xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/FoldingSet.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
40 #include "llvm/CodeGen/SDPatternMatch.h"
41 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
42 #include "llvm/CodeGen/SelectionDAGNodes.h"
43 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
44 #include "llvm/CodeGen/TargetFrameLowering.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetRegisterInfo.h"
47 #include "llvm/CodeGen/TargetSubtargetInfo.h"
48 #include "llvm/CodeGen/ValueTypes.h"
49 #include "llvm/CodeGenTypes/MachineValueType.h"
50 #include "llvm/IR/Constant.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DebugInfoMetadata.h"
54 #include "llvm/IR/DebugLoc.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/GlobalValue.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CodeGen.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/KnownBits.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/TargetParser/Triple.h"
72 #include "llvm/Transforms/Utils/SizeOpts.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <cstdlib>
77 #include <limits>
78 #include <optional>
79 #include <set>
80 #include <string>
81 #include <utility>
82 #include <vector>
83 
84 using namespace llvm;
85 using namespace llvm::SDPatternMatch;
86 
87 /// makeVTList - Return an instance of the SDVTList struct initialized with the
88 /// specified members.
89 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
90   SDVTList Res = {VTs, NumVTs};
91   return Res;
92 }
93 
94 // Default null implementations of the callbacks.
95 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
96 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
97 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
98 
99 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
100 void SelectionDAG::DAGNodeInsertedListener::anchor() {}
101 
102 #define DEBUG_TYPE "selectiondag"
103 
104 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
105        cl::Hidden, cl::init(true),
106        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
107 
108 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
109        cl::desc("Number limit for gluing ld/st of memcpy."),
110        cl::Hidden, cl::init(0));
111 
112 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
113   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
114 }
115 
116 //===----------------------------------------------------------------------===//
117 //                              ConstantFPSDNode Class
118 //===----------------------------------------------------------------------===//
119 
120 /// isExactlyValue - We don't rely on operator== working on double values, as
121 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
122 /// As such, this method can be used to do an exact bit-for-bit comparison of
123 /// two floating point values.
124 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
125   return getValueAPF().bitwiseIsEqual(V);
126 }
127 
128 bool ConstantFPSDNode::isValueValidForType(EVT VT,
129                                            const APFloat& Val) {
130   assert(VT.isFloatingPoint() && "Can only convert between FP types");
131 
132   // convert modifies in place, so make a copy.
133   APFloat Val2 = APFloat(Val);
134   bool losesInfo;
135   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
136                       APFloat::rmNearestTiesToEven,
137                       &losesInfo);
138   return !losesInfo;
139 }
140 
141 //===----------------------------------------------------------------------===//
142 //                              ISD Namespace
143 //===----------------------------------------------------------------------===//
144 
145 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
146   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
147     unsigned EltSize =
148         N->getValueType(0).getVectorElementType().getSizeInBits();
149     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
150       SplatVal = Op0->getAPIntValue().trunc(EltSize);
151       return true;
152     }
153     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
154       SplatVal = Op0->getValueAPF().bitcastToAPInt().trunc(EltSize);
155       return true;
156     }
157   }
158 
159   auto *BV = dyn_cast<BuildVectorSDNode>(N);
160   if (!BV)
161     return false;
162 
163   APInt SplatUndef;
164   unsigned SplatBitSize;
165   bool HasUndefs;
166   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
167   // Endianness does not matter here. We are checking for a splat given the
168   // element size of the vector, and if we find such a splat for little endian
169   // layout, then that should be valid also for big endian (as the full vector
170   // size is known to be a multiple of the element size).
171   const bool IsBigEndian = false;
172   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
173                              EltSize, IsBigEndian) &&
174          EltSize == SplatBitSize;
175 }
176 
177 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
178 // specializations of the more general isConstantSplatVector()?
179 
180 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
181   // Look through a bit convert.
182   while (N->getOpcode() == ISD::BITCAST)
183     N = N->getOperand(0).getNode();
184 
185   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
186     APInt SplatVal;
187     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
188   }
189 
190   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
191 
192   unsigned i = 0, e = N->getNumOperands();
193 
194   // Skip over all of the undef values.
195   while (i != e && N->getOperand(i).isUndef())
196     ++i;
197 
198   // Do not accept an all-undef vector.
199   if (i == e) return false;
200 
201   // Do not accept build_vectors that aren't all constants or which have non-~0
202   // elements. We have to be a bit careful here, as the type of the constant
203   // may not be the same as the type of the vector elements due to type
204   // legalization (the elements are promoted to a legal type for the target and
205   // a vector of a type may be legal when the base element type is not).
206   // We only want to check enough bits to cover the vector elements, because
207   // we care if the resultant vector is all ones, not whether the individual
208   // constants are.
209   SDValue NotZero = N->getOperand(i);
210   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
211   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
212     if (CN->getAPIntValue().countr_one() < EltSize)
213       return false;
214   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
215     if (CFPN->getValueAPF().bitcastToAPInt().countr_one() < EltSize)
216       return false;
217   } else
218     return false;
219 
220   // Okay, we have at least one ~0 value, check to see if the rest match or are
221   // undefs. Even with the above element type twiddling, this should be OK, as
222   // the same type legalization should have applied to all the elements.
223   for (++i; i != e; ++i)
224     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
225       return false;
226   return true;
227 }
228 
229 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
230   // Look through a bit convert.
231   while (N->getOpcode() == ISD::BITCAST)
232     N = N->getOperand(0).getNode();
233 
234   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
235     APInt SplatVal;
236     return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
237   }
238 
239   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
240 
241   bool IsAllUndef = true;
242   for (const SDValue &Op : N->op_values()) {
243     if (Op.isUndef())
244       continue;
245     IsAllUndef = false;
246     // Do not accept build_vectors that aren't all constants or which have non-0
247     // elements. We have to be a bit careful here, as the type of the constant
248     // may not be the same as the type of the vector elements due to type
249     // legalization (the elements are promoted to a legal type for the target
250     // and a vector of a type may be legal when the base element type is not).
251     // We only want to check enough bits to cover the vector elements, because
252     // we care if the resultant vector is all zeros, not whether the individual
253     // constants are.
254     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
255     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
256       if (CN->getAPIntValue().countr_zero() < EltSize)
257         return false;
258     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
259       if (CFPN->getValueAPF().bitcastToAPInt().countr_zero() < EltSize)
260         return false;
261     } else
262       return false;
263   }
264 
265   // Do not accept an all-undef vector.
266   if (IsAllUndef)
267     return false;
268   return true;
269 }
270 
271 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
272   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
273 }
274 
275 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
276   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
277 }
278 
279 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
280   if (N->getOpcode() != ISD::BUILD_VECTOR)
281     return false;
282 
283   for (const SDValue &Op : N->op_values()) {
284     if (Op.isUndef())
285       continue;
286     if (!isa<ConstantSDNode>(Op))
287       return false;
288   }
289   return true;
290 }
291 
292 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
293   if (N->getOpcode() != ISD::BUILD_VECTOR)
294     return false;
295 
296   for (const SDValue &Op : N->op_values()) {
297     if (Op.isUndef())
298       continue;
299     if (!isa<ConstantFPSDNode>(Op))
300       return false;
301   }
302   return true;
303 }
304 
305 bool ISD::isVectorShrinkable(const SDNode *N, unsigned NewEltSize,
306                              bool Signed) {
307   assert(N->getValueType(0).isVector() && "Expected a vector!");
308 
309   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
310   if (EltSize <= NewEltSize)
311     return false;
312 
313   if (N->getOpcode() == ISD::ZERO_EXTEND) {
314     return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
315             NewEltSize) &&
316            !Signed;
317   }
318   if (N->getOpcode() == ISD::SIGN_EXTEND) {
319     return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
320             NewEltSize) &&
321            Signed;
322   }
323   if (N->getOpcode() != ISD::BUILD_VECTOR)
324     return false;
325 
326   for (const SDValue &Op : N->op_values()) {
327     if (Op.isUndef())
328       continue;
329     if (!isa<ConstantSDNode>(Op))
330       return false;
331 
332     APInt C = Op->getAsAPIntVal().trunc(EltSize);
333     if (Signed && C.trunc(NewEltSize).sext(EltSize) != C)
334       return false;
335     if (!Signed && C.trunc(NewEltSize).zext(EltSize) != C)
336       return false;
337   }
338 
339   return true;
340 }
341 
342 bool ISD::allOperandsUndef(const SDNode *N) {
343   // Return false if the node has no operands.
344   // This is "logically inconsistent" with the definition of "all" but
345   // is probably the desired behavior.
346   if (N->getNumOperands() == 0)
347     return false;
348   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
349 }
350 
351 bool ISD::isFreezeUndef(const SDNode *N) {
352   return N->getOpcode() == ISD::FREEZE && N->getOperand(0).isUndef();
353 }
354 
355 template <typename ConstNodeType>
356 bool ISD::matchUnaryPredicateImpl(SDValue Op,
357                                   std::function<bool(ConstNodeType *)> Match,
358                                   bool AllowUndefs) {
359   // FIXME: Add support for scalar UNDEF cases?
360   if (auto *C = dyn_cast<ConstNodeType>(Op))
361     return Match(C);
362 
363   // FIXME: Add support for vector UNDEF cases?
364   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
365       ISD::SPLAT_VECTOR != Op.getOpcode())
366     return false;
367 
368   EVT SVT = Op.getValueType().getScalarType();
369   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
370     if (AllowUndefs && Op.getOperand(i).isUndef()) {
371       if (!Match(nullptr))
372         return false;
373       continue;
374     }
375 
376     auto *Cst = dyn_cast<ConstNodeType>(Op.getOperand(i));
377     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
378       return false;
379   }
380   return true;
381 }
382 // Build used template types.
383 template bool ISD::matchUnaryPredicateImpl<ConstantSDNode>(
384     SDValue, std::function<bool(ConstantSDNode *)>, bool);
385 template bool ISD::matchUnaryPredicateImpl<ConstantFPSDNode>(
386     SDValue, std::function<bool(ConstantFPSDNode *)>, bool);
387 
388 bool ISD::matchBinaryPredicate(
389     SDValue LHS, SDValue RHS,
390     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
391     bool AllowUndefs, bool AllowTypeMismatch) {
392   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
393     return false;
394 
395   // TODO: Add support for scalar UNDEF cases?
396   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
397     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
398       return Match(LHSCst, RHSCst);
399 
400   // TODO: Add support for vector UNDEF cases?
401   if (LHS.getOpcode() != RHS.getOpcode() ||
402       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
403        LHS.getOpcode() != ISD::SPLAT_VECTOR))
404     return false;
405 
406   EVT SVT = LHS.getValueType().getScalarType();
407   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
408     SDValue LHSOp = LHS.getOperand(i);
409     SDValue RHSOp = RHS.getOperand(i);
410     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
411     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
412     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
413     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
414     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
415       return false;
416     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
417                                LHSOp.getValueType() != RHSOp.getValueType()))
418       return false;
419     if (!Match(LHSCst, RHSCst))
420       return false;
421   }
422   return true;
423 }
424 
425 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
426   switch (VecReduceOpcode) {
427   default:
428     llvm_unreachable("Expected VECREDUCE opcode");
429   case ISD::VECREDUCE_FADD:
430   case ISD::VECREDUCE_SEQ_FADD:
431   case ISD::VP_REDUCE_FADD:
432   case ISD::VP_REDUCE_SEQ_FADD:
433     return ISD::FADD;
434   case ISD::VECREDUCE_FMUL:
435   case ISD::VECREDUCE_SEQ_FMUL:
436   case ISD::VP_REDUCE_FMUL:
437   case ISD::VP_REDUCE_SEQ_FMUL:
438     return ISD::FMUL;
439   case ISD::VECREDUCE_ADD:
440   case ISD::VP_REDUCE_ADD:
441     return ISD::ADD;
442   case ISD::VECREDUCE_MUL:
443   case ISD::VP_REDUCE_MUL:
444     return ISD::MUL;
445   case ISD::VECREDUCE_AND:
446   case ISD::VP_REDUCE_AND:
447     return ISD::AND;
448   case ISD::VECREDUCE_OR:
449   case ISD::VP_REDUCE_OR:
450     return ISD::OR;
451   case ISD::VECREDUCE_XOR:
452   case ISD::VP_REDUCE_XOR:
453     return ISD::XOR;
454   case ISD::VECREDUCE_SMAX:
455   case ISD::VP_REDUCE_SMAX:
456     return ISD::SMAX;
457   case ISD::VECREDUCE_SMIN:
458   case ISD::VP_REDUCE_SMIN:
459     return ISD::SMIN;
460   case ISD::VECREDUCE_UMAX:
461   case ISD::VP_REDUCE_UMAX:
462     return ISD::UMAX;
463   case ISD::VECREDUCE_UMIN:
464   case ISD::VP_REDUCE_UMIN:
465     return ISD::UMIN;
466   case ISD::VECREDUCE_FMAX:
467   case ISD::VP_REDUCE_FMAX:
468     return ISD::FMAXNUM;
469   case ISD::VECREDUCE_FMIN:
470   case ISD::VP_REDUCE_FMIN:
471     return ISD::FMINNUM;
472   case ISD::VECREDUCE_FMAXIMUM:
473   case ISD::VP_REDUCE_FMAXIMUM:
474     return ISD::FMAXIMUM;
475   case ISD::VECREDUCE_FMINIMUM:
476   case ISD::VP_REDUCE_FMINIMUM:
477     return ISD::FMINIMUM;
478   }
479 }
480 
481 bool ISD::isVPOpcode(unsigned Opcode) {
482   switch (Opcode) {
483   default:
484     return false;
485 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...)                                    \
486   case ISD::VPSD:                                                              \
487     return true;
488 #include "llvm/IR/VPIntrinsics.def"
489   }
490 }
491 
492 bool ISD::isVPBinaryOp(unsigned Opcode) {
493   switch (Opcode) {
494   default:
495     break;
496 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
497 #define VP_PROPERTY_BINARYOP return true;
498 #define END_REGISTER_VP_SDNODE(VPSD) break;
499 #include "llvm/IR/VPIntrinsics.def"
500   }
501   return false;
502 }
503 
504 bool ISD::isVPReduction(unsigned Opcode) {
505   switch (Opcode) {
506   default:
507     break;
508 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
509 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true;
510 #define END_REGISTER_VP_SDNODE(VPSD) break;
511 #include "llvm/IR/VPIntrinsics.def"
512   }
513   return false;
514 }
515 
516 /// The operand position of the vector mask.
517 std::optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
518   switch (Opcode) {
519   default:
520     return std::nullopt;
521 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...)         \
522   case ISD::VPSD:                                                              \
523     return MASKPOS;
524 #include "llvm/IR/VPIntrinsics.def"
525   }
526 }
527 
528 /// The operand position of the explicit vector length parameter.
529 std::optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
530   switch (Opcode) {
531   default:
532     return std::nullopt;
533 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS)      \
534   case ISD::VPSD:                                                              \
535     return EVLPOS;
536 #include "llvm/IR/VPIntrinsics.def"
537   }
538 }
539 
540 std::optional<unsigned> ISD::getBaseOpcodeForVP(unsigned VPOpcode,
541                                                 bool hasFPExcept) {
542   // FIXME: Return strict opcodes in case of fp exceptions.
543   switch (VPOpcode) {
544   default:
545     return std::nullopt;
546 #define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC:
547 #define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC;
548 #define END_REGISTER_VP_SDNODE(VPOPC) break;
549 #include "llvm/IR/VPIntrinsics.def"
550   }
551   return std::nullopt;
552 }
553 
554 unsigned ISD::getVPForBaseOpcode(unsigned Opcode) {
555   switch (Opcode) {
556   default:
557     llvm_unreachable("can not translate this Opcode to VP.");
558 #define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break;
559 #define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC:
560 #define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC;
561 #include "llvm/IR/VPIntrinsics.def"
562   }
563 }
564 
565 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
566   switch (ExtType) {
567   case ISD::EXTLOAD:
568     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
569   case ISD::SEXTLOAD:
570     return ISD::SIGN_EXTEND;
571   case ISD::ZEXTLOAD:
572     return ISD::ZERO_EXTEND;
573   default:
574     break;
575   }
576 
577   llvm_unreachable("Invalid LoadExtType");
578 }
579 
580 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
581   // To perform this operation, we just need to swap the L and G bits of the
582   // operation.
583   unsigned OldL = (Operation >> 2) & 1;
584   unsigned OldG = (Operation >> 1) & 1;
585   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
586                        (OldL << 1) |       // New G bit
587                        (OldG << 2));       // New L bit.
588 }
589 
590 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
591   unsigned Operation = Op;
592   if (isIntegerLike)
593     Operation ^= 7;   // Flip L, G, E bits, but not U.
594   else
595     Operation ^= 15;  // Flip all of the condition bits.
596 
597   if (Operation > ISD::SETTRUE2)
598     Operation &= ~8;  // Don't let N and U bits get set.
599 
600   return ISD::CondCode(Operation);
601 }
602 
603 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
604   return getSetCCInverseImpl(Op, Type.isInteger());
605 }
606 
607 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
608                                                bool isIntegerLike) {
609   return getSetCCInverseImpl(Op, isIntegerLike);
610 }
611 
612 /// For an integer comparison, return 1 if the comparison is a signed operation
613 /// and 2 if the result is an unsigned comparison. Return zero if the operation
614 /// does not depend on the sign of the input (setne and seteq).
615 static int isSignedOp(ISD::CondCode Opcode) {
616   switch (Opcode) {
617   default: llvm_unreachable("Illegal integer setcc operation!");
618   case ISD::SETEQ:
619   case ISD::SETNE: return 0;
620   case ISD::SETLT:
621   case ISD::SETLE:
622   case ISD::SETGT:
623   case ISD::SETGE: return 1;
624   case ISD::SETULT:
625   case ISD::SETULE:
626   case ISD::SETUGT:
627   case ISD::SETUGE: return 2;
628   }
629 }
630 
631 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
632                                        EVT Type) {
633   bool IsInteger = Type.isInteger();
634   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
635     // Cannot fold a signed integer setcc with an unsigned integer setcc.
636     return ISD::SETCC_INVALID;
637 
638   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
639 
640   // If the N and U bits get set, then the resultant comparison DOES suddenly
641   // care about orderedness, and it is true when ordered.
642   if (Op > ISD::SETTRUE2)
643     Op &= ~16;     // Clear the U bit if the N bit is set.
644 
645   // Canonicalize illegal integer setcc's.
646   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
647     Op = ISD::SETNE;
648 
649   return ISD::CondCode(Op);
650 }
651 
652 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
653                                         EVT Type) {
654   bool IsInteger = Type.isInteger();
655   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
656     // Cannot fold a signed setcc with an unsigned setcc.
657     return ISD::SETCC_INVALID;
658 
659   // Combine all of the condition bits.
660   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
661 
662   // Canonicalize illegal integer setcc's.
663   if (IsInteger) {
664     switch (Result) {
665     default: break;
666     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
667     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
668     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
669     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
670     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
671     }
672   }
673 
674   return Result;
675 }
676 
677 //===----------------------------------------------------------------------===//
678 //                           SDNode Profile Support
679 //===----------------------------------------------------------------------===//
680 
681 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
682 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
683   ID.AddInteger(OpC);
684 }
685 
686 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
687 /// solely with their pointer.
688 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
689   ID.AddPointer(VTList.VTs);
690 }
691 
692 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
693 static void AddNodeIDOperands(FoldingSetNodeID &ID,
694                               ArrayRef<SDValue> Ops) {
695   for (const auto &Op : Ops) {
696     ID.AddPointer(Op.getNode());
697     ID.AddInteger(Op.getResNo());
698   }
699 }
700 
701 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
702 static void AddNodeIDOperands(FoldingSetNodeID &ID,
703                               ArrayRef<SDUse> Ops) {
704   for (const auto &Op : Ops) {
705     ID.AddPointer(Op.getNode());
706     ID.AddInteger(Op.getResNo());
707   }
708 }
709 
710 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC,
711                           SDVTList VTList, ArrayRef<SDValue> OpList) {
712   AddNodeIDOpcode(ID, OpC);
713   AddNodeIDValueTypes(ID, VTList);
714   AddNodeIDOperands(ID, OpList);
715 }
716 
717 /// If this is an SDNode with special info, add this info to the NodeID data.
718 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
719   switch (N->getOpcode()) {
720   case ISD::TargetExternalSymbol:
721   case ISD::ExternalSymbol:
722   case ISD::MCSymbol:
723     llvm_unreachable("Should only be used on nodes with operands");
724   default: break;  // Normal nodes don't need extra info.
725   case ISD::TargetConstant:
726   case ISD::Constant: {
727     const ConstantSDNode *C = cast<ConstantSDNode>(N);
728     ID.AddPointer(C->getConstantIntValue());
729     ID.AddBoolean(C->isOpaque());
730     break;
731   }
732   case ISD::TargetConstantFP:
733   case ISD::ConstantFP:
734     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
735     break;
736   case ISD::TargetGlobalAddress:
737   case ISD::GlobalAddress:
738   case ISD::TargetGlobalTLSAddress:
739   case ISD::GlobalTLSAddress: {
740     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
741     ID.AddPointer(GA->getGlobal());
742     ID.AddInteger(GA->getOffset());
743     ID.AddInteger(GA->getTargetFlags());
744     break;
745   }
746   case ISD::BasicBlock:
747     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
748     break;
749   case ISD::Register:
750     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
751     break;
752   case ISD::RegisterMask:
753     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
754     break;
755   case ISD::SRCVALUE:
756     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
757     break;
758   case ISD::FrameIndex:
759   case ISD::TargetFrameIndex:
760     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
761     break;
762   case ISD::LIFETIME_START:
763   case ISD::LIFETIME_END:
764     if (cast<LifetimeSDNode>(N)->hasOffset()) {
765       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
766       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
767     }
768     break;
769   case ISD::PSEUDO_PROBE:
770     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
771     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
772     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
773     break;
774   case ISD::JumpTable:
775   case ISD::TargetJumpTable:
776     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
777     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
778     break;
779   case ISD::ConstantPool:
780   case ISD::TargetConstantPool: {
781     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
782     ID.AddInteger(CP->getAlign().value());
783     ID.AddInteger(CP->getOffset());
784     if (CP->isMachineConstantPoolEntry())
785       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
786     else
787       ID.AddPointer(CP->getConstVal());
788     ID.AddInteger(CP->getTargetFlags());
789     break;
790   }
791   case ISD::TargetIndex: {
792     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
793     ID.AddInteger(TI->getIndex());
794     ID.AddInteger(TI->getOffset());
795     ID.AddInteger(TI->getTargetFlags());
796     break;
797   }
798   case ISD::LOAD: {
799     const LoadSDNode *LD = cast<LoadSDNode>(N);
800     ID.AddInteger(LD->getMemoryVT().getRawBits());
801     ID.AddInteger(LD->getRawSubclassData());
802     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
803     ID.AddInteger(LD->getMemOperand()->getFlags());
804     break;
805   }
806   case ISD::STORE: {
807     const StoreSDNode *ST = cast<StoreSDNode>(N);
808     ID.AddInteger(ST->getMemoryVT().getRawBits());
809     ID.AddInteger(ST->getRawSubclassData());
810     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
811     ID.AddInteger(ST->getMemOperand()->getFlags());
812     break;
813   }
814   case ISD::VP_LOAD: {
815     const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
816     ID.AddInteger(ELD->getMemoryVT().getRawBits());
817     ID.AddInteger(ELD->getRawSubclassData());
818     ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
819     ID.AddInteger(ELD->getMemOperand()->getFlags());
820     break;
821   }
822   case ISD::VP_STORE: {
823     const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
824     ID.AddInteger(EST->getMemoryVT().getRawBits());
825     ID.AddInteger(EST->getRawSubclassData());
826     ID.AddInteger(EST->getPointerInfo().getAddrSpace());
827     ID.AddInteger(EST->getMemOperand()->getFlags());
828     break;
829   }
830   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
831     const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N);
832     ID.AddInteger(SLD->getMemoryVT().getRawBits());
833     ID.AddInteger(SLD->getRawSubclassData());
834     ID.AddInteger(SLD->getPointerInfo().getAddrSpace());
835     break;
836   }
837   case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
838     const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N);
839     ID.AddInteger(SST->getMemoryVT().getRawBits());
840     ID.AddInteger(SST->getRawSubclassData());
841     ID.AddInteger(SST->getPointerInfo().getAddrSpace());
842     break;
843   }
844   case ISD::VP_GATHER: {
845     const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
846     ID.AddInteger(EG->getMemoryVT().getRawBits());
847     ID.AddInteger(EG->getRawSubclassData());
848     ID.AddInteger(EG->getPointerInfo().getAddrSpace());
849     ID.AddInteger(EG->getMemOperand()->getFlags());
850     break;
851   }
852   case ISD::VP_SCATTER: {
853     const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
854     ID.AddInteger(ES->getMemoryVT().getRawBits());
855     ID.AddInteger(ES->getRawSubclassData());
856     ID.AddInteger(ES->getPointerInfo().getAddrSpace());
857     ID.AddInteger(ES->getMemOperand()->getFlags());
858     break;
859   }
860   case ISD::MLOAD: {
861     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
862     ID.AddInteger(MLD->getMemoryVT().getRawBits());
863     ID.AddInteger(MLD->getRawSubclassData());
864     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
865     ID.AddInteger(MLD->getMemOperand()->getFlags());
866     break;
867   }
868   case ISD::MSTORE: {
869     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
870     ID.AddInteger(MST->getMemoryVT().getRawBits());
871     ID.AddInteger(MST->getRawSubclassData());
872     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
873     ID.AddInteger(MST->getMemOperand()->getFlags());
874     break;
875   }
876   case ISD::MGATHER: {
877     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
878     ID.AddInteger(MG->getMemoryVT().getRawBits());
879     ID.AddInteger(MG->getRawSubclassData());
880     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
881     ID.AddInteger(MG->getMemOperand()->getFlags());
882     break;
883   }
884   case ISD::MSCATTER: {
885     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
886     ID.AddInteger(MS->getMemoryVT().getRawBits());
887     ID.AddInteger(MS->getRawSubclassData());
888     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
889     ID.AddInteger(MS->getMemOperand()->getFlags());
890     break;
891   }
892   case ISD::ATOMIC_CMP_SWAP:
893   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
894   case ISD::ATOMIC_SWAP:
895   case ISD::ATOMIC_LOAD_ADD:
896   case ISD::ATOMIC_LOAD_SUB:
897   case ISD::ATOMIC_LOAD_AND:
898   case ISD::ATOMIC_LOAD_CLR:
899   case ISD::ATOMIC_LOAD_OR:
900   case ISD::ATOMIC_LOAD_XOR:
901   case ISD::ATOMIC_LOAD_NAND:
902   case ISD::ATOMIC_LOAD_MIN:
903   case ISD::ATOMIC_LOAD_MAX:
904   case ISD::ATOMIC_LOAD_UMIN:
905   case ISD::ATOMIC_LOAD_UMAX:
906   case ISD::ATOMIC_LOAD:
907   case ISD::ATOMIC_STORE: {
908     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
909     ID.AddInteger(AT->getMemoryVT().getRawBits());
910     ID.AddInteger(AT->getRawSubclassData());
911     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
912     ID.AddInteger(AT->getMemOperand()->getFlags());
913     break;
914   }
915   case ISD::VECTOR_SHUFFLE: {
916     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask();
917     for (int M : Mask)
918       ID.AddInteger(M);
919     break;
920   }
921   case ISD::TargetBlockAddress:
922   case ISD::BlockAddress: {
923     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
924     ID.AddPointer(BA->getBlockAddress());
925     ID.AddInteger(BA->getOffset());
926     ID.AddInteger(BA->getTargetFlags());
927     break;
928   }
929   case ISD::AssertAlign:
930     ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value());
931     break;
932   case ISD::PREFETCH:
933   case ISD::INTRINSIC_VOID:
934   case ISD::INTRINSIC_W_CHAIN:
935     // Handled by MemIntrinsicSDNode check after the switch.
936     break;
937   } // end switch (N->getOpcode())
938 
939   // MemIntrinsic nodes could also have subclass data, address spaces, and flags
940   // to check.
941   if (auto *MN = dyn_cast<MemIntrinsicSDNode>(N)) {
942     ID.AddInteger(MN->getRawSubclassData());
943     ID.AddInteger(MN->getPointerInfo().getAddrSpace());
944     ID.AddInteger(MN->getMemOperand()->getFlags());
945     ID.AddInteger(MN->getMemoryVT().getRawBits());
946   }
947 }
948 
949 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
950 /// data.
951 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
952   AddNodeIDOpcode(ID, N->getOpcode());
953   // Add the return value info.
954   AddNodeIDValueTypes(ID, N->getVTList());
955   // Add the operand info.
956   AddNodeIDOperands(ID, N->ops());
957 
958   // Handle SDNode leafs with special info.
959   AddNodeIDCustom(ID, N);
960 }
961 
962 //===----------------------------------------------------------------------===//
963 //                              SelectionDAG Class
964 //===----------------------------------------------------------------------===//
965 
966 /// doNotCSE - Return true if CSE should not be performed for this node.
967 static bool doNotCSE(SDNode *N) {
968   if (N->getValueType(0) == MVT::Glue)
969     return true; // Never CSE anything that produces a glue result.
970 
971   switch (N->getOpcode()) {
972   default: break;
973   case ISD::HANDLENODE:
974   case ISD::EH_LABEL:
975     return true;   // Never CSE these nodes.
976   }
977 
978   // Check that remaining values produced are not flags.
979   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
980     if (N->getValueType(i) == MVT::Glue)
981       return true; // Never CSE anything that produces a glue result.
982 
983   return false;
984 }
985 
986 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
987 /// SelectionDAG.
988 void SelectionDAG::RemoveDeadNodes() {
989   // Create a dummy node (which is not added to allnodes), that adds a reference
990   // to the root node, preventing it from being deleted.
991   HandleSDNode Dummy(getRoot());
992 
993   SmallVector<SDNode*, 128> DeadNodes;
994 
995   // Add all obviously-dead nodes to the DeadNodes worklist.
996   for (SDNode &Node : allnodes())
997     if (Node.use_empty())
998       DeadNodes.push_back(&Node);
999 
1000   RemoveDeadNodes(DeadNodes);
1001 
1002   // If the root changed (e.g. it was a dead load, update the root).
1003   setRoot(Dummy.getValue());
1004 }
1005 
1006 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
1007 /// given list, and any nodes that become unreachable as a result.
1008 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
1009 
1010   // Process the worklist, deleting the nodes and adding their uses to the
1011   // worklist.
1012   while (!DeadNodes.empty()) {
1013     SDNode *N = DeadNodes.pop_back_val();
1014     // Skip to next node if we've already managed to delete the node. This could
1015     // happen if replacing a node causes a node previously added to the node to
1016     // be deleted.
1017     if (N->getOpcode() == ISD::DELETED_NODE)
1018       continue;
1019 
1020     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1021       DUL->NodeDeleted(N, nullptr);
1022 
1023     // Take the node out of the appropriate CSE map.
1024     RemoveNodeFromCSEMaps(N);
1025 
1026     // Next, brutally remove the operand list.  This is safe to do, as there are
1027     // no cycles in the graph.
1028     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
1029       SDUse &Use = *I++;
1030       SDNode *Operand = Use.getNode();
1031       Use.set(SDValue());
1032 
1033       // Now that we removed this operand, see if there are no uses of it left.
1034       if (Operand->use_empty())
1035         DeadNodes.push_back(Operand);
1036     }
1037 
1038     DeallocateNode(N);
1039   }
1040 }
1041 
1042 void SelectionDAG::RemoveDeadNode(SDNode *N){
1043   SmallVector<SDNode*, 16> DeadNodes(1, N);
1044 
1045   // Create a dummy node that adds a reference to the root node, preventing
1046   // it from being deleted.  (This matters if the root is an operand of the
1047   // dead node.)
1048   HandleSDNode Dummy(getRoot());
1049 
1050   RemoveDeadNodes(DeadNodes);
1051 }
1052 
1053 void SelectionDAG::DeleteNode(SDNode *N) {
1054   // First take this out of the appropriate CSE map.
1055   RemoveNodeFromCSEMaps(N);
1056 
1057   // Finally, remove uses due to operands of this node, remove from the
1058   // AllNodes list, and delete the node.
1059   DeleteNodeNotInCSEMaps(N);
1060 }
1061 
1062 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
1063   assert(N->getIterator() != AllNodes.begin() &&
1064          "Cannot delete the entry node!");
1065   assert(N->use_empty() && "Cannot delete a node that is not dead!");
1066 
1067   // Drop all of the operands and decrement used node's use counts.
1068   N->DropOperands();
1069 
1070   DeallocateNode(N);
1071 }
1072 
1073 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
1074   assert(!(V->isVariadic() && isParameter));
1075   if (isParameter)
1076     ByvalParmDbgValues.push_back(V);
1077   else
1078     DbgValues.push_back(V);
1079   for (const SDNode *Node : V->getSDNodes())
1080     if (Node)
1081       DbgValMap[Node].push_back(V);
1082 }
1083 
1084 void SDDbgInfo::erase(const SDNode *Node) {
1085   DbgValMapType::iterator I = DbgValMap.find(Node);
1086   if (I == DbgValMap.end())
1087     return;
1088   for (auto &Val: I->second)
1089     Val->setIsInvalidated();
1090   DbgValMap.erase(I);
1091 }
1092 
1093 void SelectionDAG::DeallocateNode(SDNode *N) {
1094   // If we have operands, deallocate them.
1095   removeOperands(N);
1096 
1097   NodeAllocator.Deallocate(AllNodes.remove(N));
1098 
1099   // Set the opcode to DELETED_NODE to help catch bugs when node
1100   // memory is reallocated.
1101   // FIXME: There are places in SDag that have grown a dependency on the opcode
1102   // value in the released node.
1103   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
1104   N->NodeType = ISD::DELETED_NODE;
1105 
1106   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
1107   // them and forget about that node.
1108   DbgInfo->erase(N);
1109 
1110   // Invalidate extra info.
1111   SDEI.erase(N);
1112 }
1113 
1114 #ifndef NDEBUG
1115 /// VerifySDNode - Check the given SDNode.  Aborts if it is invalid.
1116 static void VerifySDNode(SDNode *N, const TargetLowering *TLI) {
1117   switch (N->getOpcode()) {
1118   default:
1119     if (N->getOpcode() > ISD::BUILTIN_OP_END)
1120       TLI->verifyTargetSDNode(N);
1121     break;
1122   case ISD::BUILD_PAIR: {
1123     EVT VT = N->getValueType(0);
1124     assert(N->getNumValues() == 1 && "Too many results!");
1125     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1126            "Wrong return type!");
1127     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1128     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1129            "Mismatched operand types!");
1130     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1131            "Wrong operand type!");
1132     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1133            "Wrong return type size");
1134     break;
1135   }
1136   case ISD::BUILD_VECTOR: {
1137     assert(N->getNumValues() == 1 && "Too many results!");
1138     assert(N->getValueType(0).isVector() && "Wrong return type!");
1139     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1140            "Wrong number of operands!");
1141     EVT EltVT = N->getValueType(0).getVectorElementType();
1142     for (const SDUse &Op : N->ops()) {
1143       assert((Op.getValueType() == EltVT ||
1144               (EltVT.isInteger() && Op.getValueType().isInteger() &&
1145                EltVT.bitsLE(Op.getValueType()))) &&
1146              "Wrong operand type!");
1147       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1148              "Operands must all have the same type");
1149     }
1150     break;
1151   }
1152   }
1153 }
1154 #endif // NDEBUG
1155 
1156 /// Insert a newly allocated node into the DAG.
1157 ///
1158 /// Handles insertion into the all nodes list and CSE map, as well as
1159 /// verification and other common operations when a new node is allocated.
1160 void SelectionDAG::InsertNode(SDNode *N) {
1161   AllNodes.push_back(N);
1162 #ifndef NDEBUG
1163   N->PersistentId = NextPersistentId++;
1164   VerifySDNode(N, TLI);
1165 #endif
1166   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1167     DUL->NodeInserted(N);
1168 }
1169 
1170 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1171 /// correspond to it.  This is useful when we're about to delete or repurpose
1172 /// the node.  We don't want future request for structurally identical nodes
1173 /// to return N anymore.
1174 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1175   bool Erased = false;
1176   switch (N->getOpcode()) {
1177   case ISD::HANDLENODE: return false;  // noop.
1178   case ISD::CONDCODE:
1179     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1180            "Cond code doesn't exist!");
1181     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1182     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1183     break;
1184   case ISD::ExternalSymbol:
1185     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1186     break;
1187   case ISD::TargetExternalSymbol: {
1188     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1189     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1190         ESN->getSymbol(), ESN->getTargetFlags()));
1191     break;
1192   }
1193   case ISD::MCSymbol: {
1194     auto *MCSN = cast<MCSymbolSDNode>(N);
1195     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1196     break;
1197   }
1198   case ISD::VALUETYPE: {
1199     EVT VT = cast<VTSDNode>(N)->getVT();
1200     if (VT.isExtended()) {
1201       Erased = ExtendedValueTypeNodes.erase(VT);
1202     } else {
1203       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1204       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1205     }
1206     break;
1207   }
1208   default:
1209     // Remove it from the CSE Map.
1210     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1211     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1212     Erased = CSEMap.RemoveNode(N);
1213     break;
1214   }
1215 #ifndef NDEBUG
1216   // Verify that the node was actually in one of the CSE maps, unless it has a
1217   // glue result (which cannot be CSE'd) or is one of the special cases that are
1218   // not subject to CSE.
1219   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1220       !N->isMachineOpcode() && !doNotCSE(N)) {
1221     N->dump(this);
1222     dbgs() << "\n";
1223     llvm_unreachable("Node is not in map!");
1224   }
1225 #endif
1226   return Erased;
1227 }
1228 
1229 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1230 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1231 /// node already exists, in which case transfer all its users to the existing
1232 /// node. This transfer can potentially trigger recursive merging.
1233 void
1234 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1235   // For node types that aren't CSE'd, just act as if no identical node
1236   // already exists.
1237   if (!doNotCSE(N)) {
1238     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1239     if (Existing != N) {
1240       // If there was already an existing matching node, use ReplaceAllUsesWith
1241       // to replace the dead one with the existing one.  This can cause
1242       // recursive merging of other unrelated nodes down the line.
1243       Existing->intersectFlagsWith(N->getFlags());
1244       ReplaceAllUsesWith(N, Existing);
1245 
1246       // N is now dead. Inform the listeners and delete it.
1247       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1248         DUL->NodeDeleted(N, Existing);
1249       DeleteNodeNotInCSEMaps(N);
1250       return;
1251     }
1252   }
1253 
1254   // If the node doesn't already exist, we updated it.  Inform listeners.
1255   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1256     DUL->NodeUpdated(N);
1257 }
1258 
1259 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1260 /// were replaced with those specified.  If this node is never memoized,
1261 /// return null, otherwise return a pointer to the slot it would take.  If a
1262 /// node already exists with these operands, the slot will be non-null.
1263 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1264                                            void *&InsertPos) {
1265   if (doNotCSE(N))
1266     return nullptr;
1267 
1268   SDValue Ops[] = { Op };
1269   FoldingSetNodeID ID;
1270   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1271   AddNodeIDCustom(ID, N);
1272   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1273   if (Node)
1274     Node->intersectFlagsWith(N->getFlags());
1275   return Node;
1276 }
1277 
1278 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1279 /// were replaced with those specified.  If this node is never memoized,
1280 /// return null, otherwise return a pointer to the slot it would take.  If a
1281 /// node already exists with these operands, the slot will be non-null.
1282 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1283                                            SDValue Op1, SDValue Op2,
1284                                            void *&InsertPos) {
1285   if (doNotCSE(N))
1286     return nullptr;
1287 
1288   SDValue Ops[] = { Op1, Op2 };
1289   FoldingSetNodeID ID;
1290   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1291   AddNodeIDCustom(ID, N);
1292   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1293   if (Node)
1294     Node->intersectFlagsWith(N->getFlags());
1295   return Node;
1296 }
1297 
1298 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1299 /// were replaced with those specified.  If this node is never memoized,
1300 /// return null, otherwise return a pointer to the slot it would take.  If a
1301 /// node already exists with these operands, the slot will be non-null.
1302 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1303                                            void *&InsertPos) {
1304   if (doNotCSE(N))
1305     return nullptr;
1306 
1307   FoldingSetNodeID ID;
1308   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1309   AddNodeIDCustom(ID, N);
1310   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1311   if (Node)
1312     Node->intersectFlagsWith(N->getFlags());
1313   return Node;
1314 }
1315 
1316 Align SelectionDAG::getEVTAlign(EVT VT) const {
1317   Type *Ty = VT == MVT::iPTR ? PointerType::get(*getContext(), 0)
1318                              : VT.getTypeForEVT(*getContext());
1319 
1320   return getDataLayout().getABITypeAlign(Ty);
1321 }
1322 
1323 // EntryNode could meaningfully have debug info if we can find it...
1324 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOptLevel OL)
1325     : TM(tm), OptLevel(OL), EntryNode(ISD::EntryToken, 0, DebugLoc(),
1326                                       getVTList(MVT::Other, MVT::Glue)),
1327       Root(getEntryNode()) {
1328   InsertNode(&EntryNode);
1329   DbgInfo = new SDDbgInfo();
1330 }
1331 
1332 void SelectionDAG::init(MachineFunction &NewMF,
1333                         OptimizationRemarkEmitter &NewORE, Pass *PassPtr,
1334                         const TargetLibraryInfo *LibraryInfo,
1335                         UniformityInfo *NewUA, ProfileSummaryInfo *PSIin,
1336                         BlockFrequencyInfo *BFIin,
1337                         FunctionVarLocs const *VarLocs) {
1338   MF = &NewMF;
1339   SDAGISelPass = PassPtr;
1340   ORE = &NewORE;
1341   TLI = getSubtarget().getTargetLowering();
1342   TSI = getSubtarget().getSelectionDAGInfo();
1343   LibInfo = LibraryInfo;
1344   Context = &MF->getFunction().getContext();
1345   UA = NewUA;
1346   PSI = PSIin;
1347   BFI = BFIin;
1348   FnVarLocs = VarLocs;
1349 }
1350 
1351 SelectionDAG::~SelectionDAG() {
1352   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1353   allnodes_clear();
1354   OperandRecycler.clear(OperandAllocator);
1355   delete DbgInfo;
1356 }
1357 
1358 bool SelectionDAG::shouldOptForSize() const {
1359   return MF->getFunction().hasOptSize() ||
1360       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1361 }
1362 
1363 void SelectionDAG::allnodes_clear() {
1364   assert(&*AllNodes.begin() == &EntryNode);
1365   AllNodes.remove(AllNodes.begin());
1366   while (!AllNodes.empty())
1367     DeallocateNode(&AllNodes.front());
1368 #ifndef NDEBUG
1369   NextPersistentId = 0;
1370 #endif
1371 }
1372 
1373 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1374                                           void *&InsertPos) {
1375   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1376   if (N) {
1377     switch (N->getOpcode()) {
1378     default: break;
1379     case ISD::Constant:
1380     case ISD::ConstantFP:
1381       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1382                        "debug location.  Use another overload.");
1383     }
1384   }
1385   return N;
1386 }
1387 
1388 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1389                                           const SDLoc &DL, void *&InsertPos) {
1390   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1391   if (N) {
1392     switch (N->getOpcode()) {
1393     case ISD::Constant:
1394     case ISD::ConstantFP:
1395       // Erase debug location from the node if the node is used at several
1396       // different places. Do not propagate one location to all uses as it
1397       // will cause a worse single stepping debugging experience.
1398       if (N->getDebugLoc() != DL.getDebugLoc())
1399         N->setDebugLoc(DebugLoc());
1400       break;
1401     default:
1402       // When the node's point of use is located earlier in the instruction
1403       // sequence than its prior point of use, update its debug info to the
1404       // earlier location.
1405       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1406         N->setDebugLoc(DL.getDebugLoc());
1407       break;
1408     }
1409   }
1410   return N;
1411 }
1412 
1413 void SelectionDAG::clear() {
1414   allnodes_clear();
1415   OperandRecycler.clear(OperandAllocator);
1416   OperandAllocator.Reset();
1417   CSEMap.clear();
1418 
1419   ExtendedValueTypeNodes.clear();
1420   ExternalSymbols.clear();
1421   TargetExternalSymbols.clear();
1422   MCSymbols.clear();
1423   SDEI.clear();
1424   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), nullptr);
1425   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), nullptr);
1426 
1427   EntryNode.UseList = nullptr;
1428   InsertNode(&EntryNode);
1429   Root = getEntryNode();
1430   DbgInfo->clear();
1431 }
1432 
1433 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1434   return VT.bitsGT(Op.getValueType())
1435              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1436              : getNode(ISD::FP_ROUND, DL, VT, Op,
1437                        getIntPtrConstant(0, DL, /*isTarget=*/true));
1438 }
1439 
1440 std::pair<SDValue, SDValue>
1441 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1442                                        const SDLoc &DL, EVT VT) {
1443   assert(!VT.bitsEq(Op.getValueType()) &&
1444          "Strict no-op FP extend/round not allowed.");
1445   SDValue Res =
1446       VT.bitsGT(Op.getValueType())
1447           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1448           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1449                     {Chain, Op, getIntPtrConstant(0, DL)});
1450 
1451   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1452 }
1453 
1454 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1455   return VT.bitsGT(Op.getValueType()) ?
1456     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1457     getNode(ISD::TRUNCATE, DL, VT, Op);
1458 }
1459 
1460 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1461   return VT.bitsGT(Op.getValueType()) ?
1462     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1463     getNode(ISD::TRUNCATE, DL, VT, Op);
1464 }
1465 
1466 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1467   return VT.bitsGT(Op.getValueType()) ?
1468     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1469     getNode(ISD::TRUNCATE, DL, VT, Op);
1470 }
1471 
1472 SDValue SelectionDAG::getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL,
1473                                                 EVT VT) {
1474   assert(!VT.isVector());
1475   auto Type = Op.getValueType();
1476   SDValue DestOp;
1477   if (Type == VT)
1478     return Op;
1479   auto Size = Op.getValueSizeInBits();
1480   DestOp = getBitcast(EVT::getIntegerVT(*Context, Size), Op);
1481   if (DestOp.getValueType() == VT)
1482     return DestOp;
1483 
1484   return getAnyExtOrTrunc(DestOp, DL, VT);
1485 }
1486 
1487 SDValue SelectionDAG::getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL,
1488                                                EVT VT) {
1489   assert(!VT.isVector());
1490   auto Type = Op.getValueType();
1491   SDValue DestOp;
1492   if (Type == VT)
1493     return Op;
1494   auto Size = Op.getValueSizeInBits();
1495   DestOp = getBitcast(MVT::getIntegerVT(Size), Op);
1496   if (DestOp.getValueType() == VT)
1497     return DestOp;
1498 
1499   return getSExtOrTrunc(DestOp, DL, VT);
1500 }
1501 
1502 SDValue SelectionDAG::getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL,
1503                                                EVT VT) {
1504   assert(!VT.isVector());
1505   auto Type = Op.getValueType();
1506   SDValue DestOp;
1507   if (Type == VT)
1508     return Op;
1509   auto Size = Op.getValueSizeInBits();
1510   DestOp = getBitcast(MVT::getIntegerVT(Size), Op);
1511   if (DestOp.getValueType() == VT)
1512     return DestOp;
1513 
1514   return getZExtOrTrunc(DestOp, DL, VT);
1515 }
1516 
1517 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1518                                         EVT OpVT) {
1519   if (VT.bitsLE(Op.getValueType()))
1520     return getNode(ISD::TRUNCATE, SL, VT, Op);
1521 
1522   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1523   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1524 }
1525 
1526 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1527   EVT OpVT = Op.getValueType();
1528   assert(VT.isInteger() && OpVT.isInteger() &&
1529          "Cannot getZeroExtendInReg FP types");
1530   assert(VT.isVector() == OpVT.isVector() &&
1531          "getZeroExtendInReg type should be vector iff the operand "
1532          "type is vector!");
1533   assert((!VT.isVector() ||
1534           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1535          "Vector element counts must match in getZeroExtendInReg");
1536   assert(VT.bitsLE(OpVT) && "Not extending!");
1537   if (OpVT == VT)
1538     return Op;
1539   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1540                                    VT.getScalarSizeInBits());
1541   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1542 }
1543 
1544 SDValue SelectionDAG::getVPZeroExtendInReg(SDValue Op, SDValue Mask,
1545                                            SDValue EVL, const SDLoc &DL,
1546                                            EVT VT) {
1547   EVT OpVT = Op.getValueType();
1548   assert(VT.isInteger() && OpVT.isInteger() &&
1549          "Cannot getVPZeroExtendInReg FP types");
1550   assert(VT.isVector() && OpVT.isVector() &&
1551          "getVPZeroExtendInReg type and operand type should be vector!");
1552   assert(VT.getVectorElementCount() == OpVT.getVectorElementCount() &&
1553          "Vector element counts must match in getZeroExtendInReg");
1554   assert(VT.bitsLE(OpVT) && "Not extending!");
1555   if (OpVT == VT)
1556     return Op;
1557   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1558                                    VT.getScalarSizeInBits());
1559   return getNode(ISD::VP_AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT), Mask,
1560                  EVL);
1561 }
1562 
1563 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1564   // Only unsigned pointer semantics are supported right now. In the future this
1565   // might delegate to TLI to check pointer signedness.
1566   return getZExtOrTrunc(Op, DL, VT);
1567 }
1568 
1569 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1570   // Only unsigned pointer semantics are supported right now. In the future this
1571   // might delegate to TLI to check pointer signedness.
1572   return getZeroExtendInReg(Op, DL, VT);
1573 }
1574 
1575 SDValue SelectionDAG::getNegative(SDValue Val, const SDLoc &DL, EVT VT) {
1576   return getNode(ISD::SUB, DL, VT, getConstant(0, DL, VT), Val);
1577 }
1578 
1579 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1580 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1581   return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1582 }
1583 
1584 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1585   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1586   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1587 }
1588 
1589 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val,
1590                                       SDValue Mask, SDValue EVL, EVT VT) {
1591   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1592   return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL);
1593 }
1594 
1595 SDValue SelectionDAG::getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op,
1596                                          SDValue Mask, SDValue EVL) {
1597   return getVPZExtOrTrunc(DL, VT, Op, Mask, EVL);
1598 }
1599 
1600 SDValue SelectionDAG::getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op,
1601                                        SDValue Mask, SDValue EVL) {
1602   if (VT.bitsGT(Op.getValueType()))
1603     return getNode(ISD::VP_ZERO_EXTEND, DL, VT, Op, Mask, EVL);
1604   if (VT.bitsLT(Op.getValueType()))
1605     return getNode(ISD::VP_TRUNCATE, DL, VT, Op, Mask, EVL);
1606   return Op;
1607 }
1608 
1609 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1610                                       EVT OpVT) {
1611   if (!V)
1612     return getConstant(0, DL, VT);
1613 
1614   switch (TLI->getBooleanContents(OpVT)) {
1615   case TargetLowering::ZeroOrOneBooleanContent:
1616   case TargetLowering::UndefinedBooleanContent:
1617     return getConstant(1, DL, VT);
1618   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1619     return getAllOnesConstant(DL, VT);
1620   }
1621   llvm_unreachable("Unexpected boolean content enum!");
1622 }
1623 
1624 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1625                                   bool isT, bool isO) {
1626   EVT EltVT = VT.getScalarType();
1627   assert((EltVT.getSizeInBits() >= 64 ||
1628           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1629          "getConstant with a uint64_t value that doesn't fit in the type!");
1630   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1631 }
1632 
1633 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1634                                   bool isT, bool isO) {
1635   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1636 }
1637 
1638 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1639                                   EVT VT, bool isT, bool isO) {
1640   assert(VT.isInteger() && "Cannot create FP integer constant!");
1641 
1642   EVT EltVT = VT.getScalarType();
1643   const ConstantInt *Elt = &Val;
1644 
1645   // In some cases the vector type is legal but the element type is illegal and
1646   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1647   // inserted value (the type does not need to match the vector element type).
1648   // Any extra bits introduced will be truncated away.
1649   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1650                            TargetLowering::TypePromoteInteger) {
1651     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1652     APInt NewVal;
1653     if (TLI->isSExtCheaperThanZExt(VT.getScalarType(), EltVT))
1654       NewVal = Elt->getValue().sextOrTrunc(EltVT.getSizeInBits());
1655     else
1656       NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1657     Elt = ConstantInt::get(*getContext(), NewVal);
1658   }
1659   // In other cases the element type is illegal and needs to be expanded, for
1660   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1661   // the value into n parts and use a vector type with n-times the elements.
1662   // Then bitcast to the type requested.
1663   // Legalizing constants too early makes the DAGCombiner's job harder so we
1664   // only legalize if the DAG tells us we must produce legal types.
1665   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1666            TLI->getTypeAction(*getContext(), EltVT) ==
1667                TargetLowering::TypeExpandInteger) {
1668     const APInt &NewVal = Elt->getValue();
1669     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1670     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1671 
1672     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1673     if (VT.isScalableVector() ||
1674         TLI->isOperationLegal(ISD::SPLAT_VECTOR, VT)) {
1675       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1676              "Can only handle an even split!");
1677       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1678 
1679       SmallVector<SDValue, 2> ScalarParts;
1680       for (unsigned i = 0; i != Parts; ++i)
1681         ScalarParts.push_back(getConstant(
1682             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1683             ViaEltVT, isT, isO));
1684 
1685       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1686     }
1687 
1688     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1689     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1690 
1691     // Check the temporary vector is the correct size. If this fails then
1692     // getTypeToTransformTo() probably returned a type whose size (in bits)
1693     // isn't a power-of-2 factor of the requested type size.
1694     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1695 
1696     SmallVector<SDValue, 2> EltParts;
1697     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1698       EltParts.push_back(getConstant(
1699           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1700           ViaEltVT, isT, isO));
1701 
1702     // EltParts is currently in little endian order. If we actually want
1703     // big-endian order then reverse it now.
1704     if (getDataLayout().isBigEndian())
1705       std::reverse(EltParts.begin(), EltParts.end());
1706 
1707     // The elements must be reversed when the element order is different
1708     // to the endianness of the elements (because the BITCAST is itself a
1709     // vector shuffle in this situation). However, we do not need any code to
1710     // perform this reversal because getConstant() is producing a vector
1711     // splat.
1712     // This situation occurs in MIPS MSA.
1713 
1714     SmallVector<SDValue, 8> Ops;
1715     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1716       llvm::append_range(Ops, EltParts);
1717 
1718     SDValue V =
1719         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1720     return V;
1721   }
1722 
1723   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1724          "APInt size does not match type size!");
1725   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1726   SDVTList VTs = getVTList(EltVT);
1727   FoldingSetNodeID ID;
1728   AddNodeIDNode(ID, Opc, VTs, std::nullopt);
1729   ID.AddPointer(Elt);
1730   ID.AddBoolean(isO);
1731   void *IP = nullptr;
1732   SDNode *N = nullptr;
1733   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1734     if (!VT.isVector())
1735       return SDValue(N, 0);
1736 
1737   if (!N) {
1738     N = newSDNode<ConstantSDNode>(isT, isO, Elt, VTs);
1739     CSEMap.InsertNode(N, IP);
1740     InsertNode(N);
1741     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1742   }
1743 
1744   SDValue Result(N, 0);
1745   if (VT.isVector())
1746     Result = getSplat(VT, DL, Result);
1747   return Result;
1748 }
1749 
1750 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1751                                         bool isTarget) {
1752   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1753 }
1754 
1755 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1756                                              const SDLoc &DL) {
1757   assert(VT.isInteger() && "Shift amount is not an integer type!");
1758   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout());
1759   return getConstant(Val, DL, ShiftVT);
1760 }
1761 
1762 SDValue SelectionDAG::getShiftAmountConstant(const APInt &Val, EVT VT,
1763                                              const SDLoc &DL) {
1764   assert(Val.ult(VT.getScalarSizeInBits()) && "Out of range shift");
1765   return getShiftAmountConstant(Val.getZExtValue(), VT, DL);
1766 }
1767 
1768 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1769                                            bool isTarget) {
1770   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1771 }
1772 
1773 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1774                                     bool isTarget) {
1775   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1776 }
1777 
1778 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1779                                     EVT VT, bool isTarget) {
1780   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1781 
1782   EVT EltVT = VT.getScalarType();
1783 
1784   // Do the map lookup using the actual bit pattern for the floating point
1785   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1786   // we don't have issues with SNANs.
1787   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1788   SDVTList VTs = getVTList(EltVT);
1789   FoldingSetNodeID ID;
1790   AddNodeIDNode(ID, Opc, VTs, std::nullopt);
1791   ID.AddPointer(&V);
1792   void *IP = nullptr;
1793   SDNode *N = nullptr;
1794   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1795     if (!VT.isVector())
1796       return SDValue(N, 0);
1797 
1798   if (!N) {
1799     N = newSDNode<ConstantFPSDNode>(isTarget, &V, VTs);
1800     CSEMap.InsertNode(N, IP);
1801     InsertNode(N);
1802   }
1803 
1804   SDValue Result(N, 0);
1805   if (VT.isVector())
1806     Result = getSplat(VT, DL, Result);
1807   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1808   return Result;
1809 }
1810 
1811 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1812                                     bool isTarget) {
1813   EVT EltVT = VT.getScalarType();
1814   if (EltVT == MVT::f32)
1815     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1816   if (EltVT == MVT::f64)
1817     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1818   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1819       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1820     bool Ignored;
1821     APFloat APF = APFloat(Val);
1822     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1823                 &Ignored);
1824     return getConstantFP(APF, DL, VT, isTarget);
1825   }
1826   llvm_unreachable("Unsupported type in getConstantFP");
1827 }
1828 
1829 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1830                                        EVT VT, int64_t Offset, bool isTargetGA,
1831                                        unsigned TargetFlags) {
1832   assert((TargetFlags == 0 || isTargetGA) &&
1833          "Cannot set target flags on target-independent globals");
1834 
1835   // Truncate (with sign-extension) the offset value to the pointer size.
1836   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1837   if (BitWidth < 64)
1838     Offset = SignExtend64(Offset, BitWidth);
1839 
1840   unsigned Opc;
1841   if (GV->isThreadLocal())
1842     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1843   else
1844     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1845 
1846   SDVTList VTs = getVTList(VT);
1847   FoldingSetNodeID ID;
1848   AddNodeIDNode(ID, Opc, VTs, std::nullopt);
1849   ID.AddPointer(GV);
1850   ID.AddInteger(Offset);
1851   ID.AddInteger(TargetFlags);
1852   void *IP = nullptr;
1853   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1854     return SDValue(E, 0);
1855 
1856   auto *N = newSDNode<GlobalAddressSDNode>(
1857       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VTs, Offset, TargetFlags);
1858   CSEMap.InsertNode(N, IP);
1859     InsertNode(N);
1860   return SDValue(N, 0);
1861 }
1862 
1863 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1864   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1865   SDVTList VTs = getVTList(VT);
1866   FoldingSetNodeID ID;
1867   AddNodeIDNode(ID, Opc, VTs, std::nullopt);
1868   ID.AddInteger(FI);
1869   void *IP = nullptr;
1870   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1871     return SDValue(E, 0);
1872 
1873   auto *N = newSDNode<FrameIndexSDNode>(FI, VTs, isTarget);
1874   CSEMap.InsertNode(N, IP);
1875   InsertNode(N);
1876   return SDValue(N, 0);
1877 }
1878 
1879 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1880                                    unsigned TargetFlags) {
1881   assert((TargetFlags == 0 || isTarget) &&
1882          "Cannot set target flags on target-independent jump tables");
1883   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1884   SDVTList VTs = getVTList(VT);
1885   FoldingSetNodeID ID;
1886   AddNodeIDNode(ID, Opc, VTs, std::nullopt);
1887   ID.AddInteger(JTI);
1888   ID.AddInteger(TargetFlags);
1889   void *IP = nullptr;
1890   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1891     return SDValue(E, 0);
1892 
1893   auto *N = newSDNode<JumpTableSDNode>(JTI, VTs, isTarget, TargetFlags);
1894   CSEMap.InsertNode(N, IP);
1895   InsertNode(N);
1896   return SDValue(N, 0);
1897 }
1898 
1899 SDValue SelectionDAG::getJumpTableDebugInfo(int JTI, SDValue Chain,
1900                                             const SDLoc &DL) {
1901   EVT PTy = getTargetLoweringInfo().getPointerTy(getDataLayout());
1902   return getNode(ISD::JUMP_TABLE_DEBUG_INFO, DL, MVT::Glue, Chain,
1903                  getTargetConstant(static_cast<uint64_t>(JTI), DL, PTy, true));
1904 }
1905 
1906 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1907                                       MaybeAlign Alignment, int Offset,
1908                                       bool isTarget, unsigned TargetFlags) {
1909   assert((TargetFlags == 0 || isTarget) &&
1910          "Cannot set target flags on target-independent globals");
1911   if (!Alignment)
1912     Alignment = shouldOptForSize()
1913                     ? getDataLayout().getABITypeAlign(C->getType())
1914                     : getDataLayout().getPrefTypeAlign(C->getType());
1915   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1916   SDVTList VTs = getVTList(VT);
1917   FoldingSetNodeID ID;
1918   AddNodeIDNode(ID, Opc, VTs, std::nullopt);
1919   ID.AddInteger(Alignment->value());
1920   ID.AddInteger(Offset);
1921   ID.AddPointer(C);
1922   ID.AddInteger(TargetFlags);
1923   void *IP = nullptr;
1924   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1925     return SDValue(E, 0);
1926 
1927   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VTs, Offset, *Alignment,
1928                                           TargetFlags);
1929   CSEMap.InsertNode(N, IP);
1930   InsertNode(N);
1931   SDValue V = SDValue(N, 0);
1932   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1933   return V;
1934 }
1935 
1936 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1937                                       MaybeAlign Alignment, int Offset,
1938                                       bool isTarget, unsigned TargetFlags) {
1939   assert((TargetFlags == 0 || isTarget) &&
1940          "Cannot set target flags on target-independent globals");
1941   if (!Alignment)
1942     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1943   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1944   SDVTList VTs = getVTList(VT);
1945   FoldingSetNodeID ID;
1946   AddNodeIDNode(ID, Opc, VTs, std::nullopt);
1947   ID.AddInteger(Alignment->value());
1948   ID.AddInteger(Offset);
1949   C->addSelectionDAGCSEId(ID);
1950   ID.AddInteger(TargetFlags);
1951   void *IP = nullptr;
1952   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1953     return SDValue(E, 0);
1954 
1955   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VTs, Offset, *Alignment,
1956                                           TargetFlags);
1957   CSEMap.InsertNode(N, IP);
1958   InsertNode(N);
1959   return SDValue(N, 0);
1960 }
1961 
1962 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1963   FoldingSetNodeID ID;
1964   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), std::nullopt);
1965   ID.AddPointer(MBB);
1966   void *IP = nullptr;
1967   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1968     return SDValue(E, 0);
1969 
1970   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1971   CSEMap.InsertNode(N, IP);
1972   InsertNode(N);
1973   return SDValue(N, 0);
1974 }
1975 
1976 SDValue SelectionDAG::getValueType(EVT VT) {
1977   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1978       ValueTypeNodes.size())
1979     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1980 
1981   SDNode *&N = VT.isExtended() ?
1982     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1983 
1984   if (N) return SDValue(N, 0);
1985   N = newSDNode<VTSDNode>(VT);
1986   InsertNode(N);
1987   return SDValue(N, 0);
1988 }
1989 
1990 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1991   SDNode *&N = ExternalSymbols[Sym];
1992   if (N) return SDValue(N, 0);
1993   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, getVTList(VT));
1994   InsertNode(N);
1995   return SDValue(N, 0);
1996 }
1997 
1998 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1999   SDNode *&N = MCSymbols[Sym];
2000   if (N)
2001     return SDValue(N, 0);
2002   N = newSDNode<MCSymbolSDNode>(Sym, getVTList(VT));
2003   InsertNode(N);
2004   return SDValue(N, 0);
2005 }
2006 
2007 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
2008                                               unsigned TargetFlags) {
2009   SDNode *&N =
2010       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
2011   if (N) return SDValue(N, 0);
2012   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, getVTList(VT));
2013   InsertNode(N);
2014   return SDValue(N, 0);
2015 }
2016 
2017 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
2018   if ((unsigned)Cond >= CondCodeNodes.size())
2019     CondCodeNodes.resize(Cond+1);
2020 
2021   if (!CondCodeNodes[Cond]) {
2022     auto *N = newSDNode<CondCodeSDNode>(Cond);
2023     CondCodeNodes[Cond] = N;
2024     InsertNode(N);
2025   }
2026 
2027   return SDValue(CondCodeNodes[Cond], 0);
2028 }
2029 
2030 SDValue SelectionDAG::getVScale(const SDLoc &DL, EVT VT, APInt MulImm,
2031                                 bool ConstantFold) {
2032   assert(MulImm.getBitWidth() == VT.getSizeInBits() &&
2033          "APInt size does not match type size!");
2034 
2035   if (MulImm == 0)
2036     return getConstant(0, DL, VT);
2037 
2038   if (ConstantFold) {
2039     const MachineFunction &MF = getMachineFunction();
2040     const Function &F = MF.getFunction();
2041     ConstantRange CR = getVScaleRange(&F, 64);
2042     if (const APInt *C = CR.getSingleElement())
2043       return getConstant(MulImm * C->getZExtValue(), DL, VT);
2044   }
2045 
2046   return getNode(ISD::VSCALE, DL, VT, getConstant(MulImm, DL, VT));
2047 }
2048 
2049 SDValue SelectionDAG::getElementCount(const SDLoc &DL, EVT VT, ElementCount EC,
2050                                       bool ConstantFold) {
2051   if (EC.isScalable())
2052     return getVScale(DL, VT,
2053                      APInt(VT.getSizeInBits(), EC.getKnownMinValue()));
2054 
2055   return getConstant(EC.getKnownMinValue(), DL, VT);
2056 }
2057 
2058 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
2059   APInt One(ResVT.getScalarSizeInBits(), 1);
2060   return getStepVector(DL, ResVT, One);
2061 }
2062 
2063 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT,
2064                                     const APInt &StepVal) {
2065   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
2066   if (ResVT.isScalableVector())
2067     return getNode(
2068         ISD::STEP_VECTOR, DL, ResVT,
2069         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
2070 
2071   SmallVector<SDValue, 16> OpsStepConstants;
2072   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
2073     OpsStepConstants.push_back(
2074         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
2075   return getBuildVector(ResVT, DL, OpsStepConstants);
2076 }
2077 
2078 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
2079 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
2080 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
2081   std::swap(N1, N2);
2082   ShuffleVectorSDNode::commuteMask(M);
2083 }
2084 
2085 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
2086                                        SDValue N2, ArrayRef<int> Mask) {
2087   assert(VT.getVectorNumElements() == Mask.size() &&
2088          "Must have the same number of vector elements as mask elements!");
2089   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2090          "Invalid VECTOR_SHUFFLE");
2091 
2092   // Canonicalize shuffle undef, undef -> undef
2093   if (N1.isUndef() && N2.isUndef())
2094     return getUNDEF(VT);
2095 
2096   // Validate that all indices in Mask are within the range of the elements
2097   // input to the shuffle.
2098   int NElts = Mask.size();
2099   assert(llvm::all_of(Mask,
2100                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
2101          "Index out of range");
2102 
2103   // Copy the mask so we can do any needed cleanup.
2104   SmallVector<int, 8> MaskVec(Mask);
2105 
2106   // Canonicalize shuffle v, v -> v, undef
2107   if (N1 == N2) {
2108     N2 = getUNDEF(VT);
2109     for (int i = 0; i != NElts; ++i)
2110       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
2111   }
2112 
2113   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
2114   if (N1.isUndef())
2115     commuteShuffle(N1, N2, MaskVec);
2116 
2117   if (TLI->hasVectorBlend()) {
2118     // If shuffling a splat, try to blend the splat instead. We do this here so
2119     // that even when this arises during lowering we don't have to re-handle it.
2120     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
2121       BitVector UndefElements;
2122       SDValue Splat = BV->getSplatValue(&UndefElements);
2123       if (!Splat)
2124         return;
2125 
2126       for (int i = 0; i < NElts; ++i) {
2127         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
2128           continue;
2129 
2130         // If this input comes from undef, mark it as such.
2131         if (UndefElements[MaskVec[i] - Offset]) {
2132           MaskVec[i] = -1;
2133           continue;
2134         }
2135 
2136         // If we can blend a non-undef lane, use that instead.
2137         if (!UndefElements[i])
2138           MaskVec[i] = i + Offset;
2139       }
2140     };
2141     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
2142       BlendSplat(N1BV, 0);
2143     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
2144       BlendSplat(N2BV, NElts);
2145   }
2146 
2147   // Canonicalize all index into lhs, -> shuffle lhs, undef
2148   // Canonicalize all index into rhs, -> shuffle rhs, undef
2149   bool AllLHS = true, AllRHS = true;
2150   bool N2Undef = N2.isUndef();
2151   for (int i = 0; i != NElts; ++i) {
2152     if (MaskVec[i] >= NElts) {
2153       if (N2Undef)
2154         MaskVec[i] = -1;
2155       else
2156         AllLHS = false;
2157     } else if (MaskVec[i] >= 0) {
2158       AllRHS = false;
2159     }
2160   }
2161   if (AllLHS && AllRHS)
2162     return getUNDEF(VT);
2163   if (AllLHS && !N2Undef)
2164     N2 = getUNDEF(VT);
2165   if (AllRHS) {
2166     N1 = getUNDEF(VT);
2167     commuteShuffle(N1, N2, MaskVec);
2168   }
2169   // Reset our undef status after accounting for the mask.
2170   N2Undef = N2.isUndef();
2171   // Re-check whether both sides ended up undef.
2172   if (N1.isUndef() && N2Undef)
2173     return getUNDEF(VT);
2174 
2175   // If Identity shuffle return that node.
2176   bool Identity = true, AllSame = true;
2177   for (int i = 0; i != NElts; ++i) {
2178     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
2179     if (MaskVec[i] != MaskVec[0]) AllSame = false;
2180   }
2181   if (Identity && NElts)
2182     return N1;
2183 
2184   // Shuffling a constant splat doesn't change the result.
2185   if (N2Undef) {
2186     SDValue V = N1;
2187 
2188     // Look through any bitcasts. We check that these don't change the number
2189     // (and size) of elements and just changes their types.
2190     while (V.getOpcode() == ISD::BITCAST)
2191       V = V->getOperand(0);
2192 
2193     // A splat should always show up as a build vector node.
2194     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2195       BitVector UndefElements;
2196       SDValue Splat = BV->getSplatValue(&UndefElements);
2197       // If this is a splat of an undef, shuffling it is also undef.
2198       if (Splat && Splat.isUndef())
2199         return getUNDEF(VT);
2200 
2201       bool SameNumElts =
2202           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
2203 
2204       // We only have a splat which can skip shuffles if there is a splatted
2205       // value and no undef lanes rearranged by the shuffle.
2206       if (Splat && UndefElements.none()) {
2207         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
2208         // number of elements match or the value splatted is a zero constant.
2209         if (SameNumElts || isNullConstant(Splat))
2210           return N1;
2211       }
2212 
2213       // If the shuffle itself creates a splat, build the vector directly.
2214       if (AllSame && SameNumElts) {
2215         EVT BuildVT = BV->getValueType(0);
2216         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
2217         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
2218 
2219         // We may have jumped through bitcasts, so the type of the
2220         // BUILD_VECTOR may not match the type of the shuffle.
2221         if (BuildVT != VT)
2222           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
2223         return NewBV;
2224       }
2225     }
2226   }
2227 
2228   SDVTList VTs = getVTList(VT);
2229   FoldingSetNodeID ID;
2230   SDValue Ops[2] = { N1, N2 };
2231   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, VTs, Ops);
2232   for (int i = 0; i != NElts; ++i)
2233     ID.AddInteger(MaskVec[i]);
2234 
2235   void* IP = nullptr;
2236   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2237     return SDValue(E, 0);
2238 
2239   // Allocate the mask array for the node out of the BumpPtrAllocator, since
2240   // SDNode doesn't have access to it.  This memory will be "leaked" when
2241   // the node is deallocated, but recovered when the NodeAllocator is released.
2242   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2243   llvm::copy(MaskVec, MaskAlloc);
2244 
2245   auto *N = newSDNode<ShuffleVectorSDNode>(VTs, dl.getIROrder(),
2246                                            dl.getDebugLoc(), MaskAlloc);
2247   createOperands(N, Ops);
2248 
2249   CSEMap.InsertNode(N, IP);
2250   InsertNode(N);
2251   SDValue V = SDValue(N, 0);
2252   NewSDValueDbgMsg(V, "Creating new node: ", this);
2253   return V;
2254 }
2255 
2256 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
2257   EVT VT = SV.getValueType(0);
2258   SmallVector<int, 8> MaskVec(SV.getMask());
2259   ShuffleVectorSDNode::commuteMask(MaskVec);
2260 
2261   SDValue Op0 = SV.getOperand(0);
2262   SDValue Op1 = SV.getOperand(1);
2263   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2264 }
2265 
2266 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
2267   SDVTList VTs = getVTList(VT);
2268   FoldingSetNodeID ID;
2269   AddNodeIDNode(ID, ISD::Register, VTs, std::nullopt);
2270   ID.AddInteger(RegNo);
2271   void *IP = nullptr;
2272   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2273     return SDValue(E, 0);
2274 
2275   auto *N = newSDNode<RegisterSDNode>(RegNo, VTs);
2276   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, UA);
2277   CSEMap.InsertNode(N, IP);
2278   InsertNode(N);
2279   return SDValue(N, 0);
2280 }
2281 
2282 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2283   FoldingSetNodeID ID;
2284   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), std::nullopt);
2285   ID.AddPointer(RegMask);
2286   void *IP = nullptr;
2287   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2288     return SDValue(E, 0);
2289 
2290   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2291   CSEMap.InsertNode(N, IP);
2292   InsertNode(N);
2293   return SDValue(N, 0);
2294 }
2295 
2296 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2297                                  MCSymbol *Label) {
2298   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2299 }
2300 
2301 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2302                                    SDValue Root, MCSymbol *Label) {
2303   FoldingSetNodeID ID;
2304   SDValue Ops[] = { Root };
2305   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2306   ID.AddPointer(Label);
2307   void *IP = nullptr;
2308   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2309     return SDValue(E, 0);
2310 
2311   auto *N =
2312       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2313   createOperands(N, Ops);
2314 
2315   CSEMap.InsertNode(N, IP);
2316   InsertNode(N);
2317   return SDValue(N, 0);
2318 }
2319 
2320 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2321                                       int64_t Offset, bool isTarget,
2322                                       unsigned TargetFlags) {
2323   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2324   SDVTList VTs = getVTList(VT);
2325 
2326   FoldingSetNodeID ID;
2327   AddNodeIDNode(ID, Opc, VTs, std::nullopt);
2328   ID.AddPointer(BA);
2329   ID.AddInteger(Offset);
2330   ID.AddInteger(TargetFlags);
2331   void *IP = nullptr;
2332   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2333     return SDValue(E, 0);
2334 
2335   auto *N = newSDNode<BlockAddressSDNode>(Opc, VTs, BA, Offset, TargetFlags);
2336   CSEMap.InsertNode(N, IP);
2337   InsertNode(N);
2338   return SDValue(N, 0);
2339 }
2340 
2341 SDValue SelectionDAG::getSrcValue(const Value *V) {
2342   FoldingSetNodeID ID;
2343   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), std::nullopt);
2344   ID.AddPointer(V);
2345 
2346   void *IP = nullptr;
2347   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2348     return SDValue(E, 0);
2349 
2350   auto *N = newSDNode<SrcValueSDNode>(V);
2351   CSEMap.InsertNode(N, IP);
2352   InsertNode(N);
2353   return SDValue(N, 0);
2354 }
2355 
2356 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2357   FoldingSetNodeID ID;
2358   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), std::nullopt);
2359   ID.AddPointer(MD);
2360 
2361   void *IP = nullptr;
2362   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2363     return SDValue(E, 0);
2364 
2365   auto *N = newSDNode<MDNodeSDNode>(MD);
2366   CSEMap.InsertNode(N, IP);
2367   InsertNode(N);
2368   return SDValue(N, 0);
2369 }
2370 
2371 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2372   if (VT == V.getValueType())
2373     return V;
2374 
2375   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2376 }
2377 
2378 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2379                                        unsigned SrcAS, unsigned DestAS) {
2380   SDVTList VTs = getVTList(VT);
2381   SDValue Ops[] = {Ptr};
2382   FoldingSetNodeID ID;
2383   AddNodeIDNode(ID, ISD::ADDRSPACECAST, VTs, Ops);
2384   ID.AddInteger(SrcAS);
2385   ID.AddInteger(DestAS);
2386 
2387   void *IP = nullptr;
2388   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2389     return SDValue(E, 0);
2390 
2391   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2392                                            VTs, SrcAS, DestAS);
2393   createOperands(N, Ops);
2394 
2395   CSEMap.InsertNode(N, IP);
2396   InsertNode(N);
2397   return SDValue(N, 0);
2398 }
2399 
2400 SDValue SelectionDAG::getFreeze(SDValue V) {
2401   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2402 }
2403 
2404 /// getShiftAmountOperand - Return the specified value casted to
2405 /// the target's desired shift amount type.
2406 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2407   EVT OpTy = Op.getValueType();
2408   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2409   if (OpTy == ShTy || OpTy.isVector()) return Op;
2410 
2411   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2412 }
2413 
2414 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2415   SDLoc dl(Node);
2416   const TargetLowering &TLI = getTargetLoweringInfo();
2417   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2418   EVT VT = Node->getValueType(0);
2419   SDValue Tmp1 = Node->getOperand(0);
2420   SDValue Tmp2 = Node->getOperand(1);
2421   const MaybeAlign MA(Node->getConstantOperandVal(3));
2422 
2423   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2424                                Tmp2, MachinePointerInfo(V));
2425   SDValue VAList = VAListLoad;
2426 
2427   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2428     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2429                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2430 
2431     VAList =
2432         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2433                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2434   }
2435 
2436   // Increment the pointer, VAList, to the next vaarg
2437   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2438                  getConstant(getDataLayout().getTypeAllocSize(
2439                                                VT.getTypeForEVT(*getContext())),
2440                              dl, VAList.getValueType()));
2441   // Store the incremented VAList to the legalized pointer
2442   Tmp1 =
2443       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2444   // Load the actual argument out of the pointer VAList
2445   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2446 }
2447 
2448 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2449   SDLoc dl(Node);
2450   const TargetLowering &TLI = getTargetLoweringInfo();
2451   // This defaults to loading a pointer from the input and storing it to the
2452   // output, returning the chain.
2453   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2454   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2455   SDValue Tmp1 =
2456       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2457               Node->getOperand(2), MachinePointerInfo(VS));
2458   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2459                   MachinePointerInfo(VD));
2460 }
2461 
2462 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2463   const DataLayout &DL = getDataLayout();
2464   Type *Ty = VT.getTypeForEVT(*getContext());
2465   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2466 
2467   if (TLI->isTypeLegal(VT) || !VT.isVector())
2468     return RedAlign;
2469 
2470   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2471   const Align StackAlign = TFI->getStackAlign();
2472 
2473   // See if we can choose a smaller ABI alignment in cases where it's an
2474   // illegal vector type that will get broken down.
2475   if (RedAlign > StackAlign) {
2476     EVT IntermediateVT;
2477     MVT RegisterVT;
2478     unsigned NumIntermediates;
2479     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2480                                 NumIntermediates, RegisterVT);
2481     Ty = IntermediateVT.getTypeForEVT(*getContext());
2482     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2483     if (RedAlign2 < RedAlign)
2484       RedAlign = RedAlign2;
2485   }
2486 
2487   return RedAlign;
2488 }
2489 
2490 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2491   MachineFrameInfo &MFI = MF->getFrameInfo();
2492   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2493   int StackID = 0;
2494   if (Bytes.isScalable())
2495     StackID = TFI->getStackIDForScalableVectors();
2496   // The stack id gives an indication of whether the object is scalable or
2497   // not, so it's safe to pass in the minimum size here.
2498   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinValue(), Alignment,
2499                                        false, nullptr, StackID);
2500   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2501 }
2502 
2503 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2504   Type *Ty = VT.getTypeForEVT(*getContext());
2505   Align StackAlign =
2506       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2507   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2508 }
2509 
2510 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2511   TypeSize VT1Size = VT1.getStoreSize();
2512   TypeSize VT2Size = VT2.getStoreSize();
2513   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2514          "Don't know how to choose the maximum size when creating a stack "
2515          "temporary");
2516   TypeSize Bytes = VT1Size.getKnownMinValue() > VT2Size.getKnownMinValue()
2517                        ? VT1Size
2518                        : VT2Size;
2519 
2520   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2521   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2522   const DataLayout &DL = getDataLayout();
2523   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2524   return CreateStackTemporary(Bytes, Align);
2525 }
2526 
2527 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2528                                 ISD::CondCode Cond, const SDLoc &dl) {
2529   EVT OpVT = N1.getValueType();
2530 
2531   auto GetUndefBooleanConstant = [&]() {
2532     if (VT.getScalarType() == MVT::i1 ||
2533         TLI->getBooleanContents(OpVT) ==
2534             TargetLowering::UndefinedBooleanContent)
2535       return getUNDEF(VT);
2536     // ZeroOrOne / ZeroOrNegative require specific values for the high bits,
2537     // so we cannot use getUNDEF(). Return zero instead.
2538     return getConstant(0, dl, VT);
2539   };
2540 
2541   // These setcc operations always fold.
2542   switch (Cond) {
2543   default: break;
2544   case ISD::SETFALSE:
2545   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2546   case ISD::SETTRUE:
2547   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2548 
2549   case ISD::SETOEQ:
2550   case ISD::SETOGT:
2551   case ISD::SETOGE:
2552   case ISD::SETOLT:
2553   case ISD::SETOLE:
2554   case ISD::SETONE:
2555   case ISD::SETO:
2556   case ISD::SETUO:
2557   case ISD::SETUEQ:
2558   case ISD::SETUNE:
2559     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2560     break;
2561   }
2562 
2563   if (OpVT.isInteger()) {
2564     // For EQ and NE, we can always pick a value for the undef to make the
2565     // predicate pass or fail, so we can return undef.
2566     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2567     // icmp eq/ne X, undef -> undef.
2568     if ((N1.isUndef() || N2.isUndef()) &&
2569         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2570       return GetUndefBooleanConstant();
2571 
2572     // If both operands are undef, we can return undef for int comparison.
2573     // icmp undef, undef -> undef.
2574     if (N1.isUndef() && N2.isUndef())
2575       return GetUndefBooleanConstant();
2576 
2577     // icmp X, X -> true/false
2578     // icmp X, undef -> true/false because undef could be X.
2579     if (N1.isUndef() || N2.isUndef() || N1 == N2)
2580       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2581   }
2582 
2583   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2584     const APInt &C2 = N2C->getAPIntValue();
2585     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2586       const APInt &C1 = N1C->getAPIntValue();
2587 
2588       return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)),
2589                              dl, VT, OpVT);
2590     }
2591   }
2592 
2593   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2594   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2595 
2596   if (N1CFP && N2CFP) {
2597     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2598     switch (Cond) {
2599     default: break;
2600     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2601                         return GetUndefBooleanConstant();
2602                       [[fallthrough]];
2603     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2604                                              OpVT);
2605     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2606                         return GetUndefBooleanConstant();
2607                       [[fallthrough]];
2608     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2609                                              R==APFloat::cmpLessThan, dl, VT,
2610                                              OpVT);
2611     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2612                         return GetUndefBooleanConstant();
2613                       [[fallthrough]];
2614     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2615                                              OpVT);
2616     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2617                         return GetUndefBooleanConstant();
2618                       [[fallthrough]];
2619     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2620                                              VT, OpVT);
2621     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2622                         return GetUndefBooleanConstant();
2623                       [[fallthrough]];
2624     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2625                                              R==APFloat::cmpEqual, dl, VT,
2626                                              OpVT);
2627     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2628                         return GetUndefBooleanConstant();
2629                       [[fallthrough]];
2630     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2631                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2632     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2633                                              OpVT);
2634     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2635                                              OpVT);
2636     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2637                                              R==APFloat::cmpEqual, dl, VT,
2638                                              OpVT);
2639     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2640                                              OpVT);
2641     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2642                                              R==APFloat::cmpLessThan, dl, VT,
2643                                              OpVT);
2644     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2645                                              R==APFloat::cmpUnordered, dl, VT,
2646                                              OpVT);
2647     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2648                                              VT, OpVT);
2649     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2650                                              OpVT);
2651     }
2652   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2653     // Ensure that the constant occurs on the RHS.
2654     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2655     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2656       return SDValue();
2657     return getSetCC(dl, VT, N2, N1, SwappedCond);
2658   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2659              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2660     // If an operand is known to be a nan (or undef that could be a nan), we can
2661     // fold it.
2662     // Choosing NaN for the undef will always make unordered comparison succeed
2663     // and ordered comparison fails.
2664     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2665     switch (ISD::getUnorderedFlavor(Cond)) {
2666     default:
2667       llvm_unreachable("Unknown flavor!");
2668     case 0: // Known false.
2669       return getBoolConstant(false, dl, VT, OpVT);
2670     case 1: // Known true.
2671       return getBoolConstant(true, dl, VT, OpVT);
2672     case 2: // Undefined.
2673       return GetUndefBooleanConstant();
2674     }
2675   }
2676 
2677   // Could not fold it.
2678   return SDValue();
2679 }
2680 
2681 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2682 /// use this predicate to simplify operations downstream.
2683 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2684   unsigned BitWidth = Op.getScalarValueSizeInBits();
2685   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2686 }
2687 
2688 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2689 /// this predicate to simplify operations downstream.  Mask is known to be zero
2690 /// for bits that V cannot have.
2691 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2692                                      unsigned Depth) const {
2693   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2694 }
2695 
2696 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2697 /// DemandedElts.  We use this predicate to simplify operations downstream.
2698 /// Mask is known to be zero for bits that V cannot have.
2699 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2700                                      const APInt &DemandedElts,
2701                                      unsigned Depth) const {
2702   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2703 }
2704 
2705 /// MaskedVectorIsZero - Return true if 'Op' is known to be zero in
2706 /// DemandedElts.  We use this predicate to simplify operations downstream.
2707 bool SelectionDAG::MaskedVectorIsZero(SDValue V, const APInt &DemandedElts,
2708                                       unsigned Depth /* = 0 */) const {
2709   return computeKnownBits(V, DemandedElts, Depth).isZero();
2710 }
2711 
2712 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2713 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2714                                         unsigned Depth) const {
2715   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2716 }
2717 
2718 APInt SelectionDAG::computeVectorKnownZeroElements(SDValue Op,
2719                                                    const APInt &DemandedElts,
2720                                                    unsigned Depth) const {
2721   EVT VT = Op.getValueType();
2722   assert(VT.isVector() && !VT.isScalableVector() && "Only for fixed vectors!");
2723 
2724   unsigned NumElts = VT.getVectorNumElements();
2725   assert(DemandedElts.getBitWidth() == NumElts && "Unexpected demanded mask.");
2726 
2727   APInt KnownZeroElements = APInt::getZero(NumElts);
2728   for (unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) {
2729     if (!DemandedElts[EltIdx])
2730       continue; // Don't query elements that are not demanded.
2731     APInt Mask = APInt::getOneBitSet(NumElts, EltIdx);
2732     if (MaskedVectorIsZero(Op, Mask, Depth))
2733       KnownZeroElements.setBit(EltIdx);
2734   }
2735   return KnownZeroElements;
2736 }
2737 
2738 /// isSplatValue - Return true if the vector V has the same value
2739 /// across all DemandedElts. For scalable vectors, we don't know the
2740 /// number of lanes at compile time.  Instead, we use a 1 bit APInt
2741 /// to represent a conservative value for all lanes; that is, that
2742 /// one bit value is implicitly splatted across all lanes.
2743 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2744                                 APInt &UndefElts, unsigned Depth) const {
2745   unsigned Opcode = V.getOpcode();
2746   EVT VT = V.getValueType();
2747   assert(VT.isVector() && "Vector type expected");
2748   assert((!VT.isScalableVector() || DemandedElts.getBitWidth() == 1) &&
2749          "scalable demanded bits are ignored");
2750 
2751   if (!DemandedElts)
2752     return false; // No demanded elts, better to assume we don't know anything.
2753 
2754   if (Depth >= MaxRecursionDepth)
2755     return false; // Limit search depth.
2756 
2757   // Deal with some common cases here that work for both fixed and scalable
2758   // vector types.
2759   switch (Opcode) {
2760   case ISD::SPLAT_VECTOR:
2761     UndefElts = V.getOperand(0).isUndef()
2762                     ? APInt::getAllOnes(DemandedElts.getBitWidth())
2763                     : APInt(DemandedElts.getBitWidth(), 0);
2764     return true;
2765   case ISD::ADD:
2766   case ISD::SUB:
2767   case ISD::AND:
2768   case ISD::XOR:
2769   case ISD::OR: {
2770     APInt UndefLHS, UndefRHS;
2771     SDValue LHS = V.getOperand(0);
2772     SDValue RHS = V.getOperand(1);
2773     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2774         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2775       UndefElts = UndefLHS | UndefRHS;
2776       return true;
2777     }
2778     return false;
2779   }
2780   case ISD::ABS:
2781   case ISD::TRUNCATE:
2782   case ISD::SIGN_EXTEND:
2783   case ISD::ZERO_EXTEND:
2784     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2785   default:
2786     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
2787         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
2788       return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *this,
2789                                             Depth);
2790     break;
2791 }
2792 
2793   // We don't support other cases than those above for scalable vectors at
2794   // the moment.
2795   if (VT.isScalableVector())
2796     return false;
2797 
2798   unsigned NumElts = VT.getVectorNumElements();
2799   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2800   UndefElts = APInt::getZero(NumElts);
2801 
2802   switch (Opcode) {
2803   case ISD::BUILD_VECTOR: {
2804     SDValue Scl;
2805     for (unsigned i = 0; i != NumElts; ++i) {
2806       SDValue Op = V.getOperand(i);
2807       if (Op.isUndef()) {
2808         UndefElts.setBit(i);
2809         continue;
2810       }
2811       if (!DemandedElts[i])
2812         continue;
2813       if (Scl && Scl != Op)
2814         return false;
2815       Scl = Op;
2816     }
2817     return true;
2818   }
2819   case ISD::VECTOR_SHUFFLE: {
2820     // Check if this is a shuffle node doing a splat or a shuffle of a splat.
2821     APInt DemandedLHS = APInt::getZero(NumElts);
2822     APInt DemandedRHS = APInt::getZero(NumElts);
2823     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2824     for (int i = 0; i != (int)NumElts; ++i) {
2825       int M = Mask[i];
2826       if (M < 0) {
2827         UndefElts.setBit(i);
2828         continue;
2829       }
2830       if (!DemandedElts[i])
2831         continue;
2832       if (M < (int)NumElts)
2833         DemandedLHS.setBit(M);
2834       else
2835         DemandedRHS.setBit(M - NumElts);
2836     }
2837 
2838     // If we aren't demanding either op, assume there's no splat.
2839     // If we are demanding both ops, assume there's no splat.
2840     if ((DemandedLHS.isZero() && DemandedRHS.isZero()) ||
2841         (!DemandedLHS.isZero() && !DemandedRHS.isZero()))
2842       return false;
2843 
2844     // See if the demanded elts of the source op is a splat or we only demand
2845     // one element, which should always be a splat.
2846     // TODO: Handle source ops splats with undefs.
2847     auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) {
2848       APInt SrcUndefs;
2849       return (SrcElts.popcount() == 1) ||
2850              (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) &&
2851               (SrcElts & SrcUndefs).isZero());
2852     };
2853     if (!DemandedLHS.isZero())
2854       return CheckSplatSrc(V.getOperand(0), DemandedLHS);
2855     return CheckSplatSrc(V.getOperand(1), DemandedRHS);
2856   }
2857   case ISD::EXTRACT_SUBVECTOR: {
2858     // Offset the demanded elts by the subvector index.
2859     SDValue Src = V.getOperand(0);
2860     // We don't support scalable vectors at the moment.
2861     if (Src.getValueType().isScalableVector())
2862       return false;
2863     uint64_t Idx = V.getConstantOperandVal(1);
2864     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2865     APInt UndefSrcElts;
2866     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
2867     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2868       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2869       return true;
2870     }
2871     break;
2872   }
2873   case ISD::ANY_EXTEND_VECTOR_INREG:
2874   case ISD::SIGN_EXTEND_VECTOR_INREG:
2875   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2876     // Widen the demanded elts by the src element count.
2877     SDValue Src = V.getOperand(0);
2878     // We don't support scalable vectors at the moment.
2879     if (Src.getValueType().isScalableVector())
2880       return false;
2881     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2882     APInt UndefSrcElts;
2883     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
2884     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2885       UndefElts = UndefSrcElts.trunc(NumElts);
2886       return true;
2887     }
2888     break;
2889   }
2890   case ISD::BITCAST: {
2891     SDValue Src = V.getOperand(0);
2892     EVT SrcVT = Src.getValueType();
2893     unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
2894     unsigned BitWidth = VT.getScalarSizeInBits();
2895 
2896     // Ignore bitcasts from unsupported types.
2897     // TODO: Add fp support?
2898     if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger())
2899       break;
2900 
2901     // Bitcast 'small element' vector to 'large element' vector.
2902     if ((BitWidth % SrcBitWidth) == 0) {
2903       // See if each sub element is a splat.
2904       unsigned Scale = BitWidth / SrcBitWidth;
2905       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2906       APInt ScaledDemandedElts =
2907           APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2908       for (unsigned I = 0; I != Scale; ++I) {
2909         APInt SubUndefElts;
2910         APInt SubDemandedElt = APInt::getOneBitSet(Scale, I);
2911         APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt);
2912         SubDemandedElts &= ScaledDemandedElts;
2913         if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1))
2914           return false;
2915         // TODO: Add support for merging sub undef elements.
2916         if (!SubUndefElts.isZero())
2917           return false;
2918       }
2919       return true;
2920     }
2921     break;
2922   }
2923   }
2924 
2925   return false;
2926 }
2927 
2928 /// Helper wrapper to main isSplatValue function.
2929 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
2930   EVT VT = V.getValueType();
2931   assert(VT.isVector() && "Vector type expected");
2932 
2933   APInt UndefElts;
2934   // Since the number of lanes in a scalable vector is unknown at compile time,
2935   // we track one bit which is implicitly broadcast to all lanes.  This means
2936   // that all lanes in a scalable vector are considered demanded.
2937   APInt DemandedElts
2938     = APInt::getAllOnes(VT.isScalableVector() ? 1 : VT.getVectorNumElements());
2939   return isSplatValue(V, DemandedElts, UndefElts) &&
2940          (AllowUndefs || !UndefElts);
2941 }
2942 
2943 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2944   V = peekThroughExtractSubvectors(V);
2945 
2946   EVT VT = V.getValueType();
2947   unsigned Opcode = V.getOpcode();
2948   switch (Opcode) {
2949   default: {
2950     APInt UndefElts;
2951     // Since the number of lanes in a scalable vector is unknown at compile time,
2952     // we track one bit which is implicitly broadcast to all lanes.  This means
2953     // that all lanes in a scalable vector are considered demanded.
2954     APInt DemandedElts
2955       = APInt::getAllOnes(VT.isScalableVector() ? 1 : VT.getVectorNumElements());
2956 
2957     if (isSplatValue(V, DemandedElts, UndefElts)) {
2958       if (VT.isScalableVector()) {
2959         // DemandedElts and UndefElts are ignored for scalable vectors, since
2960         // the only supported cases are SPLAT_VECTOR nodes.
2961         SplatIdx = 0;
2962       } else {
2963         // Handle case where all demanded elements are UNDEF.
2964         if (DemandedElts.isSubsetOf(UndefElts)) {
2965           SplatIdx = 0;
2966           return getUNDEF(VT);
2967         }
2968         SplatIdx = (UndefElts & DemandedElts).countr_one();
2969       }
2970       return V;
2971     }
2972     break;
2973   }
2974   case ISD::SPLAT_VECTOR:
2975     SplatIdx = 0;
2976     return V;
2977   case ISD::VECTOR_SHUFFLE: {
2978     assert(!VT.isScalableVector());
2979     // Check if this is a shuffle node doing a splat.
2980     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2981     // getTargetVShiftNode currently struggles without the splat source.
2982     auto *SVN = cast<ShuffleVectorSDNode>(V);
2983     if (!SVN->isSplat())
2984       break;
2985     int Idx = SVN->getSplatIndex();
2986     int NumElts = V.getValueType().getVectorNumElements();
2987     SplatIdx = Idx % NumElts;
2988     return V.getOperand(Idx / NumElts);
2989   }
2990   }
2991 
2992   return SDValue();
2993 }
2994 
2995 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2996   int SplatIdx;
2997   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2998     EVT SVT = SrcVector.getValueType().getScalarType();
2999     EVT LegalSVT = SVT;
3000     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
3001       if (!SVT.isInteger())
3002         return SDValue();
3003       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
3004       if (LegalSVT.bitsLT(SVT))
3005         return SDValue();
3006     }
3007     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
3008                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
3009   }
3010   return SDValue();
3011 }
3012 
3013 std::optional<ConstantRange>
3014 SelectionDAG::getValidShiftAmountRange(SDValue V, const APInt &DemandedElts,
3015                                        unsigned Depth) const {
3016   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3017           V.getOpcode() == ISD::SRA) &&
3018          "Unknown shift node");
3019   // Shifting more than the bitwidth is not valid.
3020   unsigned BitWidth = V.getScalarValueSizeInBits();
3021 
3022   if (auto *Cst = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
3023     const APInt &ShAmt = Cst->getAPIntValue();
3024     if (ShAmt.uge(BitWidth))
3025       return std::nullopt;
3026     return ConstantRange(ShAmt);
3027   }
3028 
3029   if (auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1))) {
3030     const APInt *MinAmt = nullptr, *MaxAmt = nullptr;
3031     for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3032       if (!DemandedElts[i])
3033         continue;
3034       auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
3035       if (!SA) {
3036         MinAmt = MaxAmt = nullptr;
3037         break;
3038       }
3039       const APInt &ShAmt = SA->getAPIntValue();
3040       if (ShAmt.uge(BitWidth))
3041         return std::nullopt;
3042       if (!MinAmt || MinAmt->ugt(ShAmt))
3043         MinAmt = &ShAmt;
3044       if (!MaxAmt || MaxAmt->ult(ShAmt))
3045         MaxAmt = &ShAmt;
3046     }
3047     assert(((!MinAmt && !MaxAmt) || (MinAmt && MaxAmt)) &&
3048            "Failed to find matching min/max shift amounts");
3049     if (MinAmt && MaxAmt)
3050       return ConstantRange(*MinAmt, *MaxAmt + 1);
3051   }
3052 
3053   // Use computeKnownBits to find a hidden constant/knownbits (usually type
3054   // legalized). e.g. Hidden behind multiple bitcasts/build_vector/casts etc.
3055   KnownBits KnownAmt = computeKnownBits(V.getOperand(1), DemandedElts, Depth);
3056   if (KnownAmt.getMaxValue().ult(BitWidth))
3057     return ConstantRange::fromKnownBits(KnownAmt, /*IsSigned=*/false);
3058 
3059   return std::nullopt;
3060 }
3061 
3062 std::optional<uint64_t>
3063 SelectionDAG::getValidShiftAmount(SDValue V, const APInt &DemandedElts,
3064                                   unsigned Depth) const {
3065   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3066           V.getOpcode() == ISD::SRA) &&
3067          "Unknown shift node");
3068   if (std::optional<ConstantRange> AmtRange =
3069           getValidShiftAmountRange(V, DemandedElts, Depth))
3070     if (const APInt *ShAmt = AmtRange->getSingleElement())
3071       return ShAmt->getZExtValue();
3072   return std::nullopt;
3073 }
3074 
3075 std::optional<uint64_t>
3076 SelectionDAG::getValidShiftAmount(SDValue V, unsigned Depth) const {
3077   EVT VT = V.getValueType();
3078   APInt DemandedElts = VT.isFixedLengthVector()
3079                            ? APInt::getAllOnes(VT.getVectorNumElements())
3080                            : APInt(1, 1);
3081   return getValidShiftAmount(V, DemandedElts, Depth);
3082 }
3083 
3084 std::optional<uint64_t>
3085 SelectionDAG::getValidMinimumShiftAmount(SDValue V, const APInt &DemandedElts,
3086                                          unsigned Depth) const {
3087   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3088           V.getOpcode() == ISD::SRA) &&
3089          "Unknown shift node");
3090   if (std::optional<ConstantRange> AmtRange =
3091           getValidShiftAmountRange(V, DemandedElts, Depth))
3092     return AmtRange->getUnsignedMin().getZExtValue();
3093   return std::nullopt;
3094 }
3095 
3096 std::optional<uint64_t>
3097 SelectionDAG::getValidMinimumShiftAmount(SDValue V, unsigned Depth) const {
3098   EVT VT = V.getValueType();
3099   APInt DemandedElts = VT.isFixedLengthVector()
3100                            ? APInt::getAllOnes(VT.getVectorNumElements())
3101                            : APInt(1, 1);
3102   return getValidMinimumShiftAmount(V, DemandedElts, Depth);
3103 }
3104 
3105 std::optional<uint64_t>
3106 SelectionDAG::getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts,
3107                                          unsigned Depth) const {
3108   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3109           V.getOpcode() == ISD::SRA) &&
3110          "Unknown shift node");
3111   if (std::optional<ConstantRange> AmtRange =
3112           getValidShiftAmountRange(V, DemandedElts, Depth))
3113     return AmtRange->getUnsignedMax().getZExtValue();
3114   return std::nullopt;
3115 }
3116 
3117 std::optional<uint64_t>
3118 SelectionDAG::getValidMaximumShiftAmount(SDValue V, unsigned Depth) const {
3119   EVT VT = V.getValueType();
3120   APInt DemandedElts = VT.isFixedLengthVector()
3121                            ? APInt::getAllOnes(VT.getVectorNumElements())
3122                            : APInt(1, 1);
3123   return getValidMaximumShiftAmount(V, DemandedElts, Depth);
3124 }
3125 
3126 /// Determine which bits of Op are known to be either zero or one and return
3127 /// them in Known. For vectors, the known bits are those that are shared by
3128 /// every vector element.
3129 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
3130   EVT VT = Op.getValueType();
3131 
3132   // Since the number of lanes in a scalable vector is unknown at compile time,
3133   // we track one bit which is implicitly broadcast to all lanes.  This means
3134   // that all lanes in a scalable vector are considered demanded.
3135   APInt DemandedElts = VT.isFixedLengthVector()
3136                            ? APInt::getAllOnes(VT.getVectorNumElements())
3137                            : APInt(1, 1);
3138   return computeKnownBits(Op, DemandedElts, Depth);
3139 }
3140 
3141 /// Determine which bits of Op are known to be either zero or one and return
3142 /// them in Known. The DemandedElts argument allows us to only collect the known
3143 /// bits that are shared by the requested vector elements.
3144 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
3145                                          unsigned Depth) const {
3146   unsigned BitWidth = Op.getScalarValueSizeInBits();
3147 
3148   KnownBits Known(BitWidth);   // Don't know anything.
3149 
3150   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3151     // We know all of the bits for a constant!
3152     return KnownBits::makeConstant(C->getAPIntValue());
3153   }
3154   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
3155     // We know all of the bits for a constant fp!
3156     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
3157   }
3158 
3159   if (Depth >= MaxRecursionDepth)
3160     return Known;  // Limit search depth.
3161 
3162   KnownBits Known2;
3163   unsigned NumElts = DemandedElts.getBitWidth();
3164   assert((!Op.getValueType().isFixedLengthVector() ||
3165           NumElts == Op.getValueType().getVectorNumElements()) &&
3166          "Unexpected vector size");
3167 
3168   if (!DemandedElts)
3169     return Known;  // No demanded elts, better to assume we don't know anything.
3170 
3171   unsigned Opcode = Op.getOpcode();
3172   switch (Opcode) {
3173   case ISD::MERGE_VALUES:
3174     return computeKnownBits(Op.getOperand(Op.getResNo()), DemandedElts,
3175                             Depth + 1);
3176   case ISD::SPLAT_VECTOR: {
3177     SDValue SrcOp = Op.getOperand(0);
3178     assert(SrcOp.getValueSizeInBits() >= BitWidth &&
3179            "Expected SPLAT_VECTOR implicit truncation");
3180     // Implicitly truncate the bits to match the official semantics of
3181     // SPLAT_VECTOR.
3182     Known = computeKnownBits(SrcOp, Depth + 1).trunc(BitWidth);
3183     break;
3184   }
3185   case ISD::SPLAT_VECTOR_PARTS: {
3186     unsigned ScalarSize = Op.getOperand(0).getScalarValueSizeInBits();
3187     assert(ScalarSize * Op.getNumOperands() == BitWidth &&
3188            "Expected SPLAT_VECTOR_PARTS scalars to cover element width");
3189     for (auto [I, SrcOp] : enumerate(Op->ops())) {
3190       Known.insertBits(computeKnownBits(SrcOp, Depth + 1), ScalarSize * I);
3191     }
3192     break;
3193   }
3194   case ISD::STEP_VECTOR: {
3195     const APInt &Step = Op.getConstantOperandAPInt(0);
3196 
3197     if (Step.isPowerOf2())
3198       Known.Zero.setLowBits(Step.logBase2());
3199 
3200     const Function &F = getMachineFunction().getFunction();
3201 
3202     if (!isUIntN(BitWidth, Op.getValueType().getVectorMinNumElements()))
3203       break;
3204     const APInt MinNumElts =
3205         APInt(BitWidth, Op.getValueType().getVectorMinNumElements());
3206 
3207     bool Overflow;
3208     const APInt MaxNumElts = getVScaleRange(&F, BitWidth)
3209                                  .getUnsignedMax()
3210                                  .umul_ov(MinNumElts, Overflow);
3211     if (Overflow)
3212       break;
3213 
3214     const APInt MaxValue = (MaxNumElts - 1).umul_ov(Step, Overflow);
3215     if (Overflow)
3216       break;
3217 
3218     Known.Zero.setHighBits(MaxValue.countl_zero());
3219     break;
3220   }
3221   case ISD::BUILD_VECTOR:
3222     assert(!Op.getValueType().isScalableVector());
3223     // Collect the known bits that are shared by every demanded vector element.
3224     Known.Zero.setAllBits(); Known.One.setAllBits();
3225     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
3226       if (!DemandedElts[i])
3227         continue;
3228 
3229       SDValue SrcOp = Op.getOperand(i);
3230       Known2 = computeKnownBits(SrcOp, Depth + 1);
3231 
3232       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3233       if (SrcOp.getValueSizeInBits() != BitWidth) {
3234         assert(SrcOp.getValueSizeInBits() > BitWidth &&
3235                "Expected BUILD_VECTOR implicit truncation");
3236         Known2 = Known2.trunc(BitWidth);
3237       }
3238 
3239       // Known bits are the values that are shared by every demanded element.
3240       Known = Known.intersectWith(Known2);
3241 
3242       // If we don't know any bits, early out.
3243       if (Known.isUnknown())
3244         break;
3245     }
3246     break;
3247   case ISD::VECTOR_SHUFFLE: {
3248     assert(!Op.getValueType().isScalableVector());
3249     // Collect the known bits that are shared by every vector element referenced
3250     // by the shuffle.
3251     APInt DemandedLHS, DemandedRHS;
3252     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3253     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3254     if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
3255                                 DemandedLHS, DemandedRHS))
3256       break;
3257 
3258     // Known bits are the values that are shared by every demanded element.
3259     Known.Zero.setAllBits(); Known.One.setAllBits();
3260     if (!!DemandedLHS) {
3261       SDValue LHS = Op.getOperand(0);
3262       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
3263       Known = Known.intersectWith(Known2);
3264     }
3265     // If we don't know any bits, early out.
3266     if (Known.isUnknown())
3267       break;
3268     if (!!DemandedRHS) {
3269       SDValue RHS = Op.getOperand(1);
3270       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
3271       Known = Known.intersectWith(Known2);
3272     }
3273     break;
3274   }
3275   case ISD::VSCALE: {
3276     const Function &F = getMachineFunction().getFunction();
3277     const APInt &Multiplier = Op.getConstantOperandAPInt(0);
3278     Known = getVScaleRange(&F, BitWidth).multiply(Multiplier).toKnownBits();
3279     break;
3280   }
3281   case ISD::CONCAT_VECTORS: {
3282     if (Op.getValueType().isScalableVector())
3283       break;
3284     // Split DemandedElts and test each of the demanded subvectors.
3285     Known.Zero.setAllBits(); Known.One.setAllBits();
3286     EVT SubVectorVT = Op.getOperand(0).getValueType();
3287     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3288     unsigned NumSubVectors = Op.getNumOperands();
3289     for (unsigned i = 0; i != NumSubVectors; ++i) {
3290       APInt DemandedSub =
3291           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
3292       if (!!DemandedSub) {
3293         SDValue Sub = Op.getOperand(i);
3294         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
3295         Known = Known.intersectWith(Known2);
3296       }
3297       // If we don't know any bits, early out.
3298       if (Known.isUnknown())
3299         break;
3300     }
3301     break;
3302   }
3303   case ISD::INSERT_SUBVECTOR: {
3304     if (Op.getValueType().isScalableVector())
3305       break;
3306     // Demand any elements from the subvector and the remainder from the src its
3307     // inserted into.
3308     SDValue Src = Op.getOperand(0);
3309     SDValue Sub = Op.getOperand(1);
3310     uint64_t Idx = Op.getConstantOperandVal(2);
3311     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3312     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3313     APInt DemandedSrcElts = DemandedElts;
3314     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3315 
3316     Known.One.setAllBits();
3317     Known.Zero.setAllBits();
3318     if (!!DemandedSubElts) {
3319       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
3320       if (Known.isUnknown())
3321         break; // early-out.
3322     }
3323     if (!!DemandedSrcElts) {
3324       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3325       Known = Known.intersectWith(Known2);
3326     }
3327     break;
3328   }
3329   case ISD::EXTRACT_SUBVECTOR: {
3330     // Offset the demanded elts by the subvector index.
3331     SDValue Src = Op.getOperand(0);
3332     // Bail until we can represent demanded elements for scalable vectors.
3333     if (Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector())
3334       break;
3335     uint64_t Idx = Op.getConstantOperandVal(1);
3336     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3337     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3338     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3339     break;
3340   }
3341   case ISD::SCALAR_TO_VECTOR: {
3342     if (Op.getValueType().isScalableVector())
3343       break;
3344     // We know about scalar_to_vector as much as we know about it source,
3345     // which becomes the first element of otherwise unknown vector.
3346     if (DemandedElts != 1)
3347       break;
3348 
3349     SDValue N0 = Op.getOperand(0);
3350     Known = computeKnownBits(N0, Depth + 1);
3351     if (N0.getValueSizeInBits() != BitWidth)
3352       Known = Known.trunc(BitWidth);
3353 
3354     break;
3355   }
3356   case ISD::BITCAST: {
3357     if (Op.getValueType().isScalableVector())
3358       break;
3359 
3360     SDValue N0 = Op.getOperand(0);
3361     EVT SubVT = N0.getValueType();
3362     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3363 
3364     // Ignore bitcasts from unsupported types.
3365     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3366       break;
3367 
3368     // Fast handling of 'identity' bitcasts.
3369     if (BitWidth == SubBitWidth) {
3370       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3371       break;
3372     }
3373 
3374     bool IsLE = getDataLayout().isLittleEndian();
3375 
3376     // Bitcast 'small element' vector to 'large element' scalar/vector.
3377     if ((BitWidth % SubBitWidth) == 0) {
3378       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3379 
3380       // Collect known bits for the (larger) output by collecting the known
3381       // bits from each set of sub elements and shift these into place.
3382       // We need to separately call computeKnownBits for each set of
3383       // sub elements as the knownbits for each is likely to be different.
3384       unsigned SubScale = BitWidth / SubBitWidth;
3385       APInt SubDemandedElts(NumElts * SubScale, 0);
3386       for (unsigned i = 0; i != NumElts; ++i)
3387         if (DemandedElts[i])
3388           SubDemandedElts.setBit(i * SubScale);
3389 
3390       for (unsigned i = 0; i != SubScale; ++i) {
3391         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3392                          Depth + 1);
3393         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3394         Known.insertBits(Known2, SubBitWidth * Shifts);
3395       }
3396     }
3397 
3398     // Bitcast 'large element' scalar/vector to 'small element' vector.
3399     if ((SubBitWidth % BitWidth) == 0) {
3400       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3401 
3402       // Collect known bits for the (smaller) output by collecting the known
3403       // bits from the overlapping larger input elements and extracting the
3404       // sub sections we actually care about.
3405       unsigned SubScale = SubBitWidth / BitWidth;
3406       APInt SubDemandedElts =
3407           APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3408       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3409 
3410       Known.Zero.setAllBits(); Known.One.setAllBits();
3411       for (unsigned i = 0; i != NumElts; ++i)
3412         if (DemandedElts[i]) {
3413           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3414           unsigned Offset = (Shifts % SubScale) * BitWidth;
3415           Known = Known.intersectWith(Known2.extractBits(BitWidth, Offset));
3416           // If we don't know any bits, early out.
3417           if (Known.isUnknown())
3418             break;
3419         }
3420     }
3421     break;
3422   }
3423   case ISD::AND:
3424     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3425     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3426 
3427     Known &= Known2;
3428     break;
3429   case ISD::OR:
3430     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3431     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3432 
3433     Known |= Known2;
3434     break;
3435   case ISD::XOR:
3436     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3437     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3438 
3439     Known ^= Known2;
3440     break;
3441   case ISD::MUL: {
3442     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3443     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3444     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3445     // TODO: SelfMultiply can be poison, but not undef.
3446     if (SelfMultiply)
3447       SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
3448           Op.getOperand(0), DemandedElts, false, Depth + 1);
3449     Known = KnownBits::mul(Known, Known2, SelfMultiply);
3450 
3451     // If the multiplication is known not to overflow, the product of a number
3452     // with itself is non-negative. Only do this if we didn't already computed
3453     // the opposite value for the sign bit.
3454     if (Op->getFlags().hasNoSignedWrap() &&
3455         Op.getOperand(0) == Op.getOperand(1) &&
3456         !Known.isNegative())
3457       Known.makeNonNegative();
3458     break;
3459   }
3460   case ISD::MULHU: {
3461     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3462     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3463     Known = KnownBits::mulhu(Known, Known2);
3464     break;
3465   }
3466   case ISD::MULHS: {
3467     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3468     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3469     Known = KnownBits::mulhs(Known, Known2);
3470     break;
3471   }
3472   case ISD::ABDU: {
3473     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3474     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3475     Known = KnownBits::abdu(Known, Known2);
3476     break;
3477   }
3478   case ISD::ABDS: {
3479     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3480     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3481     Known = KnownBits::abds(Known, Known2);
3482     unsigned SignBits1 =
3483         ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3484     if (SignBits1 == 1)
3485       break;
3486     unsigned SignBits0 =
3487         ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3488     Known.Zero.setHighBits(std::min(SignBits0, SignBits1) - 1);
3489     break;
3490   }
3491   case ISD::UMUL_LOHI: {
3492     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3493     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3494     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3495     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3496     if (Op.getResNo() == 0)
3497       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3498     else
3499       Known = KnownBits::mulhu(Known, Known2);
3500     break;
3501   }
3502   case ISD::SMUL_LOHI: {
3503     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3504     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3505     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3506     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3507     if (Op.getResNo() == 0)
3508       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3509     else
3510       Known = KnownBits::mulhs(Known, Known2);
3511     break;
3512   }
3513   case ISD::AVGFLOORU: {
3514     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3515     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3516     Known = KnownBits::avgFloorU(Known, Known2);
3517     break;
3518   }
3519   case ISD::AVGCEILU: {
3520     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3521     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3522     Known = KnownBits::avgCeilU(Known, Known2);
3523     break;
3524   }
3525   case ISD::AVGFLOORS: {
3526     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3527     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3528     Known = KnownBits::avgFloorS(Known, Known2);
3529     break;
3530   }
3531   case ISD::AVGCEILS: {
3532     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3533     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3534     Known = KnownBits::avgCeilS(Known, Known2);
3535     break;
3536   }
3537   case ISD::SELECT:
3538   case ISD::VSELECT:
3539     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3540     // If we don't know any bits, early out.
3541     if (Known.isUnknown())
3542       break;
3543     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3544 
3545     // Only known if known in both the LHS and RHS.
3546     Known = Known.intersectWith(Known2);
3547     break;
3548   case ISD::SELECT_CC:
3549     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3550     // If we don't know any bits, early out.
3551     if (Known.isUnknown())
3552       break;
3553     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3554 
3555     // Only known if known in both the LHS and RHS.
3556     Known = Known.intersectWith(Known2);
3557     break;
3558   case ISD::SMULO:
3559   case ISD::UMULO:
3560     if (Op.getResNo() != 1)
3561       break;
3562     // The boolean result conforms to getBooleanContents.
3563     // If we know the result of a setcc has the top bits zero, use this info.
3564     // We know that we have an integer-based boolean since these operations
3565     // are only available for integer.
3566     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3567             TargetLowering::ZeroOrOneBooleanContent &&
3568         BitWidth > 1)
3569       Known.Zero.setBitsFrom(1);
3570     break;
3571   case ISD::SETCC:
3572   case ISD::SETCCCARRY:
3573   case ISD::STRICT_FSETCC:
3574   case ISD::STRICT_FSETCCS: {
3575     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3576     // If we know the result of a setcc has the top bits zero, use this info.
3577     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3578             TargetLowering::ZeroOrOneBooleanContent &&
3579         BitWidth > 1)
3580       Known.Zero.setBitsFrom(1);
3581     break;
3582   }
3583   case ISD::SHL: {
3584     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3585     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3586 
3587     bool NUW = Op->getFlags().hasNoUnsignedWrap();
3588     bool NSW = Op->getFlags().hasNoSignedWrap();
3589 
3590     bool ShAmtNonZero = Known2.isNonZero();
3591 
3592     Known = KnownBits::shl(Known, Known2, NUW, NSW, ShAmtNonZero);
3593 
3594     // Minimum shift low bits are known zero.
3595     if (std::optional<uint64_t> ShMinAmt =
3596             getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
3597       Known.Zero.setLowBits(*ShMinAmt);
3598     break;
3599   }
3600   case ISD::SRL:
3601     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3602     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3603     Known = KnownBits::lshr(Known, Known2, /*ShAmtNonZero=*/false,
3604                             Op->getFlags().hasExact());
3605 
3606     // Minimum shift high bits are known zero.
3607     if (std::optional<uint64_t> ShMinAmt =
3608             getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
3609       Known.Zero.setHighBits(*ShMinAmt);
3610     break;
3611   case ISD::SRA:
3612     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3613     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3614     Known = KnownBits::ashr(Known, Known2, /*ShAmtNonZero=*/false,
3615                             Op->getFlags().hasExact());
3616     break;
3617   case ISD::FSHL:
3618   case ISD::FSHR:
3619     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3620       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3621 
3622       // For fshl, 0-shift returns the 1st arg.
3623       // For fshr, 0-shift returns the 2nd arg.
3624       if (Amt == 0) {
3625         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3626                                  DemandedElts, Depth + 1);
3627         break;
3628       }
3629 
3630       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3631       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3632       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3633       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3634       if (Opcode == ISD::FSHL) {
3635         Known.One <<= Amt;
3636         Known.Zero <<= Amt;
3637         Known2.One.lshrInPlace(BitWidth - Amt);
3638         Known2.Zero.lshrInPlace(BitWidth - Amt);
3639       } else {
3640         Known.One <<= BitWidth - Amt;
3641         Known.Zero <<= BitWidth - Amt;
3642         Known2.One.lshrInPlace(Amt);
3643         Known2.Zero.lshrInPlace(Amt);
3644       }
3645       Known = Known.unionWith(Known2);
3646     }
3647     break;
3648   case ISD::SHL_PARTS:
3649   case ISD::SRA_PARTS:
3650   case ISD::SRL_PARTS: {
3651     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3652 
3653     // Collect lo/hi source values and concatenate.
3654     unsigned LoBits = Op.getOperand(0).getScalarValueSizeInBits();
3655     unsigned HiBits = Op.getOperand(1).getScalarValueSizeInBits();
3656     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3657     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3658     Known = Known2.concat(Known);
3659 
3660     // Collect shift amount.
3661     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3662 
3663     if (Opcode == ISD::SHL_PARTS)
3664       Known = KnownBits::shl(Known, Known2);
3665     else if (Opcode == ISD::SRA_PARTS)
3666       Known = KnownBits::ashr(Known, Known2);
3667     else // if (Opcode == ISD::SRL_PARTS)
3668       Known = KnownBits::lshr(Known, Known2);
3669 
3670     // TODO: Minimum shift low/high bits are known zero.
3671 
3672     if (Op.getResNo() == 0)
3673       Known = Known.extractBits(LoBits, 0);
3674     else
3675       Known = Known.extractBits(HiBits, LoBits);
3676     break;
3677   }
3678   case ISD::SIGN_EXTEND_INREG: {
3679     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3680     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3681     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3682     break;
3683   }
3684   case ISD::CTTZ:
3685   case ISD::CTTZ_ZERO_UNDEF: {
3686     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3687     // If we have a known 1, its position is our upper bound.
3688     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3689     unsigned LowBits = llvm::bit_width(PossibleTZ);
3690     Known.Zero.setBitsFrom(LowBits);
3691     break;
3692   }
3693   case ISD::CTLZ:
3694   case ISD::CTLZ_ZERO_UNDEF: {
3695     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3696     // If we have a known 1, its position is our upper bound.
3697     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3698     unsigned LowBits = llvm::bit_width(PossibleLZ);
3699     Known.Zero.setBitsFrom(LowBits);
3700     break;
3701   }
3702   case ISD::CTPOP: {
3703     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3704     // If we know some of the bits are zero, they can't be one.
3705     unsigned PossibleOnes = Known2.countMaxPopulation();
3706     Known.Zero.setBitsFrom(llvm::bit_width(PossibleOnes));
3707     break;
3708   }
3709   case ISD::PARITY: {
3710     // Parity returns 0 everywhere but the LSB.
3711     Known.Zero.setBitsFrom(1);
3712     break;
3713   }
3714   case ISD::LOAD: {
3715     LoadSDNode *LD = cast<LoadSDNode>(Op);
3716     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3717     if (ISD::isNON_EXTLoad(LD) && Cst) {
3718       // Determine any common known bits from the loaded constant pool value.
3719       Type *CstTy = Cst->getType();
3720       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits() &&
3721           !Op.getValueType().isScalableVector()) {
3722         // If its a vector splat, then we can (quickly) reuse the scalar path.
3723         // NOTE: We assume all elements match and none are UNDEF.
3724         if (CstTy->isVectorTy()) {
3725           if (const Constant *Splat = Cst->getSplatValue()) {
3726             Cst = Splat;
3727             CstTy = Cst->getType();
3728           }
3729         }
3730         // TODO - do we need to handle different bitwidths?
3731         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3732           // Iterate across all vector elements finding common known bits.
3733           Known.One.setAllBits();
3734           Known.Zero.setAllBits();
3735           for (unsigned i = 0; i != NumElts; ++i) {
3736             if (!DemandedElts[i])
3737               continue;
3738             if (Constant *Elt = Cst->getAggregateElement(i)) {
3739               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3740                 const APInt &Value = CInt->getValue();
3741                 Known.One &= Value;
3742                 Known.Zero &= ~Value;
3743                 continue;
3744               }
3745               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3746                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3747                 Known.One &= Value;
3748                 Known.Zero &= ~Value;
3749                 continue;
3750               }
3751             }
3752             Known.One.clearAllBits();
3753             Known.Zero.clearAllBits();
3754             break;
3755           }
3756         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3757           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3758             Known = KnownBits::makeConstant(CInt->getValue());
3759           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3760             Known =
3761                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3762           }
3763         }
3764       }
3765     } else if (Op.getResNo() == 0) {
3766       KnownBits Known0(!LD->getMemoryVT().isScalableVT()
3767                            ? LD->getMemoryVT().getFixedSizeInBits()
3768                            : BitWidth);
3769       EVT VT = Op.getValueType();
3770       // Fill in any known bits from range information. There are 3 types being
3771       // used. The results VT (same vector elt size as BitWidth), the loaded
3772       // MemoryVT (which may or may not be vector) and the range VTs original
3773       // type. The range matadata needs the full range (i.e
3774       // MemoryVT().getSizeInBits()), which is truncated to the correct elt size
3775       // if it is know. These are then extended to the original VT sizes below.
3776       if (const MDNode *MD = LD->getRanges()) {
3777         computeKnownBitsFromRangeMetadata(*MD, Known0);
3778         if (VT.isVector()) {
3779           // Handle truncation to the first demanded element.
3780           // TODO: Figure out which demanded elements are covered
3781           if (DemandedElts != 1 || !getDataLayout().isLittleEndian())
3782             break;
3783           Known0 = Known0.trunc(BitWidth);
3784         }
3785       }
3786 
3787       if (LD->getMemoryVT().isVector())
3788         Known0 = Known0.trunc(LD->getMemoryVT().getScalarSizeInBits());
3789 
3790       // Extend the Known bits from memory to the size of the result.
3791       if (ISD::isZEXTLoad(Op.getNode()))
3792         Known = Known0.zext(BitWidth);
3793       else if (ISD::isSEXTLoad(Op.getNode()))
3794         Known = Known0.sext(BitWidth);
3795       else if (ISD::isEXTLoad(Op.getNode()))
3796         Known = Known0.anyext(BitWidth);
3797       else
3798         Known = Known0;
3799       assert(Known.getBitWidth() == BitWidth);
3800       return Known;
3801     }
3802     break;
3803   }
3804   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3805     if (Op.getValueType().isScalableVector())
3806       break;
3807     EVT InVT = Op.getOperand(0).getValueType();
3808     APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
3809     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3810     Known = Known.zext(BitWidth);
3811     break;
3812   }
3813   case ISD::ZERO_EXTEND: {
3814     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3815     Known = Known.zext(BitWidth);
3816     break;
3817   }
3818   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3819     if (Op.getValueType().isScalableVector())
3820       break;
3821     EVT InVT = Op.getOperand(0).getValueType();
3822     APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
3823     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3824     // If the sign bit is known to be zero or one, then sext will extend
3825     // it to the top bits, else it will just zext.
3826     Known = Known.sext(BitWidth);
3827     break;
3828   }
3829   case ISD::SIGN_EXTEND: {
3830     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3831     // If the sign bit is known to be zero or one, then sext will extend
3832     // it to the top bits, else it will just zext.
3833     Known = Known.sext(BitWidth);
3834     break;
3835   }
3836   case ISD::ANY_EXTEND_VECTOR_INREG: {
3837     if (Op.getValueType().isScalableVector())
3838       break;
3839     EVT InVT = Op.getOperand(0).getValueType();
3840     APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
3841     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3842     Known = Known.anyext(BitWidth);
3843     break;
3844   }
3845   case ISD::ANY_EXTEND: {
3846     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3847     Known = Known.anyext(BitWidth);
3848     break;
3849   }
3850   case ISD::TRUNCATE: {
3851     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3852     Known = Known.trunc(BitWidth);
3853     break;
3854   }
3855   case ISD::AssertZext: {
3856     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3857     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3858     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3859     Known.Zero |= (~InMask);
3860     Known.One  &= (~Known.Zero);
3861     break;
3862   }
3863   case ISD::AssertAlign: {
3864     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3865     assert(LogOfAlign != 0);
3866 
3867     // TODO: Should use maximum with source
3868     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3869     // well as clearing one bits.
3870     Known.Zero.setLowBits(LogOfAlign);
3871     Known.One.clearLowBits(LogOfAlign);
3872     break;
3873   }
3874   case ISD::FGETSIGN:
3875     // All bits are zero except the low bit.
3876     Known.Zero.setBitsFrom(1);
3877     break;
3878   case ISD::ADD:
3879   case ISD::SUB: {
3880     SDNodeFlags Flags = Op.getNode()->getFlags();
3881     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3882     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3883     Known = KnownBits::computeForAddSub(
3884         Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(),
3885         Flags.hasNoUnsignedWrap(), Known, Known2);
3886     break;
3887   }
3888   case ISD::USUBO:
3889   case ISD::SSUBO:
3890   case ISD::USUBO_CARRY:
3891   case ISD::SSUBO_CARRY:
3892     if (Op.getResNo() == 1) {
3893       // If we know the result of a setcc has the top bits zero, use this info.
3894       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3895               TargetLowering::ZeroOrOneBooleanContent &&
3896           BitWidth > 1)
3897         Known.Zero.setBitsFrom(1);
3898       break;
3899     }
3900     [[fallthrough]];
3901   case ISD::SUBC: {
3902     assert(Op.getResNo() == 0 &&
3903            "We only compute knownbits for the difference here.");
3904 
3905     // With USUBO_CARRY and SSUBO_CARRY a borrow bit may be added in.
3906     KnownBits Borrow(1);
3907     if (Opcode == ISD::USUBO_CARRY || Opcode == ISD::SSUBO_CARRY) {
3908       Borrow = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3909       // Borrow has bit width 1
3910       Borrow = Borrow.trunc(1);
3911     } else {
3912       Borrow.setAllZero();
3913     }
3914 
3915     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3916     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3917     Known = KnownBits::computeForSubBorrow(Known, Known2, Borrow);
3918     break;
3919   }
3920   case ISD::UADDO:
3921   case ISD::SADDO:
3922   case ISD::UADDO_CARRY:
3923   case ISD::SADDO_CARRY:
3924     if (Op.getResNo() == 1) {
3925       // If we know the result of a setcc has the top bits zero, use this info.
3926       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3927               TargetLowering::ZeroOrOneBooleanContent &&
3928           BitWidth > 1)
3929         Known.Zero.setBitsFrom(1);
3930       break;
3931     }
3932     [[fallthrough]];
3933   case ISD::ADDC:
3934   case ISD::ADDE: {
3935     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3936 
3937     // With ADDE and UADDO_CARRY, a carry bit may be added in.
3938     KnownBits Carry(1);
3939     if (Opcode == ISD::ADDE)
3940       // Can't track carry from glue, set carry to unknown.
3941       Carry.resetAll();
3942     else if (Opcode == ISD::UADDO_CARRY || Opcode == ISD::SADDO_CARRY) {
3943       Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3944       // Carry has bit width 1
3945       Carry = Carry.trunc(1);
3946     } else {
3947       Carry.setAllZero();
3948     }
3949 
3950     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3951     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3952     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3953     break;
3954   }
3955   case ISD::UDIV: {
3956     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3957     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3958     Known = KnownBits::udiv(Known, Known2, Op->getFlags().hasExact());
3959     break;
3960   }
3961   case ISD::SDIV: {
3962     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3963     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3964     Known = KnownBits::sdiv(Known, Known2, Op->getFlags().hasExact());
3965     break;
3966   }
3967   case ISD::SREM: {
3968     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3969     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3970     Known = KnownBits::srem(Known, Known2);
3971     break;
3972   }
3973   case ISD::UREM: {
3974     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3975     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3976     Known = KnownBits::urem(Known, Known2);
3977     break;
3978   }
3979   case ISD::EXTRACT_ELEMENT: {
3980     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3981     const unsigned Index = Op.getConstantOperandVal(1);
3982     const unsigned EltBitWidth = Op.getValueSizeInBits();
3983 
3984     // Remove low part of known bits mask
3985     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3986     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3987 
3988     // Remove high part of known bit mask
3989     Known = Known.trunc(EltBitWidth);
3990     break;
3991   }
3992   case ISD::EXTRACT_VECTOR_ELT: {
3993     SDValue InVec = Op.getOperand(0);
3994     SDValue EltNo = Op.getOperand(1);
3995     EVT VecVT = InVec.getValueType();
3996     // computeKnownBits not yet implemented for scalable vectors.
3997     if (VecVT.isScalableVector())
3998       break;
3999     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
4000     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4001 
4002     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
4003     // anything about the extended bits.
4004     if (BitWidth > EltBitWidth)
4005       Known = Known.trunc(EltBitWidth);
4006 
4007     // If we know the element index, just demand that vector element, else for
4008     // an unknown element index, ignore DemandedElts and demand them all.
4009     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4010     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4011     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4012       DemandedSrcElts =
4013           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4014 
4015     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
4016     if (BitWidth > EltBitWidth)
4017       Known = Known.anyext(BitWidth);
4018     break;
4019   }
4020   case ISD::INSERT_VECTOR_ELT: {
4021     if (Op.getValueType().isScalableVector())
4022       break;
4023 
4024     // If we know the element index, split the demand between the
4025     // source vector and the inserted element, otherwise assume we need
4026     // the original demanded vector elements and the value.
4027     SDValue InVec = Op.getOperand(0);
4028     SDValue InVal = Op.getOperand(1);
4029     SDValue EltNo = Op.getOperand(2);
4030     bool DemandedVal = true;
4031     APInt DemandedVecElts = DemandedElts;
4032     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4033     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4034       unsigned EltIdx = CEltNo->getZExtValue();
4035       DemandedVal = !!DemandedElts[EltIdx];
4036       DemandedVecElts.clearBit(EltIdx);
4037     }
4038     Known.One.setAllBits();
4039     Known.Zero.setAllBits();
4040     if (DemandedVal) {
4041       Known2 = computeKnownBits(InVal, Depth + 1);
4042       Known = Known.intersectWith(Known2.zextOrTrunc(BitWidth));
4043     }
4044     if (!!DemandedVecElts) {
4045       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
4046       Known = Known.intersectWith(Known2);
4047     }
4048     break;
4049   }
4050   case ISD::BITREVERSE: {
4051     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4052     Known = Known2.reverseBits();
4053     break;
4054   }
4055   case ISD::BSWAP: {
4056     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4057     Known = Known2.byteSwap();
4058     break;
4059   }
4060   case ISD::ABS: {
4061     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4062     Known = Known2.abs();
4063     Known.Zero.setHighBits(
4064         ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1) - 1);
4065     break;
4066   }
4067   case ISD::USUBSAT: {
4068     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4069     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4070     Known = KnownBits::usub_sat(Known, Known2);
4071     break;
4072   }
4073   case ISD::UMIN: {
4074     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4075     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4076     Known = KnownBits::umin(Known, Known2);
4077     break;
4078   }
4079   case ISD::UMAX: {
4080     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4081     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4082     Known = KnownBits::umax(Known, Known2);
4083     break;
4084   }
4085   case ISD::SMIN:
4086   case ISD::SMAX: {
4087     // If we have a clamp pattern, we know that the number of sign bits will be
4088     // the minimum of the clamp min/max range.
4089     bool IsMax = (Opcode == ISD::SMAX);
4090     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4091     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4092       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4093         CstHigh =
4094             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4095     if (CstLow && CstHigh) {
4096       if (!IsMax)
4097         std::swap(CstLow, CstHigh);
4098 
4099       const APInt &ValueLow = CstLow->getAPIntValue();
4100       const APInt &ValueHigh = CstHigh->getAPIntValue();
4101       if (ValueLow.sle(ValueHigh)) {
4102         unsigned LowSignBits = ValueLow.getNumSignBits();
4103         unsigned HighSignBits = ValueHigh.getNumSignBits();
4104         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
4105         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
4106           Known.One.setHighBits(MinSignBits);
4107           break;
4108         }
4109         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
4110           Known.Zero.setHighBits(MinSignBits);
4111           break;
4112         }
4113       }
4114     }
4115 
4116     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4117     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4118     if (IsMax)
4119       Known = KnownBits::smax(Known, Known2);
4120     else
4121       Known = KnownBits::smin(Known, Known2);
4122 
4123     // For SMAX, if CstLow is non-negative we know the result will be
4124     // non-negative and thus all sign bits are 0.
4125     // TODO: There's an equivalent of this for smin with negative constant for
4126     // known ones.
4127     if (IsMax && CstLow) {
4128       const APInt &ValueLow = CstLow->getAPIntValue();
4129       if (ValueLow.isNonNegative()) {
4130         unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4131         Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits()));
4132       }
4133     }
4134 
4135     break;
4136   }
4137   case ISD::UINT_TO_FP: {
4138     Known.makeNonNegative();
4139     break;
4140   }
4141   case ISD::SINT_TO_FP: {
4142     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4143     if (Known2.isNonNegative())
4144       Known.makeNonNegative();
4145     else if (Known2.isNegative())
4146       Known.makeNegative();
4147     break;
4148   }
4149   case ISD::FP_TO_UINT_SAT: {
4150     // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
4151     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
4152     Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits());
4153     break;
4154   }
4155   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4156     if (Op.getResNo() == 1) {
4157       // The boolean result conforms to getBooleanContents.
4158       // If we know the result of a setcc has the top bits zero, use this info.
4159       // We know that we have an integer-based boolean since these operations
4160       // are only available for integer.
4161       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
4162               TargetLowering::ZeroOrOneBooleanContent &&
4163           BitWidth > 1)
4164         Known.Zero.setBitsFrom(1);
4165       break;
4166     }
4167     [[fallthrough]];
4168   case ISD::ATOMIC_CMP_SWAP:
4169   case ISD::ATOMIC_SWAP:
4170   case ISD::ATOMIC_LOAD_ADD:
4171   case ISD::ATOMIC_LOAD_SUB:
4172   case ISD::ATOMIC_LOAD_AND:
4173   case ISD::ATOMIC_LOAD_CLR:
4174   case ISD::ATOMIC_LOAD_OR:
4175   case ISD::ATOMIC_LOAD_XOR:
4176   case ISD::ATOMIC_LOAD_NAND:
4177   case ISD::ATOMIC_LOAD_MIN:
4178   case ISD::ATOMIC_LOAD_MAX:
4179   case ISD::ATOMIC_LOAD_UMIN:
4180   case ISD::ATOMIC_LOAD_UMAX:
4181   case ISD::ATOMIC_LOAD: {
4182     unsigned MemBits =
4183         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4184     // If we are looking at the loaded value.
4185     if (Op.getResNo() == 0) {
4186       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4187         Known.Zero.setBitsFrom(MemBits);
4188       else if (Op->getOpcode() == ISD::ATOMIC_LOAD &&
4189                cast<AtomicSDNode>(Op)->getExtensionType() == ISD::ZEXTLOAD)
4190         Known.Zero.setBitsFrom(MemBits);
4191     }
4192     break;
4193   }
4194   case ISD::FrameIndex:
4195   case ISD::TargetFrameIndex:
4196     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
4197                                        Known, getMachineFunction());
4198     break;
4199 
4200   default:
4201     if (Opcode < ISD::BUILTIN_OP_END)
4202       break;
4203     [[fallthrough]];
4204   case ISD::INTRINSIC_WO_CHAIN:
4205   case ISD::INTRINSIC_W_CHAIN:
4206   case ISD::INTRINSIC_VOID:
4207     // TODO: Probably okay to remove after audit; here to reduce change size
4208     // in initial enablement patch for scalable vectors
4209     if (Op.getValueType().isScalableVector())
4210       break;
4211 
4212     // Allow the target to implement this method for its nodes.
4213     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
4214     break;
4215   }
4216 
4217   return Known;
4218 }
4219 
4220 /// Convert ConstantRange OverflowResult into SelectionDAG::OverflowKind.
4221 static SelectionDAG::OverflowKind mapOverflowResult(ConstantRange::OverflowResult OR) {
4222   switch (OR) {
4223   case ConstantRange::OverflowResult::MayOverflow:
4224     return SelectionDAG::OFK_Sometime;
4225   case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4226   case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4227     return SelectionDAG::OFK_Always;
4228   case ConstantRange::OverflowResult::NeverOverflows:
4229     return SelectionDAG::OFK_Never;
4230   }
4231   llvm_unreachable("Unknown OverflowResult");
4232 }
4233 
4234 SelectionDAG::OverflowKind
4235 SelectionDAG::computeOverflowForSignedAdd(SDValue N0, SDValue N1) const {
4236   // X + 0 never overflow
4237   if (isNullConstant(N1))
4238     return OFK_Never;
4239 
4240   // If both operands each have at least two sign bits, the addition
4241   // cannot overflow.
4242   if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4243     return OFK_Never;
4244 
4245   // TODO: Add ConstantRange::signedAddMayOverflow handling.
4246   return OFK_Sometime;
4247 }
4248 
4249 SelectionDAG::OverflowKind
4250 SelectionDAG::computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const {
4251   // X + 0 never overflow
4252   if (isNullConstant(N1))
4253     return OFK_Never;
4254 
4255   // mulhi + 1 never overflow
4256   KnownBits N1Known = computeKnownBits(N1);
4257   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
4258       N1Known.getMaxValue().ult(2))
4259     return OFK_Never;
4260 
4261   KnownBits N0Known = computeKnownBits(N0);
4262   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1 &&
4263       N0Known.getMaxValue().ult(2))
4264     return OFK_Never;
4265 
4266   // Fallback to ConstantRange::unsignedAddMayOverflow handling.
4267   ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4268   ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4269   return mapOverflowResult(N0Range.unsignedAddMayOverflow(N1Range));
4270 }
4271 
4272 SelectionDAG::OverflowKind
4273 SelectionDAG::computeOverflowForSignedSub(SDValue N0, SDValue N1) const {
4274   // X - 0 never overflow
4275   if (isNullConstant(N1))
4276     return OFK_Never;
4277 
4278   // If both operands each have at least two sign bits, the subtraction
4279   // cannot overflow.
4280   if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4281     return OFK_Never;
4282 
4283   KnownBits N0Known = computeKnownBits(N0);
4284   KnownBits N1Known = computeKnownBits(N1);
4285   ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, true);
4286   ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, true);
4287   return mapOverflowResult(N0Range.signedSubMayOverflow(N1Range));
4288 }
4289 
4290 SelectionDAG::OverflowKind
4291 SelectionDAG::computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const {
4292   // X - 0 never overflow
4293   if (isNullConstant(N1))
4294     return OFK_Never;
4295 
4296   KnownBits N0Known = computeKnownBits(N0);
4297   KnownBits N1Known = computeKnownBits(N1);
4298   ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4299   ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4300   return mapOverflowResult(N0Range.unsignedSubMayOverflow(N1Range));
4301 }
4302 
4303 SelectionDAG::OverflowKind
4304 SelectionDAG::computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const {
4305   // X * 0 and X * 1 never overflow.
4306   if (isNullConstant(N1) || isOneConstant(N1))
4307     return OFK_Never;
4308 
4309   KnownBits N0Known = computeKnownBits(N0);
4310   KnownBits N1Known = computeKnownBits(N1);
4311   ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4312   ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4313   return mapOverflowResult(N0Range.unsignedMulMayOverflow(N1Range));
4314 }
4315 
4316 SelectionDAG::OverflowKind
4317 SelectionDAG::computeOverflowForSignedMul(SDValue N0, SDValue N1) const {
4318   // X * 0 and X * 1 never overflow.
4319   if (isNullConstant(N1) || isOneConstant(N1))
4320     return OFK_Never;
4321 
4322   // Get the size of the result.
4323   unsigned BitWidth = N0.getScalarValueSizeInBits();
4324 
4325   // Sum of the sign bits.
4326   unsigned SignBits = ComputeNumSignBits(N0) + ComputeNumSignBits(N1);
4327 
4328   // If we have enough sign bits, then there's no overflow.
4329   if (SignBits > BitWidth + 1)
4330     return OFK_Never;
4331 
4332   if (SignBits == BitWidth + 1) {
4333     // The overflow occurs when the true multiplication of the
4334     // the operands is the minimum negative number.
4335     KnownBits N0Known = computeKnownBits(N0);
4336     KnownBits N1Known = computeKnownBits(N1);
4337     // If one of the operands is non-negative, then there's no
4338     // overflow.
4339     if (N0Known.isNonNegative() || N1Known.isNonNegative())
4340       return OFK_Never;
4341   }
4342 
4343   return OFK_Sometime;
4344 }
4345 
4346 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth) const {
4347   if (Depth >= MaxRecursionDepth)
4348     return false; // Limit search depth.
4349 
4350   EVT OpVT = Val.getValueType();
4351   unsigned BitWidth = OpVT.getScalarSizeInBits();
4352 
4353   // Is the constant a known power of 2?
4354   if (ISD::matchUnaryPredicate(Val, [BitWidth](ConstantSDNode *C) {
4355         return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4356       }))
4357     return true;
4358 
4359   // A left-shift of a constant one will have exactly one bit set because
4360   // shifting the bit off the end is undefined.
4361   if (Val.getOpcode() == ISD::SHL) {
4362     auto *C = isConstOrConstSplat(Val.getOperand(0));
4363     if (C && C->getAPIntValue() == 1)
4364       return true;
4365     return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) &&
4366            isKnownNeverZero(Val, Depth);
4367   }
4368 
4369   // Similarly, a logical right-shift of a constant sign-bit will have exactly
4370   // one bit set.
4371   if (Val.getOpcode() == ISD::SRL) {
4372     auto *C = isConstOrConstSplat(Val.getOperand(0));
4373     if (C && C->getAPIntValue().isSignMask())
4374       return true;
4375     return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) &&
4376            isKnownNeverZero(Val, Depth);
4377   }
4378 
4379   if (Val.getOpcode() == ISD::ROTL || Val.getOpcode() == ISD::ROTR)
4380     return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4381 
4382   // Are all operands of a build vector constant powers of two?
4383   if (Val.getOpcode() == ISD::BUILD_VECTOR)
4384     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
4385           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
4386             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4387           return false;
4388         }))
4389       return true;
4390 
4391   // Is the operand of a splat vector a constant power of two?
4392   if (Val.getOpcode() == ISD::SPLAT_VECTOR)
4393     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
4394       if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
4395         return true;
4396 
4397   // vscale(power-of-two) is a power-of-two for some targets
4398   if (Val.getOpcode() == ISD::VSCALE &&
4399       getTargetLoweringInfo().isVScaleKnownToBeAPowerOfTwo() &&
4400       isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1))
4401     return true;
4402 
4403   if (Val.getOpcode() == ISD::SMIN || Val.getOpcode() == ISD::SMAX ||
4404       Val.getOpcode() == ISD::UMIN || Val.getOpcode() == ISD::UMAX)
4405     return isKnownToBeAPowerOfTwo(Val.getOperand(1), Depth + 1) &&
4406            isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4407 
4408   if (Val.getOpcode() == ISD::SELECT || Val.getOpcode() == ISD::VSELECT)
4409     return isKnownToBeAPowerOfTwo(Val.getOperand(2), Depth + 1) &&
4410            isKnownToBeAPowerOfTwo(Val.getOperand(1), Depth + 1);
4411 
4412   // Looking for `x & -x` pattern:
4413   // If x == 0:
4414   //    x & -x -> 0
4415   // If x != 0:
4416   //    x & -x -> non-zero pow2
4417   // so if we find the pattern return whether we know `x` is non-zero.
4418   SDValue X;
4419   if (sd_match(Val, m_And(m_Value(X), m_Neg(m_Deferred(X)))))
4420     return isKnownNeverZero(X, Depth);
4421 
4422   if (Val.getOpcode() == ISD::ZERO_EXTEND)
4423     return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4424 
4425   // More could be done here, though the above checks are enough
4426   // to handle some common cases.
4427   return false;
4428 }
4429 
4430 bool SelectionDAG::isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth) const {
4431   if (ConstantFPSDNode *C1 = isConstOrConstSplatFP(Val, true))
4432     return C1->getValueAPF().getExactLog2Abs() >= 0;
4433 
4434   if (Val.getOpcode() == ISD::UINT_TO_FP || Val.getOpcode() == ISD::SINT_TO_FP)
4435     return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4436 
4437   return false;
4438 }
4439 
4440 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
4441   EVT VT = Op.getValueType();
4442 
4443   // Since the number of lanes in a scalable vector is unknown at compile time,
4444   // we track one bit which is implicitly broadcast to all lanes.  This means
4445   // that all lanes in a scalable vector are considered demanded.
4446   APInt DemandedElts = VT.isFixedLengthVector()
4447                            ? APInt::getAllOnes(VT.getVectorNumElements())
4448                            : APInt(1, 1);
4449   return ComputeNumSignBits(Op, DemandedElts, Depth);
4450 }
4451 
4452 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
4453                                           unsigned Depth) const {
4454   EVT VT = Op.getValueType();
4455   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
4456   unsigned VTBits = VT.getScalarSizeInBits();
4457   unsigned NumElts = DemandedElts.getBitWidth();
4458   unsigned Tmp, Tmp2;
4459   unsigned FirstAnswer = 1;
4460 
4461   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
4462     const APInt &Val = C->getAPIntValue();
4463     return Val.getNumSignBits();
4464   }
4465 
4466   if (Depth >= MaxRecursionDepth)
4467     return 1;  // Limit search depth.
4468 
4469   if (!DemandedElts)
4470     return 1;  // No demanded elts, better to assume we don't know anything.
4471 
4472   unsigned Opcode = Op.getOpcode();
4473   switch (Opcode) {
4474   default: break;
4475   case ISD::AssertSext:
4476     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4477     return VTBits-Tmp+1;
4478   case ISD::AssertZext:
4479     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4480     return VTBits-Tmp;
4481   case ISD::MERGE_VALUES:
4482     return ComputeNumSignBits(Op.getOperand(Op.getResNo()), DemandedElts,
4483                               Depth + 1);
4484   case ISD::SPLAT_VECTOR: {
4485     // Check if the sign bits of source go down as far as the truncated value.
4486     unsigned NumSrcBits = Op.getOperand(0).getValueSizeInBits();
4487     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4488     if (NumSrcSignBits > (NumSrcBits - VTBits))
4489       return NumSrcSignBits - (NumSrcBits - VTBits);
4490     break;
4491   }
4492   case ISD::BUILD_VECTOR:
4493     assert(!VT.isScalableVector());
4494     Tmp = VTBits;
4495     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
4496       if (!DemandedElts[i])
4497         continue;
4498 
4499       SDValue SrcOp = Op.getOperand(i);
4500       // BUILD_VECTOR can implicitly truncate sources, we handle this specially
4501       // for constant nodes to ensure we only look at the sign bits.
4502       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SrcOp)) {
4503         APInt T = C->getAPIntValue().trunc(VTBits);
4504         Tmp2 = T.getNumSignBits();
4505       } else {
4506         Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
4507 
4508         if (SrcOp.getValueSizeInBits() != VTBits) {
4509           assert(SrcOp.getValueSizeInBits() > VTBits &&
4510                  "Expected BUILD_VECTOR implicit truncation");
4511           unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
4512           Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
4513         }
4514       }
4515       Tmp = std::min(Tmp, Tmp2);
4516     }
4517     return Tmp;
4518 
4519   case ISD::VECTOR_SHUFFLE: {
4520     // Collect the minimum number of sign bits that are shared by every vector
4521     // element referenced by the shuffle.
4522     APInt DemandedLHS, DemandedRHS;
4523     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
4524     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
4525     if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
4526                                 DemandedLHS, DemandedRHS))
4527       return 1;
4528 
4529     Tmp = std::numeric_limits<unsigned>::max();
4530     if (!!DemandedLHS)
4531       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
4532     if (!!DemandedRHS) {
4533       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
4534       Tmp = std::min(Tmp, Tmp2);
4535     }
4536     // If we don't know anything, early out and try computeKnownBits fall-back.
4537     if (Tmp == 1)
4538       break;
4539     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4540     return Tmp;
4541   }
4542 
4543   case ISD::BITCAST: {
4544     if (VT.isScalableVector())
4545       break;
4546     SDValue N0 = Op.getOperand(0);
4547     EVT SrcVT = N0.getValueType();
4548     unsigned SrcBits = SrcVT.getScalarSizeInBits();
4549 
4550     // Ignore bitcasts from unsupported types..
4551     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
4552       break;
4553 
4554     // Fast handling of 'identity' bitcasts.
4555     if (VTBits == SrcBits)
4556       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
4557 
4558     bool IsLE = getDataLayout().isLittleEndian();
4559 
4560     // Bitcast 'large element' scalar/vector to 'small element' vector.
4561     if ((SrcBits % VTBits) == 0) {
4562       assert(VT.isVector() && "Expected bitcast to vector");
4563 
4564       unsigned Scale = SrcBits / VTBits;
4565       APInt SrcDemandedElts =
4566           APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
4567 
4568       // Fast case - sign splat can be simply split across the small elements.
4569       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
4570       if (Tmp == SrcBits)
4571         return VTBits;
4572 
4573       // Slow case - determine how far the sign extends into each sub-element.
4574       Tmp2 = VTBits;
4575       for (unsigned i = 0; i != NumElts; ++i)
4576         if (DemandedElts[i]) {
4577           unsigned SubOffset = i % Scale;
4578           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4579           SubOffset = SubOffset * VTBits;
4580           if (Tmp <= SubOffset)
4581             return 1;
4582           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4583         }
4584       return Tmp2;
4585     }
4586     break;
4587   }
4588 
4589   case ISD::FP_TO_SINT_SAT:
4590     // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
4591     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4592     return VTBits - Tmp + 1;
4593   case ISD::SIGN_EXTEND:
4594     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
4595     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
4596   case ISD::SIGN_EXTEND_INREG:
4597     // Max of the input and what this extends.
4598     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4599     Tmp = VTBits-Tmp+1;
4600     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4601     return std::max(Tmp, Tmp2);
4602   case ISD::SIGN_EXTEND_VECTOR_INREG: {
4603     if (VT.isScalableVector())
4604       break;
4605     SDValue Src = Op.getOperand(0);
4606     EVT SrcVT = Src.getValueType();
4607     APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements());
4608     Tmp = VTBits - SrcVT.getScalarSizeInBits();
4609     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
4610   }
4611   case ISD::SRA:
4612     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4613     // SRA X, C -> adds C sign bits.
4614     if (std::optional<uint64_t> ShAmt =
4615             getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
4616       Tmp = std::min<uint64_t>(Tmp + *ShAmt, VTBits);
4617     return Tmp;
4618   case ISD::SHL:
4619     if (std::optional<ConstantRange> ShAmtRange =
4620             getValidShiftAmountRange(Op, DemandedElts, Depth + 1)) {
4621       uint64_t MaxShAmt = ShAmtRange->getUnsignedMax().getZExtValue();
4622       uint64_t MinShAmt = ShAmtRange->getUnsignedMin().getZExtValue();
4623       // Try to look through ZERO/SIGN/ANY_EXTEND. If all extended bits are
4624       // shifted out, then we can compute the number of sign bits for the
4625       // operand being extended. A future improvement could be to pass along the
4626       // "shifted left by" information in the recursive calls to
4627       // ComputeKnownSignBits. Allowing us to handle this more generically.
4628       if (ISD::isExtOpcode(Op.getOperand(0).getOpcode())) {
4629         SDValue Ext = Op.getOperand(0);
4630         EVT ExtVT = Ext.getValueType();
4631         SDValue Extendee = Ext.getOperand(0);
4632         EVT ExtendeeVT = Extendee.getValueType();
4633         uint64_t SizeDifference =
4634             ExtVT.getScalarSizeInBits() - ExtendeeVT.getScalarSizeInBits();
4635         if (SizeDifference <= MinShAmt) {
4636           Tmp = SizeDifference +
4637                 ComputeNumSignBits(Extendee, DemandedElts, Depth + 1);
4638           if (MaxShAmt < Tmp)
4639             return Tmp - MaxShAmt;
4640         }
4641       }
4642       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
4643       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4644       if (MaxShAmt < Tmp)
4645         return Tmp - MaxShAmt;
4646     }
4647     break;
4648   case ISD::AND:
4649   case ISD::OR:
4650   case ISD::XOR:    // NOT is handled here.
4651     // Logical binary ops preserve the number of sign bits at the worst.
4652     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4653     if (Tmp != 1) {
4654       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4655       FirstAnswer = std::min(Tmp, Tmp2);
4656       // We computed what we know about the sign bits as our first
4657       // answer. Now proceed to the generic code that uses
4658       // computeKnownBits, and pick whichever answer is better.
4659     }
4660     break;
4661 
4662   case ISD::SELECT:
4663   case ISD::VSELECT:
4664     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4665     if (Tmp == 1) return 1;  // Early out.
4666     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4667     return std::min(Tmp, Tmp2);
4668   case ISD::SELECT_CC:
4669     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4670     if (Tmp == 1) return 1;  // Early out.
4671     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
4672     return std::min(Tmp, Tmp2);
4673 
4674   case ISD::SMIN:
4675   case ISD::SMAX: {
4676     // If we have a clamp pattern, we know that the number of sign bits will be
4677     // the minimum of the clamp min/max range.
4678     bool IsMax = (Opcode == ISD::SMAX);
4679     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4680     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4681       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4682         CstHigh =
4683             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4684     if (CstLow && CstHigh) {
4685       if (!IsMax)
4686         std::swap(CstLow, CstHigh);
4687       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
4688         Tmp = CstLow->getAPIntValue().getNumSignBits();
4689         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4690         return std::min(Tmp, Tmp2);
4691       }
4692     }
4693 
4694     // Fallback - just get the minimum number of sign bits of the operands.
4695     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4696     if (Tmp == 1)
4697       return 1;  // Early out.
4698     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4699     return std::min(Tmp, Tmp2);
4700   }
4701   case ISD::UMIN:
4702   case ISD::UMAX:
4703     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4704     if (Tmp == 1)
4705       return 1;  // Early out.
4706     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4707     return std::min(Tmp, Tmp2);
4708   case ISD::SADDO:
4709   case ISD::UADDO:
4710   case ISD::SADDO_CARRY:
4711   case ISD::UADDO_CARRY:
4712   case ISD::SSUBO:
4713   case ISD::USUBO:
4714   case ISD::SSUBO_CARRY:
4715   case ISD::USUBO_CARRY:
4716   case ISD::SMULO:
4717   case ISD::UMULO:
4718     if (Op.getResNo() != 1)
4719       break;
4720     // The boolean result conforms to getBooleanContents.  Fall through.
4721     // If setcc returns 0/-1, all bits are sign bits.
4722     // We know that we have an integer-based boolean since these operations
4723     // are only available for integer.
4724     if (TLI->getBooleanContents(VT.isVector(), false) ==
4725         TargetLowering::ZeroOrNegativeOneBooleanContent)
4726       return VTBits;
4727     break;
4728   case ISD::SETCC:
4729   case ISD::SETCCCARRY:
4730   case ISD::STRICT_FSETCC:
4731   case ISD::STRICT_FSETCCS: {
4732     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
4733     // If setcc returns 0/-1, all bits are sign bits.
4734     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
4735         TargetLowering::ZeroOrNegativeOneBooleanContent)
4736       return VTBits;
4737     break;
4738   }
4739   case ISD::ROTL:
4740   case ISD::ROTR:
4741     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4742 
4743     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
4744     if (Tmp == VTBits)
4745       return VTBits;
4746 
4747     if (ConstantSDNode *C =
4748             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
4749       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
4750 
4751       // Handle rotate right by N like a rotate left by 32-N.
4752       if (Opcode == ISD::ROTR)
4753         RotAmt = (VTBits - RotAmt) % VTBits;
4754 
4755       // If we aren't rotating out all of the known-in sign bits, return the
4756       // number that are left.  This handles rotl(sext(x), 1) for example.
4757       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
4758     }
4759     break;
4760   case ISD::ADD:
4761   case ISD::ADDC:
4762     // Add can have at most one carry bit.  Thus we know that the output
4763     // is, at worst, one more bit than the inputs.
4764     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4765     if (Tmp == 1) return 1; // Early out.
4766 
4767     // Special case decrementing a value (ADD X, -1):
4768     if (ConstantSDNode *CRHS =
4769             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
4770       if (CRHS->isAllOnes()) {
4771         KnownBits Known =
4772             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4773 
4774         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4775         // sign bits set.
4776         if ((Known.Zero | 1).isAllOnes())
4777           return VTBits;
4778 
4779         // If we are subtracting one from a positive number, there is no carry
4780         // out of the result.
4781         if (Known.isNonNegative())
4782           return Tmp;
4783       }
4784 
4785     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4786     if (Tmp2 == 1) return 1; // Early out.
4787     return std::min(Tmp, Tmp2) - 1;
4788   case ISD::SUB:
4789     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4790     if (Tmp2 == 1) return 1; // Early out.
4791 
4792     // Handle NEG.
4793     if (ConstantSDNode *CLHS =
4794             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
4795       if (CLHS->isZero()) {
4796         KnownBits Known =
4797             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4798         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4799         // sign bits set.
4800         if ((Known.Zero | 1).isAllOnes())
4801           return VTBits;
4802 
4803         // If the input is known to be positive (the sign bit is known clear),
4804         // the output of the NEG has the same number of sign bits as the input.
4805         if (Known.isNonNegative())
4806           return Tmp2;
4807 
4808         // Otherwise, we treat this like a SUB.
4809       }
4810 
4811     // Sub can have at most one carry bit.  Thus we know that the output
4812     // is, at worst, one more bit than the inputs.
4813     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4814     if (Tmp == 1) return 1; // Early out.
4815     return std::min(Tmp, Tmp2) - 1;
4816   case ISD::MUL: {
4817     // The output of the Mul can be at most twice the valid bits in the inputs.
4818     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4819     if (SignBitsOp0 == 1)
4820       break;
4821     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4822     if (SignBitsOp1 == 1)
4823       break;
4824     unsigned OutValidBits =
4825         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4826     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4827   }
4828   case ISD::AVGCEILS:
4829   case ISD::AVGFLOORS:
4830     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4831     if (Tmp == 1)
4832       return 1; // Early out.
4833     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4834     return std::min(Tmp, Tmp2);
4835   case ISD::SREM:
4836     // The sign bit is the LHS's sign bit, except when the result of the
4837     // remainder is zero. The magnitude of the result should be less than or
4838     // equal to the magnitude of the LHS. Therefore, the result should have
4839     // at least as many sign bits as the left hand side.
4840     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4841   case ISD::TRUNCATE: {
4842     // Check if the sign bits of source go down as far as the truncated value.
4843     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4844     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4845     if (NumSrcSignBits > (NumSrcBits - VTBits))
4846       return NumSrcSignBits - (NumSrcBits - VTBits);
4847     break;
4848   }
4849   case ISD::EXTRACT_ELEMENT: {
4850     if (VT.isScalableVector())
4851       break;
4852     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4853     const int BitWidth = Op.getValueSizeInBits();
4854     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4855 
4856     // Get reverse index (starting from 1), Op1 value indexes elements from
4857     // little end. Sign starts at big end.
4858     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4859 
4860     // If the sign portion ends in our element the subtraction gives correct
4861     // result. Otherwise it gives either negative or > bitwidth result
4862     return std::clamp(KnownSign - rIndex * BitWidth, 0, BitWidth);
4863   }
4864   case ISD::INSERT_VECTOR_ELT: {
4865     if (VT.isScalableVector())
4866       break;
4867     // If we know the element index, split the demand between the
4868     // source vector and the inserted element, otherwise assume we need
4869     // the original demanded vector elements and the value.
4870     SDValue InVec = Op.getOperand(0);
4871     SDValue InVal = Op.getOperand(1);
4872     SDValue EltNo = Op.getOperand(2);
4873     bool DemandedVal = true;
4874     APInt DemandedVecElts = DemandedElts;
4875     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4876     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4877       unsigned EltIdx = CEltNo->getZExtValue();
4878       DemandedVal = !!DemandedElts[EltIdx];
4879       DemandedVecElts.clearBit(EltIdx);
4880     }
4881     Tmp = std::numeric_limits<unsigned>::max();
4882     if (DemandedVal) {
4883       // TODO - handle implicit truncation of inserted elements.
4884       if (InVal.getScalarValueSizeInBits() != VTBits)
4885         break;
4886       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4887       Tmp = std::min(Tmp, Tmp2);
4888     }
4889     if (!!DemandedVecElts) {
4890       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4891       Tmp = std::min(Tmp, Tmp2);
4892     }
4893     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4894     return Tmp;
4895   }
4896   case ISD::EXTRACT_VECTOR_ELT: {
4897     assert(!VT.isScalableVector());
4898     SDValue InVec = Op.getOperand(0);
4899     SDValue EltNo = Op.getOperand(1);
4900     EVT VecVT = InVec.getValueType();
4901     // ComputeNumSignBits not yet implemented for scalable vectors.
4902     if (VecVT.isScalableVector())
4903       break;
4904     const unsigned BitWidth = Op.getValueSizeInBits();
4905     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4906     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4907 
4908     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4909     // anything about sign bits. But if the sizes match we can derive knowledge
4910     // about sign bits from the vector operand.
4911     if (BitWidth != EltBitWidth)
4912       break;
4913 
4914     // If we know the element index, just demand that vector element, else for
4915     // an unknown element index, ignore DemandedElts and demand them all.
4916     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4917     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4918     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4919       DemandedSrcElts =
4920           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4921 
4922     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4923   }
4924   case ISD::EXTRACT_SUBVECTOR: {
4925     // Offset the demanded elts by the subvector index.
4926     SDValue Src = Op.getOperand(0);
4927     // Bail until we can represent demanded elements for scalable vectors.
4928     if (Src.getValueType().isScalableVector())
4929       break;
4930     uint64_t Idx = Op.getConstantOperandVal(1);
4931     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4932     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
4933     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4934   }
4935   case ISD::CONCAT_VECTORS: {
4936     if (VT.isScalableVector())
4937       break;
4938     // Determine the minimum number of sign bits across all demanded
4939     // elts of the input vectors. Early out if the result is already 1.
4940     Tmp = std::numeric_limits<unsigned>::max();
4941     EVT SubVectorVT = Op.getOperand(0).getValueType();
4942     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4943     unsigned NumSubVectors = Op.getNumOperands();
4944     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4945       APInt DemandedSub =
4946           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4947       if (!DemandedSub)
4948         continue;
4949       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4950       Tmp = std::min(Tmp, Tmp2);
4951     }
4952     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4953     return Tmp;
4954   }
4955   case ISD::INSERT_SUBVECTOR: {
4956     if (VT.isScalableVector())
4957       break;
4958     // Demand any elements from the subvector and the remainder from the src its
4959     // inserted into.
4960     SDValue Src = Op.getOperand(0);
4961     SDValue Sub = Op.getOperand(1);
4962     uint64_t Idx = Op.getConstantOperandVal(2);
4963     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4964     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4965     APInt DemandedSrcElts = DemandedElts;
4966     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
4967 
4968     Tmp = std::numeric_limits<unsigned>::max();
4969     if (!!DemandedSubElts) {
4970       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4971       if (Tmp == 1)
4972         return 1; // early-out
4973     }
4974     if (!!DemandedSrcElts) {
4975       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4976       Tmp = std::min(Tmp, Tmp2);
4977     }
4978     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4979     return Tmp;
4980   }
4981   case ISD::LOAD: {
4982     LoadSDNode *LD = cast<LoadSDNode>(Op);
4983     if (const MDNode *Ranges = LD->getRanges()) {
4984       if (DemandedElts != 1)
4985         break;
4986 
4987       ConstantRange CR = getConstantRangeFromMetadata(*Ranges);
4988       if (VTBits > CR.getBitWidth()) {
4989         switch (LD->getExtensionType()) {
4990         case ISD::SEXTLOAD:
4991           CR = CR.signExtend(VTBits);
4992           break;
4993         case ISD::ZEXTLOAD:
4994           CR = CR.zeroExtend(VTBits);
4995           break;
4996         default:
4997           break;
4998         }
4999       }
5000 
5001       if (VTBits != CR.getBitWidth())
5002         break;
5003       return std::min(CR.getSignedMin().getNumSignBits(),
5004                       CR.getSignedMax().getNumSignBits());
5005     }
5006 
5007     break;
5008   }
5009   case ISD::ATOMIC_CMP_SWAP:
5010   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5011   case ISD::ATOMIC_SWAP:
5012   case ISD::ATOMIC_LOAD_ADD:
5013   case ISD::ATOMIC_LOAD_SUB:
5014   case ISD::ATOMIC_LOAD_AND:
5015   case ISD::ATOMIC_LOAD_CLR:
5016   case ISD::ATOMIC_LOAD_OR:
5017   case ISD::ATOMIC_LOAD_XOR:
5018   case ISD::ATOMIC_LOAD_NAND:
5019   case ISD::ATOMIC_LOAD_MIN:
5020   case ISD::ATOMIC_LOAD_MAX:
5021   case ISD::ATOMIC_LOAD_UMIN:
5022   case ISD::ATOMIC_LOAD_UMAX:
5023   case ISD::ATOMIC_LOAD: {
5024     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
5025     // If we are looking at the loaded value.
5026     if (Op.getResNo() == 0) {
5027       if (Tmp == VTBits)
5028         return 1; // early-out
5029       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
5030         return VTBits - Tmp + 1;
5031       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
5032         return VTBits - Tmp;
5033       if (Op->getOpcode() == ISD::ATOMIC_LOAD) {
5034         ISD::LoadExtType ETy = cast<AtomicSDNode>(Op)->getExtensionType();
5035         if (ETy == ISD::SEXTLOAD)
5036           return VTBits - Tmp + 1;
5037         if (ETy == ISD::ZEXTLOAD)
5038           return VTBits - Tmp;
5039       }
5040     }
5041     break;
5042   }
5043   }
5044 
5045   // If we are looking at the loaded value of the SDNode.
5046   if (Op.getResNo() == 0) {
5047     // Handle LOADX separately here. EXTLOAD case will fallthrough.
5048     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
5049       unsigned ExtType = LD->getExtensionType();
5050       switch (ExtType) {
5051       default: break;
5052       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
5053         Tmp = LD->getMemoryVT().getScalarSizeInBits();
5054         return VTBits - Tmp + 1;
5055       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
5056         Tmp = LD->getMemoryVT().getScalarSizeInBits();
5057         return VTBits - Tmp;
5058       case ISD::NON_EXTLOAD:
5059         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
5060           // We only need to handle vectors - computeKnownBits should handle
5061           // scalar cases.
5062           Type *CstTy = Cst->getType();
5063           if (CstTy->isVectorTy() && !VT.isScalableVector() &&
5064               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
5065               VTBits == CstTy->getScalarSizeInBits()) {
5066             Tmp = VTBits;
5067             for (unsigned i = 0; i != NumElts; ++i) {
5068               if (!DemandedElts[i])
5069                 continue;
5070               if (Constant *Elt = Cst->getAggregateElement(i)) {
5071                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
5072                   const APInt &Value = CInt->getValue();
5073                   Tmp = std::min(Tmp, Value.getNumSignBits());
5074                   continue;
5075                 }
5076                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
5077                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
5078                   Tmp = std::min(Tmp, Value.getNumSignBits());
5079                   continue;
5080                 }
5081               }
5082               // Unknown type. Conservatively assume no bits match sign bit.
5083               return 1;
5084             }
5085             return Tmp;
5086           }
5087         }
5088         break;
5089       }
5090     }
5091   }
5092 
5093   // Allow the target to implement this method for its nodes.
5094   if (Opcode >= ISD::BUILTIN_OP_END ||
5095       Opcode == ISD::INTRINSIC_WO_CHAIN ||
5096       Opcode == ISD::INTRINSIC_W_CHAIN ||
5097       Opcode == ISD::INTRINSIC_VOID) {
5098     // TODO: This can probably be removed once target code is audited.  This
5099     // is here purely to reduce patch size and review complexity.
5100     if (!VT.isScalableVector()) {
5101       unsigned NumBits =
5102         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
5103       if (NumBits > 1)
5104         FirstAnswer = std::max(FirstAnswer, NumBits);
5105     }
5106   }
5107 
5108   // Finally, if we can prove that the top bits of the result are 0's or 1's,
5109   // use this information.
5110   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
5111   return std::max(FirstAnswer, Known.countMinSignBits());
5112 }
5113 
5114 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
5115                                                  unsigned Depth) const {
5116   unsigned SignBits = ComputeNumSignBits(Op, Depth);
5117   return Op.getScalarValueSizeInBits() - SignBits + 1;
5118 }
5119 
5120 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
5121                                                  const APInt &DemandedElts,
5122                                                  unsigned Depth) const {
5123   unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
5124   return Op.getScalarValueSizeInBits() - SignBits + 1;
5125 }
5126 
5127 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
5128                                                     unsigned Depth) const {
5129   // Early out for FREEZE.
5130   if (Op.getOpcode() == ISD::FREEZE)
5131     return true;
5132 
5133   // TODO: Assume we don't know anything for now.
5134   EVT VT = Op.getValueType();
5135   if (VT.isScalableVector())
5136     return false;
5137 
5138   APInt DemandedElts = VT.isVector()
5139                            ? APInt::getAllOnes(VT.getVectorNumElements())
5140                            : APInt(1, 1);
5141   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
5142 }
5143 
5144 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
5145                                                     const APInt &DemandedElts,
5146                                                     bool PoisonOnly,
5147                                                     unsigned Depth) const {
5148   unsigned Opcode = Op.getOpcode();
5149 
5150   // Early out for FREEZE.
5151   if (Opcode == ISD::FREEZE)
5152     return true;
5153 
5154   if (Depth >= MaxRecursionDepth)
5155     return false; // Limit search depth.
5156 
5157   if (isIntOrFPConstant(Op))
5158     return true;
5159 
5160   switch (Opcode) {
5161   case ISD::CONDCODE:
5162   case ISD::VALUETYPE:
5163   case ISD::FrameIndex:
5164   case ISD::TargetFrameIndex:
5165   case ISD::CopyFromReg:
5166     return true;
5167 
5168   case ISD::UNDEF:
5169     return PoisonOnly;
5170 
5171   case ISD::BUILD_VECTOR:
5172     // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
5173     // this shouldn't affect the result.
5174     for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
5175       if (!DemandedElts[i])
5176         continue;
5177       if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
5178                                             Depth + 1))
5179         return false;
5180     }
5181     return true;
5182 
5183   case ISD::VECTOR_SHUFFLE: {
5184     APInt DemandedLHS, DemandedRHS;
5185     auto *SVN = cast<ShuffleVectorSDNode>(Op);
5186     if (!getShuffleDemandedElts(DemandedElts.getBitWidth(), SVN->getMask(),
5187                                 DemandedElts, DemandedLHS, DemandedRHS,
5188                                 /*AllowUndefElts=*/false))
5189       return false;
5190     if (!DemandedLHS.isZero() &&
5191         !isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), DemandedLHS,
5192                                           PoisonOnly, Depth + 1))
5193       return false;
5194     if (!DemandedRHS.isZero() &&
5195         !isGuaranteedNotToBeUndefOrPoison(Op.getOperand(1), DemandedRHS,
5196                                           PoisonOnly, Depth + 1))
5197       return false;
5198     return true;
5199   }
5200 
5201     // TODO: Search for noundef attributes from library functions.
5202 
5203     // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
5204 
5205   default:
5206     // Allow the target to implement this method for its nodes.
5207     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
5208         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
5209       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
5210           Op, DemandedElts, *this, PoisonOnly, Depth);
5211     break;
5212   }
5213 
5214   // If Op can't create undef/poison and none of its operands are undef/poison
5215   // then Op is never undef/poison.
5216   // NOTE: TargetNodes can handle this in themselves in
5217   // isGuaranteedNotToBeUndefOrPoisonForTargetNode or let
5218   // TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode handle it.
5219   return !canCreateUndefOrPoison(Op, PoisonOnly, /*ConsiderFlags*/ true,
5220                                  Depth) &&
5221          all_of(Op->ops(), [&](SDValue V) {
5222            return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1);
5223          });
5224 }
5225 
5226 bool SelectionDAG::canCreateUndefOrPoison(SDValue Op, bool PoisonOnly,
5227                                           bool ConsiderFlags,
5228                                           unsigned Depth) const {
5229   // TODO: Assume we don't know anything for now.
5230   EVT VT = Op.getValueType();
5231   if (VT.isScalableVector())
5232     return true;
5233 
5234   APInt DemandedElts = VT.isVector()
5235                            ? APInt::getAllOnes(VT.getVectorNumElements())
5236                            : APInt(1, 1);
5237   return canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly, ConsiderFlags,
5238                                 Depth);
5239 }
5240 
5241 bool SelectionDAG::canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts,
5242                                           bool PoisonOnly, bool ConsiderFlags,
5243                                           unsigned Depth) const {
5244   // TODO: Assume we don't know anything for now.
5245   EVT VT = Op.getValueType();
5246   if (VT.isScalableVector())
5247     return true;
5248 
5249   if (ConsiderFlags && Op->hasPoisonGeneratingFlags())
5250     return true;
5251 
5252   unsigned Opcode = Op.getOpcode();
5253   switch (Opcode) {
5254   case ISD::FREEZE:
5255   case ISD::CONCAT_VECTORS:
5256   case ISD::INSERT_SUBVECTOR:
5257   case ISD::SADDSAT:
5258   case ISD::UADDSAT:
5259   case ISD::SSUBSAT:
5260   case ISD::USUBSAT:
5261   case ISD::MULHU:
5262   case ISD::MULHS:
5263   case ISD::SMIN:
5264   case ISD::SMAX:
5265   case ISD::UMIN:
5266   case ISD::UMAX:
5267   case ISD::AND:
5268   case ISD::XOR:
5269   case ISD::ROTL:
5270   case ISD::ROTR:
5271   case ISD::FSHL:
5272   case ISD::FSHR:
5273   case ISD::BSWAP:
5274   case ISD::CTPOP:
5275   case ISD::BITREVERSE:
5276   case ISD::PARITY:
5277   case ISD::SIGN_EXTEND:
5278   case ISD::TRUNCATE:
5279   case ISD::SIGN_EXTEND_INREG:
5280   case ISD::SIGN_EXTEND_VECTOR_INREG:
5281   case ISD::ZERO_EXTEND_VECTOR_INREG:
5282   case ISD::BITCAST:
5283   case ISD::BUILD_VECTOR:
5284   case ISD::BUILD_PAIR:
5285     return false;
5286 
5287   case ISD::SELECT_CC:
5288   case ISD::SETCC: {
5289     // Integer setcc cannot create undef or poison.
5290     if (Op.getOperand(0).getValueType().isInteger())
5291       return false;
5292 
5293     // FP compares are more complicated. They can create poison for nan/infinity
5294     // based on options and flags. The options and flags also cause special
5295     // nonan condition codes to be used. Those condition codes may be preserved
5296     // even if the nonan flag is dropped somewhere.
5297     unsigned CCOp = Opcode == ISD::SETCC ? 2 : 4;
5298     ISD::CondCode CCCode = cast<CondCodeSDNode>(Op.getOperand(CCOp))->get();
5299     if (((unsigned)CCCode & 0x10U))
5300       return true;
5301 
5302     const TargetOptions &Options = getTarget().Options;
5303     return Options.NoNaNsFPMath || Options.NoInfsFPMath;
5304   }
5305 
5306   case ISD::OR:
5307   case ISD::ZERO_EXTEND:
5308   case ISD::ADD:
5309   case ISD::SUB:
5310   case ISD::MUL:
5311     // No poison except from flags (which is handled above)
5312     return false;
5313 
5314   case ISD::SHL:
5315   case ISD::SRL:
5316   case ISD::SRA:
5317     // If the max shift amount isn't in range, then the shift can
5318     // create poison.
5319     return !isGuaranteedNotToBeUndefOrPoison(Op.getOperand(1), DemandedElts,
5320                                              PoisonOnly, Depth + 1) ||
5321            !getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1);
5322 
5323   case ISD::SCALAR_TO_VECTOR:
5324     // Check if we demand any upper (undef) elements.
5325     return !PoisonOnly && DemandedElts.ugt(1);
5326 
5327   case ISD::INSERT_VECTOR_ELT:
5328   case ISD::EXTRACT_VECTOR_ELT: {
5329     // Ensure that the element index is in bounds.
5330     EVT VecVT = Op.getOperand(0).getValueType();
5331     SDValue Idx = Op.getOperand(Opcode == ISD::INSERT_VECTOR_ELT ? 2 : 1);
5332     if (isGuaranteedNotToBeUndefOrPoison(Idx, DemandedElts, PoisonOnly,
5333                                          Depth + 1)) {
5334       KnownBits KnownIdx = computeKnownBits(Idx, Depth + 1);
5335       return KnownIdx.getMaxValue().uge(VecVT.getVectorMinNumElements());
5336     }
5337     return true;
5338   }
5339 
5340   case ISD::VECTOR_SHUFFLE: {
5341     // Check for any demanded shuffle element that is undef.
5342     auto *SVN = cast<ShuffleVectorSDNode>(Op);
5343     for (auto [Idx, Elt] : enumerate(SVN->getMask()))
5344       if (Elt < 0 && DemandedElts[Idx])
5345         return true;
5346     return false;
5347   }
5348 
5349   default:
5350     // Allow the target to implement this method for its nodes.
5351     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
5352         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
5353       return TLI->canCreateUndefOrPoisonForTargetNode(
5354           Op, DemandedElts, *this, PoisonOnly, ConsiderFlags, Depth);
5355     break;
5356   }
5357 
5358   // Be conservative and return true.
5359   return true;
5360 }
5361 
5362 bool SelectionDAG::isADDLike(SDValue Op, bool NoWrap) const {
5363   unsigned Opcode = Op.getOpcode();
5364   if (Opcode == ISD::OR)
5365     return Op->getFlags().hasDisjoint() ||
5366            haveNoCommonBitsSet(Op.getOperand(0), Op.getOperand(1));
5367   if (Opcode == ISD::XOR)
5368     return !NoWrap && isMinSignedConstant(Op.getOperand(1));
5369   return false;
5370 }
5371 
5372 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
5373   return Op.getNumOperands() == 2 && isa<ConstantSDNode>(Op.getOperand(1)) &&
5374          (Op.getOpcode() == ISD::ADD || isADDLike(Op));
5375 }
5376 
5377 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
5378   // If we're told that NaNs won't happen, assume they won't.
5379   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
5380     return true;
5381 
5382   if (Depth >= MaxRecursionDepth)
5383     return false; // Limit search depth.
5384 
5385   // If the value is a constant, we can obviously see if it is a NaN or not.
5386   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
5387     return !C->getValueAPF().isNaN() ||
5388            (SNaN && !C->getValueAPF().isSignaling());
5389   }
5390 
5391   unsigned Opcode = Op.getOpcode();
5392   switch (Opcode) {
5393   case ISD::FADD:
5394   case ISD::FSUB:
5395   case ISD::FMUL:
5396   case ISD::FDIV:
5397   case ISD::FREM:
5398   case ISD::FSIN:
5399   case ISD::FCOS:
5400   case ISD::FTAN:
5401   case ISD::FASIN:
5402   case ISD::FACOS:
5403   case ISD::FATAN:
5404   case ISD::FSINH:
5405   case ISD::FCOSH:
5406   case ISD::FTANH:
5407   case ISD::FMA:
5408   case ISD::FMAD: {
5409     if (SNaN)
5410       return true;
5411     // TODO: Need isKnownNeverInfinity
5412     return false;
5413   }
5414   case ISD::FCANONICALIZE:
5415   case ISD::FEXP:
5416   case ISD::FEXP2:
5417   case ISD::FEXP10:
5418   case ISD::FTRUNC:
5419   case ISD::FFLOOR:
5420   case ISD::FCEIL:
5421   case ISD::FROUND:
5422   case ISD::FROUNDEVEN:
5423   case ISD::FRINT:
5424   case ISD::LRINT:
5425   case ISD::LLRINT:
5426   case ISD::FNEARBYINT:
5427   case ISD::FLDEXP: {
5428     if (SNaN)
5429       return true;
5430     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
5431   }
5432   case ISD::FABS:
5433   case ISD::FNEG:
5434   case ISD::FCOPYSIGN: {
5435     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
5436   }
5437   case ISD::SELECT:
5438     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
5439            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
5440   case ISD::FP_EXTEND:
5441   case ISD::FP_ROUND: {
5442     if (SNaN)
5443       return true;
5444     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
5445   }
5446   case ISD::SINT_TO_FP:
5447   case ISD::UINT_TO_FP:
5448     return true;
5449   case ISD::FSQRT: // Need is known positive
5450   case ISD::FLOG:
5451   case ISD::FLOG2:
5452   case ISD::FLOG10:
5453   case ISD::FPOWI:
5454   case ISD::FPOW: {
5455     if (SNaN)
5456       return true;
5457     // TODO: Refine on operand
5458     return false;
5459   }
5460   case ISD::FMINNUM:
5461   case ISD::FMAXNUM: {
5462     // Only one needs to be known not-nan, since it will be returned if the
5463     // other ends up being one.
5464     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
5465            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
5466   }
5467   case ISD::FMINNUM_IEEE:
5468   case ISD::FMAXNUM_IEEE: {
5469     if (SNaN)
5470       return true;
5471     // This can return a NaN if either operand is an sNaN, or if both operands
5472     // are NaN.
5473     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
5474             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
5475            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
5476             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
5477   }
5478   case ISD::FMINIMUM:
5479   case ISD::FMAXIMUM: {
5480     // TODO: Does this quiet or return the origina NaN as-is?
5481     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
5482            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
5483   }
5484   case ISD::EXTRACT_VECTOR_ELT: {
5485     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
5486   }
5487   case ISD::BUILD_VECTOR: {
5488     for (const SDValue &Opnd : Op->ops())
5489       if (!isKnownNeverNaN(Opnd, SNaN, Depth + 1))
5490         return false;
5491     return true;
5492   }
5493   default:
5494     if (Opcode >= ISD::BUILTIN_OP_END ||
5495         Opcode == ISD::INTRINSIC_WO_CHAIN ||
5496         Opcode == ISD::INTRINSIC_W_CHAIN ||
5497         Opcode == ISD::INTRINSIC_VOID) {
5498       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
5499     }
5500 
5501     return false;
5502   }
5503 }
5504 
5505 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
5506   assert(Op.getValueType().isFloatingPoint() &&
5507          "Floating point type expected");
5508 
5509   // If the value is a constant, we can obviously see if it is a zero or not.
5510   return ISD::matchUnaryFpPredicate(
5511       Op, [](ConstantFPSDNode *C) { return !C->isZero(); });
5512 }
5513 
5514 bool SelectionDAG::isKnownNeverZero(SDValue Op, unsigned Depth) const {
5515   if (Depth >= MaxRecursionDepth)
5516     return false; // Limit search depth.
5517 
5518   assert(!Op.getValueType().isFloatingPoint() &&
5519          "Floating point types unsupported - use isKnownNeverZeroFloat");
5520 
5521   // If the value is a constant, we can obviously see if it is a zero or not.
5522   if (ISD::matchUnaryPredicate(Op,
5523                                [](ConstantSDNode *C) { return !C->isZero(); }))
5524     return true;
5525 
5526   // TODO: Recognize more cases here. Most of the cases are also incomplete to
5527   // some degree.
5528   switch (Op.getOpcode()) {
5529   default:
5530     break;
5531 
5532   case ISD::OR:
5533     return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
5534            isKnownNeverZero(Op.getOperand(0), Depth + 1);
5535 
5536   case ISD::VSELECT:
5537   case ISD::SELECT:
5538     return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
5539            isKnownNeverZero(Op.getOperand(2), Depth + 1);
5540 
5541   case ISD::SHL: {
5542     if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
5543       return isKnownNeverZero(Op.getOperand(0), Depth + 1);
5544     KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1);
5545     // 1 << X is never zero.
5546     if (ValKnown.One[0])
5547       return true;
5548     // If max shift cnt of known ones is non-zero, result is non-zero.
5549     APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue();
5550     if (MaxCnt.ult(ValKnown.getBitWidth()) &&
5551         !ValKnown.One.shl(MaxCnt).isZero())
5552       return true;
5553     break;
5554   }
5555   case ISD::UADDSAT:
5556   case ISD::UMAX:
5557     return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
5558            isKnownNeverZero(Op.getOperand(0), Depth + 1);
5559 
5560     // For smin/smax: If either operand is known negative/positive
5561     // respectively we don't need the other to be known at all.
5562   case ISD::SMAX: {
5563     KnownBits Op1 = computeKnownBits(Op.getOperand(1), Depth + 1);
5564     if (Op1.isStrictlyPositive())
5565       return true;
5566 
5567     KnownBits Op0 = computeKnownBits(Op.getOperand(0), Depth + 1);
5568     if (Op0.isStrictlyPositive())
5569       return true;
5570 
5571     if (Op1.isNonZero() && Op0.isNonZero())
5572       return true;
5573 
5574     return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
5575            isKnownNeverZero(Op.getOperand(0), Depth + 1);
5576   }
5577   case ISD::SMIN: {
5578     KnownBits Op1 = computeKnownBits(Op.getOperand(1), Depth + 1);
5579     if (Op1.isNegative())
5580       return true;
5581 
5582     KnownBits Op0 = computeKnownBits(Op.getOperand(0), Depth + 1);
5583     if (Op0.isNegative())
5584       return true;
5585 
5586     if (Op1.isNonZero() && Op0.isNonZero())
5587       return true;
5588 
5589     return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
5590            isKnownNeverZero(Op.getOperand(0), Depth + 1);
5591   }
5592   case ISD::UMIN:
5593     return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
5594            isKnownNeverZero(Op.getOperand(0), Depth + 1);
5595 
5596   case ISD::ROTL:
5597   case ISD::ROTR:
5598   case ISD::BITREVERSE:
5599   case ISD::BSWAP:
5600   case ISD::CTPOP:
5601   case ISD::ABS:
5602     return isKnownNeverZero(Op.getOperand(0), Depth + 1);
5603 
5604   case ISD::SRA:
5605   case ISD::SRL: {
5606     if (Op->getFlags().hasExact())
5607       return isKnownNeverZero(Op.getOperand(0), Depth + 1);
5608     KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1);
5609     if (ValKnown.isNegative())
5610       return true;
5611     // If max shift cnt of known ones is non-zero, result is non-zero.
5612     APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue();
5613     if (MaxCnt.ult(ValKnown.getBitWidth()) &&
5614         !ValKnown.One.lshr(MaxCnt).isZero())
5615       return true;
5616     break;
5617   }
5618   case ISD::UDIV:
5619   case ISD::SDIV:
5620     // div exact can only produce a zero if the dividend is zero.
5621     // TODO: For udiv this is also true if Op1 u<= Op0
5622     if (Op->getFlags().hasExact())
5623       return isKnownNeverZero(Op.getOperand(0), Depth + 1);
5624     break;
5625 
5626   case ISD::ADD:
5627     if (Op->getFlags().hasNoUnsignedWrap())
5628       if (isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
5629           isKnownNeverZero(Op.getOperand(0), Depth + 1))
5630         return true;
5631     // TODO: There are a lot more cases we can prove for add.
5632     break;
5633 
5634   case ISD::SUB: {
5635     if (isNullConstant(Op.getOperand(0)))
5636       return isKnownNeverZero(Op.getOperand(1), Depth + 1);
5637 
5638     std::optional<bool> ne =
5639         KnownBits::ne(computeKnownBits(Op.getOperand(0), Depth + 1),
5640                       computeKnownBits(Op.getOperand(1), Depth + 1));
5641     return ne && *ne;
5642   }
5643 
5644   case ISD::MUL:
5645     if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
5646       if (isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
5647           isKnownNeverZero(Op.getOperand(0), Depth + 1))
5648         return true;
5649     break;
5650 
5651   case ISD::ZERO_EXTEND:
5652   case ISD::SIGN_EXTEND:
5653     return isKnownNeverZero(Op.getOperand(0), Depth + 1);
5654   case ISD::VSCALE: {
5655     const Function &F = getMachineFunction().getFunction();
5656     const APInt &Multiplier = Op.getConstantOperandAPInt(0);
5657     ConstantRange CR =
5658         getVScaleRange(&F, Op.getScalarValueSizeInBits()).multiply(Multiplier);
5659     if (!CR.contains(APInt(CR.getBitWidth(), 0)))
5660       return true;
5661     break;
5662   }
5663   }
5664 
5665   return computeKnownBits(Op, Depth).isNonZero();
5666 }
5667 
5668 bool SelectionDAG::cannotBeOrderedNegativeFP(SDValue Op) const {
5669   if (ConstantFPSDNode *C1 = isConstOrConstSplatFP(Op, true))
5670     return !C1->isNegative();
5671 
5672   return Op.getOpcode() == ISD::FABS;
5673 }
5674 
5675 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
5676   // Check the obvious case.
5677   if (A == B) return true;
5678 
5679   // For negative and positive zero.
5680   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
5681     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
5682       if (CA->isZero() && CB->isZero()) return true;
5683 
5684   // Otherwise they may not be equal.
5685   return false;
5686 }
5687 
5688 // Only bits set in Mask must be negated, other bits may be arbitrary.
5689 SDValue llvm::getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs) {
5690   if (isBitwiseNot(V, AllowUndefs))
5691     return V.getOperand(0);
5692 
5693   // Handle any_extend (not (truncate X)) pattern, where Mask only sets
5694   // bits in the non-extended part.
5695   ConstantSDNode *MaskC = isConstOrConstSplat(Mask);
5696   if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND)
5697     return SDValue();
5698   SDValue ExtArg = V.getOperand(0);
5699   if (ExtArg.getScalarValueSizeInBits() >=
5700           MaskC->getAPIntValue().getActiveBits() &&
5701       isBitwiseNot(ExtArg, AllowUndefs) &&
5702       ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE &&
5703       ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType())
5704     return ExtArg.getOperand(0).getOperand(0);
5705   return SDValue();
5706 }
5707 
5708 static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B) {
5709   // Match masked merge pattern (X & ~M) op (Y & M)
5710   // Including degenerate case (X & ~M) op M
5711   auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask,
5712                                       SDValue Other) {
5713     if (SDValue NotOperand =
5714             getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) {
5715       if (NotOperand->getOpcode() == ISD::ZERO_EXTEND ||
5716           NotOperand->getOpcode() == ISD::TRUNCATE)
5717         NotOperand = NotOperand->getOperand(0);
5718 
5719       if (Other == NotOperand)
5720         return true;
5721       if (Other->getOpcode() == ISD::AND)
5722         return NotOperand == Other->getOperand(0) ||
5723                NotOperand == Other->getOperand(1);
5724     }
5725     return false;
5726   };
5727 
5728   if (A->getOpcode() == ISD::ZERO_EXTEND || A->getOpcode() == ISD::TRUNCATE)
5729     A = A->getOperand(0);
5730 
5731   if (B->getOpcode() == ISD::ZERO_EXTEND || B->getOpcode() == ISD::TRUNCATE)
5732     B = B->getOperand(0);
5733 
5734   if (A->getOpcode() == ISD::AND)
5735     return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) ||
5736            MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B);
5737   return false;
5738 }
5739 
5740 // FIXME: unify with llvm::haveNoCommonBitsSet.
5741 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
5742   assert(A.getValueType() == B.getValueType() &&
5743          "Values must have the same type");
5744   if (haveNoCommonBitsSetCommutative(A, B) ||
5745       haveNoCommonBitsSetCommutative(B, A))
5746     return true;
5747   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
5748                                         computeKnownBits(B));
5749 }
5750 
5751 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
5752                                SelectionDAG &DAG) {
5753   if (cast<ConstantSDNode>(Step)->isZero())
5754     return DAG.getConstant(0, DL, VT);
5755 
5756   return SDValue();
5757 }
5758 
5759 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
5760                                 ArrayRef<SDValue> Ops,
5761                                 SelectionDAG &DAG) {
5762   int NumOps = Ops.size();
5763   assert(NumOps != 0 && "Can't build an empty vector!");
5764   assert(!VT.isScalableVector() &&
5765          "BUILD_VECTOR cannot be used with scalable types");
5766   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
5767          "Incorrect element count in BUILD_VECTOR!");
5768 
5769   // BUILD_VECTOR of UNDEFs is UNDEF.
5770   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
5771     return DAG.getUNDEF(VT);
5772 
5773   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
5774   SDValue IdentitySrc;
5775   bool IsIdentity = true;
5776   for (int i = 0; i != NumOps; ++i) {
5777     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5778         Ops[i].getOperand(0).getValueType() != VT ||
5779         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
5780         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
5781         Ops[i].getConstantOperandAPInt(1) != i) {
5782       IsIdentity = false;
5783       break;
5784     }
5785     IdentitySrc = Ops[i].getOperand(0);
5786   }
5787   if (IsIdentity)
5788     return IdentitySrc;
5789 
5790   return SDValue();
5791 }
5792 
5793 /// Try to simplify vector concatenation to an input value, undef, or build
5794 /// vector.
5795 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
5796                                   ArrayRef<SDValue> Ops,
5797                                   SelectionDAG &DAG) {
5798   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
5799   assert(llvm::all_of(Ops,
5800                       [Ops](SDValue Op) {
5801                         return Ops[0].getValueType() == Op.getValueType();
5802                       }) &&
5803          "Concatenation of vectors with inconsistent value types!");
5804   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
5805              VT.getVectorElementCount() &&
5806          "Incorrect element count in vector concatenation!");
5807 
5808   if (Ops.size() == 1)
5809     return Ops[0];
5810 
5811   // Concat of UNDEFs is UNDEF.
5812   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
5813     return DAG.getUNDEF(VT);
5814 
5815   // Scan the operands and look for extract operations from a single source
5816   // that correspond to insertion at the same location via this concatenation:
5817   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
5818   SDValue IdentitySrc;
5819   bool IsIdentity = true;
5820   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
5821     SDValue Op = Ops[i];
5822     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
5823     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
5824         Op.getOperand(0).getValueType() != VT ||
5825         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
5826         Op.getConstantOperandVal(1) != IdentityIndex) {
5827       IsIdentity = false;
5828       break;
5829     }
5830     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
5831            "Unexpected identity source vector for concat of extracts");
5832     IdentitySrc = Op.getOperand(0);
5833   }
5834   if (IsIdentity) {
5835     assert(IdentitySrc && "Failed to set source vector of extracts");
5836     return IdentitySrc;
5837   }
5838 
5839   // The code below this point is only designed to work for fixed width
5840   // vectors, so we bail out for now.
5841   if (VT.isScalableVector())
5842     return SDValue();
5843 
5844   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
5845   // simplified to one big BUILD_VECTOR.
5846   // FIXME: Add support for SCALAR_TO_VECTOR as well.
5847   EVT SVT = VT.getScalarType();
5848   SmallVector<SDValue, 16> Elts;
5849   for (SDValue Op : Ops) {
5850     EVT OpVT = Op.getValueType();
5851     if (Op.isUndef())
5852       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
5853     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
5854       Elts.append(Op->op_begin(), Op->op_end());
5855     else
5856       return SDValue();
5857   }
5858 
5859   // BUILD_VECTOR requires all inputs to be of the same type, find the
5860   // maximum type and extend them all.
5861   for (SDValue Op : Elts)
5862     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
5863 
5864   if (SVT.bitsGT(VT.getScalarType())) {
5865     for (SDValue &Op : Elts) {
5866       if (Op.isUndef())
5867         Op = DAG.getUNDEF(SVT);
5868       else
5869         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
5870                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
5871                  : DAG.getSExtOrTrunc(Op, DL, SVT);
5872     }
5873   }
5874 
5875   SDValue V = DAG.getBuildVector(VT, DL, Elts);
5876   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
5877   return V;
5878 }
5879 
5880 /// Gets or creates the specified node.
5881 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
5882   SDVTList VTs = getVTList(VT);
5883   FoldingSetNodeID ID;
5884   AddNodeIDNode(ID, Opcode, VTs, std::nullopt);
5885   void *IP = nullptr;
5886   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5887     return SDValue(E, 0);
5888 
5889   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5890   CSEMap.InsertNode(N, IP);
5891 
5892   InsertNode(N);
5893   SDValue V = SDValue(N, 0);
5894   NewSDValueDbgMsg(V, "Creating new node: ", this);
5895   return V;
5896 }
5897 
5898 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5899                               SDValue N1) {
5900   SDNodeFlags Flags;
5901   if (Inserter)
5902     Flags = Inserter->getFlags();
5903   return getNode(Opcode, DL, VT, N1, Flags);
5904 }
5905 
5906 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5907                               SDValue N1, const SDNodeFlags Flags) {
5908   assert(N1.getOpcode() != ISD::DELETED_NODE && "Operand is DELETED_NODE!");
5909 
5910   // Constant fold unary operations with a vector integer or float operand.
5911   switch (Opcode) {
5912   default:
5913     // FIXME: Entirely reasonable to perform folding of other unary
5914     // operations here as the need arises.
5915     break;
5916   case ISD::FNEG:
5917   case ISD::FABS:
5918   case ISD::FCEIL:
5919   case ISD::FTRUNC:
5920   case ISD::FFLOOR:
5921   case ISD::FP_EXTEND:
5922   case ISD::FP_TO_SINT:
5923   case ISD::FP_TO_UINT:
5924   case ISD::FP_TO_FP16:
5925   case ISD::FP_TO_BF16:
5926   case ISD::TRUNCATE:
5927   case ISD::ANY_EXTEND:
5928   case ISD::ZERO_EXTEND:
5929   case ISD::SIGN_EXTEND:
5930   case ISD::UINT_TO_FP:
5931   case ISD::SINT_TO_FP:
5932   case ISD::FP16_TO_FP:
5933   case ISD::BF16_TO_FP:
5934   case ISD::BITCAST:
5935   case ISD::ABS:
5936   case ISD::BITREVERSE:
5937   case ISD::BSWAP:
5938   case ISD::CTLZ:
5939   case ISD::CTLZ_ZERO_UNDEF:
5940   case ISD::CTTZ:
5941   case ISD::CTTZ_ZERO_UNDEF:
5942   case ISD::CTPOP:
5943   case ISD::STEP_VECTOR: {
5944     SDValue Ops = {N1};
5945     if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
5946       return Fold;
5947   }
5948   }
5949 
5950   unsigned OpOpcode = N1.getNode()->getOpcode();
5951   switch (Opcode) {
5952   case ISD::STEP_VECTOR:
5953     assert(VT.isScalableVector() &&
5954            "STEP_VECTOR can only be used with scalable types");
5955     assert(OpOpcode == ISD::TargetConstant &&
5956            VT.getVectorElementType() == N1.getValueType() &&
5957            "Unexpected step operand");
5958     break;
5959   case ISD::FREEZE:
5960     assert(VT == N1.getValueType() && "Unexpected VT!");
5961     if (isGuaranteedNotToBeUndefOrPoison(N1, /*PoisonOnly*/ false,
5962                                          /*Depth*/ 1))
5963       return N1;
5964     break;
5965   case ISD::TokenFactor:
5966   case ISD::MERGE_VALUES:
5967   case ISD::CONCAT_VECTORS:
5968     return N1;         // Factor, merge or concat of one node?  No need.
5969   case ISD::BUILD_VECTOR: {
5970     // Attempt to simplify BUILD_VECTOR.
5971     SDValue Ops[] = {N1};
5972     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5973       return V;
5974     break;
5975   }
5976   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
5977   case ISD::FP_EXTEND:
5978     assert(VT.isFloatingPoint() && N1.getValueType().isFloatingPoint() &&
5979            "Invalid FP cast!");
5980     if (N1.getValueType() == VT) return N1;  // noop conversion.
5981     assert((!VT.isVector() || VT.getVectorElementCount() ==
5982                                   N1.getValueType().getVectorElementCount()) &&
5983            "Vector element count mismatch!");
5984     assert(N1.getValueType().bitsLT(VT) && "Invalid fpext node, dst < src!");
5985     if (N1.isUndef())
5986       return getUNDEF(VT);
5987     break;
5988   case ISD::FP_TO_SINT:
5989   case ISD::FP_TO_UINT:
5990     if (N1.isUndef())
5991       return getUNDEF(VT);
5992     break;
5993   case ISD::SINT_TO_FP:
5994   case ISD::UINT_TO_FP:
5995     // [us]itofp(undef) = 0, because the result value is bounded.
5996     if (N1.isUndef())
5997       return getConstantFP(0.0, DL, VT);
5998     break;
5999   case ISD::SIGN_EXTEND:
6000     assert(VT.isInteger() && N1.getValueType().isInteger() &&
6001            "Invalid SIGN_EXTEND!");
6002     assert(VT.isVector() == N1.getValueType().isVector() &&
6003            "SIGN_EXTEND result type type should be vector iff the operand "
6004            "type is vector!");
6005     if (N1.getValueType() == VT) return N1;   // noop extension
6006     assert((!VT.isVector() || VT.getVectorElementCount() ==
6007                                   N1.getValueType().getVectorElementCount()) &&
6008            "Vector element count mismatch!");
6009     assert(N1.getValueType().bitsLT(VT) && "Invalid sext node, dst < src!");
6010     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) {
6011       SDNodeFlags Flags;
6012       if (OpOpcode == ISD::ZERO_EXTEND)
6013         Flags.setNonNeg(N1->getFlags().hasNonNeg());
6014       return getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6015     }
6016     if (OpOpcode == ISD::UNDEF)
6017       // sext(undef) = 0, because the top bits will all be the same.
6018       return getConstant(0, DL, VT);
6019     break;
6020   case ISD::ZERO_EXTEND:
6021     assert(VT.isInteger() && N1.getValueType().isInteger() &&
6022            "Invalid ZERO_EXTEND!");
6023     assert(VT.isVector() == N1.getValueType().isVector() &&
6024            "ZERO_EXTEND result type type should be vector iff the operand "
6025            "type is vector!");
6026     if (N1.getValueType() == VT) return N1;   // noop extension
6027     assert((!VT.isVector() || VT.getVectorElementCount() ==
6028                                   N1.getValueType().getVectorElementCount()) &&
6029            "Vector element count mismatch!");
6030     assert(N1.getValueType().bitsLT(VT) && "Invalid zext node, dst < src!");
6031     if (OpOpcode == ISD::ZERO_EXTEND) { // (zext (zext x)) -> (zext x)
6032       SDNodeFlags Flags;
6033       Flags.setNonNeg(N1->getFlags().hasNonNeg());
6034       return getNode(ISD::ZERO_EXTEND, DL, VT, N1.getOperand(0), Flags);
6035     }
6036     if (OpOpcode == ISD::UNDEF)
6037       // zext(undef) = 0, because the top bits will be zero.
6038       return getConstant(0, DL, VT);
6039 
6040     // Skip unnecessary zext_inreg pattern:
6041     // (zext (trunc x)) -> x iff the upper bits are known zero.
6042     // TODO: Remove (zext (trunc (and x, c))) exception which some targets
6043     // use to recognise zext_inreg patterns.
6044     if (OpOpcode == ISD::TRUNCATE) {
6045       SDValue OpOp = N1.getOperand(0);
6046       if (OpOp.getValueType() == VT) {
6047         if (OpOp.getOpcode() != ISD::AND) {
6048           APInt HiBits = APInt::getBitsSetFrom(VT.getScalarSizeInBits(),
6049                                                N1.getScalarValueSizeInBits());
6050           if (MaskedValueIsZero(OpOp, HiBits)) {
6051             transferDbgValues(N1, OpOp);
6052             return OpOp;
6053           }
6054         }
6055       }
6056     }
6057     break;
6058   case ISD::ANY_EXTEND:
6059     assert(VT.isInteger() && N1.getValueType().isInteger() &&
6060            "Invalid ANY_EXTEND!");
6061     assert(VT.isVector() == N1.getValueType().isVector() &&
6062            "ANY_EXTEND result type type should be vector iff the operand "
6063            "type is vector!");
6064     if (N1.getValueType() == VT) return N1;   // noop extension
6065     assert((!VT.isVector() || VT.getVectorElementCount() ==
6066                                   N1.getValueType().getVectorElementCount()) &&
6067            "Vector element count mismatch!");
6068     assert(N1.getValueType().bitsLT(VT) && "Invalid anyext node, dst < src!");
6069 
6070     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
6071         OpOpcode == ISD::ANY_EXTEND) {
6072       SDNodeFlags Flags;
6073       if (OpOpcode == ISD::ZERO_EXTEND)
6074         Flags.setNonNeg(N1->getFlags().hasNonNeg());
6075       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
6076       return getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6077     }
6078     if (OpOpcode == ISD::UNDEF)
6079       return getUNDEF(VT);
6080 
6081     // (ext (trunc x)) -> x
6082     if (OpOpcode == ISD::TRUNCATE) {
6083       SDValue OpOp = N1.getOperand(0);
6084       if (OpOp.getValueType() == VT) {
6085         transferDbgValues(N1, OpOp);
6086         return OpOp;
6087       }
6088     }
6089     break;
6090   case ISD::TRUNCATE:
6091     assert(VT.isInteger() && N1.getValueType().isInteger() &&
6092            "Invalid TRUNCATE!");
6093     assert(VT.isVector() == N1.getValueType().isVector() &&
6094            "TRUNCATE result type type should be vector iff the operand "
6095            "type is vector!");
6096     if (N1.getValueType() == VT) return N1;   // noop truncate
6097     assert((!VT.isVector() || VT.getVectorElementCount() ==
6098                                   N1.getValueType().getVectorElementCount()) &&
6099            "Vector element count mismatch!");
6100     assert(N1.getValueType().bitsGT(VT) && "Invalid truncate node, src < dst!");
6101     if (OpOpcode == ISD::TRUNCATE)
6102       return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
6103     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
6104         OpOpcode == ISD::ANY_EXTEND) {
6105       // If the source is smaller than the dest, we still need an extend.
6106       if (N1.getOperand(0).getValueType().getScalarType().bitsLT(
6107               VT.getScalarType()))
6108         return getNode(OpOpcode, DL, VT, N1.getOperand(0));
6109       if (N1.getOperand(0).getValueType().bitsGT(VT))
6110         return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
6111       return N1.getOperand(0);
6112     }
6113     if (OpOpcode == ISD::UNDEF)
6114       return getUNDEF(VT);
6115     if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
6116       return getVScale(DL, VT,
6117                        N1.getConstantOperandAPInt(0).trunc(VT.getSizeInBits()));
6118     break;
6119   case ISD::ANY_EXTEND_VECTOR_INREG:
6120   case ISD::ZERO_EXTEND_VECTOR_INREG:
6121   case ISD::SIGN_EXTEND_VECTOR_INREG:
6122     assert(VT.isVector() && "This DAG node is restricted to vector types.");
6123     assert(N1.getValueType().bitsLE(VT) &&
6124            "The input must be the same size or smaller than the result.");
6125     assert(VT.getVectorMinNumElements() <
6126                N1.getValueType().getVectorMinNumElements() &&
6127            "The destination vector type must have fewer lanes than the input.");
6128     break;
6129   case ISD::ABS:
6130     assert(VT.isInteger() && VT == N1.getValueType() && "Invalid ABS!");
6131     if (OpOpcode == ISD::UNDEF)
6132       return getConstant(0, DL, VT);
6133     break;
6134   case ISD::BSWAP:
6135     assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BSWAP!");
6136     assert((VT.getScalarSizeInBits() % 16 == 0) &&
6137            "BSWAP types must be a multiple of 16 bits!");
6138     if (OpOpcode == ISD::UNDEF)
6139       return getUNDEF(VT);
6140     // bswap(bswap(X)) -> X.
6141     if (OpOpcode == ISD::BSWAP)
6142       return N1.getOperand(0);
6143     break;
6144   case ISD::BITREVERSE:
6145     assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BITREVERSE!");
6146     if (OpOpcode == ISD::UNDEF)
6147       return getUNDEF(VT);
6148     break;
6149   case ISD::BITCAST:
6150     assert(VT.getSizeInBits() == N1.getValueSizeInBits() &&
6151            "Cannot BITCAST between types of different sizes!");
6152     if (VT == N1.getValueType()) return N1;   // noop conversion.
6153     if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
6154       return getNode(ISD::BITCAST, DL, VT, N1.getOperand(0));
6155     if (OpOpcode == ISD::UNDEF)
6156       return getUNDEF(VT);
6157     break;
6158   case ISD::SCALAR_TO_VECTOR:
6159     assert(VT.isVector() && !N1.getValueType().isVector() &&
6160            (VT.getVectorElementType() == N1.getValueType() ||
6161             (VT.getVectorElementType().isInteger() &&
6162              N1.getValueType().isInteger() &&
6163              VT.getVectorElementType().bitsLE(N1.getValueType()))) &&
6164            "Illegal SCALAR_TO_VECTOR node!");
6165     if (OpOpcode == ISD::UNDEF)
6166       return getUNDEF(VT);
6167     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
6168     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
6169         isa<ConstantSDNode>(N1.getOperand(1)) &&
6170         N1.getConstantOperandVal(1) == 0 &&
6171         N1.getOperand(0).getValueType() == VT)
6172       return N1.getOperand(0);
6173     break;
6174   case ISD::FNEG:
6175     // Negation of an unknown bag of bits is still completely undefined.
6176     if (OpOpcode == ISD::UNDEF)
6177       return getUNDEF(VT);
6178 
6179     if (OpOpcode == ISD::FNEG) // --X -> X
6180       return N1.getOperand(0);
6181     break;
6182   case ISD::FABS:
6183     if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
6184       return getNode(ISD::FABS, DL, VT, N1.getOperand(0));
6185     break;
6186   case ISD::VSCALE:
6187     assert(VT == N1.getValueType() && "Unexpected VT!");
6188     break;
6189   case ISD::CTPOP:
6190     if (N1.getValueType().getScalarType() == MVT::i1)
6191       return N1;
6192     break;
6193   case ISD::CTLZ:
6194   case ISD::CTTZ:
6195     if (N1.getValueType().getScalarType() == MVT::i1)
6196       return getNOT(DL, N1, N1.getValueType());
6197     break;
6198   case ISD::VECREDUCE_ADD:
6199     if (N1.getValueType().getScalarType() == MVT::i1)
6200       return getNode(ISD::VECREDUCE_XOR, DL, VT, N1);
6201     break;
6202   case ISD::VECREDUCE_SMIN:
6203   case ISD::VECREDUCE_UMAX:
6204     if (N1.getValueType().getScalarType() == MVT::i1)
6205       return getNode(ISD::VECREDUCE_OR, DL, VT, N1);
6206     break;
6207   case ISD::VECREDUCE_SMAX:
6208   case ISD::VECREDUCE_UMIN:
6209     if (N1.getValueType().getScalarType() == MVT::i1)
6210       return getNode(ISD::VECREDUCE_AND, DL, VT, N1);
6211     break;
6212   case ISD::SPLAT_VECTOR:
6213     assert(VT.isVector() && "Wrong return type!");
6214     // FIXME: Hexagon uses i32 scalar for a floating point zero vector so allow
6215     // that for now.
6216     assert((VT.getVectorElementType() == N1.getValueType() ||
6217             (VT.isFloatingPoint() && N1.getValueType() == MVT::i32) ||
6218             (VT.getVectorElementType().isInteger() &&
6219              N1.getValueType().isInteger() &&
6220              VT.getVectorElementType().bitsLE(N1.getValueType()))) &&
6221            "Wrong operand type!");
6222     break;
6223   }
6224 
6225   SDNode *N;
6226   SDVTList VTs = getVTList(VT);
6227   SDValue Ops[] = {N1};
6228   if (VT != MVT::Glue) { // Don't CSE glue producing nodes
6229     FoldingSetNodeID ID;
6230     AddNodeIDNode(ID, Opcode, VTs, Ops);
6231     void *IP = nullptr;
6232     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6233       E->intersectFlagsWith(Flags);
6234       return SDValue(E, 0);
6235     }
6236 
6237     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6238     N->setFlags(Flags);
6239     createOperands(N, Ops);
6240     CSEMap.InsertNode(N, IP);
6241   } else {
6242     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6243     createOperands(N, Ops);
6244   }
6245 
6246   InsertNode(N);
6247   SDValue V = SDValue(N, 0);
6248   NewSDValueDbgMsg(V, "Creating new node: ", this);
6249   return V;
6250 }
6251 
6252 static std::optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
6253                                       const APInt &C2) {
6254   switch (Opcode) {
6255   case ISD::ADD:  return C1 + C2;
6256   case ISD::SUB:  return C1 - C2;
6257   case ISD::MUL:  return C1 * C2;
6258   case ISD::AND:  return C1 & C2;
6259   case ISD::OR:   return C1 | C2;
6260   case ISD::XOR:  return C1 ^ C2;
6261   case ISD::SHL:  return C1 << C2;
6262   case ISD::SRL:  return C1.lshr(C2);
6263   case ISD::SRA:  return C1.ashr(C2);
6264   case ISD::ROTL: return C1.rotl(C2);
6265   case ISD::ROTR: return C1.rotr(C2);
6266   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
6267   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
6268   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
6269   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
6270   case ISD::SADDSAT: return C1.sadd_sat(C2);
6271   case ISD::UADDSAT: return C1.uadd_sat(C2);
6272   case ISD::SSUBSAT: return C1.ssub_sat(C2);
6273   case ISD::USUBSAT: return C1.usub_sat(C2);
6274   case ISD::SSHLSAT: return C1.sshl_sat(C2);
6275   case ISD::USHLSAT: return C1.ushl_sat(C2);
6276   case ISD::UDIV:
6277     if (!C2.getBoolValue())
6278       break;
6279     return C1.udiv(C2);
6280   case ISD::UREM:
6281     if (!C2.getBoolValue())
6282       break;
6283     return C1.urem(C2);
6284   case ISD::SDIV:
6285     if (!C2.getBoolValue())
6286       break;
6287     return C1.sdiv(C2);
6288   case ISD::SREM:
6289     if (!C2.getBoolValue())
6290       break;
6291     return C1.srem(C2);
6292   case ISD::AVGFLOORS:
6293     return APIntOps::avgFloorS(C1, C2);
6294   case ISD::AVGFLOORU:
6295     return APIntOps::avgFloorU(C1, C2);
6296   case ISD::AVGCEILS:
6297     return APIntOps::avgCeilS(C1, C2);
6298   case ISD::AVGCEILU:
6299     return APIntOps::avgCeilU(C1, C2);
6300   case ISD::ABDS:
6301     return APIntOps::abds(C1, C2);
6302   case ISD::ABDU:
6303     return APIntOps::abdu(C1, C2);
6304   case ISD::MULHS:
6305     return APIntOps::mulhs(C1, C2);
6306   case ISD::MULHU:
6307     return APIntOps::mulhu(C1, C2);
6308   }
6309   return std::nullopt;
6310 }
6311 // Handle constant folding with UNDEF.
6312 // TODO: Handle more cases.
6313 static std::optional<APInt> FoldValueWithUndef(unsigned Opcode, const APInt &C1,
6314                                                bool IsUndef1, const APInt &C2,
6315                                                bool IsUndef2) {
6316   if (!(IsUndef1 || IsUndef2))
6317     return FoldValue(Opcode, C1, C2);
6318 
6319   // Fold and(x, undef) -> 0
6320   // Fold mul(x, undef) -> 0
6321   if (Opcode == ISD::AND || Opcode == ISD::MUL)
6322     return APInt::getZero(C1.getBitWidth());
6323 
6324   return std::nullopt;
6325 }
6326 
6327 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
6328                                        const GlobalAddressSDNode *GA,
6329                                        const SDNode *N2) {
6330   if (GA->getOpcode() != ISD::GlobalAddress)
6331     return SDValue();
6332   if (!TLI->isOffsetFoldingLegal(GA))
6333     return SDValue();
6334   auto *C2 = dyn_cast<ConstantSDNode>(N2);
6335   if (!C2)
6336     return SDValue();
6337   int64_t Offset = C2->getSExtValue();
6338   switch (Opcode) {
6339   case ISD::ADD: break;
6340   case ISD::SUB: Offset = -uint64_t(Offset); break;
6341   default: return SDValue();
6342   }
6343   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
6344                           GA->getOffset() + uint64_t(Offset));
6345 }
6346 
6347 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
6348   switch (Opcode) {
6349   case ISD::SDIV:
6350   case ISD::UDIV:
6351   case ISD::SREM:
6352   case ISD::UREM: {
6353     // If a divisor is zero/undef or any element of a divisor vector is
6354     // zero/undef, the whole op is undef.
6355     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
6356     SDValue Divisor = Ops[1];
6357     if (Divisor.isUndef() || isNullConstant(Divisor))
6358       return true;
6359 
6360     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
6361            llvm::any_of(Divisor->op_values(),
6362                         [](SDValue V) { return V.isUndef() ||
6363                                         isNullConstant(V); });
6364     // TODO: Handle signed overflow.
6365   }
6366   // TODO: Handle oversized shifts.
6367   default:
6368     return false;
6369   }
6370 }
6371 
6372 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
6373                                              EVT VT, ArrayRef<SDValue> Ops,
6374                                              SDNodeFlags Flags) {
6375   // If the opcode is a target-specific ISD node, there's nothing we can
6376   // do here and the operand rules may not line up with the below, so
6377   // bail early.
6378   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
6379   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
6380   // foldCONCAT_VECTORS in getNode before this is called.
6381   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
6382     return SDValue();
6383 
6384   unsigned NumOps = Ops.size();
6385   if (NumOps == 0)
6386     return SDValue();
6387 
6388   if (isUndef(Opcode, Ops))
6389     return getUNDEF(VT);
6390 
6391   // Handle unary special cases.
6392   if (NumOps == 1) {
6393     SDValue N1 = Ops[0];
6394 
6395     // Constant fold unary operations with an integer constant operand. Even
6396     // opaque constant will be folded, because the folding of unary operations
6397     // doesn't create new constants with different values. Nevertheless, the
6398     // opaque flag is preserved during folding to prevent future folding with
6399     // other constants.
6400     if (auto *C = dyn_cast<ConstantSDNode>(N1)) {
6401       const APInt &Val = C->getAPIntValue();
6402       switch (Opcode) {
6403       case ISD::SIGN_EXTEND:
6404         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
6405                            C->isTargetOpcode(), C->isOpaque());
6406       case ISD::TRUNCATE:
6407         if (C->isOpaque())
6408           break;
6409         [[fallthrough]];
6410       case ISD::ZERO_EXTEND:
6411         return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
6412                            C->isTargetOpcode(), C->isOpaque());
6413       case ISD::ANY_EXTEND:
6414         // Some targets like RISCV prefer to sign extend some types.
6415         if (TLI->isSExtCheaperThanZExt(N1.getValueType(), VT))
6416           return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
6417                              C->isTargetOpcode(), C->isOpaque());
6418         return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
6419                            C->isTargetOpcode(), C->isOpaque());
6420       case ISD::ABS:
6421         return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
6422                            C->isOpaque());
6423       case ISD::BITREVERSE:
6424         return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
6425                            C->isOpaque());
6426       case ISD::BSWAP:
6427         return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
6428                            C->isOpaque());
6429       case ISD::CTPOP:
6430         return getConstant(Val.popcount(), DL, VT, C->isTargetOpcode(),
6431                            C->isOpaque());
6432       case ISD::CTLZ:
6433       case ISD::CTLZ_ZERO_UNDEF:
6434         return getConstant(Val.countl_zero(), DL, VT, C->isTargetOpcode(),
6435                            C->isOpaque());
6436       case ISD::CTTZ:
6437       case ISD::CTTZ_ZERO_UNDEF:
6438         return getConstant(Val.countr_zero(), DL, VT, C->isTargetOpcode(),
6439                            C->isOpaque());
6440       case ISD::UINT_TO_FP:
6441       case ISD::SINT_TO_FP: {
6442         APFloat apf(EVTToAPFloatSemantics(VT),
6443                     APInt::getZero(VT.getSizeInBits()));
6444         (void)apf.convertFromAPInt(Val, Opcode == ISD::SINT_TO_FP,
6445                                    APFloat::rmNearestTiesToEven);
6446         return getConstantFP(apf, DL, VT);
6447       }
6448       case ISD::FP16_TO_FP:
6449       case ISD::BF16_TO_FP: {
6450         bool Ignored;
6451         APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf()
6452                                               : APFloat::BFloat(),
6453                     (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
6454 
6455         // This can return overflow, underflow, or inexact; we don't care.
6456         // FIXME need to be more flexible about rounding mode.
6457         (void)FPV.convert(EVTToAPFloatSemantics(VT),
6458                           APFloat::rmNearestTiesToEven, &Ignored);
6459         return getConstantFP(FPV, DL, VT);
6460       }
6461       case ISD::STEP_VECTOR:
6462         if (SDValue V = FoldSTEP_VECTOR(DL, VT, N1, *this))
6463           return V;
6464         break;
6465       case ISD::BITCAST:
6466         if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
6467           return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
6468         if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
6469           return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
6470         if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
6471           return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
6472         if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
6473           return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
6474         break;
6475       }
6476     }
6477 
6478     // Constant fold unary operations with a floating point constant operand.
6479     if (auto *C = dyn_cast<ConstantFPSDNode>(N1)) {
6480       APFloat V = C->getValueAPF(); // make copy
6481       switch (Opcode) {
6482       case ISD::FNEG:
6483         V.changeSign();
6484         return getConstantFP(V, DL, VT);
6485       case ISD::FABS:
6486         V.clearSign();
6487         return getConstantFP(V, DL, VT);
6488       case ISD::FCEIL: {
6489         APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
6490         if (fs == APFloat::opOK || fs == APFloat::opInexact)
6491           return getConstantFP(V, DL, VT);
6492         return SDValue();
6493       }
6494       case ISD::FTRUNC: {
6495         APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
6496         if (fs == APFloat::opOK || fs == APFloat::opInexact)
6497           return getConstantFP(V, DL, VT);
6498         return SDValue();
6499       }
6500       case ISD::FFLOOR: {
6501         APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
6502         if (fs == APFloat::opOK || fs == APFloat::opInexact)
6503           return getConstantFP(V, DL, VT);
6504         return SDValue();
6505       }
6506       case ISD::FP_EXTEND: {
6507         bool ignored;
6508         // This can return overflow, underflow, or inexact; we don't care.
6509         // FIXME need to be more flexible about rounding mode.
6510         (void)V.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
6511                         &ignored);
6512         return getConstantFP(V, DL, VT);
6513       }
6514       case ISD::FP_TO_SINT:
6515       case ISD::FP_TO_UINT: {
6516         bool ignored;
6517         APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
6518         // FIXME need to be more flexible about rounding mode.
6519         APFloat::opStatus s =
6520             V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
6521         if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
6522           break;
6523         return getConstant(IntVal, DL, VT);
6524       }
6525       case ISD::FP_TO_FP16:
6526       case ISD::FP_TO_BF16: {
6527         bool Ignored;
6528         // This can return overflow, underflow, or inexact; we don't care.
6529         // FIXME need to be more flexible about rounding mode.
6530         (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf()
6531                                                   : APFloat::BFloat(),
6532                         APFloat::rmNearestTiesToEven, &Ignored);
6533         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
6534       }
6535       case ISD::BITCAST:
6536         if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
6537           return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL,
6538                              VT);
6539         if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
6540           return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL,
6541                              VT);
6542         if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
6543           return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL,
6544                              VT);
6545         if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
6546           return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
6547         break;
6548       }
6549     }
6550 
6551     // Early-out if we failed to constant fold a bitcast.
6552     if (Opcode == ISD::BITCAST)
6553       return SDValue();
6554   }
6555 
6556   // Handle binops special cases.
6557   if (NumOps == 2) {
6558     if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops))
6559       return CFP;
6560 
6561     if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
6562       if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
6563         if (C1->isOpaque() || C2->isOpaque())
6564           return SDValue();
6565 
6566         std::optional<APInt> FoldAttempt =
6567             FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
6568         if (!FoldAttempt)
6569           return SDValue();
6570 
6571         SDValue Folded = getConstant(*FoldAttempt, DL, VT);
6572         assert((!Folded || !VT.isVector()) &&
6573                "Can't fold vectors ops with scalar operands");
6574         return Folded;
6575       }
6576     }
6577 
6578     // fold (add Sym, c) -> Sym+c
6579     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0]))
6580       return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
6581     if (TLI->isCommutativeBinOp(Opcode))
6582       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1]))
6583         return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
6584   }
6585 
6586   // This is for vector folding only from here on.
6587   if (!VT.isVector())
6588     return SDValue();
6589 
6590   ElementCount NumElts = VT.getVectorElementCount();
6591 
6592   // See if we can fold through any bitcasted integer ops.
6593   if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
6594       Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
6595       (Ops[0].getOpcode() == ISD::BITCAST ||
6596        Ops[1].getOpcode() == ISD::BITCAST)) {
6597     SDValue N1 = peekThroughBitcasts(Ops[0]);
6598     SDValue N2 = peekThroughBitcasts(Ops[1]);
6599     auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
6600     auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
6601     if (BV1 && BV2 && N1.getValueType().isInteger() &&
6602         N2.getValueType().isInteger()) {
6603       bool IsLE = getDataLayout().isLittleEndian();
6604       unsigned EltBits = VT.getScalarSizeInBits();
6605       SmallVector<APInt> RawBits1, RawBits2;
6606       BitVector UndefElts1, UndefElts2;
6607       if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
6608           BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) {
6609         SmallVector<APInt> RawBits;
6610         for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
6611           std::optional<APInt> Fold = FoldValueWithUndef(
6612               Opcode, RawBits1[I], UndefElts1[I], RawBits2[I], UndefElts2[I]);
6613           if (!Fold)
6614             break;
6615           RawBits.push_back(*Fold);
6616         }
6617         if (RawBits.size() == NumElts.getFixedValue()) {
6618           // We have constant folded, but we might need to cast this again back
6619           // to the original (possibly legalized) type.
6620           EVT BVVT, BVEltVT;
6621           if (N1.getValueType() == VT) {
6622             BVVT = N1.getValueType();
6623             BVEltVT = BV1->getOperand(0).getValueType();
6624           } else {
6625             BVVT = N2.getValueType();
6626             BVEltVT = BV2->getOperand(0).getValueType();
6627           }
6628           unsigned BVEltBits = BVEltVT.getSizeInBits();
6629           SmallVector<APInt> DstBits;
6630           BitVector DstUndefs;
6631           BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(),
6632                                            DstBits, RawBits, DstUndefs,
6633                                            BitVector(RawBits.size(), false));
6634           SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
6635           for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
6636             if (DstUndefs[I])
6637               continue;
6638             Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT);
6639           }
6640           return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
6641         }
6642       }
6643     }
6644   }
6645 
6646   // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
6647   //      (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
6648   if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
6649       Ops[0].getOpcode() == ISD::STEP_VECTOR) {
6650     APInt RHSVal;
6651     if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
6652       APInt NewStep = Opcode == ISD::MUL
6653                           ? Ops[0].getConstantOperandAPInt(0) * RHSVal
6654                           : Ops[0].getConstantOperandAPInt(0) << RHSVal;
6655       return getStepVector(DL, VT, NewStep);
6656     }
6657   }
6658 
6659   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
6660     return !Op.getValueType().isVector() ||
6661            Op.getValueType().getVectorElementCount() == NumElts;
6662   };
6663 
6664   auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
6665     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
6666            Op.getOpcode() == ISD::BUILD_VECTOR ||
6667            Op.getOpcode() == ISD::SPLAT_VECTOR;
6668   };
6669 
6670   // All operands must be vector types with the same number of elements as
6671   // the result type and must be either UNDEF or a build/splat vector
6672   // or UNDEF scalars.
6673   if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
6674       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
6675     return SDValue();
6676 
6677   // If we are comparing vectors, then the result needs to be a i1 boolean that
6678   // is then extended back to the legal result type depending on how booleans
6679   // are represented.
6680   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
6681   ISD::NodeType ExtendCode =
6682       (Opcode == ISD::SETCC && SVT != VT.getScalarType())
6683           ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT))
6684           : ISD::SIGN_EXTEND;
6685 
6686   // Find legal integer scalar type for constant promotion and
6687   // ensure that its scalar size is at least as large as source.
6688   EVT LegalSVT = VT.getScalarType();
6689   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
6690     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
6691     if (LegalSVT.bitsLT(VT.getScalarType()))
6692       return SDValue();
6693   }
6694 
6695   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
6696   // only have one operand to check. For fixed-length vector types we may have
6697   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
6698   unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
6699 
6700   // Constant fold each scalar lane separately.
6701   SmallVector<SDValue, 4> ScalarResults;
6702   for (unsigned I = 0; I != NumVectorElts; I++) {
6703     SmallVector<SDValue, 4> ScalarOps;
6704     for (SDValue Op : Ops) {
6705       EVT InSVT = Op.getValueType().getScalarType();
6706       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
6707           Op.getOpcode() != ISD::SPLAT_VECTOR) {
6708         if (Op.isUndef())
6709           ScalarOps.push_back(getUNDEF(InSVT));
6710         else
6711           ScalarOps.push_back(Op);
6712         continue;
6713       }
6714 
6715       SDValue ScalarOp =
6716           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
6717       EVT ScalarVT = ScalarOp.getValueType();
6718 
6719       // Build vector (integer) scalar operands may need implicit
6720       // truncation - do this before constant folding.
6721       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) {
6722         // Don't create illegally-typed nodes unless they're constants or undef
6723         // - if we fail to constant fold we can't guarantee the (dead) nodes
6724         // we're creating will be cleaned up before being visited for
6725         // legalization.
6726         if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() &&
6727             !isa<ConstantSDNode>(ScalarOp) &&
6728             TLI->getTypeAction(*getContext(), InSVT) !=
6729                 TargetLowering::TypeLegal)
6730           return SDValue();
6731         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
6732       }
6733 
6734       ScalarOps.push_back(ScalarOp);
6735     }
6736 
6737     // Constant fold the scalar operands.
6738     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
6739 
6740     // Legalize the (integer) scalar constant if necessary.
6741     if (LegalSVT != SVT)
6742       ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult);
6743 
6744     // Scalar folding only succeeded if the result is a constant or UNDEF.
6745     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
6746         ScalarResult.getOpcode() != ISD::ConstantFP)
6747       return SDValue();
6748     ScalarResults.push_back(ScalarResult);
6749   }
6750 
6751   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
6752                                    : getBuildVector(VT, DL, ScalarResults);
6753   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
6754   return V;
6755 }
6756 
6757 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
6758                                          EVT VT, ArrayRef<SDValue> Ops) {
6759   // TODO: Add support for unary/ternary fp opcodes.
6760   if (Ops.size() != 2)
6761     return SDValue();
6762 
6763   // TODO: We don't do any constant folding for strict FP opcodes here, but we
6764   //       should. That will require dealing with a potentially non-default
6765   //       rounding mode, checking the "opStatus" return value from the APFloat
6766   //       math calculations, and possibly other variations.
6767   SDValue N1 = Ops[0];
6768   SDValue N2 = Ops[1];
6769   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
6770   ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
6771   if (N1CFP && N2CFP) {
6772     APFloat C1 = N1CFP->getValueAPF(); // make copy
6773     const APFloat &C2 = N2CFP->getValueAPF();
6774     switch (Opcode) {
6775     case ISD::FADD:
6776       C1.add(C2, APFloat::rmNearestTiesToEven);
6777       return getConstantFP(C1, DL, VT);
6778     case ISD::FSUB:
6779       C1.subtract(C2, APFloat::rmNearestTiesToEven);
6780       return getConstantFP(C1, DL, VT);
6781     case ISD::FMUL:
6782       C1.multiply(C2, APFloat::rmNearestTiesToEven);
6783       return getConstantFP(C1, DL, VT);
6784     case ISD::FDIV:
6785       C1.divide(C2, APFloat::rmNearestTiesToEven);
6786       return getConstantFP(C1, DL, VT);
6787     case ISD::FREM:
6788       C1.mod(C2);
6789       return getConstantFP(C1, DL, VT);
6790     case ISD::FCOPYSIGN:
6791       C1.copySign(C2);
6792       return getConstantFP(C1, DL, VT);
6793     case ISD::FMINNUM:
6794       return getConstantFP(minnum(C1, C2), DL, VT);
6795     case ISD::FMAXNUM:
6796       return getConstantFP(maxnum(C1, C2), DL, VT);
6797     case ISD::FMINIMUM:
6798       return getConstantFP(minimum(C1, C2), DL, VT);
6799     case ISD::FMAXIMUM:
6800       return getConstantFP(maximum(C1, C2), DL, VT);
6801     default: break;
6802     }
6803   }
6804   if (N1CFP && Opcode == ISD::FP_ROUND) {
6805     APFloat C1 = N1CFP->getValueAPF();    // make copy
6806     bool Unused;
6807     // This can return overflow, underflow, or inexact; we don't care.
6808     // FIXME need to be more flexible about rounding mode.
6809     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
6810                       &Unused);
6811     return getConstantFP(C1, DL, VT);
6812   }
6813 
6814   switch (Opcode) {
6815   case ISD::FSUB:
6816     // -0.0 - undef --> undef (consistent with "fneg undef")
6817     if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
6818       if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
6819         return getUNDEF(VT);
6820     [[fallthrough]];
6821 
6822   case ISD::FADD:
6823   case ISD::FMUL:
6824   case ISD::FDIV:
6825   case ISD::FREM:
6826     // If both operands are undef, the result is undef. If 1 operand is undef,
6827     // the result is NaN. This should match the behavior of the IR optimizer.
6828     if (N1.isUndef() && N2.isUndef())
6829       return getUNDEF(VT);
6830     if (N1.isUndef() || N2.isUndef())
6831       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
6832   }
6833   return SDValue();
6834 }
6835 
6836 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
6837   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
6838 
6839   // There's no need to assert on a byte-aligned pointer. All pointers are at
6840   // least byte aligned.
6841   if (A == Align(1))
6842     return Val;
6843 
6844   SDVTList VTs = getVTList(Val.getValueType());
6845   FoldingSetNodeID ID;
6846   AddNodeIDNode(ID, ISD::AssertAlign, VTs, {Val});
6847   ID.AddInteger(A.value());
6848 
6849   void *IP = nullptr;
6850   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6851     return SDValue(E, 0);
6852 
6853   auto *N =
6854       newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, A);
6855   createOperands(N, {Val});
6856 
6857   CSEMap.InsertNode(N, IP);
6858   InsertNode(N);
6859 
6860   SDValue V(N, 0);
6861   NewSDValueDbgMsg(V, "Creating new node: ", this);
6862   return V;
6863 }
6864 
6865 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6866                               SDValue N1, SDValue N2) {
6867   SDNodeFlags Flags;
6868   if (Inserter)
6869     Flags = Inserter->getFlags();
6870   return getNode(Opcode, DL, VT, N1, N2, Flags);
6871 }
6872 
6873 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1,
6874                                                 SDValue &N2) const {
6875   if (!TLI->isCommutativeBinOp(Opcode))
6876     return;
6877 
6878   // Canonicalize:
6879   //   binop(const, nonconst) -> binop(nonconst, const)
6880   SDNode *N1C = isConstantIntBuildVectorOrConstantInt(N1);
6881   SDNode *N2C = isConstantIntBuildVectorOrConstantInt(N2);
6882   SDNode *N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
6883   SDNode *N2CFP = isConstantFPBuildVectorOrConstantFP(N2);
6884   if ((N1C && !N2C) || (N1CFP && !N2CFP))
6885     std::swap(N1, N2);
6886 
6887   // Canonicalize:
6888   //  binop(splat(x), step_vector) -> binop(step_vector, splat(x))
6889   else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
6890            N2.getOpcode() == ISD::STEP_VECTOR)
6891     std::swap(N1, N2);
6892 }
6893 
6894 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6895                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
6896   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6897          N2.getOpcode() != ISD::DELETED_NODE &&
6898          "Operand is DELETED_NODE!");
6899 
6900   canonicalizeCommutativeBinop(Opcode, N1, N2);
6901 
6902   auto *N1C = dyn_cast<ConstantSDNode>(N1);
6903   auto *N2C = dyn_cast<ConstantSDNode>(N2);
6904 
6905   // Don't allow undefs in vector splats - we might be returning N2 when folding
6906   // to zero etc.
6907   ConstantSDNode *N2CV =
6908       isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
6909 
6910   switch (Opcode) {
6911   default: break;
6912   case ISD::TokenFactor:
6913     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
6914            N2.getValueType() == MVT::Other && "Invalid token factor!");
6915     // Fold trivial token factors.
6916     if (N1.getOpcode() == ISD::EntryToken) return N2;
6917     if (N2.getOpcode() == ISD::EntryToken) return N1;
6918     if (N1 == N2) return N1;
6919     break;
6920   case ISD::BUILD_VECTOR: {
6921     // Attempt to simplify BUILD_VECTOR.
6922     SDValue Ops[] = {N1, N2};
6923     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6924       return V;
6925     break;
6926   }
6927   case ISD::CONCAT_VECTORS: {
6928     SDValue Ops[] = {N1, N2};
6929     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6930       return V;
6931     break;
6932   }
6933   case ISD::AND:
6934     assert(VT.isInteger() && "This operator does not apply to FP types!");
6935     assert(N1.getValueType() == N2.getValueType() &&
6936            N1.getValueType() == VT && "Binary operator types must match!");
6937     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
6938     // worth handling here.
6939     if (N2CV && N2CV->isZero())
6940       return N2;
6941     if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
6942       return N1;
6943     break;
6944   case ISD::OR:
6945   case ISD::XOR:
6946   case ISD::ADD:
6947   case ISD::SUB:
6948     assert(VT.isInteger() && "This operator does not apply to FP types!");
6949     assert(N1.getValueType() == N2.getValueType() &&
6950            N1.getValueType() == VT && "Binary operator types must match!");
6951     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
6952     // it's worth handling here.
6953     if (N2CV && N2CV->isZero())
6954       return N1;
6955     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
6956         VT.getVectorElementType() == MVT::i1)
6957       return getNode(ISD::XOR, DL, VT, N1, N2);
6958     break;
6959   case ISD::MUL:
6960     assert(VT.isInteger() && "This operator does not apply to FP types!");
6961     assert(N1.getValueType() == N2.getValueType() &&
6962            N1.getValueType() == VT && "Binary operator types must match!");
6963     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
6964       return getNode(ISD::AND, DL, VT, N1, N2);
6965     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
6966       const APInt &MulImm = N1->getConstantOperandAPInt(0);
6967       const APInt &N2CImm = N2C->getAPIntValue();
6968       return getVScale(DL, VT, MulImm * N2CImm);
6969     }
6970     break;
6971   case ISD::UDIV:
6972   case ISD::UREM:
6973   case ISD::MULHU:
6974   case ISD::MULHS:
6975   case ISD::SDIV:
6976   case ISD::SREM:
6977   case ISD::SADDSAT:
6978   case ISD::SSUBSAT:
6979   case ISD::UADDSAT:
6980   case ISD::USUBSAT:
6981     assert(VT.isInteger() && "This operator does not apply to FP types!");
6982     assert(N1.getValueType() == N2.getValueType() &&
6983            N1.getValueType() == VT && "Binary operator types must match!");
6984     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
6985       // fold (add_sat x, y) -> (or x, y) for bool types.
6986       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
6987         return getNode(ISD::OR, DL, VT, N1, N2);
6988       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
6989       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
6990         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
6991     }
6992     break;
6993   case ISD::SCMP:
6994   case ISD::UCMP:
6995     assert(N1.getValueType() == N2.getValueType() &&
6996            "Types of operands of UCMP/SCMP must match");
6997     assert(N1.getValueType().isVector() == VT.isVector() &&
6998            "Operands and return type of must both be scalars or vectors");
6999     if (VT.isVector())
7000       assert(VT.getVectorElementCount() ==
7001                  N1.getValueType().getVectorElementCount() &&
7002              "Result and operands must have the same number of elements");
7003     break;
7004   case ISD::AVGFLOORS:
7005   case ISD::AVGFLOORU:
7006   case ISD::AVGCEILS:
7007   case ISD::AVGCEILU:
7008     assert(VT.isInteger() && "This operator does not apply to FP types!");
7009     assert(N1.getValueType() == N2.getValueType() &&
7010            N1.getValueType() == VT && "Binary operator types must match!");
7011     break;
7012   case ISD::ABDS:
7013   case ISD::ABDU:
7014     assert(VT.isInteger() && "This operator does not apply to FP types!");
7015     assert(N1.getValueType() == N2.getValueType() &&
7016            N1.getValueType() == VT && "Binary operator types must match!");
7017     break;
7018   case ISD::SMIN:
7019   case ISD::UMAX:
7020     assert(VT.isInteger() && "This operator does not apply to FP types!");
7021     assert(N1.getValueType() == N2.getValueType() &&
7022            N1.getValueType() == VT && "Binary operator types must match!");
7023     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
7024       return getNode(ISD::OR, DL, VT, N1, N2);
7025     break;
7026   case ISD::SMAX:
7027   case ISD::UMIN:
7028     assert(VT.isInteger() && "This operator does not apply to FP types!");
7029     assert(N1.getValueType() == N2.getValueType() &&
7030            N1.getValueType() == VT && "Binary operator types must match!");
7031     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
7032       return getNode(ISD::AND, DL, VT, N1, N2);
7033     break;
7034   case ISD::FADD:
7035   case ISD::FSUB:
7036   case ISD::FMUL:
7037   case ISD::FDIV:
7038   case ISD::FREM:
7039     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
7040     assert(N1.getValueType() == N2.getValueType() &&
7041            N1.getValueType() == VT && "Binary operator types must match!");
7042     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
7043       return V;
7044     break;
7045   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
7046     assert(N1.getValueType() == VT &&
7047            N1.getValueType().isFloatingPoint() &&
7048            N2.getValueType().isFloatingPoint() &&
7049            "Invalid FCOPYSIGN!");
7050     break;
7051   case ISD::SHL:
7052     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7053       const APInt &MulImm = N1->getConstantOperandAPInt(0);
7054       const APInt &ShiftImm = N2C->getAPIntValue();
7055       return getVScale(DL, VT, MulImm << ShiftImm);
7056     }
7057     [[fallthrough]];
7058   case ISD::SRA:
7059   case ISD::SRL:
7060     if (SDValue V = simplifyShift(N1, N2))
7061       return V;
7062     [[fallthrough]];
7063   case ISD::ROTL:
7064   case ISD::ROTR:
7065     assert(VT == N1.getValueType() &&
7066            "Shift operators return type must be the same as their first arg");
7067     assert(VT.isInteger() && N2.getValueType().isInteger() &&
7068            "Shifts only work on integers");
7069     assert((!VT.isVector() || VT == N2.getValueType()) &&
7070            "Vector shift amounts must be in the same as their first arg");
7071     // Verify that the shift amount VT is big enough to hold valid shift
7072     // amounts.  This catches things like trying to shift an i1024 value by an
7073     // i8, which is easy to fall into in generic code that uses
7074     // TLI.getShiftAmount().
7075     assert(N2.getValueType().getScalarSizeInBits() >=
7076                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
7077            "Invalid use of small shift amount with oversized value!");
7078 
7079     // Always fold shifts of i1 values so the code generator doesn't need to
7080     // handle them.  Since we know the size of the shift has to be less than the
7081     // size of the value, the shift/rotate count is guaranteed to be zero.
7082     if (VT == MVT::i1)
7083       return N1;
7084     if (N2CV && N2CV->isZero())
7085       return N1;
7086     break;
7087   case ISD::FP_ROUND:
7088     assert(VT.isFloatingPoint() &&
7089            N1.getValueType().isFloatingPoint() &&
7090            VT.bitsLE(N1.getValueType()) &&
7091            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
7092            "Invalid FP_ROUND!");
7093     if (N1.getValueType() == VT) return N1;  // noop conversion.
7094     break;
7095   case ISD::AssertSext:
7096   case ISD::AssertZext: {
7097     EVT EVT = cast<VTSDNode>(N2)->getVT();
7098     assert(VT == N1.getValueType() && "Not an inreg extend!");
7099     assert(VT.isInteger() && EVT.isInteger() &&
7100            "Cannot *_EXTEND_INREG FP types");
7101     assert(!EVT.isVector() &&
7102            "AssertSExt/AssertZExt type should be the vector element type "
7103            "rather than the vector type!");
7104     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
7105     if (VT.getScalarType() == EVT) return N1; // noop assertion.
7106     break;
7107   }
7108   case ISD::SIGN_EXTEND_INREG: {
7109     EVT EVT = cast<VTSDNode>(N2)->getVT();
7110     assert(VT == N1.getValueType() && "Not an inreg extend!");
7111     assert(VT.isInteger() && EVT.isInteger() &&
7112            "Cannot *_EXTEND_INREG FP types");
7113     assert(EVT.isVector() == VT.isVector() &&
7114            "SIGN_EXTEND_INREG type should be vector iff the operand "
7115            "type is vector!");
7116     assert((!EVT.isVector() ||
7117             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
7118            "Vector element counts must match in SIGN_EXTEND_INREG");
7119     assert(EVT.bitsLE(VT) && "Not extending!");
7120     if (EVT == VT) return N1;  // Not actually extending
7121 
7122     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
7123       unsigned FromBits = EVT.getScalarSizeInBits();
7124       Val <<= Val.getBitWidth() - FromBits;
7125       Val.ashrInPlace(Val.getBitWidth() - FromBits);
7126       return getConstant(Val, DL, ConstantVT);
7127     };
7128 
7129     if (N1C) {
7130       const APInt &Val = N1C->getAPIntValue();
7131       return SignExtendInReg(Val, VT);
7132     }
7133 
7134     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
7135       SmallVector<SDValue, 8> Ops;
7136       llvm::EVT OpVT = N1.getOperand(0).getValueType();
7137       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
7138         SDValue Op = N1.getOperand(i);
7139         if (Op.isUndef()) {
7140           Ops.push_back(getUNDEF(OpVT));
7141           continue;
7142         }
7143         ConstantSDNode *C = cast<ConstantSDNode>(Op);
7144         APInt Val = C->getAPIntValue();
7145         Ops.push_back(SignExtendInReg(Val, OpVT));
7146       }
7147       return getBuildVector(VT, DL, Ops);
7148     }
7149 
7150     if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
7151         isa<ConstantSDNode>(N1.getOperand(0)))
7152       return getNode(
7153           ISD::SPLAT_VECTOR, DL, VT,
7154           SignExtendInReg(N1.getConstantOperandAPInt(0),
7155                           N1.getOperand(0).getValueType()));
7156     break;
7157   }
7158   case ISD::FP_TO_SINT_SAT:
7159   case ISD::FP_TO_UINT_SAT: {
7160     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
7161            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
7162     assert(N1.getValueType().isVector() == VT.isVector() &&
7163            "FP_TO_*INT_SAT type should be vector iff the operand type is "
7164            "vector!");
7165     assert((!VT.isVector() || VT.getVectorElementCount() ==
7166                                   N1.getValueType().getVectorElementCount()) &&
7167            "Vector element counts must match in FP_TO_*INT_SAT");
7168     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
7169            "Type to saturate to must be a scalar.");
7170     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
7171            "Not extending!");
7172     break;
7173   }
7174   case ISD::EXTRACT_VECTOR_ELT:
7175     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
7176            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
7177              element type of the vector.");
7178 
7179     // Extract from an undefined value or using an undefined index is undefined.
7180     if (N1.isUndef() || N2.isUndef())
7181       return getUNDEF(VT);
7182 
7183     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
7184     // vectors. For scalable vectors we will provide appropriate support for
7185     // dealing with arbitrary indices.
7186     if (N2C && N1.getValueType().isFixedLengthVector() &&
7187         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
7188       return getUNDEF(VT);
7189 
7190     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
7191     // expanding copies of large vectors from registers. This only works for
7192     // fixed length vectors, since we need to know the exact number of
7193     // elements.
7194     if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
7195         N1.getOperand(0).getValueType().isFixedLengthVector()) {
7196       unsigned Factor =
7197         N1.getOperand(0).getValueType().getVectorNumElements();
7198       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
7199                      N1.getOperand(N2C->getZExtValue() / Factor),
7200                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
7201     }
7202 
7203     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
7204     // lowering is expanding large vector constants.
7205     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
7206                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
7207       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
7208               N1.getValueType().isFixedLengthVector()) &&
7209              "BUILD_VECTOR used for scalable vectors");
7210       unsigned Index =
7211           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
7212       SDValue Elt = N1.getOperand(Index);
7213 
7214       if (VT != Elt.getValueType())
7215         // If the vector element type is not legal, the BUILD_VECTOR operands
7216         // are promoted and implicitly truncated, and the result implicitly
7217         // extended. Make that explicit here.
7218         Elt = getAnyExtOrTrunc(Elt, DL, VT);
7219 
7220       return Elt;
7221     }
7222 
7223     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
7224     // operations are lowered to scalars.
7225     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
7226       // If the indices are the same, return the inserted element else
7227       // if the indices are known different, extract the element from
7228       // the original vector.
7229       SDValue N1Op2 = N1.getOperand(2);
7230       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
7231 
7232       if (N1Op2C && N2C) {
7233         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
7234           if (VT == N1.getOperand(1).getValueType())
7235             return N1.getOperand(1);
7236           if (VT.isFloatingPoint()) {
7237             assert(VT.getSizeInBits() > N1.getOperand(1).getValueType().getSizeInBits());
7238             return getFPExtendOrRound(N1.getOperand(1), DL, VT);
7239           }
7240           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
7241         }
7242         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
7243       }
7244     }
7245 
7246     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
7247     // when vector types are scalarized and v1iX is legal.
7248     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
7249     // Here we are completely ignoring the extract element index (N2),
7250     // which is fine for fixed width vectors, since any index other than 0
7251     // is undefined anyway. However, this cannot be ignored for scalable
7252     // vectors - in theory we could support this, but we don't want to do this
7253     // without a profitability check.
7254     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
7255         N1.getValueType().isFixedLengthVector() &&
7256         N1.getValueType().getVectorNumElements() == 1) {
7257       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
7258                      N1.getOperand(1));
7259     }
7260     break;
7261   case ISD::EXTRACT_ELEMENT:
7262     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
7263     assert(!N1.getValueType().isVector() && !VT.isVector() &&
7264            (N1.getValueType().isInteger() == VT.isInteger()) &&
7265            N1.getValueType() != VT &&
7266            "Wrong types for EXTRACT_ELEMENT!");
7267 
7268     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
7269     // 64-bit integers into 32-bit parts.  Instead of building the extract of
7270     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
7271     if (N1.getOpcode() == ISD::BUILD_PAIR)
7272       return N1.getOperand(N2C->getZExtValue());
7273 
7274     // EXTRACT_ELEMENT of a constant int is also very common.
7275     if (N1C) {
7276       unsigned ElementSize = VT.getSizeInBits();
7277       unsigned Shift = ElementSize * N2C->getZExtValue();
7278       const APInt &Val = N1C->getAPIntValue();
7279       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
7280     }
7281     break;
7282   case ISD::EXTRACT_SUBVECTOR: {
7283     EVT N1VT = N1.getValueType();
7284     assert(VT.isVector() && N1VT.isVector() &&
7285            "Extract subvector VTs must be vectors!");
7286     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
7287            "Extract subvector VTs must have the same element type!");
7288     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
7289            "Cannot extract a scalable vector from a fixed length vector!");
7290     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
7291             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
7292            "Extract subvector must be from larger vector to smaller vector!");
7293     assert(N2C && "Extract subvector index must be a constant");
7294     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
7295             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
7296                 N1VT.getVectorMinNumElements()) &&
7297            "Extract subvector overflow!");
7298     assert(N2C->getAPIntValue().getBitWidth() ==
7299                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
7300            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
7301 
7302     // Trivial extraction.
7303     if (VT == N1VT)
7304       return N1;
7305 
7306     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
7307     if (N1.isUndef())
7308       return getUNDEF(VT);
7309 
7310     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
7311     // the concat have the same type as the extract.
7312     if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
7313         VT == N1.getOperand(0).getValueType()) {
7314       unsigned Factor = VT.getVectorMinNumElements();
7315       return N1.getOperand(N2C->getZExtValue() / Factor);
7316     }
7317 
7318     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
7319     // during shuffle legalization.
7320     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
7321         VT == N1.getOperand(1).getValueType())
7322       return N1.getOperand(1);
7323     break;
7324   }
7325   }
7326 
7327   // Perform trivial constant folding.
7328   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}, Flags))
7329     return SV;
7330 
7331   // Canonicalize an UNDEF to the RHS, even over a constant.
7332   if (N1.isUndef()) {
7333     if (TLI->isCommutativeBinOp(Opcode)) {
7334       std::swap(N1, N2);
7335     } else {
7336       switch (Opcode) {
7337       case ISD::SUB:
7338         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
7339       case ISD::SIGN_EXTEND_INREG:
7340       case ISD::UDIV:
7341       case ISD::SDIV:
7342       case ISD::UREM:
7343       case ISD::SREM:
7344       case ISD::SSUBSAT:
7345       case ISD::USUBSAT:
7346         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
7347       }
7348     }
7349   }
7350 
7351   // Fold a bunch of operators when the RHS is undef.
7352   if (N2.isUndef()) {
7353     switch (Opcode) {
7354     case ISD::XOR:
7355       if (N1.isUndef())
7356         // Handle undef ^ undef -> 0 special case. This is a common
7357         // idiom (misuse).
7358         return getConstant(0, DL, VT);
7359       [[fallthrough]];
7360     case ISD::ADD:
7361     case ISD::SUB:
7362     case ISD::UDIV:
7363     case ISD::SDIV:
7364     case ISD::UREM:
7365     case ISD::SREM:
7366       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
7367     case ISD::MUL:
7368     case ISD::AND:
7369     case ISD::SSUBSAT:
7370     case ISD::USUBSAT:
7371       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
7372     case ISD::OR:
7373     case ISD::SADDSAT:
7374     case ISD::UADDSAT:
7375       return getAllOnesConstant(DL, VT);
7376     }
7377   }
7378 
7379   // Memoize this node if possible.
7380   SDNode *N;
7381   SDVTList VTs = getVTList(VT);
7382   SDValue Ops[] = {N1, N2};
7383   if (VT != MVT::Glue) {
7384     FoldingSetNodeID ID;
7385     AddNodeIDNode(ID, Opcode, VTs, Ops);
7386     void *IP = nullptr;
7387     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7388       E->intersectFlagsWith(Flags);
7389       return SDValue(E, 0);
7390     }
7391 
7392     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7393     N->setFlags(Flags);
7394     createOperands(N, Ops);
7395     CSEMap.InsertNode(N, IP);
7396   } else {
7397     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7398     createOperands(N, Ops);
7399   }
7400 
7401   InsertNode(N);
7402   SDValue V = SDValue(N, 0);
7403   NewSDValueDbgMsg(V, "Creating new node: ", this);
7404   return V;
7405 }
7406 
7407 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7408                               SDValue N1, SDValue N2, SDValue N3) {
7409   SDNodeFlags Flags;
7410   if (Inserter)
7411     Flags = Inserter->getFlags();
7412   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
7413 }
7414 
7415 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7416                               SDValue N1, SDValue N2, SDValue N3,
7417                               const SDNodeFlags Flags) {
7418   assert(N1.getOpcode() != ISD::DELETED_NODE &&
7419          N2.getOpcode() != ISD::DELETED_NODE &&
7420          N3.getOpcode() != ISD::DELETED_NODE &&
7421          "Operand is DELETED_NODE!");
7422   // Perform various simplifications.
7423   switch (Opcode) {
7424   case ISD::FMA:
7425   case ISD::FMAD: {
7426     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
7427     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
7428            N3.getValueType() == VT && "FMA types must match!");
7429     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
7430     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
7431     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
7432     if (N1CFP && N2CFP && N3CFP) {
7433       APFloat  V1 = N1CFP->getValueAPF();
7434       const APFloat &V2 = N2CFP->getValueAPF();
7435       const APFloat &V3 = N3CFP->getValueAPF();
7436       if (Opcode == ISD::FMAD) {
7437         V1.multiply(V2, APFloat::rmNearestTiesToEven);
7438         V1.add(V3, APFloat::rmNearestTiesToEven);
7439       } else
7440         V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
7441       return getConstantFP(V1, DL, VT);
7442     }
7443     break;
7444   }
7445   case ISD::BUILD_VECTOR: {
7446     // Attempt to simplify BUILD_VECTOR.
7447     SDValue Ops[] = {N1, N2, N3};
7448     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7449       return V;
7450     break;
7451   }
7452   case ISD::CONCAT_VECTORS: {
7453     SDValue Ops[] = {N1, N2, N3};
7454     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7455       return V;
7456     break;
7457   }
7458   case ISD::SETCC: {
7459     assert(VT.isInteger() && "SETCC result type must be an integer!");
7460     assert(N1.getValueType() == N2.getValueType() &&
7461            "SETCC operands must have the same type!");
7462     assert(VT.isVector() == N1.getValueType().isVector() &&
7463            "SETCC type should be vector iff the operand type is vector!");
7464     assert((!VT.isVector() || VT.getVectorElementCount() ==
7465                                   N1.getValueType().getVectorElementCount()) &&
7466            "SETCC vector element counts must match!");
7467     // Use FoldSetCC to simplify SETCC's.
7468     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
7469       return V;
7470     // Vector constant folding.
7471     SDValue Ops[] = {N1, N2, N3};
7472     if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) {
7473       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
7474       return V;
7475     }
7476     break;
7477   }
7478   case ISD::SELECT:
7479   case ISD::VSELECT:
7480     if (SDValue V = simplifySelect(N1, N2, N3))
7481       return V;
7482     break;
7483   case ISD::VECTOR_SHUFFLE:
7484     llvm_unreachable("should use getVectorShuffle constructor!");
7485   case ISD::VECTOR_SPLICE: {
7486     if (cast<ConstantSDNode>(N3)->isZero())
7487       return N1;
7488     break;
7489   }
7490   case ISD::INSERT_VECTOR_ELT: {
7491     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
7492     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
7493     // for scalable vectors where we will generate appropriate code to
7494     // deal with out-of-bounds cases correctly.
7495     if (N3C && N1.getValueType().isFixedLengthVector() &&
7496         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
7497       return getUNDEF(VT);
7498 
7499     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
7500     if (N3.isUndef())
7501       return getUNDEF(VT);
7502 
7503     // If the inserted element is an UNDEF, just use the input vector.
7504     if (N2.isUndef())
7505       return N1;
7506 
7507     break;
7508   }
7509   case ISD::INSERT_SUBVECTOR: {
7510     // Inserting undef into undef is still undef.
7511     if (N1.isUndef() && N2.isUndef())
7512       return getUNDEF(VT);
7513 
7514     EVT N2VT = N2.getValueType();
7515     assert(VT == N1.getValueType() &&
7516            "Dest and insert subvector source types must match!");
7517     assert(VT.isVector() && N2VT.isVector() &&
7518            "Insert subvector VTs must be vectors!");
7519     assert(VT.getVectorElementType() == N2VT.getVectorElementType() &&
7520            "Insert subvector VTs must have the same element type!");
7521     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
7522            "Cannot insert a scalable vector into a fixed length vector!");
7523     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
7524             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
7525            "Insert subvector must be from smaller vector to larger vector!");
7526     assert(isa<ConstantSDNode>(N3) &&
7527            "Insert subvector index must be constant");
7528     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
7529             (N2VT.getVectorMinNumElements() + N3->getAsZExtVal()) <=
7530                 VT.getVectorMinNumElements()) &&
7531            "Insert subvector overflow!");
7532     assert(N3->getAsAPIntVal().getBitWidth() ==
7533                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
7534            "Constant index for INSERT_SUBVECTOR has an invalid size");
7535 
7536     // Trivial insertion.
7537     if (VT == N2VT)
7538       return N2;
7539 
7540     // If this is an insert of an extracted vector into an undef vector, we
7541     // can just use the input to the extract.
7542     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
7543         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
7544       return N2.getOperand(0);
7545     break;
7546   }
7547   case ISD::BITCAST:
7548     // Fold bit_convert nodes from a type to themselves.
7549     if (N1.getValueType() == VT)
7550       return N1;
7551     break;
7552   case ISD::VP_TRUNCATE:
7553   case ISD::VP_SIGN_EXTEND:
7554   case ISD::VP_ZERO_EXTEND:
7555     // Don't create noop casts.
7556     if (N1.getValueType() == VT)
7557       return N1;
7558     break;
7559   case ISD::VECTOR_COMPRESS: {
7560     [[maybe_unused]] EVT VecVT = N1.getValueType();
7561     [[maybe_unused]] EVT MaskVT = N2.getValueType();
7562     [[maybe_unused]] EVT PassthruVT = N3.getValueType();
7563     assert(VT == VecVT && "Vector and result type don't match.");
7564     assert(VecVT.isVector() && MaskVT.isVector() && PassthruVT.isVector() &&
7565            "All inputs must be vectors.");
7566     assert(VecVT == PassthruVT && "Vector and passthru types don't match.");
7567     assert(VecVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7568            "Vector and mask must have same number of elements.");
7569 
7570     if (N1.isUndef() || N2.isUndef())
7571       return N3;
7572 
7573     break;
7574   }
7575   }
7576 
7577   // Memoize node if it doesn't produce a glue result.
7578   SDNode *N;
7579   SDVTList VTs = getVTList(VT);
7580   SDValue Ops[] = {N1, N2, N3};
7581   if (VT != MVT::Glue) {
7582     FoldingSetNodeID ID;
7583     AddNodeIDNode(ID, Opcode, VTs, Ops);
7584     void *IP = nullptr;
7585     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7586       E->intersectFlagsWith(Flags);
7587       return SDValue(E, 0);
7588     }
7589 
7590     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7591     N->setFlags(Flags);
7592     createOperands(N, Ops);
7593     CSEMap.InsertNode(N, IP);
7594   } else {
7595     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7596     createOperands(N, Ops);
7597   }
7598 
7599   InsertNode(N);
7600   SDValue V = SDValue(N, 0);
7601   NewSDValueDbgMsg(V, "Creating new node: ", this);
7602   return V;
7603 }
7604 
7605 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7606                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7607   SDValue Ops[] = { N1, N2, N3, N4 };
7608   return getNode(Opcode, DL, VT, Ops);
7609 }
7610 
7611 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7612                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7613                               SDValue N5) {
7614   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7615   return getNode(Opcode, DL, VT, Ops);
7616 }
7617 
7618 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
7619 /// the incoming stack arguments to be loaded from the stack.
7620 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
7621   SmallVector<SDValue, 8> ArgChains;
7622 
7623   // Include the original chain at the beginning of the list. When this is
7624   // used by target LowerCall hooks, this helps legalize find the
7625   // CALLSEQ_BEGIN node.
7626   ArgChains.push_back(Chain);
7627 
7628   // Add a chain value for each stack argument.
7629   for (SDNode *U : getEntryNode().getNode()->uses())
7630     if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
7631       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
7632         if (FI->getIndex() < 0)
7633           ArgChains.push_back(SDValue(L, 1));
7634 
7635   // Build a tokenfactor for all the chains.
7636   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
7637 }
7638 
7639 /// getMemsetValue - Vectorized representation of the memset value
7640 /// operand.
7641 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
7642                               const SDLoc &dl) {
7643   assert(!Value.isUndef());
7644 
7645   unsigned NumBits = VT.getScalarSizeInBits();
7646   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
7647     assert(C->getAPIntValue().getBitWidth() == 8);
7648     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
7649     if (VT.isInteger()) {
7650       bool IsOpaque = VT.getSizeInBits() > 64 ||
7651           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
7652       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
7653     }
7654     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
7655                              VT);
7656   }
7657 
7658   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
7659   EVT IntVT = VT.getScalarType();
7660   if (!IntVT.isInteger())
7661     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
7662 
7663   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
7664   if (NumBits > 8) {
7665     // Use a multiplication with 0x010101... to extend the input to the
7666     // required length.
7667     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
7668     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
7669                         DAG.getConstant(Magic, dl, IntVT));
7670   }
7671 
7672   if (VT != Value.getValueType() && !VT.isInteger())
7673     Value = DAG.getBitcast(VT.getScalarType(), Value);
7674   if (VT != Value.getValueType())
7675     Value = DAG.getSplatBuildVector(VT, dl, Value);
7676 
7677   return Value;
7678 }
7679 
7680 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
7681 /// used when a memcpy is turned into a memset when the source is a constant
7682 /// string ptr.
7683 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
7684                                   const TargetLowering &TLI,
7685                                   const ConstantDataArraySlice &Slice) {
7686   // Handle vector with all elements zero.
7687   if (Slice.Array == nullptr) {
7688     if (VT.isInteger())
7689       return DAG.getConstant(0, dl, VT);
7690     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
7691       return DAG.getConstantFP(0.0, dl, VT);
7692     if (VT.isVector()) {
7693       unsigned NumElts = VT.getVectorNumElements();
7694       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
7695       return DAG.getNode(ISD::BITCAST, dl, VT,
7696                          DAG.getConstant(0, dl,
7697                                          EVT::getVectorVT(*DAG.getContext(),
7698                                                           EltVT, NumElts)));
7699     }
7700     llvm_unreachable("Expected type!");
7701   }
7702 
7703   assert(!VT.isVector() && "Can't handle vector type here!");
7704   unsigned NumVTBits = VT.getSizeInBits();
7705   unsigned NumVTBytes = NumVTBits / 8;
7706   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
7707 
7708   APInt Val(NumVTBits, 0);
7709   if (DAG.getDataLayout().isLittleEndian()) {
7710     for (unsigned i = 0; i != NumBytes; ++i)
7711       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
7712   } else {
7713     for (unsigned i = 0; i != NumBytes; ++i)
7714       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
7715   }
7716 
7717   // If the "cost" of materializing the integer immediate is less than the cost
7718   // of a load, then it is cost effective to turn the load into the immediate.
7719   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
7720   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
7721     return DAG.getConstant(Val, dl, VT);
7722   return SDValue();
7723 }
7724 
7725 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
7726                                            const SDLoc &DL,
7727                                            const SDNodeFlags Flags) {
7728   EVT VT = Base.getValueType();
7729   SDValue Index;
7730 
7731   if (Offset.isScalable())
7732     Index = getVScale(DL, Base.getValueType(),
7733                       APInt(Base.getValueSizeInBits().getFixedValue(),
7734                             Offset.getKnownMinValue()));
7735   else
7736     Index = getConstant(Offset.getFixedValue(), DL, VT);
7737 
7738   return getMemBasePlusOffset(Base, Index, DL, Flags);
7739 }
7740 
7741 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
7742                                            const SDLoc &DL,
7743                                            const SDNodeFlags Flags) {
7744   assert(Offset.getValueType().isInteger());
7745   EVT BasePtrVT = Ptr.getValueType();
7746   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
7747 }
7748 
7749 /// Returns true if memcpy source is constant data.
7750 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
7751   uint64_t SrcDelta = 0;
7752   GlobalAddressSDNode *G = nullptr;
7753   if (Src.getOpcode() == ISD::GlobalAddress)
7754     G = cast<GlobalAddressSDNode>(Src);
7755   else if (Src.getOpcode() == ISD::ADD &&
7756            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
7757            Src.getOperand(1).getOpcode() == ISD::Constant) {
7758     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
7759     SrcDelta = Src.getConstantOperandVal(1);
7760   }
7761   if (!G)
7762     return false;
7763 
7764   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
7765                                   SrcDelta + G->getOffset());
7766 }
7767 
7768 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
7769                                       SelectionDAG &DAG) {
7770   // On Darwin, -Os means optimize for size without hurting performance, so
7771   // only really optimize for size when -Oz (MinSize) is used.
7772   if (MF.getTarget().getTargetTriple().isOSDarwin())
7773     return MF.getFunction().hasMinSize();
7774   return DAG.shouldOptForSize();
7775 }
7776 
7777 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
7778                           SmallVector<SDValue, 32> &OutChains, unsigned From,
7779                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
7780                           SmallVector<SDValue, 16> &OutStoreChains) {
7781   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
7782   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
7783   SmallVector<SDValue, 16> GluedLoadChains;
7784   for (unsigned i = From; i < To; ++i) {
7785     OutChains.push_back(OutLoadChains[i]);
7786     GluedLoadChains.push_back(OutLoadChains[i]);
7787   }
7788 
7789   // Chain for all loads.
7790   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7791                                   GluedLoadChains);
7792 
7793   for (unsigned i = From; i < To; ++i) {
7794     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
7795     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
7796                                   ST->getBasePtr(), ST->getMemoryVT(),
7797                                   ST->getMemOperand());
7798     OutChains.push_back(NewStore);
7799   }
7800 }
7801 
7802 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
7803                                        SDValue Chain, SDValue Dst, SDValue Src,
7804                                        uint64_t Size, Align Alignment,
7805                                        bool isVol, bool AlwaysInline,
7806                                        MachinePointerInfo DstPtrInfo,
7807                                        MachinePointerInfo SrcPtrInfo,
7808                                        const AAMDNodes &AAInfo, AAResults *AA) {
7809   // Turn a memcpy of undef to nop.
7810   // FIXME: We need to honor volatile even is Src is undef.
7811   if (Src.isUndef())
7812     return Chain;
7813 
7814   // Expand memcpy to a series of load and store ops if the size operand falls
7815   // below a certain threshold.
7816   // TODO: In the AlwaysInline case, if the size is big then generate a loop
7817   // rather than maybe a humongous number of loads and stores.
7818   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7819   const DataLayout &DL = DAG.getDataLayout();
7820   LLVMContext &C = *DAG.getContext();
7821   std::vector<EVT> MemOps;
7822   bool DstAlignCanChange = false;
7823   MachineFunction &MF = DAG.getMachineFunction();
7824   MachineFrameInfo &MFI = MF.getFrameInfo();
7825   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
7826   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
7827   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
7828     DstAlignCanChange = true;
7829   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
7830   if (!SrcAlign || Alignment > *SrcAlign)
7831     SrcAlign = Alignment;
7832   assert(SrcAlign && "SrcAlign must be set");
7833   ConstantDataArraySlice Slice;
7834   // If marked as volatile, perform a copy even when marked as constant.
7835   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
7836   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
7837   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
7838   const MemOp Op = isZeroConstant
7839                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
7840                                     /*IsZeroMemset*/ true, isVol)
7841                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
7842                                      *SrcAlign, isVol, CopyFromConstant);
7843   if (!TLI.findOptimalMemOpLowering(
7844           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
7845           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
7846     return SDValue();
7847 
7848   if (DstAlignCanChange) {
7849     Type *Ty = MemOps[0].getTypeForEVT(C);
7850     Align NewAlign = DL.getABITypeAlign(Ty);
7851 
7852     // Don't promote to an alignment that would require dynamic stack
7853     // realignment which may conflict with optimizations such as tail call
7854     // optimization.
7855     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
7856     if (!TRI->hasStackRealignment(MF))
7857       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
7858         NewAlign = NewAlign.previous();
7859 
7860     if (NewAlign > Alignment) {
7861       // Give the stack frame object a larger alignment if needed.
7862       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
7863         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
7864       Alignment = NewAlign;
7865     }
7866   }
7867 
7868   // Prepare AAInfo for loads/stores after lowering this memcpy.
7869   AAMDNodes NewAAInfo = AAInfo;
7870   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
7871 
7872   const Value *SrcVal = dyn_cast_if_present<const Value *>(SrcPtrInfo.V);
7873   bool isConstant =
7874       AA && SrcVal &&
7875       AA->pointsToConstantMemory(MemoryLocation(SrcVal, Size, AAInfo));
7876 
7877   MachineMemOperand::Flags MMOFlags =
7878       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
7879   SmallVector<SDValue, 16> OutLoadChains;
7880   SmallVector<SDValue, 16> OutStoreChains;
7881   SmallVector<SDValue, 32> OutChains;
7882   unsigned NumMemOps = MemOps.size();
7883   uint64_t SrcOff = 0, DstOff = 0;
7884   for (unsigned i = 0; i != NumMemOps; ++i) {
7885     EVT VT = MemOps[i];
7886     unsigned VTSize = VT.getSizeInBits() / 8;
7887     SDValue Value, Store;
7888 
7889     if (VTSize > Size) {
7890       // Issuing an unaligned load / store pair  that overlaps with the previous
7891       // pair. Adjust the offset accordingly.
7892       assert(i == NumMemOps-1 && i != 0);
7893       SrcOff -= VTSize - Size;
7894       DstOff -= VTSize - Size;
7895     }
7896 
7897     if (CopyFromConstant &&
7898         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
7899       // It's unlikely a store of a vector immediate can be done in a single
7900       // instruction. It would require a load from a constantpool first.
7901       // We only handle zero vectors here.
7902       // FIXME: Handle other cases where store of vector immediate is done in
7903       // a single instruction.
7904       ConstantDataArraySlice SubSlice;
7905       if (SrcOff < Slice.Length) {
7906         SubSlice = Slice;
7907         SubSlice.move(SrcOff);
7908       } else {
7909         // This is an out-of-bounds access and hence UB. Pretend we read zero.
7910         SubSlice.Array = nullptr;
7911         SubSlice.Offset = 0;
7912         SubSlice.Length = VTSize;
7913       }
7914       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
7915       if (Value.getNode()) {
7916         Store = DAG.getStore(
7917             Chain, dl, Value,
7918             DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
7919             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
7920         OutChains.push_back(Store);
7921       }
7922     }
7923 
7924     if (!Store.getNode()) {
7925       // The type might not be legal for the target.  This should only happen
7926       // if the type is smaller than a legal type, as on PPC, so the right
7927       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
7928       // to Load/Store if NVT==VT.
7929       // FIXME does the case above also need this?
7930       EVT NVT = TLI.getTypeToTransformTo(C, VT);
7931       assert(NVT.bitsGE(VT));
7932 
7933       bool isDereferenceable =
7934         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
7935       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
7936       if (isDereferenceable)
7937         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
7938       if (isConstant)
7939         SrcMMOFlags |= MachineMemOperand::MOInvariant;
7940 
7941       Value = DAG.getExtLoad(
7942           ISD::EXTLOAD, dl, NVT, Chain,
7943           DAG.getMemBasePlusOffset(Src, TypeSize::getFixed(SrcOff), dl),
7944           SrcPtrInfo.getWithOffset(SrcOff), VT,
7945           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
7946       OutLoadChains.push_back(Value.getValue(1));
7947 
7948       Store = DAG.getTruncStore(
7949           Chain, dl, Value,
7950           DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
7951           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
7952       OutStoreChains.push_back(Store);
7953     }
7954     SrcOff += VTSize;
7955     DstOff += VTSize;
7956     Size -= VTSize;
7957   }
7958 
7959   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
7960                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
7961   unsigned NumLdStInMemcpy = OutStoreChains.size();
7962 
7963   if (NumLdStInMemcpy) {
7964     // It may be that memcpy might be converted to memset if it's memcpy
7965     // of constants. In such a case, we won't have loads and stores, but
7966     // just stores. In the absence of loads, there is nothing to gang up.
7967     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
7968       // If target does not care, just leave as it.
7969       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
7970         OutChains.push_back(OutLoadChains[i]);
7971         OutChains.push_back(OutStoreChains[i]);
7972       }
7973     } else {
7974       // Ld/St less than/equal limit set by target.
7975       if (NumLdStInMemcpy <= GluedLdStLimit) {
7976           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
7977                                         NumLdStInMemcpy, OutLoadChains,
7978                                         OutStoreChains);
7979       } else {
7980         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
7981         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
7982         unsigned GlueIter = 0;
7983 
7984         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
7985           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
7986           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
7987 
7988           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
7989                                        OutLoadChains, OutStoreChains);
7990           GlueIter += GluedLdStLimit;
7991         }
7992 
7993         // Residual ld/st.
7994         if (RemainingLdStInMemcpy) {
7995           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
7996                                         RemainingLdStInMemcpy, OutLoadChains,
7997                                         OutStoreChains);
7998         }
7999       }
8000     }
8001   }
8002   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
8003 }
8004 
8005 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
8006                                         SDValue Chain, SDValue Dst, SDValue Src,
8007                                         uint64_t Size, Align Alignment,
8008                                         bool isVol, bool AlwaysInline,
8009                                         MachinePointerInfo DstPtrInfo,
8010                                         MachinePointerInfo SrcPtrInfo,
8011                                         const AAMDNodes &AAInfo) {
8012   // Turn a memmove of undef to nop.
8013   // FIXME: We need to honor volatile even is Src is undef.
8014   if (Src.isUndef())
8015     return Chain;
8016 
8017   // Expand memmove to a series of load and store ops if the size operand falls
8018   // below a certain threshold.
8019   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8020   const DataLayout &DL = DAG.getDataLayout();
8021   LLVMContext &C = *DAG.getContext();
8022   std::vector<EVT> MemOps;
8023   bool DstAlignCanChange = false;
8024   MachineFunction &MF = DAG.getMachineFunction();
8025   MachineFrameInfo &MFI = MF.getFrameInfo();
8026   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8027   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
8028   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8029     DstAlignCanChange = true;
8030   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
8031   if (!SrcAlign || Alignment > *SrcAlign)
8032     SrcAlign = Alignment;
8033   assert(SrcAlign && "SrcAlign must be set");
8034   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
8035   if (!TLI.findOptimalMemOpLowering(
8036           MemOps, Limit,
8037           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
8038                       /*IsVolatile*/ true),
8039           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
8040           MF.getFunction().getAttributes()))
8041     return SDValue();
8042 
8043   if (DstAlignCanChange) {
8044     Type *Ty = MemOps[0].getTypeForEVT(C);
8045     Align NewAlign = DL.getABITypeAlign(Ty);
8046 
8047     // Don't promote to an alignment that would require dynamic stack
8048     // realignment which may conflict with optimizations such as tail call
8049     // optimization.
8050     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
8051     if (!TRI->hasStackRealignment(MF))
8052       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
8053         NewAlign = NewAlign.previous();
8054 
8055     if (NewAlign > Alignment) {
8056       // Give the stack frame object a larger alignment if needed.
8057       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
8058         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
8059       Alignment = NewAlign;
8060     }
8061   }
8062 
8063   // Prepare AAInfo for loads/stores after lowering this memmove.
8064   AAMDNodes NewAAInfo = AAInfo;
8065   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
8066 
8067   MachineMemOperand::Flags MMOFlags =
8068       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
8069   uint64_t SrcOff = 0, DstOff = 0;
8070   SmallVector<SDValue, 8> LoadValues;
8071   SmallVector<SDValue, 8> LoadChains;
8072   SmallVector<SDValue, 8> OutChains;
8073   unsigned NumMemOps = MemOps.size();
8074   for (unsigned i = 0; i < NumMemOps; i++) {
8075     EVT VT = MemOps[i];
8076     unsigned VTSize = VT.getSizeInBits() / 8;
8077     SDValue Value;
8078 
8079     bool isDereferenceable =
8080       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
8081     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
8082     if (isDereferenceable)
8083       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
8084 
8085     Value = DAG.getLoad(
8086         VT, dl, Chain,
8087         DAG.getMemBasePlusOffset(Src, TypeSize::getFixed(SrcOff), dl),
8088         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
8089     LoadValues.push_back(Value);
8090     LoadChains.push_back(Value.getValue(1));
8091     SrcOff += VTSize;
8092   }
8093   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
8094   OutChains.clear();
8095   for (unsigned i = 0; i < NumMemOps; i++) {
8096     EVT VT = MemOps[i];
8097     unsigned VTSize = VT.getSizeInBits() / 8;
8098     SDValue Store;
8099 
8100     Store = DAG.getStore(
8101         Chain, dl, LoadValues[i],
8102         DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8103         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8104     OutChains.push_back(Store);
8105     DstOff += VTSize;
8106   }
8107 
8108   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
8109 }
8110 
8111 /// Lower the call to 'memset' intrinsic function into a series of store
8112 /// operations.
8113 ///
8114 /// \param DAG Selection DAG where lowered code is placed.
8115 /// \param dl Link to corresponding IR location.
8116 /// \param Chain Control flow dependency.
8117 /// \param Dst Pointer to destination memory location.
8118 /// \param Src Value of byte to write into the memory.
8119 /// \param Size Number of bytes to write.
8120 /// \param Alignment Alignment of the destination in bytes.
8121 /// \param isVol True if destination is volatile.
8122 /// \param AlwaysInline Makes sure no function call is generated.
8123 /// \param DstPtrInfo IR information on the memory pointer.
8124 /// \returns New head in the control flow, if lowering was successful, empty
8125 /// SDValue otherwise.
8126 ///
8127 /// The function tries to replace 'llvm.memset' intrinsic with several store
8128 /// operations and value calculation code. This is usually profitable for small
8129 /// memory size or when the semantic requires inlining.
8130 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
8131                                SDValue Chain, SDValue Dst, SDValue Src,
8132                                uint64_t Size, Align Alignment, bool isVol,
8133                                bool AlwaysInline, MachinePointerInfo DstPtrInfo,
8134                                const AAMDNodes &AAInfo) {
8135   // Turn a memset of undef to nop.
8136   // FIXME: We need to honor volatile even is Src is undef.
8137   if (Src.isUndef())
8138     return Chain;
8139 
8140   // Expand memset to a series of load/store ops if the size operand
8141   // falls below a certain threshold.
8142   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8143   std::vector<EVT> MemOps;
8144   bool DstAlignCanChange = false;
8145   MachineFunction &MF = DAG.getMachineFunction();
8146   MachineFrameInfo &MFI = MF.getFrameInfo();
8147   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8148   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
8149   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8150     DstAlignCanChange = true;
8151   bool IsZeroVal = isNullConstant(Src);
8152   unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize);
8153 
8154   if (!TLI.findOptimalMemOpLowering(
8155           MemOps, Limit,
8156           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
8157           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
8158     return SDValue();
8159 
8160   if (DstAlignCanChange) {
8161     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
8162     const DataLayout &DL = DAG.getDataLayout();
8163     Align NewAlign = DL.getABITypeAlign(Ty);
8164 
8165     // Don't promote to an alignment that would require dynamic stack
8166     // realignment which may conflict with optimizations such as tail call
8167     // optimization.
8168     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
8169     if (!TRI->hasStackRealignment(MF))
8170       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
8171         NewAlign = NewAlign.previous();
8172 
8173     if (NewAlign > Alignment) {
8174       // Give the stack frame object a larger alignment if needed.
8175       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
8176         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
8177       Alignment = NewAlign;
8178     }
8179   }
8180 
8181   SmallVector<SDValue, 8> OutChains;
8182   uint64_t DstOff = 0;
8183   unsigned NumMemOps = MemOps.size();
8184 
8185   // Find the largest store and generate the bit pattern for it.
8186   EVT LargestVT = MemOps[0];
8187   for (unsigned i = 1; i < NumMemOps; i++)
8188     if (MemOps[i].bitsGT(LargestVT))
8189       LargestVT = MemOps[i];
8190   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
8191 
8192   // Prepare AAInfo for loads/stores after lowering this memset.
8193   AAMDNodes NewAAInfo = AAInfo;
8194   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
8195 
8196   for (unsigned i = 0; i < NumMemOps; i++) {
8197     EVT VT = MemOps[i];
8198     unsigned VTSize = VT.getSizeInBits() / 8;
8199     if (VTSize > Size) {
8200       // Issuing an unaligned load / store pair  that overlaps with the previous
8201       // pair. Adjust the offset accordingly.
8202       assert(i == NumMemOps-1 && i != 0);
8203       DstOff -= VTSize - Size;
8204     }
8205 
8206     // If this store is smaller than the largest store see whether we can get
8207     // the smaller value for free with a truncate or extract vector element and
8208     // then store.
8209     SDValue Value = MemSetValue;
8210     if (VT.bitsLT(LargestVT)) {
8211       unsigned Index;
8212       unsigned NElts = LargestVT.getSizeInBits() / VT.getSizeInBits();
8213       EVT SVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), NElts);
8214       if (!LargestVT.isVector() && !VT.isVector() &&
8215           TLI.isTruncateFree(LargestVT, VT))
8216         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
8217       else if (LargestVT.isVector() && !VT.isVector() &&
8218                TLI.shallExtractConstSplatVectorElementToStore(
8219                    LargestVT.getTypeForEVT(*DAG.getContext()),
8220                    VT.getSizeInBits(), Index) &&
8221                TLI.isTypeLegal(SVT) &&
8222                LargestVT.getSizeInBits() == SVT.getSizeInBits()) {
8223         // Target which can combine store(extractelement VectorTy, Idx) can get
8224         // the smaller value for free.
8225         SDValue TailValue = DAG.getNode(ISD::BITCAST, dl, SVT, MemSetValue);
8226         Value = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, TailValue,
8227                             DAG.getVectorIdxConstant(Index, dl));
8228       } else
8229         Value = getMemsetValue(Src, VT, DAG, dl);
8230     }
8231     assert(Value.getValueType() == VT && "Value with wrong type.");
8232     SDValue Store = DAG.getStore(
8233         Chain, dl, Value,
8234         DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8235         DstPtrInfo.getWithOffset(DstOff), Alignment,
8236         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
8237         NewAAInfo);
8238     OutChains.push_back(Store);
8239     DstOff += VT.getSizeInBits() / 8;
8240     Size -= VTSize;
8241   }
8242 
8243   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
8244 }
8245 
8246 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
8247                                             unsigned AS) {
8248   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
8249   // pointer operands can be losslessly bitcasted to pointers of address space 0
8250   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
8251     report_fatal_error("cannot lower memory intrinsic in address space " +
8252                        Twine(AS));
8253   }
8254 }
8255 
8256 SDValue SelectionDAG::getMemcpy(
8257     SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size,
8258     Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI,
8259     std::optional<bool> OverrideTailCall, MachinePointerInfo DstPtrInfo,
8260     MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo, AAResults *AA) {
8261   // Check to see if we should lower the memcpy to loads and stores first.
8262   // For cases within the target-specified limits, this is the best choice.
8263   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
8264   if (ConstantSize) {
8265     // Memcpy with size zero? Just return the original chain.
8266     if (ConstantSize->isZero())
8267       return Chain;
8268 
8269     SDValue Result = getMemcpyLoadsAndStores(
8270         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
8271         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo, AA);
8272     if (Result.getNode())
8273       return Result;
8274   }
8275 
8276   // Then check to see if we should lower the memcpy with target-specific
8277   // code. If the target chooses to do this, this is the next best.
8278   if (TSI) {
8279     SDValue Result = TSI->EmitTargetCodeForMemcpy(
8280         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
8281         DstPtrInfo, SrcPtrInfo);
8282     if (Result.getNode())
8283       return Result;
8284   }
8285 
8286   // If we really need inline code and the target declined to provide it,
8287   // use a (potentially long) sequence of loads and stores.
8288   if (AlwaysInline) {
8289     assert(ConstantSize && "AlwaysInline requires a constant size!");
8290     return getMemcpyLoadsAndStores(
8291         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
8292         isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo, AA);
8293   }
8294 
8295   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
8296   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
8297 
8298   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
8299   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
8300   // respect volatile, so they may do things like read or write memory
8301   // beyond the given memory regions. But fixing this isn't easy, and most
8302   // people don't care.
8303 
8304   // Emit a library call.
8305   TargetLowering::ArgListTy Args;
8306   TargetLowering::ArgListEntry Entry;
8307   Entry.Ty = PointerType::getUnqual(*getContext());
8308   Entry.Node = Dst; Args.push_back(Entry);
8309   Entry.Node = Src; Args.push_back(Entry);
8310 
8311   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
8312   Entry.Node = Size; Args.push_back(Entry);
8313   // FIXME: pass in SDLoc
8314   TargetLowering::CallLoweringInfo CLI(*this);
8315   bool IsTailCall = false;
8316   if (OverrideTailCall.has_value()) {
8317     IsTailCall = *OverrideTailCall;
8318   } else {
8319     bool LowersToMemcpy =
8320         TLI->getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy");
8321     bool ReturnsFirstArg = CI && funcReturnsFirstArgOfCall(*CI);
8322     IsTailCall = CI && CI->isTailCall() &&
8323                  isInTailCallPosition(*CI, getTarget(),
8324                                       ReturnsFirstArg && LowersToMemcpy);
8325   }
8326 
8327   CLI.setDebugLoc(dl)
8328       .setChain(Chain)
8329       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
8330                     Dst.getValueType().getTypeForEVT(*getContext()),
8331                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
8332                                       TLI->getPointerTy(getDataLayout())),
8333                     std::move(Args))
8334       .setDiscardResult()
8335       .setTailCall(IsTailCall);
8336 
8337   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
8338   return CallResult.second;
8339 }
8340 
8341 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
8342                                       SDValue Dst, SDValue Src, SDValue Size,
8343                                       Type *SizeTy, unsigned ElemSz,
8344                                       bool isTailCall,
8345                                       MachinePointerInfo DstPtrInfo,
8346                                       MachinePointerInfo SrcPtrInfo) {
8347   // Emit a library call.
8348   TargetLowering::ArgListTy Args;
8349   TargetLowering::ArgListEntry Entry;
8350   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
8351   Entry.Node = Dst;
8352   Args.push_back(Entry);
8353 
8354   Entry.Node = Src;
8355   Args.push_back(Entry);
8356 
8357   Entry.Ty = SizeTy;
8358   Entry.Node = Size;
8359   Args.push_back(Entry);
8360 
8361   RTLIB::Libcall LibraryCall =
8362       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
8363   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
8364     report_fatal_error("Unsupported element size");
8365 
8366   TargetLowering::CallLoweringInfo CLI(*this);
8367   CLI.setDebugLoc(dl)
8368       .setChain(Chain)
8369       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
8370                     Type::getVoidTy(*getContext()),
8371                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
8372                                       TLI->getPointerTy(getDataLayout())),
8373                     std::move(Args))
8374       .setDiscardResult()
8375       .setTailCall(isTailCall);
8376 
8377   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
8378   return CallResult.second;
8379 }
8380 
8381 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
8382                                  SDValue Src, SDValue Size, Align Alignment,
8383                                  bool isVol, const CallInst *CI,
8384                                  std::optional<bool> OverrideTailCall,
8385                                  MachinePointerInfo DstPtrInfo,
8386                                  MachinePointerInfo SrcPtrInfo,
8387                                  const AAMDNodes &AAInfo, AAResults *AA) {
8388   // Check to see if we should lower the memmove to loads and stores first.
8389   // For cases within the target-specified limits, this is the best choice.
8390   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
8391   if (ConstantSize) {
8392     // Memmove with size zero? Just return the original chain.
8393     if (ConstantSize->isZero())
8394       return Chain;
8395 
8396     SDValue Result = getMemmoveLoadsAndStores(
8397         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
8398         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
8399     if (Result.getNode())
8400       return Result;
8401   }
8402 
8403   // Then check to see if we should lower the memmove with target-specific
8404   // code. If the target chooses to do this, this is the next best.
8405   if (TSI) {
8406     SDValue Result =
8407         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
8408                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
8409     if (Result.getNode())
8410       return Result;
8411   }
8412 
8413   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
8414   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
8415 
8416   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
8417   // not be safe.  See memcpy above for more details.
8418 
8419   // Emit a library call.
8420   TargetLowering::ArgListTy Args;
8421   TargetLowering::ArgListEntry Entry;
8422   Entry.Ty = PointerType::getUnqual(*getContext());
8423   Entry.Node = Dst; Args.push_back(Entry);
8424   Entry.Node = Src; Args.push_back(Entry);
8425 
8426   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
8427   Entry.Node = Size; Args.push_back(Entry);
8428   // FIXME:  pass in SDLoc
8429   TargetLowering::CallLoweringInfo CLI(*this);
8430 
8431   bool IsTailCall = false;
8432   if (OverrideTailCall.has_value()) {
8433     IsTailCall = *OverrideTailCall;
8434   } else {
8435     bool LowersToMemmove =
8436         TLI->getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove");
8437     bool ReturnsFirstArg = CI && funcReturnsFirstArgOfCall(*CI);
8438     IsTailCall = CI && CI->isTailCall() &&
8439                  isInTailCallPosition(*CI, getTarget(),
8440                                       ReturnsFirstArg && LowersToMemmove);
8441   }
8442 
8443   CLI.setDebugLoc(dl)
8444       .setChain(Chain)
8445       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
8446                     Dst.getValueType().getTypeForEVT(*getContext()),
8447                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
8448                                       TLI->getPointerTy(getDataLayout())),
8449                     std::move(Args))
8450       .setDiscardResult()
8451       .setTailCall(IsTailCall);
8452 
8453   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
8454   return CallResult.second;
8455 }
8456 
8457 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
8458                                        SDValue Dst, SDValue Src, SDValue Size,
8459                                        Type *SizeTy, unsigned ElemSz,
8460                                        bool isTailCall,
8461                                        MachinePointerInfo DstPtrInfo,
8462                                        MachinePointerInfo SrcPtrInfo) {
8463   // Emit a library call.
8464   TargetLowering::ArgListTy Args;
8465   TargetLowering::ArgListEntry Entry;
8466   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
8467   Entry.Node = Dst;
8468   Args.push_back(Entry);
8469 
8470   Entry.Node = Src;
8471   Args.push_back(Entry);
8472 
8473   Entry.Ty = SizeTy;
8474   Entry.Node = Size;
8475   Args.push_back(Entry);
8476 
8477   RTLIB::Libcall LibraryCall =
8478       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
8479   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
8480     report_fatal_error("Unsupported element size");
8481 
8482   TargetLowering::CallLoweringInfo CLI(*this);
8483   CLI.setDebugLoc(dl)
8484       .setChain(Chain)
8485       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
8486                     Type::getVoidTy(*getContext()),
8487                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
8488                                       TLI->getPointerTy(getDataLayout())),
8489                     std::move(Args))
8490       .setDiscardResult()
8491       .setTailCall(isTailCall);
8492 
8493   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
8494   return CallResult.second;
8495 }
8496 
8497 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
8498                                 SDValue Src, SDValue Size, Align Alignment,
8499                                 bool isVol, bool AlwaysInline,
8500                                 const CallInst *CI,
8501                                 MachinePointerInfo DstPtrInfo,
8502                                 const AAMDNodes &AAInfo) {
8503   // Check to see if we should lower the memset to stores first.
8504   // For cases within the target-specified limits, this is the best choice.
8505   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
8506   if (ConstantSize) {
8507     // Memset with size zero? Just return the original chain.
8508     if (ConstantSize->isZero())
8509       return Chain;
8510 
8511     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
8512                                      ConstantSize->getZExtValue(), Alignment,
8513                                      isVol, false, DstPtrInfo, AAInfo);
8514 
8515     if (Result.getNode())
8516       return Result;
8517   }
8518 
8519   // Then check to see if we should lower the memset with target-specific
8520   // code. If the target chooses to do this, this is the next best.
8521   if (TSI) {
8522     SDValue Result = TSI->EmitTargetCodeForMemset(
8523         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
8524     if (Result.getNode())
8525       return Result;
8526   }
8527 
8528   // If we really need inline code and the target declined to provide it,
8529   // use a (potentially long) sequence of loads and stores.
8530   if (AlwaysInline) {
8531     assert(ConstantSize && "AlwaysInline requires a constant size!");
8532     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
8533                                      ConstantSize->getZExtValue(), Alignment,
8534                                      isVol, true, DstPtrInfo, AAInfo);
8535     assert(Result &&
8536            "getMemsetStores must return a valid sequence when AlwaysInline");
8537     return Result;
8538   }
8539 
8540   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
8541 
8542   // Emit a library call.
8543   auto &Ctx = *getContext();
8544   const auto& DL = getDataLayout();
8545 
8546   TargetLowering::CallLoweringInfo CLI(*this);
8547   // FIXME: pass in SDLoc
8548   CLI.setDebugLoc(dl).setChain(Chain);
8549 
8550   const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO);
8551 
8552   // Helper function to create an Entry from Node and Type.
8553   const auto CreateEntry = [](SDValue Node, Type *Ty) {
8554     TargetLowering::ArgListEntry Entry;
8555     Entry.Node = Node;
8556     Entry.Ty = Ty;
8557     return Entry;
8558   };
8559 
8560   bool UseBZero = isNullConstant(Src) && BzeroName;
8561   // If zeroing out and bzero is present, use it.
8562   if (UseBZero) {
8563     TargetLowering::ArgListTy Args;
8564     Args.push_back(CreateEntry(Dst, PointerType::getUnqual(Ctx)));
8565     Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx)));
8566     CLI.setLibCallee(
8567         TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx),
8568         getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args));
8569   } else {
8570     TargetLowering::ArgListTy Args;
8571     Args.push_back(CreateEntry(Dst, PointerType::getUnqual(Ctx)));
8572     Args.push_back(CreateEntry(Src, Src.getValueType().getTypeForEVT(Ctx)));
8573     Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx)));
8574     CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
8575                      Dst.getValueType().getTypeForEVT(Ctx),
8576                      getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
8577                                        TLI->getPointerTy(DL)),
8578                      std::move(Args));
8579   }
8580   bool LowersToMemset =
8581       TLI->getLibcallName(RTLIB::MEMSET) == StringRef("memset");
8582   // If we're going to use bzero, make sure not to tail call unless the
8583   // subsequent return doesn't need a value, as bzero doesn't return the first
8584   // arg unlike memset.
8585   bool ReturnsFirstArg = CI && funcReturnsFirstArgOfCall(*CI) && !UseBZero;
8586   bool IsTailCall =
8587       CI && CI->isTailCall() &&
8588       isInTailCallPosition(*CI, getTarget(), ReturnsFirstArg && LowersToMemset);
8589   CLI.setDiscardResult().setTailCall(IsTailCall);
8590 
8591   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
8592   return CallResult.second;
8593 }
8594 
8595 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
8596                                       SDValue Dst, SDValue Value, SDValue Size,
8597                                       Type *SizeTy, unsigned ElemSz,
8598                                       bool isTailCall,
8599                                       MachinePointerInfo DstPtrInfo) {
8600   // Emit a library call.
8601   TargetLowering::ArgListTy Args;
8602   TargetLowering::ArgListEntry Entry;
8603   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
8604   Entry.Node = Dst;
8605   Args.push_back(Entry);
8606 
8607   Entry.Ty = Type::getInt8Ty(*getContext());
8608   Entry.Node = Value;
8609   Args.push_back(Entry);
8610 
8611   Entry.Ty = SizeTy;
8612   Entry.Node = Size;
8613   Args.push_back(Entry);
8614 
8615   RTLIB::Libcall LibraryCall =
8616       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
8617   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
8618     report_fatal_error("Unsupported element size");
8619 
8620   TargetLowering::CallLoweringInfo CLI(*this);
8621   CLI.setDebugLoc(dl)
8622       .setChain(Chain)
8623       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
8624                     Type::getVoidTy(*getContext()),
8625                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
8626                                       TLI->getPointerTy(getDataLayout())),
8627                     std::move(Args))
8628       .setDiscardResult()
8629       .setTailCall(isTailCall);
8630 
8631   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
8632   return CallResult.second;
8633 }
8634 
8635 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
8636                                 SDVTList VTList, ArrayRef<SDValue> Ops,
8637                                 MachineMemOperand *MMO) {
8638   FoldingSetNodeID ID;
8639   ID.AddInteger(MemVT.getRawBits());
8640   AddNodeIDNode(ID, Opcode, VTList, Ops);
8641   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8642   ID.AddInteger(MMO->getFlags());
8643   void* IP = nullptr;
8644   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8645     cast<AtomicSDNode>(E)->refineAlignment(MMO);
8646     return SDValue(E, 0);
8647   }
8648 
8649   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
8650                                     VTList, MemVT, MMO);
8651   createOperands(N, Ops);
8652 
8653   CSEMap.InsertNode(N, IP);
8654   InsertNode(N);
8655   return SDValue(N, 0);
8656 }
8657 
8658 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
8659                                        EVT MemVT, SDVTList VTs, SDValue Chain,
8660                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
8661                                        MachineMemOperand *MMO) {
8662   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
8663          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
8664   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
8665 
8666   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
8667   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
8668 }
8669 
8670 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
8671                                 SDValue Chain, SDValue Ptr, SDValue Val,
8672                                 MachineMemOperand *MMO) {
8673   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
8674           Opcode == ISD::ATOMIC_LOAD_SUB ||
8675           Opcode == ISD::ATOMIC_LOAD_AND ||
8676           Opcode == ISD::ATOMIC_LOAD_CLR ||
8677           Opcode == ISD::ATOMIC_LOAD_OR ||
8678           Opcode == ISD::ATOMIC_LOAD_XOR ||
8679           Opcode == ISD::ATOMIC_LOAD_NAND ||
8680           Opcode == ISD::ATOMIC_LOAD_MIN ||
8681           Opcode == ISD::ATOMIC_LOAD_MAX ||
8682           Opcode == ISD::ATOMIC_LOAD_UMIN ||
8683           Opcode == ISD::ATOMIC_LOAD_UMAX ||
8684           Opcode == ISD::ATOMIC_LOAD_FADD ||
8685           Opcode == ISD::ATOMIC_LOAD_FSUB ||
8686           Opcode == ISD::ATOMIC_LOAD_FMAX ||
8687           Opcode == ISD::ATOMIC_LOAD_FMIN ||
8688           Opcode == ISD::ATOMIC_LOAD_UINC_WRAP ||
8689           Opcode == ISD::ATOMIC_LOAD_UDEC_WRAP ||
8690           Opcode == ISD::ATOMIC_SWAP ||
8691           Opcode == ISD::ATOMIC_STORE) &&
8692          "Invalid Atomic Op");
8693 
8694   EVT VT = Val.getValueType();
8695 
8696   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
8697                                                getVTList(VT, MVT::Other);
8698   SDValue Ops[] = {Chain, Ptr, Val};
8699   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
8700 }
8701 
8702 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
8703                                 EVT VT, SDValue Chain, SDValue Ptr,
8704                                 MachineMemOperand *MMO) {
8705   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
8706 
8707   SDVTList VTs = getVTList(VT, MVT::Other);
8708   SDValue Ops[] = {Chain, Ptr};
8709   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
8710 }
8711 
8712 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
8713 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
8714   if (Ops.size() == 1)
8715     return Ops[0];
8716 
8717   SmallVector<EVT, 4> VTs;
8718   VTs.reserve(Ops.size());
8719   for (const SDValue &Op : Ops)
8720     VTs.push_back(Op.getValueType());
8721   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
8722 }
8723 
8724 SDValue SelectionDAG::getMemIntrinsicNode(
8725     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
8726     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
8727     MachineMemOperand::Flags Flags, LocationSize Size,
8728     const AAMDNodes &AAInfo) {
8729   if (Size.hasValue() && !Size.getValue())
8730     Size = LocationSize::precise(MemVT.getStoreSize());
8731 
8732   MachineFunction &MF = getMachineFunction();
8733   MachineMemOperand *MMO =
8734       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
8735 
8736   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
8737 }
8738 
8739 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
8740                                           SDVTList VTList,
8741                                           ArrayRef<SDValue> Ops, EVT MemVT,
8742                                           MachineMemOperand *MMO) {
8743   assert((Opcode == ISD::INTRINSIC_VOID ||
8744           Opcode == ISD::INTRINSIC_W_CHAIN ||
8745           Opcode == ISD::PREFETCH ||
8746           (Opcode <= (unsigned)std::numeric_limits<int>::max() &&
8747            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
8748          "Opcode is not a memory-accessing opcode!");
8749 
8750   // Memoize the node unless it returns a glue result.
8751   MemIntrinsicSDNode *N;
8752   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
8753     FoldingSetNodeID ID;
8754     AddNodeIDNode(ID, Opcode, VTList, Ops);
8755     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
8756         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
8757     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8758     ID.AddInteger(MMO->getFlags());
8759     ID.AddInteger(MemVT.getRawBits());
8760     void *IP = nullptr;
8761     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8762       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
8763       return SDValue(E, 0);
8764     }
8765 
8766     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
8767                                       VTList, MemVT, MMO);
8768     createOperands(N, Ops);
8769 
8770   CSEMap.InsertNode(N, IP);
8771   } else {
8772     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
8773                                       VTList, MemVT, MMO);
8774     createOperands(N, Ops);
8775   }
8776   InsertNode(N);
8777   SDValue V(N, 0);
8778   NewSDValueDbgMsg(V, "Creating new node: ", this);
8779   return V;
8780 }
8781 
8782 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
8783                                       SDValue Chain, int FrameIndex,
8784                                       int64_t Size, int64_t Offset) {
8785   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
8786   const auto VTs = getVTList(MVT::Other);
8787   SDValue Ops[2] = {
8788       Chain,
8789       getFrameIndex(FrameIndex,
8790                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
8791                     true)};
8792 
8793   FoldingSetNodeID ID;
8794   AddNodeIDNode(ID, Opcode, VTs, Ops);
8795   ID.AddInteger(FrameIndex);
8796   ID.AddInteger(Size);
8797   ID.AddInteger(Offset);
8798   void *IP = nullptr;
8799   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
8800     return SDValue(E, 0);
8801 
8802   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
8803       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
8804   createOperands(N, Ops);
8805   CSEMap.InsertNode(N, IP);
8806   InsertNode(N);
8807   SDValue V(N, 0);
8808   NewSDValueDbgMsg(V, "Creating new node: ", this);
8809   return V;
8810 }
8811 
8812 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
8813                                          uint64_t Guid, uint64_t Index,
8814                                          uint32_t Attr) {
8815   const unsigned Opcode = ISD::PSEUDO_PROBE;
8816   const auto VTs = getVTList(MVT::Other);
8817   SDValue Ops[] = {Chain};
8818   FoldingSetNodeID ID;
8819   AddNodeIDNode(ID, Opcode, VTs, Ops);
8820   ID.AddInteger(Guid);
8821   ID.AddInteger(Index);
8822   void *IP = nullptr;
8823   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
8824     return SDValue(E, 0);
8825 
8826   auto *N = newSDNode<PseudoProbeSDNode>(
8827       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
8828   createOperands(N, Ops);
8829   CSEMap.InsertNode(N, IP);
8830   InsertNode(N);
8831   SDValue V(N, 0);
8832   NewSDValueDbgMsg(V, "Creating new node: ", this);
8833   return V;
8834 }
8835 
8836 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
8837 /// MachinePointerInfo record from it.  This is particularly useful because the
8838 /// code generator has many cases where it doesn't bother passing in a
8839 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
8840 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
8841                                            SelectionDAG &DAG, SDValue Ptr,
8842                                            int64_t Offset = 0) {
8843   // If this is FI+Offset, we can model it.
8844   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
8845     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
8846                                              FI->getIndex(), Offset);
8847 
8848   // If this is (FI+Offset1)+Offset2, we can model it.
8849   if (Ptr.getOpcode() != ISD::ADD ||
8850       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
8851       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
8852     return Info;
8853 
8854   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
8855   return MachinePointerInfo::getFixedStack(
8856       DAG.getMachineFunction(), FI,
8857       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
8858 }
8859 
8860 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
8861 /// MachinePointerInfo record from it.  This is particularly useful because the
8862 /// code generator has many cases where it doesn't bother passing in a
8863 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
8864 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
8865                                            SelectionDAG &DAG, SDValue Ptr,
8866                                            SDValue OffsetOp) {
8867   // If the 'Offset' value isn't a constant, we can't handle this.
8868   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
8869     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
8870   if (OffsetOp.isUndef())
8871     return InferPointerInfo(Info, DAG, Ptr);
8872   return Info;
8873 }
8874 
8875 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
8876                               EVT VT, const SDLoc &dl, SDValue Chain,
8877                               SDValue Ptr, SDValue Offset,
8878                               MachinePointerInfo PtrInfo, EVT MemVT,
8879                               Align Alignment,
8880                               MachineMemOperand::Flags MMOFlags,
8881                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
8882   assert(Chain.getValueType() == MVT::Other &&
8883         "Invalid chain type");
8884 
8885   MMOFlags |= MachineMemOperand::MOLoad;
8886   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
8887   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
8888   // clients.
8889   if (PtrInfo.V.isNull())
8890     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
8891 
8892   LocationSize Size = LocationSize::precise(MemVT.getStoreSize());
8893   MachineFunction &MF = getMachineFunction();
8894   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
8895                                                    Alignment, AAInfo, Ranges);
8896   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
8897 }
8898 
8899 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
8900                               EVT VT, const SDLoc &dl, SDValue Chain,
8901                               SDValue Ptr, SDValue Offset, EVT MemVT,
8902                               MachineMemOperand *MMO) {
8903   if (VT == MemVT) {
8904     ExtType = ISD::NON_EXTLOAD;
8905   } else if (ExtType == ISD::NON_EXTLOAD) {
8906     assert(VT == MemVT && "Non-extending load from different memory type!");
8907   } else {
8908     // Extending load.
8909     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
8910            "Should only be an extending load, not truncating!");
8911     assert(VT.isInteger() == MemVT.isInteger() &&
8912            "Cannot convert from FP to Int or Int -> FP!");
8913     assert(VT.isVector() == MemVT.isVector() &&
8914            "Cannot use an ext load to convert to or from a vector!");
8915     assert((!VT.isVector() ||
8916             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
8917            "Cannot use an ext load to change the number of vector elements!");
8918   }
8919 
8920   bool Indexed = AM != ISD::UNINDEXED;
8921   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
8922 
8923   SDVTList VTs = Indexed ?
8924     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
8925   SDValue Ops[] = { Chain, Ptr, Offset };
8926   FoldingSetNodeID ID;
8927   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
8928   ID.AddInteger(MemVT.getRawBits());
8929   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
8930       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
8931   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8932   ID.AddInteger(MMO->getFlags());
8933   void *IP = nullptr;
8934   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8935     cast<LoadSDNode>(E)->refineAlignment(MMO);
8936     return SDValue(E, 0);
8937   }
8938   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8939                                   ExtType, MemVT, MMO);
8940   createOperands(N, Ops);
8941 
8942   CSEMap.InsertNode(N, IP);
8943   InsertNode(N);
8944   SDValue V(N, 0);
8945   NewSDValueDbgMsg(V, "Creating new node: ", this);
8946   return V;
8947 }
8948 
8949 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8950                               SDValue Ptr, MachinePointerInfo PtrInfo,
8951                               MaybeAlign Alignment,
8952                               MachineMemOperand::Flags MMOFlags,
8953                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
8954   SDValue Undef = getUNDEF(Ptr.getValueType());
8955   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
8956                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
8957 }
8958 
8959 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8960                               SDValue Ptr, MachineMemOperand *MMO) {
8961   SDValue Undef = getUNDEF(Ptr.getValueType());
8962   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
8963                  VT, MMO);
8964 }
8965 
8966 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
8967                                  EVT VT, SDValue Chain, SDValue Ptr,
8968                                  MachinePointerInfo PtrInfo, EVT MemVT,
8969                                  MaybeAlign Alignment,
8970                                  MachineMemOperand::Flags MMOFlags,
8971                                  const AAMDNodes &AAInfo) {
8972   SDValue Undef = getUNDEF(Ptr.getValueType());
8973   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
8974                  MemVT, Alignment, MMOFlags, AAInfo);
8975 }
8976 
8977 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
8978                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
8979                                  MachineMemOperand *MMO) {
8980   SDValue Undef = getUNDEF(Ptr.getValueType());
8981   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
8982                  MemVT, MMO);
8983 }
8984 
8985 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
8986                                      SDValue Base, SDValue Offset,
8987                                      ISD::MemIndexedMode AM) {
8988   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
8989   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
8990   // Don't propagate the invariant or dereferenceable flags.
8991   auto MMOFlags =
8992       LD->getMemOperand()->getFlags() &
8993       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
8994   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
8995                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
8996                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
8997 }
8998 
8999 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
9000                                SDValue Ptr, MachinePointerInfo PtrInfo,
9001                                Align Alignment,
9002                                MachineMemOperand::Flags MMOFlags,
9003                                const AAMDNodes &AAInfo) {
9004   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9005 
9006   MMOFlags |= MachineMemOperand::MOStore;
9007   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
9008 
9009   if (PtrInfo.V.isNull())
9010     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
9011 
9012   MachineFunction &MF = getMachineFunction();
9013   LocationSize Size = LocationSize::precise(Val.getValueType().getStoreSize());
9014   MachineMemOperand *MMO =
9015       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
9016   return getStore(Chain, dl, Val, Ptr, MMO);
9017 }
9018 
9019 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
9020                                SDValue Ptr, MachineMemOperand *MMO) {
9021   assert(Chain.getValueType() == MVT::Other &&
9022         "Invalid chain type");
9023   EVT VT = Val.getValueType();
9024   SDVTList VTs = getVTList(MVT::Other);
9025   SDValue Undef = getUNDEF(Ptr.getValueType());
9026   SDValue Ops[] = { Chain, Val, Ptr, Undef };
9027   FoldingSetNodeID ID;
9028   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
9029   ID.AddInteger(VT.getRawBits());
9030   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
9031       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
9032   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9033   ID.AddInteger(MMO->getFlags());
9034   void *IP = nullptr;
9035   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9036     cast<StoreSDNode>(E)->refineAlignment(MMO);
9037     return SDValue(E, 0);
9038   }
9039   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
9040                                    ISD::UNINDEXED, false, VT, MMO);
9041   createOperands(N, Ops);
9042 
9043   CSEMap.InsertNode(N, IP);
9044   InsertNode(N);
9045   SDValue V(N, 0);
9046   NewSDValueDbgMsg(V, "Creating new node: ", this);
9047   return V;
9048 }
9049 
9050 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
9051                                     SDValue Ptr, MachinePointerInfo PtrInfo,
9052                                     EVT SVT, Align Alignment,
9053                                     MachineMemOperand::Flags MMOFlags,
9054                                     const AAMDNodes &AAInfo) {
9055   assert(Chain.getValueType() == MVT::Other &&
9056         "Invalid chain type");
9057 
9058   MMOFlags |= MachineMemOperand::MOStore;
9059   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
9060 
9061   if (PtrInfo.V.isNull())
9062     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
9063 
9064   MachineFunction &MF = getMachineFunction();
9065   MachineMemOperand *MMO = MF.getMachineMemOperand(
9066       PtrInfo, MMOFlags, LocationSize::precise(SVT.getStoreSize()), Alignment,
9067       AAInfo);
9068   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
9069 }
9070 
9071 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
9072                                     SDValue Ptr, EVT SVT,
9073                                     MachineMemOperand *MMO) {
9074   EVT VT = Val.getValueType();
9075 
9076   assert(Chain.getValueType() == MVT::Other &&
9077         "Invalid chain type");
9078   if (VT == SVT)
9079     return getStore(Chain, dl, Val, Ptr, MMO);
9080 
9081   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
9082          "Should only be a truncating store, not extending!");
9083   assert(VT.isInteger() == SVT.isInteger() &&
9084          "Can't do FP-INT conversion!");
9085   assert(VT.isVector() == SVT.isVector() &&
9086          "Cannot use trunc store to convert to or from a vector!");
9087   assert((!VT.isVector() ||
9088           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
9089          "Cannot use trunc store to change the number of vector elements!");
9090 
9091   SDVTList VTs = getVTList(MVT::Other);
9092   SDValue Undef = getUNDEF(Ptr.getValueType());
9093   SDValue Ops[] = { Chain, Val, Ptr, Undef };
9094   FoldingSetNodeID ID;
9095   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
9096   ID.AddInteger(SVT.getRawBits());
9097   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
9098       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
9099   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9100   ID.AddInteger(MMO->getFlags());
9101   void *IP = nullptr;
9102   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9103     cast<StoreSDNode>(E)->refineAlignment(MMO);
9104     return SDValue(E, 0);
9105   }
9106   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
9107                                    ISD::UNINDEXED, true, SVT, MMO);
9108   createOperands(N, Ops);
9109 
9110   CSEMap.InsertNode(N, IP);
9111   InsertNode(N);
9112   SDValue V(N, 0);
9113   NewSDValueDbgMsg(V, "Creating new node: ", this);
9114   return V;
9115 }
9116 
9117 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
9118                                       SDValue Base, SDValue Offset,
9119                                       ISD::MemIndexedMode AM) {
9120   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
9121   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
9122   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
9123   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
9124   FoldingSetNodeID ID;
9125   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
9126   ID.AddInteger(ST->getMemoryVT().getRawBits());
9127   ID.AddInteger(ST->getRawSubclassData());
9128   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
9129   ID.AddInteger(ST->getMemOperand()->getFlags());
9130   void *IP = nullptr;
9131   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
9132     return SDValue(E, 0);
9133 
9134   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9135                                    ST->isTruncatingStore(), ST->getMemoryVT(),
9136                                    ST->getMemOperand());
9137   createOperands(N, Ops);
9138 
9139   CSEMap.InsertNode(N, IP);
9140   InsertNode(N);
9141   SDValue V(N, 0);
9142   NewSDValueDbgMsg(V, "Creating new node: ", this);
9143   return V;
9144 }
9145 
9146 SDValue SelectionDAG::getLoadVP(
9147     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
9148     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
9149     MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
9150     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
9151     const MDNode *Ranges, bool IsExpanding) {
9152   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9153 
9154   MMOFlags |= MachineMemOperand::MOLoad;
9155   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
9156   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
9157   // clients.
9158   if (PtrInfo.V.isNull())
9159     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
9160 
9161   LocationSize Size = LocationSize::precise(MemVT.getStoreSize());
9162   MachineFunction &MF = getMachineFunction();
9163   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
9164                                                    Alignment, AAInfo, Ranges);
9165   return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
9166                    MMO, IsExpanding);
9167 }
9168 
9169 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
9170                                 ISD::LoadExtType ExtType, EVT VT,
9171                                 const SDLoc &dl, SDValue Chain, SDValue Ptr,
9172                                 SDValue Offset, SDValue Mask, SDValue EVL,
9173                                 EVT MemVT, MachineMemOperand *MMO,
9174                                 bool IsExpanding) {
9175   bool Indexed = AM != ISD::UNINDEXED;
9176   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
9177 
9178   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
9179                          : getVTList(VT, MVT::Other);
9180   SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
9181   FoldingSetNodeID ID;
9182   AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
9183   ID.AddInteger(MemVT.getRawBits());
9184   ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
9185       dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
9186   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9187   ID.AddInteger(MMO->getFlags());
9188   void *IP = nullptr;
9189   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9190     cast<VPLoadSDNode>(E)->refineAlignment(MMO);
9191     return SDValue(E, 0);
9192   }
9193   auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9194                                     ExtType, IsExpanding, MemVT, MMO);
9195   createOperands(N, Ops);
9196 
9197   CSEMap.InsertNode(N, IP);
9198   InsertNode(N);
9199   SDValue V(N, 0);
9200   NewSDValueDbgMsg(V, "Creating new node: ", this);
9201   return V;
9202 }
9203 
9204 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
9205                                 SDValue Ptr, SDValue Mask, SDValue EVL,
9206                                 MachinePointerInfo PtrInfo,
9207                                 MaybeAlign Alignment,
9208                                 MachineMemOperand::Flags MMOFlags,
9209                                 const AAMDNodes &AAInfo, const MDNode *Ranges,
9210                                 bool IsExpanding) {
9211   SDValue Undef = getUNDEF(Ptr.getValueType());
9212   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9213                    Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
9214                    IsExpanding);
9215 }
9216 
9217 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
9218                                 SDValue Ptr, SDValue Mask, SDValue EVL,
9219                                 MachineMemOperand *MMO, bool IsExpanding) {
9220   SDValue Undef = getUNDEF(Ptr.getValueType());
9221   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9222                    Mask, EVL, VT, MMO, IsExpanding);
9223 }
9224 
9225 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
9226                                    EVT VT, SDValue Chain, SDValue Ptr,
9227                                    SDValue Mask, SDValue EVL,
9228                                    MachinePointerInfo PtrInfo, EVT MemVT,
9229                                    MaybeAlign Alignment,
9230                                    MachineMemOperand::Flags MMOFlags,
9231                                    const AAMDNodes &AAInfo, bool IsExpanding) {
9232   SDValue Undef = getUNDEF(Ptr.getValueType());
9233   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
9234                    EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
9235                    IsExpanding);
9236 }
9237 
9238 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
9239                                    EVT VT, SDValue Chain, SDValue Ptr,
9240                                    SDValue Mask, SDValue EVL, EVT MemVT,
9241                                    MachineMemOperand *MMO, bool IsExpanding) {
9242   SDValue Undef = getUNDEF(Ptr.getValueType());
9243   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
9244                    EVL, MemVT, MMO, IsExpanding);
9245 }
9246 
9247 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
9248                                        SDValue Base, SDValue Offset,
9249                                        ISD::MemIndexedMode AM) {
9250   auto *LD = cast<VPLoadSDNode>(OrigLoad);
9251   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
9252   // Don't propagate the invariant or dereferenceable flags.
9253   auto MMOFlags =
9254       LD->getMemOperand()->getFlags() &
9255       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
9256   return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
9257                    LD->getChain(), Base, Offset, LD->getMask(),
9258                    LD->getVectorLength(), LD->getPointerInfo(),
9259                    LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
9260                    nullptr, LD->isExpandingLoad());
9261 }
9262 
9263 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
9264                                  SDValue Ptr, SDValue Offset, SDValue Mask,
9265                                  SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
9266                                  ISD::MemIndexedMode AM, bool IsTruncating,
9267                                  bool IsCompressing) {
9268   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9269   bool Indexed = AM != ISD::UNINDEXED;
9270   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
9271   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
9272                          : getVTList(MVT::Other);
9273   SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
9274   FoldingSetNodeID ID;
9275   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
9276   ID.AddInteger(MemVT.getRawBits());
9277   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
9278       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
9279   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9280   ID.AddInteger(MMO->getFlags());
9281   void *IP = nullptr;
9282   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9283     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
9284     return SDValue(E, 0);
9285   }
9286   auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9287                                      IsTruncating, IsCompressing, MemVT, MMO);
9288   createOperands(N, Ops);
9289 
9290   CSEMap.InsertNode(N, IP);
9291   InsertNode(N);
9292   SDValue V(N, 0);
9293   NewSDValueDbgMsg(V, "Creating new node: ", this);
9294   return V;
9295 }
9296 
9297 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
9298                                       SDValue Val, SDValue Ptr, SDValue Mask,
9299                                       SDValue EVL, MachinePointerInfo PtrInfo,
9300                                       EVT SVT, Align Alignment,
9301                                       MachineMemOperand::Flags MMOFlags,
9302                                       const AAMDNodes &AAInfo,
9303                                       bool IsCompressing) {
9304   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9305 
9306   MMOFlags |= MachineMemOperand::MOStore;
9307   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
9308 
9309   if (PtrInfo.V.isNull())
9310     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
9311 
9312   MachineFunction &MF = getMachineFunction();
9313   MachineMemOperand *MMO = MF.getMachineMemOperand(
9314       PtrInfo, MMOFlags, LocationSize::precise(SVT.getStoreSize()), Alignment,
9315       AAInfo);
9316   return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
9317                          IsCompressing);
9318 }
9319 
9320 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
9321                                       SDValue Val, SDValue Ptr, SDValue Mask,
9322                                       SDValue EVL, EVT SVT,
9323                                       MachineMemOperand *MMO,
9324                                       bool IsCompressing) {
9325   EVT VT = Val.getValueType();
9326 
9327   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9328   if (VT == SVT)
9329     return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
9330                       EVL, VT, MMO, ISD::UNINDEXED,
9331                       /*IsTruncating*/ false, IsCompressing);
9332 
9333   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
9334          "Should only be a truncating store, not extending!");
9335   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
9336   assert(VT.isVector() == SVT.isVector() &&
9337          "Cannot use trunc store to convert to or from a vector!");
9338   assert((!VT.isVector() ||
9339           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
9340          "Cannot use trunc store to change the number of vector elements!");
9341 
9342   SDVTList VTs = getVTList(MVT::Other);
9343   SDValue Undef = getUNDEF(Ptr.getValueType());
9344   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
9345   FoldingSetNodeID ID;
9346   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
9347   ID.AddInteger(SVT.getRawBits());
9348   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
9349       dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
9350   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9351   ID.AddInteger(MMO->getFlags());
9352   void *IP = nullptr;
9353   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9354     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
9355     return SDValue(E, 0);
9356   }
9357   auto *N =
9358       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
9359                                ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
9360   createOperands(N, Ops);
9361 
9362   CSEMap.InsertNode(N, IP);
9363   InsertNode(N);
9364   SDValue V(N, 0);
9365   NewSDValueDbgMsg(V, "Creating new node: ", this);
9366   return V;
9367 }
9368 
9369 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
9370                                         SDValue Base, SDValue Offset,
9371                                         ISD::MemIndexedMode AM) {
9372   auto *ST = cast<VPStoreSDNode>(OrigStore);
9373   assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
9374   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
9375   SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
9376                    Offset,         ST->getMask(),  ST->getVectorLength()};
9377   FoldingSetNodeID ID;
9378   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
9379   ID.AddInteger(ST->getMemoryVT().getRawBits());
9380   ID.AddInteger(ST->getRawSubclassData());
9381   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
9382   ID.AddInteger(ST->getMemOperand()->getFlags());
9383   void *IP = nullptr;
9384   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
9385     return SDValue(E, 0);
9386 
9387   auto *N = newSDNode<VPStoreSDNode>(
9388       dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
9389       ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
9390   createOperands(N, Ops);
9391 
9392   CSEMap.InsertNode(N, IP);
9393   InsertNode(N);
9394   SDValue V(N, 0);
9395   NewSDValueDbgMsg(V, "Creating new node: ", this);
9396   return V;
9397 }
9398 
9399 SDValue SelectionDAG::getStridedLoadVP(
9400     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
9401     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
9402     SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) {
9403   bool Indexed = AM != ISD::UNINDEXED;
9404   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
9405 
9406   SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL};
9407   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
9408                          : getVTList(VT, MVT::Other);
9409   FoldingSetNodeID ID;
9410   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops);
9411   ID.AddInteger(VT.getRawBits());
9412   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
9413       DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
9414   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9415 
9416   void *IP = nullptr;
9417   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9418     cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO);
9419     return SDValue(E, 0);
9420   }
9421 
9422   auto *N =
9423       newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM,
9424                                      ExtType, IsExpanding, MemVT, MMO);
9425   createOperands(N, Ops);
9426   CSEMap.InsertNode(N, IP);
9427   InsertNode(N);
9428   SDValue V(N, 0);
9429   NewSDValueDbgMsg(V, "Creating new node: ", this);
9430   return V;
9431 }
9432 
9433 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain,
9434                                        SDValue Ptr, SDValue Stride,
9435                                        SDValue Mask, SDValue EVL,
9436                                        MachineMemOperand *MMO,
9437                                        bool IsExpanding) {
9438   SDValue Undef = getUNDEF(Ptr.getValueType());
9439   return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
9440                           Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
9441 }
9442 
9443 SDValue SelectionDAG::getExtStridedLoadVP(
9444     ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
9445     SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT,
9446     MachineMemOperand *MMO, bool IsExpanding) {
9447   SDValue Undef = getUNDEF(Ptr.getValueType());
9448   return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
9449                           Stride, Mask, EVL, MemVT, MMO, IsExpanding);
9450 }
9451 
9452 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL,
9453                                         SDValue Val, SDValue Ptr,
9454                                         SDValue Offset, SDValue Stride,
9455                                         SDValue Mask, SDValue EVL, EVT MemVT,
9456                                         MachineMemOperand *MMO,
9457                                         ISD::MemIndexedMode AM,
9458                                         bool IsTruncating, bool IsCompressing) {
9459   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9460   bool Indexed = AM != ISD::UNINDEXED;
9461   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
9462   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
9463                          : getVTList(MVT::Other);
9464   SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL};
9465   FoldingSetNodeID ID;
9466   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
9467   ID.AddInteger(MemVT.getRawBits());
9468   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
9469       DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
9470   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9471   void *IP = nullptr;
9472   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9473     cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
9474     return SDValue(E, 0);
9475   }
9476   auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
9477                                             VTs, AM, IsTruncating,
9478                                             IsCompressing, MemVT, MMO);
9479   createOperands(N, Ops);
9480 
9481   CSEMap.InsertNode(N, IP);
9482   InsertNode(N);
9483   SDValue V(N, 0);
9484   NewSDValueDbgMsg(V, "Creating new node: ", this);
9485   return V;
9486 }
9487 
9488 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL,
9489                                              SDValue Val, SDValue Ptr,
9490                                              SDValue Stride, SDValue Mask,
9491                                              SDValue EVL, EVT SVT,
9492                                              MachineMemOperand *MMO,
9493                                              bool IsCompressing) {
9494   EVT VT = Val.getValueType();
9495 
9496   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9497   if (VT == SVT)
9498     return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()),
9499                              Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED,
9500                              /*IsTruncating*/ false, IsCompressing);
9501 
9502   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
9503          "Should only be a truncating store, not extending!");
9504   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
9505   assert(VT.isVector() == SVT.isVector() &&
9506          "Cannot use trunc store to convert to or from a vector!");
9507   assert((!VT.isVector() ||
9508           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
9509          "Cannot use trunc store to change the number of vector elements!");
9510 
9511   SDVTList VTs = getVTList(MVT::Other);
9512   SDValue Undef = getUNDEF(Ptr.getValueType());
9513   SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
9514   FoldingSetNodeID ID;
9515   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
9516   ID.AddInteger(SVT.getRawBits());
9517   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
9518       DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
9519   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9520   void *IP = nullptr;
9521   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9522     cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
9523     return SDValue(E, 0);
9524   }
9525   auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
9526                                             VTs, ISD::UNINDEXED, true,
9527                                             IsCompressing, SVT, MMO);
9528   createOperands(N, Ops);
9529 
9530   CSEMap.InsertNode(N, IP);
9531   InsertNode(N);
9532   SDValue V(N, 0);
9533   NewSDValueDbgMsg(V, "Creating new node: ", this);
9534   return V;
9535 }
9536 
9537 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
9538                                   ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
9539                                   ISD::MemIndexType IndexType) {
9540   assert(Ops.size() == 6 && "Incompatible number of operands");
9541 
9542   FoldingSetNodeID ID;
9543   AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
9544   ID.AddInteger(VT.getRawBits());
9545   ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
9546       dl.getIROrder(), VTs, VT, MMO, IndexType));
9547   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9548   ID.AddInteger(MMO->getFlags());
9549   void *IP = nullptr;
9550   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9551     cast<VPGatherSDNode>(E)->refineAlignment(MMO);
9552     return SDValue(E, 0);
9553   }
9554 
9555   auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
9556                                       VT, MMO, IndexType);
9557   createOperands(N, Ops);
9558 
9559   assert(N->getMask().getValueType().getVectorElementCount() ==
9560              N->getValueType(0).getVectorElementCount() &&
9561          "Vector width mismatch between mask and data");
9562   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
9563              N->getValueType(0).getVectorElementCount().isScalable() &&
9564          "Scalable flags of index and data do not match");
9565   assert(ElementCount::isKnownGE(
9566              N->getIndex().getValueType().getVectorElementCount(),
9567              N->getValueType(0).getVectorElementCount()) &&
9568          "Vector width mismatch between index and data");
9569   assert(isa<ConstantSDNode>(N->getScale()) &&
9570          N->getScale()->getAsAPIntVal().isPowerOf2() &&
9571          "Scale should be a constant power of 2");
9572 
9573   CSEMap.InsertNode(N, IP);
9574   InsertNode(N);
9575   SDValue V(N, 0);
9576   NewSDValueDbgMsg(V, "Creating new node: ", this);
9577   return V;
9578 }
9579 
9580 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
9581                                    ArrayRef<SDValue> Ops,
9582                                    MachineMemOperand *MMO,
9583                                    ISD::MemIndexType IndexType) {
9584   assert(Ops.size() == 7 && "Incompatible number of operands");
9585 
9586   FoldingSetNodeID ID;
9587   AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
9588   ID.AddInteger(VT.getRawBits());
9589   ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
9590       dl.getIROrder(), VTs, VT, MMO, IndexType));
9591   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9592   ID.AddInteger(MMO->getFlags());
9593   void *IP = nullptr;
9594   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9595     cast<VPScatterSDNode>(E)->refineAlignment(MMO);
9596     return SDValue(E, 0);
9597   }
9598   auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
9599                                        VT, MMO, IndexType);
9600   createOperands(N, Ops);
9601 
9602   assert(N->getMask().getValueType().getVectorElementCount() ==
9603              N->getValue().getValueType().getVectorElementCount() &&
9604          "Vector width mismatch between mask and data");
9605   assert(
9606       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
9607           N->getValue().getValueType().getVectorElementCount().isScalable() &&
9608       "Scalable flags of index and data do not match");
9609   assert(ElementCount::isKnownGE(
9610              N->getIndex().getValueType().getVectorElementCount(),
9611              N->getValue().getValueType().getVectorElementCount()) &&
9612          "Vector width mismatch between index and data");
9613   assert(isa<ConstantSDNode>(N->getScale()) &&
9614          N->getScale()->getAsAPIntVal().isPowerOf2() &&
9615          "Scale should be a constant power of 2");
9616 
9617   CSEMap.InsertNode(N, IP);
9618   InsertNode(N);
9619   SDValue V(N, 0);
9620   NewSDValueDbgMsg(V, "Creating new node: ", this);
9621   return V;
9622 }
9623 
9624 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
9625                                     SDValue Base, SDValue Offset, SDValue Mask,
9626                                     SDValue PassThru, EVT MemVT,
9627                                     MachineMemOperand *MMO,
9628                                     ISD::MemIndexedMode AM,
9629                                     ISD::LoadExtType ExtTy, bool isExpanding) {
9630   bool Indexed = AM != ISD::UNINDEXED;
9631   assert((Indexed || Offset.isUndef()) &&
9632          "Unindexed masked load with an offset!");
9633   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
9634                          : getVTList(VT, MVT::Other);
9635   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
9636   FoldingSetNodeID ID;
9637   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
9638   ID.AddInteger(MemVT.getRawBits());
9639   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
9640       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
9641   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9642   ID.AddInteger(MMO->getFlags());
9643   void *IP = nullptr;
9644   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9645     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
9646     return SDValue(E, 0);
9647   }
9648   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
9649                                         AM, ExtTy, isExpanding, MemVT, MMO);
9650   createOperands(N, Ops);
9651 
9652   CSEMap.InsertNode(N, IP);
9653   InsertNode(N);
9654   SDValue V(N, 0);
9655   NewSDValueDbgMsg(V, "Creating new node: ", this);
9656   return V;
9657 }
9658 
9659 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
9660                                            SDValue Base, SDValue Offset,
9661                                            ISD::MemIndexedMode AM) {
9662   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
9663   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
9664   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
9665                        Offset, LD->getMask(), LD->getPassThru(),
9666                        LD->getMemoryVT(), LD->getMemOperand(), AM,
9667                        LD->getExtensionType(), LD->isExpandingLoad());
9668 }
9669 
9670 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
9671                                      SDValue Val, SDValue Base, SDValue Offset,
9672                                      SDValue Mask, EVT MemVT,
9673                                      MachineMemOperand *MMO,
9674                                      ISD::MemIndexedMode AM, bool IsTruncating,
9675                                      bool IsCompressing) {
9676   assert(Chain.getValueType() == MVT::Other &&
9677         "Invalid chain type");
9678   bool Indexed = AM != ISD::UNINDEXED;
9679   assert((Indexed || Offset.isUndef()) &&
9680          "Unindexed masked store with an offset!");
9681   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
9682                          : getVTList(MVT::Other);
9683   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
9684   FoldingSetNodeID ID;
9685   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
9686   ID.AddInteger(MemVT.getRawBits());
9687   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
9688       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
9689   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9690   ID.AddInteger(MMO->getFlags());
9691   void *IP = nullptr;
9692   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9693     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
9694     return SDValue(E, 0);
9695   }
9696   auto *N =
9697       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9698                                    IsTruncating, IsCompressing, MemVT, MMO);
9699   createOperands(N, Ops);
9700 
9701   CSEMap.InsertNode(N, IP);
9702   InsertNode(N);
9703   SDValue V(N, 0);
9704   NewSDValueDbgMsg(V, "Creating new node: ", this);
9705   return V;
9706 }
9707 
9708 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
9709                                             SDValue Base, SDValue Offset,
9710                                             ISD::MemIndexedMode AM) {
9711   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
9712   assert(ST->getOffset().isUndef() &&
9713          "Masked store is already a indexed store!");
9714   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
9715                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
9716                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
9717 }
9718 
9719 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
9720                                       ArrayRef<SDValue> Ops,
9721                                       MachineMemOperand *MMO,
9722                                       ISD::MemIndexType IndexType,
9723                                       ISD::LoadExtType ExtTy) {
9724   assert(Ops.size() == 6 && "Incompatible number of operands");
9725 
9726   FoldingSetNodeID ID;
9727   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
9728   ID.AddInteger(MemVT.getRawBits());
9729   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
9730       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
9731   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9732   ID.AddInteger(MMO->getFlags());
9733   void *IP = nullptr;
9734   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9735     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
9736     return SDValue(E, 0);
9737   }
9738 
9739   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
9740                                           VTs, MemVT, MMO, IndexType, ExtTy);
9741   createOperands(N, Ops);
9742 
9743   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
9744          "Incompatible type of the PassThru value in MaskedGatherSDNode");
9745   assert(N->getMask().getValueType().getVectorElementCount() ==
9746              N->getValueType(0).getVectorElementCount() &&
9747          "Vector width mismatch between mask and data");
9748   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
9749              N->getValueType(0).getVectorElementCount().isScalable() &&
9750          "Scalable flags of index and data do not match");
9751   assert(ElementCount::isKnownGE(
9752              N->getIndex().getValueType().getVectorElementCount(),
9753              N->getValueType(0).getVectorElementCount()) &&
9754          "Vector width mismatch between index and data");
9755   assert(isa<ConstantSDNode>(N->getScale()) &&
9756          N->getScale()->getAsAPIntVal().isPowerOf2() &&
9757          "Scale should be a constant power of 2");
9758 
9759   CSEMap.InsertNode(N, IP);
9760   InsertNode(N);
9761   SDValue V(N, 0);
9762   NewSDValueDbgMsg(V, "Creating new node: ", this);
9763   return V;
9764 }
9765 
9766 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
9767                                        ArrayRef<SDValue> Ops,
9768                                        MachineMemOperand *MMO,
9769                                        ISD::MemIndexType IndexType,
9770                                        bool IsTrunc) {
9771   assert(Ops.size() == 6 && "Incompatible number of operands");
9772 
9773   FoldingSetNodeID ID;
9774   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
9775   ID.AddInteger(MemVT.getRawBits());
9776   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
9777       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
9778   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9779   ID.AddInteger(MMO->getFlags());
9780   void *IP = nullptr;
9781   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9782     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
9783     return SDValue(E, 0);
9784   }
9785 
9786   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
9787                                            VTs, MemVT, MMO, IndexType, IsTrunc);
9788   createOperands(N, Ops);
9789 
9790   assert(N->getMask().getValueType().getVectorElementCount() ==
9791              N->getValue().getValueType().getVectorElementCount() &&
9792          "Vector width mismatch between mask and data");
9793   assert(
9794       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
9795           N->getValue().getValueType().getVectorElementCount().isScalable() &&
9796       "Scalable flags of index and data do not match");
9797   assert(ElementCount::isKnownGE(
9798              N->getIndex().getValueType().getVectorElementCount(),
9799              N->getValue().getValueType().getVectorElementCount()) &&
9800          "Vector width mismatch between index and data");
9801   assert(isa<ConstantSDNode>(N->getScale()) &&
9802          N->getScale()->getAsAPIntVal().isPowerOf2() &&
9803          "Scale should be a constant power of 2");
9804 
9805   CSEMap.InsertNode(N, IP);
9806   InsertNode(N);
9807   SDValue V(N, 0);
9808   NewSDValueDbgMsg(V, "Creating new node: ", this);
9809   return V;
9810 }
9811 
9812 SDValue SelectionDAG::getMaskedHistogram(SDVTList VTs, EVT MemVT,
9813                                          const SDLoc &dl, ArrayRef<SDValue> Ops,
9814                                          MachineMemOperand *MMO,
9815                                          ISD::MemIndexType IndexType) {
9816   assert(Ops.size() == 7 && "Incompatible number of operands");
9817 
9818   FoldingSetNodeID ID;
9819   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VECTOR_HISTOGRAM, VTs, Ops);
9820   ID.AddInteger(MemVT.getRawBits());
9821   ID.AddInteger(getSyntheticNodeSubclassData<MaskedHistogramSDNode>(
9822       dl.getIROrder(), VTs, MemVT, MMO, IndexType));
9823   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9824   ID.AddInteger(MMO->getFlags());
9825   void *IP = nullptr;
9826   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9827     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
9828     return SDValue(E, 0);
9829   }
9830 
9831   auto *N = newSDNode<MaskedHistogramSDNode>(dl.getIROrder(), dl.getDebugLoc(),
9832                                              VTs, MemVT, MMO, IndexType);
9833   createOperands(N, Ops);
9834 
9835   assert(N->getMask().getValueType().getVectorElementCount() ==
9836              N->getIndex().getValueType().getVectorElementCount() &&
9837          "Vector width mismatch between mask and data");
9838   assert(isa<ConstantSDNode>(N->getScale()) &&
9839          N->getScale()->getAsAPIntVal().isPowerOf2() &&
9840          "Scale should be a constant power of 2");
9841   assert(N->getInc().getValueType().isInteger() && "Non integer update value");
9842 
9843   CSEMap.InsertNode(N, IP);
9844   InsertNode(N);
9845   SDValue V(N, 0);
9846   NewSDValueDbgMsg(V, "Creating new node: ", this);
9847   return V;
9848 }
9849 
9850 SDValue SelectionDAG::getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr,
9851                                   EVT MemVT, MachineMemOperand *MMO) {
9852   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9853   SDVTList VTs = getVTList(MVT::Other);
9854   SDValue Ops[] = {Chain, Ptr};
9855   FoldingSetNodeID ID;
9856   AddNodeIDNode(ID, ISD::GET_FPENV_MEM, VTs, Ops);
9857   ID.AddInteger(MemVT.getRawBits());
9858   ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
9859       ISD::GET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
9860   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9861   ID.AddInteger(MMO->getFlags());
9862   void *IP = nullptr;
9863   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
9864     return SDValue(E, 0);
9865 
9866   auto *N = newSDNode<FPStateAccessSDNode>(ISD::GET_FPENV_MEM, dl.getIROrder(),
9867                                            dl.getDebugLoc(), VTs, MemVT, MMO);
9868   createOperands(N, Ops);
9869 
9870   CSEMap.InsertNode(N, IP);
9871   InsertNode(N);
9872   SDValue V(N, 0);
9873   NewSDValueDbgMsg(V, "Creating new node: ", this);
9874   return V;
9875 }
9876 
9877 SDValue SelectionDAG::getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr,
9878                                   EVT MemVT, MachineMemOperand *MMO) {
9879   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9880   SDVTList VTs = getVTList(MVT::Other);
9881   SDValue Ops[] = {Chain, Ptr};
9882   FoldingSetNodeID ID;
9883   AddNodeIDNode(ID, ISD::SET_FPENV_MEM, VTs, Ops);
9884   ID.AddInteger(MemVT.getRawBits());
9885   ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
9886       ISD::SET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
9887   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9888   ID.AddInteger(MMO->getFlags());
9889   void *IP = nullptr;
9890   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
9891     return SDValue(E, 0);
9892 
9893   auto *N = newSDNode<FPStateAccessSDNode>(ISD::SET_FPENV_MEM, dl.getIROrder(),
9894                                            dl.getDebugLoc(), VTs, MemVT, MMO);
9895   createOperands(N, Ops);
9896 
9897   CSEMap.InsertNode(N, IP);
9898   InsertNode(N);
9899   SDValue V(N, 0);
9900   NewSDValueDbgMsg(V, "Creating new node: ", this);
9901   return V;
9902 }
9903 
9904 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
9905   // select undef, T, F --> T (if T is a constant), otherwise F
9906   // select, ?, undef, F --> F
9907   // select, ?, T, undef --> T
9908   if (Cond.isUndef())
9909     return isConstantValueOfAnyType(T) ? T : F;
9910   if (T.isUndef())
9911     return F;
9912   if (F.isUndef())
9913     return T;
9914 
9915   // select true, T, F --> T
9916   // select false, T, F --> F
9917   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
9918     return CondC->isZero() ? F : T;
9919 
9920   // TODO: This should simplify VSELECT with non-zero constant condition using
9921   // something like this (but check boolean contents to be complete?):
9922   if (ConstantSDNode *CondC = isConstOrConstSplat(Cond, /*AllowUndefs*/ false,
9923                                                   /*AllowTruncation*/ true))
9924     if (CondC->isZero())
9925       return F;
9926 
9927   // select ?, T, T --> T
9928   if (T == F)
9929     return T;
9930 
9931   return SDValue();
9932 }
9933 
9934 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
9935   // shift undef, Y --> 0 (can always assume that the undef value is 0)
9936   if (X.isUndef())
9937     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
9938   // shift X, undef --> undef (because it may shift by the bitwidth)
9939   if (Y.isUndef())
9940     return getUNDEF(X.getValueType());
9941 
9942   // shift 0, Y --> 0
9943   // shift X, 0 --> X
9944   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
9945     return X;
9946 
9947   // shift X, C >= bitwidth(X) --> undef
9948   // All vector elements must be too big (or undef) to avoid partial undefs.
9949   auto isShiftTooBig = [X](ConstantSDNode *Val) {
9950     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
9951   };
9952   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
9953     return getUNDEF(X.getValueType());
9954 
9955   // shift i1/vXi1 X, Y --> X (any non-zero shift amount is undefined).
9956   if (X.getValueType().getScalarType() == MVT::i1)
9957     return X;
9958 
9959   return SDValue();
9960 }
9961 
9962 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
9963                                       SDNodeFlags Flags) {
9964   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
9965   // (an undef operand can be chosen to be Nan/Inf), then the result of this
9966   // operation is poison. That result can be relaxed to undef.
9967   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
9968   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
9969   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
9970                 (YC && YC->getValueAPF().isNaN());
9971   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
9972                 (YC && YC->getValueAPF().isInfinity());
9973 
9974   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
9975     return getUNDEF(X.getValueType());
9976 
9977   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
9978     return getUNDEF(X.getValueType());
9979 
9980   if (!YC)
9981     return SDValue();
9982 
9983   // X + -0.0 --> X
9984   if (Opcode == ISD::FADD)
9985     if (YC->getValueAPF().isNegZero())
9986       return X;
9987 
9988   // X - +0.0 --> X
9989   if (Opcode == ISD::FSUB)
9990     if (YC->getValueAPF().isPosZero())
9991       return X;
9992 
9993   // X * 1.0 --> X
9994   // X / 1.0 --> X
9995   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
9996     if (YC->getValueAPF().isExactlyValue(1.0))
9997       return X;
9998 
9999   // X * 0.0 --> 0.0
10000   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
10001     if (YC->getValueAPF().isZero())
10002       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
10003 
10004   return SDValue();
10005 }
10006 
10007 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
10008                                SDValue Ptr, SDValue SV, unsigned Align) {
10009   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
10010   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
10011 }
10012 
10013 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10014                               ArrayRef<SDUse> Ops) {
10015   switch (Ops.size()) {
10016   case 0: return getNode(Opcode, DL, VT);
10017   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
10018   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
10019   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
10020   default: break;
10021   }
10022 
10023   // Copy from an SDUse array into an SDValue array for use with
10024   // the regular getNode logic.
10025   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
10026   return getNode(Opcode, DL, VT, NewOps);
10027 }
10028 
10029 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10030                               ArrayRef<SDValue> Ops) {
10031   SDNodeFlags Flags;
10032   if (Inserter)
10033     Flags = Inserter->getFlags();
10034   return getNode(Opcode, DL, VT, Ops, Flags);
10035 }
10036 
10037 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10038                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
10039   unsigned NumOps = Ops.size();
10040   switch (NumOps) {
10041   case 0: return getNode(Opcode, DL, VT);
10042   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
10043   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
10044   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
10045   default: break;
10046   }
10047 
10048 #ifndef NDEBUG
10049   for (const auto &Op : Ops)
10050     assert(Op.getOpcode() != ISD::DELETED_NODE &&
10051            "Operand is DELETED_NODE!");
10052 #endif
10053 
10054   switch (Opcode) {
10055   default: break;
10056   case ISD::BUILD_VECTOR:
10057     // Attempt to simplify BUILD_VECTOR.
10058     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
10059       return V;
10060     break;
10061   case ISD::CONCAT_VECTORS:
10062     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
10063       return V;
10064     break;
10065   case ISD::SELECT_CC:
10066     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
10067     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
10068            "LHS and RHS of condition must have same type!");
10069     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
10070            "True and False arms of SelectCC must have same type!");
10071     assert(Ops[2].getValueType() == VT &&
10072            "select_cc node must be of same type as true and false value!");
10073     assert((!Ops[0].getValueType().isVector() ||
10074             Ops[0].getValueType().getVectorElementCount() ==
10075                 VT.getVectorElementCount()) &&
10076            "Expected select_cc with vector result to have the same sized "
10077            "comparison type!");
10078     break;
10079   case ISD::BR_CC:
10080     assert(NumOps == 5 && "BR_CC takes 5 operands!");
10081     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
10082            "LHS/RHS of comparison should match types!");
10083     break;
10084   case ISD::VP_ADD:
10085   case ISD::VP_SUB:
10086     // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR
10087     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
10088       Opcode = ISD::VP_XOR;
10089     break;
10090   case ISD::VP_MUL:
10091     // If it is VP_MUL mask operation then turn it to VP_AND
10092     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
10093       Opcode = ISD::VP_AND;
10094     break;
10095   case ISD::VP_REDUCE_MUL:
10096     // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND
10097     if (VT == MVT::i1)
10098       Opcode = ISD::VP_REDUCE_AND;
10099     break;
10100   case ISD::VP_REDUCE_ADD:
10101     // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR
10102     if (VT == MVT::i1)
10103       Opcode = ISD::VP_REDUCE_XOR;
10104     break;
10105   case ISD::VP_REDUCE_SMAX:
10106   case ISD::VP_REDUCE_UMIN:
10107     // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to
10108     // VP_REDUCE_AND.
10109     if (VT == MVT::i1)
10110       Opcode = ISD::VP_REDUCE_AND;
10111     break;
10112   case ISD::VP_REDUCE_SMIN:
10113   case ISD::VP_REDUCE_UMAX:
10114     // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to
10115     // VP_REDUCE_OR.
10116     if (VT == MVT::i1)
10117       Opcode = ISD::VP_REDUCE_OR;
10118     break;
10119   }
10120 
10121   // Memoize nodes.
10122   SDNode *N;
10123   SDVTList VTs = getVTList(VT);
10124 
10125   if (VT != MVT::Glue) {
10126     FoldingSetNodeID ID;
10127     AddNodeIDNode(ID, Opcode, VTs, Ops);
10128     void *IP = nullptr;
10129 
10130     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
10131       return SDValue(E, 0);
10132 
10133     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
10134     createOperands(N, Ops);
10135 
10136     CSEMap.InsertNode(N, IP);
10137   } else {
10138     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
10139     createOperands(N, Ops);
10140   }
10141 
10142   N->setFlags(Flags);
10143   InsertNode(N);
10144   SDValue V(N, 0);
10145   NewSDValueDbgMsg(V, "Creating new node: ", this);
10146   return V;
10147 }
10148 
10149 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
10150                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
10151   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
10152 }
10153 
10154 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
10155                               ArrayRef<SDValue> Ops) {
10156   SDNodeFlags Flags;
10157   if (Inserter)
10158     Flags = Inserter->getFlags();
10159   return getNode(Opcode, DL, VTList, Ops, Flags);
10160 }
10161 
10162 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
10163                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
10164   if (VTList.NumVTs == 1)
10165     return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags);
10166 
10167 #ifndef NDEBUG
10168   for (const auto &Op : Ops)
10169     assert(Op.getOpcode() != ISD::DELETED_NODE &&
10170            "Operand is DELETED_NODE!");
10171 #endif
10172 
10173   switch (Opcode) {
10174   case ISD::SADDO:
10175   case ISD::UADDO:
10176   case ISD::SSUBO:
10177   case ISD::USUBO: {
10178     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
10179            "Invalid add/sub overflow op!");
10180     assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
10181            Ops[0].getValueType() == Ops[1].getValueType() &&
10182            Ops[0].getValueType() == VTList.VTs[0] &&
10183            "Binary operator types must match!");
10184     SDValue N1 = Ops[0], N2 = Ops[1];
10185     canonicalizeCommutativeBinop(Opcode, N1, N2);
10186 
10187     // (X +- 0) -> X with zero-overflow.
10188     ConstantSDNode *N2CV = isConstOrConstSplat(N2, /*AllowUndefs*/ false,
10189                                                /*AllowTruncation*/ true);
10190     if (N2CV && N2CV->isZero()) {
10191       SDValue ZeroOverFlow = getConstant(0, DL, VTList.VTs[1]);
10192       return getNode(ISD::MERGE_VALUES, DL, VTList, {N1, ZeroOverFlow}, Flags);
10193     }
10194 
10195     if (VTList.VTs[0].isVector() &&
10196         VTList.VTs[0].getVectorElementType() == MVT::i1 &&
10197         VTList.VTs[1].getVectorElementType() == MVT::i1) {
10198       SDValue F1 = getFreeze(N1);
10199       SDValue F2 = getFreeze(N2);
10200       // {vXi1,vXi1} (u/s)addo(vXi1 x, vXi1y) -> {xor(x,y),and(x,y)}
10201       if (Opcode == ISD::UADDO || Opcode == ISD::SADDO)
10202         return getNode(ISD::MERGE_VALUES, DL, VTList,
10203                        {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2),
10204                         getNode(ISD::AND, DL, VTList.VTs[1], F1, F2)},
10205                        Flags);
10206       // {vXi1,vXi1} (u/s)subo(vXi1 x, vXi1y) -> {xor(x,y),and(~x,y)}
10207       if (Opcode == ISD::USUBO || Opcode == ISD::SSUBO) {
10208         SDValue NotF1 = getNOT(DL, F1, VTList.VTs[0]);
10209         return getNode(ISD::MERGE_VALUES, DL, VTList,
10210                        {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2),
10211                         getNode(ISD::AND, DL, VTList.VTs[1], NotF1, F2)},
10212                        Flags);
10213       }
10214     }
10215     break;
10216   }
10217   case ISD::SADDO_CARRY:
10218   case ISD::UADDO_CARRY:
10219   case ISD::SSUBO_CARRY:
10220   case ISD::USUBO_CARRY:
10221     assert(VTList.NumVTs == 2 && Ops.size() == 3 &&
10222            "Invalid add/sub overflow op!");
10223     assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
10224            Ops[0].getValueType() == Ops[1].getValueType() &&
10225            Ops[0].getValueType() == VTList.VTs[0] &&
10226            Ops[2].getValueType() == VTList.VTs[1] &&
10227            "Binary operator types must match!");
10228     break;
10229   case ISD::SMUL_LOHI:
10230   case ISD::UMUL_LOHI: {
10231     assert(VTList.NumVTs == 2 && Ops.size() == 2 && "Invalid mul lo/hi op!");
10232     assert(VTList.VTs[0].isInteger() && VTList.VTs[0] == VTList.VTs[1] &&
10233            VTList.VTs[0] == Ops[0].getValueType() &&
10234            VTList.VTs[0] == Ops[1].getValueType() &&
10235            "Binary operator types must match!");
10236     // Constant fold.
10237     ConstantSDNode *LHS = dyn_cast<ConstantSDNode>(Ops[0]);
10238     ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ops[1]);
10239     if (LHS && RHS) {
10240       unsigned Width = VTList.VTs[0].getScalarSizeInBits();
10241       unsigned OutWidth = Width * 2;
10242       APInt Val = LHS->getAPIntValue();
10243       APInt Mul = RHS->getAPIntValue();
10244       if (Opcode == ISD::SMUL_LOHI) {
10245         Val = Val.sext(OutWidth);
10246         Mul = Mul.sext(OutWidth);
10247       } else {
10248         Val = Val.zext(OutWidth);
10249         Mul = Mul.zext(OutWidth);
10250       }
10251       Val *= Mul;
10252 
10253       SDValue Hi =
10254           getConstant(Val.extractBits(Width, Width), DL, VTList.VTs[0]);
10255       SDValue Lo = getConstant(Val.trunc(Width), DL, VTList.VTs[0]);
10256       return getNode(ISD::MERGE_VALUES, DL, VTList, {Lo, Hi}, Flags);
10257     }
10258     break;
10259   }
10260   case ISD::FFREXP: {
10261     assert(VTList.NumVTs == 2 && Ops.size() == 1 && "Invalid ffrexp op!");
10262     assert(VTList.VTs[0].isFloatingPoint() && VTList.VTs[1].isInteger() &&
10263            VTList.VTs[0] == Ops[0].getValueType() && "frexp type mismatch");
10264 
10265     if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Ops[0])) {
10266       int FrexpExp;
10267       APFloat FrexpMant =
10268           frexp(C->getValueAPF(), FrexpExp, APFloat::rmNearestTiesToEven);
10269       SDValue Result0 = getConstantFP(FrexpMant, DL, VTList.VTs[0]);
10270       SDValue Result1 =
10271           getConstant(FrexpMant.isFinite() ? FrexpExp : 0, DL, VTList.VTs[1]);
10272       return getNode(ISD::MERGE_VALUES, DL, VTList, {Result0, Result1}, Flags);
10273     }
10274 
10275     break;
10276   }
10277   case ISD::STRICT_FP_EXTEND:
10278     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
10279            "Invalid STRICT_FP_EXTEND!");
10280     assert(VTList.VTs[0].isFloatingPoint() &&
10281            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
10282     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
10283            "STRICT_FP_EXTEND result type should be vector iff the operand "
10284            "type is vector!");
10285     assert((!VTList.VTs[0].isVector() ||
10286             VTList.VTs[0].getVectorElementCount() ==
10287                 Ops[1].getValueType().getVectorElementCount()) &&
10288            "Vector element count mismatch!");
10289     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
10290            "Invalid fpext node, dst <= src!");
10291     break;
10292   case ISD::STRICT_FP_ROUND:
10293     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
10294     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
10295            "STRICT_FP_ROUND result type should be vector iff the operand "
10296            "type is vector!");
10297     assert((!VTList.VTs[0].isVector() ||
10298             VTList.VTs[0].getVectorElementCount() ==
10299                 Ops[1].getValueType().getVectorElementCount()) &&
10300            "Vector element count mismatch!");
10301     assert(VTList.VTs[0].isFloatingPoint() &&
10302            Ops[1].getValueType().isFloatingPoint() &&
10303            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
10304            isa<ConstantSDNode>(Ops[2]) &&
10305            (Ops[2]->getAsZExtVal() == 0 || Ops[2]->getAsZExtVal() == 1) &&
10306            "Invalid STRICT_FP_ROUND!");
10307     break;
10308 #if 0
10309   // FIXME: figure out how to safely handle things like
10310   // int foo(int x) { return 1 << (x & 255); }
10311   // int bar() { return foo(256); }
10312   case ISD::SRA_PARTS:
10313   case ISD::SRL_PARTS:
10314   case ISD::SHL_PARTS:
10315     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
10316         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
10317       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
10318     else if (N3.getOpcode() == ISD::AND)
10319       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
10320         // If the and is only masking out bits that cannot effect the shift,
10321         // eliminate the and.
10322         unsigned NumBits = VT.getScalarSizeInBits()*2;
10323         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
10324           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
10325       }
10326     break;
10327 #endif
10328   }
10329 
10330   // Memoize the node unless it returns a glue result.
10331   SDNode *N;
10332   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
10333     FoldingSetNodeID ID;
10334     AddNodeIDNode(ID, Opcode, VTList, Ops);
10335     void *IP = nullptr;
10336     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
10337       return SDValue(E, 0);
10338 
10339     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
10340     createOperands(N, Ops);
10341     CSEMap.InsertNode(N, IP);
10342   } else {
10343     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
10344     createOperands(N, Ops);
10345   }
10346 
10347   N->setFlags(Flags);
10348   InsertNode(N);
10349   SDValue V(N, 0);
10350   NewSDValueDbgMsg(V, "Creating new node: ", this);
10351   return V;
10352 }
10353 
10354 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
10355                               SDVTList VTList) {
10356   return getNode(Opcode, DL, VTList, std::nullopt);
10357 }
10358 
10359 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
10360                               SDValue N1) {
10361   SDValue Ops[] = { N1 };
10362   return getNode(Opcode, DL, VTList, Ops);
10363 }
10364 
10365 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
10366                               SDValue N1, SDValue N2) {
10367   SDValue Ops[] = { N1, N2 };
10368   return getNode(Opcode, DL, VTList, Ops);
10369 }
10370 
10371 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
10372                               SDValue N1, SDValue N2, SDValue N3) {
10373   SDValue Ops[] = { N1, N2, N3 };
10374   return getNode(Opcode, DL, VTList, Ops);
10375 }
10376 
10377 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
10378                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
10379   SDValue Ops[] = { N1, N2, N3, N4 };
10380   return getNode(Opcode, DL, VTList, Ops);
10381 }
10382 
10383 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
10384                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
10385                               SDValue N5) {
10386   SDValue Ops[] = { N1, N2, N3, N4, N5 };
10387   return getNode(Opcode, DL, VTList, Ops);
10388 }
10389 
10390 SDVTList SelectionDAG::getVTList(EVT VT) {
10391   return makeVTList(SDNode::getValueTypeList(VT), 1);
10392 }
10393 
10394 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
10395   FoldingSetNodeID ID;
10396   ID.AddInteger(2U);
10397   ID.AddInteger(VT1.getRawBits());
10398   ID.AddInteger(VT2.getRawBits());
10399 
10400   void *IP = nullptr;
10401   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
10402   if (!Result) {
10403     EVT *Array = Allocator.Allocate<EVT>(2);
10404     Array[0] = VT1;
10405     Array[1] = VT2;
10406     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
10407     VTListMap.InsertNode(Result, IP);
10408   }
10409   return Result->getSDVTList();
10410 }
10411 
10412 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
10413   FoldingSetNodeID ID;
10414   ID.AddInteger(3U);
10415   ID.AddInteger(VT1.getRawBits());
10416   ID.AddInteger(VT2.getRawBits());
10417   ID.AddInteger(VT3.getRawBits());
10418 
10419   void *IP = nullptr;
10420   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
10421   if (!Result) {
10422     EVT *Array = Allocator.Allocate<EVT>(3);
10423     Array[0] = VT1;
10424     Array[1] = VT2;
10425     Array[2] = VT3;
10426     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
10427     VTListMap.InsertNode(Result, IP);
10428   }
10429   return Result->getSDVTList();
10430 }
10431 
10432 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
10433   FoldingSetNodeID ID;
10434   ID.AddInteger(4U);
10435   ID.AddInteger(VT1.getRawBits());
10436   ID.AddInteger(VT2.getRawBits());
10437   ID.AddInteger(VT3.getRawBits());
10438   ID.AddInteger(VT4.getRawBits());
10439 
10440   void *IP = nullptr;
10441   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
10442   if (!Result) {
10443     EVT *Array = Allocator.Allocate<EVT>(4);
10444     Array[0] = VT1;
10445     Array[1] = VT2;
10446     Array[2] = VT3;
10447     Array[3] = VT4;
10448     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
10449     VTListMap.InsertNode(Result, IP);
10450   }
10451   return Result->getSDVTList();
10452 }
10453 
10454 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
10455   unsigned NumVTs = VTs.size();
10456   FoldingSetNodeID ID;
10457   ID.AddInteger(NumVTs);
10458   for (unsigned index = 0; index < NumVTs; index++) {
10459     ID.AddInteger(VTs[index].getRawBits());
10460   }
10461 
10462   void *IP = nullptr;
10463   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
10464   if (!Result) {
10465     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
10466     llvm::copy(VTs, Array);
10467     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
10468     VTListMap.InsertNode(Result, IP);
10469   }
10470   return Result->getSDVTList();
10471 }
10472 
10473 
10474 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
10475 /// specified operands.  If the resultant node already exists in the DAG,
10476 /// this does not modify the specified node, instead it returns the node that
10477 /// already exists.  If the resultant node does not exist in the DAG, the
10478 /// input node is returned.  As a degenerate case, if you specify the same
10479 /// input operands as the node already has, the input node is returned.
10480 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
10481   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
10482 
10483   // Check to see if there is no change.
10484   if (Op == N->getOperand(0)) return N;
10485 
10486   // See if the modified node already exists.
10487   void *InsertPos = nullptr;
10488   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
10489     return Existing;
10490 
10491   // Nope it doesn't.  Remove the node from its current place in the maps.
10492   if (InsertPos)
10493     if (!RemoveNodeFromCSEMaps(N))
10494       InsertPos = nullptr;
10495 
10496   // Now we update the operands.
10497   N->OperandList[0].set(Op);
10498 
10499   updateDivergence(N);
10500   // If this gets put into a CSE map, add it.
10501   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
10502   return N;
10503 }
10504 
10505 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
10506   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
10507 
10508   // Check to see if there is no change.
10509   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
10510     return N;   // No operands changed, just return the input node.
10511 
10512   // See if the modified node already exists.
10513   void *InsertPos = nullptr;
10514   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
10515     return Existing;
10516 
10517   // Nope it doesn't.  Remove the node from its current place in the maps.
10518   if (InsertPos)
10519     if (!RemoveNodeFromCSEMaps(N))
10520       InsertPos = nullptr;
10521 
10522   // Now we update the operands.
10523   if (N->OperandList[0] != Op1)
10524     N->OperandList[0].set(Op1);
10525   if (N->OperandList[1] != Op2)
10526     N->OperandList[1].set(Op2);
10527 
10528   updateDivergence(N);
10529   // If this gets put into a CSE map, add it.
10530   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
10531   return N;
10532 }
10533 
10534 SDNode *SelectionDAG::
10535 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
10536   SDValue Ops[] = { Op1, Op2, Op3 };
10537   return UpdateNodeOperands(N, Ops);
10538 }
10539 
10540 SDNode *SelectionDAG::
10541 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
10542                    SDValue Op3, SDValue Op4) {
10543   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
10544   return UpdateNodeOperands(N, Ops);
10545 }
10546 
10547 SDNode *SelectionDAG::
10548 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
10549                    SDValue Op3, SDValue Op4, SDValue Op5) {
10550   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
10551   return UpdateNodeOperands(N, Ops);
10552 }
10553 
10554 SDNode *SelectionDAG::
10555 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
10556   unsigned NumOps = Ops.size();
10557   assert(N->getNumOperands() == NumOps &&
10558          "Update with wrong number of operands");
10559 
10560   // If no operands changed just return the input node.
10561   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
10562     return N;
10563 
10564   // See if the modified node already exists.
10565   void *InsertPos = nullptr;
10566   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
10567     return Existing;
10568 
10569   // Nope it doesn't.  Remove the node from its current place in the maps.
10570   if (InsertPos)
10571     if (!RemoveNodeFromCSEMaps(N))
10572       InsertPos = nullptr;
10573 
10574   // Now we update the operands.
10575   for (unsigned i = 0; i != NumOps; ++i)
10576     if (N->OperandList[i] != Ops[i])
10577       N->OperandList[i].set(Ops[i]);
10578 
10579   updateDivergence(N);
10580   // If this gets put into a CSE map, add it.
10581   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
10582   return N;
10583 }
10584 
10585 /// DropOperands - Release the operands and set this node to have
10586 /// zero operands.
10587 void SDNode::DropOperands() {
10588   // Unlike the code in MorphNodeTo that does this, we don't need to
10589   // watch for dead nodes here.
10590   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
10591     SDUse &Use = *I++;
10592     Use.set(SDValue());
10593   }
10594 }
10595 
10596 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
10597                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
10598   if (NewMemRefs.empty()) {
10599     N->clearMemRefs();
10600     return;
10601   }
10602 
10603   // Check if we can avoid allocating by storing a single reference directly.
10604   if (NewMemRefs.size() == 1) {
10605     N->MemRefs = NewMemRefs[0];
10606     N->NumMemRefs = 1;
10607     return;
10608   }
10609 
10610   MachineMemOperand **MemRefsBuffer =
10611       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
10612   llvm::copy(NewMemRefs, MemRefsBuffer);
10613   N->MemRefs = MemRefsBuffer;
10614   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
10615 }
10616 
10617 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
10618 /// machine opcode.
10619 ///
10620 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10621                                    EVT VT) {
10622   SDVTList VTs = getVTList(VT);
10623   return SelectNodeTo(N, MachineOpc, VTs, std::nullopt);
10624 }
10625 
10626 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10627                                    EVT VT, SDValue Op1) {
10628   SDVTList VTs = getVTList(VT);
10629   SDValue Ops[] = { Op1 };
10630   return SelectNodeTo(N, MachineOpc, VTs, Ops);
10631 }
10632 
10633 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10634                                    EVT VT, SDValue Op1,
10635                                    SDValue Op2) {
10636   SDVTList VTs = getVTList(VT);
10637   SDValue Ops[] = { Op1, Op2 };
10638   return SelectNodeTo(N, MachineOpc, VTs, Ops);
10639 }
10640 
10641 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10642                                    EVT VT, SDValue Op1,
10643                                    SDValue Op2, SDValue Op3) {
10644   SDVTList VTs = getVTList(VT);
10645   SDValue Ops[] = { Op1, Op2, Op3 };
10646   return SelectNodeTo(N, MachineOpc, VTs, Ops);
10647 }
10648 
10649 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10650                                    EVT VT, ArrayRef<SDValue> Ops) {
10651   SDVTList VTs = getVTList(VT);
10652   return SelectNodeTo(N, MachineOpc, VTs, Ops);
10653 }
10654 
10655 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10656                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
10657   SDVTList VTs = getVTList(VT1, VT2);
10658   return SelectNodeTo(N, MachineOpc, VTs, Ops);
10659 }
10660 
10661 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10662                                    EVT VT1, EVT VT2) {
10663   SDVTList VTs = getVTList(VT1, VT2);
10664   return SelectNodeTo(N, MachineOpc, VTs, std::nullopt);
10665 }
10666 
10667 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10668                                    EVT VT1, EVT VT2, EVT VT3,
10669                                    ArrayRef<SDValue> Ops) {
10670   SDVTList VTs = getVTList(VT1, VT2, VT3);
10671   return SelectNodeTo(N, MachineOpc, VTs, Ops);
10672 }
10673 
10674 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10675                                    EVT VT1, EVT VT2,
10676                                    SDValue Op1, SDValue Op2) {
10677   SDVTList VTs = getVTList(VT1, VT2);
10678   SDValue Ops[] = { Op1, Op2 };
10679   return SelectNodeTo(N, MachineOpc, VTs, Ops);
10680 }
10681 
10682 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10683                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
10684   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
10685   // Reset the NodeID to -1.
10686   New->setNodeId(-1);
10687   if (New != N) {
10688     ReplaceAllUsesWith(N, New);
10689     RemoveDeadNode(N);
10690   }
10691   return New;
10692 }
10693 
10694 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
10695 /// the line number information on the merged node since it is not possible to
10696 /// preserve the information that operation is associated with multiple lines.
10697 /// This will make the debugger working better at -O0, were there is a higher
10698 /// probability having other instructions associated with that line.
10699 ///
10700 /// For IROrder, we keep the smaller of the two
10701 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
10702   DebugLoc NLoc = N->getDebugLoc();
10703   if (NLoc && OptLevel == CodeGenOptLevel::None && OLoc.getDebugLoc() != NLoc) {
10704     N->setDebugLoc(DebugLoc());
10705   }
10706   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
10707   N->setIROrder(Order);
10708   return N;
10709 }
10710 
10711 /// MorphNodeTo - This *mutates* the specified node to have the specified
10712 /// return type, opcode, and operands.
10713 ///
10714 /// Note that MorphNodeTo returns the resultant node.  If there is already a
10715 /// node of the specified opcode and operands, it returns that node instead of
10716 /// the current one.  Note that the SDLoc need not be the same.
10717 ///
10718 /// Using MorphNodeTo is faster than creating a new node and swapping it in
10719 /// with ReplaceAllUsesWith both because it often avoids allocating a new
10720 /// node, and because it doesn't require CSE recalculation for any of
10721 /// the node's users.
10722 ///
10723 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
10724 /// As a consequence it isn't appropriate to use from within the DAG combiner or
10725 /// the legalizer which maintain worklists that would need to be updated when
10726 /// deleting things.
10727 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
10728                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
10729   // If an identical node already exists, use it.
10730   void *IP = nullptr;
10731   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
10732     FoldingSetNodeID ID;
10733     AddNodeIDNode(ID, Opc, VTs, Ops);
10734     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
10735       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
10736   }
10737 
10738   if (!RemoveNodeFromCSEMaps(N))
10739     IP = nullptr;
10740 
10741   // Start the morphing.
10742   N->NodeType = Opc;
10743   N->ValueList = VTs.VTs;
10744   N->NumValues = VTs.NumVTs;
10745 
10746   // Clear the operands list, updating used nodes to remove this from their
10747   // use list.  Keep track of any operands that become dead as a result.
10748   SmallPtrSet<SDNode*, 16> DeadNodeSet;
10749   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
10750     SDUse &Use = *I++;
10751     SDNode *Used = Use.getNode();
10752     Use.set(SDValue());
10753     if (Used->use_empty())
10754       DeadNodeSet.insert(Used);
10755   }
10756 
10757   // For MachineNode, initialize the memory references information.
10758   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
10759     MN->clearMemRefs();
10760 
10761   // Swap for an appropriately sized array from the recycler.
10762   removeOperands(N);
10763   createOperands(N, Ops);
10764 
10765   // Delete any nodes that are still dead after adding the uses for the
10766   // new operands.
10767   if (!DeadNodeSet.empty()) {
10768     SmallVector<SDNode *, 16> DeadNodes;
10769     for (SDNode *N : DeadNodeSet)
10770       if (N->use_empty())
10771         DeadNodes.push_back(N);
10772     RemoveDeadNodes(DeadNodes);
10773   }
10774 
10775   if (IP)
10776     CSEMap.InsertNode(N, IP);   // Memoize the new node.
10777   return N;
10778 }
10779 
10780 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
10781   unsigned OrigOpc = Node->getOpcode();
10782   unsigned NewOpc;
10783   switch (OrigOpc) {
10784   default:
10785     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
10786 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
10787   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
10788 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
10789   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
10790 #include "llvm/IR/ConstrainedOps.def"
10791   }
10792 
10793   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
10794 
10795   // We're taking this node out of the chain, so we need to re-link things.
10796   SDValue InputChain = Node->getOperand(0);
10797   SDValue OutputChain = SDValue(Node, 1);
10798   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
10799 
10800   SmallVector<SDValue, 3> Ops;
10801   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
10802     Ops.push_back(Node->getOperand(i));
10803 
10804   SDVTList VTs = getVTList(Node->getValueType(0));
10805   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
10806 
10807   // MorphNodeTo can operate in two ways: if an existing node with the
10808   // specified operands exists, it can just return it.  Otherwise, it
10809   // updates the node in place to have the requested operands.
10810   if (Res == Node) {
10811     // If we updated the node in place, reset the node ID.  To the isel,
10812     // this should be just like a newly allocated machine node.
10813     Res->setNodeId(-1);
10814   } else {
10815     ReplaceAllUsesWith(Node, Res);
10816     RemoveDeadNode(Node);
10817   }
10818 
10819   return Res;
10820 }
10821 
10822 /// getMachineNode - These are used for target selectors to create a new node
10823 /// with specified return type(s), MachineInstr opcode, and operands.
10824 ///
10825 /// Note that getMachineNode returns the resultant node.  If there is already a
10826 /// node of the specified opcode and operands, it returns that node instead of
10827 /// the current one.
10828 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10829                                             EVT VT) {
10830   SDVTList VTs = getVTList(VT);
10831   return getMachineNode(Opcode, dl, VTs, std::nullopt);
10832 }
10833 
10834 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10835                                             EVT VT, SDValue Op1) {
10836   SDVTList VTs = getVTList(VT);
10837   SDValue Ops[] = { Op1 };
10838   return getMachineNode(Opcode, dl, VTs, Ops);
10839 }
10840 
10841 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10842                                             EVT VT, SDValue Op1, SDValue Op2) {
10843   SDVTList VTs = getVTList(VT);
10844   SDValue Ops[] = { Op1, Op2 };
10845   return getMachineNode(Opcode, dl, VTs, Ops);
10846 }
10847 
10848 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10849                                             EVT VT, SDValue Op1, SDValue Op2,
10850                                             SDValue Op3) {
10851   SDVTList VTs = getVTList(VT);
10852   SDValue Ops[] = { Op1, Op2, Op3 };
10853   return getMachineNode(Opcode, dl, VTs, Ops);
10854 }
10855 
10856 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10857                                             EVT VT, ArrayRef<SDValue> Ops) {
10858   SDVTList VTs = getVTList(VT);
10859   return getMachineNode(Opcode, dl, VTs, Ops);
10860 }
10861 
10862 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10863                                             EVT VT1, EVT VT2, SDValue Op1,
10864                                             SDValue Op2) {
10865   SDVTList VTs = getVTList(VT1, VT2);
10866   SDValue Ops[] = { Op1, Op2 };
10867   return getMachineNode(Opcode, dl, VTs, Ops);
10868 }
10869 
10870 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10871                                             EVT VT1, EVT VT2, SDValue Op1,
10872                                             SDValue Op2, SDValue Op3) {
10873   SDVTList VTs = getVTList(VT1, VT2);
10874   SDValue Ops[] = { Op1, Op2, Op3 };
10875   return getMachineNode(Opcode, dl, VTs, Ops);
10876 }
10877 
10878 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10879                                             EVT VT1, EVT VT2,
10880                                             ArrayRef<SDValue> Ops) {
10881   SDVTList VTs = getVTList(VT1, VT2);
10882   return getMachineNode(Opcode, dl, VTs, Ops);
10883 }
10884 
10885 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10886                                             EVT VT1, EVT VT2, EVT VT3,
10887                                             SDValue Op1, SDValue Op2) {
10888   SDVTList VTs = getVTList(VT1, VT2, VT3);
10889   SDValue Ops[] = { Op1, Op2 };
10890   return getMachineNode(Opcode, dl, VTs, Ops);
10891 }
10892 
10893 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10894                                             EVT VT1, EVT VT2, EVT VT3,
10895                                             SDValue Op1, SDValue Op2,
10896                                             SDValue Op3) {
10897   SDVTList VTs = getVTList(VT1, VT2, VT3);
10898   SDValue Ops[] = { Op1, Op2, Op3 };
10899   return getMachineNode(Opcode, dl, VTs, Ops);
10900 }
10901 
10902 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10903                                             EVT VT1, EVT VT2, EVT VT3,
10904                                             ArrayRef<SDValue> Ops) {
10905   SDVTList VTs = getVTList(VT1, VT2, VT3);
10906   return getMachineNode(Opcode, dl, VTs, Ops);
10907 }
10908 
10909 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10910                                             ArrayRef<EVT> ResultTys,
10911                                             ArrayRef<SDValue> Ops) {
10912   SDVTList VTs = getVTList(ResultTys);
10913   return getMachineNode(Opcode, dl, VTs, Ops);
10914 }
10915 
10916 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
10917                                             SDVTList VTs,
10918                                             ArrayRef<SDValue> Ops) {
10919   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
10920   MachineSDNode *N;
10921   void *IP = nullptr;
10922 
10923   if (DoCSE) {
10924     FoldingSetNodeID ID;
10925     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
10926     IP = nullptr;
10927     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10928       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
10929     }
10930   }
10931 
10932   // Allocate a new MachineSDNode.
10933   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
10934   createOperands(N, Ops);
10935 
10936   if (DoCSE)
10937     CSEMap.InsertNode(N, IP);
10938 
10939   InsertNode(N);
10940   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
10941   return N;
10942 }
10943 
10944 /// getTargetExtractSubreg - A convenience function for creating
10945 /// TargetOpcode::EXTRACT_SUBREG nodes.
10946 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
10947                                              SDValue Operand) {
10948   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
10949   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
10950                                   VT, Operand, SRIdxVal);
10951   return SDValue(Subreg, 0);
10952 }
10953 
10954 /// getTargetInsertSubreg - A convenience function for creating
10955 /// TargetOpcode::INSERT_SUBREG nodes.
10956 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
10957                                             SDValue Operand, SDValue Subreg) {
10958   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
10959   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
10960                                   VT, Operand, Subreg, SRIdxVal);
10961   return SDValue(Result, 0);
10962 }
10963 
10964 /// getNodeIfExists - Get the specified node if it's already available, or
10965 /// else return NULL.
10966 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
10967                                       ArrayRef<SDValue> Ops) {
10968   SDNodeFlags Flags;
10969   if (Inserter)
10970     Flags = Inserter->getFlags();
10971   return getNodeIfExists(Opcode, VTList, Ops, Flags);
10972 }
10973 
10974 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
10975                                       ArrayRef<SDValue> Ops,
10976                                       const SDNodeFlags Flags) {
10977   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
10978     FoldingSetNodeID ID;
10979     AddNodeIDNode(ID, Opcode, VTList, Ops);
10980     void *IP = nullptr;
10981     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
10982       E->intersectFlagsWith(Flags);
10983       return E;
10984     }
10985   }
10986   return nullptr;
10987 }
10988 
10989 /// doesNodeExist - Check if a node exists without modifying its flags.
10990 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
10991                                  ArrayRef<SDValue> Ops) {
10992   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
10993     FoldingSetNodeID ID;
10994     AddNodeIDNode(ID, Opcode, VTList, Ops);
10995     void *IP = nullptr;
10996     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
10997       return true;
10998   }
10999   return false;
11000 }
11001 
11002 /// getDbgValue - Creates a SDDbgValue node.
11003 ///
11004 /// SDNode
11005 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
11006                                       SDNode *N, unsigned R, bool IsIndirect,
11007                                       const DebugLoc &DL, unsigned O) {
11008   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11009          "Expected inlined-at fields to agree");
11010   return new (DbgInfo->getAlloc())
11011       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
11012                  {}, IsIndirect, DL, O,
11013                  /*IsVariadic=*/false);
11014 }
11015 
11016 /// Constant
11017 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
11018                                               DIExpression *Expr,
11019                                               const Value *C,
11020                                               const DebugLoc &DL, unsigned O) {
11021   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11022          "Expected inlined-at fields to agree");
11023   return new (DbgInfo->getAlloc())
11024       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
11025                  /*IsIndirect=*/false, DL, O,
11026                  /*IsVariadic=*/false);
11027 }
11028 
11029 /// FrameIndex
11030 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
11031                                                 DIExpression *Expr, unsigned FI,
11032                                                 bool IsIndirect,
11033                                                 const DebugLoc &DL,
11034                                                 unsigned O) {
11035   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11036          "Expected inlined-at fields to agree");
11037   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
11038 }
11039 
11040 /// FrameIndex with dependencies
11041 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
11042                                                 DIExpression *Expr, unsigned FI,
11043                                                 ArrayRef<SDNode *> Dependencies,
11044                                                 bool IsIndirect,
11045                                                 const DebugLoc &DL,
11046                                                 unsigned O) {
11047   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11048          "Expected inlined-at fields to agree");
11049   return new (DbgInfo->getAlloc())
11050       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
11051                  Dependencies, IsIndirect, DL, O,
11052                  /*IsVariadic=*/false);
11053 }
11054 
11055 /// VReg
11056 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
11057                                           unsigned VReg, bool IsIndirect,
11058                                           const DebugLoc &DL, unsigned O) {
11059   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11060          "Expected inlined-at fields to agree");
11061   return new (DbgInfo->getAlloc())
11062       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
11063                  {}, IsIndirect, DL, O,
11064                  /*IsVariadic=*/false);
11065 }
11066 
11067 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
11068                                           ArrayRef<SDDbgOperand> Locs,
11069                                           ArrayRef<SDNode *> Dependencies,
11070                                           bool IsIndirect, const DebugLoc &DL,
11071                                           unsigned O, bool IsVariadic) {
11072   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11073          "Expected inlined-at fields to agree");
11074   return new (DbgInfo->getAlloc())
11075       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
11076                  DL, O, IsVariadic);
11077 }
11078 
11079 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
11080                                      unsigned OffsetInBits, unsigned SizeInBits,
11081                                      bool InvalidateDbg) {
11082   SDNode *FromNode = From.getNode();
11083   SDNode *ToNode = To.getNode();
11084   assert(FromNode && ToNode && "Can't modify dbg values");
11085 
11086   // PR35338
11087   // TODO: assert(From != To && "Redundant dbg value transfer");
11088   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
11089   if (From == To || FromNode == ToNode)
11090     return;
11091 
11092   if (!FromNode->getHasDebugValue())
11093     return;
11094 
11095   SDDbgOperand FromLocOp =
11096       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
11097   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
11098 
11099   SmallVector<SDDbgValue *, 2> ClonedDVs;
11100   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
11101     if (Dbg->isInvalidated())
11102       continue;
11103 
11104     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
11105 
11106     // Create a new location ops vector that is equal to the old vector, but
11107     // with each instance of FromLocOp replaced with ToLocOp.
11108     bool Changed = false;
11109     auto NewLocOps = Dbg->copyLocationOps();
11110     std::replace_if(
11111         NewLocOps.begin(), NewLocOps.end(),
11112         [&Changed, FromLocOp](const SDDbgOperand &Op) {
11113           bool Match = Op == FromLocOp;
11114           Changed |= Match;
11115           return Match;
11116         },
11117         ToLocOp);
11118     // Ignore this SDDbgValue if we didn't find a matching location.
11119     if (!Changed)
11120       continue;
11121 
11122     DIVariable *Var = Dbg->getVariable();
11123     auto *Expr = Dbg->getExpression();
11124     // If a fragment is requested, update the expression.
11125     if (SizeInBits) {
11126       // When splitting a larger (e.g., sign-extended) value whose
11127       // lower bits are described with an SDDbgValue, do not attempt
11128       // to transfer the SDDbgValue to the upper bits.
11129       if (auto FI = Expr->getFragmentInfo())
11130         if (OffsetInBits + SizeInBits > FI->SizeInBits)
11131           continue;
11132       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
11133                                                              SizeInBits);
11134       if (!Fragment)
11135         continue;
11136       Expr = *Fragment;
11137     }
11138 
11139     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
11140     // Clone the SDDbgValue and move it to To.
11141     SDDbgValue *Clone = getDbgValueList(
11142         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
11143         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
11144         Dbg->isVariadic());
11145     ClonedDVs.push_back(Clone);
11146 
11147     if (InvalidateDbg) {
11148       // Invalidate value and indicate the SDDbgValue should not be emitted.
11149       Dbg->setIsInvalidated();
11150       Dbg->setIsEmitted();
11151     }
11152   }
11153 
11154   for (SDDbgValue *Dbg : ClonedDVs) {
11155     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
11156            "Transferred DbgValues should depend on the new SDNode");
11157     AddDbgValue(Dbg, false);
11158   }
11159 }
11160 
11161 void SelectionDAG::salvageDebugInfo(SDNode &N) {
11162   if (!N.getHasDebugValue())
11163     return;
11164 
11165   SmallVector<SDDbgValue *, 2> ClonedDVs;
11166   for (auto *DV : GetDbgValues(&N)) {
11167     if (DV->isInvalidated())
11168       continue;
11169     switch (N.getOpcode()) {
11170     default:
11171       break;
11172     case ISD::ADD: {
11173       SDValue N0 = N.getOperand(0);
11174       SDValue N1 = N.getOperand(1);
11175       if (!isa<ConstantSDNode>(N0)) {
11176         bool RHSConstant = isa<ConstantSDNode>(N1);
11177         uint64_t Offset;
11178         if (RHSConstant)
11179           Offset = N.getConstantOperandVal(1);
11180         // We are not allowed to turn indirect debug values variadic, so
11181         // don't salvage those.
11182         if (!RHSConstant && DV->isIndirect())
11183           continue;
11184 
11185         // Rewrite an ADD constant node into a DIExpression. Since we are
11186         // performing arithmetic to compute the variable's *value* in the
11187         // DIExpression, we need to mark the expression with a
11188         // DW_OP_stack_value.
11189         auto *DIExpr = DV->getExpression();
11190         auto NewLocOps = DV->copyLocationOps();
11191         bool Changed = false;
11192         size_t OrigLocOpsSize = NewLocOps.size();
11193         for (size_t i = 0; i < OrigLocOpsSize; ++i) {
11194           // We're not given a ResNo to compare against because the whole
11195           // node is going away. We know that any ISD::ADD only has one
11196           // result, so we can assume any node match is using the result.
11197           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
11198               NewLocOps[i].getSDNode() != &N)
11199             continue;
11200           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
11201           if (RHSConstant) {
11202             SmallVector<uint64_t, 3> ExprOps;
11203             DIExpression::appendOffset(ExprOps, Offset);
11204             DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
11205           } else {
11206             // Convert to a variadic expression (if not already).
11207             // convertToVariadicExpression() returns a const pointer, so we use
11208             // a temporary const variable here.
11209             const auto *TmpDIExpr =
11210                 DIExpression::convertToVariadicExpression(DIExpr);
11211             SmallVector<uint64_t, 3> ExprOps;
11212             ExprOps.push_back(dwarf::DW_OP_LLVM_arg);
11213             ExprOps.push_back(NewLocOps.size());
11214             ExprOps.push_back(dwarf::DW_OP_plus);
11215             SDDbgOperand RHS =
11216                 SDDbgOperand::fromNode(N1.getNode(), N1.getResNo());
11217             NewLocOps.push_back(RHS);
11218             DIExpr = DIExpression::appendOpsToArg(TmpDIExpr, ExprOps, i, true);
11219           }
11220           Changed = true;
11221         }
11222         (void)Changed;
11223         assert(Changed && "Salvage target doesn't use N");
11224 
11225         bool IsVariadic =
11226             DV->isVariadic() || OrigLocOpsSize != NewLocOps.size();
11227 
11228         auto AdditionalDependencies = DV->getAdditionalDependencies();
11229         SDDbgValue *Clone = getDbgValueList(
11230             DV->getVariable(), DIExpr, NewLocOps, AdditionalDependencies,
11231             DV->isIndirect(), DV->getDebugLoc(), DV->getOrder(), IsVariadic);
11232         ClonedDVs.push_back(Clone);
11233         DV->setIsInvalidated();
11234         DV->setIsEmitted();
11235         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
11236                    N0.getNode()->dumprFull(this);
11237                    dbgs() << " into " << *DIExpr << '\n');
11238       }
11239       break;
11240     }
11241     case ISD::TRUNCATE: {
11242       SDValue N0 = N.getOperand(0);
11243       TypeSize FromSize = N0.getValueSizeInBits();
11244       TypeSize ToSize = N.getValueSizeInBits(0);
11245 
11246       DIExpression *DbgExpression = DV->getExpression();
11247       auto ExtOps = DIExpression::getExtOps(FromSize, ToSize, false);
11248       auto NewLocOps = DV->copyLocationOps();
11249       bool Changed = false;
11250       for (size_t i = 0; i < NewLocOps.size(); ++i) {
11251         if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
11252             NewLocOps[i].getSDNode() != &N)
11253           continue;
11254 
11255         NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
11256         DbgExpression = DIExpression::appendOpsToArg(DbgExpression, ExtOps, i);
11257         Changed = true;
11258       }
11259       assert(Changed && "Salvage target doesn't use N");
11260       (void)Changed;
11261 
11262       SDDbgValue *Clone =
11263           getDbgValueList(DV->getVariable(), DbgExpression, NewLocOps,
11264                           DV->getAdditionalDependencies(), DV->isIndirect(),
11265                           DV->getDebugLoc(), DV->getOrder(), DV->isVariadic());
11266 
11267       ClonedDVs.push_back(Clone);
11268       DV->setIsInvalidated();
11269       DV->setIsEmitted();
11270       LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; N0.getNode()->dumprFull(this);
11271                  dbgs() << " into " << *DbgExpression << '\n');
11272       break;
11273     }
11274     }
11275   }
11276 
11277   for (SDDbgValue *Dbg : ClonedDVs) {
11278     assert(!Dbg->getSDNodes().empty() &&
11279            "Salvaged DbgValue should depend on a new SDNode");
11280     AddDbgValue(Dbg, false);
11281   }
11282 }
11283 
11284 /// Creates a SDDbgLabel node.
11285 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
11286                                       const DebugLoc &DL, unsigned O) {
11287   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
11288          "Expected inlined-at fields to agree");
11289   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
11290 }
11291 
11292 namespace {
11293 
11294 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
11295 /// pointed to by a use iterator is deleted, increment the use iterator
11296 /// so that it doesn't dangle.
11297 ///
11298 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
11299   SDNode::use_iterator &UI;
11300   SDNode::use_iterator &UE;
11301 
11302   void NodeDeleted(SDNode *N, SDNode *E) override {
11303     // Increment the iterator as needed.
11304     while (UI != UE && N == *UI)
11305       ++UI;
11306   }
11307 
11308 public:
11309   RAUWUpdateListener(SelectionDAG &d,
11310                      SDNode::use_iterator &ui,
11311                      SDNode::use_iterator &ue)
11312     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
11313 };
11314 
11315 } // end anonymous namespace
11316 
11317 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
11318 /// This can cause recursive merging of nodes in the DAG.
11319 ///
11320 /// This version assumes From has a single result value.
11321 ///
11322 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
11323   SDNode *From = FromN.getNode();
11324   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
11325          "Cannot replace with this method!");
11326   assert(From != To.getNode() && "Cannot replace uses of with self");
11327 
11328   // Preserve Debug Values
11329   transferDbgValues(FromN, To);
11330   // Preserve extra info.
11331   copyExtraInfo(From, To.getNode());
11332 
11333   // Iterate over all the existing uses of From. New uses will be added
11334   // to the beginning of the use list, which we avoid visiting.
11335   // This specifically avoids visiting uses of From that arise while the
11336   // replacement is happening, because any such uses would be the result
11337   // of CSE: If an existing node looks like From after one of its operands
11338   // is replaced by To, we don't want to replace of all its users with To
11339   // too. See PR3018 for more info.
11340   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
11341   RAUWUpdateListener Listener(*this, UI, UE);
11342   while (UI != UE) {
11343     SDNode *User = *UI;
11344 
11345     // This node is about to morph, remove its old self from the CSE maps.
11346     RemoveNodeFromCSEMaps(User);
11347 
11348     // A user can appear in a use list multiple times, and when this
11349     // happens the uses are usually next to each other in the list.
11350     // To help reduce the number of CSE recomputations, process all
11351     // the uses of this user that we can find this way.
11352     do {
11353       SDUse &Use = UI.getUse();
11354       ++UI;
11355       Use.set(To);
11356       if (To->isDivergent() != From->isDivergent())
11357         updateDivergence(User);
11358     } while (UI != UE && *UI == User);
11359     // Now that we have modified User, add it back to the CSE maps.  If it
11360     // already exists there, recursively merge the results together.
11361     AddModifiedNodeToCSEMaps(User);
11362   }
11363 
11364   // If we just RAUW'd the root, take note.
11365   if (FromN == getRoot())
11366     setRoot(To);
11367 }
11368 
11369 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
11370 /// This can cause recursive merging of nodes in the DAG.
11371 ///
11372 /// This version assumes that for each value of From, there is a
11373 /// corresponding value in To in the same position with the same type.
11374 ///
11375 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
11376 #ifndef NDEBUG
11377   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
11378     assert((!From->hasAnyUseOfValue(i) ||
11379             From->getValueType(i) == To->getValueType(i)) &&
11380            "Cannot use this version of ReplaceAllUsesWith!");
11381 #endif
11382 
11383   // Handle the trivial case.
11384   if (From == To)
11385     return;
11386 
11387   // Preserve Debug Info. Only do this if there's a use.
11388   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
11389     if (From->hasAnyUseOfValue(i)) {
11390       assert((i < To->getNumValues()) && "Invalid To location");
11391       transferDbgValues(SDValue(From, i), SDValue(To, i));
11392     }
11393   // Preserve extra info.
11394   copyExtraInfo(From, To);
11395 
11396   // Iterate over just the existing users of From. See the comments in
11397   // the ReplaceAllUsesWith above.
11398   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
11399   RAUWUpdateListener Listener(*this, UI, UE);
11400   while (UI != UE) {
11401     SDNode *User = *UI;
11402 
11403     // This node is about to morph, remove its old self from the CSE maps.
11404     RemoveNodeFromCSEMaps(User);
11405 
11406     // A user can appear in a use list multiple times, and when this
11407     // happens the uses are usually next to each other in the list.
11408     // To help reduce the number of CSE recomputations, process all
11409     // the uses of this user that we can find this way.
11410     do {
11411       SDUse &Use = UI.getUse();
11412       ++UI;
11413       Use.setNode(To);
11414       if (To->isDivergent() != From->isDivergent())
11415         updateDivergence(User);
11416     } while (UI != UE && *UI == User);
11417 
11418     // Now that we have modified User, add it back to the CSE maps.  If it
11419     // already exists there, recursively merge the results together.
11420     AddModifiedNodeToCSEMaps(User);
11421   }
11422 
11423   // If we just RAUW'd the root, take note.
11424   if (From == getRoot().getNode())
11425     setRoot(SDValue(To, getRoot().getResNo()));
11426 }
11427 
11428 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
11429 /// This can cause recursive merging of nodes in the DAG.
11430 ///
11431 /// This version can replace From with any result values.  To must match the
11432 /// number and types of values returned by From.
11433 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
11434   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
11435     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
11436 
11437   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) {
11438     // Preserve Debug Info.
11439     transferDbgValues(SDValue(From, i), To[i]);
11440     // Preserve extra info.
11441     copyExtraInfo(From, To[i].getNode());
11442   }
11443 
11444   // Iterate over just the existing users of From. See the comments in
11445   // the ReplaceAllUsesWith above.
11446   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
11447   RAUWUpdateListener Listener(*this, UI, UE);
11448   while (UI != UE) {
11449     SDNode *User = *UI;
11450 
11451     // This node is about to morph, remove its old self from the CSE maps.
11452     RemoveNodeFromCSEMaps(User);
11453 
11454     // A user can appear in a use list multiple times, and when this happens the
11455     // uses are usually next to each other in the list.  To help reduce the
11456     // number of CSE and divergence recomputations, process all the uses of this
11457     // user that we can find this way.
11458     bool To_IsDivergent = false;
11459     do {
11460       SDUse &Use = UI.getUse();
11461       const SDValue &ToOp = To[Use.getResNo()];
11462       ++UI;
11463       Use.set(ToOp);
11464       To_IsDivergent |= ToOp->isDivergent();
11465     } while (UI != UE && *UI == User);
11466 
11467     if (To_IsDivergent != From->isDivergent())
11468       updateDivergence(User);
11469 
11470     // Now that we have modified User, add it back to the CSE maps.  If it
11471     // already exists there, recursively merge the results together.
11472     AddModifiedNodeToCSEMaps(User);
11473   }
11474 
11475   // If we just RAUW'd the root, take note.
11476   if (From == getRoot().getNode())
11477     setRoot(SDValue(To[getRoot().getResNo()]));
11478 }
11479 
11480 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
11481 /// uses of other values produced by From.getNode() alone.  The Deleted
11482 /// vector is handled the same way as for ReplaceAllUsesWith.
11483 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
11484   // Handle the really simple, really trivial case efficiently.
11485   if (From == To) return;
11486 
11487   // Handle the simple, trivial, case efficiently.
11488   if (From.getNode()->getNumValues() == 1) {
11489     ReplaceAllUsesWith(From, To);
11490     return;
11491   }
11492 
11493   // Preserve Debug Info.
11494   transferDbgValues(From, To);
11495   copyExtraInfo(From.getNode(), To.getNode());
11496 
11497   // Iterate over just the existing users of From. See the comments in
11498   // the ReplaceAllUsesWith above.
11499   SDNode::use_iterator UI = From.getNode()->use_begin(),
11500                        UE = From.getNode()->use_end();
11501   RAUWUpdateListener Listener(*this, UI, UE);
11502   while (UI != UE) {
11503     SDNode *User = *UI;
11504     bool UserRemovedFromCSEMaps = false;
11505 
11506     // A user can appear in a use list multiple times, and when this
11507     // happens the uses are usually next to each other in the list.
11508     // To help reduce the number of CSE recomputations, process all
11509     // the uses of this user that we can find this way.
11510     do {
11511       SDUse &Use = UI.getUse();
11512 
11513       // Skip uses of different values from the same node.
11514       if (Use.getResNo() != From.getResNo()) {
11515         ++UI;
11516         continue;
11517       }
11518 
11519       // If this node hasn't been modified yet, it's still in the CSE maps,
11520       // so remove its old self from the CSE maps.
11521       if (!UserRemovedFromCSEMaps) {
11522         RemoveNodeFromCSEMaps(User);
11523         UserRemovedFromCSEMaps = true;
11524       }
11525 
11526       ++UI;
11527       Use.set(To);
11528       if (To->isDivergent() != From->isDivergent())
11529         updateDivergence(User);
11530     } while (UI != UE && *UI == User);
11531     // We are iterating over all uses of the From node, so if a use
11532     // doesn't use the specific value, no changes are made.
11533     if (!UserRemovedFromCSEMaps)
11534       continue;
11535 
11536     // Now that we have modified User, add it back to the CSE maps.  If it
11537     // already exists there, recursively merge the results together.
11538     AddModifiedNodeToCSEMaps(User);
11539   }
11540 
11541   // If we just RAUW'd the root, take note.
11542   if (From == getRoot())
11543     setRoot(To);
11544 }
11545 
11546 namespace {
11547 
11548 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
11549 /// to record information about a use.
11550 struct UseMemo {
11551   SDNode *User;
11552   unsigned Index;
11553   SDUse *Use;
11554 };
11555 
11556 /// operator< - Sort Memos by User.
11557 bool operator<(const UseMemo &L, const UseMemo &R) {
11558   return (intptr_t)L.User < (intptr_t)R.User;
11559 }
11560 
11561 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node
11562 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that
11563 /// the node already has been taken care of recursively.
11564 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener {
11565   SmallVector<UseMemo, 4> &Uses;
11566 
11567   void NodeDeleted(SDNode *N, SDNode *E) override {
11568     for (UseMemo &Memo : Uses)
11569       if (Memo.User == N)
11570         Memo.User = nullptr;
11571   }
11572 
11573 public:
11574   RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses)
11575       : SelectionDAG::DAGUpdateListener(d), Uses(uses) {}
11576 };
11577 
11578 } // end anonymous namespace
11579 
11580 bool SelectionDAG::calculateDivergence(SDNode *N) {
11581   if (TLI->isSDNodeAlwaysUniform(N)) {
11582     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, UA) &&
11583            "Conflicting divergence information!");
11584     return false;
11585   }
11586   if (TLI->isSDNodeSourceOfDivergence(N, FLI, UA))
11587     return true;
11588   for (const auto &Op : N->ops()) {
11589     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
11590       return true;
11591   }
11592   return false;
11593 }
11594 
11595 void SelectionDAG::updateDivergence(SDNode *N) {
11596   SmallVector<SDNode *, 16> Worklist(1, N);
11597   do {
11598     N = Worklist.pop_back_val();
11599     bool IsDivergent = calculateDivergence(N);
11600     if (N->SDNodeBits.IsDivergent != IsDivergent) {
11601       N->SDNodeBits.IsDivergent = IsDivergent;
11602       llvm::append_range(Worklist, N->uses());
11603     }
11604   } while (!Worklist.empty());
11605 }
11606 
11607 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
11608   DenseMap<SDNode *, unsigned> Degree;
11609   Order.reserve(AllNodes.size());
11610   for (auto &N : allnodes()) {
11611     unsigned NOps = N.getNumOperands();
11612     Degree[&N] = NOps;
11613     if (0 == NOps)
11614       Order.push_back(&N);
11615   }
11616   for (size_t I = 0; I != Order.size(); ++I) {
11617     SDNode *N = Order[I];
11618     for (auto *U : N->uses()) {
11619       unsigned &UnsortedOps = Degree[U];
11620       if (0 == --UnsortedOps)
11621         Order.push_back(U);
11622     }
11623   }
11624 }
11625 
11626 #if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
11627 void SelectionDAG::VerifyDAGDivergence() {
11628   std::vector<SDNode *> TopoOrder;
11629   CreateTopologicalOrder(TopoOrder);
11630   for (auto *N : TopoOrder) {
11631     assert(calculateDivergence(N) == N->isDivergent() &&
11632            "Divergence bit inconsistency detected");
11633   }
11634 }
11635 #endif
11636 
11637 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
11638 /// uses of other values produced by From.getNode() alone.  The same value
11639 /// may appear in both the From and To list.  The Deleted vector is
11640 /// handled the same way as for ReplaceAllUsesWith.
11641 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
11642                                               const SDValue *To,
11643                                               unsigned Num){
11644   // Handle the simple, trivial case efficiently.
11645   if (Num == 1)
11646     return ReplaceAllUsesOfValueWith(*From, *To);
11647 
11648   transferDbgValues(*From, *To);
11649   copyExtraInfo(From->getNode(), To->getNode());
11650 
11651   // Read up all the uses and make records of them. This helps
11652   // processing new uses that are introduced during the
11653   // replacement process.
11654   SmallVector<UseMemo, 4> Uses;
11655   for (unsigned i = 0; i != Num; ++i) {
11656     unsigned FromResNo = From[i].getResNo();
11657     SDNode *FromNode = From[i].getNode();
11658     for (SDNode::use_iterator UI = FromNode->use_begin(),
11659          E = FromNode->use_end(); UI != E; ++UI) {
11660       SDUse &Use = UI.getUse();
11661       if (Use.getResNo() == FromResNo) {
11662         UseMemo Memo = { *UI, i, &Use };
11663         Uses.push_back(Memo);
11664       }
11665     }
11666   }
11667 
11668   // Sort the uses, so that all the uses from a given User are together.
11669   llvm::sort(Uses);
11670   RAUOVWUpdateListener Listener(*this, Uses);
11671 
11672   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
11673        UseIndex != UseIndexEnd; ) {
11674     // We know that this user uses some value of From.  If it is the right
11675     // value, update it.
11676     SDNode *User = Uses[UseIndex].User;
11677     // If the node has been deleted by recursive CSE updates when updating
11678     // another node, then just skip this entry.
11679     if (User == nullptr) {
11680       ++UseIndex;
11681       continue;
11682     }
11683 
11684     // This node is about to morph, remove its old self from the CSE maps.
11685     RemoveNodeFromCSEMaps(User);
11686 
11687     // The Uses array is sorted, so all the uses for a given User
11688     // are next to each other in the list.
11689     // To help reduce the number of CSE recomputations, process all
11690     // the uses of this user that we can find this way.
11691     do {
11692       unsigned i = Uses[UseIndex].Index;
11693       SDUse &Use = *Uses[UseIndex].Use;
11694       ++UseIndex;
11695 
11696       Use.set(To[i]);
11697     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
11698 
11699     // Now that we have modified User, add it back to the CSE maps.  If it
11700     // already exists there, recursively merge the results together.
11701     AddModifiedNodeToCSEMaps(User);
11702   }
11703 }
11704 
11705 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
11706 /// based on their topological order. It returns the maximum id and a vector
11707 /// of the SDNodes* in assigned order by reference.
11708 unsigned SelectionDAG::AssignTopologicalOrder() {
11709   unsigned DAGSize = 0;
11710 
11711   // SortedPos tracks the progress of the algorithm. Nodes before it are
11712   // sorted, nodes after it are unsorted. When the algorithm completes
11713   // it is at the end of the list.
11714   allnodes_iterator SortedPos = allnodes_begin();
11715 
11716   // Visit all the nodes. Move nodes with no operands to the front of
11717   // the list immediately. Annotate nodes that do have operands with their
11718   // operand count. Before we do this, the Node Id fields of the nodes
11719   // may contain arbitrary values. After, the Node Id fields for nodes
11720   // before SortedPos will contain the topological sort index, and the
11721   // Node Id fields for nodes At SortedPos and after will contain the
11722   // count of outstanding operands.
11723   for (SDNode &N : llvm::make_early_inc_range(allnodes())) {
11724     checkForCycles(&N, this);
11725     unsigned Degree = N.getNumOperands();
11726     if (Degree == 0) {
11727       // A node with no uses, add it to the result array immediately.
11728       N.setNodeId(DAGSize++);
11729       allnodes_iterator Q(&N);
11730       if (Q != SortedPos)
11731         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
11732       assert(SortedPos != AllNodes.end() && "Overran node list");
11733       ++SortedPos;
11734     } else {
11735       // Temporarily use the Node Id as scratch space for the degree count.
11736       N.setNodeId(Degree);
11737     }
11738   }
11739 
11740   // Visit all the nodes. As we iterate, move nodes into sorted order,
11741   // such that by the time the end is reached all nodes will be sorted.
11742   for (SDNode &Node : allnodes()) {
11743     SDNode *N = &Node;
11744     checkForCycles(N, this);
11745     // N is in sorted position, so all its uses have one less operand
11746     // that needs to be sorted.
11747     for (SDNode *P : N->uses()) {
11748       unsigned Degree = P->getNodeId();
11749       assert(Degree != 0 && "Invalid node degree");
11750       --Degree;
11751       if (Degree == 0) {
11752         // All of P's operands are sorted, so P may sorted now.
11753         P->setNodeId(DAGSize++);
11754         if (P->getIterator() != SortedPos)
11755           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
11756         assert(SortedPos != AllNodes.end() && "Overran node list");
11757         ++SortedPos;
11758       } else {
11759         // Update P's outstanding operand count.
11760         P->setNodeId(Degree);
11761       }
11762     }
11763     if (Node.getIterator() == SortedPos) {
11764 #ifndef NDEBUG
11765       allnodes_iterator I(N);
11766       SDNode *S = &*++I;
11767       dbgs() << "Overran sorted position:\n";
11768       S->dumprFull(this); dbgs() << "\n";
11769       dbgs() << "Checking if this is due to cycles\n";
11770       checkForCycles(this, true);
11771 #endif
11772       llvm_unreachable(nullptr);
11773     }
11774   }
11775 
11776   assert(SortedPos == AllNodes.end() &&
11777          "Topological sort incomplete!");
11778   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
11779          "First node in topological sort is not the entry token!");
11780   assert(AllNodes.front().getNodeId() == 0 &&
11781          "First node in topological sort has non-zero id!");
11782   assert(AllNodes.front().getNumOperands() == 0 &&
11783          "First node in topological sort has operands!");
11784   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
11785          "Last node in topologic sort has unexpected id!");
11786   assert(AllNodes.back().use_empty() &&
11787          "Last node in topologic sort has users!");
11788   assert(DAGSize == allnodes_size() && "Node count mismatch!");
11789   return DAGSize;
11790 }
11791 
11792 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
11793 /// value is produced by SD.
11794 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
11795   for (SDNode *SD : DB->getSDNodes()) {
11796     if (!SD)
11797       continue;
11798     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
11799     SD->setHasDebugValue(true);
11800   }
11801   DbgInfo->add(DB, isParameter);
11802 }
11803 
11804 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
11805 
11806 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
11807                                                    SDValue NewMemOpChain) {
11808   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
11809   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
11810   // The new memory operation must have the same position as the old load in
11811   // terms of memory dependency. Create a TokenFactor for the old load and new
11812   // memory operation and update uses of the old load's output chain to use that
11813   // TokenFactor.
11814   if (OldChain == NewMemOpChain || OldChain.use_empty())
11815     return NewMemOpChain;
11816 
11817   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
11818                                 OldChain, NewMemOpChain);
11819   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
11820   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
11821   return TokenFactor;
11822 }
11823 
11824 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
11825                                                    SDValue NewMemOp) {
11826   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
11827   SDValue OldChain = SDValue(OldLoad, 1);
11828   SDValue NewMemOpChain = NewMemOp.getValue(1);
11829   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
11830 }
11831 
11832 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
11833                                                      Function **OutFunction) {
11834   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
11835 
11836   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
11837   auto *Module = MF->getFunction().getParent();
11838   auto *Function = Module->getFunction(Symbol);
11839 
11840   if (OutFunction != nullptr)
11841       *OutFunction = Function;
11842 
11843   if (Function != nullptr) {
11844     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
11845     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
11846   }
11847 
11848   std::string ErrorStr;
11849   raw_string_ostream ErrorFormatter(ErrorStr);
11850   ErrorFormatter << "Undefined external symbol ";
11851   ErrorFormatter << '"' << Symbol << '"';
11852   report_fatal_error(Twine(ErrorStr));
11853 }
11854 
11855 //===----------------------------------------------------------------------===//
11856 //                              SDNode Class
11857 //===----------------------------------------------------------------------===//
11858 
11859 bool llvm::isNullConstant(SDValue V) {
11860   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
11861   return Const != nullptr && Const->isZero();
11862 }
11863 
11864 bool llvm::isNullConstantOrUndef(SDValue V) {
11865   return V.isUndef() || isNullConstant(V);
11866 }
11867 
11868 bool llvm::isNullFPConstant(SDValue V) {
11869   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
11870   return Const != nullptr && Const->isZero() && !Const->isNegative();
11871 }
11872 
11873 bool llvm::isAllOnesConstant(SDValue V) {
11874   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
11875   return Const != nullptr && Const->isAllOnes();
11876 }
11877 
11878 bool llvm::isOneConstant(SDValue V) {
11879   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
11880   return Const != nullptr && Const->isOne();
11881 }
11882 
11883 bool llvm::isMinSignedConstant(SDValue V) {
11884   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
11885   return Const != nullptr && Const->isMinSignedValue();
11886 }
11887 
11888 bool llvm::isNeutralConstant(unsigned Opcode, SDNodeFlags Flags, SDValue V,
11889                              unsigned OperandNo) {
11890   // NOTE: The cases should match with IR's ConstantExpr::getBinOpIdentity().
11891   // TODO: Target-specific opcodes could be added.
11892   if (auto *ConstV = isConstOrConstSplat(V, /*AllowUndefs*/ false,
11893                                          /*AllowTruncation*/ true)) {
11894     APInt Const = ConstV->getAPIntValue().trunc(V.getScalarValueSizeInBits());
11895     switch (Opcode) {
11896     case ISD::ADD:
11897     case ISD::OR:
11898     case ISD::XOR:
11899     case ISD::UMAX:
11900       return Const.isZero();
11901     case ISD::MUL:
11902       return Const.isOne();
11903     case ISD::AND:
11904     case ISD::UMIN:
11905       return Const.isAllOnes();
11906     case ISD::SMAX:
11907       return Const.isMinSignedValue();
11908     case ISD::SMIN:
11909       return Const.isMaxSignedValue();
11910     case ISD::SUB:
11911     case ISD::SHL:
11912     case ISD::SRA:
11913     case ISD::SRL:
11914       return OperandNo == 1 && Const.isZero();
11915     case ISD::UDIV:
11916     case ISD::SDIV:
11917       return OperandNo == 1 && Const.isOne();
11918     }
11919   } else if (auto *ConstFP = isConstOrConstSplatFP(V)) {
11920     switch (Opcode) {
11921     case ISD::FADD:
11922       return ConstFP->isZero() &&
11923              (Flags.hasNoSignedZeros() || ConstFP->isNegative());
11924     case ISD::FSUB:
11925       return OperandNo == 1 && ConstFP->isZero() &&
11926              (Flags.hasNoSignedZeros() || !ConstFP->isNegative());
11927     case ISD::FMUL:
11928       return ConstFP->isExactlyValue(1.0);
11929     case ISD::FDIV:
11930       return OperandNo == 1 && ConstFP->isExactlyValue(1.0);
11931     case ISD::FMINNUM:
11932     case ISD::FMAXNUM: {
11933       // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11934       EVT VT = V.getValueType();
11935       const fltSemantics &Semantics = SelectionDAG::EVTToAPFloatSemantics(VT);
11936       APFloat NeutralAF = !Flags.hasNoNaNs()
11937                               ? APFloat::getQNaN(Semantics)
11938                               : !Flags.hasNoInfs()
11939                                     ? APFloat::getInf(Semantics)
11940                                     : APFloat::getLargest(Semantics);
11941       if (Opcode == ISD::FMAXNUM)
11942         NeutralAF.changeSign();
11943 
11944       return ConstFP->isExactlyValue(NeutralAF);
11945     }
11946     }
11947   }
11948   return false;
11949 }
11950 
11951 SDValue llvm::peekThroughBitcasts(SDValue V) {
11952   while (V.getOpcode() == ISD::BITCAST)
11953     V = V.getOperand(0);
11954   return V;
11955 }
11956 
11957 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
11958   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
11959     V = V.getOperand(0);
11960   return V;
11961 }
11962 
11963 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
11964   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
11965     V = V.getOperand(0);
11966   return V;
11967 }
11968 
11969 SDValue llvm::peekThroughTruncates(SDValue V) {
11970   while (V.getOpcode() == ISD::TRUNCATE)
11971     V = V.getOperand(0);
11972   return V;
11973 }
11974 
11975 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
11976   if (V.getOpcode() != ISD::XOR)
11977     return false;
11978   V = peekThroughBitcasts(V.getOperand(1));
11979   unsigned NumBits = V.getScalarValueSizeInBits();
11980   ConstantSDNode *C =
11981       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
11982   return C && (C->getAPIntValue().countr_one() >= NumBits);
11983 }
11984 
11985 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
11986                                           bool AllowTruncation) {
11987   EVT VT = N.getValueType();
11988   APInt DemandedElts = VT.isFixedLengthVector()
11989                            ? APInt::getAllOnes(VT.getVectorMinNumElements())
11990                            : APInt(1, 1);
11991   return isConstOrConstSplat(N, DemandedElts, AllowUndefs, AllowTruncation);
11992 }
11993 
11994 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
11995                                           bool AllowUndefs,
11996                                           bool AllowTruncation) {
11997   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
11998     return CN;
11999 
12000   // SplatVectors can truncate their operands. Ignore that case here unless
12001   // AllowTruncation is set.
12002   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
12003     EVT VecEltVT = N->getValueType(0).getVectorElementType();
12004     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
12005       EVT CVT = CN->getValueType(0);
12006       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
12007       if (AllowTruncation || CVT == VecEltVT)
12008         return CN;
12009     }
12010   }
12011 
12012   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
12013     BitVector UndefElements;
12014     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
12015 
12016     // BuildVectors can truncate their operands. Ignore that case here unless
12017     // AllowTruncation is set.
12018     // TODO: Look into whether we should allow UndefElements in non-DemandedElts
12019     if (CN && (UndefElements.none() || AllowUndefs)) {
12020       EVT CVT = CN->getValueType(0);
12021       EVT NSVT = N.getValueType().getScalarType();
12022       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
12023       if (AllowTruncation || (CVT == NSVT))
12024         return CN;
12025     }
12026   }
12027 
12028   return nullptr;
12029 }
12030 
12031 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
12032   EVT VT = N.getValueType();
12033   APInt DemandedElts = VT.isFixedLengthVector()
12034                            ? APInt::getAllOnes(VT.getVectorMinNumElements())
12035                            : APInt(1, 1);
12036   return isConstOrConstSplatFP(N, DemandedElts, AllowUndefs);
12037 }
12038 
12039 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
12040                                               const APInt &DemandedElts,
12041                                               bool AllowUndefs) {
12042   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
12043     return CN;
12044 
12045   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
12046     BitVector UndefElements;
12047     ConstantFPSDNode *CN =
12048         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
12049     // TODO: Look into whether we should allow UndefElements in non-DemandedElts
12050     if (CN && (UndefElements.none() || AllowUndefs))
12051       return CN;
12052   }
12053 
12054   if (N.getOpcode() == ISD::SPLAT_VECTOR)
12055     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
12056       return CN;
12057 
12058   return nullptr;
12059 }
12060 
12061 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
12062   // TODO: may want to use peekThroughBitcast() here.
12063   ConstantSDNode *C =
12064       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
12065   return C && C->isZero();
12066 }
12067 
12068 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
12069   ConstantSDNode *C =
12070       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true);
12071   return C && C->isOne();
12072 }
12073 
12074 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
12075   N = peekThroughBitcasts(N);
12076   unsigned BitWidth = N.getScalarValueSizeInBits();
12077   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
12078   return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
12079 }
12080 
12081 HandleSDNode::~HandleSDNode() {
12082   DropOperands();
12083 }
12084 
12085 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
12086                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
12087     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
12088   MemSDNodeBits.IsVolatile = MMO->isVolatile();
12089   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
12090   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
12091   MemSDNodeBits.IsInvariant = MMO->isInvariant();
12092 
12093   // We check here that the size of the memory operand fits within the size of
12094   // the MMO. This is because the MMO might indicate only a possible address
12095   // range instead of specifying the affected memory addresses precisely.
12096   assert(
12097       (!MMO->getType().isValid() ||
12098        TypeSize::isKnownLE(memvt.getStoreSize(), MMO->getSize().getValue())) &&
12099       "Size mismatch!");
12100 }
12101 
12102 /// Profile - Gather unique data for the node.
12103 ///
12104 void SDNode::Profile(FoldingSetNodeID &ID) const {
12105   AddNodeIDNode(ID, this);
12106 }
12107 
12108 namespace {
12109 
12110   struct EVTArray {
12111     std::vector<EVT> VTs;
12112 
12113     EVTArray() {
12114       VTs.reserve(MVT::VALUETYPE_SIZE);
12115       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
12116         VTs.push_back(MVT((MVT::SimpleValueType)i));
12117     }
12118   };
12119 
12120 } // end anonymous namespace
12121 
12122 /// getValueTypeList - Return a pointer to the specified value type.
12123 ///
12124 const EVT *SDNode::getValueTypeList(EVT VT) {
12125   static std::set<EVT, EVT::compareRawBits> EVTs;
12126   static EVTArray SimpleVTArray;
12127   static sys::SmartMutex<true> VTMutex;
12128 
12129   if (VT.isExtended()) {
12130     sys::SmartScopedLock<true> Lock(VTMutex);
12131     return &(*EVTs.insert(VT).first);
12132   }
12133   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
12134   return &SimpleVTArray.VTs[VT.getSimpleVT().SimpleTy];
12135 }
12136 
12137 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
12138 /// indicated value.  This method ignores uses of other values defined by this
12139 /// operation.
12140 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
12141   assert(Value < getNumValues() && "Bad value!");
12142 
12143   // TODO: Only iterate over uses of a given value of the node
12144   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
12145     if (UI.getUse().getResNo() == Value) {
12146       if (NUses == 0)
12147         return false;
12148       --NUses;
12149     }
12150   }
12151 
12152   // Found exactly the right number of uses?
12153   return NUses == 0;
12154 }
12155 
12156 /// hasAnyUseOfValue - Return true if there are any use of the indicated
12157 /// value. This method ignores uses of other values defined by this operation.
12158 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
12159   assert(Value < getNumValues() && "Bad value!");
12160 
12161   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
12162     if (UI.getUse().getResNo() == Value)
12163       return true;
12164 
12165   return false;
12166 }
12167 
12168 /// isOnlyUserOf - Return true if this node is the only use of N.
12169 bool SDNode::isOnlyUserOf(const SDNode *N) const {
12170   bool Seen = false;
12171   for (const SDNode *User : N->uses()) {
12172     if (User == this)
12173       Seen = true;
12174     else
12175       return false;
12176   }
12177 
12178   return Seen;
12179 }
12180 
12181 /// Return true if the only users of N are contained in Nodes.
12182 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
12183   bool Seen = false;
12184   for (const SDNode *User : N->uses()) {
12185     if (llvm::is_contained(Nodes, User))
12186       Seen = true;
12187     else
12188       return false;
12189   }
12190 
12191   return Seen;
12192 }
12193 
12194 /// isOperand - Return true if this node is an operand of N.
12195 bool SDValue::isOperandOf(const SDNode *N) const {
12196   return is_contained(N->op_values(), *this);
12197 }
12198 
12199 bool SDNode::isOperandOf(const SDNode *N) const {
12200   return any_of(N->op_values(),
12201                 [this](SDValue Op) { return this == Op.getNode(); });
12202 }
12203 
12204 /// reachesChainWithoutSideEffects - Return true if this operand (which must
12205 /// be a chain) reaches the specified operand without crossing any
12206 /// side-effecting instructions on any chain path.  In practice, this looks
12207 /// through token factors and non-volatile loads.  In order to remain efficient,
12208 /// this only looks a couple of nodes in, it does not do an exhaustive search.
12209 ///
12210 /// Note that we only need to examine chains when we're searching for
12211 /// side-effects; SelectionDAG requires that all side-effects are represented
12212 /// by chains, even if another operand would force a specific ordering. This
12213 /// constraint is necessary to allow transformations like splitting loads.
12214 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
12215                                              unsigned Depth) const {
12216   if (*this == Dest) return true;
12217 
12218   // Don't search too deeply, we just want to be able to see through
12219   // TokenFactor's etc.
12220   if (Depth == 0) return false;
12221 
12222   // If this is a token factor, all inputs to the TF happen in parallel.
12223   if (getOpcode() == ISD::TokenFactor) {
12224     // First, try a shallow search.
12225     if (is_contained((*this)->ops(), Dest)) {
12226       // We found the chain we want as an operand of this TokenFactor.
12227       // Essentially, we reach the chain without side-effects if we could
12228       // serialize the TokenFactor into a simple chain of operations with
12229       // Dest as the last operation. This is automatically true if the
12230       // chain has one use: there are no other ordering constraints.
12231       // If the chain has more than one use, we give up: some other
12232       // use of Dest might force a side-effect between Dest and the current
12233       // node.
12234       if (Dest.hasOneUse())
12235         return true;
12236     }
12237     // Next, try a deep search: check whether every operand of the TokenFactor
12238     // reaches Dest.
12239     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
12240       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
12241     });
12242   }
12243 
12244   // Loads don't have side effects, look through them.
12245   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
12246     if (Ld->isUnordered())
12247       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
12248   }
12249   return false;
12250 }
12251 
12252 bool SDNode::hasPredecessor(const SDNode *N) const {
12253   SmallPtrSet<const SDNode *, 32> Visited;
12254   SmallVector<const SDNode *, 16> Worklist;
12255   Worklist.push_back(this);
12256   return hasPredecessorHelper(N, Visited, Worklist);
12257 }
12258 
12259 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
12260   this->Flags.intersectWith(Flags);
12261 }
12262 
12263 SDValue
12264 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
12265                                   ArrayRef<ISD::NodeType> CandidateBinOps,
12266                                   bool AllowPartials) {
12267   // The pattern must end in an extract from index 0.
12268   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
12269       !isNullConstant(Extract->getOperand(1)))
12270     return SDValue();
12271 
12272   // Match against one of the candidate binary ops.
12273   SDValue Op = Extract->getOperand(0);
12274   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
12275         return Op.getOpcode() == unsigned(BinOp);
12276       }))
12277     return SDValue();
12278 
12279   // Floating-point reductions may require relaxed constraints on the final step
12280   // of the reduction because they may reorder intermediate operations.
12281   unsigned CandidateBinOp = Op.getOpcode();
12282   if (Op.getValueType().isFloatingPoint()) {
12283     SDNodeFlags Flags = Op->getFlags();
12284     switch (CandidateBinOp) {
12285     case ISD::FADD:
12286       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
12287         return SDValue();
12288       break;
12289     default:
12290       llvm_unreachable("Unhandled FP opcode for binop reduction");
12291     }
12292   }
12293 
12294   // Matching failed - attempt to see if we did enough stages that a partial
12295   // reduction from a subvector is possible.
12296   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
12297     if (!AllowPartials || !Op)
12298       return SDValue();
12299     EVT OpVT = Op.getValueType();
12300     EVT OpSVT = OpVT.getScalarType();
12301     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
12302     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
12303       return SDValue();
12304     BinOp = (ISD::NodeType)CandidateBinOp;
12305     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
12306                    getVectorIdxConstant(0, SDLoc(Op)));
12307   };
12308 
12309   // At each stage, we're looking for something that looks like:
12310   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
12311   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
12312   //                               i32 undef, i32 undef, i32 undef, i32 undef>
12313   // %a = binop <8 x i32> %op, %s
12314   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
12315   // we expect something like:
12316   // <4,5,6,7,u,u,u,u>
12317   // <2,3,u,u,u,u,u,u>
12318   // <1,u,u,u,u,u,u,u>
12319   // While a partial reduction match would be:
12320   // <2,3,u,u,u,u,u,u>
12321   // <1,u,u,u,u,u,u,u>
12322   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
12323   SDValue PrevOp;
12324   for (unsigned i = 0; i < Stages; ++i) {
12325     unsigned MaskEnd = (1 << i);
12326 
12327     if (Op.getOpcode() != CandidateBinOp)
12328       return PartialReduction(PrevOp, MaskEnd);
12329 
12330     SDValue Op0 = Op.getOperand(0);
12331     SDValue Op1 = Op.getOperand(1);
12332 
12333     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
12334     if (Shuffle) {
12335       Op = Op1;
12336     } else {
12337       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
12338       Op = Op0;
12339     }
12340 
12341     // The first operand of the shuffle should be the same as the other operand
12342     // of the binop.
12343     if (!Shuffle || Shuffle->getOperand(0) != Op)
12344       return PartialReduction(PrevOp, MaskEnd);
12345 
12346     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
12347     for (int Index = 0; Index < (int)MaskEnd; ++Index)
12348       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
12349         return PartialReduction(PrevOp, MaskEnd);
12350 
12351     PrevOp = Op;
12352   }
12353 
12354   // Handle subvector reductions, which tend to appear after the shuffle
12355   // reduction stages.
12356   while (Op.getOpcode() == CandidateBinOp) {
12357     unsigned NumElts = Op.getValueType().getVectorNumElements();
12358     SDValue Op0 = Op.getOperand(0);
12359     SDValue Op1 = Op.getOperand(1);
12360     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
12361         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
12362         Op0.getOperand(0) != Op1.getOperand(0))
12363       break;
12364     SDValue Src = Op0.getOperand(0);
12365     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
12366     if (NumSrcElts != (2 * NumElts))
12367       break;
12368     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
12369           Op1.getConstantOperandAPInt(1) == NumElts) &&
12370         !(Op1.getConstantOperandAPInt(1) == 0 &&
12371           Op0.getConstantOperandAPInt(1) == NumElts))
12372       break;
12373     Op = Src;
12374   }
12375 
12376   BinOp = (ISD::NodeType)CandidateBinOp;
12377   return Op;
12378 }
12379 
12380 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
12381   EVT VT = N->getValueType(0);
12382   EVT EltVT = VT.getVectorElementType();
12383   unsigned NE = VT.getVectorNumElements();
12384 
12385   SDLoc dl(N);
12386 
12387   // If ResNE is 0, fully unroll the vector op.
12388   if (ResNE == 0)
12389     ResNE = NE;
12390   else if (NE > ResNE)
12391     NE = ResNE;
12392 
12393   if (N->getNumValues() == 2) {
12394     SmallVector<SDValue, 8> Scalars0, Scalars1;
12395     SmallVector<SDValue, 4> Operands(N->getNumOperands());
12396     EVT VT1 = N->getValueType(1);
12397     EVT EltVT1 = VT1.getVectorElementType();
12398 
12399     unsigned i;
12400     for (i = 0; i != NE; ++i) {
12401       for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
12402         SDValue Operand = N->getOperand(j);
12403         EVT OperandVT = Operand.getValueType();
12404 
12405         // A vector operand; extract a single element.
12406         EVT OperandEltVT = OperandVT.getVectorElementType();
12407         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
12408                               Operand, getVectorIdxConstant(i, dl));
12409       }
12410 
12411       SDValue EltOp = getNode(N->getOpcode(), dl, {EltVT, EltVT1}, Operands);
12412       Scalars0.push_back(EltOp);
12413       Scalars1.push_back(EltOp.getValue(1));
12414     }
12415 
12416     SDValue Vec0 = getBuildVector(VT, dl, Scalars0);
12417     SDValue Vec1 = getBuildVector(VT1, dl, Scalars1);
12418     return getMergeValues({Vec0, Vec1}, dl);
12419   }
12420 
12421   assert(N->getNumValues() == 1 &&
12422          "Can't unroll a vector with multiple results!");
12423 
12424   SmallVector<SDValue, 8> Scalars;
12425   SmallVector<SDValue, 4> Operands(N->getNumOperands());
12426 
12427   unsigned i;
12428   for (i= 0; i != NE; ++i) {
12429     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
12430       SDValue Operand = N->getOperand(j);
12431       EVT OperandVT = Operand.getValueType();
12432       if (OperandVT.isVector()) {
12433         // A vector operand; extract a single element.
12434         EVT OperandEltVT = OperandVT.getVectorElementType();
12435         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
12436                               Operand, getVectorIdxConstant(i, dl));
12437       } else {
12438         // A scalar operand; just use it as is.
12439         Operands[j] = Operand;
12440       }
12441     }
12442 
12443     switch (N->getOpcode()) {
12444     default: {
12445       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
12446                                 N->getFlags()));
12447       break;
12448     }
12449     case ISD::VSELECT:
12450       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
12451       break;
12452     case ISD::SHL:
12453     case ISD::SRA:
12454     case ISD::SRL:
12455     case ISD::ROTL:
12456     case ISD::ROTR:
12457       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
12458                                getShiftAmountOperand(Operands[0].getValueType(),
12459                                                      Operands[1])));
12460       break;
12461     case ISD::SIGN_EXTEND_INREG: {
12462       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
12463       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
12464                                 Operands[0],
12465                                 getValueType(ExtVT)));
12466     }
12467     }
12468   }
12469 
12470   for (; i < ResNE; ++i)
12471     Scalars.push_back(getUNDEF(EltVT));
12472 
12473   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
12474   return getBuildVector(VecVT, dl, Scalars);
12475 }
12476 
12477 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
12478     SDNode *N, unsigned ResNE) {
12479   unsigned Opcode = N->getOpcode();
12480   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
12481           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
12482           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
12483          "Expected an overflow opcode");
12484 
12485   EVT ResVT = N->getValueType(0);
12486   EVT OvVT = N->getValueType(1);
12487   EVT ResEltVT = ResVT.getVectorElementType();
12488   EVT OvEltVT = OvVT.getVectorElementType();
12489   SDLoc dl(N);
12490 
12491   // If ResNE is 0, fully unroll the vector op.
12492   unsigned NE = ResVT.getVectorNumElements();
12493   if (ResNE == 0)
12494     ResNE = NE;
12495   else if (NE > ResNE)
12496     NE = ResNE;
12497 
12498   SmallVector<SDValue, 8> LHSScalars;
12499   SmallVector<SDValue, 8> RHSScalars;
12500   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
12501   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
12502 
12503   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
12504   SDVTList VTs = getVTList(ResEltVT, SVT);
12505   SmallVector<SDValue, 8> ResScalars;
12506   SmallVector<SDValue, 8> OvScalars;
12507   for (unsigned i = 0; i < NE; ++i) {
12508     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
12509     SDValue Ov =
12510         getSelect(dl, OvEltVT, Res.getValue(1),
12511                   getBoolConstant(true, dl, OvEltVT, ResVT),
12512                   getConstant(0, dl, OvEltVT));
12513 
12514     ResScalars.push_back(Res);
12515     OvScalars.push_back(Ov);
12516   }
12517 
12518   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
12519   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
12520 
12521   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
12522   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
12523   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
12524                         getBuildVector(NewOvVT, dl, OvScalars));
12525 }
12526 
12527 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
12528                                                   LoadSDNode *Base,
12529                                                   unsigned Bytes,
12530                                                   int Dist) const {
12531   if (LD->isVolatile() || Base->isVolatile())
12532     return false;
12533   // TODO: probably too restrictive for atomics, revisit
12534   if (!LD->isSimple())
12535     return false;
12536   if (LD->isIndexed() || Base->isIndexed())
12537     return false;
12538   if (LD->getChain() != Base->getChain())
12539     return false;
12540   EVT VT = LD->getMemoryVT();
12541   if (VT.getSizeInBits() / 8 != Bytes)
12542     return false;
12543 
12544   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
12545   auto LocDecomp = BaseIndexOffset::match(LD, *this);
12546 
12547   int64_t Offset = 0;
12548   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
12549     return (Dist * (int64_t)Bytes == Offset);
12550   return false;
12551 }
12552 
12553 /// InferPtrAlignment - Infer alignment of a load / store address. Return
12554 /// std::nullopt if it cannot be inferred.
12555 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
12556   // If this is a GlobalAddress + cst, return the alignment.
12557   const GlobalValue *GV = nullptr;
12558   int64_t GVOffset = 0;
12559   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
12560     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
12561     KnownBits Known(PtrWidth);
12562     llvm::computeKnownBits(GV, Known, getDataLayout());
12563     unsigned AlignBits = Known.countMinTrailingZeros();
12564     if (AlignBits)
12565       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
12566   }
12567 
12568   // If this is a direct reference to a stack slot, use information about the
12569   // stack slot's alignment.
12570   int FrameIdx = INT_MIN;
12571   int64_t FrameOffset = 0;
12572   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
12573     FrameIdx = FI->getIndex();
12574   } else if (isBaseWithConstantOffset(Ptr) &&
12575              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
12576     // Handle FI+Cst
12577     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
12578     FrameOffset = Ptr.getConstantOperandVal(1);
12579   }
12580 
12581   if (FrameIdx != INT_MIN) {
12582     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
12583     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
12584   }
12585 
12586   return std::nullopt;
12587 }
12588 
12589 /// Split the scalar node with EXTRACT_ELEMENT using the provided
12590 /// VTs and return the low/high part.
12591 std::pair<SDValue, SDValue> SelectionDAG::SplitScalar(const SDValue &N,
12592                                                       const SDLoc &DL,
12593                                                       const EVT &LoVT,
12594                                                       const EVT &HiVT) {
12595   assert(!LoVT.isVector() && !HiVT.isVector() && !N.getValueType().isVector() &&
12596          "Split node must be a scalar type");
12597   SDValue Lo =
12598       getNode(ISD::EXTRACT_ELEMENT, DL, LoVT, N, getIntPtrConstant(0, DL));
12599   SDValue Hi =
12600       getNode(ISD::EXTRACT_ELEMENT, DL, HiVT, N, getIntPtrConstant(1, DL));
12601   return std::make_pair(Lo, Hi);
12602 }
12603 
12604 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
12605 /// which is split (or expanded) into two not necessarily identical pieces.
12606 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
12607   // Currently all types are split in half.
12608   EVT LoVT, HiVT;
12609   if (!VT.isVector())
12610     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
12611   else
12612     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
12613 
12614   return std::make_pair(LoVT, HiVT);
12615 }
12616 
12617 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
12618 /// type, dependent on an enveloping VT that has been split into two identical
12619 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
12620 std::pair<EVT, EVT>
12621 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
12622                                        bool *HiIsEmpty) const {
12623   EVT EltTp = VT.getVectorElementType();
12624   // Examples:
12625   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
12626   //   custom VL=9  with enveloping VL=8/8 yields 8/1
12627   //   custom VL=10 with enveloping VL=8/8 yields 8/2
12628   //   etc.
12629   ElementCount VTNumElts = VT.getVectorElementCount();
12630   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
12631   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
12632          "Mixing fixed width and scalable vectors when enveloping a type");
12633   EVT LoVT, HiVT;
12634   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
12635     LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
12636     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
12637     *HiIsEmpty = false;
12638   } else {
12639     // Flag that hi type has zero storage size, but return split envelop type
12640     // (this would be easier if vector types with zero elements were allowed).
12641     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
12642     HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
12643     *HiIsEmpty = true;
12644   }
12645   return std::make_pair(LoVT, HiVT);
12646 }
12647 
12648 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
12649 /// low/high part.
12650 std::pair<SDValue, SDValue>
12651 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
12652                           const EVT &HiVT) {
12653   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
12654          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
12655          "Splitting vector with an invalid mixture of fixed and scalable "
12656          "vector types");
12657   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
12658              N.getValueType().getVectorMinNumElements() &&
12659          "More vector elements requested than available!");
12660   SDValue Lo, Hi;
12661   Lo =
12662       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
12663   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
12664   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
12665   // IDX with the runtime scaling factor of the result vector type. For
12666   // fixed-width result vectors, that runtime scaling factor is 1.
12667   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
12668                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
12669   return std::make_pair(Lo, Hi);
12670 }
12671 
12672 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
12673                                                    const SDLoc &DL) {
12674   // Split the vector length parameter.
12675   // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
12676   EVT VT = N.getValueType();
12677   assert(VecVT.getVectorElementCount().isKnownEven() &&
12678          "Expecting the mask to be an evenly-sized vector");
12679   unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
12680   SDValue HalfNumElts =
12681       VecVT.isFixedLengthVector()
12682           ? getConstant(HalfMinNumElts, DL, VT)
12683           : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
12684   SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
12685   SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
12686   return std::make_pair(Lo, Hi);
12687 }
12688 
12689 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
12690 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
12691   EVT VT = N.getValueType();
12692   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
12693                                 NextPowerOf2(VT.getVectorNumElements()));
12694   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
12695                  getVectorIdxConstant(0, DL));
12696 }
12697 
12698 void SelectionDAG::ExtractVectorElements(SDValue Op,
12699                                          SmallVectorImpl<SDValue> &Args,
12700                                          unsigned Start, unsigned Count,
12701                                          EVT EltVT) {
12702   EVT VT = Op.getValueType();
12703   if (Count == 0)
12704     Count = VT.getVectorNumElements();
12705   if (EltVT == EVT())
12706     EltVT = VT.getVectorElementType();
12707   SDLoc SL(Op);
12708   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
12709     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
12710                            getVectorIdxConstant(i, SL)));
12711   }
12712 }
12713 
12714 // getAddressSpace - Return the address space this GlobalAddress belongs to.
12715 unsigned GlobalAddressSDNode::getAddressSpace() const {
12716   return getGlobal()->getType()->getAddressSpace();
12717 }
12718 
12719 Type *ConstantPoolSDNode::getType() const {
12720   if (isMachineConstantPoolEntry())
12721     return Val.MachineCPVal->getType();
12722   return Val.ConstVal->getType();
12723 }
12724 
12725 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
12726                                         unsigned &SplatBitSize,
12727                                         bool &HasAnyUndefs,
12728                                         unsigned MinSplatBits,
12729                                         bool IsBigEndian) const {
12730   EVT VT = getValueType(0);
12731   assert(VT.isVector() && "Expected a vector type");
12732   unsigned VecWidth = VT.getSizeInBits();
12733   if (MinSplatBits > VecWidth)
12734     return false;
12735 
12736   // FIXME: The widths are based on this node's type, but build vectors can
12737   // truncate their operands.
12738   SplatValue = APInt(VecWidth, 0);
12739   SplatUndef = APInt(VecWidth, 0);
12740 
12741   // Get the bits. Bits with undefined values (when the corresponding element
12742   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
12743   // in SplatValue. If any of the values are not constant, give up and return
12744   // false.
12745   unsigned int NumOps = getNumOperands();
12746   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
12747   unsigned EltWidth = VT.getScalarSizeInBits();
12748 
12749   for (unsigned j = 0; j < NumOps; ++j) {
12750     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
12751     SDValue OpVal = getOperand(i);
12752     unsigned BitPos = j * EltWidth;
12753 
12754     if (OpVal.isUndef())
12755       SplatUndef.setBits(BitPos, BitPos + EltWidth);
12756     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
12757       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
12758     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
12759       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
12760     else
12761       return false;
12762   }
12763 
12764   // The build_vector is all constants or undefs. Find the smallest element
12765   // size that splats the vector.
12766   HasAnyUndefs = (SplatUndef != 0);
12767 
12768   // FIXME: This does not work for vectors with elements less than 8 bits.
12769   while (VecWidth > 8) {
12770     // If we can't split in half, stop here.
12771     if (VecWidth & 1)
12772       break;
12773 
12774     unsigned HalfSize = VecWidth / 2;
12775     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
12776     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
12777     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
12778     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
12779 
12780     // If the two halves do not match (ignoring undef bits), stop here.
12781     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
12782         MinSplatBits > HalfSize)
12783       break;
12784 
12785     SplatValue = HighValue | LowValue;
12786     SplatUndef = HighUndef & LowUndef;
12787 
12788     VecWidth = HalfSize;
12789   }
12790 
12791   // FIXME: The loop above only tries to split in halves. But if the input
12792   // vector for example is <3 x i16> it wouldn't be able to detect a
12793   // SplatBitSize of 16. No idea if that is a design flaw currently limiting
12794   // optimizations. I guess that back in the days when this helper was created
12795   // vectors normally was power-of-2 sized.
12796 
12797   SplatBitSize = VecWidth;
12798   return true;
12799 }
12800 
12801 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
12802                                          BitVector *UndefElements) const {
12803   unsigned NumOps = getNumOperands();
12804   if (UndefElements) {
12805     UndefElements->clear();
12806     UndefElements->resize(NumOps);
12807   }
12808   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
12809   if (!DemandedElts)
12810     return SDValue();
12811   SDValue Splatted;
12812   for (unsigned i = 0; i != NumOps; ++i) {
12813     if (!DemandedElts[i])
12814       continue;
12815     SDValue Op = getOperand(i);
12816     if (Op.isUndef()) {
12817       if (UndefElements)
12818         (*UndefElements)[i] = true;
12819     } else if (!Splatted) {
12820       Splatted = Op;
12821     } else if (Splatted != Op) {
12822       return SDValue();
12823     }
12824   }
12825 
12826   if (!Splatted) {
12827     unsigned FirstDemandedIdx = DemandedElts.countr_zero();
12828     assert(getOperand(FirstDemandedIdx).isUndef() &&
12829            "Can only have a splat without a constant for all undefs.");
12830     return getOperand(FirstDemandedIdx);
12831   }
12832 
12833   return Splatted;
12834 }
12835 
12836 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
12837   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
12838   return getSplatValue(DemandedElts, UndefElements);
12839 }
12840 
12841 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
12842                                             SmallVectorImpl<SDValue> &Sequence,
12843                                             BitVector *UndefElements) const {
12844   unsigned NumOps = getNumOperands();
12845   Sequence.clear();
12846   if (UndefElements) {
12847     UndefElements->clear();
12848     UndefElements->resize(NumOps);
12849   }
12850   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
12851   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
12852     return false;
12853 
12854   // Set the undefs even if we don't find a sequence (like getSplatValue).
12855   if (UndefElements)
12856     for (unsigned I = 0; I != NumOps; ++I)
12857       if (DemandedElts[I] && getOperand(I).isUndef())
12858         (*UndefElements)[I] = true;
12859 
12860   // Iteratively widen the sequence length looking for repetitions.
12861   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
12862     Sequence.append(SeqLen, SDValue());
12863     for (unsigned I = 0; I != NumOps; ++I) {
12864       if (!DemandedElts[I])
12865         continue;
12866       SDValue &SeqOp = Sequence[I % SeqLen];
12867       SDValue Op = getOperand(I);
12868       if (Op.isUndef()) {
12869         if (!SeqOp)
12870           SeqOp = Op;
12871         continue;
12872       }
12873       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
12874         Sequence.clear();
12875         break;
12876       }
12877       SeqOp = Op;
12878     }
12879     if (!Sequence.empty())
12880       return true;
12881   }
12882 
12883   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
12884   return false;
12885 }
12886 
12887 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
12888                                             BitVector *UndefElements) const {
12889   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
12890   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
12891 }
12892 
12893 ConstantSDNode *
12894 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
12895                                         BitVector *UndefElements) const {
12896   return dyn_cast_or_null<ConstantSDNode>(
12897       getSplatValue(DemandedElts, UndefElements));
12898 }
12899 
12900 ConstantSDNode *
12901 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
12902   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
12903 }
12904 
12905 ConstantFPSDNode *
12906 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
12907                                           BitVector *UndefElements) const {
12908   return dyn_cast_or_null<ConstantFPSDNode>(
12909       getSplatValue(DemandedElts, UndefElements));
12910 }
12911 
12912 ConstantFPSDNode *
12913 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
12914   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
12915 }
12916 
12917 int32_t
12918 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
12919                                                    uint32_t BitWidth) const {
12920   if (ConstantFPSDNode *CN =
12921           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
12922     bool IsExact;
12923     APSInt IntVal(BitWidth);
12924     const APFloat &APF = CN->getValueAPF();
12925     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
12926             APFloat::opOK ||
12927         !IsExact)
12928       return -1;
12929 
12930     return IntVal.exactLogBase2();
12931   }
12932   return -1;
12933 }
12934 
12935 bool BuildVectorSDNode::getConstantRawBits(
12936     bool IsLittleEndian, unsigned DstEltSizeInBits,
12937     SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
12938   // Early-out if this contains anything but Undef/Constant/ConstantFP.
12939   if (!isConstant())
12940     return false;
12941 
12942   unsigned NumSrcOps = getNumOperands();
12943   unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
12944   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
12945          "Invalid bitcast scale");
12946 
12947   // Extract raw src bits.
12948   SmallVector<APInt> SrcBitElements(NumSrcOps,
12949                                     APInt::getZero(SrcEltSizeInBits));
12950   BitVector SrcUndeElements(NumSrcOps, false);
12951 
12952   for (unsigned I = 0; I != NumSrcOps; ++I) {
12953     SDValue Op = getOperand(I);
12954     if (Op.isUndef()) {
12955       SrcUndeElements.set(I);
12956       continue;
12957     }
12958     auto *CInt = dyn_cast<ConstantSDNode>(Op);
12959     auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
12960     assert((CInt || CFP) && "Unknown constant");
12961     SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
12962                              : CFP->getValueAPF().bitcastToAPInt();
12963   }
12964 
12965   // Recast to dst width.
12966   recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
12967                 SrcBitElements, UndefElements, SrcUndeElements);
12968   return true;
12969 }
12970 
12971 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
12972                                       unsigned DstEltSizeInBits,
12973                                       SmallVectorImpl<APInt> &DstBitElements,
12974                                       ArrayRef<APInt> SrcBitElements,
12975                                       BitVector &DstUndefElements,
12976                                       const BitVector &SrcUndefElements) {
12977   unsigned NumSrcOps = SrcBitElements.size();
12978   unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
12979   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
12980          "Invalid bitcast scale");
12981   assert(NumSrcOps == SrcUndefElements.size() &&
12982          "Vector size mismatch");
12983 
12984   unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
12985   DstUndefElements.clear();
12986   DstUndefElements.resize(NumDstOps, false);
12987   DstBitElements.assign(NumDstOps, APInt::getZero(DstEltSizeInBits));
12988 
12989   // Concatenate src elements constant bits together into dst element.
12990   if (SrcEltSizeInBits <= DstEltSizeInBits) {
12991     unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
12992     for (unsigned I = 0; I != NumDstOps; ++I) {
12993       DstUndefElements.set(I);
12994       APInt &DstBits = DstBitElements[I];
12995       for (unsigned J = 0; J != Scale; ++J) {
12996         unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
12997         if (SrcUndefElements[Idx])
12998           continue;
12999         DstUndefElements.reset(I);
13000         const APInt &SrcBits = SrcBitElements[Idx];
13001         assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
13002                "Illegal constant bitwidths");
13003         DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
13004       }
13005     }
13006     return;
13007   }
13008 
13009   // Split src element constant bits into dst elements.
13010   unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
13011   for (unsigned I = 0; I != NumSrcOps; ++I) {
13012     if (SrcUndefElements[I]) {
13013       DstUndefElements.set(I * Scale, (I + 1) * Scale);
13014       continue;
13015     }
13016     const APInt &SrcBits = SrcBitElements[I];
13017     for (unsigned J = 0; J != Scale; ++J) {
13018       unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13019       APInt &DstBits = DstBitElements[Idx];
13020       DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
13021     }
13022   }
13023 }
13024 
13025 bool BuildVectorSDNode::isConstant() const {
13026   for (const SDValue &Op : op_values()) {
13027     unsigned Opc = Op.getOpcode();
13028     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
13029       return false;
13030   }
13031   return true;
13032 }
13033 
13034 std::optional<std::pair<APInt, APInt>>
13035 BuildVectorSDNode::isConstantSequence() const {
13036   unsigned NumOps = getNumOperands();
13037   if (NumOps < 2)
13038     return std::nullopt;
13039 
13040   if (!isa<ConstantSDNode>(getOperand(0)) ||
13041       !isa<ConstantSDNode>(getOperand(1)))
13042     return std::nullopt;
13043 
13044   unsigned EltSize = getValueType(0).getScalarSizeInBits();
13045   APInt Start = getConstantOperandAPInt(0).trunc(EltSize);
13046   APInt Stride = getConstantOperandAPInt(1).trunc(EltSize) - Start;
13047 
13048   if (Stride.isZero())
13049     return std::nullopt;
13050 
13051   for (unsigned i = 2; i < NumOps; ++i) {
13052     if (!isa<ConstantSDNode>(getOperand(i)))
13053       return std::nullopt;
13054 
13055     APInt Val = getConstantOperandAPInt(i).trunc(EltSize);
13056     if (Val != (Start + (Stride * i)))
13057       return std::nullopt;
13058   }
13059 
13060   return std::make_pair(Start, Stride);
13061 }
13062 
13063 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
13064   // Find the first non-undef value in the shuffle mask.
13065   unsigned i, e;
13066   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
13067     /* search */;
13068 
13069   // If all elements are undefined, this shuffle can be considered a splat
13070   // (although it should eventually get simplified away completely).
13071   if (i == e)
13072     return true;
13073 
13074   // Make sure all remaining elements are either undef or the same as the first
13075   // non-undef value.
13076   for (int Idx = Mask[i]; i != e; ++i)
13077     if (Mask[i] >= 0 && Mask[i] != Idx)
13078       return false;
13079   return true;
13080 }
13081 
13082 // Returns the SDNode if it is a constant integer BuildVector
13083 // or constant integer.
13084 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
13085   if (isa<ConstantSDNode>(N))
13086     return N.getNode();
13087   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
13088     return N.getNode();
13089   // Treat a GlobalAddress supporting constant offset folding as a
13090   // constant integer.
13091   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
13092     if (GA->getOpcode() == ISD::GlobalAddress &&
13093         TLI->isOffsetFoldingLegal(GA))
13094       return GA;
13095   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
13096       isa<ConstantSDNode>(N.getOperand(0)))
13097     return N.getNode();
13098   return nullptr;
13099 }
13100 
13101 // Returns the SDNode if it is a constant float BuildVector
13102 // or constant float.
13103 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
13104   if (isa<ConstantFPSDNode>(N))
13105     return N.getNode();
13106 
13107   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
13108     return N.getNode();
13109 
13110   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
13111       isa<ConstantFPSDNode>(N.getOperand(0)))
13112     return N.getNode();
13113 
13114   return nullptr;
13115 }
13116 
13117 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
13118   assert(!Node->OperandList && "Node already has operands");
13119   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
13120          "too many operands to fit into SDNode");
13121   SDUse *Ops = OperandRecycler.allocate(
13122       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
13123 
13124   bool IsDivergent = false;
13125   for (unsigned I = 0; I != Vals.size(); ++I) {
13126     Ops[I].setUser(Node);
13127     Ops[I].setInitial(Vals[I]);
13128     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
13129       IsDivergent |= Ops[I].getNode()->isDivergent();
13130   }
13131   Node->NumOperands = Vals.size();
13132   Node->OperandList = Ops;
13133   if (!TLI->isSDNodeAlwaysUniform(Node)) {
13134     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA);
13135     Node->SDNodeBits.IsDivergent = IsDivergent;
13136   }
13137   checkForCycles(Node);
13138 }
13139 
13140 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
13141                                      SmallVectorImpl<SDValue> &Vals) {
13142   size_t Limit = SDNode::getMaxNumOperands();
13143   while (Vals.size() > Limit) {
13144     unsigned SliceIdx = Vals.size() - Limit;
13145     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
13146     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
13147     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
13148     Vals.emplace_back(NewTF);
13149   }
13150   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
13151 }
13152 
13153 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
13154                                         EVT VT, SDNodeFlags Flags) {
13155   switch (Opcode) {
13156   default:
13157     return SDValue();
13158   case ISD::ADD:
13159   case ISD::OR:
13160   case ISD::XOR:
13161   case ISD::UMAX:
13162     return getConstant(0, DL, VT);
13163   case ISD::MUL:
13164     return getConstant(1, DL, VT);
13165   case ISD::AND:
13166   case ISD::UMIN:
13167     return getAllOnesConstant(DL, VT);
13168   case ISD::SMAX:
13169     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
13170   case ISD::SMIN:
13171     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
13172   case ISD::FADD:
13173     return getConstantFP(-0.0, DL, VT);
13174   case ISD::FMUL:
13175     return getConstantFP(1.0, DL, VT);
13176   case ISD::FMINNUM:
13177   case ISD::FMAXNUM: {
13178     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
13179     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
13180     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
13181                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
13182                         APFloat::getLargest(Semantics);
13183     if (Opcode == ISD::FMAXNUM)
13184       NeutralAF.changeSign();
13185 
13186     return getConstantFP(NeutralAF, DL, VT);
13187   }
13188   case ISD::FMINIMUM:
13189   case ISD::FMAXIMUM: {
13190     // Neutral element for fminimum is Inf or FLT_MAX, depending on FMF.
13191     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
13192     APFloat NeutralAF = !Flags.hasNoInfs() ? APFloat::getInf(Semantics)
13193                                            : APFloat::getLargest(Semantics);
13194     if (Opcode == ISD::FMAXIMUM)
13195       NeutralAF.changeSign();
13196 
13197     return getConstantFP(NeutralAF, DL, VT);
13198   }
13199 
13200   }
13201 }
13202 
13203 /// Helper used to make a call to a library function that has one argument of
13204 /// pointer type.
13205 ///
13206 /// Such functions include 'fegetmode', 'fesetenv' and some others, which are
13207 /// used to get or set floating-point state. They have one argument of pointer
13208 /// type, which points to the memory region containing bits of the
13209 /// floating-point state. The value returned by such function is ignored in the
13210 /// created call.
13211 ///
13212 /// \param LibFunc Reference to library function (value of RTLIB::Libcall).
13213 /// \param Ptr Pointer used to save/load state.
13214 /// \param InChain Ingoing token chain.
13215 /// \returns Outgoing chain token.
13216 SDValue SelectionDAG::makeStateFunctionCall(unsigned LibFunc, SDValue Ptr,
13217                                             SDValue InChain,
13218                                             const SDLoc &DLoc) {
13219   assert(InChain.getValueType() == MVT::Other && "Expected token chain");
13220   TargetLowering::ArgListTy Args;
13221   TargetLowering::ArgListEntry Entry;
13222   Entry.Node = Ptr;
13223   Entry.Ty = Ptr.getValueType().getTypeForEVT(*getContext());
13224   Args.push_back(Entry);
13225   RTLIB::Libcall LC = static_cast<RTLIB::Libcall>(LibFunc);
13226   SDValue Callee = getExternalSymbol(TLI->getLibcallName(LC),
13227                                      TLI->getPointerTy(getDataLayout()));
13228   TargetLowering::CallLoweringInfo CLI(*this);
13229   CLI.setDebugLoc(DLoc).setChain(InChain).setLibCallee(
13230       TLI->getLibcallCallingConv(LC), Type::getVoidTy(*getContext()), Callee,
13231       std::move(Args));
13232   return TLI->LowerCallTo(CLI).second;
13233 }
13234 
13235 void SelectionDAG::copyExtraInfo(SDNode *From, SDNode *To) {
13236   assert(From && To && "Invalid SDNode; empty source SDValue?");
13237   auto I = SDEI.find(From);
13238   if (I == SDEI.end())
13239     return;
13240 
13241   // Use of operator[] on the DenseMap may cause an insertion, which invalidates
13242   // the iterator, hence the need to make a copy to prevent a use-after-free.
13243   NodeExtraInfo NEI = I->second;
13244   if (LLVM_LIKELY(!NEI.PCSections) && LLVM_LIKELY(!NEI.MMRA)) {
13245     // No deep copy required for the types of extra info set.
13246     //
13247     // FIXME: Investigate if other types of extra info also need deep copy. This
13248     // depends on the types of nodes they can be attached to: if some extra info
13249     // is only ever attached to nodes where a replacement To node is always the
13250     // node where later use and propagation of the extra info has the intended
13251     // semantics, no deep copy is required.
13252     SDEI[To] = std::move(NEI);
13253     return;
13254   }
13255 
13256   // We need to copy NodeExtraInfo to all _new_ nodes that are being introduced
13257   // through the replacement of From with To. Otherwise, replacements of a node
13258   // (From) with more complex nodes (To and its operands) may result in lost
13259   // extra info where the root node (To) is insignificant in further propagating
13260   // and using extra info when further lowering to MIR.
13261   //
13262   // In the first step pre-populate the visited set with the nodes reachable
13263   // from the old From node. This avoids copying NodeExtraInfo to parts of the
13264   // DAG that is not new and should be left untouched.
13265   SmallVector<const SDNode *> Leafs{From}; // Leafs reachable with VisitFrom.
13266   DenseSet<const SDNode *> FromReach; // The set of nodes reachable from From.
13267   auto VisitFrom = [&](auto &&Self, const SDNode *N, int MaxDepth) {
13268     if (MaxDepth == 0) {
13269       // Remember this node in case we need to increase MaxDepth and continue
13270       // populating FromReach from this node.
13271       Leafs.emplace_back(N);
13272       return;
13273     }
13274     if (!FromReach.insert(N).second)
13275       return;
13276     for (const SDValue &Op : N->op_values())
13277       Self(Self, Op.getNode(), MaxDepth - 1);
13278   };
13279 
13280   // Copy extra info to To and all its transitive operands (that are new).
13281   SmallPtrSet<const SDNode *, 8> Visited;
13282   auto DeepCopyTo = [&](auto &&Self, const SDNode *N) {
13283     if (FromReach.contains(N))
13284       return true;
13285     if (!Visited.insert(N).second)
13286       return true;
13287     if (getEntryNode().getNode() == N)
13288       return false;
13289     for (const SDValue &Op : N->op_values()) {
13290       if (!Self(Self, Op.getNode()))
13291         return false;
13292     }
13293     // Copy only if entry node was not reached.
13294     SDEI[N] = NEI;
13295     return true;
13296   };
13297 
13298   // We first try with a lower MaxDepth, assuming that the path to common
13299   // operands between From and To is relatively short. This significantly
13300   // improves performance in the common case. The initial MaxDepth is big
13301   // enough to avoid retry in the common case; the last MaxDepth is large
13302   // enough to avoid having to use the fallback below (and protects from
13303   // potential stack exhaustion from recursion).
13304   for (int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024;
13305        PrevDepth = MaxDepth, MaxDepth *= 2, Visited.clear()) {
13306     // StartFrom is the previous (or initial) set of leafs reachable at the
13307     // previous maximum depth.
13308     SmallVector<const SDNode *> StartFrom;
13309     std::swap(StartFrom, Leafs);
13310     for (const SDNode *N : StartFrom)
13311       VisitFrom(VisitFrom, N, MaxDepth - PrevDepth);
13312     if (LLVM_LIKELY(DeepCopyTo(DeepCopyTo, To)))
13313       return;
13314     // This should happen very rarely (reached the entry node).
13315     LLVM_DEBUG(dbgs() << __func__ << ": MaxDepth=" << MaxDepth << " too low\n");
13316     assert(!Leafs.empty());
13317   }
13318 
13319   // This should not happen - but if it did, that means the subgraph reachable
13320   // from From has depth greater or equal to maximum MaxDepth, and VisitFrom()
13321   // could not visit all reachable common operands. Consequently, we were able
13322   // to reach the entry node.
13323   errs() << "warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n";
13324   assert(false && "From subgraph too complex - increase max. MaxDepth?");
13325   // Best-effort fallback if assertions disabled.
13326   SDEI[To] = std::move(NEI);
13327 }
13328 
13329 #ifndef NDEBUG
13330 static void checkForCyclesHelper(const SDNode *N,
13331                                  SmallPtrSetImpl<const SDNode*> &Visited,
13332                                  SmallPtrSetImpl<const SDNode*> &Checked,
13333                                  const llvm::SelectionDAG *DAG) {
13334   // If this node has already been checked, don't check it again.
13335   if (Checked.count(N))
13336     return;
13337 
13338   // If a node has already been visited on this depth-first walk, reject it as
13339   // a cycle.
13340   if (!Visited.insert(N).second) {
13341     errs() << "Detected cycle in SelectionDAG\n";
13342     dbgs() << "Offending node:\n";
13343     N->dumprFull(DAG); dbgs() << "\n";
13344     abort();
13345   }
13346 
13347   for (const SDValue &Op : N->op_values())
13348     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
13349 
13350   Checked.insert(N);
13351   Visited.erase(N);
13352 }
13353 #endif
13354 
13355 void llvm::checkForCycles(const llvm::SDNode *N,
13356                           const llvm::SelectionDAG *DAG,
13357                           bool force) {
13358 #ifndef NDEBUG
13359   bool check = force;
13360 #ifdef EXPENSIVE_CHECKS
13361   check = true;
13362 #endif  // EXPENSIVE_CHECKS
13363   if (check) {
13364     assert(N && "Checking nonexistent SDNode");
13365     SmallPtrSet<const SDNode*, 32> visited;
13366     SmallPtrSet<const SDNode*, 32> checked;
13367     checkForCyclesHelper(N, visited, checked, DAG);
13368   }
13369 #endif  // !NDEBUG
13370 }
13371 
13372 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
13373   checkForCycles(DAG->getRoot().getNode(), DAG, force);
13374 }
13375