1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/FoldingSet.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineConstantPool.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/RuntimeLibcalls.h" 38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 41 #include "llvm/CodeGen/TargetLowering.h" 42 #include "llvm/CodeGen/TargetRegisterInfo.h" 43 #include "llvm/CodeGen/TargetSubtargetInfo.h" 44 #include "llvm/CodeGen/ValueTypes.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalValue.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/KnownBits.h" 62 #include "llvm/Support/MachineValueType.h" 63 #include "llvm/Support/ManagedStatic.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/Mutex.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Target/TargetMachine.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Transforms/Utils/SizeOpts.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstdint> 73 #include <cstdlib> 74 #include <limits> 75 #include <set> 76 #include <string> 77 #include <utility> 78 #include <vector> 79 80 using namespace llvm; 81 82 /// makeVTList - Return an instance of the SDVTList struct initialized with the 83 /// specified members. 84 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 85 SDVTList Res = {VTs, NumVTs}; 86 return Res; 87 } 88 89 // Default null implementations of the callbacks. 90 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 91 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 92 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 93 94 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 95 96 #define DEBUG_TYPE "selectiondag" 97 98 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 99 cl::Hidden, cl::init(true), 100 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 101 102 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 103 cl::desc("Number limit for gluing ld/st of memcpy."), 104 cl::Hidden, cl::init(0)); 105 106 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 107 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 108 } 109 110 //===----------------------------------------------------------------------===// 111 // ConstantFPSDNode Class 112 //===----------------------------------------------------------------------===// 113 114 /// isExactlyValue - We don't rely on operator== working on double values, as 115 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 116 /// As such, this method can be used to do an exact bit-for-bit comparison of 117 /// two floating point values. 118 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 119 return getValueAPF().bitwiseIsEqual(V); 120 } 121 122 bool ConstantFPSDNode::isValueValidForType(EVT VT, 123 const APFloat& Val) { 124 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 125 126 // convert modifies in place, so make a copy. 127 APFloat Val2 = APFloat(Val); 128 bool losesInfo; 129 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 130 APFloat::rmNearestTiesToEven, 131 &losesInfo); 132 return !losesInfo; 133 } 134 135 //===----------------------------------------------------------------------===// 136 // ISD Namespace 137 //===----------------------------------------------------------------------===// 138 139 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 140 auto *BV = dyn_cast<BuildVectorSDNode>(N); 141 if (!BV) 142 return false; 143 144 APInt SplatUndef; 145 unsigned SplatBitSize; 146 bool HasUndefs; 147 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 148 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 149 EltSize) && 150 EltSize == SplatBitSize; 151 } 152 153 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 154 // specializations of the more general isConstantSplatVector()? 155 156 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 157 // Look through a bit convert. 158 while (N->getOpcode() == ISD::BITCAST) 159 N = N->getOperand(0).getNode(); 160 161 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 162 163 unsigned i = 0, e = N->getNumOperands(); 164 165 // Skip over all of the undef values. 166 while (i != e && N->getOperand(i).isUndef()) 167 ++i; 168 169 // Do not accept an all-undef vector. 170 if (i == e) return false; 171 172 // Do not accept build_vectors that aren't all constants or which have non-~0 173 // elements. We have to be a bit careful here, as the type of the constant 174 // may not be the same as the type of the vector elements due to type 175 // legalization (the elements are promoted to a legal type for the target and 176 // a vector of a type may be legal when the base element type is not). 177 // We only want to check enough bits to cover the vector elements, because 178 // we care if the resultant vector is all ones, not whether the individual 179 // constants are. 180 SDValue NotZero = N->getOperand(i); 181 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 182 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 183 if (CN->getAPIntValue().countTrailingOnes() < EltSize) 184 return false; 185 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 186 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) 187 return false; 188 } else 189 return false; 190 191 // Okay, we have at least one ~0 value, check to see if the rest match or are 192 // undefs. Even with the above element type twiddling, this should be OK, as 193 // the same type legalization should have applied to all the elements. 194 for (++i; i != e; ++i) 195 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 196 return false; 197 return true; 198 } 199 200 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 201 // Look through a bit convert. 202 while (N->getOpcode() == ISD::BITCAST) 203 N = N->getOperand(0).getNode(); 204 205 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 206 207 bool IsAllUndef = true; 208 for (const SDValue &Op : N->op_values()) { 209 if (Op.isUndef()) 210 continue; 211 IsAllUndef = false; 212 // Do not accept build_vectors that aren't all constants or which have non-0 213 // elements. We have to be a bit careful here, as the type of the constant 214 // may not be the same as the type of the vector elements due to type 215 // legalization (the elements are promoted to a legal type for the target 216 // and a vector of a type may be legal when the base element type is not). 217 // We only want to check enough bits to cover the vector elements, because 218 // we care if the resultant vector is all zeros, not whether the individual 219 // constants are. 220 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 221 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 222 if (CN->getAPIntValue().countTrailingZeros() < EltSize) 223 return false; 224 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 225 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) 226 return false; 227 } else 228 return false; 229 } 230 231 // Do not accept an all-undef vector. 232 if (IsAllUndef) 233 return false; 234 return true; 235 } 236 237 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 238 if (N->getOpcode() != ISD::BUILD_VECTOR) 239 return false; 240 241 for (const SDValue &Op : N->op_values()) { 242 if (Op.isUndef()) 243 continue; 244 if (!isa<ConstantSDNode>(Op)) 245 return false; 246 } 247 return true; 248 } 249 250 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 251 if (N->getOpcode() != ISD::BUILD_VECTOR) 252 return false; 253 254 for (const SDValue &Op : N->op_values()) { 255 if (Op.isUndef()) 256 continue; 257 if (!isa<ConstantFPSDNode>(Op)) 258 return false; 259 } 260 return true; 261 } 262 263 bool ISD::allOperandsUndef(const SDNode *N) { 264 // Return false if the node has no operands. 265 // This is "logically inconsistent" with the definition of "all" but 266 // is probably the desired behavior. 267 if (N->getNumOperands() == 0) 268 return false; 269 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 270 } 271 272 bool ISD::matchUnaryPredicate(SDValue Op, 273 std::function<bool(ConstantSDNode *)> Match, 274 bool AllowUndefs) { 275 // FIXME: Add support for scalar UNDEF cases? 276 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 277 return Match(Cst); 278 279 // FIXME: Add support for vector UNDEF cases? 280 if (ISD::BUILD_VECTOR != Op.getOpcode()) 281 return false; 282 283 EVT SVT = Op.getValueType().getScalarType(); 284 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 285 if (AllowUndefs && Op.getOperand(i).isUndef()) { 286 if (!Match(nullptr)) 287 return false; 288 continue; 289 } 290 291 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 292 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 293 return false; 294 } 295 return true; 296 } 297 298 bool ISD::matchBinaryPredicate( 299 SDValue LHS, SDValue RHS, 300 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 301 bool AllowUndefs, bool AllowTypeMismatch) { 302 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 303 return false; 304 305 // TODO: Add support for scalar UNDEF cases? 306 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 307 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 308 return Match(LHSCst, RHSCst); 309 310 // TODO: Add support for vector UNDEF cases? 311 if (ISD::BUILD_VECTOR != LHS.getOpcode() || 312 ISD::BUILD_VECTOR != RHS.getOpcode()) 313 return false; 314 315 EVT SVT = LHS.getValueType().getScalarType(); 316 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 317 SDValue LHSOp = LHS.getOperand(i); 318 SDValue RHSOp = RHS.getOperand(i); 319 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 320 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 321 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 322 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 323 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 324 return false; 325 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 326 LHSOp.getValueType() != RHSOp.getValueType())) 327 return false; 328 if (!Match(LHSCst, RHSCst)) 329 return false; 330 } 331 return true; 332 } 333 334 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 335 switch (ExtType) { 336 case ISD::EXTLOAD: 337 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 338 case ISD::SEXTLOAD: 339 return ISD::SIGN_EXTEND; 340 case ISD::ZEXTLOAD: 341 return ISD::ZERO_EXTEND; 342 default: 343 break; 344 } 345 346 llvm_unreachable("Invalid LoadExtType"); 347 } 348 349 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 350 // To perform this operation, we just need to swap the L and G bits of the 351 // operation. 352 unsigned OldL = (Operation >> 2) & 1; 353 unsigned OldG = (Operation >> 1) & 1; 354 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 355 (OldL << 1) | // New G bit 356 (OldG << 2)); // New L bit. 357 } 358 359 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 360 unsigned Operation = Op; 361 if (isIntegerLike) 362 Operation ^= 7; // Flip L, G, E bits, but not U. 363 else 364 Operation ^= 15; // Flip all of the condition bits. 365 366 if (Operation > ISD::SETTRUE2) 367 Operation &= ~8; // Don't let N and U bits get set. 368 369 return ISD::CondCode(Operation); 370 } 371 372 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 373 return getSetCCInverseImpl(Op, Type.isInteger()); 374 } 375 376 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 377 bool isIntegerLike) { 378 return getSetCCInverseImpl(Op, isIntegerLike); 379 } 380 381 /// For an integer comparison, return 1 if the comparison is a signed operation 382 /// and 2 if the result is an unsigned comparison. Return zero if the operation 383 /// does not depend on the sign of the input (setne and seteq). 384 static int isSignedOp(ISD::CondCode Opcode) { 385 switch (Opcode) { 386 default: llvm_unreachable("Illegal integer setcc operation!"); 387 case ISD::SETEQ: 388 case ISD::SETNE: return 0; 389 case ISD::SETLT: 390 case ISD::SETLE: 391 case ISD::SETGT: 392 case ISD::SETGE: return 1; 393 case ISD::SETULT: 394 case ISD::SETULE: 395 case ISD::SETUGT: 396 case ISD::SETUGE: return 2; 397 } 398 } 399 400 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 401 EVT Type) { 402 bool IsInteger = Type.isInteger(); 403 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 404 // Cannot fold a signed integer setcc with an unsigned integer setcc. 405 return ISD::SETCC_INVALID; 406 407 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 408 409 // If the N and U bits get set, then the resultant comparison DOES suddenly 410 // care about orderedness, and it is true when ordered. 411 if (Op > ISD::SETTRUE2) 412 Op &= ~16; // Clear the U bit if the N bit is set. 413 414 // Canonicalize illegal integer setcc's. 415 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 416 Op = ISD::SETNE; 417 418 return ISD::CondCode(Op); 419 } 420 421 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 422 EVT Type) { 423 bool IsInteger = Type.isInteger(); 424 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 425 // Cannot fold a signed setcc with an unsigned setcc. 426 return ISD::SETCC_INVALID; 427 428 // Combine all of the condition bits. 429 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 430 431 // Canonicalize illegal integer setcc's. 432 if (IsInteger) { 433 switch (Result) { 434 default: break; 435 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 436 case ISD::SETOEQ: // SETEQ & SETU[LG]E 437 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 438 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 439 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 440 } 441 } 442 443 return Result; 444 } 445 446 //===----------------------------------------------------------------------===// 447 // SDNode Profile Support 448 //===----------------------------------------------------------------------===// 449 450 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 451 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 452 ID.AddInteger(OpC); 453 } 454 455 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 456 /// solely with their pointer. 457 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 458 ID.AddPointer(VTList.VTs); 459 } 460 461 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 462 static void AddNodeIDOperands(FoldingSetNodeID &ID, 463 ArrayRef<SDValue> Ops) { 464 for (auto& Op : Ops) { 465 ID.AddPointer(Op.getNode()); 466 ID.AddInteger(Op.getResNo()); 467 } 468 } 469 470 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 471 static void AddNodeIDOperands(FoldingSetNodeID &ID, 472 ArrayRef<SDUse> Ops) { 473 for (auto& Op : Ops) { 474 ID.AddPointer(Op.getNode()); 475 ID.AddInteger(Op.getResNo()); 476 } 477 } 478 479 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, 480 SDVTList VTList, ArrayRef<SDValue> OpList) { 481 AddNodeIDOpcode(ID, OpC); 482 AddNodeIDValueTypes(ID, VTList); 483 AddNodeIDOperands(ID, OpList); 484 } 485 486 /// If this is an SDNode with special info, add this info to the NodeID data. 487 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 488 switch (N->getOpcode()) { 489 case ISD::TargetExternalSymbol: 490 case ISD::ExternalSymbol: 491 case ISD::MCSymbol: 492 llvm_unreachable("Should only be used on nodes with operands"); 493 default: break; // Normal nodes don't need extra info. 494 case ISD::TargetConstant: 495 case ISD::Constant: { 496 const ConstantSDNode *C = cast<ConstantSDNode>(N); 497 ID.AddPointer(C->getConstantIntValue()); 498 ID.AddBoolean(C->isOpaque()); 499 break; 500 } 501 case ISD::TargetConstantFP: 502 case ISD::ConstantFP: 503 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 504 break; 505 case ISD::TargetGlobalAddress: 506 case ISD::GlobalAddress: 507 case ISD::TargetGlobalTLSAddress: 508 case ISD::GlobalTLSAddress: { 509 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 510 ID.AddPointer(GA->getGlobal()); 511 ID.AddInteger(GA->getOffset()); 512 ID.AddInteger(GA->getTargetFlags()); 513 break; 514 } 515 case ISD::BasicBlock: 516 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 517 break; 518 case ISD::Register: 519 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 520 break; 521 case ISD::RegisterMask: 522 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 523 break; 524 case ISD::SRCVALUE: 525 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 526 break; 527 case ISD::FrameIndex: 528 case ISD::TargetFrameIndex: 529 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 530 break; 531 case ISD::LIFETIME_START: 532 case ISD::LIFETIME_END: 533 if (cast<LifetimeSDNode>(N)->hasOffset()) { 534 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 535 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 536 } 537 break; 538 case ISD::JumpTable: 539 case ISD::TargetJumpTable: 540 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 541 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 542 break; 543 case ISD::ConstantPool: 544 case ISD::TargetConstantPool: { 545 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 546 ID.AddInteger(CP->getAlignment()); 547 ID.AddInteger(CP->getOffset()); 548 if (CP->isMachineConstantPoolEntry()) 549 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 550 else 551 ID.AddPointer(CP->getConstVal()); 552 ID.AddInteger(CP->getTargetFlags()); 553 break; 554 } 555 case ISD::TargetIndex: { 556 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 557 ID.AddInteger(TI->getIndex()); 558 ID.AddInteger(TI->getOffset()); 559 ID.AddInteger(TI->getTargetFlags()); 560 break; 561 } 562 case ISD::LOAD: { 563 const LoadSDNode *LD = cast<LoadSDNode>(N); 564 ID.AddInteger(LD->getMemoryVT().getRawBits()); 565 ID.AddInteger(LD->getRawSubclassData()); 566 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 567 break; 568 } 569 case ISD::STORE: { 570 const StoreSDNode *ST = cast<StoreSDNode>(N); 571 ID.AddInteger(ST->getMemoryVT().getRawBits()); 572 ID.AddInteger(ST->getRawSubclassData()); 573 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 574 break; 575 } 576 case ISD::MLOAD: { 577 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 578 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 579 ID.AddInteger(MLD->getRawSubclassData()); 580 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 581 break; 582 } 583 case ISD::MSTORE: { 584 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 585 ID.AddInteger(MST->getMemoryVT().getRawBits()); 586 ID.AddInteger(MST->getRawSubclassData()); 587 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 588 break; 589 } 590 case ISD::MGATHER: { 591 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 592 ID.AddInteger(MG->getMemoryVT().getRawBits()); 593 ID.AddInteger(MG->getRawSubclassData()); 594 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 595 break; 596 } 597 case ISD::MSCATTER: { 598 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 599 ID.AddInteger(MS->getMemoryVT().getRawBits()); 600 ID.AddInteger(MS->getRawSubclassData()); 601 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 602 break; 603 } 604 case ISD::ATOMIC_CMP_SWAP: 605 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 606 case ISD::ATOMIC_SWAP: 607 case ISD::ATOMIC_LOAD_ADD: 608 case ISD::ATOMIC_LOAD_SUB: 609 case ISD::ATOMIC_LOAD_AND: 610 case ISD::ATOMIC_LOAD_CLR: 611 case ISD::ATOMIC_LOAD_OR: 612 case ISD::ATOMIC_LOAD_XOR: 613 case ISD::ATOMIC_LOAD_NAND: 614 case ISD::ATOMIC_LOAD_MIN: 615 case ISD::ATOMIC_LOAD_MAX: 616 case ISD::ATOMIC_LOAD_UMIN: 617 case ISD::ATOMIC_LOAD_UMAX: 618 case ISD::ATOMIC_LOAD: 619 case ISD::ATOMIC_STORE: { 620 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 621 ID.AddInteger(AT->getMemoryVT().getRawBits()); 622 ID.AddInteger(AT->getRawSubclassData()); 623 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 624 break; 625 } 626 case ISD::PREFETCH: { 627 const MemSDNode *PF = cast<MemSDNode>(N); 628 ID.AddInteger(PF->getPointerInfo().getAddrSpace()); 629 break; 630 } 631 case ISD::VECTOR_SHUFFLE: { 632 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 633 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 634 i != e; ++i) 635 ID.AddInteger(SVN->getMaskElt(i)); 636 break; 637 } 638 case ISD::TargetBlockAddress: 639 case ISD::BlockAddress: { 640 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 641 ID.AddPointer(BA->getBlockAddress()); 642 ID.AddInteger(BA->getOffset()); 643 ID.AddInteger(BA->getTargetFlags()); 644 break; 645 } 646 } // end switch (N->getOpcode()) 647 648 // Target specific memory nodes could also have address spaces to check. 649 if (N->isTargetMemoryOpcode()) 650 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); 651 } 652 653 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 654 /// data. 655 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 656 AddNodeIDOpcode(ID, N->getOpcode()); 657 // Add the return value info. 658 AddNodeIDValueTypes(ID, N->getVTList()); 659 // Add the operand info. 660 AddNodeIDOperands(ID, N->ops()); 661 662 // Handle SDNode leafs with special info. 663 AddNodeIDCustom(ID, N); 664 } 665 666 //===----------------------------------------------------------------------===// 667 // SelectionDAG Class 668 //===----------------------------------------------------------------------===// 669 670 /// doNotCSE - Return true if CSE should not be performed for this node. 671 static bool doNotCSE(SDNode *N) { 672 if (N->getValueType(0) == MVT::Glue) 673 return true; // Never CSE anything that produces a flag. 674 675 switch (N->getOpcode()) { 676 default: break; 677 case ISD::HANDLENODE: 678 case ISD::EH_LABEL: 679 return true; // Never CSE these nodes. 680 } 681 682 // Check that remaining values produced are not flags. 683 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 684 if (N->getValueType(i) == MVT::Glue) 685 return true; // Never CSE anything that produces a flag. 686 687 return false; 688 } 689 690 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 691 /// SelectionDAG. 692 void SelectionDAG::RemoveDeadNodes() { 693 // Create a dummy node (which is not added to allnodes), that adds a reference 694 // to the root node, preventing it from being deleted. 695 HandleSDNode Dummy(getRoot()); 696 697 SmallVector<SDNode*, 128> DeadNodes; 698 699 // Add all obviously-dead nodes to the DeadNodes worklist. 700 for (SDNode &Node : allnodes()) 701 if (Node.use_empty()) 702 DeadNodes.push_back(&Node); 703 704 RemoveDeadNodes(DeadNodes); 705 706 // If the root changed (e.g. it was a dead load, update the root). 707 setRoot(Dummy.getValue()); 708 } 709 710 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 711 /// given list, and any nodes that become unreachable as a result. 712 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 713 714 // Process the worklist, deleting the nodes and adding their uses to the 715 // worklist. 716 while (!DeadNodes.empty()) { 717 SDNode *N = DeadNodes.pop_back_val(); 718 // Skip to next node if we've already managed to delete the node. This could 719 // happen if replacing a node causes a node previously added to the node to 720 // be deleted. 721 if (N->getOpcode() == ISD::DELETED_NODE) 722 continue; 723 724 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 725 DUL->NodeDeleted(N, nullptr); 726 727 // Take the node out of the appropriate CSE map. 728 RemoveNodeFromCSEMaps(N); 729 730 // Next, brutally remove the operand list. This is safe to do, as there are 731 // no cycles in the graph. 732 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 733 SDUse &Use = *I++; 734 SDNode *Operand = Use.getNode(); 735 Use.set(SDValue()); 736 737 // Now that we removed this operand, see if there are no uses of it left. 738 if (Operand->use_empty()) 739 DeadNodes.push_back(Operand); 740 } 741 742 DeallocateNode(N); 743 } 744 } 745 746 void SelectionDAG::RemoveDeadNode(SDNode *N){ 747 SmallVector<SDNode*, 16> DeadNodes(1, N); 748 749 // Create a dummy node that adds a reference to the root node, preventing 750 // it from being deleted. (This matters if the root is an operand of the 751 // dead node.) 752 HandleSDNode Dummy(getRoot()); 753 754 RemoveDeadNodes(DeadNodes); 755 } 756 757 void SelectionDAG::DeleteNode(SDNode *N) { 758 // First take this out of the appropriate CSE map. 759 RemoveNodeFromCSEMaps(N); 760 761 // Finally, remove uses due to operands of this node, remove from the 762 // AllNodes list, and delete the node. 763 DeleteNodeNotInCSEMaps(N); 764 } 765 766 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 767 assert(N->getIterator() != AllNodes.begin() && 768 "Cannot delete the entry node!"); 769 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 770 771 // Drop all of the operands and decrement used node's use counts. 772 N->DropOperands(); 773 774 DeallocateNode(N); 775 } 776 777 void SDDbgInfo::erase(const SDNode *Node) { 778 DbgValMapType::iterator I = DbgValMap.find(Node); 779 if (I == DbgValMap.end()) 780 return; 781 for (auto &Val: I->second) 782 Val->setIsInvalidated(); 783 DbgValMap.erase(I); 784 } 785 786 void SelectionDAG::DeallocateNode(SDNode *N) { 787 // If we have operands, deallocate them. 788 removeOperands(N); 789 790 NodeAllocator.Deallocate(AllNodes.remove(N)); 791 792 // Set the opcode to DELETED_NODE to help catch bugs when node 793 // memory is reallocated. 794 // FIXME: There are places in SDag that have grown a dependency on the opcode 795 // value in the released node. 796 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 797 N->NodeType = ISD::DELETED_NODE; 798 799 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 800 // them and forget about that node. 801 DbgInfo->erase(N); 802 } 803 804 #ifndef NDEBUG 805 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. 806 static void VerifySDNode(SDNode *N) { 807 switch (N->getOpcode()) { 808 default: 809 break; 810 case ISD::BUILD_PAIR: { 811 EVT VT = N->getValueType(0); 812 assert(N->getNumValues() == 1 && "Too many results!"); 813 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 814 "Wrong return type!"); 815 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 816 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 817 "Mismatched operand types!"); 818 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 819 "Wrong operand type!"); 820 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 821 "Wrong return type size"); 822 break; 823 } 824 case ISD::BUILD_VECTOR: { 825 assert(N->getNumValues() == 1 && "Too many results!"); 826 assert(N->getValueType(0).isVector() && "Wrong return type!"); 827 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 828 "Wrong number of operands!"); 829 EVT EltVT = N->getValueType(0).getVectorElementType(); 830 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { 831 assert((I->getValueType() == EltVT || 832 (EltVT.isInteger() && I->getValueType().isInteger() && 833 EltVT.bitsLE(I->getValueType()))) && 834 "Wrong operand type!"); 835 assert(I->getValueType() == N->getOperand(0).getValueType() && 836 "Operands must all have the same type"); 837 } 838 break; 839 } 840 } 841 } 842 #endif // NDEBUG 843 844 /// Insert a newly allocated node into the DAG. 845 /// 846 /// Handles insertion into the all nodes list and CSE map, as well as 847 /// verification and other common operations when a new node is allocated. 848 void SelectionDAG::InsertNode(SDNode *N) { 849 AllNodes.push_back(N); 850 #ifndef NDEBUG 851 N->PersistentId = NextPersistentId++; 852 VerifySDNode(N); 853 #endif 854 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 855 DUL->NodeInserted(N); 856 } 857 858 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 859 /// correspond to it. This is useful when we're about to delete or repurpose 860 /// the node. We don't want future request for structurally identical nodes 861 /// to return N anymore. 862 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 863 bool Erased = false; 864 switch (N->getOpcode()) { 865 case ISD::HANDLENODE: return false; // noop. 866 case ISD::CONDCODE: 867 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 868 "Cond code doesn't exist!"); 869 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 870 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 871 break; 872 case ISD::ExternalSymbol: 873 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 874 break; 875 case ISD::TargetExternalSymbol: { 876 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 877 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 878 ESN->getSymbol(), ESN->getTargetFlags())); 879 break; 880 } 881 case ISD::MCSymbol: { 882 auto *MCSN = cast<MCSymbolSDNode>(N); 883 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 884 break; 885 } 886 case ISD::VALUETYPE: { 887 EVT VT = cast<VTSDNode>(N)->getVT(); 888 if (VT.isExtended()) { 889 Erased = ExtendedValueTypeNodes.erase(VT); 890 } else { 891 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 892 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 893 } 894 break; 895 } 896 default: 897 // Remove it from the CSE Map. 898 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 899 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 900 Erased = CSEMap.RemoveNode(N); 901 break; 902 } 903 #ifndef NDEBUG 904 // Verify that the node was actually in one of the CSE maps, unless it has a 905 // flag result (which cannot be CSE'd) or is one of the special cases that are 906 // not subject to CSE. 907 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 908 !N->isMachineOpcode() && !doNotCSE(N)) { 909 N->dump(this); 910 dbgs() << "\n"; 911 llvm_unreachable("Node is not in map!"); 912 } 913 #endif 914 return Erased; 915 } 916 917 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 918 /// maps and modified in place. Add it back to the CSE maps, unless an identical 919 /// node already exists, in which case transfer all its users to the existing 920 /// node. This transfer can potentially trigger recursive merging. 921 void 922 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 923 // For node types that aren't CSE'd, just act as if no identical node 924 // already exists. 925 if (!doNotCSE(N)) { 926 SDNode *Existing = CSEMap.GetOrInsertNode(N); 927 if (Existing != N) { 928 // If there was already an existing matching node, use ReplaceAllUsesWith 929 // to replace the dead one with the existing one. This can cause 930 // recursive merging of other unrelated nodes down the line. 931 ReplaceAllUsesWith(N, Existing); 932 933 // N is now dead. Inform the listeners and delete it. 934 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 935 DUL->NodeDeleted(N, Existing); 936 DeleteNodeNotInCSEMaps(N); 937 return; 938 } 939 } 940 941 // If the node doesn't already exist, we updated it. Inform listeners. 942 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 943 DUL->NodeUpdated(N); 944 } 945 946 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 947 /// were replaced with those specified. If this node is never memoized, 948 /// return null, otherwise return a pointer to the slot it would take. If a 949 /// node already exists with these operands, the slot will be non-null. 950 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 951 void *&InsertPos) { 952 if (doNotCSE(N)) 953 return nullptr; 954 955 SDValue Ops[] = { Op }; 956 FoldingSetNodeID ID; 957 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 958 AddNodeIDCustom(ID, N); 959 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 960 if (Node) 961 Node->intersectFlagsWith(N->getFlags()); 962 return Node; 963 } 964 965 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 966 /// were replaced with those specified. If this node is never memoized, 967 /// return null, otherwise return a pointer to the slot it would take. If a 968 /// node already exists with these operands, the slot will be non-null. 969 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 970 SDValue Op1, SDValue Op2, 971 void *&InsertPos) { 972 if (doNotCSE(N)) 973 return nullptr; 974 975 SDValue Ops[] = { Op1, Op2 }; 976 FoldingSetNodeID ID; 977 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 978 AddNodeIDCustom(ID, N); 979 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 980 if (Node) 981 Node->intersectFlagsWith(N->getFlags()); 982 return Node; 983 } 984 985 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 986 /// were replaced with those specified. If this node is never memoized, 987 /// return null, otherwise return a pointer to the slot it would take. If a 988 /// node already exists with these operands, the slot will be non-null. 989 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 990 void *&InsertPos) { 991 if (doNotCSE(N)) 992 return nullptr; 993 994 FoldingSetNodeID ID; 995 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 996 AddNodeIDCustom(ID, N); 997 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 998 if (Node) 999 Node->intersectFlagsWith(N->getFlags()); 1000 return Node; 1001 } 1002 1003 unsigned SelectionDAG::getEVTAlignment(EVT VT) const { 1004 Type *Ty = VT == MVT::iPTR ? 1005 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1006 VT.getTypeForEVT(*getContext()); 1007 1008 return getDataLayout().getABITypeAlignment(Ty); 1009 } 1010 1011 // EntryNode could meaningfully have debug info if we can find it... 1012 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1013 : TM(tm), OptLevel(OL), 1014 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), 1015 Root(getEntryNode()) { 1016 InsertNode(&EntryNode); 1017 DbgInfo = new SDDbgInfo(); 1018 } 1019 1020 void SelectionDAG::init(MachineFunction &NewMF, 1021 OptimizationRemarkEmitter &NewORE, 1022 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, 1023 LegacyDivergenceAnalysis * Divergence, 1024 ProfileSummaryInfo *PSIin, 1025 BlockFrequencyInfo *BFIin) { 1026 MF = &NewMF; 1027 SDAGISelPass = PassPtr; 1028 ORE = &NewORE; 1029 TLI = getSubtarget().getTargetLowering(); 1030 TSI = getSubtarget().getSelectionDAGInfo(); 1031 LibInfo = LibraryInfo; 1032 Context = &MF->getFunction().getContext(); 1033 DA = Divergence; 1034 PSI = PSIin; 1035 BFI = BFIin; 1036 } 1037 1038 SelectionDAG::~SelectionDAG() { 1039 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1040 allnodes_clear(); 1041 OperandRecycler.clear(OperandAllocator); 1042 delete DbgInfo; 1043 } 1044 1045 bool SelectionDAG::shouldOptForSize() const { 1046 return MF->getFunction().hasOptSize() || 1047 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1048 } 1049 1050 void SelectionDAG::allnodes_clear() { 1051 assert(&*AllNodes.begin() == &EntryNode); 1052 AllNodes.remove(AllNodes.begin()); 1053 while (!AllNodes.empty()) 1054 DeallocateNode(&AllNodes.front()); 1055 #ifndef NDEBUG 1056 NextPersistentId = 0; 1057 #endif 1058 } 1059 1060 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1061 void *&InsertPos) { 1062 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1063 if (N) { 1064 switch (N->getOpcode()) { 1065 default: break; 1066 case ISD::Constant: 1067 case ISD::ConstantFP: 1068 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1069 "debug location. Use another overload."); 1070 } 1071 } 1072 return N; 1073 } 1074 1075 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1076 const SDLoc &DL, void *&InsertPos) { 1077 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1078 if (N) { 1079 switch (N->getOpcode()) { 1080 case ISD::Constant: 1081 case ISD::ConstantFP: 1082 // Erase debug location from the node if the node is used at several 1083 // different places. Do not propagate one location to all uses as it 1084 // will cause a worse single stepping debugging experience. 1085 if (N->getDebugLoc() != DL.getDebugLoc()) 1086 N->setDebugLoc(DebugLoc()); 1087 break; 1088 default: 1089 // When the node's point of use is located earlier in the instruction 1090 // sequence than its prior point of use, update its debug info to the 1091 // earlier location. 1092 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1093 N->setDebugLoc(DL.getDebugLoc()); 1094 break; 1095 } 1096 } 1097 return N; 1098 } 1099 1100 void SelectionDAG::clear() { 1101 allnodes_clear(); 1102 OperandRecycler.clear(OperandAllocator); 1103 OperandAllocator.Reset(); 1104 CSEMap.clear(); 1105 1106 ExtendedValueTypeNodes.clear(); 1107 ExternalSymbols.clear(); 1108 TargetExternalSymbols.clear(); 1109 MCSymbols.clear(); 1110 SDCallSiteDbgInfo.clear(); 1111 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1112 static_cast<CondCodeSDNode*>(nullptr)); 1113 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1114 static_cast<SDNode*>(nullptr)); 1115 1116 EntryNode.UseList = nullptr; 1117 InsertNode(&EntryNode); 1118 Root = getEntryNode(); 1119 DbgInfo->clear(); 1120 } 1121 1122 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1123 return VT.bitsGT(Op.getValueType()) 1124 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1125 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL)); 1126 } 1127 1128 std::pair<SDValue, SDValue> 1129 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1130 const SDLoc &DL, EVT VT) { 1131 assert(!VT.bitsEq(Op.getValueType()) && 1132 "Strict no-op FP extend/round not allowed."); 1133 SDValue Res = 1134 VT.bitsGT(Op.getValueType()) 1135 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1136 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1137 {Chain, Op, getIntPtrConstant(0, DL)}); 1138 1139 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1140 } 1141 1142 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1143 return VT.bitsGT(Op.getValueType()) ? 1144 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1145 getNode(ISD::TRUNCATE, DL, VT, Op); 1146 } 1147 1148 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1149 return VT.bitsGT(Op.getValueType()) ? 1150 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1151 getNode(ISD::TRUNCATE, DL, VT, Op); 1152 } 1153 1154 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1155 return VT.bitsGT(Op.getValueType()) ? 1156 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1157 getNode(ISD::TRUNCATE, DL, VT, Op); 1158 } 1159 1160 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1161 EVT OpVT) { 1162 if (VT.bitsLE(Op.getValueType())) 1163 return getNode(ISD::TRUNCATE, SL, VT, Op); 1164 1165 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1166 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1167 } 1168 1169 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1170 assert(!VT.isVector() && 1171 "getZeroExtendInReg should use the vector element type instead of " 1172 "the vector type!"); 1173 if (Op.getValueType().getScalarType() == VT) return Op; 1174 unsigned BitWidth = Op.getScalarValueSizeInBits(); 1175 APInt Imm = APInt::getLowBitsSet(BitWidth, 1176 VT.getSizeInBits()); 1177 return getNode(ISD::AND, DL, Op.getValueType(), Op, 1178 getConstant(Imm, DL, Op.getValueType())); 1179 } 1180 1181 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1182 // Only unsigned pointer semantics are supported right now. In the future this 1183 // might delegate to TLI to check pointer signedness. 1184 return getZExtOrTrunc(Op, DL, VT); 1185 } 1186 1187 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1188 // Only unsigned pointer semantics are supported right now. In the future this 1189 // might delegate to TLI to check pointer signedness. 1190 return getZeroExtendInReg(Op, DL, VT); 1191 } 1192 1193 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1194 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1195 EVT EltVT = VT.getScalarType(); 1196 SDValue NegOne = 1197 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); 1198 return getNode(ISD::XOR, DL, VT, Val, NegOne); 1199 } 1200 1201 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1202 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1203 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1204 } 1205 1206 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1207 EVT OpVT) { 1208 if (!V) 1209 return getConstant(0, DL, VT); 1210 1211 switch (TLI->getBooleanContents(OpVT)) { 1212 case TargetLowering::ZeroOrOneBooleanContent: 1213 case TargetLowering::UndefinedBooleanContent: 1214 return getConstant(1, DL, VT); 1215 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1216 return getAllOnesConstant(DL, VT); 1217 } 1218 llvm_unreachable("Unexpected boolean content enum!"); 1219 } 1220 1221 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1222 bool isT, bool isO) { 1223 EVT EltVT = VT.getScalarType(); 1224 assert((EltVT.getSizeInBits() >= 64 || 1225 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1226 "getConstant with a uint64_t value that doesn't fit in the type!"); 1227 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1228 } 1229 1230 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1231 bool isT, bool isO) { 1232 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1233 } 1234 1235 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1236 EVT VT, bool isT, bool isO) { 1237 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1238 1239 EVT EltVT = VT.getScalarType(); 1240 const ConstantInt *Elt = &Val; 1241 1242 // In some cases the vector type is legal but the element type is illegal and 1243 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1244 // inserted value (the type does not need to match the vector element type). 1245 // Any extra bits introduced will be truncated away. 1246 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1247 TargetLowering::TypePromoteInteger) { 1248 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1249 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1250 Elt = ConstantInt::get(*getContext(), NewVal); 1251 } 1252 // In other cases the element type is illegal and needs to be expanded, for 1253 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1254 // the value into n parts and use a vector type with n-times the elements. 1255 // Then bitcast to the type requested. 1256 // Legalizing constants too early makes the DAGCombiner's job harder so we 1257 // only legalize if the DAG tells us we must produce legal types. 1258 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1259 TLI->getTypeAction(*getContext(), EltVT) == 1260 TargetLowering::TypeExpandInteger) { 1261 const APInt &NewVal = Elt->getValue(); 1262 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1263 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1264 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1265 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1266 1267 // Check the temporary vector is the correct size. If this fails then 1268 // getTypeToTransformTo() probably returned a type whose size (in bits) 1269 // isn't a power-of-2 factor of the requested type size. 1270 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1271 1272 SmallVector<SDValue, 2> EltParts; 1273 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { 1274 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) 1275 .zextOrTrunc(ViaEltSizeInBits), DL, 1276 ViaEltVT, isT, isO)); 1277 } 1278 1279 // EltParts is currently in little endian order. If we actually want 1280 // big-endian order then reverse it now. 1281 if (getDataLayout().isBigEndian()) 1282 std::reverse(EltParts.begin(), EltParts.end()); 1283 1284 // The elements must be reversed when the element order is different 1285 // to the endianness of the elements (because the BITCAST is itself a 1286 // vector shuffle in this situation). However, we do not need any code to 1287 // perform this reversal because getConstant() is producing a vector 1288 // splat. 1289 // This situation occurs in MIPS MSA. 1290 1291 SmallVector<SDValue, 8> Ops; 1292 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1293 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); 1294 1295 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1296 return V; 1297 } 1298 1299 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1300 "APInt size does not match type size!"); 1301 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1302 FoldingSetNodeID ID; 1303 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1304 ID.AddPointer(Elt); 1305 ID.AddBoolean(isO); 1306 void *IP = nullptr; 1307 SDNode *N = nullptr; 1308 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1309 if (!VT.isVector()) 1310 return SDValue(N, 0); 1311 1312 if (!N) { 1313 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1314 CSEMap.InsertNode(N, IP); 1315 InsertNode(N); 1316 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1317 } 1318 1319 SDValue Result(N, 0); 1320 if (VT.isScalableVector()) 1321 Result = getSplatVector(VT, DL, Result); 1322 else if (VT.isVector()) 1323 Result = getSplatBuildVector(VT, DL, Result); 1324 1325 return Result; 1326 } 1327 1328 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1329 bool isTarget) { 1330 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1331 } 1332 1333 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1334 const SDLoc &DL, bool LegalTypes) { 1335 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1336 return getConstant(Val, DL, ShiftVT); 1337 } 1338 1339 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1340 bool isTarget) { 1341 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1342 } 1343 1344 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1345 EVT VT, bool isTarget) { 1346 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1347 1348 EVT EltVT = VT.getScalarType(); 1349 1350 // Do the map lookup using the actual bit pattern for the floating point 1351 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1352 // we don't have issues with SNANs. 1353 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1354 FoldingSetNodeID ID; 1355 AddNodeIDNode(ID, Opc, getVTList(EltVT), None); 1356 ID.AddPointer(&V); 1357 void *IP = nullptr; 1358 SDNode *N = nullptr; 1359 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1360 if (!VT.isVector()) 1361 return SDValue(N, 0); 1362 1363 if (!N) { 1364 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1365 CSEMap.InsertNode(N, IP); 1366 InsertNode(N); 1367 } 1368 1369 SDValue Result(N, 0); 1370 if (VT.isVector()) 1371 Result = getSplatBuildVector(VT, DL, Result); 1372 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1373 return Result; 1374 } 1375 1376 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1377 bool isTarget) { 1378 EVT EltVT = VT.getScalarType(); 1379 if (EltVT == MVT::f32) 1380 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1381 else if (EltVT == MVT::f64) 1382 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1383 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1384 EltVT == MVT::f16) { 1385 bool Ignored; 1386 APFloat APF = APFloat(Val); 1387 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1388 &Ignored); 1389 return getConstantFP(APF, DL, VT, isTarget); 1390 } else 1391 llvm_unreachable("Unsupported type in getConstantFP"); 1392 } 1393 1394 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1395 EVT VT, int64_t Offset, bool isTargetGA, 1396 unsigned TargetFlags) { 1397 assert((TargetFlags == 0 || isTargetGA) && 1398 "Cannot set target flags on target-independent globals"); 1399 1400 // Truncate (with sign-extension) the offset value to the pointer size. 1401 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1402 if (BitWidth < 64) 1403 Offset = SignExtend64(Offset, BitWidth); 1404 1405 unsigned Opc; 1406 if (GV->isThreadLocal()) 1407 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1408 else 1409 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1410 1411 FoldingSetNodeID ID; 1412 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1413 ID.AddPointer(GV); 1414 ID.AddInteger(Offset); 1415 ID.AddInteger(TargetFlags); 1416 void *IP = nullptr; 1417 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1418 return SDValue(E, 0); 1419 1420 auto *N = newSDNode<GlobalAddressSDNode>( 1421 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1422 CSEMap.InsertNode(N, IP); 1423 InsertNode(N); 1424 return SDValue(N, 0); 1425 } 1426 1427 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1428 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1429 FoldingSetNodeID ID; 1430 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1431 ID.AddInteger(FI); 1432 void *IP = nullptr; 1433 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1434 return SDValue(E, 0); 1435 1436 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1437 CSEMap.InsertNode(N, IP); 1438 InsertNode(N); 1439 return SDValue(N, 0); 1440 } 1441 1442 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1443 unsigned TargetFlags) { 1444 assert((TargetFlags == 0 || isTarget) && 1445 "Cannot set target flags on target-independent jump tables"); 1446 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1447 FoldingSetNodeID ID; 1448 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1449 ID.AddInteger(JTI); 1450 ID.AddInteger(TargetFlags); 1451 void *IP = nullptr; 1452 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1453 return SDValue(E, 0); 1454 1455 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1456 CSEMap.InsertNode(N, IP); 1457 InsertNode(N); 1458 return SDValue(N, 0); 1459 } 1460 1461 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1462 unsigned Alignment, int Offset, 1463 bool isTarget, 1464 unsigned TargetFlags) { 1465 assert((TargetFlags == 0 || isTarget) && 1466 "Cannot set target flags on target-independent globals"); 1467 if (Alignment == 0) 1468 Alignment = shouldOptForSize() 1469 ? getDataLayout().getABITypeAlignment(C->getType()) 1470 : getDataLayout().getPrefTypeAlignment(C->getType()); 1471 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1472 FoldingSetNodeID ID; 1473 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1474 ID.AddInteger(Alignment); 1475 ID.AddInteger(Offset); 1476 ID.AddPointer(C); 1477 ID.AddInteger(TargetFlags); 1478 void *IP = nullptr; 1479 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1480 return SDValue(E, 0); 1481 1482 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1483 TargetFlags); 1484 CSEMap.InsertNode(N, IP); 1485 InsertNode(N); 1486 return SDValue(N, 0); 1487 } 1488 1489 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1490 unsigned Alignment, int Offset, 1491 bool isTarget, 1492 unsigned TargetFlags) { 1493 assert((TargetFlags == 0 || isTarget) && 1494 "Cannot set target flags on target-independent globals"); 1495 if (Alignment == 0) 1496 Alignment = getDataLayout().getPrefTypeAlignment(C->getType()); 1497 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1498 FoldingSetNodeID ID; 1499 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1500 ID.AddInteger(Alignment); 1501 ID.AddInteger(Offset); 1502 C->addSelectionDAGCSEId(ID); 1503 ID.AddInteger(TargetFlags); 1504 void *IP = nullptr; 1505 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1506 return SDValue(E, 0); 1507 1508 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, Alignment, 1509 TargetFlags); 1510 CSEMap.InsertNode(N, IP); 1511 InsertNode(N); 1512 return SDValue(N, 0); 1513 } 1514 1515 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1516 unsigned TargetFlags) { 1517 FoldingSetNodeID ID; 1518 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); 1519 ID.AddInteger(Index); 1520 ID.AddInteger(Offset); 1521 ID.AddInteger(TargetFlags); 1522 void *IP = nullptr; 1523 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1524 return SDValue(E, 0); 1525 1526 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1527 CSEMap.InsertNode(N, IP); 1528 InsertNode(N); 1529 return SDValue(N, 0); 1530 } 1531 1532 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1533 FoldingSetNodeID ID; 1534 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); 1535 ID.AddPointer(MBB); 1536 void *IP = nullptr; 1537 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1538 return SDValue(E, 0); 1539 1540 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1541 CSEMap.InsertNode(N, IP); 1542 InsertNode(N); 1543 return SDValue(N, 0); 1544 } 1545 1546 SDValue SelectionDAG::getValueType(EVT VT) { 1547 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1548 ValueTypeNodes.size()) 1549 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1550 1551 SDNode *&N = VT.isExtended() ? 1552 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1553 1554 if (N) return SDValue(N, 0); 1555 N = newSDNode<VTSDNode>(VT); 1556 InsertNode(N); 1557 return SDValue(N, 0); 1558 } 1559 1560 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1561 SDNode *&N = ExternalSymbols[Sym]; 1562 if (N) return SDValue(N, 0); 1563 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1564 InsertNode(N); 1565 return SDValue(N, 0); 1566 } 1567 1568 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1569 SDNode *&N = MCSymbols[Sym]; 1570 if (N) 1571 return SDValue(N, 0); 1572 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1573 InsertNode(N); 1574 return SDValue(N, 0); 1575 } 1576 1577 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1578 unsigned TargetFlags) { 1579 SDNode *&N = 1580 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1581 if (N) return SDValue(N, 0); 1582 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1583 InsertNode(N); 1584 return SDValue(N, 0); 1585 } 1586 1587 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1588 if ((unsigned)Cond >= CondCodeNodes.size()) 1589 CondCodeNodes.resize(Cond+1); 1590 1591 if (!CondCodeNodes[Cond]) { 1592 auto *N = newSDNode<CondCodeSDNode>(Cond); 1593 CondCodeNodes[Cond] = N; 1594 InsertNode(N); 1595 } 1596 1597 return SDValue(CondCodeNodes[Cond], 0); 1598 } 1599 1600 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1601 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1602 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1603 std::swap(N1, N2); 1604 ShuffleVectorSDNode::commuteMask(M); 1605 } 1606 1607 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1608 SDValue N2, ArrayRef<int> Mask) { 1609 assert(VT.getVectorNumElements() == Mask.size() && 1610 "Must have the same number of vector elements as mask elements!"); 1611 assert(VT == N1.getValueType() && VT == N2.getValueType() && 1612 "Invalid VECTOR_SHUFFLE"); 1613 1614 // Canonicalize shuffle undef, undef -> undef 1615 if (N1.isUndef() && N2.isUndef()) 1616 return getUNDEF(VT); 1617 1618 // Validate that all indices in Mask are within the range of the elements 1619 // input to the shuffle. 1620 int NElts = Mask.size(); 1621 assert(llvm::all_of(Mask, 1622 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 1623 "Index out of range"); 1624 1625 // Copy the mask so we can do any needed cleanup. 1626 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end()); 1627 1628 // Canonicalize shuffle v, v -> v, undef 1629 if (N1 == N2) { 1630 N2 = getUNDEF(VT); 1631 for (int i = 0; i != NElts; ++i) 1632 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 1633 } 1634 1635 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 1636 if (N1.isUndef()) 1637 commuteShuffle(N1, N2, MaskVec); 1638 1639 if (TLI->hasVectorBlend()) { 1640 // If shuffling a splat, try to blend the splat instead. We do this here so 1641 // that even when this arises during lowering we don't have to re-handle it. 1642 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 1643 BitVector UndefElements; 1644 SDValue Splat = BV->getSplatValue(&UndefElements); 1645 if (!Splat) 1646 return; 1647 1648 for (int i = 0; i < NElts; ++i) { 1649 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 1650 continue; 1651 1652 // If this input comes from undef, mark it as such. 1653 if (UndefElements[MaskVec[i] - Offset]) { 1654 MaskVec[i] = -1; 1655 continue; 1656 } 1657 1658 // If we can blend a non-undef lane, use that instead. 1659 if (!UndefElements[i]) 1660 MaskVec[i] = i + Offset; 1661 } 1662 }; 1663 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 1664 BlendSplat(N1BV, 0); 1665 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 1666 BlendSplat(N2BV, NElts); 1667 } 1668 1669 // Canonicalize all index into lhs, -> shuffle lhs, undef 1670 // Canonicalize all index into rhs, -> shuffle rhs, undef 1671 bool AllLHS = true, AllRHS = true; 1672 bool N2Undef = N2.isUndef(); 1673 for (int i = 0; i != NElts; ++i) { 1674 if (MaskVec[i] >= NElts) { 1675 if (N2Undef) 1676 MaskVec[i] = -1; 1677 else 1678 AllLHS = false; 1679 } else if (MaskVec[i] >= 0) { 1680 AllRHS = false; 1681 } 1682 } 1683 if (AllLHS && AllRHS) 1684 return getUNDEF(VT); 1685 if (AllLHS && !N2Undef) 1686 N2 = getUNDEF(VT); 1687 if (AllRHS) { 1688 N1 = getUNDEF(VT); 1689 commuteShuffle(N1, N2, MaskVec); 1690 } 1691 // Reset our undef status after accounting for the mask. 1692 N2Undef = N2.isUndef(); 1693 // Re-check whether both sides ended up undef. 1694 if (N1.isUndef() && N2Undef) 1695 return getUNDEF(VT); 1696 1697 // If Identity shuffle return that node. 1698 bool Identity = true, AllSame = true; 1699 for (int i = 0; i != NElts; ++i) { 1700 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 1701 if (MaskVec[i] != MaskVec[0]) AllSame = false; 1702 } 1703 if (Identity && NElts) 1704 return N1; 1705 1706 // Shuffling a constant splat doesn't change the result. 1707 if (N2Undef) { 1708 SDValue V = N1; 1709 1710 // Look through any bitcasts. We check that these don't change the number 1711 // (and size) of elements and just changes their types. 1712 while (V.getOpcode() == ISD::BITCAST) 1713 V = V->getOperand(0); 1714 1715 // A splat should always show up as a build vector node. 1716 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1717 BitVector UndefElements; 1718 SDValue Splat = BV->getSplatValue(&UndefElements); 1719 // If this is a splat of an undef, shuffling it is also undef. 1720 if (Splat && Splat.isUndef()) 1721 return getUNDEF(VT); 1722 1723 bool SameNumElts = 1724 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 1725 1726 // We only have a splat which can skip shuffles if there is a splatted 1727 // value and no undef lanes rearranged by the shuffle. 1728 if (Splat && UndefElements.none()) { 1729 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 1730 // number of elements match or the value splatted is a zero constant. 1731 if (SameNumElts) 1732 return N1; 1733 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 1734 if (C->isNullValue()) 1735 return N1; 1736 } 1737 1738 // If the shuffle itself creates a splat, build the vector directly. 1739 if (AllSame && SameNumElts) { 1740 EVT BuildVT = BV->getValueType(0); 1741 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 1742 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 1743 1744 // We may have jumped through bitcasts, so the type of the 1745 // BUILD_VECTOR may not match the type of the shuffle. 1746 if (BuildVT != VT) 1747 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 1748 return NewBV; 1749 } 1750 } 1751 } 1752 1753 FoldingSetNodeID ID; 1754 SDValue Ops[2] = { N1, N2 }; 1755 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 1756 for (int i = 0; i != NElts; ++i) 1757 ID.AddInteger(MaskVec[i]); 1758 1759 void* IP = nullptr; 1760 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1761 return SDValue(E, 0); 1762 1763 // Allocate the mask array for the node out of the BumpPtrAllocator, since 1764 // SDNode doesn't have access to it. This memory will be "leaked" when 1765 // the node is deallocated, but recovered when the NodeAllocator is released. 1766 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 1767 llvm::copy(MaskVec, MaskAlloc); 1768 1769 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 1770 dl.getDebugLoc(), MaskAlloc); 1771 createOperands(N, Ops); 1772 1773 CSEMap.InsertNode(N, IP); 1774 InsertNode(N); 1775 SDValue V = SDValue(N, 0); 1776 NewSDValueDbgMsg(V, "Creating new node: ", this); 1777 return V; 1778 } 1779 1780 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 1781 EVT VT = SV.getValueType(0); 1782 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); 1783 ShuffleVectorSDNode::commuteMask(MaskVec); 1784 1785 SDValue Op0 = SV.getOperand(0); 1786 SDValue Op1 = SV.getOperand(1); 1787 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 1788 } 1789 1790 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 1791 FoldingSetNodeID ID; 1792 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); 1793 ID.AddInteger(RegNo); 1794 void *IP = nullptr; 1795 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1796 return SDValue(E, 0); 1797 1798 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 1799 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 1800 CSEMap.InsertNode(N, IP); 1801 InsertNode(N); 1802 return SDValue(N, 0); 1803 } 1804 1805 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 1806 FoldingSetNodeID ID; 1807 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); 1808 ID.AddPointer(RegMask); 1809 void *IP = nullptr; 1810 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1811 return SDValue(E, 0); 1812 1813 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 1814 CSEMap.InsertNode(N, IP); 1815 InsertNode(N); 1816 return SDValue(N, 0); 1817 } 1818 1819 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 1820 MCSymbol *Label) { 1821 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 1822 } 1823 1824 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 1825 SDValue Root, MCSymbol *Label) { 1826 FoldingSetNodeID ID; 1827 SDValue Ops[] = { Root }; 1828 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 1829 ID.AddPointer(Label); 1830 void *IP = nullptr; 1831 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1832 return SDValue(E, 0); 1833 1834 auto *N = 1835 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 1836 createOperands(N, Ops); 1837 1838 CSEMap.InsertNode(N, IP); 1839 InsertNode(N); 1840 return SDValue(N, 0); 1841 } 1842 1843 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 1844 int64_t Offset, bool isTarget, 1845 unsigned TargetFlags) { 1846 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 1847 1848 FoldingSetNodeID ID; 1849 AddNodeIDNode(ID, Opc, getVTList(VT), None); 1850 ID.AddPointer(BA); 1851 ID.AddInteger(Offset); 1852 ID.AddInteger(TargetFlags); 1853 void *IP = nullptr; 1854 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1855 return SDValue(E, 0); 1856 1857 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 1858 CSEMap.InsertNode(N, IP); 1859 InsertNode(N); 1860 return SDValue(N, 0); 1861 } 1862 1863 SDValue SelectionDAG::getSrcValue(const Value *V) { 1864 assert((!V || V->getType()->isPointerTy()) && 1865 "SrcValue is not a pointer?"); 1866 1867 FoldingSetNodeID ID; 1868 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); 1869 ID.AddPointer(V); 1870 1871 void *IP = nullptr; 1872 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1873 return SDValue(E, 0); 1874 1875 auto *N = newSDNode<SrcValueSDNode>(V); 1876 CSEMap.InsertNode(N, IP); 1877 InsertNode(N); 1878 return SDValue(N, 0); 1879 } 1880 1881 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 1882 FoldingSetNodeID ID; 1883 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); 1884 ID.AddPointer(MD); 1885 1886 void *IP = nullptr; 1887 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1888 return SDValue(E, 0); 1889 1890 auto *N = newSDNode<MDNodeSDNode>(MD); 1891 CSEMap.InsertNode(N, IP); 1892 InsertNode(N); 1893 return SDValue(N, 0); 1894 } 1895 1896 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 1897 if (VT == V.getValueType()) 1898 return V; 1899 1900 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 1901 } 1902 1903 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 1904 unsigned SrcAS, unsigned DestAS) { 1905 SDValue Ops[] = {Ptr}; 1906 FoldingSetNodeID ID; 1907 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 1908 ID.AddInteger(SrcAS); 1909 ID.AddInteger(DestAS); 1910 1911 void *IP = nullptr; 1912 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 1913 return SDValue(E, 0); 1914 1915 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 1916 VT, SrcAS, DestAS); 1917 createOperands(N, Ops); 1918 1919 CSEMap.InsertNode(N, IP); 1920 InsertNode(N); 1921 return SDValue(N, 0); 1922 } 1923 1924 /// getShiftAmountOperand - Return the specified value casted to 1925 /// the target's desired shift amount type. 1926 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 1927 EVT OpTy = Op.getValueType(); 1928 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 1929 if (OpTy == ShTy || OpTy.isVector()) return Op; 1930 1931 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 1932 } 1933 1934 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 1935 SDLoc dl(Node); 1936 const TargetLowering &TLI = getTargetLoweringInfo(); 1937 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 1938 EVT VT = Node->getValueType(0); 1939 SDValue Tmp1 = Node->getOperand(0); 1940 SDValue Tmp2 = Node->getOperand(1); 1941 const MaybeAlign MA(Node->getConstantOperandVal(3)); 1942 1943 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 1944 Tmp2, MachinePointerInfo(V)); 1945 SDValue VAList = VAListLoad; 1946 1947 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 1948 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1949 getConstant(MA->value() - 1, dl, VAList.getValueType())); 1950 1951 VAList = 1952 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 1953 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 1954 } 1955 1956 // Increment the pointer, VAList, to the next vaarg 1957 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 1958 getConstant(getDataLayout().getTypeAllocSize( 1959 VT.getTypeForEVT(*getContext())), 1960 dl, VAList.getValueType())); 1961 // Store the incremented VAList to the legalized pointer 1962 Tmp1 = 1963 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 1964 // Load the actual argument out of the pointer VAList 1965 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 1966 } 1967 1968 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 1969 SDLoc dl(Node); 1970 const TargetLowering &TLI = getTargetLoweringInfo(); 1971 // This defaults to loading a pointer from the input and storing it to the 1972 // output, returning the chain. 1973 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 1974 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 1975 SDValue Tmp1 = 1976 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 1977 Node->getOperand(2), MachinePointerInfo(VS)); 1978 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 1979 MachinePointerInfo(VD)); 1980 } 1981 1982 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 1983 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 1984 unsigned ByteSize = VT.getStoreSize(); 1985 Type *Ty = VT.getTypeForEVT(*getContext()); 1986 unsigned StackAlign = 1987 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty), minAlign); 1988 1989 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false); 1990 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 1991 } 1992 1993 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 1994 unsigned Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize()); 1995 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 1996 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 1997 const DataLayout &DL = getDataLayout(); 1998 unsigned Align = 1999 std::max(DL.getPrefTypeAlignment(Ty1), DL.getPrefTypeAlignment(Ty2)); 2000 2001 MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 2002 int FrameIdx = MFI.CreateStackObject(Bytes, Align, false); 2003 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2004 } 2005 2006 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2007 ISD::CondCode Cond, const SDLoc &dl) { 2008 EVT OpVT = N1.getValueType(); 2009 2010 // These setcc operations always fold. 2011 switch (Cond) { 2012 default: break; 2013 case ISD::SETFALSE: 2014 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2015 case ISD::SETTRUE: 2016 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2017 2018 case ISD::SETOEQ: 2019 case ISD::SETOGT: 2020 case ISD::SETOGE: 2021 case ISD::SETOLT: 2022 case ISD::SETOLE: 2023 case ISD::SETONE: 2024 case ISD::SETO: 2025 case ISD::SETUO: 2026 case ISD::SETUEQ: 2027 case ISD::SETUNE: 2028 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2029 break; 2030 } 2031 2032 if (OpVT.isInteger()) { 2033 // For EQ and NE, we can always pick a value for the undef to make the 2034 // predicate pass or fail, so we can return undef. 2035 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2036 // icmp eq/ne X, undef -> undef. 2037 if ((N1.isUndef() || N2.isUndef()) && 2038 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2039 return getUNDEF(VT); 2040 2041 // If both operands are undef, we can return undef for int comparison. 2042 // icmp undef, undef -> undef. 2043 if (N1.isUndef() && N2.isUndef()) 2044 return getUNDEF(VT); 2045 2046 // icmp X, X -> true/false 2047 // icmp X, undef -> true/false because undef could be X. 2048 if (N1 == N2) 2049 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2050 } 2051 2052 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2053 const APInt &C2 = N2C->getAPIntValue(); 2054 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2055 const APInt &C1 = N1C->getAPIntValue(); 2056 2057 switch (Cond) { 2058 default: llvm_unreachable("Unknown integer setcc!"); 2059 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT); 2060 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT); 2061 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT); 2062 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT); 2063 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT); 2064 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT); 2065 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT); 2066 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT); 2067 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT); 2068 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT); 2069 } 2070 } 2071 } 2072 2073 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2074 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2075 2076 if (N1CFP && N2CFP) { 2077 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2078 switch (Cond) { 2079 default: break; 2080 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2081 return getUNDEF(VT); 2082 LLVM_FALLTHROUGH; 2083 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2084 OpVT); 2085 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2086 return getUNDEF(VT); 2087 LLVM_FALLTHROUGH; 2088 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2089 R==APFloat::cmpLessThan, dl, VT, 2090 OpVT); 2091 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2092 return getUNDEF(VT); 2093 LLVM_FALLTHROUGH; 2094 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2095 OpVT); 2096 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2097 return getUNDEF(VT); 2098 LLVM_FALLTHROUGH; 2099 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2100 VT, OpVT); 2101 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2102 return getUNDEF(VT); 2103 LLVM_FALLTHROUGH; 2104 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2105 R==APFloat::cmpEqual, dl, VT, 2106 OpVT); 2107 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2108 return getUNDEF(VT); 2109 LLVM_FALLTHROUGH; 2110 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2111 R==APFloat::cmpEqual, dl, VT, OpVT); 2112 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2113 OpVT); 2114 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2115 OpVT); 2116 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2117 R==APFloat::cmpEqual, dl, VT, 2118 OpVT); 2119 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2120 OpVT); 2121 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2122 R==APFloat::cmpLessThan, dl, VT, 2123 OpVT); 2124 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2125 R==APFloat::cmpUnordered, dl, VT, 2126 OpVT); 2127 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2128 VT, OpVT); 2129 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2130 OpVT); 2131 } 2132 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2133 // Ensure that the constant occurs on the RHS. 2134 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2135 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2136 return SDValue(); 2137 return getSetCC(dl, VT, N2, N1, SwappedCond); 2138 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2139 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2140 // If an operand is known to be a nan (or undef that could be a nan), we can 2141 // fold it. 2142 // Choosing NaN for the undef will always make unordered comparison succeed 2143 // and ordered comparison fails. 2144 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2145 switch (ISD::getUnorderedFlavor(Cond)) { 2146 default: 2147 llvm_unreachable("Unknown flavor!"); 2148 case 0: // Known false. 2149 return getBoolConstant(false, dl, VT, OpVT); 2150 case 1: // Known true. 2151 return getBoolConstant(true, dl, VT, OpVT); 2152 case 2: // Undefined. 2153 return getUNDEF(VT); 2154 } 2155 } 2156 2157 // Could not fold it. 2158 return SDValue(); 2159 } 2160 2161 /// See if the specified operand can be simplified with the knowledge that only 2162 /// the bits specified by DemandedBits are used. 2163 /// TODO: really we should be making this into the DAG equivalent of 2164 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2165 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) { 2166 EVT VT = V.getValueType(); 2167 APInt DemandedElts = VT.isVector() 2168 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2169 : APInt(1, 1); 2170 return GetDemandedBits(V, DemandedBits, DemandedElts); 2171 } 2172 2173 /// See if the specified operand can be simplified with the knowledge that only 2174 /// the bits specified by DemandedBits are used in the elements specified by 2175 /// DemandedElts. 2176 /// TODO: really we should be making this into the DAG equivalent of 2177 /// SimplifyMultipleUseDemandedBits and not generate any new nodes. 2178 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits, 2179 const APInt &DemandedElts) { 2180 switch (V.getOpcode()) { 2181 default: 2182 break; 2183 case ISD::Constant: { 2184 auto *CV = cast<ConstantSDNode>(V.getNode()); 2185 assert(CV && "Const value should be ConstSDNode."); 2186 const APInt &CVal = CV->getAPIntValue(); 2187 APInt NewVal = CVal & DemandedBits; 2188 if (NewVal != CVal) 2189 return getConstant(NewVal, SDLoc(V), V.getValueType()); 2190 break; 2191 } 2192 case ISD::OR: 2193 case ISD::XOR: 2194 case ISD::SIGN_EXTEND_INREG: 2195 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts, 2196 *this, 0); 2197 case ISD::SRL: 2198 // Only look at single-use SRLs. 2199 if (!V.getNode()->hasOneUse()) 2200 break; 2201 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) { 2202 // See if we can recursively simplify the LHS. 2203 unsigned Amt = RHSC->getZExtValue(); 2204 2205 // Watch out for shift count overflow though. 2206 if (Amt >= DemandedBits.getBitWidth()) 2207 break; 2208 APInt SrcDemandedBits = DemandedBits << Amt; 2209 if (SDValue SimplifyLHS = 2210 GetDemandedBits(V.getOperand(0), SrcDemandedBits)) 2211 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS, 2212 V.getOperand(1)); 2213 } 2214 break; 2215 case ISD::AND: { 2216 // X & -1 -> X (ignoring bits which aren't demanded). 2217 // Also handle the case where masked out bits in X are known to be zero. 2218 if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) { 2219 const APInt &AndVal = RHSC->getAPIntValue(); 2220 if (DemandedBits.isSubsetOf(AndVal) || 2221 DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero | 2222 AndVal)) 2223 return V.getOperand(0); 2224 } 2225 break; 2226 } 2227 case ISD::ANY_EXTEND: { 2228 SDValue Src = V.getOperand(0); 2229 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 2230 // Being conservative here - only peek through if we only demand bits in the 2231 // non-extended source (even though the extended bits are technically 2232 // undef). 2233 if (DemandedBits.getActiveBits() > SrcBitWidth) 2234 break; 2235 APInt SrcDemandedBits = DemandedBits.trunc(SrcBitWidth); 2236 if (SDValue DemandedSrc = GetDemandedBits(Src, SrcDemandedBits)) 2237 return getNode(ISD::ANY_EXTEND, SDLoc(V), V.getValueType(), DemandedSrc); 2238 break; 2239 } 2240 } 2241 return SDValue(); 2242 } 2243 2244 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2245 /// use this predicate to simplify operations downstream. 2246 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2247 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2248 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2249 } 2250 2251 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2252 /// this predicate to simplify operations downstream. Mask is known to be zero 2253 /// for bits that V cannot have. 2254 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2255 unsigned Depth) const { 2256 EVT VT = V.getValueType(); 2257 APInt DemandedElts = VT.isVector() 2258 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2259 : APInt(1, 1); 2260 return MaskedValueIsZero(V, Mask, DemandedElts, Depth); 2261 } 2262 2263 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2264 /// DemandedElts. We use this predicate to simplify operations downstream. 2265 /// Mask is known to be zero for bits that V cannot have. 2266 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2267 const APInt &DemandedElts, 2268 unsigned Depth) const { 2269 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2270 } 2271 2272 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2273 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2274 unsigned Depth) const { 2275 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2276 } 2277 2278 /// isSplatValue - Return true if the vector V has the same value 2279 /// across all DemandedElts. 2280 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2281 APInt &UndefElts) { 2282 if (!DemandedElts) 2283 return false; // No demanded elts, better to assume we don't know anything. 2284 2285 EVT VT = V.getValueType(); 2286 assert(VT.isVector() && "Vector type expected"); 2287 2288 unsigned NumElts = VT.getVectorNumElements(); 2289 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2290 UndefElts = APInt::getNullValue(NumElts); 2291 2292 switch (V.getOpcode()) { 2293 case ISD::BUILD_VECTOR: { 2294 SDValue Scl; 2295 for (unsigned i = 0; i != NumElts; ++i) { 2296 SDValue Op = V.getOperand(i); 2297 if (Op.isUndef()) { 2298 UndefElts.setBit(i); 2299 continue; 2300 } 2301 if (!DemandedElts[i]) 2302 continue; 2303 if (Scl && Scl != Op) 2304 return false; 2305 Scl = Op; 2306 } 2307 return true; 2308 } 2309 case ISD::VECTOR_SHUFFLE: { 2310 // Check if this is a shuffle node doing a splat. 2311 // TODO: Do we need to handle shuffle(splat, undef, mask)? 2312 int SplatIndex = -1; 2313 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2314 for (int i = 0; i != (int)NumElts; ++i) { 2315 int M = Mask[i]; 2316 if (M < 0) { 2317 UndefElts.setBit(i); 2318 continue; 2319 } 2320 if (!DemandedElts[i]) 2321 continue; 2322 if (0 <= SplatIndex && SplatIndex != M) 2323 return false; 2324 SplatIndex = M; 2325 } 2326 return true; 2327 } 2328 case ISD::EXTRACT_SUBVECTOR: { 2329 SDValue Src = V.getOperand(0); 2330 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(V.getOperand(1)); 2331 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2332 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2333 // Offset the demanded elts by the subvector index. 2334 uint64_t Idx = SubIdx->getZExtValue(); 2335 APInt UndefSrcElts; 2336 APInt DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2337 if (isSplatValue(Src, DemandedSrc, UndefSrcElts)) { 2338 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2339 return true; 2340 } 2341 } 2342 break; 2343 } 2344 case ISD::ADD: 2345 case ISD::SUB: 2346 case ISD::AND: { 2347 APInt UndefLHS, UndefRHS; 2348 SDValue LHS = V.getOperand(0); 2349 SDValue RHS = V.getOperand(1); 2350 if (isSplatValue(LHS, DemandedElts, UndefLHS) && 2351 isSplatValue(RHS, DemandedElts, UndefRHS)) { 2352 UndefElts = UndefLHS | UndefRHS; 2353 return true; 2354 } 2355 break; 2356 } 2357 } 2358 2359 return false; 2360 } 2361 2362 /// Helper wrapper to main isSplatValue function. 2363 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) { 2364 EVT VT = V.getValueType(); 2365 assert(VT.isVector() && "Vector type expected"); 2366 unsigned NumElts = VT.getVectorNumElements(); 2367 2368 APInt UndefElts; 2369 APInt DemandedElts = APInt::getAllOnesValue(NumElts); 2370 return isSplatValue(V, DemandedElts, UndefElts) && 2371 (AllowUndefs || !UndefElts); 2372 } 2373 2374 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2375 V = peekThroughExtractSubvectors(V); 2376 2377 EVT VT = V.getValueType(); 2378 unsigned Opcode = V.getOpcode(); 2379 switch (Opcode) { 2380 default: { 2381 APInt UndefElts; 2382 APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements()); 2383 if (isSplatValue(V, DemandedElts, UndefElts)) { 2384 // Handle case where all demanded elements are UNDEF. 2385 if (DemandedElts.isSubsetOf(UndefElts)) { 2386 SplatIdx = 0; 2387 return getUNDEF(VT); 2388 } 2389 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes(); 2390 return V; 2391 } 2392 break; 2393 } 2394 case ISD::VECTOR_SHUFFLE: { 2395 // Check if this is a shuffle node doing a splat. 2396 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2397 // getTargetVShiftNode currently struggles without the splat source. 2398 auto *SVN = cast<ShuffleVectorSDNode>(V); 2399 if (!SVN->isSplat()) 2400 break; 2401 int Idx = SVN->getSplatIndex(); 2402 int NumElts = V.getValueType().getVectorNumElements(); 2403 SplatIdx = Idx % NumElts; 2404 return V.getOperand(Idx / NumElts); 2405 } 2406 } 2407 2408 return SDValue(); 2409 } 2410 2411 SDValue SelectionDAG::getSplatValue(SDValue V) { 2412 int SplatIdx; 2413 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) 2414 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), 2415 SrcVector.getValueType().getScalarType(), SrcVector, 2416 getIntPtrConstant(SplatIdx, SDLoc(V))); 2417 return SDValue(); 2418 } 2419 2420 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that 2421 /// is less than the element bit-width of the shift node, return it. 2422 static const APInt *getValidShiftAmountConstant(SDValue V, 2423 const APInt &DemandedElts) { 2424 unsigned BitWidth = V.getScalarValueSizeInBits(); 2425 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2426 // Shifting more than the bitwidth is not valid. 2427 const APInt &ShAmt = SA->getAPIntValue(); 2428 if (ShAmt.ult(BitWidth)) 2429 return &ShAmt; 2430 } 2431 return nullptr; 2432 } 2433 2434 /// If a SHL/SRA/SRL node has constant vector shift amounts that are all less 2435 /// than the element bit-width of the shift node, return the minimum value. 2436 static const APInt * 2437 getValidMinimumShiftAmountConstant(SDValue V, const APInt &DemandedElts) { 2438 unsigned BitWidth = V.getScalarValueSizeInBits(); 2439 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2440 if (!BV) 2441 return nullptr; 2442 const APInt *MinShAmt = nullptr; 2443 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2444 if (!DemandedElts[i]) 2445 continue; 2446 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2447 if (!SA) 2448 return nullptr; 2449 // Shifting more than the bitwidth is not valid. 2450 const APInt &ShAmt = SA->getAPIntValue(); 2451 if (ShAmt.uge(BitWidth)) 2452 return nullptr; 2453 if (MinShAmt && MinShAmt->ule(ShAmt)) 2454 continue; 2455 MinShAmt = &ShAmt; 2456 } 2457 return MinShAmt; 2458 } 2459 2460 /// If a SHL/SRA/SRL node has constant vector shift amounts that are all less 2461 /// than the element bit-width of the shift node, return the maximum value. 2462 static const APInt * 2463 getValidMaximumShiftAmountConstant(SDValue V, const APInt &DemandedElts) { 2464 unsigned BitWidth = V.getScalarValueSizeInBits(); 2465 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2466 if (!BV) 2467 return nullptr; 2468 const APInt *MaxShAmt = nullptr; 2469 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2470 if (!DemandedElts[i]) 2471 continue; 2472 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2473 if (!SA) 2474 return nullptr; 2475 // Shifting more than the bitwidth is not valid. 2476 const APInt &ShAmt = SA->getAPIntValue(); 2477 if (ShAmt.uge(BitWidth)) 2478 return nullptr; 2479 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2480 continue; 2481 MaxShAmt = &ShAmt; 2482 } 2483 return MaxShAmt; 2484 } 2485 2486 /// Determine which bits of Op are known to be either zero or one and return 2487 /// them in Known. For vectors, the known bits are those that are shared by 2488 /// every vector element. 2489 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 2490 EVT VT = Op.getValueType(); 2491 APInt DemandedElts = VT.isVector() 2492 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 2493 : APInt(1, 1); 2494 return computeKnownBits(Op, DemandedElts, Depth); 2495 } 2496 2497 /// Determine which bits of Op are known to be either zero or one and return 2498 /// them in Known. The DemandedElts argument allows us to only collect the known 2499 /// bits that are shared by the requested vector elements. 2500 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 2501 unsigned Depth) const { 2502 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2503 2504 KnownBits Known(BitWidth); // Don't know anything. 2505 2506 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 2507 // We know all of the bits for a constant! 2508 Known.One = C->getAPIntValue(); 2509 Known.Zero = ~Known.One; 2510 return Known; 2511 } 2512 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 2513 // We know all of the bits for a constant fp! 2514 Known.One = C->getValueAPF().bitcastToAPInt(); 2515 Known.Zero = ~Known.One; 2516 return Known; 2517 } 2518 2519 if (Depth >= MaxRecursionDepth) 2520 return Known; // Limit search depth. 2521 2522 KnownBits Known2; 2523 unsigned NumElts = DemandedElts.getBitWidth(); 2524 assert((!Op.getValueType().isVector() || 2525 NumElts == Op.getValueType().getVectorNumElements()) && 2526 "Unexpected vector size"); 2527 2528 if (!DemandedElts) 2529 return Known; // No demanded elts, better to assume we don't know anything. 2530 2531 unsigned Opcode = Op.getOpcode(); 2532 switch (Opcode) { 2533 case ISD::BUILD_VECTOR: 2534 // Collect the known bits that are shared by every demanded vector element. 2535 Known.Zero.setAllBits(); Known.One.setAllBits(); 2536 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 2537 if (!DemandedElts[i]) 2538 continue; 2539 2540 SDValue SrcOp = Op.getOperand(i); 2541 Known2 = computeKnownBits(SrcOp, Depth + 1); 2542 2543 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 2544 if (SrcOp.getValueSizeInBits() != BitWidth) { 2545 assert(SrcOp.getValueSizeInBits() > BitWidth && 2546 "Expected BUILD_VECTOR implicit truncation"); 2547 Known2 = Known2.trunc(BitWidth); 2548 } 2549 2550 // Known bits are the values that are shared by every demanded element. 2551 Known.One &= Known2.One; 2552 Known.Zero &= Known2.Zero; 2553 2554 // If we don't know any bits, early out. 2555 if (Known.isUnknown()) 2556 break; 2557 } 2558 break; 2559 case ISD::VECTOR_SHUFFLE: { 2560 // Collect the known bits that are shared by every vector element referenced 2561 // by the shuffle. 2562 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2563 Known.Zero.setAllBits(); Known.One.setAllBits(); 2564 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 2565 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 2566 for (unsigned i = 0; i != NumElts; ++i) { 2567 if (!DemandedElts[i]) 2568 continue; 2569 2570 int M = SVN->getMaskElt(i); 2571 if (M < 0) { 2572 // For UNDEF elements, we don't know anything about the common state of 2573 // the shuffle result. 2574 Known.resetAll(); 2575 DemandedLHS.clearAllBits(); 2576 DemandedRHS.clearAllBits(); 2577 break; 2578 } 2579 2580 if ((unsigned)M < NumElts) 2581 DemandedLHS.setBit((unsigned)M % NumElts); 2582 else 2583 DemandedRHS.setBit((unsigned)M % NumElts); 2584 } 2585 // Known bits are the values that are shared by every demanded element. 2586 if (!!DemandedLHS) { 2587 SDValue LHS = Op.getOperand(0); 2588 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 2589 Known.One &= Known2.One; 2590 Known.Zero &= Known2.Zero; 2591 } 2592 // If we don't know any bits, early out. 2593 if (Known.isUnknown()) 2594 break; 2595 if (!!DemandedRHS) { 2596 SDValue RHS = Op.getOperand(1); 2597 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 2598 Known.One &= Known2.One; 2599 Known.Zero &= Known2.Zero; 2600 } 2601 break; 2602 } 2603 case ISD::CONCAT_VECTORS: { 2604 // Split DemandedElts and test each of the demanded subvectors. 2605 Known.Zero.setAllBits(); Known.One.setAllBits(); 2606 EVT SubVectorVT = Op.getOperand(0).getValueType(); 2607 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 2608 unsigned NumSubVectors = Op.getNumOperands(); 2609 for (unsigned i = 0; i != NumSubVectors; ++i) { 2610 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 2611 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 2612 if (!!DemandedSub) { 2613 SDValue Sub = Op.getOperand(i); 2614 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 2615 Known.One &= Known2.One; 2616 Known.Zero &= Known2.Zero; 2617 } 2618 // If we don't know any bits, early out. 2619 if (Known.isUnknown()) 2620 break; 2621 } 2622 break; 2623 } 2624 case ISD::INSERT_SUBVECTOR: { 2625 // If we know the element index, demand any elements from the subvector and 2626 // the remainder from the src its inserted into, otherwise demand them all. 2627 SDValue Src = Op.getOperand(0); 2628 SDValue Sub = Op.getOperand(1); 2629 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2630 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2631 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 2632 Known.One.setAllBits(); 2633 Known.Zero.setAllBits(); 2634 uint64_t Idx = SubIdx->getZExtValue(); 2635 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2636 if (!!DemandedSubElts) { 2637 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 2638 if (Known.isUnknown()) 2639 break; // early-out. 2640 } 2641 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 2642 APInt DemandedSrcElts = DemandedElts & ~SubMask; 2643 if (!!DemandedSrcElts) { 2644 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 2645 Known.One &= Known2.One; 2646 Known.Zero &= Known2.Zero; 2647 } 2648 } else { 2649 Known = computeKnownBits(Sub, Depth + 1); 2650 if (Known.isUnknown()) 2651 break; // early-out. 2652 Known2 = computeKnownBits(Src, Depth + 1); 2653 Known.One &= Known2.One; 2654 Known.Zero &= Known2.Zero; 2655 } 2656 break; 2657 } 2658 case ISD::EXTRACT_SUBVECTOR: { 2659 // If we know the element index, just demand that subvector elements, 2660 // otherwise demand them all. 2661 SDValue Src = Op.getOperand(0); 2662 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2663 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2664 APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts); 2665 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2666 // Offset the demanded elts by the subvector index. 2667 uint64_t Idx = SubIdx->getZExtValue(); 2668 DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2669 } 2670 Known = computeKnownBits(Src, DemandedSrc, Depth + 1); 2671 break; 2672 } 2673 case ISD::SCALAR_TO_VECTOR: { 2674 // We know about scalar_to_vector as much as we know about it source, 2675 // which becomes the first element of otherwise unknown vector. 2676 if (DemandedElts != 1) 2677 break; 2678 2679 SDValue N0 = Op.getOperand(0); 2680 Known = computeKnownBits(N0, Depth + 1); 2681 if (N0.getValueSizeInBits() != BitWidth) 2682 Known = Known.trunc(BitWidth); 2683 2684 break; 2685 } 2686 case ISD::BITCAST: { 2687 SDValue N0 = Op.getOperand(0); 2688 EVT SubVT = N0.getValueType(); 2689 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 2690 2691 // Ignore bitcasts from unsupported types. 2692 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 2693 break; 2694 2695 // Fast handling of 'identity' bitcasts. 2696 if (BitWidth == SubBitWidth) { 2697 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 2698 break; 2699 } 2700 2701 bool IsLE = getDataLayout().isLittleEndian(); 2702 2703 // Bitcast 'small element' vector to 'large element' scalar/vector. 2704 if ((BitWidth % SubBitWidth) == 0) { 2705 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 2706 2707 // Collect known bits for the (larger) output by collecting the known 2708 // bits from each set of sub elements and shift these into place. 2709 // We need to separately call computeKnownBits for each set of 2710 // sub elements as the knownbits for each is likely to be different. 2711 unsigned SubScale = BitWidth / SubBitWidth; 2712 APInt SubDemandedElts(NumElts * SubScale, 0); 2713 for (unsigned i = 0; i != NumElts; ++i) 2714 if (DemandedElts[i]) 2715 SubDemandedElts.setBit(i * SubScale); 2716 2717 for (unsigned i = 0; i != SubScale; ++i) { 2718 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 2719 Depth + 1); 2720 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 2721 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts); 2722 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts); 2723 } 2724 } 2725 2726 // Bitcast 'large element' scalar/vector to 'small element' vector. 2727 if ((SubBitWidth % BitWidth) == 0) { 2728 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 2729 2730 // Collect known bits for the (smaller) output by collecting the known 2731 // bits from the overlapping larger input elements and extracting the 2732 // sub sections we actually care about. 2733 unsigned SubScale = SubBitWidth / BitWidth; 2734 APInt SubDemandedElts(NumElts / SubScale, 0); 2735 for (unsigned i = 0; i != NumElts; ++i) 2736 if (DemandedElts[i]) 2737 SubDemandedElts.setBit(i / SubScale); 2738 2739 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 2740 2741 Known.Zero.setAllBits(); Known.One.setAllBits(); 2742 for (unsigned i = 0; i != NumElts; ++i) 2743 if (DemandedElts[i]) { 2744 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 2745 unsigned Offset = (Shifts % SubScale) * BitWidth; 2746 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth); 2747 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth); 2748 // If we don't know any bits, early out. 2749 if (Known.isUnknown()) 2750 break; 2751 } 2752 } 2753 break; 2754 } 2755 case ISD::AND: 2756 // If either the LHS or the RHS are Zero, the result is zero. 2757 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2758 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2759 2760 // Output known-1 bits are only known if set in both the LHS & RHS. 2761 Known.One &= Known2.One; 2762 // Output known-0 are known to be clear if zero in either the LHS | RHS. 2763 Known.Zero |= Known2.Zero; 2764 break; 2765 case ISD::OR: 2766 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2767 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2768 2769 // Output known-0 bits are only known if clear in both the LHS & RHS. 2770 Known.Zero &= Known2.Zero; 2771 // Output known-1 are known to be set if set in either the LHS | RHS. 2772 Known.One |= Known2.One; 2773 break; 2774 case ISD::XOR: { 2775 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2776 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2777 2778 // Output known-0 bits are known if clear or set in both the LHS & RHS. 2779 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 2780 // Output known-1 are known to be set if set in only one of the LHS, RHS. 2781 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 2782 Known.Zero = KnownZeroOut; 2783 break; 2784 } 2785 case ISD::MUL: { 2786 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2787 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2788 2789 // If low bits are zero in either operand, output low known-0 bits. 2790 // Also compute a conservative estimate for high known-0 bits. 2791 // More trickiness is possible, but this is sufficient for the 2792 // interesting case of alignment computation. 2793 unsigned TrailZ = Known.countMinTrailingZeros() + 2794 Known2.countMinTrailingZeros(); 2795 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 2796 Known2.countMinLeadingZeros(), 2797 BitWidth) - BitWidth; 2798 2799 Known.resetAll(); 2800 Known.Zero.setLowBits(std::min(TrailZ, BitWidth)); 2801 Known.Zero.setHighBits(std::min(LeadZ, BitWidth)); 2802 break; 2803 } 2804 case ISD::UDIV: { 2805 // For the purposes of computing leading zeros we can conservatively 2806 // treat a udiv as a logical right shift by the power of 2 known to 2807 // be less than the denominator. 2808 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2809 unsigned LeadZ = Known2.countMinLeadingZeros(); 2810 2811 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2812 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 2813 if (RHSMaxLeadingZeros != BitWidth) 2814 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 2815 2816 Known.Zero.setHighBits(LeadZ); 2817 break; 2818 } 2819 case ISD::SELECT: 2820 case ISD::VSELECT: 2821 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2822 // If we don't know any bits, early out. 2823 if (Known.isUnknown()) 2824 break; 2825 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 2826 2827 // Only known if known in both the LHS and RHS. 2828 Known.One &= Known2.One; 2829 Known.Zero &= Known2.Zero; 2830 break; 2831 case ISD::SELECT_CC: 2832 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 2833 // If we don't know any bits, early out. 2834 if (Known.isUnknown()) 2835 break; 2836 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 2837 2838 // Only known if known in both the LHS and RHS. 2839 Known.One &= Known2.One; 2840 Known.Zero &= Known2.Zero; 2841 break; 2842 case ISD::SMULO: 2843 case ISD::UMULO: 2844 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 2845 if (Op.getResNo() != 1) 2846 break; 2847 // The boolean result conforms to getBooleanContents. 2848 // If we know the result of a setcc has the top bits zero, use this info. 2849 // We know that we have an integer-based boolean since these operations 2850 // are only available for integer. 2851 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 2852 TargetLowering::ZeroOrOneBooleanContent && 2853 BitWidth > 1) 2854 Known.Zero.setBitsFrom(1); 2855 break; 2856 case ISD::SETCC: 2857 case ISD::STRICT_FSETCC: 2858 case ISD::STRICT_FSETCCS: { 2859 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 2860 // If we know the result of a setcc has the top bits zero, use this info. 2861 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 2862 TargetLowering::ZeroOrOneBooleanContent && 2863 BitWidth > 1) 2864 Known.Zero.setBitsFrom(1); 2865 break; 2866 } 2867 case ISD::SHL: 2868 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2869 2870 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2871 unsigned Shift = ShAmt->getZExtValue(); 2872 Known.Zero <<= Shift; 2873 Known.One <<= Shift; 2874 // Low bits are known zero. 2875 Known.Zero.setLowBits(Shift); 2876 break; 2877 } 2878 2879 // No matter the shift amount, the trailing zeros will stay zero. 2880 Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros()); 2881 Known.One.clearAllBits(); 2882 2883 // Minimum shift low bits are known zero. 2884 if (const APInt *ShMinAmt = 2885 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2886 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 2887 break; 2888 case ISD::SRL: 2889 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2890 2891 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2892 unsigned Shift = ShAmt->getZExtValue(); 2893 Known.Zero.lshrInPlace(Shift); 2894 Known.One.lshrInPlace(Shift); 2895 // High bits are known zero. 2896 Known.Zero.setHighBits(Shift); 2897 break; 2898 } 2899 2900 // No matter the shift amount, the leading zeros will stay zero. 2901 Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros()); 2902 Known.One.clearAllBits(); 2903 2904 // Minimum shift high bits are known zero. 2905 if (const APInt *ShMinAmt = 2906 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 2907 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 2908 break; 2909 case ISD::SRA: 2910 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 2911 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2912 unsigned Shift = ShAmt->getZExtValue(); 2913 // Sign extend known zero/one bit (else is unknown). 2914 Known.Zero.ashrInPlace(Shift); 2915 Known.One.ashrInPlace(Shift); 2916 } 2917 break; 2918 case ISD::FSHL: 2919 case ISD::FSHR: 2920 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 2921 unsigned Amt = C->getAPIntValue().urem(BitWidth); 2922 2923 // For fshl, 0-shift returns the 1st arg. 2924 // For fshr, 0-shift returns the 2nd arg. 2925 if (Amt == 0) { 2926 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 2927 DemandedElts, Depth + 1); 2928 break; 2929 } 2930 2931 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 2932 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 2933 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2934 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 2935 if (Opcode == ISD::FSHL) { 2936 Known.One <<= Amt; 2937 Known.Zero <<= Amt; 2938 Known2.One.lshrInPlace(BitWidth - Amt); 2939 Known2.Zero.lshrInPlace(BitWidth - Amt); 2940 } else { 2941 Known.One <<= BitWidth - Amt; 2942 Known.Zero <<= BitWidth - Amt; 2943 Known2.One.lshrInPlace(Amt); 2944 Known2.Zero.lshrInPlace(Amt); 2945 } 2946 Known.One |= Known2.One; 2947 Known.Zero |= Known2.Zero; 2948 } 2949 break; 2950 case ISD::SIGN_EXTEND_INREG: { 2951 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2952 unsigned EBits = EVT.getScalarSizeInBits(); 2953 2954 // Sign extension. Compute the demanded bits in the result that are not 2955 // present in the input. 2956 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); 2957 2958 APInt InSignMask = APInt::getSignMask(EBits); 2959 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); 2960 2961 // If the sign extended bits are demanded, we know that the sign 2962 // bit is demanded. 2963 InSignMask = InSignMask.zext(BitWidth); 2964 if (NewBits.getBoolValue()) 2965 InputDemandedBits |= InSignMask; 2966 2967 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2968 Known.One &= InputDemandedBits; 2969 Known.Zero &= InputDemandedBits; 2970 2971 // If the sign bit of the input is known set or clear, then we know the 2972 // top bits of the result. 2973 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear 2974 Known.Zero |= NewBits; 2975 Known.One &= ~NewBits; 2976 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set 2977 Known.One |= NewBits; 2978 Known.Zero &= ~NewBits; 2979 } else { // Input sign bit unknown 2980 Known.Zero &= ~NewBits; 2981 Known.One &= ~NewBits; 2982 } 2983 break; 2984 } 2985 case ISD::CTTZ: 2986 case ISD::CTTZ_ZERO_UNDEF: { 2987 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2988 // If we have a known 1, its position is our upper bound. 2989 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 2990 unsigned LowBits = Log2_32(PossibleTZ) + 1; 2991 Known.Zero.setBitsFrom(LowBits); 2992 break; 2993 } 2994 case ISD::CTLZ: 2995 case ISD::CTLZ_ZERO_UNDEF: { 2996 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 2997 // If we have a known 1, its position is our upper bound. 2998 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 2999 unsigned LowBits = Log2_32(PossibleLZ) + 1; 3000 Known.Zero.setBitsFrom(LowBits); 3001 break; 3002 } 3003 case ISD::CTPOP: { 3004 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3005 // If we know some of the bits are zero, they can't be one. 3006 unsigned PossibleOnes = Known2.countMaxPopulation(); 3007 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1); 3008 break; 3009 } 3010 case ISD::LOAD: { 3011 LoadSDNode *LD = cast<LoadSDNode>(Op); 3012 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3013 if (ISD::isNON_EXTLoad(LD) && Cst) { 3014 // Determine any common known bits from the loaded constant pool value. 3015 Type *CstTy = Cst->getType(); 3016 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) { 3017 // If its a vector splat, then we can (quickly) reuse the scalar path. 3018 // NOTE: We assume all elements match and none are UNDEF. 3019 if (CstTy->isVectorTy()) { 3020 if (const Constant *Splat = Cst->getSplatValue()) { 3021 Cst = Splat; 3022 CstTy = Cst->getType(); 3023 } 3024 } 3025 // TODO - do we need to handle different bitwidths? 3026 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3027 // Iterate across all vector elements finding common known bits. 3028 Known.One.setAllBits(); 3029 Known.Zero.setAllBits(); 3030 for (unsigned i = 0; i != NumElts; ++i) { 3031 if (!DemandedElts[i]) 3032 continue; 3033 if (Constant *Elt = Cst->getAggregateElement(i)) { 3034 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3035 const APInt &Value = CInt->getValue(); 3036 Known.One &= Value; 3037 Known.Zero &= ~Value; 3038 continue; 3039 } 3040 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3041 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3042 Known.One &= Value; 3043 Known.Zero &= ~Value; 3044 continue; 3045 } 3046 } 3047 Known.One.clearAllBits(); 3048 Known.Zero.clearAllBits(); 3049 break; 3050 } 3051 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3052 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3053 const APInt &Value = CInt->getValue(); 3054 Known.One = Value; 3055 Known.Zero = ~Value; 3056 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3057 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3058 Known.One = Value; 3059 Known.Zero = ~Value; 3060 } 3061 } 3062 } 3063 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3064 // If this is a ZEXTLoad and we are looking at the loaded value. 3065 EVT VT = LD->getMemoryVT(); 3066 unsigned MemBits = VT.getScalarSizeInBits(); 3067 Known.Zero.setBitsFrom(MemBits); 3068 } else if (const MDNode *Ranges = LD->getRanges()) { 3069 if (LD->getExtensionType() == ISD::NON_EXTLOAD) 3070 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3071 } 3072 break; 3073 } 3074 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3075 EVT InVT = Op.getOperand(0).getValueType(); 3076 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3077 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3078 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 3079 break; 3080 } 3081 case ISD::ZERO_EXTEND: { 3082 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3083 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 3084 break; 3085 } 3086 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3087 EVT InVT = Op.getOperand(0).getValueType(); 3088 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements()); 3089 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3090 // If the sign bit is known to be zero or one, then sext will extend 3091 // it to the top bits, else it will just zext. 3092 Known = Known.sext(BitWidth); 3093 break; 3094 } 3095 case ISD::SIGN_EXTEND: { 3096 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3097 // If the sign bit is known to be zero or one, then sext will extend 3098 // it to the top bits, else it will just zext. 3099 Known = Known.sext(BitWidth); 3100 break; 3101 } 3102 case ISD::ANY_EXTEND: { 3103 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3104 Known = Known.zext(BitWidth, false /* ExtendedBitsAreKnownZero */); 3105 break; 3106 } 3107 case ISD::TRUNCATE: { 3108 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3109 Known = Known.trunc(BitWidth); 3110 break; 3111 } 3112 case ISD::AssertZext: { 3113 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3114 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3115 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3116 Known.Zero |= (~InMask); 3117 Known.One &= (~Known.Zero); 3118 break; 3119 } 3120 case ISD::FGETSIGN: 3121 // All bits are zero except the low bit. 3122 Known.Zero.setBitsFrom(1); 3123 break; 3124 case ISD::USUBO: 3125 case ISD::SSUBO: 3126 if (Op.getResNo() == 1) { 3127 // If we know the result of a setcc has the top bits zero, use this info. 3128 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3129 TargetLowering::ZeroOrOneBooleanContent && 3130 BitWidth > 1) 3131 Known.Zero.setBitsFrom(1); 3132 break; 3133 } 3134 LLVM_FALLTHROUGH; 3135 case ISD::SUB: 3136 case ISD::SUBC: { 3137 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3138 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3139 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3140 Known, Known2); 3141 break; 3142 } 3143 case ISD::UADDO: 3144 case ISD::SADDO: 3145 case ISD::ADDCARRY: 3146 if (Op.getResNo() == 1) { 3147 // If we know the result of a setcc has the top bits zero, use this info. 3148 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3149 TargetLowering::ZeroOrOneBooleanContent && 3150 BitWidth > 1) 3151 Known.Zero.setBitsFrom(1); 3152 break; 3153 } 3154 LLVM_FALLTHROUGH; 3155 case ISD::ADD: 3156 case ISD::ADDC: 3157 case ISD::ADDE: { 3158 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3159 3160 // With ADDE and ADDCARRY, a carry bit may be added in. 3161 KnownBits Carry(1); 3162 if (Opcode == ISD::ADDE) 3163 // Can't track carry from glue, set carry to unknown. 3164 Carry.resetAll(); 3165 else if (Opcode == ISD::ADDCARRY) 3166 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3167 // the trouble (how often will we find a known carry bit). And I haven't 3168 // tested this very much yet, but something like this might work: 3169 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3170 // Carry = Carry.zextOrTrunc(1, false); 3171 Carry.resetAll(); 3172 else 3173 Carry.setAllZero(); 3174 3175 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3176 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3177 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3178 break; 3179 } 3180 case ISD::SREM: 3181 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3182 const APInt &RA = Rem->getAPIntValue().abs(); 3183 if (RA.isPowerOf2()) { 3184 APInt LowBits = RA - 1; 3185 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3186 3187 // The low bits of the first operand are unchanged by the srem. 3188 Known.Zero = Known2.Zero & LowBits; 3189 Known.One = Known2.One & LowBits; 3190 3191 // If the first operand is non-negative or has all low bits zero, then 3192 // the upper bits are all zero. 3193 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 3194 Known.Zero |= ~LowBits; 3195 3196 // If the first operand is negative and not all low bits are zero, then 3197 // the upper bits are all one. 3198 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 3199 Known.One |= ~LowBits; 3200 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?"); 3201 } 3202 } 3203 break; 3204 case ISD::UREM: { 3205 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) { 3206 const APInt &RA = Rem->getAPIntValue(); 3207 if (RA.isPowerOf2()) { 3208 APInt LowBits = (RA - 1); 3209 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3210 3211 // The upper bits are all zero, the lower ones are unchanged. 3212 Known.Zero = Known2.Zero | ~LowBits; 3213 Known.One = Known2.One & LowBits; 3214 break; 3215 } 3216 } 3217 3218 // Since the result is less than or equal to either operand, any leading 3219 // zero bits in either operand must also exist in the result. 3220 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3221 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3222 3223 uint32_t Leaders = 3224 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 3225 Known.resetAll(); 3226 Known.Zero.setHighBits(Leaders); 3227 break; 3228 } 3229 case ISD::EXTRACT_ELEMENT: { 3230 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3231 const unsigned Index = Op.getConstantOperandVal(1); 3232 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3233 3234 // Remove low part of known bits mask 3235 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3236 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3237 3238 // Remove high part of known bit mask 3239 Known = Known.trunc(EltBitWidth); 3240 break; 3241 } 3242 case ISD::EXTRACT_VECTOR_ELT: { 3243 SDValue InVec = Op.getOperand(0); 3244 SDValue EltNo = Op.getOperand(1); 3245 EVT VecVT = InVec.getValueType(); 3246 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3247 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3248 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3249 // anything about the extended bits. 3250 if (BitWidth > EltBitWidth) 3251 Known = Known.trunc(EltBitWidth); 3252 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3253 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) { 3254 // If we know the element index, just demand that vector element. 3255 unsigned Idx = ConstEltNo->getZExtValue(); 3256 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx); 3257 Known = computeKnownBits(InVec, DemandedElt, Depth + 1); 3258 } else { 3259 // Unknown element index, so ignore DemandedElts and demand them all. 3260 Known = computeKnownBits(InVec, Depth + 1); 3261 } 3262 if (BitWidth > EltBitWidth) 3263 Known = Known.zext(BitWidth, false /* => any extend */); 3264 break; 3265 } 3266 case ISD::INSERT_VECTOR_ELT: { 3267 SDValue InVec = Op.getOperand(0); 3268 SDValue InVal = Op.getOperand(1); 3269 SDValue EltNo = Op.getOperand(2); 3270 3271 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3272 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3273 // If we know the element index, split the demand between the 3274 // source vector and the inserted element. 3275 Known.Zero = Known.One = APInt::getAllOnesValue(BitWidth); 3276 unsigned EltIdx = CEltNo->getZExtValue(); 3277 3278 // If we demand the inserted element then add its common known bits. 3279 if (DemandedElts[EltIdx]) { 3280 Known2 = computeKnownBits(InVal, Depth + 1); 3281 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 3282 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 3283 } 3284 3285 // If we demand the source vector then add its common known bits, ensuring 3286 // that we don't demand the inserted element. 3287 APInt VectorElts = DemandedElts & ~(APInt::getOneBitSet(NumElts, EltIdx)); 3288 if (!!VectorElts) { 3289 Known2 = computeKnownBits(InVec, VectorElts, Depth + 1); 3290 Known.One &= Known2.One; 3291 Known.Zero &= Known2.Zero; 3292 } 3293 } else { 3294 // Unknown element index, so ignore DemandedElts and demand them all. 3295 Known = computeKnownBits(InVec, Depth + 1); 3296 Known2 = computeKnownBits(InVal, Depth + 1); 3297 Known.One &= Known2.One.zextOrTrunc(Known.One.getBitWidth()); 3298 Known.Zero &= Known2.Zero.zextOrTrunc(Known.Zero.getBitWidth()); 3299 } 3300 break; 3301 } 3302 case ISD::BITREVERSE: { 3303 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3304 Known.Zero = Known2.Zero.reverseBits(); 3305 Known.One = Known2.One.reverseBits(); 3306 break; 3307 } 3308 case ISD::BSWAP: { 3309 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3310 Known.Zero = Known2.Zero.byteSwap(); 3311 Known.One = Known2.One.byteSwap(); 3312 break; 3313 } 3314 case ISD::ABS: { 3315 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3316 3317 // If the source's MSB is zero then we know the rest of the bits already. 3318 if (Known2.isNonNegative()) { 3319 Known.Zero = Known2.Zero; 3320 Known.One = Known2.One; 3321 break; 3322 } 3323 3324 // We only know that the absolute values's MSB will be zero iff there is 3325 // a set bit that isn't the sign bit (otherwise it could be INT_MIN). 3326 Known2.One.clearSignBit(); 3327 if (Known2.One.getBoolValue()) { 3328 Known.Zero = APInt::getSignMask(BitWidth); 3329 break; 3330 } 3331 break; 3332 } 3333 case ISD::UMIN: { 3334 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3335 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3336 3337 // UMIN - we know that the result will have the maximum of the 3338 // known zero leading bits of the inputs. 3339 unsigned LeadZero = Known.countMinLeadingZeros(); 3340 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros()); 3341 3342 Known.Zero &= Known2.Zero; 3343 Known.One &= Known2.One; 3344 Known.Zero.setHighBits(LeadZero); 3345 break; 3346 } 3347 case ISD::UMAX: { 3348 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3349 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3350 3351 // UMAX - we know that the result will have the maximum of the 3352 // known one leading bits of the inputs. 3353 unsigned LeadOne = Known.countMinLeadingOnes(); 3354 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes()); 3355 3356 Known.Zero &= Known2.Zero; 3357 Known.One &= Known2.One; 3358 Known.One.setHighBits(LeadOne); 3359 break; 3360 } 3361 case ISD::SMIN: 3362 case ISD::SMAX: { 3363 // If we have a clamp pattern, we know that the number of sign bits will be 3364 // the minimum of the clamp min/max range. 3365 bool IsMax = (Opcode == ISD::SMAX); 3366 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3367 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3368 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3369 CstHigh = 3370 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3371 if (CstLow && CstHigh) { 3372 if (!IsMax) 3373 std::swap(CstLow, CstHigh); 3374 3375 const APInt &ValueLow = CstLow->getAPIntValue(); 3376 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3377 if (ValueLow.sle(ValueHigh)) { 3378 unsigned LowSignBits = ValueLow.getNumSignBits(); 3379 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3380 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3381 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3382 Known.One.setHighBits(MinSignBits); 3383 break; 3384 } 3385 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3386 Known.Zero.setHighBits(MinSignBits); 3387 break; 3388 } 3389 } 3390 } 3391 3392 // Fallback - just get the shared known bits of the operands. 3393 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3394 if (Known.isUnknown()) break; // Early-out 3395 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3396 Known.Zero &= Known2.Zero; 3397 Known.One &= Known2.One; 3398 break; 3399 } 3400 case ISD::FrameIndex: 3401 case ISD::TargetFrameIndex: 3402 TLI->computeKnownBitsForFrameIndex(Op, Known, DemandedElts, *this, Depth); 3403 break; 3404 3405 default: 3406 if (Opcode < ISD::BUILTIN_OP_END) 3407 break; 3408 LLVM_FALLTHROUGH; 3409 case ISD::INTRINSIC_WO_CHAIN: 3410 case ISD::INTRINSIC_W_CHAIN: 3411 case ISD::INTRINSIC_VOID: 3412 // Allow the target to implement this method for its nodes. 3413 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3414 break; 3415 } 3416 3417 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3418 return Known; 3419 } 3420 3421 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0, 3422 SDValue N1) const { 3423 // X + 0 never overflow 3424 if (isNullConstant(N1)) 3425 return OFK_Never; 3426 3427 KnownBits N1Known = computeKnownBits(N1); 3428 if (N1Known.Zero.getBoolValue()) { 3429 KnownBits N0Known = computeKnownBits(N0); 3430 3431 bool overflow; 3432 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow); 3433 if (!overflow) 3434 return OFK_Never; 3435 } 3436 3437 // mulhi + 1 never overflow 3438 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 3439 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue()) 3440 return OFK_Never; 3441 3442 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) { 3443 KnownBits N0Known = computeKnownBits(N0); 3444 3445 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue()) 3446 return OFK_Never; 3447 } 3448 3449 return OFK_Sometime; 3450 } 3451 3452 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const { 3453 EVT OpVT = Val.getValueType(); 3454 unsigned BitWidth = OpVT.getScalarSizeInBits(); 3455 3456 // Is the constant a known power of 2? 3457 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 3458 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3459 3460 // A left-shift of a constant one will have exactly one bit set because 3461 // shifting the bit off the end is undefined. 3462 if (Val.getOpcode() == ISD::SHL) { 3463 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3464 if (C && C->getAPIntValue() == 1) 3465 return true; 3466 } 3467 3468 // Similarly, a logical right-shift of a constant sign-bit will have exactly 3469 // one bit set. 3470 if (Val.getOpcode() == ISD::SRL) { 3471 auto *C = isConstOrConstSplat(Val.getOperand(0)); 3472 if (C && C->getAPIntValue().isSignMask()) 3473 return true; 3474 } 3475 3476 // Are all operands of a build vector constant powers of two? 3477 if (Val.getOpcode() == ISD::BUILD_VECTOR) 3478 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 3479 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 3480 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 3481 return false; 3482 })) 3483 return true; 3484 3485 // More could be done here, though the above checks are enough 3486 // to handle some common cases. 3487 3488 // Fall back to computeKnownBits to catch other known cases. 3489 KnownBits Known = computeKnownBits(Val); 3490 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1); 3491 } 3492 3493 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 3494 EVT VT = Op.getValueType(); 3495 APInt DemandedElts = VT.isVector() 3496 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 3497 : APInt(1, 1); 3498 return ComputeNumSignBits(Op, DemandedElts, Depth); 3499 } 3500 3501 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 3502 unsigned Depth) const { 3503 EVT VT = Op.getValueType(); 3504 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 3505 unsigned VTBits = VT.getScalarSizeInBits(); 3506 unsigned NumElts = DemandedElts.getBitWidth(); 3507 unsigned Tmp, Tmp2; 3508 unsigned FirstAnswer = 1; 3509 3510 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3511 const APInt &Val = C->getAPIntValue(); 3512 return Val.getNumSignBits(); 3513 } 3514 3515 if (Depth >= MaxRecursionDepth) 3516 return 1; // Limit search depth. 3517 3518 if (!DemandedElts) 3519 return 1; // No demanded elts, better to assume we don't know anything. 3520 3521 unsigned Opcode = Op.getOpcode(); 3522 switch (Opcode) { 3523 default: break; 3524 case ISD::AssertSext: 3525 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3526 return VTBits-Tmp+1; 3527 case ISD::AssertZext: 3528 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 3529 return VTBits-Tmp; 3530 3531 case ISD::BUILD_VECTOR: 3532 Tmp = VTBits; 3533 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 3534 if (!DemandedElts[i]) 3535 continue; 3536 3537 SDValue SrcOp = Op.getOperand(i); 3538 Tmp2 = ComputeNumSignBits(Op.getOperand(i), Depth + 1); 3539 3540 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3541 if (SrcOp.getValueSizeInBits() != VTBits) { 3542 assert(SrcOp.getValueSizeInBits() > VTBits && 3543 "Expected BUILD_VECTOR implicit truncation"); 3544 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 3545 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 3546 } 3547 Tmp = std::min(Tmp, Tmp2); 3548 } 3549 return Tmp; 3550 3551 case ISD::VECTOR_SHUFFLE: { 3552 // Collect the minimum number of sign bits that are shared by every vector 3553 // element referenced by the shuffle. 3554 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 3555 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3556 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3557 for (unsigned i = 0; i != NumElts; ++i) { 3558 int M = SVN->getMaskElt(i); 3559 if (!DemandedElts[i]) 3560 continue; 3561 // For UNDEF elements, we don't know anything about the common state of 3562 // the shuffle result. 3563 if (M < 0) 3564 return 1; 3565 if ((unsigned)M < NumElts) 3566 DemandedLHS.setBit((unsigned)M % NumElts); 3567 else 3568 DemandedRHS.setBit((unsigned)M % NumElts); 3569 } 3570 Tmp = std::numeric_limits<unsigned>::max(); 3571 if (!!DemandedLHS) 3572 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 3573 if (!!DemandedRHS) { 3574 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 3575 Tmp = std::min(Tmp, Tmp2); 3576 } 3577 // If we don't know anything, early out and try computeKnownBits fall-back. 3578 if (Tmp == 1) 3579 break; 3580 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3581 return Tmp; 3582 } 3583 3584 case ISD::BITCAST: { 3585 SDValue N0 = Op.getOperand(0); 3586 EVT SrcVT = N0.getValueType(); 3587 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 3588 3589 // Ignore bitcasts from unsupported types.. 3590 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 3591 break; 3592 3593 // Fast handling of 'identity' bitcasts. 3594 if (VTBits == SrcBits) 3595 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 3596 3597 bool IsLE = getDataLayout().isLittleEndian(); 3598 3599 // Bitcast 'large element' scalar/vector to 'small element' vector. 3600 if ((SrcBits % VTBits) == 0) { 3601 assert(VT.isVector() && "Expected bitcast to vector"); 3602 3603 unsigned Scale = SrcBits / VTBits; 3604 APInt SrcDemandedElts(NumElts / Scale, 0); 3605 for (unsigned i = 0; i != NumElts; ++i) 3606 if (DemandedElts[i]) 3607 SrcDemandedElts.setBit(i / Scale); 3608 3609 // Fast case - sign splat can be simply split across the small elements. 3610 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 3611 if (Tmp == SrcBits) 3612 return VTBits; 3613 3614 // Slow case - determine how far the sign extends into each sub-element. 3615 Tmp2 = VTBits; 3616 for (unsigned i = 0; i != NumElts; ++i) 3617 if (DemandedElts[i]) { 3618 unsigned SubOffset = i % Scale; 3619 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 3620 SubOffset = SubOffset * VTBits; 3621 if (Tmp <= SubOffset) 3622 return 1; 3623 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 3624 } 3625 return Tmp2; 3626 } 3627 break; 3628 } 3629 3630 case ISD::SIGN_EXTEND: 3631 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 3632 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 3633 case ISD::SIGN_EXTEND_INREG: 3634 // Max of the input and what this extends. 3635 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 3636 Tmp = VTBits-Tmp+1; 3637 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3638 return std::max(Tmp, Tmp2); 3639 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3640 SDValue Src = Op.getOperand(0); 3641 EVT SrcVT = Src.getValueType(); 3642 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements()); 3643 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 3644 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 3645 } 3646 case ISD::SRA: 3647 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3648 // SRA X, C -> adds C sign bits. 3649 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) 3650 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3651 else if (const APInt *ShAmt = 3652 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3653 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 3654 return Tmp; 3655 case ISD::SHL: 3656 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) { 3657 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 3658 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3659 if (ShAmt->ult(Tmp)) 3660 return Tmp - ShAmt->getZExtValue(); 3661 } else if (const APInt *ShAmt = 3662 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 3663 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 3664 if (ShAmt->ult(Tmp)) 3665 return Tmp - ShAmt->getZExtValue(); 3666 } 3667 break; 3668 case ISD::AND: 3669 case ISD::OR: 3670 case ISD::XOR: // NOT is handled here. 3671 // Logical binary ops preserve the number of sign bits at the worst. 3672 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 3673 if (Tmp != 1) { 3674 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3675 FirstAnswer = std::min(Tmp, Tmp2); 3676 // We computed what we know about the sign bits as our first 3677 // answer. Now proceed to the generic code that uses 3678 // computeKnownBits, and pick whichever answer is better. 3679 } 3680 break; 3681 3682 case ISD::SELECT: 3683 case ISD::VSELECT: 3684 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 3685 if (Tmp == 1) return 1; // Early out. 3686 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3687 return std::min(Tmp, Tmp2); 3688 case ISD::SELECT_CC: 3689 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 3690 if (Tmp == 1) return 1; // Early out. 3691 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 3692 return std::min(Tmp, Tmp2); 3693 3694 case ISD::SMIN: 3695 case ISD::SMAX: { 3696 // If we have a clamp pattern, we know that the number of sign bits will be 3697 // the minimum of the clamp min/max range. 3698 bool IsMax = (Opcode == ISD::SMAX); 3699 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3700 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3701 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3702 CstHigh = 3703 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3704 if (CstLow && CstHigh) { 3705 if (!IsMax) 3706 std::swap(CstLow, CstHigh); 3707 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 3708 Tmp = CstLow->getAPIntValue().getNumSignBits(); 3709 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 3710 return std::min(Tmp, Tmp2); 3711 } 3712 } 3713 3714 // Fallback - just get the minimum number of sign bits of the operands. 3715 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3716 if (Tmp == 1) 3717 return 1; // Early out. 3718 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3719 return std::min(Tmp, Tmp2); 3720 } 3721 case ISD::UMIN: 3722 case ISD::UMAX: 3723 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3724 if (Tmp == 1) 3725 return 1; // Early out. 3726 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3727 return std::min(Tmp, Tmp2); 3728 case ISD::SADDO: 3729 case ISD::UADDO: 3730 case ISD::SSUBO: 3731 case ISD::USUBO: 3732 case ISD::SMULO: 3733 case ISD::UMULO: 3734 if (Op.getResNo() != 1) 3735 break; 3736 // The boolean result conforms to getBooleanContents. Fall through. 3737 // If setcc returns 0/-1, all bits are sign bits. 3738 // We know that we have an integer-based boolean since these operations 3739 // are only available for integer. 3740 if (TLI->getBooleanContents(VT.isVector(), false) == 3741 TargetLowering::ZeroOrNegativeOneBooleanContent) 3742 return VTBits; 3743 break; 3744 case ISD::SETCC: 3745 case ISD::STRICT_FSETCC: 3746 case ISD::STRICT_FSETCCS: { 3747 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3748 // If setcc returns 0/-1, all bits are sign bits. 3749 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3750 TargetLowering::ZeroOrNegativeOneBooleanContent) 3751 return VTBits; 3752 break; 3753 } 3754 case ISD::ROTL: 3755 case ISD::ROTR: 3756 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3757 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 3758 3759 // Handle rotate right by N like a rotate left by 32-N. 3760 if (Opcode == ISD::ROTR) 3761 RotAmt = (VTBits - RotAmt) % VTBits; 3762 3763 // If we aren't rotating out all of the known-in sign bits, return the 3764 // number that are left. This handles rotl(sext(x), 1) for example. 3765 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3766 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 3767 } 3768 break; 3769 case ISD::ADD: 3770 case ISD::ADDC: 3771 // Add can have at most one carry bit. Thus we know that the output 3772 // is, at worst, one more bit than the inputs. 3773 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3774 if (Tmp == 1) return 1; // Early out. 3775 3776 // Special case decrementing a value (ADD X, -1): 3777 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) 3778 if (CRHS->isAllOnesValue()) { 3779 KnownBits Known = computeKnownBits(Op.getOperand(0), Depth+1); 3780 3781 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3782 // sign bits set. 3783 if ((Known.Zero | 1).isAllOnesValue()) 3784 return VTBits; 3785 3786 // If we are subtracting one from a positive number, there is no carry 3787 // out of the result. 3788 if (Known.isNonNegative()) 3789 return Tmp; 3790 } 3791 3792 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3793 if (Tmp2 == 1) return 1; 3794 return std::min(Tmp, Tmp2)-1; 3795 3796 case ISD::SUB: 3797 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); 3798 if (Tmp2 == 1) return 1; 3799 3800 // Handle NEG. 3801 if (ConstantSDNode *CLHS = isConstOrConstSplat(Op.getOperand(0))) 3802 if (CLHS->isNullValue()) { 3803 KnownBits Known = computeKnownBits(Op.getOperand(1), Depth+1); 3804 // If the input is known to be 0 or 1, the output is 0/-1, which is all 3805 // sign bits set. 3806 if ((Known.Zero | 1).isAllOnesValue()) 3807 return VTBits; 3808 3809 // If the input is known to be positive (the sign bit is known clear), 3810 // the output of the NEG has the same number of sign bits as the input. 3811 if (Known.isNonNegative()) 3812 return Tmp2; 3813 3814 // Otherwise, we treat this like a SUB. 3815 } 3816 3817 // Sub can have at most one carry bit. Thus we know that the output 3818 // is, at worst, one more bit than the inputs. 3819 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3820 if (Tmp == 1) return 1; // Early out. 3821 return std::min(Tmp, Tmp2)-1; 3822 case ISD::MUL: { 3823 // The output of the Mul can be at most twice the valid bits in the inputs. 3824 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3825 if (SignBitsOp0 == 1) 3826 break; 3827 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 3828 if (SignBitsOp1 == 1) 3829 break; 3830 unsigned OutValidBits = 3831 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 3832 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 3833 } 3834 case ISD::TRUNCATE: { 3835 // Check if the sign bits of source go down as far as the truncated value. 3836 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 3837 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3838 if (NumSrcSignBits > (NumSrcBits - VTBits)) 3839 return NumSrcSignBits - (NumSrcBits - VTBits); 3840 break; 3841 } 3842 case ISD::EXTRACT_ELEMENT: { 3843 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 3844 const int BitWidth = Op.getValueSizeInBits(); 3845 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 3846 3847 // Get reverse index (starting from 1), Op1 value indexes elements from 3848 // little end. Sign starts at big end. 3849 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 3850 3851 // If the sign portion ends in our element the subtraction gives correct 3852 // result. Otherwise it gives either negative or > bitwidth result 3853 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); 3854 } 3855 case ISD::INSERT_VECTOR_ELT: { 3856 SDValue InVec = Op.getOperand(0); 3857 SDValue InVal = Op.getOperand(1); 3858 SDValue EltNo = Op.getOperand(2); 3859 3860 ConstantSDNode *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3861 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3862 // If we know the element index, split the demand between the 3863 // source vector and the inserted element. 3864 unsigned EltIdx = CEltNo->getZExtValue(); 3865 3866 // If we demand the inserted element then get its sign bits. 3867 Tmp = std::numeric_limits<unsigned>::max(); 3868 if (DemandedElts[EltIdx]) { 3869 // TODO - handle implicit truncation of inserted elements. 3870 if (InVal.getScalarValueSizeInBits() != VTBits) 3871 break; 3872 Tmp = ComputeNumSignBits(InVal, Depth + 1); 3873 } 3874 3875 // If we demand the source vector then get its sign bits, and determine 3876 // the minimum. 3877 APInt VectorElts = DemandedElts; 3878 VectorElts.clearBit(EltIdx); 3879 if (!!VectorElts) { 3880 Tmp2 = ComputeNumSignBits(InVec, VectorElts, Depth + 1); 3881 Tmp = std::min(Tmp, Tmp2); 3882 } 3883 } else { 3884 // Unknown element index, so ignore DemandedElts and demand them all. 3885 Tmp = ComputeNumSignBits(InVec, Depth + 1); 3886 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 3887 Tmp = std::min(Tmp, Tmp2); 3888 } 3889 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3890 return Tmp; 3891 } 3892 case ISD::EXTRACT_VECTOR_ELT: { 3893 SDValue InVec = Op.getOperand(0); 3894 SDValue EltNo = Op.getOperand(1); 3895 EVT VecVT = InVec.getValueType(); 3896 const unsigned BitWidth = Op.getValueSizeInBits(); 3897 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 3898 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3899 3900 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 3901 // anything about sign bits. But if the sizes match we can derive knowledge 3902 // about sign bits from the vector operand. 3903 if (BitWidth != EltBitWidth) 3904 break; 3905 3906 // If we know the element index, just demand that vector element, else for 3907 // an unknown element index, ignore DemandedElts and demand them all. 3908 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 3909 ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3910 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3911 DemandedSrcElts = 3912 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3913 3914 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 3915 } 3916 case ISD::EXTRACT_SUBVECTOR: { 3917 // If we know the element index, just demand that subvector elements, 3918 // otherwise demand them all. 3919 SDValue Src = Op.getOperand(0); 3920 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3921 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3922 APInt DemandedSrc = APInt::getAllOnesValue(NumSrcElts); 3923 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 3924 // Offset the demanded elts by the subvector index. 3925 uint64_t Idx = SubIdx->getZExtValue(); 3926 DemandedSrc = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 3927 } 3928 return ComputeNumSignBits(Src, DemandedSrc, Depth + 1); 3929 } 3930 case ISD::CONCAT_VECTORS: { 3931 // Determine the minimum number of sign bits across all demanded 3932 // elts of the input vectors. Early out if the result is already 1. 3933 Tmp = std::numeric_limits<unsigned>::max(); 3934 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3935 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3936 unsigned NumSubVectors = Op.getNumOperands(); 3937 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 3938 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts); 3939 DemandedSub = DemandedSub.trunc(NumSubVectorElts); 3940 if (!DemandedSub) 3941 continue; 3942 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 3943 Tmp = std::min(Tmp, Tmp2); 3944 } 3945 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3946 return Tmp; 3947 } 3948 case ISD::INSERT_SUBVECTOR: { 3949 // If we know the element index, demand any elements from the subvector and 3950 // the remainder from the src its inserted into, otherwise demand them all. 3951 SDValue Src = Op.getOperand(0); 3952 SDValue Sub = Op.getOperand(1); 3953 auto *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3954 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3955 if (SubIdx && SubIdx->getAPIntValue().ule(NumElts - NumSubElts)) { 3956 Tmp = std::numeric_limits<unsigned>::max(); 3957 uint64_t Idx = SubIdx->getZExtValue(); 3958 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3959 if (!!DemandedSubElts) { 3960 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 3961 if (Tmp == 1) return 1; // early-out 3962 } 3963 APInt SubMask = APInt::getBitsSet(NumElts, Idx, Idx + NumSubElts); 3964 APInt DemandedSrcElts = DemandedElts & ~SubMask; 3965 if (!!DemandedSrcElts) { 3966 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 3967 Tmp = std::min(Tmp, Tmp2); 3968 } 3969 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3970 return Tmp; 3971 } 3972 3973 // Not able to determine the index so just assume worst case. 3974 Tmp = ComputeNumSignBits(Sub, Depth + 1); 3975 if (Tmp == 1) return 1; // early-out 3976 Tmp2 = ComputeNumSignBits(Src, Depth + 1); 3977 Tmp = std::min(Tmp, Tmp2); 3978 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 3979 return Tmp; 3980 } 3981 } 3982 3983 // If we are looking at the loaded value of the SDNode. 3984 if (Op.getResNo() == 0) { 3985 // Handle LOADX separately here. EXTLOAD case will fallthrough. 3986 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 3987 unsigned ExtType = LD->getExtensionType(); 3988 switch (ExtType) { 3989 default: break; 3990 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 3991 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3992 return VTBits - Tmp + 1; 3993 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 3994 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 3995 return VTBits - Tmp; 3996 case ISD::NON_EXTLOAD: 3997 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 3998 // We only need to handle vectors - computeKnownBits should handle 3999 // scalar cases. 4000 Type *CstTy = Cst->getType(); 4001 if (CstTy->isVectorTy() && 4002 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) { 4003 Tmp = VTBits; 4004 for (unsigned i = 0; i != NumElts; ++i) { 4005 if (!DemandedElts[i]) 4006 continue; 4007 if (Constant *Elt = Cst->getAggregateElement(i)) { 4008 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4009 const APInt &Value = CInt->getValue(); 4010 Tmp = std::min(Tmp, Value.getNumSignBits()); 4011 continue; 4012 } 4013 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4014 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4015 Tmp = std::min(Tmp, Value.getNumSignBits()); 4016 continue; 4017 } 4018 } 4019 // Unknown type. Conservatively assume no bits match sign bit. 4020 return 1; 4021 } 4022 return Tmp; 4023 } 4024 } 4025 break; 4026 } 4027 } 4028 } 4029 4030 // Allow the target to implement this method for its nodes. 4031 if (Opcode >= ISD::BUILTIN_OP_END || 4032 Opcode == ISD::INTRINSIC_WO_CHAIN || 4033 Opcode == ISD::INTRINSIC_W_CHAIN || 4034 Opcode == ISD::INTRINSIC_VOID) { 4035 unsigned NumBits = 4036 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4037 if (NumBits > 1) 4038 FirstAnswer = std::max(FirstAnswer, NumBits); 4039 } 4040 4041 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4042 // use this information. 4043 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4044 4045 APInt Mask; 4046 if (Known.isNonNegative()) { // sign bit is 0 4047 Mask = Known.Zero; 4048 } else if (Known.isNegative()) { // sign bit is 1; 4049 Mask = Known.One; 4050 } else { 4051 // Nothing known. 4052 return FirstAnswer; 4053 } 4054 4055 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 4056 // the number of identical bits in the top of the input value. 4057 Mask = ~Mask; 4058 Mask <<= Mask.getBitWidth()-VTBits; 4059 // Return # leading zeros. We use 'min' here in case Val was zero before 4060 // shifting. We don't want to return '64' as for an i32 "0". 4061 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); 4062 } 4063 4064 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4065 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4066 !isa<ConstantSDNode>(Op.getOperand(1))) 4067 return false; 4068 4069 if (Op.getOpcode() == ISD::OR && 4070 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4071 return false; 4072 4073 return true; 4074 } 4075 4076 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4077 // If we're told that NaNs won't happen, assume they won't. 4078 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4079 return true; 4080 4081 if (Depth >= MaxRecursionDepth) 4082 return false; // Limit search depth. 4083 4084 // TODO: Handle vectors. 4085 // If the value is a constant, we can obviously see if it is a NaN or not. 4086 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4087 return !C->getValueAPF().isNaN() || 4088 (SNaN && !C->getValueAPF().isSignaling()); 4089 } 4090 4091 unsigned Opcode = Op.getOpcode(); 4092 switch (Opcode) { 4093 case ISD::FADD: 4094 case ISD::FSUB: 4095 case ISD::FMUL: 4096 case ISD::FDIV: 4097 case ISD::FREM: 4098 case ISD::FSIN: 4099 case ISD::FCOS: { 4100 if (SNaN) 4101 return true; 4102 // TODO: Need isKnownNeverInfinity 4103 return false; 4104 } 4105 case ISD::FCANONICALIZE: 4106 case ISD::FEXP: 4107 case ISD::FEXP2: 4108 case ISD::FTRUNC: 4109 case ISD::FFLOOR: 4110 case ISD::FCEIL: 4111 case ISD::FROUND: 4112 case ISD::FRINT: 4113 case ISD::FNEARBYINT: { 4114 if (SNaN) 4115 return true; 4116 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4117 } 4118 case ISD::FABS: 4119 case ISD::FNEG: 4120 case ISD::FCOPYSIGN: { 4121 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4122 } 4123 case ISD::SELECT: 4124 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4125 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4126 case ISD::FP_EXTEND: 4127 case ISD::FP_ROUND: { 4128 if (SNaN) 4129 return true; 4130 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4131 } 4132 case ISD::SINT_TO_FP: 4133 case ISD::UINT_TO_FP: 4134 return true; 4135 case ISD::FMA: 4136 case ISD::FMAD: { 4137 if (SNaN) 4138 return true; 4139 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4140 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4141 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4142 } 4143 case ISD::FSQRT: // Need is known positive 4144 case ISD::FLOG: 4145 case ISD::FLOG2: 4146 case ISD::FLOG10: 4147 case ISD::FPOWI: 4148 case ISD::FPOW: { 4149 if (SNaN) 4150 return true; 4151 // TODO: Refine on operand 4152 return false; 4153 } 4154 case ISD::FMINNUM: 4155 case ISD::FMAXNUM: { 4156 // Only one needs to be known not-nan, since it will be returned if the 4157 // other ends up being one. 4158 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 4159 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4160 } 4161 case ISD::FMINNUM_IEEE: 4162 case ISD::FMAXNUM_IEEE: { 4163 if (SNaN) 4164 return true; 4165 // This can return a NaN if either operand is an sNaN, or if both operands 4166 // are NaN. 4167 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 4168 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 4169 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 4170 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 4171 } 4172 case ISD::FMINIMUM: 4173 case ISD::FMAXIMUM: { 4174 // TODO: Does this quiet or return the origina NaN as-is? 4175 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 4176 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 4177 } 4178 case ISD::EXTRACT_VECTOR_ELT: { 4179 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4180 } 4181 default: 4182 if (Opcode >= ISD::BUILTIN_OP_END || 4183 Opcode == ISD::INTRINSIC_WO_CHAIN || 4184 Opcode == ISD::INTRINSIC_W_CHAIN || 4185 Opcode == ISD::INTRINSIC_VOID) { 4186 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 4187 } 4188 4189 return false; 4190 } 4191 } 4192 4193 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 4194 assert(Op.getValueType().isFloatingPoint() && 4195 "Floating point type expected"); 4196 4197 // If the value is a constant, we can obviously see if it is a zero or not. 4198 // TODO: Add BuildVector support. 4199 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 4200 return !C->isZero(); 4201 return false; 4202 } 4203 4204 bool SelectionDAG::isKnownNeverZero(SDValue Op) const { 4205 assert(!Op.getValueType().isFloatingPoint() && 4206 "Floating point types unsupported - use isKnownNeverZeroFloat"); 4207 4208 // If the value is a constant, we can obviously see if it is a zero or not. 4209 if (ISD::matchUnaryPredicate( 4210 Op, [](ConstantSDNode *C) { return !C->isNullValue(); })) 4211 return true; 4212 4213 // TODO: Recognize more cases here. 4214 switch (Op.getOpcode()) { 4215 default: break; 4216 case ISD::OR: 4217 if (isKnownNeverZero(Op.getOperand(1)) || 4218 isKnownNeverZero(Op.getOperand(0))) 4219 return true; 4220 break; 4221 } 4222 4223 return false; 4224 } 4225 4226 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 4227 // Check the obvious case. 4228 if (A == B) return true; 4229 4230 // For for negative and positive zero. 4231 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 4232 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 4233 if (CA->isZero() && CB->isZero()) return true; 4234 4235 // Otherwise they may not be equal. 4236 return false; 4237 } 4238 4239 // FIXME: unify with llvm::haveNoCommonBitsSet. 4240 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M) 4241 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 4242 assert(A.getValueType() == B.getValueType() && 4243 "Values must have the same type"); 4244 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue(); 4245 } 4246 4247 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 4248 ArrayRef<SDValue> Ops, 4249 SelectionDAG &DAG) { 4250 int NumOps = Ops.size(); 4251 assert(NumOps != 0 && "Can't build an empty vector!"); 4252 assert(VT.getVectorNumElements() == (unsigned)NumOps && 4253 "Incorrect element count in BUILD_VECTOR!"); 4254 4255 // BUILD_VECTOR of UNDEFs is UNDEF. 4256 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4257 return DAG.getUNDEF(VT); 4258 4259 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 4260 SDValue IdentitySrc; 4261 bool IsIdentity = true; 4262 for (int i = 0; i != NumOps; ++i) { 4263 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4264 Ops[i].getOperand(0).getValueType() != VT || 4265 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 4266 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 4267 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 4268 IsIdentity = false; 4269 break; 4270 } 4271 IdentitySrc = Ops[i].getOperand(0); 4272 } 4273 if (IsIdentity) 4274 return IdentitySrc; 4275 4276 return SDValue(); 4277 } 4278 4279 /// Try to simplify vector concatenation to an input value, undef, or build 4280 /// vector. 4281 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 4282 ArrayRef<SDValue> Ops, 4283 SelectionDAG &DAG) { 4284 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 4285 assert(llvm::all_of(Ops, 4286 [Ops](SDValue Op) { 4287 return Ops[0].getValueType() == Op.getValueType(); 4288 }) && 4289 "Concatenation of vectors with inconsistent value types!"); 4290 assert((Ops.size() * Ops[0].getValueType().getVectorNumElements()) == 4291 VT.getVectorNumElements() && 4292 "Incorrect element count in vector concatenation!"); 4293 4294 if (Ops.size() == 1) 4295 return Ops[0]; 4296 4297 // Concat of UNDEFs is UNDEF. 4298 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 4299 return DAG.getUNDEF(VT); 4300 4301 // Scan the operands and look for extract operations from a single source 4302 // that correspond to insertion at the same location via this concatenation: 4303 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 4304 SDValue IdentitySrc; 4305 bool IsIdentity = true; 4306 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 4307 SDValue Op = Ops[i]; 4308 unsigned IdentityIndex = i * Op.getValueType().getVectorNumElements(); 4309 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 4310 Op.getOperand(0).getValueType() != VT || 4311 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 4312 !isa<ConstantSDNode>(Op.getOperand(1)) || 4313 Op.getConstantOperandVal(1) != IdentityIndex) { 4314 IsIdentity = false; 4315 break; 4316 } 4317 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 4318 "Unexpected identity source vector for concat of extracts"); 4319 IdentitySrc = Op.getOperand(0); 4320 } 4321 if (IsIdentity) { 4322 assert(IdentitySrc && "Failed to set source vector of extracts"); 4323 return IdentitySrc; 4324 } 4325 4326 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 4327 // simplified to one big BUILD_VECTOR. 4328 // FIXME: Add support for SCALAR_TO_VECTOR as well. 4329 EVT SVT = VT.getScalarType(); 4330 SmallVector<SDValue, 16> Elts; 4331 for (SDValue Op : Ops) { 4332 EVT OpVT = Op.getValueType(); 4333 if (Op.isUndef()) 4334 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 4335 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 4336 Elts.append(Op->op_begin(), Op->op_end()); 4337 else 4338 return SDValue(); 4339 } 4340 4341 // BUILD_VECTOR requires all inputs to be of the same type, find the 4342 // maximum type and extend them all. 4343 for (SDValue Op : Elts) 4344 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 4345 4346 if (SVT.bitsGT(VT.getScalarType())) 4347 for (SDValue &Op : Elts) 4348 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 4349 ? DAG.getZExtOrTrunc(Op, DL, SVT) 4350 : DAG.getSExtOrTrunc(Op, DL, SVT); 4351 4352 SDValue V = DAG.getBuildVector(VT, DL, Elts); 4353 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 4354 return V; 4355 } 4356 4357 /// Gets or creates the specified node. 4358 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 4359 FoldingSetNodeID ID; 4360 AddNodeIDNode(ID, Opcode, getVTList(VT), None); 4361 void *IP = nullptr; 4362 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 4363 return SDValue(E, 0); 4364 4365 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 4366 getVTList(VT)); 4367 CSEMap.InsertNode(N, IP); 4368 4369 InsertNode(N); 4370 SDValue V = SDValue(N, 0); 4371 NewSDValueDbgMsg(V, "Creating new node: ", this); 4372 return V; 4373 } 4374 4375 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 4376 SDValue Operand, const SDNodeFlags Flags) { 4377 // Constant fold unary operations with an integer constant operand. Even 4378 // opaque constant will be folded, because the folding of unary operations 4379 // doesn't create new constants with different values. Nevertheless, the 4380 // opaque flag is preserved during folding to prevent future folding with 4381 // other constants. 4382 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) { 4383 const APInt &Val = C->getAPIntValue(); 4384 switch (Opcode) { 4385 default: break; 4386 case ISD::SIGN_EXTEND: 4387 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 4388 C->isTargetOpcode(), C->isOpaque()); 4389 case ISD::TRUNCATE: 4390 if (C->isOpaque()) 4391 break; 4392 LLVM_FALLTHROUGH; 4393 case ISD::ANY_EXTEND: 4394 case ISD::ZERO_EXTEND: 4395 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 4396 C->isTargetOpcode(), C->isOpaque()); 4397 case ISD::UINT_TO_FP: 4398 case ISD::SINT_TO_FP: { 4399 APFloat apf(EVTToAPFloatSemantics(VT), 4400 APInt::getNullValue(VT.getSizeInBits())); 4401 (void)apf.convertFromAPInt(Val, 4402 Opcode==ISD::SINT_TO_FP, 4403 APFloat::rmNearestTiesToEven); 4404 return getConstantFP(apf, DL, VT); 4405 } 4406 case ISD::BITCAST: 4407 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 4408 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 4409 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 4410 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 4411 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 4412 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 4413 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 4414 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 4415 break; 4416 case ISD::ABS: 4417 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 4418 C->isOpaque()); 4419 case ISD::BITREVERSE: 4420 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 4421 C->isOpaque()); 4422 case ISD::BSWAP: 4423 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 4424 C->isOpaque()); 4425 case ISD::CTPOP: 4426 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), 4427 C->isOpaque()); 4428 case ISD::CTLZ: 4429 case ISD::CTLZ_ZERO_UNDEF: 4430 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), 4431 C->isOpaque()); 4432 case ISD::CTTZ: 4433 case ISD::CTTZ_ZERO_UNDEF: 4434 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), 4435 C->isOpaque()); 4436 case ISD::FP16_TO_FP: { 4437 bool Ignored; 4438 APFloat FPV(APFloat::IEEEhalf(), 4439 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 4440 4441 // This can return overflow, underflow, or inexact; we don't care. 4442 // FIXME need to be more flexible about rounding mode. 4443 (void)FPV.convert(EVTToAPFloatSemantics(VT), 4444 APFloat::rmNearestTiesToEven, &Ignored); 4445 return getConstantFP(FPV, DL, VT); 4446 } 4447 } 4448 } 4449 4450 // Constant fold unary operations with a floating point constant operand. 4451 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) { 4452 APFloat V = C->getValueAPF(); // make copy 4453 switch (Opcode) { 4454 case ISD::FNEG: 4455 V.changeSign(); 4456 return getConstantFP(V, DL, VT); 4457 case ISD::FABS: 4458 V.clearSign(); 4459 return getConstantFP(V, DL, VT); 4460 case ISD::FCEIL: { 4461 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 4462 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4463 return getConstantFP(V, DL, VT); 4464 break; 4465 } 4466 case ISD::FTRUNC: { 4467 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 4468 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4469 return getConstantFP(V, DL, VT); 4470 break; 4471 } 4472 case ISD::FFLOOR: { 4473 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 4474 if (fs == APFloat::opOK || fs == APFloat::opInexact) 4475 return getConstantFP(V, DL, VT); 4476 break; 4477 } 4478 case ISD::FP_EXTEND: { 4479 bool ignored; 4480 // This can return overflow, underflow, or inexact; we don't care. 4481 // FIXME need to be more flexible about rounding mode. 4482 (void)V.convert(EVTToAPFloatSemantics(VT), 4483 APFloat::rmNearestTiesToEven, &ignored); 4484 return getConstantFP(V, DL, VT); 4485 } 4486 case ISD::FP_TO_SINT: 4487 case ISD::FP_TO_UINT: { 4488 bool ignored; 4489 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 4490 // FIXME need to be more flexible about rounding mode. 4491 APFloat::opStatus s = 4492 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 4493 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 4494 break; 4495 return getConstant(IntVal, DL, VT); 4496 } 4497 case ISD::BITCAST: 4498 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 4499 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4500 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 4501 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 4502 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 4503 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 4504 break; 4505 case ISD::FP_TO_FP16: { 4506 bool Ignored; 4507 // This can return overflow, underflow, or inexact; we don't care. 4508 // FIXME need to be more flexible about rounding mode. 4509 (void)V.convert(APFloat::IEEEhalf(), 4510 APFloat::rmNearestTiesToEven, &Ignored); 4511 return getConstant(V.bitcastToAPInt(), DL, VT); 4512 } 4513 } 4514 } 4515 4516 // Constant fold unary operations with a vector integer or float operand. 4517 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) { 4518 if (BV->isConstant()) { 4519 switch (Opcode) { 4520 default: 4521 // FIXME: Entirely reasonable to perform folding of other unary 4522 // operations here as the need arises. 4523 break; 4524 case ISD::FNEG: 4525 case ISD::FABS: 4526 case ISD::FCEIL: 4527 case ISD::FTRUNC: 4528 case ISD::FFLOOR: 4529 case ISD::FP_EXTEND: 4530 case ISD::FP_TO_SINT: 4531 case ISD::FP_TO_UINT: 4532 case ISD::TRUNCATE: 4533 case ISD::ANY_EXTEND: 4534 case ISD::ZERO_EXTEND: 4535 case ISD::SIGN_EXTEND: 4536 case ISD::UINT_TO_FP: 4537 case ISD::SINT_TO_FP: 4538 case ISD::ABS: 4539 case ISD::BITREVERSE: 4540 case ISD::BSWAP: 4541 case ISD::CTLZ: 4542 case ISD::CTLZ_ZERO_UNDEF: 4543 case ISD::CTTZ: 4544 case ISD::CTTZ_ZERO_UNDEF: 4545 case ISD::CTPOP: { 4546 SDValue Ops = { Operand }; 4547 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) 4548 return Fold; 4549 } 4550 } 4551 } 4552 } 4553 4554 unsigned OpOpcode = Operand.getNode()->getOpcode(); 4555 switch (Opcode) { 4556 case ISD::TokenFactor: 4557 case ISD::MERGE_VALUES: 4558 case ISD::CONCAT_VECTORS: 4559 return Operand; // Factor, merge or concat of one node? No need. 4560 case ISD::BUILD_VECTOR: { 4561 // Attempt to simplify BUILD_VECTOR. 4562 SDValue Ops[] = {Operand}; 4563 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 4564 return V; 4565 break; 4566 } 4567 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 4568 case ISD::FP_EXTEND: 4569 assert(VT.isFloatingPoint() && 4570 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); 4571 if (Operand.getValueType() == VT) return Operand; // noop conversion. 4572 assert((!VT.isVector() || 4573 VT.getVectorNumElements() == 4574 Operand.getValueType().getVectorNumElements()) && 4575 "Vector element count mismatch!"); 4576 assert(Operand.getValueType().bitsLT(VT) && 4577 "Invalid fpext node, dst < src!"); 4578 if (Operand.isUndef()) 4579 return getUNDEF(VT); 4580 break; 4581 case ISD::FP_TO_SINT: 4582 case ISD::FP_TO_UINT: 4583 if (Operand.isUndef()) 4584 return getUNDEF(VT); 4585 break; 4586 case ISD::SINT_TO_FP: 4587 case ISD::UINT_TO_FP: 4588 // [us]itofp(undef) = 0, because the result value is bounded. 4589 if (Operand.isUndef()) 4590 return getConstantFP(0.0, DL, VT); 4591 break; 4592 case ISD::SIGN_EXTEND: 4593 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4594 "Invalid SIGN_EXTEND!"); 4595 assert(VT.isVector() == Operand.getValueType().isVector() && 4596 "SIGN_EXTEND result type type should be vector iff the operand " 4597 "type is vector!"); 4598 if (Operand.getValueType() == VT) return Operand; // noop extension 4599 assert((!VT.isVector() || 4600 VT.getVectorNumElements() == 4601 Operand.getValueType().getVectorNumElements()) && 4602 "Vector element count mismatch!"); 4603 assert(Operand.getValueType().bitsLT(VT) && 4604 "Invalid sext node, dst < src!"); 4605 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 4606 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4607 else if (OpOpcode == ISD::UNDEF) 4608 // sext(undef) = 0, because the top bits will all be the same. 4609 return getConstant(0, DL, VT); 4610 break; 4611 case ISD::ZERO_EXTEND: 4612 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4613 "Invalid ZERO_EXTEND!"); 4614 assert(VT.isVector() == Operand.getValueType().isVector() && 4615 "ZERO_EXTEND result type type should be vector iff the operand " 4616 "type is vector!"); 4617 if (Operand.getValueType() == VT) return Operand; // noop extension 4618 assert((!VT.isVector() || 4619 VT.getVectorNumElements() == 4620 Operand.getValueType().getVectorNumElements()) && 4621 "Vector element count mismatch!"); 4622 assert(Operand.getValueType().bitsLT(VT) && 4623 "Invalid zext node, dst < src!"); 4624 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 4625 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0)); 4626 else if (OpOpcode == ISD::UNDEF) 4627 // zext(undef) = 0, because the top bits will be zero. 4628 return getConstant(0, DL, VT); 4629 break; 4630 case ISD::ANY_EXTEND: 4631 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4632 "Invalid ANY_EXTEND!"); 4633 assert(VT.isVector() == Operand.getValueType().isVector() && 4634 "ANY_EXTEND result type type should be vector iff the operand " 4635 "type is vector!"); 4636 if (Operand.getValueType() == VT) return Operand; // noop extension 4637 assert((!VT.isVector() || 4638 VT.getVectorNumElements() == 4639 Operand.getValueType().getVectorNumElements()) && 4640 "Vector element count mismatch!"); 4641 assert(Operand.getValueType().bitsLT(VT) && 4642 "Invalid anyext node, dst < src!"); 4643 4644 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4645 OpOpcode == ISD::ANY_EXTEND) 4646 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 4647 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4648 else if (OpOpcode == ISD::UNDEF) 4649 return getUNDEF(VT); 4650 4651 // (ext (trunc x)) -> x 4652 if (OpOpcode == ISD::TRUNCATE) { 4653 SDValue OpOp = Operand.getOperand(0); 4654 if (OpOp.getValueType() == VT) { 4655 transferDbgValues(Operand, OpOp); 4656 return OpOp; 4657 } 4658 } 4659 break; 4660 case ISD::TRUNCATE: 4661 assert(VT.isInteger() && Operand.getValueType().isInteger() && 4662 "Invalid TRUNCATE!"); 4663 assert(VT.isVector() == Operand.getValueType().isVector() && 4664 "TRUNCATE result type type should be vector iff the operand " 4665 "type is vector!"); 4666 if (Operand.getValueType() == VT) return Operand; // noop truncate 4667 assert((!VT.isVector() || 4668 VT.getVectorNumElements() == 4669 Operand.getValueType().getVectorNumElements()) && 4670 "Vector element count mismatch!"); 4671 assert(Operand.getValueType().bitsGT(VT) && 4672 "Invalid truncate node, src < dst!"); 4673 if (OpOpcode == ISD::TRUNCATE) 4674 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4675 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 4676 OpOpcode == ISD::ANY_EXTEND) { 4677 // If the source is smaller than the dest, we still need an extend. 4678 if (Operand.getOperand(0).getValueType().getScalarType() 4679 .bitsLT(VT.getScalarType())) 4680 return getNode(OpOpcode, DL, VT, Operand.getOperand(0)); 4681 if (Operand.getOperand(0).getValueType().bitsGT(VT)) 4682 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0)); 4683 return Operand.getOperand(0); 4684 } 4685 if (OpOpcode == ISD::UNDEF) 4686 return getUNDEF(VT); 4687 break; 4688 case ISD::ANY_EXTEND_VECTOR_INREG: 4689 case ISD::ZERO_EXTEND_VECTOR_INREG: 4690 case ISD::SIGN_EXTEND_VECTOR_INREG: 4691 assert(VT.isVector() && "This DAG node is restricted to vector types."); 4692 assert(Operand.getValueType().bitsLE(VT) && 4693 "The input must be the same size or smaller than the result."); 4694 assert(VT.getVectorNumElements() < 4695 Operand.getValueType().getVectorNumElements() && 4696 "The destination vector type must have fewer lanes than the input."); 4697 break; 4698 case ISD::ABS: 4699 assert(VT.isInteger() && VT == Operand.getValueType() && 4700 "Invalid ABS!"); 4701 if (OpOpcode == ISD::UNDEF) 4702 return getUNDEF(VT); 4703 break; 4704 case ISD::BSWAP: 4705 assert(VT.isInteger() && VT == Operand.getValueType() && 4706 "Invalid BSWAP!"); 4707 assert((VT.getScalarSizeInBits() % 16 == 0) && 4708 "BSWAP types must be a multiple of 16 bits!"); 4709 if (OpOpcode == ISD::UNDEF) 4710 return getUNDEF(VT); 4711 break; 4712 case ISD::BITREVERSE: 4713 assert(VT.isInteger() && VT == Operand.getValueType() && 4714 "Invalid BITREVERSE!"); 4715 if (OpOpcode == ISD::UNDEF) 4716 return getUNDEF(VT); 4717 break; 4718 case ISD::BITCAST: 4719 // Basic sanity checking. 4720 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() && 4721 "Cannot BITCAST between types of different sizes!"); 4722 if (VT == Operand.getValueType()) return Operand; // noop conversion. 4723 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 4724 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); 4725 if (OpOpcode == ISD::UNDEF) 4726 return getUNDEF(VT); 4727 break; 4728 case ISD::SCALAR_TO_VECTOR: 4729 assert(VT.isVector() && !Operand.getValueType().isVector() && 4730 (VT.getVectorElementType() == Operand.getValueType() || 4731 (VT.getVectorElementType().isInteger() && 4732 Operand.getValueType().isInteger() && 4733 VT.getVectorElementType().bitsLE(Operand.getValueType()))) && 4734 "Illegal SCALAR_TO_VECTOR node!"); 4735 if (OpOpcode == ISD::UNDEF) 4736 return getUNDEF(VT); 4737 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 4738 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 4739 isa<ConstantSDNode>(Operand.getOperand(1)) && 4740 Operand.getConstantOperandVal(1) == 0 && 4741 Operand.getOperand(0).getValueType() == VT) 4742 return Operand.getOperand(0); 4743 break; 4744 case ISD::FNEG: 4745 // Negation of an unknown bag of bits is still completely undefined. 4746 if (OpOpcode == ISD::UNDEF) 4747 return getUNDEF(VT); 4748 4749 if (OpOpcode == ISD::FNEG) // --X -> X 4750 return Operand.getOperand(0); 4751 break; 4752 case ISD::FABS: 4753 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 4754 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0)); 4755 break; 4756 } 4757 4758 SDNode *N; 4759 SDVTList VTs = getVTList(VT); 4760 SDValue Ops[] = {Operand}; 4761 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 4762 FoldingSetNodeID ID; 4763 AddNodeIDNode(ID, Opcode, VTs, Ops); 4764 void *IP = nullptr; 4765 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 4766 E->intersectFlagsWith(Flags); 4767 return SDValue(E, 0); 4768 } 4769 4770 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4771 N->setFlags(Flags); 4772 createOperands(N, Ops); 4773 CSEMap.InsertNode(N, IP); 4774 } else { 4775 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 4776 createOperands(N, Ops); 4777 } 4778 4779 InsertNode(N); 4780 SDValue V = SDValue(N, 0); 4781 NewSDValueDbgMsg(V, "Creating new node: ", this); 4782 return V; 4783 } 4784 4785 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 4786 const APInt &C2) { 4787 switch (Opcode) { 4788 case ISD::ADD: return C1 + C2; 4789 case ISD::SUB: return C1 - C2; 4790 case ISD::MUL: return C1 * C2; 4791 case ISD::AND: return C1 & C2; 4792 case ISD::OR: return C1 | C2; 4793 case ISD::XOR: return C1 ^ C2; 4794 case ISD::SHL: return C1 << C2; 4795 case ISD::SRL: return C1.lshr(C2); 4796 case ISD::SRA: return C1.ashr(C2); 4797 case ISD::ROTL: return C1.rotl(C2); 4798 case ISD::ROTR: return C1.rotr(C2); 4799 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 4800 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 4801 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 4802 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 4803 case ISD::SADDSAT: return C1.sadd_sat(C2); 4804 case ISD::UADDSAT: return C1.uadd_sat(C2); 4805 case ISD::SSUBSAT: return C1.ssub_sat(C2); 4806 case ISD::USUBSAT: return C1.usub_sat(C2); 4807 case ISD::UDIV: 4808 if (!C2.getBoolValue()) 4809 break; 4810 return C1.udiv(C2); 4811 case ISD::UREM: 4812 if (!C2.getBoolValue()) 4813 break; 4814 return C1.urem(C2); 4815 case ISD::SDIV: 4816 if (!C2.getBoolValue()) 4817 break; 4818 return C1.sdiv(C2); 4819 case ISD::SREM: 4820 if (!C2.getBoolValue()) 4821 break; 4822 return C1.srem(C2); 4823 } 4824 return llvm::None; 4825 } 4826 4827 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4828 EVT VT, const ConstantSDNode *C1, 4829 const ConstantSDNode *C2) { 4830 if (C1->isOpaque() || C2->isOpaque()) 4831 return SDValue(); 4832 if (Optional<APInt> Folded = 4833 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue())) 4834 return getConstant(Folded.getValue(), DL, VT); 4835 return SDValue(); 4836 } 4837 4838 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 4839 const GlobalAddressSDNode *GA, 4840 const SDNode *N2) { 4841 if (GA->getOpcode() != ISD::GlobalAddress) 4842 return SDValue(); 4843 if (!TLI->isOffsetFoldingLegal(GA)) 4844 return SDValue(); 4845 auto *C2 = dyn_cast<ConstantSDNode>(N2); 4846 if (!C2) 4847 return SDValue(); 4848 int64_t Offset = C2->getSExtValue(); 4849 switch (Opcode) { 4850 case ISD::ADD: break; 4851 case ISD::SUB: Offset = -uint64_t(Offset); break; 4852 default: return SDValue(); 4853 } 4854 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 4855 GA->getOffset() + uint64_t(Offset)); 4856 } 4857 4858 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 4859 switch (Opcode) { 4860 case ISD::SDIV: 4861 case ISD::UDIV: 4862 case ISD::SREM: 4863 case ISD::UREM: { 4864 // If a divisor is zero/undef or any element of a divisor vector is 4865 // zero/undef, the whole op is undef. 4866 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 4867 SDValue Divisor = Ops[1]; 4868 if (Divisor.isUndef() || isNullConstant(Divisor)) 4869 return true; 4870 4871 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 4872 llvm::any_of(Divisor->op_values(), 4873 [](SDValue V) { return V.isUndef() || 4874 isNullConstant(V); }); 4875 // TODO: Handle signed overflow. 4876 } 4877 // TODO: Handle oversized shifts. 4878 default: 4879 return false; 4880 } 4881 } 4882 4883 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 4884 EVT VT, SDNode *N1, SDNode *N2) { 4885 // If the opcode is a target-specific ISD node, there's nothing we can 4886 // do here and the operand rules may not line up with the below, so 4887 // bail early. 4888 if (Opcode >= ISD::BUILTIN_OP_END) 4889 return SDValue(); 4890 4891 if (isUndef(Opcode, {SDValue(N1, 0), SDValue(N2, 0)})) 4892 return getUNDEF(VT); 4893 4894 // Handle the case of two scalars. 4895 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) { 4896 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) { 4897 SDValue Folded = FoldConstantArithmetic(Opcode, DL, VT, C1, C2); 4898 assert((!Folded || !VT.isVector()) && 4899 "Can't fold vectors ops with scalar operands"); 4900 return Folded; 4901 } 4902 } 4903 4904 // fold (add Sym, c) -> Sym+c 4905 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1)) 4906 return FoldSymbolOffset(Opcode, VT, GA, N2); 4907 if (TLI->isCommutativeBinOp(Opcode)) 4908 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2)) 4909 return FoldSymbolOffset(Opcode, VT, GA, N1); 4910 4911 // For vectors, extract each constant element and fold them individually. 4912 // Either input may be an undef value. 4913 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 4914 if (!BV1 && !N1->isUndef()) 4915 return SDValue(); 4916 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 4917 if (!BV2 && !N2->isUndef()) 4918 return SDValue(); 4919 // If both operands are undef, that's handled the same way as scalars. 4920 if (!BV1 && !BV2) 4921 return SDValue(); 4922 4923 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) && 4924 "Vector binop with different number of elements in operands?"); 4925 4926 EVT SVT = VT.getScalarType(); 4927 EVT LegalSVT = SVT; 4928 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 4929 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 4930 if (LegalSVT.bitsLT(SVT)) 4931 return SDValue(); 4932 } 4933 SmallVector<SDValue, 4> Outputs; 4934 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands(); 4935 for (unsigned I = 0; I != NumOps; ++I) { 4936 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT); 4937 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT); 4938 if (SVT.isInteger()) { 4939 if (V1->getValueType(0).bitsGT(SVT)) 4940 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1); 4941 if (V2->getValueType(0).bitsGT(SVT)) 4942 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2); 4943 } 4944 4945 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) 4946 return SDValue(); 4947 4948 // Fold one vector element. 4949 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2); 4950 if (LegalSVT != SVT) 4951 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 4952 4953 // Scalar folding only succeeded if the result is a constant or UNDEF. 4954 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 4955 ScalarResult.getOpcode() != ISD::ConstantFP) 4956 return SDValue(); 4957 Outputs.push_back(ScalarResult); 4958 } 4959 4960 assert(VT.getVectorNumElements() == Outputs.size() && 4961 "Vector size mismatch!"); 4962 4963 // We may have a vector type but a scalar result. Create a splat. 4964 Outputs.resize(VT.getVectorNumElements(), Outputs.back()); 4965 4966 // Build a big vector out of the scalar elements we generated. 4967 return getBuildVector(VT, SDLoc(), Outputs); 4968 } 4969 4970 // TODO: Merge with FoldConstantArithmetic 4971 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode, 4972 const SDLoc &DL, EVT VT, 4973 ArrayRef<SDValue> Ops, 4974 const SDNodeFlags Flags) { 4975 // If the opcode is a target-specific ISD node, there's nothing we can 4976 // do here and the operand rules may not line up with the below, so 4977 // bail early. 4978 if (Opcode >= ISD::BUILTIN_OP_END) 4979 return SDValue(); 4980 4981 if (isUndef(Opcode, Ops)) 4982 return getUNDEF(VT); 4983 4984 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday? 4985 if (!VT.isVector()) 4986 return SDValue(); 4987 4988 unsigned NumElts = VT.getVectorNumElements(); 4989 4990 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) { 4991 return !Op.getValueType().isVector() || 4992 Op.getValueType().getVectorNumElements() == NumElts; 4993 }; 4994 4995 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) { 4996 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op); 4997 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) || 4998 (BV && BV->isConstant()); 4999 }; 5000 5001 // All operands must be vector types with the same number of elements as 5002 // the result type and must be either UNDEF or a build vector of constant 5003 // or UNDEF scalars. 5004 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) || 5005 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 5006 return SDValue(); 5007 5008 // If we are comparing vectors, then the result needs to be a i1 boolean 5009 // that is then sign-extended back to the legal result type. 5010 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 5011 5012 // Find legal integer scalar type for constant promotion and 5013 // ensure that its scalar size is at least as large as source. 5014 EVT LegalSVT = VT.getScalarType(); 5015 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 5016 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 5017 if (LegalSVT.bitsLT(VT.getScalarType())) 5018 return SDValue(); 5019 } 5020 5021 // Constant fold each scalar lane separately. 5022 SmallVector<SDValue, 4> ScalarResults; 5023 for (unsigned i = 0; i != NumElts; i++) { 5024 SmallVector<SDValue, 4> ScalarOps; 5025 for (SDValue Op : Ops) { 5026 EVT InSVT = Op.getValueType().getScalarType(); 5027 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op); 5028 if (!InBV) { 5029 // We've checked that this is UNDEF or a constant of some kind. 5030 if (Op.isUndef()) 5031 ScalarOps.push_back(getUNDEF(InSVT)); 5032 else 5033 ScalarOps.push_back(Op); 5034 continue; 5035 } 5036 5037 SDValue ScalarOp = InBV->getOperand(i); 5038 EVT ScalarVT = ScalarOp.getValueType(); 5039 5040 // Build vector (integer) scalar operands may need implicit 5041 // truncation - do this before constant folding. 5042 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) 5043 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 5044 5045 ScalarOps.push_back(ScalarOp); 5046 } 5047 5048 // Constant fold the scalar operands. 5049 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags); 5050 5051 // Legalize the (integer) scalar constant if necessary. 5052 if (LegalSVT != SVT) 5053 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult); 5054 5055 // Scalar folding only succeeded if the result is a constant or UNDEF. 5056 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 5057 ScalarResult.getOpcode() != ISD::ConstantFP) 5058 return SDValue(); 5059 ScalarResults.push_back(ScalarResult); 5060 } 5061 5062 SDValue V = getBuildVector(VT, DL, ScalarResults); 5063 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 5064 return V; 5065 } 5066 5067 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 5068 EVT VT, SDValue N1, SDValue N2) { 5069 // TODO: We don't do any constant folding for strict FP opcodes here, but we 5070 // should. That will require dealing with a potentially non-default 5071 // rounding mode, checking the "opStatus" return value from the APFloat 5072 // math calculations, and possibly other variations. 5073 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); 5074 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); 5075 if (N1CFP && N2CFP) { 5076 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF(); 5077 switch (Opcode) { 5078 case ISD::FADD: 5079 C1.add(C2, APFloat::rmNearestTiesToEven); 5080 return getConstantFP(C1, DL, VT); 5081 case ISD::FSUB: 5082 C1.subtract(C2, APFloat::rmNearestTiesToEven); 5083 return getConstantFP(C1, DL, VT); 5084 case ISD::FMUL: 5085 C1.multiply(C2, APFloat::rmNearestTiesToEven); 5086 return getConstantFP(C1, DL, VT); 5087 case ISD::FDIV: 5088 C1.divide(C2, APFloat::rmNearestTiesToEven); 5089 return getConstantFP(C1, DL, VT); 5090 case ISD::FREM: 5091 C1.mod(C2); 5092 return getConstantFP(C1, DL, VT); 5093 case ISD::FCOPYSIGN: 5094 C1.copySign(C2); 5095 return getConstantFP(C1, DL, VT); 5096 default: break; 5097 } 5098 } 5099 if (N1CFP && Opcode == ISD::FP_ROUND) { 5100 APFloat C1 = N1CFP->getValueAPF(); // make copy 5101 bool Unused; 5102 // This can return overflow, underflow, or inexact; we don't care. 5103 // FIXME need to be more flexible about rounding mode. 5104 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 5105 &Unused); 5106 return getConstantFP(C1, DL, VT); 5107 } 5108 5109 switch (Opcode) { 5110 case ISD::FADD: 5111 case ISD::FSUB: 5112 case ISD::FMUL: 5113 case ISD::FDIV: 5114 case ISD::FREM: 5115 // If both operands are undef, the result is undef. If 1 operand is undef, 5116 // the result is NaN. This should match the behavior of the IR optimizer. 5117 if (N1.isUndef() && N2.isUndef()) 5118 return getUNDEF(VT); 5119 if (N1.isUndef() || N2.isUndef()) 5120 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 5121 } 5122 return SDValue(); 5123 } 5124 5125 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5126 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 5127 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 5128 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); 5129 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5130 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5131 5132 // Canonicalize constant to RHS if commutative. 5133 if (TLI->isCommutativeBinOp(Opcode)) { 5134 if (N1C && !N2C) { 5135 std::swap(N1C, N2C); 5136 std::swap(N1, N2); 5137 } else if (N1CFP && !N2CFP) { 5138 std::swap(N1CFP, N2CFP); 5139 std::swap(N1, N2); 5140 } 5141 } 5142 5143 switch (Opcode) { 5144 default: break; 5145 case ISD::TokenFactor: 5146 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 5147 N2.getValueType() == MVT::Other && "Invalid token factor!"); 5148 // Fold trivial token factors. 5149 if (N1.getOpcode() == ISD::EntryToken) return N2; 5150 if (N2.getOpcode() == ISD::EntryToken) return N1; 5151 if (N1 == N2) return N1; 5152 break; 5153 case ISD::BUILD_VECTOR: { 5154 // Attempt to simplify BUILD_VECTOR. 5155 SDValue Ops[] = {N1, N2}; 5156 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5157 return V; 5158 break; 5159 } 5160 case ISD::CONCAT_VECTORS: { 5161 SDValue Ops[] = {N1, N2}; 5162 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5163 return V; 5164 break; 5165 } 5166 case ISD::AND: 5167 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5168 assert(N1.getValueType() == N2.getValueType() && 5169 N1.getValueType() == VT && "Binary operator types must match!"); 5170 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 5171 // worth handling here. 5172 if (N2C && N2C->isNullValue()) 5173 return N2; 5174 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X 5175 return N1; 5176 break; 5177 case ISD::OR: 5178 case ISD::XOR: 5179 case ISD::ADD: 5180 case ISD::SUB: 5181 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5182 assert(N1.getValueType() == N2.getValueType() && 5183 N1.getValueType() == VT && "Binary operator types must match!"); 5184 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 5185 // it's worth handling here. 5186 if (N2C && N2C->isNullValue()) 5187 return N1; 5188 break; 5189 case ISD::UDIV: 5190 case ISD::UREM: 5191 case ISD::MULHU: 5192 case ISD::MULHS: 5193 case ISD::MUL: 5194 case ISD::SDIV: 5195 case ISD::SREM: 5196 case ISD::SMIN: 5197 case ISD::SMAX: 5198 case ISD::UMIN: 5199 case ISD::UMAX: 5200 case ISD::SADDSAT: 5201 case ISD::SSUBSAT: 5202 case ISD::UADDSAT: 5203 case ISD::USUBSAT: 5204 assert(VT.isInteger() && "This operator does not apply to FP types!"); 5205 assert(N1.getValueType() == N2.getValueType() && 5206 N1.getValueType() == VT && "Binary operator types must match!"); 5207 break; 5208 case ISD::FADD: 5209 case ISD::FSUB: 5210 case ISD::FMUL: 5211 case ISD::FDIV: 5212 case ISD::FREM: 5213 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5214 assert(N1.getValueType() == N2.getValueType() && 5215 N1.getValueType() == VT && "Binary operator types must match!"); 5216 if (SDValue V = simplifyFPBinop(Opcode, N1, N2)) 5217 return V; 5218 break; 5219 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 5220 assert(N1.getValueType() == VT && 5221 N1.getValueType().isFloatingPoint() && 5222 N2.getValueType().isFloatingPoint() && 5223 "Invalid FCOPYSIGN!"); 5224 break; 5225 case ISD::SHL: 5226 case ISD::SRA: 5227 case ISD::SRL: 5228 if (SDValue V = simplifyShift(N1, N2)) 5229 return V; 5230 LLVM_FALLTHROUGH; 5231 case ISD::ROTL: 5232 case ISD::ROTR: 5233 assert(VT == N1.getValueType() && 5234 "Shift operators return type must be the same as their first arg"); 5235 assert(VT.isInteger() && N2.getValueType().isInteger() && 5236 "Shifts only work on integers"); 5237 assert((!VT.isVector() || VT == N2.getValueType()) && 5238 "Vector shift amounts must be in the same as their first arg"); 5239 // Verify that the shift amount VT is big enough to hold valid shift 5240 // amounts. This catches things like trying to shift an i1024 value by an 5241 // i8, which is easy to fall into in generic code that uses 5242 // TLI.getShiftAmount(). 5243 assert(N2.getValueSizeInBits() >= Log2_32_Ceil(N1.getValueSizeInBits()) && 5244 "Invalid use of small shift amount with oversized value!"); 5245 5246 // Always fold shifts of i1 values so the code generator doesn't need to 5247 // handle them. Since we know the size of the shift has to be less than the 5248 // size of the value, the shift/rotate count is guaranteed to be zero. 5249 if (VT == MVT::i1) 5250 return N1; 5251 if (N2C && N2C->isNullValue()) 5252 return N1; 5253 break; 5254 case ISD::FP_ROUND: 5255 assert(VT.isFloatingPoint() && 5256 N1.getValueType().isFloatingPoint() && 5257 VT.bitsLE(N1.getValueType()) && 5258 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 5259 "Invalid FP_ROUND!"); 5260 if (N1.getValueType() == VT) return N1; // noop conversion. 5261 break; 5262 case ISD::AssertSext: 5263 case ISD::AssertZext: { 5264 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5265 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5266 assert(VT.isInteger() && EVT.isInteger() && 5267 "Cannot *_EXTEND_INREG FP types"); 5268 assert(!EVT.isVector() && 5269 "AssertSExt/AssertZExt type should be the vector element type " 5270 "rather than the vector type!"); 5271 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 5272 if (VT.getScalarType() == EVT) return N1; // noop assertion. 5273 break; 5274 } 5275 case ISD::SIGN_EXTEND_INREG: { 5276 EVT EVT = cast<VTSDNode>(N2)->getVT(); 5277 assert(VT == N1.getValueType() && "Not an inreg extend!"); 5278 assert(VT.isInteger() && EVT.isInteger() && 5279 "Cannot *_EXTEND_INREG FP types"); 5280 assert(EVT.isVector() == VT.isVector() && 5281 "SIGN_EXTEND_INREG type should be vector iff the operand " 5282 "type is vector!"); 5283 assert((!EVT.isVector() || 5284 EVT.getVectorNumElements() == VT.getVectorNumElements()) && 5285 "Vector element counts must match in SIGN_EXTEND_INREG"); 5286 assert(EVT.bitsLE(VT) && "Not extending!"); 5287 if (EVT == VT) return N1; // Not actually extending 5288 5289 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 5290 unsigned FromBits = EVT.getScalarSizeInBits(); 5291 Val <<= Val.getBitWidth() - FromBits; 5292 Val.ashrInPlace(Val.getBitWidth() - FromBits); 5293 return getConstant(Val, DL, ConstantVT); 5294 }; 5295 5296 if (N1C) { 5297 const APInt &Val = N1C->getAPIntValue(); 5298 return SignExtendInReg(Val, VT); 5299 } 5300 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 5301 SmallVector<SDValue, 8> Ops; 5302 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 5303 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 5304 SDValue Op = N1.getOperand(i); 5305 if (Op.isUndef()) { 5306 Ops.push_back(getUNDEF(OpVT)); 5307 continue; 5308 } 5309 ConstantSDNode *C = cast<ConstantSDNode>(Op); 5310 APInt Val = C->getAPIntValue(); 5311 Ops.push_back(SignExtendInReg(Val, OpVT)); 5312 } 5313 return getBuildVector(VT, DL, Ops); 5314 } 5315 break; 5316 } 5317 case ISD::EXTRACT_VECTOR_ELT: 5318 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 5319 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 5320 element type of the vector."); 5321 5322 // Extract from an undefined value or using an undefined index is undefined. 5323 if (N1.isUndef() || N2.isUndef()) 5324 return getUNDEF(VT); 5325 5326 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF 5327 if (N2C && N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 5328 return getUNDEF(VT); 5329 5330 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 5331 // expanding copies of large vectors from registers. 5332 if (N2C && 5333 N1.getOpcode() == ISD::CONCAT_VECTORS && 5334 N1.getNumOperands() > 0) { 5335 unsigned Factor = 5336 N1.getOperand(0).getValueType().getVectorNumElements(); 5337 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 5338 N1.getOperand(N2C->getZExtValue() / Factor), 5339 getConstant(N2C->getZExtValue() % Factor, DL, 5340 N2.getValueType())); 5341 } 5342 5343 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is 5344 // expanding large vector constants. 5345 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { 5346 SDValue Elt = N1.getOperand(N2C->getZExtValue()); 5347 5348 if (VT != Elt.getValueType()) 5349 // If the vector element type is not legal, the BUILD_VECTOR operands 5350 // are promoted and implicitly truncated, and the result implicitly 5351 // extended. Make that explicit here. 5352 Elt = getAnyExtOrTrunc(Elt, DL, VT); 5353 5354 return Elt; 5355 } 5356 5357 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 5358 // operations are lowered to scalars. 5359 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 5360 // If the indices are the same, return the inserted element else 5361 // if the indices are known different, extract the element from 5362 // the original vector. 5363 SDValue N1Op2 = N1.getOperand(2); 5364 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 5365 5366 if (N1Op2C && N2C) { 5367 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 5368 if (VT == N1.getOperand(1).getValueType()) 5369 return N1.getOperand(1); 5370 else 5371 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 5372 } 5373 5374 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 5375 } 5376 } 5377 5378 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 5379 // when vector types are scalarized and v1iX is legal. 5380 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx) 5381 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5382 N1.getValueType().getVectorNumElements() == 1) { 5383 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 5384 N1.getOperand(1)); 5385 } 5386 break; 5387 case ISD::EXTRACT_ELEMENT: 5388 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 5389 assert(!N1.getValueType().isVector() && !VT.isVector() && 5390 (N1.getValueType().isInteger() == VT.isInteger()) && 5391 N1.getValueType() != VT && 5392 "Wrong types for EXTRACT_ELEMENT!"); 5393 5394 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 5395 // 64-bit integers into 32-bit parts. Instead of building the extract of 5396 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 5397 if (N1.getOpcode() == ISD::BUILD_PAIR) 5398 return N1.getOperand(N2C->getZExtValue()); 5399 5400 // EXTRACT_ELEMENT of a constant int is also very common. 5401 if (N1C) { 5402 unsigned ElementSize = VT.getSizeInBits(); 5403 unsigned Shift = ElementSize * N2C->getZExtValue(); 5404 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift); 5405 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); 5406 } 5407 break; 5408 case ISD::EXTRACT_SUBVECTOR: 5409 if (VT.isSimple() && N1.getValueType().isSimple()) { 5410 assert(VT.isVector() && N1.getValueType().isVector() && 5411 "Extract subvector VTs must be a vectors!"); 5412 assert(VT.getVectorElementType() == 5413 N1.getValueType().getVectorElementType() && 5414 "Extract subvector VTs must have the same element type!"); 5415 assert(VT.getSimpleVT() <= N1.getSimpleValueType() && 5416 "Extract subvector must be from larger vector to smaller vector!"); 5417 5418 if (N2C) { 5419 assert((VT.getVectorNumElements() + N2C->getZExtValue() 5420 <= N1.getValueType().getVectorNumElements()) 5421 && "Extract subvector overflow!"); 5422 } 5423 5424 // Trivial extraction. 5425 if (VT.getSimpleVT() == N1.getSimpleValueType()) 5426 return N1; 5427 5428 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 5429 if (N1.isUndef()) 5430 return getUNDEF(VT); 5431 5432 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 5433 // the concat have the same type as the extract. 5434 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS && 5435 N1.getNumOperands() > 0 && 5436 VT == N1.getOperand(0).getValueType()) { 5437 unsigned Factor = VT.getVectorNumElements(); 5438 return N1.getOperand(N2C->getZExtValue() / Factor); 5439 } 5440 5441 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 5442 // during shuffle legalization. 5443 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 5444 VT == N1.getOperand(1).getValueType()) 5445 return N1.getOperand(1); 5446 } 5447 break; 5448 } 5449 5450 // Perform trivial constant folding. 5451 if (SDValue SV = 5452 FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) 5453 return SV; 5454 5455 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2)) 5456 return V; 5457 5458 // Canonicalize an UNDEF to the RHS, even over a constant. 5459 if (N1.isUndef()) { 5460 if (TLI->isCommutativeBinOp(Opcode)) { 5461 std::swap(N1, N2); 5462 } else { 5463 switch (Opcode) { 5464 case ISD::SIGN_EXTEND_INREG: 5465 case ISD::SUB: 5466 return getUNDEF(VT); // fold op(undef, arg2) -> undef 5467 case ISD::UDIV: 5468 case ISD::SDIV: 5469 case ISD::UREM: 5470 case ISD::SREM: 5471 case ISD::SSUBSAT: 5472 case ISD::USUBSAT: 5473 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 5474 } 5475 } 5476 } 5477 5478 // Fold a bunch of operators when the RHS is undef. 5479 if (N2.isUndef()) { 5480 switch (Opcode) { 5481 case ISD::XOR: 5482 if (N1.isUndef()) 5483 // Handle undef ^ undef -> 0 special case. This is a common 5484 // idiom (misuse). 5485 return getConstant(0, DL, VT); 5486 LLVM_FALLTHROUGH; 5487 case ISD::ADD: 5488 case ISD::SUB: 5489 case ISD::UDIV: 5490 case ISD::SDIV: 5491 case ISD::UREM: 5492 case ISD::SREM: 5493 return getUNDEF(VT); // fold op(arg1, undef) -> undef 5494 case ISD::MUL: 5495 case ISD::AND: 5496 case ISD::SSUBSAT: 5497 case ISD::USUBSAT: 5498 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 5499 case ISD::OR: 5500 case ISD::SADDSAT: 5501 case ISD::UADDSAT: 5502 return getAllOnesConstant(DL, VT); 5503 } 5504 } 5505 5506 // Memoize this node if possible. 5507 SDNode *N; 5508 SDVTList VTs = getVTList(VT); 5509 SDValue Ops[] = {N1, N2}; 5510 if (VT != MVT::Glue) { 5511 FoldingSetNodeID ID; 5512 AddNodeIDNode(ID, Opcode, VTs, Ops); 5513 void *IP = nullptr; 5514 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5515 E->intersectFlagsWith(Flags); 5516 return SDValue(E, 0); 5517 } 5518 5519 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5520 N->setFlags(Flags); 5521 createOperands(N, Ops); 5522 CSEMap.InsertNode(N, IP); 5523 } else { 5524 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5525 createOperands(N, Ops); 5526 } 5527 5528 InsertNode(N); 5529 SDValue V = SDValue(N, 0); 5530 NewSDValueDbgMsg(V, "Creating new node: ", this); 5531 return V; 5532 } 5533 5534 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5535 SDValue N1, SDValue N2, SDValue N3, 5536 const SDNodeFlags Flags) { 5537 // Perform various simplifications. 5538 switch (Opcode) { 5539 case ISD::FMA: { 5540 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 5541 assert(N1.getValueType() == VT && N2.getValueType() == VT && 5542 N3.getValueType() == VT && "FMA types must match!"); 5543 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 5544 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 5545 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 5546 if (N1CFP && N2CFP && N3CFP) { 5547 APFloat V1 = N1CFP->getValueAPF(); 5548 const APFloat &V2 = N2CFP->getValueAPF(); 5549 const APFloat &V3 = N3CFP->getValueAPF(); 5550 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 5551 return getConstantFP(V1, DL, VT); 5552 } 5553 break; 5554 } 5555 case ISD::BUILD_VECTOR: { 5556 // Attempt to simplify BUILD_VECTOR. 5557 SDValue Ops[] = {N1, N2, N3}; 5558 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5559 return V; 5560 break; 5561 } 5562 case ISD::CONCAT_VECTORS: { 5563 SDValue Ops[] = {N1, N2, N3}; 5564 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 5565 return V; 5566 break; 5567 } 5568 case ISD::SETCC: { 5569 assert(VT.isInteger() && "SETCC result type must be an integer!"); 5570 assert(N1.getValueType() == N2.getValueType() && 5571 "SETCC operands must have the same type!"); 5572 assert(VT.isVector() == N1.getValueType().isVector() && 5573 "SETCC type should be vector iff the operand type is vector!"); 5574 assert((!VT.isVector() || 5575 VT.getVectorNumElements() == N1.getValueType().getVectorNumElements()) && 5576 "SETCC vector element counts must match!"); 5577 // Use FoldSetCC to simplify SETCC's. 5578 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 5579 return V; 5580 // Vector constant folding. 5581 SDValue Ops[] = {N1, N2, N3}; 5582 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) { 5583 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 5584 return V; 5585 } 5586 break; 5587 } 5588 case ISD::SELECT: 5589 case ISD::VSELECT: 5590 if (SDValue V = simplifySelect(N1, N2, N3)) 5591 return V; 5592 break; 5593 case ISD::VECTOR_SHUFFLE: 5594 llvm_unreachable("should use getVectorShuffle constructor!"); 5595 case ISD::INSERT_VECTOR_ELT: { 5596 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 5597 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF 5598 if (N3C && N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 5599 return getUNDEF(VT); 5600 5601 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 5602 if (N3.isUndef()) 5603 return getUNDEF(VT); 5604 5605 // If the inserted element is an UNDEF, just use the input vector. 5606 if (N2.isUndef()) 5607 return N1; 5608 5609 break; 5610 } 5611 case ISD::INSERT_SUBVECTOR: { 5612 // Inserting undef into undef is still undef. 5613 if (N1.isUndef() && N2.isUndef()) 5614 return getUNDEF(VT); 5615 SDValue Index = N3; 5616 if (VT.isSimple() && N1.getValueType().isSimple() 5617 && N2.getValueType().isSimple()) { 5618 assert(VT.isVector() && N1.getValueType().isVector() && 5619 N2.getValueType().isVector() && 5620 "Insert subvector VTs must be a vectors"); 5621 assert(VT == N1.getValueType() && 5622 "Dest and insert subvector source types must match!"); 5623 assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && 5624 "Insert subvector must be from smaller vector to larger vector!"); 5625 if (isa<ConstantSDNode>(Index)) { 5626 assert((N2.getValueType().getVectorNumElements() + 5627 cast<ConstantSDNode>(Index)->getZExtValue() 5628 <= VT.getVectorNumElements()) 5629 && "Insert subvector overflow!"); 5630 } 5631 5632 // Trivial insertion. 5633 if (VT.getSimpleVT() == N2.getSimpleValueType()) 5634 return N2; 5635 5636 // If this is an insert of an extracted vector into an undef vector, we 5637 // can just use the input to the extract. 5638 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 5639 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 5640 return N2.getOperand(0); 5641 } 5642 break; 5643 } 5644 case ISD::BITCAST: 5645 // Fold bit_convert nodes from a type to themselves. 5646 if (N1.getValueType() == VT) 5647 return N1; 5648 break; 5649 } 5650 5651 // Memoize node if it doesn't produce a flag. 5652 SDNode *N; 5653 SDVTList VTs = getVTList(VT); 5654 SDValue Ops[] = {N1, N2, N3}; 5655 if (VT != MVT::Glue) { 5656 FoldingSetNodeID ID; 5657 AddNodeIDNode(ID, Opcode, VTs, Ops); 5658 void *IP = nullptr; 5659 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5660 E->intersectFlagsWith(Flags); 5661 return SDValue(E, 0); 5662 } 5663 5664 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5665 N->setFlags(Flags); 5666 createOperands(N, Ops); 5667 CSEMap.InsertNode(N, IP); 5668 } else { 5669 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5670 createOperands(N, Ops); 5671 } 5672 5673 InsertNode(N); 5674 SDValue V = SDValue(N, 0); 5675 NewSDValueDbgMsg(V, "Creating new node: ", this); 5676 return V; 5677 } 5678 5679 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5680 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 5681 SDValue Ops[] = { N1, N2, N3, N4 }; 5682 return getNode(Opcode, DL, VT, Ops); 5683 } 5684 5685 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5686 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 5687 SDValue N5) { 5688 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 5689 return getNode(Opcode, DL, VT, Ops); 5690 } 5691 5692 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 5693 /// the incoming stack arguments to be loaded from the stack. 5694 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 5695 SmallVector<SDValue, 8> ArgChains; 5696 5697 // Include the original chain at the beginning of the list. When this is 5698 // used by target LowerCall hooks, this helps legalize find the 5699 // CALLSEQ_BEGIN node. 5700 ArgChains.push_back(Chain); 5701 5702 // Add a chain value for each stack argument. 5703 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), 5704 UE = getEntryNode().getNode()->use_end(); U != UE; ++U) 5705 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 5706 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 5707 if (FI->getIndex() < 0) 5708 ArgChains.push_back(SDValue(L, 1)); 5709 5710 // Build a tokenfactor for all the chains. 5711 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 5712 } 5713 5714 /// getMemsetValue - Vectorized representation of the memset value 5715 /// operand. 5716 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 5717 const SDLoc &dl) { 5718 assert(!Value.isUndef()); 5719 5720 unsigned NumBits = VT.getScalarSizeInBits(); 5721 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 5722 assert(C->getAPIntValue().getBitWidth() == 8); 5723 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 5724 if (VT.isInteger()) { 5725 bool IsOpaque = VT.getSizeInBits() > 64 || 5726 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 5727 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 5728 } 5729 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 5730 VT); 5731 } 5732 5733 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 5734 EVT IntVT = VT.getScalarType(); 5735 if (!IntVT.isInteger()) 5736 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 5737 5738 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 5739 if (NumBits > 8) { 5740 // Use a multiplication with 0x010101... to extend the input to the 5741 // required length. 5742 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 5743 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 5744 DAG.getConstant(Magic, dl, IntVT)); 5745 } 5746 5747 if (VT != Value.getValueType() && !VT.isInteger()) 5748 Value = DAG.getBitcast(VT.getScalarType(), Value); 5749 if (VT != Value.getValueType()) 5750 Value = DAG.getSplatBuildVector(VT, dl, Value); 5751 5752 return Value; 5753 } 5754 5755 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 5756 /// used when a memcpy is turned into a memset when the source is a constant 5757 /// string ptr. 5758 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 5759 const TargetLowering &TLI, 5760 const ConstantDataArraySlice &Slice) { 5761 // Handle vector with all elements zero. 5762 if (Slice.Array == nullptr) { 5763 if (VT.isInteger()) 5764 return DAG.getConstant(0, dl, VT); 5765 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 5766 return DAG.getConstantFP(0.0, dl, VT); 5767 else if (VT.isVector()) { 5768 unsigned NumElts = VT.getVectorNumElements(); 5769 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 5770 return DAG.getNode(ISD::BITCAST, dl, VT, 5771 DAG.getConstant(0, dl, 5772 EVT::getVectorVT(*DAG.getContext(), 5773 EltVT, NumElts))); 5774 } else 5775 llvm_unreachable("Expected type!"); 5776 } 5777 5778 assert(!VT.isVector() && "Can't handle vector type here!"); 5779 unsigned NumVTBits = VT.getSizeInBits(); 5780 unsigned NumVTBytes = NumVTBits / 8; 5781 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 5782 5783 APInt Val(NumVTBits, 0); 5784 if (DAG.getDataLayout().isLittleEndian()) { 5785 for (unsigned i = 0; i != NumBytes; ++i) 5786 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 5787 } else { 5788 for (unsigned i = 0; i != NumBytes; ++i) 5789 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 5790 } 5791 5792 // If the "cost" of materializing the integer immediate is less than the cost 5793 // of a load, then it is cost effective to turn the load into the immediate. 5794 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 5795 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 5796 return DAG.getConstant(Val, dl, VT); 5797 return SDValue(nullptr, 0); 5798 } 5799 5800 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset, 5801 const SDLoc &DL, 5802 const SDNodeFlags Flags) { 5803 EVT VT = Base.getValueType(); 5804 return getMemBasePlusOffset(Base, getConstant(Offset, DL, VT), DL, Flags); 5805 } 5806 5807 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 5808 const SDLoc &DL, 5809 const SDNodeFlags Flags) { 5810 assert(Offset.getValueType().isInteger()); 5811 EVT BasePtrVT = Ptr.getValueType(); 5812 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 5813 } 5814 5815 /// Returns true if memcpy source is constant data. 5816 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 5817 uint64_t SrcDelta = 0; 5818 GlobalAddressSDNode *G = nullptr; 5819 if (Src.getOpcode() == ISD::GlobalAddress) 5820 G = cast<GlobalAddressSDNode>(Src); 5821 else if (Src.getOpcode() == ISD::ADD && 5822 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 5823 Src.getOperand(1).getOpcode() == ISD::Constant) { 5824 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 5825 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 5826 } 5827 if (!G) 5828 return false; 5829 5830 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 5831 SrcDelta + G->getOffset()); 5832 } 5833 5834 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 5835 SelectionDAG &DAG) { 5836 // On Darwin, -Os means optimize for size without hurting performance, so 5837 // only really optimize for size when -Oz (MinSize) is used. 5838 if (MF.getTarget().getTargetTriple().isOSDarwin()) 5839 return MF.getFunction().hasMinSize(); 5840 return DAG.shouldOptForSize(); 5841 } 5842 5843 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 5844 SmallVector<SDValue, 32> &OutChains, unsigned From, 5845 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 5846 SmallVector<SDValue, 16> &OutStoreChains) { 5847 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 5848 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 5849 SmallVector<SDValue, 16> GluedLoadChains; 5850 for (unsigned i = From; i < To; ++i) { 5851 OutChains.push_back(OutLoadChains[i]); 5852 GluedLoadChains.push_back(OutLoadChains[i]); 5853 } 5854 5855 // Chain for all loads. 5856 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 5857 GluedLoadChains); 5858 5859 for (unsigned i = From; i < To; ++i) { 5860 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 5861 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 5862 ST->getBasePtr(), ST->getMemoryVT(), 5863 ST->getMemOperand()); 5864 OutChains.push_back(NewStore); 5865 } 5866 } 5867 5868 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 5869 SDValue Chain, SDValue Dst, SDValue Src, 5870 uint64_t Size, unsigned Alignment, 5871 bool isVol, bool AlwaysInline, 5872 MachinePointerInfo DstPtrInfo, 5873 MachinePointerInfo SrcPtrInfo) { 5874 // Turn a memcpy of undef to nop. 5875 // FIXME: We need to honor volatile even is Src is undef. 5876 if (Src.isUndef()) 5877 return Chain; 5878 5879 // Expand memcpy to a series of load and store ops if the size operand falls 5880 // below a certain threshold. 5881 // TODO: In the AlwaysInline case, if the size is big then generate a loop 5882 // rather than maybe a humongous number of loads and stores. 5883 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5884 const DataLayout &DL = DAG.getDataLayout(); 5885 LLVMContext &C = *DAG.getContext(); 5886 std::vector<EVT> MemOps; 5887 bool DstAlignCanChange = false; 5888 MachineFunction &MF = DAG.getMachineFunction(); 5889 MachineFrameInfo &MFI = MF.getFrameInfo(); 5890 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 5891 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 5892 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 5893 DstAlignCanChange = true; 5894 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 5895 if (Alignment > SrcAlign) 5896 SrcAlign = Alignment; 5897 ConstantDataArraySlice Slice; 5898 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice); 5899 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 5900 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 5901 5902 if (!TLI.findOptimalMemOpLowering( 5903 MemOps, Limit, Size, (DstAlignCanChange ? 0 : Alignment), 5904 (isZeroConstant ? 0 : SrcAlign), /*IsMemset=*/false, 5905 /*ZeroMemset=*/false, /*MemcpyStrSrc=*/CopyFromConstant, 5906 /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), 5907 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 5908 return SDValue(); 5909 5910 if (DstAlignCanChange) { 5911 Type *Ty = MemOps[0].getTypeForEVT(C); 5912 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 5913 5914 // Don't promote to an alignment that would require dynamic stack 5915 // realignment. 5916 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 5917 if (!TRI->needsStackRealignment(MF)) 5918 while (NewAlign > Alignment && 5919 DL.exceedsNaturalStackAlignment(Align(NewAlign))) 5920 NewAlign /= 2; 5921 5922 if (NewAlign > Alignment) { 5923 // Give the stack frame object a larger alignment if needed. 5924 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 5925 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 5926 Alignment = NewAlign; 5927 } 5928 } 5929 5930 MachineMemOperand::Flags MMOFlags = 5931 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 5932 SmallVector<SDValue, 16> OutLoadChains; 5933 SmallVector<SDValue, 16> OutStoreChains; 5934 SmallVector<SDValue, 32> OutChains; 5935 unsigned NumMemOps = MemOps.size(); 5936 uint64_t SrcOff = 0, DstOff = 0; 5937 for (unsigned i = 0; i != NumMemOps; ++i) { 5938 EVT VT = MemOps[i]; 5939 unsigned VTSize = VT.getSizeInBits() / 8; 5940 SDValue Value, Store; 5941 5942 if (VTSize > Size) { 5943 // Issuing an unaligned load / store pair that overlaps with the previous 5944 // pair. Adjust the offset accordingly. 5945 assert(i == NumMemOps-1 && i != 0); 5946 SrcOff -= VTSize - Size; 5947 DstOff -= VTSize - Size; 5948 } 5949 5950 if (CopyFromConstant && 5951 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 5952 // It's unlikely a store of a vector immediate can be done in a single 5953 // instruction. It would require a load from a constantpool first. 5954 // We only handle zero vectors here. 5955 // FIXME: Handle other cases where store of vector immediate is done in 5956 // a single instruction. 5957 ConstantDataArraySlice SubSlice; 5958 if (SrcOff < Slice.Length) { 5959 SubSlice = Slice; 5960 SubSlice.move(SrcOff); 5961 } else { 5962 // This is an out-of-bounds access and hence UB. Pretend we read zero. 5963 SubSlice.Array = nullptr; 5964 SubSlice.Offset = 0; 5965 SubSlice.Length = VTSize; 5966 } 5967 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 5968 if (Value.getNode()) { 5969 Store = DAG.getStore( 5970 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5971 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags); 5972 OutChains.push_back(Store); 5973 } 5974 } 5975 5976 if (!Store.getNode()) { 5977 // The type might not be legal for the target. This should only happen 5978 // if the type is smaller than a legal type, as on PPC, so the right 5979 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 5980 // to Load/Store if NVT==VT. 5981 // FIXME does the case above also need this? 5982 EVT NVT = TLI.getTypeToTransformTo(C, VT); 5983 assert(NVT.bitsGE(VT)); 5984 5985 bool isDereferenceable = 5986 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 5987 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 5988 if (isDereferenceable) 5989 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 5990 5991 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, 5992 DAG.getMemBasePlusOffset(Src, SrcOff, dl), 5993 SrcPtrInfo.getWithOffset(SrcOff), VT, 5994 MinAlign(SrcAlign, SrcOff), SrcMMOFlags); 5995 OutLoadChains.push_back(Value.getValue(1)); 5996 5997 Store = DAG.getTruncStore( 5998 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 5999 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags); 6000 OutStoreChains.push_back(Store); 6001 } 6002 SrcOff += VTSize; 6003 DstOff += VTSize; 6004 Size -= VTSize; 6005 } 6006 6007 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 6008 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 6009 unsigned NumLdStInMemcpy = OutStoreChains.size(); 6010 6011 if (NumLdStInMemcpy) { 6012 // It may be that memcpy might be converted to memset if it's memcpy 6013 // of constants. In such a case, we won't have loads and stores, but 6014 // just stores. In the absence of loads, there is nothing to gang up. 6015 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 6016 // If target does not care, just leave as it. 6017 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 6018 OutChains.push_back(OutLoadChains[i]); 6019 OutChains.push_back(OutStoreChains[i]); 6020 } 6021 } else { 6022 // Ld/St less than/equal limit set by target. 6023 if (NumLdStInMemcpy <= GluedLdStLimit) { 6024 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6025 NumLdStInMemcpy, OutLoadChains, 6026 OutStoreChains); 6027 } else { 6028 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 6029 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 6030 unsigned GlueIter = 0; 6031 6032 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 6033 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 6034 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 6035 6036 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 6037 OutLoadChains, OutStoreChains); 6038 GlueIter += GluedLdStLimit; 6039 } 6040 6041 // Residual ld/st. 6042 if (RemainingLdStInMemcpy) { 6043 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 6044 RemainingLdStInMemcpy, OutLoadChains, 6045 OutStoreChains); 6046 } 6047 } 6048 } 6049 } 6050 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6051 } 6052 6053 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 6054 SDValue Chain, SDValue Dst, SDValue Src, 6055 uint64_t Size, unsigned Align, 6056 bool isVol, bool AlwaysInline, 6057 MachinePointerInfo DstPtrInfo, 6058 MachinePointerInfo SrcPtrInfo) { 6059 // Turn a memmove of undef to nop. 6060 // FIXME: We need to honor volatile even is Src is undef. 6061 if (Src.isUndef()) 6062 return Chain; 6063 6064 // Expand memmove to a series of load and store ops if the size operand falls 6065 // below a certain threshold. 6066 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6067 const DataLayout &DL = DAG.getDataLayout(); 6068 LLVMContext &C = *DAG.getContext(); 6069 std::vector<EVT> MemOps; 6070 bool DstAlignCanChange = false; 6071 MachineFunction &MF = DAG.getMachineFunction(); 6072 MachineFrameInfo &MFI = MF.getFrameInfo(); 6073 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6074 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6075 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6076 DstAlignCanChange = true; 6077 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6078 if (Align > SrcAlign) 6079 SrcAlign = Align; 6080 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 6081 // FIXME: `AllowOverlap` should really be `!isVol` but there is a bug in 6082 // findOptimalMemOpLowering. Meanwhile, setting it to `false` produces the 6083 // correct code. 6084 bool AllowOverlap = false; 6085 if (!TLI.findOptimalMemOpLowering( 6086 MemOps, Limit, Size, (DstAlignCanChange ? 0 : Align), SrcAlign, 6087 /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false, 6088 AllowOverlap, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 6089 MF.getFunction().getAttributes())) 6090 return SDValue(); 6091 6092 if (DstAlignCanChange) { 6093 Type *Ty = MemOps[0].getTypeForEVT(C); 6094 unsigned NewAlign = (unsigned)DL.getABITypeAlignment(Ty); 6095 if (NewAlign > Align) { 6096 // Give the stack frame object a larger alignment if needed. 6097 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 6098 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6099 Align = NewAlign; 6100 } 6101 } 6102 6103 MachineMemOperand::Flags MMOFlags = 6104 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 6105 uint64_t SrcOff = 0, DstOff = 0; 6106 SmallVector<SDValue, 8> LoadValues; 6107 SmallVector<SDValue, 8> LoadChains; 6108 SmallVector<SDValue, 8> OutChains; 6109 unsigned NumMemOps = MemOps.size(); 6110 for (unsigned i = 0; i < NumMemOps; i++) { 6111 EVT VT = MemOps[i]; 6112 unsigned VTSize = VT.getSizeInBits() / 8; 6113 SDValue Value; 6114 6115 bool isDereferenceable = 6116 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 6117 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 6118 if (isDereferenceable) 6119 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 6120 6121 Value = 6122 DAG.getLoad(VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl), 6123 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign, SrcMMOFlags); 6124 LoadValues.push_back(Value); 6125 LoadChains.push_back(Value.getValue(1)); 6126 SrcOff += VTSize; 6127 } 6128 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 6129 OutChains.clear(); 6130 for (unsigned i = 0; i < NumMemOps; i++) { 6131 EVT VT = MemOps[i]; 6132 unsigned VTSize = VT.getSizeInBits() / 8; 6133 SDValue Store; 6134 6135 Store = DAG.getStore(Chain, dl, LoadValues[i], 6136 DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6137 DstPtrInfo.getWithOffset(DstOff), Align, MMOFlags); 6138 OutChains.push_back(Store); 6139 DstOff += VTSize; 6140 } 6141 6142 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6143 } 6144 6145 /// Lower the call to 'memset' intrinsic function into a series of store 6146 /// operations. 6147 /// 6148 /// \param DAG Selection DAG where lowered code is placed. 6149 /// \param dl Link to corresponding IR location. 6150 /// \param Chain Control flow dependency. 6151 /// \param Dst Pointer to destination memory location. 6152 /// \param Src Value of byte to write into the memory. 6153 /// \param Size Number of bytes to write. 6154 /// \param Align Alignment of the destination in bytes. 6155 /// \param isVol True if destination is volatile. 6156 /// \param DstPtrInfo IR information on the memory pointer. 6157 /// \returns New head in the control flow, if lowering was successful, empty 6158 /// SDValue otherwise. 6159 /// 6160 /// The function tries to replace 'llvm.memset' intrinsic with several store 6161 /// operations and value calculation code. This is usually profitable for small 6162 /// memory size. 6163 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 6164 SDValue Chain, SDValue Dst, SDValue Src, 6165 uint64_t Size, unsigned Align, bool isVol, 6166 MachinePointerInfo DstPtrInfo) { 6167 // Turn a memset of undef to nop. 6168 // FIXME: We need to honor volatile even is Src is undef. 6169 if (Src.isUndef()) 6170 return Chain; 6171 6172 // Expand memset to a series of load/store ops if the size operand 6173 // falls below a certain threshold. 6174 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6175 std::vector<EVT> MemOps; 6176 bool DstAlignCanChange = false; 6177 MachineFunction &MF = DAG.getMachineFunction(); 6178 MachineFrameInfo &MFI = MF.getFrameInfo(); 6179 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 6180 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 6181 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 6182 DstAlignCanChange = true; 6183 bool IsZeroVal = 6184 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); 6185 if (!TLI.findOptimalMemOpLowering( 6186 MemOps, TLI.getMaxStoresPerMemset(OptSize), Size, 6187 (DstAlignCanChange ? 0 : Align), 0, /*IsMemset=*/true, 6188 /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false, 6189 /*AllowOverlap=*/!isVol, DstPtrInfo.getAddrSpace(), ~0u, 6190 MF.getFunction().getAttributes())) 6191 return SDValue(); 6192 6193 if (DstAlignCanChange) { 6194 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 6195 unsigned NewAlign = (unsigned)DAG.getDataLayout().getABITypeAlignment(Ty); 6196 if (NewAlign > Align) { 6197 // Give the stack frame object a larger alignment if needed. 6198 if (MFI.getObjectAlignment(FI->getIndex()) < NewAlign) 6199 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 6200 Align = NewAlign; 6201 } 6202 } 6203 6204 SmallVector<SDValue, 8> OutChains; 6205 uint64_t DstOff = 0; 6206 unsigned NumMemOps = MemOps.size(); 6207 6208 // Find the largest store and generate the bit pattern for it. 6209 EVT LargestVT = MemOps[0]; 6210 for (unsigned i = 1; i < NumMemOps; i++) 6211 if (MemOps[i].bitsGT(LargestVT)) 6212 LargestVT = MemOps[i]; 6213 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 6214 6215 for (unsigned i = 0; i < NumMemOps; i++) { 6216 EVT VT = MemOps[i]; 6217 unsigned VTSize = VT.getSizeInBits() / 8; 6218 if (VTSize > Size) { 6219 // Issuing an unaligned load / store pair that overlaps with the previous 6220 // pair. Adjust the offset accordingly. 6221 assert(i == NumMemOps-1 && i != 0); 6222 DstOff -= VTSize - Size; 6223 } 6224 6225 // If this store is smaller than the largest store see whether we can get 6226 // the smaller value for free with a truncate. 6227 SDValue Value = MemSetValue; 6228 if (VT.bitsLT(LargestVT)) { 6229 if (!LargestVT.isVector() && !VT.isVector() && 6230 TLI.isTruncateFree(LargestVT, VT)) 6231 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 6232 else 6233 Value = getMemsetValue(Src, VT, DAG, dl); 6234 } 6235 assert(Value.getValueType() == VT && "Value with wrong type."); 6236 SDValue Store = DAG.getStore( 6237 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl), 6238 DstPtrInfo.getWithOffset(DstOff), Align, 6239 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone); 6240 OutChains.push_back(Store); 6241 DstOff += VT.getSizeInBits() / 8; 6242 Size -= VTSize; 6243 } 6244 6245 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 6246 } 6247 6248 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 6249 unsigned AS) { 6250 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 6251 // pointer operands can be losslessly bitcasted to pointers of address space 0 6252 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) { 6253 report_fatal_error("cannot lower memory intrinsic in address space " + 6254 Twine(AS)); 6255 } 6256 } 6257 6258 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 6259 SDValue Src, SDValue Size, unsigned Align, 6260 bool isVol, bool AlwaysInline, bool isTailCall, 6261 MachinePointerInfo DstPtrInfo, 6262 MachinePointerInfo SrcPtrInfo) { 6263 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6264 6265 // Check to see if we should lower the memcpy to loads and stores first. 6266 // For cases within the target-specified limits, this is the best choice. 6267 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6268 if (ConstantSize) { 6269 // Memcpy with size zero? Just return the original chain. 6270 if (ConstantSize->isNullValue()) 6271 return Chain; 6272 6273 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6274 ConstantSize->getZExtValue(),Align, 6275 isVol, false, DstPtrInfo, SrcPtrInfo); 6276 if (Result.getNode()) 6277 return Result; 6278 } 6279 6280 // Then check to see if we should lower the memcpy with target-specific 6281 // code. If the target chooses to do this, this is the next best. 6282 if (TSI) { 6283 SDValue Result = TSI->EmitTargetCodeForMemcpy( 6284 *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, 6285 DstPtrInfo, SrcPtrInfo); 6286 if (Result.getNode()) 6287 return Result; 6288 } 6289 6290 // If we really need inline code and the target declined to provide it, 6291 // use a (potentially long) sequence of loads and stores. 6292 if (AlwaysInline) { 6293 assert(ConstantSize && "AlwaysInline requires a constant size!"); 6294 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, 6295 ConstantSize->getZExtValue(), Align, isVol, 6296 true, DstPtrInfo, SrcPtrInfo); 6297 } 6298 6299 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6300 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6301 6302 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 6303 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 6304 // respect volatile, so they may do things like read or write memory 6305 // beyond the given memory regions. But fixing this isn't easy, and most 6306 // people don't care. 6307 6308 // Emit a library call. 6309 TargetLowering::ArgListTy Args; 6310 TargetLowering::ArgListEntry Entry; 6311 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6312 Entry.Node = Dst; Args.push_back(Entry); 6313 Entry.Node = Src; Args.push_back(Entry); 6314 6315 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6316 Entry.Node = Size; Args.push_back(Entry); 6317 // FIXME: pass in SDLoc 6318 TargetLowering::CallLoweringInfo CLI(*this); 6319 CLI.setDebugLoc(dl) 6320 .setChain(Chain) 6321 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 6322 Dst.getValueType().getTypeForEVT(*getContext()), 6323 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 6324 TLI->getPointerTy(getDataLayout())), 6325 std::move(Args)) 6326 .setDiscardResult() 6327 .setTailCall(isTailCall); 6328 6329 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6330 return CallResult.second; 6331 } 6332 6333 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 6334 SDValue Dst, unsigned DstAlign, 6335 SDValue Src, unsigned SrcAlign, 6336 SDValue Size, Type *SizeTy, 6337 unsigned ElemSz, bool isTailCall, 6338 MachinePointerInfo DstPtrInfo, 6339 MachinePointerInfo SrcPtrInfo) { 6340 // Emit a library call. 6341 TargetLowering::ArgListTy Args; 6342 TargetLowering::ArgListEntry Entry; 6343 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6344 Entry.Node = Dst; 6345 Args.push_back(Entry); 6346 6347 Entry.Node = Src; 6348 Args.push_back(Entry); 6349 6350 Entry.Ty = SizeTy; 6351 Entry.Node = Size; 6352 Args.push_back(Entry); 6353 6354 RTLIB::Libcall LibraryCall = 6355 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6356 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6357 report_fatal_error("Unsupported element size"); 6358 6359 TargetLowering::CallLoweringInfo CLI(*this); 6360 CLI.setDebugLoc(dl) 6361 .setChain(Chain) 6362 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6363 Type::getVoidTy(*getContext()), 6364 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6365 TLI->getPointerTy(getDataLayout())), 6366 std::move(Args)) 6367 .setDiscardResult() 6368 .setTailCall(isTailCall); 6369 6370 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6371 return CallResult.second; 6372 } 6373 6374 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 6375 SDValue Src, SDValue Size, unsigned Align, 6376 bool isVol, bool isTailCall, 6377 MachinePointerInfo DstPtrInfo, 6378 MachinePointerInfo SrcPtrInfo) { 6379 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6380 6381 // Check to see if we should lower the memmove to loads and stores first. 6382 // For cases within the target-specified limits, this is the best choice. 6383 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6384 if (ConstantSize) { 6385 // Memmove with size zero? Just return the original chain. 6386 if (ConstantSize->isNullValue()) 6387 return Chain; 6388 6389 SDValue Result = 6390 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, 6391 ConstantSize->getZExtValue(), Align, isVol, 6392 false, DstPtrInfo, SrcPtrInfo); 6393 if (Result.getNode()) 6394 return Result; 6395 } 6396 6397 // Then check to see if we should lower the memmove with target-specific 6398 // code. If the target chooses to do this, this is the next best. 6399 if (TSI) { 6400 SDValue Result = TSI->EmitTargetCodeForMemmove( 6401 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); 6402 if (Result.getNode()) 6403 return Result; 6404 } 6405 6406 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6407 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 6408 6409 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 6410 // not be safe. See memcpy above for more details. 6411 6412 // Emit a library call. 6413 TargetLowering::ArgListTy Args; 6414 TargetLowering::ArgListEntry Entry; 6415 Entry.Ty = Type::getInt8PtrTy(*getContext()); 6416 Entry.Node = Dst; Args.push_back(Entry); 6417 Entry.Node = Src; Args.push_back(Entry); 6418 6419 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6420 Entry.Node = Size; Args.push_back(Entry); 6421 // FIXME: pass in SDLoc 6422 TargetLowering::CallLoweringInfo CLI(*this); 6423 CLI.setDebugLoc(dl) 6424 .setChain(Chain) 6425 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 6426 Dst.getValueType().getTypeForEVT(*getContext()), 6427 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 6428 TLI->getPointerTy(getDataLayout())), 6429 std::move(Args)) 6430 .setDiscardResult() 6431 .setTailCall(isTailCall); 6432 6433 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6434 return CallResult.second; 6435 } 6436 6437 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 6438 SDValue Dst, unsigned DstAlign, 6439 SDValue Src, unsigned SrcAlign, 6440 SDValue Size, Type *SizeTy, 6441 unsigned ElemSz, bool isTailCall, 6442 MachinePointerInfo DstPtrInfo, 6443 MachinePointerInfo SrcPtrInfo) { 6444 // Emit a library call. 6445 TargetLowering::ArgListTy Args; 6446 TargetLowering::ArgListEntry Entry; 6447 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6448 Entry.Node = Dst; 6449 Args.push_back(Entry); 6450 6451 Entry.Node = Src; 6452 Args.push_back(Entry); 6453 6454 Entry.Ty = SizeTy; 6455 Entry.Node = Size; 6456 Args.push_back(Entry); 6457 6458 RTLIB::Libcall LibraryCall = 6459 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6460 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6461 report_fatal_error("Unsupported element size"); 6462 6463 TargetLowering::CallLoweringInfo CLI(*this); 6464 CLI.setDebugLoc(dl) 6465 .setChain(Chain) 6466 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6467 Type::getVoidTy(*getContext()), 6468 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6469 TLI->getPointerTy(getDataLayout())), 6470 std::move(Args)) 6471 .setDiscardResult() 6472 .setTailCall(isTailCall); 6473 6474 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6475 return CallResult.second; 6476 } 6477 6478 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 6479 SDValue Src, SDValue Size, unsigned Align, 6480 bool isVol, bool isTailCall, 6481 MachinePointerInfo DstPtrInfo) { 6482 assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); 6483 6484 // Check to see if we should lower the memset to stores first. 6485 // For cases within the target-specified limits, this is the best choice. 6486 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 6487 if (ConstantSize) { 6488 // Memset with size zero? Just return the original chain. 6489 if (ConstantSize->isNullValue()) 6490 return Chain; 6491 6492 SDValue Result = 6493 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), 6494 Align, isVol, DstPtrInfo); 6495 6496 if (Result.getNode()) 6497 return Result; 6498 } 6499 6500 // Then check to see if we should lower the memset with target-specific 6501 // code. If the target chooses to do this, this is the next best. 6502 if (TSI) { 6503 SDValue Result = TSI->EmitTargetCodeForMemset( 6504 *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); 6505 if (Result.getNode()) 6506 return Result; 6507 } 6508 6509 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 6510 6511 // Emit a library call. 6512 TargetLowering::ArgListTy Args; 6513 TargetLowering::ArgListEntry Entry; 6514 Entry.Node = Dst; Entry.Ty = Type::getInt8PtrTy(*getContext()); 6515 Args.push_back(Entry); 6516 Entry.Node = Src; 6517 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); 6518 Args.push_back(Entry); 6519 Entry.Node = Size; 6520 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6521 Args.push_back(Entry); 6522 6523 // FIXME: pass in SDLoc 6524 TargetLowering::CallLoweringInfo CLI(*this); 6525 CLI.setDebugLoc(dl) 6526 .setChain(Chain) 6527 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 6528 Dst.getValueType().getTypeForEVT(*getContext()), 6529 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 6530 TLI->getPointerTy(getDataLayout())), 6531 std::move(Args)) 6532 .setDiscardResult() 6533 .setTailCall(isTailCall); 6534 6535 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 6536 return CallResult.second; 6537 } 6538 6539 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 6540 SDValue Dst, unsigned DstAlign, 6541 SDValue Value, SDValue Size, Type *SizeTy, 6542 unsigned ElemSz, bool isTailCall, 6543 MachinePointerInfo DstPtrInfo) { 6544 // Emit a library call. 6545 TargetLowering::ArgListTy Args; 6546 TargetLowering::ArgListEntry Entry; 6547 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 6548 Entry.Node = Dst; 6549 Args.push_back(Entry); 6550 6551 Entry.Ty = Type::getInt8Ty(*getContext()); 6552 Entry.Node = Value; 6553 Args.push_back(Entry); 6554 6555 Entry.Ty = SizeTy; 6556 Entry.Node = Size; 6557 Args.push_back(Entry); 6558 6559 RTLIB::Libcall LibraryCall = 6560 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 6561 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 6562 report_fatal_error("Unsupported element size"); 6563 6564 TargetLowering::CallLoweringInfo CLI(*this); 6565 CLI.setDebugLoc(dl) 6566 .setChain(Chain) 6567 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 6568 Type::getVoidTy(*getContext()), 6569 getExternalSymbol(TLI->getLibcallName(LibraryCall), 6570 TLI->getPointerTy(getDataLayout())), 6571 std::move(Args)) 6572 .setDiscardResult() 6573 .setTailCall(isTailCall); 6574 6575 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 6576 return CallResult.second; 6577 } 6578 6579 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6580 SDVTList VTList, ArrayRef<SDValue> Ops, 6581 MachineMemOperand *MMO) { 6582 FoldingSetNodeID ID; 6583 ID.AddInteger(MemVT.getRawBits()); 6584 AddNodeIDNode(ID, Opcode, VTList, Ops); 6585 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6586 void* IP = nullptr; 6587 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6588 cast<AtomicSDNode>(E)->refineAlignment(MMO); 6589 return SDValue(E, 0); 6590 } 6591 6592 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6593 VTList, MemVT, MMO); 6594 createOperands(N, Ops); 6595 6596 CSEMap.InsertNode(N, IP); 6597 InsertNode(N); 6598 return SDValue(N, 0); 6599 } 6600 6601 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 6602 EVT MemVT, SDVTList VTs, SDValue Chain, 6603 SDValue Ptr, SDValue Cmp, SDValue Swp, 6604 MachineMemOperand *MMO) { 6605 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 6606 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 6607 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 6608 6609 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 6610 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6611 } 6612 6613 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6614 SDValue Chain, SDValue Ptr, SDValue Val, 6615 MachineMemOperand *MMO) { 6616 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 6617 Opcode == ISD::ATOMIC_LOAD_SUB || 6618 Opcode == ISD::ATOMIC_LOAD_AND || 6619 Opcode == ISD::ATOMIC_LOAD_CLR || 6620 Opcode == ISD::ATOMIC_LOAD_OR || 6621 Opcode == ISD::ATOMIC_LOAD_XOR || 6622 Opcode == ISD::ATOMIC_LOAD_NAND || 6623 Opcode == ISD::ATOMIC_LOAD_MIN || 6624 Opcode == ISD::ATOMIC_LOAD_MAX || 6625 Opcode == ISD::ATOMIC_LOAD_UMIN || 6626 Opcode == ISD::ATOMIC_LOAD_UMAX || 6627 Opcode == ISD::ATOMIC_LOAD_FADD || 6628 Opcode == ISD::ATOMIC_LOAD_FSUB || 6629 Opcode == ISD::ATOMIC_SWAP || 6630 Opcode == ISD::ATOMIC_STORE) && 6631 "Invalid Atomic Op"); 6632 6633 EVT VT = Val.getValueType(); 6634 6635 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 6636 getVTList(VT, MVT::Other); 6637 SDValue Ops[] = {Chain, Ptr, Val}; 6638 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6639 } 6640 6641 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 6642 EVT VT, SDValue Chain, SDValue Ptr, 6643 MachineMemOperand *MMO) { 6644 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 6645 6646 SDVTList VTs = getVTList(VT, MVT::Other); 6647 SDValue Ops[] = {Chain, Ptr}; 6648 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 6649 } 6650 6651 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 6652 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 6653 if (Ops.size() == 1) 6654 return Ops[0]; 6655 6656 SmallVector<EVT, 4> VTs; 6657 VTs.reserve(Ops.size()); 6658 for (unsigned i = 0; i < Ops.size(); ++i) 6659 VTs.push_back(Ops[i].getValueType()); 6660 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 6661 } 6662 6663 SDValue SelectionDAG::getMemIntrinsicNode( 6664 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 6665 EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align, 6666 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 6667 if (Align == 0) // Ensure that codegen never sees alignment 0 6668 Align = getEVTAlignment(MemVT); 6669 6670 if (!Size && MemVT.isScalableVector()) 6671 Size = MemoryLocation::UnknownSize; 6672 else if (!Size) 6673 Size = MemVT.getStoreSize(); 6674 6675 MachineFunction &MF = getMachineFunction(); 6676 MachineMemOperand *MMO = 6677 MF.getMachineMemOperand(PtrInfo, Flags, Size, Align, AAInfo); 6678 6679 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 6680 } 6681 6682 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 6683 SDVTList VTList, 6684 ArrayRef<SDValue> Ops, EVT MemVT, 6685 MachineMemOperand *MMO) { 6686 assert((Opcode == ISD::INTRINSIC_VOID || 6687 Opcode == ISD::INTRINSIC_W_CHAIN || 6688 Opcode == ISD::PREFETCH || 6689 Opcode == ISD::LIFETIME_START || 6690 Opcode == ISD::LIFETIME_END || 6691 ((int)Opcode <= std::numeric_limits<int>::max() && 6692 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 6693 "Opcode is not a memory-accessing opcode!"); 6694 6695 // Memoize the node unless it returns a flag. 6696 MemIntrinsicSDNode *N; 6697 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 6698 FoldingSetNodeID ID; 6699 AddNodeIDNode(ID, Opcode, VTList, Ops); 6700 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 6701 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 6702 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6703 void *IP = nullptr; 6704 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6705 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 6706 return SDValue(E, 0); 6707 } 6708 6709 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6710 VTList, MemVT, MMO); 6711 createOperands(N, Ops); 6712 6713 CSEMap.InsertNode(N, IP); 6714 } else { 6715 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 6716 VTList, MemVT, MMO); 6717 createOperands(N, Ops); 6718 } 6719 InsertNode(N); 6720 SDValue V(N, 0); 6721 NewSDValueDbgMsg(V, "Creating new node: ", this); 6722 return V; 6723 } 6724 6725 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 6726 SDValue Chain, int FrameIndex, 6727 int64_t Size, int64_t Offset) { 6728 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 6729 const auto VTs = getVTList(MVT::Other); 6730 SDValue Ops[2] = { 6731 Chain, 6732 getFrameIndex(FrameIndex, 6733 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 6734 true)}; 6735 6736 FoldingSetNodeID ID; 6737 AddNodeIDNode(ID, Opcode, VTs, Ops); 6738 ID.AddInteger(FrameIndex); 6739 ID.AddInteger(Size); 6740 ID.AddInteger(Offset); 6741 void *IP = nullptr; 6742 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 6743 return SDValue(E, 0); 6744 6745 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 6746 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 6747 createOperands(N, Ops); 6748 CSEMap.InsertNode(N, IP); 6749 InsertNode(N); 6750 SDValue V(N, 0); 6751 NewSDValueDbgMsg(V, "Creating new node: ", this); 6752 return V; 6753 } 6754 6755 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6756 /// MachinePointerInfo record from it. This is particularly useful because the 6757 /// code generator has many cases where it doesn't bother passing in a 6758 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6759 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6760 SelectionDAG &DAG, SDValue Ptr, 6761 int64_t Offset = 0) { 6762 // If this is FI+Offset, we can model it. 6763 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 6764 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 6765 FI->getIndex(), Offset); 6766 6767 // If this is (FI+Offset1)+Offset2, we can model it. 6768 if (Ptr.getOpcode() != ISD::ADD || 6769 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 6770 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 6771 return Info; 6772 6773 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 6774 return MachinePointerInfo::getFixedStack( 6775 DAG.getMachineFunction(), FI, 6776 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 6777 } 6778 6779 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 6780 /// MachinePointerInfo record from it. This is particularly useful because the 6781 /// code generator has many cases where it doesn't bother passing in a 6782 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 6783 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 6784 SelectionDAG &DAG, SDValue Ptr, 6785 SDValue OffsetOp) { 6786 // If the 'Offset' value isn't a constant, we can't handle this. 6787 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 6788 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 6789 if (OffsetOp.isUndef()) 6790 return InferPointerInfo(Info, DAG, Ptr); 6791 return Info; 6792 } 6793 6794 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6795 EVT VT, const SDLoc &dl, SDValue Chain, 6796 SDValue Ptr, SDValue Offset, 6797 MachinePointerInfo PtrInfo, EVT MemVT, 6798 unsigned Alignment, 6799 MachineMemOperand::Flags MMOFlags, 6800 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6801 assert(Chain.getValueType() == MVT::Other && 6802 "Invalid chain type"); 6803 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6804 Alignment = getEVTAlignment(MemVT); 6805 6806 MMOFlags |= MachineMemOperand::MOLoad; 6807 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 6808 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 6809 // clients. 6810 if (PtrInfo.V.isNull()) 6811 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 6812 6813 MachineFunction &MF = getMachineFunction(); 6814 MachineMemOperand *MMO = MF.getMachineMemOperand( 6815 PtrInfo, MMOFlags, MemVT.getStoreSize(), Alignment, AAInfo, Ranges); 6816 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 6817 } 6818 6819 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 6820 EVT VT, const SDLoc &dl, SDValue Chain, 6821 SDValue Ptr, SDValue Offset, EVT MemVT, 6822 MachineMemOperand *MMO) { 6823 if (VT == MemVT) { 6824 ExtType = ISD::NON_EXTLOAD; 6825 } else if (ExtType == ISD::NON_EXTLOAD) { 6826 assert(VT == MemVT && "Non-extending load from different memory type!"); 6827 } else { 6828 // Extending load. 6829 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 6830 "Should only be an extending load, not truncating!"); 6831 assert(VT.isInteger() == MemVT.isInteger() && 6832 "Cannot convert from FP to Int or Int -> FP!"); 6833 assert(VT.isVector() == MemVT.isVector() && 6834 "Cannot use an ext load to convert to or from a vector!"); 6835 assert((!VT.isVector() || 6836 VT.getVectorNumElements() == MemVT.getVectorNumElements()) && 6837 "Cannot use an ext load to change the number of vector elements!"); 6838 } 6839 6840 bool Indexed = AM != ISD::UNINDEXED; 6841 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 6842 6843 SDVTList VTs = Indexed ? 6844 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 6845 SDValue Ops[] = { Chain, Ptr, Offset }; 6846 FoldingSetNodeID ID; 6847 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 6848 ID.AddInteger(MemVT.getRawBits()); 6849 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 6850 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 6851 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6852 void *IP = nullptr; 6853 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6854 cast<LoadSDNode>(E)->refineAlignment(MMO); 6855 return SDValue(E, 0); 6856 } 6857 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 6858 ExtType, MemVT, MMO); 6859 createOperands(N, Ops); 6860 6861 CSEMap.InsertNode(N, IP); 6862 InsertNode(N); 6863 SDValue V(N, 0); 6864 NewSDValueDbgMsg(V, "Creating new node: ", this); 6865 return V; 6866 } 6867 6868 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6869 SDValue Ptr, MachinePointerInfo PtrInfo, 6870 unsigned Alignment, 6871 MachineMemOperand::Flags MMOFlags, 6872 const AAMDNodes &AAInfo, const MDNode *Ranges) { 6873 SDValue Undef = getUNDEF(Ptr.getValueType()); 6874 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6875 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 6876 } 6877 6878 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 6879 SDValue Ptr, MachineMemOperand *MMO) { 6880 SDValue Undef = getUNDEF(Ptr.getValueType()); 6881 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 6882 VT, MMO); 6883 } 6884 6885 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6886 EVT VT, SDValue Chain, SDValue Ptr, 6887 MachinePointerInfo PtrInfo, EVT MemVT, 6888 unsigned Alignment, 6889 MachineMemOperand::Flags MMOFlags, 6890 const AAMDNodes &AAInfo) { 6891 SDValue Undef = getUNDEF(Ptr.getValueType()); 6892 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 6893 MemVT, Alignment, MMOFlags, AAInfo); 6894 } 6895 6896 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 6897 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 6898 MachineMemOperand *MMO) { 6899 SDValue Undef = getUNDEF(Ptr.getValueType()); 6900 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 6901 MemVT, MMO); 6902 } 6903 6904 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 6905 SDValue Base, SDValue Offset, 6906 ISD::MemIndexedMode AM) { 6907 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 6908 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 6909 // Don't propagate the invariant or dereferenceable flags. 6910 auto MMOFlags = 6911 LD->getMemOperand()->getFlags() & 6912 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 6913 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 6914 LD->getChain(), Base, Offset, LD->getPointerInfo(), 6915 LD->getMemoryVT(), LD->getAlignment(), MMOFlags, 6916 LD->getAAInfo()); 6917 } 6918 6919 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6920 SDValue Ptr, MachinePointerInfo PtrInfo, 6921 unsigned Alignment, 6922 MachineMemOperand::Flags MMOFlags, 6923 const AAMDNodes &AAInfo) { 6924 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 6925 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6926 Alignment = getEVTAlignment(Val.getValueType()); 6927 6928 MMOFlags |= MachineMemOperand::MOStore; 6929 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6930 6931 if (PtrInfo.V.isNull()) 6932 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6933 6934 MachineFunction &MF = getMachineFunction(); 6935 MachineMemOperand *MMO = MF.getMachineMemOperand( 6936 PtrInfo, MMOFlags, Val.getValueType().getStoreSize(), Alignment, AAInfo); 6937 return getStore(Chain, dl, Val, Ptr, MMO); 6938 } 6939 6940 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6941 SDValue Ptr, MachineMemOperand *MMO) { 6942 assert(Chain.getValueType() == MVT::Other && 6943 "Invalid chain type"); 6944 EVT VT = Val.getValueType(); 6945 SDVTList VTs = getVTList(MVT::Other); 6946 SDValue Undef = getUNDEF(Ptr.getValueType()); 6947 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 6948 FoldingSetNodeID ID; 6949 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 6950 ID.AddInteger(VT.getRawBits()); 6951 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 6952 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 6953 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 6954 void *IP = nullptr; 6955 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 6956 cast<StoreSDNode>(E)->refineAlignment(MMO); 6957 return SDValue(E, 0); 6958 } 6959 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 6960 ISD::UNINDEXED, false, VT, MMO); 6961 createOperands(N, Ops); 6962 6963 CSEMap.InsertNode(N, IP); 6964 InsertNode(N); 6965 SDValue V(N, 0); 6966 NewSDValueDbgMsg(V, "Creating new node: ", this); 6967 return V; 6968 } 6969 6970 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6971 SDValue Ptr, MachinePointerInfo PtrInfo, 6972 EVT SVT, unsigned Alignment, 6973 MachineMemOperand::Flags MMOFlags, 6974 const AAMDNodes &AAInfo) { 6975 assert(Chain.getValueType() == MVT::Other && 6976 "Invalid chain type"); 6977 if (Alignment == 0) // Ensure that codegen never sees alignment 0 6978 Alignment = getEVTAlignment(SVT); 6979 6980 MMOFlags |= MachineMemOperand::MOStore; 6981 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 6982 6983 if (PtrInfo.V.isNull()) 6984 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 6985 6986 MachineFunction &MF = getMachineFunction(); 6987 MachineMemOperand *MMO = MF.getMachineMemOperand( 6988 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo); 6989 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 6990 } 6991 6992 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 6993 SDValue Ptr, EVT SVT, 6994 MachineMemOperand *MMO) { 6995 EVT VT = Val.getValueType(); 6996 6997 assert(Chain.getValueType() == MVT::Other && 6998 "Invalid chain type"); 6999 if (VT == SVT) 7000 return getStore(Chain, dl, Val, Ptr, MMO); 7001 7002 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 7003 "Should only be a truncating store, not extending!"); 7004 assert(VT.isInteger() == SVT.isInteger() && 7005 "Can't do FP-INT conversion!"); 7006 assert(VT.isVector() == SVT.isVector() && 7007 "Cannot use trunc store to convert to or from a vector!"); 7008 assert((!VT.isVector() || 7009 VT.getVectorNumElements() == SVT.getVectorNumElements()) && 7010 "Cannot use trunc store to change the number of vector elements!"); 7011 7012 SDVTList VTs = getVTList(MVT::Other); 7013 SDValue Undef = getUNDEF(Ptr.getValueType()); 7014 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 7015 FoldingSetNodeID ID; 7016 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7017 ID.AddInteger(SVT.getRawBits()); 7018 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 7019 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 7020 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7021 void *IP = nullptr; 7022 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7023 cast<StoreSDNode>(E)->refineAlignment(MMO); 7024 return SDValue(E, 0); 7025 } 7026 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7027 ISD::UNINDEXED, true, SVT, MMO); 7028 createOperands(N, Ops); 7029 7030 CSEMap.InsertNode(N, IP); 7031 InsertNode(N); 7032 SDValue V(N, 0); 7033 NewSDValueDbgMsg(V, "Creating new node: ", this); 7034 return V; 7035 } 7036 7037 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 7038 SDValue Base, SDValue Offset, 7039 ISD::MemIndexedMode AM) { 7040 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 7041 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 7042 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 7043 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 7044 FoldingSetNodeID ID; 7045 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 7046 ID.AddInteger(ST->getMemoryVT().getRawBits()); 7047 ID.AddInteger(ST->getRawSubclassData()); 7048 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 7049 void *IP = nullptr; 7050 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 7051 return SDValue(E, 0); 7052 7053 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7054 ST->isTruncatingStore(), ST->getMemoryVT(), 7055 ST->getMemOperand()); 7056 createOperands(N, Ops); 7057 7058 CSEMap.InsertNode(N, IP); 7059 InsertNode(N); 7060 SDValue V(N, 0); 7061 NewSDValueDbgMsg(V, "Creating new node: ", this); 7062 return V; 7063 } 7064 7065 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 7066 SDValue Base, SDValue Offset, SDValue Mask, 7067 SDValue PassThru, EVT MemVT, 7068 MachineMemOperand *MMO, 7069 ISD::MemIndexedMode AM, 7070 ISD::LoadExtType ExtTy, bool isExpanding) { 7071 bool Indexed = AM != ISD::UNINDEXED; 7072 assert((Indexed || Offset.isUndef()) && 7073 "Unindexed masked load with an offset!"); 7074 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 7075 : getVTList(VT, MVT::Other); 7076 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 7077 FoldingSetNodeID ID; 7078 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 7079 ID.AddInteger(MemVT.getRawBits()); 7080 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 7081 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 7082 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7083 void *IP = nullptr; 7084 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7085 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 7086 return SDValue(E, 0); 7087 } 7088 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 7089 AM, ExtTy, isExpanding, MemVT, MMO); 7090 createOperands(N, Ops); 7091 7092 CSEMap.InsertNode(N, IP); 7093 InsertNode(N); 7094 SDValue V(N, 0); 7095 NewSDValueDbgMsg(V, "Creating new node: ", this); 7096 return V; 7097 } 7098 7099 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 7100 SDValue Base, SDValue Offset, 7101 ISD::MemIndexedMode AM) { 7102 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 7103 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 7104 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 7105 Offset, LD->getMask(), LD->getPassThru(), 7106 LD->getMemoryVT(), LD->getMemOperand(), AM, 7107 LD->getExtensionType(), LD->isExpandingLoad()); 7108 } 7109 7110 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 7111 SDValue Val, SDValue Base, SDValue Offset, 7112 SDValue Mask, EVT MemVT, 7113 MachineMemOperand *MMO, 7114 ISD::MemIndexedMode AM, bool IsTruncating, 7115 bool IsCompressing) { 7116 assert(Chain.getValueType() == MVT::Other && 7117 "Invalid chain type"); 7118 bool Indexed = AM != ISD::UNINDEXED; 7119 assert((Indexed || Offset.isUndef()) && 7120 "Unindexed masked store with an offset!"); 7121 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 7122 : getVTList(MVT::Other); 7123 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 7124 FoldingSetNodeID ID; 7125 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 7126 ID.AddInteger(MemVT.getRawBits()); 7127 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 7128 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 7129 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7130 void *IP = nullptr; 7131 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7132 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 7133 return SDValue(E, 0); 7134 } 7135 auto *N = 7136 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 7137 IsTruncating, IsCompressing, MemVT, MMO); 7138 createOperands(N, Ops); 7139 7140 CSEMap.InsertNode(N, IP); 7141 InsertNode(N); 7142 SDValue V(N, 0); 7143 NewSDValueDbgMsg(V, "Creating new node: ", this); 7144 return V; 7145 } 7146 7147 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 7148 SDValue Base, SDValue Offset, 7149 ISD::MemIndexedMode AM) { 7150 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 7151 assert(ST->getOffset().isUndef() && 7152 "Masked store is already a indexed store!"); 7153 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 7154 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 7155 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 7156 } 7157 7158 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, 7159 ArrayRef<SDValue> Ops, 7160 MachineMemOperand *MMO, 7161 ISD::MemIndexType IndexType) { 7162 assert(Ops.size() == 6 && "Incompatible number of operands"); 7163 7164 FoldingSetNodeID ID; 7165 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 7166 ID.AddInteger(VT.getRawBits()); 7167 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 7168 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7169 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7170 void *IP = nullptr; 7171 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7172 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 7173 return SDValue(E, 0); 7174 } 7175 7176 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7177 VTs, VT, MMO, IndexType); 7178 createOperands(N, Ops); 7179 7180 assert(N->getPassThru().getValueType() == N->getValueType(0) && 7181 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 7182 assert(N->getMask().getValueType().getVectorNumElements() == 7183 N->getValueType(0).getVectorNumElements() && 7184 "Vector width mismatch between mask and data"); 7185 assert(N->getIndex().getValueType().getVectorNumElements() >= 7186 N->getValueType(0).getVectorNumElements() && 7187 "Vector width mismatch between index and data"); 7188 assert(isa<ConstantSDNode>(N->getScale()) && 7189 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7190 "Scale should be a constant power of 2"); 7191 7192 CSEMap.InsertNode(N, IP); 7193 InsertNode(N); 7194 SDValue V(N, 0); 7195 NewSDValueDbgMsg(V, "Creating new node: ", this); 7196 return V; 7197 } 7198 7199 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, 7200 ArrayRef<SDValue> Ops, 7201 MachineMemOperand *MMO, 7202 ISD::MemIndexType IndexType) { 7203 assert(Ops.size() == 6 && "Incompatible number of operands"); 7204 7205 FoldingSetNodeID ID; 7206 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 7207 ID.AddInteger(VT.getRawBits()); 7208 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 7209 dl.getIROrder(), VTs, VT, MMO, IndexType)); 7210 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 7211 void *IP = nullptr; 7212 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 7213 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 7214 return SDValue(E, 0); 7215 } 7216 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 7217 VTs, VT, MMO, IndexType); 7218 createOperands(N, Ops); 7219 7220 assert(N->getMask().getValueType().getVectorNumElements() == 7221 N->getValue().getValueType().getVectorNumElements() && 7222 "Vector width mismatch between mask and data"); 7223 assert(N->getIndex().getValueType().getVectorNumElements() >= 7224 N->getValue().getValueType().getVectorNumElements() && 7225 "Vector width mismatch between index and data"); 7226 assert(isa<ConstantSDNode>(N->getScale()) && 7227 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 7228 "Scale should be a constant power of 2"); 7229 7230 CSEMap.InsertNode(N, IP); 7231 InsertNode(N); 7232 SDValue V(N, 0); 7233 NewSDValueDbgMsg(V, "Creating new node: ", this); 7234 return V; 7235 } 7236 7237 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 7238 // select undef, T, F --> T (if T is a constant), otherwise F 7239 // select, ?, undef, F --> F 7240 // select, ?, T, undef --> T 7241 if (Cond.isUndef()) 7242 return isConstantValueOfAnyType(T) ? T : F; 7243 if (T.isUndef()) 7244 return F; 7245 if (F.isUndef()) 7246 return T; 7247 7248 // select true, T, F --> T 7249 // select false, T, F --> F 7250 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 7251 return CondC->isNullValue() ? F : T; 7252 7253 // TODO: This should simplify VSELECT with constant condition using something 7254 // like this (but check boolean contents to be complete?): 7255 // if (ISD::isBuildVectorAllOnes(Cond.getNode())) 7256 // return T; 7257 // if (ISD::isBuildVectorAllZeros(Cond.getNode())) 7258 // return F; 7259 7260 // select ?, T, T --> T 7261 if (T == F) 7262 return T; 7263 7264 return SDValue(); 7265 } 7266 7267 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 7268 // shift undef, Y --> 0 (can always assume that the undef value is 0) 7269 if (X.isUndef()) 7270 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 7271 // shift X, undef --> undef (because it may shift by the bitwidth) 7272 if (Y.isUndef()) 7273 return getUNDEF(X.getValueType()); 7274 7275 // shift 0, Y --> 0 7276 // shift X, 0 --> X 7277 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 7278 return X; 7279 7280 // shift X, C >= bitwidth(X) --> undef 7281 // All vector elements must be too big (or undef) to avoid partial undefs. 7282 auto isShiftTooBig = [X](ConstantSDNode *Val) { 7283 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 7284 }; 7285 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 7286 return getUNDEF(X.getValueType()); 7287 7288 return SDValue(); 7289 } 7290 7291 // TODO: Use fast-math-flags to enable more simplifications. 7292 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y) { 7293 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 7294 if (!YC) 7295 return SDValue(); 7296 7297 // X + -0.0 --> X 7298 if (Opcode == ISD::FADD) 7299 if (YC->getValueAPF().isNegZero()) 7300 return X; 7301 7302 // X - +0.0 --> X 7303 if (Opcode == ISD::FSUB) 7304 if (YC->getValueAPF().isPosZero()) 7305 return X; 7306 7307 // X * 1.0 --> X 7308 // X / 1.0 --> X 7309 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 7310 if (YC->getValueAPF().isExactlyValue(1.0)) 7311 return X; 7312 7313 return SDValue(); 7314 } 7315 7316 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 7317 SDValue Ptr, SDValue SV, unsigned Align) { 7318 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 7319 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 7320 } 7321 7322 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7323 ArrayRef<SDUse> Ops) { 7324 switch (Ops.size()) { 7325 case 0: return getNode(Opcode, DL, VT); 7326 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 7327 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 7328 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 7329 default: break; 7330 } 7331 7332 // Copy from an SDUse array into an SDValue array for use with 7333 // the regular getNode logic. 7334 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 7335 return getNode(Opcode, DL, VT, NewOps); 7336 } 7337 7338 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7339 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 7340 unsigned NumOps = Ops.size(); 7341 switch (NumOps) { 7342 case 0: return getNode(Opcode, DL, VT); 7343 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 7344 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 7345 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 7346 default: break; 7347 } 7348 7349 switch (Opcode) { 7350 default: break; 7351 case ISD::BUILD_VECTOR: 7352 // Attempt to simplify BUILD_VECTOR. 7353 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 7354 return V; 7355 break; 7356 case ISD::CONCAT_VECTORS: 7357 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 7358 return V; 7359 break; 7360 case ISD::SELECT_CC: 7361 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 7362 assert(Ops[0].getValueType() == Ops[1].getValueType() && 7363 "LHS and RHS of condition must have same type!"); 7364 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7365 "True and False arms of SelectCC must have same type!"); 7366 assert(Ops[2].getValueType() == VT && 7367 "select_cc node must be of same type as true and false value!"); 7368 break; 7369 case ISD::BR_CC: 7370 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 7371 assert(Ops[2].getValueType() == Ops[3].getValueType() && 7372 "LHS/RHS of comparison should match types!"); 7373 break; 7374 } 7375 7376 // Memoize nodes. 7377 SDNode *N; 7378 SDVTList VTs = getVTList(VT); 7379 7380 if (VT != MVT::Glue) { 7381 FoldingSetNodeID ID; 7382 AddNodeIDNode(ID, Opcode, VTs, Ops); 7383 void *IP = nullptr; 7384 7385 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7386 return SDValue(E, 0); 7387 7388 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7389 createOperands(N, Ops); 7390 7391 CSEMap.InsertNode(N, IP); 7392 } else { 7393 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7394 createOperands(N, Ops); 7395 } 7396 7397 InsertNode(N); 7398 SDValue V(N, 0); 7399 NewSDValueDbgMsg(V, "Creating new node: ", this); 7400 return V; 7401 } 7402 7403 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7404 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 7405 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 7406 } 7407 7408 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7409 ArrayRef<SDValue> Ops) { 7410 if (VTList.NumVTs == 1) 7411 return getNode(Opcode, DL, VTList.VTs[0], Ops); 7412 7413 switch (Opcode) { 7414 case ISD::STRICT_FP_EXTEND: 7415 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 7416 "Invalid STRICT_FP_EXTEND!"); 7417 assert(VTList.VTs[0].isFloatingPoint() && 7418 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 7419 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7420 "STRICT_FP_EXTEND result type should be vector iff the operand " 7421 "type is vector!"); 7422 assert((!VTList.VTs[0].isVector() || 7423 VTList.VTs[0].getVectorNumElements() == 7424 Ops[1].getValueType().getVectorNumElements()) && 7425 "Vector element count mismatch!"); 7426 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 7427 "Invalid fpext node, dst <= src!"); 7428 break; 7429 case ISD::STRICT_FP_ROUND: 7430 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 7431 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 7432 "STRICT_FP_ROUND result type should be vector iff the operand " 7433 "type is vector!"); 7434 assert((!VTList.VTs[0].isVector() || 7435 VTList.VTs[0].getVectorNumElements() == 7436 Ops[1].getValueType().getVectorNumElements()) && 7437 "Vector element count mismatch!"); 7438 assert(VTList.VTs[0].isFloatingPoint() && 7439 Ops[1].getValueType().isFloatingPoint() && 7440 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 7441 isa<ConstantSDNode>(Ops[2]) && 7442 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 7443 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 7444 "Invalid STRICT_FP_ROUND!"); 7445 break; 7446 #if 0 7447 // FIXME: figure out how to safely handle things like 7448 // int foo(int x) { return 1 << (x & 255); } 7449 // int bar() { return foo(256); } 7450 case ISD::SRA_PARTS: 7451 case ISD::SRL_PARTS: 7452 case ISD::SHL_PARTS: 7453 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 7454 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 7455 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7456 else if (N3.getOpcode() == ISD::AND) 7457 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 7458 // If the and is only masking out bits that cannot effect the shift, 7459 // eliminate the and. 7460 unsigned NumBits = VT.getScalarSizeInBits()*2; 7461 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 7462 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 7463 } 7464 break; 7465 #endif 7466 } 7467 7468 // Memoize the node unless it returns a flag. 7469 SDNode *N; 7470 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 7471 FoldingSetNodeID ID; 7472 AddNodeIDNode(ID, Opcode, VTList, Ops); 7473 void *IP = nullptr; 7474 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 7475 return SDValue(E, 0); 7476 7477 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7478 createOperands(N, Ops); 7479 CSEMap.InsertNode(N, IP); 7480 } else { 7481 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 7482 createOperands(N, Ops); 7483 } 7484 InsertNode(N); 7485 SDValue V(N, 0); 7486 NewSDValueDbgMsg(V, "Creating new node: ", this); 7487 return V; 7488 } 7489 7490 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 7491 SDVTList VTList) { 7492 return getNode(Opcode, DL, VTList, None); 7493 } 7494 7495 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7496 SDValue N1) { 7497 SDValue Ops[] = { N1 }; 7498 return getNode(Opcode, DL, VTList, Ops); 7499 } 7500 7501 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7502 SDValue N1, SDValue N2) { 7503 SDValue Ops[] = { N1, N2 }; 7504 return getNode(Opcode, DL, VTList, Ops); 7505 } 7506 7507 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7508 SDValue N1, SDValue N2, SDValue N3) { 7509 SDValue Ops[] = { N1, N2, N3 }; 7510 return getNode(Opcode, DL, VTList, Ops); 7511 } 7512 7513 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7514 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7515 SDValue Ops[] = { N1, N2, N3, N4 }; 7516 return getNode(Opcode, DL, VTList, Ops); 7517 } 7518 7519 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 7520 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7521 SDValue N5) { 7522 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7523 return getNode(Opcode, DL, VTList, Ops); 7524 } 7525 7526 SDVTList SelectionDAG::getVTList(EVT VT) { 7527 return makeVTList(SDNode::getValueTypeList(VT), 1); 7528 } 7529 7530 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 7531 FoldingSetNodeID ID; 7532 ID.AddInteger(2U); 7533 ID.AddInteger(VT1.getRawBits()); 7534 ID.AddInteger(VT2.getRawBits()); 7535 7536 void *IP = nullptr; 7537 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7538 if (!Result) { 7539 EVT *Array = Allocator.Allocate<EVT>(2); 7540 Array[0] = VT1; 7541 Array[1] = VT2; 7542 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 7543 VTListMap.InsertNode(Result, IP); 7544 } 7545 return Result->getSDVTList(); 7546 } 7547 7548 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 7549 FoldingSetNodeID ID; 7550 ID.AddInteger(3U); 7551 ID.AddInteger(VT1.getRawBits()); 7552 ID.AddInteger(VT2.getRawBits()); 7553 ID.AddInteger(VT3.getRawBits()); 7554 7555 void *IP = nullptr; 7556 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7557 if (!Result) { 7558 EVT *Array = Allocator.Allocate<EVT>(3); 7559 Array[0] = VT1; 7560 Array[1] = VT2; 7561 Array[2] = VT3; 7562 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 7563 VTListMap.InsertNode(Result, IP); 7564 } 7565 return Result->getSDVTList(); 7566 } 7567 7568 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 7569 FoldingSetNodeID ID; 7570 ID.AddInteger(4U); 7571 ID.AddInteger(VT1.getRawBits()); 7572 ID.AddInteger(VT2.getRawBits()); 7573 ID.AddInteger(VT3.getRawBits()); 7574 ID.AddInteger(VT4.getRawBits()); 7575 7576 void *IP = nullptr; 7577 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7578 if (!Result) { 7579 EVT *Array = Allocator.Allocate<EVT>(4); 7580 Array[0] = VT1; 7581 Array[1] = VT2; 7582 Array[2] = VT3; 7583 Array[3] = VT4; 7584 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 7585 VTListMap.InsertNode(Result, IP); 7586 } 7587 return Result->getSDVTList(); 7588 } 7589 7590 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 7591 unsigned NumVTs = VTs.size(); 7592 FoldingSetNodeID ID; 7593 ID.AddInteger(NumVTs); 7594 for (unsigned index = 0; index < NumVTs; index++) { 7595 ID.AddInteger(VTs[index].getRawBits()); 7596 } 7597 7598 void *IP = nullptr; 7599 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 7600 if (!Result) { 7601 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 7602 llvm::copy(VTs, Array); 7603 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 7604 VTListMap.InsertNode(Result, IP); 7605 } 7606 return Result->getSDVTList(); 7607 } 7608 7609 7610 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 7611 /// specified operands. If the resultant node already exists in the DAG, 7612 /// this does not modify the specified node, instead it returns the node that 7613 /// already exists. If the resultant node does not exist in the DAG, the 7614 /// input node is returned. As a degenerate case, if you specify the same 7615 /// input operands as the node already has, the input node is returned. 7616 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 7617 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 7618 7619 // Check to see if there is no change. 7620 if (Op == N->getOperand(0)) return N; 7621 7622 // See if the modified node already exists. 7623 void *InsertPos = nullptr; 7624 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 7625 return Existing; 7626 7627 // Nope it doesn't. Remove the node from its current place in the maps. 7628 if (InsertPos) 7629 if (!RemoveNodeFromCSEMaps(N)) 7630 InsertPos = nullptr; 7631 7632 // Now we update the operands. 7633 N->OperandList[0].set(Op); 7634 7635 updateDivergence(N); 7636 // If this gets put into a CSE map, add it. 7637 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7638 return N; 7639 } 7640 7641 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 7642 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 7643 7644 // Check to see if there is no change. 7645 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 7646 return N; // No operands changed, just return the input node. 7647 7648 // See if the modified node already exists. 7649 void *InsertPos = nullptr; 7650 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 7651 return Existing; 7652 7653 // Nope it doesn't. Remove the node from its current place in the maps. 7654 if (InsertPos) 7655 if (!RemoveNodeFromCSEMaps(N)) 7656 InsertPos = nullptr; 7657 7658 // Now we update the operands. 7659 if (N->OperandList[0] != Op1) 7660 N->OperandList[0].set(Op1); 7661 if (N->OperandList[1] != Op2) 7662 N->OperandList[1].set(Op2); 7663 7664 updateDivergence(N); 7665 // If this gets put into a CSE map, add it. 7666 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7667 return N; 7668 } 7669 7670 SDNode *SelectionDAG:: 7671 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 7672 SDValue Ops[] = { Op1, Op2, Op3 }; 7673 return UpdateNodeOperands(N, Ops); 7674 } 7675 7676 SDNode *SelectionDAG:: 7677 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7678 SDValue Op3, SDValue Op4) { 7679 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 7680 return UpdateNodeOperands(N, Ops); 7681 } 7682 7683 SDNode *SelectionDAG:: 7684 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 7685 SDValue Op3, SDValue Op4, SDValue Op5) { 7686 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 7687 return UpdateNodeOperands(N, Ops); 7688 } 7689 7690 SDNode *SelectionDAG:: 7691 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 7692 unsigned NumOps = Ops.size(); 7693 assert(N->getNumOperands() == NumOps && 7694 "Update with wrong number of operands"); 7695 7696 // If no operands changed just return the input node. 7697 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 7698 return N; 7699 7700 // See if the modified node already exists. 7701 void *InsertPos = nullptr; 7702 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 7703 return Existing; 7704 7705 // Nope it doesn't. Remove the node from its current place in the maps. 7706 if (InsertPos) 7707 if (!RemoveNodeFromCSEMaps(N)) 7708 InsertPos = nullptr; 7709 7710 // Now we update the operands. 7711 for (unsigned i = 0; i != NumOps; ++i) 7712 if (N->OperandList[i] != Ops[i]) 7713 N->OperandList[i].set(Ops[i]); 7714 7715 updateDivergence(N); 7716 // If this gets put into a CSE map, add it. 7717 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 7718 return N; 7719 } 7720 7721 /// DropOperands - Release the operands and set this node to have 7722 /// zero operands. 7723 void SDNode::DropOperands() { 7724 // Unlike the code in MorphNodeTo that does this, we don't need to 7725 // watch for dead nodes here. 7726 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 7727 SDUse &Use = *I++; 7728 Use.set(SDValue()); 7729 } 7730 } 7731 7732 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 7733 ArrayRef<MachineMemOperand *> NewMemRefs) { 7734 if (NewMemRefs.empty()) { 7735 N->clearMemRefs(); 7736 return; 7737 } 7738 7739 // Check if we can avoid allocating by storing a single reference directly. 7740 if (NewMemRefs.size() == 1) { 7741 N->MemRefs = NewMemRefs[0]; 7742 N->NumMemRefs = 1; 7743 return; 7744 } 7745 7746 MachineMemOperand **MemRefsBuffer = 7747 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 7748 llvm::copy(NewMemRefs, MemRefsBuffer); 7749 N->MemRefs = MemRefsBuffer; 7750 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 7751 } 7752 7753 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 7754 /// machine opcode. 7755 /// 7756 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7757 EVT VT) { 7758 SDVTList VTs = getVTList(VT); 7759 return SelectNodeTo(N, MachineOpc, VTs, None); 7760 } 7761 7762 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7763 EVT VT, SDValue Op1) { 7764 SDVTList VTs = getVTList(VT); 7765 SDValue Ops[] = { Op1 }; 7766 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7767 } 7768 7769 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7770 EVT VT, SDValue Op1, 7771 SDValue Op2) { 7772 SDVTList VTs = getVTList(VT); 7773 SDValue Ops[] = { Op1, Op2 }; 7774 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7775 } 7776 7777 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7778 EVT VT, SDValue Op1, 7779 SDValue Op2, SDValue Op3) { 7780 SDVTList VTs = getVTList(VT); 7781 SDValue Ops[] = { Op1, Op2, Op3 }; 7782 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7783 } 7784 7785 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7786 EVT VT, ArrayRef<SDValue> Ops) { 7787 SDVTList VTs = getVTList(VT); 7788 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7789 } 7790 7791 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7792 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 7793 SDVTList VTs = getVTList(VT1, VT2); 7794 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7795 } 7796 7797 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7798 EVT VT1, EVT VT2) { 7799 SDVTList VTs = getVTList(VT1, VT2); 7800 return SelectNodeTo(N, MachineOpc, VTs, None); 7801 } 7802 7803 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7804 EVT VT1, EVT VT2, EVT VT3, 7805 ArrayRef<SDValue> Ops) { 7806 SDVTList VTs = getVTList(VT1, VT2, VT3); 7807 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7808 } 7809 7810 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7811 EVT VT1, EVT VT2, 7812 SDValue Op1, SDValue Op2) { 7813 SDVTList VTs = getVTList(VT1, VT2); 7814 SDValue Ops[] = { Op1, Op2 }; 7815 return SelectNodeTo(N, MachineOpc, VTs, Ops); 7816 } 7817 7818 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 7819 SDVTList VTs,ArrayRef<SDValue> Ops) { 7820 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 7821 // Reset the NodeID to -1. 7822 New->setNodeId(-1); 7823 if (New != N) { 7824 ReplaceAllUsesWith(N, New); 7825 RemoveDeadNode(N); 7826 } 7827 return New; 7828 } 7829 7830 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 7831 /// the line number information on the merged node since it is not possible to 7832 /// preserve the information that operation is associated with multiple lines. 7833 /// This will make the debugger working better at -O0, were there is a higher 7834 /// probability having other instructions associated with that line. 7835 /// 7836 /// For IROrder, we keep the smaller of the two 7837 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 7838 DebugLoc NLoc = N->getDebugLoc(); 7839 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 7840 N->setDebugLoc(DebugLoc()); 7841 } 7842 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 7843 N->setIROrder(Order); 7844 return N; 7845 } 7846 7847 /// MorphNodeTo - This *mutates* the specified node to have the specified 7848 /// return type, opcode, and operands. 7849 /// 7850 /// Note that MorphNodeTo returns the resultant node. If there is already a 7851 /// node of the specified opcode and operands, it returns that node instead of 7852 /// the current one. Note that the SDLoc need not be the same. 7853 /// 7854 /// Using MorphNodeTo is faster than creating a new node and swapping it in 7855 /// with ReplaceAllUsesWith both because it often avoids allocating a new 7856 /// node, and because it doesn't require CSE recalculation for any of 7857 /// the node's users. 7858 /// 7859 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 7860 /// As a consequence it isn't appropriate to use from within the DAG combiner or 7861 /// the legalizer which maintain worklists that would need to be updated when 7862 /// deleting things. 7863 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 7864 SDVTList VTs, ArrayRef<SDValue> Ops) { 7865 // If an identical node already exists, use it. 7866 void *IP = nullptr; 7867 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 7868 FoldingSetNodeID ID; 7869 AddNodeIDNode(ID, Opc, VTs, Ops); 7870 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 7871 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 7872 } 7873 7874 if (!RemoveNodeFromCSEMaps(N)) 7875 IP = nullptr; 7876 7877 // Start the morphing. 7878 N->NodeType = Opc; 7879 N->ValueList = VTs.VTs; 7880 N->NumValues = VTs.NumVTs; 7881 7882 // Clear the operands list, updating used nodes to remove this from their 7883 // use list. Keep track of any operands that become dead as a result. 7884 SmallPtrSet<SDNode*, 16> DeadNodeSet; 7885 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 7886 SDUse &Use = *I++; 7887 SDNode *Used = Use.getNode(); 7888 Use.set(SDValue()); 7889 if (Used->use_empty()) 7890 DeadNodeSet.insert(Used); 7891 } 7892 7893 // For MachineNode, initialize the memory references information. 7894 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 7895 MN->clearMemRefs(); 7896 7897 // Swap for an appropriately sized array from the recycler. 7898 removeOperands(N); 7899 createOperands(N, Ops); 7900 7901 // Delete any nodes that are still dead after adding the uses for the 7902 // new operands. 7903 if (!DeadNodeSet.empty()) { 7904 SmallVector<SDNode *, 16> DeadNodes; 7905 for (SDNode *N : DeadNodeSet) 7906 if (N->use_empty()) 7907 DeadNodes.push_back(N); 7908 RemoveDeadNodes(DeadNodes); 7909 } 7910 7911 if (IP) 7912 CSEMap.InsertNode(N, IP); // Memoize the new node. 7913 return N; 7914 } 7915 7916 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 7917 unsigned OrigOpc = Node->getOpcode(); 7918 unsigned NewOpc; 7919 switch (OrigOpc) { 7920 default: 7921 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 7922 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7923 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 7924 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7925 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 7926 #include "llvm/IR/ConstrainedOps.def" 7927 } 7928 7929 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 7930 7931 // We're taking this node out of the chain, so we need to re-link things. 7932 SDValue InputChain = Node->getOperand(0); 7933 SDValue OutputChain = SDValue(Node, 1); 7934 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 7935 7936 SmallVector<SDValue, 3> Ops; 7937 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 7938 Ops.push_back(Node->getOperand(i)); 7939 7940 SDVTList VTs = getVTList(Node->getValueType(0)); 7941 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 7942 7943 // MorphNodeTo can operate in two ways: if an existing node with the 7944 // specified operands exists, it can just return it. Otherwise, it 7945 // updates the node in place to have the requested operands. 7946 if (Res == Node) { 7947 // If we updated the node in place, reset the node ID. To the isel, 7948 // this should be just like a newly allocated machine node. 7949 Res->setNodeId(-1); 7950 } else { 7951 ReplaceAllUsesWith(Node, Res); 7952 RemoveDeadNode(Node); 7953 } 7954 7955 return Res; 7956 } 7957 7958 /// getMachineNode - These are used for target selectors to create a new node 7959 /// with specified return type(s), MachineInstr opcode, and operands. 7960 /// 7961 /// Note that getMachineNode returns the resultant node. If there is already a 7962 /// node of the specified opcode and operands, it returns that node instead of 7963 /// the current one. 7964 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7965 EVT VT) { 7966 SDVTList VTs = getVTList(VT); 7967 return getMachineNode(Opcode, dl, VTs, None); 7968 } 7969 7970 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7971 EVT VT, SDValue Op1) { 7972 SDVTList VTs = getVTList(VT); 7973 SDValue Ops[] = { Op1 }; 7974 return getMachineNode(Opcode, dl, VTs, Ops); 7975 } 7976 7977 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7978 EVT VT, SDValue Op1, SDValue Op2) { 7979 SDVTList VTs = getVTList(VT); 7980 SDValue Ops[] = { Op1, Op2 }; 7981 return getMachineNode(Opcode, dl, VTs, Ops); 7982 } 7983 7984 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7985 EVT VT, SDValue Op1, SDValue Op2, 7986 SDValue Op3) { 7987 SDVTList VTs = getVTList(VT); 7988 SDValue Ops[] = { Op1, Op2, Op3 }; 7989 return getMachineNode(Opcode, dl, VTs, Ops); 7990 } 7991 7992 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7993 EVT VT, ArrayRef<SDValue> Ops) { 7994 SDVTList VTs = getVTList(VT); 7995 return getMachineNode(Opcode, dl, VTs, Ops); 7996 } 7997 7998 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 7999 EVT VT1, EVT VT2, SDValue Op1, 8000 SDValue Op2) { 8001 SDVTList VTs = getVTList(VT1, VT2); 8002 SDValue Ops[] = { Op1, Op2 }; 8003 return getMachineNode(Opcode, dl, VTs, Ops); 8004 } 8005 8006 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8007 EVT VT1, EVT VT2, SDValue Op1, 8008 SDValue Op2, SDValue Op3) { 8009 SDVTList VTs = getVTList(VT1, VT2); 8010 SDValue Ops[] = { Op1, Op2, Op3 }; 8011 return getMachineNode(Opcode, dl, VTs, Ops); 8012 } 8013 8014 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8015 EVT VT1, EVT VT2, 8016 ArrayRef<SDValue> Ops) { 8017 SDVTList VTs = getVTList(VT1, VT2); 8018 return getMachineNode(Opcode, dl, VTs, Ops); 8019 } 8020 8021 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8022 EVT VT1, EVT VT2, EVT VT3, 8023 SDValue Op1, SDValue Op2) { 8024 SDVTList VTs = getVTList(VT1, VT2, VT3); 8025 SDValue Ops[] = { Op1, Op2 }; 8026 return getMachineNode(Opcode, dl, VTs, Ops); 8027 } 8028 8029 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8030 EVT VT1, EVT VT2, EVT VT3, 8031 SDValue Op1, SDValue Op2, 8032 SDValue Op3) { 8033 SDVTList VTs = getVTList(VT1, VT2, VT3); 8034 SDValue Ops[] = { Op1, Op2, Op3 }; 8035 return getMachineNode(Opcode, dl, VTs, Ops); 8036 } 8037 8038 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8039 EVT VT1, EVT VT2, EVT VT3, 8040 ArrayRef<SDValue> Ops) { 8041 SDVTList VTs = getVTList(VT1, VT2, VT3); 8042 return getMachineNode(Opcode, dl, VTs, Ops); 8043 } 8044 8045 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 8046 ArrayRef<EVT> ResultTys, 8047 ArrayRef<SDValue> Ops) { 8048 SDVTList VTs = getVTList(ResultTys); 8049 return getMachineNode(Opcode, dl, VTs, Ops); 8050 } 8051 8052 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 8053 SDVTList VTs, 8054 ArrayRef<SDValue> Ops) { 8055 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 8056 MachineSDNode *N; 8057 void *IP = nullptr; 8058 8059 if (DoCSE) { 8060 FoldingSetNodeID ID; 8061 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 8062 IP = nullptr; 8063 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8064 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 8065 } 8066 } 8067 8068 // Allocate a new MachineSDNode. 8069 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 8070 createOperands(N, Ops); 8071 8072 if (DoCSE) 8073 CSEMap.InsertNode(N, IP); 8074 8075 InsertNode(N); 8076 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 8077 return N; 8078 } 8079 8080 /// getTargetExtractSubreg - A convenience function for creating 8081 /// TargetOpcode::EXTRACT_SUBREG nodes. 8082 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8083 SDValue Operand) { 8084 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8085 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 8086 VT, Operand, SRIdxVal); 8087 return SDValue(Subreg, 0); 8088 } 8089 8090 /// getTargetInsertSubreg - A convenience function for creating 8091 /// TargetOpcode::INSERT_SUBREG nodes. 8092 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 8093 SDValue Operand, SDValue Subreg) { 8094 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 8095 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 8096 VT, Operand, Subreg, SRIdxVal); 8097 return SDValue(Result, 0); 8098 } 8099 8100 /// getNodeIfExists - Get the specified node if it's already available, or 8101 /// else return NULL. 8102 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 8103 ArrayRef<SDValue> Ops, 8104 const SDNodeFlags Flags) { 8105 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 8106 FoldingSetNodeID ID; 8107 AddNodeIDNode(ID, Opcode, VTList, Ops); 8108 void *IP = nullptr; 8109 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 8110 E->intersectFlagsWith(Flags); 8111 return E; 8112 } 8113 } 8114 return nullptr; 8115 } 8116 8117 /// getDbgValue - Creates a SDDbgValue node. 8118 /// 8119 /// SDNode 8120 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 8121 SDNode *N, unsigned R, bool IsIndirect, 8122 const DebugLoc &DL, unsigned O) { 8123 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8124 "Expected inlined-at fields to agree"); 8125 return new (DbgInfo->getAlloc()) 8126 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O); 8127 } 8128 8129 /// Constant 8130 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 8131 DIExpression *Expr, 8132 const Value *C, 8133 const DebugLoc &DL, unsigned O) { 8134 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8135 "Expected inlined-at fields to agree"); 8136 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O); 8137 } 8138 8139 /// FrameIndex 8140 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 8141 DIExpression *Expr, unsigned FI, 8142 bool IsIndirect, 8143 const DebugLoc &DL, 8144 unsigned O) { 8145 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8146 "Expected inlined-at fields to agree"); 8147 return new (DbgInfo->getAlloc()) 8148 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX); 8149 } 8150 8151 /// VReg 8152 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, 8153 DIExpression *Expr, 8154 unsigned VReg, bool IsIndirect, 8155 const DebugLoc &DL, unsigned O) { 8156 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 8157 "Expected inlined-at fields to agree"); 8158 return new (DbgInfo->getAlloc()) 8159 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG); 8160 } 8161 8162 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 8163 unsigned OffsetInBits, unsigned SizeInBits, 8164 bool InvalidateDbg) { 8165 SDNode *FromNode = From.getNode(); 8166 SDNode *ToNode = To.getNode(); 8167 assert(FromNode && ToNode && "Can't modify dbg values"); 8168 8169 // PR35338 8170 // TODO: assert(From != To && "Redundant dbg value transfer"); 8171 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 8172 if (From == To || FromNode == ToNode) 8173 return; 8174 8175 if (!FromNode->getHasDebugValue()) 8176 return; 8177 8178 SmallVector<SDDbgValue *, 2> ClonedDVs; 8179 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 8180 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated()) 8181 continue; 8182 8183 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 8184 8185 // Just transfer the dbg value attached to From. 8186 if (Dbg->getResNo() != From.getResNo()) 8187 continue; 8188 8189 DIVariable *Var = Dbg->getVariable(); 8190 auto *Expr = Dbg->getExpression(); 8191 // If a fragment is requested, update the expression. 8192 if (SizeInBits) { 8193 // When splitting a larger (e.g., sign-extended) value whose 8194 // lower bits are described with an SDDbgValue, do not attempt 8195 // to transfer the SDDbgValue to the upper bits. 8196 if (auto FI = Expr->getFragmentInfo()) 8197 if (OffsetInBits + SizeInBits > FI->SizeInBits) 8198 continue; 8199 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 8200 SizeInBits); 8201 if (!Fragment) 8202 continue; 8203 Expr = *Fragment; 8204 } 8205 // Clone the SDDbgValue and move it to To. 8206 SDDbgValue *Clone = getDbgValue( 8207 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(), 8208 std::max(ToNode->getIROrder(), Dbg->getOrder())); 8209 ClonedDVs.push_back(Clone); 8210 8211 if (InvalidateDbg) { 8212 // Invalidate value and indicate the SDDbgValue should not be emitted. 8213 Dbg->setIsInvalidated(); 8214 Dbg->setIsEmitted(); 8215 } 8216 } 8217 8218 for (SDDbgValue *Dbg : ClonedDVs) 8219 AddDbgValue(Dbg, ToNode, false); 8220 } 8221 8222 void SelectionDAG::salvageDebugInfo(SDNode &N) { 8223 if (!N.getHasDebugValue()) 8224 return; 8225 8226 SmallVector<SDDbgValue *, 2> ClonedDVs; 8227 for (auto DV : GetDbgValues(&N)) { 8228 if (DV->isInvalidated()) 8229 continue; 8230 switch (N.getOpcode()) { 8231 default: 8232 break; 8233 case ISD::ADD: 8234 SDValue N0 = N.getOperand(0); 8235 SDValue N1 = N.getOperand(1); 8236 if (!isConstantIntBuildVectorOrConstantInt(N0) && 8237 isConstantIntBuildVectorOrConstantInt(N1)) { 8238 uint64_t Offset = N.getConstantOperandVal(1); 8239 // Rewrite an ADD constant node into a DIExpression. Since we are 8240 // performing arithmetic to compute the variable's *value* in the 8241 // DIExpression, we need to mark the expression with a 8242 // DW_OP_stack_value. 8243 auto *DIExpr = DV->getExpression(); 8244 DIExpr = 8245 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset); 8246 SDDbgValue *Clone = 8247 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(), 8248 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder()); 8249 ClonedDVs.push_back(Clone); 8250 DV->setIsInvalidated(); 8251 DV->setIsEmitted(); 8252 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 8253 N0.getNode()->dumprFull(this); 8254 dbgs() << " into " << *DIExpr << '\n'); 8255 } 8256 } 8257 } 8258 8259 for (SDDbgValue *Dbg : ClonedDVs) 8260 AddDbgValue(Dbg, Dbg->getSDNode(), false); 8261 } 8262 8263 /// Creates a SDDbgLabel node. 8264 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 8265 const DebugLoc &DL, unsigned O) { 8266 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 8267 "Expected inlined-at fields to agree"); 8268 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 8269 } 8270 8271 namespace { 8272 8273 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 8274 /// pointed to by a use iterator is deleted, increment the use iterator 8275 /// so that it doesn't dangle. 8276 /// 8277 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 8278 SDNode::use_iterator &UI; 8279 SDNode::use_iterator &UE; 8280 8281 void NodeDeleted(SDNode *N, SDNode *E) override { 8282 // Increment the iterator as needed. 8283 while (UI != UE && N == *UI) 8284 ++UI; 8285 } 8286 8287 public: 8288 RAUWUpdateListener(SelectionDAG &d, 8289 SDNode::use_iterator &ui, 8290 SDNode::use_iterator &ue) 8291 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 8292 }; 8293 8294 } // end anonymous namespace 8295 8296 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8297 /// This can cause recursive merging of nodes in the DAG. 8298 /// 8299 /// This version assumes From has a single result value. 8300 /// 8301 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 8302 SDNode *From = FromN.getNode(); 8303 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 8304 "Cannot replace with this method!"); 8305 assert(From != To.getNode() && "Cannot replace uses of with self"); 8306 8307 // Preserve Debug Values 8308 transferDbgValues(FromN, To); 8309 8310 // Iterate over all the existing uses of From. New uses will be added 8311 // to the beginning of the use list, which we avoid visiting. 8312 // This specifically avoids visiting uses of From that arise while the 8313 // replacement is happening, because any such uses would be the result 8314 // of CSE: If an existing node looks like From after one of its operands 8315 // is replaced by To, we don't want to replace of all its users with To 8316 // too. See PR3018 for more info. 8317 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8318 RAUWUpdateListener Listener(*this, UI, UE); 8319 while (UI != UE) { 8320 SDNode *User = *UI; 8321 8322 // This node is about to morph, remove its old self from the CSE maps. 8323 RemoveNodeFromCSEMaps(User); 8324 8325 // A user can appear in a use list multiple times, and when this 8326 // happens the uses are usually next to each other in the list. 8327 // To help reduce the number of CSE recomputations, process all 8328 // the uses of this user that we can find this way. 8329 do { 8330 SDUse &Use = UI.getUse(); 8331 ++UI; 8332 Use.set(To); 8333 if (To->isDivergent() != From->isDivergent()) 8334 updateDivergence(User); 8335 } while (UI != UE && *UI == User); 8336 // Now that we have modified User, add it back to the CSE maps. If it 8337 // already exists there, recursively merge the results together. 8338 AddModifiedNodeToCSEMaps(User); 8339 } 8340 8341 // If we just RAUW'd the root, take note. 8342 if (FromN == getRoot()) 8343 setRoot(To); 8344 } 8345 8346 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8347 /// This can cause recursive merging of nodes in the DAG. 8348 /// 8349 /// This version assumes that for each value of From, there is a 8350 /// corresponding value in To in the same position with the same type. 8351 /// 8352 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 8353 #ifndef NDEBUG 8354 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8355 assert((!From->hasAnyUseOfValue(i) || 8356 From->getValueType(i) == To->getValueType(i)) && 8357 "Cannot use this version of ReplaceAllUsesWith!"); 8358 #endif 8359 8360 // Handle the trivial case. 8361 if (From == To) 8362 return; 8363 8364 // Preserve Debug Info. Only do this if there's a use. 8365 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8366 if (From->hasAnyUseOfValue(i)) { 8367 assert((i < To->getNumValues()) && "Invalid To location"); 8368 transferDbgValues(SDValue(From, i), SDValue(To, i)); 8369 } 8370 8371 // Iterate over just the existing users of From. See the comments in 8372 // the ReplaceAllUsesWith above. 8373 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8374 RAUWUpdateListener Listener(*this, UI, UE); 8375 while (UI != UE) { 8376 SDNode *User = *UI; 8377 8378 // This node is about to morph, remove its old self from the CSE maps. 8379 RemoveNodeFromCSEMaps(User); 8380 8381 // A user can appear in a use list multiple times, and when this 8382 // happens the uses are usually next to each other in the list. 8383 // To help reduce the number of CSE recomputations, process all 8384 // the uses of this user that we can find this way. 8385 do { 8386 SDUse &Use = UI.getUse(); 8387 ++UI; 8388 Use.setNode(To); 8389 if (To->isDivergent() != From->isDivergent()) 8390 updateDivergence(User); 8391 } while (UI != UE && *UI == User); 8392 8393 // Now that we have modified User, add it back to the CSE maps. If it 8394 // already exists there, recursively merge the results together. 8395 AddModifiedNodeToCSEMaps(User); 8396 } 8397 8398 // If we just RAUW'd the root, take note. 8399 if (From == getRoot().getNode()) 8400 setRoot(SDValue(To, getRoot().getResNo())); 8401 } 8402 8403 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 8404 /// This can cause recursive merging of nodes in the DAG. 8405 /// 8406 /// This version can replace From with any result values. To must match the 8407 /// number and types of values returned by From. 8408 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 8409 if (From->getNumValues() == 1) // Handle the simple case efficiently. 8410 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 8411 8412 // Preserve Debug Info. 8413 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 8414 transferDbgValues(SDValue(From, i), To[i]); 8415 8416 // Iterate over just the existing users of From. See the comments in 8417 // the ReplaceAllUsesWith above. 8418 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 8419 RAUWUpdateListener Listener(*this, UI, UE); 8420 while (UI != UE) { 8421 SDNode *User = *UI; 8422 8423 // This node is about to morph, remove its old self from the CSE maps. 8424 RemoveNodeFromCSEMaps(User); 8425 8426 // A user can appear in a use list multiple times, and when this happens the 8427 // uses are usually next to each other in the list. To help reduce the 8428 // number of CSE and divergence recomputations, process all the uses of this 8429 // user that we can find this way. 8430 bool To_IsDivergent = false; 8431 do { 8432 SDUse &Use = UI.getUse(); 8433 const SDValue &ToOp = To[Use.getResNo()]; 8434 ++UI; 8435 Use.set(ToOp); 8436 To_IsDivergent |= ToOp->isDivergent(); 8437 } while (UI != UE && *UI == User); 8438 8439 if (To_IsDivergent != From->isDivergent()) 8440 updateDivergence(User); 8441 8442 // Now that we have modified User, add it back to the CSE maps. If it 8443 // already exists there, recursively merge the results together. 8444 AddModifiedNodeToCSEMaps(User); 8445 } 8446 8447 // If we just RAUW'd the root, take note. 8448 if (From == getRoot().getNode()) 8449 setRoot(SDValue(To[getRoot().getResNo()])); 8450 } 8451 8452 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 8453 /// uses of other values produced by From.getNode() alone. The Deleted 8454 /// vector is handled the same way as for ReplaceAllUsesWith. 8455 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 8456 // Handle the really simple, really trivial case efficiently. 8457 if (From == To) return; 8458 8459 // Handle the simple, trivial, case efficiently. 8460 if (From.getNode()->getNumValues() == 1) { 8461 ReplaceAllUsesWith(From, To); 8462 return; 8463 } 8464 8465 // Preserve Debug Info. 8466 transferDbgValues(From, To); 8467 8468 // Iterate over just the existing users of From. See the comments in 8469 // the ReplaceAllUsesWith above. 8470 SDNode::use_iterator UI = From.getNode()->use_begin(), 8471 UE = From.getNode()->use_end(); 8472 RAUWUpdateListener Listener(*this, UI, UE); 8473 while (UI != UE) { 8474 SDNode *User = *UI; 8475 bool UserRemovedFromCSEMaps = false; 8476 8477 // A user can appear in a use list multiple times, and when this 8478 // happens the uses are usually next to each other in the list. 8479 // To help reduce the number of CSE recomputations, process all 8480 // the uses of this user that we can find this way. 8481 do { 8482 SDUse &Use = UI.getUse(); 8483 8484 // Skip uses of different values from the same node. 8485 if (Use.getResNo() != From.getResNo()) { 8486 ++UI; 8487 continue; 8488 } 8489 8490 // If this node hasn't been modified yet, it's still in the CSE maps, 8491 // so remove its old self from the CSE maps. 8492 if (!UserRemovedFromCSEMaps) { 8493 RemoveNodeFromCSEMaps(User); 8494 UserRemovedFromCSEMaps = true; 8495 } 8496 8497 ++UI; 8498 Use.set(To); 8499 if (To->isDivergent() != From->isDivergent()) 8500 updateDivergence(User); 8501 } while (UI != UE && *UI == User); 8502 // We are iterating over all uses of the From node, so if a use 8503 // doesn't use the specific value, no changes are made. 8504 if (!UserRemovedFromCSEMaps) 8505 continue; 8506 8507 // Now that we have modified User, add it back to the CSE maps. If it 8508 // already exists there, recursively merge the results together. 8509 AddModifiedNodeToCSEMaps(User); 8510 } 8511 8512 // If we just RAUW'd the root, take note. 8513 if (From == getRoot()) 8514 setRoot(To); 8515 } 8516 8517 namespace { 8518 8519 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 8520 /// to record information about a use. 8521 struct UseMemo { 8522 SDNode *User; 8523 unsigned Index; 8524 SDUse *Use; 8525 }; 8526 8527 /// operator< - Sort Memos by User. 8528 bool operator<(const UseMemo &L, const UseMemo &R) { 8529 return (intptr_t)L.User < (intptr_t)R.User; 8530 } 8531 8532 } // end anonymous namespace 8533 8534 void SelectionDAG::updateDivergence(SDNode * N) 8535 { 8536 if (TLI->isSDNodeAlwaysUniform(N)) 8537 return; 8538 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA); 8539 for (auto &Op : N->ops()) { 8540 if (Op.Val.getValueType() != MVT::Other) 8541 IsDivergent |= Op.getNode()->isDivergent(); 8542 } 8543 if (N->SDNodeBits.IsDivergent != IsDivergent) { 8544 N->SDNodeBits.IsDivergent = IsDivergent; 8545 for (auto U : N->uses()) { 8546 updateDivergence(U); 8547 } 8548 } 8549 } 8550 8551 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 8552 DenseMap<SDNode *, unsigned> Degree; 8553 Order.reserve(AllNodes.size()); 8554 for (auto &N : allnodes()) { 8555 unsigned NOps = N.getNumOperands(); 8556 Degree[&N] = NOps; 8557 if (0 == NOps) 8558 Order.push_back(&N); 8559 } 8560 for (size_t I = 0; I != Order.size(); ++I) { 8561 SDNode *N = Order[I]; 8562 for (auto U : N->uses()) { 8563 unsigned &UnsortedOps = Degree[U]; 8564 if (0 == --UnsortedOps) 8565 Order.push_back(U); 8566 } 8567 } 8568 } 8569 8570 #ifndef NDEBUG 8571 void SelectionDAG::VerifyDAGDiverence() { 8572 std::vector<SDNode *> TopoOrder; 8573 CreateTopologicalOrder(TopoOrder); 8574 const TargetLowering &TLI = getTargetLoweringInfo(); 8575 DenseMap<const SDNode *, bool> DivergenceMap; 8576 for (auto &N : allnodes()) { 8577 DivergenceMap[&N] = false; 8578 } 8579 for (auto N : TopoOrder) { 8580 bool IsDivergent = DivergenceMap[N]; 8581 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA); 8582 for (auto &Op : N->ops()) { 8583 if (Op.Val.getValueType() != MVT::Other) 8584 IsSDNodeDivergent |= DivergenceMap[Op.getNode()]; 8585 } 8586 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) { 8587 DivergenceMap[N] = true; 8588 } 8589 } 8590 for (auto &N : allnodes()) { 8591 (void)N; 8592 assert(DivergenceMap[&N] == N.isDivergent() && 8593 "Divergence bit inconsistency detected\n"); 8594 } 8595 } 8596 #endif 8597 8598 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 8599 /// uses of other values produced by From.getNode() alone. The same value 8600 /// may appear in both the From and To list. The Deleted vector is 8601 /// handled the same way as for ReplaceAllUsesWith. 8602 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 8603 const SDValue *To, 8604 unsigned Num){ 8605 // Handle the simple, trivial case efficiently. 8606 if (Num == 1) 8607 return ReplaceAllUsesOfValueWith(*From, *To); 8608 8609 transferDbgValues(*From, *To); 8610 8611 // Read up all the uses and make records of them. This helps 8612 // processing new uses that are introduced during the 8613 // replacement process. 8614 SmallVector<UseMemo, 4> Uses; 8615 for (unsigned i = 0; i != Num; ++i) { 8616 unsigned FromResNo = From[i].getResNo(); 8617 SDNode *FromNode = From[i].getNode(); 8618 for (SDNode::use_iterator UI = FromNode->use_begin(), 8619 E = FromNode->use_end(); UI != E; ++UI) { 8620 SDUse &Use = UI.getUse(); 8621 if (Use.getResNo() == FromResNo) { 8622 UseMemo Memo = { *UI, i, &Use }; 8623 Uses.push_back(Memo); 8624 } 8625 } 8626 } 8627 8628 // Sort the uses, so that all the uses from a given User are together. 8629 llvm::sort(Uses); 8630 8631 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 8632 UseIndex != UseIndexEnd; ) { 8633 // We know that this user uses some value of From. If it is the right 8634 // value, update it. 8635 SDNode *User = Uses[UseIndex].User; 8636 8637 // This node is about to morph, remove its old self from the CSE maps. 8638 RemoveNodeFromCSEMaps(User); 8639 8640 // The Uses array is sorted, so all the uses for a given User 8641 // are next to each other in the list. 8642 // To help reduce the number of CSE recomputations, process all 8643 // the uses of this user that we can find this way. 8644 do { 8645 unsigned i = Uses[UseIndex].Index; 8646 SDUse &Use = *Uses[UseIndex].Use; 8647 ++UseIndex; 8648 8649 Use.set(To[i]); 8650 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 8651 8652 // Now that we have modified User, add it back to the CSE maps. If it 8653 // already exists there, recursively merge the results together. 8654 AddModifiedNodeToCSEMaps(User); 8655 } 8656 } 8657 8658 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 8659 /// based on their topological order. It returns the maximum id and a vector 8660 /// of the SDNodes* in assigned order by reference. 8661 unsigned SelectionDAG::AssignTopologicalOrder() { 8662 unsigned DAGSize = 0; 8663 8664 // SortedPos tracks the progress of the algorithm. Nodes before it are 8665 // sorted, nodes after it are unsorted. When the algorithm completes 8666 // it is at the end of the list. 8667 allnodes_iterator SortedPos = allnodes_begin(); 8668 8669 // Visit all the nodes. Move nodes with no operands to the front of 8670 // the list immediately. Annotate nodes that do have operands with their 8671 // operand count. Before we do this, the Node Id fields of the nodes 8672 // may contain arbitrary values. After, the Node Id fields for nodes 8673 // before SortedPos will contain the topological sort index, and the 8674 // Node Id fields for nodes At SortedPos and after will contain the 8675 // count of outstanding operands. 8676 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { 8677 SDNode *N = &*I++; 8678 checkForCycles(N, this); 8679 unsigned Degree = N->getNumOperands(); 8680 if (Degree == 0) { 8681 // A node with no uses, add it to the result array immediately. 8682 N->setNodeId(DAGSize++); 8683 allnodes_iterator Q(N); 8684 if (Q != SortedPos) 8685 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 8686 assert(SortedPos != AllNodes.end() && "Overran node list"); 8687 ++SortedPos; 8688 } else { 8689 // Temporarily use the Node Id as scratch space for the degree count. 8690 N->setNodeId(Degree); 8691 } 8692 } 8693 8694 // Visit all the nodes. As we iterate, move nodes into sorted order, 8695 // such that by the time the end is reached all nodes will be sorted. 8696 for (SDNode &Node : allnodes()) { 8697 SDNode *N = &Node; 8698 checkForCycles(N, this); 8699 // N is in sorted position, so all its uses have one less operand 8700 // that needs to be sorted. 8701 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 8702 UI != UE; ++UI) { 8703 SDNode *P = *UI; 8704 unsigned Degree = P->getNodeId(); 8705 assert(Degree != 0 && "Invalid node degree"); 8706 --Degree; 8707 if (Degree == 0) { 8708 // All of P's operands are sorted, so P may sorted now. 8709 P->setNodeId(DAGSize++); 8710 if (P->getIterator() != SortedPos) 8711 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 8712 assert(SortedPos != AllNodes.end() && "Overran node list"); 8713 ++SortedPos; 8714 } else { 8715 // Update P's outstanding operand count. 8716 P->setNodeId(Degree); 8717 } 8718 } 8719 if (Node.getIterator() == SortedPos) { 8720 #ifndef NDEBUG 8721 allnodes_iterator I(N); 8722 SDNode *S = &*++I; 8723 dbgs() << "Overran sorted position:\n"; 8724 S->dumprFull(this); dbgs() << "\n"; 8725 dbgs() << "Checking if this is due to cycles\n"; 8726 checkForCycles(this, true); 8727 #endif 8728 llvm_unreachable(nullptr); 8729 } 8730 } 8731 8732 assert(SortedPos == AllNodes.end() && 8733 "Topological sort incomplete!"); 8734 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 8735 "First node in topological sort is not the entry token!"); 8736 assert(AllNodes.front().getNodeId() == 0 && 8737 "First node in topological sort has non-zero id!"); 8738 assert(AllNodes.front().getNumOperands() == 0 && 8739 "First node in topological sort has operands!"); 8740 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 8741 "Last node in topologic sort has unexpected id!"); 8742 assert(AllNodes.back().use_empty() && 8743 "Last node in topologic sort has users!"); 8744 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 8745 return DAGSize; 8746 } 8747 8748 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 8749 /// value is produced by SD. 8750 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { 8751 if (SD) { 8752 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 8753 SD->setHasDebugValue(true); 8754 } 8755 DbgInfo->add(DB, SD, isParameter); 8756 } 8757 8758 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { 8759 DbgInfo->add(DB); 8760 } 8761 8762 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 8763 SDValue NewMemOp) { 8764 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 8765 // The new memory operation must have the same position as the old load in 8766 // terms of memory dependency. Create a TokenFactor for the old load and new 8767 // memory operation and update uses of the old load's output chain to use that 8768 // TokenFactor. 8769 SDValue OldChain = SDValue(OldLoad, 1); 8770 SDValue NewChain = SDValue(NewMemOp.getNode(), 1); 8771 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1)) 8772 return NewChain; 8773 8774 SDValue TokenFactor = 8775 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain); 8776 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 8777 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain); 8778 return TokenFactor; 8779 } 8780 8781 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 8782 Function **OutFunction) { 8783 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 8784 8785 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 8786 auto *Module = MF->getFunction().getParent(); 8787 auto *Function = Module->getFunction(Symbol); 8788 8789 if (OutFunction != nullptr) 8790 *OutFunction = Function; 8791 8792 if (Function != nullptr) { 8793 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 8794 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 8795 } 8796 8797 std::string ErrorStr; 8798 raw_string_ostream ErrorFormatter(ErrorStr); 8799 8800 ErrorFormatter << "Undefined external symbol "; 8801 ErrorFormatter << '"' << Symbol << '"'; 8802 ErrorFormatter.flush(); 8803 8804 report_fatal_error(ErrorStr); 8805 } 8806 8807 //===----------------------------------------------------------------------===// 8808 // SDNode Class 8809 //===----------------------------------------------------------------------===// 8810 8811 bool llvm::isNullConstant(SDValue V) { 8812 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8813 return Const != nullptr && Const->isNullValue(); 8814 } 8815 8816 bool llvm::isNullFPConstant(SDValue V) { 8817 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 8818 return Const != nullptr && Const->isZero() && !Const->isNegative(); 8819 } 8820 8821 bool llvm::isAllOnesConstant(SDValue V) { 8822 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8823 return Const != nullptr && Const->isAllOnesValue(); 8824 } 8825 8826 bool llvm::isOneConstant(SDValue V) { 8827 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 8828 return Const != nullptr && Const->isOne(); 8829 } 8830 8831 SDValue llvm::peekThroughBitcasts(SDValue V) { 8832 while (V.getOpcode() == ISD::BITCAST) 8833 V = V.getOperand(0); 8834 return V; 8835 } 8836 8837 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 8838 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 8839 V = V.getOperand(0); 8840 return V; 8841 } 8842 8843 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 8844 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 8845 V = V.getOperand(0); 8846 return V; 8847 } 8848 8849 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 8850 if (V.getOpcode() != ISD::XOR) 8851 return false; 8852 V = peekThroughBitcasts(V.getOperand(1)); 8853 unsigned NumBits = V.getScalarValueSizeInBits(); 8854 ConstantSDNode *C = 8855 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 8856 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits); 8857 } 8858 8859 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 8860 bool AllowTruncation) { 8861 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8862 return CN; 8863 8864 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8865 BitVector UndefElements; 8866 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements); 8867 8868 // BuildVectors can truncate their operands. Ignore that case here unless 8869 // AllowTruncation is set. 8870 if (CN && (UndefElements.none() || AllowUndefs)) { 8871 EVT CVT = CN->getValueType(0); 8872 EVT NSVT = N.getValueType().getScalarType(); 8873 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8874 if (AllowTruncation || (CVT == NSVT)) 8875 return CN; 8876 } 8877 } 8878 8879 return nullptr; 8880 } 8881 8882 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 8883 bool AllowUndefs, 8884 bool AllowTruncation) { 8885 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 8886 return CN; 8887 8888 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8889 BitVector UndefElements; 8890 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 8891 8892 // BuildVectors can truncate their operands. Ignore that case here unless 8893 // AllowTruncation is set. 8894 if (CN && (UndefElements.none() || AllowUndefs)) { 8895 EVT CVT = CN->getValueType(0); 8896 EVT NSVT = N.getValueType().getScalarType(); 8897 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 8898 if (AllowTruncation || (CVT == NSVT)) 8899 return CN; 8900 } 8901 } 8902 8903 return nullptr; 8904 } 8905 8906 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 8907 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8908 return CN; 8909 8910 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8911 BitVector UndefElements; 8912 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements); 8913 if (CN && (UndefElements.none() || AllowUndefs)) 8914 return CN; 8915 } 8916 8917 return nullptr; 8918 } 8919 8920 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 8921 const APInt &DemandedElts, 8922 bool AllowUndefs) { 8923 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 8924 return CN; 8925 8926 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 8927 BitVector UndefElements; 8928 ConstantFPSDNode *CN = 8929 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 8930 if (CN && (UndefElements.none() || AllowUndefs)) 8931 return CN; 8932 } 8933 8934 return nullptr; 8935 } 8936 8937 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 8938 // TODO: may want to use peekThroughBitcast() here. 8939 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 8940 return C && C->isNullValue(); 8941 } 8942 8943 bool llvm::isOneOrOneSplat(SDValue N) { 8944 // TODO: may want to use peekThroughBitcast() here. 8945 unsigned BitWidth = N.getScalarValueSizeInBits(); 8946 ConstantSDNode *C = isConstOrConstSplat(N); 8947 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth; 8948 } 8949 8950 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) { 8951 N = peekThroughBitcasts(N); 8952 unsigned BitWidth = N.getScalarValueSizeInBits(); 8953 ConstantSDNode *C = isConstOrConstSplat(N); 8954 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth; 8955 } 8956 8957 HandleSDNode::~HandleSDNode() { 8958 DropOperands(); 8959 } 8960 8961 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 8962 const DebugLoc &DL, 8963 const GlobalValue *GA, EVT VT, 8964 int64_t o, unsigned TF) 8965 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 8966 TheGlobal = GA; 8967 } 8968 8969 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 8970 EVT VT, unsigned SrcAS, 8971 unsigned DestAS) 8972 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 8973 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 8974 8975 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 8976 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 8977 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 8978 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 8979 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 8980 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 8981 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 8982 8983 // We check here that the size of the memory operand fits within the size of 8984 // the MMO. This is because the MMO might indicate only a possible address 8985 // range instead of specifying the affected memory addresses precisely. 8986 // TODO: Make MachineMemOperands aware of scalable vectors. 8987 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() && 8988 "Size mismatch!"); 8989 } 8990 8991 /// Profile - Gather unique data for the node. 8992 /// 8993 void SDNode::Profile(FoldingSetNodeID &ID) const { 8994 AddNodeIDNode(ID, this); 8995 } 8996 8997 namespace { 8998 8999 struct EVTArray { 9000 std::vector<EVT> VTs; 9001 9002 EVTArray() { 9003 VTs.reserve(MVT::LAST_VALUETYPE); 9004 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) 9005 VTs.push_back(MVT((MVT::SimpleValueType)i)); 9006 } 9007 }; 9008 9009 } // end anonymous namespace 9010 9011 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs; 9012 static ManagedStatic<EVTArray> SimpleVTArray; 9013 static ManagedStatic<sys::SmartMutex<true>> VTMutex; 9014 9015 /// getValueTypeList - Return a pointer to the specified value type. 9016 /// 9017 const EVT *SDNode::getValueTypeList(EVT VT) { 9018 if (VT.isExtended()) { 9019 sys::SmartScopedLock<true> Lock(*VTMutex); 9020 return &(*EVTs->insert(VT).first); 9021 } else { 9022 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && 9023 "Value type out of range!"); 9024 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; 9025 } 9026 } 9027 9028 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 9029 /// indicated value. This method ignores uses of other values defined by this 9030 /// operation. 9031 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 9032 assert(Value < getNumValues() && "Bad value!"); 9033 9034 // TODO: Only iterate over uses of a given value of the node 9035 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 9036 if (UI.getUse().getResNo() == Value) { 9037 if (NUses == 0) 9038 return false; 9039 --NUses; 9040 } 9041 } 9042 9043 // Found exactly the right number of uses? 9044 return NUses == 0; 9045 } 9046 9047 /// hasAnyUseOfValue - Return true if there are any use of the indicated 9048 /// value. This method ignores uses of other values defined by this operation. 9049 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 9050 assert(Value < getNumValues() && "Bad value!"); 9051 9052 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 9053 if (UI.getUse().getResNo() == Value) 9054 return true; 9055 9056 return false; 9057 } 9058 9059 /// isOnlyUserOf - Return true if this node is the only use of N. 9060 bool SDNode::isOnlyUserOf(const SDNode *N) const { 9061 bool Seen = false; 9062 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9063 SDNode *User = *I; 9064 if (User == this) 9065 Seen = true; 9066 else 9067 return false; 9068 } 9069 9070 return Seen; 9071 } 9072 9073 /// Return true if the only users of N are contained in Nodes. 9074 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 9075 bool Seen = false; 9076 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 9077 SDNode *User = *I; 9078 if (llvm::any_of(Nodes, 9079 [&User](const SDNode *Node) { return User == Node; })) 9080 Seen = true; 9081 else 9082 return false; 9083 } 9084 9085 return Seen; 9086 } 9087 9088 /// isOperand - Return true if this node is an operand of N. 9089 bool SDValue::isOperandOf(const SDNode *N) const { 9090 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; }); 9091 } 9092 9093 bool SDNode::isOperandOf(const SDNode *N) const { 9094 return any_of(N->op_values(), 9095 [this](SDValue Op) { return this == Op.getNode(); }); 9096 } 9097 9098 /// reachesChainWithoutSideEffects - Return true if this operand (which must 9099 /// be a chain) reaches the specified operand without crossing any 9100 /// side-effecting instructions on any chain path. In practice, this looks 9101 /// through token factors and non-volatile loads. In order to remain efficient, 9102 /// this only looks a couple of nodes in, it does not do an exhaustive search. 9103 /// 9104 /// Note that we only need to examine chains when we're searching for 9105 /// side-effects; SelectionDAG requires that all side-effects are represented 9106 /// by chains, even if another operand would force a specific ordering. This 9107 /// constraint is necessary to allow transformations like splitting loads. 9108 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 9109 unsigned Depth) const { 9110 if (*this == Dest) return true; 9111 9112 // Don't search too deeply, we just want to be able to see through 9113 // TokenFactor's etc. 9114 if (Depth == 0) return false; 9115 9116 // If this is a token factor, all inputs to the TF happen in parallel. 9117 if (getOpcode() == ISD::TokenFactor) { 9118 // First, try a shallow search. 9119 if (is_contained((*this)->ops(), Dest)) { 9120 // We found the chain we want as an operand of this TokenFactor. 9121 // Essentially, we reach the chain without side-effects if we could 9122 // serialize the TokenFactor into a simple chain of operations with 9123 // Dest as the last operation. This is automatically true if the 9124 // chain has one use: there are no other ordering constraints. 9125 // If the chain has more than one use, we give up: some other 9126 // use of Dest might force a side-effect between Dest and the current 9127 // node. 9128 if (Dest.hasOneUse()) 9129 return true; 9130 } 9131 // Next, try a deep search: check whether every operand of the TokenFactor 9132 // reaches Dest. 9133 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 9134 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 9135 }); 9136 } 9137 9138 // Loads don't have side effects, look through them. 9139 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 9140 if (Ld->isUnordered()) 9141 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 9142 } 9143 return false; 9144 } 9145 9146 bool SDNode::hasPredecessor(const SDNode *N) const { 9147 SmallPtrSet<const SDNode *, 32> Visited; 9148 SmallVector<const SDNode *, 16> Worklist; 9149 Worklist.push_back(this); 9150 return hasPredecessorHelper(N, Visited, Worklist); 9151 } 9152 9153 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 9154 this->Flags.intersectWith(Flags); 9155 } 9156 9157 SDValue 9158 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 9159 ArrayRef<ISD::NodeType> CandidateBinOps, 9160 bool AllowPartials) { 9161 // The pattern must end in an extract from index 0. 9162 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 9163 !isNullConstant(Extract->getOperand(1))) 9164 return SDValue(); 9165 9166 // Match against one of the candidate binary ops. 9167 SDValue Op = Extract->getOperand(0); 9168 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 9169 return Op.getOpcode() == unsigned(BinOp); 9170 })) 9171 return SDValue(); 9172 9173 // Floating-point reductions may require relaxed constraints on the final step 9174 // of the reduction because they may reorder intermediate operations. 9175 unsigned CandidateBinOp = Op.getOpcode(); 9176 if (Op.getValueType().isFloatingPoint()) { 9177 SDNodeFlags Flags = Op->getFlags(); 9178 switch (CandidateBinOp) { 9179 case ISD::FADD: 9180 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 9181 return SDValue(); 9182 break; 9183 default: 9184 llvm_unreachable("Unhandled FP opcode for binop reduction"); 9185 } 9186 } 9187 9188 // Matching failed - attempt to see if we did enough stages that a partial 9189 // reduction from a subvector is possible. 9190 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 9191 if (!AllowPartials || !Op) 9192 return SDValue(); 9193 EVT OpVT = Op.getValueType(); 9194 EVT OpSVT = OpVT.getScalarType(); 9195 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 9196 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 9197 return SDValue(); 9198 BinOp = (ISD::NodeType)CandidateBinOp; 9199 return getNode( 9200 ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 9201 getConstant(0, SDLoc(Op), TLI->getVectorIdxTy(getDataLayout()))); 9202 }; 9203 9204 // At each stage, we're looking for something that looks like: 9205 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 9206 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 9207 // i32 undef, i32 undef, i32 undef, i32 undef> 9208 // %a = binop <8 x i32> %op, %s 9209 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 9210 // we expect something like: 9211 // <4,5,6,7,u,u,u,u> 9212 // <2,3,u,u,u,u,u,u> 9213 // <1,u,u,u,u,u,u,u> 9214 // While a partial reduction match would be: 9215 // <2,3,u,u,u,u,u,u> 9216 // <1,u,u,u,u,u,u,u> 9217 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 9218 SDValue PrevOp; 9219 for (unsigned i = 0; i < Stages; ++i) { 9220 unsigned MaskEnd = (1 << i); 9221 9222 if (Op.getOpcode() != CandidateBinOp) 9223 return PartialReduction(PrevOp, MaskEnd); 9224 9225 SDValue Op0 = Op.getOperand(0); 9226 SDValue Op1 = Op.getOperand(1); 9227 9228 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 9229 if (Shuffle) { 9230 Op = Op1; 9231 } else { 9232 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 9233 Op = Op0; 9234 } 9235 9236 // The first operand of the shuffle should be the same as the other operand 9237 // of the binop. 9238 if (!Shuffle || Shuffle->getOperand(0) != Op) 9239 return PartialReduction(PrevOp, MaskEnd); 9240 9241 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 9242 for (int Index = 0; Index < (int)MaskEnd; ++Index) 9243 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 9244 return PartialReduction(PrevOp, MaskEnd); 9245 9246 PrevOp = Op; 9247 } 9248 9249 BinOp = (ISD::NodeType)CandidateBinOp; 9250 return Op; 9251 } 9252 9253 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 9254 assert(N->getNumValues() == 1 && 9255 "Can't unroll a vector with multiple results!"); 9256 9257 EVT VT = N->getValueType(0); 9258 unsigned NE = VT.getVectorNumElements(); 9259 EVT EltVT = VT.getVectorElementType(); 9260 SDLoc dl(N); 9261 9262 SmallVector<SDValue, 8> Scalars; 9263 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 9264 9265 // If ResNE is 0, fully unroll the vector op. 9266 if (ResNE == 0) 9267 ResNE = NE; 9268 else if (NE > ResNE) 9269 NE = ResNE; 9270 9271 unsigned i; 9272 for (i= 0; i != NE; ++i) { 9273 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 9274 SDValue Operand = N->getOperand(j); 9275 EVT OperandVT = Operand.getValueType(); 9276 if (OperandVT.isVector()) { 9277 // A vector operand; extract a single element. 9278 EVT OperandEltVT = OperandVT.getVectorElementType(); 9279 Operands[j] = 9280 getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, Operand, 9281 getConstant(i, dl, TLI->getVectorIdxTy(getDataLayout()))); 9282 } else { 9283 // A scalar operand; just use it as is. 9284 Operands[j] = Operand; 9285 } 9286 } 9287 9288 switch (N->getOpcode()) { 9289 default: { 9290 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 9291 N->getFlags())); 9292 break; 9293 } 9294 case ISD::VSELECT: 9295 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 9296 break; 9297 case ISD::SHL: 9298 case ISD::SRA: 9299 case ISD::SRL: 9300 case ISD::ROTL: 9301 case ISD::ROTR: 9302 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 9303 getShiftAmountOperand(Operands[0].getValueType(), 9304 Operands[1]))); 9305 break; 9306 case ISD::SIGN_EXTEND_INREG: { 9307 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 9308 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 9309 Operands[0], 9310 getValueType(ExtVT))); 9311 } 9312 } 9313 } 9314 9315 for (; i < ResNE; ++i) 9316 Scalars.push_back(getUNDEF(EltVT)); 9317 9318 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 9319 return getBuildVector(VecVT, dl, Scalars); 9320 } 9321 9322 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 9323 SDNode *N, unsigned ResNE) { 9324 unsigned Opcode = N->getOpcode(); 9325 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 9326 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 9327 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 9328 "Expected an overflow opcode"); 9329 9330 EVT ResVT = N->getValueType(0); 9331 EVT OvVT = N->getValueType(1); 9332 EVT ResEltVT = ResVT.getVectorElementType(); 9333 EVT OvEltVT = OvVT.getVectorElementType(); 9334 SDLoc dl(N); 9335 9336 // If ResNE is 0, fully unroll the vector op. 9337 unsigned NE = ResVT.getVectorNumElements(); 9338 if (ResNE == 0) 9339 ResNE = NE; 9340 else if (NE > ResNE) 9341 NE = ResNE; 9342 9343 SmallVector<SDValue, 8> LHSScalars; 9344 SmallVector<SDValue, 8> RHSScalars; 9345 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 9346 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 9347 9348 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 9349 SDVTList VTs = getVTList(ResEltVT, SVT); 9350 SmallVector<SDValue, 8> ResScalars; 9351 SmallVector<SDValue, 8> OvScalars; 9352 for (unsigned i = 0; i < NE; ++i) { 9353 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 9354 SDValue Ov = 9355 getSelect(dl, OvEltVT, Res.getValue(1), 9356 getBoolConstant(true, dl, OvEltVT, ResVT), 9357 getConstant(0, dl, OvEltVT)); 9358 9359 ResScalars.push_back(Res); 9360 OvScalars.push_back(Ov); 9361 } 9362 9363 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 9364 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 9365 9366 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 9367 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 9368 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 9369 getBuildVector(NewOvVT, dl, OvScalars)); 9370 } 9371 9372 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 9373 LoadSDNode *Base, 9374 unsigned Bytes, 9375 int Dist) const { 9376 if (LD->isVolatile() || Base->isVolatile()) 9377 return false; 9378 // TODO: probably too restrictive for atomics, revisit 9379 if (!LD->isSimple()) 9380 return false; 9381 if (LD->isIndexed() || Base->isIndexed()) 9382 return false; 9383 if (LD->getChain() != Base->getChain()) 9384 return false; 9385 EVT VT = LD->getValueType(0); 9386 if (VT.getSizeInBits() / 8 != Bytes) 9387 return false; 9388 9389 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 9390 auto LocDecomp = BaseIndexOffset::match(LD, *this); 9391 9392 int64_t Offset = 0; 9393 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 9394 return (Dist * Bytes == Offset); 9395 return false; 9396 } 9397 9398 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if 9399 /// it cannot be inferred. 9400 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { 9401 // If this is a GlobalAddress + cst, return the alignment. 9402 const GlobalValue *GV = nullptr; 9403 int64_t GVOffset = 0; 9404 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 9405 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 9406 KnownBits Known(PtrWidth); 9407 llvm::computeKnownBits(GV, Known, getDataLayout()); 9408 unsigned AlignBits = Known.countMinTrailingZeros(); 9409 unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; 9410 if (Align) 9411 return MinAlign(Align, GVOffset); 9412 } 9413 9414 // If this is a direct reference to a stack slot, use information about the 9415 // stack slot's alignment. 9416 int FrameIdx = INT_MIN; 9417 int64_t FrameOffset = 0; 9418 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 9419 FrameIdx = FI->getIndex(); 9420 } else if (isBaseWithConstantOffset(Ptr) && 9421 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 9422 // Handle FI+Cst 9423 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 9424 FrameOffset = Ptr.getConstantOperandVal(1); 9425 } 9426 9427 if (FrameIdx != INT_MIN) { 9428 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 9429 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), 9430 FrameOffset); 9431 return FIInfoAlign; 9432 } 9433 9434 return 0; 9435 } 9436 9437 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 9438 /// which is split (or expanded) into two not necessarily identical pieces. 9439 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 9440 // Currently all types are split in half. 9441 EVT LoVT, HiVT; 9442 if (!VT.isVector()) 9443 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 9444 else 9445 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 9446 9447 return std::make_pair(LoVT, HiVT); 9448 } 9449 9450 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 9451 /// low/high part. 9452 std::pair<SDValue, SDValue> 9453 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 9454 const EVT &HiVT) { 9455 assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= 9456 N.getValueType().getVectorNumElements() && 9457 "More vector elements requested than available!"); 9458 SDValue Lo, Hi; 9459 Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, 9460 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 9461 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 9462 getConstant(LoVT.getVectorNumElements(), DL, 9463 TLI->getVectorIdxTy(getDataLayout()))); 9464 return std::make_pair(Lo, Hi); 9465 } 9466 9467 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 9468 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 9469 EVT VT = N.getValueType(); 9470 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 9471 NextPowerOf2(VT.getVectorNumElements())); 9472 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 9473 getConstant(0, DL, TLI->getVectorIdxTy(getDataLayout()))); 9474 } 9475 9476 void SelectionDAG::ExtractVectorElements(SDValue Op, 9477 SmallVectorImpl<SDValue> &Args, 9478 unsigned Start, unsigned Count) { 9479 EVT VT = Op.getValueType(); 9480 if (Count == 0) 9481 Count = VT.getVectorNumElements(); 9482 9483 EVT EltVT = VT.getVectorElementType(); 9484 EVT IdxTy = TLI->getVectorIdxTy(getDataLayout()); 9485 SDLoc SL(Op); 9486 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 9487 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 9488 Op, getConstant(i, SL, IdxTy))); 9489 } 9490 } 9491 9492 // getAddressSpace - Return the address space this GlobalAddress belongs to. 9493 unsigned GlobalAddressSDNode::getAddressSpace() const { 9494 return getGlobal()->getType()->getAddressSpace(); 9495 } 9496 9497 Type *ConstantPoolSDNode::getType() const { 9498 if (isMachineConstantPoolEntry()) 9499 return Val.MachineCPVal->getType(); 9500 return Val.ConstVal->getType(); 9501 } 9502 9503 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 9504 unsigned &SplatBitSize, 9505 bool &HasAnyUndefs, 9506 unsigned MinSplatBits, 9507 bool IsBigEndian) const { 9508 EVT VT = getValueType(0); 9509 assert(VT.isVector() && "Expected a vector type"); 9510 unsigned VecWidth = VT.getSizeInBits(); 9511 if (MinSplatBits > VecWidth) 9512 return false; 9513 9514 // FIXME: The widths are based on this node's type, but build vectors can 9515 // truncate their operands. 9516 SplatValue = APInt(VecWidth, 0); 9517 SplatUndef = APInt(VecWidth, 0); 9518 9519 // Get the bits. Bits with undefined values (when the corresponding element 9520 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 9521 // in SplatValue. If any of the values are not constant, give up and return 9522 // false. 9523 unsigned int NumOps = getNumOperands(); 9524 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 9525 unsigned EltWidth = VT.getScalarSizeInBits(); 9526 9527 for (unsigned j = 0; j < NumOps; ++j) { 9528 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 9529 SDValue OpVal = getOperand(i); 9530 unsigned BitPos = j * EltWidth; 9531 9532 if (OpVal.isUndef()) 9533 SplatUndef.setBits(BitPos, BitPos + EltWidth); 9534 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 9535 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 9536 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 9537 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 9538 else 9539 return false; 9540 } 9541 9542 // The build_vector is all constants or undefs. Find the smallest element 9543 // size that splats the vector. 9544 HasAnyUndefs = (SplatUndef != 0); 9545 9546 // FIXME: This does not work for vectors with elements less than 8 bits. 9547 while (VecWidth > 8) { 9548 unsigned HalfSize = VecWidth / 2; 9549 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); 9550 APInt LowValue = SplatValue.trunc(HalfSize); 9551 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); 9552 APInt LowUndef = SplatUndef.trunc(HalfSize); 9553 9554 // If the two halves do not match (ignoring undef bits), stop here. 9555 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 9556 MinSplatBits > HalfSize) 9557 break; 9558 9559 SplatValue = HighValue | LowValue; 9560 SplatUndef = HighUndef & LowUndef; 9561 9562 VecWidth = HalfSize; 9563 } 9564 9565 SplatBitSize = VecWidth; 9566 return true; 9567 } 9568 9569 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 9570 BitVector *UndefElements) const { 9571 if (UndefElements) { 9572 UndefElements->clear(); 9573 UndefElements->resize(getNumOperands()); 9574 } 9575 assert(getNumOperands() == DemandedElts.getBitWidth() && 9576 "Unexpected vector size"); 9577 if (!DemandedElts) 9578 return SDValue(); 9579 SDValue Splatted; 9580 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 9581 if (!DemandedElts[i]) 9582 continue; 9583 SDValue Op = getOperand(i); 9584 if (Op.isUndef()) { 9585 if (UndefElements) 9586 (*UndefElements)[i] = true; 9587 } else if (!Splatted) { 9588 Splatted = Op; 9589 } else if (Splatted != Op) { 9590 return SDValue(); 9591 } 9592 } 9593 9594 if (!Splatted) { 9595 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros(); 9596 assert(getOperand(FirstDemandedIdx).isUndef() && 9597 "Can only have a splat without a constant for all undefs."); 9598 return getOperand(FirstDemandedIdx); 9599 } 9600 9601 return Splatted; 9602 } 9603 9604 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 9605 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands()); 9606 return getSplatValue(DemandedElts, UndefElements); 9607 } 9608 9609 ConstantSDNode * 9610 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 9611 BitVector *UndefElements) const { 9612 return dyn_cast_or_null<ConstantSDNode>( 9613 getSplatValue(DemandedElts, UndefElements)); 9614 } 9615 9616 ConstantSDNode * 9617 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 9618 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 9619 } 9620 9621 ConstantFPSDNode * 9622 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 9623 BitVector *UndefElements) const { 9624 return dyn_cast_or_null<ConstantFPSDNode>( 9625 getSplatValue(DemandedElts, UndefElements)); 9626 } 9627 9628 ConstantFPSDNode * 9629 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 9630 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 9631 } 9632 9633 int32_t 9634 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 9635 uint32_t BitWidth) const { 9636 if (ConstantFPSDNode *CN = 9637 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 9638 bool IsExact; 9639 APSInt IntVal(BitWidth); 9640 const APFloat &APF = CN->getValueAPF(); 9641 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 9642 APFloat::opOK || 9643 !IsExact) 9644 return -1; 9645 9646 return IntVal.exactLogBase2(); 9647 } 9648 return -1; 9649 } 9650 9651 bool BuildVectorSDNode::isConstant() const { 9652 for (const SDValue &Op : op_values()) { 9653 unsigned Opc = Op.getOpcode(); 9654 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 9655 return false; 9656 } 9657 return true; 9658 } 9659 9660 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 9661 // Find the first non-undef value in the shuffle mask. 9662 unsigned i, e; 9663 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 9664 /* search */; 9665 9666 // If all elements are undefined, this shuffle can be considered a splat 9667 // (although it should eventually get simplified away completely). 9668 if (i == e) 9669 return true; 9670 9671 // Make sure all remaining elements are either undef or the same as the first 9672 // non-undef value. 9673 for (int Idx = Mask[i]; i != e; ++i) 9674 if (Mask[i] >= 0 && Mask[i] != Idx) 9675 return false; 9676 return true; 9677 } 9678 9679 // Returns the SDNode if it is a constant integer BuildVector 9680 // or constant integer. 9681 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) { 9682 if (isa<ConstantSDNode>(N)) 9683 return N.getNode(); 9684 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 9685 return N.getNode(); 9686 // Treat a GlobalAddress supporting constant offset folding as a 9687 // constant integer. 9688 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 9689 if (GA->getOpcode() == ISD::GlobalAddress && 9690 TLI->isOffsetFoldingLegal(GA)) 9691 return GA; 9692 return nullptr; 9693 } 9694 9695 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) { 9696 if (isa<ConstantFPSDNode>(N)) 9697 return N.getNode(); 9698 9699 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 9700 return N.getNode(); 9701 9702 return nullptr; 9703 } 9704 9705 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 9706 assert(!Node->OperandList && "Node already has operands"); 9707 assert(SDNode::getMaxNumOperands() >= Vals.size() && 9708 "too many operands to fit into SDNode"); 9709 SDUse *Ops = OperandRecycler.allocate( 9710 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 9711 9712 bool IsDivergent = false; 9713 for (unsigned I = 0; I != Vals.size(); ++I) { 9714 Ops[I].setUser(Node); 9715 Ops[I].setInitial(Vals[I]); 9716 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 9717 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent(); 9718 } 9719 Node->NumOperands = Vals.size(); 9720 Node->OperandList = Ops; 9721 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA); 9722 if (!TLI->isSDNodeAlwaysUniform(Node)) 9723 Node->SDNodeBits.IsDivergent = IsDivergent; 9724 checkForCycles(Node); 9725 } 9726 9727 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 9728 SmallVectorImpl<SDValue> &Vals) { 9729 size_t Limit = SDNode::getMaxNumOperands(); 9730 while (Vals.size() > Limit) { 9731 unsigned SliceIdx = Vals.size() - Limit; 9732 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 9733 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 9734 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 9735 Vals.emplace_back(NewTF); 9736 } 9737 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 9738 } 9739 9740 #ifndef NDEBUG 9741 static void checkForCyclesHelper(const SDNode *N, 9742 SmallPtrSetImpl<const SDNode*> &Visited, 9743 SmallPtrSetImpl<const SDNode*> &Checked, 9744 const llvm::SelectionDAG *DAG) { 9745 // If this node has already been checked, don't check it again. 9746 if (Checked.count(N)) 9747 return; 9748 9749 // If a node has already been visited on this depth-first walk, reject it as 9750 // a cycle. 9751 if (!Visited.insert(N).second) { 9752 errs() << "Detected cycle in SelectionDAG\n"; 9753 dbgs() << "Offending node:\n"; 9754 N->dumprFull(DAG); dbgs() << "\n"; 9755 abort(); 9756 } 9757 9758 for (const SDValue &Op : N->op_values()) 9759 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 9760 9761 Checked.insert(N); 9762 Visited.erase(N); 9763 } 9764 #endif 9765 9766 void llvm::checkForCycles(const llvm::SDNode *N, 9767 const llvm::SelectionDAG *DAG, 9768 bool force) { 9769 #ifndef NDEBUG 9770 bool check = force; 9771 #ifdef EXPENSIVE_CHECKS 9772 check = true; 9773 #endif // EXPENSIVE_CHECKS 9774 if (check) { 9775 assert(N && "Checking nonexistent SDNode"); 9776 SmallPtrSet<const SDNode*, 32> visited; 9777 SmallPtrSet<const SDNode*, 32> checked; 9778 checkForCyclesHelper(N, visited, checked, DAG); 9779 } 9780 #endif // !NDEBUG 9781 } 9782 9783 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 9784 checkForCycles(DAG->getRoot().getNode(), DAG, force); 9785 } 9786