xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/FoldingSet.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/MachineValueType.h"
40 #include "llvm/CodeGen/RuntimeLibcalls.h"
41 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
42 #include "llvm/CodeGen/SelectionDAGNodes.h"
43 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
44 #include "llvm/CodeGen/TargetFrameLowering.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetRegisterInfo.h"
47 #include "llvm/CodeGen/TargetSubtargetInfo.h"
48 #include "llvm/CodeGen/ValueTypes.h"
49 #include "llvm/IR/Constant.h"
50 #include "llvm/IR/ConstantRange.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DebugInfoMetadata.h"
54 #include "llvm/IR/DebugLoc.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/GlobalValue.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CodeGen.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/KnownBits.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/TargetParser/Triple.h"
72 #include "llvm/Transforms/Utils/SizeOpts.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <cstdlib>
77 #include <limits>
78 #include <set>
79 #include <string>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 
85 /// makeVTList - Return an instance of the SDVTList struct initialized with the
86 /// specified members.
87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
88   SDVTList Res = {VTs, NumVTs};
89   return Res;
90 }
91 
92 // Default null implementations of the callbacks.
93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
96 
97 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
98 void SelectionDAG::DAGNodeInsertedListener::anchor() {}
99 
100 #define DEBUG_TYPE "selectiondag"
101 
102 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
103        cl::Hidden, cl::init(true),
104        cl::desc("Gang up loads and stores generated by inlining of memcpy"));
105 
106 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
107        cl::desc("Number limit for gluing ld/st of memcpy."),
108        cl::Hidden, cl::init(0));
109 
110 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
111   LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
112 }
113 
114 //===----------------------------------------------------------------------===//
115 //                              ConstantFPSDNode Class
116 //===----------------------------------------------------------------------===//
117 
118 /// isExactlyValue - We don't rely on operator== working on double values, as
119 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
120 /// As such, this method can be used to do an exact bit-for-bit comparison of
121 /// two floating point values.
122 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
123   return getValueAPF().bitwiseIsEqual(V);
124 }
125 
126 bool ConstantFPSDNode::isValueValidForType(EVT VT,
127                                            const APFloat& Val) {
128   assert(VT.isFloatingPoint() && "Can only convert between FP types");
129 
130   // convert modifies in place, so make a copy.
131   APFloat Val2 = APFloat(Val);
132   bool losesInfo;
133   (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
134                       APFloat::rmNearestTiesToEven,
135                       &losesInfo);
136   return !losesInfo;
137 }
138 
139 //===----------------------------------------------------------------------===//
140 //                              ISD Namespace
141 //===----------------------------------------------------------------------===//
142 
143 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
144   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
145     unsigned EltSize =
146         N->getValueType(0).getVectorElementType().getSizeInBits();
147     if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
148       SplatVal = Op0->getAPIntValue().trunc(EltSize);
149       return true;
150     }
151     if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
152       SplatVal = Op0->getValueAPF().bitcastToAPInt().trunc(EltSize);
153       return true;
154     }
155   }
156 
157   auto *BV = dyn_cast<BuildVectorSDNode>(N);
158   if (!BV)
159     return false;
160 
161   APInt SplatUndef;
162   unsigned SplatBitSize;
163   bool HasUndefs;
164   unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
165   // Endianness does not matter here. We are checking for a splat given the
166   // element size of the vector, and if we find such a splat for little endian
167   // layout, then that should be valid also for big endian (as the full vector
168   // size is known to be a multiple of the element size).
169   const bool IsBigEndian = false;
170   return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
171                              EltSize, IsBigEndian) &&
172          EltSize == SplatBitSize;
173 }
174 
175 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
176 // specializations of the more general isConstantSplatVector()?
177 
178 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
179   // Look through a bit convert.
180   while (N->getOpcode() == ISD::BITCAST)
181     N = N->getOperand(0).getNode();
182 
183   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
184     APInt SplatVal;
185     return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
186   }
187 
188   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
189 
190   unsigned i = 0, e = N->getNumOperands();
191 
192   // Skip over all of the undef values.
193   while (i != e && N->getOperand(i).isUndef())
194     ++i;
195 
196   // Do not accept an all-undef vector.
197   if (i == e) return false;
198 
199   // Do not accept build_vectors that aren't all constants or which have non-~0
200   // elements. We have to be a bit careful here, as the type of the constant
201   // may not be the same as the type of the vector elements due to type
202   // legalization (the elements are promoted to a legal type for the target and
203   // a vector of a type may be legal when the base element type is not).
204   // We only want to check enough bits to cover the vector elements, because
205   // we care if the resultant vector is all ones, not whether the individual
206   // constants are.
207   SDValue NotZero = N->getOperand(i);
208   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
209   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
210     if (CN->getAPIntValue().countr_one() < EltSize)
211       return false;
212   } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
213     if (CFPN->getValueAPF().bitcastToAPInt().countr_one() < EltSize)
214       return false;
215   } else
216     return false;
217 
218   // Okay, we have at least one ~0 value, check to see if the rest match or are
219   // undefs. Even with the above element type twiddling, this should be OK, as
220   // the same type legalization should have applied to all the elements.
221   for (++i; i != e; ++i)
222     if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
223       return false;
224   return true;
225 }
226 
227 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
228   // Look through a bit convert.
229   while (N->getOpcode() == ISD::BITCAST)
230     N = N->getOperand(0).getNode();
231 
232   if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
233     APInt SplatVal;
234     return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
235   }
236 
237   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
238 
239   bool IsAllUndef = true;
240   for (const SDValue &Op : N->op_values()) {
241     if (Op.isUndef())
242       continue;
243     IsAllUndef = false;
244     // Do not accept build_vectors that aren't all constants or which have non-0
245     // elements. We have to be a bit careful here, as the type of the constant
246     // may not be the same as the type of the vector elements due to type
247     // legalization (the elements are promoted to a legal type for the target
248     // and a vector of a type may be legal when the base element type is not).
249     // We only want to check enough bits to cover the vector elements, because
250     // we care if the resultant vector is all zeros, not whether the individual
251     // constants are.
252     unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
253     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
254       if (CN->getAPIntValue().countr_zero() < EltSize)
255         return false;
256     } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
257       if (CFPN->getValueAPF().bitcastToAPInt().countr_zero() < EltSize)
258         return false;
259     } else
260       return false;
261   }
262 
263   // Do not accept an all-undef vector.
264   if (IsAllUndef)
265     return false;
266   return true;
267 }
268 
269 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
270   return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
271 }
272 
273 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
274   return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
275 }
276 
277 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
278   if (N->getOpcode() != ISD::BUILD_VECTOR)
279     return false;
280 
281   for (const SDValue &Op : N->op_values()) {
282     if (Op.isUndef())
283       continue;
284     if (!isa<ConstantSDNode>(Op))
285       return false;
286   }
287   return true;
288 }
289 
290 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
291   if (N->getOpcode() != ISD::BUILD_VECTOR)
292     return false;
293 
294   for (const SDValue &Op : N->op_values()) {
295     if (Op.isUndef())
296       continue;
297     if (!isa<ConstantFPSDNode>(Op))
298       return false;
299   }
300   return true;
301 }
302 
303 bool ISD::isVectorShrinkable(const SDNode *N, unsigned NewEltSize,
304                              bool Signed) {
305   assert(N->getValueType(0).isVector() && "Expected a vector!");
306 
307   unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
308   if (EltSize <= NewEltSize)
309     return false;
310 
311   if (N->getOpcode() == ISD::ZERO_EXTEND) {
312     return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
313             NewEltSize) &&
314            !Signed;
315   }
316   if (N->getOpcode() == ISD::SIGN_EXTEND) {
317     return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
318             NewEltSize) &&
319            Signed;
320   }
321   if (N->getOpcode() != ISD::BUILD_VECTOR)
322     return false;
323 
324   for (const SDValue &Op : N->op_values()) {
325     if (Op.isUndef())
326       continue;
327     if (!isa<ConstantSDNode>(Op))
328       return false;
329 
330     APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().trunc(EltSize);
331     if (Signed && C.trunc(NewEltSize).sext(EltSize) != C)
332       return false;
333     if (!Signed && C.trunc(NewEltSize).zext(EltSize) != C)
334       return false;
335   }
336 
337   return true;
338 }
339 
340 bool ISD::allOperandsUndef(const SDNode *N) {
341   // Return false if the node has no operands.
342   // This is "logically inconsistent" with the definition of "all" but
343   // is probably the desired behavior.
344   if (N->getNumOperands() == 0)
345     return false;
346   return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
347 }
348 
349 bool ISD::isFreezeUndef(const SDNode *N) {
350   return N->getOpcode() == ISD::FREEZE && N->getOperand(0).isUndef();
351 }
352 
353 template <typename ConstNodeType>
354 bool ISD::matchUnaryPredicateImpl(SDValue Op,
355                                   std::function<bool(ConstNodeType *)> Match,
356                                   bool AllowUndefs) {
357   // FIXME: Add support for scalar UNDEF cases?
358   if (auto *C = dyn_cast<ConstNodeType>(Op))
359     return Match(C);
360 
361   // FIXME: Add support for vector UNDEF cases?
362   if (ISD::BUILD_VECTOR != Op.getOpcode() &&
363       ISD::SPLAT_VECTOR != Op.getOpcode())
364     return false;
365 
366   EVT SVT = Op.getValueType().getScalarType();
367   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
368     if (AllowUndefs && Op.getOperand(i).isUndef()) {
369       if (!Match(nullptr))
370         return false;
371       continue;
372     }
373 
374     auto *Cst = dyn_cast<ConstNodeType>(Op.getOperand(i));
375     if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
376       return false;
377   }
378   return true;
379 }
380 // Build used template types.
381 template bool ISD::matchUnaryPredicateImpl<ConstantSDNode>(
382     SDValue, std::function<bool(ConstantSDNode *)>, bool);
383 template bool ISD::matchUnaryPredicateImpl<ConstantFPSDNode>(
384     SDValue, std::function<bool(ConstantFPSDNode *)>, bool);
385 
386 bool ISD::matchBinaryPredicate(
387     SDValue LHS, SDValue RHS,
388     std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
389     bool AllowUndefs, bool AllowTypeMismatch) {
390   if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
391     return false;
392 
393   // TODO: Add support for scalar UNDEF cases?
394   if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
395     if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
396       return Match(LHSCst, RHSCst);
397 
398   // TODO: Add support for vector UNDEF cases?
399   if (LHS.getOpcode() != RHS.getOpcode() ||
400       (LHS.getOpcode() != ISD::BUILD_VECTOR &&
401        LHS.getOpcode() != ISD::SPLAT_VECTOR))
402     return false;
403 
404   EVT SVT = LHS.getValueType().getScalarType();
405   for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
406     SDValue LHSOp = LHS.getOperand(i);
407     SDValue RHSOp = RHS.getOperand(i);
408     bool LHSUndef = AllowUndefs && LHSOp.isUndef();
409     bool RHSUndef = AllowUndefs && RHSOp.isUndef();
410     auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
411     auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
412     if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
413       return false;
414     if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
415                                LHSOp.getValueType() != RHSOp.getValueType()))
416       return false;
417     if (!Match(LHSCst, RHSCst))
418       return false;
419   }
420   return true;
421 }
422 
423 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) {
424   switch (VecReduceOpcode) {
425   default:
426     llvm_unreachable("Expected VECREDUCE opcode");
427   case ISD::VECREDUCE_FADD:
428   case ISD::VECREDUCE_SEQ_FADD:
429   case ISD::VP_REDUCE_FADD:
430   case ISD::VP_REDUCE_SEQ_FADD:
431     return ISD::FADD;
432   case ISD::VECREDUCE_FMUL:
433   case ISD::VECREDUCE_SEQ_FMUL:
434   case ISD::VP_REDUCE_FMUL:
435   case ISD::VP_REDUCE_SEQ_FMUL:
436     return ISD::FMUL;
437   case ISD::VECREDUCE_ADD:
438   case ISD::VP_REDUCE_ADD:
439     return ISD::ADD;
440   case ISD::VECREDUCE_MUL:
441   case ISD::VP_REDUCE_MUL:
442     return ISD::MUL;
443   case ISD::VECREDUCE_AND:
444   case ISD::VP_REDUCE_AND:
445     return ISD::AND;
446   case ISD::VECREDUCE_OR:
447   case ISD::VP_REDUCE_OR:
448     return ISD::OR;
449   case ISD::VECREDUCE_XOR:
450   case ISD::VP_REDUCE_XOR:
451     return ISD::XOR;
452   case ISD::VECREDUCE_SMAX:
453   case ISD::VP_REDUCE_SMAX:
454     return ISD::SMAX;
455   case ISD::VECREDUCE_SMIN:
456   case ISD::VP_REDUCE_SMIN:
457     return ISD::SMIN;
458   case ISD::VECREDUCE_UMAX:
459   case ISD::VP_REDUCE_UMAX:
460     return ISD::UMAX;
461   case ISD::VECREDUCE_UMIN:
462   case ISD::VP_REDUCE_UMIN:
463     return ISD::UMIN;
464   case ISD::VECREDUCE_FMAX:
465   case ISD::VP_REDUCE_FMAX:
466     return ISD::FMAXNUM;
467   case ISD::VECREDUCE_FMIN:
468   case ISD::VP_REDUCE_FMIN:
469     return ISD::FMINNUM;
470   case ISD::VECREDUCE_FMAXIMUM:
471     return ISD::FMAXIMUM;
472   case ISD::VECREDUCE_FMINIMUM:
473     return ISD::FMINIMUM;
474   }
475 }
476 
477 bool ISD::isVPOpcode(unsigned Opcode) {
478   switch (Opcode) {
479   default:
480     return false;
481 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...)                                    \
482   case ISD::VPSD:                                                              \
483     return true;
484 #include "llvm/IR/VPIntrinsics.def"
485   }
486 }
487 
488 bool ISD::isVPBinaryOp(unsigned Opcode) {
489   switch (Opcode) {
490   default:
491     break;
492 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
493 #define VP_PROPERTY_BINARYOP return true;
494 #define END_REGISTER_VP_SDNODE(VPSD) break;
495 #include "llvm/IR/VPIntrinsics.def"
496   }
497   return false;
498 }
499 
500 bool ISD::isVPReduction(unsigned Opcode) {
501   switch (Opcode) {
502   default:
503     break;
504 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
505 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true;
506 #define END_REGISTER_VP_SDNODE(VPSD) break;
507 #include "llvm/IR/VPIntrinsics.def"
508   }
509   return false;
510 }
511 
512 /// The operand position of the vector mask.
513 std::optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
514   switch (Opcode) {
515   default:
516     return std::nullopt;
517 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...)         \
518   case ISD::VPSD:                                                              \
519     return MASKPOS;
520 #include "llvm/IR/VPIntrinsics.def"
521   }
522 }
523 
524 /// The operand position of the explicit vector length parameter.
525 std::optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
526   switch (Opcode) {
527   default:
528     return std::nullopt;
529 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS)      \
530   case ISD::VPSD:                                                              \
531     return EVLPOS;
532 #include "llvm/IR/VPIntrinsics.def"
533   }
534 }
535 
536 std::optional<unsigned> ISD::getBaseOpcodeForVP(unsigned VPOpcode,
537                                                 bool hasFPExcept) {
538   // FIXME: Return strict opcodes in case of fp exceptions.
539   switch (VPOpcode) {
540   default:
541     return std::nullopt;
542 #define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC:
543 #define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC;
544 #define END_REGISTER_VP_SDNODE(VPOPC) break;
545 #include "llvm/IR/VPIntrinsics.def"
546   }
547   return std::nullopt;
548 }
549 
550 unsigned ISD::getVPForBaseOpcode(unsigned Opcode) {
551   switch (Opcode) {
552   default:
553     llvm_unreachable("can not translate this Opcode to VP.");
554 #define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break;
555 #define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC:
556 #define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC;
557 #include "llvm/IR/VPIntrinsics.def"
558   }
559 }
560 
561 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
562   switch (ExtType) {
563   case ISD::EXTLOAD:
564     return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
565   case ISD::SEXTLOAD:
566     return ISD::SIGN_EXTEND;
567   case ISD::ZEXTLOAD:
568     return ISD::ZERO_EXTEND;
569   default:
570     break;
571   }
572 
573   llvm_unreachable("Invalid LoadExtType");
574 }
575 
576 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
577   // To perform this operation, we just need to swap the L and G bits of the
578   // operation.
579   unsigned OldL = (Operation >> 2) & 1;
580   unsigned OldG = (Operation >> 1) & 1;
581   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
582                        (OldL << 1) |       // New G bit
583                        (OldG << 2));       // New L bit.
584 }
585 
586 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
587   unsigned Operation = Op;
588   if (isIntegerLike)
589     Operation ^= 7;   // Flip L, G, E bits, but not U.
590   else
591     Operation ^= 15;  // Flip all of the condition bits.
592 
593   if (Operation > ISD::SETTRUE2)
594     Operation &= ~8;  // Don't let N and U bits get set.
595 
596   return ISD::CondCode(Operation);
597 }
598 
599 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
600   return getSetCCInverseImpl(Op, Type.isInteger());
601 }
602 
603 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
604                                                bool isIntegerLike) {
605   return getSetCCInverseImpl(Op, isIntegerLike);
606 }
607 
608 /// For an integer comparison, return 1 if the comparison is a signed operation
609 /// and 2 if the result is an unsigned comparison. Return zero if the operation
610 /// does not depend on the sign of the input (setne and seteq).
611 static int isSignedOp(ISD::CondCode Opcode) {
612   switch (Opcode) {
613   default: llvm_unreachable("Illegal integer setcc operation!");
614   case ISD::SETEQ:
615   case ISD::SETNE: return 0;
616   case ISD::SETLT:
617   case ISD::SETLE:
618   case ISD::SETGT:
619   case ISD::SETGE: return 1;
620   case ISD::SETULT:
621   case ISD::SETULE:
622   case ISD::SETUGT:
623   case ISD::SETUGE: return 2;
624   }
625 }
626 
627 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
628                                        EVT Type) {
629   bool IsInteger = Type.isInteger();
630   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
631     // Cannot fold a signed integer setcc with an unsigned integer setcc.
632     return ISD::SETCC_INVALID;
633 
634   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
635 
636   // If the N and U bits get set, then the resultant comparison DOES suddenly
637   // care about orderedness, and it is true when ordered.
638   if (Op > ISD::SETTRUE2)
639     Op &= ~16;     // Clear the U bit if the N bit is set.
640 
641   // Canonicalize illegal integer setcc's.
642   if (IsInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
643     Op = ISD::SETNE;
644 
645   return ISD::CondCode(Op);
646 }
647 
648 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
649                                         EVT Type) {
650   bool IsInteger = Type.isInteger();
651   if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
652     // Cannot fold a signed setcc with an unsigned setcc.
653     return ISD::SETCC_INVALID;
654 
655   // Combine all of the condition bits.
656   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
657 
658   // Canonicalize illegal integer setcc's.
659   if (IsInteger) {
660     switch (Result) {
661     default: break;
662     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
663     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
664     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
665     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
666     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
667     }
668   }
669 
670   return Result;
671 }
672 
673 //===----------------------------------------------------------------------===//
674 //                           SDNode Profile Support
675 //===----------------------------------------------------------------------===//
676 
677 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
678 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
679   ID.AddInteger(OpC);
680 }
681 
682 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
683 /// solely with their pointer.
684 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
685   ID.AddPointer(VTList.VTs);
686 }
687 
688 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
689 static void AddNodeIDOperands(FoldingSetNodeID &ID,
690                               ArrayRef<SDValue> Ops) {
691   for (const auto &Op : Ops) {
692     ID.AddPointer(Op.getNode());
693     ID.AddInteger(Op.getResNo());
694   }
695 }
696 
697 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
698 static void AddNodeIDOperands(FoldingSetNodeID &ID,
699                               ArrayRef<SDUse> Ops) {
700   for (const auto &Op : Ops) {
701     ID.AddPointer(Op.getNode());
702     ID.AddInteger(Op.getResNo());
703   }
704 }
705 
706 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC,
707                           SDVTList VTList, ArrayRef<SDValue> OpList) {
708   AddNodeIDOpcode(ID, OpC);
709   AddNodeIDValueTypes(ID, VTList);
710   AddNodeIDOperands(ID, OpList);
711 }
712 
713 /// If this is an SDNode with special info, add this info to the NodeID data.
714 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
715   switch (N->getOpcode()) {
716   case ISD::TargetExternalSymbol:
717   case ISD::ExternalSymbol:
718   case ISD::MCSymbol:
719     llvm_unreachable("Should only be used on nodes with operands");
720   default: break;  // Normal nodes don't need extra info.
721   case ISD::TargetConstant:
722   case ISD::Constant: {
723     const ConstantSDNode *C = cast<ConstantSDNode>(N);
724     ID.AddPointer(C->getConstantIntValue());
725     ID.AddBoolean(C->isOpaque());
726     break;
727   }
728   case ISD::TargetConstantFP:
729   case ISD::ConstantFP:
730     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
731     break;
732   case ISD::TargetGlobalAddress:
733   case ISD::GlobalAddress:
734   case ISD::TargetGlobalTLSAddress:
735   case ISD::GlobalTLSAddress: {
736     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
737     ID.AddPointer(GA->getGlobal());
738     ID.AddInteger(GA->getOffset());
739     ID.AddInteger(GA->getTargetFlags());
740     break;
741   }
742   case ISD::BasicBlock:
743     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
744     break;
745   case ISD::Register:
746     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
747     break;
748   case ISD::RegisterMask:
749     ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
750     break;
751   case ISD::SRCVALUE:
752     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
753     break;
754   case ISD::FrameIndex:
755   case ISD::TargetFrameIndex:
756     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
757     break;
758   case ISD::LIFETIME_START:
759   case ISD::LIFETIME_END:
760     if (cast<LifetimeSDNode>(N)->hasOffset()) {
761       ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
762       ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
763     }
764     break;
765   case ISD::PSEUDO_PROBE:
766     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
767     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
768     ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
769     break;
770   case ISD::JumpTable:
771   case ISD::TargetJumpTable:
772     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
773     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
774     break;
775   case ISD::ConstantPool:
776   case ISD::TargetConstantPool: {
777     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
778     ID.AddInteger(CP->getAlign().value());
779     ID.AddInteger(CP->getOffset());
780     if (CP->isMachineConstantPoolEntry())
781       CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
782     else
783       ID.AddPointer(CP->getConstVal());
784     ID.AddInteger(CP->getTargetFlags());
785     break;
786   }
787   case ISD::TargetIndex: {
788     const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
789     ID.AddInteger(TI->getIndex());
790     ID.AddInteger(TI->getOffset());
791     ID.AddInteger(TI->getTargetFlags());
792     break;
793   }
794   case ISD::LOAD: {
795     const LoadSDNode *LD = cast<LoadSDNode>(N);
796     ID.AddInteger(LD->getMemoryVT().getRawBits());
797     ID.AddInteger(LD->getRawSubclassData());
798     ID.AddInteger(LD->getPointerInfo().getAddrSpace());
799     ID.AddInteger(LD->getMemOperand()->getFlags());
800     break;
801   }
802   case ISD::STORE: {
803     const StoreSDNode *ST = cast<StoreSDNode>(N);
804     ID.AddInteger(ST->getMemoryVT().getRawBits());
805     ID.AddInteger(ST->getRawSubclassData());
806     ID.AddInteger(ST->getPointerInfo().getAddrSpace());
807     ID.AddInteger(ST->getMemOperand()->getFlags());
808     break;
809   }
810   case ISD::VP_LOAD: {
811     const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
812     ID.AddInteger(ELD->getMemoryVT().getRawBits());
813     ID.AddInteger(ELD->getRawSubclassData());
814     ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
815     ID.AddInteger(ELD->getMemOperand()->getFlags());
816     break;
817   }
818   case ISD::VP_STORE: {
819     const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
820     ID.AddInteger(EST->getMemoryVT().getRawBits());
821     ID.AddInteger(EST->getRawSubclassData());
822     ID.AddInteger(EST->getPointerInfo().getAddrSpace());
823     ID.AddInteger(EST->getMemOperand()->getFlags());
824     break;
825   }
826   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
827     const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N);
828     ID.AddInteger(SLD->getMemoryVT().getRawBits());
829     ID.AddInteger(SLD->getRawSubclassData());
830     ID.AddInteger(SLD->getPointerInfo().getAddrSpace());
831     break;
832   }
833   case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
834     const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N);
835     ID.AddInteger(SST->getMemoryVT().getRawBits());
836     ID.AddInteger(SST->getRawSubclassData());
837     ID.AddInteger(SST->getPointerInfo().getAddrSpace());
838     break;
839   }
840   case ISD::VP_GATHER: {
841     const VPGatherSDNode *EG = cast<VPGatherSDNode>(N);
842     ID.AddInteger(EG->getMemoryVT().getRawBits());
843     ID.AddInteger(EG->getRawSubclassData());
844     ID.AddInteger(EG->getPointerInfo().getAddrSpace());
845     ID.AddInteger(EG->getMemOperand()->getFlags());
846     break;
847   }
848   case ISD::VP_SCATTER: {
849     const VPScatterSDNode *ES = cast<VPScatterSDNode>(N);
850     ID.AddInteger(ES->getMemoryVT().getRawBits());
851     ID.AddInteger(ES->getRawSubclassData());
852     ID.AddInteger(ES->getPointerInfo().getAddrSpace());
853     ID.AddInteger(ES->getMemOperand()->getFlags());
854     break;
855   }
856   case ISD::MLOAD: {
857     const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
858     ID.AddInteger(MLD->getMemoryVT().getRawBits());
859     ID.AddInteger(MLD->getRawSubclassData());
860     ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
861     ID.AddInteger(MLD->getMemOperand()->getFlags());
862     break;
863   }
864   case ISD::MSTORE: {
865     const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
866     ID.AddInteger(MST->getMemoryVT().getRawBits());
867     ID.AddInteger(MST->getRawSubclassData());
868     ID.AddInteger(MST->getPointerInfo().getAddrSpace());
869     ID.AddInteger(MST->getMemOperand()->getFlags());
870     break;
871   }
872   case ISD::MGATHER: {
873     const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
874     ID.AddInteger(MG->getMemoryVT().getRawBits());
875     ID.AddInteger(MG->getRawSubclassData());
876     ID.AddInteger(MG->getPointerInfo().getAddrSpace());
877     ID.AddInteger(MG->getMemOperand()->getFlags());
878     break;
879   }
880   case ISD::MSCATTER: {
881     const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
882     ID.AddInteger(MS->getMemoryVT().getRawBits());
883     ID.AddInteger(MS->getRawSubclassData());
884     ID.AddInteger(MS->getPointerInfo().getAddrSpace());
885     ID.AddInteger(MS->getMemOperand()->getFlags());
886     break;
887   }
888   case ISD::ATOMIC_CMP_SWAP:
889   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
890   case ISD::ATOMIC_SWAP:
891   case ISD::ATOMIC_LOAD_ADD:
892   case ISD::ATOMIC_LOAD_SUB:
893   case ISD::ATOMIC_LOAD_AND:
894   case ISD::ATOMIC_LOAD_CLR:
895   case ISD::ATOMIC_LOAD_OR:
896   case ISD::ATOMIC_LOAD_XOR:
897   case ISD::ATOMIC_LOAD_NAND:
898   case ISD::ATOMIC_LOAD_MIN:
899   case ISD::ATOMIC_LOAD_MAX:
900   case ISD::ATOMIC_LOAD_UMIN:
901   case ISD::ATOMIC_LOAD_UMAX:
902   case ISD::ATOMIC_LOAD:
903   case ISD::ATOMIC_STORE: {
904     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
905     ID.AddInteger(AT->getMemoryVT().getRawBits());
906     ID.AddInteger(AT->getRawSubclassData());
907     ID.AddInteger(AT->getPointerInfo().getAddrSpace());
908     ID.AddInteger(AT->getMemOperand()->getFlags());
909     break;
910   }
911   case ISD::VECTOR_SHUFFLE: {
912     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
913     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
914          i != e; ++i)
915       ID.AddInteger(SVN->getMaskElt(i));
916     break;
917   }
918   case ISD::TargetBlockAddress:
919   case ISD::BlockAddress: {
920     const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
921     ID.AddPointer(BA->getBlockAddress());
922     ID.AddInteger(BA->getOffset());
923     ID.AddInteger(BA->getTargetFlags());
924     break;
925   }
926   case ISD::AssertAlign:
927     ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value());
928     break;
929   case ISD::PREFETCH:
930   case ISD::INTRINSIC_VOID:
931   case ISD::INTRINSIC_W_CHAIN:
932     // Handled by MemIntrinsicSDNode check after the switch.
933     break;
934   } // end switch (N->getOpcode())
935 
936   // MemIntrinsic nodes could also have subclass data, address spaces, and flags
937   // to check.
938   if (auto *MN = dyn_cast<MemIntrinsicSDNode>(N)) {
939     ID.AddInteger(MN->getRawSubclassData());
940     ID.AddInteger(MN->getPointerInfo().getAddrSpace());
941     ID.AddInteger(MN->getMemOperand()->getFlags());
942     ID.AddInteger(MN->getMemoryVT().getRawBits());
943   }
944 }
945 
946 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
947 /// data.
948 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
949   AddNodeIDOpcode(ID, N->getOpcode());
950   // Add the return value info.
951   AddNodeIDValueTypes(ID, N->getVTList());
952   // Add the operand info.
953   AddNodeIDOperands(ID, N->ops());
954 
955   // Handle SDNode leafs with special info.
956   AddNodeIDCustom(ID, N);
957 }
958 
959 //===----------------------------------------------------------------------===//
960 //                              SelectionDAG Class
961 //===----------------------------------------------------------------------===//
962 
963 /// doNotCSE - Return true if CSE should not be performed for this node.
964 static bool doNotCSE(SDNode *N) {
965   if (N->getValueType(0) == MVT::Glue)
966     return true; // Never CSE anything that produces a glue result.
967 
968   switch (N->getOpcode()) {
969   default: break;
970   case ISD::HANDLENODE:
971   case ISD::EH_LABEL:
972     return true;   // Never CSE these nodes.
973   }
974 
975   // Check that remaining values produced are not flags.
976   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
977     if (N->getValueType(i) == MVT::Glue)
978       return true; // Never CSE anything that produces a glue result.
979 
980   return false;
981 }
982 
983 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
984 /// SelectionDAG.
985 void SelectionDAG::RemoveDeadNodes() {
986   // Create a dummy node (which is not added to allnodes), that adds a reference
987   // to the root node, preventing it from being deleted.
988   HandleSDNode Dummy(getRoot());
989 
990   SmallVector<SDNode*, 128> DeadNodes;
991 
992   // Add all obviously-dead nodes to the DeadNodes worklist.
993   for (SDNode &Node : allnodes())
994     if (Node.use_empty())
995       DeadNodes.push_back(&Node);
996 
997   RemoveDeadNodes(DeadNodes);
998 
999   // If the root changed (e.g. it was a dead load, update the root).
1000   setRoot(Dummy.getValue());
1001 }
1002 
1003 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
1004 /// given list, and any nodes that become unreachable as a result.
1005 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
1006 
1007   // Process the worklist, deleting the nodes and adding their uses to the
1008   // worklist.
1009   while (!DeadNodes.empty()) {
1010     SDNode *N = DeadNodes.pop_back_val();
1011     // Skip to next node if we've already managed to delete the node. This could
1012     // happen if replacing a node causes a node previously added to the node to
1013     // be deleted.
1014     if (N->getOpcode() == ISD::DELETED_NODE)
1015       continue;
1016 
1017     for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1018       DUL->NodeDeleted(N, nullptr);
1019 
1020     // Take the node out of the appropriate CSE map.
1021     RemoveNodeFromCSEMaps(N);
1022 
1023     // Next, brutally remove the operand list.  This is safe to do, as there are
1024     // no cycles in the graph.
1025     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
1026       SDUse &Use = *I++;
1027       SDNode *Operand = Use.getNode();
1028       Use.set(SDValue());
1029 
1030       // Now that we removed this operand, see if there are no uses of it left.
1031       if (Operand->use_empty())
1032         DeadNodes.push_back(Operand);
1033     }
1034 
1035     DeallocateNode(N);
1036   }
1037 }
1038 
1039 void SelectionDAG::RemoveDeadNode(SDNode *N){
1040   SmallVector<SDNode*, 16> DeadNodes(1, N);
1041 
1042   // Create a dummy node that adds a reference to the root node, preventing
1043   // it from being deleted.  (This matters if the root is an operand of the
1044   // dead node.)
1045   HandleSDNode Dummy(getRoot());
1046 
1047   RemoveDeadNodes(DeadNodes);
1048 }
1049 
1050 void SelectionDAG::DeleteNode(SDNode *N) {
1051   // First take this out of the appropriate CSE map.
1052   RemoveNodeFromCSEMaps(N);
1053 
1054   // Finally, remove uses due to operands of this node, remove from the
1055   // AllNodes list, and delete the node.
1056   DeleteNodeNotInCSEMaps(N);
1057 }
1058 
1059 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
1060   assert(N->getIterator() != AllNodes.begin() &&
1061          "Cannot delete the entry node!");
1062   assert(N->use_empty() && "Cannot delete a node that is not dead!");
1063 
1064   // Drop all of the operands and decrement used node's use counts.
1065   N->DropOperands();
1066 
1067   DeallocateNode(N);
1068 }
1069 
1070 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
1071   assert(!(V->isVariadic() && isParameter));
1072   if (isParameter)
1073     ByvalParmDbgValues.push_back(V);
1074   else
1075     DbgValues.push_back(V);
1076   for (const SDNode *Node : V->getSDNodes())
1077     if (Node)
1078       DbgValMap[Node].push_back(V);
1079 }
1080 
1081 void SDDbgInfo::erase(const SDNode *Node) {
1082   DbgValMapType::iterator I = DbgValMap.find(Node);
1083   if (I == DbgValMap.end())
1084     return;
1085   for (auto &Val: I->second)
1086     Val->setIsInvalidated();
1087   DbgValMap.erase(I);
1088 }
1089 
1090 void SelectionDAG::DeallocateNode(SDNode *N) {
1091   // If we have operands, deallocate them.
1092   removeOperands(N);
1093 
1094   NodeAllocator.Deallocate(AllNodes.remove(N));
1095 
1096   // Set the opcode to DELETED_NODE to help catch bugs when node
1097   // memory is reallocated.
1098   // FIXME: There are places in SDag that have grown a dependency on the opcode
1099   // value in the released node.
1100   __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
1101   N->NodeType = ISD::DELETED_NODE;
1102 
1103   // If any of the SDDbgValue nodes refer to this SDNode, invalidate
1104   // them and forget about that node.
1105   DbgInfo->erase(N);
1106 
1107   // Invalidate extra info.
1108   SDEI.erase(N);
1109 }
1110 
1111 #ifndef NDEBUG
1112 /// VerifySDNode - Check the given SDNode.  Aborts if it is invalid.
1113 static void VerifySDNode(SDNode *N) {
1114   switch (N->getOpcode()) {
1115   default:
1116     break;
1117   case ISD::BUILD_PAIR: {
1118     EVT VT = N->getValueType(0);
1119     assert(N->getNumValues() == 1 && "Too many results!");
1120     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1121            "Wrong return type!");
1122     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1123     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1124            "Mismatched operand types!");
1125     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1126            "Wrong operand type!");
1127     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1128            "Wrong return type size");
1129     break;
1130   }
1131   case ISD::BUILD_VECTOR: {
1132     assert(N->getNumValues() == 1 && "Too many results!");
1133     assert(N->getValueType(0).isVector() && "Wrong return type!");
1134     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1135            "Wrong number of operands!");
1136     EVT EltVT = N->getValueType(0).getVectorElementType();
1137     for (const SDUse &Op : N->ops()) {
1138       assert((Op.getValueType() == EltVT ||
1139               (EltVT.isInteger() && Op.getValueType().isInteger() &&
1140                EltVT.bitsLE(Op.getValueType()))) &&
1141              "Wrong operand type!");
1142       assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1143              "Operands must all have the same type");
1144     }
1145     break;
1146   }
1147   }
1148 }
1149 #endif // NDEBUG
1150 
1151 /// Insert a newly allocated node into the DAG.
1152 ///
1153 /// Handles insertion into the all nodes list and CSE map, as well as
1154 /// verification and other common operations when a new node is allocated.
1155 void SelectionDAG::InsertNode(SDNode *N) {
1156   AllNodes.push_back(N);
1157 #ifndef NDEBUG
1158   N->PersistentId = NextPersistentId++;
1159   VerifySDNode(N);
1160 #endif
1161   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1162     DUL->NodeInserted(N);
1163 }
1164 
1165 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1166 /// correspond to it.  This is useful when we're about to delete or repurpose
1167 /// the node.  We don't want future request for structurally identical nodes
1168 /// to return N anymore.
1169 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1170   bool Erased = false;
1171   switch (N->getOpcode()) {
1172   case ISD::HANDLENODE: return false;  // noop.
1173   case ISD::CONDCODE:
1174     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1175            "Cond code doesn't exist!");
1176     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1177     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1178     break;
1179   case ISD::ExternalSymbol:
1180     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1181     break;
1182   case ISD::TargetExternalSymbol: {
1183     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1184     Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1185         ESN->getSymbol(), ESN->getTargetFlags()));
1186     break;
1187   }
1188   case ISD::MCSymbol: {
1189     auto *MCSN = cast<MCSymbolSDNode>(N);
1190     Erased = MCSymbols.erase(MCSN->getMCSymbol());
1191     break;
1192   }
1193   case ISD::VALUETYPE: {
1194     EVT VT = cast<VTSDNode>(N)->getVT();
1195     if (VT.isExtended()) {
1196       Erased = ExtendedValueTypeNodes.erase(VT);
1197     } else {
1198       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1199       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1200     }
1201     break;
1202   }
1203   default:
1204     // Remove it from the CSE Map.
1205     assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1206     assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1207     Erased = CSEMap.RemoveNode(N);
1208     break;
1209   }
1210 #ifndef NDEBUG
1211   // Verify that the node was actually in one of the CSE maps, unless it has a
1212   // glue result (which cannot be CSE'd) or is one of the special cases that are
1213   // not subject to CSE.
1214   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1215       !N->isMachineOpcode() && !doNotCSE(N)) {
1216     N->dump(this);
1217     dbgs() << "\n";
1218     llvm_unreachable("Node is not in map!");
1219   }
1220 #endif
1221   return Erased;
1222 }
1223 
1224 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1225 /// maps and modified in place. Add it back to the CSE maps, unless an identical
1226 /// node already exists, in which case transfer all its users to the existing
1227 /// node. This transfer can potentially trigger recursive merging.
1228 void
1229 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1230   // For node types that aren't CSE'd, just act as if no identical node
1231   // already exists.
1232   if (!doNotCSE(N)) {
1233     SDNode *Existing = CSEMap.GetOrInsertNode(N);
1234     if (Existing != N) {
1235       // If there was already an existing matching node, use ReplaceAllUsesWith
1236       // to replace the dead one with the existing one.  This can cause
1237       // recursive merging of other unrelated nodes down the line.
1238       ReplaceAllUsesWith(N, Existing);
1239 
1240       // N is now dead. Inform the listeners and delete it.
1241       for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1242         DUL->NodeDeleted(N, Existing);
1243       DeleteNodeNotInCSEMaps(N);
1244       return;
1245     }
1246   }
1247 
1248   // If the node doesn't already exist, we updated it.  Inform listeners.
1249   for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1250     DUL->NodeUpdated(N);
1251 }
1252 
1253 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1254 /// were replaced with those specified.  If this node is never memoized,
1255 /// return null, otherwise return a pointer to the slot it would take.  If a
1256 /// node already exists with these operands, the slot will be non-null.
1257 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1258                                            void *&InsertPos) {
1259   if (doNotCSE(N))
1260     return nullptr;
1261 
1262   SDValue Ops[] = { Op };
1263   FoldingSetNodeID ID;
1264   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1265   AddNodeIDCustom(ID, N);
1266   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1267   if (Node)
1268     Node->intersectFlagsWith(N->getFlags());
1269   return Node;
1270 }
1271 
1272 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1273 /// were replaced with those specified.  If this node is never memoized,
1274 /// return null, otherwise return a pointer to the slot it would take.  If a
1275 /// node already exists with these operands, the slot will be non-null.
1276 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1277                                            SDValue Op1, SDValue Op2,
1278                                            void *&InsertPos) {
1279   if (doNotCSE(N))
1280     return nullptr;
1281 
1282   SDValue Ops[] = { Op1, Op2 };
1283   FoldingSetNodeID ID;
1284   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1285   AddNodeIDCustom(ID, N);
1286   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1287   if (Node)
1288     Node->intersectFlagsWith(N->getFlags());
1289   return Node;
1290 }
1291 
1292 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1293 /// were replaced with those specified.  If this node is never memoized,
1294 /// return null, otherwise return a pointer to the slot it would take.  If a
1295 /// node already exists with these operands, the slot will be non-null.
1296 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1297                                            void *&InsertPos) {
1298   if (doNotCSE(N))
1299     return nullptr;
1300 
1301   FoldingSetNodeID ID;
1302   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1303   AddNodeIDCustom(ID, N);
1304   SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1305   if (Node)
1306     Node->intersectFlagsWith(N->getFlags());
1307   return Node;
1308 }
1309 
1310 Align SelectionDAG::getEVTAlign(EVT VT) const {
1311   Type *Ty = VT == MVT::iPTR ? PointerType::get(*getContext(), 0)
1312                              : VT.getTypeForEVT(*getContext());
1313 
1314   return getDataLayout().getABITypeAlign(Ty);
1315 }
1316 
1317 // EntryNode could meaningfully have debug info if we can find it...
1318 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOptLevel OL)
1319     : TM(tm), OptLevel(OL), EntryNode(ISD::EntryToken, 0, DebugLoc(),
1320                                       getVTList(MVT::Other, MVT::Glue)),
1321       Root(getEntryNode()) {
1322   InsertNode(&EntryNode);
1323   DbgInfo = new SDDbgInfo();
1324 }
1325 
1326 void SelectionDAG::init(MachineFunction &NewMF,
1327                         OptimizationRemarkEmitter &NewORE, Pass *PassPtr,
1328                         const TargetLibraryInfo *LibraryInfo,
1329                         UniformityInfo *NewUA, ProfileSummaryInfo *PSIin,
1330                         BlockFrequencyInfo *BFIin,
1331                         FunctionVarLocs const *VarLocs) {
1332   MF = &NewMF;
1333   SDAGISelPass = PassPtr;
1334   ORE = &NewORE;
1335   TLI = getSubtarget().getTargetLowering();
1336   TSI = getSubtarget().getSelectionDAGInfo();
1337   LibInfo = LibraryInfo;
1338   Context = &MF->getFunction().getContext();
1339   UA = NewUA;
1340   PSI = PSIin;
1341   BFI = BFIin;
1342   FnVarLocs = VarLocs;
1343 }
1344 
1345 SelectionDAG::~SelectionDAG() {
1346   assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1347   allnodes_clear();
1348   OperandRecycler.clear(OperandAllocator);
1349   delete DbgInfo;
1350 }
1351 
1352 bool SelectionDAG::shouldOptForSize() const {
1353   return MF->getFunction().hasOptSize() ||
1354       llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1355 }
1356 
1357 void SelectionDAG::allnodes_clear() {
1358   assert(&*AllNodes.begin() == &EntryNode);
1359   AllNodes.remove(AllNodes.begin());
1360   while (!AllNodes.empty())
1361     DeallocateNode(&AllNodes.front());
1362 #ifndef NDEBUG
1363   NextPersistentId = 0;
1364 #endif
1365 }
1366 
1367 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1368                                           void *&InsertPos) {
1369   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1370   if (N) {
1371     switch (N->getOpcode()) {
1372     default: break;
1373     case ISD::Constant:
1374     case ISD::ConstantFP:
1375       llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1376                        "debug location.  Use another overload.");
1377     }
1378   }
1379   return N;
1380 }
1381 
1382 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1383                                           const SDLoc &DL, void *&InsertPos) {
1384   SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1385   if (N) {
1386     switch (N->getOpcode()) {
1387     case ISD::Constant:
1388     case ISD::ConstantFP:
1389       // Erase debug location from the node if the node is used at several
1390       // different places. Do not propagate one location to all uses as it
1391       // will cause a worse single stepping debugging experience.
1392       if (N->getDebugLoc() != DL.getDebugLoc())
1393         N->setDebugLoc(DebugLoc());
1394       break;
1395     default:
1396       // When the node's point of use is located earlier in the instruction
1397       // sequence than its prior point of use, update its debug info to the
1398       // earlier location.
1399       if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1400         N->setDebugLoc(DL.getDebugLoc());
1401       break;
1402     }
1403   }
1404   return N;
1405 }
1406 
1407 void SelectionDAG::clear() {
1408   allnodes_clear();
1409   OperandRecycler.clear(OperandAllocator);
1410   OperandAllocator.Reset();
1411   CSEMap.clear();
1412 
1413   ExtendedValueTypeNodes.clear();
1414   ExternalSymbols.clear();
1415   TargetExternalSymbols.clear();
1416   MCSymbols.clear();
1417   SDEI.clear();
1418   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1419             static_cast<CondCodeSDNode*>(nullptr));
1420   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1421             static_cast<SDNode*>(nullptr));
1422 
1423   EntryNode.UseList = nullptr;
1424   InsertNode(&EntryNode);
1425   Root = getEntryNode();
1426   DbgInfo->clear();
1427 }
1428 
1429 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1430   return VT.bitsGT(Op.getValueType())
1431              ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1432              : getNode(ISD::FP_ROUND, DL, VT, Op,
1433                        getIntPtrConstant(0, DL, /*isTarget=*/true));
1434 }
1435 
1436 std::pair<SDValue, SDValue>
1437 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1438                                        const SDLoc &DL, EVT VT) {
1439   assert(!VT.bitsEq(Op.getValueType()) &&
1440          "Strict no-op FP extend/round not allowed.");
1441   SDValue Res =
1442       VT.bitsGT(Op.getValueType())
1443           ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1444           : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1445                     {Chain, Op, getIntPtrConstant(0, DL)});
1446 
1447   return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1448 }
1449 
1450 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1451   return VT.bitsGT(Op.getValueType()) ?
1452     getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1453     getNode(ISD::TRUNCATE, DL, VT, Op);
1454 }
1455 
1456 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1457   return VT.bitsGT(Op.getValueType()) ?
1458     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1459     getNode(ISD::TRUNCATE, DL, VT, Op);
1460 }
1461 
1462 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1463   return VT.bitsGT(Op.getValueType()) ?
1464     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1465     getNode(ISD::TRUNCATE, DL, VT, Op);
1466 }
1467 
1468 SDValue SelectionDAG::getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL,
1469                                                  EVT VT) {
1470   assert(!VT.isVector());
1471   auto Type = Op.getValueType();
1472   SDValue DestOp;
1473   if (Type == VT)
1474     return Op;
1475   auto Size = Op.getValueSizeInBits();
1476   DestOp = getBitcast(MVT::getIntegerVT(Size), Op);
1477   if (DestOp.getValueType() == VT)
1478     return DestOp;
1479 
1480   return getAnyExtOrTrunc(DestOp, DL, VT);
1481 }
1482 
1483 SDValue SelectionDAG::getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL,
1484                                                EVT VT) {
1485   assert(!VT.isVector());
1486   auto Type = Op.getValueType();
1487   SDValue DestOp;
1488   if (Type == VT)
1489     return Op;
1490   auto Size = Op.getValueSizeInBits();
1491   DestOp = getBitcast(MVT::getIntegerVT(Size), Op);
1492   if (DestOp.getValueType() == VT)
1493     return DestOp;
1494 
1495   return getSExtOrTrunc(DestOp, DL, VT);
1496 }
1497 
1498 SDValue SelectionDAG::getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL,
1499                                                EVT VT) {
1500   assert(!VT.isVector());
1501   auto Type = Op.getValueType();
1502   SDValue DestOp;
1503   if (Type == VT)
1504     return Op;
1505   auto Size = Op.getValueSizeInBits();
1506   DestOp = getBitcast(MVT::getIntegerVT(Size), Op);
1507   if (DestOp.getValueType() == VT)
1508     return DestOp;
1509 
1510   return getZExtOrTrunc(DestOp, DL, VT);
1511 }
1512 
1513 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1514                                         EVT OpVT) {
1515   if (VT.bitsLE(Op.getValueType()))
1516     return getNode(ISD::TRUNCATE, SL, VT, Op);
1517 
1518   TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1519   return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1520 }
1521 
1522 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1523   EVT OpVT = Op.getValueType();
1524   assert(VT.isInteger() && OpVT.isInteger() &&
1525          "Cannot getZeroExtendInReg FP types");
1526   assert(VT.isVector() == OpVT.isVector() &&
1527          "getZeroExtendInReg type should be vector iff the operand "
1528          "type is vector!");
1529   assert((!VT.isVector() ||
1530           VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1531          "Vector element counts must match in getZeroExtendInReg");
1532   assert(VT.bitsLE(OpVT) && "Not extending!");
1533   if (OpVT == VT)
1534     return Op;
1535   APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1536                                    VT.getScalarSizeInBits());
1537   return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1538 }
1539 
1540 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1541   // Only unsigned pointer semantics are supported right now. In the future this
1542   // might delegate to TLI to check pointer signedness.
1543   return getZExtOrTrunc(Op, DL, VT);
1544 }
1545 
1546 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1547   // Only unsigned pointer semantics are supported right now. In the future this
1548   // might delegate to TLI to check pointer signedness.
1549   return getZeroExtendInReg(Op, DL, VT);
1550 }
1551 
1552 SDValue SelectionDAG::getNegative(SDValue Val, const SDLoc &DL, EVT VT) {
1553   return getNode(ISD::SUB, DL, VT, getConstant(0, DL, VT), Val);
1554 }
1555 
1556 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1557 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1558   return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1559 }
1560 
1561 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1562   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1563   return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1564 }
1565 
1566 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val,
1567                                       SDValue Mask, SDValue EVL, EVT VT) {
1568   SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1569   return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL);
1570 }
1571 
1572 SDValue SelectionDAG::getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op,
1573                                          SDValue Mask, SDValue EVL) {
1574   return getVPZExtOrTrunc(DL, VT, Op, Mask, EVL);
1575 }
1576 
1577 SDValue SelectionDAG::getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op,
1578                                        SDValue Mask, SDValue EVL) {
1579   if (VT.bitsGT(Op.getValueType()))
1580     return getNode(ISD::VP_ZERO_EXTEND, DL, VT, Op, Mask, EVL);
1581   if (VT.bitsLT(Op.getValueType()))
1582     return getNode(ISD::VP_TRUNCATE, DL, VT, Op, Mask, EVL);
1583   return Op;
1584 }
1585 
1586 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1587                                       EVT OpVT) {
1588   if (!V)
1589     return getConstant(0, DL, VT);
1590 
1591   switch (TLI->getBooleanContents(OpVT)) {
1592   case TargetLowering::ZeroOrOneBooleanContent:
1593   case TargetLowering::UndefinedBooleanContent:
1594     return getConstant(1, DL, VT);
1595   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1596     return getAllOnesConstant(DL, VT);
1597   }
1598   llvm_unreachable("Unexpected boolean content enum!");
1599 }
1600 
1601 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1602                                   bool isT, bool isO) {
1603   EVT EltVT = VT.getScalarType();
1604   assert((EltVT.getSizeInBits() >= 64 ||
1605           (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1606          "getConstant with a uint64_t value that doesn't fit in the type!");
1607   return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1608 }
1609 
1610 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1611                                   bool isT, bool isO) {
1612   return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1613 }
1614 
1615 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1616                                   EVT VT, bool isT, bool isO) {
1617   assert(VT.isInteger() && "Cannot create FP integer constant!");
1618 
1619   EVT EltVT = VT.getScalarType();
1620   const ConstantInt *Elt = &Val;
1621 
1622   // In some cases the vector type is legal but the element type is illegal and
1623   // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
1624   // inserted value (the type does not need to match the vector element type).
1625   // Any extra bits introduced will be truncated away.
1626   if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1627                            TargetLowering::TypePromoteInteger) {
1628     EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1629     APInt NewVal;
1630     if (TLI->isSExtCheaperThanZExt(VT.getScalarType(), EltVT))
1631       NewVal = Elt->getValue().sextOrTrunc(EltVT.getSizeInBits());
1632     else
1633       NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1634     Elt = ConstantInt::get(*getContext(), NewVal);
1635   }
1636   // In other cases the element type is illegal and needs to be expanded, for
1637   // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1638   // the value into n parts and use a vector type with n-times the elements.
1639   // Then bitcast to the type requested.
1640   // Legalizing constants too early makes the DAGCombiner's job harder so we
1641   // only legalize if the DAG tells us we must produce legal types.
1642   else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1643            TLI->getTypeAction(*getContext(), EltVT) ==
1644                TargetLowering::TypeExpandInteger) {
1645     const APInt &NewVal = Elt->getValue();
1646     EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1647     unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1648 
1649     // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1650     if (VT.isScalableVector() ||
1651         TLI->isOperationLegal(ISD::SPLAT_VECTOR, VT)) {
1652       assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1653              "Can only handle an even split!");
1654       unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1655 
1656       SmallVector<SDValue, 2> ScalarParts;
1657       for (unsigned i = 0; i != Parts; ++i)
1658         ScalarParts.push_back(getConstant(
1659             NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1660             ViaEltVT, isT, isO));
1661 
1662       return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1663     }
1664 
1665     unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1666     EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1667 
1668     // Check the temporary vector is the correct size. If this fails then
1669     // getTypeToTransformTo() probably returned a type whose size (in bits)
1670     // isn't a power-of-2 factor of the requested type size.
1671     assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1672 
1673     SmallVector<SDValue, 2> EltParts;
1674     for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1675       EltParts.push_back(getConstant(
1676           NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1677           ViaEltVT, isT, isO));
1678 
1679     // EltParts is currently in little endian order. If we actually want
1680     // big-endian order then reverse it now.
1681     if (getDataLayout().isBigEndian())
1682       std::reverse(EltParts.begin(), EltParts.end());
1683 
1684     // The elements must be reversed when the element order is different
1685     // to the endianness of the elements (because the BITCAST is itself a
1686     // vector shuffle in this situation). However, we do not need any code to
1687     // perform this reversal because getConstant() is producing a vector
1688     // splat.
1689     // This situation occurs in MIPS MSA.
1690 
1691     SmallVector<SDValue, 8> Ops;
1692     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1693       llvm::append_range(Ops, EltParts);
1694 
1695     SDValue V =
1696         getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1697     return V;
1698   }
1699 
1700   assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1701          "APInt size does not match type size!");
1702   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1703   FoldingSetNodeID ID;
1704   AddNodeIDNode(ID, Opc, getVTList(EltVT), std::nullopt);
1705   ID.AddPointer(Elt);
1706   ID.AddBoolean(isO);
1707   void *IP = nullptr;
1708   SDNode *N = nullptr;
1709   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1710     if (!VT.isVector())
1711       return SDValue(N, 0);
1712 
1713   if (!N) {
1714     N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1715     CSEMap.InsertNode(N, IP);
1716     InsertNode(N);
1717     NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1718   }
1719 
1720   SDValue Result(N, 0);
1721   if (VT.isVector())
1722     Result = getSplat(VT, DL, Result);
1723   return Result;
1724 }
1725 
1726 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1727                                         bool isTarget) {
1728   return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1729 }
1730 
1731 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1732                                              const SDLoc &DL, bool LegalTypes) {
1733   assert(VT.isInteger() && "Shift amount is not an integer type!");
1734   EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1735   return getConstant(Val, DL, ShiftVT);
1736 }
1737 
1738 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1739                                            bool isTarget) {
1740   return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1741 }
1742 
1743 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1744                                     bool isTarget) {
1745   return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1746 }
1747 
1748 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1749                                     EVT VT, bool isTarget) {
1750   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1751 
1752   EVT EltVT = VT.getScalarType();
1753 
1754   // Do the map lookup using the actual bit pattern for the floating point
1755   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1756   // we don't have issues with SNANs.
1757   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1758   FoldingSetNodeID ID;
1759   AddNodeIDNode(ID, Opc, getVTList(EltVT), std::nullopt);
1760   ID.AddPointer(&V);
1761   void *IP = nullptr;
1762   SDNode *N = nullptr;
1763   if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1764     if (!VT.isVector())
1765       return SDValue(N, 0);
1766 
1767   if (!N) {
1768     N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1769     CSEMap.InsertNode(N, IP);
1770     InsertNode(N);
1771   }
1772 
1773   SDValue Result(N, 0);
1774   if (VT.isVector())
1775     Result = getSplat(VT, DL, Result);
1776   NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1777   return Result;
1778 }
1779 
1780 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1781                                     bool isTarget) {
1782   EVT EltVT = VT.getScalarType();
1783   if (EltVT == MVT::f32)
1784     return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1785   if (EltVT == MVT::f64)
1786     return getConstantFP(APFloat(Val), DL, VT, isTarget);
1787   if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1788       EltVT == MVT::f16 || EltVT == MVT::bf16) {
1789     bool Ignored;
1790     APFloat APF = APFloat(Val);
1791     APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1792                 &Ignored);
1793     return getConstantFP(APF, DL, VT, isTarget);
1794   }
1795   llvm_unreachable("Unsupported type in getConstantFP");
1796 }
1797 
1798 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1799                                        EVT VT, int64_t Offset, bool isTargetGA,
1800                                        unsigned TargetFlags) {
1801   assert((TargetFlags == 0 || isTargetGA) &&
1802          "Cannot set target flags on target-independent globals");
1803 
1804   // Truncate (with sign-extension) the offset value to the pointer size.
1805   unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1806   if (BitWidth < 64)
1807     Offset = SignExtend64(Offset, BitWidth);
1808 
1809   unsigned Opc;
1810   if (GV->isThreadLocal())
1811     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1812   else
1813     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1814 
1815   FoldingSetNodeID ID;
1816   AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt);
1817   ID.AddPointer(GV);
1818   ID.AddInteger(Offset);
1819   ID.AddInteger(TargetFlags);
1820   void *IP = nullptr;
1821   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1822     return SDValue(E, 0);
1823 
1824   auto *N = newSDNode<GlobalAddressSDNode>(
1825       Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1826   CSEMap.InsertNode(N, IP);
1827     InsertNode(N);
1828   return SDValue(N, 0);
1829 }
1830 
1831 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1832   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1833   FoldingSetNodeID ID;
1834   AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt);
1835   ID.AddInteger(FI);
1836   void *IP = nullptr;
1837   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1838     return SDValue(E, 0);
1839 
1840   auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1841   CSEMap.InsertNode(N, IP);
1842   InsertNode(N);
1843   return SDValue(N, 0);
1844 }
1845 
1846 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1847                                    unsigned TargetFlags) {
1848   assert((TargetFlags == 0 || isTarget) &&
1849          "Cannot set target flags on target-independent jump tables");
1850   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1851   FoldingSetNodeID ID;
1852   AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt);
1853   ID.AddInteger(JTI);
1854   ID.AddInteger(TargetFlags);
1855   void *IP = nullptr;
1856   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1857     return SDValue(E, 0);
1858 
1859   auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1860   CSEMap.InsertNode(N, IP);
1861   InsertNode(N);
1862   return SDValue(N, 0);
1863 }
1864 
1865 SDValue SelectionDAG::getJumpTableDebugInfo(int JTI, SDValue Chain,
1866                                             const SDLoc &DL) {
1867   EVT PTy = getTargetLoweringInfo().getPointerTy(getDataLayout());
1868   return getNode(ISD::JUMP_TABLE_DEBUG_INFO, DL, MVT::Glue, Chain,
1869                  getTargetConstant(static_cast<uint64_t>(JTI), DL, PTy, true));
1870 }
1871 
1872 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1873                                       MaybeAlign Alignment, int Offset,
1874                                       bool isTarget, unsigned TargetFlags) {
1875   assert((TargetFlags == 0 || isTarget) &&
1876          "Cannot set target flags on target-independent globals");
1877   if (!Alignment)
1878     Alignment = shouldOptForSize()
1879                     ? getDataLayout().getABITypeAlign(C->getType())
1880                     : getDataLayout().getPrefTypeAlign(C->getType());
1881   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1882   FoldingSetNodeID ID;
1883   AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt);
1884   ID.AddInteger(Alignment->value());
1885   ID.AddInteger(Offset);
1886   ID.AddPointer(C);
1887   ID.AddInteger(TargetFlags);
1888   void *IP = nullptr;
1889   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1890     return SDValue(E, 0);
1891 
1892   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1893                                           TargetFlags);
1894   CSEMap.InsertNode(N, IP);
1895   InsertNode(N);
1896   SDValue V = SDValue(N, 0);
1897   NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1898   return V;
1899 }
1900 
1901 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1902                                       MaybeAlign Alignment, int Offset,
1903                                       bool isTarget, unsigned TargetFlags) {
1904   assert((TargetFlags == 0 || isTarget) &&
1905          "Cannot set target flags on target-independent globals");
1906   if (!Alignment)
1907     Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1908   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1909   FoldingSetNodeID ID;
1910   AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt);
1911   ID.AddInteger(Alignment->value());
1912   ID.AddInteger(Offset);
1913   C->addSelectionDAGCSEId(ID);
1914   ID.AddInteger(TargetFlags);
1915   void *IP = nullptr;
1916   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1917     return SDValue(E, 0);
1918 
1919   auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1920                                           TargetFlags);
1921   CSEMap.InsertNode(N, IP);
1922   InsertNode(N);
1923   return SDValue(N, 0);
1924 }
1925 
1926 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1927   FoldingSetNodeID ID;
1928   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), std::nullopt);
1929   ID.AddPointer(MBB);
1930   void *IP = nullptr;
1931   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1932     return SDValue(E, 0);
1933 
1934   auto *N = newSDNode<BasicBlockSDNode>(MBB);
1935   CSEMap.InsertNode(N, IP);
1936   InsertNode(N);
1937   return SDValue(N, 0);
1938 }
1939 
1940 SDValue SelectionDAG::getValueType(EVT VT) {
1941   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1942       ValueTypeNodes.size())
1943     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1944 
1945   SDNode *&N = VT.isExtended() ?
1946     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1947 
1948   if (N) return SDValue(N, 0);
1949   N = newSDNode<VTSDNode>(VT);
1950   InsertNode(N);
1951   return SDValue(N, 0);
1952 }
1953 
1954 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1955   SDNode *&N = ExternalSymbols[Sym];
1956   if (N) return SDValue(N, 0);
1957   N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1958   InsertNode(N);
1959   return SDValue(N, 0);
1960 }
1961 
1962 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1963   SDNode *&N = MCSymbols[Sym];
1964   if (N)
1965     return SDValue(N, 0);
1966   N = newSDNode<MCSymbolSDNode>(Sym, VT);
1967   InsertNode(N);
1968   return SDValue(N, 0);
1969 }
1970 
1971 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1972                                               unsigned TargetFlags) {
1973   SDNode *&N =
1974       TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1975   if (N) return SDValue(N, 0);
1976   N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1977   InsertNode(N);
1978   return SDValue(N, 0);
1979 }
1980 
1981 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1982   if ((unsigned)Cond >= CondCodeNodes.size())
1983     CondCodeNodes.resize(Cond+1);
1984 
1985   if (!CondCodeNodes[Cond]) {
1986     auto *N = newSDNode<CondCodeSDNode>(Cond);
1987     CondCodeNodes[Cond] = N;
1988     InsertNode(N);
1989   }
1990 
1991   return SDValue(CondCodeNodes[Cond], 0);
1992 }
1993 
1994 SDValue SelectionDAG::getVScale(const SDLoc &DL, EVT VT, APInt MulImm,
1995                                 bool ConstantFold) {
1996   assert(MulImm.getBitWidth() == VT.getSizeInBits() &&
1997          "APInt size does not match type size!");
1998 
1999   if (MulImm == 0)
2000     return getConstant(0, DL, VT);
2001 
2002   if (ConstantFold) {
2003     const MachineFunction &MF = getMachineFunction();
2004     const Function &F = MF.getFunction();
2005     ConstantRange CR = getVScaleRange(&F, 64);
2006     if (const APInt *C = CR.getSingleElement())
2007       return getConstant(MulImm * C->getZExtValue(), DL, VT);
2008   }
2009 
2010   return getNode(ISD::VSCALE, DL, VT, getConstant(MulImm, DL, VT));
2011 }
2012 
2013 SDValue SelectionDAG::getElementCount(const SDLoc &DL, EVT VT, ElementCount EC,
2014                                       bool ConstantFold) {
2015   if (EC.isScalable())
2016     return getVScale(DL, VT,
2017                      APInt(VT.getSizeInBits(), EC.getKnownMinValue()));
2018 
2019   return getConstant(EC.getKnownMinValue(), DL, VT);
2020 }
2021 
2022 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) {
2023   APInt One(ResVT.getScalarSizeInBits(), 1);
2024   return getStepVector(DL, ResVT, One);
2025 }
2026 
2027 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) {
2028   assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
2029   if (ResVT.isScalableVector())
2030     return getNode(
2031         ISD::STEP_VECTOR, DL, ResVT,
2032         getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
2033 
2034   SmallVector<SDValue, 16> OpsStepConstants;
2035   for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
2036     OpsStepConstants.push_back(
2037         getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
2038   return getBuildVector(ResVT, DL, OpsStepConstants);
2039 }
2040 
2041 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
2042 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
2043 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
2044   std::swap(N1, N2);
2045   ShuffleVectorSDNode::commuteMask(M);
2046 }
2047 
2048 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
2049                                        SDValue N2, ArrayRef<int> Mask) {
2050   assert(VT.getVectorNumElements() == Mask.size() &&
2051          "Must have the same number of vector elements as mask elements!");
2052   assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2053          "Invalid VECTOR_SHUFFLE");
2054 
2055   // Canonicalize shuffle undef, undef -> undef
2056   if (N1.isUndef() && N2.isUndef())
2057     return getUNDEF(VT);
2058 
2059   // Validate that all indices in Mask are within the range of the elements
2060   // input to the shuffle.
2061   int NElts = Mask.size();
2062   assert(llvm::all_of(Mask,
2063                       [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
2064          "Index out of range");
2065 
2066   // Copy the mask so we can do any needed cleanup.
2067   SmallVector<int, 8> MaskVec(Mask);
2068 
2069   // Canonicalize shuffle v, v -> v, undef
2070   if (N1 == N2) {
2071     N2 = getUNDEF(VT);
2072     for (int i = 0; i != NElts; ++i)
2073       if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
2074   }
2075 
2076   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
2077   if (N1.isUndef())
2078     commuteShuffle(N1, N2, MaskVec);
2079 
2080   if (TLI->hasVectorBlend()) {
2081     // If shuffling a splat, try to blend the splat instead. We do this here so
2082     // that even when this arises during lowering we don't have to re-handle it.
2083     auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
2084       BitVector UndefElements;
2085       SDValue Splat = BV->getSplatValue(&UndefElements);
2086       if (!Splat)
2087         return;
2088 
2089       for (int i = 0; i < NElts; ++i) {
2090         if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
2091           continue;
2092 
2093         // If this input comes from undef, mark it as such.
2094         if (UndefElements[MaskVec[i] - Offset]) {
2095           MaskVec[i] = -1;
2096           continue;
2097         }
2098 
2099         // If we can blend a non-undef lane, use that instead.
2100         if (!UndefElements[i])
2101           MaskVec[i] = i + Offset;
2102       }
2103     };
2104     if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
2105       BlendSplat(N1BV, 0);
2106     if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
2107       BlendSplat(N2BV, NElts);
2108   }
2109 
2110   // Canonicalize all index into lhs, -> shuffle lhs, undef
2111   // Canonicalize all index into rhs, -> shuffle rhs, undef
2112   bool AllLHS = true, AllRHS = true;
2113   bool N2Undef = N2.isUndef();
2114   for (int i = 0; i != NElts; ++i) {
2115     if (MaskVec[i] >= NElts) {
2116       if (N2Undef)
2117         MaskVec[i] = -1;
2118       else
2119         AllLHS = false;
2120     } else if (MaskVec[i] >= 0) {
2121       AllRHS = false;
2122     }
2123   }
2124   if (AllLHS && AllRHS)
2125     return getUNDEF(VT);
2126   if (AllLHS && !N2Undef)
2127     N2 = getUNDEF(VT);
2128   if (AllRHS) {
2129     N1 = getUNDEF(VT);
2130     commuteShuffle(N1, N2, MaskVec);
2131   }
2132   // Reset our undef status after accounting for the mask.
2133   N2Undef = N2.isUndef();
2134   // Re-check whether both sides ended up undef.
2135   if (N1.isUndef() && N2Undef)
2136     return getUNDEF(VT);
2137 
2138   // If Identity shuffle return that node.
2139   bool Identity = true, AllSame = true;
2140   for (int i = 0; i != NElts; ++i) {
2141     if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
2142     if (MaskVec[i] != MaskVec[0]) AllSame = false;
2143   }
2144   if (Identity && NElts)
2145     return N1;
2146 
2147   // Shuffling a constant splat doesn't change the result.
2148   if (N2Undef) {
2149     SDValue V = N1;
2150 
2151     // Look through any bitcasts. We check that these don't change the number
2152     // (and size) of elements and just changes their types.
2153     while (V.getOpcode() == ISD::BITCAST)
2154       V = V->getOperand(0);
2155 
2156     // A splat should always show up as a build vector node.
2157     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2158       BitVector UndefElements;
2159       SDValue Splat = BV->getSplatValue(&UndefElements);
2160       // If this is a splat of an undef, shuffling it is also undef.
2161       if (Splat && Splat.isUndef())
2162         return getUNDEF(VT);
2163 
2164       bool SameNumElts =
2165           V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
2166 
2167       // We only have a splat which can skip shuffles if there is a splatted
2168       // value and no undef lanes rearranged by the shuffle.
2169       if (Splat && UndefElements.none()) {
2170         // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
2171         // number of elements match or the value splatted is a zero constant.
2172         if (SameNumElts || isNullConstant(Splat))
2173           return N1;
2174       }
2175 
2176       // If the shuffle itself creates a splat, build the vector directly.
2177       if (AllSame && SameNumElts) {
2178         EVT BuildVT = BV->getValueType(0);
2179         const SDValue &Splatted = BV->getOperand(MaskVec[0]);
2180         SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
2181 
2182         // We may have jumped through bitcasts, so the type of the
2183         // BUILD_VECTOR may not match the type of the shuffle.
2184         if (BuildVT != VT)
2185           NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
2186         return NewBV;
2187       }
2188     }
2189   }
2190 
2191   FoldingSetNodeID ID;
2192   SDValue Ops[2] = { N1, N2 };
2193   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
2194   for (int i = 0; i != NElts; ++i)
2195     ID.AddInteger(MaskVec[i]);
2196 
2197   void* IP = nullptr;
2198   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2199     return SDValue(E, 0);
2200 
2201   // Allocate the mask array for the node out of the BumpPtrAllocator, since
2202   // SDNode doesn't have access to it.  This memory will be "leaked" when
2203   // the node is deallocated, but recovered when the NodeAllocator is released.
2204   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2205   llvm::copy(MaskVec, MaskAlloc);
2206 
2207   auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
2208                                            dl.getDebugLoc(), MaskAlloc);
2209   createOperands(N, Ops);
2210 
2211   CSEMap.InsertNode(N, IP);
2212   InsertNode(N);
2213   SDValue V = SDValue(N, 0);
2214   NewSDValueDbgMsg(V, "Creating new node: ", this);
2215   return V;
2216 }
2217 
2218 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
2219   EVT VT = SV.getValueType(0);
2220   SmallVector<int, 8> MaskVec(SV.getMask());
2221   ShuffleVectorSDNode::commuteMask(MaskVec);
2222 
2223   SDValue Op0 = SV.getOperand(0);
2224   SDValue Op1 = SV.getOperand(1);
2225   return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2226 }
2227 
2228 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
2229   FoldingSetNodeID ID;
2230   AddNodeIDNode(ID, ISD::Register, getVTList(VT), std::nullopt);
2231   ID.AddInteger(RegNo);
2232   void *IP = nullptr;
2233   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2234     return SDValue(E, 0);
2235 
2236   auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
2237   N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, UA);
2238   CSEMap.InsertNode(N, IP);
2239   InsertNode(N);
2240   return SDValue(N, 0);
2241 }
2242 
2243 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
2244   FoldingSetNodeID ID;
2245   AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), std::nullopt);
2246   ID.AddPointer(RegMask);
2247   void *IP = nullptr;
2248   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2249     return SDValue(E, 0);
2250 
2251   auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2252   CSEMap.InsertNode(N, IP);
2253   InsertNode(N);
2254   return SDValue(N, 0);
2255 }
2256 
2257 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
2258                                  MCSymbol *Label) {
2259   return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2260 }
2261 
2262 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2263                                    SDValue Root, MCSymbol *Label) {
2264   FoldingSetNodeID ID;
2265   SDValue Ops[] = { Root };
2266   AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2267   ID.AddPointer(Label);
2268   void *IP = nullptr;
2269   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2270     return SDValue(E, 0);
2271 
2272   auto *N =
2273       newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2274   createOperands(N, Ops);
2275 
2276   CSEMap.InsertNode(N, IP);
2277   InsertNode(N);
2278   return SDValue(N, 0);
2279 }
2280 
2281 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
2282                                       int64_t Offset, bool isTarget,
2283                                       unsigned TargetFlags) {
2284   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2285 
2286   FoldingSetNodeID ID;
2287   AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt);
2288   ID.AddPointer(BA);
2289   ID.AddInteger(Offset);
2290   ID.AddInteger(TargetFlags);
2291   void *IP = nullptr;
2292   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2293     return SDValue(E, 0);
2294 
2295   auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
2296   CSEMap.InsertNode(N, IP);
2297   InsertNode(N);
2298   return SDValue(N, 0);
2299 }
2300 
2301 SDValue SelectionDAG::getSrcValue(const Value *V) {
2302   FoldingSetNodeID ID;
2303   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), std::nullopt);
2304   ID.AddPointer(V);
2305 
2306   void *IP = nullptr;
2307   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2308     return SDValue(E, 0);
2309 
2310   auto *N = newSDNode<SrcValueSDNode>(V);
2311   CSEMap.InsertNode(N, IP);
2312   InsertNode(N);
2313   return SDValue(N, 0);
2314 }
2315 
2316 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
2317   FoldingSetNodeID ID;
2318   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), std::nullopt);
2319   ID.AddPointer(MD);
2320 
2321   void *IP = nullptr;
2322   if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2323     return SDValue(E, 0);
2324 
2325   auto *N = newSDNode<MDNodeSDNode>(MD);
2326   CSEMap.InsertNode(N, IP);
2327   InsertNode(N);
2328   return SDValue(N, 0);
2329 }
2330 
2331 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
2332   if (VT == V.getValueType())
2333     return V;
2334 
2335   return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2336 }
2337 
2338 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
2339                                        unsigned SrcAS, unsigned DestAS) {
2340   SDValue Ops[] = {Ptr};
2341   FoldingSetNodeID ID;
2342   AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
2343   ID.AddInteger(SrcAS);
2344   ID.AddInteger(DestAS);
2345 
2346   void *IP = nullptr;
2347   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2348     return SDValue(E, 0);
2349 
2350   auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2351                                            VT, SrcAS, DestAS);
2352   createOperands(N, Ops);
2353 
2354   CSEMap.InsertNode(N, IP);
2355   InsertNode(N);
2356   return SDValue(N, 0);
2357 }
2358 
2359 SDValue SelectionDAG::getFreeze(SDValue V) {
2360   return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2361 }
2362 
2363 /// getShiftAmountOperand - Return the specified value casted to
2364 /// the target's desired shift amount type.
2365 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
2366   EVT OpTy = Op.getValueType();
2367   EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2368   if (OpTy == ShTy || OpTy.isVector()) return Op;
2369 
2370   return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2371 }
2372 
2373 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
2374   SDLoc dl(Node);
2375   const TargetLowering &TLI = getTargetLoweringInfo();
2376   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2377   EVT VT = Node->getValueType(0);
2378   SDValue Tmp1 = Node->getOperand(0);
2379   SDValue Tmp2 = Node->getOperand(1);
2380   const MaybeAlign MA(Node->getConstantOperandVal(3));
2381 
2382   SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2383                                Tmp2, MachinePointerInfo(V));
2384   SDValue VAList = VAListLoad;
2385 
2386   if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2387     VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2388                      getConstant(MA->value() - 1, dl, VAList.getValueType()));
2389 
2390     VAList =
2391         getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2392                 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2393   }
2394 
2395   // Increment the pointer, VAList, to the next vaarg
2396   Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2397                  getConstant(getDataLayout().getTypeAllocSize(
2398                                                VT.getTypeForEVT(*getContext())),
2399                              dl, VAList.getValueType()));
2400   // Store the incremented VAList to the legalized pointer
2401   Tmp1 =
2402       getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2403   // Load the actual argument out of the pointer VAList
2404   return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2405 }
2406 
2407 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2408   SDLoc dl(Node);
2409   const TargetLowering &TLI = getTargetLoweringInfo();
2410   // This defaults to loading a pointer from the input and storing it to the
2411   // output, returning the chain.
2412   const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2413   const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2414   SDValue Tmp1 =
2415       getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2416               Node->getOperand(2), MachinePointerInfo(VS));
2417   return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2418                   MachinePointerInfo(VD));
2419 }
2420 
2421 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2422   const DataLayout &DL = getDataLayout();
2423   Type *Ty = VT.getTypeForEVT(*getContext());
2424   Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2425 
2426   if (TLI->isTypeLegal(VT) || !VT.isVector())
2427     return RedAlign;
2428 
2429   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2430   const Align StackAlign = TFI->getStackAlign();
2431 
2432   // See if we can choose a smaller ABI alignment in cases where it's an
2433   // illegal vector type that will get broken down.
2434   if (RedAlign > StackAlign) {
2435     EVT IntermediateVT;
2436     MVT RegisterVT;
2437     unsigned NumIntermediates;
2438     TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2439                                 NumIntermediates, RegisterVT);
2440     Ty = IntermediateVT.getTypeForEVT(*getContext());
2441     Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2442     if (RedAlign2 < RedAlign)
2443       RedAlign = RedAlign2;
2444   }
2445 
2446   return RedAlign;
2447 }
2448 
2449 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2450   MachineFrameInfo &MFI = MF->getFrameInfo();
2451   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2452   int StackID = 0;
2453   if (Bytes.isScalable())
2454     StackID = TFI->getStackIDForScalableVectors();
2455   // The stack id gives an indication of whether the object is scalable or
2456   // not, so it's safe to pass in the minimum size here.
2457   int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinValue(), Alignment,
2458                                        false, nullptr, StackID);
2459   return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2460 }
2461 
2462 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2463   Type *Ty = VT.getTypeForEVT(*getContext());
2464   Align StackAlign =
2465       std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2466   return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2467 }
2468 
2469 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2470   TypeSize VT1Size = VT1.getStoreSize();
2471   TypeSize VT2Size = VT2.getStoreSize();
2472   assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2473          "Don't know how to choose the maximum size when creating a stack "
2474          "temporary");
2475   TypeSize Bytes = VT1Size.getKnownMinValue() > VT2Size.getKnownMinValue()
2476                        ? VT1Size
2477                        : VT2Size;
2478 
2479   Type *Ty1 = VT1.getTypeForEVT(*getContext());
2480   Type *Ty2 = VT2.getTypeForEVT(*getContext());
2481   const DataLayout &DL = getDataLayout();
2482   Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2483   return CreateStackTemporary(Bytes, Align);
2484 }
2485 
2486 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2487                                 ISD::CondCode Cond, const SDLoc &dl) {
2488   EVT OpVT = N1.getValueType();
2489 
2490   auto GetUndefBooleanConstant = [&]() {
2491     if (VT.getScalarType() == MVT::i1 ||
2492         TLI->getBooleanContents(OpVT) ==
2493             TargetLowering::UndefinedBooleanContent)
2494       return getUNDEF(VT);
2495     // ZeroOrOne / ZeroOrNegative require specific values for the high bits,
2496     // so we cannot use getUNDEF(). Return zero instead.
2497     return getConstant(0, dl, VT);
2498   };
2499 
2500   // These setcc operations always fold.
2501   switch (Cond) {
2502   default: break;
2503   case ISD::SETFALSE:
2504   case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2505   case ISD::SETTRUE:
2506   case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2507 
2508   case ISD::SETOEQ:
2509   case ISD::SETOGT:
2510   case ISD::SETOGE:
2511   case ISD::SETOLT:
2512   case ISD::SETOLE:
2513   case ISD::SETONE:
2514   case ISD::SETO:
2515   case ISD::SETUO:
2516   case ISD::SETUEQ:
2517   case ISD::SETUNE:
2518     assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2519     break;
2520   }
2521 
2522   if (OpVT.isInteger()) {
2523     // For EQ and NE, we can always pick a value for the undef to make the
2524     // predicate pass or fail, so we can return undef.
2525     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2526     // icmp eq/ne X, undef -> undef.
2527     if ((N1.isUndef() || N2.isUndef()) &&
2528         (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2529       return GetUndefBooleanConstant();
2530 
2531     // If both operands are undef, we can return undef for int comparison.
2532     // icmp undef, undef -> undef.
2533     if (N1.isUndef() && N2.isUndef())
2534       return GetUndefBooleanConstant();
2535 
2536     // icmp X, X -> true/false
2537     // icmp X, undef -> true/false because undef could be X.
2538     if (N1.isUndef() || N2.isUndef() || N1 == N2)
2539       return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2540   }
2541 
2542   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2543     const APInt &C2 = N2C->getAPIntValue();
2544     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2545       const APInt &C1 = N1C->getAPIntValue();
2546 
2547       return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)),
2548                              dl, VT, OpVT);
2549     }
2550   }
2551 
2552   auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2553   auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2554 
2555   if (N1CFP && N2CFP) {
2556     APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2557     switch (Cond) {
2558     default: break;
2559     case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
2560                         return GetUndefBooleanConstant();
2561                       [[fallthrough]];
2562     case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2563                                              OpVT);
2564     case ISD::SETNE:  if (R==APFloat::cmpUnordered)
2565                         return GetUndefBooleanConstant();
2566                       [[fallthrough]];
2567     case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2568                                              R==APFloat::cmpLessThan, dl, VT,
2569                                              OpVT);
2570     case ISD::SETLT:  if (R==APFloat::cmpUnordered)
2571                         return GetUndefBooleanConstant();
2572                       [[fallthrough]];
2573     case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2574                                              OpVT);
2575     case ISD::SETGT:  if (R==APFloat::cmpUnordered)
2576                         return GetUndefBooleanConstant();
2577                       [[fallthrough]];
2578     case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2579                                              VT, OpVT);
2580     case ISD::SETLE:  if (R==APFloat::cmpUnordered)
2581                         return GetUndefBooleanConstant();
2582                       [[fallthrough]];
2583     case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2584                                              R==APFloat::cmpEqual, dl, VT,
2585                                              OpVT);
2586     case ISD::SETGE:  if (R==APFloat::cmpUnordered)
2587                         return GetUndefBooleanConstant();
2588                       [[fallthrough]];
2589     case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2590                                          R==APFloat::cmpEqual, dl, VT, OpVT);
2591     case ISD::SETO:   return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2592                                              OpVT);
2593     case ISD::SETUO:  return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2594                                              OpVT);
2595     case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2596                                              R==APFloat::cmpEqual, dl, VT,
2597                                              OpVT);
2598     case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2599                                              OpVT);
2600     case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2601                                              R==APFloat::cmpLessThan, dl, VT,
2602                                              OpVT);
2603     case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2604                                              R==APFloat::cmpUnordered, dl, VT,
2605                                              OpVT);
2606     case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2607                                              VT, OpVT);
2608     case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2609                                              OpVT);
2610     }
2611   } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2612     // Ensure that the constant occurs on the RHS.
2613     ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2614     if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2615       return SDValue();
2616     return getSetCC(dl, VT, N2, N1, SwappedCond);
2617   } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2618              (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2619     // If an operand is known to be a nan (or undef that could be a nan), we can
2620     // fold it.
2621     // Choosing NaN for the undef will always make unordered comparison succeed
2622     // and ordered comparison fails.
2623     // Matches behavior in llvm::ConstantFoldCompareInstruction.
2624     switch (ISD::getUnorderedFlavor(Cond)) {
2625     default:
2626       llvm_unreachable("Unknown flavor!");
2627     case 0: // Known false.
2628       return getBoolConstant(false, dl, VT, OpVT);
2629     case 1: // Known true.
2630       return getBoolConstant(true, dl, VT, OpVT);
2631     case 2: // Undefined.
2632       return GetUndefBooleanConstant();
2633     }
2634   }
2635 
2636   // Could not fold it.
2637   return SDValue();
2638 }
2639 
2640 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
2641 /// use this predicate to simplify operations downstream.
2642 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2643   unsigned BitWidth = Op.getScalarValueSizeInBits();
2644   return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2645 }
2646 
2647 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
2648 /// this predicate to simplify operations downstream.  Mask is known to be zero
2649 /// for bits that V cannot have.
2650 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2651                                      unsigned Depth) const {
2652   return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2653 }
2654 
2655 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2656 /// DemandedElts.  We use this predicate to simplify operations downstream.
2657 /// Mask is known to be zero for bits that V cannot have.
2658 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2659                                      const APInt &DemandedElts,
2660                                      unsigned Depth) const {
2661   return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2662 }
2663 
2664 /// MaskedVectorIsZero - Return true if 'Op' is known to be zero in
2665 /// DemandedElts.  We use this predicate to simplify operations downstream.
2666 bool SelectionDAG::MaskedVectorIsZero(SDValue V, const APInt &DemandedElts,
2667                                       unsigned Depth /* = 0 */) const {
2668   return computeKnownBits(V, DemandedElts, Depth).isZero();
2669 }
2670 
2671 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2672 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2673                                         unsigned Depth) const {
2674   return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2675 }
2676 
2677 APInt SelectionDAG::computeVectorKnownZeroElements(SDValue Op,
2678                                                    const APInt &DemandedElts,
2679                                                    unsigned Depth) const {
2680   EVT VT = Op.getValueType();
2681   assert(VT.isVector() && !VT.isScalableVector() && "Only for fixed vectors!");
2682 
2683   unsigned NumElts = VT.getVectorNumElements();
2684   assert(DemandedElts.getBitWidth() == NumElts && "Unexpected demanded mask.");
2685 
2686   APInt KnownZeroElements = APInt::getZero(NumElts);
2687   for (unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) {
2688     if (!DemandedElts[EltIdx])
2689       continue; // Don't query elements that are not demanded.
2690     APInt Mask = APInt::getOneBitSet(NumElts, EltIdx);
2691     if (MaskedVectorIsZero(Op, Mask, Depth))
2692       KnownZeroElements.setBit(EltIdx);
2693   }
2694   return KnownZeroElements;
2695 }
2696 
2697 /// isSplatValue - Return true if the vector V has the same value
2698 /// across all DemandedElts. For scalable vectors, we don't know the
2699 /// number of lanes at compile time.  Instead, we use a 1 bit APInt
2700 /// to represent a conservative value for all lanes; that is, that
2701 /// one bit value is implicitly splatted across all lanes.
2702 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2703                                 APInt &UndefElts, unsigned Depth) const {
2704   unsigned Opcode = V.getOpcode();
2705   EVT VT = V.getValueType();
2706   assert(VT.isVector() && "Vector type expected");
2707   assert((!VT.isScalableVector() || DemandedElts.getBitWidth() == 1) &&
2708          "scalable demanded bits are ignored");
2709 
2710   if (!DemandedElts)
2711     return false; // No demanded elts, better to assume we don't know anything.
2712 
2713   if (Depth >= MaxRecursionDepth)
2714     return false; // Limit search depth.
2715 
2716   // Deal with some common cases here that work for both fixed and scalable
2717   // vector types.
2718   switch (Opcode) {
2719   case ISD::SPLAT_VECTOR:
2720     UndefElts = V.getOperand(0).isUndef()
2721                     ? APInt::getAllOnes(DemandedElts.getBitWidth())
2722                     : APInt(DemandedElts.getBitWidth(), 0);
2723     return true;
2724   case ISD::ADD:
2725   case ISD::SUB:
2726   case ISD::AND:
2727   case ISD::XOR:
2728   case ISD::OR: {
2729     APInt UndefLHS, UndefRHS;
2730     SDValue LHS = V.getOperand(0);
2731     SDValue RHS = V.getOperand(1);
2732     if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
2733         isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) {
2734       UndefElts = UndefLHS | UndefRHS;
2735       return true;
2736     }
2737     return false;
2738   }
2739   case ISD::ABS:
2740   case ISD::TRUNCATE:
2741   case ISD::SIGN_EXTEND:
2742   case ISD::ZERO_EXTEND:
2743     return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
2744   default:
2745     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
2746         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
2747       return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *this,
2748                                             Depth);
2749     break;
2750 }
2751 
2752   // We don't support other cases than those above for scalable vectors at
2753   // the moment.
2754   if (VT.isScalableVector())
2755     return false;
2756 
2757   unsigned NumElts = VT.getVectorNumElements();
2758   assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2759   UndefElts = APInt::getZero(NumElts);
2760 
2761   switch (Opcode) {
2762   case ISD::BUILD_VECTOR: {
2763     SDValue Scl;
2764     for (unsigned i = 0; i != NumElts; ++i) {
2765       SDValue Op = V.getOperand(i);
2766       if (Op.isUndef()) {
2767         UndefElts.setBit(i);
2768         continue;
2769       }
2770       if (!DemandedElts[i])
2771         continue;
2772       if (Scl && Scl != Op)
2773         return false;
2774       Scl = Op;
2775     }
2776     return true;
2777   }
2778   case ISD::VECTOR_SHUFFLE: {
2779     // Check if this is a shuffle node doing a splat or a shuffle of a splat.
2780     APInt DemandedLHS = APInt::getZero(NumElts);
2781     APInt DemandedRHS = APInt::getZero(NumElts);
2782     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2783     for (int i = 0; i != (int)NumElts; ++i) {
2784       int M = Mask[i];
2785       if (M < 0) {
2786         UndefElts.setBit(i);
2787         continue;
2788       }
2789       if (!DemandedElts[i])
2790         continue;
2791       if (M < (int)NumElts)
2792         DemandedLHS.setBit(M);
2793       else
2794         DemandedRHS.setBit(M - NumElts);
2795     }
2796 
2797     // If we aren't demanding either op, assume there's no splat.
2798     // If we are demanding both ops, assume there's no splat.
2799     if ((DemandedLHS.isZero() && DemandedRHS.isZero()) ||
2800         (!DemandedLHS.isZero() && !DemandedRHS.isZero()))
2801       return false;
2802 
2803     // See if the demanded elts of the source op is a splat or we only demand
2804     // one element, which should always be a splat.
2805     // TODO: Handle source ops splats with undefs.
2806     auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) {
2807       APInt SrcUndefs;
2808       return (SrcElts.popcount() == 1) ||
2809              (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) &&
2810               (SrcElts & SrcUndefs).isZero());
2811     };
2812     if (!DemandedLHS.isZero())
2813       return CheckSplatSrc(V.getOperand(0), DemandedLHS);
2814     return CheckSplatSrc(V.getOperand(1), DemandedRHS);
2815   }
2816   case ISD::EXTRACT_SUBVECTOR: {
2817     // Offset the demanded elts by the subvector index.
2818     SDValue Src = V.getOperand(0);
2819     // We don't support scalable vectors at the moment.
2820     if (Src.getValueType().isScalableVector())
2821       return false;
2822     uint64_t Idx = V.getConstantOperandVal(1);
2823     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2824     APInt UndefSrcElts;
2825     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
2826     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2827       UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2828       return true;
2829     }
2830     break;
2831   }
2832   case ISD::ANY_EXTEND_VECTOR_INREG:
2833   case ISD::SIGN_EXTEND_VECTOR_INREG:
2834   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2835     // Widen the demanded elts by the src element count.
2836     SDValue Src = V.getOperand(0);
2837     // We don't support scalable vectors at the moment.
2838     if (Src.getValueType().isScalableVector())
2839       return false;
2840     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2841     APInt UndefSrcElts;
2842     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
2843     if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
2844       UndefElts = UndefSrcElts.trunc(NumElts);
2845       return true;
2846     }
2847     break;
2848   }
2849   case ISD::BITCAST: {
2850     SDValue Src = V.getOperand(0);
2851     EVT SrcVT = Src.getValueType();
2852     unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
2853     unsigned BitWidth = VT.getScalarSizeInBits();
2854 
2855     // Ignore bitcasts from unsupported types.
2856     // TODO: Add fp support?
2857     if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger())
2858       break;
2859 
2860     // Bitcast 'small element' vector to 'large element' vector.
2861     if ((BitWidth % SrcBitWidth) == 0) {
2862       // See if each sub element is a splat.
2863       unsigned Scale = BitWidth / SrcBitWidth;
2864       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2865       APInt ScaledDemandedElts =
2866           APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2867       for (unsigned I = 0; I != Scale; ++I) {
2868         APInt SubUndefElts;
2869         APInt SubDemandedElt = APInt::getOneBitSet(Scale, I);
2870         APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt);
2871         SubDemandedElts &= ScaledDemandedElts;
2872         if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1))
2873           return false;
2874         // TODO: Add support for merging sub undef elements.
2875         if (!SubUndefElts.isZero())
2876           return false;
2877       }
2878       return true;
2879     }
2880     break;
2881   }
2882   }
2883 
2884   // Fallback - this is a splat if all demanded elts are the same constant.
2885   if (computeKnownBits(V, DemandedElts, Depth).isConstant()) {
2886     UndefElts = ~DemandedElts;
2887     return true;
2888   }
2889 
2890   return false;
2891 }
2892 
2893 /// Helper wrapper to main isSplatValue function.
2894 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
2895   EVT VT = V.getValueType();
2896   assert(VT.isVector() && "Vector type expected");
2897 
2898   APInt UndefElts;
2899   // Since the number of lanes in a scalable vector is unknown at compile time,
2900   // we track one bit which is implicitly broadcast to all lanes.  This means
2901   // that all lanes in a scalable vector are considered demanded.
2902   APInt DemandedElts
2903     = APInt::getAllOnes(VT.isScalableVector() ? 1 : VT.getVectorNumElements());
2904   return isSplatValue(V, DemandedElts, UndefElts) &&
2905          (AllowUndefs || !UndefElts);
2906 }
2907 
2908 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2909   V = peekThroughExtractSubvectors(V);
2910 
2911   EVT VT = V.getValueType();
2912   unsigned Opcode = V.getOpcode();
2913   switch (Opcode) {
2914   default: {
2915     APInt UndefElts;
2916     // Since the number of lanes in a scalable vector is unknown at compile time,
2917     // we track one bit which is implicitly broadcast to all lanes.  This means
2918     // that all lanes in a scalable vector are considered demanded.
2919     APInt DemandedElts
2920       = APInt::getAllOnes(VT.isScalableVector() ? 1 : VT.getVectorNumElements());
2921 
2922     if (isSplatValue(V, DemandedElts, UndefElts)) {
2923       if (VT.isScalableVector()) {
2924         // DemandedElts and UndefElts are ignored for scalable vectors, since
2925         // the only supported cases are SPLAT_VECTOR nodes.
2926         SplatIdx = 0;
2927       } else {
2928         // Handle case where all demanded elements are UNDEF.
2929         if (DemandedElts.isSubsetOf(UndefElts)) {
2930           SplatIdx = 0;
2931           return getUNDEF(VT);
2932         }
2933         SplatIdx = (UndefElts & DemandedElts).countr_one();
2934       }
2935       return V;
2936     }
2937     break;
2938   }
2939   case ISD::SPLAT_VECTOR:
2940     SplatIdx = 0;
2941     return V;
2942   case ISD::VECTOR_SHUFFLE: {
2943     assert(!VT.isScalableVector());
2944     // Check if this is a shuffle node doing a splat.
2945     // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2946     // getTargetVShiftNode currently struggles without the splat source.
2947     auto *SVN = cast<ShuffleVectorSDNode>(V);
2948     if (!SVN->isSplat())
2949       break;
2950     int Idx = SVN->getSplatIndex();
2951     int NumElts = V.getValueType().getVectorNumElements();
2952     SplatIdx = Idx % NumElts;
2953     return V.getOperand(Idx / NumElts);
2954   }
2955   }
2956 
2957   return SDValue();
2958 }
2959 
2960 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) {
2961   int SplatIdx;
2962   if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
2963     EVT SVT = SrcVector.getValueType().getScalarType();
2964     EVT LegalSVT = SVT;
2965     if (LegalTypes && !TLI->isTypeLegal(SVT)) {
2966       if (!SVT.isInteger())
2967         return SDValue();
2968       LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
2969       if (LegalSVT.bitsLT(SVT))
2970         return SDValue();
2971     }
2972     return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector,
2973                    getVectorIdxConstant(SplatIdx, SDLoc(V)));
2974   }
2975   return SDValue();
2976 }
2977 
2978 const APInt *
2979 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2980                                           const APInt &DemandedElts) const {
2981   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2982           V.getOpcode() == ISD::SRA) &&
2983          "Unknown shift node");
2984   unsigned BitWidth = V.getScalarValueSizeInBits();
2985   if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2986     // Shifting more than the bitwidth is not valid.
2987     const APInt &ShAmt = SA->getAPIntValue();
2988     if (ShAmt.ult(BitWidth))
2989       return &ShAmt;
2990   }
2991   return nullptr;
2992 }
2993 
2994 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2995     SDValue V, const APInt &DemandedElts) const {
2996   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2997           V.getOpcode() == ISD::SRA) &&
2998          "Unknown shift node");
2999   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
3000     return ValidAmt;
3001   unsigned BitWidth = V.getScalarValueSizeInBits();
3002   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
3003   if (!BV)
3004     return nullptr;
3005   const APInt *MinShAmt = nullptr;
3006   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3007     if (!DemandedElts[i])
3008       continue;
3009     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
3010     if (!SA)
3011       return nullptr;
3012     // Shifting more than the bitwidth is not valid.
3013     const APInt &ShAmt = SA->getAPIntValue();
3014     if (ShAmt.uge(BitWidth))
3015       return nullptr;
3016     if (MinShAmt && MinShAmt->ule(ShAmt))
3017       continue;
3018     MinShAmt = &ShAmt;
3019   }
3020   return MinShAmt;
3021 }
3022 
3023 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
3024     SDValue V, const APInt &DemandedElts) const {
3025   assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3026           V.getOpcode() == ISD::SRA) &&
3027          "Unknown shift node");
3028   if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
3029     return ValidAmt;
3030   unsigned BitWidth = V.getScalarValueSizeInBits();
3031   auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
3032   if (!BV)
3033     return nullptr;
3034   const APInt *MaxShAmt = nullptr;
3035   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3036     if (!DemandedElts[i])
3037       continue;
3038     auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
3039     if (!SA)
3040       return nullptr;
3041     // Shifting more than the bitwidth is not valid.
3042     const APInt &ShAmt = SA->getAPIntValue();
3043     if (ShAmt.uge(BitWidth))
3044       return nullptr;
3045     if (MaxShAmt && MaxShAmt->uge(ShAmt))
3046       continue;
3047     MaxShAmt = &ShAmt;
3048   }
3049   return MaxShAmt;
3050 }
3051 
3052 /// Determine which bits of Op are known to be either zero or one and return
3053 /// them in Known. For vectors, the known bits are those that are shared by
3054 /// every vector element.
3055 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
3056   EVT VT = Op.getValueType();
3057 
3058   // Since the number of lanes in a scalable vector is unknown at compile time,
3059   // we track one bit which is implicitly broadcast to all lanes.  This means
3060   // that all lanes in a scalable vector are considered demanded.
3061   APInt DemandedElts = VT.isFixedLengthVector()
3062                            ? APInt::getAllOnes(VT.getVectorNumElements())
3063                            : APInt(1, 1);
3064   return computeKnownBits(Op, DemandedElts, Depth);
3065 }
3066 
3067 /// Determine which bits of Op are known to be either zero or one and return
3068 /// them in Known. The DemandedElts argument allows us to only collect the known
3069 /// bits that are shared by the requested vector elements.
3070 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
3071                                          unsigned Depth) const {
3072   unsigned BitWidth = Op.getScalarValueSizeInBits();
3073 
3074   KnownBits Known(BitWidth);   // Don't know anything.
3075 
3076   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3077     // We know all of the bits for a constant!
3078     return KnownBits::makeConstant(C->getAPIntValue());
3079   }
3080   if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
3081     // We know all of the bits for a constant fp!
3082     return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt());
3083   }
3084 
3085   if (Depth >= MaxRecursionDepth)
3086     return Known;  // Limit search depth.
3087 
3088   KnownBits Known2;
3089   unsigned NumElts = DemandedElts.getBitWidth();
3090   assert((!Op.getValueType().isFixedLengthVector() ||
3091           NumElts == Op.getValueType().getVectorNumElements()) &&
3092          "Unexpected vector size");
3093 
3094   if (!DemandedElts)
3095     return Known;  // No demanded elts, better to assume we don't know anything.
3096 
3097   unsigned Opcode = Op.getOpcode();
3098   switch (Opcode) {
3099   case ISD::MERGE_VALUES:
3100     return computeKnownBits(Op.getOperand(Op.getResNo()), DemandedElts,
3101                             Depth + 1);
3102   case ISD::SPLAT_VECTOR: {
3103     SDValue SrcOp = Op.getOperand(0);
3104     assert(SrcOp.getValueSizeInBits() >= BitWidth &&
3105            "Expected SPLAT_VECTOR implicit truncation");
3106     // Implicitly truncate the bits to match the official semantics of
3107     // SPLAT_VECTOR.
3108     Known = computeKnownBits(SrcOp, Depth + 1).trunc(BitWidth);
3109     break;
3110   }
3111   case ISD::SPLAT_VECTOR_PARTS: {
3112     unsigned ScalarSize = Op.getOperand(0).getScalarValueSizeInBits();
3113     assert(ScalarSize * Op.getNumOperands() == BitWidth &&
3114            "Expected SPLAT_VECTOR_PARTS scalars to cover element width");
3115     for (auto [I, SrcOp] : enumerate(Op->ops())) {
3116       Known.insertBits(computeKnownBits(SrcOp, Depth + 1), ScalarSize * I);
3117     }
3118     break;
3119   }
3120   case ISD::BUILD_VECTOR:
3121     assert(!Op.getValueType().isScalableVector());
3122     // Collect the known bits that are shared by every demanded vector element.
3123     Known.Zero.setAllBits(); Known.One.setAllBits();
3124     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
3125       if (!DemandedElts[i])
3126         continue;
3127 
3128       SDValue SrcOp = Op.getOperand(i);
3129       Known2 = computeKnownBits(SrcOp, Depth + 1);
3130 
3131       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3132       if (SrcOp.getValueSizeInBits() != BitWidth) {
3133         assert(SrcOp.getValueSizeInBits() > BitWidth &&
3134                "Expected BUILD_VECTOR implicit truncation");
3135         Known2 = Known2.trunc(BitWidth);
3136       }
3137 
3138       // Known bits are the values that are shared by every demanded element.
3139       Known = Known.intersectWith(Known2);
3140 
3141       // If we don't know any bits, early out.
3142       if (Known.isUnknown())
3143         break;
3144     }
3145     break;
3146   case ISD::VECTOR_SHUFFLE: {
3147     assert(!Op.getValueType().isScalableVector());
3148     // Collect the known bits that are shared by every vector element referenced
3149     // by the shuffle.
3150     APInt DemandedLHS, DemandedRHS;
3151     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3152     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3153     if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
3154                                 DemandedLHS, DemandedRHS))
3155       break;
3156 
3157     // Known bits are the values that are shared by every demanded element.
3158     Known.Zero.setAllBits(); Known.One.setAllBits();
3159     if (!!DemandedLHS) {
3160       SDValue LHS = Op.getOperand(0);
3161       Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
3162       Known = Known.intersectWith(Known2);
3163     }
3164     // If we don't know any bits, early out.
3165     if (Known.isUnknown())
3166       break;
3167     if (!!DemandedRHS) {
3168       SDValue RHS = Op.getOperand(1);
3169       Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
3170       Known = Known.intersectWith(Known2);
3171     }
3172     break;
3173   }
3174   case ISD::VSCALE: {
3175     const Function &F = getMachineFunction().getFunction();
3176     const APInt &Multiplier = Op.getConstantOperandAPInt(0);
3177     Known = getVScaleRange(&F, BitWidth).multiply(Multiplier).toKnownBits();
3178     break;
3179   }
3180   case ISD::CONCAT_VECTORS: {
3181     if (Op.getValueType().isScalableVector())
3182       break;
3183     // Split DemandedElts and test each of the demanded subvectors.
3184     Known.Zero.setAllBits(); Known.One.setAllBits();
3185     EVT SubVectorVT = Op.getOperand(0).getValueType();
3186     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3187     unsigned NumSubVectors = Op.getNumOperands();
3188     for (unsigned i = 0; i != NumSubVectors; ++i) {
3189       APInt DemandedSub =
3190           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
3191       if (!!DemandedSub) {
3192         SDValue Sub = Op.getOperand(i);
3193         Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
3194         Known = Known.intersectWith(Known2);
3195       }
3196       // If we don't know any bits, early out.
3197       if (Known.isUnknown())
3198         break;
3199     }
3200     break;
3201   }
3202   case ISD::INSERT_SUBVECTOR: {
3203     if (Op.getValueType().isScalableVector())
3204       break;
3205     // Demand any elements from the subvector and the remainder from the src its
3206     // inserted into.
3207     SDValue Src = Op.getOperand(0);
3208     SDValue Sub = Op.getOperand(1);
3209     uint64_t Idx = Op.getConstantOperandVal(2);
3210     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3211     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3212     APInt DemandedSrcElts = DemandedElts;
3213     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
3214 
3215     Known.One.setAllBits();
3216     Known.Zero.setAllBits();
3217     if (!!DemandedSubElts) {
3218       Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
3219       if (Known.isUnknown())
3220         break; // early-out.
3221     }
3222     if (!!DemandedSrcElts) {
3223       Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3224       Known = Known.intersectWith(Known2);
3225     }
3226     break;
3227   }
3228   case ISD::EXTRACT_SUBVECTOR: {
3229     // Offset the demanded elts by the subvector index.
3230     SDValue Src = Op.getOperand(0);
3231     // Bail until we can represent demanded elements for scalable vectors.
3232     if (Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector())
3233       break;
3234     uint64_t Idx = Op.getConstantOperandVal(1);
3235     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3236     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3237     Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3238     break;
3239   }
3240   case ISD::SCALAR_TO_VECTOR: {
3241     if (Op.getValueType().isScalableVector())
3242       break;
3243     // We know about scalar_to_vector as much as we know about it source,
3244     // which becomes the first element of otherwise unknown vector.
3245     if (DemandedElts != 1)
3246       break;
3247 
3248     SDValue N0 = Op.getOperand(0);
3249     Known = computeKnownBits(N0, Depth + 1);
3250     if (N0.getValueSizeInBits() != BitWidth)
3251       Known = Known.trunc(BitWidth);
3252 
3253     break;
3254   }
3255   case ISD::BITCAST: {
3256     if (Op.getValueType().isScalableVector())
3257       break;
3258 
3259     SDValue N0 = Op.getOperand(0);
3260     EVT SubVT = N0.getValueType();
3261     unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3262 
3263     // Ignore bitcasts from unsupported types.
3264     if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3265       break;
3266 
3267     // Fast handling of 'identity' bitcasts.
3268     if (BitWidth == SubBitWidth) {
3269       Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3270       break;
3271     }
3272 
3273     bool IsLE = getDataLayout().isLittleEndian();
3274 
3275     // Bitcast 'small element' vector to 'large element' scalar/vector.
3276     if ((BitWidth % SubBitWidth) == 0) {
3277       assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3278 
3279       // Collect known bits for the (larger) output by collecting the known
3280       // bits from each set of sub elements and shift these into place.
3281       // We need to separately call computeKnownBits for each set of
3282       // sub elements as the knownbits for each is likely to be different.
3283       unsigned SubScale = BitWidth / SubBitWidth;
3284       APInt SubDemandedElts(NumElts * SubScale, 0);
3285       for (unsigned i = 0; i != NumElts; ++i)
3286         if (DemandedElts[i])
3287           SubDemandedElts.setBit(i * SubScale);
3288 
3289       for (unsigned i = 0; i != SubScale; ++i) {
3290         Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3291                          Depth + 1);
3292         unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3293         Known.insertBits(Known2, SubBitWidth * Shifts);
3294       }
3295     }
3296 
3297     // Bitcast 'large element' scalar/vector to 'small element' vector.
3298     if ((SubBitWidth % BitWidth) == 0) {
3299       assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3300 
3301       // Collect known bits for the (smaller) output by collecting the known
3302       // bits from the overlapping larger input elements and extracting the
3303       // sub sections we actually care about.
3304       unsigned SubScale = SubBitWidth / BitWidth;
3305       APInt SubDemandedElts =
3306           APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3307       Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3308 
3309       Known.Zero.setAllBits(); Known.One.setAllBits();
3310       for (unsigned i = 0; i != NumElts; ++i)
3311         if (DemandedElts[i]) {
3312           unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3313           unsigned Offset = (Shifts % SubScale) * BitWidth;
3314           Known = Known.intersectWith(Known2.extractBits(BitWidth, Offset));
3315           // If we don't know any bits, early out.
3316           if (Known.isUnknown())
3317             break;
3318         }
3319     }
3320     break;
3321   }
3322   case ISD::AND:
3323     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3324     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3325 
3326     Known &= Known2;
3327     break;
3328   case ISD::OR:
3329     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3330     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3331 
3332     Known |= Known2;
3333     break;
3334   case ISD::XOR:
3335     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3336     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3337 
3338     Known ^= Known2;
3339     break;
3340   case ISD::MUL: {
3341     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3342     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3343     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3344     // TODO: SelfMultiply can be poison, but not undef.
3345     if (SelfMultiply)
3346       SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
3347           Op.getOperand(0), DemandedElts, false, Depth + 1);
3348     Known = KnownBits::mul(Known, Known2, SelfMultiply);
3349 
3350     // If the multiplication is known not to overflow, the product of a number
3351     // with itself is non-negative. Only do this if we didn't already computed
3352     // the opposite value for the sign bit.
3353     if (Op->getFlags().hasNoSignedWrap() &&
3354         Op.getOperand(0) == Op.getOperand(1) &&
3355         !Known.isNegative())
3356       Known.makeNonNegative();
3357     break;
3358   }
3359   case ISD::MULHU: {
3360     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3361     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3362     Known = KnownBits::mulhu(Known, Known2);
3363     break;
3364   }
3365   case ISD::MULHS: {
3366     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3367     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3368     Known = KnownBits::mulhs(Known, Known2);
3369     break;
3370   }
3371   case ISD::UMUL_LOHI: {
3372     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3373     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3374     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3375     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3376     if (Op.getResNo() == 0)
3377       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3378     else
3379       Known = KnownBits::mulhu(Known, Known2);
3380     break;
3381   }
3382   case ISD::SMUL_LOHI: {
3383     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3384     Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3385     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3386     bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3387     if (Op.getResNo() == 0)
3388       Known = KnownBits::mul(Known, Known2, SelfMultiply);
3389     else
3390       Known = KnownBits::mulhs(Known, Known2);
3391     break;
3392   }
3393   case ISD::AVGCEILU: {
3394     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3395     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3396     Known = Known.zext(BitWidth + 1);
3397     Known2 = Known2.zext(BitWidth + 1);
3398     KnownBits One = KnownBits::makeConstant(APInt(1, 1));
3399     Known = KnownBits::computeForAddCarry(Known, Known2, One);
3400     Known = Known.extractBits(BitWidth, 1);
3401     break;
3402   }
3403   case ISD::SELECT:
3404   case ISD::VSELECT:
3405     Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3406     // If we don't know any bits, early out.
3407     if (Known.isUnknown())
3408       break;
3409     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3410 
3411     // Only known if known in both the LHS and RHS.
3412     Known = Known.intersectWith(Known2);
3413     break;
3414   case ISD::SELECT_CC:
3415     Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3416     // If we don't know any bits, early out.
3417     if (Known.isUnknown())
3418       break;
3419     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3420 
3421     // Only known if known in both the LHS and RHS.
3422     Known = Known.intersectWith(Known2);
3423     break;
3424   case ISD::SMULO:
3425   case ISD::UMULO:
3426     if (Op.getResNo() != 1)
3427       break;
3428     // The boolean result conforms to getBooleanContents.
3429     // If we know the result of a setcc has the top bits zero, use this info.
3430     // We know that we have an integer-based boolean since these operations
3431     // are only available for integer.
3432     if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3433             TargetLowering::ZeroOrOneBooleanContent &&
3434         BitWidth > 1)
3435       Known.Zero.setBitsFrom(1);
3436     break;
3437   case ISD::SETCC:
3438   case ISD::SETCCCARRY:
3439   case ISD::STRICT_FSETCC:
3440   case ISD::STRICT_FSETCCS: {
3441     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3442     // If we know the result of a setcc has the top bits zero, use this info.
3443     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3444             TargetLowering::ZeroOrOneBooleanContent &&
3445         BitWidth > 1)
3446       Known.Zero.setBitsFrom(1);
3447     break;
3448   }
3449   case ISD::SHL:
3450     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3451     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3452     Known = KnownBits::shl(Known, Known2);
3453 
3454     // Minimum shift low bits are known zero.
3455     if (const APInt *ShMinAmt =
3456             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3457       Known.Zero.setLowBits(ShMinAmt->getZExtValue());
3458     break;
3459   case ISD::SRL:
3460     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3461     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3462     Known = KnownBits::lshr(Known, Known2);
3463 
3464     // Minimum shift high bits are known zero.
3465     if (const APInt *ShMinAmt =
3466             getValidMinimumShiftAmountConstant(Op, DemandedElts))
3467       Known.Zero.setHighBits(ShMinAmt->getZExtValue());
3468     break;
3469   case ISD::SRA:
3470     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3471     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3472     Known = KnownBits::ashr(Known, Known2);
3473     break;
3474   case ISD::FSHL:
3475   case ISD::FSHR:
3476     if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3477       unsigned Amt = C->getAPIntValue().urem(BitWidth);
3478 
3479       // For fshl, 0-shift returns the 1st arg.
3480       // For fshr, 0-shift returns the 2nd arg.
3481       if (Amt == 0) {
3482         Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3483                                  DemandedElts, Depth + 1);
3484         break;
3485       }
3486 
3487       // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3488       // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3489       Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3490       Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3491       if (Opcode == ISD::FSHL) {
3492         Known.One <<= Amt;
3493         Known.Zero <<= Amt;
3494         Known2.One.lshrInPlace(BitWidth - Amt);
3495         Known2.Zero.lshrInPlace(BitWidth - Amt);
3496       } else {
3497         Known.One <<= BitWidth - Amt;
3498         Known.Zero <<= BitWidth - Amt;
3499         Known2.One.lshrInPlace(Amt);
3500         Known2.Zero.lshrInPlace(Amt);
3501       }
3502       Known = Known.unionWith(Known2);
3503     }
3504     break;
3505   case ISD::SHL_PARTS:
3506   case ISD::SRA_PARTS:
3507   case ISD::SRL_PARTS: {
3508     assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3509 
3510     // Collect lo/hi source values and concatenate.
3511     unsigned LoBits = Op.getOperand(0).getScalarValueSizeInBits();
3512     unsigned HiBits = Op.getOperand(1).getScalarValueSizeInBits();
3513     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3514     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3515     Known = Known2.concat(Known);
3516 
3517     // Collect shift amount.
3518     Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3519 
3520     if (Opcode == ISD::SHL_PARTS)
3521       Known = KnownBits::shl(Known, Known2);
3522     else if (Opcode == ISD::SRA_PARTS)
3523       Known = KnownBits::ashr(Known, Known2);
3524     else // if (Opcode == ISD::SRL_PARTS)
3525       Known = KnownBits::lshr(Known, Known2);
3526 
3527     // TODO: Minimum shift low/high bits are known zero.
3528 
3529     if (Op.getResNo() == 0)
3530       Known = Known.extractBits(LoBits, 0);
3531     else
3532       Known = Known.extractBits(HiBits, LoBits);
3533     break;
3534   }
3535   case ISD::SIGN_EXTEND_INREG: {
3536     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3537     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3538     Known = Known.sextInReg(EVT.getScalarSizeInBits());
3539     break;
3540   }
3541   case ISD::CTTZ:
3542   case ISD::CTTZ_ZERO_UNDEF: {
3543     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3544     // If we have a known 1, its position is our upper bound.
3545     unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3546     unsigned LowBits = llvm::bit_width(PossibleTZ);
3547     Known.Zero.setBitsFrom(LowBits);
3548     break;
3549   }
3550   case ISD::CTLZ:
3551   case ISD::CTLZ_ZERO_UNDEF: {
3552     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3553     // If we have a known 1, its position is our upper bound.
3554     unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3555     unsigned LowBits = llvm::bit_width(PossibleLZ);
3556     Known.Zero.setBitsFrom(LowBits);
3557     break;
3558   }
3559   case ISD::CTPOP: {
3560     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3561     // If we know some of the bits are zero, they can't be one.
3562     unsigned PossibleOnes = Known2.countMaxPopulation();
3563     Known.Zero.setBitsFrom(llvm::bit_width(PossibleOnes));
3564     break;
3565   }
3566   case ISD::PARITY: {
3567     // Parity returns 0 everywhere but the LSB.
3568     Known.Zero.setBitsFrom(1);
3569     break;
3570   }
3571   case ISD::LOAD: {
3572     LoadSDNode *LD = cast<LoadSDNode>(Op);
3573     const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3574     if (ISD::isNON_EXTLoad(LD) && Cst) {
3575       // Determine any common known bits from the loaded constant pool value.
3576       Type *CstTy = Cst->getType();
3577       if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits() &&
3578           !Op.getValueType().isScalableVector()) {
3579         // If its a vector splat, then we can (quickly) reuse the scalar path.
3580         // NOTE: We assume all elements match and none are UNDEF.
3581         if (CstTy->isVectorTy()) {
3582           if (const Constant *Splat = Cst->getSplatValue()) {
3583             Cst = Splat;
3584             CstTy = Cst->getType();
3585           }
3586         }
3587         // TODO - do we need to handle different bitwidths?
3588         if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3589           // Iterate across all vector elements finding common known bits.
3590           Known.One.setAllBits();
3591           Known.Zero.setAllBits();
3592           for (unsigned i = 0; i != NumElts; ++i) {
3593             if (!DemandedElts[i])
3594               continue;
3595             if (Constant *Elt = Cst->getAggregateElement(i)) {
3596               if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3597                 const APInt &Value = CInt->getValue();
3598                 Known.One &= Value;
3599                 Known.Zero &= ~Value;
3600                 continue;
3601               }
3602               if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3603                 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3604                 Known.One &= Value;
3605                 Known.Zero &= ~Value;
3606                 continue;
3607               }
3608             }
3609             Known.One.clearAllBits();
3610             Known.Zero.clearAllBits();
3611             break;
3612           }
3613         } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3614           if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3615             Known = KnownBits::makeConstant(CInt->getValue());
3616           } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3617             Known =
3618                 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
3619           }
3620         }
3621       }
3622     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3623       // If this is a ZEXTLoad and we are looking at the loaded value.
3624       EVT VT = LD->getMemoryVT();
3625       unsigned MemBits = VT.getScalarSizeInBits();
3626       Known.Zero.setBitsFrom(MemBits);
3627     } else if (const MDNode *Ranges = LD->getRanges()) {
3628       EVT VT = LD->getValueType(0);
3629 
3630       // TODO: Handle for extending loads
3631       if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
3632         if (VT.isVector()) {
3633           // Handle truncation to the first demanded element.
3634           // TODO: Figure out which demanded elements are covered
3635           if (DemandedElts != 1 || !getDataLayout().isLittleEndian())
3636             break;
3637 
3638           // Handle the case where a load has a vector type, but scalar memory
3639           // with an attached range.
3640           EVT MemVT = LD->getMemoryVT();
3641           KnownBits KnownFull(MemVT.getSizeInBits());
3642 
3643           computeKnownBitsFromRangeMetadata(*Ranges, KnownFull);
3644           Known = KnownFull.trunc(BitWidth);
3645         } else
3646           computeKnownBitsFromRangeMetadata(*Ranges, Known);
3647       }
3648     }
3649     break;
3650   }
3651   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3652     if (Op.getValueType().isScalableVector())
3653       break;
3654     EVT InVT = Op.getOperand(0).getValueType();
3655     APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
3656     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3657     Known = Known.zext(BitWidth);
3658     break;
3659   }
3660   case ISD::ZERO_EXTEND: {
3661     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3662     Known = Known.zext(BitWidth);
3663     break;
3664   }
3665   case ISD::SIGN_EXTEND_VECTOR_INREG: {
3666     if (Op.getValueType().isScalableVector())
3667       break;
3668     EVT InVT = Op.getOperand(0).getValueType();
3669     APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
3670     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3671     // If the sign bit is known to be zero or one, then sext will extend
3672     // it to the top bits, else it will just zext.
3673     Known = Known.sext(BitWidth);
3674     break;
3675   }
3676   case ISD::SIGN_EXTEND: {
3677     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3678     // If the sign bit is known to be zero or one, then sext will extend
3679     // it to the top bits, else it will just zext.
3680     Known = Known.sext(BitWidth);
3681     break;
3682   }
3683   case ISD::ANY_EXTEND_VECTOR_INREG: {
3684     if (Op.getValueType().isScalableVector())
3685       break;
3686     EVT InVT = Op.getOperand(0).getValueType();
3687     APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
3688     Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3689     Known = Known.anyext(BitWidth);
3690     break;
3691   }
3692   case ISD::ANY_EXTEND: {
3693     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3694     Known = Known.anyext(BitWidth);
3695     break;
3696   }
3697   case ISD::TRUNCATE: {
3698     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3699     Known = Known.trunc(BitWidth);
3700     break;
3701   }
3702   case ISD::AssertZext: {
3703     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3704     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3705     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3706     Known.Zero |= (~InMask);
3707     Known.One  &= (~Known.Zero);
3708     break;
3709   }
3710   case ISD::AssertAlign: {
3711     unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3712     assert(LogOfAlign != 0);
3713 
3714     // TODO: Should use maximum with source
3715     // If a node is guaranteed to be aligned, set low zero bits accordingly as
3716     // well as clearing one bits.
3717     Known.Zero.setLowBits(LogOfAlign);
3718     Known.One.clearLowBits(LogOfAlign);
3719     break;
3720   }
3721   case ISD::FGETSIGN:
3722     // All bits are zero except the low bit.
3723     Known.Zero.setBitsFrom(1);
3724     break;
3725   case ISD::ADD:
3726   case ISD::SUB: {
3727     SDNodeFlags Flags = Op.getNode()->getFlags();
3728     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3729     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3730     Known = KnownBits::computeForAddSub(Op.getOpcode() == ISD::ADD,
3731                                         Flags.hasNoSignedWrap(), Known, Known2);
3732     break;
3733   }
3734   case ISD::USUBO:
3735   case ISD::SSUBO:
3736   case ISD::USUBO_CARRY:
3737   case ISD::SSUBO_CARRY:
3738     if (Op.getResNo() == 1) {
3739       // If we know the result of a setcc has the top bits zero, use this info.
3740       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3741               TargetLowering::ZeroOrOneBooleanContent &&
3742           BitWidth > 1)
3743         Known.Zero.setBitsFrom(1);
3744       break;
3745     }
3746     [[fallthrough]];
3747   case ISD::SUBC: {
3748     assert(Op.getResNo() == 0 &&
3749            "We only compute knownbits for the difference here.");
3750 
3751     // With USUBO_CARRY and SSUBO_CARRY a borrow bit may be added in.
3752     KnownBits Borrow(1);
3753     if (Opcode == ISD::USUBO_CARRY || Opcode == ISD::SSUBO_CARRY) {
3754       Borrow = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3755       // Borrow has bit width 1
3756       Borrow = Borrow.trunc(1);
3757     } else {
3758       Borrow.setAllZero();
3759     }
3760 
3761     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3762     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3763     Known = KnownBits::computeForSubBorrow(Known, Known2, Borrow);
3764     break;
3765   }
3766   case ISD::UADDO:
3767   case ISD::SADDO:
3768   case ISD::UADDO_CARRY:
3769   case ISD::SADDO_CARRY:
3770     if (Op.getResNo() == 1) {
3771       // If we know the result of a setcc has the top bits zero, use this info.
3772       if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3773               TargetLowering::ZeroOrOneBooleanContent &&
3774           BitWidth > 1)
3775         Known.Zero.setBitsFrom(1);
3776       break;
3777     }
3778     [[fallthrough]];
3779   case ISD::ADDC:
3780   case ISD::ADDE: {
3781     assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3782 
3783     // With ADDE and UADDO_CARRY, a carry bit may be added in.
3784     KnownBits Carry(1);
3785     if (Opcode == ISD::ADDE)
3786       // Can't track carry from glue, set carry to unknown.
3787       Carry.resetAll();
3788     else if (Opcode == ISD::UADDO_CARRY || Opcode == ISD::SADDO_CARRY) {
3789       Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3790       // Carry has bit width 1
3791       Carry = Carry.trunc(1);
3792     } else {
3793       Carry.setAllZero();
3794     }
3795 
3796     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3797     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3798     Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3799     break;
3800   }
3801   case ISD::UDIV: {
3802     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3803     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3804     Known = KnownBits::udiv(Known, Known2, Op->getFlags().hasExact());
3805     break;
3806   }
3807   case ISD::SDIV: {
3808     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3809     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3810     Known = KnownBits::sdiv(Known, Known2, Op->getFlags().hasExact());
3811     break;
3812   }
3813   case ISD::SREM: {
3814     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3815     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3816     Known = KnownBits::srem(Known, Known2);
3817     break;
3818   }
3819   case ISD::UREM: {
3820     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3821     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3822     Known = KnownBits::urem(Known, Known2);
3823     break;
3824   }
3825   case ISD::EXTRACT_ELEMENT: {
3826     Known = computeKnownBits(Op.getOperand(0), Depth+1);
3827     const unsigned Index = Op.getConstantOperandVal(1);
3828     const unsigned EltBitWidth = Op.getValueSizeInBits();
3829 
3830     // Remove low part of known bits mask
3831     Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3832     Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3833 
3834     // Remove high part of known bit mask
3835     Known = Known.trunc(EltBitWidth);
3836     break;
3837   }
3838   case ISD::EXTRACT_VECTOR_ELT: {
3839     SDValue InVec = Op.getOperand(0);
3840     SDValue EltNo = Op.getOperand(1);
3841     EVT VecVT = InVec.getValueType();
3842     // computeKnownBits not yet implemented for scalable vectors.
3843     if (VecVT.isScalableVector())
3844       break;
3845     const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3846     const unsigned NumSrcElts = VecVT.getVectorNumElements();
3847 
3848     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3849     // anything about the extended bits.
3850     if (BitWidth > EltBitWidth)
3851       Known = Known.trunc(EltBitWidth);
3852 
3853     // If we know the element index, just demand that vector element, else for
3854     // an unknown element index, ignore DemandedElts and demand them all.
3855     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
3856     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3857     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3858       DemandedSrcElts =
3859           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3860 
3861     Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3862     if (BitWidth > EltBitWidth)
3863       Known = Known.anyext(BitWidth);
3864     break;
3865   }
3866   case ISD::INSERT_VECTOR_ELT: {
3867     if (Op.getValueType().isScalableVector())
3868       break;
3869 
3870     // If we know the element index, split the demand between the
3871     // source vector and the inserted element, otherwise assume we need
3872     // the original demanded vector elements and the value.
3873     SDValue InVec = Op.getOperand(0);
3874     SDValue InVal = Op.getOperand(1);
3875     SDValue EltNo = Op.getOperand(2);
3876     bool DemandedVal = true;
3877     APInt DemandedVecElts = DemandedElts;
3878     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3879     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3880       unsigned EltIdx = CEltNo->getZExtValue();
3881       DemandedVal = !!DemandedElts[EltIdx];
3882       DemandedVecElts.clearBit(EltIdx);
3883     }
3884     Known.One.setAllBits();
3885     Known.Zero.setAllBits();
3886     if (DemandedVal) {
3887       Known2 = computeKnownBits(InVal, Depth + 1);
3888       Known = Known.intersectWith(Known2.zextOrTrunc(BitWidth));
3889     }
3890     if (!!DemandedVecElts) {
3891       Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3892       Known = Known.intersectWith(Known2);
3893     }
3894     break;
3895   }
3896   case ISD::BITREVERSE: {
3897     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3898     Known = Known2.reverseBits();
3899     break;
3900   }
3901   case ISD::BSWAP: {
3902     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3903     Known = Known2.byteSwap();
3904     break;
3905   }
3906   case ISD::ABS: {
3907     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3908     Known = Known2.abs();
3909     break;
3910   }
3911   case ISD::USUBSAT: {
3912     // The result of usubsat will never be larger than the LHS.
3913     Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3914     Known.Zero.setHighBits(Known2.countMinLeadingZeros());
3915     break;
3916   }
3917   case ISD::UMIN: {
3918     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3919     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3920     Known = KnownBits::umin(Known, Known2);
3921     break;
3922   }
3923   case ISD::UMAX: {
3924     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3925     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3926     Known = KnownBits::umax(Known, Known2);
3927     break;
3928   }
3929   case ISD::SMIN:
3930   case ISD::SMAX: {
3931     // If we have a clamp pattern, we know that the number of sign bits will be
3932     // the minimum of the clamp min/max range.
3933     bool IsMax = (Opcode == ISD::SMAX);
3934     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3935     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3936       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3937         CstHigh =
3938             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3939     if (CstLow && CstHigh) {
3940       if (!IsMax)
3941         std::swap(CstLow, CstHigh);
3942 
3943       const APInt &ValueLow = CstLow->getAPIntValue();
3944       const APInt &ValueHigh = CstHigh->getAPIntValue();
3945       if (ValueLow.sle(ValueHigh)) {
3946         unsigned LowSignBits = ValueLow.getNumSignBits();
3947         unsigned HighSignBits = ValueHigh.getNumSignBits();
3948         unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3949         if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3950           Known.One.setHighBits(MinSignBits);
3951           break;
3952         }
3953         if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3954           Known.Zero.setHighBits(MinSignBits);
3955           break;
3956         }
3957       }
3958     }
3959 
3960     Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3961     Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3962     if (IsMax)
3963       Known = KnownBits::smax(Known, Known2);
3964     else
3965       Known = KnownBits::smin(Known, Known2);
3966 
3967     // For SMAX, if CstLow is non-negative we know the result will be
3968     // non-negative and thus all sign bits are 0.
3969     // TODO: There's an equivalent of this for smin with negative constant for
3970     // known ones.
3971     if (IsMax && CstLow) {
3972       const APInt &ValueLow = CstLow->getAPIntValue();
3973       if (ValueLow.isNonNegative()) {
3974         unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3975         Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits()));
3976       }
3977     }
3978 
3979     break;
3980   }
3981   case ISD::FP_TO_UINT_SAT: {
3982     // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
3983     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3984     Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits());
3985     break;
3986   }
3987   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3988     if (Op.getResNo() == 1) {
3989       // The boolean result conforms to getBooleanContents.
3990       // If we know the result of a setcc has the top bits zero, use this info.
3991       // We know that we have an integer-based boolean since these operations
3992       // are only available for integer.
3993       if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3994               TargetLowering::ZeroOrOneBooleanContent &&
3995           BitWidth > 1)
3996         Known.Zero.setBitsFrom(1);
3997       break;
3998     }
3999     [[fallthrough]];
4000   case ISD::ATOMIC_CMP_SWAP:
4001   case ISD::ATOMIC_SWAP:
4002   case ISD::ATOMIC_LOAD_ADD:
4003   case ISD::ATOMIC_LOAD_SUB:
4004   case ISD::ATOMIC_LOAD_AND:
4005   case ISD::ATOMIC_LOAD_CLR:
4006   case ISD::ATOMIC_LOAD_OR:
4007   case ISD::ATOMIC_LOAD_XOR:
4008   case ISD::ATOMIC_LOAD_NAND:
4009   case ISD::ATOMIC_LOAD_MIN:
4010   case ISD::ATOMIC_LOAD_MAX:
4011   case ISD::ATOMIC_LOAD_UMIN:
4012   case ISD::ATOMIC_LOAD_UMAX:
4013   case ISD::ATOMIC_LOAD: {
4014     unsigned MemBits =
4015         cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4016     // If we are looking at the loaded value.
4017     if (Op.getResNo() == 0) {
4018       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4019         Known.Zero.setBitsFrom(MemBits);
4020     }
4021     break;
4022   }
4023   case ISD::FrameIndex:
4024   case ISD::TargetFrameIndex:
4025     TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
4026                                        Known, getMachineFunction());
4027     break;
4028 
4029   default:
4030     if (Opcode < ISD::BUILTIN_OP_END)
4031       break;
4032     [[fallthrough]];
4033   case ISD::INTRINSIC_WO_CHAIN:
4034   case ISD::INTRINSIC_W_CHAIN:
4035   case ISD::INTRINSIC_VOID:
4036     // TODO: Probably okay to remove after audit; here to reduce change size
4037     // in initial enablement patch for scalable vectors
4038     if (Op.getValueType().isScalableVector())
4039       break;
4040 
4041     // Allow the target to implement this method for its nodes.
4042     TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
4043     break;
4044   }
4045 
4046   assert(!Known.hasConflict() && "Bits known to be one AND zero?");
4047   return Known;
4048 }
4049 
4050 /// Convert ConstantRange OverflowResult into SelectionDAG::OverflowKind.
4051 static SelectionDAG::OverflowKind mapOverflowResult(ConstantRange::OverflowResult OR) {
4052   switch (OR) {
4053   case ConstantRange::OverflowResult::MayOverflow:
4054     return SelectionDAG::OFK_Sometime;
4055   case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4056   case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4057     return SelectionDAG::OFK_Always;
4058   case ConstantRange::OverflowResult::NeverOverflows:
4059     return SelectionDAG::OFK_Never;
4060   }
4061   llvm_unreachable("Unknown OverflowResult");
4062 }
4063 
4064 SelectionDAG::OverflowKind
4065 SelectionDAG::computeOverflowForSignedAdd(SDValue N0, SDValue N1) const {
4066   // X + 0 never overflow
4067   if (isNullConstant(N1))
4068     return OFK_Never;
4069 
4070   // If both operands each have at least two sign bits, the addition
4071   // cannot overflow.
4072   if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4073     return OFK_Never;
4074 
4075   // TODO: Add ConstantRange::signedAddMayOverflow handling.
4076   return OFK_Sometime;
4077 }
4078 
4079 SelectionDAG::OverflowKind
4080 SelectionDAG::computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const {
4081   // X + 0 never overflow
4082   if (isNullConstant(N1))
4083     return OFK_Never;
4084 
4085   // mulhi + 1 never overflow
4086   KnownBits N1Known = computeKnownBits(N1);
4087   if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
4088       N1Known.getMaxValue().ult(2))
4089     return OFK_Never;
4090 
4091   KnownBits N0Known = computeKnownBits(N0);
4092   if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1 &&
4093       N0Known.getMaxValue().ult(2))
4094     return OFK_Never;
4095 
4096   // Fallback to ConstantRange::unsignedAddMayOverflow handling.
4097   ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4098   ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4099   return mapOverflowResult(N0Range.unsignedAddMayOverflow(N1Range));
4100 }
4101 
4102 SelectionDAG::OverflowKind
4103 SelectionDAG::computeOverflowForSignedSub(SDValue N0, SDValue N1) const {
4104   // X - 0 never overflow
4105   if (isNullConstant(N1))
4106     return OFK_Never;
4107 
4108   // If both operands each have at least two sign bits, the subtraction
4109   // cannot overflow.
4110   if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4111     return OFK_Never;
4112 
4113   KnownBits N0Known = computeKnownBits(N0);
4114   KnownBits N1Known = computeKnownBits(N1);
4115   ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, true);
4116   ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, true);
4117   return mapOverflowResult(N0Range.signedSubMayOverflow(N1Range));
4118 }
4119 
4120 SelectionDAG::OverflowKind
4121 SelectionDAG::computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const {
4122   // X - 0 never overflow
4123   if (isNullConstant(N1))
4124     return OFK_Never;
4125 
4126   KnownBits N0Known = computeKnownBits(N0);
4127   KnownBits N1Known = computeKnownBits(N1);
4128   ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4129   ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4130   return mapOverflowResult(N0Range.unsignedSubMayOverflow(N1Range));
4131 }
4132 
4133 SelectionDAG::OverflowKind
4134 SelectionDAG::computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const {
4135   // X * 0 and X * 1 never overflow.
4136   if (isNullConstant(N1) || isOneConstant(N1))
4137     return OFK_Never;
4138 
4139   KnownBits N0Known = computeKnownBits(N0);
4140   KnownBits N1Known = computeKnownBits(N1);
4141   ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4142   ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4143   return mapOverflowResult(N0Range.unsignedMulMayOverflow(N1Range));
4144 }
4145 
4146 SelectionDAG::OverflowKind
4147 SelectionDAG::computeOverflowForSignedMul(SDValue N0, SDValue N1) const {
4148   // X * 0 and X * 1 never overflow.
4149   if (isNullConstant(N1) || isOneConstant(N1))
4150     return OFK_Never;
4151 
4152   // Get the size of the result.
4153   unsigned BitWidth = N0.getScalarValueSizeInBits();
4154 
4155   // Sum of the sign bits.
4156   unsigned SignBits = ComputeNumSignBits(N0) + ComputeNumSignBits(N1);
4157 
4158   // If we have enough sign bits, then there's no overflow.
4159   if (SignBits > BitWidth + 1)
4160     return OFK_Never;
4161 
4162   if (SignBits == BitWidth + 1) {
4163     // The overflow occurs when the true multiplication of the
4164     // the operands is the minimum negative number.
4165     KnownBits N0Known = computeKnownBits(N0);
4166     KnownBits N1Known = computeKnownBits(N1);
4167     // If one of the operands is non-negative, then there's no
4168     // overflow.
4169     if (N0Known.isNonNegative() || N1Known.isNonNegative())
4170       return OFK_Never;
4171   }
4172 
4173   return OFK_Sometime;
4174 }
4175 
4176 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth) const {
4177   if (Depth >= MaxRecursionDepth)
4178     return false; // Limit search depth.
4179 
4180   EVT OpVT = Val.getValueType();
4181   unsigned BitWidth = OpVT.getScalarSizeInBits();
4182 
4183   // Is the constant a known power of 2?
4184   if (ISD::matchUnaryPredicate(Val, [BitWidth](ConstantSDNode *C) {
4185         return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4186       }))
4187     return true;
4188 
4189   // A left-shift of a constant one will have exactly one bit set because
4190   // shifting the bit off the end is undefined.
4191   if (Val.getOpcode() == ISD::SHL) {
4192     auto *C = isConstOrConstSplat(Val.getOperand(0));
4193     if (C && C->getAPIntValue() == 1)
4194       return true;
4195     return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) &&
4196            isKnownNeverZero(Val, Depth);
4197   }
4198 
4199   // Similarly, a logical right-shift of a constant sign-bit will have exactly
4200   // one bit set.
4201   if (Val.getOpcode() == ISD::SRL) {
4202     auto *C = isConstOrConstSplat(Val.getOperand(0));
4203     if (C && C->getAPIntValue().isSignMask())
4204       return true;
4205     return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) &&
4206            isKnownNeverZero(Val, Depth);
4207   }
4208 
4209   if (Val.getOpcode() == ISD::ROTL || Val.getOpcode() == ISD::ROTR)
4210     return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4211 
4212   // Are all operands of a build vector constant powers of two?
4213   if (Val.getOpcode() == ISD::BUILD_VECTOR)
4214     if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
4215           if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
4216             return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4217           return false;
4218         }))
4219       return true;
4220 
4221   // Is the operand of a splat vector a constant power of two?
4222   if (Val.getOpcode() == ISD::SPLAT_VECTOR)
4223     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0)))
4224       if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
4225         return true;
4226 
4227   // vscale(power-of-two) is a power-of-two for some targets
4228   if (Val.getOpcode() == ISD::VSCALE &&
4229       getTargetLoweringInfo().isVScaleKnownToBeAPowerOfTwo() &&
4230       isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1))
4231     return true;
4232 
4233   if (Val.getOpcode() == ISD::SMIN || Val.getOpcode() == ISD::SMAX ||
4234       Val.getOpcode() == ISD::UMIN || Val.getOpcode() == ISD::UMAX)
4235     return isKnownToBeAPowerOfTwo(Val.getOperand(1), Depth + 1) &&
4236            isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4237 
4238   if (Val.getOpcode() == ISD::SELECT || Val.getOpcode() == ISD::VSELECT)
4239     return isKnownToBeAPowerOfTwo(Val.getOperand(2), Depth + 1) &&
4240            isKnownToBeAPowerOfTwo(Val.getOperand(1), Depth + 1);
4241 
4242   if (Val.getOpcode() == ISD::AND) {
4243     // Looking for `x & -x` pattern:
4244     // If x == 0:
4245     //    x & -x -> 0
4246     // If x != 0:
4247     //    x & -x -> non-zero pow2
4248     // so if we find the pattern return whether we know `x` is non-zero.
4249     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) {
4250       SDValue NegOp = Val.getOperand(OpIdx);
4251       if (NegOp.getOpcode() == ISD::SUB &&
4252           NegOp.getOperand(1) == Val.getOperand(1 - OpIdx) &&
4253           isNullOrNullSplat(NegOp.getOperand(0)))
4254         return isKnownNeverZero(Val.getOperand(1 - OpIdx), Depth);
4255     }
4256   }
4257 
4258   if (Val.getOpcode() == ISD::ZERO_EXTEND)
4259     return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4260 
4261   // More could be done here, though the above checks are enough
4262   // to handle some common cases.
4263   return false;
4264 }
4265 
4266 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
4267   EVT VT = Op.getValueType();
4268 
4269   // Since the number of lanes in a scalable vector is unknown at compile time,
4270   // we track one bit which is implicitly broadcast to all lanes.  This means
4271   // that all lanes in a scalable vector are considered demanded.
4272   APInt DemandedElts = VT.isFixedLengthVector()
4273                            ? APInt::getAllOnes(VT.getVectorNumElements())
4274                            : APInt(1, 1);
4275   return ComputeNumSignBits(Op, DemandedElts, Depth);
4276 }
4277 
4278 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
4279                                           unsigned Depth) const {
4280   EVT VT = Op.getValueType();
4281   assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
4282   unsigned VTBits = VT.getScalarSizeInBits();
4283   unsigned NumElts = DemandedElts.getBitWidth();
4284   unsigned Tmp, Tmp2;
4285   unsigned FirstAnswer = 1;
4286 
4287   if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
4288     const APInt &Val = C->getAPIntValue();
4289     return Val.getNumSignBits();
4290   }
4291 
4292   if (Depth >= MaxRecursionDepth)
4293     return 1;  // Limit search depth.
4294 
4295   if (!DemandedElts)
4296     return 1;  // No demanded elts, better to assume we don't know anything.
4297 
4298   unsigned Opcode = Op.getOpcode();
4299   switch (Opcode) {
4300   default: break;
4301   case ISD::AssertSext:
4302     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4303     return VTBits-Tmp+1;
4304   case ISD::AssertZext:
4305     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4306     return VTBits-Tmp;
4307   case ISD::MERGE_VALUES:
4308     return ComputeNumSignBits(Op.getOperand(Op.getResNo()), DemandedElts,
4309                               Depth + 1);
4310   case ISD::SPLAT_VECTOR: {
4311     // Check if the sign bits of source go down as far as the truncated value.
4312     unsigned NumSrcBits = Op.getOperand(0).getValueSizeInBits();
4313     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4314     if (NumSrcSignBits > (NumSrcBits - VTBits))
4315       return NumSrcSignBits - (NumSrcBits - VTBits);
4316     break;
4317   }
4318   case ISD::BUILD_VECTOR:
4319     assert(!VT.isScalableVector());
4320     Tmp = VTBits;
4321     for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
4322       if (!DemandedElts[i])
4323         continue;
4324 
4325       SDValue SrcOp = Op.getOperand(i);
4326       // BUILD_VECTOR can implicitly truncate sources, we handle this specially
4327       // for constant nodes to ensure we only look at the sign bits.
4328       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SrcOp)) {
4329         APInt T = C->getAPIntValue().trunc(VTBits);
4330         Tmp2 = T.getNumSignBits();
4331       } else {
4332         Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
4333 
4334         if (SrcOp.getValueSizeInBits() != VTBits) {
4335           assert(SrcOp.getValueSizeInBits() > VTBits &&
4336                  "Expected BUILD_VECTOR implicit truncation");
4337           unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
4338           Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
4339         }
4340       }
4341       Tmp = std::min(Tmp, Tmp2);
4342     }
4343     return Tmp;
4344 
4345   case ISD::VECTOR_SHUFFLE: {
4346     // Collect the minimum number of sign bits that are shared by every vector
4347     // element referenced by the shuffle.
4348     APInt DemandedLHS, DemandedRHS;
4349     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
4350     assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
4351     if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
4352                                 DemandedLHS, DemandedRHS))
4353       return 1;
4354 
4355     Tmp = std::numeric_limits<unsigned>::max();
4356     if (!!DemandedLHS)
4357       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
4358     if (!!DemandedRHS) {
4359       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
4360       Tmp = std::min(Tmp, Tmp2);
4361     }
4362     // If we don't know anything, early out and try computeKnownBits fall-back.
4363     if (Tmp == 1)
4364       break;
4365     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4366     return Tmp;
4367   }
4368 
4369   case ISD::BITCAST: {
4370     if (VT.isScalableVector())
4371       break;
4372     SDValue N0 = Op.getOperand(0);
4373     EVT SrcVT = N0.getValueType();
4374     unsigned SrcBits = SrcVT.getScalarSizeInBits();
4375 
4376     // Ignore bitcasts from unsupported types..
4377     if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
4378       break;
4379 
4380     // Fast handling of 'identity' bitcasts.
4381     if (VTBits == SrcBits)
4382       return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
4383 
4384     bool IsLE = getDataLayout().isLittleEndian();
4385 
4386     // Bitcast 'large element' scalar/vector to 'small element' vector.
4387     if ((SrcBits % VTBits) == 0) {
4388       assert(VT.isVector() && "Expected bitcast to vector");
4389 
4390       unsigned Scale = SrcBits / VTBits;
4391       APInt SrcDemandedElts =
4392           APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
4393 
4394       // Fast case - sign splat can be simply split across the small elements.
4395       Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
4396       if (Tmp == SrcBits)
4397         return VTBits;
4398 
4399       // Slow case - determine how far the sign extends into each sub-element.
4400       Tmp2 = VTBits;
4401       for (unsigned i = 0; i != NumElts; ++i)
4402         if (DemandedElts[i]) {
4403           unsigned SubOffset = i % Scale;
4404           SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4405           SubOffset = SubOffset * VTBits;
4406           if (Tmp <= SubOffset)
4407             return 1;
4408           Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4409         }
4410       return Tmp2;
4411     }
4412     break;
4413   }
4414 
4415   case ISD::FP_TO_SINT_SAT:
4416     // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
4417     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4418     return VTBits - Tmp + 1;
4419   case ISD::SIGN_EXTEND:
4420     Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
4421     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
4422   case ISD::SIGN_EXTEND_INREG:
4423     // Max of the input and what this extends.
4424     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4425     Tmp = VTBits-Tmp+1;
4426     Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4427     return std::max(Tmp, Tmp2);
4428   case ISD::SIGN_EXTEND_VECTOR_INREG: {
4429     if (VT.isScalableVector())
4430       break;
4431     SDValue Src = Op.getOperand(0);
4432     EVT SrcVT = Src.getValueType();
4433     APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements());
4434     Tmp = VTBits - SrcVT.getScalarSizeInBits();
4435     return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
4436   }
4437   case ISD::SRA:
4438     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4439     // SRA X, C -> adds C sign bits.
4440     if (const APInt *ShAmt =
4441             getValidMinimumShiftAmountConstant(Op, DemandedElts))
4442       Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
4443     return Tmp;
4444   case ISD::SHL:
4445     if (const APInt *ShAmt =
4446             getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
4447       // shl destroys sign bits, ensure it doesn't shift out all sign bits.
4448       Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4449       if (ShAmt->ult(Tmp))
4450         return Tmp - ShAmt->getZExtValue();
4451     }
4452     break;
4453   case ISD::AND:
4454   case ISD::OR:
4455   case ISD::XOR:    // NOT is handled here.
4456     // Logical binary ops preserve the number of sign bits at the worst.
4457     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4458     if (Tmp != 1) {
4459       Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4460       FirstAnswer = std::min(Tmp, Tmp2);
4461       // We computed what we know about the sign bits as our first
4462       // answer. Now proceed to the generic code that uses
4463       // computeKnownBits, and pick whichever answer is better.
4464     }
4465     break;
4466 
4467   case ISD::SELECT:
4468   case ISD::VSELECT:
4469     Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4470     if (Tmp == 1) return 1;  // Early out.
4471     Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4472     return std::min(Tmp, Tmp2);
4473   case ISD::SELECT_CC:
4474     Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4475     if (Tmp == 1) return 1;  // Early out.
4476     Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
4477     return std::min(Tmp, Tmp2);
4478 
4479   case ISD::SMIN:
4480   case ISD::SMAX: {
4481     // If we have a clamp pattern, we know that the number of sign bits will be
4482     // the minimum of the clamp min/max range.
4483     bool IsMax = (Opcode == ISD::SMAX);
4484     ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4485     if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4486       if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4487         CstHigh =
4488             isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4489     if (CstLow && CstHigh) {
4490       if (!IsMax)
4491         std::swap(CstLow, CstHigh);
4492       if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
4493         Tmp = CstLow->getAPIntValue().getNumSignBits();
4494         Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4495         return std::min(Tmp, Tmp2);
4496       }
4497     }
4498 
4499     // Fallback - just get the minimum number of sign bits of the operands.
4500     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4501     if (Tmp == 1)
4502       return 1;  // Early out.
4503     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4504     return std::min(Tmp, Tmp2);
4505   }
4506   case ISD::UMIN:
4507   case ISD::UMAX:
4508     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4509     if (Tmp == 1)
4510       return 1;  // Early out.
4511     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4512     return std::min(Tmp, Tmp2);
4513   case ISD::SADDO:
4514   case ISD::UADDO:
4515   case ISD::SADDO_CARRY:
4516   case ISD::UADDO_CARRY:
4517   case ISD::SSUBO:
4518   case ISD::USUBO:
4519   case ISD::SSUBO_CARRY:
4520   case ISD::USUBO_CARRY:
4521   case ISD::SMULO:
4522   case ISD::UMULO:
4523     if (Op.getResNo() != 1)
4524       break;
4525     // The boolean result conforms to getBooleanContents.  Fall through.
4526     // If setcc returns 0/-1, all bits are sign bits.
4527     // We know that we have an integer-based boolean since these operations
4528     // are only available for integer.
4529     if (TLI->getBooleanContents(VT.isVector(), false) ==
4530         TargetLowering::ZeroOrNegativeOneBooleanContent)
4531       return VTBits;
4532     break;
4533   case ISD::SETCC:
4534   case ISD::SETCCCARRY:
4535   case ISD::STRICT_FSETCC:
4536   case ISD::STRICT_FSETCCS: {
4537     unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
4538     // If setcc returns 0/-1, all bits are sign bits.
4539     if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
4540         TargetLowering::ZeroOrNegativeOneBooleanContent)
4541       return VTBits;
4542     break;
4543   }
4544   case ISD::ROTL:
4545   case ISD::ROTR:
4546     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4547 
4548     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
4549     if (Tmp == VTBits)
4550       return VTBits;
4551 
4552     if (ConstantSDNode *C =
4553             isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
4554       unsigned RotAmt = C->getAPIntValue().urem(VTBits);
4555 
4556       // Handle rotate right by N like a rotate left by 32-N.
4557       if (Opcode == ISD::ROTR)
4558         RotAmt = (VTBits - RotAmt) % VTBits;
4559 
4560       // If we aren't rotating out all of the known-in sign bits, return the
4561       // number that are left.  This handles rotl(sext(x), 1) for example.
4562       if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
4563     }
4564     break;
4565   case ISD::ADD:
4566   case ISD::ADDC:
4567     // Add can have at most one carry bit.  Thus we know that the output
4568     // is, at worst, one more bit than the inputs.
4569     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4570     if (Tmp == 1) return 1; // Early out.
4571 
4572     // Special case decrementing a value (ADD X, -1):
4573     if (ConstantSDNode *CRHS =
4574             isConstOrConstSplat(Op.getOperand(1), DemandedElts))
4575       if (CRHS->isAllOnes()) {
4576         KnownBits Known =
4577             computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4578 
4579         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4580         // sign bits set.
4581         if ((Known.Zero | 1).isAllOnes())
4582           return VTBits;
4583 
4584         // If we are subtracting one from a positive number, there is no carry
4585         // out of the result.
4586         if (Known.isNonNegative())
4587           return Tmp;
4588       }
4589 
4590     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4591     if (Tmp2 == 1) return 1; // Early out.
4592     return std::min(Tmp, Tmp2) - 1;
4593   case ISD::SUB:
4594     Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4595     if (Tmp2 == 1) return 1; // Early out.
4596 
4597     // Handle NEG.
4598     if (ConstantSDNode *CLHS =
4599             isConstOrConstSplat(Op.getOperand(0), DemandedElts))
4600       if (CLHS->isZero()) {
4601         KnownBits Known =
4602             computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4603         // If the input is known to be 0 or 1, the output is 0/-1, which is all
4604         // sign bits set.
4605         if ((Known.Zero | 1).isAllOnes())
4606           return VTBits;
4607 
4608         // If the input is known to be positive (the sign bit is known clear),
4609         // the output of the NEG has the same number of sign bits as the input.
4610         if (Known.isNonNegative())
4611           return Tmp2;
4612 
4613         // Otherwise, we treat this like a SUB.
4614       }
4615 
4616     // Sub can have at most one carry bit.  Thus we know that the output
4617     // is, at worst, one more bit than the inputs.
4618     Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4619     if (Tmp == 1) return 1; // Early out.
4620     return std::min(Tmp, Tmp2) - 1;
4621   case ISD::MUL: {
4622     // The output of the Mul can be at most twice the valid bits in the inputs.
4623     unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4624     if (SignBitsOp0 == 1)
4625       break;
4626     unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
4627     if (SignBitsOp1 == 1)
4628       break;
4629     unsigned OutValidBits =
4630         (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
4631     return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
4632   }
4633   case ISD::SREM:
4634     // The sign bit is the LHS's sign bit, except when the result of the
4635     // remainder is zero. The magnitude of the result should be less than or
4636     // equal to the magnitude of the LHS. Therefore, the result should have
4637     // at least as many sign bits as the left hand side.
4638     return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4639   case ISD::TRUNCATE: {
4640     // Check if the sign bits of source go down as far as the truncated value.
4641     unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
4642     unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4643     if (NumSrcSignBits > (NumSrcBits - VTBits))
4644       return NumSrcSignBits - (NumSrcBits - VTBits);
4645     break;
4646   }
4647   case ISD::EXTRACT_ELEMENT: {
4648     if (VT.isScalableVector())
4649       break;
4650     const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
4651     const int BitWidth = Op.getValueSizeInBits();
4652     const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
4653 
4654     // Get reverse index (starting from 1), Op1 value indexes elements from
4655     // little end. Sign starts at big end.
4656     const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
4657 
4658     // If the sign portion ends in our element the subtraction gives correct
4659     // result. Otherwise it gives either negative or > bitwidth result
4660     return std::clamp(KnownSign - rIndex * BitWidth, 0, BitWidth);
4661   }
4662   case ISD::INSERT_VECTOR_ELT: {
4663     if (VT.isScalableVector())
4664       break;
4665     // If we know the element index, split the demand between the
4666     // source vector and the inserted element, otherwise assume we need
4667     // the original demanded vector elements and the value.
4668     SDValue InVec = Op.getOperand(0);
4669     SDValue InVal = Op.getOperand(1);
4670     SDValue EltNo = Op.getOperand(2);
4671     bool DemandedVal = true;
4672     APInt DemandedVecElts = DemandedElts;
4673     auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4674     if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4675       unsigned EltIdx = CEltNo->getZExtValue();
4676       DemandedVal = !!DemandedElts[EltIdx];
4677       DemandedVecElts.clearBit(EltIdx);
4678     }
4679     Tmp = std::numeric_limits<unsigned>::max();
4680     if (DemandedVal) {
4681       // TODO - handle implicit truncation of inserted elements.
4682       if (InVal.getScalarValueSizeInBits() != VTBits)
4683         break;
4684       Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
4685       Tmp = std::min(Tmp, Tmp2);
4686     }
4687     if (!!DemandedVecElts) {
4688       Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
4689       Tmp = std::min(Tmp, Tmp2);
4690     }
4691     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4692     return Tmp;
4693   }
4694   case ISD::EXTRACT_VECTOR_ELT: {
4695     assert(!VT.isScalableVector());
4696     SDValue InVec = Op.getOperand(0);
4697     SDValue EltNo = Op.getOperand(1);
4698     EVT VecVT = InVec.getValueType();
4699     // ComputeNumSignBits not yet implemented for scalable vectors.
4700     if (VecVT.isScalableVector())
4701       break;
4702     const unsigned BitWidth = Op.getValueSizeInBits();
4703     const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
4704     const unsigned NumSrcElts = VecVT.getVectorNumElements();
4705 
4706     // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
4707     // anything about sign bits. But if the sizes match we can derive knowledge
4708     // about sign bits from the vector operand.
4709     if (BitWidth != EltBitWidth)
4710       break;
4711 
4712     // If we know the element index, just demand that vector element, else for
4713     // an unknown element index, ignore DemandedElts and demand them all.
4714     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4715     auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4716     if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4717       DemandedSrcElts =
4718           APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4719 
4720     return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4721   }
4722   case ISD::EXTRACT_SUBVECTOR: {
4723     // Offset the demanded elts by the subvector index.
4724     SDValue Src = Op.getOperand(0);
4725     // Bail until we can represent demanded elements for scalable vectors.
4726     if (Src.getValueType().isScalableVector())
4727       break;
4728     uint64_t Idx = Op.getConstantOperandVal(1);
4729     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4730     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
4731     return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4732   }
4733   case ISD::CONCAT_VECTORS: {
4734     if (VT.isScalableVector())
4735       break;
4736     // Determine the minimum number of sign bits across all demanded
4737     // elts of the input vectors. Early out if the result is already 1.
4738     Tmp = std::numeric_limits<unsigned>::max();
4739     EVT SubVectorVT = Op.getOperand(0).getValueType();
4740     unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4741     unsigned NumSubVectors = Op.getNumOperands();
4742     for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4743       APInt DemandedSub =
4744           DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
4745       if (!DemandedSub)
4746         continue;
4747       Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4748       Tmp = std::min(Tmp, Tmp2);
4749     }
4750     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4751     return Tmp;
4752   }
4753   case ISD::INSERT_SUBVECTOR: {
4754     if (VT.isScalableVector())
4755       break;
4756     // Demand any elements from the subvector and the remainder from the src its
4757     // inserted into.
4758     SDValue Src = Op.getOperand(0);
4759     SDValue Sub = Op.getOperand(1);
4760     uint64_t Idx = Op.getConstantOperandVal(2);
4761     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4762     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4763     APInt DemandedSrcElts = DemandedElts;
4764     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
4765 
4766     Tmp = std::numeric_limits<unsigned>::max();
4767     if (!!DemandedSubElts) {
4768       Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4769       if (Tmp == 1)
4770         return 1; // early-out
4771     }
4772     if (!!DemandedSrcElts) {
4773       Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4774       Tmp = std::min(Tmp, Tmp2);
4775     }
4776     assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4777     return Tmp;
4778   }
4779   case ISD::LOAD: {
4780     LoadSDNode *LD = cast<LoadSDNode>(Op);
4781     if (const MDNode *Ranges = LD->getRanges()) {
4782       if (DemandedElts != 1)
4783         break;
4784 
4785       ConstantRange CR = getConstantRangeFromMetadata(*Ranges);
4786       if (VTBits > CR.getBitWidth()) {
4787         switch (LD->getExtensionType()) {
4788         case ISD::SEXTLOAD:
4789           CR = CR.signExtend(VTBits);
4790           break;
4791         case ISD::ZEXTLOAD:
4792           CR = CR.zeroExtend(VTBits);
4793           break;
4794         default:
4795           break;
4796         }
4797       }
4798 
4799       if (VTBits != CR.getBitWidth())
4800         break;
4801       return std::min(CR.getSignedMin().getNumSignBits(),
4802                       CR.getSignedMax().getNumSignBits());
4803     }
4804 
4805     break;
4806   }
4807   case ISD::ATOMIC_CMP_SWAP:
4808   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4809   case ISD::ATOMIC_SWAP:
4810   case ISD::ATOMIC_LOAD_ADD:
4811   case ISD::ATOMIC_LOAD_SUB:
4812   case ISD::ATOMIC_LOAD_AND:
4813   case ISD::ATOMIC_LOAD_CLR:
4814   case ISD::ATOMIC_LOAD_OR:
4815   case ISD::ATOMIC_LOAD_XOR:
4816   case ISD::ATOMIC_LOAD_NAND:
4817   case ISD::ATOMIC_LOAD_MIN:
4818   case ISD::ATOMIC_LOAD_MAX:
4819   case ISD::ATOMIC_LOAD_UMIN:
4820   case ISD::ATOMIC_LOAD_UMAX:
4821   case ISD::ATOMIC_LOAD: {
4822     Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits();
4823     // If we are looking at the loaded value.
4824     if (Op.getResNo() == 0) {
4825       if (Tmp == VTBits)
4826         return 1; // early-out
4827       if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
4828         return VTBits - Tmp + 1;
4829       if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4830         return VTBits - Tmp;
4831     }
4832     break;
4833   }
4834   }
4835 
4836   // If we are looking at the loaded value of the SDNode.
4837   if (Op.getResNo() == 0) {
4838     // Handle LOADX separately here. EXTLOAD case will fallthrough.
4839     if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4840       unsigned ExtType = LD->getExtensionType();
4841       switch (ExtType) {
4842       default: break;
4843       case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4844         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4845         return VTBits - Tmp + 1;
4846       case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4847         Tmp = LD->getMemoryVT().getScalarSizeInBits();
4848         return VTBits - Tmp;
4849       case ISD::NON_EXTLOAD:
4850         if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4851           // We only need to handle vectors - computeKnownBits should handle
4852           // scalar cases.
4853           Type *CstTy = Cst->getType();
4854           if (CstTy->isVectorTy() && !VT.isScalableVector() &&
4855               (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
4856               VTBits == CstTy->getScalarSizeInBits()) {
4857             Tmp = VTBits;
4858             for (unsigned i = 0; i != NumElts; ++i) {
4859               if (!DemandedElts[i])
4860                 continue;
4861               if (Constant *Elt = Cst->getAggregateElement(i)) {
4862                 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4863                   const APInt &Value = CInt->getValue();
4864                   Tmp = std::min(Tmp, Value.getNumSignBits());
4865                   continue;
4866                 }
4867                 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4868                   APInt Value = CFP->getValueAPF().bitcastToAPInt();
4869                   Tmp = std::min(Tmp, Value.getNumSignBits());
4870                   continue;
4871                 }
4872               }
4873               // Unknown type. Conservatively assume no bits match sign bit.
4874               return 1;
4875             }
4876             return Tmp;
4877           }
4878         }
4879         break;
4880       }
4881     }
4882   }
4883 
4884   // Allow the target to implement this method for its nodes.
4885   if (Opcode >= ISD::BUILTIN_OP_END ||
4886       Opcode == ISD::INTRINSIC_WO_CHAIN ||
4887       Opcode == ISD::INTRINSIC_W_CHAIN ||
4888       Opcode == ISD::INTRINSIC_VOID) {
4889     // TODO: This can probably be removed once target code is audited.  This
4890     // is here purely to reduce patch size and review complexity.
4891     if (!VT.isScalableVector()) {
4892       unsigned NumBits =
4893         TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4894       if (NumBits > 1)
4895         FirstAnswer = std::max(FirstAnswer, NumBits);
4896     }
4897   }
4898 
4899   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4900   // use this information.
4901   KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4902   return std::max(FirstAnswer, Known.countMinSignBits());
4903 }
4904 
4905 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4906                                                  unsigned Depth) const {
4907   unsigned SignBits = ComputeNumSignBits(Op, Depth);
4908   return Op.getScalarValueSizeInBits() - SignBits + 1;
4909 }
4910 
4911 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op,
4912                                                  const APInt &DemandedElts,
4913                                                  unsigned Depth) const {
4914   unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
4915   return Op.getScalarValueSizeInBits() - SignBits + 1;
4916 }
4917 
4918 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly,
4919                                                     unsigned Depth) const {
4920   // Early out for FREEZE.
4921   if (Op.getOpcode() == ISD::FREEZE)
4922     return true;
4923 
4924   // TODO: Assume we don't know anything for now.
4925   EVT VT = Op.getValueType();
4926   if (VT.isScalableVector())
4927     return false;
4928 
4929   APInt DemandedElts = VT.isVector()
4930                            ? APInt::getAllOnes(VT.getVectorNumElements())
4931                            : APInt(1, 1);
4932   return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
4933 }
4934 
4935 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op,
4936                                                     const APInt &DemandedElts,
4937                                                     bool PoisonOnly,
4938                                                     unsigned Depth) const {
4939   unsigned Opcode = Op.getOpcode();
4940 
4941   // Early out for FREEZE.
4942   if (Opcode == ISD::FREEZE)
4943     return true;
4944 
4945   if (Depth >= MaxRecursionDepth)
4946     return false; // Limit search depth.
4947 
4948   if (isIntOrFPConstant(Op))
4949     return true;
4950 
4951   switch (Opcode) {
4952   case ISD::VALUETYPE:
4953   case ISD::FrameIndex:
4954   case ISD::TargetFrameIndex:
4955     return true;
4956 
4957   case ISD::UNDEF:
4958     return PoisonOnly;
4959 
4960   case ISD::BUILD_VECTOR:
4961     // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
4962     // this shouldn't affect the result.
4963     for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
4964       if (!DemandedElts[i])
4965         continue;
4966       if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly,
4967                                             Depth + 1))
4968         return false;
4969     }
4970     return true;
4971 
4972     // TODO: Search for noundef attributes from library functions.
4973 
4974     // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
4975 
4976   default:
4977     // Allow the target to implement this method for its nodes.
4978     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
4979         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
4980       return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
4981           Op, DemandedElts, *this, PoisonOnly, Depth);
4982     break;
4983   }
4984 
4985   // If Op can't create undef/poison and none of its operands are undef/poison
4986   // then Op is never undef/poison.
4987   // NOTE: TargetNodes should handle this in themselves in
4988   // isGuaranteedNotToBeUndefOrPoisonForTargetNode.
4989   return !canCreateUndefOrPoison(Op, PoisonOnly, /*ConsiderFlags*/ true,
4990                                  Depth) &&
4991          all_of(Op->ops(), [&](SDValue V) {
4992            return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1);
4993          });
4994 }
4995 
4996 bool SelectionDAG::canCreateUndefOrPoison(SDValue Op, bool PoisonOnly,
4997                                           bool ConsiderFlags,
4998                                           unsigned Depth) const {
4999   // TODO: Assume we don't know anything for now.
5000   EVT VT = Op.getValueType();
5001   if (VT.isScalableVector())
5002     return true;
5003 
5004   APInt DemandedElts = VT.isVector()
5005                            ? APInt::getAllOnes(VT.getVectorNumElements())
5006                            : APInt(1, 1);
5007   return canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly, ConsiderFlags,
5008                                 Depth);
5009 }
5010 
5011 bool SelectionDAG::canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts,
5012                                           bool PoisonOnly, bool ConsiderFlags,
5013                                           unsigned Depth) const {
5014   // TODO: Assume we don't know anything for now.
5015   EVT VT = Op.getValueType();
5016   if (VT.isScalableVector())
5017     return true;
5018 
5019   unsigned Opcode = Op.getOpcode();
5020   switch (Opcode) {
5021   case ISD::FREEZE:
5022   case ISD::CONCAT_VECTORS:
5023   case ISD::INSERT_SUBVECTOR:
5024   case ISD::AND:
5025   case ISD::XOR:
5026   case ISD::ROTL:
5027   case ISD::ROTR:
5028   case ISD::FSHL:
5029   case ISD::FSHR:
5030   case ISD::BSWAP:
5031   case ISD::CTPOP:
5032   case ISD::BITREVERSE:
5033   case ISD::PARITY:
5034   case ISD::SIGN_EXTEND:
5035   case ISD::TRUNCATE:
5036   case ISD::SIGN_EXTEND_INREG:
5037   case ISD::SIGN_EXTEND_VECTOR_INREG:
5038   case ISD::ZERO_EXTEND_VECTOR_INREG:
5039   case ISD::BITCAST:
5040   case ISD::BUILD_VECTOR:
5041   case ISD::BUILD_PAIR:
5042     return false;
5043 
5044   // Matches hasPoisonGeneratingFlags().
5045   case ISD::ZERO_EXTEND:
5046     return ConsiderFlags && Op->getFlags().hasNonNeg();
5047 
5048   case ISD::ADD:
5049   case ISD::SUB:
5050   case ISD::MUL:
5051     // Matches hasPoisonGeneratingFlags().
5052     return ConsiderFlags && (Op->getFlags().hasNoSignedWrap() ||
5053                              Op->getFlags().hasNoUnsignedWrap());
5054 
5055   case ISD::SHL:
5056     // If the max shift amount isn't in range, then the shift can create poison.
5057     if (!getValidMaximumShiftAmountConstant(Op, DemandedElts))
5058       return true;
5059 
5060     // Matches hasPoisonGeneratingFlags().
5061     return ConsiderFlags && (Op->getFlags().hasNoSignedWrap() ||
5062                              Op->getFlags().hasNoUnsignedWrap());
5063 
5064   // Matches hasPoisonGeneratingFlags().
5065   case ISD::OR:
5066     return ConsiderFlags && Op->getFlags().hasDisjoint();
5067 
5068   case ISD::INSERT_VECTOR_ELT:{
5069     // Ensure that the element index is in bounds.
5070     EVT VecVT = Op.getOperand(0).getValueType();
5071     KnownBits KnownIdx = computeKnownBits(Op.getOperand(2), Depth + 1);
5072     return KnownIdx.getMaxValue().uge(VecVT.getVectorMinNumElements());
5073   }
5074 
5075   default:
5076     // Allow the target to implement this method for its nodes.
5077     if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
5078         Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
5079       return TLI->canCreateUndefOrPoisonForTargetNode(
5080           Op, DemandedElts, *this, PoisonOnly, ConsiderFlags, Depth);
5081     break;
5082   }
5083 
5084   // Be conservative and return true.
5085   return true;
5086 }
5087 
5088 bool SelectionDAG::isADDLike(SDValue Op) const {
5089   unsigned Opcode = Op.getOpcode();
5090   if (Opcode == ISD::OR)
5091     return Op->getFlags().hasDisjoint() ||
5092            haveNoCommonBitsSet(Op.getOperand(0), Op.getOperand(1));
5093   if (Opcode == ISD::XOR)
5094     return isMinSignedConstant(Op.getOperand(1));
5095   return false;
5096 }
5097 
5098 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
5099   if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
5100       !isa<ConstantSDNode>(Op.getOperand(1)))
5101     return false;
5102 
5103   if (Op.getOpcode() == ISD::OR &&
5104       !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
5105     return false;
5106 
5107   return true;
5108 }
5109 
5110 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
5111   // If we're told that NaNs won't happen, assume they won't.
5112   if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
5113     return true;
5114 
5115   if (Depth >= MaxRecursionDepth)
5116     return false; // Limit search depth.
5117 
5118   // If the value is a constant, we can obviously see if it is a NaN or not.
5119   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
5120     return !C->getValueAPF().isNaN() ||
5121            (SNaN && !C->getValueAPF().isSignaling());
5122   }
5123 
5124   unsigned Opcode = Op.getOpcode();
5125   switch (Opcode) {
5126   case ISD::FADD:
5127   case ISD::FSUB:
5128   case ISD::FMUL:
5129   case ISD::FDIV:
5130   case ISD::FREM:
5131   case ISD::FSIN:
5132   case ISD::FCOS:
5133   case ISD::FMA:
5134   case ISD::FMAD: {
5135     if (SNaN)
5136       return true;
5137     // TODO: Need isKnownNeverInfinity
5138     return false;
5139   }
5140   case ISD::FCANONICALIZE:
5141   case ISD::FEXP:
5142   case ISD::FEXP2:
5143   case ISD::FEXP10:
5144   case ISD::FTRUNC:
5145   case ISD::FFLOOR:
5146   case ISD::FCEIL:
5147   case ISD::FROUND:
5148   case ISD::FROUNDEVEN:
5149   case ISD::FRINT:
5150   case ISD::LRINT:
5151   case ISD::LLRINT:
5152   case ISD::FNEARBYINT:
5153   case ISD::FLDEXP: {
5154     if (SNaN)
5155       return true;
5156     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
5157   }
5158   case ISD::FABS:
5159   case ISD::FNEG:
5160   case ISD::FCOPYSIGN: {
5161     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
5162   }
5163   case ISD::SELECT:
5164     return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
5165            isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
5166   case ISD::FP_EXTEND:
5167   case ISD::FP_ROUND: {
5168     if (SNaN)
5169       return true;
5170     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
5171   }
5172   case ISD::SINT_TO_FP:
5173   case ISD::UINT_TO_FP:
5174     return true;
5175   case ISD::FSQRT: // Need is known positive
5176   case ISD::FLOG:
5177   case ISD::FLOG2:
5178   case ISD::FLOG10:
5179   case ISD::FPOWI:
5180   case ISD::FPOW: {
5181     if (SNaN)
5182       return true;
5183     // TODO: Refine on operand
5184     return false;
5185   }
5186   case ISD::FMINNUM:
5187   case ISD::FMAXNUM: {
5188     // Only one needs to be known not-nan, since it will be returned if the
5189     // other ends up being one.
5190     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
5191            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
5192   }
5193   case ISD::FMINNUM_IEEE:
5194   case ISD::FMAXNUM_IEEE: {
5195     if (SNaN)
5196       return true;
5197     // This can return a NaN if either operand is an sNaN, or if both operands
5198     // are NaN.
5199     return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
5200             isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
5201            (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
5202             isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
5203   }
5204   case ISD::FMINIMUM:
5205   case ISD::FMAXIMUM: {
5206     // TODO: Does this quiet or return the origina NaN as-is?
5207     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
5208            isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
5209   }
5210   case ISD::EXTRACT_VECTOR_ELT: {
5211     return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
5212   }
5213   case ISD::BUILD_VECTOR: {
5214     for (const SDValue &Opnd : Op->ops())
5215       if (!isKnownNeverNaN(Opnd, SNaN, Depth + 1))
5216         return false;
5217     return true;
5218   }
5219   default:
5220     if (Opcode >= ISD::BUILTIN_OP_END ||
5221         Opcode == ISD::INTRINSIC_WO_CHAIN ||
5222         Opcode == ISD::INTRINSIC_W_CHAIN ||
5223         Opcode == ISD::INTRINSIC_VOID) {
5224       return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
5225     }
5226 
5227     return false;
5228   }
5229 }
5230 
5231 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
5232   assert(Op.getValueType().isFloatingPoint() &&
5233          "Floating point type expected");
5234 
5235   // If the value is a constant, we can obviously see if it is a zero or not.
5236   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
5237     return !C->isZero();
5238 
5239   // Return false if we find any zero in a vector.
5240   if (Op->getOpcode() == ISD::BUILD_VECTOR ||
5241       Op->getOpcode() == ISD::SPLAT_VECTOR) {
5242     for (const SDValue &OpVal : Op->op_values()) {
5243       if (OpVal.isUndef())
5244         return false;
5245       if (auto *C = dyn_cast<ConstantFPSDNode>(OpVal))
5246         if (C->isZero())
5247           return false;
5248     }
5249     return true;
5250   }
5251   return false;
5252 }
5253 
5254 bool SelectionDAG::isKnownNeverZero(SDValue Op, unsigned Depth) const {
5255   if (Depth >= MaxRecursionDepth)
5256     return false; // Limit search depth.
5257 
5258   assert(!Op.getValueType().isFloatingPoint() &&
5259          "Floating point types unsupported - use isKnownNeverZeroFloat");
5260 
5261   // If the value is a constant, we can obviously see if it is a zero or not.
5262   if (ISD::matchUnaryPredicate(Op,
5263                                [](ConstantSDNode *C) { return !C->isZero(); }))
5264     return true;
5265 
5266   // TODO: Recognize more cases here. Most of the cases are also incomplete to
5267   // some degree.
5268   switch (Op.getOpcode()) {
5269   default:
5270     break;
5271 
5272   case ISD::OR:
5273     return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
5274            isKnownNeverZero(Op.getOperand(0), Depth + 1);
5275 
5276   case ISD::VSELECT:
5277   case ISD::SELECT:
5278     return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
5279            isKnownNeverZero(Op.getOperand(2), Depth + 1);
5280 
5281   case ISD::SHL: {
5282     if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
5283       return isKnownNeverZero(Op.getOperand(0), Depth + 1);
5284     KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1);
5285     // 1 << X is never zero.
5286     if (ValKnown.One[0])
5287       return true;
5288     // If max shift cnt of known ones is non-zero, result is non-zero.
5289     APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue();
5290     if (MaxCnt.ult(ValKnown.getBitWidth()) &&
5291         !ValKnown.One.shl(MaxCnt).isZero())
5292       return true;
5293     break;
5294   }
5295   case ISD::UADDSAT:
5296   case ISD::UMAX:
5297     return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
5298            isKnownNeverZero(Op.getOperand(0), Depth + 1);
5299 
5300     // TODO for smin/smax: If either operand is known negative/positive
5301     // respectively we don't need the other to be known at all.
5302   case ISD::SMAX:
5303   case ISD::SMIN:
5304   case ISD::UMIN:
5305     return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
5306            isKnownNeverZero(Op.getOperand(0), Depth + 1);
5307 
5308   case ISD::ROTL:
5309   case ISD::ROTR:
5310   case ISD::BITREVERSE:
5311   case ISD::BSWAP:
5312   case ISD::CTPOP:
5313   case ISD::ABS:
5314     return isKnownNeverZero(Op.getOperand(0), Depth + 1);
5315 
5316   case ISD::SRA:
5317   case ISD::SRL: {
5318     if (Op->getFlags().hasExact())
5319       return isKnownNeverZero(Op.getOperand(0), Depth + 1);
5320     KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1);
5321     if (ValKnown.isNegative())
5322       return true;
5323     // If max shift cnt of known ones is non-zero, result is non-zero.
5324     APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue();
5325     if (MaxCnt.ult(ValKnown.getBitWidth()) &&
5326         !ValKnown.One.lshr(MaxCnt).isZero())
5327       return true;
5328     break;
5329   }
5330   case ISD::UDIV:
5331   case ISD::SDIV:
5332     // div exact can only produce a zero if the dividend is zero.
5333     // TODO: For udiv this is also true if Op1 u<= Op0
5334     if (Op->getFlags().hasExact())
5335       return isKnownNeverZero(Op.getOperand(0), Depth + 1);
5336     break;
5337 
5338   case ISD::ADD:
5339     if (Op->getFlags().hasNoUnsignedWrap())
5340       if (isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
5341           isKnownNeverZero(Op.getOperand(0), Depth + 1))
5342         return true;
5343     // TODO: There are a lot more cases we can prove for add.
5344     break;
5345 
5346   case ISD::SUB: {
5347     if (isNullConstant(Op.getOperand(0)))
5348       return isKnownNeverZero(Op.getOperand(1), Depth + 1);
5349 
5350     std::optional<bool> ne =
5351         KnownBits::ne(computeKnownBits(Op.getOperand(0), Depth + 1),
5352                       computeKnownBits(Op.getOperand(1), Depth + 1));
5353     return ne && *ne;
5354   }
5355 
5356   case ISD::MUL:
5357     if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
5358       if (isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
5359           isKnownNeverZero(Op.getOperand(0), Depth + 1))
5360         return true;
5361     break;
5362 
5363   case ISD::ZERO_EXTEND:
5364   case ISD::SIGN_EXTEND:
5365     return isKnownNeverZero(Op.getOperand(0), Depth + 1);
5366   }
5367 
5368   return computeKnownBits(Op, Depth).isNonZero();
5369 }
5370 
5371 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
5372   // Check the obvious case.
5373   if (A == B) return true;
5374 
5375   // For negative and positive zero.
5376   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
5377     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
5378       if (CA->isZero() && CB->isZero()) return true;
5379 
5380   // Otherwise they may not be equal.
5381   return false;
5382 }
5383 
5384 // Only bits set in Mask must be negated, other bits may be arbitrary.
5385 SDValue llvm::getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs) {
5386   if (isBitwiseNot(V, AllowUndefs))
5387     return V.getOperand(0);
5388 
5389   // Handle any_extend (not (truncate X)) pattern, where Mask only sets
5390   // bits in the non-extended part.
5391   ConstantSDNode *MaskC = isConstOrConstSplat(Mask);
5392   if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND)
5393     return SDValue();
5394   SDValue ExtArg = V.getOperand(0);
5395   if (ExtArg.getScalarValueSizeInBits() >=
5396           MaskC->getAPIntValue().getActiveBits() &&
5397       isBitwiseNot(ExtArg, AllowUndefs) &&
5398       ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE &&
5399       ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType())
5400     return ExtArg.getOperand(0).getOperand(0);
5401   return SDValue();
5402 }
5403 
5404 static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B) {
5405   // Match masked merge pattern (X & ~M) op (Y & M)
5406   // Including degenerate case (X & ~M) op M
5407   auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask,
5408                                       SDValue Other) {
5409     if (SDValue NotOperand =
5410             getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) {
5411       if (NotOperand->getOpcode() == ISD::ZERO_EXTEND ||
5412           NotOperand->getOpcode() == ISD::TRUNCATE)
5413         NotOperand = NotOperand->getOperand(0);
5414 
5415       if (Other == NotOperand)
5416         return true;
5417       if (Other->getOpcode() == ISD::AND)
5418         return NotOperand == Other->getOperand(0) ||
5419                NotOperand == Other->getOperand(1);
5420     }
5421     return false;
5422   };
5423 
5424   if (A->getOpcode() == ISD::ZERO_EXTEND || A->getOpcode() == ISD::TRUNCATE)
5425     A = A->getOperand(0);
5426 
5427   if (B->getOpcode() == ISD::ZERO_EXTEND || B->getOpcode() == ISD::TRUNCATE)
5428     B = B->getOperand(0);
5429 
5430   if (A->getOpcode() == ISD::AND)
5431     return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) ||
5432            MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B);
5433   return false;
5434 }
5435 
5436 // FIXME: unify with llvm::haveNoCommonBitsSet.
5437 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
5438   assert(A.getValueType() == B.getValueType() &&
5439          "Values must have the same type");
5440   if (haveNoCommonBitsSetCommutative(A, B) ||
5441       haveNoCommonBitsSetCommutative(B, A))
5442     return true;
5443   return KnownBits::haveNoCommonBitsSet(computeKnownBits(A),
5444                                         computeKnownBits(B));
5445 }
5446 
5447 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
5448                                SelectionDAG &DAG) {
5449   if (cast<ConstantSDNode>(Step)->isZero())
5450     return DAG.getConstant(0, DL, VT);
5451 
5452   return SDValue();
5453 }
5454 
5455 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
5456                                 ArrayRef<SDValue> Ops,
5457                                 SelectionDAG &DAG) {
5458   int NumOps = Ops.size();
5459   assert(NumOps != 0 && "Can't build an empty vector!");
5460   assert(!VT.isScalableVector() &&
5461          "BUILD_VECTOR cannot be used with scalable types");
5462   assert(VT.getVectorNumElements() == (unsigned)NumOps &&
5463          "Incorrect element count in BUILD_VECTOR!");
5464 
5465   // BUILD_VECTOR of UNDEFs is UNDEF.
5466   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
5467     return DAG.getUNDEF(VT);
5468 
5469   // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
5470   SDValue IdentitySrc;
5471   bool IsIdentity = true;
5472   for (int i = 0; i != NumOps; ++i) {
5473     if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5474         Ops[i].getOperand(0).getValueType() != VT ||
5475         (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
5476         !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
5477         Ops[i].getConstantOperandAPInt(1) != i) {
5478       IsIdentity = false;
5479       break;
5480     }
5481     IdentitySrc = Ops[i].getOperand(0);
5482   }
5483   if (IsIdentity)
5484     return IdentitySrc;
5485 
5486   return SDValue();
5487 }
5488 
5489 /// Try to simplify vector concatenation to an input value, undef, or build
5490 /// vector.
5491 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
5492                                   ArrayRef<SDValue> Ops,
5493                                   SelectionDAG &DAG) {
5494   assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
5495   assert(llvm::all_of(Ops,
5496                       [Ops](SDValue Op) {
5497                         return Ops[0].getValueType() == Op.getValueType();
5498                       }) &&
5499          "Concatenation of vectors with inconsistent value types!");
5500   assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
5501              VT.getVectorElementCount() &&
5502          "Incorrect element count in vector concatenation!");
5503 
5504   if (Ops.size() == 1)
5505     return Ops[0];
5506 
5507   // Concat of UNDEFs is UNDEF.
5508   if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
5509     return DAG.getUNDEF(VT);
5510 
5511   // Scan the operands and look for extract operations from a single source
5512   // that correspond to insertion at the same location via this concatenation:
5513   // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
5514   SDValue IdentitySrc;
5515   bool IsIdentity = true;
5516   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
5517     SDValue Op = Ops[i];
5518     unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
5519     if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
5520         Op.getOperand(0).getValueType() != VT ||
5521         (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
5522         Op.getConstantOperandVal(1) != IdentityIndex) {
5523       IsIdentity = false;
5524       break;
5525     }
5526     assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
5527            "Unexpected identity source vector for concat of extracts");
5528     IdentitySrc = Op.getOperand(0);
5529   }
5530   if (IsIdentity) {
5531     assert(IdentitySrc && "Failed to set source vector of extracts");
5532     return IdentitySrc;
5533   }
5534 
5535   // The code below this point is only designed to work for fixed width
5536   // vectors, so we bail out for now.
5537   if (VT.isScalableVector())
5538     return SDValue();
5539 
5540   // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
5541   // simplified to one big BUILD_VECTOR.
5542   // FIXME: Add support for SCALAR_TO_VECTOR as well.
5543   EVT SVT = VT.getScalarType();
5544   SmallVector<SDValue, 16> Elts;
5545   for (SDValue Op : Ops) {
5546     EVT OpVT = Op.getValueType();
5547     if (Op.isUndef())
5548       Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
5549     else if (Op.getOpcode() == ISD::BUILD_VECTOR)
5550       Elts.append(Op->op_begin(), Op->op_end());
5551     else
5552       return SDValue();
5553   }
5554 
5555   // BUILD_VECTOR requires all inputs to be of the same type, find the
5556   // maximum type and extend them all.
5557   for (SDValue Op : Elts)
5558     SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
5559 
5560   if (SVT.bitsGT(VT.getScalarType())) {
5561     for (SDValue &Op : Elts) {
5562       if (Op.isUndef())
5563         Op = DAG.getUNDEF(SVT);
5564       else
5565         Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
5566                  ? DAG.getZExtOrTrunc(Op, DL, SVT)
5567                  : DAG.getSExtOrTrunc(Op, DL, SVT);
5568     }
5569   }
5570 
5571   SDValue V = DAG.getBuildVector(VT, DL, Elts);
5572   NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
5573   return V;
5574 }
5575 
5576 /// Gets or creates the specified node.
5577 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
5578   FoldingSetNodeID ID;
5579   AddNodeIDNode(ID, Opcode, getVTList(VT), std::nullopt);
5580   void *IP = nullptr;
5581   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5582     return SDValue(E, 0);
5583 
5584   auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
5585                               getVTList(VT));
5586   CSEMap.InsertNode(N, IP);
5587 
5588   InsertNode(N);
5589   SDValue V = SDValue(N, 0);
5590   NewSDValueDbgMsg(V, "Creating new node: ", this);
5591   return V;
5592 }
5593 
5594 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5595                               SDValue N1) {
5596   SDNodeFlags Flags;
5597   if (Inserter)
5598     Flags = Inserter->getFlags();
5599   return getNode(Opcode, DL, VT, N1, Flags);
5600 }
5601 
5602 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5603                               SDValue N1, const SDNodeFlags Flags) {
5604   assert(N1.getOpcode() != ISD::DELETED_NODE && "Operand is DELETED_NODE!");
5605 
5606   // Constant fold unary operations with a vector integer or float operand.
5607   switch (Opcode) {
5608   default:
5609     // FIXME: Entirely reasonable to perform folding of other unary
5610     // operations here as the need arises.
5611     break;
5612   case ISD::FNEG:
5613   case ISD::FABS:
5614   case ISD::FCEIL:
5615   case ISD::FTRUNC:
5616   case ISD::FFLOOR:
5617   case ISD::FP_EXTEND:
5618   case ISD::FP_TO_SINT:
5619   case ISD::FP_TO_UINT:
5620   case ISD::FP_TO_FP16:
5621   case ISD::FP_TO_BF16:
5622   case ISD::TRUNCATE:
5623   case ISD::ANY_EXTEND:
5624   case ISD::ZERO_EXTEND:
5625   case ISD::SIGN_EXTEND:
5626   case ISD::UINT_TO_FP:
5627   case ISD::SINT_TO_FP:
5628   case ISD::FP16_TO_FP:
5629   case ISD::BF16_TO_FP:
5630   case ISD::BITCAST:
5631   case ISD::ABS:
5632   case ISD::BITREVERSE:
5633   case ISD::BSWAP:
5634   case ISD::CTLZ:
5635   case ISD::CTLZ_ZERO_UNDEF:
5636   case ISD::CTTZ:
5637   case ISD::CTTZ_ZERO_UNDEF:
5638   case ISD::CTPOP:
5639   case ISD::STEP_VECTOR: {
5640     SDValue Ops = {N1};
5641     if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
5642       return Fold;
5643   }
5644   }
5645 
5646   unsigned OpOpcode = N1.getNode()->getOpcode();
5647   switch (Opcode) {
5648   case ISD::STEP_VECTOR:
5649     assert(VT.isScalableVector() &&
5650            "STEP_VECTOR can only be used with scalable types");
5651     assert(OpOpcode == ISD::TargetConstant &&
5652            VT.getVectorElementType() == N1.getValueType() &&
5653            "Unexpected step operand");
5654     break;
5655   case ISD::FREEZE:
5656     assert(VT == N1.getValueType() && "Unexpected VT!");
5657     if (isGuaranteedNotToBeUndefOrPoison(N1, /*PoisonOnly*/ false,
5658                                          /*Depth*/ 1))
5659       return N1;
5660     break;
5661   case ISD::TokenFactor:
5662   case ISD::MERGE_VALUES:
5663   case ISD::CONCAT_VECTORS:
5664     return N1;         // Factor, merge or concat of one node?  No need.
5665   case ISD::BUILD_VECTOR: {
5666     // Attempt to simplify BUILD_VECTOR.
5667     SDValue Ops[] = {N1};
5668     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5669       return V;
5670     break;
5671   }
5672   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
5673   case ISD::FP_EXTEND:
5674     assert(VT.isFloatingPoint() && N1.getValueType().isFloatingPoint() &&
5675            "Invalid FP cast!");
5676     if (N1.getValueType() == VT) return N1;  // noop conversion.
5677     assert((!VT.isVector() || VT.getVectorElementCount() ==
5678                                   N1.getValueType().getVectorElementCount()) &&
5679            "Vector element count mismatch!");
5680     assert(N1.getValueType().bitsLT(VT) && "Invalid fpext node, dst < src!");
5681     if (N1.isUndef())
5682       return getUNDEF(VT);
5683     break;
5684   case ISD::FP_TO_SINT:
5685   case ISD::FP_TO_UINT:
5686     if (N1.isUndef())
5687       return getUNDEF(VT);
5688     break;
5689   case ISD::SINT_TO_FP:
5690   case ISD::UINT_TO_FP:
5691     // [us]itofp(undef) = 0, because the result value is bounded.
5692     if (N1.isUndef())
5693       return getConstantFP(0.0, DL, VT);
5694     break;
5695   case ISD::SIGN_EXTEND:
5696     assert(VT.isInteger() && N1.getValueType().isInteger() &&
5697            "Invalid SIGN_EXTEND!");
5698     assert(VT.isVector() == N1.getValueType().isVector() &&
5699            "SIGN_EXTEND result type type should be vector iff the operand "
5700            "type is vector!");
5701     if (N1.getValueType() == VT) return N1;   // noop extension
5702     assert((!VT.isVector() || VT.getVectorElementCount() ==
5703                                   N1.getValueType().getVectorElementCount()) &&
5704            "Vector element count mismatch!");
5705     assert(N1.getValueType().bitsLT(VT) && "Invalid sext node, dst < src!");
5706     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
5707       return getNode(OpOpcode, DL, VT, N1.getOperand(0));
5708     if (OpOpcode == ISD::UNDEF)
5709       // sext(undef) = 0, because the top bits will all be the same.
5710       return getConstant(0, DL, VT);
5711     break;
5712   case ISD::ZERO_EXTEND:
5713     assert(VT.isInteger() && N1.getValueType().isInteger() &&
5714            "Invalid ZERO_EXTEND!");
5715     assert(VT.isVector() == N1.getValueType().isVector() &&
5716            "ZERO_EXTEND result type type should be vector iff the operand "
5717            "type is vector!");
5718     if (N1.getValueType() == VT) return N1;   // noop extension
5719     assert((!VT.isVector() || VT.getVectorElementCount() ==
5720                                   N1.getValueType().getVectorElementCount()) &&
5721            "Vector element count mismatch!");
5722     assert(N1.getValueType().bitsLT(VT) && "Invalid zext node, dst < src!");
5723     if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
5724       return getNode(ISD::ZERO_EXTEND, DL, VT, N1.getOperand(0));
5725     if (OpOpcode == ISD::UNDEF)
5726       // zext(undef) = 0, because the top bits will be zero.
5727       return getConstant(0, DL, VT);
5728 
5729     // Skip unnecessary zext_inreg pattern:
5730     // (zext (trunc x)) -> x iff the upper bits are known zero.
5731     // TODO: Remove (zext (trunc (and x, c))) exception which some targets
5732     // use to recognise zext_inreg patterns.
5733     if (OpOpcode == ISD::TRUNCATE) {
5734       SDValue OpOp = N1.getOperand(0);
5735       if (OpOp.getValueType() == VT) {
5736         if (OpOp.getOpcode() != ISD::AND) {
5737           APInt HiBits = APInt::getBitsSetFrom(VT.getScalarSizeInBits(),
5738                                                N1.getScalarValueSizeInBits());
5739           if (MaskedValueIsZero(OpOp, HiBits)) {
5740             transferDbgValues(N1, OpOp);
5741             return OpOp;
5742           }
5743         }
5744       }
5745     }
5746     break;
5747   case ISD::ANY_EXTEND:
5748     assert(VT.isInteger() && N1.getValueType().isInteger() &&
5749            "Invalid ANY_EXTEND!");
5750     assert(VT.isVector() == N1.getValueType().isVector() &&
5751            "ANY_EXTEND result type type should be vector iff the operand "
5752            "type is vector!");
5753     if (N1.getValueType() == VT) return N1;   // noop extension
5754     assert((!VT.isVector() || VT.getVectorElementCount() ==
5755                                   N1.getValueType().getVectorElementCount()) &&
5756            "Vector element count mismatch!");
5757     assert(N1.getValueType().bitsLT(VT) && "Invalid anyext node, dst < src!");
5758 
5759     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5760         OpOpcode == ISD::ANY_EXTEND)
5761       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
5762       return getNode(OpOpcode, DL, VT, N1.getOperand(0));
5763     if (OpOpcode == ISD::UNDEF)
5764       return getUNDEF(VT);
5765 
5766     // (ext (trunc x)) -> x
5767     if (OpOpcode == ISD::TRUNCATE) {
5768       SDValue OpOp = N1.getOperand(0);
5769       if (OpOp.getValueType() == VT) {
5770         transferDbgValues(N1, OpOp);
5771         return OpOp;
5772       }
5773     }
5774     break;
5775   case ISD::TRUNCATE:
5776     assert(VT.isInteger() && N1.getValueType().isInteger() &&
5777            "Invalid TRUNCATE!");
5778     assert(VT.isVector() == N1.getValueType().isVector() &&
5779            "TRUNCATE result type type should be vector iff the operand "
5780            "type is vector!");
5781     if (N1.getValueType() == VT) return N1;   // noop truncate
5782     assert((!VT.isVector() || VT.getVectorElementCount() ==
5783                                   N1.getValueType().getVectorElementCount()) &&
5784            "Vector element count mismatch!");
5785     assert(N1.getValueType().bitsGT(VT) && "Invalid truncate node, src < dst!");
5786     if (OpOpcode == ISD::TRUNCATE)
5787       return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
5788     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
5789         OpOpcode == ISD::ANY_EXTEND) {
5790       // If the source is smaller than the dest, we still need an extend.
5791       if (N1.getOperand(0).getValueType().getScalarType().bitsLT(
5792               VT.getScalarType()))
5793         return getNode(OpOpcode, DL, VT, N1.getOperand(0));
5794       if (N1.getOperand(0).getValueType().bitsGT(VT))
5795         return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
5796       return N1.getOperand(0);
5797     }
5798     if (OpOpcode == ISD::UNDEF)
5799       return getUNDEF(VT);
5800     if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
5801       return getVScale(DL, VT,
5802                        N1.getConstantOperandAPInt(0).trunc(VT.getSizeInBits()));
5803     break;
5804   case ISD::ANY_EXTEND_VECTOR_INREG:
5805   case ISD::ZERO_EXTEND_VECTOR_INREG:
5806   case ISD::SIGN_EXTEND_VECTOR_INREG:
5807     assert(VT.isVector() && "This DAG node is restricted to vector types.");
5808     assert(N1.getValueType().bitsLE(VT) &&
5809            "The input must be the same size or smaller than the result.");
5810     assert(VT.getVectorMinNumElements() <
5811                N1.getValueType().getVectorMinNumElements() &&
5812            "The destination vector type must have fewer lanes than the input.");
5813     break;
5814   case ISD::ABS:
5815     assert(VT.isInteger() && VT == N1.getValueType() && "Invalid ABS!");
5816     if (OpOpcode == ISD::UNDEF)
5817       return getConstant(0, DL, VT);
5818     break;
5819   case ISD::BSWAP:
5820     assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BSWAP!");
5821     assert((VT.getScalarSizeInBits() % 16 == 0) &&
5822            "BSWAP types must be a multiple of 16 bits!");
5823     if (OpOpcode == ISD::UNDEF)
5824       return getUNDEF(VT);
5825     // bswap(bswap(X)) -> X.
5826     if (OpOpcode == ISD::BSWAP)
5827       return N1.getOperand(0);
5828     break;
5829   case ISD::BITREVERSE:
5830     assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BITREVERSE!");
5831     if (OpOpcode == ISD::UNDEF)
5832       return getUNDEF(VT);
5833     break;
5834   case ISD::BITCAST:
5835     assert(VT.getSizeInBits() == N1.getValueSizeInBits() &&
5836            "Cannot BITCAST between types of different sizes!");
5837     if (VT == N1.getValueType()) return N1;   // noop conversion.
5838     if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
5839       return getNode(ISD::BITCAST, DL, VT, N1.getOperand(0));
5840     if (OpOpcode == ISD::UNDEF)
5841       return getUNDEF(VT);
5842     break;
5843   case ISD::SCALAR_TO_VECTOR:
5844     assert(VT.isVector() && !N1.getValueType().isVector() &&
5845            (VT.getVectorElementType() == N1.getValueType() ||
5846             (VT.getVectorElementType().isInteger() &&
5847              N1.getValueType().isInteger() &&
5848              VT.getVectorElementType().bitsLE(N1.getValueType()))) &&
5849            "Illegal SCALAR_TO_VECTOR node!");
5850     if (OpOpcode == ISD::UNDEF)
5851       return getUNDEF(VT);
5852     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
5853     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
5854         isa<ConstantSDNode>(N1.getOperand(1)) &&
5855         N1.getConstantOperandVal(1) == 0 &&
5856         N1.getOperand(0).getValueType() == VT)
5857       return N1.getOperand(0);
5858     break;
5859   case ISD::FNEG:
5860     // Negation of an unknown bag of bits is still completely undefined.
5861     if (OpOpcode == ISD::UNDEF)
5862       return getUNDEF(VT);
5863 
5864     if (OpOpcode == ISD::FNEG) // --X -> X
5865       return N1.getOperand(0);
5866     break;
5867   case ISD::FABS:
5868     if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
5869       return getNode(ISD::FABS, DL, VT, N1.getOperand(0));
5870     break;
5871   case ISD::VSCALE:
5872     assert(VT == N1.getValueType() && "Unexpected VT!");
5873     break;
5874   case ISD::CTPOP:
5875     if (N1.getValueType().getScalarType() == MVT::i1)
5876       return N1;
5877     break;
5878   case ISD::CTLZ:
5879   case ISD::CTTZ:
5880     if (N1.getValueType().getScalarType() == MVT::i1)
5881       return getNOT(DL, N1, N1.getValueType());
5882     break;
5883   case ISD::VECREDUCE_ADD:
5884     if (N1.getValueType().getScalarType() == MVT::i1)
5885       return getNode(ISD::VECREDUCE_XOR, DL, VT, N1);
5886     break;
5887   case ISD::VECREDUCE_SMIN:
5888   case ISD::VECREDUCE_UMAX:
5889     if (N1.getValueType().getScalarType() == MVT::i1)
5890       return getNode(ISD::VECREDUCE_OR, DL, VT, N1);
5891     break;
5892   case ISD::VECREDUCE_SMAX:
5893   case ISD::VECREDUCE_UMIN:
5894     if (N1.getValueType().getScalarType() == MVT::i1)
5895       return getNode(ISD::VECREDUCE_AND, DL, VT, N1);
5896     break;
5897   }
5898 
5899   SDNode *N;
5900   SDVTList VTs = getVTList(VT);
5901   SDValue Ops[] = {N1};
5902   if (VT != MVT::Glue) { // Don't CSE glue producing nodes
5903     FoldingSetNodeID ID;
5904     AddNodeIDNode(ID, Opcode, VTs, Ops);
5905     void *IP = nullptr;
5906     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5907       E->intersectFlagsWith(Flags);
5908       return SDValue(E, 0);
5909     }
5910 
5911     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5912     N->setFlags(Flags);
5913     createOperands(N, Ops);
5914     CSEMap.InsertNode(N, IP);
5915   } else {
5916     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5917     createOperands(N, Ops);
5918   }
5919 
5920   InsertNode(N);
5921   SDValue V = SDValue(N, 0);
5922   NewSDValueDbgMsg(V, "Creating new node: ", this);
5923   return V;
5924 }
5925 
5926 static std::optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
5927                                       const APInt &C2) {
5928   switch (Opcode) {
5929   case ISD::ADD:  return C1 + C2;
5930   case ISD::SUB:  return C1 - C2;
5931   case ISD::MUL:  return C1 * C2;
5932   case ISD::AND:  return C1 & C2;
5933   case ISD::OR:   return C1 | C2;
5934   case ISD::XOR:  return C1 ^ C2;
5935   case ISD::SHL:  return C1 << C2;
5936   case ISD::SRL:  return C1.lshr(C2);
5937   case ISD::SRA:  return C1.ashr(C2);
5938   case ISD::ROTL: return C1.rotl(C2);
5939   case ISD::ROTR: return C1.rotr(C2);
5940   case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
5941   case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
5942   case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
5943   case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
5944   case ISD::SADDSAT: return C1.sadd_sat(C2);
5945   case ISD::UADDSAT: return C1.uadd_sat(C2);
5946   case ISD::SSUBSAT: return C1.ssub_sat(C2);
5947   case ISD::USUBSAT: return C1.usub_sat(C2);
5948   case ISD::SSHLSAT: return C1.sshl_sat(C2);
5949   case ISD::USHLSAT: return C1.ushl_sat(C2);
5950   case ISD::UDIV:
5951     if (!C2.getBoolValue())
5952       break;
5953     return C1.udiv(C2);
5954   case ISD::UREM:
5955     if (!C2.getBoolValue())
5956       break;
5957     return C1.urem(C2);
5958   case ISD::SDIV:
5959     if (!C2.getBoolValue())
5960       break;
5961     return C1.sdiv(C2);
5962   case ISD::SREM:
5963     if (!C2.getBoolValue())
5964       break;
5965     return C1.srem(C2);
5966   case ISD::MULHS: {
5967     unsigned FullWidth = C1.getBitWidth() * 2;
5968     APInt C1Ext = C1.sext(FullWidth);
5969     APInt C2Ext = C2.sext(FullWidth);
5970     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5971   }
5972   case ISD::MULHU: {
5973     unsigned FullWidth = C1.getBitWidth() * 2;
5974     APInt C1Ext = C1.zext(FullWidth);
5975     APInt C2Ext = C2.zext(FullWidth);
5976     return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth());
5977   }
5978   case ISD::AVGFLOORS: {
5979     unsigned FullWidth = C1.getBitWidth() + 1;
5980     APInt C1Ext = C1.sext(FullWidth);
5981     APInt C2Ext = C2.sext(FullWidth);
5982     return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
5983   }
5984   case ISD::AVGFLOORU: {
5985     unsigned FullWidth = C1.getBitWidth() + 1;
5986     APInt C1Ext = C1.zext(FullWidth);
5987     APInt C2Ext = C2.zext(FullWidth);
5988     return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1);
5989   }
5990   case ISD::AVGCEILS: {
5991     unsigned FullWidth = C1.getBitWidth() + 1;
5992     APInt C1Ext = C1.sext(FullWidth);
5993     APInt C2Ext = C2.sext(FullWidth);
5994     return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
5995   }
5996   case ISD::AVGCEILU: {
5997     unsigned FullWidth = C1.getBitWidth() + 1;
5998     APInt C1Ext = C1.zext(FullWidth);
5999     APInt C2Ext = C2.zext(FullWidth);
6000     return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1);
6001   }
6002   case ISD::ABDS:
6003     return APIntOps::smax(C1, C2) - APIntOps::smin(C1, C2);
6004   case ISD::ABDU:
6005     return APIntOps::umax(C1, C2) - APIntOps::umin(C1, C2);
6006   }
6007   return std::nullopt;
6008 }
6009 
6010 // Handle constant folding with UNDEF.
6011 // TODO: Handle more cases.
6012 static std::optional<APInt> FoldValueWithUndef(unsigned Opcode, const APInt &C1,
6013                                                bool IsUndef1, const APInt &C2,
6014                                                bool IsUndef2) {
6015   if (!(IsUndef1 || IsUndef2))
6016     return FoldValue(Opcode, C1, C2);
6017 
6018   // Fold and(x, undef) -> 0
6019   // Fold mul(x, undef) -> 0
6020   if (Opcode == ISD::AND || Opcode == ISD::MUL)
6021     return APInt::getZero(C1.getBitWidth());
6022 
6023   return std::nullopt;
6024 }
6025 
6026 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
6027                                        const GlobalAddressSDNode *GA,
6028                                        const SDNode *N2) {
6029   if (GA->getOpcode() != ISD::GlobalAddress)
6030     return SDValue();
6031   if (!TLI->isOffsetFoldingLegal(GA))
6032     return SDValue();
6033   auto *C2 = dyn_cast<ConstantSDNode>(N2);
6034   if (!C2)
6035     return SDValue();
6036   int64_t Offset = C2->getSExtValue();
6037   switch (Opcode) {
6038   case ISD::ADD: break;
6039   case ISD::SUB: Offset = -uint64_t(Offset); break;
6040   default: return SDValue();
6041   }
6042   return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
6043                           GA->getOffset() + uint64_t(Offset));
6044 }
6045 
6046 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
6047   switch (Opcode) {
6048   case ISD::SDIV:
6049   case ISD::UDIV:
6050   case ISD::SREM:
6051   case ISD::UREM: {
6052     // If a divisor is zero/undef or any element of a divisor vector is
6053     // zero/undef, the whole op is undef.
6054     assert(Ops.size() == 2 && "Div/rem should have 2 operands");
6055     SDValue Divisor = Ops[1];
6056     if (Divisor.isUndef() || isNullConstant(Divisor))
6057       return true;
6058 
6059     return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
6060            llvm::any_of(Divisor->op_values(),
6061                         [](SDValue V) { return V.isUndef() ||
6062                                         isNullConstant(V); });
6063     // TODO: Handle signed overflow.
6064   }
6065   // TODO: Handle oversized shifts.
6066   default:
6067     return false;
6068   }
6069 }
6070 
6071 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
6072                                              EVT VT, ArrayRef<SDValue> Ops) {
6073   // If the opcode is a target-specific ISD node, there's nothing we can
6074   // do here and the operand rules may not line up with the below, so
6075   // bail early.
6076   // We can't create a scalar CONCAT_VECTORS so skip it. It will break
6077   // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
6078   // foldCONCAT_VECTORS in getNode before this is called.
6079   if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
6080     return SDValue();
6081 
6082   unsigned NumOps = Ops.size();
6083   if (NumOps == 0)
6084     return SDValue();
6085 
6086   if (isUndef(Opcode, Ops))
6087     return getUNDEF(VT);
6088 
6089   // Handle unary special cases.
6090   if (NumOps == 1) {
6091     SDValue N1 = Ops[0];
6092 
6093     // Constant fold unary operations with an integer constant operand. Even
6094     // opaque constant will be folded, because the folding of unary operations
6095     // doesn't create new constants with different values. Nevertheless, the
6096     // opaque flag is preserved during folding to prevent future folding with
6097     // other constants.
6098     if (auto *C = dyn_cast<ConstantSDNode>(N1)) {
6099       const APInt &Val = C->getAPIntValue();
6100       switch (Opcode) {
6101       case ISD::SIGN_EXTEND:
6102         return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
6103                            C->isTargetOpcode(), C->isOpaque());
6104       case ISD::TRUNCATE:
6105         if (C->isOpaque())
6106           break;
6107         [[fallthrough]];
6108       case ISD::ZERO_EXTEND:
6109         return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
6110                            C->isTargetOpcode(), C->isOpaque());
6111       case ISD::ANY_EXTEND:
6112         // Some targets like RISCV prefer to sign extend some types.
6113         if (TLI->isSExtCheaperThanZExt(N1.getValueType(), VT))
6114           return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
6115                              C->isTargetOpcode(), C->isOpaque());
6116         return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
6117                            C->isTargetOpcode(), C->isOpaque());
6118       case ISD::ABS:
6119         return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
6120                            C->isOpaque());
6121       case ISD::BITREVERSE:
6122         return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
6123                            C->isOpaque());
6124       case ISD::BSWAP:
6125         return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
6126                            C->isOpaque());
6127       case ISD::CTPOP:
6128         return getConstant(Val.popcount(), DL, VT, C->isTargetOpcode(),
6129                            C->isOpaque());
6130       case ISD::CTLZ:
6131       case ISD::CTLZ_ZERO_UNDEF:
6132         return getConstant(Val.countl_zero(), DL, VT, C->isTargetOpcode(),
6133                            C->isOpaque());
6134       case ISD::CTTZ:
6135       case ISD::CTTZ_ZERO_UNDEF:
6136         return getConstant(Val.countr_zero(), DL, VT, C->isTargetOpcode(),
6137                            C->isOpaque());
6138       case ISD::UINT_TO_FP:
6139       case ISD::SINT_TO_FP: {
6140         APFloat apf(EVTToAPFloatSemantics(VT),
6141                     APInt::getZero(VT.getSizeInBits()));
6142         (void)apf.convertFromAPInt(Val, Opcode == ISD::SINT_TO_FP,
6143                                    APFloat::rmNearestTiesToEven);
6144         return getConstantFP(apf, DL, VT);
6145       }
6146       case ISD::FP16_TO_FP:
6147       case ISD::BF16_TO_FP: {
6148         bool Ignored;
6149         APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf()
6150                                               : APFloat::BFloat(),
6151                     (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
6152 
6153         // This can return overflow, underflow, or inexact; we don't care.
6154         // FIXME need to be more flexible about rounding mode.
6155         (void)FPV.convert(EVTToAPFloatSemantics(VT),
6156                           APFloat::rmNearestTiesToEven, &Ignored);
6157         return getConstantFP(FPV, DL, VT);
6158       }
6159       case ISD::STEP_VECTOR:
6160         if (SDValue V = FoldSTEP_VECTOR(DL, VT, N1, *this))
6161           return V;
6162         break;
6163       case ISD::BITCAST:
6164         if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
6165           return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
6166         if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
6167           return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
6168         if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
6169           return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
6170         if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
6171           return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
6172         break;
6173       }
6174     }
6175 
6176     // Constant fold unary operations with a floating point constant operand.
6177     if (auto *C = dyn_cast<ConstantFPSDNode>(N1)) {
6178       APFloat V = C->getValueAPF(); // make copy
6179       switch (Opcode) {
6180       case ISD::FNEG:
6181         V.changeSign();
6182         return getConstantFP(V, DL, VT);
6183       case ISD::FABS:
6184         V.clearSign();
6185         return getConstantFP(V, DL, VT);
6186       case ISD::FCEIL: {
6187         APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
6188         if (fs == APFloat::opOK || fs == APFloat::opInexact)
6189           return getConstantFP(V, DL, VT);
6190         return SDValue();
6191       }
6192       case ISD::FTRUNC: {
6193         APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
6194         if (fs == APFloat::opOK || fs == APFloat::opInexact)
6195           return getConstantFP(V, DL, VT);
6196         return SDValue();
6197       }
6198       case ISD::FFLOOR: {
6199         APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
6200         if (fs == APFloat::opOK || fs == APFloat::opInexact)
6201           return getConstantFP(V, DL, VT);
6202         return SDValue();
6203       }
6204       case ISD::FP_EXTEND: {
6205         bool ignored;
6206         // This can return overflow, underflow, or inexact; we don't care.
6207         // FIXME need to be more flexible about rounding mode.
6208         (void)V.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
6209                         &ignored);
6210         return getConstantFP(V, DL, VT);
6211       }
6212       case ISD::FP_TO_SINT:
6213       case ISD::FP_TO_UINT: {
6214         bool ignored;
6215         APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
6216         // FIXME need to be more flexible about rounding mode.
6217         APFloat::opStatus s =
6218             V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
6219         if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
6220           break;
6221         return getConstant(IntVal, DL, VT);
6222       }
6223       case ISD::FP_TO_FP16:
6224       case ISD::FP_TO_BF16: {
6225         bool Ignored;
6226         // This can return overflow, underflow, or inexact; we don't care.
6227         // FIXME need to be more flexible about rounding mode.
6228         (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf()
6229                                                   : APFloat::BFloat(),
6230                         APFloat::rmNearestTiesToEven, &Ignored);
6231         return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
6232       }
6233       case ISD::BITCAST:
6234         if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
6235           return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL,
6236                              VT);
6237         if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
6238           return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL,
6239                              VT);
6240         if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
6241           return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL,
6242                              VT);
6243         if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
6244           return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
6245         break;
6246       }
6247     }
6248 
6249     // Early-out if we failed to constant fold a bitcast.
6250     if (Opcode == ISD::BITCAST)
6251       return SDValue();
6252   }
6253 
6254   // Handle binops special cases.
6255   if (NumOps == 2) {
6256     if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops))
6257       return CFP;
6258 
6259     if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
6260       if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
6261         if (C1->isOpaque() || C2->isOpaque())
6262           return SDValue();
6263 
6264         std::optional<APInt> FoldAttempt =
6265             FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
6266         if (!FoldAttempt)
6267           return SDValue();
6268 
6269         SDValue Folded = getConstant(*FoldAttempt, DL, VT);
6270         assert((!Folded || !VT.isVector()) &&
6271                "Can't fold vectors ops with scalar operands");
6272         return Folded;
6273       }
6274     }
6275 
6276     // fold (add Sym, c) -> Sym+c
6277     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0]))
6278       return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
6279     if (TLI->isCommutativeBinOp(Opcode))
6280       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1]))
6281         return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
6282   }
6283 
6284   // This is for vector folding only from here on.
6285   if (!VT.isVector())
6286     return SDValue();
6287 
6288   ElementCount NumElts = VT.getVectorElementCount();
6289 
6290   // See if we can fold through bitcasted integer ops.
6291   if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
6292       Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
6293       Ops[0].getOpcode() == ISD::BITCAST &&
6294       Ops[1].getOpcode() == ISD::BITCAST) {
6295     SDValue N1 = peekThroughBitcasts(Ops[0]);
6296     SDValue N2 = peekThroughBitcasts(Ops[1]);
6297     auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
6298     auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
6299     EVT BVVT = N1.getValueType();
6300     if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) {
6301       bool IsLE = getDataLayout().isLittleEndian();
6302       unsigned EltBits = VT.getScalarSizeInBits();
6303       SmallVector<APInt> RawBits1, RawBits2;
6304       BitVector UndefElts1, UndefElts2;
6305       if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
6306           BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) {
6307         SmallVector<APInt> RawBits;
6308         for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
6309           std::optional<APInt> Fold = FoldValueWithUndef(
6310               Opcode, RawBits1[I], UndefElts1[I], RawBits2[I], UndefElts2[I]);
6311           if (!Fold)
6312             break;
6313           RawBits.push_back(*Fold);
6314         }
6315         if (RawBits.size() == NumElts.getFixedValue()) {
6316           // We have constant folded, but we need to cast this again back to
6317           // the original (possibly legalized) type.
6318           SmallVector<APInt> DstBits;
6319           BitVector DstUndefs;
6320           BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(),
6321                                            DstBits, RawBits, DstUndefs,
6322                                            BitVector(RawBits.size(), false));
6323           EVT BVEltVT = BV1->getOperand(0).getValueType();
6324           unsigned BVEltBits = BVEltVT.getSizeInBits();
6325           SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
6326           for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
6327             if (DstUndefs[I])
6328               continue;
6329             Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT);
6330           }
6331           return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
6332         }
6333       }
6334     }
6335   }
6336 
6337   // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
6338   //      (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
6339   if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
6340       Ops[0].getOpcode() == ISD::STEP_VECTOR) {
6341     APInt RHSVal;
6342     if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
6343       APInt NewStep = Opcode == ISD::MUL
6344                           ? Ops[0].getConstantOperandAPInt(0) * RHSVal
6345                           : Ops[0].getConstantOperandAPInt(0) << RHSVal;
6346       return getStepVector(DL, VT, NewStep);
6347     }
6348   }
6349 
6350   auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
6351     return !Op.getValueType().isVector() ||
6352            Op.getValueType().getVectorElementCount() == NumElts;
6353   };
6354 
6355   auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
6356     return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
6357            Op.getOpcode() == ISD::BUILD_VECTOR ||
6358            Op.getOpcode() == ISD::SPLAT_VECTOR;
6359   };
6360 
6361   // All operands must be vector types with the same number of elements as
6362   // the result type and must be either UNDEF or a build/splat vector
6363   // or UNDEF scalars.
6364   if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
6365       !llvm::all_of(Ops, IsScalarOrSameVectorSize))
6366     return SDValue();
6367 
6368   // If we are comparing vectors, then the result needs to be a i1 boolean that
6369   // is then extended back to the legal result type depending on how booleans
6370   // are represented.
6371   EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
6372   ISD::NodeType ExtendCode =
6373       (Opcode == ISD::SETCC && SVT != VT.getScalarType())
6374           ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT))
6375           : ISD::SIGN_EXTEND;
6376 
6377   // Find legal integer scalar type for constant promotion and
6378   // ensure that its scalar size is at least as large as source.
6379   EVT LegalSVT = VT.getScalarType();
6380   if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
6381     LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
6382     if (LegalSVT.bitsLT(VT.getScalarType()))
6383       return SDValue();
6384   }
6385 
6386   // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
6387   // only have one operand to check. For fixed-length vector types we may have
6388   // a combination of BUILD_VECTOR and SPLAT_VECTOR.
6389   unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
6390 
6391   // Constant fold each scalar lane separately.
6392   SmallVector<SDValue, 4> ScalarResults;
6393   for (unsigned I = 0; I != NumVectorElts; I++) {
6394     SmallVector<SDValue, 4> ScalarOps;
6395     for (SDValue Op : Ops) {
6396       EVT InSVT = Op.getValueType().getScalarType();
6397       if (Op.getOpcode() != ISD::BUILD_VECTOR &&
6398           Op.getOpcode() != ISD::SPLAT_VECTOR) {
6399         if (Op.isUndef())
6400           ScalarOps.push_back(getUNDEF(InSVT));
6401         else
6402           ScalarOps.push_back(Op);
6403         continue;
6404       }
6405 
6406       SDValue ScalarOp =
6407           Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
6408       EVT ScalarVT = ScalarOp.getValueType();
6409 
6410       // Build vector (integer) scalar operands may need implicit
6411       // truncation - do this before constant folding.
6412       if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) {
6413         // Don't create illegally-typed nodes unless they're constants or undef
6414         // - if we fail to constant fold we can't guarantee the (dead) nodes
6415         // we're creating will be cleaned up before being visited for
6416         // legalization.
6417         if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() &&
6418             !isa<ConstantSDNode>(ScalarOp) &&
6419             TLI->getTypeAction(*getContext(), InSVT) !=
6420                 TargetLowering::TypeLegal)
6421           return SDValue();
6422         ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
6423       }
6424 
6425       ScalarOps.push_back(ScalarOp);
6426     }
6427 
6428     // Constant fold the scalar operands.
6429     SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps);
6430 
6431     // Legalize the (integer) scalar constant if necessary.
6432     if (LegalSVT != SVT)
6433       ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult);
6434 
6435     // Scalar folding only succeeded if the result is a constant or UNDEF.
6436     if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
6437         ScalarResult.getOpcode() != ISD::ConstantFP)
6438       return SDValue();
6439     ScalarResults.push_back(ScalarResult);
6440   }
6441 
6442   SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
6443                                    : getBuildVector(VT, DL, ScalarResults);
6444   NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
6445   return V;
6446 }
6447 
6448 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
6449                                          EVT VT, ArrayRef<SDValue> Ops) {
6450   // TODO: Add support for unary/ternary fp opcodes.
6451   if (Ops.size() != 2)
6452     return SDValue();
6453 
6454   // TODO: We don't do any constant folding for strict FP opcodes here, but we
6455   //       should. That will require dealing with a potentially non-default
6456   //       rounding mode, checking the "opStatus" return value from the APFloat
6457   //       math calculations, and possibly other variations.
6458   SDValue N1 = Ops[0];
6459   SDValue N2 = Ops[1];
6460   ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
6461   ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
6462   if (N1CFP && N2CFP) {
6463     APFloat C1 = N1CFP->getValueAPF(); // make copy
6464     const APFloat &C2 = N2CFP->getValueAPF();
6465     switch (Opcode) {
6466     case ISD::FADD:
6467       C1.add(C2, APFloat::rmNearestTiesToEven);
6468       return getConstantFP(C1, DL, VT);
6469     case ISD::FSUB:
6470       C1.subtract(C2, APFloat::rmNearestTiesToEven);
6471       return getConstantFP(C1, DL, VT);
6472     case ISD::FMUL:
6473       C1.multiply(C2, APFloat::rmNearestTiesToEven);
6474       return getConstantFP(C1, DL, VT);
6475     case ISD::FDIV:
6476       C1.divide(C2, APFloat::rmNearestTiesToEven);
6477       return getConstantFP(C1, DL, VT);
6478     case ISD::FREM:
6479       C1.mod(C2);
6480       return getConstantFP(C1, DL, VT);
6481     case ISD::FCOPYSIGN:
6482       C1.copySign(C2);
6483       return getConstantFP(C1, DL, VT);
6484     case ISD::FMINNUM:
6485       return getConstantFP(minnum(C1, C2), DL, VT);
6486     case ISD::FMAXNUM:
6487       return getConstantFP(maxnum(C1, C2), DL, VT);
6488     case ISD::FMINIMUM:
6489       return getConstantFP(minimum(C1, C2), DL, VT);
6490     case ISD::FMAXIMUM:
6491       return getConstantFP(maximum(C1, C2), DL, VT);
6492     default: break;
6493     }
6494   }
6495   if (N1CFP && Opcode == ISD::FP_ROUND) {
6496     APFloat C1 = N1CFP->getValueAPF();    // make copy
6497     bool Unused;
6498     // This can return overflow, underflow, or inexact; we don't care.
6499     // FIXME need to be more flexible about rounding mode.
6500     (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
6501                       &Unused);
6502     return getConstantFP(C1, DL, VT);
6503   }
6504 
6505   switch (Opcode) {
6506   case ISD::FSUB:
6507     // -0.0 - undef --> undef (consistent with "fneg undef")
6508     if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
6509       if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
6510         return getUNDEF(VT);
6511     [[fallthrough]];
6512 
6513   case ISD::FADD:
6514   case ISD::FMUL:
6515   case ISD::FDIV:
6516   case ISD::FREM:
6517     // If both operands are undef, the result is undef. If 1 operand is undef,
6518     // the result is NaN. This should match the behavior of the IR optimizer.
6519     if (N1.isUndef() && N2.isUndef())
6520       return getUNDEF(VT);
6521     if (N1.isUndef() || N2.isUndef())
6522       return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
6523   }
6524   return SDValue();
6525 }
6526 
6527 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
6528   assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
6529 
6530   // There's no need to assert on a byte-aligned pointer. All pointers are at
6531   // least byte aligned.
6532   if (A == Align(1))
6533     return Val;
6534 
6535   FoldingSetNodeID ID;
6536   AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
6537   ID.AddInteger(A.value());
6538 
6539   void *IP = nullptr;
6540   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6541     return SDValue(E, 0);
6542 
6543   auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
6544                                          Val.getValueType(), A);
6545   createOperands(N, {Val});
6546 
6547   CSEMap.InsertNode(N, IP);
6548   InsertNode(N);
6549 
6550   SDValue V(N, 0);
6551   NewSDValueDbgMsg(V, "Creating new node: ", this);
6552   return V;
6553 }
6554 
6555 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6556                               SDValue N1, SDValue N2) {
6557   SDNodeFlags Flags;
6558   if (Inserter)
6559     Flags = Inserter->getFlags();
6560   return getNode(Opcode, DL, VT, N1, N2, Flags);
6561 }
6562 
6563 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1,
6564                                                 SDValue &N2) const {
6565   if (!TLI->isCommutativeBinOp(Opcode))
6566     return;
6567 
6568   // Canonicalize:
6569   //   binop(const, nonconst) -> binop(nonconst, const)
6570   SDNode *N1C = isConstantIntBuildVectorOrConstantInt(N1);
6571   SDNode *N2C = isConstantIntBuildVectorOrConstantInt(N2);
6572   SDNode *N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
6573   SDNode *N2CFP = isConstantFPBuildVectorOrConstantFP(N2);
6574   if ((N1C && !N2C) || (N1CFP && !N2CFP))
6575     std::swap(N1, N2);
6576 
6577   // Canonicalize:
6578   //  binop(splat(x), step_vector) -> binop(step_vector, splat(x))
6579   else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
6580            N2.getOpcode() == ISD::STEP_VECTOR)
6581     std::swap(N1, N2);
6582 }
6583 
6584 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6585                               SDValue N1, SDValue N2, const SDNodeFlags Flags) {
6586   assert(N1.getOpcode() != ISD::DELETED_NODE &&
6587          N2.getOpcode() != ISD::DELETED_NODE &&
6588          "Operand is DELETED_NODE!");
6589 
6590   canonicalizeCommutativeBinop(Opcode, N1, N2);
6591 
6592   auto *N1C = dyn_cast<ConstantSDNode>(N1);
6593   auto *N2C = dyn_cast<ConstantSDNode>(N2);
6594 
6595   // Don't allow undefs in vector splats - we might be returning N2 when folding
6596   // to zero etc.
6597   ConstantSDNode *N2CV =
6598       isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
6599 
6600   switch (Opcode) {
6601   default: break;
6602   case ISD::TokenFactor:
6603     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
6604            N2.getValueType() == MVT::Other && "Invalid token factor!");
6605     // Fold trivial token factors.
6606     if (N1.getOpcode() == ISD::EntryToken) return N2;
6607     if (N2.getOpcode() == ISD::EntryToken) return N1;
6608     if (N1 == N2) return N1;
6609     break;
6610   case ISD::BUILD_VECTOR: {
6611     // Attempt to simplify BUILD_VECTOR.
6612     SDValue Ops[] = {N1, N2};
6613     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6614       return V;
6615     break;
6616   }
6617   case ISD::CONCAT_VECTORS: {
6618     SDValue Ops[] = {N1, N2};
6619     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
6620       return V;
6621     break;
6622   }
6623   case ISD::AND:
6624     assert(VT.isInteger() && "This operator does not apply to FP types!");
6625     assert(N1.getValueType() == N2.getValueType() &&
6626            N1.getValueType() == VT && "Binary operator types must match!");
6627     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
6628     // worth handling here.
6629     if (N2CV && N2CV->isZero())
6630       return N2;
6631     if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
6632       return N1;
6633     break;
6634   case ISD::OR:
6635   case ISD::XOR:
6636   case ISD::ADD:
6637   case ISD::SUB:
6638     assert(VT.isInteger() && "This operator does not apply to FP types!");
6639     assert(N1.getValueType() == N2.getValueType() &&
6640            N1.getValueType() == VT && "Binary operator types must match!");
6641     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
6642     // it's worth handling here.
6643     if (N2CV && N2CV->isZero())
6644       return N1;
6645     if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() &&
6646         VT.getVectorElementType() == MVT::i1)
6647       return getNode(ISD::XOR, DL, VT, N1, N2);
6648     break;
6649   case ISD::MUL:
6650     assert(VT.isInteger() && "This operator does not apply to FP types!");
6651     assert(N1.getValueType() == N2.getValueType() &&
6652            N1.getValueType() == VT && "Binary operator types must match!");
6653     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
6654       return getNode(ISD::AND, DL, VT, N1, N2);
6655     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
6656       const APInt &MulImm = N1->getConstantOperandAPInt(0);
6657       const APInt &N2CImm = N2C->getAPIntValue();
6658       return getVScale(DL, VT, MulImm * N2CImm);
6659     }
6660     break;
6661   case ISD::UDIV:
6662   case ISD::UREM:
6663   case ISD::MULHU:
6664   case ISD::MULHS:
6665   case ISD::SDIV:
6666   case ISD::SREM:
6667   case ISD::SADDSAT:
6668   case ISD::SSUBSAT:
6669   case ISD::UADDSAT:
6670   case ISD::USUBSAT:
6671     assert(VT.isInteger() && "This operator does not apply to FP types!");
6672     assert(N1.getValueType() == N2.getValueType() &&
6673            N1.getValueType() == VT && "Binary operator types must match!");
6674     if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
6675       // fold (add_sat x, y) -> (or x, y) for bool types.
6676       if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
6677         return getNode(ISD::OR, DL, VT, N1, N2);
6678       // fold (sub_sat x, y) -> (and x, ~y) for bool types.
6679       if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
6680         return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
6681     }
6682     break;
6683   case ISD::ABDS:
6684   case ISD::ABDU:
6685     assert(VT.isInteger() && "This operator does not apply to FP types!");
6686     assert(N1.getValueType() == N2.getValueType() &&
6687            N1.getValueType() == VT && "Binary operator types must match!");
6688     break;
6689   case ISD::SMIN:
6690   case ISD::UMAX:
6691     assert(VT.isInteger() && "This operator does not apply to FP types!");
6692     assert(N1.getValueType() == N2.getValueType() &&
6693            N1.getValueType() == VT && "Binary operator types must match!");
6694     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
6695       return getNode(ISD::OR, DL, VT, N1, N2);
6696     break;
6697   case ISD::SMAX:
6698   case ISD::UMIN:
6699     assert(VT.isInteger() && "This operator does not apply to FP types!");
6700     assert(N1.getValueType() == N2.getValueType() &&
6701            N1.getValueType() == VT && "Binary operator types must match!");
6702     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
6703       return getNode(ISD::AND, DL, VT, N1, N2);
6704     break;
6705   case ISD::FADD:
6706   case ISD::FSUB:
6707   case ISD::FMUL:
6708   case ISD::FDIV:
6709   case ISD::FREM:
6710     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
6711     assert(N1.getValueType() == N2.getValueType() &&
6712            N1.getValueType() == VT && "Binary operator types must match!");
6713     if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
6714       return V;
6715     break;
6716   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
6717     assert(N1.getValueType() == VT &&
6718            N1.getValueType().isFloatingPoint() &&
6719            N2.getValueType().isFloatingPoint() &&
6720            "Invalid FCOPYSIGN!");
6721     break;
6722   case ISD::SHL:
6723     if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
6724       const APInt &MulImm = N1->getConstantOperandAPInt(0);
6725       const APInt &ShiftImm = N2C->getAPIntValue();
6726       return getVScale(DL, VT, MulImm << ShiftImm);
6727     }
6728     [[fallthrough]];
6729   case ISD::SRA:
6730   case ISD::SRL:
6731     if (SDValue V = simplifyShift(N1, N2))
6732       return V;
6733     [[fallthrough]];
6734   case ISD::ROTL:
6735   case ISD::ROTR:
6736     assert(VT == N1.getValueType() &&
6737            "Shift operators return type must be the same as their first arg");
6738     assert(VT.isInteger() && N2.getValueType().isInteger() &&
6739            "Shifts only work on integers");
6740     assert((!VT.isVector() || VT == N2.getValueType()) &&
6741            "Vector shift amounts must be in the same as their first arg");
6742     // Verify that the shift amount VT is big enough to hold valid shift
6743     // amounts.  This catches things like trying to shift an i1024 value by an
6744     // i8, which is easy to fall into in generic code that uses
6745     // TLI.getShiftAmount().
6746     assert(N2.getValueType().getScalarSizeInBits() >=
6747                Log2_32_Ceil(VT.getScalarSizeInBits()) &&
6748            "Invalid use of small shift amount with oversized value!");
6749 
6750     // Always fold shifts of i1 values so the code generator doesn't need to
6751     // handle them.  Since we know the size of the shift has to be less than the
6752     // size of the value, the shift/rotate count is guaranteed to be zero.
6753     if (VT == MVT::i1)
6754       return N1;
6755     if (N2CV && N2CV->isZero())
6756       return N1;
6757     break;
6758   case ISD::FP_ROUND:
6759     assert(VT.isFloatingPoint() &&
6760            N1.getValueType().isFloatingPoint() &&
6761            VT.bitsLE(N1.getValueType()) &&
6762            N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
6763            "Invalid FP_ROUND!");
6764     if (N1.getValueType() == VT) return N1;  // noop conversion.
6765     break;
6766   case ISD::AssertSext:
6767   case ISD::AssertZext: {
6768     EVT EVT = cast<VTSDNode>(N2)->getVT();
6769     assert(VT == N1.getValueType() && "Not an inreg extend!");
6770     assert(VT.isInteger() && EVT.isInteger() &&
6771            "Cannot *_EXTEND_INREG FP types");
6772     assert(!EVT.isVector() &&
6773            "AssertSExt/AssertZExt type should be the vector element type "
6774            "rather than the vector type!");
6775     assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
6776     if (VT.getScalarType() == EVT) return N1; // noop assertion.
6777     break;
6778   }
6779   case ISD::SIGN_EXTEND_INREG: {
6780     EVT EVT = cast<VTSDNode>(N2)->getVT();
6781     assert(VT == N1.getValueType() && "Not an inreg extend!");
6782     assert(VT.isInteger() && EVT.isInteger() &&
6783            "Cannot *_EXTEND_INREG FP types");
6784     assert(EVT.isVector() == VT.isVector() &&
6785            "SIGN_EXTEND_INREG type should be vector iff the operand "
6786            "type is vector!");
6787     assert((!EVT.isVector() ||
6788             EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
6789            "Vector element counts must match in SIGN_EXTEND_INREG");
6790     assert(EVT.bitsLE(VT) && "Not extending!");
6791     if (EVT == VT) return N1;  // Not actually extending
6792 
6793     auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
6794       unsigned FromBits = EVT.getScalarSizeInBits();
6795       Val <<= Val.getBitWidth() - FromBits;
6796       Val.ashrInPlace(Val.getBitWidth() - FromBits);
6797       return getConstant(Val, DL, ConstantVT);
6798     };
6799 
6800     if (N1C) {
6801       const APInt &Val = N1C->getAPIntValue();
6802       return SignExtendInReg(Val, VT);
6803     }
6804 
6805     if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
6806       SmallVector<SDValue, 8> Ops;
6807       llvm::EVT OpVT = N1.getOperand(0).getValueType();
6808       for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
6809         SDValue Op = N1.getOperand(i);
6810         if (Op.isUndef()) {
6811           Ops.push_back(getUNDEF(OpVT));
6812           continue;
6813         }
6814         ConstantSDNode *C = cast<ConstantSDNode>(Op);
6815         APInt Val = C->getAPIntValue();
6816         Ops.push_back(SignExtendInReg(Val, OpVT));
6817       }
6818       return getBuildVector(VT, DL, Ops);
6819     }
6820 
6821     if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
6822         isa<ConstantSDNode>(N1.getOperand(0)))
6823       return getNode(
6824           ISD::SPLAT_VECTOR, DL, VT,
6825           SignExtendInReg(N1.getConstantOperandAPInt(0),
6826                           N1.getOperand(0).getValueType()));
6827     break;
6828   }
6829   case ISD::FP_TO_SINT_SAT:
6830   case ISD::FP_TO_UINT_SAT: {
6831     assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
6832            N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
6833     assert(N1.getValueType().isVector() == VT.isVector() &&
6834            "FP_TO_*INT_SAT type should be vector iff the operand type is "
6835            "vector!");
6836     assert((!VT.isVector() || VT.getVectorElementCount() ==
6837                                   N1.getValueType().getVectorElementCount()) &&
6838            "Vector element counts must match in FP_TO_*INT_SAT");
6839     assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
6840            "Type to saturate to must be a scalar.");
6841     assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
6842            "Not extending!");
6843     break;
6844   }
6845   case ISD::EXTRACT_VECTOR_ELT:
6846     assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
6847            "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
6848              element type of the vector.");
6849 
6850     // Extract from an undefined value or using an undefined index is undefined.
6851     if (N1.isUndef() || N2.isUndef())
6852       return getUNDEF(VT);
6853 
6854     // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
6855     // vectors. For scalable vectors we will provide appropriate support for
6856     // dealing with arbitrary indices.
6857     if (N2C && N1.getValueType().isFixedLengthVector() &&
6858         N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
6859       return getUNDEF(VT);
6860 
6861     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
6862     // expanding copies of large vectors from registers. This only works for
6863     // fixed length vectors, since we need to know the exact number of
6864     // elements.
6865     if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
6866         N1.getOperand(0).getValueType().isFixedLengthVector()) {
6867       unsigned Factor =
6868         N1.getOperand(0).getValueType().getVectorNumElements();
6869       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
6870                      N1.getOperand(N2C->getZExtValue() / Factor),
6871                      getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
6872     }
6873 
6874     // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
6875     // lowering is expanding large vector constants.
6876     if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
6877                 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
6878       assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
6879               N1.getValueType().isFixedLengthVector()) &&
6880              "BUILD_VECTOR used for scalable vectors");
6881       unsigned Index =
6882           N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
6883       SDValue Elt = N1.getOperand(Index);
6884 
6885       if (VT != Elt.getValueType())
6886         // If the vector element type is not legal, the BUILD_VECTOR operands
6887         // are promoted and implicitly truncated, and the result implicitly
6888         // extended. Make that explicit here.
6889         Elt = getAnyExtOrTrunc(Elt, DL, VT);
6890 
6891       return Elt;
6892     }
6893 
6894     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
6895     // operations are lowered to scalars.
6896     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
6897       // If the indices are the same, return the inserted element else
6898       // if the indices are known different, extract the element from
6899       // the original vector.
6900       SDValue N1Op2 = N1.getOperand(2);
6901       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
6902 
6903       if (N1Op2C && N2C) {
6904         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
6905           if (VT == N1.getOperand(1).getValueType())
6906             return N1.getOperand(1);
6907           if (VT.isFloatingPoint()) {
6908             assert(VT.getSizeInBits() > N1.getOperand(1).getValueType().getSizeInBits());
6909             return getFPExtendOrRound(N1.getOperand(1), DL, VT);
6910           }
6911           return getSExtOrTrunc(N1.getOperand(1), DL, VT);
6912         }
6913         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
6914       }
6915     }
6916 
6917     // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
6918     // when vector types are scalarized and v1iX is legal.
6919     // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
6920     // Here we are completely ignoring the extract element index (N2),
6921     // which is fine for fixed width vectors, since any index other than 0
6922     // is undefined anyway. However, this cannot be ignored for scalable
6923     // vectors - in theory we could support this, but we don't want to do this
6924     // without a profitability check.
6925     if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
6926         N1.getValueType().isFixedLengthVector() &&
6927         N1.getValueType().getVectorNumElements() == 1) {
6928       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
6929                      N1.getOperand(1));
6930     }
6931     break;
6932   case ISD::EXTRACT_ELEMENT:
6933     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
6934     assert(!N1.getValueType().isVector() && !VT.isVector() &&
6935            (N1.getValueType().isInteger() == VT.isInteger()) &&
6936            N1.getValueType() != VT &&
6937            "Wrong types for EXTRACT_ELEMENT!");
6938 
6939     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
6940     // 64-bit integers into 32-bit parts.  Instead of building the extract of
6941     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
6942     if (N1.getOpcode() == ISD::BUILD_PAIR)
6943       return N1.getOperand(N2C->getZExtValue());
6944 
6945     // EXTRACT_ELEMENT of a constant int is also very common.
6946     if (N1C) {
6947       unsigned ElementSize = VT.getSizeInBits();
6948       unsigned Shift = ElementSize * N2C->getZExtValue();
6949       const APInt &Val = N1C->getAPIntValue();
6950       return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
6951     }
6952     break;
6953   case ISD::EXTRACT_SUBVECTOR: {
6954     EVT N1VT = N1.getValueType();
6955     assert(VT.isVector() && N1VT.isVector() &&
6956            "Extract subvector VTs must be vectors!");
6957     assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
6958            "Extract subvector VTs must have the same element type!");
6959     assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
6960            "Cannot extract a scalable vector from a fixed length vector!");
6961     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6962             VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
6963            "Extract subvector must be from larger vector to smaller vector!");
6964     assert(N2C && "Extract subvector index must be a constant");
6965     assert((VT.isScalableVector() != N1VT.isScalableVector() ||
6966             (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
6967                 N1VT.getVectorMinNumElements()) &&
6968            "Extract subvector overflow!");
6969     assert(N2C->getAPIntValue().getBitWidth() ==
6970                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
6971            "Constant index for EXTRACT_SUBVECTOR has an invalid size");
6972 
6973     // Trivial extraction.
6974     if (VT == N1VT)
6975       return N1;
6976 
6977     // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
6978     if (N1.isUndef())
6979       return getUNDEF(VT);
6980 
6981     // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
6982     // the concat have the same type as the extract.
6983     if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
6984         VT == N1.getOperand(0).getValueType()) {
6985       unsigned Factor = VT.getVectorMinNumElements();
6986       return N1.getOperand(N2C->getZExtValue() / Factor);
6987     }
6988 
6989     // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
6990     // during shuffle legalization.
6991     if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
6992         VT == N1.getOperand(1).getValueType())
6993       return N1.getOperand(1);
6994     break;
6995   }
6996   }
6997 
6998   // Perform trivial constant folding.
6999   if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
7000     return SV;
7001 
7002   // Canonicalize an UNDEF to the RHS, even over a constant.
7003   if (N1.isUndef()) {
7004     if (TLI->isCommutativeBinOp(Opcode)) {
7005       std::swap(N1, N2);
7006     } else {
7007       switch (Opcode) {
7008       case ISD::SUB:
7009         return getUNDEF(VT);     // fold op(undef, arg2) -> undef
7010       case ISD::SIGN_EXTEND_INREG:
7011       case ISD::UDIV:
7012       case ISD::SDIV:
7013       case ISD::UREM:
7014       case ISD::SREM:
7015       case ISD::SSUBSAT:
7016       case ISD::USUBSAT:
7017         return getConstant(0, DL, VT);    // fold op(undef, arg2) -> 0
7018       }
7019     }
7020   }
7021 
7022   // Fold a bunch of operators when the RHS is undef.
7023   if (N2.isUndef()) {
7024     switch (Opcode) {
7025     case ISD::XOR:
7026       if (N1.isUndef())
7027         // Handle undef ^ undef -> 0 special case. This is a common
7028         // idiom (misuse).
7029         return getConstant(0, DL, VT);
7030       [[fallthrough]];
7031     case ISD::ADD:
7032     case ISD::SUB:
7033     case ISD::UDIV:
7034     case ISD::SDIV:
7035     case ISD::UREM:
7036     case ISD::SREM:
7037       return getUNDEF(VT);       // fold op(arg1, undef) -> undef
7038     case ISD::MUL:
7039     case ISD::AND:
7040     case ISD::SSUBSAT:
7041     case ISD::USUBSAT:
7042       return getConstant(0, DL, VT);  // fold op(arg1, undef) -> 0
7043     case ISD::OR:
7044     case ISD::SADDSAT:
7045     case ISD::UADDSAT:
7046       return getAllOnesConstant(DL, VT);
7047     }
7048   }
7049 
7050   // Memoize this node if possible.
7051   SDNode *N;
7052   SDVTList VTs = getVTList(VT);
7053   SDValue Ops[] = {N1, N2};
7054   if (VT != MVT::Glue) {
7055     FoldingSetNodeID ID;
7056     AddNodeIDNode(ID, Opcode, VTs, Ops);
7057     void *IP = nullptr;
7058     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7059       E->intersectFlagsWith(Flags);
7060       return SDValue(E, 0);
7061     }
7062 
7063     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7064     N->setFlags(Flags);
7065     createOperands(N, Ops);
7066     CSEMap.InsertNode(N, IP);
7067   } else {
7068     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7069     createOperands(N, Ops);
7070   }
7071 
7072   InsertNode(N);
7073   SDValue V = SDValue(N, 0);
7074   NewSDValueDbgMsg(V, "Creating new node: ", this);
7075   return V;
7076 }
7077 
7078 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7079                               SDValue N1, SDValue N2, SDValue N3) {
7080   SDNodeFlags Flags;
7081   if (Inserter)
7082     Flags = Inserter->getFlags();
7083   return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
7084 }
7085 
7086 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7087                               SDValue N1, SDValue N2, SDValue N3,
7088                               const SDNodeFlags Flags) {
7089   assert(N1.getOpcode() != ISD::DELETED_NODE &&
7090          N2.getOpcode() != ISD::DELETED_NODE &&
7091          N3.getOpcode() != ISD::DELETED_NODE &&
7092          "Operand is DELETED_NODE!");
7093   // Perform various simplifications.
7094   switch (Opcode) {
7095   case ISD::FMA:
7096   case ISD::FMAD: {
7097     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
7098     assert(N1.getValueType() == VT && N2.getValueType() == VT &&
7099            N3.getValueType() == VT && "FMA types must match!");
7100     ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
7101     ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
7102     ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
7103     if (N1CFP && N2CFP && N3CFP) {
7104       APFloat  V1 = N1CFP->getValueAPF();
7105       const APFloat &V2 = N2CFP->getValueAPF();
7106       const APFloat &V3 = N3CFP->getValueAPF();
7107       if (Opcode == ISD::FMAD) {
7108         V1.multiply(V2, APFloat::rmNearestTiesToEven);
7109         V1.add(V3, APFloat::rmNearestTiesToEven);
7110       } else
7111         V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
7112       return getConstantFP(V1, DL, VT);
7113     }
7114     break;
7115   }
7116   case ISD::BUILD_VECTOR: {
7117     // Attempt to simplify BUILD_VECTOR.
7118     SDValue Ops[] = {N1, N2, N3};
7119     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7120       return V;
7121     break;
7122   }
7123   case ISD::CONCAT_VECTORS: {
7124     SDValue Ops[] = {N1, N2, N3};
7125     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7126       return V;
7127     break;
7128   }
7129   case ISD::SETCC: {
7130     assert(VT.isInteger() && "SETCC result type must be an integer!");
7131     assert(N1.getValueType() == N2.getValueType() &&
7132            "SETCC operands must have the same type!");
7133     assert(VT.isVector() == N1.getValueType().isVector() &&
7134            "SETCC type should be vector iff the operand type is vector!");
7135     assert((!VT.isVector() || VT.getVectorElementCount() ==
7136                                   N1.getValueType().getVectorElementCount()) &&
7137            "SETCC vector element counts must match!");
7138     // Use FoldSetCC to simplify SETCC's.
7139     if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
7140       return V;
7141     // Vector constant folding.
7142     SDValue Ops[] = {N1, N2, N3};
7143     if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) {
7144       NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
7145       return V;
7146     }
7147     break;
7148   }
7149   case ISD::SELECT:
7150   case ISD::VSELECT:
7151     if (SDValue V = simplifySelect(N1, N2, N3))
7152       return V;
7153     break;
7154   case ISD::VECTOR_SHUFFLE:
7155     llvm_unreachable("should use getVectorShuffle constructor!");
7156   case ISD::VECTOR_SPLICE: {
7157     if (cast<ConstantSDNode>(N3)->isZero())
7158       return N1;
7159     break;
7160   }
7161   case ISD::INSERT_VECTOR_ELT: {
7162     ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
7163     // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
7164     // for scalable vectors where we will generate appropriate code to
7165     // deal with out-of-bounds cases correctly.
7166     if (N3C && N1.getValueType().isFixedLengthVector() &&
7167         N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
7168       return getUNDEF(VT);
7169 
7170     // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
7171     if (N3.isUndef())
7172       return getUNDEF(VT);
7173 
7174     // If the inserted element is an UNDEF, just use the input vector.
7175     if (N2.isUndef())
7176       return N1;
7177 
7178     break;
7179   }
7180   case ISD::INSERT_SUBVECTOR: {
7181     // Inserting undef into undef is still undef.
7182     if (N1.isUndef() && N2.isUndef())
7183       return getUNDEF(VT);
7184 
7185     EVT N2VT = N2.getValueType();
7186     assert(VT == N1.getValueType() &&
7187            "Dest and insert subvector source types must match!");
7188     assert(VT.isVector() && N2VT.isVector() &&
7189            "Insert subvector VTs must be vectors!");
7190     assert(VT.getVectorElementType() == N2VT.getVectorElementType() &&
7191            "Insert subvector VTs must have the same element type!");
7192     assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
7193            "Cannot insert a scalable vector into a fixed length vector!");
7194     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
7195             VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
7196            "Insert subvector must be from smaller vector to larger vector!");
7197     assert(isa<ConstantSDNode>(N3) &&
7198            "Insert subvector index must be constant");
7199     assert((VT.isScalableVector() != N2VT.isScalableVector() ||
7200             (N2VT.getVectorMinNumElements() + N3->getAsZExtVal()) <=
7201                 VT.getVectorMinNumElements()) &&
7202            "Insert subvector overflow!");
7203     assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() ==
7204                TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() &&
7205            "Constant index for INSERT_SUBVECTOR has an invalid size");
7206 
7207     // Trivial insertion.
7208     if (VT == N2VT)
7209       return N2;
7210 
7211     // If this is an insert of an extracted vector into an undef vector, we
7212     // can just use the input to the extract.
7213     if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
7214         N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
7215       return N2.getOperand(0);
7216     break;
7217   }
7218   case ISD::BITCAST:
7219     // Fold bit_convert nodes from a type to themselves.
7220     if (N1.getValueType() == VT)
7221       return N1;
7222     break;
7223   case ISD::VP_TRUNCATE:
7224   case ISD::VP_SIGN_EXTEND:
7225   case ISD::VP_ZERO_EXTEND:
7226     // Don't create noop casts.
7227     if (N1.getValueType() == VT)
7228       return N1;
7229     break;
7230   }
7231 
7232   // Memoize node if it doesn't produce a glue result.
7233   SDNode *N;
7234   SDVTList VTs = getVTList(VT);
7235   SDValue Ops[] = {N1, N2, N3};
7236   if (VT != MVT::Glue) {
7237     FoldingSetNodeID ID;
7238     AddNodeIDNode(ID, Opcode, VTs, Ops);
7239     void *IP = nullptr;
7240     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
7241       E->intersectFlagsWith(Flags);
7242       return SDValue(E, 0);
7243     }
7244 
7245     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7246     N->setFlags(Flags);
7247     createOperands(N, Ops);
7248     CSEMap.InsertNode(N, IP);
7249   } else {
7250     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7251     createOperands(N, Ops);
7252   }
7253 
7254   InsertNode(N);
7255   SDValue V = SDValue(N, 0);
7256   NewSDValueDbgMsg(V, "Creating new node: ", this);
7257   return V;
7258 }
7259 
7260 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7261                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7262   SDValue Ops[] = { N1, N2, N3, N4 };
7263   return getNode(Opcode, DL, VT, Ops);
7264 }
7265 
7266 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7267                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7268                               SDValue N5) {
7269   SDValue Ops[] = { N1, N2, N3, N4, N5 };
7270   return getNode(Opcode, DL, VT, Ops);
7271 }
7272 
7273 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
7274 /// the incoming stack arguments to be loaded from the stack.
7275 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
7276   SmallVector<SDValue, 8> ArgChains;
7277 
7278   // Include the original chain at the beginning of the list. When this is
7279   // used by target LowerCall hooks, this helps legalize find the
7280   // CALLSEQ_BEGIN node.
7281   ArgChains.push_back(Chain);
7282 
7283   // Add a chain value for each stack argument.
7284   for (SDNode *U : getEntryNode().getNode()->uses())
7285     if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
7286       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
7287         if (FI->getIndex() < 0)
7288           ArgChains.push_back(SDValue(L, 1));
7289 
7290   // Build a tokenfactor for all the chains.
7291   return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
7292 }
7293 
7294 /// getMemsetValue - Vectorized representation of the memset value
7295 /// operand.
7296 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
7297                               const SDLoc &dl) {
7298   assert(!Value.isUndef());
7299 
7300   unsigned NumBits = VT.getScalarSizeInBits();
7301   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
7302     assert(C->getAPIntValue().getBitWidth() == 8);
7303     APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
7304     if (VT.isInteger()) {
7305       bool IsOpaque = VT.getSizeInBits() > 64 ||
7306           !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
7307       return DAG.getConstant(Val, dl, VT, false, IsOpaque);
7308     }
7309     return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
7310                              VT);
7311   }
7312 
7313   assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
7314   EVT IntVT = VT.getScalarType();
7315   if (!IntVT.isInteger())
7316     IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
7317 
7318   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
7319   if (NumBits > 8) {
7320     // Use a multiplication with 0x010101... to extend the input to the
7321     // required length.
7322     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
7323     Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
7324                         DAG.getConstant(Magic, dl, IntVT));
7325   }
7326 
7327   if (VT != Value.getValueType() && !VT.isInteger())
7328     Value = DAG.getBitcast(VT.getScalarType(), Value);
7329   if (VT != Value.getValueType())
7330     Value = DAG.getSplatBuildVector(VT, dl, Value);
7331 
7332   return Value;
7333 }
7334 
7335 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
7336 /// used when a memcpy is turned into a memset when the source is a constant
7337 /// string ptr.
7338 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
7339                                   const TargetLowering &TLI,
7340                                   const ConstantDataArraySlice &Slice) {
7341   // Handle vector with all elements zero.
7342   if (Slice.Array == nullptr) {
7343     if (VT.isInteger())
7344       return DAG.getConstant(0, dl, VT);
7345     if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
7346       return DAG.getConstantFP(0.0, dl, VT);
7347     if (VT.isVector()) {
7348       unsigned NumElts = VT.getVectorNumElements();
7349       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
7350       return DAG.getNode(ISD::BITCAST, dl, VT,
7351                          DAG.getConstant(0, dl,
7352                                          EVT::getVectorVT(*DAG.getContext(),
7353                                                           EltVT, NumElts)));
7354     }
7355     llvm_unreachable("Expected type!");
7356   }
7357 
7358   assert(!VT.isVector() && "Can't handle vector type here!");
7359   unsigned NumVTBits = VT.getSizeInBits();
7360   unsigned NumVTBytes = NumVTBits / 8;
7361   unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
7362 
7363   APInt Val(NumVTBits, 0);
7364   if (DAG.getDataLayout().isLittleEndian()) {
7365     for (unsigned i = 0; i != NumBytes; ++i)
7366       Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
7367   } else {
7368     for (unsigned i = 0; i != NumBytes; ++i)
7369       Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
7370   }
7371 
7372   // If the "cost" of materializing the integer immediate is less than the cost
7373   // of a load, then it is cost effective to turn the load into the immediate.
7374   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
7375   if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
7376     return DAG.getConstant(Val, dl, VT);
7377   return SDValue();
7378 }
7379 
7380 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset,
7381                                            const SDLoc &DL,
7382                                            const SDNodeFlags Flags) {
7383   EVT VT = Base.getValueType();
7384   SDValue Index;
7385 
7386   if (Offset.isScalable())
7387     Index = getVScale(DL, Base.getValueType(),
7388                       APInt(Base.getValueSizeInBits().getFixedValue(),
7389                             Offset.getKnownMinValue()));
7390   else
7391     Index = getConstant(Offset.getFixedValue(), DL, VT);
7392 
7393   return getMemBasePlusOffset(Base, Index, DL, Flags);
7394 }
7395 
7396 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
7397                                            const SDLoc &DL,
7398                                            const SDNodeFlags Flags) {
7399   assert(Offset.getValueType().isInteger());
7400   EVT BasePtrVT = Ptr.getValueType();
7401   return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
7402 }
7403 
7404 /// Returns true if memcpy source is constant data.
7405 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
7406   uint64_t SrcDelta = 0;
7407   GlobalAddressSDNode *G = nullptr;
7408   if (Src.getOpcode() == ISD::GlobalAddress)
7409     G = cast<GlobalAddressSDNode>(Src);
7410   else if (Src.getOpcode() == ISD::ADD &&
7411            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
7412            Src.getOperand(1).getOpcode() == ISD::Constant) {
7413     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
7414     SrcDelta = Src.getConstantOperandVal(1);
7415   }
7416   if (!G)
7417     return false;
7418 
7419   return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
7420                                   SrcDelta + G->getOffset());
7421 }
7422 
7423 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
7424                                       SelectionDAG &DAG) {
7425   // On Darwin, -Os means optimize for size without hurting performance, so
7426   // only really optimize for size when -Oz (MinSize) is used.
7427   if (MF.getTarget().getTargetTriple().isOSDarwin())
7428     return MF.getFunction().hasMinSize();
7429   return DAG.shouldOptForSize();
7430 }
7431 
7432 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
7433                           SmallVector<SDValue, 32> &OutChains, unsigned From,
7434                           unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
7435                           SmallVector<SDValue, 16> &OutStoreChains) {
7436   assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
7437   assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
7438   SmallVector<SDValue, 16> GluedLoadChains;
7439   for (unsigned i = From; i < To; ++i) {
7440     OutChains.push_back(OutLoadChains[i]);
7441     GluedLoadChains.push_back(OutLoadChains[i]);
7442   }
7443 
7444   // Chain for all loads.
7445   SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7446                                   GluedLoadChains);
7447 
7448   for (unsigned i = From; i < To; ++i) {
7449     StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
7450     SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
7451                                   ST->getBasePtr(), ST->getMemoryVT(),
7452                                   ST->getMemOperand());
7453     OutChains.push_back(NewStore);
7454   }
7455 }
7456 
7457 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
7458                                        SDValue Chain, SDValue Dst, SDValue Src,
7459                                        uint64_t Size, Align Alignment,
7460                                        bool isVol, bool AlwaysInline,
7461                                        MachinePointerInfo DstPtrInfo,
7462                                        MachinePointerInfo SrcPtrInfo,
7463                                        const AAMDNodes &AAInfo, AAResults *AA) {
7464   // Turn a memcpy of undef to nop.
7465   // FIXME: We need to honor volatile even is Src is undef.
7466   if (Src.isUndef())
7467     return Chain;
7468 
7469   // Expand memcpy to a series of load and store ops if the size operand falls
7470   // below a certain threshold.
7471   // TODO: In the AlwaysInline case, if the size is big then generate a loop
7472   // rather than maybe a humongous number of loads and stores.
7473   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7474   const DataLayout &DL = DAG.getDataLayout();
7475   LLVMContext &C = *DAG.getContext();
7476   std::vector<EVT> MemOps;
7477   bool DstAlignCanChange = false;
7478   MachineFunction &MF = DAG.getMachineFunction();
7479   MachineFrameInfo &MFI = MF.getFrameInfo();
7480   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
7481   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
7482   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
7483     DstAlignCanChange = true;
7484   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
7485   if (!SrcAlign || Alignment > *SrcAlign)
7486     SrcAlign = Alignment;
7487   assert(SrcAlign && "SrcAlign must be set");
7488   ConstantDataArraySlice Slice;
7489   // If marked as volatile, perform a copy even when marked as constant.
7490   bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
7491   bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
7492   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
7493   const MemOp Op = isZeroConstant
7494                        ? MemOp::Set(Size, DstAlignCanChange, Alignment,
7495                                     /*IsZeroMemset*/ true, isVol)
7496                        : MemOp::Copy(Size, DstAlignCanChange, Alignment,
7497                                      *SrcAlign, isVol, CopyFromConstant);
7498   if (!TLI.findOptimalMemOpLowering(
7499           MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
7500           SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
7501     return SDValue();
7502 
7503   if (DstAlignCanChange) {
7504     Type *Ty = MemOps[0].getTypeForEVT(C);
7505     Align NewAlign = DL.getABITypeAlign(Ty);
7506 
7507     // Don't promote to an alignment that would require dynamic stack
7508     // realignment which may conflict with optimizations such as tail call
7509     // optimization.
7510     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
7511     if (!TRI->hasStackRealignment(MF))
7512       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
7513         NewAlign = NewAlign.previous();
7514 
7515     if (NewAlign > Alignment) {
7516       // Give the stack frame object a larger alignment if needed.
7517       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
7518         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
7519       Alignment = NewAlign;
7520     }
7521   }
7522 
7523   // Prepare AAInfo for loads/stores after lowering this memcpy.
7524   AAMDNodes NewAAInfo = AAInfo;
7525   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
7526 
7527   const Value *SrcVal = dyn_cast_if_present<const Value *>(SrcPtrInfo.V);
7528   bool isConstant =
7529       AA && SrcVal &&
7530       AA->pointsToConstantMemory(MemoryLocation(SrcVal, Size, AAInfo));
7531 
7532   MachineMemOperand::Flags MMOFlags =
7533       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
7534   SmallVector<SDValue, 16> OutLoadChains;
7535   SmallVector<SDValue, 16> OutStoreChains;
7536   SmallVector<SDValue, 32> OutChains;
7537   unsigned NumMemOps = MemOps.size();
7538   uint64_t SrcOff = 0, DstOff = 0;
7539   for (unsigned i = 0; i != NumMemOps; ++i) {
7540     EVT VT = MemOps[i];
7541     unsigned VTSize = VT.getSizeInBits() / 8;
7542     SDValue Value, Store;
7543 
7544     if (VTSize > Size) {
7545       // Issuing an unaligned load / store pair  that overlaps with the previous
7546       // pair. Adjust the offset accordingly.
7547       assert(i == NumMemOps-1 && i != 0);
7548       SrcOff -= VTSize - Size;
7549       DstOff -= VTSize - Size;
7550     }
7551 
7552     if (CopyFromConstant &&
7553         (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
7554       // It's unlikely a store of a vector immediate can be done in a single
7555       // instruction. It would require a load from a constantpool first.
7556       // We only handle zero vectors here.
7557       // FIXME: Handle other cases where store of vector immediate is done in
7558       // a single instruction.
7559       ConstantDataArraySlice SubSlice;
7560       if (SrcOff < Slice.Length) {
7561         SubSlice = Slice;
7562         SubSlice.move(SrcOff);
7563       } else {
7564         // This is an out-of-bounds access and hence UB. Pretend we read zero.
7565         SubSlice.Array = nullptr;
7566         SubSlice.Offset = 0;
7567         SubSlice.Length = VTSize;
7568       }
7569       Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
7570       if (Value.getNode()) {
7571         Store = DAG.getStore(
7572             Chain, dl, Value,
7573             DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
7574             DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
7575         OutChains.push_back(Store);
7576       }
7577     }
7578 
7579     if (!Store.getNode()) {
7580       // The type might not be legal for the target.  This should only happen
7581       // if the type is smaller than a legal type, as on PPC, so the right
7582       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
7583       // to Load/Store if NVT==VT.
7584       // FIXME does the case above also need this?
7585       EVT NVT = TLI.getTypeToTransformTo(C, VT);
7586       assert(NVT.bitsGE(VT));
7587 
7588       bool isDereferenceable =
7589         SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
7590       MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
7591       if (isDereferenceable)
7592         SrcMMOFlags |= MachineMemOperand::MODereferenceable;
7593       if (isConstant)
7594         SrcMMOFlags |= MachineMemOperand::MOInvariant;
7595 
7596       Value = DAG.getExtLoad(
7597           ISD::EXTLOAD, dl, NVT, Chain,
7598           DAG.getMemBasePlusOffset(Src, TypeSize::getFixed(SrcOff), dl),
7599           SrcPtrInfo.getWithOffset(SrcOff), VT,
7600           commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
7601       OutLoadChains.push_back(Value.getValue(1));
7602 
7603       Store = DAG.getTruncStore(
7604           Chain, dl, Value,
7605           DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
7606           DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
7607       OutStoreChains.push_back(Store);
7608     }
7609     SrcOff += VTSize;
7610     DstOff += VTSize;
7611     Size -= VTSize;
7612   }
7613 
7614   unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
7615                                 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
7616   unsigned NumLdStInMemcpy = OutStoreChains.size();
7617 
7618   if (NumLdStInMemcpy) {
7619     // It may be that memcpy might be converted to memset if it's memcpy
7620     // of constants. In such a case, we won't have loads and stores, but
7621     // just stores. In the absence of loads, there is nothing to gang up.
7622     if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
7623       // If target does not care, just leave as it.
7624       for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
7625         OutChains.push_back(OutLoadChains[i]);
7626         OutChains.push_back(OutStoreChains[i]);
7627       }
7628     } else {
7629       // Ld/St less than/equal limit set by target.
7630       if (NumLdStInMemcpy <= GluedLdStLimit) {
7631           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
7632                                         NumLdStInMemcpy, OutLoadChains,
7633                                         OutStoreChains);
7634       } else {
7635         unsigned NumberLdChain =  NumLdStInMemcpy / GluedLdStLimit;
7636         unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
7637         unsigned GlueIter = 0;
7638 
7639         for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
7640           unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
7641           unsigned IndexTo   = NumLdStInMemcpy - GlueIter;
7642 
7643           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
7644                                        OutLoadChains, OutStoreChains);
7645           GlueIter += GluedLdStLimit;
7646         }
7647 
7648         // Residual ld/st.
7649         if (RemainingLdStInMemcpy) {
7650           chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
7651                                         RemainingLdStInMemcpy, OutLoadChains,
7652                                         OutStoreChains);
7653         }
7654       }
7655     }
7656   }
7657   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
7658 }
7659 
7660 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl,
7661                                         SDValue Chain, SDValue Dst, SDValue Src,
7662                                         uint64_t Size, Align Alignment,
7663                                         bool isVol, bool AlwaysInline,
7664                                         MachinePointerInfo DstPtrInfo,
7665                                         MachinePointerInfo SrcPtrInfo,
7666                                         const AAMDNodes &AAInfo) {
7667   // Turn a memmove of undef to nop.
7668   // FIXME: We need to honor volatile even is Src is undef.
7669   if (Src.isUndef())
7670     return Chain;
7671 
7672   // Expand memmove to a series of load and store ops if the size operand falls
7673   // below a certain threshold.
7674   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7675   const DataLayout &DL = DAG.getDataLayout();
7676   LLVMContext &C = *DAG.getContext();
7677   std::vector<EVT> MemOps;
7678   bool DstAlignCanChange = false;
7679   MachineFunction &MF = DAG.getMachineFunction();
7680   MachineFrameInfo &MFI = MF.getFrameInfo();
7681   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
7682   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
7683   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
7684     DstAlignCanChange = true;
7685   MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
7686   if (!SrcAlign || Alignment > *SrcAlign)
7687     SrcAlign = Alignment;
7688   assert(SrcAlign && "SrcAlign must be set");
7689   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
7690   if (!TLI.findOptimalMemOpLowering(
7691           MemOps, Limit,
7692           MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
7693                       /*IsVolatile*/ true),
7694           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
7695           MF.getFunction().getAttributes()))
7696     return SDValue();
7697 
7698   if (DstAlignCanChange) {
7699     Type *Ty = MemOps[0].getTypeForEVT(C);
7700     Align NewAlign = DL.getABITypeAlign(Ty);
7701 
7702     // Don't promote to an alignment that would require dynamic stack
7703     // realignment which may conflict with optimizations such as tail call
7704     // optimization.
7705     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
7706     if (!TRI->hasStackRealignment(MF))
7707       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
7708         NewAlign = NewAlign.previous();
7709 
7710     if (NewAlign > Alignment) {
7711       // Give the stack frame object a larger alignment if needed.
7712       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
7713         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
7714       Alignment = NewAlign;
7715     }
7716   }
7717 
7718   // Prepare AAInfo for loads/stores after lowering this memmove.
7719   AAMDNodes NewAAInfo = AAInfo;
7720   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
7721 
7722   MachineMemOperand::Flags MMOFlags =
7723       isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
7724   uint64_t SrcOff = 0, DstOff = 0;
7725   SmallVector<SDValue, 8> LoadValues;
7726   SmallVector<SDValue, 8> LoadChains;
7727   SmallVector<SDValue, 8> OutChains;
7728   unsigned NumMemOps = MemOps.size();
7729   for (unsigned i = 0; i < NumMemOps; i++) {
7730     EVT VT = MemOps[i];
7731     unsigned VTSize = VT.getSizeInBits() / 8;
7732     SDValue Value;
7733 
7734     bool isDereferenceable =
7735       SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
7736     MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
7737     if (isDereferenceable)
7738       SrcMMOFlags |= MachineMemOperand::MODereferenceable;
7739 
7740     Value = DAG.getLoad(
7741         VT, dl, Chain,
7742         DAG.getMemBasePlusOffset(Src, TypeSize::getFixed(SrcOff), dl),
7743         SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
7744     LoadValues.push_back(Value);
7745     LoadChains.push_back(Value.getValue(1));
7746     SrcOff += VTSize;
7747   }
7748   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
7749   OutChains.clear();
7750   for (unsigned i = 0; i < NumMemOps; i++) {
7751     EVT VT = MemOps[i];
7752     unsigned VTSize = VT.getSizeInBits() / 8;
7753     SDValue Store;
7754 
7755     Store = DAG.getStore(
7756         Chain, dl, LoadValues[i],
7757         DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
7758         DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
7759     OutChains.push_back(Store);
7760     DstOff += VTSize;
7761   }
7762 
7763   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
7764 }
7765 
7766 /// Lower the call to 'memset' intrinsic function into a series of store
7767 /// operations.
7768 ///
7769 /// \param DAG Selection DAG where lowered code is placed.
7770 /// \param dl Link to corresponding IR location.
7771 /// \param Chain Control flow dependency.
7772 /// \param Dst Pointer to destination memory location.
7773 /// \param Src Value of byte to write into the memory.
7774 /// \param Size Number of bytes to write.
7775 /// \param Alignment Alignment of the destination in bytes.
7776 /// \param isVol True if destination is volatile.
7777 /// \param AlwaysInline Makes sure no function call is generated.
7778 /// \param DstPtrInfo IR information on the memory pointer.
7779 /// \returns New head in the control flow, if lowering was successful, empty
7780 /// SDValue otherwise.
7781 ///
7782 /// The function tries to replace 'llvm.memset' intrinsic with several store
7783 /// operations and value calculation code. This is usually profitable for small
7784 /// memory size or when the semantic requires inlining.
7785 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
7786                                SDValue Chain, SDValue Dst, SDValue Src,
7787                                uint64_t Size, Align Alignment, bool isVol,
7788                                bool AlwaysInline, MachinePointerInfo DstPtrInfo,
7789                                const AAMDNodes &AAInfo) {
7790   // Turn a memset of undef to nop.
7791   // FIXME: We need to honor volatile even is Src is undef.
7792   if (Src.isUndef())
7793     return Chain;
7794 
7795   // Expand memset to a series of load/store ops if the size operand
7796   // falls below a certain threshold.
7797   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7798   std::vector<EVT> MemOps;
7799   bool DstAlignCanChange = false;
7800   MachineFunction &MF = DAG.getMachineFunction();
7801   MachineFrameInfo &MFI = MF.getFrameInfo();
7802   bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
7803   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
7804   if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
7805     DstAlignCanChange = true;
7806   bool IsZeroVal = isNullConstant(Src);
7807   unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize);
7808 
7809   if (!TLI.findOptimalMemOpLowering(
7810           MemOps, Limit,
7811           MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
7812           DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
7813     return SDValue();
7814 
7815   if (DstAlignCanChange) {
7816     Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
7817     const DataLayout &DL = DAG.getDataLayout();
7818     Align NewAlign = DL.getABITypeAlign(Ty);
7819 
7820     // Don't promote to an alignment that would require dynamic stack
7821     // realignment which may conflict with optimizations such as tail call
7822     // optimization.
7823     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
7824     if (!TRI->hasStackRealignment(MF))
7825       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
7826         NewAlign = NewAlign.previous();
7827 
7828     if (NewAlign > Alignment) {
7829       // Give the stack frame object a larger alignment if needed.
7830       if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
7831         MFI.setObjectAlignment(FI->getIndex(), NewAlign);
7832       Alignment = NewAlign;
7833     }
7834   }
7835 
7836   SmallVector<SDValue, 8> OutChains;
7837   uint64_t DstOff = 0;
7838   unsigned NumMemOps = MemOps.size();
7839 
7840   // Find the largest store and generate the bit pattern for it.
7841   EVT LargestVT = MemOps[0];
7842   for (unsigned i = 1; i < NumMemOps; i++)
7843     if (MemOps[i].bitsGT(LargestVT))
7844       LargestVT = MemOps[i];
7845   SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
7846 
7847   // Prepare AAInfo for loads/stores after lowering this memset.
7848   AAMDNodes NewAAInfo = AAInfo;
7849   NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
7850 
7851   for (unsigned i = 0; i < NumMemOps; i++) {
7852     EVT VT = MemOps[i];
7853     unsigned VTSize = VT.getSizeInBits() / 8;
7854     if (VTSize > Size) {
7855       // Issuing an unaligned load / store pair  that overlaps with the previous
7856       // pair. Adjust the offset accordingly.
7857       assert(i == NumMemOps-1 && i != 0);
7858       DstOff -= VTSize - Size;
7859     }
7860 
7861     // If this store is smaller than the largest store see whether we can get
7862     // the smaller value for free with a truncate or extract vector element and
7863     // then store.
7864     SDValue Value = MemSetValue;
7865     if (VT.bitsLT(LargestVT)) {
7866       unsigned Index;
7867       unsigned NElts = LargestVT.getSizeInBits() / VT.getSizeInBits();
7868       EVT SVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), NElts);
7869       if (!LargestVT.isVector() && !VT.isVector() &&
7870           TLI.isTruncateFree(LargestVT, VT))
7871         Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
7872       else if (LargestVT.isVector() && !VT.isVector() &&
7873                TLI.shallExtractConstSplatVectorElementToStore(
7874                    LargestVT.getTypeForEVT(*DAG.getContext()),
7875                    VT.getSizeInBits(), Index) &&
7876                TLI.isTypeLegal(SVT) &&
7877                LargestVT.getSizeInBits() == SVT.getSizeInBits()) {
7878         // Target which can combine store(extractelement VectorTy, Idx) can get
7879         // the smaller value for free.
7880         SDValue TailValue = DAG.getNode(ISD::BITCAST, dl, SVT, MemSetValue);
7881         Value = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, TailValue,
7882                             DAG.getVectorIdxConstant(Index, dl));
7883       } else
7884         Value = getMemsetValue(Src, VT, DAG, dl);
7885     }
7886     assert(Value.getValueType() == VT && "Value with wrong type.");
7887     SDValue Store = DAG.getStore(
7888         Chain, dl, Value,
7889         DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
7890         DstPtrInfo.getWithOffset(DstOff), Alignment,
7891         isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone,
7892         NewAAInfo);
7893     OutChains.push_back(Store);
7894     DstOff += VT.getSizeInBits() / 8;
7895     Size -= VTSize;
7896   }
7897 
7898   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
7899 }
7900 
7901 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
7902                                             unsigned AS) {
7903   // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
7904   // pointer operands can be losslessly bitcasted to pointers of address space 0
7905   if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
7906     report_fatal_error("cannot lower memory intrinsic in address space " +
7907                        Twine(AS));
7908   }
7909 }
7910 
7911 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
7912                                 SDValue Src, SDValue Size, Align Alignment,
7913                                 bool isVol, bool AlwaysInline, bool isTailCall,
7914                                 MachinePointerInfo DstPtrInfo,
7915                                 MachinePointerInfo SrcPtrInfo,
7916                                 const AAMDNodes &AAInfo, AAResults *AA) {
7917   // Check to see if we should lower the memcpy to loads and stores first.
7918   // For cases within the target-specified limits, this is the best choice.
7919   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
7920   if (ConstantSize) {
7921     // Memcpy with size zero? Just return the original chain.
7922     if (ConstantSize->isZero())
7923       return Chain;
7924 
7925     SDValue Result = getMemcpyLoadsAndStores(
7926         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7927         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo, AA);
7928     if (Result.getNode())
7929       return Result;
7930   }
7931 
7932   // Then check to see if we should lower the memcpy with target-specific
7933   // code. If the target chooses to do this, this is the next best.
7934   if (TSI) {
7935     SDValue Result = TSI->EmitTargetCodeForMemcpy(
7936         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
7937         DstPtrInfo, SrcPtrInfo);
7938     if (Result.getNode())
7939       return Result;
7940   }
7941 
7942   // If we really need inline code and the target declined to provide it,
7943   // use a (potentially long) sequence of loads and stores.
7944   if (AlwaysInline) {
7945     assert(ConstantSize && "AlwaysInline requires a constant size!");
7946     return getMemcpyLoadsAndStores(
7947         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
7948         isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo, AA);
7949   }
7950 
7951   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
7952   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
7953 
7954   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
7955   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
7956   // respect volatile, so they may do things like read or write memory
7957   // beyond the given memory regions. But fixing this isn't easy, and most
7958   // people don't care.
7959 
7960   // Emit a library call.
7961   TargetLowering::ArgListTy Args;
7962   TargetLowering::ArgListEntry Entry;
7963   Entry.Ty = PointerType::getUnqual(*getContext());
7964   Entry.Node = Dst; Args.push_back(Entry);
7965   Entry.Node = Src; Args.push_back(Entry);
7966 
7967   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7968   Entry.Node = Size; Args.push_back(Entry);
7969   // FIXME: pass in SDLoc
7970   TargetLowering::CallLoweringInfo CLI(*this);
7971   CLI.setDebugLoc(dl)
7972       .setChain(Chain)
7973       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY),
7974                     Dst.getValueType().getTypeForEVT(*getContext()),
7975                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY),
7976                                       TLI->getPointerTy(getDataLayout())),
7977                     std::move(Args))
7978       .setDiscardResult()
7979       .setTailCall(isTailCall);
7980 
7981   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
7982   return CallResult.second;
7983 }
7984 
7985 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
7986                                       SDValue Dst, SDValue Src, SDValue Size,
7987                                       Type *SizeTy, unsigned ElemSz,
7988                                       bool isTailCall,
7989                                       MachinePointerInfo DstPtrInfo,
7990                                       MachinePointerInfo SrcPtrInfo) {
7991   // Emit a library call.
7992   TargetLowering::ArgListTy Args;
7993   TargetLowering::ArgListEntry Entry;
7994   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
7995   Entry.Node = Dst;
7996   Args.push_back(Entry);
7997 
7998   Entry.Node = Src;
7999   Args.push_back(Entry);
8000 
8001   Entry.Ty = SizeTy;
8002   Entry.Node = Size;
8003   Args.push_back(Entry);
8004 
8005   RTLIB::Libcall LibraryCall =
8006       RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
8007   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
8008     report_fatal_error("Unsupported element size");
8009 
8010   TargetLowering::CallLoweringInfo CLI(*this);
8011   CLI.setDebugLoc(dl)
8012       .setChain(Chain)
8013       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
8014                     Type::getVoidTy(*getContext()),
8015                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
8016                                       TLI->getPointerTy(getDataLayout())),
8017                     std::move(Args))
8018       .setDiscardResult()
8019       .setTailCall(isTailCall);
8020 
8021   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
8022   return CallResult.second;
8023 }
8024 
8025 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
8026                                  SDValue Src, SDValue Size, Align Alignment,
8027                                  bool isVol, bool isTailCall,
8028                                  MachinePointerInfo DstPtrInfo,
8029                                  MachinePointerInfo SrcPtrInfo,
8030                                  const AAMDNodes &AAInfo, AAResults *AA) {
8031   // Check to see if we should lower the memmove to loads and stores first.
8032   // For cases within the target-specified limits, this is the best choice.
8033   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
8034   if (ConstantSize) {
8035     // Memmove with size zero? Just return the original chain.
8036     if (ConstantSize->isZero())
8037       return Chain;
8038 
8039     SDValue Result = getMemmoveLoadsAndStores(
8040         *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
8041         isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
8042     if (Result.getNode())
8043       return Result;
8044   }
8045 
8046   // Then check to see if we should lower the memmove with target-specific
8047   // code. If the target chooses to do this, this is the next best.
8048   if (TSI) {
8049     SDValue Result =
8050         TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
8051                                       Alignment, isVol, DstPtrInfo, SrcPtrInfo);
8052     if (Result.getNode())
8053       return Result;
8054   }
8055 
8056   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
8057   checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
8058 
8059   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
8060   // not be safe.  See memcpy above for more details.
8061 
8062   // Emit a library call.
8063   TargetLowering::ArgListTy Args;
8064   TargetLowering::ArgListEntry Entry;
8065   Entry.Ty = PointerType::getUnqual(*getContext());
8066   Entry.Node = Dst; Args.push_back(Entry);
8067   Entry.Node = Src; Args.push_back(Entry);
8068 
8069   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
8070   Entry.Node = Size; Args.push_back(Entry);
8071   // FIXME:  pass in SDLoc
8072   TargetLowering::CallLoweringInfo CLI(*this);
8073   CLI.setDebugLoc(dl)
8074       .setChain(Chain)
8075       .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
8076                     Dst.getValueType().getTypeForEVT(*getContext()),
8077                     getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
8078                                       TLI->getPointerTy(getDataLayout())),
8079                     std::move(Args))
8080       .setDiscardResult()
8081       .setTailCall(isTailCall);
8082 
8083   std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
8084   return CallResult.second;
8085 }
8086 
8087 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
8088                                        SDValue Dst, SDValue Src, SDValue Size,
8089                                        Type *SizeTy, unsigned ElemSz,
8090                                        bool isTailCall,
8091                                        MachinePointerInfo DstPtrInfo,
8092                                        MachinePointerInfo SrcPtrInfo) {
8093   // Emit a library call.
8094   TargetLowering::ArgListTy Args;
8095   TargetLowering::ArgListEntry Entry;
8096   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
8097   Entry.Node = Dst;
8098   Args.push_back(Entry);
8099 
8100   Entry.Node = Src;
8101   Args.push_back(Entry);
8102 
8103   Entry.Ty = SizeTy;
8104   Entry.Node = Size;
8105   Args.push_back(Entry);
8106 
8107   RTLIB::Libcall LibraryCall =
8108       RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
8109   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
8110     report_fatal_error("Unsupported element size");
8111 
8112   TargetLowering::CallLoweringInfo CLI(*this);
8113   CLI.setDebugLoc(dl)
8114       .setChain(Chain)
8115       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
8116                     Type::getVoidTy(*getContext()),
8117                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
8118                                       TLI->getPointerTy(getDataLayout())),
8119                     std::move(Args))
8120       .setDiscardResult()
8121       .setTailCall(isTailCall);
8122 
8123   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
8124   return CallResult.second;
8125 }
8126 
8127 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
8128                                 SDValue Src, SDValue Size, Align Alignment,
8129                                 bool isVol, bool AlwaysInline, bool isTailCall,
8130                                 MachinePointerInfo DstPtrInfo,
8131                                 const AAMDNodes &AAInfo) {
8132   // Check to see if we should lower the memset to stores first.
8133   // For cases within the target-specified limits, this is the best choice.
8134   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
8135   if (ConstantSize) {
8136     // Memset with size zero? Just return the original chain.
8137     if (ConstantSize->isZero())
8138       return Chain;
8139 
8140     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
8141                                      ConstantSize->getZExtValue(), Alignment,
8142                                      isVol, false, DstPtrInfo, AAInfo);
8143 
8144     if (Result.getNode())
8145       return Result;
8146   }
8147 
8148   // Then check to see if we should lower the memset with target-specific
8149   // code. If the target chooses to do this, this is the next best.
8150   if (TSI) {
8151     SDValue Result = TSI->EmitTargetCodeForMemset(
8152         *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
8153     if (Result.getNode())
8154       return Result;
8155   }
8156 
8157   // If we really need inline code and the target declined to provide it,
8158   // use a (potentially long) sequence of loads and stores.
8159   if (AlwaysInline) {
8160     assert(ConstantSize && "AlwaysInline requires a constant size!");
8161     SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
8162                                      ConstantSize->getZExtValue(), Alignment,
8163                                      isVol, true, DstPtrInfo, AAInfo);
8164     assert(Result &&
8165            "getMemsetStores must return a valid sequence when AlwaysInline");
8166     return Result;
8167   }
8168 
8169   checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
8170 
8171   // Emit a library call.
8172   auto &Ctx = *getContext();
8173   const auto& DL = getDataLayout();
8174 
8175   TargetLowering::CallLoweringInfo CLI(*this);
8176   // FIXME: pass in SDLoc
8177   CLI.setDebugLoc(dl).setChain(Chain);
8178 
8179   const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO);
8180 
8181   // Helper function to create an Entry from Node and Type.
8182   const auto CreateEntry = [](SDValue Node, Type *Ty) {
8183     TargetLowering::ArgListEntry Entry;
8184     Entry.Node = Node;
8185     Entry.Ty = Ty;
8186     return Entry;
8187   };
8188 
8189   // If zeroing out and bzero is present, use it.
8190   if (isNullConstant(Src) && BzeroName) {
8191     TargetLowering::ArgListTy Args;
8192     Args.push_back(CreateEntry(Dst, PointerType::getUnqual(Ctx)));
8193     Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx)));
8194     CLI.setLibCallee(
8195         TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx),
8196         getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args));
8197   } else {
8198     TargetLowering::ArgListTy Args;
8199     Args.push_back(CreateEntry(Dst, PointerType::getUnqual(Ctx)));
8200     Args.push_back(CreateEntry(Src, Src.getValueType().getTypeForEVT(Ctx)));
8201     Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx)));
8202     CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
8203                      Dst.getValueType().getTypeForEVT(Ctx),
8204                      getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
8205                                        TLI->getPointerTy(DL)),
8206                      std::move(Args));
8207   }
8208 
8209   CLI.setDiscardResult().setTailCall(isTailCall);
8210 
8211   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
8212   return CallResult.second;
8213 }
8214 
8215 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
8216                                       SDValue Dst, SDValue Value, SDValue Size,
8217                                       Type *SizeTy, unsigned ElemSz,
8218                                       bool isTailCall,
8219                                       MachinePointerInfo DstPtrInfo) {
8220   // Emit a library call.
8221   TargetLowering::ArgListTy Args;
8222   TargetLowering::ArgListEntry Entry;
8223   Entry.Ty = getDataLayout().getIntPtrType(*getContext());
8224   Entry.Node = Dst;
8225   Args.push_back(Entry);
8226 
8227   Entry.Ty = Type::getInt8Ty(*getContext());
8228   Entry.Node = Value;
8229   Args.push_back(Entry);
8230 
8231   Entry.Ty = SizeTy;
8232   Entry.Node = Size;
8233   Args.push_back(Entry);
8234 
8235   RTLIB::Libcall LibraryCall =
8236       RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
8237   if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
8238     report_fatal_error("Unsupported element size");
8239 
8240   TargetLowering::CallLoweringInfo CLI(*this);
8241   CLI.setDebugLoc(dl)
8242       .setChain(Chain)
8243       .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
8244                     Type::getVoidTy(*getContext()),
8245                     getExternalSymbol(TLI->getLibcallName(LibraryCall),
8246                                       TLI->getPointerTy(getDataLayout())),
8247                     std::move(Args))
8248       .setDiscardResult()
8249       .setTailCall(isTailCall);
8250 
8251   std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
8252   return CallResult.second;
8253 }
8254 
8255 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
8256                                 SDVTList VTList, ArrayRef<SDValue> Ops,
8257                                 MachineMemOperand *MMO) {
8258   FoldingSetNodeID ID;
8259   ID.AddInteger(MemVT.getRawBits());
8260   AddNodeIDNode(ID, Opcode, VTList, Ops);
8261   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8262   ID.AddInteger(MMO->getFlags());
8263   void* IP = nullptr;
8264   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8265     cast<AtomicSDNode>(E)->refineAlignment(MMO);
8266     return SDValue(E, 0);
8267   }
8268 
8269   auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
8270                                     VTList, MemVT, MMO);
8271   createOperands(N, Ops);
8272 
8273   CSEMap.InsertNode(N, IP);
8274   InsertNode(N);
8275   return SDValue(N, 0);
8276 }
8277 
8278 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
8279                                        EVT MemVT, SDVTList VTs, SDValue Chain,
8280                                        SDValue Ptr, SDValue Cmp, SDValue Swp,
8281                                        MachineMemOperand *MMO) {
8282   assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
8283          Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
8284   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
8285 
8286   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
8287   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
8288 }
8289 
8290 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
8291                                 SDValue Chain, SDValue Ptr, SDValue Val,
8292                                 MachineMemOperand *MMO) {
8293   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
8294           Opcode == ISD::ATOMIC_LOAD_SUB ||
8295           Opcode == ISD::ATOMIC_LOAD_AND ||
8296           Opcode == ISD::ATOMIC_LOAD_CLR ||
8297           Opcode == ISD::ATOMIC_LOAD_OR ||
8298           Opcode == ISD::ATOMIC_LOAD_XOR ||
8299           Opcode == ISD::ATOMIC_LOAD_NAND ||
8300           Opcode == ISD::ATOMIC_LOAD_MIN ||
8301           Opcode == ISD::ATOMIC_LOAD_MAX ||
8302           Opcode == ISD::ATOMIC_LOAD_UMIN ||
8303           Opcode == ISD::ATOMIC_LOAD_UMAX ||
8304           Opcode == ISD::ATOMIC_LOAD_FADD ||
8305           Opcode == ISD::ATOMIC_LOAD_FSUB ||
8306           Opcode == ISD::ATOMIC_LOAD_FMAX ||
8307           Opcode == ISD::ATOMIC_LOAD_FMIN ||
8308           Opcode == ISD::ATOMIC_LOAD_UINC_WRAP ||
8309           Opcode == ISD::ATOMIC_LOAD_UDEC_WRAP ||
8310           Opcode == ISD::ATOMIC_SWAP ||
8311           Opcode == ISD::ATOMIC_STORE) &&
8312          "Invalid Atomic Op");
8313 
8314   EVT VT = Val.getValueType();
8315 
8316   SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
8317                                                getVTList(VT, MVT::Other);
8318   SDValue Ops[] = {Chain, Ptr, Val};
8319   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
8320 }
8321 
8322 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
8323                                 EVT VT, SDValue Chain, SDValue Ptr,
8324                                 MachineMemOperand *MMO) {
8325   assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
8326 
8327   SDVTList VTs = getVTList(VT, MVT::Other);
8328   SDValue Ops[] = {Chain, Ptr};
8329   return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
8330 }
8331 
8332 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
8333 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
8334   if (Ops.size() == 1)
8335     return Ops[0];
8336 
8337   SmallVector<EVT, 4> VTs;
8338   VTs.reserve(Ops.size());
8339   for (const SDValue &Op : Ops)
8340     VTs.push_back(Op.getValueType());
8341   return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
8342 }
8343 
8344 SDValue SelectionDAG::getMemIntrinsicNode(
8345     unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
8346     EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
8347     MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
8348   if (!Size && MemVT.isScalableVector())
8349     Size = MemoryLocation::UnknownSize;
8350   else if (!Size)
8351     Size = MemVT.getStoreSize();
8352 
8353   MachineFunction &MF = getMachineFunction();
8354   MachineMemOperand *MMO =
8355       MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
8356 
8357   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
8358 }
8359 
8360 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
8361                                           SDVTList VTList,
8362                                           ArrayRef<SDValue> Ops, EVT MemVT,
8363                                           MachineMemOperand *MMO) {
8364   assert((Opcode == ISD::INTRINSIC_VOID ||
8365           Opcode == ISD::INTRINSIC_W_CHAIN ||
8366           Opcode == ISD::PREFETCH ||
8367           (Opcode <= (unsigned)std::numeric_limits<int>::max() &&
8368            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
8369          "Opcode is not a memory-accessing opcode!");
8370 
8371   // Memoize the node unless it returns a glue result.
8372   MemIntrinsicSDNode *N;
8373   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
8374     FoldingSetNodeID ID;
8375     AddNodeIDNode(ID, Opcode, VTList, Ops);
8376     ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
8377         Opcode, dl.getIROrder(), VTList, MemVT, MMO));
8378     ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8379     ID.AddInteger(MMO->getFlags());
8380     ID.AddInteger(MemVT.getRawBits());
8381     void *IP = nullptr;
8382     if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8383       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
8384       return SDValue(E, 0);
8385     }
8386 
8387     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
8388                                       VTList, MemVT, MMO);
8389     createOperands(N, Ops);
8390 
8391   CSEMap.InsertNode(N, IP);
8392   } else {
8393     N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
8394                                       VTList, MemVT, MMO);
8395     createOperands(N, Ops);
8396   }
8397   InsertNode(N);
8398   SDValue V(N, 0);
8399   NewSDValueDbgMsg(V, "Creating new node: ", this);
8400   return V;
8401 }
8402 
8403 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
8404                                       SDValue Chain, int FrameIndex,
8405                                       int64_t Size, int64_t Offset) {
8406   const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
8407   const auto VTs = getVTList(MVT::Other);
8408   SDValue Ops[2] = {
8409       Chain,
8410       getFrameIndex(FrameIndex,
8411                     getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
8412                     true)};
8413 
8414   FoldingSetNodeID ID;
8415   AddNodeIDNode(ID, Opcode, VTs, Ops);
8416   ID.AddInteger(FrameIndex);
8417   ID.AddInteger(Size);
8418   ID.AddInteger(Offset);
8419   void *IP = nullptr;
8420   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
8421     return SDValue(E, 0);
8422 
8423   LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
8424       Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
8425   createOperands(N, Ops);
8426   CSEMap.InsertNode(N, IP);
8427   InsertNode(N);
8428   SDValue V(N, 0);
8429   NewSDValueDbgMsg(V, "Creating new node: ", this);
8430   return V;
8431 }
8432 
8433 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain,
8434                                          uint64_t Guid, uint64_t Index,
8435                                          uint32_t Attr) {
8436   const unsigned Opcode = ISD::PSEUDO_PROBE;
8437   const auto VTs = getVTList(MVT::Other);
8438   SDValue Ops[] = {Chain};
8439   FoldingSetNodeID ID;
8440   AddNodeIDNode(ID, Opcode, VTs, Ops);
8441   ID.AddInteger(Guid);
8442   ID.AddInteger(Index);
8443   void *IP = nullptr;
8444   if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
8445     return SDValue(E, 0);
8446 
8447   auto *N = newSDNode<PseudoProbeSDNode>(
8448       Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
8449   createOperands(N, Ops);
8450   CSEMap.InsertNode(N, IP);
8451   InsertNode(N);
8452   SDValue V(N, 0);
8453   NewSDValueDbgMsg(V, "Creating new node: ", this);
8454   return V;
8455 }
8456 
8457 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
8458 /// MachinePointerInfo record from it.  This is particularly useful because the
8459 /// code generator has many cases where it doesn't bother passing in a
8460 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
8461 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
8462                                            SelectionDAG &DAG, SDValue Ptr,
8463                                            int64_t Offset = 0) {
8464   // If this is FI+Offset, we can model it.
8465   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
8466     return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
8467                                              FI->getIndex(), Offset);
8468 
8469   // If this is (FI+Offset1)+Offset2, we can model it.
8470   if (Ptr.getOpcode() != ISD::ADD ||
8471       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
8472       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
8473     return Info;
8474 
8475   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
8476   return MachinePointerInfo::getFixedStack(
8477       DAG.getMachineFunction(), FI,
8478       Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
8479 }
8480 
8481 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
8482 /// MachinePointerInfo record from it.  This is particularly useful because the
8483 /// code generator has many cases where it doesn't bother passing in a
8484 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
8485 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
8486                                            SelectionDAG &DAG, SDValue Ptr,
8487                                            SDValue OffsetOp) {
8488   // If the 'Offset' value isn't a constant, we can't handle this.
8489   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
8490     return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
8491   if (OffsetOp.isUndef())
8492     return InferPointerInfo(Info, DAG, Ptr);
8493   return Info;
8494 }
8495 
8496 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
8497                               EVT VT, const SDLoc &dl, SDValue Chain,
8498                               SDValue Ptr, SDValue Offset,
8499                               MachinePointerInfo PtrInfo, EVT MemVT,
8500                               Align Alignment,
8501                               MachineMemOperand::Flags MMOFlags,
8502                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
8503   assert(Chain.getValueType() == MVT::Other &&
8504         "Invalid chain type");
8505 
8506   MMOFlags |= MachineMemOperand::MOLoad;
8507   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
8508   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
8509   // clients.
8510   if (PtrInfo.V.isNull())
8511     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
8512 
8513   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
8514   MachineFunction &MF = getMachineFunction();
8515   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
8516                                                    Alignment, AAInfo, Ranges);
8517   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
8518 }
8519 
8520 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
8521                               EVT VT, const SDLoc &dl, SDValue Chain,
8522                               SDValue Ptr, SDValue Offset, EVT MemVT,
8523                               MachineMemOperand *MMO) {
8524   if (VT == MemVT) {
8525     ExtType = ISD::NON_EXTLOAD;
8526   } else if (ExtType == ISD::NON_EXTLOAD) {
8527     assert(VT == MemVT && "Non-extending load from different memory type!");
8528   } else {
8529     // Extending load.
8530     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
8531            "Should only be an extending load, not truncating!");
8532     assert(VT.isInteger() == MemVT.isInteger() &&
8533            "Cannot convert from FP to Int or Int -> FP!");
8534     assert(VT.isVector() == MemVT.isVector() &&
8535            "Cannot use an ext load to convert to or from a vector!");
8536     assert((!VT.isVector() ||
8537             VT.getVectorElementCount() == MemVT.getVectorElementCount()) &&
8538            "Cannot use an ext load to change the number of vector elements!");
8539   }
8540 
8541   bool Indexed = AM != ISD::UNINDEXED;
8542   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
8543 
8544   SDVTList VTs = Indexed ?
8545     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
8546   SDValue Ops[] = { Chain, Ptr, Offset };
8547   FoldingSetNodeID ID;
8548   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
8549   ID.AddInteger(MemVT.getRawBits());
8550   ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
8551       dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
8552   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8553   ID.AddInteger(MMO->getFlags());
8554   void *IP = nullptr;
8555   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8556     cast<LoadSDNode>(E)->refineAlignment(MMO);
8557     return SDValue(E, 0);
8558   }
8559   auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8560                                   ExtType, MemVT, MMO);
8561   createOperands(N, Ops);
8562 
8563   CSEMap.InsertNode(N, IP);
8564   InsertNode(N);
8565   SDValue V(N, 0);
8566   NewSDValueDbgMsg(V, "Creating new node: ", this);
8567   return V;
8568 }
8569 
8570 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8571                               SDValue Ptr, MachinePointerInfo PtrInfo,
8572                               MaybeAlign Alignment,
8573                               MachineMemOperand::Flags MMOFlags,
8574                               const AAMDNodes &AAInfo, const MDNode *Ranges) {
8575   SDValue Undef = getUNDEF(Ptr.getValueType());
8576   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
8577                  PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
8578 }
8579 
8580 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
8581                               SDValue Ptr, MachineMemOperand *MMO) {
8582   SDValue Undef = getUNDEF(Ptr.getValueType());
8583   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
8584                  VT, MMO);
8585 }
8586 
8587 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
8588                                  EVT VT, SDValue Chain, SDValue Ptr,
8589                                  MachinePointerInfo PtrInfo, EVT MemVT,
8590                                  MaybeAlign Alignment,
8591                                  MachineMemOperand::Flags MMOFlags,
8592                                  const AAMDNodes &AAInfo) {
8593   SDValue Undef = getUNDEF(Ptr.getValueType());
8594   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
8595                  MemVT, Alignment, MMOFlags, AAInfo);
8596 }
8597 
8598 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
8599                                  EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
8600                                  MachineMemOperand *MMO) {
8601   SDValue Undef = getUNDEF(Ptr.getValueType());
8602   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
8603                  MemVT, MMO);
8604 }
8605 
8606 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
8607                                      SDValue Base, SDValue Offset,
8608                                      ISD::MemIndexedMode AM) {
8609   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
8610   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
8611   // Don't propagate the invariant or dereferenceable flags.
8612   auto MMOFlags =
8613       LD->getMemOperand()->getFlags() &
8614       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
8615   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
8616                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
8617                  LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
8618 }
8619 
8620 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
8621                                SDValue Ptr, MachinePointerInfo PtrInfo,
8622                                Align Alignment,
8623                                MachineMemOperand::Flags MMOFlags,
8624                                const AAMDNodes &AAInfo) {
8625   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8626 
8627   MMOFlags |= MachineMemOperand::MOStore;
8628   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
8629 
8630   if (PtrInfo.V.isNull())
8631     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
8632 
8633   MachineFunction &MF = getMachineFunction();
8634   uint64_t Size =
8635       MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
8636   MachineMemOperand *MMO =
8637       MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
8638   return getStore(Chain, dl, Val, Ptr, MMO);
8639 }
8640 
8641 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
8642                                SDValue Ptr, MachineMemOperand *MMO) {
8643   assert(Chain.getValueType() == MVT::Other &&
8644         "Invalid chain type");
8645   EVT VT = Val.getValueType();
8646   SDVTList VTs = getVTList(MVT::Other);
8647   SDValue Undef = getUNDEF(Ptr.getValueType());
8648   SDValue Ops[] = { Chain, Val, Ptr, Undef };
8649   FoldingSetNodeID ID;
8650   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
8651   ID.AddInteger(VT.getRawBits());
8652   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
8653       dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
8654   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8655   ID.AddInteger(MMO->getFlags());
8656   void *IP = nullptr;
8657   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8658     cast<StoreSDNode>(E)->refineAlignment(MMO);
8659     return SDValue(E, 0);
8660   }
8661   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8662                                    ISD::UNINDEXED, false, VT, MMO);
8663   createOperands(N, Ops);
8664 
8665   CSEMap.InsertNode(N, IP);
8666   InsertNode(N);
8667   SDValue V(N, 0);
8668   NewSDValueDbgMsg(V, "Creating new node: ", this);
8669   return V;
8670 }
8671 
8672 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
8673                                     SDValue Ptr, MachinePointerInfo PtrInfo,
8674                                     EVT SVT, Align Alignment,
8675                                     MachineMemOperand::Flags MMOFlags,
8676                                     const AAMDNodes &AAInfo) {
8677   assert(Chain.getValueType() == MVT::Other &&
8678         "Invalid chain type");
8679 
8680   MMOFlags |= MachineMemOperand::MOStore;
8681   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
8682 
8683   if (PtrInfo.V.isNull())
8684     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
8685 
8686   MachineFunction &MF = getMachineFunction();
8687   MachineMemOperand *MMO = MF.getMachineMemOperand(
8688       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
8689       Alignment, AAInfo);
8690   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
8691 }
8692 
8693 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
8694                                     SDValue Ptr, EVT SVT,
8695                                     MachineMemOperand *MMO) {
8696   EVT VT = Val.getValueType();
8697 
8698   assert(Chain.getValueType() == MVT::Other &&
8699         "Invalid chain type");
8700   if (VT == SVT)
8701     return getStore(Chain, dl, Val, Ptr, MMO);
8702 
8703   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
8704          "Should only be a truncating store, not extending!");
8705   assert(VT.isInteger() == SVT.isInteger() &&
8706          "Can't do FP-INT conversion!");
8707   assert(VT.isVector() == SVT.isVector() &&
8708          "Cannot use trunc store to convert to or from a vector!");
8709   assert((!VT.isVector() ||
8710           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
8711          "Cannot use trunc store to change the number of vector elements!");
8712 
8713   SDVTList VTs = getVTList(MVT::Other);
8714   SDValue Undef = getUNDEF(Ptr.getValueType());
8715   SDValue Ops[] = { Chain, Val, Ptr, Undef };
8716   FoldingSetNodeID ID;
8717   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
8718   ID.AddInteger(SVT.getRawBits());
8719   ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
8720       dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
8721   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8722   ID.AddInteger(MMO->getFlags());
8723   void *IP = nullptr;
8724   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8725     cast<StoreSDNode>(E)->refineAlignment(MMO);
8726     return SDValue(E, 0);
8727   }
8728   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8729                                    ISD::UNINDEXED, true, SVT, MMO);
8730   createOperands(N, Ops);
8731 
8732   CSEMap.InsertNode(N, IP);
8733   InsertNode(N);
8734   SDValue V(N, 0);
8735   NewSDValueDbgMsg(V, "Creating new node: ", this);
8736   return V;
8737 }
8738 
8739 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
8740                                       SDValue Base, SDValue Offset,
8741                                       ISD::MemIndexedMode AM) {
8742   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
8743   assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
8744   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
8745   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
8746   FoldingSetNodeID ID;
8747   AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
8748   ID.AddInteger(ST->getMemoryVT().getRawBits());
8749   ID.AddInteger(ST->getRawSubclassData());
8750   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
8751   ID.AddInteger(ST->getMemOperand()->getFlags());
8752   void *IP = nullptr;
8753   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
8754     return SDValue(E, 0);
8755 
8756   auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8757                                    ST->isTruncatingStore(), ST->getMemoryVT(),
8758                                    ST->getMemOperand());
8759   createOperands(N, Ops);
8760 
8761   CSEMap.InsertNode(N, IP);
8762   InsertNode(N);
8763   SDValue V(N, 0);
8764   NewSDValueDbgMsg(V, "Creating new node: ", this);
8765   return V;
8766 }
8767 
8768 SDValue SelectionDAG::getLoadVP(
8769     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
8770     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
8771     MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
8772     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
8773     const MDNode *Ranges, bool IsExpanding) {
8774   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8775 
8776   MMOFlags |= MachineMemOperand::MOLoad;
8777   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
8778   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
8779   // clients.
8780   if (PtrInfo.V.isNull())
8781     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
8782 
8783   uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
8784   MachineFunction &MF = getMachineFunction();
8785   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
8786                                                    Alignment, AAInfo, Ranges);
8787   return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
8788                    MMO, IsExpanding);
8789 }
8790 
8791 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM,
8792                                 ISD::LoadExtType ExtType, EVT VT,
8793                                 const SDLoc &dl, SDValue Chain, SDValue Ptr,
8794                                 SDValue Offset, SDValue Mask, SDValue EVL,
8795                                 EVT MemVT, MachineMemOperand *MMO,
8796                                 bool IsExpanding) {
8797   bool Indexed = AM != ISD::UNINDEXED;
8798   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
8799 
8800   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
8801                          : getVTList(VT, MVT::Other);
8802   SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
8803   FoldingSetNodeID ID;
8804   AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
8805   ID.AddInteger(MemVT.getRawBits());
8806   ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
8807       dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
8808   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8809   ID.AddInteger(MMO->getFlags());
8810   void *IP = nullptr;
8811   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8812     cast<VPLoadSDNode>(E)->refineAlignment(MMO);
8813     return SDValue(E, 0);
8814   }
8815   auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8816                                     ExtType, IsExpanding, MemVT, MMO);
8817   createOperands(N, Ops);
8818 
8819   CSEMap.InsertNode(N, IP);
8820   InsertNode(N);
8821   SDValue V(N, 0);
8822   NewSDValueDbgMsg(V, "Creating new node: ", this);
8823   return V;
8824 }
8825 
8826 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
8827                                 SDValue Ptr, SDValue Mask, SDValue EVL,
8828                                 MachinePointerInfo PtrInfo,
8829                                 MaybeAlign Alignment,
8830                                 MachineMemOperand::Flags MMOFlags,
8831                                 const AAMDNodes &AAInfo, const MDNode *Ranges,
8832                                 bool IsExpanding) {
8833   SDValue Undef = getUNDEF(Ptr.getValueType());
8834   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
8835                    Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
8836                    IsExpanding);
8837 }
8838 
8839 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
8840                                 SDValue Ptr, SDValue Mask, SDValue EVL,
8841                                 MachineMemOperand *MMO, bool IsExpanding) {
8842   SDValue Undef = getUNDEF(Ptr.getValueType());
8843   return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
8844                    Mask, EVL, VT, MMO, IsExpanding);
8845 }
8846 
8847 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
8848                                    EVT VT, SDValue Chain, SDValue Ptr,
8849                                    SDValue Mask, SDValue EVL,
8850                                    MachinePointerInfo PtrInfo, EVT MemVT,
8851                                    MaybeAlign Alignment,
8852                                    MachineMemOperand::Flags MMOFlags,
8853                                    const AAMDNodes &AAInfo, bool IsExpanding) {
8854   SDValue Undef = getUNDEF(Ptr.getValueType());
8855   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
8856                    EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
8857                    IsExpanding);
8858 }
8859 
8860 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl,
8861                                    EVT VT, SDValue Chain, SDValue Ptr,
8862                                    SDValue Mask, SDValue EVL, EVT MemVT,
8863                                    MachineMemOperand *MMO, bool IsExpanding) {
8864   SDValue Undef = getUNDEF(Ptr.getValueType());
8865   return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
8866                    EVL, MemVT, MMO, IsExpanding);
8867 }
8868 
8869 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
8870                                        SDValue Base, SDValue Offset,
8871                                        ISD::MemIndexedMode AM) {
8872   auto *LD = cast<VPLoadSDNode>(OrigLoad);
8873   assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
8874   // Don't propagate the invariant or dereferenceable flags.
8875   auto MMOFlags =
8876       LD->getMemOperand()->getFlags() &
8877       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
8878   return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
8879                    LD->getChain(), Base, Offset, LD->getMask(),
8880                    LD->getVectorLength(), LD->getPointerInfo(),
8881                    LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
8882                    nullptr, LD->isExpandingLoad());
8883 }
8884 
8885 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
8886                                  SDValue Ptr, SDValue Offset, SDValue Mask,
8887                                  SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
8888                                  ISD::MemIndexedMode AM, bool IsTruncating,
8889                                  bool IsCompressing) {
8890   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8891   bool Indexed = AM != ISD::UNINDEXED;
8892   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
8893   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
8894                          : getVTList(MVT::Other);
8895   SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
8896   FoldingSetNodeID ID;
8897   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8898   ID.AddInteger(MemVT.getRawBits());
8899   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
8900       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
8901   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8902   ID.AddInteger(MMO->getFlags());
8903   void *IP = nullptr;
8904   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8905     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
8906     return SDValue(E, 0);
8907   }
8908   auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
8909                                      IsTruncating, IsCompressing, MemVT, MMO);
8910   createOperands(N, Ops);
8911 
8912   CSEMap.InsertNode(N, IP);
8913   InsertNode(N);
8914   SDValue V(N, 0);
8915   NewSDValueDbgMsg(V, "Creating new node: ", this);
8916   return V;
8917 }
8918 
8919 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
8920                                       SDValue Val, SDValue Ptr, SDValue Mask,
8921                                       SDValue EVL, MachinePointerInfo PtrInfo,
8922                                       EVT SVT, Align Alignment,
8923                                       MachineMemOperand::Flags MMOFlags,
8924                                       const AAMDNodes &AAInfo,
8925                                       bool IsCompressing) {
8926   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8927 
8928   MMOFlags |= MachineMemOperand::MOStore;
8929   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
8930 
8931   if (PtrInfo.V.isNull())
8932     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
8933 
8934   MachineFunction &MF = getMachineFunction();
8935   MachineMemOperand *MMO = MF.getMachineMemOperand(
8936       PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()),
8937       Alignment, AAInfo);
8938   return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
8939                          IsCompressing);
8940 }
8941 
8942 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl,
8943                                       SDValue Val, SDValue Ptr, SDValue Mask,
8944                                       SDValue EVL, EVT SVT,
8945                                       MachineMemOperand *MMO,
8946                                       bool IsCompressing) {
8947   EVT VT = Val.getValueType();
8948 
8949   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
8950   if (VT == SVT)
8951     return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
8952                       EVL, VT, MMO, ISD::UNINDEXED,
8953                       /*IsTruncating*/ false, IsCompressing);
8954 
8955   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
8956          "Should only be a truncating store, not extending!");
8957   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
8958   assert(VT.isVector() == SVT.isVector() &&
8959          "Cannot use trunc store to convert to or from a vector!");
8960   assert((!VT.isVector() ||
8961           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
8962          "Cannot use trunc store to change the number of vector elements!");
8963 
8964   SDVTList VTs = getVTList(MVT::Other);
8965   SDValue Undef = getUNDEF(Ptr.getValueType());
8966   SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
8967   FoldingSetNodeID ID;
8968   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
8969   ID.AddInteger(SVT.getRawBits());
8970   ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
8971       dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
8972   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
8973   ID.AddInteger(MMO->getFlags());
8974   void *IP = nullptr;
8975   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
8976     cast<VPStoreSDNode>(E)->refineAlignment(MMO);
8977     return SDValue(E, 0);
8978   }
8979   auto *N =
8980       newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
8981                                ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
8982   createOperands(N, Ops);
8983 
8984   CSEMap.InsertNode(N, IP);
8985   InsertNode(N);
8986   SDValue V(N, 0);
8987   NewSDValueDbgMsg(V, "Creating new node: ", this);
8988   return V;
8989 }
8990 
8991 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
8992                                         SDValue Base, SDValue Offset,
8993                                         ISD::MemIndexedMode AM) {
8994   auto *ST = cast<VPStoreSDNode>(OrigStore);
8995   assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
8996   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
8997   SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
8998                    Offset,         ST->getMask(),  ST->getVectorLength()};
8999   FoldingSetNodeID ID;
9000   AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
9001   ID.AddInteger(ST->getMemoryVT().getRawBits());
9002   ID.AddInteger(ST->getRawSubclassData());
9003   ID.AddInteger(ST->getPointerInfo().getAddrSpace());
9004   ID.AddInteger(ST->getMemOperand()->getFlags());
9005   void *IP = nullptr;
9006   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
9007     return SDValue(E, 0);
9008 
9009   auto *N = newSDNode<VPStoreSDNode>(
9010       dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
9011       ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
9012   createOperands(N, Ops);
9013 
9014   CSEMap.InsertNode(N, IP);
9015   InsertNode(N);
9016   SDValue V(N, 0);
9017   NewSDValueDbgMsg(V, "Creating new node: ", this);
9018   return V;
9019 }
9020 
9021 SDValue SelectionDAG::getStridedLoadVP(
9022     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
9023     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
9024     SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
9025     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
9026     const MDNode *Ranges, bool IsExpanding) {
9027   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9028 
9029   MMOFlags |= MachineMemOperand::MOLoad;
9030   assert((MMOFlags & MachineMemOperand::MOStore) == 0);
9031   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
9032   // clients.
9033   if (PtrInfo.V.isNull())
9034     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
9035 
9036   uint64_t Size = MemoryLocation::UnknownSize;
9037   MachineFunction &MF = getMachineFunction();
9038   MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
9039                                                    Alignment, AAInfo, Ranges);
9040   return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask,
9041                           EVL, MemVT, MMO, IsExpanding);
9042 }
9043 
9044 SDValue SelectionDAG::getStridedLoadVP(
9045     ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
9046     SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
9047     SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) {
9048   bool Indexed = AM != ISD::UNINDEXED;
9049   assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
9050 
9051   SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL};
9052   SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
9053                          : getVTList(VT, MVT::Other);
9054   FoldingSetNodeID ID;
9055   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops);
9056   ID.AddInteger(VT.getRawBits());
9057   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
9058       DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
9059   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9060 
9061   void *IP = nullptr;
9062   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9063     cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO);
9064     return SDValue(E, 0);
9065   }
9066 
9067   auto *N =
9068       newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM,
9069                                      ExtType, IsExpanding, MemVT, MMO);
9070   createOperands(N, Ops);
9071   CSEMap.InsertNode(N, IP);
9072   InsertNode(N);
9073   SDValue V(N, 0);
9074   NewSDValueDbgMsg(V, "Creating new node: ", this);
9075   return V;
9076 }
9077 
9078 SDValue SelectionDAG::getStridedLoadVP(
9079     EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride,
9080     SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment,
9081     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
9082     const MDNode *Ranges, bool IsExpanding) {
9083   SDValue Undef = getUNDEF(Ptr.getValueType());
9084   return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
9085                           Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment,
9086                           MMOFlags, AAInfo, Ranges, IsExpanding);
9087 }
9088 
9089 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain,
9090                                        SDValue Ptr, SDValue Stride,
9091                                        SDValue Mask, SDValue EVL,
9092                                        MachineMemOperand *MMO,
9093                                        bool IsExpanding) {
9094   SDValue Undef = getUNDEF(Ptr.getValueType());
9095   return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr,
9096                           Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
9097 }
9098 
9099 SDValue SelectionDAG::getExtStridedLoadVP(
9100     ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
9101     SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL,
9102     MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment,
9103     MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
9104     bool IsExpanding) {
9105   SDValue Undef = getUNDEF(Ptr.getValueType());
9106   return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
9107                           Stride, Mask, EVL, PtrInfo, MemVT, Alignment,
9108                           MMOFlags, AAInfo, nullptr, IsExpanding);
9109 }
9110 
9111 SDValue SelectionDAG::getExtStridedLoadVP(
9112     ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
9113     SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT,
9114     MachineMemOperand *MMO, bool IsExpanding) {
9115   SDValue Undef = getUNDEF(Ptr.getValueType());
9116   return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
9117                           Stride, Mask, EVL, MemVT, MMO, IsExpanding);
9118 }
9119 
9120 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL,
9121                                               SDValue Base, SDValue Offset,
9122                                               ISD::MemIndexedMode AM) {
9123   auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad);
9124   assert(SLD->getOffset().isUndef() &&
9125          "Strided load is already a indexed load!");
9126   // Don't propagate the invariant or dereferenceable flags.
9127   auto MMOFlags =
9128       SLD->getMemOperand()->getFlags() &
9129       ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
9130   return getStridedLoadVP(
9131       AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(),
9132       Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(),
9133       SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags,
9134       SLD->getAAInfo(), nullptr, SLD->isExpandingLoad());
9135 }
9136 
9137 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL,
9138                                         SDValue Val, SDValue Ptr,
9139                                         SDValue Offset, SDValue Stride,
9140                                         SDValue Mask, SDValue EVL, EVT MemVT,
9141                                         MachineMemOperand *MMO,
9142                                         ISD::MemIndexedMode AM,
9143                                         bool IsTruncating, bool IsCompressing) {
9144   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9145   bool Indexed = AM != ISD::UNINDEXED;
9146   assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
9147   SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
9148                          : getVTList(MVT::Other);
9149   SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL};
9150   FoldingSetNodeID ID;
9151   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
9152   ID.AddInteger(MemVT.getRawBits());
9153   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
9154       DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
9155   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9156   void *IP = nullptr;
9157   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9158     cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
9159     return SDValue(E, 0);
9160   }
9161   auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
9162                                             VTs, AM, IsTruncating,
9163                                             IsCompressing, MemVT, MMO);
9164   createOperands(N, Ops);
9165 
9166   CSEMap.InsertNode(N, IP);
9167   InsertNode(N);
9168   SDValue V(N, 0);
9169   NewSDValueDbgMsg(V, "Creating new node: ", this);
9170   return V;
9171 }
9172 
9173 SDValue SelectionDAG::getTruncStridedStoreVP(
9174     SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride,
9175     SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT,
9176     Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
9177     bool IsCompressing) {
9178   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9179 
9180   MMOFlags |= MachineMemOperand::MOStore;
9181   assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
9182 
9183   if (PtrInfo.V.isNull())
9184     PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
9185 
9186   MachineFunction &MF = getMachineFunction();
9187   MachineMemOperand *MMO = MF.getMachineMemOperand(
9188       PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo);
9189   return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT,
9190                                 MMO, IsCompressing);
9191 }
9192 
9193 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL,
9194                                              SDValue Val, SDValue Ptr,
9195                                              SDValue Stride, SDValue Mask,
9196                                              SDValue EVL, EVT SVT,
9197                                              MachineMemOperand *MMO,
9198                                              bool IsCompressing) {
9199   EVT VT = Val.getValueType();
9200 
9201   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9202   if (VT == SVT)
9203     return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()),
9204                              Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED,
9205                              /*IsTruncating*/ false, IsCompressing);
9206 
9207   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
9208          "Should only be a truncating store, not extending!");
9209   assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
9210   assert(VT.isVector() == SVT.isVector() &&
9211          "Cannot use trunc store to convert to or from a vector!");
9212   assert((!VT.isVector() ||
9213           VT.getVectorElementCount() == SVT.getVectorElementCount()) &&
9214          "Cannot use trunc store to change the number of vector elements!");
9215 
9216   SDVTList VTs = getVTList(MVT::Other);
9217   SDValue Undef = getUNDEF(Ptr.getValueType());
9218   SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
9219   FoldingSetNodeID ID;
9220   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
9221   ID.AddInteger(SVT.getRawBits());
9222   ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
9223       DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
9224   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9225   void *IP = nullptr;
9226   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
9227     cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
9228     return SDValue(E, 0);
9229   }
9230   auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
9231                                             VTs, ISD::UNINDEXED, true,
9232                                             IsCompressing, SVT, MMO);
9233   createOperands(N, Ops);
9234 
9235   CSEMap.InsertNode(N, IP);
9236   InsertNode(N);
9237   SDValue V(N, 0);
9238   NewSDValueDbgMsg(V, "Creating new node: ", this);
9239   return V;
9240 }
9241 
9242 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore,
9243                                                const SDLoc &DL, SDValue Base,
9244                                                SDValue Offset,
9245                                                ISD::MemIndexedMode AM) {
9246   auto *SST = cast<VPStridedStoreSDNode>(OrigStore);
9247   assert(SST->getOffset().isUndef() &&
9248          "Strided store is already an indexed store!");
9249   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
9250   SDValue Ops[] = {
9251       SST->getChain(), SST->getValue(),       Base, Offset, SST->getStride(),
9252       SST->getMask(),  SST->getVectorLength()};
9253   FoldingSetNodeID ID;
9254   AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
9255   ID.AddInteger(SST->getMemoryVT().getRawBits());
9256   ID.AddInteger(SST->getRawSubclassData());
9257   ID.AddInteger(SST->getPointerInfo().getAddrSpace());
9258   void *IP = nullptr;
9259   if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
9260     return SDValue(E, 0);
9261 
9262   auto *N = newSDNode<VPStridedStoreSDNode>(
9263       DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(),
9264       SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand());
9265   createOperands(N, Ops);
9266 
9267   CSEMap.InsertNode(N, IP);
9268   InsertNode(N);
9269   SDValue V(N, 0);
9270   NewSDValueDbgMsg(V, "Creating new node: ", this);
9271   return V;
9272 }
9273 
9274 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
9275                                   ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
9276                                   ISD::MemIndexType IndexType) {
9277   assert(Ops.size() == 6 && "Incompatible number of operands");
9278 
9279   FoldingSetNodeID ID;
9280   AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
9281   ID.AddInteger(VT.getRawBits());
9282   ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
9283       dl.getIROrder(), VTs, VT, MMO, IndexType));
9284   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9285   ID.AddInteger(MMO->getFlags());
9286   void *IP = nullptr;
9287   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9288     cast<VPGatherSDNode>(E)->refineAlignment(MMO);
9289     return SDValue(E, 0);
9290   }
9291 
9292   auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
9293                                       VT, MMO, IndexType);
9294   createOperands(N, Ops);
9295 
9296   assert(N->getMask().getValueType().getVectorElementCount() ==
9297              N->getValueType(0).getVectorElementCount() &&
9298          "Vector width mismatch between mask and data");
9299   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
9300              N->getValueType(0).getVectorElementCount().isScalable() &&
9301          "Scalable flags of index and data do not match");
9302   assert(ElementCount::isKnownGE(
9303              N->getIndex().getValueType().getVectorElementCount(),
9304              N->getValueType(0).getVectorElementCount()) &&
9305          "Vector width mismatch between index and data");
9306   assert(isa<ConstantSDNode>(N->getScale()) &&
9307          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
9308          "Scale should be a constant power of 2");
9309 
9310   CSEMap.InsertNode(N, IP);
9311   InsertNode(N);
9312   SDValue V(N, 0);
9313   NewSDValueDbgMsg(V, "Creating new node: ", this);
9314   return V;
9315 }
9316 
9317 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
9318                                    ArrayRef<SDValue> Ops,
9319                                    MachineMemOperand *MMO,
9320                                    ISD::MemIndexType IndexType) {
9321   assert(Ops.size() == 7 && "Incompatible number of operands");
9322 
9323   FoldingSetNodeID ID;
9324   AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
9325   ID.AddInteger(VT.getRawBits());
9326   ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
9327       dl.getIROrder(), VTs, VT, MMO, IndexType));
9328   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9329   ID.AddInteger(MMO->getFlags());
9330   void *IP = nullptr;
9331   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9332     cast<VPScatterSDNode>(E)->refineAlignment(MMO);
9333     return SDValue(E, 0);
9334   }
9335   auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
9336                                        VT, MMO, IndexType);
9337   createOperands(N, Ops);
9338 
9339   assert(N->getMask().getValueType().getVectorElementCount() ==
9340              N->getValue().getValueType().getVectorElementCount() &&
9341          "Vector width mismatch between mask and data");
9342   assert(
9343       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
9344           N->getValue().getValueType().getVectorElementCount().isScalable() &&
9345       "Scalable flags of index and data do not match");
9346   assert(ElementCount::isKnownGE(
9347              N->getIndex().getValueType().getVectorElementCount(),
9348              N->getValue().getValueType().getVectorElementCount()) &&
9349          "Vector width mismatch between index and data");
9350   assert(isa<ConstantSDNode>(N->getScale()) &&
9351          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
9352          "Scale should be a constant power of 2");
9353 
9354   CSEMap.InsertNode(N, IP);
9355   InsertNode(N);
9356   SDValue V(N, 0);
9357   NewSDValueDbgMsg(V, "Creating new node: ", this);
9358   return V;
9359 }
9360 
9361 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
9362                                     SDValue Base, SDValue Offset, SDValue Mask,
9363                                     SDValue PassThru, EVT MemVT,
9364                                     MachineMemOperand *MMO,
9365                                     ISD::MemIndexedMode AM,
9366                                     ISD::LoadExtType ExtTy, bool isExpanding) {
9367   bool Indexed = AM != ISD::UNINDEXED;
9368   assert((Indexed || Offset.isUndef()) &&
9369          "Unindexed masked load with an offset!");
9370   SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
9371                          : getVTList(VT, MVT::Other);
9372   SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
9373   FoldingSetNodeID ID;
9374   AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
9375   ID.AddInteger(MemVT.getRawBits());
9376   ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
9377       dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
9378   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9379   ID.AddInteger(MMO->getFlags());
9380   void *IP = nullptr;
9381   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9382     cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
9383     return SDValue(E, 0);
9384   }
9385   auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
9386                                         AM, ExtTy, isExpanding, MemVT, MMO);
9387   createOperands(N, Ops);
9388 
9389   CSEMap.InsertNode(N, IP);
9390   InsertNode(N);
9391   SDValue V(N, 0);
9392   NewSDValueDbgMsg(V, "Creating new node: ", this);
9393   return V;
9394 }
9395 
9396 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
9397                                            SDValue Base, SDValue Offset,
9398                                            ISD::MemIndexedMode AM) {
9399   MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
9400   assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
9401   return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
9402                        Offset, LD->getMask(), LD->getPassThru(),
9403                        LD->getMemoryVT(), LD->getMemOperand(), AM,
9404                        LD->getExtensionType(), LD->isExpandingLoad());
9405 }
9406 
9407 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
9408                                      SDValue Val, SDValue Base, SDValue Offset,
9409                                      SDValue Mask, EVT MemVT,
9410                                      MachineMemOperand *MMO,
9411                                      ISD::MemIndexedMode AM, bool IsTruncating,
9412                                      bool IsCompressing) {
9413   assert(Chain.getValueType() == MVT::Other &&
9414         "Invalid chain type");
9415   bool Indexed = AM != ISD::UNINDEXED;
9416   assert((Indexed || Offset.isUndef()) &&
9417          "Unindexed masked store with an offset!");
9418   SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
9419                          : getVTList(MVT::Other);
9420   SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
9421   FoldingSetNodeID ID;
9422   AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
9423   ID.AddInteger(MemVT.getRawBits());
9424   ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
9425       dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
9426   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9427   ID.AddInteger(MMO->getFlags());
9428   void *IP = nullptr;
9429   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9430     cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
9431     return SDValue(E, 0);
9432   }
9433   auto *N =
9434       newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9435                                    IsTruncating, IsCompressing, MemVT, MMO);
9436   createOperands(N, Ops);
9437 
9438   CSEMap.InsertNode(N, IP);
9439   InsertNode(N);
9440   SDValue V(N, 0);
9441   NewSDValueDbgMsg(V, "Creating new node: ", this);
9442   return V;
9443 }
9444 
9445 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
9446                                             SDValue Base, SDValue Offset,
9447                                             ISD::MemIndexedMode AM) {
9448   MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
9449   assert(ST->getOffset().isUndef() &&
9450          "Masked store is already a indexed store!");
9451   return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
9452                         ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
9453                         AM, ST->isTruncatingStore(), ST->isCompressingStore());
9454 }
9455 
9456 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
9457                                       ArrayRef<SDValue> Ops,
9458                                       MachineMemOperand *MMO,
9459                                       ISD::MemIndexType IndexType,
9460                                       ISD::LoadExtType ExtTy) {
9461   assert(Ops.size() == 6 && "Incompatible number of operands");
9462 
9463   FoldingSetNodeID ID;
9464   AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
9465   ID.AddInteger(MemVT.getRawBits());
9466   ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
9467       dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
9468   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9469   ID.AddInteger(MMO->getFlags());
9470   void *IP = nullptr;
9471   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9472     cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
9473     return SDValue(E, 0);
9474   }
9475 
9476   auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
9477                                           VTs, MemVT, MMO, IndexType, ExtTy);
9478   createOperands(N, Ops);
9479 
9480   assert(N->getPassThru().getValueType() == N->getValueType(0) &&
9481          "Incompatible type of the PassThru value in MaskedGatherSDNode");
9482   assert(N->getMask().getValueType().getVectorElementCount() ==
9483              N->getValueType(0).getVectorElementCount() &&
9484          "Vector width mismatch between mask and data");
9485   assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
9486              N->getValueType(0).getVectorElementCount().isScalable() &&
9487          "Scalable flags of index and data do not match");
9488   assert(ElementCount::isKnownGE(
9489              N->getIndex().getValueType().getVectorElementCount(),
9490              N->getValueType(0).getVectorElementCount()) &&
9491          "Vector width mismatch between index and data");
9492   assert(isa<ConstantSDNode>(N->getScale()) &&
9493          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
9494          "Scale should be a constant power of 2");
9495 
9496   CSEMap.InsertNode(N, IP);
9497   InsertNode(N);
9498   SDValue V(N, 0);
9499   NewSDValueDbgMsg(V, "Creating new node: ", this);
9500   return V;
9501 }
9502 
9503 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
9504                                        ArrayRef<SDValue> Ops,
9505                                        MachineMemOperand *MMO,
9506                                        ISD::MemIndexType IndexType,
9507                                        bool IsTrunc) {
9508   assert(Ops.size() == 6 && "Incompatible number of operands");
9509 
9510   FoldingSetNodeID ID;
9511   AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
9512   ID.AddInteger(MemVT.getRawBits());
9513   ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
9514       dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
9515   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9516   ID.AddInteger(MMO->getFlags());
9517   void *IP = nullptr;
9518   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9519     cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
9520     return SDValue(E, 0);
9521   }
9522 
9523   auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
9524                                            VTs, MemVT, MMO, IndexType, IsTrunc);
9525   createOperands(N, Ops);
9526 
9527   assert(N->getMask().getValueType().getVectorElementCount() ==
9528              N->getValue().getValueType().getVectorElementCount() &&
9529          "Vector width mismatch between mask and data");
9530   assert(
9531       N->getIndex().getValueType().getVectorElementCount().isScalable() ==
9532           N->getValue().getValueType().getVectorElementCount().isScalable() &&
9533       "Scalable flags of index and data do not match");
9534   assert(ElementCount::isKnownGE(
9535              N->getIndex().getValueType().getVectorElementCount(),
9536              N->getValue().getValueType().getVectorElementCount()) &&
9537          "Vector width mismatch between index and data");
9538   assert(isa<ConstantSDNode>(N->getScale()) &&
9539          cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
9540          "Scale should be a constant power of 2");
9541 
9542   CSEMap.InsertNode(N, IP);
9543   InsertNode(N);
9544   SDValue V(N, 0);
9545   NewSDValueDbgMsg(V, "Creating new node: ", this);
9546   return V;
9547 }
9548 
9549 SDValue SelectionDAG::getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr,
9550                                   EVT MemVT, MachineMemOperand *MMO) {
9551   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9552   SDVTList VTs = getVTList(MVT::Other);
9553   SDValue Ops[] = {Chain, Ptr};
9554   FoldingSetNodeID ID;
9555   AddNodeIDNode(ID, ISD::GET_FPENV_MEM, VTs, Ops);
9556   ID.AddInteger(MemVT.getRawBits());
9557   ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
9558       ISD::GET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
9559   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9560   ID.AddInteger(MMO->getFlags());
9561   void *IP = nullptr;
9562   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
9563     return SDValue(E, 0);
9564 
9565   auto *N = newSDNode<FPStateAccessSDNode>(ISD::GET_FPENV_MEM, dl.getIROrder(),
9566                                            dl.getDebugLoc(), VTs, MemVT, MMO);
9567   createOperands(N, Ops);
9568 
9569   CSEMap.InsertNode(N, IP);
9570   InsertNode(N);
9571   SDValue V(N, 0);
9572   NewSDValueDbgMsg(V, "Creating new node: ", this);
9573   return V;
9574 }
9575 
9576 SDValue SelectionDAG::getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr,
9577                                   EVT MemVT, MachineMemOperand *MMO) {
9578   assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9579   SDVTList VTs = getVTList(MVT::Other);
9580   SDValue Ops[] = {Chain, Ptr};
9581   FoldingSetNodeID ID;
9582   AddNodeIDNode(ID, ISD::SET_FPENV_MEM, VTs, Ops);
9583   ID.AddInteger(MemVT.getRawBits());
9584   ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
9585       ISD::SET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
9586   ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9587   ID.AddInteger(MMO->getFlags());
9588   void *IP = nullptr;
9589   if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
9590     return SDValue(E, 0);
9591 
9592   auto *N = newSDNode<FPStateAccessSDNode>(ISD::SET_FPENV_MEM, dl.getIROrder(),
9593                                            dl.getDebugLoc(), VTs, MemVT, MMO);
9594   createOperands(N, Ops);
9595 
9596   CSEMap.InsertNode(N, IP);
9597   InsertNode(N);
9598   SDValue V(N, 0);
9599   NewSDValueDbgMsg(V, "Creating new node: ", this);
9600   return V;
9601 }
9602 
9603 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
9604   // select undef, T, F --> T (if T is a constant), otherwise F
9605   // select, ?, undef, F --> F
9606   // select, ?, T, undef --> T
9607   if (Cond.isUndef())
9608     return isConstantValueOfAnyType(T) ? T : F;
9609   if (T.isUndef())
9610     return F;
9611   if (F.isUndef())
9612     return T;
9613 
9614   // select true, T, F --> T
9615   // select false, T, F --> F
9616   if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
9617     return CondC->isZero() ? F : T;
9618 
9619   // TODO: This should simplify VSELECT with non-zero constant condition using
9620   // something like this (but check boolean contents to be complete?):
9621   if (ConstantSDNode *CondC = isConstOrConstSplat(Cond, /*AllowUndefs*/ false,
9622                                                   /*AllowTruncation*/ true))
9623     if (CondC->isZero())
9624       return F;
9625 
9626   // select ?, T, T --> T
9627   if (T == F)
9628     return T;
9629 
9630   return SDValue();
9631 }
9632 
9633 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
9634   // shift undef, Y --> 0 (can always assume that the undef value is 0)
9635   if (X.isUndef())
9636     return getConstant(0, SDLoc(X.getNode()), X.getValueType());
9637   // shift X, undef --> undef (because it may shift by the bitwidth)
9638   if (Y.isUndef())
9639     return getUNDEF(X.getValueType());
9640 
9641   // shift 0, Y --> 0
9642   // shift X, 0 --> X
9643   if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
9644     return X;
9645 
9646   // shift X, C >= bitwidth(X) --> undef
9647   // All vector elements must be too big (or undef) to avoid partial undefs.
9648   auto isShiftTooBig = [X](ConstantSDNode *Val) {
9649     return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
9650   };
9651   if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
9652     return getUNDEF(X.getValueType());
9653 
9654   return SDValue();
9655 }
9656 
9657 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
9658                                       SDNodeFlags Flags) {
9659   // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
9660   // (an undef operand can be chosen to be Nan/Inf), then the result of this
9661   // operation is poison. That result can be relaxed to undef.
9662   ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
9663   ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
9664   bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
9665                 (YC && YC->getValueAPF().isNaN());
9666   bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
9667                 (YC && YC->getValueAPF().isInfinity());
9668 
9669   if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
9670     return getUNDEF(X.getValueType());
9671 
9672   if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
9673     return getUNDEF(X.getValueType());
9674 
9675   if (!YC)
9676     return SDValue();
9677 
9678   // X + -0.0 --> X
9679   if (Opcode == ISD::FADD)
9680     if (YC->getValueAPF().isNegZero())
9681       return X;
9682 
9683   // X - +0.0 --> X
9684   if (Opcode == ISD::FSUB)
9685     if (YC->getValueAPF().isPosZero())
9686       return X;
9687 
9688   // X * 1.0 --> X
9689   // X / 1.0 --> X
9690   if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
9691     if (YC->getValueAPF().isExactlyValue(1.0))
9692       return X;
9693 
9694   // X * 0.0 --> 0.0
9695   if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
9696     if (YC->getValueAPF().isZero())
9697       return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
9698 
9699   return SDValue();
9700 }
9701 
9702 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
9703                                SDValue Ptr, SDValue SV, unsigned Align) {
9704   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
9705   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
9706 }
9707 
9708 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
9709                               ArrayRef<SDUse> Ops) {
9710   switch (Ops.size()) {
9711   case 0: return getNode(Opcode, DL, VT);
9712   case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
9713   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
9714   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
9715   default: break;
9716   }
9717 
9718   // Copy from an SDUse array into an SDValue array for use with
9719   // the regular getNode logic.
9720   SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
9721   return getNode(Opcode, DL, VT, NewOps);
9722 }
9723 
9724 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
9725                               ArrayRef<SDValue> Ops) {
9726   SDNodeFlags Flags;
9727   if (Inserter)
9728     Flags = Inserter->getFlags();
9729   return getNode(Opcode, DL, VT, Ops, Flags);
9730 }
9731 
9732 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
9733                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
9734   unsigned NumOps = Ops.size();
9735   switch (NumOps) {
9736   case 0: return getNode(Opcode, DL, VT);
9737   case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
9738   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
9739   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
9740   default: break;
9741   }
9742 
9743 #ifndef NDEBUG
9744   for (const auto &Op : Ops)
9745     assert(Op.getOpcode() != ISD::DELETED_NODE &&
9746            "Operand is DELETED_NODE!");
9747 #endif
9748 
9749   switch (Opcode) {
9750   default: break;
9751   case ISD::BUILD_VECTOR:
9752     // Attempt to simplify BUILD_VECTOR.
9753     if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
9754       return V;
9755     break;
9756   case ISD::CONCAT_VECTORS:
9757     if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
9758       return V;
9759     break;
9760   case ISD::SELECT_CC:
9761     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
9762     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
9763            "LHS and RHS of condition must have same type!");
9764     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
9765            "True and False arms of SelectCC must have same type!");
9766     assert(Ops[2].getValueType() == VT &&
9767            "select_cc node must be of same type as true and false value!");
9768     assert((!Ops[0].getValueType().isVector() ||
9769             Ops[0].getValueType().getVectorElementCount() ==
9770                 VT.getVectorElementCount()) &&
9771            "Expected select_cc with vector result to have the same sized "
9772            "comparison type!");
9773     break;
9774   case ISD::BR_CC:
9775     assert(NumOps == 5 && "BR_CC takes 5 operands!");
9776     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
9777            "LHS/RHS of comparison should match types!");
9778     break;
9779   case ISD::VP_ADD:
9780   case ISD::VP_SUB:
9781     // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR
9782     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
9783       Opcode = ISD::VP_XOR;
9784     break;
9785   case ISD::VP_MUL:
9786     // If it is VP_MUL mask operation then turn it to VP_AND
9787     if (VT.isVector() && VT.getVectorElementType() == MVT::i1)
9788       Opcode = ISD::VP_AND;
9789     break;
9790   case ISD::VP_REDUCE_MUL:
9791     // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND
9792     if (VT == MVT::i1)
9793       Opcode = ISD::VP_REDUCE_AND;
9794     break;
9795   case ISD::VP_REDUCE_ADD:
9796     // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR
9797     if (VT == MVT::i1)
9798       Opcode = ISD::VP_REDUCE_XOR;
9799     break;
9800   case ISD::VP_REDUCE_SMAX:
9801   case ISD::VP_REDUCE_UMIN:
9802     // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to
9803     // VP_REDUCE_AND.
9804     if (VT == MVT::i1)
9805       Opcode = ISD::VP_REDUCE_AND;
9806     break;
9807   case ISD::VP_REDUCE_SMIN:
9808   case ISD::VP_REDUCE_UMAX:
9809     // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to
9810     // VP_REDUCE_OR.
9811     if (VT == MVT::i1)
9812       Opcode = ISD::VP_REDUCE_OR;
9813     break;
9814   }
9815 
9816   // Memoize nodes.
9817   SDNode *N;
9818   SDVTList VTs = getVTList(VT);
9819 
9820   if (VT != MVT::Glue) {
9821     FoldingSetNodeID ID;
9822     AddNodeIDNode(ID, Opcode, VTs, Ops);
9823     void *IP = nullptr;
9824 
9825     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
9826       return SDValue(E, 0);
9827 
9828     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9829     createOperands(N, Ops);
9830 
9831     CSEMap.InsertNode(N, IP);
9832   } else {
9833     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
9834     createOperands(N, Ops);
9835   }
9836 
9837   N->setFlags(Flags);
9838   InsertNode(N);
9839   SDValue V(N, 0);
9840   NewSDValueDbgMsg(V, "Creating new node: ", this);
9841   return V;
9842 }
9843 
9844 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
9845                               ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
9846   return getNode(Opcode, DL, getVTList(ResultTys), Ops);
9847 }
9848 
9849 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9850                               ArrayRef<SDValue> Ops) {
9851   SDNodeFlags Flags;
9852   if (Inserter)
9853     Flags = Inserter->getFlags();
9854   return getNode(Opcode, DL, VTList, Ops, Flags);
9855 }
9856 
9857 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
9858                               ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
9859   if (VTList.NumVTs == 1)
9860     return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags);
9861 
9862 #ifndef NDEBUG
9863   for (const auto &Op : Ops)
9864     assert(Op.getOpcode() != ISD::DELETED_NODE &&
9865            "Operand is DELETED_NODE!");
9866 #endif
9867 
9868   switch (Opcode) {
9869   case ISD::SADDO:
9870   case ISD::UADDO:
9871   case ISD::SSUBO:
9872   case ISD::USUBO: {
9873     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
9874            "Invalid add/sub overflow op!");
9875     assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
9876            Ops[0].getValueType() == Ops[1].getValueType() &&
9877            Ops[0].getValueType() == VTList.VTs[0] &&
9878            "Binary operator types must match!");
9879     SDValue N1 = Ops[0], N2 = Ops[1];
9880     canonicalizeCommutativeBinop(Opcode, N1, N2);
9881 
9882     // (X +- 0) -> X with zero-overflow.
9883     ConstantSDNode *N2CV = isConstOrConstSplat(N2, /*AllowUndefs*/ false,
9884                                                /*AllowTruncation*/ true);
9885     if (N2CV && N2CV->isZero()) {
9886       SDValue ZeroOverFlow = getConstant(0, DL, VTList.VTs[1]);
9887       return getNode(ISD::MERGE_VALUES, DL, VTList, {N1, ZeroOverFlow}, Flags);
9888     }
9889 
9890     if (VTList.VTs[0].isVector() &&
9891         VTList.VTs[0].getVectorElementType() == MVT::i1 &&
9892         VTList.VTs[1].getVectorElementType() == MVT::i1) {
9893       SDValue F1 = getFreeze(N1);
9894       SDValue F2 = getFreeze(N2);
9895       // {vXi1,vXi1} (u/s)addo(vXi1 x, vXi1y) -> {xor(x,y),and(x,y)}
9896       if (Opcode == ISD::UADDO || Opcode == ISD::SADDO)
9897         return getNode(ISD::MERGE_VALUES, DL, VTList,
9898                        {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2),
9899                         getNode(ISD::AND, DL, VTList.VTs[1], F1, F2)},
9900                        Flags);
9901       // {vXi1,vXi1} (u/s)subo(vXi1 x, vXi1y) -> {xor(x,y),and(~x,y)}
9902       if (Opcode == ISD::USUBO || Opcode == ISD::SSUBO) {
9903         SDValue NotF1 = getNOT(DL, F1, VTList.VTs[0]);
9904         return getNode(ISD::MERGE_VALUES, DL, VTList,
9905                        {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2),
9906                         getNode(ISD::AND, DL, VTList.VTs[1], NotF1, F2)},
9907                        Flags);
9908       }
9909     }
9910     break;
9911   }
9912   case ISD::SMUL_LOHI:
9913   case ISD::UMUL_LOHI: {
9914     assert(VTList.NumVTs == 2 && Ops.size() == 2 && "Invalid mul lo/hi op!");
9915     assert(VTList.VTs[0].isInteger() && VTList.VTs[0] == VTList.VTs[1] &&
9916            VTList.VTs[0] == Ops[0].getValueType() &&
9917            VTList.VTs[0] == Ops[1].getValueType() &&
9918            "Binary operator types must match!");
9919     // Constant fold.
9920     ConstantSDNode *LHS = dyn_cast<ConstantSDNode>(Ops[0]);
9921     ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ops[1]);
9922     if (LHS && RHS) {
9923       unsigned Width = VTList.VTs[0].getScalarSizeInBits();
9924       unsigned OutWidth = Width * 2;
9925       APInt Val = LHS->getAPIntValue();
9926       APInt Mul = RHS->getAPIntValue();
9927       if (Opcode == ISD::SMUL_LOHI) {
9928         Val = Val.sext(OutWidth);
9929         Mul = Mul.sext(OutWidth);
9930       } else {
9931         Val = Val.zext(OutWidth);
9932         Mul = Mul.zext(OutWidth);
9933       }
9934       Val *= Mul;
9935 
9936       SDValue Hi =
9937           getConstant(Val.extractBits(Width, Width), DL, VTList.VTs[0]);
9938       SDValue Lo = getConstant(Val.trunc(Width), DL, VTList.VTs[0]);
9939       return getNode(ISD::MERGE_VALUES, DL, VTList, {Lo, Hi}, Flags);
9940     }
9941     break;
9942   }
9943   case ISD::FFREXP: {
9944     assert(VTList.NumVTs == 2 && Ops.size() == 1 && "Invalid ffrexp op!");
9945     assert(VTList.VTs[0].isFloatingPoint() && VTList.VTs[1].isInteger() &&
9946            VTList.VTs[0] == Ops[0].getValueType() && "frexp type mismatch");
9947 
9948     if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Ops[0])) {
9949       int FrexpExp;
9950       APFloat FrexpMant =
9951           frexp(C->getValueAPF(), FrexpExp, APFloat::rmNearestTiesToEven);
9952       SDValue Result0 = getConstantFP(FrexpMant, DL, VTList.VTs[0]);
9953       SDValue Result1 =
9954           getConstant(FrexpMant.isFinite() ? FrexpExp : 0, DL, VTList.VTs[1]);
9955       return getNode(ISD::MERGE_VALUES, DL, VTList, {Result0, Result1}, Flags);
9956     }
9957 
9958     break;
9959   }
9960   case ISD::STRICT_FP_EXTEND:
9961     assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
9962            "Invalid STRICT_FP_EXTEND!");
9963     assert(VTList.VTs[0].isFloatingPoint() &&
9964            Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
9965     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
9966            "STRICT_FP_EXTEND result type should be vector iff the operand "
9967            "type is vector!");
9968     assert((!VTList.VTs[0].isVector() ||
9969             VTList.VTs[0].getVectorElementCount() ==
9970                 Ops[1].getValueType().getVectorElementCount()) &&
9971            "Vector element count mismatch!");
9972     assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
9973            "Invalid fpext node, dst <= src!");
9974     break;
9975   case ISD::STRICT_FP_ROUND:
9976     assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
9977     assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
9978            "STRICT_FP_ROUND result type should be vector iff the operand "
9979            "type is vector!");
9980     assert((!VTList.VTs[0].isVector() ||
9981             VTList.VTs[0].getVectorElementCount() ==
9982                 Ops[1].getValueType().getVectorElementCount()) &&
9983            "Vector element count mismatch!");
9984     assert(VTList.VTs[0].isFloatingPoint() &&
9985            Ops[1].getValueType().isFloatingPoint() &&
9986            VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
9987            isa<ConstantSDNode>(Ops[2]) &&
9988            (Ops[2]->getAsZExtVal() == 0 || Ops[2]->getAsZExtVal() == 1) &&
9989            "Invalid STRICT_FP_ROUND!");
9990     break;
9991 #if 0
9992   // FIXME: figure out how to safely handle things like
9993   // int foo(int x) { return 1 << (x & 255); }
9994   // int bar() { return foo(256); }
9995   case ISD::SRA_PARTS:
9996   case ISD::SRL_PARTS:
9997   case ISD::SHL_PARTS:
9998     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
9999         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
10000       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
10001     else if (N3.getOpcode() == ISD::AND)
10002       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
10003         // If the and is only masking out bits that cannot effect the shift,
10004         // eliminate the and.
10005         unsigned NumBits = VT.getScalarSizeInBits()*2;
10006         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
10007           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
10008       }
10009     break;
10010 #endif
10011   }
10012 
10013   // Memoize the node unless it returns a glue result.
10014   SDNode *N;
10015   if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
10016     FoldingSetNodeID ID;
10017     AddNodeIDNode(ID, Opcode, VTList, Ops);
10018     void *IP = nullptr;
10019     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
10020       return SDValue(E, 0);
10021 
10022     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
10023     createOperands(N, Ops);
10024     CSEMap.InsertNode(N, IP);
10025   } else {
10026     N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
10027     createOperands(N, Ops);
10028   }
10029 
10030   N->setFlags(Flags);
10031   InsertNode(N);
10032   SDValue V(N, 0);
10033   NewSDValueDbgMsg(V, "Creating new node: ", this);
10034   return V;
10035 }
10036 
10037 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
10038                               SDVTList VTList) {
10039   return getNode(Opcode, DL, VTList, std::nullopt);
10040 }
10041 
10042 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
10043                               SDValue N1) {
10044   SDValue Ops[] = { N1 };
10045   return getNode(Opcode, DL, VTList, Ops);
10046 }
10047 
10048 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
10049                               SDValue N1, SDValue N2) {
10050   SDValue Ops[] = { N1, N2 };
10051   return getNode(Opcode, DL, VTList, Ops);
10052 }
10053 
10054 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
10055                               SDValue N1, SDValue N2, SDValue N3) {
10056   SDValue Ops[] = { N1, N2, N3 };
10057   return getNode(Opcode, DL, VTList, Ops);
10058 }
10059 
10060 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
10061                               SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
10062   SDValue Ops[] = { N1, N2, N3, N4 };
10063   return getNode(Opcode, DL, VTList, Ops);
10064 }
10065 
10066 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
10067                               SDValue N1, SDValue N2, SDValue N3, SDValue N4,
10068                               SDValue N5) {
10069   SDValue Ops[] = { N1, N2, N3, N4, N5 };
10070   return getNode(Opcode, DL, VTList, Ops);
10071 }
10072 
10073 SDVTList SelectionDAG::getVTList(EVT VT) {
10074   return makeVTList(SDNode::getValueTypeList(VT), 1);
10075 }
10076 
10077 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
10078   FoldingSetNodeID ID;
10079   ID.AddInteger(2U);
10080   ID.AddInteger(VT1.getRawBits());
10081   ID.AddInteger(VT2.getRawBits());
10082 
10083   void *IP = nullptr;
10084   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
10085   if (!Result) {
10086     EVT *Array = Allocator.Allocate<EVT>(2);
10087     Array[0] = VT1;
10088     Array[1] = VT2;
10089     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
10090     VTListMap.InsertNode(Result, IP);
10091   }
10092   return Result->getSDVTList();
10093 }
10094 
10095 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
10096   FoldingSetNodeID ID;
10097   ID.AddInteger(3U);
10098   ID.AddInteger(VT1.getRawBits());
10099   ID.AddInteger(VT2.getRawBits());
10100   ID.AddInteger(VT3.getRawBits());
10101 
10102   void *IP = nullptr;
10103   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
10104   if (!Result) {
10105     EVT *Array = Allocator.Allocate<EVT>(3);
10106     Array[0] = VT1;
10107     Array[1] = VT2;
10108     Array[2] = VT3;
10109     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
10110     VTListMap.InsertNode(Result, IP);
10111   }
10112   return Result->getSDVTList();
10113 }
10114 
10115 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
10116   FoldingSetNodeID ID;
10117   ID.AddInteger(4U);
10118   ID.AddInteger(VT1.getRawBits());
10119   ID.AddInteger(VT2.getRawBits());
10120   ID.AddInteger(VT3.getRawBits());
10121   ID.AddInteger(VT4.getRawBits());
10122 
10123   void *IP = nullptr;
10124   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
10125   if (!Result) {
10126     EVT *Array = Allocator.Allocate<EVT>(4);
10127     Array[0] = VT1;
10128     Array[1] = VT2;
10129     Array[2] = VT3;
10130     Array[3] = VT4;
10131     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
10132     VTListMap.InsertNode(Result, IP);
10133   }
10134   return Result->getSDVTList();
10135 }
10136 
10137 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
10138   unsigned NumVTs = VTs.size();
10139   FoldingSetNodeID ID;
10140   ID.AddInteger(NumVTs);
10141   for (unsigned index = 0; index < NumVTs; index++) {
10142     ID.AddInteger(VTs[index].getRawBits());
10143   }
10144 
10145   void *IP = nullptr;
10146   SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
10147   if (!Result) {
10148     EVT *Array = Allocator.Allocate<EVT>(NumVTs);
10149     llvm::copy(VTs, Array);
10150     Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
10151     VTListMap.InsertNode(Result, IP);
10152   }
10153   return Result->getSDVTList();
10154 }
10155 
10156 
10157 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
10158 /// specified operands.  If the resultant node already exists in the DAG,
10159 /// this does not modify the specified node, instead it returns the node that
10160 /// already exists.  If the resultant node does not exist in the DAG, the
10161 /// input node is returned.  As a degenerate case, if you specify the same
10162 /// input operands as the node already has, the input node is returned.
10163 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
10164   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
10165 
10166   // Check to see if there is no change.
10167   if (Op == N->getOperand(0)) return N;
10168 
10169   // See if the modified node already exists.
10170   void *InsertPos = nullptr;
10171   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
10172     return Existing;
10173 
10174   // Nope it doesn't.  Remove the node from its current place in the maps.
10175   if (InsertPos)
10176     if (!RemoveNodeFromCSEMaps(N))
10177       InsertPos = nullptr;
10178 
10179   // Now we update the operands.
10180   N->OperandList[0].set(Op);
10181 
10182   updateDivergence(N);
10183   // If this gets put into a CSE map, add it.
10184   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
10185   return N;
10186 }
10187 
10188 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
10189   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
10190 
10191   // Check to see if there is no change.
10192   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
10193     return N;   // No operands changed, just return the input node.
10194 
10195   // See if the modified node already exists.
10196   void *InsertPos = nullptr;
10197   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
10198     return Existing;
10199 
10200   // Nope it doesn't.  Remove the node from its current place in the maps.
10201   if (InsertPos)
10202     if (!RemoveNodeFromCSEMaps(N))
10203       InsertPos = nullptr;
10204 
10205   // Now we update the operands.
10206   if (N->OperandList[0] != Op1)
10207     N->OperandList[0].set(Op1);
10208   if (N->OperandList[1] != Op2)
10209     N->OperandList[1].set(Op2);
10210 
10211   updateDivergence(N);
10212   // If this gets put into a CSE map, add it.
10213   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
10214   return N;
10215 }
10216 
10217 SDNode *SelectionDAG::
10218 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
10219   SDValue Ops[] = { Op1, Op2, Op3 };
10220   return UpdateNodeOperands(N, Ops);
10221 }
10222 
10223 SDNode *SelectionDAG::
10224 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
10225                    SDValue Op3, SDValue Op4) {
10226   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
10227   return UpdateNodeOperands(N, Ops);
10228 }
10229 
10230 SDNode *SelectionDAG::
10231 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
10232                    SDValue Op3, SDValue Op4, SDValue Op5) {
10233   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
10234   return UpdateNodeOperands(N, Ops);
10235 }
10236 
10237 SDNode *SelectionDAG::
10238 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
10239   unsigned NumOps = Ops.size();
10240   assert(N->getNumOperands() == NumOps &&
10241          "Update with wrong number of operands");
10242 
10243   // If no operands changed just return the input node.
10244   if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
10245     return N;
10246 
10247   // See if the modified node already exists.
10248   void *InsertPos = nullptr;
10249   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
10250     return Existing;
10251 
10252   // Nope it doesn't.  Remove the node from its current place in the maps.
10253   if (InsertPos)
10254     if (!RemoveNodeFromCSEMaps(N))
10255       InsertPos = nullptr;
10256 
10257   // Now we update the operands.
10258   for (unsigned i = 0; i != NumOps; ++i)
10259     if (N->OperandList[i] != Ops[i])
10260       N->OperandList[i].set(Ops[i]);
10261 
10262   updateDivergence(N);
10263   // If this gets put into a CSE map, add it.
10264   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
10265   return N;
10266 }
10267 
10268 /// DropOperands - Release the operands and set this node to have
10269 /// zero operands.
10270 void SDNode::DropOperands() {
10271   // Unlike the code in MorphNodeTo that does this, we don't need to
10272   // watch for dead nodes here.
10273   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
10274     SDUse &Use = *I++;
10275     Use.set(SDValue());
10276   }
10277 }
10278 
10279 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
10280                                   ArrayRef<MachineMemOperand *> NewMemRefs) {
10281   if (NewMemRefs.empty()) {
10282     N->clearMemRefs();
10283     return;
10284   }
10285 
10286   // Check if we can avoid allocating by storing a single reference directly.
10287   if (NewMemRefs.size() == 1) {
10288     N->MemRefs = NewMemRefs[0];
10289     N->NumMemRefs = 1;
10290     return;
10291   }
10292 
10293   MachineMemOperand **MemRefsBuffer =
10294       Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
10295   llvm::copy(NewMemRefs, MemRefsBuffer);
10296   N->MemRefs = MemRefsBuffer;
10297   N->NumMemRefs = static_cast<int>(NewMemRefs.size());
10298 }
10299 
10300 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
10301 /// machine opcode.
10302 ///
10303 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10304                                    EVT VT) {
10305   SDVTList VTs = getVTList(VT);
10306   return SelectNodeTo(N, MachineOpc, VTs, std::nullopt);
10307 }
10308 
10309 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10310                                    EVT VT, SDValue Op1) {
10311   SDVTList VTs = getVTList(VT);
10312   SDValue Ops[] = { Op1 };
10313   return SelectNodeTo(N, MachineOpc, VTs, Ops);
10314 }
10315 
10316 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10317                                    EVT VT, SDValue Op1,
10318                                    SDValue Op2) {
10319   SDVTList VTs = getVTList(VT);
10320   SDValue Ops[] = { Op1, Op2 };
10321   return SelectNodeTo(N, MachineOpc, VTs, Ops);
10322 }
10323 
10324 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10325                                    EVT VT, SDValue Op1,
10326                                    SDValue Op2, SDValue Op3) {
10327   SDVTList VTs = getVTList(VT);
10328   SDValue Ops[] = { Op1, Op2, Op3 };
10329   return SelectNodeTo(N, MachineOpc, VTs, Ops);
10330 }
10331 
10332 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10333                                    EVT VT, ArrayRef<SDValue> Ops) {
10334   SDVTList VTs = getVTList(VT);
10335   return SelectNodeTo(N, MachineOpc, VTs, Ops);
10336 }
10337 
10338 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10339                                    EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
10340   SDVTList VTs = getVTList(VT1, VT2);
10341   return SelectNodeTo(N, MachineOpc, VTs, Ops);
10342 }
10343 
10344 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10345                                    EVT VT1, EVT VT2) {
10346   SDVTList VTs = getVTList(VT1, VT2);
10347   return SelectNodeTo(N, MachineOpc, VTs, std::nullopt);
10348 }
10349 
10350 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10351                                    EVT VT1, EVT VT2, EVT VT3,
10352                                    ArrayRef<SDValue> Ops) {
10353   SDVTList VTs = getVTList(VT1, VT2, VT3);
10354   return SelectNodeTo(N, MachineOpc, VTs, Ops);
10355 }
10356 
10357 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10358                                    EVT VT1, EVT VT2,
10359                                    SDValue Op1, SDValue Op2) {
10360   SDVTList VTs = getVTList(VT1, VT2);
10361   SDValue Ops[] = { Op1, Op2 };
10362   return SelectNodeTo(N, MachineOpc, VTs, Ops);
10363 }
10364 
10365 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
10366                                    SDVTList VTs,ArrayRef<SDValue> Ops) {
10367   SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
10368   // Reset the NodeID to -1.
10369   New->setNodeId(-1);
10370   if (New != N) {
10371     ReplaceAllUsesWith(N, New);
10372     RemoveDeadNode(N);
10373   }
10374   return New;
10375 }
10376 
10377 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
10378 /// the line number information on the merged node since it is not possible to
10379 /// preserve the information that operation is associated with multiple lines.
10380 /// This will make the debugger working better at -O0, were there is a higher
10381 /// probability having other instructions associated with that line.
10382 ///
10383 /// For IROrder, we keep the smaller of the two
10384 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
10385   DebugLoc NLoc = N->getDebugLoc();
10386   if (NLoc && OptLevel == CodeGenOptLevel::None && OLoc.getDebugLoc() != NLoc) {
10387     N->setDebugLoc(DebugLoc());
10388   }
10389   unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
10390   N->setIROrder(Order);
10391   return N;
10392 }
10393 
10394 /// MorphNodeTo - This *mutates* the specified node to have the specified
10395 /// return type, opcode, and operands.
10396 ///
10397 /// Note that MorphNodeTo returns the resultant node.  If there is already a
10398 /// node of the specified opcode and operands, it returns that node instead of
10399 /// the current one.  Note that the SDLoc need not be the same.
10400 ///
10401 /// Using MorphNodeTo is faster than creating a new node and swapping it in
10402 /// with ReplaceAllUsesWith both because it often avoids allocating a new
10403 /// node, and because it doesn't require CSE recalculation for any of
10404 /// the node's users.
10405 ///
10406 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
10407 /// As a consequence it isn't appropriate to use from within the DAG combiner or
10408 /// the legalizer which maintain worklists that would need to be updated when
10409 /// deleting things.
10410 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
10411                                   SDVTList VTs, ArrayRef<SDValue> Ops) {
10412   // If an identical node already exists, use it.
10413   void *IP = nullptr;
10414   if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
10415     FoldingSetNodeID ID;
10416     AddNodeIDNode(ID, Opc, VTs, Ops);
10417     if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
10418       return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
10419   }
10420 
10421   if (!RemoveNodeFromCSEMaps(N))
10422     IP = nullptr;
10423 
10424   // Start the morphing.
10425   N->NodeType = Opc;
10426   N->ValueList = VTs.VTs;
10427   N->NumValues = VTs.NumVTs;
10428 
10429   // Clear the operands list, updating used nodes to remove this from their
10430   // use list.  Keep track of any operands that become dead as a result.
10431   SmallPtrSet<SDNode*, 16> DeadNodeSet;
10432   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
10433     SDUse &Use = *I++;
10434     SDNode *Used = Use.getNode();
10435     Use.set(SDValue());
10436     if (Used->use_empty())
10437       DeadNodeSet.insert(Used);
10438   }
10439 
10440   // For MachineNode, initialize the memory references information.
10441   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
10442     MN->clearMemRefs();
10443 
10444   // Swap for an appropriately sized array from the recycler.
10445   removeOperands(N);
10446   createOperands(N, Ops);
10447 
10448   // Delete any nodes that are still dead after adding the uses for the
10449   // new operands.
10450   if (!DeadNodeSet.empty()) {
10451     SmallVector<SDNode *, 16> DeadNodes;
10452     for (SDNode *N : DeadNodeSet)
10453       if (N->use_empty())
10454         DeadNodes.push_back(N);
10455     RemoveDeadNodes(DeadNodes);
10456   }
10457 
10458   if (IP)
10459     CSEMap.InsertNode(N, IP);   // Memoize the new node.
10460   return N;
10461 }
10462 
10463 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
10464   unsigned OrigOpc = Node->getOpcode();
10465   unsigned NewOpc;
10466   switch (OrigOpc) {
10467   default:
10468     llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
10469 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
10470   case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
10471 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
10472   case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
10473 #include "llvm/IR/ConstrainedOps.def"
10474   }
10475 
10476   assert(Node->getNumValues() == 2 && "Unexpected number of results!");
10477 
10478   // We're taking this node out of the chain, so we need to re-link things.
10479   SDValue InputChain = Node->getOperand(0);
10480   SDValue OutputChain = SDValue(Node, 1);
10481   ReplaceAllUsesOfValueWith(OutputChain, InputChain);
10482 
10483   SmallVector<SDValue, 3> Ops;
10484   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
10485     Ops.push_back(Node->getOperand(i));
10486 
10487   SDVTList VTs = getVTList(Node->getValueType(0));
10488   SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
10489 
10490   // MorphNodeTo can operate in two ways: if an existing node with the
10491   // specified operands exists, it can just return it.  Otherwise, it
10492   // updates the node in place to have the requested operands.
10493   if (Res == Node) {
10494     // If we updated the node in place, reset the node ID.  To the isel,
10495     // this should be just like a newly allocated machine node.
10496     Res->setNodeId(-1);
10497   } else {
10498     ReplaceAllUsesWith(Node, Res);
10499     RemoveDeadNode(Node);
10500   }
10501 
10502   return Res;
10503 }
10504 
10505 /// getMachineNode - These are used for target selectors to create a new node
10506 /// with specified return type(s), MachineInstr opcode, and operands.
10507 ///
10508 /// Note that getMachineNode returns the resultant node.  If there is already a
10509 /// node of the specified opcode and operands, it returns that node instead of
10510 /// the current one.
10511 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10512                                             EVT VT) {
10513   SDVTList VTs = getVTList(VT);
10514   return getMachineNode(Opcode, dl, VTs, std::nullopt);
10515 }
10516 
10517 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10518                                             EVT VT, SDValue Op1) {
10519   SDVTList VTs = getVTList(VT);
10520   SDValue Ops[] = { Op1 };
10521   return getMachineNode(Opcode, dl, VTs, Ops);
10522 }
10523 
10524 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10525                                             EVT VT, SDValue Op1, SDValue Op2) {
10526   SDVTList VTs = getVTList(VT);
10527   SDValue Ops[] = { Op1, Op2 };
10528   return getMachineNode(Opcode, dl, VTs, Ops);
10529 }
10530 
10531 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10532                                             EVT VT, SDValue Op1, SDValue Op2,
10533                                             SDValue Op3) {
10534   SDVTList VTs = getVTList(VT);
10535   SDValue Ops[] = { Op1, Op2, Op3 };
10536   return getMachineNode(Opcode, dl, VTs, Ops);
10537 }
10538 
10539 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10540                                             EVT VT, ArrayRef<SDValue> Ops) {
10541   SDVTList VTs = getVTList(VT);
10542   return getMachineNode(Opcode, dl, VTs, Ops);
10543 }
10544 
10545 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10546                                             EVT VT1, EVT VT2, SDValue Op1,
10547                                             SDValue Op2) {
10548   SDVTList VTs = getVTList(VT1, VT2);
10549   SDValue Ops[] = { Op1, Op2 };
10550   return getMachineNode(Opcode, dl, VTs, Ops);
10551 }
10552 
10553 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10554                                             EVT VT1, EVT VT2, SDValue Op1,
10555                                             SDValue Op2, SDValue Op3) {
10556   SDVTList VTs = getVTList(VT1, VT2);
10557   SDValue Ops[] = { Op1, Op2, Op3 };
10558   return getMachineNode(Opcode, dl, VTs, Ops);
10559 }
10560 
10561 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10562                                             EVT VT1, EVT VT2,
10563                                             ArrayRef<SDValue> Ops) {
10564   SDVTList VTs = getVTList(VT1, VT2);
10565   return getMachineNode(Opcode, dl, VTs, Ops);
10566 }
10567 
10568 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10569                                             EVT VT1, EVT VT2, EVT VT3,
10570                                             SDValue Op1, SDValue Op2) {
10571   SDVTList VTs = getVTList(VT1, VT2, VT3);
10572   SDValue Ops[] = { Op1, Op2 };
10573   return getMachineNode(Opcode, dl, VTs, Ops);
10574 }
10575 
10576 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10577                                             EVT VT1, EVT VT2, EVT VT3,
10578                                             SDValue Op1, SDValue Op2,
10579                                             SDValue Op3) {
10580   SDVTList VTs = getVTList(VT1, VT2, VT3);
10581   SDValue Ops[] = { Op1, Op2, Op3 };
10582   return getMachineNode(Opcode, dl, VTs, Ops);
10583 }
10584 
10585 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10586                                             EVT VT1, EVT VT2, EVT VT3,
10587                                             ArrayRef<SDValue> Ops) {
10588   SDVTList VTs = getVTList(VT1, VT2, VT3);
10589   return getMachineNode(Opcode, dl, VTs, Ops);
10590 }
10591 
10592 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
10593                                             ArrayRef<EVT> ResultTys,
10594                                             ArrayRef<SDValue> Ops) {
10595   SDVTList VTs = getVTList(ResultTys);
10596   return getMachineNode(Opcode, dl, VTs, Ops);
10597 }
10598 
10599 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
10600                                             SDVTList VTs,
10601                                             ArrayRef<SDValue> Ops) {
10602   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
10603   MachineSDNode *N;
10604   void *IP = nullptr;
10605 
10606   if (DoCSE) {
10607     FoldingSetNodeID ID;
10608     AddNodeIDNode(ID, ~Opcode, VTs, Ops);
10609     IP = nullptr;
10610     if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10611       return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
10612     }
10613   }
10614 
10615   // Allocate a new MachineSDNode.
10616   N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
10617   createOperands(N, Ops);
10618 
10619   if (DoCSE)
10620     CSEMap.InsertNode(N, IP);
10621 
10622   InsertNode(N);
10623   NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
10624   return N;
10625 }
10626 
10627 /// getTargetExtractSubreg - A convenience function for creating
10628 /// TargetOpcode::EXTRACT_SUBREG nodes.
10629 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
10630                                              SDValue Operand) {
10631   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
10632   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
10633                                   VT, Operand, SRIdxVal);
10634   return SDValue(Subreg, 0);
10635 }
10636 
10637 /// getTargetInsertSubreg - A convenience function for creating
10638 /// TargetOpcode::INSERT_SUBREG nodes.
10639 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
10640                                             SDValue Operand, SDValue Subreg) {
10641   SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
10642   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
10643                                   VT, Operand, Subreg, SRIdxVal);
10644   return SDValue(Result, 0);
10645 }
10646 
10647 /// getNodeIfExists - Get the specified node if it's already available, or
10648 /// else return NULL.
10649 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
10650                                       ArrayRef<SDValue> Ops) {
10651   SDNodeFlags Flags;
10652   if (Inserter)
10653     Flags = Inserter->getFlags();
10654   return getNodeIfExists(Opcode, VTList, Ops, Flags);
10655 }
10656 
10657 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
10658                                       ArrayRef<SDValue> Ops,
10659                                       const SDNodeFlags Flags) {
10660   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
10661     FoldingSetNodeID ID;
10662     AddNodeIDNode(ID, Opcode, VTList, Ops);
10663     void *IP = nullptr;
10664     if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
10665       E->intersectFlagsWith(Flags);
10666       return E;
10667     }
10668   }
10669   return nullptr;
10670 }
10671 
10672 /// doesNodeExist - Check if a node exists without modifying its flags.
10673 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
10674                                  ArrayRef<SDValue> Ops) {
10675   if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
10676     FoldingSetNodeID ID;
10677     AddNodeIDNode(ID, Opcode, VTList, Ops);
10678     void *IP = nullptr;
10679     if (FindNodeOrInsertPos(ID, SDLoc(), IP))
10680       return true;
10681   }
10682   return false;
10683 }
10684 
10685 /// getDbgValue - Creates a SDDbgValue node.
10686 ///
10687 /// SDNode
10688 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
10689                                       SDNode *N, unsigned R, bool IsIndirect,
10690                                       const DebugLoc &DL, unsigned O) {
10691   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
10692          "Expected inlined-at fields to agree");
10693   return new (DbgInfo->getAlloc())
10694       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
10695                  {}, IsIndirect, DL, O,
10696                  /*IsVariadic=*/false);
10697 }
10698 
10699 /// Constant
10700 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
10701                                               DIExpression *Expr,
10702                                               const Value *C,
10703                                               const DebugLoc &DL, unsigned O) {
10704   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
10705          "Expected inlined-at fields to agree");
10706   return new (DbgInfo->getAlloc())
10707       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
10708                  /*IsIndirect=*/false, DL, O,
10709                  /*IsVariadic=*/false);
10710 }
10711 
10712 /// FrameIndex
10713 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
10714                                                 DIExpression *Expr, unsigned FI,
10715                                                 bool IsIndirect,
10716                                                 const DebugLoc &DL,
10717                                                 unsigned O) {
10718   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
10719          "Expected inlined-at fields to agree");
10720   return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
10721 }
10722 
10723 /// FrameIndex with dependencies
10724 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
10725                                                 DIExpression *Expr, unsigned FI,
10726                                                 ArrayRef<SDNode *> Dependencies,
10727                                                 bool IsIndirect,
10728                                                 const DebugLoc &DL,
10729                                                 unsigned O) {
10730   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
10731          "Expected inlined-at fields to agree");
10732   return new (DbgInfo->getAlloc())
10733       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
10734                  Dependencies, IsIndirect, DL, O,
10735                  /*IsVariadic=*/false);
10736 }
10737 
10738 /// VReg
10739 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
10740                                           unsigned VReg, bool IsIndirect,
10741                                           const DebugLoc &DL, unsigned O) {
10742   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
10743          "Expected inlined-at fields to agree");
10744   return new (DbgInfo->getAlloc())
10745       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
10746                  {}, IsIndirect, DL, O,
10747                  /*IsVariadic=*/false);
10748 }
10749 
10750 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr,
10751                                           ArrayRef<SDDbgOperand> Locs,
10752                                           ArrayRef<SDNode *> Dependencies,
10753                                           bool IsIndirect, const DebugLoc &DL,
10754                                           unsigned O, bool IsVariadic) {
10755   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
10756          "Expected inlined-at fields to agree");
10757   return new (DbgInfo->getAlloc())
10758       SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
10759                  DL, O, IsVariadic);
10760 }
10761 
10762 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
10763                                      unsigned OffsetInBits, unsigned SizeInBits,
10764                                      bool InvalidateDbg) {
10765   SDNode *FromNode = From.getNode();
10766   SDNode *ToNode = To.getNode();
10767   assert(FromNode && ToNode && "Can't modify dbg values");
10768 
10769   // PR35338
10770   // TODO: assert(From != To && "Redundant dbg value transfer");
10771   // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
10772   if (From == To || FromNode == ToNode)
10773     return;
10774 
10775   if (!FromNode->getHasDebugValue())
10776     return;
10777 
10778   SDDbgOperand FromLocOp =
10779       SDDbgOperand::fromNode(From.getNode(), From.getResNo());
10780   SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo());
10781 
10782   SmallVector<SDDbgValue *, 2> ClonedDVs;
10783   for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
10784     if (Dbg->isInvalidated())
10785       continue;
10786 
10787     // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
10788 
10789     // Create a new location ops vector that is equal to the old vector, but
10790     // with each instance of FromLocOp replaced with ToLocOp.
10791     bool Changed = false;
10792     auto NewLocOps = Dbg->copyLocationOps();
10793     std::replace_if(
10794         NewLocOps.begin(), NewLocOps.end(),
10795         [&Changed, FromLocOp](const SDDbgOperand &Op) {
10796           bool Match = Op == FromLocOp;
10797           Changed |= Match;
10798           return Match;
10799         },
10800         ToLocOp);
10801     // Ignore this SDDbgValue if we didn't find a matching location.
10802     if (!Changed)
10803       continue;
10804 
10805     DIVariable *Var = Dbg->getVariable();
10806     auto *Expr = Dbg->getExpression();
10807     // If a fragment is requested, update the expression.
10808     if (SizeInBits) {
10809       // When splitting a larger (e.g., sign-extended) value whose
10810       // lower bits are described with an SDDbgValue, do not attempt
10811       // to transfer the SDDbgValue to the upper bits.
10812       if (auto FI = Expr->getFragmentInfo())
10813         if (OffsetInBits + SizeInBits > FI->SizeInBits)
10814           continue;
10815       auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
10816                                                              SizeInBits);
10817       if (!Fragment)
10818         continue;
10819       Expr = *Fragment;
10820     }
10821 
10822     auto AdditionalDependencies = Dbg->getAdditionalDependencies();
10823     // Clone the SDDbgValue and move it to To.
10824     SDDbgValue *Clone = getDbgValueList(
10825         Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
10826         Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
10827         Dbg->isVariadic());
10828     ClonedDVs.push_back(Clone);
10829 
10830     if (InvalidateDbg) {
10831       // Invalidate value and indicate the SDDbgValue should not be emitted.
10832       Dbg->setIsInvalidated();
10833       Dbg->setIsEmitted();
10834     }
10835   }
10836 
10837   for (SDDbgValue *Dbg : ClonedDVs) {
10838     assert(is_contained(Dbg->getSDNodes(), ToNode) &&
10839            "Transferred DbgValues should depend on the new SDNode");
10840     AddDbgValue(Dbg, false);
10841   }
10842 }
10843 
10844 void SelectionDAG::salvageDebugInfo(SDNode &N) {
10845   if (!N.getHasDebugValue())
10846     return;
10847 
10848   SmallVector<SDDbgValue *, 2> ClonedDVs;
10849   for (auto *DV : GetDbgValues(&N)) {
10850     if (DV->isInvalidated())
10851       continue;
10852     switch (N.getOpcode()) {
10853     default:
10854       break;
10855     case ISD::ADD: {
10856       SDValue N0 = N.getOperand(0);
10857       SDValue N1 = N.getOperand(1);
10858       if (!isa<ConstantSDNode>(N0)) {
10859         bool RHSConstant = isa<ConstantSDNode>(N1);
10860         uint64_t Offset;
10861         if (RHSConstant)
10862           Offset = N.getConstantOperandVal(1);
10863         // We are not allowed to turn indirect debug values variadic, so
10864         // don't salvage those.
10865         if (!RHSConstant && DV->isIndirect())
10866           continue;
10867 
10868         // Rewrite an ADD constant node into a DIExpression. Since we are
10869         // performing arithmetic to compute the variable's *value* in the
10870         // DIExpression, we need to mark the expression with a
10871         // DW_OP_stack_value.
10872         auto *DIExpr = DV->getExpression();
10873         auto NewLocOps = DV->copyLocationOps();
10874         bool Changed = false;
10875         size_t OrigLocOpsSize = NewLocOps.size();
10876         for (size_t i = 0; i < OrigLocOpsSize; ++i) {
10877           // We're not given a ResNo to compare against because the whole
10878           // node is going away. We know that any ISD::ADD only has one
10879           // result, so we can assume any node match is using the result.
10880           if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
10881               NewLocOps[i].getSDNode() != &N)
10882             continue;
10883           NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
10884           if (RHSConstant) {
10885             SmallVector<uint64_t, 3> ExprOps;
10886             DIExpression::appendOffset(ExprOps, Offset);
10887             DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
10888           } else {
10889             // Convert to a variadic expression (if not already).
10890             // convertToVariadicExpression() returns a const pointer, so we use
10891             // a temporary const variable here.
10892             const auto *TmpDIExpr =
10893                 DIExpression::convertToVariadicExpression(DIExpr);
10894             SmallVector<uint64_t, 3> ExprOps;
10895             ExprOps.push_back(dwarf::DW_OP_LLVM_arg);
10896             ExprOps.push_back(NewLocOps.size());
10897             ExprOps.push_back(dwarf::DW_OP_plus);
10898             SDDbgOperand RHS =
10899                 SDDbgOperand::fromNode(N1.getNode(), N1.getResNo());
10900             NewLocOps.push_back(RHS);
10901             DIExpr = DIExpression::appendOpsToArg(TmpDIExpr, ExprOps, i, true);
10902           }
10903           Changed = true;
10904         }
10905         (void)Changed;
10906         assert(Changed && "Salvage target doesn't use N");
10907 
10908         bool IsVariadic =
10909             DV->isVariadic() || OrigLocOpsSize != NewLocOps.size();
10910 
10911         auto AdditionalDependencies = DV->getAdditionalDependencies();
10912         SDDbgValue *Clone = getDbgValueList(
10913             DV->getVariable(), DIExpr, NewLocOps, AdditionalDependencies,
10914             DV->isIndirect(), DV->getDebugLoc(), DV->getOrder(), IsVariadic);
10915         ClonedDVs.push_back(Clone);
10916         DV->setIsInvalidated();
10917         DV->setIsEmitted();
10918         LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
10919                    N0.getNode()->dumprFull(this);
10920                    dbgs() << " into " << *DIExpr << '\n');
10921       }
10922       break;
10923     }
10924     case ISD::TRUNCATE: {
10925       SDValue N0 = N.getOperand(0);
10926       TypeSize FromSize = N0.getValueSizeInBits();
10927       TypeSize ToSize = N.getValueSizeInBits(0);
10928 
10929       DIExpression *DbgExpression = DV->getExpression();
10930       auto ExtOps = DIExpression::getExtOps(FromSize, ToSize, false);
10931       auto NewLocOps = DV->copyLocationOps();
10932       bool Changed = false;
10933       for (size_t i = 0; i < NewLocOps.size(); ++i) {
10934         if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
10935             NewLocOps[i].getSDNode() != &N)
10936           continue;
10937 
10938         NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo());
10939         DbgExpression = DIExpression::appendOpsToArg(DbgExpression, ExtOps, i);
10940         Changed = true;
10941       }
10942       assert(Changed && "Salvage target doesn't use N");
10943       (void)Changed;
10944 
10945       SDDbgValue *Clone =
10946           getDbgValueList(DV->getVariable(), DbgExpression, NewLocOps,
10947                           DV->getAdditionalDependencies(), DV->isIndirect(),
10948                           DV->getDebugLoc(), DV->getOrder(), DV->isVariadic());
10949 
10950       ClonedDVs.push_back(Clone);
10951       DV->setIsInvalidated();
10952       DV->setIsEmitted();
10953       LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; N0.getNode()->dumprFull(this);
10954                  dbgs() << " into " << *DbgExpression << '\n');
10955       break;
10956     }
10957     }
10958   }
10959 
10960   for (SDDbgValue *Dbg : ClonedDVs) {
10961     assert(!Dbg->getSDNodes().empty() &&
10962            "Salvaged DbgValue should depend on a new SDNode");
10963     AddDbgValue(Dbg, false);
10964   }
10965 }
10966 
10967 /// Creates a SDDbgLabel node.
10968 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
10969                                       const DebugLoc &DL, unsigned O) {
10970   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
10971          "Expected inlined-at fields to agree");
10972   return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
10973 }
10974 
10975 namespace {
10976 
10977 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
10978 /// pointed to by a use iterator is deleted, increment the use iterator
10979 /// so that it doesn't dangle.
10980 ///
10981 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
10982   SDNode::use_iterator &UI;
10983   SDNode::use_iterator &UE;
10984 
10985   void NodeDeleted(SDNode *N, SDNode *E) override {
10986     // Increment the iterator as needed.
10987     while (UI != UE && N == *UI)
10988       ++UI;
10989   }
10990 
10991 public:
10992   RAUWUpdateListener(SelectionDAG &d,
10993                      SDNode::use_iterator &ui,
10994                      SDNode::use_iterator &ue)
10995     : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
10996 };
10997 
10998 } // end anonymous namespace
10999 
11000 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
11001 /// This can cause recursive merging of nodes in the DAG.
11002 ///
11003 /// This version assumes From has a single result value.
11004 ///
11005 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
11006   SDNode *From = FromN.getNode();
11007   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
11008          "Cannot replace with this method!");
11009   assert(From != To.getNode() && "Cannot replace uses of with self");
11010 
11011   // Preserve Debug Values
11012   transferDbgValues(FromN, To);
11013   // Preserve extra info.
11014   copyExtraInfo(From, To.getNode());
11015 
11016   // Iterate over all the existing uses of From. New uses will be added
11017   // to the beginning of the use list, which we avoid visiting.
11018   // This specifically avoids visiting uses of From that arise while the
11019   // replacement is happening, because any such uses would be the result
11020   // of CSE: If an existing node looks like From after one of its operands
11021   // is replaced by To, we don't want to replace of all its users with To
11022   // too. See PR3018 for more info.
11023   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
11024   RAUWUpdateListener Listener(*this, UI, UE);
11025   while (UI != UE) {
11026     SDNode *User = *UI;
11027 
11028     // This node is about to morph, remove its old self from the CSE maps.
11029     RemoveNodeFromCSEMaps(User);
11030 
11031     // A user can appear in a use list multiple times, and when this
11032     // happens the uses are usually next to each other in the list.
11033     // To help reduce the number of CSE recomputations, process all
11034     // the uses of this user that we can find this way.
11035     do {
11036       SDUse &Use = UI.getUse();
11037       ++UI;
11038       Use.set(To);
11039       if (To->isDivergent() != From->isDivergent())
11040         updateDivergence(User);
11041     } while (UI != UE && *UI == User);
11042     // Now that we have modified User, add it back to the CSE maps.  If it
11043     // already exists there, recursively merge the results together.
11044     AddModifiedNodeToCSEMaps(User);
11045   }
11046 
11047   // If we just RAUW'd the root, take note.
11048   if (FromN == getRoot())
11049     setRoot(To);
11050 }
11051 
11052 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
11053 /// This can cause recursive merging of nodes in the DAG.
11054 ///
11055 /// This version assumes that for each value of From, there is a
11056 /// corresponding value in To in the same position with the same type.
11057 ///
11058 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
11059 #ifndef NDEBUG
11060   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
11061     assert((!From->hasAnyUseOfValue(i) ||
11062             From->getValueType(i) == To->getValueType(i)) &&
11063            "Cannot use this version of ReplaceAllUsesWith!");
11064 #endif
11065 
11066   // Handle the trivial case.
11067   if (From == To)
11068     return;
11069 
11070   // Preserve Debug Info. Only do this if there's a use.
11071   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
11072     if (From->hasAnyUseOfValue(i)) {
11073       assert((i < To->getNumValues()) && "Invalid To location");
11074       transferDbgValues(SDValue(From, i), SDValue(To, i));
11075     }
11076   // Preserve extra info.
11077   copyExtraInfo(From, To);
11078 
11079   // Iterate over just the existing users of From. See the comments in
11080   // the ReplaceAllUsesWith above.
11081   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
11082   RAUWUpdateListener Listener(*this, UI, UE);
11083   while (UI != UE) {
11084     SDNode *User = *UI;
11085 
11086     // This node is about to morph, remove its old self from the CSE maps.
11087     RemoveNodeFromCSEMaps(User);
11088 
11089     // A user can appear in a use list multiple times, and when this
11090     // happens the uses are usually next to each other in the list.
11091     // To help reduce the number of CSE recomputations, process all
11092     // the uses of this user that we can find this way.
11093     do {
11094       SDUse &Use = UI.getUse();
11095       ++UI;
11096       Use.setNode(To);
11097       if (To->isDivergent() != From->isDivergent())
11098         updateDivergence(User);
11099     } while (UI != UE && *UI == User);
11100 
11101     // Now that we have modified User, add it back to the CSE maps.  If it
11102     // already exists there, recursively merge the results together.
11103     AddModifiedNodeToCSEMaps(User);
11104   }
11105 
11106   // If we just RAUW'd the root, take note.
11107   if (From == getRoot().getNode())
11108     setRoot(SDValue(To, getRoot().getResNo()));
11109 }
11110 
11111 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
11112 /// This can cause recursive merging of nodes in the DAG.
11113 ///
11114 /// This version can replace From with any result values.  To must match the
11115 /// number and types of values returned by From.
11116 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
11117   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
11118     return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
11119 
11120   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) {
11121     // Preserve Debug Info.
11122     transferDbgValues(SDValue(From, i), To[i]);
11123     // Preserve extra info.
11124     copyExtraInfo(From, To[i].getNode());
11125   }
11126 
11127   // Iterate over just the existing users of From. See the comments in
11128   // the ReplaceAllUsesWith above.
11129   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
11130   RAUWUpdateListener Listener(*this, UI, UE);
11131   while (UI != UE) {
11132     SDNode *User = *UI;
11133 
11134     // This node is about to morph, remove its old self from the CSE maps.
11135     RemoveNodeFromCSEMaps(User);
11136 
11137     // A user can appear in a use list multiple times, and when this happens the
11138     // uses are usually next to each other in the list.  To help reduce the
11139     // number of CSE and divergence recomputations, process all the uses of this
11140     // user that we can find this way.
11141     bool To_IsDivergent = false;
11142     do {
11143       SDUse &Use = UI.getUse();
11144       const SDValue &ToOp = To[Use.getResNo()];
11145       ++UI;
11146       Use.set(ToOp);
11147       To_IsDivergent |= ToOp->isDivergent();
11148     } while (UI != UE && *UI == User);
11149 
11150     if (To_IsDivergent != From->isDivergent())
11151       updateDivergence(User);
11152 
11153     // Now that we have modified User, add it back to the CSE maps.  If it
11154     // already exists there, recursively merge the results together.
11155     AddModifiedNodeToCSEMaps(User);
11156   }
11157 
11158   // If we just RAUW'd the root, take note.
11159   if (From == getRoot().getNode())
11160     setRoot(SDValue(To[getRoot().getResNo()]));
11161 }
11162 
11163 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
11164 /// uses of other values produced by From.getNode() alone.  The Deleted
11165 /// vector is handled the same way as for ReplaceAllUsesWith.
11166 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
11167   // Handle the really simple, really trivial case efficiently.
11168   if (From == To) return;
11169 
11170   // Handle the simple, trivial, case efficiently.
11171   if (From.getNode()->getNumValues() == 1) {
11172     ReplaceAllUsesWith(From, To);
11173     return;
11174   }
11175 
11176   // Preserve Debug Info.
11177   transferDbgValues(From, To);
11178   copyExtraInfo(From.getNode(), To.getNode());
11179 
11180   // Iterate over just the existing users of From. See the comments in
11181   // the ReplaceAllUsesWith above.
11182   SDNode::use_iterator UI = From.getNode()->use_begin(),
11183                        UE = From.getNode()->use_end();
11184   RAUWUpdateListener Listener(*this, UI, UE);
11185   while (UI != UE) {
11186     SDNode *User = *UI;
11187     bool UserRemovedFromCSEMaps = false;
11188 
11189     // A user can appear in a use list multiple times, and when this
11190     // happens the uses are usually next to each other in the list.
11191     // To help reduce the number of CSE recomputations, process all
11192     // the uses of this user that we can find this way.
11193     do {
11194       SDUse &Use = UI.getUse();
11195 
11196       // Skip uses of different values from the same node.
11197       if (Use.getResNo() != From.getResNo()) {
11198         ++UI;
11199         continue;
11200       }
11201 
11202       // If this node hasn't been modified yet, it's still in the CSE maps,
11203       // so remove its old self from the CSE maps.
11204       if (!UserRemovedFromCSEMaps) {
11205         RemoveNodeFromCSEMaps(User);
11206         UserRemovedFromCSEMaps = true;
11207       }
11208 
11209       ++UI;
11210       Use.set(To);
11211       if (To->isDivergent() != From->isDivergent())
11212         updateDivergence(User);
11213     } while (UI != UE && *UI == User);
11214     // We are iterating over all uses of the From node, so if a use
11215     // doesn't use the specific value, no changes are made.
11216     if (!UserRemovedFromCSEMaps)
11217       continue;
11218 
11219     // Now that we have modified User, add it back to the CSE maps.  If it
11220     // already exists there, recursively merge the results together.
11221     AddModifiedNodeToCSEMaps(User);
11222   }
11223 
11224   // If we just RAUW'd the root, take note.
11225   if (From == getRoot())
11226     setRoot(To);
11227 }
11228 
11229 namespace {
11230 
11231 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
11232 /// to record information about a use.
11233 struct UseMemo {
11234   SDNode *User;
11235   unsigned Index;
11236   SDUse *Use;
11237 };
11238 
11239 /// operator< - Sort Memos by User.
11240 bool operator<(const UseMemo &L, const UseMemo &R) {
11241   return (intptr_t)L.User < (intptr_t)R.User;
11242 }
11243 
11244 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node
11245 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that
11246 /// the node already has been taken care of recursively.
11247 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener {
11248   SmallVector<UseMemo, 4> &Uses;
11249 
11250   void NodeDeleted(SDNode *N, SDNode *E) override {
11251     for (UseMemo &Memo : Uses)
11252       if (Memo.User == N)
11253         Memo.User = nullptr;
11254   }
11255 
11256 public:
11257   RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses)
11258       : SelectionDAG::DAGUpdateListener(d), Uses(uses) {}
11259 };
11260 
11261 } // end anonymous namespace
11262 
11263 bool SelectionDAG::calculateDivergence(SDNode *N) {
11264   if (TLI->isSDNodeAlwaysUniform(N)) {
11265     assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, UA) &&
11266            "Conflicting divergence information!");
11267     return false;
11268   }
11269   if (TLI->isSDNodeSourceOfDivergence(N, FLI, UA))
11270     return true;
11271   for (const auto &Op : N->ops()) {
11272     if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent())
11273       return true;
11274   }
11275   return false;
11276 }
11277 
11278 void SelectionDAG::updateDivergence(SDNode *N) {
11279   SmallVector<SDNode *, 16> Worklist(1, N);
11280   do {
11281     N = Worklist.pop_back_val();
11282     bool IsDivergent = calculateDivergence(N);
11283     if (N->SDNodeBits.IsDivergent != IsDivergent) {
11284       N->SDNodeBits.IsDivergent = IsDivergent;
11285       llvm::append_range(Worklist, N->uses());
11286     }
11287   } while (!Worklist.empty());
11288 }
11289 
11290 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
11291   DenseMap<SDNode *, unsigned> Degree;
11292   Order.reserve(AllNodes.size());
11293   for (auto &N : allnodes()) {
11294     unsigned NOps = N.getNumOperands();
11295     Degree[&N] = NOps;
11296     if (0 == NOps)
11297       Order.push_back(&N);
11298   }
11299   for (size_t I = 0; I != Order.size(); ++I) {
11300     SDNode *N = Order[I];
11301     for (auto *U : N->uses()) {
11302       unsigned &UnsortedOps = Degree[U];
11303       if (0 == --UnsortedOps)
11304         Order.push_back(U);
11305     }
11306   }
11307 }
11308 
11309 #ifndef NDEBUG
11310 void SelectionDAG::VerifyDAGDivergence() {
11311   std::vector<SDNode *> TopoOrder;
11312   CreateTopologicalOrder(TopoOrder);
11313   for (auto *N : TopoOrder) {
11314     assert(calculateDivergence(N) == N->isDivergent() &&
11315            "Divergence bit inconsistency detected");
11316   }
11317 }
11318 #endif
11319 
11320 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
11321 /// uses of other values produced by From.getNode() alone.  The same value
11322 /// may appear in both the From and To list.  The Deleted vector is
11323 /// handled the same way as for ReplaceAllUsesWith.
11324 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
11325                                               const SDValue *To,
11326                                               unsigned Num){
11327   // Handle the simple, trivial case efficiently.
11328   if (Num == 1)
11329     return ReplaceAllUsesOfValueWith(*From, *To);
11330 
11331   transferDbgValues(*From, *To);
11332   copyExtraInfo(From->getNode(), To->getNode());
11333 
11334   // Read up all the uses and make records of them. This helps
11335   // processing new uses that are introduced during the
11336   // replacement process.
11337   SmallVector<UseMemo, 4> Uses;
11338   for (unsigned i = 0; i != Num; ++i) {
11339     unsigned FromResNo = From[i].getResNo();
11340     SDNode *FromNode = From[i].getNode();
11341     for (SDNode::use_iterator UI = FromNode->use_begin(),
11342          E = FromNode->use_end(); UI != E; ++UI) {
11343       SDUse &Use = UI.getUse();
11344       if (Use.getResNo() == FromResNo) {
11345         UseMemo Memo = { *UI, i, &Use };
11346         Uses.push_back(Memo);
11347       }
11348     }
11349   }
11350 
11351   // Sort the uses, so that all the uses from a given User are together.
11352   llvm::sort(Uses);
11353   RAUOVWUpdateListener Listener(*this, Uses);
11354 
11355   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
11356        UseIndex != UseIndexEnd; ) {
11357     // We know that this user uses some value of From.  If it is the right
11358     // value, update it.
11359     SDNode *User = Uses[UseIndex].User;
11360     // If the node has been deleted by recursive CSE updates when updating
11361     // another node, then just skip this entry.
11362     if (User == nullptr) {
11363       ++UseIndex;
11364       continue;
11365     }
11366 
11367     // This node is about to morph, remove its old self from the CSE maps.
11368     RemoveNodeFromCSEMaps(User);
11369 
11370     // The Uses array is sorted, so all the uses for a given User
11371     // are next to each other in the list.
11372     // To help reduce the number of CSE recomputations, process all
11373     // the uses of this user that we can find this way.
11374     do {
11375       unsigned i = Uses[UseIndex].Index;
11376       SDUse &Use = *Uses[UseIndex].Use;
11377       ++UseIndex;
11378 
11379       Use.set(To[i]);
11380     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
11381 
11382     // Now that we have modified User, add it back to the CSE maps.  If it
11383     // already exists there, recursively merge the results together.
11384     AddModifiedNodeToCSEMaps(User);
11385   }
11386 }
11387 
11388 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
11389 /// based on their topological order. It returns the maximum id and a vector
11390 /// of the SDNodes* in assigned order by reference.
11391 unsigned SelectionDAG::AssignTopologicalOrder() {
11392   unsigned DAGSize = 0;
11393 
11394   // SortedPos tracks the progress of the algorithm. Nodes before it are
11395   // sorted, nodes after it are unsorted. When the algorithm completes
11396   // it is at the end of the list.
11397   allnodes_iterator SortedPos = allnodes_begin();
11398 
11399   // Visit all the nodes. Move nodes with no operands to the front of
11400   // the list immediately. Annotate nodes that do have operands with their
11401   // operand count. Before we do this, the Node Id fields of the nodes
11402   // may contain arbitrary values. After, the Node Id fields for nodes
11403   // before SortedPos will contain the topological sort index, and the
11404   // Node Id fields for nodes At SortedPos and after will contain the
11405   // count of outstanding operands.
11406   for (SDNode &N : llvm::make_early_inc_range(allnodes())) {
11407     checkForCycles(&N, this);
11408     unsigned Degree = N.getNumOperands();
11409     if (Degree == 0) {
11410       // A node with no uses, add it to the result array immediately.
11411       N.setNodeId(DAGSize++);
11412       allnodes_iterator Q(&N);
11413       if (Q != SortedPos)
11414         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
11415       assert(SortedPos != AllNodes.end() && "Overran node list");
11416       ++SortedPos;
11417     } else {
11418       // Temporarily use the Node Id as scratch space for the degree count.
11419       N.setNodeId(Degree);
11420     }
11421   }
11422 
11423   // Visit all the nodes. As we iterate, move nodes into sorted order,
11424   // such that by the time the end is reached all nodes will be sorted.
11425   for (SDNode &Node : allnodes()) {
11426     SDNode *N = &Node;
11427     checkForCycles(N, this);
11428     // N is in sorted position, so all its uses have one less operand
11429     // that needs to be sorted.
11430     for (SDNode *P : N->uses()) {
11431       unsigned Degree = P->getNodeId();
11432       assert(Degree != 0 && "Invalid node degree");
11433       --Degree;
11434       if (Degree == 0) {
11435         // All of P's operands are sorted, so P may sorted now.
11436         P->setNodeId(DAGSize++);
11437         if (P->getIterator() != SortedPos)
11438           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
11439         assert(SortedPos != AllNodes.end() && "Overran node list");
11440         ++SortedPos;
11441       } else {
11442         // Update P's outstanding operand count.
11443         P->setNodeId(Degree);
11444       }
11445     }
11446     if (Node.getIterator() == SortedPos) {
11447 #ifndef NDEBUG
11448       allnodes_iterator I(N);
11449       SDNode *S = &*++I;
11450       dbgs() << "Overran sorted position:\n";
11451       S->dumprFull(this); dbgs() << "\n";
11452       dbgs() << "Checking if this is due to cycles\n";
11453       checkForCycles(this, true);
11454 #endif
11455       llvm_unreachable(nullptr);
11456     }
11457   }
11458 
11459   assert(SortedPos == AllNodes.end() &&
11460          "Topological sort incomplete!");
11461   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
11462          "First node in topological sort is not the entry token!");
11463   assert(AllNodes.front().getNodeId() == 0 &&
11464          "First node in topological sort has non-zero id!");
11465   assert(AllNodes.front().getNumOperands() == 0 &&
11466          "First node in topological sort has operands!");
11467   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
11468          "Last node in topologic sort has unexpected id!");
11469   assert(AllNodes.back().use_empty() &&
11470          "Last node in topologic sort has users!");
11471   assert(DAGSize == allnodes_size() && "Node count mismatch!");
11472   return DAGSize;
11473 }
11474 
11475 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
11476 /// value is produced by SD.
11477 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
11478   for (SDNode *SD : DB->getSDNodes()) {
11479     if (!SD)
11480       continue;
11481     assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
11482     SD->setHasDebugValue(true);
11483   }
11484   DbgInfo->add(DB, isParameter);
11485 }
11486 
11487 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
11488 
11489 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain,
11490                                                    SDValue NewMemOpChain) {
11491   assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
11492   assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
11493   // The new memory operation must have the same position as the old load in
11494   // terms of memory dependency. Create a TokenFactor for the old load and new
11495   // memory operation and update uses of the old load's output chain to use that
11496   // TokenFactor.
11497   if (OldChain == NewMemOpChain || OldChain.use_empty())
11498     return NewMemOpChain;
11499 
11500   SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
11501                                 OldChain, NewMemOpChain);
11502   ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
11503   UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
11504   return TokenFactor;
11505 }
11506 
11507 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
11508                                                    SDValue NewMemOp) {
11509   assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
11510   SDValue OldChain = SDValue(OldLoad, 1);
11511   SDValue NewMemOpChain = NewMemOp.getValue(1);
11512   return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
11513 }
11514 
11515 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
11516                                                      Function **OutFunction) {
11517   assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
11518 
11519   auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
11520   auto *Module = MF->getFunction().getParent();
11521   auto *Function = Module->getFunction(Symbol);
11522 
11523   if (OutFunction != nullptr)
11524       *OutFunction = Function;
11525 
11526   if (Function != nullptr) {
11527     auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
11528     return getGlobalAddress(Function, SDLoc(Op), PtrTy);
11529   }
11530 
11531   std::string ErrorStr;
11532   raw_string_ostream ErrorFormatter(ErrorStr);
11533   ErrorFormatter << "Undefined external symbol ";
11534   ErrorFormatter << '"' << Symbol << '"';
11535   report_fatal_error(Twine(ErrorFormatter.str()));
11536 }
11537 
11538 //===----------------------------------------------------------------------===//
11539 //                              SDNode Class
11540 //===----------------------------------------------------------------------===//
11541 
11542 bool llvm::isNullConstant(SDValue V) {
11543   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
11544   return Const != nullptr && Const->isZero();
11545 }
11546 
11547 bool llvm::isNullFPConstant(SDValue V) {
11548   ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
11549   return Const != nullptr && Const->isZero() && !Const->isNegative();
11550 }
11551 
11552 bool llvm::isAllOnesConstant(SDValue V) {
11553   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
11554   return Const != nullptr && Const->isAllOnes();
11555 }
11556 
11557 bool llvm::isOneConstant(SDValue V) {
11558   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
11559   return Const != nullptr && Const->isOne();
11560 }
11561 
11562 bool llvm::isMinSignedConstant(SDValue V) {
11563   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
11564   return Const != nullptr && Const->isMinSignedValue();
11565 }
11566 
11567 bool llvm::isNeutralConstant(unsigned Opcode, SDNodeFlags Flags, SDValue V,
11568                              unsigned OperandNo) {
11569   // NOTE: The cases should match with IR's ConstantExpr::getBinOpIdentity().
11570   // TODO: Target-specific opcodes could be added.
11571   if (auto *Const = isConstOrConstSplat(V)) {
11572     switch (Opcode) {
11573     case ISD::ADD:
11574     case ISD::OR:
11575     case ISD::XOR:
11576     case ISD::UMAX:
11577       return Const->isZero();
11578     case ISD::MUL:
11579       return Const->isOne();
11580     case ISD::AND:
11581     case ISD::UMIN:
11582       return Const->isAllOnes();
11583     case ISD::SMAX:
11584       return Const->isMinSignedValue();
11585     case ISD::SMIN:
11586       return Const->isMaxSignedValue();
11587     case ISD::SUB:
11588     case ISD::SHL:
11589     case ISD::SRA:
11590     case ISD::SRL:
11591       return OperandNo == 1 && Const->isZero();
11592     case ISD::UDIV:
11593     case ISD::SDIV:
11594       return OperandNo == 1 && Const->isOne();
11595     }
11596   } else if (auto *ConstFP = isConstOrConstSplatFP(V)) {
11597     switch (Opcode) {
11598     case ISD::FADD:
11599       return ConstFP->isZero() &&
11600              (Flags.hasNoSignedZeros() || ConstFP->isNegative());
11601     case ISD::FSUB:
11602       return OperandNo == 1 && ConstFP->isZero() &&
11603              (Flags.hasNoSignedZeros() || !ConstFP->isNegative());
11604     case ISD::FMUL:
11605       return ConstFP->isExactlyValue(1.0);
11606     case ISD::FDIV:
11607       return OperandNo == 1 && ConstFP->isExactlyValue(1.0);
11608     case ISD::FMINNUM:
11609     case ISD::FMAXNUM: {
11610       // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
11611       EVT VT = V.getValueType();
11612       const fltSemantics &Semantics = SelectionDAG::EVTToAPFloatSemantics(VT);
11613       APFloat NeutralAF = !Flags.hasNoNaNs()
11614                               ? APFloat::getQNaN(Semantics)
11615                               : !Flags.hasNoInfs()
11616                                     ? APFloat::getInf(Semantics)
11617                                     : APFloat::getLargest(Semantics);
11618       if (Opcode == ISD::FMAXNUM)
11619         NeutralAF.changeSign();
11620 
11621       return ConstFP->isExactlyValue(NeutralAF);
11622     }
11623     }
11624   }
11625   return false;
11626 }
11627 
11628 SDValue llvm::peekThroughBitcasts(SDValue V) {
11629   while (V.getOpcode() == ISD::BITCAST)
11630     V = V.getOperand(0);
11631   return V;
11632 }
11633 
11634 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
11635   while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
11636     V = V.getOperand(0);
11637   return V;
11638 }
11639 
11640 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
11641   while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
11642     V = V.getOperand(0);
11643   return V;
11644 }
11645 
11646 SDValue llvm::peekThroughTruncates(SDValue V) {
11647   while (V.getOpcode() == ISD::TRUNCATE)
11648     V = V.getOperand(0);
11649   return V;
11650 }
11651 
11652 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
11653   if (V.getOpcode() != ISD::XOR)
11654     return false;
11655   V = peekThroughBitcasts(V.getOperand(1));
11656   unsigned NumBits = V.getScalarValueSizeInBits();
11657   ConstantSDNode *C =
11658       isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
11659   return C && (C->getAPIntValue().countr_one() >= NumBits);
11660 }
11661 
11662 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
11663                                           bool AllowTruncation) {
11664   EVT VT = N.getValueType();
11665   APInt DemandedElts = VT.isFixedLengthVector()
11666                            ? APInt::getAllOnes(VT.getVectorMinNumElements())
11667                            : APInt(1, 1);
11668   return isConstOrConstSplat(N, DemandedElts, AllowUndefs, AllowTruncation);
11669 }
11670 
11671 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
11672                                           bool AllowUndefs,
11673                                           bool AllowTruncation) {
11674   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
11675     return CN;
11676 
11677   // SplatVectors can truncate their operands. Ignore that case here unless
11678   // AllowTruncation is set.
11679   if (N->getOpcode() == ISD::SPLAT_VECTOR) {
11680     EVT VecEltVT = N->getValueType(0).getVectorElementType();
11681     if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
11682       EVT CVT = CN->getValueType(0);
11683       assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
11684       if (AllowTruncation || CVT == VecEltVT)
11685         return CN;
11686     }
11687   }
11688 
11689   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
11690     BitVector UndefElements;
11691     ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
11692 
11693     // BuildVectors can truncate their operands. Ignore that case here unless
11694     // AllowTruncation is set.
11695     // TODO: Look into whether we should allow UndefElements in non-DemandedElts
11696     if (CN && (UndefElements.none() || AllowUndefs)) {
11697       EVT CVT = CN->getValueType(0);
11698       EVT NSVT = N.getValueType().getScalarType();
11699       assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
11700       if (AllowTruncation || (CVT == NSVT))
11701         return CN;
11702     }
11703   }
11704 
11705   return nullptr;
11706 }
11707 
11708 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
11709   EVT VT = N.getValueType();
11710   APInt DemandedElts = VT.isFixedLengthVector()
11711                            ? APInt::getAllOnes(VT.getVectorMinNumElements())
11712                            : APInt(1, 1);
11713   return isConstOrConstSplatFP(N, DemandedElts, AllowUndefs);
11714 }
11715 
11716 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
11717                                               const APInt &DemandedElts,
11718                                               bool AllowUndefs) {
11719   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
11720     return CN;
11721 
11722   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
11723     BitVector UndefElements;
11724     ConstantFPSDNode *CN =
11725         BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
11726     // TODO: Look into whether we should allow UndefElements in non-DemandedElts
11727     if (CN && (UndefElements.none() || AllowUndefs))
11728       return CN;
11729   }
11730 
11731   if (N.getOpcode() == ISD::SPLAT_VECTOR)
11732     if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
11733       return CN;
11734 
11735   return nullptr;
11736 }
11737 
11738 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
11739   // TODO: may want to use peekThroughBitcast() here.
11740   ConstantSDNode *C =
11741       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
11742   return C && C->isZero();
11743 }
11744 
11745 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
11746   ConstantSDNode *C =
11747       isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true);
11748   return C && C->isOne();
11749 }
11750 
11751 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
11752   N = peekThroughBitcasts(N);
11753   unsigned BitWidth = N.getScalarValueSizeInBits();
11754   ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
11755   return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
11756 }
11757 
11758 HandleSDNode::~HandleSDNode() {
11759   DropOperands();
11760 }
11761 
11762 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
11763                                          const DebugLoc &DL,
11764                                          const GlobalValue *GA, EVT VT,
11765                                          int64_t o, unsigned TF)
11766     : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
11767   TheGlobal = GA;
11768 }
11769 
11770 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
11771                                          EVT VT, unsigned SrcAS,
11772                                          unsigned DestAS)
11773     : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
11774       SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
11775 
11776 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
11777                      SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
11778     : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
11779   MemSDNodeBits.IsVolatile = MMO->isVolatile();
11780   MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
11781   MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
11782   MemSDNodeBits.IsInvariant = MMO->isInvariant();
11783 
11784   // We check here that the size of the memory operand fits within the size of
11785   // the MMO. This is because the MMO might indicate only a possible address
11786   // range instead of specifying the affected memory addresses precisely.
11787   // TODO: Make MachineMemOperands aware of scalable vectors.
11788   assert(memvt.getStoreSize().getKnownMinValue() <= MMO->getSize() &&
11789          "Size mismatch!");
11790 }
11791 
11792 /// Profile - Gather unique data for the node.
11793 ///
11794 void SDNode::Profile(FoldingSetNodeID &ID) const {
11795   AddNodeIDNode(ID, this);
11796 }
11797 
11798 namespace {
11799 
11800   struct EVTArray {
11801     std::vector<EVT> VTs;
11802 
11803     EVTArray() {
11804       VTs.reserve(MVT::VALUETYPE_SIZE);
11805       for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
11806         VTs.push_back(MVT((MVT::SimpleValueType)i));
11807     }
11808   };
11809 
11810 } // end anonymous namespace
11811 
11812 /// getValueTypeList - Return a pointer to the specified value type.
11813 ///
11814 const EVT *SDNode::getValueTypeList(EVT VT) {
11815   static std::set<EVT, EVT::compareRawBits> EVTs;
11816   static EVTArray SimpleVTArray;
11817   static sys::SmartMutex<true> VTMutex;
11818 
11819   if (VT.isExtended()) {
11820     sys::SmartScopedLock<true> Lock(VTMutex);
11821     return &(*EVTs.insert(VT).first);
11822   }
11823   assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!");
11824   return &SimpleVTArray.VTs[VT.getSimpleVT().SimpleTy];
11825 }
11826 
11827 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
11828 /// indicated value.  This method ignores uses of other values defined by this
11829 /// operation.
11830 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
11831   assert(Value < getNumValues() && "Bad value!");
11832 
11833   // TODO: Only iterate over uses of a given value of the node
11834   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
11835     if (UI.getUse().getResNo() == Value) {
11836       if (NUses == 0)
11837         return false;
11838       --NUses;
11839     }
11840   }
11841 
11842   // Found exactly the right number of uses?
11843   return NUses == 0;
11844 }
11845 
11846 /// hasAnyUseOfValue - Return true if there are any use of the indicated
11847 /// value. This method ignores uses of other values defined by this operation.
11848 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
11849   assert(Value < getNumValues() && "Bad value!");
11850 
11851   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
11852     if (UI.getUse().getResNo() == Value)
11853       return true;
11854 
11855   return false;
11856 }
11857 
11858 /// isOnlyUserOf - Return true if this node is the only use of N.
11859 bool SDNode::isOnlyUserOf(const SDNode *N) const {
11860   bool Seen = false;
11861   for (const SDNode *User : N->uses()) {
11862     if (User == this)
11863       Seen = true;
11864     else
11865       return false;
11866   }
11867 
11868   return Seen;
11869 }
11870 
11871 /// Return true if the only users of N are contained in Nodes.
11872 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
11873   bool Seen = false;
11874   for (const SDNode *User : N->uses()) {
11875     if (llvm::is_contained(Nodes, User))
11876       Seen = true;
11877     else
11878       return false;
11879   }
11880 
11881   return Seen;
11882 }
11883 
11884 /// isOperand - Return true if this node is an operand of N.
11885 bool SDValue::isOperandOf(const SDNode *N) const {
11886   return is_contained(N->op_values(), *this);
11887 }
11888 
11889 bool SDNode::isOperandOf(const SDNode *N) const {
11890   return any_of(N->op_values(),
11891                 [this](SDValue Op) { return this == Op.getNode(); });
11892 }
11893 
11894 /// reachesChainWithoutSideEffects - Return true if this operand (which must
11895 /// be a chain) reaches the specified operand without crossing any
11896 /// side-effecting instructions on any chain path.  In practice, this looks
11897 /// through token factors and non-volatile loads.  In order to remain efficient,
11898 /// this only looks a couple of nodes in, it does not do an exhaustive search.
11899 ///
11900 /// Note that we only need to examine chains when we're searching for
11901 /// side-effects; SelectionDAG requires that all side-effects are represented
11902 /// by chains, even if another operand would force a specific ordering. This
11903 /// constraint is necessary to allow transformations like splitting loads.
11904 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
11905                                              unsigned Depth) const {
11906   if (*this == Dest) return true;
11907 
11908   // Don't search too deeply, we just want to be able to see through
11909   // TokenFactor's etc.
11910   if (Depth == 0) return false;
11911 
11912   // If this is a token factor, all inputs to the TF happen in parallel.
11913   if (getOpcode() == ISD::TokenFactor) {
11914     // First, try a shallow search.
11915     if (is_contained((*this)->ops(), Dest)) {
11916       // We found the chain we want as an operand of this TokenFactor.
11917       // Essentially, we reach the chain without side-effects if we could
11918       // serialize the TokenFactor into a simple chain of operations with
11919       // Dest as the last operation. This is automatically true if the
11920       // chain has one use: there are no other ordering constraints.
11921       // If the chain has more than one use, we give up: some other
11922       // use of Dest might force a side-effect between Dest and the current
11923       // node.
11924       if (Dest.hasOneUse())
11925         return true;
11926     }
11927     // Next, try a deep search: check whether every operand of the TokenFactor
11928     // reaches Dest.
11929     return llvm::all_of((*this)->ops(), [=](SDValue Op) {
11930       return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
11931     });
11932   }
11933 
11934   // Loads don't have side effects, look through them.
11935   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
11936     if (Ld->isUnordered())
11937       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
11938   }
11939   return false;
11940 }
11941 
11942 bool SDNode::hasPredecessor(const SDNode *N) const {
11943   SmallPtrSet<const SDNode *, 32> Visited;
11944   SmallVector<const SDNode *, 16> Worklist;
11945   Worklist.push_back(this);
11946   return hasPredecessorHelper(N, Visited, Worklist);
11947 }
11948 
11949 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
11950   this->Flags.intersectWith(Flags);
11951 }
11952 
11953 SDValue
11954 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
11955                                   ArrayRef<ISD::NodeType> CandidateBinOps,
11956                                   bool AllowPartials) {
11957   // The pattern must end in an extract from index 0.
11958   if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
11959       !isNullConstant(Extract->getOperand(1)))
11960     return SDValue();
11961 
11962   // Match against one of the candidate binary ops.
11963   SDValue Op = Extract->getOperand(0);
11964   if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
11965         return Op.getOpcode() == unsigned(BinOp);
11966       }))
11967     return SDValue();
11968 
11969   // Floating-point reductions may require relaxed constraints on the final step
11970   // of the reduction because they may reorder intermediate operations.
11971   unsigned CandidateBinOp = Op.getOpcode();
11972   if (Op.getValueType().isFloatingPoint()) {
11973     SDNodeFlags Flags = Op->getFlags();
11974     switch (CandidateBinOp) {
11975     case ISD::FADD:
11976       if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
11977         return SDValue();
11978       break;
11979     default:
11980       llvm_unreachable("Unhandled FP opcode for binop reduction");
11981     }
11982   }
11983 
11984   // Matching failed - attempt to see if we did enough stages that a partial
11985   // reduction from a subvector is possible.
11986   auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
11987     if (!AllowPartials || !Op)
11988       return SDValue();
11989     EVT OpVT = Op.getValueType();
11990     EVT OpSVT = OpVT.getScalarType();
11991     EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
11992     if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
11993       return SDValue();
11994     BinOp = (ISD::NodeType)CandidateBinOp;
11995     return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
11996                    getVectorIdxConstant(0, SDLoc(Op)));
11997   };
11998 
11999   // At each stage, we're looking for something that looks like:
12000   // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
12001   //                    <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
12002   //                               i32 undef, i32 undef, i32 undef, i32 undef>
12003   // %a = binop <8 x i32> %op, %s
12004   // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
12005   // we expect something like:
12006   // <4,5,6,7,u,u,u,u>
12007   // <2,3,u,u,u,u,u,u>
12008   // <1,u,u,u,u,u,u,u>
12009   // While a partial reduction match would be:
12010   // <2,3,u,u,u,u,u,u>
12011   // <1,u,u,u,u,u,u,u>
12012   unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
12013   SDValue PrevOp;
12014   for (unsigned i = 0; i < Stages; ++i) {
12015     unsigned MaskEnd = (1 << i);
12016 
12017     if (Op.getOpcode() != CandidateBinOp)
12018       return PartialReduction(PrevOp, MaskEnd);
12019 
12020     SDValue Op0 = Op.getOperand(0);
12021     SDValue Op1 = Op.getOperand(1);
12022 
12023     ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
12024     if (Shuffle) {
12025       Op = Op1;
12026     } else {
12027       Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
12028       Op = Op0;
12029     }
12030 
12031     // The first operand of the shuffle should be the same as the other operand
12032     // of the binop.
12033     if (!Shuffle || Shuffle->getOperand(0) != Op)
12034       return PartialReduction(PrevOp, MaskEnd);
12035 
12036     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
12037     for (int Index = 0; Index < (int)MaskEnd; ++Index)
12038       if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
12039         return PartialReduction(PrevOp, MaskEnd);
12040 
12041     PrevOp = Op;
12042   }
12043 
12044   // Handle subvector reductions, which tend to appear after the shuffle
12045   // reduction stages.
12046   while (Op.getOpcode() == CandidateBinOp) {
12047     unsigned NumElts = Op.getValueType().getVectorNumElements();
12048     SDValue Op0 = Op.getOperand(0);
12049     SDValue Op1 = Op.getOperand(1);
12050     if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
12051         Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
12052         Op0.getOperand(0) != Op1.getOperand(0))
12053       break;
12054     SDValue Src = Op0.getOperand(0);
12055     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
12056     if (NumSrcElts != (2 * NumElts))
12057       break;
12058     if (!(Op0.getConstantOperandAPInt(1) == 0 &&
12059           Op1.getConstantOperandAPInt(1) == NumElts) &&
12060         !(Op1.getConstantOperandAPInt(1) == 0 &&
12061           Op0.getConstantOperandAPInt(1) == NumElts))
12062       break;
12063     Op = Src;
12064   }
12065 
12066   BinOp = (ISD::NodeType)CandidateBinOp;
12067   return Op;
12068 }
12069 
12070 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
12071   EVT VT = N->getValueType(0);
12072   EVT EltVT = VT.getVectorElementType();
12073   unsigned NE = VT.getVectorNumElements();
12074 
12075   SDLoc dl(N);
12076 
12077   // If ResNE is 0, fully unroll the vector op.
12078   if (ResNE == 0)
12079     ResNE = NE;
12080   else if (NE > ResNE)
12081     NE = ResNE;
12082 
12083   if (N->getNumValues() == 2) {
12084     SmallVector<SDValue, 8> Scalars0, Scalars1;
12085     SmallVector<SDValue, 4> Operands(N->getNumOperands());
12086     EVT VT1 = N->getValueType(1);
12087     EVT EltVT1 = VT1.getVectorElementType();
12088 
12089     unsigned i;
12090     for (i = 0; i != NE; ++i) {
12091       for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
12092         SDValue Operand = N->getOperand(j);
12093         EVT OperandVT = Operand.getValueType();
12094 
12095         // A vector operand; extract a single element.
12096         EVT OperandEltVT = OperandVT.getVectorElementType();
12097         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
12098                               Operand, getVectorIdxConstant(i, dl));
12099       }
12100 
12101       SDValue EltOp = getNode(N->getOpcode(), dl, {EltVT, EltVT1}, Operands);
12102       Scalars0.push_back(EltOp);
12103       Scalars1.push_back(EltOp.getValue(1));
12104     }
12105 
12106     SDValue Vec0 = getBuildVector(VT, dl, Scalars0);
12107     SDValue Vec1 = getBuildVector(VT1, dl, Scalars1);
12108     return getMergeValues({Vec0, Vec1}, dl);
12109   }
12110 
12111   assert(N->getNumValues() == 1 &&
12112          "Can't unroll a vector with multiple results!");
12113 
12114   SmallVector<SDValue, 8> Scalars;
12115   SmallVector<SDValue, 4> Operands(N->getNumOperands());
12116 
12117   unsigned i;
12118   for (i= 0; i != NE; ++i) {
12119     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
12120       SDValue Operand = N->getOperand(j);
12121       EVT OperandVT = Operand.getValueType();
12122       if (OperandVT.isVector()) {
12123         // A vector operand; extract a single element.
12124         EVT OperandEltVT = OperandVT.getVectorElementType();
12125         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
12126                               Operand, getVectorIdxConstant(i, dl));
12127       } else {
12128         // A scalar operand; just use it as is.
12129         Operands[j] = Operand;
12130       }
12131     }
12132 
12133     switch (N->getOpcode()) {
12134     default: {
12135       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
12136                                 N->getFlags()));
12137       break;
12138     }
12139     case ISD::VSELECT:
12140       Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
12141       break;
12142     case ISD::SHL:
12143     case ISD::SRA:
12144     case ISD::SRL:
12145     case ISD::ROTL:
12146     case ISD::ROTR:
12147       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
12148                                getShiftAmountOperand(Operands[0].getValueType(),
12149                                                      Operands[1])));
12150       break;
12151     case ISD::SIGN_EXTEND_INREG: {
12152       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
12153       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
12154                                 Operands[0],
12155                                 getValueType(ExtVT)));
12156     }
12157     }
12158   }
12159 
12160   for (; i < ResNE; ++i)
12161     Scalars.push_back(getUNDEF(EltVT));
12162 
12163   EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
12164   return getBuildVector(VecVT, dl, Scalars);
12165 }
12166 
12167 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
12168     SDNode *N, unsigned ResNE) {
12169   unsigned Opcode = N->getOpcode();
12170   assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
12171           Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
12172           Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
12173          "Expected an overflow opcode");
12174 
12175   EVT ResVT = N->getValueType(0);
12176   EVT OvVT = N->getValueType(1);
12177   EVT ResEltVT = ResVT.getVectorElementType();
12178   EVT OvEltVT = OvVT.getVectorElementType();
12179   SDLoc dl(N);
12180 
12181   // If ResNE is 0, fully unroll the vector op.
12182   unsigned NE = ResVT.getVectorNumElements();
12183   if (ResNE == 0)
12184     ResNE = NE;
12185   else if (NE > ResNE)
12186     NE = ResNE;
12187 
12188   SmallVector<SDValue, 8> LHSScalars;
12189   SmallVector<SDValue, 8> RHSScalars;
12190   ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
12191   ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
12192 
12193   EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
12194   SDVTList VTs = getVTList(ResEltVT, SVT);
12195   SmallVector<SDValue, 8> ResScalars;
12196   SmallVector<SDValue, 8> OvScalars;
12197   for (unsigned i = 0; i < NE; ++i) {
12198     SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
12199     SDValue Ov =
12200         getSelect(dl, OvEltVT, Res.getValue(1),
12201                   getBoolConstant(true, dl, OvEltVT, ResVT),
12202                   getConstant(0, dl, OvEltVT));
12203 
12204     ResScalars.push_back(Res);
12205     OvScalars.push_back(Ov);
12206   }
12207 
12208   ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
12209   OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
12210 
12211   EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
12212   EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
12213   return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
12214                         getBuildVector(NewOvVT, dl, OvScalars));
12215 }
12216 
12217 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
12218                                                   LoadSDNode *Base,
12219                                                   unsigned Bytes,
12220                                                   int Dist) const {
12221   if (LD->isVolatile() || Base->isVolatile())
12222     return false;
12223   // TODO: probably too restrictive for atomics, revisit
12224   if (!LD->isSimple())
12225     return false;
12226   if (LD->isIndexed() || Base->isIndexed())
12227     return false;
12228   if (LD->getChain() != Base->getChain())
12229     return false;
12230   EVT VT = LD->getMemoryVT();
12231   if (VT.getSizeInBits() / 8 != Bytes)
12232     return false;
12233 
12234   auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
12235   auto LocDecomp = BaseIndexOffset::match(LD, *this);
12236 
12237   int64_t Offset = 0;
12238   if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
12239     return (Dist * (int64_t)Bytes == Offset);
12240   return false;
12241 }
12242 
12243 /// InferPtrAlignment - Infer alignment of a load / store address. Return
12244 /// std::nullopt if it cannot be inferred.
12245 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
12246   // If this is a GlobalAddress + cst, return the alignment.
12247   const GlobalValue *GV = nullptr;
12248   int64_t GVOffset = 0;
12249   if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
12250     unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
12251     KnownBits Known(PtrWidth);
12252     llvm::computeKnownBits(GV, Known, getDataLayout());
12253     unsigned AlignBits = Known.countMinTrailingZeros();
12254     if (AlignBits)
12255       return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
12256   }
12257 
12258   // If this is a direct reference to a stack slot, use information about the
12259   // stack slot's alignment.
12260   int FrameIdx = INT_MIN;
12261   int64_t FrameOffset = 0;
12262   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
12263     FrameIdx = FI->getIndex();
12264   } else if (isBaseWithConstantOffset(Ptr) &&
12265              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
12266     // Handle FI+Cst
12267     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
12268     FrameOffset = Ptr.getConstantOperandVal(1);
12269   }
12270 
12271   if (FrameIdx != INT_MIN) {
12272     const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
12273     return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
12274   }
12275 
12276   return std::nullopt;
12277 }
12278 
12279 /// Split the scalar node with EXTRACT_ELEMENT using the provided
12280 /// VTs and return the low/high part.
12281 std::pair<SDValue, SDValue> SelectionDAG::SplitScalar(const SDValue &N,
12282                                                       const SDLoc &DL,
12283                                                       const EVT &LoVT,
12284                                                       const EVT &HiVT) {
12285   assert(!LoVT.isVector() && !HiVT.isVector() && !N.getValueType().isVector() &&
12286          "Split node must be a scalar type");
12287   SDValue Lo =
12288       getNode(ISD::EXTRACT_ELEMENT, DL, LoVT, N, getIntPtrConstant(0, DL));
12289   SDValue Hi =
12290       getNode(ISD::EXTRACT_ELEMENT, DL, HiVT, N, getIntPtrConstant(1, DL));
12291   return std::make_pair(Lo, Hi);
12292 }
12293 
12294 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
12295 /// which is split (or expanded) into two not necessarily identical pieces.
12296 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
12297   // Currently all types are split in half.
12298   EVT LoVT, HiVT;
12299   if (!VT.isVector())
12300     LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
12301   else
12302     LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
12303 
12304   return std::make_pair(LoVT, HiVT);
12305 }
12306 
12307 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
12308 /// type, dependent on an enveloping VT that has been split into two identical
12309 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
12310 std::pair<EVT, EVT>
12311 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
12312                                        bool *HiIsEmpty) const {
12313   EVT EltTp = VT.getVectorElementType();
12314   // Examples:
12315   //   custom VL=8  with enveloping VL=8/8 yields 8/0 (hi empty)
12316   //   custom VL=9  with enveloping VL=8/8 yields 8/1
12317   //   custom VL=10 with enveloping VL=8/8 yields 8/2
12318   //   etc.
12319   ElementCount VTNumElts = VT.getVectorElementCount();
12320   ElementCount EnvNumElts = EnvVT.getVectorElementCount();
12321   assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
12322          "Mixing fixed width and scalable vectors when enveloping a type");
12323   EVT LoVT, HiVT;
12324   if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
12325     LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
12326     HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
12327     *HiIsEmpty = false;
12328   } else {
12329     // Flag that hi type has zero storage size, but return split envelop type
12330     // (this would be easier if vector types with zero elements were allowed).
12331     LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
12332     HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
12333     *HiIsEmpty = true;
12334   }
12335   return std::make_pair(LoVT, HiVT);
12336 }
12337 
12338 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
12339 /// low/high part.
12340 std::pair<SDValue, SDValue>
12341 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
12342                           const EVT &HiVT) {
12343   assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
12344          LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
12345          "Splitting vector with an invalid mixture of fixed and scalable "
12346          "vector types");
12347   assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
12348              N.getValueType().getVectorMinNumElements() &&
12349          "More vector elements requested than available!");
12350   SDValue Lo, Hi;
12351   Lo =
12352       getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
12353   // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
12354   // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
12355   // IDX with the runtime scaling factor of the result vector type. For
12356   // fixed-width result vectors, that runtime scaling factor is 1.
12357   Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
12358                getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
12359   return std::make_pair(Lo, Hi);
12360 }
12361 
12362 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
12363                                                    const SDLoc &DL) {
12364   // Split the vector length parameter.
12365   // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
12366   EVT VT = N.getValueType();
12367   assert(VecVT.getVectorElementCount().isKnownEven() &&
12368          "Expecting the mask to be an evenly-sized vector");
12369   unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
12370   SDValue HalfNumElts =
12371       VecVT.isFixedLengthVector()
12372           ? getConstant(HalfMinNumElts, DL, VT)
12373           : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
12374   SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
12375   SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
12376   return std::make_pair(Lo, Hi);
12377 }
12378 
12379 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
12380 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
12381   EVT VT = N.getValueType();
12382   EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
12383                                 NextPowerOf2(VT.getVectorNumElements()));
12384   return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
12385                  getVectorIdxConstant(0, DL));
12386 }
12387 
12388 void SelectionDAG::ExtractVectorElements(SDValue Op,
12389                                          SmallVectorImpl<SDValue> &Args,
12390                                          unsigned Start, unsigned Count,
12391                                          EVT EltVT) {
12392   EVT VT = Op.getValueType();
12393   if (Count == 0)
12394     Count = VT.getVectorNumElements();
12395   if (EltVT == EVT())
12396     EltVT = VT.getVectorElementType();
12397   SDLoc SL(Op);
12398   for (unsigned i = Start, e = Start + Count; i != e; ++i) {
12399     Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
12400                            getVectorIdxConstant(i, SL)));
12401   }
12402 }
12403 
12404 // getAddressSpace - Return the address space this GlobalAddress belongs to.
12405 unsigned GlobalAddressSDNode::getAddressSpace() const {
12406   return getGlobal()->getType()->getAddressSpace();
12407 }
12408 
12409 Type *ConstantPoolSDNode::getType() const {
12410   if (isMachineConstantPoolEntry())
12411     return Val.MachineCPVal->getType();
12412   return Val.ConstVal->getType();
12413 }
12414 
12415 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
12416                                         unsigned &SplatBitSize,
12417                                         bool &HasAnyUndefs,
12418                                         unsigned MinSplatBits,
12419                                         bool IsBigEndian) const {
12420   EVT VT = getValueType(0);
12421   assert(VT.isVector() && "Expected a vector type");
12422   unsigned VecWidth = VT.getSizeInBits();
12423   if (MinSplatBits > VecWidth)
12424     return false;
12425 
12426   // FIXME: The widths are based on this node's type, but build vectors can
12427   // truncate their operands.
12428   SplatValue = APInt(VecWidth, 0);
12429   SplatUndef = APInt(VecWidth, 0);
12430 
12431   // Get the bits. Bits with undefined values (when the corresponding element
12432   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
12433   // in SplatValue. If any of the values are not constant, give up and return
12434   // false.
12435   unsigned int NumOps = getNumOperands();
12436   assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
12437   unsigned EltWidth = VT.getScalarSizeInBits();
12438 
12439   for (unsigned j = 0; j < NumOps; ++j) {
12440     unsigned i = IsBigEndian ? NumOps - 1 - j : j;
12441     SDValue OpVal = getOperand(i);
12442     unsigned BitPos = j * EltWidth;
12443 
12444     if (OpVal.isUndef())
12445       SplatUndef.setBits(BitPos, BitPos + EltWidth);
12446     else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
12447       SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
12448     else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
12449       SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
12450     else
12451       return false;
12452   }
12453 
12454   // The build_vector is all constants or undefs. Find the smallest element
12455   // size that splats the vector.
12456   HasAnyUndefs = (SplatUndef != 0);
12457 
12458   // FIXME: This does not work for vectors with elements less than 8 bits.
12459   while (VecWidth > 8) {
12460     // If we can't split in half, stop here.
12461     if (VecWidth & 1)
12462       break;
12463 
12464     unsigned HalfSize = VecWidth / 2;
12465     APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
12466     APInt LowValue = SplatValue.extractBits(HalfSize, 0);
12467     APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
12468     APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
12469 
12470     // If the two halves do not match (ignoring undef bits), stop here.
12471     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
12472         MinSplatBits > HalfSize)
12473       break;
12474 
12475     SplatValue = HighValue | LowValue;
12476     SplatUndef = HighUndef & LowUndef;
12477 
12478     VecWidth = HalfSize;
12479   }
12480 
12481   // FIXME: The loop above only tries to split in halves. But if the input
12482   // vector for example is <3 x i16> it wouldn't be able to detect a
12483   // SplatBitSize of 16. No idea if that is a design flaw currently limiting
12484   // optimizations. I guess that back in the days when this helper was created
12485   // vectors normally was power-of-2 sized.
12486 
12487   SplatBitSize = VecWidth;
12488   return true;
12489 }
12490 
12491 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
12492                                          BitVector *UndefElements) const {
12493   unsigned NumOps = getNumOperands();
12494   if (UndefElements) {
12495     UndefElements->clear();
12496     UndefElements->resize(NumOps);
12497   }
12498   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
12499   if (!DemandedElts)
12500     return SDValue();
12501   SDValue Splatted;
12502   for (unsigned i = 0; i != NumOps; ++i) {
12503     if (!DemandedElts[i])
12504       continue;
12505     SDValue Op = getOperand(i);
12506     if (Op.isUndef()) {
12507       if (UndefElements)
12508         (*UndefElements)[i] = true;
12509     } else if (!Splatted) {
12510       Splatted = Op;
12511     } else if (Splatted != Op) {
12512       return SDValue();
12513     }
12514   }
12515 
12516   if (!Splatted) {
12517     unsigned FirstDemandedIdx = DemandedElts.countr_zero();
12518     assert(getOperand(FirstDemandedIdx).isUndef() &&
12519            "Can only have a splat without a constant for all undefs.");
12520     return getOperand(FirstDemandedIdx);
12521   }
12522 
12523   return Splatted;
12524 }
12525 
12526 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
12527   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
12528   return getSplatValue(DemandedElts, UndefElements);
12529 }
12530 
12531 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts,
12532                                             SmallVectorImpl<SDValue> &Sequence,
12533                                             BitVector *UndefElements) const {
12534   unsigned NumOps = getNumOperands();
12535   Sequence.clear();
12536   if (UndefElements) {
12537     UndefElements->clear();
12538     UndefElements->resize(NumOps);
12539   }
12540   assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
12541   if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
12542     return false;
12543 
12544   // Set the undefs even if we don't find a sequence (like getSplatValue).
12545   if (UndefElements)
12546     for (unsigned I = 0; I != NumOps; ++I)
12547       if (DemandedElts[I] && getOperand(I).isUndef())
12548         (*UndefElements)[I] = true;
12549 
12550   // Iteratively widen the sequence length looking for repetitions.
12551   for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
12552     Sequence.append(SeqLen, SDValue());
12553     for (unsigned I = 0; I != NumOps; ++I) {
12554       if (!DemandedElts[I])
12555         continue;
12556       SDValue &SeqOp = Sequence[I % SeqLen];
12557       SDValue Op = getOperand(I);
12558       if (Op.isUndef()) {
12559         if (!SeqOp)
12560           SeqOp = Op;
12561         continue;
12562       }
12563       if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
12564         Sequence.clear();
12565         break;
12566       }
12567       SeqOp = Op;
12568     }
12569     if (!Sequence.empty())
12570       return true;
12571   }
12572 
12573   assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
12574   return false;
12575 }
12576 
12577 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
12578                                             BitVector *UndefElements) const {
12579   APInt DemandedElts = APInt::getAllOnes(getNumOperands());
12580   return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
12581 }
12582 
12583 ConstantSDNode *
12584 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
12585                                         BitVector *UndefElements) const {
12586   return dyn_cast_or_null<ConstantSDNode>(
12587       getSplatValue(DemandedElts, UndefElements));
12588 }
12589 
12590 ConstantSDNode *
12591 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
12592   return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
12593 }
12594 
12595 ConstantFPSDNode *
12596 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
12597                                           BitVector *UndefElements) const {
12598   return dyn_cast_or_null<ConstantFPSDNode>(
12599       getSplatValue(DemandedElts, UndefElements));
12600 }
12601 
12602 ConstantFPSDNode *
12603 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
12604   return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
12605 }
12606 
12607 int32_t
12608 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
12609                                                    uint32_t BitWidth) const {
12610   if (ConstantFPSDNode *CN =
12611           dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
12612     bool IsExact;
12613     APSInt IntVal(BitWidth);
12614     const APFloat &APF = CN->getValueAPF();
12615     if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
12616             APFloat::opOK ||
12617         !IsExact)
12618       return -1;
12619 
12620     return IntVal.exactLogBase2();
12621   }
12622   return -1;
12623 }
12624 
12625 bool BuildVectorSDNode::getConstantRawBits(
12626     bool IsLittleEndian, unsigned DstEltSizeInBits,
12627     SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
12628   // Early-out if this contains anything but Undef/Constant/ConstantFP.
12629   if (!isConstant())
12630     return false;
12631 
12632   unsigned NumSrcOps = getNumOperands();
12633   unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
12634   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
12635          "Invalid bitcast scale");
12636 
12637   // Extract raw src bits.
12638   SmallVector<APInt> SrcBitElements(NumSrcOps,
12639                                     APInt::getZero(SrcEltSizeInBits));
12640   BitVector SrcUndeElements(NumSrcOps, false);
12641 
12642   for (unsigned I = 0; I != NumSrcOps; ++I) {
12643     SDValue Op = getOperand(I);
12644     if (Op.isUndef()) {
12645       SrcUndeElements.set(I);
12646       continue;
12647     }
12648     auto *CInt = dyn_cast<ConstantSDNode>(Op);
12649     auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
12650     assert((CInt || CFP) && "Unknown constant");
12651     SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
12652                              : CFP->getValueAPF().bitcastToAPInt();
12653   }
12654 
12655   // Recast to dst width.
12656   recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
12657                 SrcBitElements, UndefElements, SrcUndeElements);
12658   return true;
12659 }
12660 
12661 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
12662                                       unsigned DstEltSizeInBits,
12663                                       SmallVectorImpl<APInt> &DstBitElements,
12664                                       ArrayRef<APInt> SrcBitElements,
12665                                       BitVector &DstUndefElements,
12666                                       const BitVector &SrcUndefElements) {
12667   unsigned NumSrcOps = SrcBitElements.size();
12668   unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
12669   assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
12670          "Invalid bitcast scale");
12671   assert(NumSrcOps == SrcUndefElements.size() &&
12672          "Vector size mismatch");
12673 
12674   unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
12675   DstUndefElements.clear();
12676   DstUndefElements.resize(NumDstOps, false);
12677   DstBitElements.assign(NumDstOps, APInt::getZero(DstEltSizeInBits));
12678 
12679   // Concatenate src elements constant bits together into dst element.
12680   if (SrcEltSizeInBits <= DstEltSizeInBits) {
12681     unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
12682     for (unsigned I = 0; I != NumDstOps; ++I) {
12683       DstUndefElements.set(I);
12684       APInt &DstBits = DstBitElements[I];
12685       for (unsigned J = 0; J != Scale; ++J) {
12686         unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
12687         if (SrcUndefElements[Idx])
12688           continue;
12689         DstUndefElements.reset(I);
12690         const APInt &SrcBits = SrcBitElements[Idx];
12691         assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
12692                "Illegal constant bitwidths");
12693         DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
12694       }
12695     }
12696     return;
12697   }
12698 
12699   // Split src element constant bits into dst elements.
12700   unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
12701   for (unsigned I = 0; I != NumSrcOps; ++I) {
12702     if (SrcUndefElements[I]) {
12703       DstUndefElements.set(I * Scale, (I + 1) * Scale);
12704       continue;
12705     }
12706     const APInt &SrcBits = SrcBitElements[I];
12707     for (unsigned J = 0; J != Scale; ++J) {
12708       unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
12709       APInt &DstBits = DstBitElements[Idx];
12710       DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
12711     }
12712   }
12713 }
12714 
12715 bool BuildVectorSDNode::isConstant() const {
12716   for (const SDValue &Op : op_values()) {
12717     unsigned Opc = Op.getOpcode();
12718     if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
12719       return false;
12720   }
12721   return true;
12722 }
12723 
12724 std::optional<std::pair<APInt, APInt>>
12725 BuildVectorSDNode::isConstantSequence() const {
12726   unsigned NumOps = getNumOperands();
12727   if (NumOps < 2)
12728     return std::nullopt;
12729 
12730   if (!isa<ConstantSDNode>(getOperand(0)) ||
12731       !isa<ConstantSDNode>(getOperand(1)))
12732     return std::nullopt;
12733 
12734   unsigned EltSize = getValueType(0).getScalarSizeInBits();
12735   APInt Start = getConstantOperandAPInt(0).trunc(EltSize);
12736   APInt Stride = getConstantOperandAPInt(1).trunc(EltSize) - Start;
12737 
12738   if (Stride.isZero())
12739     return std::nullopt;
12740 
12741   for (unsigned i = 2; i < NumOps; ++i) {
12742     if (!isa<ConstantSDNode>(getOperand(i)))
12743       return std::nullopt;
12744 
12745     APInt Val = getConstantOperandAPInt(i).trunc(EltSize);
12746     if (Val != (Start + (Stride * i)))
12747       return std::nullopt;
12748   }
12749 
12750   return std::make_pair(Start, Stride);
12751 }
12752 
12753 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
12754   // Find the first non-undef value in the shuffle mask.
12755   unsigned i, e;
12756   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
12757     /* search */;
12758 
12759   // If all elements are undefined, this shuffle can be considered a splat
12760   // (although it should eventually get simplified away completely).
12761   if (i == e)
12762     return true;
12763 
12764   // Make sure all remaining elements are either undef or the same as the first
12765   // non-undef value.
12766   for (int Idx = Mask[i]; i != e; ++i)
12767     if (Mask[i] >= 0 && Mask[i] != Idx)
12768       return false;
12769   return true;
12770 }
12771 
12772 // Returns the SDNode if it is a constant integer BuildVector
12773 // or constant integer.
12774 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const {
12775   if (isa<ConstantSDNode>(N))
12776     return N.getNode();
12777   if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
12778     return N.getNode();
12779   // Treat a GlobalAddress supporting constant offset folding as a
12780   // constant integer.
12781   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
12782     if (GA->getOpcode() == ISD::GlobalAddress &&
12783         TLI->isOffsetFoldingLegal(GA))
12784       return GA;
12785   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
12786       isa<ConstantSDNode>(N.getOperand(0)))
12787     return N.getNode();
12788   return nullptr;
12789 }
12790 
12791 // Returns the SDNode if it is a constant float BuildVector
12792 // or constant float.
12793 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const {
12794   if (isa<ConstantFPSDNode>(N))
12795     return N.getNode();
12796 
12797   if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
12798     return N.getNode();
12799 
12800   if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
12801       isa<ConstantFPSDNode>(N.getOperand(0)))
12802     return N.getNode();
12803 
12804   return nullptr;
12805 }
12806 
12807 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
12808   assert(!Node->OperandList && "Node already has operands");
12809   assert(SDNode::getMaxNumOperands() >= Vals.size() &&
12810          "too many operands to fit into SDNode");
12811   SDUse *Ops = OperandRecycler.allocate(
12812       ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
12813 
12814   bool IsDivergent = false;
12815   for (unsigned I = 0; I != Vals.size(); ++I) {
12816     Ops[I].setUser(Node);
12817     Ops[I].setInitial(Vals[I]);
12818     if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
12819       IsDivergent |= Ops[I].getNode()->isDivergent();
12820   }
12821   Node->NumOperands = Vals.size();
12822   Node->OperandList = Ops;
12823   if (!TLI->isSDNodeAlwaysUniform(Node)) {
12824     IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA);
12825     Node->SDNodeBits.IsDivergent = IsDivergent;
12826   }
12827   checkForCycles(Node);
12828 }
12829 
12830 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
12831                                      SmallVectorImpl<SDValue> &Vals) {
12832   size_t Limit = SDNode::getMaxNumOperands();
12833   while (Vals.size() > Limit) {
12834     unsigned SliceIdx = Vals.size() - Limit;
12835     auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
12836     SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
12837     Vals.erase(Vals.begin() + SliceIdx, Vals.end());
12838     Vals.emplace_back(NewTF);
12839   }
12840   return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
12841 }
12842 
12843 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL,
12844                                         EVT VT, SDNodeFlags Flags) {
12845   switch (Opcode) {
12846   default:
12847     return SDValue();
12848   case ISD::ADD:
12849   case ISD::OR:
12850   case ISD::XOR:
12851   case ISD::UMAX:
12852     return getConstant(0, DL, VT);
12853   case ISD::MUL:
12854     return getConstant(1, DL, VT);
12855   case ISD::AND:
12856   case ISD::UMIN:
12857     return getAllOnesConstant(DL, VT);
12858   case ISD::SMAX:
12859     return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT);
12860   case ISD::SMIN:
12861     return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT);
12862   case ISD::FADD:
12863     return getConstantFP(-0.0, DL, VT);
12864   case ISD::FMUL:
12865     return getConstantFP(1.0, DL, VT);
12866   case ISD::FMINNUM:
12867   case ISD::FMAXNUM: {
12868     // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
12869     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
12870     APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
12871                         !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
12872                         APFloat::getLargest(Semantics);
12873     if (Opcode == ISD::FMAXNUM)
12874       NeutralAF.changeSign();
12875 
12876     return getConstantFP(NeutralAF, DL, VT);
12877   }
12878   case ISD::FMINIMUM:
12879   case ISD::FMAXIMUM: {
12880     // Neutral element for fminimum is Inf or FLT_MAX, depending on FMF.
12881     const fltSemantics &Semantics = EVTToAPFloatSemantics(VT);
12882     APFloat NeutralAF = !Flags.hasNoInfs() ? APFloat::getInf(Semantics)
12883                                            : APFloat::getLargest(Semantics);
12884     if (Opcode == ISD::FMAXIMUM)
12885       NeutralAF.changeSign();
12886 
12887     return getConstantFP(NeutralAF, DL, VT);
12888   }
12889 
12890   }
12891 }
12892 
12893 /// Helper used to make a call to a library function that has one argument of
12894 /// pointer type.
12895 ///
12896 /// Such functions include 'fegetmode', 'fesetenv' and some others, which are
12897 /// used to get or set floating-point state. They have one argument of pointer
12898 /// type, which points to the memory region containing bits of the
12899 /// floating-point state. The value returned by such function is ignored in the
12900 /// created call.
12901 ///
12902 /// \param LibFunc Reference to library function (value of RTLIB::Libcall).
12903 /// \param Ptr Pointer used to save/load state.
12904 /// \param InChain Ingoing token chain.
12905 /// \returns Outgoing chain token.
12906 SDValue SelectionDAG::makeStateFunctionCall(unsigned LibFunc, SDValue Ptr,
12907                                             SDValue InChain,
12908                                             const SDLoc &DLoc) {
12909   assert(InChain.getValueType() == MVT::Other && "Expected token chain");
12910   TargetLowering::ArgListTy Args;
12911   TargetLowering::ArgListEntry Entry;
12912   Entry.Node = Ptr;
12913   Entry.Ty = Ptr.getValueType().getTypeForEVT(*getContext());
12914   Args.push_back(Entry);
12915   RTLIB::Libcall LC = static_cast<RTLIB::Libcall>(LibFunc);
12916   SDValue Callee = getExternalSymbol(TLI->getLibcallName(LC),
12917                                      TLI->getPointerTy(getDataLayout()));
12918   TargetLowering::CallLoweringInfo CLI(*this);
12919   CLI.setDebugLoc(DLoc).setChain(InChain).setLibCallee(
12920       TLI->getLibcallCallingConv(LC), Type::getVoidTy(*getContext()), Callee,
12921       std::move(Args));
12922   return TLI->LowerCallTo(CLI).second;
12923 }
12924 
12925 void SelectionDAG::copyExtraInfo(SDNode *From, SDNode *To) {
12926   assert(From && To && "Invalid SDNode; empty source SDValue?");
12927   auto I = SDEI.find(From);
12928   if (I == SDEI.end())
12929     return;
12930 
12931   // Use of operator[] on the DenseMap may cause an insertion, which invalidates
12932   // the iterator, hence the need to make a copy to prevent a use-after-free.
12933   NodeExtraInfo NEI = I->second;
12934   if (LLVM_LIKELY(!NEI.PCSections)) {
12935     // No deep copy required for the types of extra info set.
12936     //
12937     // FIXME: Investigate if other types of extra info also need deep copy. This
12938     // depends on the types of nodes they can be attached to: if some extra info
12939     // is only ever attached to nodes where a replacement To node is always the
12940     // node where later use and propagation of the extra info has the intended
12941     // semantics, no deep copy is required.
12942     SDEI[To] = std::move(NEI);
12943     return;
12944   }
12945 
12946   // We need to copy NodeExtraInfo to all _new_ nodes that are being introduced
12947   // through the replacement of From with To. Otherwise, replacements of a node
12948   // (From) with more complex nodes (To and its operands) may result in lost
12949   // extra info where the root node (To) is insignificant in further propagating
12950   // and using extra info when further lowering to MIR.
12951   //
12952   // In the first step pre-populate the visited set with the nodes reachable
12953   // from the old From node. This avoids copying NodeExtraInfo to parts of the
12954   // DAG that is not new and should be left untouched.
12955   SmallVector<const SDNode *> Leafs{From}; // Leafs reachable with VisitFrom.
12956   DenseSet<const SDNode *> FromReach; // The set of nodes reachable from From.
12957   auto VisitFrom = [&](auto &&Self, const SDNode *N, int MaxDepth) {
12958     if (MaxDepth == 0) {
12959       // Remember this node in case we need to increase MaxDepth and continue
12960       // populating FromReach from this node.
12961       Leafs.emplace_back(N);
12962       return;
12963     }
12964     if (!FromReach.insert(N).second)
12965       return;
12966     for (const SDValue &Op : N->op_values())
12967       Self(Self, Op.getNode(), MaxDepth - 1);
12968   };
12969 
12970   // Copy extra info to To and all its transitive operands (that are new).
12971   SmallPtrSet<const SDNode *, 8> Visited;
12972   auto DeepCopyTo = [&](auto &&Self, const SDNode *N) {
12973     if (FromReach.contains(N))
12974       return true;
12975     if (!Visited.insert(N).second)
12976       return true;
12977     if (getEntryNode().getNode() == N)
12978       return false;
12979     for (const SDValue &Op : N->op_values()) {
12980       if (!Self(Self, Op.getNode()))
12981         return false;
12982     }
12983     // Copy only if entry node was not reached.
12984     SDEI[N] = NEI;
12985     return true;
12986   };
12987 
12988   // We first try with a lower MaxDepth, assuming that the path to common
12989   // operands between From and To is relatively short. This significantly
12990   // improves performance in the common case. The initial MaxDepth is big
12991   // enough to avoid retry in the common case; the last MaxDepth is large
12992   // enough to avoid having to use the fallback below (and protects from
12993   // potential stack exhaustion from recursion).
12994   for (int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024;
12995        PrevDepth = MaxDepth, MaxDepth *= 2, Visited.clear()) {
12996     // StartFrom is the previous (or initial) set of leafs reachable at the
12997     // previous maximum depth.
12998     SmallVector<const SDNode *> StartFrom;
12999     std::swap(StartFrom, Leafs);
13000     for (const SDNode *N : StartFrom)
13001       VisitFrom(VisitFrom, N, MaxDepth - PrevDepth);
13002     if (LLVM_LIKELY(DeepCopyTo(DeepCopyTo, To)))
13003       return;
13004     // This should happen very rarely (reached the entry node).
13005     LLVM_DEBUG(dbgs() << __func__ << ": MaxDepth=" << MaxDepth << " too low\n");
13006     assert(!Leafs.empty());
13007   }
13008 
13009   // This should not happen - but if it did, that means the subgraph reachable
13010   // from From has depth greater or equal to maximum MaxDepth, and VisitFrom()
13011   // could not visit all reachable common operands. Consequently, we were able
13012   // to reach the entry node.
13013   errs() << "warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n";
13014   assert(false && "From subgraph too complex - increase max. MaxDepth?");
13015   // Best-effort fallback if assertions disabled.
13016   SDEI[To] = std::move(NEI);
13017 }
13018 
13019 #ifndef NDEBUG
13020 static void checkForCyclesHelper(const SDNode *N,
13021                                  SmallPtrSetImpl<const SDNode*> &Visited,
13022                                  SmallPtrSetImpl<const SDNode*> &Checked,
13023                                  const llvm::SelectionDAG *DAG) {
13024   // If this node has already been checked, don't check it again.
13025   if (Checked.count(N))
13026     return;
13027 
13028   // If a node has already been visited on this depth-first walk, reject it as
13029   // a cycle.
13030   if (!Visited.insert(N).second) {
13031     errs() << "Detected cycle in SelectionDAG\n";
13032     dbgs() << "Offending node:\n";
13033     N->dumprFull(DAG); dbgs() << "\n";
13034     abort();
13035   }
13036 
13037   for (const SDValue &Op : N->op_values())
13038     checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
13039 
13040   Checked.insert(N);
13041   Visited.erase(N);
13042 }
13043 #endif
13044 
13045 void llvm::checkForCycles(const llvm::SDNode *N,
13046                           const llvm::SelectionDAG *DAG,
13047                           bool force) {
13048 #ifndef NDEBUG
13049   bool check = force;
13050 #ifdef EXPENSIVE_CHECKS
13051   check = true;
13052 #endif  // EXPENSIVE_CHECKS
13053   if (check) {
13054     assert(N && "Checking nonexistent SDNode");
13055     SmallPtrSet<const SDNode*, 32> visited;
13056     SmallPtrSet<const SDNode*, 32> checked;
13057     checkForCyclesHelper(N, visited, checked, DAG);
13058   }
13059 #endif  // !NDEBUG
13060 }
13061 
13062 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
13063   checkForCycles(DAG->getRoot().getNode(), DAG, force);
13064 }
13065