool SDNode::isOnlyUserOf(const SDNode *N) const { 10223 bool Seen = false; 10224 for (const SDNode *User : N->uses()) { 10225 if (User == this) 10226 Seen = true; 10227 else 10228 return false; 10229 } 10230 10231 return Seen; 10232 } 10233 10234 /// Return true if the only users of N are contained in Nodes. 10235 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 10236 bool Seen = false; 10237 for (const SDNode *User : N->uses()) { 10238 if (llvm::is_contained(Nodes, User)) 10239 Seen = true; 10240 else 10241 return false; 10242 } 10243 10244 return Seen; 10245 } 10246 10247 /// isOperand - Return true if this node is an operand of N. 10248 bool SDValue::isOperandOf(const SDNode *N) const { 10249 return is_contained(N->op_values(), *this); 10250 } 10251 10252 bool SDNode::isOperandOf(const SDNode *N) const { 10253 return any_of(N->op_values(), 10254 [this](SDValue Op) { return this == Op.getNode(); }); 10255 } 10256 10257 /// reachesChainWithoutSideEffects - Return true if this operand (which must 10258 /// be a chain) reaches the specified operand without crossing any 10259 /// side-effecting instructions on any chain path. In practice, this looks 10260 /// through token factors and non-volatile loads. In order to remain efficient, 10261 /// this only looks a couple of nodes in, it does not do an exhaustive search. 10262 /// 10263 /// Note that we only need to examine chains when we're searching for 10264 /// side-effects; SelectionDAG requires that all side-effects are represented 10265 /// by chains, even if another operand would force a specific ordering. This 10266 /// constraint is necessary to allow transformations like splitting loads. 10267 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 10268 unsigned Depth) const { 10269 if (*this == Dest) return true; 10270 10271 // Don't search too deeply, we just want to be able to see through 10272 // TokenFactor's etc. 10273 if (Depth == 0) return false; 10274 10275 // If this is a token factor, all inputs to the TF happen in parallel. 10276 if (getOpcode() == ISD::TokenFactor) { 10277 // First, try a shallow search. 10278 if (is_contained((*this)->ops(), Dest)) { 10279 // We found the chain we want as an operand of this TokenFactor. 10280 // Essentially, we reach the chain without side-effects if we could 10281 // serialize the TokenFactor into a simple chain of operations with 10282 // Dest as the last operation. This is automatically true if the 10283 // chain has one use: there are no other ordering constraints. 10284 // If the chain has more than one use, we give up: some other 10285 // use of Dest might force a side-effect between Dest and the current 10286 // node. 10287 if (Dest.hasOneUse()) 10288 return true; 10289 } 10290 // Next, try a deep search: check whether every operand of the TokenFactor 10291 // reaches Dest. 10292 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 10293 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 10294 }); 10295 } 10296 10297 // Loads don't have side effects, look through them. 10298 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 10299 if (Ld->isUnordered()) 10300 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 10301 } 10302 return false; 10303 } 10304 10305 bool SDNode::hasPredecessor(const SDNode *N) const { 10306 SmallPtrSet<const SDNode *, 32> Visited; 10307 SmallVector<const SDNode *, 16> Worklist; 10308 Worklist.push_back(this); 10309 return hasPredecessorHelper(N, Visited, Worklist); 10310 } 10311 10312 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 10313 this->Flags.intersectWith(Flags); 10314 } 10315 10316 SDValue 10317 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 10318 ArrayRef<ISD::NodeType> CandidateBinOps, 10319 bool AllowPartials) { 10320 // The pattern must end in an extract from index 0. 10321 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 10322 !isNullConstant(Extract->getOperand(1))) 10323 return SDValue(); 10324 10325 // Match against one of the candidate binary ops. 10326 SDValue Op = Extract->getOperand(0); 10327 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 10328 return Op.getOpcode() == unsigned(BinOp); 10329 })) 10330 return SDValue(); 10331 10332 // Floating-point reductions may require relaxed constraints on the final step 10333 // of the reduction because they may reorder intermediate operations. 10334 unsigned CandidateBinOp = Op.getOpcode(); 10335 if (Op.getValueType().isFloatingPoint()) { 10336 SDNodeFlags Flags = Op->getFlags(); 10337 switch (CandidateBinOp) { 10338 case ISD::FADD: 10339 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 10340 return SDValue(); 10341 break; 10342 default: 10343 llvm_unreachable("Unhandled FP opcode for binop reduction"); 10344 } 10345 } 10346 10347 // Matching failed - attempt to see if we did enough stages that a partial 10348 // reduction from a subvector is possible. 10349 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 10350 if (!AllowPartials || !Op) 10351 return SDValue(); 10352 EVT OpVT = Op.getValueType(); 10353 EVT OpSVT = OpVT.getScalarType(); 10354 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 10355 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 10356 return SDValue(); 10357 BinOp = (ISD::NodeType)CandidateBinOp; 10358 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 10359 getVectorIdxConstant(0, SDLoc(Op))); 10360 }; 10361 10362 // At each stage, we're looking for something that looks like: 10363 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 10364 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 10365 // i32 undef, i32 undef, i32 undef, i32 undef> 10366 // %a = binop <8 x i32> %op, %s 10367 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 10368 // we expect something like: 10369 // <4,5,6,7,u,u,u,u> 10370 // <2,3,u,u,u,u,u,u> 10371 // <1,u,u,u,u,u,u,u> 10372 // While a partial reduction match would be: 10373 // <2,3,u,u,u,u,u,u> 10374 // <1,u,u,u,u,u,u,u> 10375 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 10376 SDValue PrevOp; 10377 for (unsigned i = 0; i < Stages; ++i) { 10378 unsigned MaskEnd = (1 << i); 10379 10380 if (Op.getOpcode() != CandidateBinOp) 10381 return PartialReduction(PrevOp, MaskEnd); 10382 10383 SDValue Op0 = Op.getOperand(0); 10384 SDValue Op1 = Op.getOperand(1); 10385 10386 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 10387 if (Shuffle) { 10388 Op = Op1; 10389 } else { 10390 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 10391 Op = Op0; 10392 } 10393 10394 // The first operand of the shuffle should be the same as the other operand 10395 // of the binop. 10396 if (!Shuffle || Shuffle->getOperand(0) != Op) 10397 return PartialReduction(PrevOp, MaskEnd); 10398 10399 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 10400 for (int Index = 0; Index < (int)MaskEnd; ++Index) 10401 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 10402 return PartialReduction(PrevOp, MaskEnd); 10403 10404 PrevOp = Op; 10405 } 10406 10407 // Handle subvector reductions, which tend to appear after the shuffle 10408 // reduction stages. 10409 while (Op.getOpcode() == CandidateBinOp) { 10410 unsigned NumElts = Op.getValueType().getVectorNumElements(); 10411 SDValue Op0 = Op.getOperand(0); 10412 SDValue Op1 = Op.getOperand(1); 10413 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10414 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 10415 Op0.getOperand(0) != Op1.getOperand(0)) 10416 break; 10417 SDValue Src = Op0.getOperand(0); 10418 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 10419 if (NumSrcElts != (2 * NumElts)) 10420 break; 10421 if (!(Op0.getConstantOperandAPInt(1) == 0 && 10422 Op1.getConstantOperandAPInt(1) == NumElts) && 10423 !(Op1.getConstantOperandAPInt(1) == 0 && 10424 Op0.getConstantOperandAPInt(1) == NumElts)) 10425 break; 10426 Op = Src; 10427 } 10428 10429 BinOp = (ISD::NodeType)CandidateBinOp; 10430 return Op; 10431 } 10432 10433 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 10434 assert(N->getNumValues() == 1 && 10435 "Can't unroll a vector with multiple results!"); 10436 10437 EVT VT = N->getValueType(0); 10438 unsigned NE = VT.getVectorNumElements(); 10439 EVT EltVT = VT.getVectorElementType(); 10440 SDLoc dl(N); 10441 10442 SmallVector<SDValue, 8> Scalars; 10443 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 10444 10445 // If ResNE is 0, fully unroll the vector op. 10446 if (ResNE == 0) 10447 ResNE = NE; 10448 else if (NE > ResNE) 10449 NE = ResNE; 10450 10451 unsigned i; 10452 for (i= 0; i != NE; ++i) { 10453 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 10454 SDValue Operand = N->getOperand(j); 10455 EVT OperandVT = Operand.getValueType(); 10456 if (OperandVT.isVector()) { 10457 // A vector operand; extract a single element. 10458 EVT OperandEltVT = OperandVT.getVectorElementType(); 10459 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 10460 Operand, getVectorIdxConstant(i, dl)); 10461 } else { 10462 // A scalar operand; just use it as is. 10463 Operands[j] = Operand; 10464 } 10465 } 10466 10467 switch (N->getOpcode()) { 10468 default: { 10469 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 10470 N->getFlags())); 10471 break; 10472 } 10473 case ISD::VSELECT: 10474 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 10475 break; 10476 case ISD::SHL: 10477 case ISD::SRA: 10478 case ISD::SRL: 10479 case ISD::ROTL: 10480 case ISD::ROTR: 10481 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 10482 getShiftAmountOperand(Operands[0].getValueType(), 10483 Operands[1]))); 10484 break; 10485 case ISD::SIGN_EXTEND_INREG: { 10486 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 10487 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 10488 Operands[0], 10489 getValueType(ExtVT))); 10490 } 10491 } 10492 } 10493 10494 for (; i < ResNE; ++i) 10495 Scalars.push_back(getUNDEF(EltVT)); 10496 10497 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 10498 return getBuildVector(VecVT, dl, Scalars); 10499 } 10500 10501 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 10502 SDNode *N, unsigned ResNE) { 10503 unsigned Opcode = N->getOpcode(); 10504 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 10505 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 10506 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 10507 "Expected an overflow opcode"); 10508 10509 EVT ResVT = N->getValueType(0); 10510 EVT OvVT = N->getValueType(1); 10511 EVT ResEltVT = ResVT.getVectorElementType(); 10512 EVT OvEltVT = OvVT.getVectorElementType(); 10513 SDLoc dl(N); 10514 10515 // If ResNE is 0, fully unroll the vector op. 10516 unsigned NE = ResVT.getVectorNumElements(); 10517 if (ResNE == 0) 10518 ResNE = NE; 10519 else if (NE > ResNE) 10520 NE = ResNE; 10521 10522 SmallVector<SDValue, 8> LHSScalars; 10523 SmallVector<SDValue, 8> RHSScalars; 10524 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 10525 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 10526 10527 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 10528 SDVTList VTs = getVTList(ResEltVT, SVT); 10529 SmallVector<SDValue, 8> ResScalars; 10530 SmallVector<SDValue, 8> OvScalars; 10531 for (unsigned i = 0; i < NE; ++i) { 10532 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 10533 SDValue Ov = 10534 getSelect(dl, OvEltVT, Res.getValue(1), 10535 getBoolConstant(true, dl, OvEltVT, ResVT), 10536 getConstant(0, dl, OvEltVT)); 10537 10538 ResScalars.push_back(Res); 10539 OvScalars.push_back(Ov); 10540 } 10541 10542 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 10543 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 10544 10545 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 10546 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 10547 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 10548 getBuildVector(NewOvVT, dl, OvScalars)); 10549 } 10550 10551 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 10552 LoadSDNode *Base, 10553 unsigned Bytes, 10554 int Dist) const { 10555 if (LD->isVolatile() || Base->isVolatile()) 10556 return false; 10557 // TODO: probably too restrictive for atomics, revisit 10558 if (!LD->isSimple()) 10559 return false; 10560 if (LD->isIndexed() || Base->isIndexed()) 10561 return false; 10562 if (LD->getChain() != Base->getChain()) 10563 return false; 10564 EVT VT = LD->getValueType(0); 10565 if (VT.getSizeInBits() / 8 != Bytes) 10566 return false; 10567 10568 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 10569 auto LocDecomp = BaseIndexOffset::match(LD, *this); 10570 10571 int64_t Offset = 0; 10572 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 10573 return (Dist * Bytes == Offset); 10574 return false; 10575 } 10576 10577 /// InferPtrAlignment - Infer alignment of a load / store address. Return None 10578 /// if it cannot be inferred. 10579 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 10580 // If this is a GlobalAddress + cst, return the alignment. 10581 const GlobalValue *GV = nullptr; 10582 int64_t GVOffset = 0; 10583 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 10584 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 10585 KnownBits Known(PtrWidth); 10586 llvm::computeKnownBits(GV, Known, getDataLayout()); 10587 unsigned AlignBits = Known.countMinTrailingZeros(); 10588 if (AlignBits) 10589 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 10590 } 10591 10592 // If this is a direct reference to a stack slot, use information about the 10593 // stack slot's alignment. 10594 int FrameIdx = INT_MIN; 10595 int64_t FrameOffset = 0; 10596 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 10597 FrameIdx = FI->getIndex(); 10598 } else if (isBaseWithConstantOffset(Ptr) && 10599 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 10600 // Handle FI+Cst 10601 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 10602 FrameOffset = Ptr.getConstantOperandVal(1); 10603 } 10604 10605 if (FrameIdx != INT_MIN) { 10606 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 10607 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 10608 } 10609 10610 return None; 10611 } 10612 10613 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 10614 /// which is split (or expanded) into two not necessarily identical pieces. 10615 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 10616 // Currently all types are split in half. 10617 EVT LoVT, HiVT; 10618 if (!VT.isVector()) 10619 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 10620 else 10621 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 10622 10623 return std::make_pair(LoVT, HiVT); 10624 } 10625 10626 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 10627 /// type, dependent on an enveloping VT that has been split into two identical 10628 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 10629 std::pair<EVT, EVT> 10630 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 10631 bool *HiIsEmpty) const { 10632 EVT EltTp = VT.getVectorElementType(); 10633 // Examples: 10634 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 10635 // custom VL=9 with enveloping VL=8/8 yields 8/1 10636 // custom VL=10 with enveloping VL=8/8 yields 8/2 10637 // etc. 10638 ElementCount VTNumElts = VT.getVectorElementCount(); 10639 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 10640 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 10641 "Mixing fixed width and scalable vectors when enveloping a type"); 10642 EVT LoVT, HiVT; 10643 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 10644 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10645 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 10646 *HiIsEmpty = false; 10647 } else { 10648 // Flag that hi type has zero storage size, but return split envelop type 10649 // (this would be easier if vector types with zero elements were allowed). 10650 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 10651 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 10652 *HiIsEmpty = true; 10653 } 10654 return std::make_pair(LoVT, HiVT); 10655 } 10656 10657 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 10658 /// low/high part. 10659 std::pair<SDValue, SDValue> 10660 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 10661 const EVT &HiVT) { 10662 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 10663 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 10664 "Splitting vector with an invalid mixture of fixed and scalable " 10665 "vector types"); 10666 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 10667 N.getValueType().getVectorMinNumElements() && 10668 "More vector elements requested than available!"); 10669 SDValue Lo, Hi; 10670 Lo = 10671 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 10672 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 10673 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 10674 // IDX with the runtime scaling factor of the result vector type. For 10675 // fixed-width result vectors, that runtime scaling factor is 1. 10676 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 10677 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 10678 return std::make_pair(Lo, Hi); 10679 } 10680 10681 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT, 10682 const SDLoc &DL) { 10683 // Split the vector length parameter. 10684 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts). 10685 EVT VT = N.getValueType(); 10686 assert(VecVT.getVectorElementCount().isKnownEven() && 10687 "Expecting the mask to be an evenly-sized vector"); 10688 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2; 10689 SDValue HalfNumElts = 10690 VecVT.isFixedLengthVector() 10691 ? getConstant(HalfMinNumElts, DL, VT) 10692 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts)); 10693 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts); 10694 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts); 10695 return std::make_pair(Lo, Hi); 10696 } 10697 10698 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 10699 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 10700 EVT VT = N.getValueType(); 10701 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 10702 NextPowerOf2(VT.getVectorNumElements())); 10703 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 10704 getVectorIdxConstant(0, DL)); 10705 } 10706 10707 void SelectionDAG::ExtractVectorElements(SDValue Op, 10708 SmallVectorImpl<SDValue> &Args, 10709 unsigned Start, unsigned Count, 10710 EVT EltVT) { 10711 EVT VT = Op.getValueType(); 10712 if (Count == 0) 10713 Count = VT.getVectorNumElements(); 10714 if (EltVT == EVT()) 10715 EltVT = VT.getVectorElementType(); 10716 SDLoc SL(Op); 10717 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 10718 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 10719 getVectorIdxConstant(i, SL))); 10720 } 10721 } 10722 10723 // getAddressSpace - Return the address space this GlobalAddress belongs to. 10724 unsigned GlobalAddressSDNode::getAddressSpace() const { 10725 return getGlobal()->getType()->getAddressSpace(); 10726 } 10727 10728 Type *ConstantPoolSDNode::getType() const { 10729 if (isMachineConstantPoolEntry()) 10730 return Val.MachineCPVal->getType(); 10731 return Val.ConstVal->getType(); 10732 } 10733 10734 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 10735 unsigned &SplatBitSize, 10736 bool &HasAnyUndefs, 10737 unsigned MinSplatBits, 10738 bool IsBigEndian) const { 10739 EVT VT = getValueType(0); 10740 assert(VT.isVector() && "Expected a vector type"); 10741 unsigned VecWidth = VT.getSizeInBits(); 10742 if (MinSplatBits > VecWidth) 10743 return false; 10744 10745 // FIXME: The widths are based on this node's type, but build vectors can 10746 // truncate their operands. 10747 SplatValue = APInt(VecWidth, 0); 10748 SplatUndef = APInt(VecWidth, 0); 10749 10750 // Get the bits. Bits with undefined values (when the corresponding element 10751 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 10752 // in SplatValue. If any of the values are not constant, give up and return 10753 // false. 10754 unsigned int NumOps = getNumOperands(); 10755 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 10756 unsigned EltWidth = VT.getScalarSizeInBits(); 10757 10758 for (unsigned j = 0; j < NumOps; ++j) { 10759 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 10760 SDValue OpVal = getOperand(i); 10761 unsigned BitPos = j * EltWidth; 10762 10763 if (OpVal.isUndef()) 10764 SplatUndef.setBits(BitPos, BitPos + EltWidth); 10765 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 10766 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 10767 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 10768 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 10769 else 10770 return false; 10771 } 10772 10773 // The build_vector is all constants or undefs. Find the smallest element 10774 // size that splats the vector. 10775 HasAnyUndefs = (SplatUndef != 0); 10776 10777 // FIXME: This does not work for vectors with elements less than 8 bits. 10778 while (VecWidth > 8) { 10779 unsigned HalfSize = VecWidth / 2; 10780 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 10781 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 10782 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 10783 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 10784 10785 // If the two halves do not match (ignoring undef bits), stop here. 10786 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 10787 MinSplatBits > HalfSize) 10788 break; 10789 10790 SplatValue = HighValue | LowValue; 10791 SplatUndef = HighUndef & LowUndef; 10792 10793 VecWidth = HalfSize; 10794 } 10795 10796 SplatBitSize = VecWidth; 10797 return true; 10798 } 10799 10800 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 10801 BitVector *UndefElements) const { 10802 unsigned NumOps = getNumOperands(); 10803 if (UndefElements) { 10804 UndefElements->clear(); 10805 UndefElements->resize(NumOps); 10806 } 10807 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10808 if (!DemandedElts) 10809 return SDValue(); 10810 SDValue Splatted; 10811 for (unsigned i = 0; i != NumOps; ++i) { 10812 if (!DemandedElts[i]) 10813 continue; 10814 SDValue Op = getOperand(i); 10815 if (Op.isUndef()) { 10816 if (UndefElements) 10817 (*UndefElements)[i] = true; 10818 } else if (!Splatted) { 10819 Splatted = Op; 10820 } else if (Splatted != Op) { 10821 return SDValue(); 10822 } 10823 } 10824 10825 if (!Splatted) { 10826 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 10827 assert(getOperand(FirstDemandedIdx).isUndef() && 10828 "Can only have a splat without a constant for all undefs."); 10829 return getOperand(FirstDemandedIdx); 10830 } 10831 10832 return Splatted; 10833 } 10834 10835 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 10836 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10837 return getSplatValue(DemandedElts, UndefElements); 10838 } 10839 10840 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 10841 SmallVectorImpl<SDValue> &Sequence, 10842 BitVector *UndefElements) const { 10843 unsigned NumOps = getNumOperands(); 10844 Sequence.clear(); 10845 if (UndefElements) { 10846 UndefElements->clear(); 10847 UndefElements->resize(NumOps); 10848 } 10849 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 10850 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 10851 return false; 10852 10853 // Set the undefs even if we don't find a sequence (like getSplatValue). 10854 if (UndefElements) 10855 for (unsigned I = 0; I != NumOps; ++I) 10856 if (DemandedElts[I] && getOperand(I).isUndef()) 10857 (*UndefElements)[I] = true; 10858 10859 // Iteratively widen the sequence length looking for repetitions. 10860 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 10861 Sequence.append(SeqLen, SDValue()); 10862 for (unsigned I = 0; I != NumOps; ++I) { 10863 if (!DemandedElts[I]) 10864 continue; 10865 SDValue &SeqOp = Sequence[I % SeqLen]; 10866 SDValue Op = getOperand(I); 10867 if (Op.isUndef()) { 10868 if (!SeqOp) 10869 SeqOp = Op; 10870 continue; 10871 } 10872 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 10873 Sequence.clear(); 10874 break; 10875 } 10876 SeqOp = Op; 10877 } 10878 if (!Sequence.empty()) 10879 return true; 10880 } 10881 10882 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 10883 return false; 10884 } 10885 10886 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 10887 BitVector *UndefElements) const { 10888 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 10889 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 10890 } 10891 10892 ConstantSDNode * 10893 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 10894 BitVector *UndefElements) const { 10895 return dyn_cast_or_null<ConstantSDNode>( 10896 getSplatValue(DemandedElts, UndefElements)); 10897 } 10898 10899 ConstantSDNode * 10900 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 10901 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 10902 } 10903 10904 ConstantFPSDNode * 10905 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 10906 BitVector *UndefElements) const { 10907 return dyn_cast_or_null<ConstantFPSDNode>( 10908 getSplatValue(DemandedElts, UndefElements)); 10909 } 10910 10911 ConstantFPSDNode * 10912 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 10913 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 10914 } 10915 10916 int32_t 10917 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 10918 uint32_t BitWidth) const { 10919 if (ConstantFPSDNode *CN = 10920 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 10921 bool IsExact; 10922 APSInt IntVal(BitWidth); 10923 const APFloat &APF = CN->getValueAPF(); 10924 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 10925 APFloat::opOK || 10926 !IsExact) 10927 return -1; 10928 10929 return IntVal.exactLogBase2(); 10930 } 10931 return -1; 10932 } 10933 10934 bool BuildVectorSDNode::getConstantRawBits( 10935 bool IsLittleEndian, unsigned DstEltSizeInBits, 10936 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 10937 // Early-out if this contains anything but Undef/Constant/ConstantFP. 10938 if (!isConstant()) 10939 return false; 10940 10941 unsigned NumSrcOps = getNumOperands(); 10942 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 10943 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10944 "Invalid bitcast scale"); 10945 10946 // Extract raw src bits. 10947 SmallVector<APInt> SrcBitElements(NumSrcOps, 10948 APInt::getNullValue(SrcEltSizeInBits)); 10949 BitVector SrcUndeElements(NumSrcOps, false); 10950 10951 for (unsigned I = 0; I != NumSrcOps; ++I) { 10952 SDValue Op = getOperand(I); 10953 if (Op.isUndef()) { 10954 SrcUndeElements.set(I); 10955 continue; 10956 } 10957 auto *CInt = dyn_cast<ConstantSDNode>(Op); 10958 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 10959 assert((CInt || CFP) && "Unknown constant"); 10960 SrcBitElements[I] = 10961 CInt ? CInt->getAPIntValue().truncOrSelf(SrcEltSizeInBits) 10962 : CFP->getValueAPF().bitcastToAPInt(); 10963 } 10964 10965 // Recast to dst width. 10966 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 10967 SrcBitElements, UndefElements, SrcUndeElements); 10968 return true; 10969 } 10970 10971 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 10972 unsigned DstEltSizeInBits, 10973 SmallVectorImpl<APInt> &DstBitElements, 10974 ArrayRef<APInt> SrcBitElements, 10975 BitVector &DstUndefElements, 10976 const BitVector &SrcUndefElements) { 10977 unsigned NumSrcOps = SrcBitElements.size(); 10978 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 10979 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 10980 "Invalid bitcast scale"); 10981 assert(NumSrcOps == SrcUndefElements.size() && 10982 "Vector size mismatch"); 10983 10984 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 10985 DstUndefElements.clear(); 10986 DstUndefElements.resize(NumDstOps, false); 10987 DstBitElements.assign(NumDstOps, APInt::getNullValue(DstEltSizeInBits)); 10988 10989 // Concatenate src elements constant bits together into dst element. 10990 if (SrcEltSizeInBits <= DstEltSizeInBits) { 10991 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 10992 for (unsigned I = 0; I != NumDstOps; ++I) { 10993 DstUndefElements.set(I); 10994 APInt &DstBits = DstBitElements[I]; 10995 for (unsigned J = 0; J != Scale; ++J) { 10996 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 10997 if (SrcUndefElements[Idx]) 10998 continue; 10999 DstUndefElements.reset(I); 11000 const APInt &SrcBits = SrcBitElements[Idx]; 11001 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 11002 "Illegal constant bitwidths"); 11003 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 11004 } 11005 } 11006 return; 11007 } 11008 11009 // Split src element constant bits into dst elements. 11010 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 11011 for (unsigned I = 0; I != NumSrcOps; ++I) { 11012 if (SrcUndefElements[I]) { 11013 DstUndefElements.set(I * Scale, (I + 1) * Scale); 11014 continue; 11015 } 11016 const APInt &SrcBits = SrcBitElements[I]; 11017 for (unsigned J = 0; J != Scale; ++J) { 11018 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 11019 APInt &DstBits = DstBitElements[Idx]; 11020 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 11021 } 11022 } 11023 } 11024 11025 bool BuildVectorSDNode::isConstant() const { 11026 for (const SDValue &Op : op_values()) { 11027 unsigned Opc = Op.getOpcode(); 11028 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 11029 return false; 11030 } 11031 return true; 11032 } 11033 11034 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 11035 // Find the first non-undef value in the shuffle mask. 11036 unsigned i, e; 11037 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 11038 /* search */; 11039 11040 // If all elements are undefined, this shuffle can be considered a splat 11041 // (although it should eventually get simplified away completely). 11042 if (i == e) 11043 return true; 11044 11045 // Make sure all remaining elements are either undef or the same as the first 11046 // non-undef value. 11047 for (int Idx = Mask[i]; i != e; ++i) 11048 if (Mask[i] >= 0 && Mask[i] != Idx) 11049 return false; 11050 return true; 11051 } 11052 11053 // Returns the SDNode if it is a constant integer BuildVector 11054 // or constant integer. 11055 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 11056 if (isa<ConstantSDNode>(N)) 11057 return N.getNode(); 11058 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 11059 return N.getNode(); 11060 // Treat a GlobalAddress supporting constant offset folding as a 11061 // constant integer. 11062 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 11063 if (GA->getOpcode() == ISD::GlobalAddress && 11064 TLI->isOffsetFoldingLegal(GA)) 11065 return GA; 11066 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 11067 isa<ConstantSDNode>(N.getOperand(0))) 11068 return N.getNode(); 11069 return nullptr; 11070 } 11071 11072 // Returns the SDNode if it is a constant float BuildVector 11073 // or constant float. 11074 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 11075 if (isa<ConstantFPSDNode>(N)) 11076 return N.getNode(); 11077 11078 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 11079 return N.getNode(); 11080 11081 return nullptr; 11082 } 11083 11084 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 11085 assert(!Node->OperandList && "Node already has operands"); 11086 assert(SDNode::getMaxNumOperands() >= Vals.size() && 11087 "too many operands to fit into SDNode"); 11088 SDUse *Ops = OperandRecycler.allocate( 11089 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 11090 11091 bool IsDivergent = false; 11092 for (unsigned I = 0; I != Vals.size(); ++I) { 11093 Ops[I].setUser(Node); 11094 Ops[I].setInitial(Vals[I]); 11095 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 11096 IsDivergent |= Ops[I].getNode()->isDivergent(); 11097 } 11098 Node->NumOperands = Vals.size(); 11099 Node->OperandList = Ops; 11100 if (!TLI->isSDNodeAlwaysUniform(Node)) { 11101 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 11102 Node->SDNodeBits.IsDivergent = IsDivergent; 11103 } 11104 checkForCycles(Node); 11105 } 11106 11107 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 11108 SmallVectorImpl<SDValue> &Vals) { 11109 size_t Limit = SDNode::getMaxNumOperands(); 11110 while (Vals.size() > Limit) { 11111 unsigned SliceIdx = Vals.size() - Limit; 11112 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 11113 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 11114 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 11115 Vals.emplace_back(NewTF); 11116 } 11117 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 11118 } 11119 11120 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 11121 EVT VT, SDNodeFlags Flags) { 11122 switch (Opcode) { 11123 default: 11124 return SDValue(); 11125 case ISD::ADD: 11126 case ISD::OR: 11127 case ISD::XOR: 11128 case ISD::UMAX: 11129 return getConstant(0, DL, VT); 11130 case ISD::MUL: 11131 return getConstant(1, DL, VT); 11132 case ISD::AND: 11133 case ISD::UMIN: 11134 return getAllOnesConstant(DL, VT); 11135 case ISD::SMAX: 11136 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 11137 case ISD::SMIN: 11138 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 11139 case ISD::FADD: 11140 return getConstantFP(-0.0, DL, VT); 11141 case ISD::FMUL: 11142 return getConstantFP(1.0, DL, VT); 11143 case ISD::FMINNUM: 11144 case ISD::FMAXNUM: { 11145 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11146 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 11147 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 11148 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 11149 APFloat::getLargest(Semantics); 11150 if (Opcode == ISD::FMAXNUM) 11151 NeutralAF.changeSign(); 11152 11153 return getConstantFP(NeutralAF, DL, VT); 11154 } 11155 } 11156 } 11157 11158 #ifndef NDEBUG 11159 static void checkForCyclesHelper(const SDNode *N, 11160 SmallPtrSetImpl<const SDNode*> &Visited, 11161 SmallPtrSetImpl<const SDNode*> &Checked, 11162 const llvm::SelectionDAG *DAG) { 11163 // If this node has already been checked, don't check it again. 11164 if (Checked.count(N)) 11165 return; 11166 11167 // If a node has already been visited on this depth-first walk, reject it as 11168 // a cycle. 11169 if (!Visited.insert(N).second) { 11170 errs() << "Detected cycle in SelectionDAG\n"; 11171 dbgs() << "Offending node:\n"; 11172 N->dumprFull(DAG); dbgs() << "\n"; 11173 abort(); 11174 } 11175 11176 for (const SDValue &Op : N->op_values()) 11177 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 11178 11179 Checked.insert(N); 11180 Visited.erase(N); 11181 } 11182 #endif 11183 11184 void llvm::checkForCycles(const llvm::SDNode *N, 11185 const llvm::SelectionDAG *DAG, 11186 bool force) { 11187 #ifndef NDEBUG 11188 bool check = force; 11189 #ifdef EXPENSIVE_CHECKS 11190 check = true; 11191 #endif // EXPENSIVE_CHECKS 11192 if (check) { 11193 assert(N && "Checking nonexistent SDNode"); 11194 SmallPtrSet<const SDNode*, 32> visited; 11195 SmallPtrSet<const SDNode*, 32> checked; 11196 checkForCyclesHelper(N, visited, checked, DAG); 11197 } 11198 #endif // !NDEBUG 11199 } 11200 11201 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 11202 checkForCycles(DAG->getRoot().getNode(), DAG, force); 11203 } 11204