1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAG class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAG.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/FoldingSet.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Analysis/VectorUtils.h" 30 #include "llvm/CodeGen/Analysis.h" 31 #include "llvm/CodeGen/FunctionLoweringInfo.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineValueType.h" 39 #include "llvm/CodeGen/RuntimeLibcalls.h" 40 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" 41 #include "llvm/CodeGen/SelectionDAGNodes.h" 42 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetLowering.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/ValueTypes.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/ConstantRange.h" 50 #include "llvm/IR/Constants.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/DebugInfoMetadata.h" 53 #include "llvm/IR/DebugLoc.h" 54 #include "llvm/IR/DerivedTypes.h" 55 #include "llvm/IR/Function.h" 56 #include "llvm/IR/GlobalValue.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/KnownBits.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/Mutex.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include "llvm/Target/TargetOptions.h" 70 #include "llvm/TargetParser/Triple.h" 71 #include "llvm/Transforms/Utils/SizeOpts.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <cstdlib> 76 #include <limits> 77 #include <set> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 /// makeVTList - Return an instance of the SDVTList struct initialized with the 85 /// specified members. 86 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { 87 SDVTList Res = {VTs, NumVTs}; 88 return Res; 89 } 90 91 // Default null implementations of the callbacks. 92 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} 93 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} 94 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {} 95 96 void SelectionDAG::DAGNodeDeletedListener::anchor() {} 97 void SelectionDAG::DAGNodeInsertedListener::anchor() {} 98 99 #define DEBUG_TYPE "selectiondag" 100 101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt", 102 cl::Hidden, cl::init(true), 103 cl::desc("Gang up loads and stores generated by inlining of memcpy")); 104 105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max", 106 cl::desc("Number limit for gluing ld/st of memcpy."), 107 cl::Hidden, cl::init(0)); 108 109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) { 110 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G);); 111 } 112 113 //===----------------------------------------------------------------------===// 114 // ConstantFPSDNode Class 115 //===----------------------------------------------------------------------===// 116 117 /// isExactlyValue - We don't rely on operator== working on double values, as 118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 119 /// As such, this method can be used to do an exact bit-for-bit comparison of 120 /// two floating point values. 121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { 122 return getValueAPF().bitwiseIsEqual(V); 123 } 124 125 bool ConstantFPSDNode::isValueValidForType(EVT VT, 126 const APFloat& Val) { 127 assert(VT.isFloatingPoint() && "Can only convert between FP types"); 128 129 // convert modifies in place, so make a copy. 130 APFloat Val2 = APFloat(Val); 131 bool losesInfo; 132 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), 133 APFloat::rmNearestTiesToEven, 134 &losesInfo); 135 return !losesInfo; 136 } 137 138 //===----------------------------------------------------------------------===// 139 // ISD Namespace 140 //===----------------------------------------------------------------------===// 141 142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) { 143 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 144 unsigned EltSize = 145 N->getValueType(0).getVectorElementType().getSizeInBits(); 146 if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 147 SplatVal = Op0->getAPIntValue().trunc(EltSize); 148 return true; 149 } 150 if (auto *Op0 = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) { 151 SplatVal = Op0->getValueAPF().bitcastToAPInt().trunc(EltSize); 152 return true; 153 } 154 } 155 156 auto *BV = dyn_cast<BuildVectorSDNode>(N); 157 if (!BV) 158 return false; 159 160 APInt SplatUndef; 161 unsigned SplatBitSize; 162 bool HasUndefs; 163 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); 164 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs, 165 EltSize) && 166 EltSize == SplatBitSize; 167 } 168 169 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be 170 // specializations of the more general isConstantSplatVector()? 171 172 bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) { 173 // Look through a bit convert. 174 while (N->getOpcode() == ISD::BITCAST) 175 N = N->getOperand(0).getNode(); 176 177 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 178 APInt SplatVal; 179 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes(); 180 } 181 182 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 183 184 unsigned i = 0, e = N->getNumOperands(); 185 186 // Skip over all of the undef values. 187 while (i != e && N->getOperand(i).isUndef()) 188 ++i; 189 190 // Do not accept an all-undef vector. 191 if (i == e) return false; 192 193 // Do not accept build_vectors that aren't all constants or which have non-~0 194 // elements. We have to be a bit careful here, as the type of the constant 195 // may not be the same as the type of the vector elements due to type 196 // legalization (the elements are promoted to a legal type for the target and 197 // a vector of a type may be legal when the base element type is not). 198 // We only want to check enough bits to cover the vector elements, because 199 // we care if the resultant vector is all ones, not whether the individual 200 // constants are. 201 SDValue NotZero = N->getOperand(i); 202 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 203 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { 204 if (CN->getAPIntValue().countr_one() < EltSize) 205 return false; 206 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { 207 if (CFPN->getValueAPF().bitcastToAPInt().countr_one() < EltSize) 208 return false; 209 } else 210 return false; 211 212 // Okay, we have at least one ~0 value, check to see if the rest match or are 213 // undefs. Even with the above element type twiddling, this should be OK, as 214 // the same type legalization should have applied to all the elements. 215 for (++i; i != e; ++i) 216 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef()) 217 return false; 218 return true; 219 } 220 221 bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) { 222 // Look through a bit convert. 223 while (N->getOpcode() == ISD::BITCAST) 224 N = N->getOperand(0).getNode(); 225 226 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) { 227 APInt SplatVal; 228 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero(); 229 } 230 231 if (N->getOpcode() != ISD::BUILD_VECTOR) return false; 232 233 bool IsAllUndef = true; 234 for (const SDValue &Op : N->op_values()) { 235 if (Op.isUndef()) 236 continue; 237 IsAllUndef = false; 238 // Do not accept build_vectors that aren't all constants or which have non-0 239 // elements. We have to be a bit careful here, as the type of the constant 240 // may not be the same as the type of the vector elements due to type 241 // legalization (the elements are promoted to a legal type for the target 242 // and a vector of a type may be legal when the base element type is not). 243 // We only want to check enough bits to cover the vector elements, because 244 // we care if the resultant vector is all zeros, not whether the individual 245 // constants are. 246 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 247 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) { 248 if (CN->getAPIntValue().countr_zero() < EltSize) 249 return false; 250 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) { 251 if (CFPN->getValueAPF().bitcastToAPInt().countr_zero() < EltSize) 252 return false; 253 } else 254 return false; 255 } 256 257 // Do not accept an all-undef vector. 258 if (IsAllUndef) 259 return false; 260 return true; 261 } 262 263 bool ISD::isBuildVectorAllOnes(const SDNode *N) { 264 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true); 265 } 266 267 bool ISD::isBuildVectorAllZeros(const SDNode *N) { 268 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true); 269 } 270 271 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { 272 if (N->getOpcode() != ISD::BUILD_VECTOR) 273 return false; 274 275 for (const SDValue &Op : N->op_values()) { 276 if (Op.isUndef()) 277 continue; 278 if (!isa<ConstantSDNode>(Op)) 279 return false; 280 } 281 return true; 282 } 283 284 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { 285 if (N->getOpcode() != ISD::BUILD_VECTOR) 286 return false; 287 288 for (const SDValue &Op : N->op_values()) { 289 if (Op.isUndef()) 290 continue; 291 if (!isa<ConstantFPSDNode>(Op)) 292 return false; 293 } 294 return true; 295 } 296 297 bool ISD::isVectorShrinkable(const SDNode *N, unsigned NewEltSize, 298 bool Signed) { 299 assert(N->getValueType(0).isVector() && "Expected a vector!"); 300 301 unsigned EltSize = N->getValueType(0).getScalarSizeInBits(); 302 if (EltSize <= NewEltSize) 303 return false; 304 305 if (N->getOpcode() == ISD::ZERO_EXTEND) { 306 return (N->getOperand(0).getValueType().getScalarSizeInBits() <= 307 NewEltSize) && 308 !Signed; 309 } 310 if (N->getOpcode() == ISD::SIGN_EXTEND) { 311 return (N->getOperand(0).getValueType().getScalarSizeInBits() <= 312 NewEltSize) && 313 Signed; 314 } 315 if (N->getOpcode() != ISD::BUILD_VECTOR) 316 return false; 317 318 for (const SDValue &Op : N->op_values()) { 319 if (Op.isUndef()) 320 continue; 321 if (!isa<ConstantSDNode>(Op)) 322 return false; 323 324 APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().trunc(EltSize); 325 if (Signed && C.trunc(NewEltSize).sext(EltSize) != C) 326 return false; 327 if (!Signed && C.trunc(NewEltSize).zext(EltSize) != C) 328 return false; 329 } 330 331 return true; 332 } 333 334 bool ISD::allOperandsUndef(const SDNode *N) { 335 // Return false if the node has no operands. 336 // This is "logically inconsistent" with the definition of "all" but 337 // is probably the desired behavior. 338 if (N->getNumOperands() == 0) 339 return false; 340 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); }); 341 } 342 343 bool ISD::isFreezeUndef(const SDNode *N) { 344 return N->getOpcode() == ISD::FREEZE && N->getOperand(0).isUndef(); 345 } 346 347 bool ISD::matchUnaryPredicate(SDValue Op, 348 std::function<bool(ConstantSDNode *)> Match, 349 bool AllowUndefs) { 350 // FIXME: Add support for scalar UNDEF cases? 351 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) 352 return Match(Cst); 353 354 // FIXME: Add support for vector UNDEF cases? 355 if (ISD::BUILD_VECTOR != Op.getOpcode() && 356 ISD::SPLAT_VECTOR != Op.getOpcode()) 357 return false; 358 359 EVT SVT = Op.getValueType().getScalarType(); 360 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 361 if (AllowUndefs && Op.getOperand(i).isUndef()) { 362 if (!Match(nullptr)) 363 return false; 364 continue; 365 } 366 367 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i)); 368 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst)) 369 return false; 370 } 371 return true; 372 } 373 374 bool ISD::matchBinaryPredicate( 375 SDValue LHS, SDValue RHS, 376 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 377 bool AllowUndefs, bool AllowTypeMismatch) { 378 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType()) 379 return false; 380 381 // TODO: Add support for scalar UNDEF cases? 382 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS)) 383 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS)) 384 return Match(LHSCst, RHSCst); 385 386 // TODO: Add support for vector UNDEF cases? 387 if (LHS.getOpcode() != RHS.getOpcode() || 388 (LHS.getOpcode() != ISD::BUILD_VECTOR && 389 LHS.getOpcode() != ISD::SPLAT_VECTOR)) 390 return false; 391 392 EVT SVT = LHS.getValueType().getScalarType(); 393 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) { 394 SDValue LHSOp = LHS.getOperand(i); 395 SDValue RHSOp = RHS.getOperand(i); 396 bool LHSUndef = AllowUndefs && LHSOp.isUndef(); 397 bool RHSUndef = AllowUndefs && RHSOp.isUndef(); 398 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp); 399 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp); 400 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef)) 401 return false; 402 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT || 403 LHSOp.getValueType() != RHSOp.getValueType())) 404 return false; 405 if (!Match(LHSCst, RHSCst)) 406 return false; 407 } 408 return true; 409 } 410 411 ISD::NodeType ISD::getVecReduceBaseOpcode(unsigned VecReduceOpcode) { 412 switch (VecReduceOpcode) { 413 default: 414 llvm_unreachable("Expected VECREDUCE opcode"); 415 case ISD::VECREDUCE_FADD: 416 case ISD::VECREDUCE_SEQ_FADD: 417 case ISD::VP_REDUCE_FADD: 418 case ISD::VP_REDUCE_SEQ_FADD: 419 return ISD::FADD; 420 case ISD::VECREDUCE_FMUL: 421 case ISD::VECREDUCE_SEQ_FMUL: 422 case ISD::VP_REDUCE_FMUL: 423 case ISD::VP_REDUCE_SEQ_FMUL: 424 return ISD::FMUL; 425 case ISD::VECREDUCE_ADD: 426 case ISD::VP_REDUCE_ADD: 427 return ISD::ADD; 428 case ISD::VECREDUCE_MUL: 429 case ISD::VP_REDUCE_MUL: 430 return ISD::MUL; 431 case ISD::VECREDUCE_AND: 432 case ISD::VP_REDUCE_AND: 433 return ISD::AND; 434 case ISD::VECREDUCE_OR: 435 case ISD::VP_REDUCE_OR: 436 return ISD::OR; 437 case ISD::VECREDUCE_XOR: 438 case ISD::VP_REDUCE_XOR: 439 return ISD::XOR; 440 case ISD::VECREDUCE_SMAX: 441 case ISD::VP_REDUCE_SMAX: 442 return ISD::SMAX; 443 case ISD::VECREDUCE_SMIN: 444 case ISD::VP_REDUCE_SMIN: 445 return ISD::SMIN; 446 case ISD::VECREDUCE_UMAX: 447 case ISD::VP_REDUCE_UMAX: 448 return ISD::UMAX; 449 case ISD::VECREDUCE_UMIN: 450 case ISD::VP_REDUCE_UMIN: 451 return ISD::UMIN; 452 case ISD::VECREDUCE_FMAX: 453 case ISD::VP_REDUCE_FMAX: 454 return ISD::FMAXNUM; 455 case ISD::VECREDUCE_FMIN: 456 case ISD::VP_REDUCE_FMIN: 457 return ISD::FMINNUM; 458 case ISD::VECREDUCE_FMAXIMUM: 459 return ISD::FMAXIMUM; 460 case ISD::VECREDUCE_FMINIMUM: 461 return ISD::FMINIMUM; 462 } 463 } 464 465 bool ISD::isVPOpcode(unsigned Opcode) { 466 switch (Opcode) { 467 default: 468 return false; 469 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \ 470 case ISD::VPSD: \ 471 return true; 472 #include "llvm/IR/VPIntrinsics.def" 473 } 474 } 475 476 bool ISD::isVPBinaryOp(unsigned Opcode) { 477 switch (Opcode) { 478 default: 479 break; 480 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 481 #define VP_PROPERTY_BINARYOP return true; 482 #define END_REGISTER_VP_SDNODE(VPSD) break; 483 #include "llvm/IR/VPIntrinsics.def" 484 } 485 return false; 486 } 487 488 bool ISD::isVPReduction(unsigned Opcode) { 489 switch (Opcode) { 490 default: 491 break; 492 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD: 493 #define VP_PROPERTY_REDUCTION(STARTPOS, ...) return true; 494 #define END_REGISTER_VP_SDNODE(VPSD) break; 495 #include "llvm/IR/VPIntrinsics.def" 496 } 497 return false; 498 } 499 500 /// The operand position of the vector mask. 501 std::optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) { 502 switch (Opcode) { 503 default: 504 return std::nullopt; 505 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \ 506 case ISD::VPSD: \ 507 return MASKPOS; 508 #include "llvm/IR/VPIntrinsics.def" 509 } 510 } 511 512 /// The operand position of the explicit vector length parameter. 513 std::optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) { 514 switch (Opcode) { 515 default: 516 return std::nullopt; 517 #define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \ 518 case ISD::VPSD: \ 519 return EVLPOS; 520 #include "llvm/IR/VPIntrinsics.def" 521 } 522 } 523 524 std::optional<unsigned> ISD::getBaseOpcodeForVP(unsigned VPOpcode, 525 bool hasFPExcept) { 526 // FIXME: Return strict opcodes in case of fp exceptions. 527 switch (VPOpcode) { 528 default: 529 return std::nullopt; 530 #define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC: 531 #define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC; 532 #define END_REGISTER_VP_SDNODE(VPOPC) break; 533 #include "llvm/IR/VPIntrinsics.def" 534 } 535 return std::nullopt; 536 } 537 538 unsigned ISD::getVPForBaseOpcode(unsigned Opcode) { 539 switch (Opcode) { 540 default: 541 llvm_unreachable("can not translate this Opcode to VP."); 542 #define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break; 543 #define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC: 544 #define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC; 545 #include "llvm/IR/VPIntrinsics.def" 546 } 547 } 548 549 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { 550 switch (ExtType) { 551 case ISD::EXTLOAD: 552 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 553 case ISD::SEXTLOAD: 554 return ISD::SIGN_EXTEND; 555 case ISD::ZEXTLOAD: 556 return ISD::ZERO_EXTEND; 557 default: 558 break; 559 } 560 561 llvm_unreachable("Invalid LoadExtType"); 562 } 563 564 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { 565 // To perform this operation, we just need to swap the L and G bits of the 566 // operation. 567 unsigned OldL = (Operation >> 2) & 1; 568 unsigned OldG = (Operation >> 1) & 1; 569 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits 570 (OldL << 1) | // New G bit 571 (OldG << 2)); // New L bit. 572 } 573 574 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) { 575 unsigned Operation = Op; 576 if (isIntegerLike) 577 Operation ^= 7; // Flip L, G, E bits, but not U. 578 else 579 Operation ^= 15; // Flip all of the condition bits. 580 581 if (Operation > ISD::SETTRUE2) 582 Operation &= ~8; // Don't let N and U bits get set. 583 584 return ISD::CondCode(Operation); 585 } 586 587 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) { 588 return getSetCCInverseImpl(Op, Type.isInteger()); 589 } 590 591 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op, 592 bool isIntegerLike) { 593 return getSetCCInverseImpl(Op, isIntegerLike); 594 } 595 596 /// For an integer comparison, return 1 if the comparison is a signed operation 597 /// and 2 if the result is an unsigned comparison. Return zero if the operation 598 /// does not depend on the sign of the input (setne and seteq). 599 static int isSignedOp(ISD::CondCode Opcode) { 600 switch (Opcode) { 601 default: llvm_unreachable("Illegal integer setcc operation!"); 602 case ISD::SETEQ: 603 case ISD::SETNE: return 0; 604 case ISD::SETLT: 605 case ISD::SETLE: 606 case ISD::SETGT: 607 case ISD::SETGE: return 1; 608 case ISD::SETULT: 609 case ISD::SETULE: 610 case ISD::SETUGT: 611 case ISD::SETUGE: return 2; 612 } 613 } 614 615 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, 616 EVT Type) { 617 bool IsInteger = Type.isInteger(); 618 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 619 // Cannot fold a signed integer setcc with an unsigned integer setcc. 620 return ISD::SETCC_INVALID; 621 622 unsigned Op = Op1 | Op2; // Combine all of the condition bits. 623 624 // If the N and U bits get set, then the resultant comparison DOES suddenly 625 // care about orderedness, and it is true when ordered. 626 if (Op > ISD::SETTRUE2) 627 Op &= ~16; // Clear the U bit if the N bit is set. 628 629 // Canonicalize illegal integer setcc's. 630 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT 631 Op = ISD::SETNE; 632 633 return ISD::CondCode(Op); 634 } 635 636 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, 637 EVT Type) { 638 bool IsInteger = Type.isInteger(); 639 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) 640 // Cannot fold a signed setcc with an unsigned setcc. 641 return ISD::SETCC_INVALID; 642 643 // Combine all of the condition bits. 644 ISD::CondCode Result = ISD::CondCode(Op1 & Op2); 645 646 // Canonicalize illegal integer setcc's. 647 if (IsInteger) { 648 switch (Result) { 649 default: break; 650 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT 651 case ISD::SETOEQ: // SETEQ & SETU[LG]E 652 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE 653 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE 654 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE 655 } 656 } 657 658 return Result; 659 } 660 661 //===----------------------------------------------------------------------===// 662 // SDNode Profile Support 663 //===----------------------------------------------------------------------===// 664 665 /// AddNodeIDOpcode - Add the node opcode to the NodeID data. 666 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { 667 ID.AddInteger(OpC); 668 } 669 670 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them 671 /// solely with their pointer. 672 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { 673 ID.AddPointer(VTList.VTs); 674 } 675 676 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 677 static void AddNodeIDOperands(FoldingSetNodeID &ID, 678 ArrayRef<SDValue> Ops) { 679 for (const auto &Op : Ops) { 680 ID.AddPointer(Op.getNode()); 681 ID.AddInteger(Op.getResNo()); 682 } 683 } 684 685 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. 686 static void AddNodeIDOperands(FoldingSetNodeID &ID, 687 ArrayRef<SDUse> Ops) { 688 for (const auto &Op : Ops) { 689 ID.AddPointer(Op.getNode()); 690 ID.AddInteger(Op.getResNo()); 691 } 692 } 693 694 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC, 695 SDVTList VTList, ArrayRef<SDValue> OpList) { 696 AddNodeIDOpcode(ID, OpC); 697 AddNodeIDValueTypes(ID, VTList); 698 AddNodeIDOperands(ID, OpList); 699 } 700 701 /// If this is an SDNode with special info, add this info to the NodeID data. 702 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { 703 switch (N->getOpcode()) { 704 case ISD::TargetExternalSymbol: 705 case ISD::ExternalSymbol: 706 case ISD::MCSymbol: 707 llvm_unreachable("Should only be used on nodes with operands"); 708 default: break; // Normal nodes don't need extra info. 709 case ISD::TargetConstant: 710 case ISD::Constant: { 711 const ConstantSDNode *C = cast<ConstantSDNode>(N); 712 ID.AddPointer(C->getConstantIntValue()); 713 ID.AddBoolean(C->isOpaque()); 714 break; 715 } 716 case ISD::TargetConstantFP: 717 case ISD::ConstantFP: 718 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); 719 break; 720 case ISD::TargetGlobalAddress: 721 case ISD::GlobalAddress: 722 case ISD::TargetGlobalTLSAddress: 723 case ISD::GlobalTLSAddress: { 724 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); 725 ID.AddPointer(GA->getGlobal()); 726 ID.AddInteger(GA->getOffset()); 727 ID.AddInteger(GA->getTargetFlags()); 728 break; 729 } 730 case ISD::BasicBlock: 731 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); 732 break; 733 case ISD::Register: 734 ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); 735 break; 736 case ISD::RegisterMask: 737 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); 738 break; 739 case ISD::SRCVALUE: 740 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); 741 break; 742 case ISD::FrameIndex: 743 case ISD::TargetFrameIndex: 744 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); 745 break; 746 case ISD::LIFETIME_START: 747 case ISD::LIFETIME_END: 748 if (cast<LifetimeSDNode>(N)->hasOffset()) { 749 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize()); 750 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset()); 751 } 752 break; 753 case ISD::PSEUDO_PROBE: 754 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid()); 755 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex()); 756 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes()); 757 break; 758 case ISD::JumpTable: 759 case ISD::TargetJumpTable: 760 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); 761 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); 762 break; 763 case ISD::ConstantPool: 764 case ISD::TargetConstantPool: { 765 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); 766 ID.AddInteger(CP->getAlign().value()); 767 ID.AddInteger(CP->getOffset()); 768 if (CP->isMachineConstantPoolEntry()) 769 CP->getMachineCPVal()->addSelectionDAGCSEId(ID); 770 else 771 ID.AddPointer(CP->getConstVal()); 772 ID.AddInteger(CP->getTargetFlags()); 773 break; 774 } 775 case ISD::TargetIndex: { 776 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); 777 ID.AddInteger(TI->getIndex()); 778 ID.AddInteger(TI->getOffset()); 779 ID.AddInteger(TI->getTargetFlags()); 780 break; 781 } 782 case ISD::LOAD: { 783 const LoadSDNode *LD = cast<LoadSDNode>(N); 784 ID.AddInteger(LD->getMemoryVT().getRawBits()); 785 ID.AddInteger(LD->getRawSubclassData()); 786 ID.AddInteger(LD->getPointerInfo().getAddrSpace()); 787 ID.AddInteger(LD->getMemOperand()->getFlags()); 788 break; 789 } 790 case ISD::STORE: { 791 const StoreSDNode *ST = cast<StoreSDNode>(N); 792 ID.AddInteger(ST->getMemoryVT().getRawBits()); 793 ID.AddInteger(ST->getRawSubclassData()); 794 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 795 ID.AddInteger(ST->getMemOperand()->getFlags()); 796 break; 797 } 798 case ISD::VP_LOAD: { 799 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N); 800 ID.AddInteger(ELD->getMemoryVT().getRawBits()); 801 ID.AddInteger(ELD->getRawSubclassData()); 802 ID.AddInteger(ELD->getPointerInfo().getAddrSpace()); 803 ID.AddInteger(ELD->getMemOperand()->getFlags()); 804 break; 805 } 806 case ISD::VP_STORE: { 807 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N); 808 ID.AddInteger(EST->getMemoryVT().getRawBits()); 809 ID.AddInteger(EST->getRawSubclassData()); 810 ID.AddInteger(EST->getPointerInfo().getAddrSpace()); 811 ID.AddInteger(EST->getMemOperand()->getFlags()); 812 break; 813 } 814 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: { 815 const VPStridedLoadSDNode *SLD = cast<VPStridedLoadSDNode>(N); 816 ID.AddInteger(SLD->getMemoryVT().getRawBits()); 817 ID.AddInteger(SLD->getRawSubclassData()); 818 ID.AddInteger(SLD->getPointerInfo().getAddrSpace()); 819 break; 820 } 821 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: { 822 const VPStridedStoreSDNode *SST = cast<VPStridedStoreSDNode>(N); 823 ID.AddInteger(SST->getMemoryVT().getRawBits()); 824 ID.AddInteger(SST->getRawSubclassData()); 825 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 826 break; 827 } 828 case ISD::VP_GATHER: { 829 const VPGatherSDNode *EG = cast<VPGatherSDNode>(N); 830 ID.AddInteger(EG->getMemoryVT().getRawBits()); 831 ID.AddInteger(EG->getRawSubclassData()); 832 ID.AddInteger(EG->getPointerInfo().getAddrSpace()); 833 ID.AddInteger(EG->getMemOperand()->getFlags()); 834 break; 835 } 836 case ISD::VP_SCATTER: { 837 const VPScatterSDNode *ES = cast<VPScatterSDNode>(N); 838 ID.AddInteger(ES->getMemoryVT().getRawBits()); 839 ID.AddInteger(ES->getRawSubclassData()); 840 ID.AddInteger(ES->getPointerInfo().getAddrSpace()); 841 ID.AddInteger(ES->getMemOperand()->getFlags()); 842 break; 843 } 844 case ISD::MLOAD: { 845 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); 846 ID.AddInteger(MLD->getMemoryVT().getRawBits()); 847 ID.AddInteger(MLD->getRawSubclassData()); 848 ID.AddInteger(MLD->getPointerInfo().getAddrSpace()); 849 ID.AddInteger(MLD->getMemOperand()->getFlags()); 850 break; 851 } 852 case ISD::MSTORE: { 853 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); 854 ID.AddInteger(MST->getMemoryVT().getRawBits()); 855 ID.AddInteger(MST->getRawSubclassData()); 856 ID.AddInteger(MST->getPointerInfo().getAddrSpace()); 857 ID.AddInteger(MST->getMemOperand()->getFlags()); 858 break; 859 } 860 case ISD::MGATHER: { 861 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N); 862 ID.AddInteger(MG->getMemoryVT().getRawBits()); 863 ID.AddInteger(MG->getRawSubclassData()); 864 ID.AddInteger(MG->getPointerInfo().getAddrSpace()); 865 ID.AddInteger(MG->getMemOperand()->getFlags()); 866 break; 867 } 868 case ISD::MSCATTER: { 869 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N); 870 ID.AddInteger(MS->getMemoryVT().getRawBits()); 871 ID.AddInteger(MS->getRawSubclassData()); 872 ID.AddInteger(MS->getPointerInfo().getAddrSpace()); 873 ID.AddInteger(MS->getMemOperand()->getFlags()); 874 break; 875 } 876 case ISD::ATOMIC_CMP_SWAP: 877 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 878 case ISD::ATOMIC_SWAP: 879 case ISD::ATOMIC_LOAD_ADD: 880 case ISD::ATOMIC_LOAD_SUB: 881 case ISD::ATOMIC_LOAD_AND: 882 case ISD::ATOMIC_LOAD_CLR: 883 case ISD::ATOMIC_LOAD_OR: 884 case ISD::ATOMIC_LOAD_XOR: 885 case ISD::ATOMIC_LOAD_NAND: 886 case ISD::ATOMIC_LOAD_MIN: 887 case ISD::ATOMIC_LOAD_MAX: 888 case ISD::ATOMIC_LOAD_UMIN: 889 case ISD::ATOMIC_LOAD_UMAX: 890 case ISD::ATOMIC_LOAD: 891 case ISD::ATOMIC_STORE: { 892 const AtomicSDNode *AT = cast<AtomicSDNode>(N); 893 ID.AddInteger(AT->getMemoryVT().getRawBits()); 894 ID.AddInteger(AT->getRawSubclassData()); 895 ID.AddInteger(AT->getPointerInfo().getAddrSpace()); 896 ID.AddInteger(AT->getMemOperand()->getFlags()); 897 break; 898 } 899 case ISD::VECTOR_SHUFFLE: { 900 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 901 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); 902 i != e; ++i) 903 ID.AddInteger(SVN->getMaskElt(i)); 904 break; 905 } 906 case ISD::TargetBlockAddress: 907 case ISD::BlockAddress: { 908 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); 909 ID.AddPointer(BA->getBlockAddress()); 910 ID.AddInteger(BA->getOffset()); 911 ID.AddInteger(BA->getTargetFlags()); 912 break; 913 } 914 case ISD::AssertAlign: 915 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value()); 916 break; 917 case ISD::PREFETCH: 918 case ISD::INTRINSIC_VOID: 919 case ISD::INTRINSIC_W_CHAIN: 920 // Handled by MemIntrinsicSDNode check after the switch. 921 break; 922 } // end switch (N->getOpcode()) 923 924 // MemIntrinsic nodes could also have subclass data, address spaces, and flags 925 // to check. 926 if (auto *MN = dyn_cast<MemIntrinsicSDNode>(N)) { 927 ID.AddInteger(MN->getRawSubclassData()); 928 ID.AddInteger(MN->getPointerInfo().getAddrSpace()); 929 ID.AddInteger(MN->getMemOperand()->getFlags()); 930 ID.AddInteger(MN->getMemoryVT().getRawBits()); 931 } 932 } 933 934 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID 935 /// data. 936 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { 937 AddNodeIDOpcode(ID, N->getOpcode()); 938 // Add the return value info. 939 AddNodeIDValueTypes(ID, N->getVTList()); 940 // Add the operand info. 941 AddNodeIDOperands(ID, N->ops()); 942 943 // Handle SDNode leafs with special info. 944 AddNodeIDCustom(ID, N); 945 } 946 947 //===----------------------------------------------------------------------===// 948 // SelectionDAG Class 949 //===----------------------------------------------------------------------===// 950 951 /// doNotCSE - Return true if CSE should not be performed for this node. 952 static bool doNotCSE(SDNode *N) { 953 if (N->getValueType(0) == MVT::Glue) 954 return true; // Never CSE anything that produces a flag. 955 956 switch (N->getOpcode()) { 957 default: break; 958 case ISD::HANDLENODE: 959 case ISD::EH_LABEL: 960 return true; // Never CSE these nodes. 961 } 962 963 // Check that remaining values produced are not flags. 964 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) 965 if (N->getValueType(i) == MVT::Glue) 966 return true; // Never CSE anything that produces a flag. 967 968 return false; 969 } 970 971 /// RemoveDeadNodes - This method deletes all unreachable nodes in the 972 /// SelectionDAG. 973 void SelectionDAG::RemoveDeadNodes() { 974 // Create a dummy node (which is not added to allnodes), that adds a reference 975 // to the root node, preventing it from being deleted. 976 HandleSDNode Dummy(getRoot()); 977 978 SmallVector<SDNode*, 128> DeadNodes; 979 980 // Add all obviously-dead nodes to the DeadNodes worklist. 981 for (SDNode &Node : allnodes()) 982 if (Node.use_empty()) 983 DeadNodes.push_back(&Node); 984 985 RemoveDeadNodes(DeadNodes); 986 987 // If the root changed (e.g. it was a dead load, update the root). 988 setRoot(Dummy.getValue()); 989 } 990 991 /// RemoveDeadNodes - This method deletes the unreachable nodes in the 992 /// given list, and any nodes that become unreachable as a result. 993 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { 994 995 // Process the worklist, deleting the nodes and adding their uses to the 996 // worklist. 997 while (!DeadNodes.empty()) { 998 SDNode *N = DeadNodes.pop_back_val(); 999 // Skip to next node if we've already managed to delete the node. This could 1000 // happen if replacing a node causes a node previously added to the node to 1001 // be deleted. 1002 if (N->getOpcode() == ISD::DELETED_NODE) 1003 continue; 1004 1005 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1006 DUL->NodeDeleted(N, nullptr); 1007 1008 // Take the node out of the appropriate CSE map. 1009 RemoveNodeFromCSEMaps(N); 1010 1011 // Next, brutally remove the operand list. This is safe to do, as there are 1012 // no cycles in the graph. 1013 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 1014 SDUse &Use = *I++; 1015 SDNode *Operand = Use.getNode(); 1016 Use.set(SDValue()); 1017 1018 // Now that we removed this operand, see if there are no uses of it left. 1019 if (Operand->use_empty()) 1020 DeadNodes.push_back(Operand); 1021 } 1022 1023 DeallocateNode(N); 1024 } 1025 } 1026 1027 void SelectionDAG::RemoveDeadNode(SDNode *N){ 1028 SmallVector<SDNode*, 16> DeadNodes(1, N); 1029 1030 // Create a dummy node that adds a reference to the root node, preventing 1031 // it from being deleted. (This matters if the root is an operand of the 1032 // dead node.) 1033 HandleSDNode Dummy(getRoot()); 1034 1035 RemoveDeadNodes(DeadNodes); 1036 } 1037 1038 void SelectionDAG::DeleteNode(SDNode *N) { 1039 // First take this out of the appropriate CSE map. 1040 RemoveNodeFromCSEMaps(N); 1041 1042 // Finally, remove uses due to operands of this node, remove from the 1043 // AllNodes list, and delete the node. 1044 DeleteNodeNotInCSEMaps(N); 1045 } 1046 1047 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { 1048 assert(N->getIterator() != AllNodes.begin() && 1049 "Cannot delete the entry node!"); 1050 assert(N->use_empty() && "Cannot delete a node that is not dead!"); 1051 1052 // Drop all of the operands and decrement used node's use counts. 1053 N->DropOperands(); 1054 1055 DeallocateNode(N); 1056 } 1057 1058 void SDDbgInfo::add(SDDbgValue *V, bool isParameter) { 1059 assert(!(V->isVariadic() && isParameter)); 1060 if (isParameter) 1061 ByvalParmDbgValues.push_back(V); 1062 else 1063 DbgValues.push_back(V); 1064 for (const SDNode *Node : V->getSDNodes()) 1065 if (Node) 1066 DbgValMap[Node].push_back(V); 1067 } 1068 1069 void SDDbgInfo::erase(const SDNode *Node) { 1070 DbgValMapType::iterator I = DbgValMap.find(Node); 1071 if (I == DbgValMap.end()) 1072 return; 1073 for (auto &Val: I->second) 1074 Val->setIsInvalidated(); 1075 DbgValMap.erase(I); 1076 } 1077 1078 void SelectionDAG::DeallocateNode(SDNode *N) { 1079 // If we have operands, deallocate them. 1080 removeOperands(N); 1081 1082 NodeAllocator.Deallocate(AllNodes.remove(N)); 1083 1084 // Set the opcode to DELETED_NODE to help catch bugs when node 1085 // memory is reallocated. 1086 // FIXME: There are places in SDag that have grown a dependency on the opcode 1087 // value in the released node. 1088 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType)); 1089 N->NodeType = ISD::DELETED_NODE; 1090 1091 // If any of the SDDbgValue nodes refer to this SDNode, invalidate 1092 // them and forget about that node. 1093 DbgInfo->erase(N); 1094 1095 // Invalidate extra info. 1096 SDEI.erase(N); 1097 } 1098 1099 #ifndef NDEBUG 1100 /// VerifySDNode - Check the given SDNode. Aborts if it is invalid. 1101 static void VerifySDNode(SDNode *N) { 1102 switch (N->getOpcode()) { 1103 default: 1104 break; 1105 case ISD::BUILD_PAIR: { 1106 EVT VT = N->getValueType(0); 1107 assert(N->getNumValues() == 1 && "Too many results!"); 1108 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && 1109 "Wrong return type!"); 1110 assert(N->getNumOperands() == 2 && "Wrong number of operands!"); 1111 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && 1112 "Mismatched operand types!"); 1113 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && 1114 "Wrong operand type!"); 1115 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && 1116 "Wrong return type size"); 1117 break; 1118 } 1119 case ISD::BUILD_VECTOR: { 1120 assert(N->getNumValues() == 1 && "Too many results!"); 1121 assert(N->getValueType(0).isVector() && "Wrong return type!"); 1122 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && 1123 "Wrong number of operands!"); 1124 EVT EltVT = N->getValueType(0).getVectorElementType(); 1125 for (const SDUse &Op : N->ops()) { 1126 assert((Op.getValueType() == EltVT || 1127 (EltVT.isInteger() && Op.getValueType().isInteger() && 1128 EltVT.bitsLE(Op.getValueType()))) && 1129 "Wrong operand type!"); 1130 assert(Op.getValueType() == N->getOperand(0).getValueType() && 1131 "Operands must all have the same type"); 1132 } 1133 break; 1134 } 1135 } 1136 } 1137 #endif // NDEBUG 1138 1139 /// Insert a newly allocated node into the DAG. 1140 /// 1141 /// Handles insertion into the all nodes list and CSE map, as well as 1142 /// verification and other common operations when a new node is allocated. 1143 void SelectionDAG::InsertNode(SDNode *N) { 1144 AllNodes.push_back(N); 1145 #ifndef NDEBUG 1146 N->PersistentId = NextPersistentId++; 1147 VerifySDNode(N); 1148 #endif 1149 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1150 DUL->NodeInserted(N); 1151 } 1152 1153 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that 1154 /// correspond to it. This is useful when we're about to delete or repurpose 1155 /// the node. We don't want future request for structurally identical nodes 1156 /// to return N anymore. 1157 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { 1158 bool Erased = false; 1159 switch (N->getOpcode()) { 1160 case ISD::HANDLENODE: return false; // noop. 1161 case ISD::CONDCODE: 1162 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && 1163 "Cond code doesn't exist!"); 1164 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; 1165 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; 1166 break; 1167 case ISD::ExternalSymbol: 1168 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); 1169 break; 1170 case ISD::TargetExternalSymbol: { 1171 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); 1172 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>( 1173 ESN->getSymbol(), ESN->getTargetFlags())); 1174 break; 1175 } 1176 case ISD::MCSymbol: { 1177 auto *MCSN = cast<MCSymbolSDNode>(N); 1178 Erased = MCSymbols.erase(MCSN->getMCSymbol()); 1179 break; 1180 } 1181 case ISD::VALUETYPE: { 1182 EVT VT = cast<VTSDNode>(N)->getVT(); 1183 if (VT.isExtended()) { 1184 Erased = ExtendedValueTypeNodes.erase(VT); 1185 } else { 1186 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; 1187 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; 1188 } 1189 break; 1190 } 1191 default: 1192 // Remove it from the CSE Map. 1193 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); 1194 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); 1195 Erased = CSEMap.RemoveNode(N); 1196 break; 1197 } 1198 #ifndef NDEBUG 1199 // Verify that the node was actually in one of the CSE maps, unless it has a 1200 // flag result (which cannot be CSE'd) or is one of the special cases that are 1201 // not subject to CSE. 1202 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && 1203 !N->isMachineOpcode() && !doNotCSE(N)) { 1204 N->dump(this); 1205 dbgs() << "\n"; 1206 llvm_unreachable("Node is not in map!"); 1207 } 1208 #endif 1209 return Erased; 1210 } 1211 1212 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE 1213 /// maps and modified in place. Add it back to the CSE maps, unless an identical 1214 /// node already exists, in which case transfer all its users to the existing 1215 /// node. This transfer can potentially trigger recursive merging. 1216 void 1217 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { 1218 // For node types that aren't CSE'd, just act as if no identical node 1219 // already exists. 1220 if (!doNotCSE(N)) { 1221 SDNode *Existing = CSEMap.GetOrInsertNode(N); 1222 if (Existing != N) { 1223 // If there was already an existing matching node, use ReplaceAllUsesWith 1224 // to replace the dead one with the existing one. This can cause 1225 // recursive merging of other unrelated nodes down the line. 1226 ReplaceAllUsesWith(N, Existing); 1227 1228 // N is now dead. Inform the listeners and delete it. 1229 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1230 DUL->NodeDeleted(N, Existing); 1231 DeleteNodeNotInCSEMaps(N); 1232 return; 1233 } 1234 } 1235 1236 // If the node doesn't already exist, we updated it. Inform listeners. 1237 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) 1238 DUL->NodeUpdated(N); 1239 } 1240 1241 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1242 /// were replaced with those specified. If this node is never memoized, 1243 /// return null, otherwise return a pointer to the slot it would take. If a 1244 /// node already exists with these operands, the slot will be non-null. 1245 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, 1246 void *&InsertPos) { 1247 if (doNotCSE(N)) 1248 return nullptr; 1249 1250 SDValue Ops[] = { Op }; 1251 FoldingSetNodeID ID; 1252 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1253 AddNodeIDCustom(ID, N); 1254 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1255 if (Node) 1256 Node->intersectFlagsWith(N->getFlags()); 1257 return Node; 1258 } 1259 1260 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1261 /// were replaced with those specified. If this node is never memoized, 1262 /// return null, otherwise return a pointer to the slot it would take. If a 1263 /// node already exists with these operands, the slot will be non-null. 1264 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, 1265 SDValue Op1, SDValue Op2, 1266 void *&InsertPos) { 1267 if (doNotCSE(N)) 1268 return nullptr; 1269 1270 SDValue Ops[] = { Op1, Op2 }; 1271 FoldingSetNodeID ID; 1272 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1273 AddNodeIDCustom(ID, N); 1274 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1275 if (Node) 1276 Node->intersectFlagsWith(N->getFlags()); 1277 return Node; 1278 } 1279 1280 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands 1281 /// were replaced with those specified. If this node is never memoized, 1282 /// return null, otherwise return a pointer to the slot it would take. If a 1283 /// node already exists with these operands, the slot will be non-null. 1284 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, 1285 void *&InsertPos) { 1286 if (doNotCSE(N)) 1287 return nullptr; 1288 1289 FoldingSetNodeID ID; 1290 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); 1291 AddNodeIDCustom(ID, N); 1292 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos); 1293 if (Node) 1294 Node->intersectFlagsWith(N->getFlags()); 1295 return Node; 1296 } 1297 1298 Align SelectionDAG::getEVTAlign(EVT VT) const { 1299 Type *Ty = VT == MVT::iPTR ? 1300 PointerType::get(Type::getInt8Ty(*getContext()), 0) : 1301 VT.getTypeForEVT(*getContext()); 1302 1303 return getDataLayout().getABITypeAlign(Ty); 1304 } 1305 1306 // EntryNode could meaningfully have debug info if we can find it... 1307 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) 1308 : TM(tm), OptLevel(OL), 1309 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other, MVT::Glue)), 1310 Root(getEntryNode()) { 1311 InsertNode(&EntryNode); 1312 DbgInfo = new SDDbgInfo(); 1313 } 1314 1315 void SelectionDAG::init(MachineFunction &NewMF, 1316 OptimizationRemarkEmitter &NewORE, Pass *PassPtr, 1317 const TargetLibraryInfo *LibraryInfo, 1318 UniformityInfo *NewUA, ProfileSummaryInfo *PSIin, 1319 BlockFrequencyInfo *BFIin, 1320 FunctionVarLocs const *VarLocs) { 1321 MF = &NewMF; 1322 SDAGISelPass = PassPtr; 1323 ORE = &NewORE; 1324 TLI = getSubtarget().getTargetLowering(); 1325 TSI = getSubtarget().getSelectionDAGInfo(); 1326 LibInfo = LibraryInfo; 1327 Context = &MF->getFunction().getContext(); 1328 UA = NewUA; 1329 PSI = PSIin; 1330 BFI = BFIin; 1331 FnVarLocs = VarLocs; 1332 } 1333 1334 SelectionDAG::~SelectionDAG() { 1335 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); 1336 allnodes_clear(); 1337 OperandRecycler.clear(OperandAllocator); 1338 delete DbgInfo; 1339 } 1340 1341 bool SelectionDAG::shouldOptForSize() const { 1342 return MF->getFunction().hasOptSize() || 1343 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI); 1344 } 1345 1346 void SelectionDAG::allnodes_clear() { 1347 assert(&*AllNodes.begin() == &EntryNode); 1348 AllNodes.remove(AllNodes.begin()); 1349 while (!AllNodes.empty()) 1350 DeallocateNode(&AllNodes.front()); 1351 #ifndef NDEBUG 1352 NextPersistentId = 0; 1353 #endif 1354 } 1355 1356 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1357 void *&InsertPos) { 1358 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1359 if (N) { 1360 switch (N->getOpcode()) { 1361 default: break; 1362 case ISD::Constant: 1363 case ISD::ConstantFP: 1364 llvm_unreachable("Querying for Constant and ConstantFP nodes requires " 1365 "debug location. Use another overload."); 1366 } 1367 } 1368 return N; 1369 } 1370 1371 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, 1372 const SDLoc &DL, void *&InsertPos) { 1373 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); 1374 if (N) { 1375 switch (N->getOpcode()) { 1376 case ISD::Constant: 1377 case ISD::ConstantFP: 1378 // Erase debug location from the node if the node is used at several 1379 // different places. Do not propagate one location to all uses as it 1380 // will cause a worse single stepping debugging experience. 1381 if (N->getDebugLoc() != DL.getDebugLoc()) 1382 N->setDebugLoc(DebugLoc()); 1383 break; 1384 default: 1385 // When the node's point of use is located earlier in the instruction 1386 // sequence than its prior point of use, update its debug info to the 1387 // earlier location. 1388 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder()) 1389 N->setDebugLoc(DL.getDebugLoc()); 1390 break; 1391 } 1392 } 1393 return N; 1394 } 1395 1396 void SelectionDAG::clear() { 1397 allnodes_clear(); 1398 OperandRecycler.clear(OperandAllocator); 1399 OperandAllocator.Reset(); 1400 CSEMap.clear(); 1401 1402 ExtendedValueTypeNodes.clear(); 1403 ExternalSymbols.clear(); 1404 TargetExternalSymbols.clear(); 1405 MCSymbols.clear(); 1406 SDEI.clear(); 1407 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), 1408 static_cast<CondCodeSDNode*>(nullptr)); 1409 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), 1410 static_cast<SDNode*>(nullptr)); 1411 1412 EntryNode.UseList = nullptr; 1413 InsertNode(&EntryNode); 1414 Root = getEntryNode(); 1415 DbgInfo->clear(); 1416 } 1417 1418 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) { 1419 return VT.bitsGT(Op.getValueType()) 1420 ? getNode(ISD::FP_EXTEND, DL, VT, Op) 1421 : getNode(ISD::FP_ROUND, DL, VT, Op, 1422 getIntPtrConstant(0, DL, /*isTarget=*/true)); 1423 } 1424 1425 std::pair<SDValue, SDValue> 1426 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain, 1427 const SDLoc &DL, EVT VT) { 1428 assert(!VT.bitsEq(Op.getValueType()) && 1429 "Strict no-op FP extend/round not allowed."); 1430 SDValue Res = 1431 VT.bitsGT(Op.getValueType()) 1432 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op}) 1433 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other}, 1434 {Chain, Op, getIntPtrConstant(0, DL)}); 1435 1436 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1)); 1437 } 1438 1439 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1440 return VT.bitsGT(Op.getValueType()) ? 1441 getNode(ISD::ANY_EXTEND, DL, VT, Op) : 1442 getNode(ISD::TRUNCATE, DL, VT, Op); 1443 } 1444 1445 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1446 return VT.bitsGT(Op.getValueType()) ? 1447 getNode(ISD::SIGN_EXTEND, DL, VT, Op) : 1448 getNode(ISD::TRUNCATE, DL, VT, Op); 1449 } 1450 1451 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1452 return VT.bitsGT(Op.getValueType()) ? 1453 getNode(ISD::ZERO_EXTEND, DL, VT, Op) : 1454 getNode(ISD::TRUNCATE, DL, VT, Op); 1455 } 1456 1457 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, 1458 EVT OpVT) { 1459 if (VT.bitsLE(Op.getValueType())) 1460 return getNode(ISD::TRUNCATE, SL, VT, Op); 1461 1462 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); 1463 return getNode(TLI->getExtendForContent(BType), SL, VT, Op); 1464 } 1465 1466 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1467 EVT OpVT = Op.getValueType(); 1468 assert(VT.isInteger() && OpVT.isInteger() && 1469 "Cannot getZeroExtendInReg FP types"); 1470 assert(VT.isVector() == OpVT.isVector() && 1471 "getZeroExtendInReg type should be vector iff the operand " 1472 "type is vector!"); 1473 assert((!VT.isVector() || 1474 VT.getVectorElementCount() == OpVT.getVectorElementCount()) && 1475 "Vector element counts must match in getZeroExtendInReg"); 1476 assert(VT.bitsLE(OpVT) && "Not extending!"); 1477 if (OpVT == VT) 1478 return Op; 1479 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(), 1480 VT.getScalarSizeInBits()); 1481 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT)); 1482 } 1483 1484 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) { 1485 // Only unsigned pointer semantics are supported right now. In the future this 1486 // might delegate to TLI to check pointer signedness. 1487 return getZExtOrTrunc(Op, DL, VT); 1488 } 1489 1490 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) { 1491 // Only unsigned pointer semantics are supported right now. In the future this 1492 // might delegate to TLI to check pointer signedness. 1493 return getZeroExtendInReg(Op, DL, VT); 1494 } 1495 1496 SDValue SelectionDAG::getNegative(SDValue Val, const SDLoc &DL, EVT VT) { 1497 return getNode(ISD::SUB, DL, VT, getConstant(0, DL, VT), Val); 1498 } 1499 1500 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1). 1501 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1502 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT)); 1503 } 1504 1505 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) { 1506 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1507 return getNode(ISD::XOR, DL, VT, Val, TrueValue); 1508 } 1509 1510 SDValue SelectionDAG::getVPLogicalNOT(const SDLoc &DL, SDValue Val, 1511 SDValue Mask, SDValue EVL, EVT VT) { 1512 SDValue TrueValue = getBoolConstant(true, DL, VT, VT); 1513 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL); 1514 } 1515 1516 SDValue SelectionDAG::getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, 1517 SDValue Mask, SDValue EVL) { 1518 return getVPZExtOrTrunc(DL, VT, Op, Mask, EVL); 1519 } 1520 1521 SDValue SelectionDAG::getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, 1522 SDValue Mask, SDValue EVL) { 1523 if (VT.bitsGT(Op.getValueType())) 1524 return getNode(ISD::VP_ZERO_EXTEND, DL, VT, Op, Mask, EVL); 1525 if (VT.bitsLT(Op.getValueType())) 1526 return getNode(ISD::VP_TRUNCATE, DL, VT, Op, Mask, EVL); 1527 return Op; 1528 } 1529 1530 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT, 1531 EVT OpVT) { 1532 if (!V) 1533 return getConstant(0, DL, VT); 1534 1535 switch (TLI->getBooleanContents(OpVT)) { 1536 case TargetLowering::ZeroOrOneBooleanContent: 1537 case TargetLowering::UndefinedBooleanContent: 1538 return getConstant(1, DL, VT); 1539 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1540 return getAllOnesConstant(DL, VT); 1541 } 1542 llvm_unreachable("Unexpected boolean content enum!"); 1543 } 1544 1545 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT, 1546 bool isT, bool isO) { 1547 EVT EltVT = VT.getScalarType(); 1548 assert((EltVT.getSizeInBits() >= 64 || 1549 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && 1550 "getConstant with a uint64_t value that doesn't fit in the type!"); 1551 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); 1552 } 1553 1554 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT, 1555 bool isT, bool isO) { 1556 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); 1557 } 1558 1559 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL, 1560 EVT VT, bool isT, bool isO) { 1561 assert(VT.isInteger() && "Cannot create FP integer constant!"); 1562 1563 EVT EltVT = VT.getScalarType(); 1564 const ConstantInt *Elt = &Val; 1565 1566 // In some cases the vector type is legal but the element type is illegal and 1567 // needs to be promoted, for example v8i8 on ARM. In this case, promote the 1568 // inserted value (the type does not need to match the vector element type). 1569 // Any extra bits introduced will be truncated away. 1570 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == 1571 TargetLowering::TypePromoteInteger) { 1572 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1573 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits()); 1574 Elt = ConstantInt::get(*getContext(), NewVal); 1575 } 1576 // In other cases the element type is illegal and needs to be expanded, for 1577 // example v2i64 on MIPS32. In this case, find the nearest legal type, split 1578 // the value into n parts and use a vector type with n-times the elements. 1579 // Then bitcast to the type requested. 1580 // Legalizing constants too early makes the DAGCombiner's job harder so we 1581 // only legalize if the DAG tells us we must produce legal types. 1582 else if (NewNodesMustHaveLegalTypes && VT.isVector() && 1583 TLI->getTypeAction(*getContext(), EltVT) == 1584 TargetLowering::TypeExpandInteger) { 1585 const APInt &NewVal = Elt->getValue(); 1586 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); 1587 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); 1588 1589 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node. 1590 if (VT.isScalableVector()) { 1591 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 && 1592 "Can only handle an even split!"); 1593 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits; 1594 1595 SmallVector<SDValue, 2> ScalarParts; 1596 for (unsigned i = 0; i != Parts; ++i) 1597 ScalarParts.push_back(getConstant( 1598 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1599 ViaEltVT, isT, isO)); 1600 1601 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts); 1602 } 1603 1604 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; 1605 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); 1606 1607 // Check the temporary vector is the correct size. If this fails then 1608 // getTypeToTransformTo() probably returned a type whose size (in bits) 1609 // isn't a power-of-2 factor of the requested type size. 1610 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); 1611 1612 SmallVector<SDValue, 2> EltParts; 1613 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) 1614 EltParts.push_back(getConstant( 1615 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL, 1616 ViaEltVT, isT, isO)); 1617 1618 // EltParts is currently in little endian order. If we actually want 1619 // big-endian order then reverse it now. 1620 if (getDataLayout().isBigEndian()) 1621 std::reverse(EltParts.begin(), EltParts.end()); 1622 1623 // The elements must be reversed when the element order is different 1624 // to the endianness of the elements (because the BITCAST is itself a 1625 // vector shuffle in this situation). However, we do not need any code to 1626 // perform this reversal because getConstant() is producing a vector 1627 // splat. 1628 // This situation occurs in MIPS MSA. 1629 1630 SmallVector<SDValue, 8> Ops; 1631 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1632 llvm::append_range(Ops, EltParts); 1633 1634 SDValue V = 1635 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops)); 1636 return V; 1637 } 1638 1639 assert(Elt->getBitWidth() == EltVT.getSizeInBits() && 1640 "APInt size does not match type size!"); 1641 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; 1642 FoldingSetNodeID ID; 1643 AddNodeIDNode(ID, Opc, getVTList(EltVT), std::nullopt); 1644 ID.AddPointer(Elt); 1645 ID.AddBoolean(isO); 1646 void *IP = nullptr; 1647 SDNode *N = nullptr; 1648 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1649 if (!VT.isVector()) 1650 return SDValue(N, 0); 1651 1652 if (!N) { 1653 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT); 1654 CSEMap.InsertNode(N, IP); 1655 InsertNode(N); 1656 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this); 1657 } 1658 1659 SDValue Result(N, 0); 1660 if (VT.isVector()) 1661 Result = getSplat(VT, DL, Result); 1662 return Result; 1663 } 1664 1665 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL, 1666 bool isTarget) { 1667 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget); 1668 } 1669 1670 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT, 1671 const SDLoc &DL, bool LegalTypes) { 1672 assert(VT.isInteger() && "Shift amount is not an integer type!"); 1673 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes); 1674 return getConstant(Val, DL, ShiftVT); 1675 } 1676 1677 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL, 1678 bool isTarget) { 1679 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget); 1680 } 1681 1682 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT, 1683 bool isTarget) { 1684 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); 1685 } 1686 1687 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL, 1688 EVT VT, bool isTarget) { 1689 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); 1690 1691 EVT EltVT = VT.getScalarType(); 1692 1693 // Do the map lookup using the actual bit pattern for the floating point 1694 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and 1695 // we don't have issues with SNANs. 1696 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; 1697 FoldingSetNodeID ID; 1698 AddNodeIDNode(ID, Opc, getVTList(EltVT), std::nullopt); 1699 ID.AddPointer(&V); 1700 void *IP = nullptr; 1701 SDNode *N = nullptr; 1702 if ((N = FindNodeOrInsertPos(ID, DL, IP))) 1703 if (!VT.isVector()) 1704 return SDValue(N, 0); 1705 1706 if (!N) { 1707 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT); 1708 CSEMap.InsertNode(N, IP); 1709 InsertNode(N); 1710 } 1711 1712 SDValue Result(N, 0); 1713 if (VT.isVector()) 1714 Result = getSplat(VT, DL, Result); 1715 NewSDValueDbgMsg(Result, "Creating fp constant: ", this); 1716 return Result; 1717 } 1718 1719 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT, 1720 bool isTarget) { 1721 EVT EltVT = VT.getScalarType(); 1722 if (EltVT == MVT::f32) 1723 return getConstantFP(APFloat((float)Val), DL, VT, isTarget); 1724 if (EltVT == MVT::f64) 1725 return getConstantFP(APFloat(Val), DL, VT, isTarget); 1726 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 || 1727 EltVT == MVT::f16 || EltVT == MVT::bf16) { 1728 bool Ignored; 1729 APFloat APF = APFloat(Val); 1730 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, 1731 &Ignored); 1732 return getConstantFP(APF, DL, VT, isTarget); 1733 } 1734 llvm_unreachable("Unsupported type in getConstantFP"); 1735 } 1736 1737 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, 1738 EVT VT, int64_t Offset, bool isTargetGA, 1739 unsigned TargetFlags) { 1740 assert((TargetFlags == 0 || isTargetGA) && 1741 "Cannot set target flags on target-independent globals"); 1742 1743 // Truncate (with sign-extension) the offset value to the pointer size. 1744 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 1745 if (BitWidth < 64) 1746 Offset = SignExtend64(Offset, BitWidth); 1747 1748 unsigned Opc; 1749 if (GV->isThreadLocal()) 1750 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; 1751 else 1752 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; 1753 1754 FoldingSetNodeID ID; 1755 AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt); 1756 ID.AddPointer(GV); 1757 ID.AddInteger(Offset); 1758 ID.AddInteger(TargetFlags); 1759 void *IP = nullptr; 1760 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 1761 return SDValue(E, 0); 1762 1763 auto *N = newSDNode<GlobalAddressSDNode>( 1764 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags); 1765 CSEMap.InsertNode(N, IP); 1766 InsertNode(N); 1767 return SDValue(N, 0); 1768 } 1769 1770 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { 1771 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; 1772 FoldingSetNodeID ID; 1773 AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt); 1774 ID.AddInteger(FI); 1775 void *IP = nullptr; 1776 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1777 return SDValue(E, 0); 1778 1779 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget); 1780 CSEMap.InsertNode(N, IP); 1781 InsertNode(N); 1782 return SDValue(N, 0); 1783 } 1784 1785 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, 1786 unsigned TargetFlags) { 1787 assert((TargetFlags == 0 || isTarget) && 1788 "Cannot set target flags on target-independent jump tables"); 1789 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; 1790 FoldingSetNodeID ID; 1791 AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt); 1792 ID.AddInteger(JTI); 1793 ID.AddInteger(TargetFlags); 1794 void *IP = nullptr; 1795 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1796 return SDValue(E, 0); 1797 1798 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags); 1799 CSEMap.InsertNode(N, IP); 1800 InsertNode(N); 1801 return SDValue(N, 0); 1802 } 1803 1804 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, 1805 MaybeAlign Alignment, int Offset, 1806 bool isTarget, unsigned TargetFlags) { 1807 assert((TargetFlags == 0 || isTarget) && 1808 "Cannot set target flags on target-independent globals"); 1809 if (!Alignment) 1810 Alignment = shouldOptForSize() 1811 ? getDataLayout().getABITypeAlign(C->getType()) 1812 : getDataLayout().getPrefTypeAlign(C->getType()); 1813 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1814 FoldingSetNodeID ID; 1815 AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt); 1816 ID.AddInteger(Alignment->value()); 1817 ID.AddInteger(Offset); 1818 ID.AddPointer(C); 1819 ID.AddInteger(TargetFlags); 1820 void *IP = nullptr; 1821 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1822 return SDValue(E, 0); 1823 1824 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1825 TargetFlags); 1826 CSEMap.InsertNode(N, IP); 1827 InsertNode(N); 1828 SDValue V = SDValue(N, 0); 1829 NewSDValueDbgMsg(V, "Creating new constant pool: ", this); 1830 return V; 1831 } 1832 1833 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, 1834 MaybeAlign Alignment, int Offset, 1835 bool isTarget, unsigned TargetFlags) { 1836 assert((TargetFlags == 0 || isTarget) && 1837 "Cannot set target flags on target-independent globals"); 1838 if (!Alignment) 1839 Alignment = getDataLayout().getPrefTypeAlign(C->getType()); 1840 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; 1841 FoldingSetNodeID ID; 1842 AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt); 1843 ID.AddInteger(Alignment->value()); 1844 ID.AddInteger(Offset); 1845 C->addSelectionDAGCSEId(ID); 1846 ID.AddInteger(TargetFlags); 1847 void *IP = nullptr; 1848 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1849 return SDValue(E, 0); 1850 1851 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment, 1852 TargetFlags); 1853 CSEMap.InsertNode(N, IP); 1854 InsertNode(N); 1855 return SDValue(N, 0); 1856 } 1857 1858 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, 1859 unsigned TargetFlags) { 1860 FoldingSetNodeID ID; 1861 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), std::nullopt); 1862 ID.AddInteger(Index); 1863 ID.AddInteger(Offset); 1864 ID.AddInteger(TargetFlags); 1865 void *IP = nullptr; 1866 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1867 return SDValue(E, 0); 1868 1869 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags); 1870 CSEMap.InsertNode(N, IP); 1871 InsertNode(N); 1872 return SDValue(N, 0); 1873 } 1874 1875 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { 1876 FoldingSetNodeID ID; 1877 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), std::nullopt); 1878 ID.AddPointer(MBB); 1879 void *IP = nullptr; 1880 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 1881 return SDValue(E, 0); 1882 1883 auto *N = newSDNode<BasicBlockSDNode>(MBB); 1884 CSEMap.InsertNode(N, IP); 1885 InsertNode(N); 1886 return SDValue(N, 0); 1887 } 1888 1889 SDValue SelectionDAG::getValueType(EVT VT) { 1890 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= 1891 ValueTypeNodes.size()) 1892 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); 1893 1894 SDNode *&N = VT.isExtended() ? 1895 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; 1896 1897 if (N) return SDValue(N, 0); 1898 N = newSDNode<VTSDNode>(VT); 1899 InsertNode(N); 1900 return SDValue(N, 0); 1901 } 1902 1903 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { 1904 SDNode *&N = ExternalSymbols[Sym]; 1905 if (N) return SDValue(N, 0); 1906 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT); 1907 InsertNode(N); 1908 return SDValue(N, 0); 1909 } 1910 1911 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) { 1912 SDNode *&N = MCSymbols[Sym]; 1913 if (N) 1914 return SDValue(N, 0); 1915 N = newSDNode<MCSymbolSDNode>(Sym, VT); 1916 InsertNode(N); 1917 return SDValue(N, 0); 1918 } 1919 1920 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, 1921 unsigned TargetFlags) { 1922 SDNode *&N = 1923 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)]; 1924 if (N) return SDValue(N, 0); 1925 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT); 1926 InsertNode(N); 1927 return SDValue(N, 0); 1928 } 1929 1930 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { 1931 if ((unsigned)Cond >= CondCodeNodes.size()) 1932 CondCodeNodes.resize(Cond+1); 1933 1934 if (!CondCodeNodes[Cond]) { 1935 auto *N = newSDNode<CondCodeSDNode>(Cond); 1936 CondCodeNodes[Cond] = N; 1937 InsertNode(N); 1938 } 1939 1940 return SDValue(CondCodeNodes[Cond], 0); 1941 } 1942 1943 SDValue SelectionDAG::getVScale(const SDLoc &DL, EVT VT, APInt MulImm, 1944 bool ConstantFold) { 1945 assert(MulImm.getBitWidth() == VT.getSizeInBits() && 1946 "APInt size does not match type size!"); 1947 1948 if (ConstantFold) { 1949 const MachineFunction &MF = getMachineFunction(); 1950 auto Attr = MF.getFunction().getFnAttribute(Attribute::VScaleRange); 1951 if (Attr.isValid()) { 1952 unsigned VScaleMin = Attr.getVScaleRangeMin(); 1953 if (std::optional<unsigned> VScaleMax = Attr.getVScaleRangeMax()) 1954 if (*VScaleMax == VScaleMin) 1955 return getConstant(MulImm * VScaleMin, DL, VT); 1956 } 1957 } 1958 1959 return getNode(ISD::VSCALE, DL, VT, getConstant(MulImm, DL, VT)); 1960 } 1961 1962 SDValue SelectionDAG::getElementCount(const SDLoc &DL, EVT VT, ElementCount EC, 1963 bool ConstantFold) { 1964 if (EC.isScalable()) 1965 return getVScale(DL, VT, 1966 APInt(VT.getSizeInBits(), EC.getKnownMinValue())); 1967 1968 return getConstant(EC.getKnownMinValue(), DL, VT); 1969 } 1970 1971 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT) { 1972 APInt One(ResVT.getScalarSizeInBits(), 1); 1973 return getStepVector(DL, ResVT, One); 1974 } 1975 1976 SDValue SelectionDAG::getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal) { 1977 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth()); 1978 if (ResVT.isScalableVector()) 1979 return getNode( 1980 ISD::STEP_VECTOR, DL, ResVT, 1981 getTargetConstant(StepVal, DL, ResVT.getVectorElementType())); 1982 1983 SmallVector<SDValue, 16> OpsStepConstants; 1984 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++) 1985 OpsStepConstants.push_back( 1986 getConstant(StepVal * i, DL, ResVT.getVectorElementType())); 1987 return getBuildVector(ResVT, DL, OpsStepConstants); 1988 } 1989 1990 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that 1991 /// point at N1 to point at N2 and indices that point at N2 to point at N1. 1992 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) { 1993 std::swap(N1, N2); 1994 ShuffleVectorSDNode::commuteMask(M); 1995 } 1996 1997 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, 1998 SDValue N2, ArrayRef<int> Mask) { 1999 assert(VT.getVectorNumElements() == Mask.size() && 2000 "Must have the same number of vector elements as mask elements!"); 2001 assert(VT == N1.getValueType() && VT == N2.getValueType() && 2002 "Invalid VECTOR_SHUFFLE"); 2003 2004 // Canonicalize shuffle undef, undef -> undef 2005 if (N1.isUndef() && N2.isUndef()) 2006 return getUNDEF(VT); 2007 2008 // Validate that all indices in Mask are within the range of the elements 2009 // input to the shuffle. 2010 int NElts = Mask.size(); 2011 assert(llvm::all_of(Mask, 2012 [&](int M) { return M < (NElts * 2) && M >= -1; }) && 2013 "Index out of range"); 2014 2015 // Copy the mask so we can do any needed cleanup. 2016 SmallVector<int, 8> MaskVec(Mask); 2017 2018 // Canonicalize shuffle v, v -> v, undef 2019 if (N1 == N2) { 2020 N2 = getUNDEF(VT); 2021 for (int i = 0; i != NElts; ++i) 2022 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts; 2023 } 2024 2025 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. 2026 if (N1.isUndef()) 2027 commuteShuffle(N1, N2, MaskVec); 2028 2029 if (TLI->hasVectorBlend()) { 2030 // If shuffling a splat, try to blend the splat instead. We do this here so 2031 // that even when this arises during lowering we don't have to re-handle it. 2032 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { 2033 BitVector UndefElements; 2034 SDValue Splat = BV->getSplatValue(&UndefElements); 2035 if (!Splat) 2036 return; 2037 2038 for (int i = 0; i < NElts; ++i) { 2039 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts)) 2040 continue; 2041 2042 // If this input comes from undef, mark it as such. 2043 if (UndefElements[MaskVec[i] - Offset]) { 2044 MaskVec[i] = -1; 2045 continue; 2046 } 2047 2048 // If we can blend a non-undef lane, use that instead. 2049 if (!UndefElements[i]) 2050 MaskVec[i] = i + Offset; 2051 } 2052 }; 2053 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) 2054 BlendSplat(N1BV, 0); 2055 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) 2056 BlendSplat(N2BV, NElts); 2057 } 2058 2059 // Canonicalize all index into lhs, -> shuffle lhs, undef 2060 // Canonicalize all index into rhs, -> shuffle rhs, undef 2061 bool AllLHS = true, AllRHS = true; 2062 bool N2Undef = N2.isUndef(); 2063 for (int i = 0; i != NElts; ++i) { 2064 if (MaskVec[i] >= NElts) { 2065 if (N2Undef) 2066 MaskVec[i] = -1; 2067 else 2068 AllLHS = false; 2069 } else if (MaskVec[i] >= 0) { 2070 AllRHS = false; 2071 } 2072 } 2073 if (AllLHS && AllRHS) 2074 return getUNDEF(VT); 2075 if (AllLHS && !N2Undef) 2076 N2 = getUNDEF(VT); 2077 if (AllRHS) { 2078 N1 = getUNDEF(VT); 2079 commuteShuffle(N1, N2, MaskVec); 2080 } 2081 // Reset our undef status after accounting for the mask. 2082 N2Undef = N2.isUndef(); 2083 // Re-check whether both sides ended up undef. 2084 if (N1.isUndef() && N2Undef) 2085 return getUNDEF(VT); 2086 2087 // If Identity shuffle return that node. 2088 bool Identity = true, AllSame = true; 2089 for (int i = 0; i != NElts; ++i) { 2090 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false; 2091 if (MaskVec[i] != MaskVec[0]) AllSame = false; 2092 } 2093 if (Identity && NElts) 2094 return N1; 2095 2096 // Shuffling a constant splat doesn't change the result. 2097 if (N2Undef) { 2098 SDValue V = N1; 2099 2100 // Look through any bitcasts. We check that these don't change the number 2101 // (and size) of elements and just changes their types. 2102 while (V.getOpcode() == ISD::BITCAST) 2103 V = V->getOperand(0); 2104 2105 // A splat should always show up as a build vector node. 2106 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2107 BitVector UndefElements; 2108 SDValue Splat = BV->getSplatValue(&UndefElements); 2109 // If this is a splat of an undef, shuffling it is also undef. 2110 if (Splat && Splat.isUndef()) 2111 return getUNDEF(VT); 2112 2113 bool SameNumElts = 2114 V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); 2115 2116 // We only have a splat which can skip shuffles if there is a splatted 2117 // value and no undef lanes rearranged by the shuffle. 2118 if (Splat && UndefElements.none()) { 2119 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the 2120 // number of elements match or the value splatted is a zero constant. 2121 if (SameNumElts) 2122 return N1; 2123 if (auto *C = dyn_cast<ConstantSDNode>(Splat)) 2124 if (C->isZero()) 2125 return N1; 2126 } 2127 2128 // If the shuffle itself creates a splat, build the vector directly. 2129 if (AllSame && SameNumElts) { 2130 EVT BuildVT = BV->getValueType(0); 2131 const SDValue &Splatted = BV->getOperand(MaskVec[0]); 2132 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted); 2133 2134 // We may have jumped through bitcasts, so the type of the 2135 // BUILD_VECTOR may not match the type of the shuffle. 2136 if (BuildVT != VT) 2137 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); 2138 return NewBV; 2139 } 2140 } 2141 } 2142 2143 FoldingSetNodeID ID; 2144 SDValue Ops[2] = { N1, N2 }; 2145 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); 2146 for (int i = 0; i != NElts; ++i) 2147 ID.AddInteger(MaskVec[i]); 2148 2149 void* IP = nullptr; 2150 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2151 return SDValue(E, 0); 2152 2153 // Allocate the mask array for the node out of the BumpPtrAllocator, since 2154 // SDNode doesn't have access to it. This memory will be "leaked" when 2155 // the node is deallocated, but recovered when the NodeAllocator is released. 2156 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); 2157 llvm::copy(MaskVec, MaskAlloc); 2158 2159 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(), 2160 dl.getDebugLoc(), MaskAlloc); 2161 createOperands(N, Ops); 2162 2163 CSEMap.InsertNode(N, IP); 2164 InsertNode(N); 2165 SDValue V = SDValue(N, 0); 2166 NewSDValueDbgMsg(V, "Creating new node: ", this); 2167 return V; 2168 } 2169 2170 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { 2171 EVT VT = SV.getValueType(0); 2172 SmallVector<int, 8> MaskVec(SV.getMask()); 2173 ShuffleVectorSDNode::commuteMask(MaskVec); 2174 2175 SDValue Op0 = SV.getOperand(0); 2176 SDValue Op1 = SV.getOperand(1); 2177 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec); 2178 } 2179 2180 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { 2181 FoldingSetNodeID ID; 2182 AddNodeIDNode(ID, ISD::Register, getVTList(VT), std::nullopt); 2183 ID.AddInteger(RegNo); 2184 void *IP = nullptr; 2185 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2186 return SDValue(E, 0); 2187 2188 auto *N = newSDNode<RegisterSDNode>(RegNo, VT); 2189 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, UA); 2190 CSEMap.InsertNode(N, IP); 2191 InsertNode(N); 2192 return SDValue(N, 0); 2193 } 2194 2195 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { 2196 FoldingSetNodeID ID; 2197 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), std::nullopt); 2198 ID.AddPointer(RegMask); 2199 void *IP = nullptr; 2200 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2201 return SDValue(E, 0); 2202 2203 auto *N = newSDNode<RegisterMaskSDNode>(RegMask); 2204 CSEMap.InsertNode(N, IP); 2205 InsertNode(N); 2206 return SDValue(N, 0); 2207 } 2208 2209 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root, 2210 MCSymbol *Label) { 2211 return getLabelNode(ISD::EH_LABEL, dl, Root, Label); 2212 } 2213 2214 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl, 2215 SDValue Root, MCSymbol *Label) { 2216 FoldingSetNodeID ID; 2217 SDValue Ops[] = { Root }; 2218 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops); 2219 ID.AddPointer(Label); 2220 void *IP = nullptr; 2221 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2222 return SDValue(E, 0); 2223 2224 auto *N = 2225 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label); 2226 createOperands(N, Ops); 2227 2228 CSEMap.InsertNode(N, IP); 2229 InsertNode(N); 2230 return SDValue(N, 0); 2231 } 2232 2233 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, 2234 int64_t Offset, bool isTarget, 2235 unsigned TargetFlags) { 2236 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; 2237 2238 FoldingSetNodeID ID; 2239 AddNodeIDNode(ID, Opc, getVTList(VT), std::nullopt); 2240 ID.AddPointer(BA); 2241 ID.AddInteger(Offset); 2242 ID.AddInteger(TargetFlags); 2243 void *IP = nullptr; 2244 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2245 return SDValue(E, 0); 2246 2247 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags); 2248 CSEMap.InsertNode(N, IP); 2249 InsertNode(N); 2250 return SDValue(N, 0); 2251 } 2252 2253 SDValue SelectionDAG::getSrcValue(const Value *V) { 2254 FoldingSetNodeID ID; 2255 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), std::nullopt); 2256 ID.AddPointer(V); 2257 2258 void *IP = nullptr; 2259 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2260 return SDValue(E, 0); 2261 2262 auto *N = newSDNode<SrcValueSDNode>(V); 2263 CSEMap.InsertNode(N, IP); 2264 InsertNode(N); 2265 return SDValue(N, 0); 2266 } 2267 2268 SDValue SelectionDAG::getMDNode(const MDNode *MD) { 2269 FoldingSetNodeID ID; 2270 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), std::nullopt); 2271 ID.AddPointer(MD); 2272 2273 void *IP = nullptr; 2274 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) 2275 return SDValue(E, 0); 2276 2277 auto *N = newSDNode<MDNodeSDNode>(MD); 2278 CSEMap.InsertNode(N, IP); 2279 InsertNode(N); 2280 return SDValue(N, 0); 2281 } 2282 2283 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { 2284 if (VT == V.getValueType()) 2285 return V; 2286 2287 return getNode(ISD::BITCAST, SDLoc(V), VT, V); 2288 } 2289 2290 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, 2291 unsigned SrcAS, unsigned DestAS) { 2292 SDValue Ops[] = {Ptr}; 2293 FoldingSetNodeID ID; 2294 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); 2295 ID.AddInteger(SrcAS); 2296 ID.AddInteger(DestAS); 2297 2298 void *IP = nullptr; 2299 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 2300 return SDValue(E, 0); 2301 2302 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(), 2303 VT, SrcAS, DestAS); 2304 createOperands(N, Ops); 2305 2306 CSEMap.InsertNode(N, IP); 2307 InsertNode(N); 2308 return SDValue(N, 0); 2309 } 2310 2311 SDValue SelectionDAG::getFreeze(SDValue V) { 2312 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V); 2313 } 2314 2315 /// getShiftAmountOperand - Return the specified value casted to 2316 /// the target's desired shift amount type. 2317 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { 2318 EVT OpTy = Op.getValueType(); 2319 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout()); 2320 if (OpTy == ShTy || OpTy.isVector()) return Op; 2321 2322 return getZExtOrTrunc(Op, SDLoc(Op), ShTy); 2323 } 2324 2325 SDValue SelectionDAG::expandVAArg(SDNode *Node) { 2326 SDLoc dl(Node); 2327 const TargetLowering &TLI = getTargetLoweringInfo(); 2328 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 2329 EVT VT = Node->getValueType(0); 2330 SDValue Tmp1 = Node->getOperand(0); 2331 SDValue Tmp2 = Node->getOperand(1); 2332 const MaybeAlign MA(Node->getConstantOperandVal(3)); 2333 2334 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1, 2335 Tmp2, MachinePointerInfo(V)); 2336 SDValue VAList = VAListLoad; 2337 2338 if (MA && *MA > TLI.getMinStackArgumentAlignment()) { 2339 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2340 getConstant(MA->value() - 1, dl, VAList.getValueType())); 2341 2342 VAList = 2343 getNode(ISD::AND, dl, VAList.getValueType(), VAList, 2344 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType())); 2345 } 2346 2347 // Increment the pointer, VAList, to the next vaarg 2348 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList, 2349 getConstant(getDataLayout().getTypeAllocSize( 2350 VT.getTypeForEVT(*getContext())), 2351 dl, VAList.getValueType())); 2352 // Store the incremented VAList to the legalized pointer 2353 Tmp1 = 2354 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V)); 2355 // Load the actual argument out of the pointer VAList 2356 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo()); 2357 } 2358 2359 SDValue SelectionDAG::expandVACopy(SDNode *Node) { 2360 SDLoc dl(Node); 2361 const TargetLowering &TLI = getTargetLoweringInfo(); 2362 // This defaults to loading a pointer from the input and storing it to the 2363 // output, returning the chain. 2364 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); 2365 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); 2366 SDValue Tmp1 = 2367 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0), 2368 Node->getOperand(2), MachinePointerInfo(VS)); 2369 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), 2370 MachinePointerInfo(VD)); 2371 } 2372 2373 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) { 2374 const DataLayout &DL = getDataLayout(); 2375 Type *Ty = VT.getTypeForEVT(*getContext()); 2376 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2377 2378 if (TLI->isTypeLegal(VT) || !VT.isVector()) 2379 return RedAlign; 2380 2381 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2382 const Align StackAlign = TFI->getStackAlign(); 2383 2384 // See if we can choose a smaller ABI alignment in cases where it's an 2385 // illegal vector type that will get broken down. 2386 if (RedAlign > StackAlign) { 2387 EVT IntermediateVT; 2388 MVT RegisterVT; 2389 unsigned NumIntermediates; 2390 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT, 2391 NumIntermediates, RegisterVT); 2392 Ty = IntermediateVT.getTypeForEVT(*getContext()); 2393 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty); 2394 if (RedAlign2 < RedAlign) 2395 RedAlign = RedAlign2; 2396 } 2397 2398 return RedAlign; 2399 } 2400 2401 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) { 2402 MachineFrameInfo &MFI = MF->getFrameInfo(); 2403 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 2404 int StackID = 0; 2405 if (Bytes.isScalable()) 2406 StackID = TFI->getStackIDForScalableVectors(); 2407 // The stack id gives an indication of whether the object is scalable or 2408 // not, so it's safe to pass in the minimum size here. 2409 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinValue(), Alignment, 2410 false, nullptr, StackID); 2411 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout())); 2412 } 2413 2414 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { 2415 Type *Ty = VT.getTypeForEVT(*getContext()); 2416 Align StackAlign = 2417 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign)); 2418 return CreateStackTemporary(VT.getStoreSize(), StackAlign); 2419 } 2420 2421 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { 2422 TypeSize VT1Size = VT1.getStoreSize(); 2423 TypeSize VT2Size = VT2.getStoreSize(); 2424 assert(VT1Size.isScalable() == VT2Size.isScalable() && 2425 "Don't know how to choose the maximum size when creating a stack " 2426 "temporary"); 2427 TypeSize Bytes = VT1Size.getKnownMinValue() > VT2Size.getKnownMinValue() 2428 ? VT1Size 2429 : VT2Size; 2430 2431 Type *Ty1 = VT1.getTypeForEVT(*getContext()); 2432 Type *Ty2 = VT2.getTypeForEVT(*getContext()); 2433 const DataLayout &DL = getDataLayout(); 2434 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2)); 2435 return CreateStackTemporary(Bytes, Align); 2436 } 2437 2438 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2, 2439 ISD::CondCode Cond, const SDLoc &dl) { 2440 EVT OpVT = N1.getValueType(); 2441 2442 auto GetUndefBooleanConstant = [&]() { 2443 if (VT.getScalarType() == MVT::i1 || 2444 TLI->getBooleanContents(OpVT) == 2445 TargetLowering::UndefinedBooleanContent) 2446 return getUNDEF(VT); 2447 // ZeroOrOne / ZeroOrNegative require specific values for the high bits, 2448 // so we cannot use getUNDEF(). Return zero instead. 2449 return getConstant(0, dl, VT); 2450 }; 2451 2452 // These setcc operations always fold. 2453 switch (Cond) { 2454 default: break; 2455 case ISD::SETFALSE: 2456 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT); 2457 case ISD::SETTRUE: 2458 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT); 2459 2460 case ISD::SETOEQ: 2461 case ISD::SETOGT: 2462 case ISD::SETOGE: 2463 case ISD::SETOLT: 2464 case ISD::SETOLE: 2465 case ISD::SETONE: 2466 case ISD::SETO: 2467 case ISD::SETUO: 2468 case ISD::SETUEQ: 2469 case ISD::SETUNE: 2470 assert(!OpVT.isInteger() && "Illegal setcc for integer!"); 2471 break; 2472 } 2473 2474 if (OpVT.isInteger()) { 2475 // For EQ and NE, we can always pick a value for the undef to make the 2476 // predicate pass or fail, so we can return undef. 2477 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2478 // icmp eq/ne X, undef -> undef. 2479 if ((N1.isUndef() || N2.isUndef()) && 2480 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) 2481 return GetUndefBooleanConstant(); 2482 2483 // If both operands are undef, we can return undef for int comparison. 2484 // icmp undef, undef -> undef. 2485 if (N1.isUndef() && N2.isUndef()) 2486 return GetUndefBooleanConstant(); 2487 2488 // icmp X, X -> true/false 2489 // icmp X, undef -> true/false because undef could be X. 2490 if (N1 == N2) 2491 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT); 2492 } 2493 2494 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) { 2495 const APInt &C2 = N2C->getAPIntValue(); 2496 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) { 2497 const APInt &C1 = N1C->getAPIntValue(); 2498 2499 return getBoolConstant(ICmpInst::compare(C1, C2, getICmpCondCode(Cond)), 2500 dl, VT, OpVT); 2501 } 2502 } 2503 2504 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 2505 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 2506 2507 if (N1CFP && N2CFP) { 2508 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF()); 2509 switch (Cond) { 2510 default: break; 2511 case ISD::SETEQ: if (R==APFloat::cmpUnordered) 2512 return GetUndefBooleanConstant(); 2513 [[fallthrough]]; 2514 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT, 2515 OpVT); 2516 case ISD::SETNE: if (R==APFloat::cmpUnordered) 2517 return GetUndefBooleanConstant(); 2518 [[fallthrough]]; 2519 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2520 R==APFloat::cmpLessThan, dl, VT, 2521 OpVT); 2522 case ISD::SETLT: if (R==APFloat::cmpUnordered) 2523 return GetUndefBooleanConstant(); 2524 [[fallthrough]]; 2525 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT, 2526 OpVT); 2527 case ISD::SETGT: if (R==APFloat::cmpUnordered) 2528 return GetUndefBooleanConstant(); 2529 [[fallthrough]]; 2530 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl, 2531 VT, OpVT); 2532 case ISD::SETLE: if (R==APFloat::cmpUnordered) 2533 return GetUndefBooleanConstant(); 2534 [[fallthrough]]; 2535 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan || 2536 R==APFloat::cmpEqual, dl, VT, 2537 OpVT); 2538 case ISD::SETGE: if (R==APFloat::cmpUnordered) 2539 return GetUndefBooleanConstant(); 2540 [[fallthrough]]; 2541 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan || 2542 R==APFloat::cmpEqual, dl, VT, OpVT); 2543 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT, 2544 OpVT); 2545 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT, 2546 OpVT); 2547 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered || 2548 R==APFloat::cmpEqual, dl, VT, 2549 OpVT); 2550 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT, 2551 OpVT); 2552 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered || 2553 R==APFloat::cmpLessThan, dl, VT, 2554 OpVT); 2555 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan || 2556 R==APFloat::cmpUnordered, dl, VT, 2557 OpVT); 2558 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl, 2559 VT, OpVT); 2560 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT, 2561 OpVT); 2562 } 2563 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) { 2564 // Ensure that the constant occurs on the RHS. 2565 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); 2566 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT())) 2567 return SDValue(); 2568 return getSetCC(dl, VT, N2, N1, SwappedCond); 2569 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) || 2570 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) { 2571 // If an operand is known to be a nan (or undef that could be a nan), we can 2572 // fold it. 2573 // Choosing NaN for the undef will always make unordered comparison succeed 2574 // and ordered comparison fails. 2575 // Matches behavior in llvm::ConstantFoldCompareInstruction. 2576 switch (ISD::getUnorderedFlavor(Cond)) { 2577 default: 2578 llvm_unreachable("Unknown flavor!"); 2579 case 0: // Known false. 2580 return getBoolConstant(false, dl, VT, OpVT); 2581 case 1: // Known true. 2582 return getBoolConstant(true, dl, VT, OpVT); 2583 case 2: // Undefined. 2584 return GetUndefBooleanConstant(); 2585 } 2586 } 2587 2588 // Could not fold it. 2589 return SDValue(); 2590 } 2591 2592 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We 2593 /// use this predicate to simplify operations downstream. 2594 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { 2595 unsigned BitWidth = Op.getScalarValueSizeInBits(); 2596 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth); 2597 } 2598 2599 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 2600 /// this predicate to simplify operations downstream. Mask is known to be zero 2601 /// for bits that V cannot have. 2602 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2603 unsigned Depth) const { 2604 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero); 2605 } 2606 2607 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in 2608 /// DemandedElts. We use this predicate to simplify operations downstream. 2609 /// Mask is known to be zero for bits that V cannot have. 2610 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask, 2611 const APInt &DemandedElts, 2612 unsigned Depth) const { 2613 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero); 2614 } 2615 2616 /// MaskedVectorIsZero - Return true if 'Op' is known to be zero in 2617 /// DemandedElts. We use this predicate to simplify operations downstream. 2618 bool SelectionDAG::MaskedVectorIsZero(SDValue V, const APInt &DemandedElts, 2619 unsigned Depth /* = 0 */) const { 2620 return computeKnownBits(V, DemandedElts, Depth).isZero(); 2621 } 2622 2623 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'. 2624 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask, 2625 unsigned Depth) const { 2626 return Mask.isSubsetOf(computeKnownBits(V, Depth).One); 2627 } 2628 2629 APInt SelectionDAG::computeVectorKnownZeroElements(SDValue Op, 2630 const APInt &DemandedElts, 2631 unsigned Depth) const { 2632 EVT VT = Op.getValueType(); 2633 assert(VT.isVector() && !VT.isScalableVector() && "Only for fixed vectors!"); 2634 2635 unsigned NumElts = VT.getVectorNumElements(); 2636 assert(DemandedElts.getBitWidth() == NumElts && "Unexpected demanded mask."); 2637 2638 APInt KnownZeroElements = APInt::getZero(NumElts); 2639 for (unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) { 2640 if (!DemandedElts[EltIdx]) 2641 continue; // Don't query elements that are not demanded. 2642 APInt Mask = APInt::getOneBitSet(NumElts, EltIdx); 2643 if (MaskedVectorIsZero(Op, Mask, Depth)) 2644 KnownZeroElements.setBit(EltIdx); 2645 } 2646 return KnownZeroElements; 2647 } 2648 2649 /// isSplatValue - Return true if the vector V has the same value 2650 /// across all DemandedElts. For scalable vectors, we don't know the 2651 /// number of lanes at compile time. Instead, we use a 1 bit APInt 2652 /// to represent a conservative value for all lanes; that is, that 2653 /// one bit value is implicitly splatted across all lanes. 2654 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts, 2655 APInt &UndefElts, unsigned Depth) const { 2656 unsigned Opcode = V.getOpcode(); 2657 EVT VT = V.getValueType(); 2658 assert(VT.isVector() && "Vector type expected"); 2659 assert((!VT.isScalableVector() || DemandedElts.getBitWidth() == 1) && 2660 "scalable demanded bits are ignored"); 2661 2662 if (!DemandedElts) 2663 return false; // No demanded elts, better to assume we don't know anything. 2664 2665 if (Depth >= MaxRecursionDepth) 2666 return false; // Limit search depth. 2667 2668 // Deal with some common cases here that work for both fixed and scalable 2669 // vector types. 2670 switch (Opcode) { 2671 case ISD::SPLAT_VECTOR: 2672 UndefElts = V.getOperand(0).isUndef() 2673 ? APInt::getAllOnes(DemandedElts.getBitWidth()) 2674 : APInt(DemandedElts.getBitWidth(), 0); 2675 return true; 2676 case ISD::ADD: 2677 case ISD::SUB: 2678 case ISD::AND: 2679 case ISD::XOR: 2680 case ISD::OR: { 2681 APInt UndefLHS, UndefRHS; 2682 SDValue LHS = V.getOperand(0); 2683 SDValue RHS = V.getOperand(1); 2684 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) && 2685 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1)) { 2686 UndefElts = UndefLHS | UndefRHS; 2687 return true; 2688 } 2689 return false; 2690 } 2691 case ISD::ABS: 2692 case ISD::TRUNCATE: 2693 case ISD::SIGN_EXTEND: 2694 case ISD::ZERO_EXTEND: 2695 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1); 2696 default: 2697 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 2698 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 2699 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *this, 2700 Depth); 2701 break; 2702 } 2703 2704 // We don't support other cases than those above for scalable vectors at 2705 // the moment. 2706 if (VT.isScalableVector()) 2707 return false; 2708 2709 unsigned NumElts = VT.getVectorNumElements(); 2710 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch"); 2711 UndefElts = APInt::getZero(NumElts); 2712 2713 switch (Opcode) { 2714 case ISD::BUILD_VECTOR: { 2715 SDValue Scl; 2716 for (unsigned i = 0; i != NumElts; ++i) { 2717 SDValue Op = V.getOperand(i); 2718 if (Op.isUndef()) { 2719 UndefElts.setBit(i); 2720 continue; 2721 } 2722 if (!DemandedElts[i]) 2723 continue; 2724 if (Scl && Scl != Op) 2725 return false; 2726 Scl = Op; 2727 } 2728 return true; 2729 } 2730 case ISD::VECTOR_SHUFFLE: { 2731 // Check if this is a shuffle node doing a splat or a shuffle of a splat. 2732 APInt DemandedLHS = APInt::getZero(NumElts); 2733 APInt DemandedRHS = APInt::getZero(NumElts); 2734 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask(); 2735 for (int i = 0; i != (int)NumElts; ++i) { 2736 int M = Mask[i]; 2737 if (M < 0) { 2738 UndefElts.setBit(i); 2739 continue; 2740 } 2741 if (!DemandedElts[i]) 2742 continue; 2743 if (M < (int)NumElts) 2744 DemandedLHS.setBit(M); 2745 else 2746 DemandedRHS.setBit(M - NumElts); 2747 } 2748 2749 // If we aren't demanding either op, assume there's no splat. 2750 // If we are demanding both ops, assume there's no splat. 2751 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) || 2752 (!DemandedLHS.isZero() && !DemandedRHS.isZero())) 2753 return false; 2754 2755 // See if the demanded elts of the source op is a splat or we only demand 2756 // one element, which should always be a splat. 2757 // TODO: Handle source ops splats with undefs. 2758 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) { 2759 APInt SrcUndefs; 2760 return (SrcElts.popcount() == 1) || 2761 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) && 2762 (SrcElts & SrcUndefs).isZero()); 2763 }; 2764 if (!DemandedLHS.isZero()) 2765 return CheckSplatSrc(V.getOperand(0), DemandedLHS); 2766 return CheckSplatSrc(V.getOperand(1), DemandedRHS); 2767 } 2768 case ISD::EXTRACT_SUBVECTOR: { 2769 // Offset the demanded elts by the subvector index. 2770 SDValue Src = V.getOperand(0); 2771 // We don't support scalable vectors at the moment. 2772 if (Src.getValueType().isScalableVector()) 2773 return false; 2774 uint64_t Idx = V.getConstantOperandVal(1); 2775 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2776 APInt UndefSrcElts; 2777 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 2778 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2779 UndefElts = UndefSrcElts.extractBits(NumElts, Idx); 2780 return true; 2781 } 2782 break; 2783 } 2784 case ISD::ANY_EXTEND_VECTOR_INREG: 2785 case ISD::SIGN_EXTEND_VECTOR_INREG: 2786 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2787 // Widen the demanded elts by the src element count. 2788 SDValue Src = V.getOperand(0); 2789 // We don't support scalable vectors at the moment. 2790 if (Src.getValueType().isScalableVector()) 2791 return false; 2792 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2793 APInt UndefSrcElts; 2794 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 2795 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) { 2796 UndefElts = UndefSrcElts.trunc(NumElts); 2797 return true; 2798 } 2799 break; 2800 } 2801 case ISD::BITCAST: { 2802 SDValue Src = V.getOperand(0); 2803 EVT SrcVT = Src.getValueType(); 2804 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits(); 2805 unsigned BitWidth = VT.getScalarSizeInBits(); 2806 2807 // Ignore bitcasts from unsupported types. 2808 // TODO: Add fp support? 2809 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger()) 2810 break; 2811 2812 // Bitcast 'small element' vector to 'large element' vector. 2813 if ((BitWidth % SrcBitWidth) == 0) { 2814 // See if each sub element is a splat. 2815 unsigned Scale = BitWidth / SrcBitWidth; 2816 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2817 APInt ScaledDemandedElts = 2818 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2819 for (unsigned I = 0; I != Scale; ++I) { 2820 APInt SubUndefElts; 2821 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I); 2822 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt); 2823 SubDemandedElts &= ScaledDemandedElts; 2824 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1)) 2825 return false; 2826 // TODO: Add support for merging sub undef elements. 2827 if (!SubUndefElts.isZero()) 2828 return false; 2829 } 2830 return true; 2831 } 2832 break; 2833 } 2834 } 2835 2836 return false; 2837 } 2838 2839 /// Helper wrapper to main isSplatValue function. 2840 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const { 2841 EVT VT = V.getValueType(); 2842 assert(VT.isVector() && "Vector type expected"); 2843 2844 APInt UndefElts; 2845 // Since the number of lanes in a scalable vector is unknown at compile time, 2846 // we track one bit which is implicitly broadcast to all lanes. This means 2847 // that all lanes in a scalable vector are considered demanded. 2848 APInt DemandedElts 2849 = APInt::getAllOnes(VT.isScalableVector() ? 1 : VT.getVectorNumElements()); 2850 return isSplatValue(V, DemandedElts, UndefElts) && 2851 (AllowUndefs || !UndefElts); 2852 } 2853 2854 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) { 2855 V = peekThroughExtractSubvectors(V); 2856 2857 EVT VT = V.getValueType(); 2858 unsigned Opcode = V.getOpcode(); 2859 switch (Opcode) { 2860 default: { 2861 APInt UndefElts; 2862 // Since the number of lanes in a scalable vector is unknown at compile time, 2863 // we track one bit which is implicitly broadcast to all lanes. This means 2864 // that all lanes in a scalable vector are considered demanded. 2865 APInt DemandedElts 2866 = APInt::getAllOnes(VT.isScalableVector() ? 1 : VT.getVectorNumElements()); 2867 2868 if (isSplatValue(V, DemandedElts, UndefElts)) { 2869 if (VT.isScalableVector()) { 2870 // DemandedElts and UndefElts are ignored for scalable vectors, since 2871 // the only supported cases are SPLAT_VECTOR nodes. 2872 SplatIdx = 0; 2873 } else { 2874 // Handle case where all demanded elements are UNDEF. 2875 if (DemandedElts.isSubsetOf(UndefElts)) { 2876 SplatIdx = 0; 2877 return getUNDEF(VT); 2878 } 2879 SplatIdx = (UndefElts & DemandedElts).countr_one(); 2880 } 2881 return V; 2882 } 2883 break; 2884 } 2885 case ISD::SPLAT_VECTOR: 2886 SplatIdx = 0; 2887 return V; 2888 case ISD::VECTOR_SHUFFLE: { 2889 assert(!VT.isScalableVector()); 2890 // Check if this is a shuffle node doing a splat. 2891 // TODO - remove this and rely purely on SelectionDAG::isSplatValue, 2892 // getTargetVShiftNode currently struggles without the splat source. 2893 auto *SVN = cast<ShuffleVectorSDNode>(V); 2894 if (!SVN->isSplat()) 2895 break; 2896 int Idx = SVN->getSplatIndex(); 2897 int NumElts = V.getValueType().getVectorNumElements(); 2898 SplatIdx = Idx % NumElts; 2899 return V.getOperand(Idx / NumElts); 2900 } 2901 } 2902 2903 return SDValue(); 2904 } 2905 2906 SDValue SelectionDAG::getSplatValue(SDValue V, bool LegalTypes) { 2907 int SplatIdx; 2908 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) { 2909 EVT SVT = SrcVector.getValueType().getScalarType(); 2910 EVT LegalSVT = SVT; 2911 if (LegalTypes && !TLI->isTypeLegal(SVT)) { 2912 if (!SVT.isInteger()) 2913 return SDValue(); 2914 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 2915 if (LegalSVT.bitsLT(SVT)) 2916 return SDValue(); 2917 } 2918 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), LegalSVT, SrcVector, 2919 getVectorIdxConstant(SplatIdx, SDLoc(V))); 2920 } 2921 return SDValue(); 2922 } 2923 2924 const APInt * 2925 SelectionDAG::getValidShiftAmountConstant(SDValue V, 2926 const APInt &DemandedElts) const { 2927 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2928 V.getOpcode() == ISD::SRA) && 2929 "Unknown shift node"); 2930 unsigned BitWidth = V.getScalarValueSizeInBits(); 2931 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) { 2932 // Shifting more than the bitwidth is not valid. 2933 const APInt &ShAmt = SA->getAPIntValue(); 2934 if (ShAmt.ult(BitWidth)) 2935 return &ShAmt; 2936 } 2937 return nullptr; 2938 } 2939 2940 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant( 2941 SDValue V, const APInt &DemandedElts) const { 2942 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2943 V.getOpcode() == ISD::SRA) && 2944 "Unknown shift node"); 2945 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2946 return ValidAmt; 2947 unsigned BitWidth = V.getScalarValueSizeInBits(); 2948 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2949 if (!BV) 2950 return nullptr; 2951 const APInt *MinShAmt = nullptr; 2952 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2953 if (!DemandedElts[i]) 2954 continue; 2955 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2956 if (!SA) 2957 return nullptr; 2958 // Shifting more than the bitwidth is not valid. 2959 const APInt &ShAmt = SA->getAPIntValue(); 2960 if (ShAmt.uge(BitWidth)) 2961 return nullptr; 2962 if (MinShAmt && MinShAmt->ule(ShAmt)) 2963 continue; 2964 MinShAmt = &ShAmt; 2965 } 2966 return MinShAmt; 2967 } 2968 2969 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant( 2970 SDValue V, const APInt &DemandedElts) const { 2971 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL || 2972 V.getOpcode() == ISD::SRA) && 2973 "Unknown shift node"); 2974 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts)) 2975 return ValidAmt; 2976 unsigned BitWidth = V.getScalarValueSizeInBits(); 2977 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1)); 2978 if (!BV) 2979 return nullptr; 2980 const APInt *MaxShAmt = nullptr; 2981 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { 2982 if (!DemandedElts[i]) 2983 continue; 2984 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i)); 2985 if (!SA) 2986 return nullptr; 2987 // Shifting more than the bitwidth is not valid. 2988 const APInt &ShAmt = SA->getAPIntValue(); 2989 if (ShAmt.uge(BitWidth)) 2990 return nullptr; 2991 if (MaxShAmt && MaxShAmt->uge(ShAmt)) 2992 continue; 2993 MaxShAmt = &ShAmt; 2994 } 2995 return MaxShAmt; 2996 } 2997 2998 /// Determine which bits of Op are known to be either zero or one and return 2999 /// them in Known. For vectors, the known bits are those that are shared by 3000 /// every vector element. 3001 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const { 3002 EVT VT = Op.getValueType(); 3003 3004 // Since the number of lanes in a scalable vector is unknown at compile time, 3005 // we track one bit which is implicitly broadcast to all lanes. This means 3006 // that all lanes in a scalable vector are considered demanded. 3007 APInt DemandedElts = VT.isFixedLengthVector() 3008 ? APInt::getAllOnes(VT.getVectorNumElements()) 3009 : APInt(1, 1); 3010 return computeKnownBits(Op, DemandedElts, Depth); 3011 } 3012 3013 /// Determine which bits of Op are known to be either zero or one and return 3014 /// them in Known. The DemandedElts argument allows us to only collect the known 3015 /// bits that are shared by the requested vector elements. 3016 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts, 3017 unsigned Depth) const { 3018 unsigned BitWidth = Op.getScalarValueSizeInBits(); 3019 3020 KnownBits Known(BitWidth); // Don't know anything. 3021 3022 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 3023 // We know all of the bits for a constant! 3024 return KnownBits::makeConstant(C->getAPIntValue()); 3025 } 3026 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) { 3027 // We know all of the bits for a constant fp! 3028 return KnownBits::makeConstant(C->getValueAPF().bitcastToAPInt()); 3029 } 3030 3031 if (Depth >= MaxRecursionDepth) 3032 return Known; // Limit search depth. 3033 3034 KnownBits Known2; 3035 unsigned NumElts = DemandedElts.getBitWidth(); 3036 assert((!Op.getValueType().isFixedLengthVector() || 3037 NumElts == Op.getValueType().getVectorNumElements()) && 3038 "Unexpected vector size"); 3039 3040 if (!DemandedElts) 3041 return Known; // No demanded elts, better to assume we don't know anything. 3042 3043 unsigned Opcode = Op.getOpcode(); 3044 switch (Opcode) { 3045 case ISD::MERGE_VALUES: 3046 return computeKnownBits(Op.getOperand(Op.getResNo()), DemandedElts, 3047 Depth + 1); 3048 case ISD::SPLAT_VECTOR: { 3049 SDValue SrcOp = Op.getOperand(0); 3050 assert(SrcOp.getValueSizeInBits() >= BitWidth && 3051 "Expected SPLAT_VECTOR implicit truncation"); 3052 // Implicitly truncate the bits to match the official semantics of 3053 // SPLAT_VECTOR. 3054 Known = computeKnownBits(SrcOp, Depth + 1).trunc(BitWidth); 3055 break; 3056 } 3057 case ISD::BUILD_VECTOR: 3058 assert(!Op.getValueType().isScalableVector()); 3059 // Collect the known bits that are shared by every demanded vector element. 3060 Known.Zero.setAllBits(); Known.One.setAllBits(); 3061 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) { 3062 if (!DemandedElts[i]) 3063 continue; 3064 3065 SDValue SrcOp = Op.getOperand(i); 3066 Known2 = computeKnownBits(SrcOp, Depth + 1); 3067 3068 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 3069 if (SrcOp.getValueSizeInBits() != BitWidth) { 3070 assert(SrcOp.getValueSizeInBits() > BitWidth && 3071 "Expected BUILD_VECTOR implicit truncation"); 3072 Known2 = Known2.trunc(BitWidth); 3073 } 3074 3075 // Known bits are the values that are shared by every demanded element. 3076 Known = Known.intersectWith(Known2); 3077 3078 // If we don't know any bits, early out. 3079 if (Known.isUnknown()) 3080 break; 3081 } 3082 break; 3083 case ISD::VECTOR_SHUFFLE: { 3084 assert(!Op.getValueType().isScalableVector()); 3085 // Collect the known bits that are shared by every vector element referenced 3086 // by the shuffle. 3087 APInt DemandedLHS, DemandedRHS; 3088 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 3089 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 3090 if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts, 3091 DemandedLHS, DemandedRHS)) 3092 break; 3093 3094 // Known bits are the values that are shared by every demanded element. 3095 Known.Zero.setAllBits(); Known.One.setAllBits(); 3096 if (!!DemandedLHS) { 3097 SDValue LHS = Op.getOperand(0); 3098 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1); 3099 Known = Known.intersectWith(Known2); 3100 } 3101 // If we don't know any bits, early out. 3102 if (Known.isUnknown()) 3103 break; 3104 if (!!DemandedRHS) { 3105 SDValue RHS = Op.getOperand(1); 3106 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1); 3107 Known = Known.intersectWith(Known2); 3108 } 3109 break; 3110 } 3111 case ISD::VSCALE: { 3112 const Function &F = getMachineFunction().getFunction(); 3113 const APInt &Multiplier = Op.getConstantOperandAPInt(0); 3114 Known = getVScaleRange(&F, BitWidth).multiply(Multiplier).toKnownBits(); 3115 break; 3116 } 3117 case ISD::CONCAT_VECTORS: { 3118 if (Op.getValueType().isScalableVector()) 3119 break; 3120 // Split DemandedElts and test each of the demanded subvectors. 3121 Known.Zero.setAllBits(); Known.One.setAllBits(); 3122 EVT SubVectorVT = Op.getOperand(0).getValueType(); 3123 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 3124 unsigned NumSubVectors = Op.getNumOperands(); 3125 for (unsigned i = 0; i != NumSubVectors; ++i) { 3126 APInt DemandedSub = 3127 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 3128 if (!!DemandedSub) { 3129 SDValue Sub = Op.getOperand(i); 3130 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1); 3131 Known = Known.intersectWith(Known2); 3132 } 3133 // If we don't know any bits, early out. 3134 if (Known.isUnknown()) 3135 break; 3136 } 3137 break; 3138 } 3139 case ISD::INSERT_SUBVECTOR: { 3140 if (Op.getValueType().isScalableVector()) 3141 break; 3142 // Demand any elements from the subvector and the remainder from the src its 3143 // inserted into. 3144 SDValue Src = Op.getOperand(0); 3145 SDValue Sub = Op.getOperand(1); 3146 uint64_t Idx = Op.getConstantOperandVal(2); 3147 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 3148 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 3149 APInt DemandedSrcElts = DemandedElts; 3150 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 3151 3152 Known.One.setAllBits(); 3153 Known.Zero.setAllBits(); 3154 if (!!DemandedSubElts) { 3155 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1); 3156 if (Known.isUnknown()) 3157 break; // early-out. 3158 } 3159 if (!!DemandedSrcElts) { 3160 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3161 Known = Known.intersectWith(Known2); 3162 } 3163 break; 3164 } 3165 case ISD::EXTRACT_SUBVECTOR: { 3166 // Offset the demanded elts by the subvector index. 3167 SDValue Src = Op.getOperand(0); 3168 // Bail until we can represent demanded elements for scalable vectors. 3169 if (Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector()) 3170 break; 3171 uint64_t Idx = Op.getConstantOperandVal(1); 3172 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3173 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3174 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1); 3175 break; 3176 } 3177 case ISD::SCALAR_TO_VECTOR: { 3178 if (Op.getValueType().isScalableVector()) 3179 break; 3180 // We know about scalar_to_vector as much as we know about it source, 3181 // which becomes the first element of otherwise unknown vector. 3182 if (DemandedElts != 1) 3183 break; 3184 3185 SDValue N0 = Op.getOperand(0); 3186 Known = computeKnownBits(N0, Depth + 1); 3187 if (N0.getValueSizeInBits() != BitWidth) 3188 Known = Known.trunc(BitWidth); 3189 3190 break; 3191 } 3192 case ISD::BITCAST: { 3193 if (Op.getValueType().isScalableVector()) 3194 break; 3195 3196 SDValue N0 = Op.getOperand(0); 3197 EVT SubVT = N0.getValueType(); 3198 unsigned SubBitWidth = SubVT.getScalarSizeInBits(); 3199 3200 // Ignore bitcasts from unsupported types. 3201 if (!(SubVT.isInteger() || SubVT.isFloatingPoint())) 3202 break; 3203 3204 // Fast handling of 'identity' bitcasts. 3205 if (BitWidth == SubBitWidth) { 3206 Known = computeKnownBits(N0, DemandedElts, Depth + 1); 3207 break; 3208 } 3209 3210 bool IsLE = getDataLayout().isLittleEndian(); 3211 3212 // Bitcast 'small element' vector to 'large element' scalar/vector. 3213 if ((BitWidth % SubBitWidth) == 0) { 3214 assert(N0.getValueType().isVector() && "Expected bitcast from vector"); 3215 3216 // Collect known bits for the (larger) output by collecting the known 3217 // bits from each set of sub elements and shift these into place. 3218 // We need to separately call computeKnownBits for each set of 3219 // sub elements as the knownbits for each is likely to be different. 3220 unsigned SubScale = BitWidth / SubBitWidth; 3221 APInt SubDemandedElts(NumElts * SubScale, 0); 3222 for (unsigned i = 0; i != NumElts; ++i) 3223 if (DemandedElts[i]) 3224 SubDemandedElts.setBit(i * SubScale); 3225 3226 for (unsigned i = 0; i != SubScale; ++i) { 3227 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i), 3228 Depth + 1); 3229 unsigned Shifts = IsLE ? i : SubScale - 1 - i; 3230 Known.insertBits(Known2, SubBitWidth * Shifts); 3231 } 3232 } 3233 3234 // Bitcast 'large element' scalar/vector to 'small element' vector. 3235 if ((SubBitWidth % BitWidth) == 0) { 3236 assert(Op.getValueType().isVector() && "Expected bitcast to vector"); 3237 3238 // Collect known bits for the (smaller) output by collecting the known 3239 // bits from the overlapping larger input elements and extracting the 3240 // sub sections we actually care about. 3241 unsigned SubScale = SubBitWidth / BitWidth; 3242 APInt SubDemandedElts = 3243 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale); 3244 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1); 3245 3246 Known.Zero.setAllBits(); Known.One.setAllBits(); 3247 for (unsigned i = 0; i != NumElts; ++i) 3248 if (DemandedElts[i]) { 3249 unsigned Shifts = IsLE ? i : NumElts - 1 - i; 3250 unsigned Offset = (Shifts % SubScale) * BitWidth; 3251 Known = Known.intersectWith(Known2.extractBits(BitWidth, Offset)); 3252 // If we don't know any bits, early out. 3253 if (Known.isUnknown()) 3254 break; 3255 } 3256 } 3257 break; 3258 } 3259 case ISD::AND: 3260 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3261 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3262 3263 Known &= Known2; 3264 break; 3265 case ISD::OR: 3266 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3267 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3268 3269 Known |= Known2; 3270 break; 3271 case ISD::XOR: 3272 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3273 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3274 3275 Known ^= Known2; 3276 break; 3277 case ISD::MUL: { 3278 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3279 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3280 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3281 // TODO: SelfMultiply can be poison, but not undef. 3282 if (SelfMultiply) 3283 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison( 3284 Op.getOperand(0), DemandedElts, false, Depth + 1); 3285 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3286 3287 // If the multiplication is known not to overflow, the product of a number 3288 // with itself is non-negative. Only do this if we didn't already computed 3289 // the opposite value for the sign bit. 3290 if (Op->getFlags().hasNoSignedWrap() && 3291 Op.getOperand(0) == Op.getOperand(1) && 3292 !Known.isNegative()) 3293 Known.makeNonNegative(); 3294 break; 3295 } 3296 case ISD::MULHU: { 3297 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3298 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3299 Known = KnownBits::mulhu(Known, Known2); 3300 break; 3301 } 3302 case ISD::MULHS: { 3303 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3304 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3305 Known = KnownBits::mulhs(Known, Known2); 3306 break; 3307 } 3308 case ISD::UMUL_LOHI: { 3309 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3310 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3311 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3312 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3313 if (Op.getResNo() == 0) 3314 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3315 else 3316 Known = KnownBits::mulhu(Known, Known2); 3317 break; 3318 } 3319 case ISD::SMUL_LOHI: { 3320 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3321 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3322 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3323 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1); 3324 if (Op.getResNo() == 0) 3325 Known = KnownBits::mul(Known, Known2, SelfMultiply); 3326 else 3327 Known = KnownBits::mulhs(Known, Known2); 3328 break; 3329 } 3330 case ISD::AVGCEILU: { 3331 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3332 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3333 Known = Known.zext(BitWidth + 1); 3334 Known2 = Known2.zext(BitWidth + 1); 3335 KnownBits One = KnownBits::makeConstant(APInt(1, 1)); 3336 Known = KnownBits::computeForAddCarry(Known, Known2, One); 3337 Known = Known.extractBits(BitWidth, 1); 3338 break; 3339 } 3340 case ISD::SELECT: 3341 case ISD::VSELECT: 3342 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3343 // If we don't know any bits, early out. 3344 if (Known.isUnknown()) 3345 break; 3346 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1); 3347 3348 // Only known if known in both the LHS and RHS. 3349 Known = Known.intersectWith(Known2); 3350 break; 3351 case ISD::SELECT_CC: 3352 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1); 3353 // If we don't know any bits, early out. 3354 if (Known.isUnknown()) 3355 break; 3356 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1); 3357 3358 // Only known if known in both the LHS and RHS. 3359 Known = Known.intersectWith(Known2); 3360 break; 3361 case ISD::SMULO: 3362 case ISD::UMULO: 3363 if (Op.getResNo() != 1) 3364 break; 3365 // The boolean result conforms to getBooleanContents. 3366 // If we know the result of a setcc has the top bits zero, use this info. 3367 // We know that we have an integer-based boolean since these operations 3368 // are only available for integer. 3369 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3370 TargetLowering::ZeroOrOneBooleanContent && 3371 BitWidth > 1) 3372 Known.Zero.setBitsFrom(1); 3373 break; 3374 case ISD::SETCC: 3375 case ISD::SETCCCARRY: 3376 case ISD::STRICT_FSETCC: 3377 case ISD::STRICT_FSETCCS: { 3378 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 3379 // If we know the result of a setcc has the top bits zero, use this info. 3380 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 3381 TargetLowering::ZeroOrOneBooleanContent && 3382 BitWidth > 1) 3383 Known.Zero.setBitsFrom(1); 3384 break; 3385 } 3386 case ISD::SHL: 3387 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3388 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3389 Known = KnownBits::shl(Known, Known2); 3390 3391 // Minimum shift low bits are known zero. 3392 if (const APInt *ShMinAmt = 3393 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3394 Known.Zero.setLowBits(ShMinAmt->getZExtValue()); 3395 break; 3396 case ISD::SRL: 3397 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3398 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3399 Known = KnownBits::lshr(Known, Known2); 3400 3401 // Minimum shift high bits are known zero. 3402 if (const APInt *ShMinAmt = 3403 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 3404 Known.Zero.setHighBits(ShMinAmt->getZExtValue()); 3405 break; 3406 case ISD::SRA: 3407 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3408 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3409 Known = KnownBits::ashr(Known, Known2); 3410 break; 3411 case ISD::FSHL: 3412 case ISD::FSHR: 3413 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) { 3414 unsigned Amt = C->getAPIntValue().urem(BitWidth); 3415 3416 // For fshl, 0-shift returns the 1st arg. 3417 // For fshr, 0-shift returns the 2nd arg. 3418 if (Amt == 0) { 3419 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1), 3420 DemandedElts, Depth + 1); 3421 break; 3422 } 3423 3424 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 3425 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 3426 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3427 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3428 if (Opcode == ISD::FSHL) { 3429 Known.One <<= Amt; 3430 Known.Zero <<= Amt; 3431 Known2.One.lshrInPlace(BitWidth - Amt); 3432 Known2.Zero.lshrInPlace(BitWidth - Amt); 3433 } else { 3434 Known.One <<= BitWidth - Amt; 3435 Known.Zero <<= BitWidth - Amt; 3436 Known2.One.lshrInPlace(Amt); 3437 Known2.Zero.lshrInPlace(Amt); 3438 } 3439 Known = Known.unionWith(Known2); 3440 } 3441 break; 3442 case ISD::SHL_PARTS: 3443 case ISD::SRA_PARTS: 3444 case ISD::SRL_PARTS: { 3445 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result"); 3446 3447 // Collect lo/hi source values and concatenate. 3448 unsigned LoBits = Op.getOperand(0).getScalarValueSizeInBits(); 3449 unsigned HiBits = Op.getOperand(1).getScalarValueSizeInBits(); 3450 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3451 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3452 Known = Known2.concat(Known); 3453 3454 // Collect shift amount. 3455 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3456 3457 if (Opcode == ISD::SHL_PARTS) 3458 Known = KnownBits::shl(Known, Known2); 3459 else if (Opcode == ISD::SRA_PARTS) 3460 Known = KnownBits::ashr(Known, Known2); 3461 else // if (Opcode == ISD::SRL_PARTS) 3462 Known = KnownBits::lshr(Known, Known2); 3463 3464 // TODO: Minimum shift low/high bits are known zero. 3465 3466 if (Op.getResNo() == 0) 3467 Known = Known.extractBits(LoBits, 0); 3468 else 3469 Known = Known.extractBits(HiBits, LoBits); 3470 break; 3471 } 3472 case ISD::SIGN_EXTEND_INREG: { 3473 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3474 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3475 Known = Known.sextInReg(EVT.getScalarSizeInBits()); 3476 break; 3477 } 3478 case ISD::CTTZ: 3479 case ISD::CTTZ_ZERO_UNDEF: { 3480 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3481 // If we have a known 1, its position is our upper bound. 3482 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 3483 unsigned LowBits = llvm::bit_width(PossibleTZ); 3484 Known.Zero.setBitsFrom(LowBits); 3485 break; 3486 } 3487 case ISD::CTLZ: 3488 case ISD::CTLZ_ZERO_UNDEF: { 3489 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3490 // If we have a known 1, its position is our upper bound. 3491 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 3492 unsigned LowBits = llvm::bit_width(PossibleLZ); 3493 Known.Zero.setBitsFrom(LowBits); 3494 break; 3495 } 3496 case ISD::CTPOP: { 3497 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3498 // If we know some of the bits are zero, they can't be one. 3499 unsigned PossibleOnes = Known2.countMaxPopulation(); 3500 Known.Zero.setBitsFrom(llvm::bit_width(PossibleOnes)); 3501 break; 3502 } 3503 case ISD::PARITY: { 3504 // Parity returns 0 everywhere but the LSB. 3505 Known.Zero.setBitsFrom(1); 3506 break; 3507 } 3508 case ISD::LOAD: { 3509 LoadSDNode *LD = cast<LoadSDNode>(Op); 3510 const Constant *Cst = TLI->getTargetConstantFromLoad(LD); 3511 if (ISD::isNON_EXTLoad(LD) && Cst) { 3512 // Determine any common known bits from the loaded constant pool value. 3513 Type *CstTy = Cst->getType(); 3514 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits() && 3515 !Op.getValueType().isScalableVector()) { 3516 // If its a vector splat, then we can (quickly) reuse the scalar path. 3517 // NOTE: We assume all elements match and none are UNDEF. 3518 if (CstTy->isVectorTy()) { 3519 if (const Constant *Splat = Cst->getSplatValue()) { 3520 Cst = Splat; 3521 CstTy = Cst->getType(); 3522 } 3523 } 3524 // TODO - do we need to handle different bitwidths? 3525 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) { 3526 // Iterate across all vector elements finding common known bits. 3527 Known.One.setAllBits(); 3528 Known.Zero.setAllBits(); 3529 for (unsigned i = 0; i != NumElts; ++i) { 3530 if (!DemandedElts[i]) 3531 continue; 3532 if (Constant *Elt = Cst->getAggregateElement(i)) { 3533 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 3534 const APInt &Value = CInt->getValue(); 3535 Known.One &= Value; 3536 Known.Zero &= ~Value; 3537 continue; 3538 } 3539 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 3540 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 3541 Known.One &= Value; 3542 Known.Zero &= ~Value; 3543 continue; 3544 } 3545 } 3546 Known.One.clearAllBits(); 3547 Known.Zero.clearAllBits(); 3548 break; 3549 } 3550 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) { 3551 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) { 3552 Known = KnownBits::makeConstant(CInt->getValue()); 3553 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) { 3554 Known = 3555 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt()); 3556 } 3557 } 3558 } 3559 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 3560 // If this is a ZEXTLoad and we are looking at the loaded value. 3561 EVT VT = LD->getMemoryVT(); 3562 unsigned MemBits = VT.getScalarSizeInBits(); 3563 Known.Zero.setBitsFrom(MemBits); 3564 } else if (const MDNode *Ranges = LD->getRanges()) { 3565 EVT VT = LD->getValueType(0); 3566 3567 // TODO: Handle for extending loads 3568 if (LD->getExtensionType() == ISD::NON_EXTLOAD) { 3569 if (VT.isVector()) { 3570 // Handle truncation to the first demanded element. 3571 // TODO: Figure out which demanded elements are covered 3572 if (DemandedElts != 1 || !getDataLayout().isLittleEndian()) 3573 break; 3574 3575 // Handle the case where a load has a vector type, but scalar memory 3576 // with an attached range. 3577 EVT MemVT = LD->getMemoryVT(); 3578 KnownBits KnownFull(MemVT.getSizeInBits()); 3579 3580 computeKnownBitsFromRangeMetadata(*Ranges, KnownFull); 3581 Known = KnownFull.trunc(BitWidth); 3582 } else 3583 computeKnownBitsFromRangeMetadata(*Ranges, Known); 3584 } 3585 } 3586 break; 3587 } 3588 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3589 if (Op.getValueType().isScalableVector()) 3590 break; 3591 EVT InVT = Op.getOperand(0).getValueType(); 3592 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3593 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3594 Known = Known.zext(BitWidth); 3595 break; 3596 } 3597 case ISD::ZERO_EXTEND: { 3598 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3599 Known = Known.zext(BitWidth); 3600 break; 3601 } 3602 case ISD::SIGN_EXTEND_VECTOR_INREG: { 3603 if (Op.getValueType().isScalableVector()) 3604 break; 3605 EVT InVT = Op.getOperand(0).getValueType(); 3606 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3607 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3608 // If the sign bit is known to be zero or one, then sext will extend 3609 // it to the top bits, else it will just zext. 3610 Known = Known.sext(BitWidth); 3611 break; 3612 } 3613 case ISD::SIGN_EXTEND: { 3614 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3615 // If the sign bit is known to be zero or one, then sext will extend 3616 // it to the top bits, else it will just zext. 3617 Known = Known.sext(BitWidth); 3618 break; 3619 } 3620 case ISD::ANY_EXTEND_VECTOR_INREG: { 3621 if (Op.getValueType().isScalableVector()) 3622 break; 3623 EVT InVT = Op.getOperand(0).getValueType(); 3624 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements()); 3625 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1); 3626 Known = Known.anyext(BitWidth); 3627 break; 3628 } 3629 case ISD::ANY_EXTEND: { 3630 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3631 Known = Known.anyext(BitWidth); 3632 break; 3633 } 3634 case ISD::TRUNCATE: { 3635 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3636 Known = Known.trunc(BitWidth); 3637 break; 3638 } 3639 case ISD::AssertZext: { 3640 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3641 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); 3642 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3643 Known.Zero |= (~InMask); 3644 Known.One &= (~Known.Zero); 3645 break; 3646 } 3647 case ISD::AssertAlign: { 3648 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign()); 3649 assert(LogOfAlign != 0); 3650 3651 // TODO: Should use maximum with source 3652 // If a node is guaranteed to be aligned, set low zero bits accordingly as 3653 // well as clearing one bits. 3654 Known.Zero.setLowBits(LogOfAlign); 3655 Known.One.clearLowBits(LogOfAlign); 3656 break; 3657 } 3658 case ISD::FGETSIGN: 3659 // All bits are zero except the low bit. 3660 Known.Zero.setBitsFrom(1); 3661 break; 3662 case ISD::ADD: 3663 case ISD::SUB: { 3664 SDNodeFlags Flags = Op.getNode()->getFlags(); 3665 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3666 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3667 Known = KnownBits::computeForAddSub(Op.getOpcode() == ISD::ADD, 3668 Flags.hasNoSignedWrap(), Known, Known2); 3669 break; 3670 } 3671 case ISD::USUBO: 3672 case ISD::SSUBO: 3673 case ISD::USUBO_CARRY: 3674 case ISD::SSUBO_CARRY: 3675 if (Op.getResNo() == 1) { 3676 // If we know the result of a setcc has the top bits zero, use this info. 3677 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3678 TargetLowering::ZeroOrOneBooleanContent && 3679 BitWidth > 1) 3680 Known.Zero.setBitsFrom(1); 3681 break; 3682 } 3683 [[fallthrough]]; 3684 case ISD::SUBC: { 3685 assert(Op.getResNo() == 0 && 3686 "We only compute knownbits for the difference here."); 3687 3688 // TODO: Compute influence of the carry operand. 3689 if (Opcode == ISD::USUBO_CARRY || Opcode == ISD::SSUBO_CARRY) 3690 break; 3691 3692 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3693 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3694 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false, 3695 Known, Known2); 3696 break; 3697 } 3698 case ISD::UADDO: 3699 case ISD::SADDO: 3700 case ISD::UADDO_CARRY: 3701 case ISD::SADDO_CARRY: 3702 if (Op.getResNo() == 1) { 3703 // If we know the result of a setcc has the top bits zero, use this info. 3704 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == 3705 TargetLowering::ZeroOrOneBooleanContent && 3706 BitWidth > 1) 3707 Known.Zero.setBitsFrom(1); 3708 break; 3709 } 3710 [[fallthrough]]; 3711 case ISD::ADDC: 3712 case ISD::ADDE: { 3713 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here."); 3714 3715 // With ADDE and UADDO_CARRY, a carry bit may be added in. 3716 KnownBits Carry(1); 3717 if (Opcode == ISD::ADDE) 3718 // Can't track carry from glue, set carry to unknown. 3719 Carry.resetAll(); 3720 else if (Opcode == ISD::UADDO_CARRY || Opcode == ISD::SADDO_CARRY) 3721 // TODO: Compute known bits for the carry operand. Not sure if it is worth 3722 // the trouble (how often will we find a known carry bit). And I haven't 3723 // tested this very much yet, but something like this might work: 3724 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1); 3725 // Carry = Carry.zextOrTrunc(1, false); 3726 Carry.resetAll(); 3727 else 3728 Carry.setAllZero(); 3729 3730 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3731 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3732 Known = KnownBits::computeForAddCarry(Known, Known2, Carry); 3733 break; 3734 } 3735 case ISD::UDIV: { 3736 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3737 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3738 Known = KnownBits::udiv(Known, Known2, Op->getFlags().hasExact()); 3739 break; 3740 } 3741 case ISD::SDIV: { 3742 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3743 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3744 Known = KnownBits::sdiv(Known, Known2, Op->getFlags().hasExact()); 3745 break; 3746 } 3747 case ISD::SREM: { 3748 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3749 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3750 Known = KnownBits::srem(Known, Known2); 3751 break; 3752 } 3753 case ISD::UREM: { 3754 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3755 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3756 Known = KnownBits::urem(Known, Known2); 3757 break; 3758 } 3759 case ISD::EXTRACT_ELEMENT: { 3760 Known = computeKnownBits(Op.getOperand(0), Depth+1); 3761 const unsigned Index = Op.getConstantOperandVal(1); 3762 const unsigned EltBitWidth = Op.getValueSizeInBits(); 3763 3764 // Remove low part of known bits mask 3765 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3766 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth); 3767 3768 // Remove high part of known bit mask 3769 Known = Known.trunc(EltBitWidth); 3770 break; 3771 } 3772 case ISD::EXTRACT_VECTOR_ELT: { 3773 SDValue InVec = Op.getOperand(0); 3774 SDValue EltNo = Op.getOperand(1); 3775 EVT VecVT = InVec.getValueType(); 3776 // computeKnownBits not yet implemented for scalable vectors. 3777 if (VecVT.isScalableVector()) 3778 break; 3779 const unsigned EltBitWidth = VecVT.getScalarSizeInBits(); 3780 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 3781 3782 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 3783 // anything about the extended bits. 3784 if (BitWidth > EltBitWidth) 3785 Known = Known.trunc(EltBitWidth); 3786 3787 // If we know the element index, just demand that vector element, else for 3788 // an unknown element index, ignore DemandedElts and demand them all. 3789 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 3790 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 3791 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 3792 DemandedSrcElts = 3793 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 3794 3795 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1); 3796 if (BitWidth > EltBitWidth) 3797 Known = Known.anyext(BitWidth); 3798 break; 3799 } 3800 case ISD::INSERT_VECTOR_ELT: { 3801 if (Op.getValueType().isScalableVector()) 3802 break; 3803 3804 // If we know the element index, split the demand between the 3805 // source vector and the inserted element, otherwise assume we need 3806 // the original demanded vector elements and the value. 3807 SDValue InVec = Op.getOperand(0); 3808 SDValue InVal = Op.getOperand(1); 3809 SDValue EltNo = Op.getOperand(2); 3810 bool DemandedVal = true; 3811 APInt DemandedVecElts = DemandedElts; 3812 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 3813 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 3814 unsigned EltIdx = CEltNo->getZExtValue(); 3815 DemandedVal = !!DemandedElts[EltIdx]; 3816 DemandedVecElts.clearBit(EltIdx); 3817 } 3818 Known.One.setAllBits(); 3819 Known.Zero.setAllBits(); 3820 if (DemandedVal) { 3821 Known2 = computeKnownBits(InVal, Depth + 1); 3822 Known = Known.intersectWith(Known2.zextOrTrunc(BitWidth)); 3823 } 3824 if (!!DemandedVecElts) { 3825 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1); 3826 Known = Known.intersectWith(Known2); 3827 } 3828 break; 3829 } 3830 case ISD::BITREVERSE: { 3831 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3832 Known = Known2.reverseBits(); 3833 break; 3834 } 3835 case ISD::BSWAP: { 3836 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3837 Known = Known2.byteSwap(); 3838 break; 3839 } 3840 case ISD::ABS: { 3841 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3842 Known = Known2.abs(); 3843 break; 3844 } 3845 case ISD::USUBSAT: { 3846 // The result of usubsat will never be larger than the LHS. 3847 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3848 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 3849 break; 3850 } 3851 case ISD::UMIN: { 3852 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3853 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3854 Known = KnownBits::umin(Known, Known2); 3855 break; 3856 } 3857 case ISD::UMAX: { 3858 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3859 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3860 Known = KnownBits::umax(Known, Known2); 3861 break; 3862 } 3863 case ISD::SMIN: 3864 case ISD::SMAX: { 3865 // If we have a clamp pattern, we know that the number of sign bits will be 3866 // the minimum of the clamp min/max range. 3867 bool IsMax = (Opcode == ISD::SMAX); 3868 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 3869 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 3870 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 3871 CstHigh = 3872 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 3873 if (CstLow && CstHigh) { 3874 if (!IsMax) 3875 std::swap(CstLow, CstHigh); 3876 3877 const APInt &ValueLow = CstLow->getAPIntValue(); 3878 const APInt &ValueHigh = CstHigh->getAPIntValue(); 3879 if (ValueLow.sle(ValueHigh)) { 3880 unsigned LowSignBits = ValueLow.getNumSignBits(); 3881 unsigned HighSignBits = ValueHigh.getNumSignBits(); 3882 unsigned MinSignBits = std::min(LowSignBits, HighSignBits); 3883 if (ValueLow.isNegative() && ValueHigh.isNegative()) { 3884 Known.One.setHighBits(MinSignBits); 3885 break; 3886 } 3887 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) { 3888 Known.Zero.setHighBits(MinSignBits); 3889 break; 3890 } 3891 } 3892 } 3893 3894 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 3895 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 3896 if (IsMax) 3897 Known = KnownBits::smax(Known, Known2); 3898 else 3899 Known = KnownBits::smin(Known, Known2); 3900 3901 // For SMAX, if CstLow is non-negative we know the result will be 3902 // non-negative and thus all sign bits are 0. 3903 // TODO: There's an equivalent of this for smin with negative constant for 3904 // known ones. 3905 if (IsMax && CstLow) { 3906 const APInt &ValueLow = CstLow->getAPIntValue(); 3907 if (ValueLow.isNonNegative()) { 3908 unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 3909 Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits())); 3910 } 3911 } 3912 3913 break; 3914 } 3915 case ISD::FP_TO_UINT_SAT: { 3916 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT. 3917 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 3918 Known.Zero |= APInt::getBitsSetFrom(BitWidth, VT.getScalarSizeInBits()); 3919 break; 3920 } 3921 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 3922 if (Op.getResNo() == 1) { 3923 // The boolean result conforms to getBooleanContents. 3924 // If we know the result of a setcc has the top bits zero, use this info. 3925 // We know that we have an integer-based boolean since these operations 3926 // are only available for integer. 3927 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == 3928 TargetLowering::ZeroOrOneBooleanContent && 3929 BitWidth > 1) 3930 Known.Zero.setBitsFrom(1); 3931 break; 3932 } 3933 [[fallthrough]]; 3934 case ISD::ATOMIC_CMP_SWAP: 3935 case ISD::ATOMIC_SWAP: 3936 case ISD::ATOMIC_LOAD_ADD: 3937 case ISD::ATOMIC_LOAD_SUB: 3938 case ISD::ATOMIC_LOAD_AND: 3939 case ISD::ATOMIC_LOAD_CLR: 3940 case ISD::ATOMIC_LOAD_OR: 3941 case ISD::ATOMIC_LOAD_XOR: 3942 case ISD::ATOMIC_LOAD_NAND: 3943 case ISD::ATOMIC_LOAD_MIN: 3944 case ISD::ATOMIC_LOAD_MAX: 3945 case ISD::ATOMIC_LOAD_UMIN: 3946 case ISD::ATOMIC_LOAD_UMAX: 3947 case ISD::ATOMIC_LOAD: { 3948 unsigned MemBits = 3949 cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 3950 // If we are looking at the loaded value. 3951 if (Op.getResNo() == 0) { 3952 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 3953 Known.Zero.setBitsFrom(MemBits); 3954 } 3955 break; 3956 } 3957 case ISD::FrameIndex: 3958 case ISD::TargetFrameIndex: 3959 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(), 3960 Known, getMachineFunction()); 3961 break; 3962 3963 default: 3964 if (Opcode < ISD::BUILTIN_OP_END) 3965 break; 3966 [[fallthrough]]; 3967 case ISD::INTRINSIC_WO_CHAIN: 3968 case ISD::INTRINSIC_W_CHAIN: 3969 case ISD::INTRINSIC_VOID: 3970 // TODO: Probably okay to remove after audit; here to reduce change size 3971 // in initial enablement patch for scalable vectors 3972 if (Op.getValueType().isScalableVector()) 3973 break; 3974 3975 // Allow the target to implement this method for its nodes. 3976 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth); 3977 break; 3978 } 3979 3980 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 3981 return Known; 3982 } 3983 3984 /// Convert ConstantRange OverflowResult into SelectionDAG::OverflowKind. 3985 static SelectionDAG::OverflowKind mapOverflowResult(ConstantRange::OverflowResult OR) { 3986 switch (OR) { 3987 case ConstantRange::OverflowResult::MayOverflow: 3988 return SelectionDAG::OFK_Sometime; 3989 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 3990 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 3991 return SelectionDAG::OFK_Always; 3992 case ConstantRange::OverflowResult::NeverOverflows: 3993 return SelectionDAG::OFK_Never; 3994 } 3995 llvm_unreachable("Unknown OverflowResult"); 3996 } 3997 3998 SelectionDAG::OverflowKind 3999 SelectionDAG::computeOverflowForSignedAdd(SDValue N0, SDValue N1) const { 4000 // X + 0 never overflow 4001 if (isNullConstant(N1)) 4002 return OFK_Never; 4003 4004 // If both operands each have at least two sign bits, the addition 4005 // cannot overflow. 4006 if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1) 4007 return OFK_Never; 4008 4009 // TODO: Add ConstantRange::signedAddMayOverflow handling. 4010 return OFK_Sometime; 4011 } 4012 4013 SelectionDAG::OverflowKind 4014 SelectionDAG::computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const { 4015 // X + 0 never overflow 4016 if (isNullConstant(N1)) 4017 return OFK_Never; 4018 4019 // mulhi + 1 never overflow 4020 KnownBits N1Known = computeKnownBits(N1); 4021 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 && 4022 N1Known.getMaxValue().ult(2)) 4023 return OFK_Never; 4024 4025 KnownBits N0Known = computeKnownBits(N0); 4026 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1 && 4027 N0Known.getMaxValue().ult(2)) 4028 return OFK_Never; 4029 4030 // Fallback to ConstantRange::unsignedAddMayOverflow handling. 4031 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false); 4032 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false); 4033 return mapOverflowResult(N0Range.unsignedAddMayOverflow(N1Range)); 4034 } 4035 4036 SelectionDAG::OverflowKind 4037 SelectionDAG::computeOverflowForSignedSub(SDValue N0, SDValue N1) const { 4038 // X - 0 never overflow 4039 if (isNullConstant(N1)) 4040 return OFK_Never; 4041 4042 // If both operands each have at least two sign bits, the subtraction 4043 // cannot overflow. 4044 if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1) 4045 return OFK_Never; 4046 4047 // TODO: Add ConstantRange::signedSubMayOverflow handling. 4048 return OFK_Sometime; 4049 } 4050 4051 SelectionDAG::OverflowKind 4052 SelectionDAG::computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const { 4053 // X - 0 never overflow 4054 if (isNullConstant(N1)) 4055 return OFK_Never; 4056 4057 // TODO: Add ConstantRange::unsignedSubMayOverflow handling. 4058 return OFK_Sometime; 4059 } 4060 4061 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth) const { 4062 if (Depth >= MaxRecursionDepth) 4063 return false; // Limit search depth. 4064 4065 EVT OpVT = Val.getValueType(); 4066 unsigned BitWidth = OpVT.getScalarSizeInBits(); 4067 4068 // Is the constant a known power of 2? 4069 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val)) 4070 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 4071 4072 // A left-shift of a constant one will have exactly one bit set because 4073 // shifting the bit off the end is undefined. 4074 if (Val.getOpcode() == ISD::SHL) { 4075 auto *C = isConstOrConstSplat(Val.getOperand(0)); 4076 if (C && C->getAPIntValue() == 1) 4077 return true; 4078 } 4079 4080 // Similarly, a logical right-shift of a constant sign-bit will have exactly 4081 // one bit set. 4082 if (Val.getOpcode() == ISD::SRL) { 4083 auto *C = isConstOrConstSplat(Val.getOperand(0)); 4084 if (C && C->getAPIntValue().isSignMask()) 4085 return true; 4086 } 4087 4088 // Are all operands of a build vector constant powers of two? 4089 if (Val.getOpcode() == ISD::BUILD_VECTOR) 4090 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) { 4091 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E)) 4092 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2(); 4093 return false; 4094 })) 4095 return true; 4096 4097 // Is the operand of a splat vector a constant power of two? 4098 if (Val.getOpcode() == ISD::SPLAT_VECTOR) 4099 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val->getOperand(0))) 4100 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2()) 4101 return true; 4102 4103 // vscale(power-of-two) is a power-of-two for some targets 4104 if (Val.getOpcode() == ISD::VSCALE && 4105 getTargetLoweringInfo().isVScaleKnownToBeAPowerOfTwo() && 4106 isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1)) 4107 return true; 4108 4109 // More could be done here, though the above checks are enough 4110 // to handle some common cases. 4111 return false; 4112 } 4113 4114 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const { 4115 EVT VT = Op.getValueType(); 4116 4117 // Since the number of lanes in a scalable vector is unknown at compile time, 4118 // we track one bit which is implicitly broadcast to all lanes. This means 4119 // that all lanes in a scalable vector are considered demanded. 4120 APInt DemandedElts = VT.isFixedLengthVector() 4121 ? APInt::getAllOnes(VT.getVectorNumElements()) 4122 : APInt(1, 1); 4123 return ComputeNumSignBits(Op, DemandedElts, Depth); 4124 } 4125 4126 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, 4127 unsigned Depth) const { 4128 EVT VT = Op.getValueType(); 4129 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!"); 4130 unsigned VTBits = VT.getScalarSizeInBits(); 4131 unsigned NumElts = DemandedElts.getBitWidth(); 4132 unsigned Tmp, Tmp2; 4133 unsigned FirstAnswer = 1; 4134 4135 if (auto *C = dyn_cast<ConstantSDNode>(Op)) { 4136 const APInt &Val = C->getAPIntValue(); 4137 return Val.getNumSignBits(); 4138 } 4139 4140 if (Depth >= MaxRecursionDepth) 4141 return 1; // Limit search depth. 4142 4143 if (!DemandedElts) 4144 return 1; // No demanded elts, better to assume we don't know anything. 4145 4146 unsigned Opcode = Op.getOpcode(); 4147 switch (Opcode) { 4148 default: break; 4149 case ISD::AssertSext: 4150 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 4151 return VTBits-Tmp+1; 4152 case ISD::AssertZext: 4153 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); 4154 return VTBits-Tmp; 4155 case ISD::MERGE_VALUES: 4156 return ComputeNumSignBits(Op.getOperand(Op.getResNo()), DemandedElts, 4157 Depth + 1); 4158 case ISD::SPLAT_VECTOR: { 4159 // Check if the sign bits of source go down as far as the truncated value. 4160 unsigned NumSrcBits = Op.getOperand(0).getValueSizeInBits(); 4161 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4162 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4163 return NumSrcSignBits - (NumSrcBits - VTBits); 4164 break; 4165 } 4166 case ISD::BUILD_VECTOR: 4167 assert(!VT.isScalableVector()); 4168 Tmp = VTBits; 4169 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) { 4170 if (!DemandedElts[i]) 4171 continue; 4172 4173 SDValue SrcOp = Op.getOperand(i); 4174 // BUILD_VECTOR can implicitly truncate sources, we handle this specially 4175 // for constant nodes to ensure we only look at the sign bits. 4176 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SrcOp)) { 4177 APInt T = C->getAPIntValue().trunc(VTBits); 4178 Tmp2 = T.getNumSignBits(); 4179 } else { 4180 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1); 4181 4182 if (SrcOp.getValueSizeInBits() != VTBits) { 4183 assert(SrcOp.getValueSizeInBits() > VTBits && 4184 "Expected BUILD_VECTOR implicit truncation"); 4185 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits; 4186 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1); 4187 } 4188 } 4189 Tmp = std::min(Tmp, Tmp2); 4190 } 4191 return Tmp; 4192 4193 case ISD::VECTOR_SHUFFLE: { 4194 // Collect the minimum number of sign bits that are shared by every vector 4195 // element referenced by the shuffle. 4196 APInt DemandedLHS, DemandedRHS; 4197 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); 4198 assert(NumElts == SVN->getMask().size() && "Unexpected vector size"); 4199 if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts, 4200 DemandedLHS, DemandedRHS)) 4201 return 1; 4202 4203 Tmp = std::numeric_limits<unsigned>::max(); 4204 if (!!DemandedLHS) 4205 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1); 4206 if (!!DemandedRHS) { 4207 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1); 4208 Tmp = std::min(Tmp, Tmp2); 4209 } 4210 // If we don't know anything, early out and try computeKnownBits fall-back. 4211 if (Tmp == 1) 4212 break; 4213 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4214 return Tmp; 4215 } 4216 4217 case ISD::BITCAST: { 4218 if (VT.isScalableVector()) 4219 break; 4220 SDValue N0 = Op.getOperand(0); 4221 EVT SrcVT = N0.getValueType(); 4222 unsigned SrcBits = SrcVT.getScalarSizeInBits(); 4223 4224 // Ignore bitcasts from unsupported types.. 4225 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint())) 4226 break; 4227 4228 // Fast handling of 'identity' bitcasts. 4229 if (VTBits == SrcBits) 4230 return ComputeNumSignBits(N0, DemandedElts, Depth + 1); 4231 4232 bool IsLE = getDataLayout().isLittleEndian(); 4233 4234 // Bitcast 'large element' scalar/vector to 'small element' vector. 4235 if ((SrcBits % VTBits) == 0) { 4236 assert(VT.isVector() && "Expected bitcast to vector"); 4237 4238 unsigned Scale = SrcBits / VTBits; 4239 APInt SrcDemandedElts = 4240 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale); 4241 4242 // Fast case - sign splat can be simply split across the small elements. 4243 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1); 4244 if (Tmp == SrcBits) 4245 return VTBits; 4246 4247 // Slow case - determine how far the sign extends into each sub-element. 4248 Tmp2 = VTBits; 4249 for (unsigned i = 0; i != NumElts; ++i) 4250 if (DemandedElts[i]) { 4251 unsigned SubOffset = i % Scale; 4252 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset); 4253 SubOffset = SubOffset * VTBits; 4254 if (Tmp <= SubOffset) 4255 return 1; 4256 Tmp2 = std::min(Tmp2, Tmp - SubOffset); 4257 } 4258 return Tmp2; 4259 } 4260 break; 4261 } 4262 4263 case ISD::FP_TO_SINT_SAT: 4264 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT. 4265 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4266 return VTBits - Tmp + 1; 4267 case ISD::SIGN_EXTEND: 4268 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits(); 4269 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp; 4270 case ISD::SIGN_EXTEND_INREG: 4271 // Max of the input and what this extends. 4272 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits(); 4273 Tmp = VTBits-Tmp+1; 4274 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4275 return std::max(Tmp, Tmp2); 4276 case ISD::SIGN_EXTEND_VECTOR_INREG: { 4277 if (VT.isScalableVector()) 4278 break; 4279 SDValue Src = Op.getOperand(0); 4280 EVT SrcVT = Src.getValueType(); 4281 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements()); 4282 Tmp = VTBits - SrcVT.getScalarSizeInBits(); 4283 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp; 4284 } 4285 case ISD::SRA: 4286 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4287 // SRA X, C -> adds C sign bits. 4288 if (const APInt *ShAmt = 4289 getValidMinimumShiftAmountConstant(Op, DemandedElts)) 4290 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits); 4291 return Tmp; 4292 case ISD::SHL: 4293 if (const APInt *ShAmt = 4294 getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 4295 // shl destroys sign bits, ensure it doesn't shift out all sign bits. 4296 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4297 if (ShAmt->ult(Tmp)) 4298 return Tmp - ShAmt->getZExtValue(); 4299 } 4300 break; 4301 case ISD::AND: 4302 case ISD::OR: 4303 case ISD::XOR: // NOT is handled here. 4304 // Logical binary ops preserve the number of sign bits at the worst. 4305 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1); 4306 if (Tmp != 1) { 4307 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4308 FirstAnswer = std::min(Tmp, Tmp2); 4309 // We computed what we know about the sign bits as our first 4310 // answer. Now proceed to the generic code that uses 4311 // computeKnownBits, and pick whichever answer is better. 4312 } 4313 break; 4314 4315 case ISD::SELECT: 4316 case ISD::VSELECT: 4317 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1); 4318 if (Tmp == 1) return 1; // Early out. 4319 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4320 return std::min(Tmp, Tmp2); 4321 case ISD::SELECT_CC: 4322 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1); 4323 if (Tmp == 1) return 1; // Early out. 4324 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1); 4325 return std::min(Tmp, Tmp2); 4326 4327 case ISD::SMIN: 4328 case ISD::SMAX: { 4329 // If we have a clamp pattern, we know that the number of sign bits will be 4330 // the minimum of the clamp min/max range. 4331 bool IsMax = (Opcode == ISD::SMAX); 4332 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr; 4333 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts))) 4334 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX)) 4335 CstHigh = 4336 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts); 4337 if (CstLow && CstHigh) { 4338 if (!IsMax) 4339 std::swap(CstLow, CstHigh); 4340 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) { 4341 Tmp = CstLow->getAPIntValue().getNumSignBits(); 4342 Tmp2 = CstHigh->getAPIntValue().getNumSignBits(); 4343 return std::min(Tmp, Tmp2); 4344 } 4345 } 4346 4347 // Fallback - just get the minimum number of sign bits of the operands. 4348 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4349 if (Tmp == 1) 4350 return 1; // Early out. 4351 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4352 return std::min(Tmp, Tmp2); 4353 } 4354 case ISD::UMIN: 4355 case ISD::UMAX: 4356 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4357 if (Tmp == 1) 4358 return 1; // Early out. 4359 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4360 return std::min(Tmp, Tmp2); 4361 case ISD::SADDO: 4362 case ISD::UADDO: 4363 case ISD::SADDO_CARRY: 4364 case ISD::UADDO_CARRY: 4365 case ISD::SSUBO: 4366 case ISD::USUBO: 4367 case ISD::SSUBO_CARRY: 4368 case ISD::USUBO_CARRY: 4369 case ISD::SMULO: 4370 case ISD::UMULO: 4371 if (Op.getResNo() != 1) 4372 break; 4373 // The boolean result conforms to getBooleanContents. Fall through. 4374 // If setcc returns 0/-1, all bits are sign bits. 4375 // We know that we have an integer-based boolean since these operations 4376 // are only available for integer. 4377 if (TLI->getBooleanContents(VT.isVector(), false) == 4378 TargetLowering::ZeroOrNegativeOneBooleanContent) 4379 return VTBits; 4380 break; 4381 case ISD::SETCC: 4382 case ISD::SETCCCARRY: 4383 case ISD::STRICT_FSETCC: 4384 case ISD::STRICT_FSETCCS: { 4385 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0; 4386 // If setcc returns 0/-1, all bits are sign bits. 4387 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) == 4388 TargetLowering::ZeroOrNegativeOneBooleanContent) 4389 return VTBits; 4390 break; 4391 } 4392 case ISD::ROTL: 4393 case ISD::ROTR: 4394 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4395 4396 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 4397 if (Tmp == VTBits) 4398 return VTBits; 4399 4400 if (ConstantSDNode *C = 4401 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) { 4402 unsigned RotAmt = C->getAPIntValue().urem(VTBits); 4403 4404 // Handle rotate right by N like a rotate left by 32-N. 4405 if (Opcode == ISD::ROTR) 4406 RotAmt = (VTBits - RotAmt) % VTBits; 4407 4408 // If we aren't rotating out all of the known-in sign bits, return the 4409 // number that are left. This handles rotl(sext(x), 1) for example. 4410 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt); 4411 } 4412 break; 4413 case ISD::ADD: 4414 case ISD::ADDC: 4415 // Add can have at most one carry bit. Thus we know that the output 4416 // is, at worst, one more bit than the inputs. 4417 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4418 if (Tmp == 1) return 1; // Early out. 4419 4420 // Special case decrementing a value (ADD X, -1): 4421 if (ConstantSDNode *CRHS = 4422 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) 4423 if (CRHS->isAllOnes()) { 4424 KnownBits Known = 4425 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 4426 4427 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4428 // sign bits set. 4429 if ((Known.Zero | 1).isAllOnes()) 4430 return VTBits; 4431 4432 // If we are subtracting one from a positive number, there is no carry 4433 // out of the result. 4434 if (Known.isNonNegative()) 4435 return Tmp; 4436 } 4437 4438 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4439 if (Tmp2 == 1) return 1; // Early out. 4440 return std::min(Tmp, Tmp2) - 1; 4441 case ISD::SUB: 4442 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1); 4443 if (Tmp2 == 1) return 1; // Early out. 4444 4445 // Handle NEG. 4446 if (ConstantSDNode *CLHS = 4447 isConstOrConstSplat(Op.getOperand(0), DemandedElts)) 4448 if (CLHS->isZero()) { 4449 KnownBits Known = 4450 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 4451 // If the input is known to be 0 or 1, the output is 0/-1, which is all 4452 // sign bits set. 4453 if ((Known.Zero | 1).isAllOnes()) 4454 return VTBits; 4455 4456 // If the input is known to be positive (the sign bit is known clear), 4457 // the output of the NEG has the same number of sign bits as the input. 4458 if (Known.isNonNegative()) 4459 return Tmp2; 4460 4461 // Otherwise, we treat this like a SUB. 4462 } 4463 4464 // Sub can have at most one carry bit. Thus we know that the output 4465 // is, at worst, one more bit than the inputs. 4466 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4467 if (Tmp == 1) return 1; // Early out. 4468 return std::min(Tmp, Tmp2) - 1; 4469 case ISD::MUL: { 4470 // The output of the Mul can be at most twice the valid bits in the inputs. 4471 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4472 if (SignBitsOp0 == 1) 4473 break; 4474 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); 4475 if (SignBitsOp1 == 1) 4476 break; 4477 unsigned OutValidBits = 4478 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1); 4479 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1; 4480 } 4481 case ISD::SREM: 4482 // The sign bit is the LHS's sign bit, except when the result of the 4483 // remainder is zero. The magnitude of the result should be less than or 4484 // equal to the magnitude of the LHS. Therefore, the result should have 4485 // at least as many sign bits as the left hand side. 4486 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1); 4487 case ISD::TRUNCATE: { 4488 // Check if the sign bits of source go down as far as the truncated value. 4489 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits(); 4490 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1); 4491 if (NumSrcSignBits > (NumSrcBits - VTBits)) 4492 return NumSrcSignBits - (NumSrcBits - VTBits); 4493 break; 4494 } 4495 case ISD::EXTRACT_ELEMENT: { 4496 if (VT.isScalableVector()) 4497 break; 4498 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); 4499 const int BitWidth = Op.getValueSizeInBits(); 4500 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth; 4501 4502 // Get reverse index (starting from 1), Op1 value indexes elements from 4503 // little end. Sign starts at big end. 4504 const int rIndex = Items - 1 - Op.getConstantOperandVal(1); 4505 4506 // If the sign portion ends in our element the subtraction gives correct 4507 // result. Otherwise it gives either negative or > bitwidth result 4508 return std::clamp(KnownSign - rIndex * BitWidth, 0, BitWidth); 4509 } 4510 case ISD::INSERT_VECTOR_ELT: { 4511 if (VT.isScalableVector()) 4512 break; 4513 // If we know the element index, split the demand between the 4514 // source vector and the inserted element, otherwise assume we need 4515 // the original demanded vector elements and the value. 4516 SDValue InVec = Op.getOperand(0); 4517 SDValue InVal = Op.getOperand(1); 4518 SDValue EltNo = Op.getOperand(2); 4519 bool DemandedVal = true; 4520 APInt DemandedVecElts = DemandedElts; 4521 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo); 4522 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) { 4523 unsigned EltIdx = CEltNo->getZExtValue(); 4524 DemandedVal = !!DemandedElts[EltIdx]; 4525 DemandedVecElts.clearBit(EltIdx); 4526 } 4527 Tmp = std::numeric_limits<unsigned>::max(); 4528 if (DemandedVal) { 4529 // TODO - handle implicit truncation of inserted elements. 4530 if (InVal.getScalarValueSizeInBits() != VTBits) 4531 break; 4532 Tmp2 = ComputeNumSignBits(InVal, Depth + 1); 4533 Tmp = std::min(Tmp, Tmp2); 4534 } 4535 if (!!DemandedVecElts) { 4536 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1); 4537 Tmp = std::min(Tmp, Tmp2); 4538 } 4539 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4540 return Tmp; 4541 } 4542 case ISD::EXTRACT_VECTOR_ELT: { 4543 assert(!VT.isScalableVector()); 4544 SDValue InVec = Op.getOperand(0); 4545 SDValue EltNo = Op.getOperand(1); 4546 EVT VecVT = InVec.getValueType(); 4547 // ComputeNumSignBits not yet implemented for scalable vectors. 4548 if (VecVT.isScalableVector()) 4549 break; 4550 const unsigned BitWidth = Op.getValueSizeInBits(); 4551 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 4552 const unsigned NumSrcElts = VecVT.getVectorNumElements(); 4553 4554 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know 4555 // anything about sign bits. But if the sizes match we can derive knowledge 4556 // about sign bits from the vector operand. 4557 if (BitWidth != EltBitWidth) 4558 break; 4559 4560 // If we know the element index, just demand that vector element, else for 4561 // an unknown element index, ignore DemandedElts and demand them all. 4562 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 4563 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo); 4564 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts)) 4565 DemandedSrcElts = 4566 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue()); 4567 4568 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1); 4569 } 4570 case ISD::EXTRACT_SUBVECTOR: { 4571 // Offset the demanded elts by the subvector index. 4572 SDValue Src = Op.getOperand(0); 4573 // Bail until we can represent demanded elements for scalable vectors. 4574 if (Src.getValueType().isScalableVector()) 4575 break; 4576 uint64_t Idx = Op.getConstantOperandVal(1); 4577 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 4578 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 4579 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4580 } 4581 case ISD::CONCAT_VECTORS: { 4582 if (VT.isScalableVector()) 4583 break; 4584 // Determine the minimum number of sign bits across all demanded 4585 // elts of the input vectors. Early out if the result is already 1. 4586 Tmp = std::numeric_limits<unsigned>::max(); 4587 EVT SubVectorVT = Op.getOperand(0).getValueType(); 4588 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements(); 4589 unsigned NumSubVectors = Op.getNumOperands(); 4590 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) { 4591 APInt DemandedSub = 4592 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts); 4593 if (!DemandedSub) 4594 continue; 4595 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1); 4596 Tmp = std::min(Tmp, Tmp2); 4597 } 4598 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4599 return Tmp; 4600 } 4601 case ISD::INSERT_SUBVECTOR: { 4602 if (VT.isScalableVector()) 4603 break; 4604 // Demand any elements from the subvector and the remainder from the src its 4605 // inserted into. 4606 SDValue Src = Op.getOperand(0); 4607 SDValue Sub = Op.getOperand(1); 4608 uint64_t Idx = Op.getConstantOperandVal(2); 4609 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 4610 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 4611 APInt DemandedSrcElts = DemandedElts; 4612 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 4613 4614 Tmp = std::numeric_limits<unsigned>::max(); 4615 if (!!DemandedSubElts) { 4616 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1); 4617 if (Tmp == 1) 4618 return 1; // early-out 4619 } 4620 if (!!DemandedSrcElts) { 4621 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1); 4622 Tmp = std::min(Tmp, Tmp2); 4623 } 4624 assert(Tmp <= VTBits && "Failed to determine minimum sign bits"); 4625 return Tmp; 4626 } 4627 case ISD::LOAD: { 4628 LoadSDNode *LD = cast<LoadSDNode>(Op); 4629 if (const MDNode *Ranges = LD->getRanges()) { 4630 if (DemandedElts != 1) 4631 break; 4632 4633 ConstantRange CR = getConstantRangeFromMetadata(*Ranges); 4634 if (VTBits > CR.getBitWidth()) { 4635 switch (LD->getExtensionType()) { 4636 case ISD::SEXTLOAD: 4637 CR = CR.signExtend(VTBits); 4638 break; 4639 case ISD::ZEXTLOAD: 4640 CR = CR.zeroExtend(VTBits); 4641 break; 4642 default: 4643 break; 4644 } 4645 } 4646 4647 if (VTBits != CR.getBitWidth()) 4648 break; 4649 return std::min(CR.getSignedMin().getNumSignBits(), 4650 CR.getSignedMax().getNumSignBits()); 4651 } 4652 4653 break; 4654 } 4655 case ISD::ATOMIC_CMP_SWAP: 4656 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4657 case ISD::ATOMIC_SWAP: 4658 case ISD::ATOMIC_LOAD_ADD: 4659 case ISD::ATOMIC_LOAD_SUB: 4660 case ISD::ATOMIC_LOAD_AND: 4661 case ISD::ATOMIC_LOAD_CLR: 4662 case ISD::ATOMIC_LOAD_OR: 4663 case ISD::ATOMIC_LOAD_XOR: 4664 case ISD::ATOMIC_LOAD_NAND: 4665 case ISD::ATOMIC_LOAD_MIN: 4666 case ISD::ATOMIC_LOAD_MAX: 4667 case ISD::ATOMIC_LOAD_UMIN: 4668 case ISD::ATOMIC_LOAD_UMAX: 4669 case ISD::ATOMIC_LOAD: { 4670 Tmp = cast<AtomicSDNode>(Op)->getMemoryVT().getScalarSizeInBits(); 4671 // If we are looking at the loaded value. 4672 if (Op.getResNo() == 0) { 4673 if (Tmp == VTBits) 4674 return 1; // early-out 4675 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND) 4676 return VTBits - Tmp + 1; 4677 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND) 4678 return VTBits - Tmp; 4679 } 4680 break; 4681 } 4682 } 4683 4684 // If we are looking at the loaded value of the SDNode. 4685 if (Op.getResNo() == 0) { 4686 // Handle LOADX separately here. EXTLOAD case will fallthrough. 4687 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { 4688 unsigned ExtType = LD->getExtensionType(); 4689 switch (ExtType) { 4690 default: break; 4691 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known. 4692 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4693 return VTBits - Tmp + 1; 4694 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known. 4695 Tmp = LD->getMemoryVT().getScalarSizeInBits(); 4696 return VTBits - Tmp; 4697 case ISD::NON_EXTLOAD: 4698 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) { 4699 // We only need to handle vectors - computeKnownBits should handle 4700 // scalar cases. 4701 Type *CstTy = Cst->getType(); 4702 if (CstTy->isVectorTy() && !VT.isScalableVector() && 4703 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() && 4704 VTBits == CstTy->getScalarSizeInBits()) { 4705 Tmp = VTBits; 4706 for (unsigned i = 0; i != NumElts; ++i) { 4707 if (!DemandedElts[i]) 4708 continue; 4709 if (Constant *Elt = Cst->getAggregateElement(i)) { 4710 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) { 4711 const APInt &Value = CInt->getValue(); 4712 Tmp = std::min(Tmp, Value.getNumSignBits()); 4713 continue; 4714 } 4715 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) { 4716 APInt Value = CFP->getValueAPF().bitcastToAPInt(); 4717 Tmp = std::min(Tmp, Value.getNumSignBits()); 4718 continue; 4719 } 4720 } 4721 // Unknown type. Conservatively assume no bits match sign bit. 4722 return 1; 4723 } 4724 return Tmp; 4725 } 4726 } 4727 break; 4728 } 4729 } 4730 } 4731 4732 // Allow the target to implement this method for its nodes. 4733 if (Opcode >= ISD::BUILTIN_OP_END || 4734 Opcode == ISD::INTRINSIC_WO_CHAIN || 4735 Opcode == ISD::INTRINSIC_W_CHAIN || 4736 Opcode == ISD::INTRINSIC_VOID) { 4737 // TODO: This can probably be removed once target code is audited. This 4738 // is here purely to reduce patch size and review complexity. 4739 if (!VT.isScalableVector()) { 4740 unsigned NumBits = 4741 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth); 4742 if (NumBits > 1) 4743 FirstAnswer = std::max(FirstAnswer, NumBits); 4744 } 4745 } 4746 4747 // Finally, if we can prove that the top bits of the result are 0's or 1's, 4748 // use this information. 4749 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth); 4750 return std::max(FirstAnswer, Known.countMinSignBits()); 4751 } 4752 4753 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4754 unsigned Depth) const { 4755 unsigned SignBits = ComputeNumSignBits(Op, Depth); 4756 return Op.getScalarValueSizeInBits() - SignBits + 1; 4757 } 4758 4759 unsigned SelectionDAG::ComputeMaxSignificantBits(SDValue Op, 4760 const APInt &DemandedElts, 4761 unsigned Depth) const { 4762 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth); 4763 return Op.getScalarValueSizeInBits() - SignBits + 1; 4764 } 4765 4766 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly, 4767 unsigned Depth) const { 4768 // Early out for FREEZE. 4769 if (Op.getOpcode() == ISD::FREEZE) 4770 return true; 4771 4772 // TODO: Assume we don't know anything for now. 4773 EVT VT = Op.getValueType(); 4774 if (VT.isScalableVector()) 4775 return false; 4776 4777 APInt DemandedElts = VT.isVector() 4778 ? APInt::getAllOnes(VT.getVectorNumElements()) 4779 : APInt(1, 1); 4780 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth); 4781 } 4782 4783 bool SelectionDAG::isGuaranteedNotToBeUndefOrPoison(SDValue Op, 4784 const APInt &DemandedElts, 4785 bool PoisonOnly, 4786 unsigned Depth) const { 4787 unsigned Opcode = Op.getOpcode(); 4788 4789 // Early out for FREEZE. 4790 if (Opcode == ISD::FREEZE) 4791 return true; 4792 4793 if (Depth >= MaxRecursionDepth) 4794 return false; // Limit search depth. 4795 4796 if (isIntOrFPConstant(Op)) 4797 return true; 4798 4799 switch (Opcode) { 4800 case ISD::VALUETYPE: 4801 case ISD::FrameIndex: 4802 case ISD::TargetFrameIndex: 4803 return true; 4804 4805 case ISD::UNDEF: 4806 return PoisonOnly; 4807 4808 case ISD::BUILD_VECTOR: 4809 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements - 4810 // this shouldn't affect the result. 4811 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) { 4812 if (!DemandedElts[i]) 4813 continue; 4814 if (!isGuaranteedNotToBeUndefOrPoison(Op.getOperand(i), PoisonOnly, 4815 Depth + 1)) 4816 return false; 4817 } 4818 return true; 4819 4820 // TODO: Search for noundef attributes from library functions. 4821 4822 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef. 4823 4824 default: 4825 // Allow the target to implement this method for its nodes. 4826 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4827 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4828 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode( 4829 Op, DemandedElts, *this, PoisonOnly, Depth); 4830 break; 4831 } 4832 4833 // If Op can't create undef/poison and none of its operands are undef/poison 4834 // then Op is never undef/poison. 4835 // NOTE: TargetNodes should handle this in themselves in 4836 // isGuaranteedNotToBeUndefOrPoisonForTargetNode. 4837 return !canCreateUndefOrPoison(Op, PoisonOnly, /*ConsiderFlags*/ true, 4838 Depth) && 4839 all_of(Op->ops(), [&](SDValue V) { 4840 return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1); 4841 }); 4842 } 4843 4844 bool SelectionDAG::canCreateUndefOrPoison(SDValue Op, bool PoisonOnly, 4845 bool ConsiderFlags, 4846 unsigned Depth) const { 4847 // TODO: Assume we don't know anything for now. 4848 EVT VT = Op.getValueType(); 4849 if (VT.isScalableVector()) 4850 return true; 4851 4852 APInt DemandedElts = VT.isVector() 4853 ? APInt::getAllOnes(VT.getVectorNumElements()) 4854 : APInt(1, 1); 4855 return canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly, ConsiderFlags, 4856 Depth); 4857 } 4858 4859 bool SelectionDAG::canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, 4860 bool PoisonOnly, bool ConsiderFlags, 4861 unsigned Depth) const { 4862 // TODO: Assume we don't know anything for now. 4863 EVT VT = Op.getValueType(); 4864 if (VT.isScalableVector()) 4865 return true; 4866 4867 unsigned Opcode = Op.getOpcode(); 4868 switch (Opcode) { 4869 case ISD::AssertSext: 4870 case ISD::AssertZext: 4871 case ISD::FREEZE: 4872 case ISD::CONCAT_VECTORS: 4873 case ISD::INSERT_SUBVECTOR: 4874 case ISD::AND: 4875 case ISD::OR: 4876 case ISD::XOR: 4877 case ISD::ROTL: 4878 case ISD::ROTR: 4879 case ISD::FSHL: 4880 case ISD::FSHR: 4881 case ISD::BSWAP: 4882 case ISD::CTPOP: 4883 case ISD::BITREVERSE: 4884 case ISD::PARITY: 4885 case ISD::SIGN_EXTEND: 4886 case ISD::ZERO_EXTEND: 4887 case ISD::TRUNCATE: 4888 case ISD::SIGN_EXTEND_INREG: 4889 case ISD::SIGN_EXTEND_VECTOR_INREG: 4890 case ISD::ZERO_EXTEND_VECTOR_INREG: 4891 case ISD::BITCAST: 4892 case ISD::BUILD_VECTOR: 4893 case ISD::BUILD_PAIR: 4894 return false; 4895 4896 case ISD::ADD: 4897 case ISD::SUB: 4898 case ISD::MUL: 4899 // Matches hasPoisonGeneratingFlags(). 4900 return ConsiderFlags && (Op->getFlags().hasNoSignedWrap() || 4901 Op->getFlags().hasNoUnsignedWrap()); 4902 4903 case ISD::SHL: 4904 // If the max shift amount isn't in range, then the shift can create poison. 4905 if (!getValidMaximumShiftAmountConstant(Op, DemandedElts)) 4906 return true; 4907 4908 // Matches hasPoisonGeneratingFlags(). 4909 return ConsiderFlags && (Op->getFlags().hasNoSignedWrap() || 4910 Op->getFlags().hasNoUnsignedWrap()); 4911 4912 case ISD::INSERT_VECTOR_ELT:{ 4913 // Ensure that the element index is in bounds. 4914 EVT VecVT = Op.getOperand(0).getValueType(); 4915 KnownBits KnownIdx = computeKnownBits(Op.getOperand(2), Depth + 1); 4916 return KnownIdx.getMaxValue().uge(VecVT.getVectorMinNumElements()); 4917 } 4918 4919 default: 4920 // Allow the target to implement this method for its nodes. 4921 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN || 4922 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) 4923 return TLI->canCreateUndefOrPoisonForTargetNode( 4924 Op, DemandedElts, *this, PoisonOnly, ConsiderFlags, Depth); 4925 break; 4926 } 4927 4928 // Be conservative and return true. 4929 return true; 4930 } 4931 4932 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { 4933 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || 4934 !isa<ConstantSDNode>(Op.getOperand(1))) 4935 return false; 4936 4937 if (Op.getOpcode() == ISD::OR && 4938 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1))) 4939 return false; 4940 4941 return true; 4942 } 4943 4944 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const { 4945 // If we're told that NaNs won't happen, assume they won't. 4946 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs()) 4947 return true; 4948 4949 if (Depth >= MaxRecursionDepth) 4950 return false; // Limit search depth. 4951 4952 // If the value is a constant, we can obviously see if it is a NaN or not. 4953 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) { 4954 return !C->getValueAPF().isNaN() || 4955 (SNaN && !C->getValueAPF().isSignaling()); 4956 } 4957 4958 unsigned Opcode = Op.getOpcode(); 4959 switch (Opcode) { 4960 case ISD::FADD: 4961 case ISD::FSUB: 4962 case ISD::FMUL: 4963 case ISD::FDIV: 4964 case ISD::FREM: 4965 case ISD::FSIN: 4966 case ISD::FCOS: 4967 case ISD::FMA: 4968 case ISD::FMAD: { 4969 if (SNaN) 4970 return true; 4971 // TODO: Need isKnownNeverInfinity 4972 return false; 4973 } 4974 case ISD::FCANONICALIZE: 4975 case ISD::FEXP: 4976 case ISD::FEXP2: 4977 case ISD::FTRUNC: 4978 case ISD::FFLOOR: 4979 case ISD::FCEIL: 4980 case ISD::FROUND: 4981 case ISD::FROUNDEVEN: 4982 case ISD::FRINT: 4983 case ISD::FNEARBYINT: 4984 case ISD::FLDEXP: { 4985 if (SNaN) 4986 return true; 4987 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4988 } 4989 case ISD::FABS: 4990 case ISD::FNEG: 4991 case ISD::FCOPYSIGN: { 4992 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 4993 } 4994 case ISD::SELECT: 4995 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && 4996 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); 4997 case ISD::FP_EXTEND: 4998 case ISD::FP_ROUND: { 4999 if (SNaN) 5000 return true; 5001 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 5002 } 5003 case ISD::SINT_TO_FP: 5004 case ISD::UINT_TO_FP: 5005 return true; 5006 case ISD::FSQRT: // Need is known positive 5007 case ISD::FLOG: 5008 case ISD::FLOG2: 5009 case ISD::FLOG10: 5010 case ISD::FPOWI: 5011 case ISD::FPOW: { 5012 if (SNaN) 5013 return true; 5014 // TODO: Refine on operand 5015 return false; 5016 } 5017 case ISD::FMINNUM: 5018 case ISD::FMAXNUM: { 5019 // Only one needs to be known not-nan, since it will be returned if the 5020 // other ends up being one. 5021 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) || 5022 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 5023 } 5024 case ISD::FMINNUM_IEEE: 5025 case ISD::FMAXNUM_IEEE: { 5026 if (SNaN) 5027 return true; 5028 // This can return a NaN if either operand is an sNaN, or if both operands 5029 // are NaN. 5030 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) && 5031 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) || 5032 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) && 5033 isKnownNeverSNaN(Op.getOperand(0), Depth + 1)); 5034 } 5035 case ISD::FMINIMUM: 5036 case ISD::FMAXIMUM: { 5037 // TODO: Does this quiet or return the origina NaN as-is? 5038 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && 5039 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); 5040 } 5041 case ISD::EXTRACT_VECTOR_ELT: { 5042 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); 5043 } 5044 case ISD::BUILD_VECTOR: { 5045 for (const SDValue &Opnd : Op->ops()) 5046 if (!isKnownNeverNaN(Opnd, SNaN, Depth + 1)) 5047 return false; 5048 return true; 5049 } 5050 default: 5051 if (Opcode >= ISD::BUILTIN_OP_END || 5052 Opcode == ISD::INTRINSIC_WO_CHAIN || 5053 Opcode == ISD::INTRINSIC_W_CHAIN || 5054 Opcode == ISD::INTRINSIC_VOID) { 5055 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth); 5056 } 5057 5058 return false; 5059 } 5060 } 5061 5062 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const { 5063 assert(Op.getValueType().isFloatingPoint() && 5064 "Floating point type expected"); 5065 5066 // If the value is a constant, we can obviously see if it is a zero or not. 5067 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) 5068 return !C->isZero(); 5069 5070 // Return false if we find any zero in a vector. 5071 if (Op->getOpcode() == ISD::BUILD_VECTOR || 5072 Op->getOpcode() == ISD::SPLAT_VECTOR) { 5073 for (const SDValue &OpVal : Op->op_values()) { 5074 if (OpVal.isUndef()) 5075 return false; 5076 if (auto *C = dyn_cast<ConstantFPSDNode>(OpVal)) 5077 if (C->isZero()) 5078 return false; 5079 } 5080 return true; 5081 } 5082 return false; 5083 } 5084 5085 bool SelectionDAG::isKnownNeverZero(SDValue Op, unsigned Depth) const { 5086 if (Depth >= MaxRecursionDepth) 5087 return false; // Limit search depth. 5088 5089 assert(!Op.getValueType().isFloatingPoint() && 5090 "Floating point types unsupported - use isKnownNeverZeroFloat"); 5091 5092 // If the value is a constant, we can obviously see if it is a zero or not. 5093 if (ISD::matchUnaryPredicate(Op, 5094 [](ConstantSDNode *C) { return !C->isZero(); })) 5095 return true; 5096 5097 // TODO: Recognize more cases here. Most of the cases are also incomplete to 5098 // some degree. 5099 switch (Op.getOpcode()) { 5100 default: 5101 break; 5102 5103 case ISD::OR: 5104 return isKnownNeverZero(Op.getOperand(1), Depth + 1) || 5105 isKnownNeverZero(Op.getOperand(0), Depth + 1); 5106 5107 case ISD::VSELECT: 5108 case ISD::SELECT: 5109 return isKnownNeverZero(Op.getOperand(1), Depth + 1) && 5110 isKnownNeverZero(Op.getOperand(2), Depth + 1); 5111 5112 case ISD::SHL: 5113 if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap()) 5114 return isKnownNeverZero(Op.getOperand(0), Depth + 1); 5115 5116 // 1 << X is never zero. TODO: This can be expanded if we can bound X. 5117 // The expression is really !Known.One[BitWidth-MaxLog2(Known):0].isZero() 5118 if (computeKnownBits(Op.getOperand(0), Depth + 1).One[0]) 5119 return true; 5120 break; 5121 5122 case ISD::UADDSAT: 5123 case ISD::UMAX: 5124 return isKnownNeverZero(Op.getOperand(1), Depth + 1) || 5125 isKnownNeverZero(Op.getOperand(0), Depth + 1); 5126 5127 case ISD::UMIN: 5128 return isKnownNeverZero(Op.getOperand(1), Depth + 1) && 5129 isKnownNeverZero(Op.getOperand(0), Depth + 1); 5130 5131 case ISD::ROTL: 5132 case ISD::ROTR: 5133 case ISD::BITREVERSE: 5134 case ISD::BSWAP: 5135 case ISD::CTPOP: 5136 case ISD::ABS: 5137 return isKnownNeverZero(Op.getOperand(0), Depth + 1); 5138 5139 case ISD::SRA: 5140 case ISD::SRL: 5141 if (Op->getFlags().hasExact()) 5142 return isKnownNeverZero(Op.getOperand(0), Depth + 1); 5143 // Signed >> X is never zero. TODO: This can be expanded if we can bound X. 5144 // The expression is really 5145 // !Known.One[SignBit:SignBit-(BitWidth-MaxLog2(Known))].isZero() 5146 if (computeKnownBits(Op.getOperand(0), Depth + 1).isNegative()) 5147 return true; 5148 break; 5149 5150 case ISD::UDIV: 5151 case ISD::SDIV: 5152 // div exact can only produce a zero if the dividend is zero. 5153 // TODO: For udiv this is also true if Op1 u<= Op0 5154 if (Op->getFlags().hasExact()) 5155 return isKnownNeverZero(Op.getOperand(0), Depth + 1); 5156 break; 5157 5158 case ISD::ADD: 5159 if (Op->getFlags().hasNoUnsignedWrap()) 5160 if (isKnownNeverZero(Op.getOperand(1), Depth + 1) || 5161 isKnownNeverZero(Op.getOperand(0), Depth + 1)) 5162 return true; 5163 // TODO: There are a lot more cases we can prove for add. 5164 break; 5165 5166 case ISD::SUB: { 5167 if (isNullConstant(Op.getOperand(0))) 5168 return isKnownNeverZero(Op.getOperand(1), Depth + 1); 5169 5170 std::optional<bool> ne = 5171 KnownBits::ne(computeKnownBits(Op.getOperand(0), Depth + 1), 5172 computeKnownBits(Op.getOperand(1), Depth + 1)); 5173 return ne && *ne; 5174 } 5175 5176 case ISD::MUL: 5177 if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap()) 5178 if (isKnownNeverZero(Op.getOperand(1), Depth + 1) && 5179 isKnownNeverZero(Op.getOperand(0), Depth + 1)) 5180 return true; 5181 break; 5182 5183 case ISD::ZERO_EXTEND: 5184 case ISD::SIGN_EXTEND: 5185 return isKnownNeverZero(Op.getOperand(0), Depth + 1); 5186 } 5187 5188 return computeKnownBits(Op, Depth).isNonZero(); 5189 } 5190 5191 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { 5192 // Check the obvious case. 5193 if (A == B) return true; 5194 5195 // For negative and positive zero. 5196 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) 5197 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) 5198 if (CA->isZero() && CB->isZero()) return true; 5199 5200 // Otherwise they may not be equal. 5201 return false; 5202 } 5203 5204 // Only bits set in Mask must be negated, other bits may be arbitrary. 5205 SDValue llvm::getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs) { 5206 if (isBitwiseNot(V, AllowUndefs)) 5207 return V.getOperand(0); 5208 5209 // Handle any_extend (not (truncate X)) pattern, where Mask only sets 5210 // bits in the non-extended part. 5211 ConstantSDNode *MaskC = isConstOrConstSplat(Mask); 5212 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND) 5213 return SDValue(); 5214 SDValue ExtArg = V.getOperand(0); 5215 if (ExtArg.getScalarValueSizeInBits() >= 5216 MaskC->getAPIntValue().getActiveBits() && 5217 isBitwiseNot(ExtArg, AllowUndefs) && 5218 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE && 5219 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType()) 5220 return ExtArg.getOperand(0).getOperand(0); 5221 return SDValue(); 5222 } 5223 5224 static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B) { 5225 // Match masked merge pattern (X & ~M) op (Y & M) 5226 // Including degenerate case (X & ~M) op M 5227 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask, 5228 SDValue Other) { 5229 if (SDValue NotOperand = 5230 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) { 5231 if (NotOperand->getOpcode() == ISD::ZERO_EXTEND || 5232 NotOperand->getOpcode() == ISD::TRUNCATE) 5233 NotOperand = NotOperand->getOperand(0); 5234 5235 if (Other == NotOperand) 5236 return true; 5237 if (Other->getOpcode() == ISD::AND) 5238 return NotOperand == Other->getOperand(0) || 5239 NotOperand == Other->getOperand(1); 5240 } 5241 return false; 5242 }; 5243 5244 if (A->getOpcode() == ISD::ZERO_EXTEND || A->getOpcode() == ISD::TRUNCATE) 5245 A = A->getOperand(0); 5246 5247 if (B->getOpcode() == ISD::ZERO_EXTEND || B->getOpcode() == ISD::TRUNCATE) 5248 B = B->getOperand(0); 5249 5250 if (A->getOpcode() == ISD::AND) 5251 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) || 5252 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B); 5253 return false; 5254 } 5255 5256 // FIXME: unify with llvm::haveNoCommonBitsSet. 5257 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const { 5258 assert(A.getValueType() == B.getValueType() && 5259 "Values must have the same type"); 5260 if (haveNoCommonBitsSetCommutative(A, B) || 5261 haveNoCommonBitsSetCommutative(B, A)) 5262 return true; 5263 return KnownBits::haveNoCommonBitsSet(computeKnownBits(A), 5264 computeKnownBits(B)); 5265 } 5266 5267 static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, 5268 SelectionDAG &DAG) { 5269 if (cast<ConstantSDNode>(Step)->isZero()) 5270 return DAG.getConstant(0, DL, VT); 5271 5272 return SDValue(); 5273 } 5274 5275 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, 5276 ArrayRef<SDValue> Ops, 5277 SelectionDAG &DAG) { 5278 int NumOps = Ops.size(); 5279 assert(NumOps != 0 && "Can't build an empty vector!"); 5280 assert(!VT.isScalableVector() && 5281 "BUILD_VECTOR cannot be used with scalable types"); 5282 assert(VT.getVectorNumElements() == (unsigned)NumOps && 5283 "Incorrect element count in BUILD_VECTOR!"); 5284 5285 // BUILD_VECTOR of UNDEFs is UNDEF. 5286 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 5287 return DAG.getUNDEF(VT); 5288 5289 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity. 5290 SDValue IdentitySrc; 5291 bool IsIdentity = true; 5292 for (int i = 0; i != NumOps; ++i) { 5293 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT || 5294 Ops[i].getOperand(0).getValueType() != VT || 5295 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) || 5296 !isa<ConstantSDNode>(Ops[i].getOperand(1)) || 5297 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) { 5298 IsIdentity = false; 5299 break; 5300 } 5301 IdentitySrc = Ops[i].getOperand(0); 5302 } 5303 if (IsIdentity) 5304 return IdentitySrc; 5305 5306 return SDValue(); 5307 } 5308 5309 /// Try to simplify vector concatenation to an input value, undef, or build 5310 /// vector. 5311 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, 5312 ArrayRef<SDValue> Ops, 5313 SelectionDAG &DAG) { 5314 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!"); 5315 assert(llvm::all_of(Ops, 5316 [Ops](SDValue Op) { 5317 return Ops[0].getValueType() == Op.getValueType(); 5318 }) && 5319 "Concatenation of vectors with inconsistent value types!"); 5320 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) == 5321 VT.getVectorElementCount() && 5322 "Incorrect element count in vector concatenation!"); 5323 5324 if (Ops.size() == 1) 5325 return Ops[0]; 5326 5327 // Concat of UNDEFs is UNDEF. 5328 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); })) 5329 return DAG.getUNDEF(VT); 5330 5331 // Scan the operands and look for extract operations from a single source 5332 // that correspond to insertion at the same location via this concatenation: 5333 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ... 5334 SDValue IdentitySrc; 5335 bool IsIdentity = true; 5336 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 5337 SDValue Op = Ops[i]; 5338 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements(); 5339 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR || 5340 Op.getOperand(0).getValueType() != VT || 5341 (IdentitySrc && Op.getOperand(0) != IdentitySrc) || 5342 Op.getConstantOperandVal(1) != IdentityIndex) { 5343 IsIdentity = false; 5344 break; 5345 } 5346 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) && 5347 "Unexpected identity source vector for concat of extracts"); 5348 IdentitySrc = Op.getOperand(0); 5349 } 5350 if (IsIdentity) { 5351 assert(IdentitySrc && "Failed to set source vector of extracts"); 5352 return IdentitySrc; 5353 } 5354 5355 // The code below this point is only designed to work for fixed width 5356 // vectors, so we bail out for now. 5357 if (VT.isScalableVector()) 5358 return SDValue(); 5359 5360 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be 5361 // simplified to one big BUILD_VECTOR. 5362 // FIXME: Add support for SCALAR_TO_VECTOR as well. 5363 EVT SVT = VT.getScalarType(); 5364 SmallVector<SDValue, 16> Elts; 5365 for (SDValue Op : Ops) { 5366 EVT OpVT = Op.getValueType(); 5367 if (Op.isUndef()) 5368 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT)); 5369 else if (Op.getOpcode() == ISD::BUILD_VECTOR) 5370 Elts.append(Op->op_begin(), Op->op_end()); 5371 else 5372 return SDValue(); 5373 } 5374 5375 // BUILD_VECTOR requires all inputs to be of the same type, find the 5376 // maximum type and extend them all. 5377 for (SDValue Op : Elts) 5378 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); 5379 5380 if (SVT.bitsGT(VT.getScalarType())) { 5381 for (SDValue &Op : Elts) { 5382 if (Op.isUndef()) 5383 Op = DAG.getUNDEF(SVT); 5384 else 5385 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT) 5386 ? DAG.getZExtOrTrunc(Op, DL, SVT) 5387 : DAG.getSExtOrTrunc(Op, DL, SVT); 5388 } 5389 } 5390 5391 SDValue V = DAG.getBuildVector(VT, DL, Elts); 5392 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG); 5393 return V; 5394 } 5395 5396 /// Gets or creates the specified node. 5397 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) { 5398 FoldingSetNodeID ID; 5399 AddNodeIDNode(ID, Opcode, getVTList(VT), std::nullopt); 5400 void *IP = nullptr; 5401 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 5402 return SDValue(E, 0); 5403 5404 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), 5405 getVTList(VT)); 5406 CSEMap.InsertNode(N, IP); 5407 5408 InsertNode(N); 5409 SDValue V = SDValue(N, 0); 5410 NewSDValueDbgMsg(V, "Creating new node: ", this); 5411 return V; 5412 } 5413 5414 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5415 SDValue N1) { 5416 SDNodeFlags Flags; 5417 if (Inserter) 5418 Flags = Inserter->getFlags(); 5419 return getNode(Opcode, DL, VT, N1, Flags); 5420 } 5421 5422 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 5423 SDValue N1, const SDNodeFlags Flags) { 5424 assert(N1.getOpcode() != ISD::DELETED_NODE && "Operand is DELETED_NODE!"); 5425 // Constant fold unary operations with an integer constant operand. Even 5426 // opaque constant will be folded, because the folding of unary operations 5427 // doesn't create new constants with different values. Nevertheless, the 5428 // opaque flag is preserved during folding to prevent future folding with 5429 // other constants. 5430 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 5431 const APInt &Val = C->getAPIntValue(); 5432 switch (Opcode) { 5433 default: break; 5434 case ISD::SIGN_EXTEND: 5435 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 5436 C->isTargetOpcode(), C->isOpaque()); 5437 case ISD::TRUNCATE: 5438 if (C->isOpaque()) 5439 break; 5440 [[fallthrough]]; 5441 case ISD::ZERO_EXTEND: 5442 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 5443 C->isTargetOpcode(), C->isOpaque()); 5444 case ISD::ANY_EXTEND: 5445 // Some targets like RISCV prefer to sign extend some types. 5446 if (TLI->isSExtCheaperThanZExt(N1.getValueType(), VT)) 5447 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, 5448 C->isTargetOpcode(), C->isOpaque()); 5449 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, 5450 C->isTargetOpcode(), C->isOpaque()); 5451 case ISD::UINT_TO_FP: 5452 case ISD::SINT_TO_FP: { 5453 APFloat apf(EVTToAPFloatSemantics(VT), 5454 APInt::getZero(VT.getSizeInBits())); 5455 (void)apf.convertFromAPInt(Val, 5456 Opcode==ISD::SINT_TO_FP, 5457 APFloat::rmNearestTiesToEven); 5458 return getConstantFP(apf, DL, VT); 5459 } 5460 case ISD::BITCAST: 5461 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) 5462 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT); 5463 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) 5464 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT); 5465 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) 5466 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT); 5467 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128) 5468 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT); 5469 break; 5470 case ISD::ABS: 5471 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(), 5472 C->isOpaque()); 5473 case ISD::BITREVERSE: 5474 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(), 5475 C->isOpaque()); 5476 case ISD::BSWAP: 5477 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), 5478 C->isOpaque()); 5479 case ISD::CTPOP: 5480 return getConstant(Val.popcount(), DL, VT, C->isTargetOpcode(), 5481 C->isOpaque()); 5482 case ISD::CTLZ: 5483 case ISD::CTLZ_ZERO_UNDEF: 5484 return getConstant(Val.countl_zero(), DL, VT, C->isTargetOpcode(), 5485 C->isOpaque()); 5486 case ISD::CTTZ: 5487 case ISD::CTTZ_ZERO_UNDEF: 5488 return getConstant(Val.countr_zero(), DL, VT, C->isTargetOpcode(), 5489 C->isOpaque()); 5490 case ISD::FP16_TO_FP: 5491 case ISD::BF16_TO_FP: { 5492 bool Ignored; 5493 APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf() 5494 : APFloat::BFloat(), 5495 (Val.getBitWidth() == 16) ? Val : Val.trunc(16)); 5496 5497 // This can return overflow, underflow, or inexact; we don't care. 5498 // FIXME need to be more flexible about rounding mode. 5499 (void)FPV.convert(EVTToAPFloatSemantics(VT), 5500 APFloat::rmNearestTiesToEven, &Ignored); 5501 return getConstantFP(FPV, DL, VT); 5502 } 5503 case ISD::STEP_VECTOR: { 5504 if (SDValue V = FoldSTEP_VECTOR(DL, VT, N1, *this)) 5505 return V; 5506 break; 5507 } 5508 } 5509 } 5510 5511 // Constant fold unary operations with a floating point constant operand. 5512 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N1)) { 5513 APFloat V = C->getValueAPF(); // make copy 5514 switch (Opcode) { 5515 case ISD::FNEG: 5516 V.changeSign(); 5517 return getConstantFP(V, DL, VT); 5518 case ISD::FABS: 5519 V.clearSign(); 5520 return getConstantFP(V, DL, VT); 5521 case ISD::FCEIL: { 5522 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); 5523 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5524 return getConstantFP(V, DL, VT); 5525 break; 5526 } 5527 case ISD::FTRUNC: { 5528 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); 5529 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5530 return getConstantFP(V, DL, VT); 5531 break; 5532 } 5533 case ISD::FFLOOR: { 5534 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); 5535 if (fs == APFloat::opOK || fs == APFloat::opInexact) 5536 return getConstantFP(V, DL, VT); 5537 break; 5538 } 5539 case ISD::FP_EXTEND: { 5540 bool ignored; 5541 // This can return overflow, underflow, or inexact; we don't care. 5542 // FIXME need to be more flexible about rounding mode. 5543 (void)V.convert(EVTToAPFloatSemantics(VT), 5544 APFloat::rmNearestTiesToEven, &ignored); 5545 return getConstantFP(V, DL, VT); 5546 } 5547 case ISD::FP_TO_SINT: 5548 case ISD::FP_TO_UINT: { 5549 bool ignored; 5550 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT); 5551 // FIXME need to be more flexible about rounding mode. 5552 APFloat::opStatus s = 5553 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored); 5554 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual 5555 break; 5556 return getConstant(IntVal, DL, VT); 5557 } 5558 case ISD::BITCAST: 5559 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) 5560 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5561 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16) 5562 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5563 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) 5564 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); 5565 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) 5566 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5567 break; 5568 case ISD::FP_TO_FP16: 5569 case ISD::FP_TO_BF16: { 5570 bool Ignored; 5571 // This can return overflow, underflow, or inexact; we don't care. 5572 // FIXME need to be more flexible about rounding mode. 5573 (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf() 5574 : APFloat::BFloat(), 5575 APFloat::rmNearestTiesToEven, &Ignored); 5576 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); 5577 } 5578 } 5579 } 5580 5581 // Constant fold unary operations with a vector integer or float operand. 5582 switch (Opcode) { 5583 default: 5584 // FIXME: Entirely reasonable to perform folding of other unary 5585 // operations here as the need arises. 5586 break; 5587 case ISD::FNEG: 5588 case ISD::FABS: 5589 case ISD::FCEIL: 5590 case ISD::FTRUNC: 5591 case ISD::FFLOOR: 5592 case ISD::FP_EXTEND: 5593 case ISD::FP_TO_SINT: 5594 case ISD::FP_TO_UINT: 5595 case ISD::TRUNCATE: 5596 case ISD::ANY_EXTEND: 5597 case ISD::ZERO_EXTEND: 5598 case ISD::SIGN_EXTEND: 5599 case ISD::UINT_TO_FP: 5600 case ISD::SINT_TO_FP: 5601 case ISD::ABS: 5602 case ISD::BITREVERSE: 5603 case ISD::BSWAP: 5604 case ISD::CTLZ: 5605 case ISD::CTLZ_ZERO_UNDEF: 5606 case ISD::CTTZ: 5607 case ISD::CTTZ_ZERO_UNDEF: 5608 case ISD::CTPOP: { 5609 SDValue Ops = {N1}; 5610 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops)) 5611 return Fold; 5612 } 5613 } 5614 5615 unsigned OpOpcode = N1.getNode()->getOpcode(); 5616 switch (Opcode) { 5617 case ISD::STEP_VECTOR: 5618 assert(VT.isScalableVector() && 5619 "STEP_VECTOR can only be used with scalable types"); 5620 assert(OpOpcode == ISD::TargetConstant && 5621 VT.getVectorElementType() == N1.getValueType() && 5622 "Unexpected step operand"); 5623 break; 5624 case ISD::FREEZE: 5625 assert(VT == N1.getValueType() && "Unexpected VT!"); 5626 if (isGuaranteedNotToBeUndefOrPoison(N1, /*PoisonOnly*/ false, 5627 /*Depth*/ 1)) 5628 return N1; 5629 break; 5630 case ISD::TokenFactor: 5631 case ISD::MERGE_VALUES: 5632 case ISD::CONCAT_VECTORS: 5633 return N1; // Factor, merge or concat of one node? No need. 5634 case ISD::BUILD_VECTOR: { 5635 // Attempt to simplify BUILD_VECTOR. 5636 SDValue Ops[] = {N1}; 5637 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 5638 return V; 5639 break; 5640 } 5641 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); 5642 case ISD::FP_EXTEND: 5643 assert(VT.isFloatingPoint() && N1.getValueType().isFloatingPoint() && 5644 "Invalid FP cast!"); 5645 if (N1.getValueType() == VT) return N1; // noop conversion. 5646 assert((!VT.isVector() || VT.getVectorElementCount() == 5647 N1.getValueType().getVectorElementCount()) && 5648 "Vector element count mismatch!"); 5649 assert(N1.getValueType().bitsLT(VT) && "Invalid fpext node, dst < src!"); 5650 if (N1.isUndef()) 5651 return getUNDEF(VT); 5652 break; 5653 case ISD::FP_TO_SINT: 5654 case ISD::FP_TO_UINT: 5655 if (N1.isUndef()) 5656 return getUNDEF(VT); 5657 break; 5658 case ISD::SINT_TO_FP: 5659 case ISD::UINT_TO_FP: 5660 // [us]itofp(undef) = 0, because the result value is bounded. 5661 if (N1.isUndef()) 5662 return getConstantFP(0.0, DL, VT); 5663 break; 5664 case ISD::SIGN_EXTEND: 5665 assert(VT.isInteger() && N1.getValueType().isInteger() && 5666 "Invalid SIGN_EXTEND!"); 5667 assert(VT.isVector() == N1.getValueType().isVector() && 5668 "SIGN_EXTEND result type type should be vector iff the operand " 5669 "type is vector!"); 5670 if (N1.getValueType() == VT) return N1; // noop extension 5671 assert((!VT.isVector() || VT.getVectorElementCount() == 5672 N1.getValueType().getVectorElementCount()) && 5673 "Vector element count mismatch!"); 5674 assert(N1.getValueType().bitsLT(VT) && "Invalid sext node, dst < src!"); 5675 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) 5676 return getNode(OpOpcode, DL, VT, N1.getOperand(0)); 5677 if (OpOpcode == ISD::UNDEF) 5678 // sext(undef) = 0, because the top bits will all be the same. 5679 return getConstant(0, DL, VT); 5680 break; 5681 case ISD::ZERO_EXTEND: 5682 assert(VT.isInteger() && N1.getValueType().isInteger() && 5683 "Invalid ZERO_EXTEND!"); 5684 assert(VT.isVector() == N1.getValueType().isVector() && 5685 "ZERO_EXTEND result type type should be vector iff the operand " 5686 "type is vector!"); 5687 if (N1.getValueType() == VT) return N1; // noop extension 5688 assert((!VT.isVector() || VT.getVectorElementCount() == 5689 N1.getValueType().getVectorElementCount()) && 5690 "Vector element count mismatch!"); 5691 assert(N1.getValueType().bitsLT(VT) && "Invalid zext node, dst < src!"); 5692 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) 5693 return getNode(ISD::ZERO_EXTEND, DL, VT, N1.getOperand(0)); 5694 if (OpOpcode == ISD::UNDEF) 5695 // zext(undef) = 0, because the top bits will be zero. 5696 return getConstant(0, DL, VT); 5697 break; 5698 case ISD::ANY_EXTEND: 5699 assert(VT.isInteger() && N1.getValueType().isInteger() && 5700 "Invalid ANY_EXTEND!"); 5701 assert(VT.isVector() == N1.getValueType().isVector() && 5702 "ANY_EXTEND result type type should be vector iff the operand " 5703 "type is vector!"); 5704 if (N1.getValueType() == VT) return N1; // noop extension 5705 assert((!VT.isVector() || VT.getVectorElementCount() == 5706 N1.getValueType().getVectorElementCount()) && 5707 "Vector element count mismatch!"); 5708 assert(N1.getValueType().bitsLT(VT) && "Invalid anyext node, dst < src!"); 5709 5710 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5711 OpOpcode == ISD::ANY_EXTEND) 5712 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) 5713 return getNode(OpOpcode, DL, VT, N1.getOperand(0)); 5714 if (OpOpcode == ISD::UNDEF) 5715 return getUNDEF(VT); 5716 5717 // (ext (trunc x)) -> x 5718 if (OpOpcode == ISD::TRUNCATE) { 5719 SDValue OpOp = N1.getOperand(0); 5720 if (OpOp.getValueType() == VT) { 5721 transferDbgValues(N1, OpOp); 5722 return OpOp; 5723 } 5724 } 5725 break; 5726 case ISD::TRUNCATE: 5727 assert(VT.isInteger() && N1.getValueType().isInteger() && 5728 "Invalid TRUNCATE!"); 5729 assert(VT.isVector() == N1.getValueType().isVector() && 5730 "TRUNCATE result type type should be vector iff the operand " 5731 "type is vector!"); 5732 if (N1.getValueType() == VT) return N1; // noop truncate 5733 assert((!VT.isVector() || VT.getVectorElementCount() == 5734 N1.getValueType().getVectorElementCount()) && 5735 "Vector element count mismatch!"); 5736 assert(N1.getValueType().bitsGT(VT) && "Invalid truncate node, src < dst!"); 5737 if (OpOpcode == ISD::TRUNCATE) 5738 return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0)); 5739 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || 5740 OpOpcode == ISD::ANY_EXTEND) { 5741 // If the source is smaller than the dest, we still need an extend. 5742 if (N1.getOperand(0).getValueType().getScalarType().bitsLT( 5743 VT.getScalarType())) 5744 return getNode(OpOpcode, DL, VT, N1.getOperand(0)); 5745 if (N1.getOperand(0).getValueType().bitsGT(VT)) 5746 return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0)); 5747 return N1.getOperand(0); 5748 } 5749 if (OpOpcode == ISD::UNDEF) 5750 return getUNDEF(VT); 5751 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes) 5752 return getVScale(DL, VT, 5753 N1.getConstantOperandAPInt(0).trunc(VT.getSizeInBits())); 5754 break; 5755 case ISD::ANY_EXTEND_VECTOR_INREG: 5756 case ISD::ZERO_EXTEND_VECTOR_INREG: 5757 case ISD::SIGN_EXTEND_VECTOR_INREG: 5758 assert(VT.isVector() && "This DAG node is restricted to vector types."); 5759 assert(N1.getValueType().bitsLE(VT) && 5760 "The input must be the same size or smaller than the result."); 5761 assert(VT.getVectorMinNumElements() < 5762 N1.getValueType().getVectorMinNumElements() && 5763 "The destination vector type must have fewer lanes than the input."); 5764 break; 5765 case ISD::ABS: 5766 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid ABS!"); 5767 if (OpOpcode == ISD::UNDEF) 5768 return getConstant(0, DL, VT); 5769 break; 5770 case ISD::BSWAP: 5771 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BSWAP!"); 5772 assert((VT.getScalarSizeInBits() % 16 == 0) && 5773 "BSWAP types must be a multiple of 16 bits!"); 5774 if (OpOpcode == ISD::UNDEF) 5775 return getUNDEF(VT); 5776 // bswap(bswap(X)) -> X. 5777 if (OpOpcode == ISD::BSWAP) 5778 return N1.getOperand(0); 5779 break; 5780 case ISD::BITREVERSE: 5781 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BITREVERSE!"); 5782 if (OpOpcode == ISD::UNDEF) 5783 return getUNDEF(VT); 5784 break; 5785 case ISD::BITCAST: 5786 assert(VT.getSizeInBits() == N1.getValueSizeInBits() && 5787 "Cannot BITCAST between types of different sizes!"); 5788 if (VT == N1.getValueType()) return N1; // noop conversion. 5789 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) 5790 return getNode(ISD::BITCAST, DL, VT, N1.getOperand(0)); 5791 if (OpOpcode == ISD::UNDEF) 5792 return getUNDEF(VT); 5793 break; 5794 case ISD::SCALAR_TO_VECTOR: 5795 assert(VT.isVector() && !N1.getValueType().isVector() && 5796 (VT.getVectorElementType() == N1.getValueType() || 5797 (VT.getVectorElementType().isInteger() && 5798 N1.getValueType().isInteger() && 5799 VT.getVectorElementType().bitsLE(N1.getValueType()))) && 5800 "Illegal SCALAR_TO_VECTOR node!"); 5801 if (OpOpcode == ISD::UNDEF) 5802 return getUNDEF(VT); 5803 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. 5804 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && 5805 isa<ConstantSDNode>(N1.getOperand(1)) && 5806 N1.getConstantOperandVal(1) == 0 && 5807 N1.getOperand(0).getValueType() == VT) 5808 return N1.getOperand(0); 5809 break; 5810 case ISD::FNEG: 5811 // Negation of an unknown bag of bits is still completely undefined. 5812 if (OpOpcode == ISD::UNDEF) 5813 return getUNDEF(VT); 5814 5815 if (OpOpcode == ISD::FNEG) // --X -> X 5816 return N1.getOperand(0); 5817 break; 5818 case ISD::FABS: 5819 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) 5820 return getNode(ISD::FABS, DL, VT, N1.getOperand(0)); 5821 break; 5822 case ISD::VSCALE: 5823 assert(VT == N1.getValueType() && "Unexpected VT!"); 5824 break; 5825 case ISD::CTPOP: 5826 if (N1.getValueType().getScalarType() == MVT::i1) 5827 return N1; 5828 break; 5829 case ISD::CTLZ: 5830 case ISD::CTTZ: 5831 if (N1.getValueType().getScalarType() == MVT::i1) 5832 return getNOT(DL, N1, N1.getValueType()); 5833 break; 5834 case ISD::VECREDUCE_ADD: 5835 if (N1.getValueType().getScalarType() == MVT::i1) 5836 return getNode(ISD::VECREDUCE_XOR, DL, VT, N1); 5837 break; 5838 case ISD::VECREDUCE_SMIN: 5839 case ISD::VECREDUCE_UMAX: 5840 if (N1.getValueType().getScalarType() == MVT::i1) 5841 return getNode(ISD::VECREDUCE_OR, DL, VT, N1); 5842 break; 5843 case ISD::VECREDUCE_SMAX: 5844 case ISD::VECREDUCE_UMIN: 5845 if (N1.getValueType().getScalarType() == MVT::i1) 5846 return getNode(ISD::VECREDUCE_AND, DL, VT, N1); 5847 break; 5848 } 5849 5850 SDNode *N; 5851 SDVTList VTs = getVTList(VT); 5852 SDValue Ops[] = {N1}; 5853 if (VT != MVT::Glue) { // Don't CSE flag producing nodes 5854 FoldingSetNodeID ID; 5855 AddNodeIDNode(ID, Opcode, VTs, Ops); 5856 void *IP = nullptr; 5857 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 5858 E->intersectFlagsWith(Flags); 5859 return SDValue(E, 0); 5860 } 5861 5862 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5863 N->setFlags(Flags); 5864 createOperands(N, Ops); 5865 CSEMap.InsertNode(N, IP); 5866 } else { 5867 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 5868 createOperands(N, Ops); 5869 } 5870 5871 InsertNode(N); 5872 SDValue V = SDValue(N, 0); 5873 NewSDValueDbgMsg(V, "Creating new node: ", this); 5874 return V; 5875 } 5876 5877 static std::optional<APInt> FoldValue(unsigned Opcode, const APInt &C1, 5878 const APInt &C2) { 5879 switch (Opcode) { 5880 case ISD::ADD: return C1 + C2; 5881 case ISD::SUB: return C1 - C2; 5882 case ISD::MUL: return C1 * C2; 5883 case ISD::AND: return C1 & C2; 5884 case ISD::OR: return C1 | C2; 5885 case ISD::XOR: return C1 ^ C2; 5886 case ISD::SHL: return C1 << C2; 5887 case ISD::SRL: return C1.lshr(C2); 5888 case ISD::SRA: return C1.ashr(C2); 5889 case ISD::ROTL: return C1.rotl(C2); 5890 case ISD::ROTR: return C1.rotr(C2); 5891 case ISD::SMIN: return C1.sle(C2) ? C1 : C2; 5892 case ISD::SMAX: return C1.sge(C2) ? C1 : C2; 5893 case ISD::UMIN: return C1.ule(C2) ? C1 : C2; 5894 case ISD::UMAX: return C1.uge(C2) ? C1 : C2; 5895 case ISD::SADDSAT: return C1.sadd_sat(C2); 5896 case ISD::UADDSAT: return C1.uadd_sat(C2); 5897 case ISD::SSUBSAT: return C1.ssub_sat(C2); 5898 case ISD::USUBSAT: return C1.usub_sat(C2); 5899 case ISD::SSHLSAT: return C1.sshl_sat(C2); 5900 case ISD::USHLSAT: return C1.ushl_sat(C2); 5901 case ISD::UDIV: 5902 if (!C2.getBoolValue()) 5903 break; 5904 return C1.udiv(C2); 5905 case ISD::UREM: 5906 if (!C2.getBoolValue()) 5907 break; 5908 return C1.urem(C2); 5909 case ISD::SDIV: 5910 if (!C2.getBoolValue()) 5911 break; 5912 return C1.sdiv(C2); 5913 case ISD::SREM: 5914 if (!C2.getBoolValue()) 5915 break; 5916 return C1.srem(C2); 5917 case ISD::MULHS: { 5918 unsigned FullWidth = C1.getBitWidth() * 2; 5919 APInt C1Ext = C1.sext(FullWidth); 5920 APInt C2Ext = C2.sext(FullWidth); 5921 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5922 } 5923 case ISD::MULHU: { 5924 unsigned FullWidth = C1.getBitWidth() * 2; 5925 APInt C1Ext = C1.zext(FullWidth); 5926 APInt C2Ext = C2.zext(FullWidth); 5927 return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 5928 } 5929 case ISD::AVGFLOORS: { 5930 unsigned FullWidth = C1.getBitWidth() + 1; 5931 APInt C1Ext = C1.sext(FullWidth); 5932 APInt C2Ext = C2.sext(FullWidth); 5933 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5934 } 5935 case ISD::AVGFLOORU: { 5936 unsigned FullWidth = C1.getBitWidth() + 1; 5937 APInt C1Ext = C1.zext(FullWidth); 5938 APInt C2Ext = C2.zext(FullWidth); 5939 return (C1Ext + C2Ext).extractBits(C1.getBitWidth(), 1); 5940 } 5941 case ISD::AVGCEILS: { 5942 unsigned FullWidth = C1.getBitWidth() + 1; 5943 APInt C1Ext = C1.sext(FullWidth); 5944 APInt C2Ext = C2.sext(FullWidth); 5945 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5946 } 5947 case ISD::AVGCEILU: { 5948 unsigned FullWidth = C1.getBitWidth() + 1; 5949 APInt C1Ext = C1.zext(FullWidth); 5950 APInt C2Ext = C2.zext(FullWidth); 5951 return (C1Ext + C2Ext + 1).extractBits(C1.getBitWidth(), 1); 5952 } 5953 case ISD::ABDS: 5954 return APIntOps::smax(C1, C2) - APIntOps::smin(C1, C2); 5955 case ISD::ABDU: 5956 return APIntOps::umax(C1, C2) - APIntOps::umin(C1, C2); 5957 } 5958 return std::nullopt; 5959 } 5960 5961 // Handle constant folding with UNDEF. 5962 // TODO: Handle more cases. 5963 static std::optional<APInt> FoldValueWithUndef(unsigned Opcode, const APInt &C1, 5964 bool IsUndef1, const APInt &C2, 5965 bool IsUndef2) { 5966 if (!(IsUndef1 || IsUndef2)) 5967 return FoldValue(Opcode, C1, C2); 5968 5969 // Fold and(x, undef) -> 0 5970 // Fold mul(x, undef) -> 0 5971 if (Opcode == ISD::AND || Opcode == ISD::MUL) 5972 return APInt::getZero(C1.getBitWidth()); 5973 5974 return std::nullopt; 5975 } 5976 5977 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT, 5978 const GlobalAddressSDNode *GA, 5979 const SDNode *N2) { 5980 if (GA->getOpcode() != ISD::GlobalAddress) 5981 return SDValue(); 5982 if (!TLI->isOffsetFoldingLegal(GA)) 5983 return SDValue(); 5984 auto *C2 = dyn_cast<ConstantSDNode>(N2); 5985 if (!C2) 5986 return SDValue(); 5987 int64_t Offset = C2->getSExtValue(); 5988 switch (Opcode) { 5989 case ISD::ADD: break; 5990 case ISD::SUB: Offset = -uint64_t(Offset); break; 5991 default: return SDValue(); 5992 } 5993 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT, 5994 GA->getOffset() + uint64_t(Offset)); 5995 } 5996 5997 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) { 5998 switch (Opcode) { 5999 case ISD::SDIV: 6000 case ISD::UDIV: 6001 case ISD::SREM: 6002 case ISD::UREM: { 6003 // If a divisor is zero/undef or any element of a divisor vector is 6004 // zero/undef, the whole op is undef. 6005 assert(Ops.size() == 2 && "Div/rem should have 2 operands"); 6006 SDValue Divisor = Ops[1]; 6007 if (Divisor.isUndef() || isNullConstant(Divisor)) 6008 return true; 6009 6010 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) && 6011 llvm::any_of(Divisor->op_values(), 6012 [](SDValue V) { return V.isUndef() || 6013 isNullConstant(V); }); 6014 // TODO: Handle signed overflow. 6015 } 6016 // TODO: Handle oversized shifts. 6017 default: 6018 return false; 6019 } 6020 } 6021 6022 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, 6023 EVT VT, ArrayRef<SDValue> Ops) { 6024 // If the opcode is a target-specific ISD node, there's nothing we can 6025 // do here and the operand rules may not line up with the below, so 6026 // bail early. 6027 // We can't create a scalar CONCAT_VECTORS so skip it. It will break 6028 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by 6029 // foldCONCAT_VECTORS in getNode before this is called. 6030 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS) 6031 return SDValue(); 6032 6033 unsigned NumOps = Ops.size(); 6034 if (NumOps == 0) 6035 return SDValue(); 6036 6037 if (isUndef(Opcode, Ops)) 6038 return getUNDEF(VT); 6039 6040 // Handle binops special cases. 6041 if (NumOps == 2) { 6042 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops[0], Ops[1])) 6043 return CFP; 6044 6045 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) { 6046 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) { 6047 if (C1->isOpaque() || C2->isOpaque()) 6048 return SDValue(); 6049 6050 std::optional<APInt> FoldAttempt = 6051 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue()); 6052 if (!FoldAttempt) 6053 return SDValue(); 6054 6055 SDValue Folded = getConstant(*FoldAttempt, DL, VT); 6056 assert((!Folded || !VT.isVector()) && 6057 "Can't fold vectors ops with scalar operands"); 6058 return Folded; 6059 } 6060 } 6061 6062 // fold (add Sym, c) -> Sym+c 6063 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[0])) 6064 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode()); 6065 if (TLI->isCommutativeBinOp(Opcode)) 6066 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Ops[1])) 6067 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode()); 6068 } 6069 6070 // This is for vector folding only from here on. 6071 if (!VT.isVector()) 6072 return SDValue(); 6073 6074 ElementCount NumElts = VT.getVectorElementCount(); 6075 6076 // See if we can fold through bitcasted integer ops. 6077 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() && 6078 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT && 6079 Ops[0].getOpcode() == ISD::BITCAST && 6080 Ops[1].getOpcode() == ISD::BITCAST) { 6081 SDValue N1 = peekThroughBitcasts(Ops[0]); 6082 SDValue N2 = peekThroughBitcasts(Ops[1]); 6083 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); 6084 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2); 6085 EVT BVVT = N1.getValueType(); 6086 if (BV1 && BV2 && BVVT.isInteger() && BVVT == N2.getValueType()) { 6087 bool IsLE = getDataLayout().isLittleEndian(); 6088 unsigned EltBits = VT.getScalarSizeInBits(); 6089 SmallVector<APInt> RawBits1, RawBits2; 6090 BitVector UndefElts1, UndefElts2; 6091 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) && 6092 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) { 6093 SmallVector<APInt> RawBits; 6094 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) { 6095 std::optional<APInt> Fold = FoldValueWithUndef( 6096 Opcode, RawBits1[I], UndefElts1[I], RawBits2[I], UndefElts2[I]); 6097 if (!Fold) 6098 break; 6099 RawBits.push_back(*Fold); 6100 } 6101 if (RawBits.size() == NumElts.getFixedValue()) { 6102 // We have constant folded, but we need to cast this again back to 6103 // the original (possibly legalized) type. 6104 SmallVector<APInt> DstBits; 6105 BitVector DstUndefs; 6106 BuildVectorSDNode::recastRawBits(IsLE, BVVT.getScalarSizeInBits(), 6107 DstBits, RawBits, DstUndefs, 6108 BitVector(RawBits.size(), false)); 6109 EVT BVEltVT = BV1->getOperand(0).getValueType(); 6110 unsigned BVEltBits = BVEltVT.getSizeInBits(); 6111 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT)); 6112 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) { 6113 if (DstUndefs[I]) 6114 continue; 6115 Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT); 6116 } 6117 return getBitcast(VT, getBuildVector(BVVT, DL, Ops)); 6118 } 6119 } 6120 } 6121 } 6122 6123 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)). 6124 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1)) 6125 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) && 6126 Ops[0].getOpcode() == ISD::STEP_VECTOR) { 6127 APInt RHSVal; 6128 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) { 6129 APInt NewStep = Opcode == ISD::MUL 6130 ? Ops[0].getConstantOperandAPInt(0) * RHSVal 6131 : Ops[0].getConstantOperandAPInt(0) << RHSVal; 6132 return getStepVector(DL, VT, NewStep); 6133 } 6134 } 6135 6136 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) { 6137 return !Op.getValueType().isVector() || 6138 Op.getValueType().getVectorElementCount() == NumElts; 6139 }; 6140 6141 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) { 6142 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE || 6143 Op.getOpcode() == ISD::BUILD_VECTOR || 6144 Op.getOpcode() == ISD::SPLAT_VECTOR; 6145 }; 6146 6147 // All operands must be vector types with the same number of elements as 6148 // the result type and must be either UNDEF or a build/splat vector 6149 // or UNDEF scalars. 6150 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) || 6151 !llvm::all_of(Ops, IsScalarOrSameVectorSize)) 6152 return SDValue(); 6153 6154 // If we are comparing vectors, then the result needs to be a i1 boolean that 6155 // is then extended back to the legal result type depending on how booleans 6156 // are represented. 6157 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType()); 6158 ISD::NodeType ExtendCode = 6159 (Opcode == ISD::SETCC && SVT != VT.getScalarType()) 6160 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT)) 6161 : ISD::SIGN_EXTEND; 6162 6163 // Find legal integer scalar type for constant promotion and 6164 // ensure that its scalar size is at least as large as source. 6165 EVT LegalSVT = VT.getScalarType(); 6166 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) { 6167 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT); 6168 if (LegalSVT.bitsLT(VT.getScalarType())) 6169 return SDValue(); 6170 } 6171 6172 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We 6173 // only have one operand to check. For fixed-length vector types we may have 6174 // a combination of BUILD_VECTOR and SPLAT_VECTOR. 6175 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue(); 6176 6177 // Constant fold each scalar lane separately. 6178 SmallVector<SDValue, 4> ScalarResults; 6179 for (unsigned I = 0; I != NumVectorElts; I++) { 6180 SmallVector<SDValue, 4> ScalarOps; 6181 for (SDValue Op : Ops) { 6182 EVT InSVT = Op.getValueType().getScalarType(); 6183 if (Op.getOpcode() != ISD::BUILD_VECTOR && 6184 Op.getOpcode() != ISD::SPLAT_VECTOR) { 6185 if (Op.isUndef()) 6186 ScalarOps.push_back(getUNDEF(InSVT)); 6187 else 6188 ScalarOps.push_back(Op); 6189 continue; 6190 } 6191 6192 SDValue ScalarOp = 6193 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I); 6194 EVT ScalarVT = ScalarOp.getValueType(); 6195 6196 // Build vector (integer) scalar operands may need implicit 6197 // truncation - do this before constant folding. 6198 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) { 6199 // Don't create illegally-typed nodes unless they're constants or undef 6200 // - if we fail to constant fold we can't guarantee the (dead) nodes 6201 // we're creating will be cleaned up before being visited for 6202 // legalization. 6203 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() && 6204 !isa<ConstantSDNode>(ScalarOp) && 6205 TLI->getTypeAction(*getContext(), InSVT) != 6206 TargetLowering::TypeLegal) 6207 return SDValue(); 6208 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp); 6209 } 6210 6211 ScalarOps.push_back(ScalarOp); 6212 } 6213 6214 // Constant fold the scalar operands. 6215 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps); 6216 6217 // Legalize the (integer) scalar constant if necessary. 6218 if (LegalSVT != SVT) 6219 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult); 6220 6221 // Scalar folding only succeeded if the result is a constant or UNDEF. 6222 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant && 6223 ScalarResult.getOpcode() != ISD::ConstantFP) 6224 return SDValue(); 6225 ScalarResults.push_back(ScalarResult); 6226 } 6227 6228 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0]) 6229 : getBuildVector(VT, DL, ScalarResults); 6230 NewSDValueDbgMsg(V, "New node fold constant vector: ", this); 6231 return V; 6232 } 6233 6234 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL, 6235 EVT VT, SDValue N1, SDValue N2) { 6236 // TODO: We don't do any constant folding for strict FP opcodes here, but we 6237 // should. That will require dealing with a potentially non-default 6238 // rounding mode, checking the "opStatus" return value from the APFloat 6239 // math calculations, and possibly other variations. 6240 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false); 6241 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false); 6242 if (N1CFP && N2CFP) { 6243 APFloat C1 = N1CFP->getValueAPF(); // make copy 6244 const APFloat &C2 = N2CFP->getValueAPF(); 6245 switch (Opcode) { 6246 case ISD::FADD: 6247 C1.add(C2, APFloat::rmNearestTiesToEven); 6248 return getConstantFP(C1, DL, VT); 6249 case ISD::FSUB: 6250 C1.subtract(C2, APFloat::rmNearestTiesToEven); 6251 return getConstantFP(C1, DL, VT); 6252 case ISD::FMUL: 6253 C1.multiply(C2, APFloat::rmNearestTiesToEven); 6254 return getConstantFP(C1, DL, VT); 6255 case ISD::FDIV: 6256 C1.divide(C2, APFloat::rmNearestTiesToEven); 6257 return getConstantFP(C1, DL, VT); 6258 case ISD::FREM: 6259 C1.mod(C2); 6260 return getConstantFP(C1, DL, VT); 6261 case ISD::FCOPYSIGN: 6262 C1.copySign(C2); 6263 return getConstantFP(C1, DL, VT); 6264 case ISD::FMINNUM: 6265 return getConstantFP(minnum(C1, C2), DL, VT); 6266 case ISD::FMAXNUM: 6267 return getConstantFP(maxnum(C1, C2), DL, VT); 6268 case ISD::FMINIMUM: 6269 return getConstantFP(minimum(C1, C2), DL, VT); 6270 case ISD::FMAXIMUM: 6271 return getConstantFP(maximum(C1, C2), DL, VT); 6272 default: break; 6273 } 6274 } 6275 if (N1CFP && Opcode == ISD::FP_ROUND) { 6276 APFloat C1 = N1CFP->getValueAPF(); // make copy 6277 bool Unused; 6278 // This can return overflow, underflow, or inexact; we don't care. 6279 // FIXME need to be more flexible about rounding mode. 6280 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven, 6281 &Unused); 6282 return getConstantFP(C1, DL, VT); 6283 } 6284 6285 switch (Opcode) { 6286 case ISD::FSUB: 6287 // -0.0 - undef --> undef (consistent with "fneg undef") 6288 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true)) 6289 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef()) 6290 return getUNDEF(VT); 6291 [[fallthrough]]; 6292 6293 case ISD::FADD: 6294 case ISD::FMUL: 6295 case ISD::FDIV: 6296 case ISD::FREM: 6297 // If both operands are undef, the result is undef. If 1 operand is undef, 6298 // the result is NaN. This should match the behavior of the IR optimizer. 6299 if (N1.isUndef() && N2.isUndef()) 6300 return getUNDEF(VT); 6301 if (N1.isUndef() || N2.isUndef()) 6302 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT); 6303 } 6304 return SDValue(); 6305 } 6306 6307 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) { 6308 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!"); 6309 6310 // There's no need to assert on a byte-aligned pointer. All pointers are at 6311 // least byte aligned. 6312 if (A == Align(1)) 6313 return Val; 6314 6315 FoldingSetNodeID ID; 6316 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val}); 6317 ID.AddInteger(A.value()); 6318 6319 void *IP = nullptr; 6320 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 6321 return SDValue(E, 0); 6322 6323 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), 6324 Val.getValueType(), A); 6325 createOperands(N, {Val}); 6326 6327 CSEMap.InsertNode(N, IP); 6328 InsertNode(N); 6329 6330 SDValue V(N, 0); 6331 NewSDValueDbgMsg(V, "Creating new node: ", this); 6332 return V; 6333 } 6334 6335 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6336 SDValue N1, SDValue N2) { 6337 SDNodeFlags Flags; 6338 if (Inserter) 6339 Flags = Inserter->getFlags(); 6340 return getNode(Opcode, DL, VT, N1, N2, Flags); 6341 } 6342 6343 void SelectionDAG::canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, 6344 SDValue &N2) const { 6345 if (!TLI->isCommutativeBinOp(Opcode)) 6346 return; 6347 6348 // Canonicalize: 6349 // binop(const, nonconst) -> binop(nonconst, const) 6350 SDNode *N1C = isConstantIntBuildVectorOrConstantInt(N1); 6351 SDNode *N2C = isConstantIntBuildVectorOrConstantInt(N2); 6352 SDNode *N1CFP = isConstantFPBuildVectorOrConstantFP(N1); 6353 SDNode *N2CFP = isConstantFPBuildVectorOrConstantFP(N2); 6354 if ((N1C && !N2C) || (N1CFP && !N2CFP)) 6355 std::swap(N1, N2); 6356 6357 // Canonicalize: 6358 // binop(splat(x), step_vector) -> binop(step_vector, splat(x)) 6359 else if (N1.getOpcode() == ISD::SPLAT_VECTOR && 6360 N2.getOpcode() == ISD::STEP_VECTOR) 6361 std::swap(N1, N2); 6362 } 6363 6364 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6365 SDValue N1, SDValue N2, const SDNodeFlags Flags) { 6366 assert(N1.getOpcode() != ISD::DELETED_NODE && 6367 N2.getOpcode() != ISD::DELETED_NODE && 6368 "Operand is DELETED_NODE!"); 6369 6370 canonicalizeCommutativeBinop(Opcode, N1, N2); 6371 6372 auto *N1C = dyn_cast<ConstantSDNode>(N1); 6373 auto *N2C = dyn_cast<ConstantSDNode>(N2); 6374 6375 // Don't allow undefs in vector splats - we might be returning N2 when folding 6376 // to zero etc. 6377 ConstantSDNode *N2CV = 6378 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true); 6379 6380 switch (Opcode) { 6381 default: break; 6382 case ISD::TokenFactor: 6383 assert(VT == MVT::Other && N1.getValueType() == MVT::Other && 6384 N2.getValueType() == MVT::Other && "Invalid token factor!"); 6385 // Fold trivial token factors. 6386 if (N1.getOpcode() == ISD::EntryToken) return N2; 6387 if (N2.getOpcode() == ISD::EntryToken) return N1; 6388 if (N1 == N2) return N1; 6389 break; 6390 case ISD::BUILD_VECTOR: { 6391 // Attempt to simplify BUILD_VECTOR. 6392 SDValue Ops[] = {N1, N2}; 6393 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6394 return V; 6395 break; 6396 } 6397 case ISD::CONCAT_VECTORS: { 6398 SDValue Ops[] = {N1, N2}; 6399 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6400 return V; 6401 break; 6402 } 6403 case ISD::AND: 6404 assert(VT.isInteger() && "This operator does not apply to FP types!"); 6405 assert(N1.getValueType() == N2.getValueType() && 6406 N1.getValueType() == VT && "Binary operator types must match!"); 6407 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's 6408 // worth handling here. 6409 if (N2CV && N2CV->isZero()) 6410 return N2; 6411 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X 6412 return N1; 6413 break; 6414 case ISD::OR: 6415 case ISD::XOR: 6416 case ISD::ADD: 6417 case ISD::SUB: 6418 assert(VT.isInteger() && "This operator does not apply to FP types!"); 6419 assert(N1.getValueType() == N2.getValueType() && 6420 N1.getValueType() == VT && "Binary operator types must match!"); 6421 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so 6422 // it's worth handling here. 6423 if (N2CV && N2CV->isZero()) 6424 return N1; 6425 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && VT.isVector() && 6426 VT.getVectorElementType() == MVT::i1) 6427 return getNode(ISD::XOR, DL, VT, N1, N2); 6428 break; 6429 case ISD::MUL: 6430 assert(VT.isInteger() && "This operator does not apply to FP types!"); 6431 assert(N1.getValueType() == N2.getValueType() && 6432 N1.getValueType() == VT && "Binary operator types must match!"); 6433 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 6434 return getNode(ISD::AND, DL, VT, N1, N2); 6435 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 6436 const APInt &MulImm = N1->getConstantOperandAPInt(0); 6437 const APInt &N2CImm = N2C->getAPIntValue(); 6438 return getVScale(DL, VT, MulImm * N2CImm); 6439 } 6440 break; 6441 case ISD::UDIV: 6442 case ISD::UREM: 6443 case ISD::MULHU: 6444 case ISD::MULHS: 6445 case ISD::SDIV: 6446 case ISD::SREM: 6447 case ISD::SADDSAT: 6448 case ISD::SSUBSAT: 6449 case ISD::UADDSAT: 6450 case ISD::USUBSAT: 6451 assert(VT.isInteger() && "This operator does not apply to FP types!"); 6452 assert(N1.getValueType() == N2.getValueType() && 6453 N1.getValueType() == VT && "Binary operator types must match!"); 6454 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { 6455 // fold (add_sat x, y) -> (or x, y) for bool types. 6456 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT) 6457 return getNode(ISD::OR, DL, VT, N1, N2); 6458 // fold (sub_sat x, y) -> (and x, ~y) for bool types. 6459 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT) 6460 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT)); 6461 } 6462 break; 6463 case ISD::ABDS: 6464 case ISD::ABDU: 6465 assert(VT.isInteger() && "This operator does not apply to FP types!"); 6466 assert(N1.getValueType() == N2.getValueType() && 6467 N1.getValueType() == VT && "Binary operator types must match!"); 6468 break; 6469 case ISD::SMIN: 6470 case ISD::UMAX: 6471 assert(VT.isInteger() && "This operator does not apply to FP types!"); 6472 assert(N1.getValueType() == N2.getValueType() && 6473 N1.getValueType() == VT && "Binary operator types must match!"); 6474 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 6475 return getNode(ISD::OR, DL, VT, N1, N2); 6476 break; 6477 case ISD::SMAX: 6478 case ISD::UMIN: 6479 assert(VT.isInteger() && "This operator does not apply to FP types!"); 6480 assert(N1.getValueType() == N2.getValueType() && 6481 N1.getValueType() == VT && "Binary operator types must match!"); 6482 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 6483 return getNode(ISD::AND, DL, VT, N1, N2); 6484 break; 6485 case ISD::FADD: 6486 case ISD::FSUB: 6487 case ISD::FMUL: 6488 case ISD::FDIV: 6489 case ISD::FREM: 6490 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6491 assert(N1.getValueType() == N2.getValueType() && 6492 N1.getValueType() == VT && "Binary operator types must match!"); 6493 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags)) 6494 return V; 6495 break; 6496 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. 6497 assert(N1.getValueType() == VT && 6498 N1.getValueType().isFloatingPoint() && 6499 N2.getValueType().isFloatingPoint() && 6500 "Invalid FCOPYSIGN!"); 6501 break; 6502 case ISD::SHL: 6503 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) { 6504 const APInt &MulImm = N1->getConstantOperandAPInt(0); 6505 const APInt &ShiftImm = N2C->getAPIntValue(); 6506 return getVScale(DL, VT, MulImm << ShiftImm); 6507 } 6508 [[fallthrough]]; 6509 case ISD::SRA: 6510 case ISD::SRL: 6511 if (SDValue V = simplifyShift(N1, N2)) 6512 return V; 6513 [[fallthrough]]; 6514 case ISD::ROTL: 6515 case ISD::ROTR: 6516 assert(VT == N1.getValueType() && 6517 "Shift operators return type must be the same as their first arg"); 6518 assert(VT.isInteger() && N2.getValueType().isInteger() && 6519 "Shifts only work on integers"); 6520 assert((!VT.isVector() || VT == N2.getValueType()) && 6521 "Vector shift amounts must be in the same as their first arg"); 6522 // Verify that the shift amount VT is big enough to hold valid shift 6523 // amounts. This catches things like trying to shift an i1024 value by an 6524 // i8, which is easy to fall into in generic code that uses 6525 // TLI.getShiftAmount(). 6526 assert(N2.getValueType().getScalarSizeInBits() >= 6527 Log2_32_Ceil(VT.getScalarSizeInBits()) && 6528 "Invalid use of small shift amount with oversized value!"); 6529 6530 // Always fold shifts of i1 values so the code generator doesn't need to 6531 // handle them. Since we know the size of the shift has to be less than the 6532 // size of the value, the shift/rotate count is guaranteed to be zero. 6533 if (VT == MVT::i1) 6534 return N1; 6535 if (N2CV && N2CV->isZero()) 6536 return N1; 6537 break; 6538 case ISD::FP_ROUND: 6539 assert(VT.isFloatingPoint() && 6540 N1.getValueType().isFloatingPoint() && 6541 VT.bitsLE(N1.getValueType()) && 6542 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) && 6543 "Invalid FP_ROUND!"); 6544 if (N1.getValueType() == VT) return N1; // noop conversion. 6545 break; 6546 case ISD::AssertSext: 6547 case ISD::AssertZext: { 6548 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6549 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6550 assert(VT.isInteger() && EVT.isInteger() && 6551 "Cannot *_EXTEND_INREG FP types"); 6552 assert(!EVT.isVector() && 6553 "AssertSExt/AssertZExt type should be the vector element type " 6554 "rather than the vector type!"); 6555 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!"); 6556 if (VT.getScalarType() == EVT) return N1; // noop assertion. 6557 break; 6558 } 6559 case ISD::SIGN_EXTEND_INREG: { 6560 EVT EVT = cast<VTSDNode>(N2)->getVT(); 6561 assert(VT == N1.getValueType() && "Not an inreg extend!"); 6562 assert(VT.isInteger() && EVT.isInteger() && 6563 "Cannot *_EXTEND_INREG FP types"); 6564 assert(EVT.isVector() == VT.isVector() && 6565 "SIGN_EXTEND_INREG type should be vector iff the operand " 6566 "type is vector!"); 6567 assert((!EVT.isVector() || 6568 EVT.getVectorElementCount() == VT.getVectorElementCount()) && 6569 "Vector element counts must match in SIGN_EXTEND_INREG"); 6570 assert(EVT.bitsLE(VT) && "Not extending!"); 6571 if (EVT == VT) return N1; // Not actually extending 6572 6573 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) { 6574 unsigned FromBits = EVT.getScalarSizeInBits(); 6575 Val <<= Val.getBitWidth() - FromBits; 6576 Val.ashrInPlace(Val.getBitWidth() - FromBits); 6577 return getConstant(Val, DL, ConstantVT); 6578 }; 6579 6580 if (N1C) { 6581 const APInt &Val = N1C->getAPIntValue(); 6582 return SignExtendInReg(Val, VT); 6583 } 6584 6585 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { 6586 SmallVector<SDValue, 8> Ops; 6587 llvm::EVT OpVT = N1.getOperand(0).getValueType(); 6588 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 6589 SDValue Op = N1.getOperand(i); 6590 if (Op.isUndef()) { 6591 Ops.push_back(getUNDEF(OpVT)); 6592 continue; 6593 } 6594 ConstantSDNode *C = cast<ConstantSDNode>(Op); 6595 APInt Val = C->getAPIntValue(); 6596 Ops.push_back(SignExtendInReg(Val, OpVT)); 6597 } 6598 return getBuildVector(VT, DL, Ops); 6599 } 6600 break; 6601 } 6602 case ISD::FP_TO_SINT_SAT: 6603 case ISD::FP_TO_UINT_SAT: { 6604 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() && 6605 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT"); 6606 assert(N1.getValueType().isVector() == VT.isVector() && 6607 "FP_TO_*INT_SAT type should be vector iff the operand type is " 6608 "vector!"); 6609 assert((!VT.isVector() || VT.getVectorElementCount() == 6610 N1.getValueType().getVectorElementCount()) && 6611 "Vector element counts must match in FP_TO_*INT_SAT"); 6612 assert(!cast<VTSDNode>(N2)->getVT().isVector() && 6613 "Type to saturate to must be a scalar."); 6614 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) && 6615 "Not extending!"); 6616 break; 6617 } 6618 case ISD::EXTRACT_VECTOR_ELT: 6619 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() && 6620 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \ 6621 element type of the vector."); 6622 6623 // Extract from an undefined value or using an undefined index is undefined. 6624 if (N1.isUndef() || N2.isUndef()) 6625 return getUNDEF(VT); 6626 6627 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length 6628 // vectors. For scalable vectors we will provide appropriate support for 6629 // dealing with arbitrary indices. 6630 if (N2C && N1.getValueType().isFixedLengthVector() && 6631 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements())) 6632 return getUNDEF(VT); 6633 6634 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is 6635 // expanding copies of large vectors from registers. This only works for 6636 // fixed length vectors, since we need to know the exact number of 6637 // elements. 6638 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() && 6639 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) { 6640 unsigned Factor = 6641 N1.getOperand(0).getValueType().getVectorNumElements(); 6642 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, 6643 N1.getOperand(N2C->getZExtValue() / Factor), 6644 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL)); 6645 } 6646 6647 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while 6648 // lowering is expanding large vector constants. 6649 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR || 6650 N1.getOpcode() == ISD::SPLAT_VECTOR)) { 6651 assert((N1.getOpcode() != ISD::BUILD_VECTOR || 6652 N1.getValueType().isFixedLengthVector()) && 6653 "BUILD_VECTOR used for scalable vectors"); 6654 unsigned Index = 6655 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0; 6656 SDValue Elt = N1.getOperand(Index); 6657 6658 if (VT != Elt.getValueType()) 6659 // If the vector element type is not legal, the BUILD_VECTOR operands 6660 // are promoted and implicitly truncated, and the result implicitly 6661 // extended. Make that explicit here. 6662 Elt = getAnyExtOrTrunc(Elt, DL, VT); 6663 6664 return Elt; 6665 } 6666 6667 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector 6668 // operations are lowered to scalars. 6669 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { 6670 // If the indices are the same, return the inserted element else 6671 // if the indices are known different, extract the element from 6672 // the original vector. 6673 SDValue N1Op2 = N1.getOperand(2); 6674 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2); 6675 6676 if (N1Op2C && N2C) { 6677 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { 6678 if (VT == N1.getOperand(1).getValueType()) 6679 return N1.getOperand(1); 6680 if (VT.isFloatingPoint()) { 6681 assert(VT.getSizeInBits() > N1.getOperand(1).getValueType().getSizeInBits()); 6682 return getFPExtendOrRound(N1.getOperand(1), DL, VT); 6683 } 6684 return getSExtOrTrunc(N1.getOperand(1), DL, VT); 6685 } 6686 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); 6687 } 6688 } 6689 6690 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed 6691 // when vector types are scalarized and v1iX is legal. 6692 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx). 6693 // Here we are completely ignoring the extract element index (N2), 6694 // which is fine for fixed width vectors, since any index other than 0 6695 // is undefined anyway. However, this cannot be ignored for scalable 6696 // vectors - in theory we could support this, but we don't want to do this 6697 // without a profitability check. 6698 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6699 N1.getValueType().isFixedLengthVector() && 6700 N1.getValueType().getVectorNumElements() == 1) { 6701 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), 6702 N1.getOperand(1)); 6703 } 6704 break; 6705 case ISD::EXTRACT_ELEMENT: 6706 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); 6707 assert(!N1.getValueType().isVector() && !VT.isVector() && 6708 (N1.getValueType().isInteger() == VT.isInteger()) && 6709 N1.getValueType() != VT && 6710 "Wrong types for EXTRACT_ELEMENT!"); 6711 6712 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding 6713 // 64-bit integers into 32-bit parts. Instead of building the extract of 6714 // the BUILD_PAIR, only to have legalize rip it apart, just do it now. 6715 if (N1.getOpcode() == ISD::BUILD_PAIR) 6716 return N1.getOperand(N2C->getZExtValue()); 6717 6718 // EXTRACT_ELEMENT of a constant int is also very common. 6719 if (N1C) { 6720 unsigned ElementSize = VT.getSizeInBits(); 6721 unsigned Shift = ElementSize * N2C->getZExtValue(); 6722 const APInt &Val = N1C->getAPIntValue(); 6723 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT); 6724 } 6725 break; 6726 case ISD::EXTRACT_SUBVECTOR: { 6727 EVT N1VT = N1.getValueType(); 6728 assert(VT.isVector() && N1VT.isVector() && 6729 "Extract subvector VTs must be vectors!"); 6730 assert(VT.getVectorElementType() == N1VT.getVectorElementType() && 6731 "Extract subvector VTs must have the same element type!"); 6732 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) && 6733 "Cannot extract a scalable vector from a fixed length vector!"); 6734 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6735 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) && 6736 "Extract subvector must be from larger vector to smaller vector!"); 6737 assert(N2C && "Extract subvector index must be a constant"); 6738 assert((VT.isScalableVector() != N1VT.isScalableVector() || 6739 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <= 6740 N1VT.getVectorMinNumElements()) && 6741 "Extract subvector overflow!"); 6742 assert(N2C->getAPIntValue().getBitWidth() == 6743 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6744 "Constant index for EXTRACT_SUBVECTOR has an invalid size"); 6745 6746 // Trivial extraction. 6747 if (VT == N1VT) 6748 return N1; 6749 6750 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF. 6751 if (N1.isUndef()) 6752 return getUNDEF(VT); 6753 6754 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of 6755 // the concat have the same type as the extract. 6756 if (N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0 && 6757 VT == N1.getOperand(0).getValueType()) { 6758 unsigned Factor = VT.getVectorMinNumElements(); 6759 return N1.getOperand(N2C->getZExtValue() / Factor); 6760 } 6761 6762 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created 6763 // during shuffle legalization. 6764 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) && 6765 VT == N1.getOperand(1).getValueType()) 6766 return N1.getOperand(1); 6767 break; 6768 } 6769 } 6770 6771 // Perform trivial constant folding. 6772 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2})) 6773 return SV; 6774 6775 // Canonicalize an UNDEF to the RHS, even over a constant. 6776 if (N1.isUndef()) { 6777 if (TLI->isCommutativeBinOp(Opcode)) { 6778 std::swap(N1, N2); 6779 } else { 6780 switch (Opcode) { 6781 case ISD::SUB: 6782 return getUNDEF(VT); // fold op(undef, arg2) -> undef 6783 case ISD::SIGN_EXTEND_INREG: 6784 case ISD::UDIV: 6785 case ISD::SDIV: 6786 case ISD::UREM: 6787 case ISD::SREM: 6788 case ISD::SSUBSAT: 6789 case ISD::USUBSAT: 6790 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 6791 } 6792 } 6793 } 6794 6795 // Fold a bunch of operators when the RHS is undef. 6796 if (N2.isUndef()) { 6797 switch (Opcode) { 6798 case ISD::XOR: 6799 if (N1.isUndef()) 6800 // Handle undef ^ undef -> 0 special case. This is a common 6801 // idiom (misuse). 6802 return getConstant(0, DL, VT); 6803 [[fallthrough]]; 6804 case ISD::ADD: 6805 case ISD::SUB: 6806 case ISD::UDIV: 6807 case ISD::SDIV: 6808 case ISD::UREM: 6809 case ISD::SREM: 6810 return getUNDEF(VT); // fold op(arg1, undef) -> undef 6811 case ISD::MUL: 6812 case ISD::AND: 6813 case ISD::SSUBSAT: 6814 case ISD::USUBSAT: 6815 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 6816 case ISD::OR: 6817 case ISD::SADDSAT: 6818 case ISD::UADDSAT: 6819 return getAllOnesConstant(DL, VT); 6820 } 6821 } 6822 6823 // Memoize this node if possible. 6824 SDNode *N; 6825 SDVTList VTs = getVTList(VT); 6826 SDValue Ops[] = {N1, N2}; 6827 if (VT != MVT::Glue) { 6828 FoldingSetNodeID ID; 6829 AddNodeIDNode(ID, Opcode, VTs, Ops); 6830 void *IP = nullptr; 6831 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 6832 E->intersectFlagsWith(Flags); 6833 return SDValue(E, 0); 6834 } 6835 6836 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6837 N->setFlags(Flags); 6838 createOperands(N, Ops); 6839 CSEMap.InsertNode(N, IP); 6840 } else { 6841 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 6842 createOperands(N, Ops); 6843 } 6844 6845 InsertNode(N); 6846 SDValue V = SDValue(N, 0); 6847 NewSDValueDbgMsg(V, "Creating new node: ", this); 6848 return V; 6849 } 6850 6851 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6852 SDValue N1, SDValue N2, SDValue N3) { 6853 SDNodeFlags Flags; 6854 if (Inserter) 6855 Flags = Inserter->getFlags(); 6856 return getNode(Opcode, DL, VT, N1, N2, N3, Flags); 6857 } 6858 6859 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 6860 SDValue N1, SDValue N2, SDValue N3, 6861 const SDNodeFlags Flags) { 6862 assert(N1.getOpcode() != ISD::DELETED_NODE && 6863 N2.getOpcode() != ISD::DELETED_NODE && 6864 N3.getOpcode() != ISD::DELETED_NODE && 6865 "Operand is DELETED_NODE!"); 6866 // Perform various simplifications. 6867 switch (Opcode) { 6868 case ISD::FMA: { 6869 assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); 6870 assert(N1.getValueType() == VT && N2.getValueType() == VT && 6871 N3.getValueType() == VT && "FMA types must match!"); 6872 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); 6873 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); 6874 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); 6875 if (N1CFP && N2CFP && N3CFP) { 6876 APFloat V1 = N1CFP->getValueAPF(); 6877 const APFloat &V2 = N2CFP->getValueAPF(); 6878 const APFloat &V3 = N3CFP->getValueAPF(); 6879 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); 6880 return getConstantFP(V1, DL, VT); 6881 } 6882 break; 6883 } 6884 case ISD::BUILD_VECTOR: { 6885 // Attempt to simplify BUILD_VECTOR. 6886 SDValue Ops[] = {N1, N2, N3}; 6887 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 6888 return V; 6889 break; 6890 } 6891 case ISD::CONCAT_VECTORS: { 6892 SDValue Ops[] = {N1, N2, N3}; 6893 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 6894 return V; 6895 break; 6896 } 6897 case ISD::SETCC: { 6898 assert(VT.isInteger() && "SETCC result type must be an integer!"); 6899 assert(N1.getValueType() == N2.getValueType() && 6900 "SETCC operands must have the same type!"); 6901 assert(VT.isVector() == N1.getValueType().isVector() && 6902 "SETCC type should be vector iff the operand type is vector!"); 6903 assert((!VT.isVector() || VT.getVectorElementCount() == 6904 N1.getValueType().getVectorElementCount()) && 6905 "SETCC vector element counts must match!"); 6906 // Use FoldSetCC to simplify SETCC's. 6907 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL)) 6908 return V; 6909 // Vector constant folding. 6910 SDValue Ops[] = {N1, N2, N3}; 6911 if (SDValue V = FoldConstantArithmetic(Opcode, DL, VT, Ops)) { 6912 NewSDValueDbgMsg(V, "New node vector constant folding: ", this); 6913 return V; 6914 } 6915 break; 6916 } 6917 case ISD::SELECT: 6918 case ISD::VSELECT: 6919 if (SDValue V = simplifySelect(N1, N2, N3)) 6920 return V; 6921 break; 6922 case ISD::VECTOR_SHUFFLE: 6923 llvm_unreachable("should use getVectorShuffle constructor!"); 6924 case ISD::VECTOR_SPLICE: { 6925 if (cast<ConstantSDNode>(N3)->isZero()) 6926 return N1; 6927 break; 6928 } 6929 case ISD::INSERT_VECTOR_ELT: { 6930 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3); 6931 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except 6932 // for scalable vectors where we will generate appropriate code to 6933 // deal with out-of-bounds cases correctly. 6934 if (N3C && N1.getValueType().isFixedLengthVector() && 6935 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements()) 6936 return getUNDEF(VT); 6937 6938 // Undefined index can be assumed out-of-bounds, so that's UNDEF too. 6939 if (N3.isUndef()) 6940 return getUNDEF(VT); 6941 6942 // If the inserted element is an UNDEF, just use the input vector. 6943 if (N2.isUndef()) 6944 return N1; 6945 6946 break; 6947 } 6948 case ISD::INSERT_SUBVECTOR: { 6949 // Inserting undef into undef is still undef. 6950 if (N1.isUndef() && N2.isUndef()) 6951 return getUNDEF(VT); 6952 6953 EVT N2VT = N2.getValueType(); 6954 assert(VT == N1.getValueType() && 6955 "Dest and insert subvector source types must match!"); 6956 assert(VT.isVector() && N2VT.isVector() && 6957 "Insert subvector VTs must be vectors!"); 6958 assert(VT.getVectorElementType() == N2VT.getVectorElementType() && 6959 "Insert subvector VTs must have the same element type!"); 6960 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) && 6961 "Cannot insert a scalable vector into a fixed length vector!"); 6962 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6963 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) && 6964 "Insert subvector must be from smaller vector to larger vector!"); 6965 assert(isa<ConstantSDNode>(N3) && 6966 "Insert subvector index must be constant"); 6967 assert((VT.isScalableVector() != N2VT.isScalableVector() || 6968 (N2VT.getVectorMinNumElements() + 6969 cast<ConstantSDNode>(N3)->getZExtValue()) <= 6970 VT.getVectorMinNumElements()) && 6971 "Insert subvector overflow!"); 6972 assert(cast<ConstantSDNode>(N3)->getAPIntValue().getBitWidth() == 6973 TLI->getVectorIdxTy(getDataLayout()).getFixedSizeInBits() && 6974 "Constant index for INSERT_SUBVECTOR has an invalid size"); 6975 6976 // Trivial insertion. 6977 if (VT == N2VT) 6978 return N2; 6979 6980 // If this is an insert of an extracted vector into an undef vector, we 6981 // can just use the input to the extract. 6982 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR && 6983 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) 6984 return N2.getOperand(0); 6985 break; 6986 } 6987 case ISD::BITCAST: 6988 // Fold bit_convert nodes from a type to themselves. 6989 if (N1.getValueType() == VT) 6990 return N1; 6991 break; 6992 case ISD::VP_TRUNCATE: 6993 case ISD::VP_SIGN_EXTEND: 6994 case ISD::VP_ZERO_EXTEND: 6995 // Don't create noop casts. 6996 if (N1.getValueType() == VT) 6997 return N1; 6998 break; 6999 } 7000 7001 // Memoize node if it doesn't produce a flag. 7002 SDNode *N; 7003 SDVTList VTs = getVTList(VT); 7004 SDValue Ops[] = {N1, N2, N3}; 7005 if (VT != MVT::Glue) { 7006 FoldingSetNodeID ID; 7007 AddNodeIDNode(ID, Opcode, VTs, Ops); 7008 void *IP = nullptr; 7009 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 7010 E->intersectFlagsWith(Flags); 7011 return SDValue(E, 0); 7012 } 7013 7014 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7015 N->setFlags(Flags); 7016 createOperands(N, Ops); 7017 CSEMap.InsertNode(N, IP); 7018 } else { 7019 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 7020 createOperands(N, Ops); 7021 } 7022 7023 InsertNode(N); 7024 SDValue V = SDValue(N, 0); 7025 NewSDValueDbgMsg(V, "Creating new node: ", this); 7026 return V; 7027 } 7028 7029 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7030 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 7031 SDValue Ops[] = { N1, N2, N3, N4 }; 7032 return getNode(Opcode, DL, VT, Ops); 7033 } 7034 7035 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 7036 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 7037 SDValue N5) { 7038 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 7039 return getNode(Opcode, DL, VT, Ops); 7040 } 7041 7042 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all 7043 /// the incoming stack arguments to be loaded from the stack. 7044 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { 7045 SmallVector<SDValue, 8> ArgChains; 7046 7047 // Include the original chain at the beginning of the list. When this is 7048 // used by target LowerCall hooks, this helps legalize find the 7049 // CALLSEQ_BEGIN node. 7050 ArgChains.push_back(Chain); 7051 7052 // Add a chain value for each stack argument. 7053 for (SDNode *U : getEntryNode().getNode()->uses()) 7054 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) 7055 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 7056 if (FI->getIndex() < 0) 7057 ArgChains.push_back(SDValue(L, 1)); 7058 7059 // Build a tokenfactor for all the chains. 7060 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 7061 } 7062 7063 /// getMemsetValue - Vectorized representation of the memset value 7064 /// operand. 7065 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, 7066 const SDLoc &dl) { 7067 assert(!Value.isUndef()); 7068 7069 unsigned NumBits = VT.getScalarSizeInBits(); 7070 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { 7071 assert(C->getAPIntValue().getBitWidth() == 8); 7072 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); 7073 if (VT.isInteger()) { 7074 bool IsOpaque = VT.getSizeInBits() > 64 || 7075 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue()); 7076 return DAG.getConstant(Val, dl, VT, false, IsOpaque); 7077 } 7078 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, 7079 VT); 7080 } 7081 7082 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); 7083 EVT IntVT = VT.getScalarType(); 7084 if (!IntVT.isInteger()) 7085 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); 7086 7087 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); 7088 if (NumBits > 8) { 7089 // Use a multiplication with 0x010101... to extend the input to the 7090 // required length. 7091 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); 7092 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, 7093 DAG.getConstant(Magic, dl, IntVT)); 7094 } 7095 7096 if (VT != Value.getValueType() && !VT.isInteger()) 7097 Value = DAG.getBitcast(VT.getScalarType(), Value); 7098 if (VT != Value.getValueType()) 7099 Value = DAG.getSplatBuildVector(VT, dl, Value); 7100 7101 return Value; 7102 } 7103 7104 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only 7105 /// used when a memcpy is turned into a memset when the source is a constant 7106 /// string ptr. 7107 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, 7108 const TargetLowering &TLI, 7109 const ConstantDataArraySlice &Slice) { 7110 // Handle vector with all elements zero. 7111 if (Slice.Array == nullptr) { 7112 if (VT.isInteger()) 7113 return DAG.getConstant(0, dl, VT); 7114 if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 7115 return DAG.getConstantFP(0.0, dl, VT); 7116 if (VT.isVector()) { 7117 unsigned NumElts = VT.getVectorNumElements(); 7118 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 7119 return DAG.getNode(ISD::BITCAST, dl, VT, 7120 DAG.getConstant(0, dl, 7121 EVT::getVectorVT(*DAG.getContext(), 7122 EltVT, NumElts))); 7123 } 7124 llvm_unreachable("Expected type!"); 7125 } 7126 7127 assert(!VT.isVector() && "Can't handle vector type here!"); 7128 unsigned NumVTBits = VT.getSizeInBits(); 7129 unsigned NumVTBytes = NumVTBits / 8; 7130 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length)); 7131 7132 APInt Val(NumVTBits, 0); 7133 if (DAG.getDataLayout().isLittleEndian()) { 7134 for (unsigned i = 0; i != NumBytes; ++i) 7135 Val |= (uint64_t)(unsigned char)Slice[i] << i*8; 7136 } else { 7137 for (unsigned i = 0; i != NumBytes; ++i) 7138 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8; 7139 } 7140 7141 // If the "cost" of materializing the integer immediate is less than the cost 7142 // of a load, then it is cost effective to turn the load into the immediate. 7143 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 7144 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) 7145 return DAG.getConstant(Val, dl, VT); 7146 return SDValue(); 7147 } 7148 7149 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, TypeSize Offset, 7150 const SDLoc &DL, 7151 const SDNodeFlags Flags) { 7152 EVT VT = Base.getValueType(); 7153 SDValue Index; 7154 7155 if (Offset.isScalable()) 7156 Index = getVScale(DL, Base.getValueType(), 7157 APInt(Base.getValueSizeInBits().getFixedValue(), 7158 Offset.getKnownMinValue())); 7159 else 7160 Index = getConstant(Offset.getFixedValue(), DL, VT); 7161 7162 return getMemBasePlusOffset(Base, Index, DL, Flags); 7163 } 7164 7165 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset, 7166 const SDLoc &DL, 7167 const SDNodeFlags Flags) { 7168 assert(Offset.getValueType().isInteger()); 7169 EVT BasePtrVT = Ptr.getValueType(); 7170 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags); 7171 } 7172 7173 /// Returns true if memcpy source is constant data. 7174 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) { 7175 uint64_t SrcDelta = 0; 7176 GlobalAddressSDNode *G = nullptr; 7177 if (Src.getOpcode() == ISD::GlobalAddress) 7178 G = cast<GlobalAddressSDNode>(Src); 7179 else if (Src.getOpcode() == ISD::ADD && 7180 Src.getOperand(0).getOpcode() == ISD::GlobalAddress && 7181 Src.getOperand(1).getOpcode() == ISD::Constant) { 7182 G = cast<GlobalAddressSDNode>(Src.getOperand(0)); 7183 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); 7184 } 7185 if (!G) 7186 return false; 7187 7188 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8, 7189 SrcDelta + G->getOffset()); 7190 } 7191 7192 static bool shouldLowerMemFuncForSize(const MachineFunction &MF, 7193 SelectionDAG &DAG) { 7194 // On Darwin, -Os means optimize for size without hurting performance, so 7195 // only really optimize for size when -Oz (MinSize) is used. 7196 if (MF.getTarget().getTargetTriple().isOSDarwin()) 7197 return MF.getFunction().hasMinSize(); 7198 return DAG.shouldOptForSize(); 7199 } 7200 7201 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, 7202 SmallVector<SDValue, 32> &OutChains, unsigned From, 7203 unsigned To, SmallVector<SDValue, 16> &OutLoadChains, 7204 SmallVector<SDValue, 16> &OutStoreChains) { 7205 assert(OutLoadChains.size() && "Missing loads in memcpy inlining"); 7206 assert(OutStoreChains.size() && "Missing stores in memcpy inlining"); 7207 SmallVector<SDValue, 16> GluedLoadChains; 7208 for (unsigned i = From; i < To; ++i) { 7209 OutChains.push_back(OutLoadChains[i]); 7210 GluedLoadChains.push_back(OutLoadChains[i]); 7211 } 7212 7213 // Chain for all loads. 7214 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 7215 GluedLoadChains); 7216 7217 for (unsigned i = From; i < To; ++i) { 7218 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]); 7219 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(), 7220 ST->getBasePtr(), ST->getMemoryVT(), 7221 ST->getMemOperand()); 7222 OutChains.push_back(NewStore); 7223 } 7224 } 7225 7226 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 7227 SDValue Chain, SDValue Dst, SDValue Src, 7228 uint64_t Size, Align Alignment, 7229 bool isVol, bool AlwaysInline, 7230 MachinePointerInfo DstPtrInfo, 7231 MachinePointerInfo SrcPtrInfo, 7232 const AAMDNodes &AAInfo, AAResults *AA) { 7233 // Turn a memcpy of undef to nop. 7234 // FIXME: We need to honor volatile even is Src is undef. 7235 if (Src.isUndef()) 7236 return Chain; 7237 7238 // Expand memcpy to a series of load and store ops if the size operand falls 7239 // below a certain threshold. 7240 // TODO: In the AlwaysInline case, if the size is big then generate a loop 7241 // rather than maybe a humongous number of loads and stores. 7242 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7243 const DataLayout &DL = DAG.getDataLayout(); 7244 LLVMContext &C = *DAG.getContext(); 7245 std::vector<EVT> MemOps; 7246 bool DstAlignCanChange = false; 7247 MachineFunction &MF = DAG.getMachineFunction(); 7248 MachineFrameInfo &MFI = MF.getFrameInfo(); 7249 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 7250 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 7251 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 7252 DstAlignCanChange = true; 7253 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 7254 if (!SrcAlign || Alignment > *SrcAlign) 7255 SrcAlign = Alignment; 7256 assert(SrcAlign && "SrcAlign must be set"); 7257 ConstantDataArraySlice Slice; 7258 // If marked as volatile, perform a copy even when marked as constant. 7259 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice); 7260 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr; 7261 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); 7262 const MemOp Op = isZeroConstant 7263 ? MemOp::Set(Size, DstAlignCanChange, Alignment, 7264 /*IsZeroMemset*/ true, isVol) 7265 : MemOp::Copy(Size, DstAlignCanChange, Alignment, 7266 *SrcAlign, isVol, CopyFromConstant); 7267 if (!TLI.findOptimalMemOpLowering( 7268 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), 7269 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes())) 7270 return SDValue(); 7271 7272 if (DstAlignCanChange) { 7273 Type *Ty = MemOps[0].getTypeForEVT(C); 7274 Align NewAlign = DL.getABITypeAlign(Ty); 7275 7276 // Don't promote to an alignment that would require dynamic stack 7277 // realignment which may conflict with optimizations such as tail call 7278 // optimization. 7279 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 7280 if (!TRI->hasStackRealignment(MF)) 7281 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 7282 NewAlign = NewAlign.previous(); 7283 7284 if (NewAlign > Alignment) { 7285 // Give the stack frame object a larger alignment if needed. 7286 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 7287 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 7288 Alignment = NewAlign; 7289 } 7290 } 7291 7292 // Prepare AAInfo for loads/stores after lowering this memcpy. 7293 AAMDNodes NewAAInfo = AAInfo; 7294 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 7295 7296 const Value *SrcVal = dyn_cast_if_present<const Value *>(SrcPtrInfo.V); 7297 bool isConstant = 7298 AA && SrcVal && 7299 AA->pointsToConstantMemory(MemoryLocation(SrcVal, Size, AAInfo)); 7300 7301 MachineMemOperand::Flags MMOFlags = 7302 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 7303 SmallVector<SDValue, 16> OutLoadChains; 7304 SmallVector<SDValue, 16> OutStoreChains; 7305 SmallVector<SDValue, 32> OutChains; 7306 unsigned NumMemOps = MemOps.size(); 7307 uint64_t SrcOff = 0, DstOff = 0; 7308 for (unsigned i = 0; i != NumMemOps; ++i) { 7309 EVT VT = MemOps[i]; 7310 unsigned VTSize = VT.getSizeInBits() / 8; 7311 SDValue Value, Store; 7312 7313 if (VTSize > Size) { 7314 // Issuing an unaligned load / store pair that overlaps with the previous 7315 // pair. Adjust the offset accordingly. 7316 assert(i == NumMemOps-1 && i != 0); 7317 SrcOff -= VTSize - Size; 7318 DstOff -= VTSize - Size; 7319 } 7320 7321 if (CopyFromConstant && 7322 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) { 7323 // It's unlikely a store of a vector immediate can be done in a single 7324 // instruction. It would require a load from a constantpool first. 7325 // We only handle zero vectors here. 7326 // FIXME: Handle other cases where store of vector immediate is done in 7327 // a single instruction. 7328 ConstantDataArraySlice SubSlice; 7329 if (SrcOff < Slice.Length) { 7330 SubSlice = Slice; 7331 SubSlice.move(SrcOff); 7332 } else { 7333 // This is an out-of-bounds access and hence UB. Pretend we read zero. 7334 SubSlice.Array = nullptr; 7335 SubSlice.Offset = 0; 7336 SubSlice.Length = VTSize; 7337 } 7338 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice); 7339 if (Value.getNode()) { 7340 Store = DAG.getStore( 7341 Chain, dl, Value, 7342 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 7343 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 7344 OutChains.push_back(Store); 7345 } 7346 } 7347 7348 if (!Store.getNode()) { 7349 // The type might not be legal for the target. This should only happen 7350 // if the type is smaller than a legal type, as on PPC, so the right 7351 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify 7352 // to Load/Store if NVT==VT. 7353 // FIXME does the case above also need this? 7354 EVT NVT = TLI.getTypeToTransformTo(C, VT); 7355 assert(NVT.bitsGE(VT)); 7356 7357 bool isDereferenceable = 7358 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 7359 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 7360 if (isDereferenceable) 7361 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 7362 if (isConstant) 7363 SrcMMOFlags |= MachineMemOperand::MOInvariant; 7364 7365 Value = DAG.getExtLoad( 7366 ISD::EXTLOAD, dl, NVT, Chain, 7367 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 7368 SrcPtrInfo.getWithOffset(SrcOff), VT, 7369 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo); 7370 OutLoadChains.push_back(Value.getValue(1)); 7371 7372 Store = DAG.getTruncStore( 7373 Chain, dl, Value, 7374 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 7375 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo); 7376 OutStoreChains.push_back(Store); 7377 } 7378 SrcOff += VTSize; 7379 DstOff += VTSize; 7380 Size -= VTSize; 7381 } 7382 7383 unsigned GluedLdStLimit = MaxLdStGlue == 0 ? 7384 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue; 7385 unsigned NumLdStInMemcpy = OutStoreChains.size(); 7386 7387 if (NumLdStInMemcpy) { 7388 // It may be that memcpy might be converted to memset if it's memcpy 7389 // of constants. In such a case, we won't have loads and stores, but 7390 // just stores. In the absence of loads, there is nothing to gang up. 7391 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) { 7392 // If target does not care, just leave as it. 7393 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) { 7394 OutChains.push_back(OutLoadChains[i]); 7395 OutChains.push_back(OutStoreChains[i]); 7396 } 7397 } else { 7398 // Ld/St less than/equal limit set by target. 7399 if (NumLdStInMemcpy <= GluedLdStLimit) { 7400 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 7401 NumLdStInMemcpy, OutLoadChains, 7402 OutStoreChains); 7403 } else { 7404 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit; 7405 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit; 7406 unsigned GlueIter = 0; 7407 7408 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) { 7409 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit; 7410 unsigned IndexTo = NumLdStInMemcpy - GlueIter; 7411 7412 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo, 7413 OutLoadChains, OutStoreChains); 7414 GlueIter += GluedLdStLimit; 7415 } 7416 7417 // Residual ld/st. 7418 if (RemainingLdStInMemcpy) { 7419 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0, 7420 RemainingLdStInMemcpy, OutLoadChains, 7421 OutStoreChains); 7422 } 7423 } 7424 } 7425 } 7426 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 7427 } 7428 7429 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, 7430 SDValue Chain, SDValue Dst, SDValue Src, 7431 uint64_t Size, Align Alignment, 7432 bool isVol, bool AlwaysInline, 7433 MachinePointerInfo DstPtrInfo, 7434 MachinePointerInfo SrcPtrInfo, 7435 const AAMDNodes &AAInfo) { 7436 // Turn a memmove of undef to nop. 7437 // FIXME: We need to honor volatile even is Src is undef. 7438 if (Src.isUndef()) 7439 return Chain; 7440 7441 // Expand memmove to a series of load and store ops if the size operand falls 7442 // below a certain threshold. 7443 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7444 const DataLayout &DL = DAG.getDataLayout(); 7445 LLVMContext &C = *DAG.getContext(); 7446 std::vector<EVT> MemOps; 7447 bool DstAlignCanChange = false; 7448 MachineFunction &MF = DAG.getMachineFunction(); 7449 MachineFrameInfo &MFI = MF.getFrameInfo(); 7450 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 7451 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 7452 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 7453 DstAlignCanChange = true; 7454 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src); 7455 if (!SrcAlign || Alignment > *SrcAlign) 7456 SrcAlign = Alignment; 7457 assert(SrcAlign && "SrcAlign must be set"); 7458 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); 7459 if (!TLI.findOptimalMemOpLowering( 7460 MemOps, Limit, 7461 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, 7462 /*IsVolatile*/ true), 7463 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), 7464 MF.getFunction().getAttributes())) 7465 return SDValue(); 7466 7467 if (DstAlignCanChange) { 7468 Type *Ty = MemOps[0].getTypeForEVT(C); 7469 Align NewAlign = DL.getABITypeAlign(Ty); 7470 7471 // Don't promote to an alignment that would require dynamic stack 7472 // realignment which may conflict with optimizations such as tail call 7473 // optimization. 7474 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 7475 if (!TRI->hasStackRealignment(MF)) 7476 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 7477 NewAlign = NewAlign.previous(); 7478 7479 if (NewAlign > Alignment) { 7480 // Give the stack frame object a larger alignment if needed. 7481 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 7482 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 7483 Alignment = NewAlign; 7484 } 7485 } 7486 7487 // Prepare AAInfo for loads/stores after lowering this memmove. 7488 AAMDNodes NewAAInfo = AAInfo; 7489 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 7490 7491 MachineMemOperand::Flags MMOFlags = 7492 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone; 7493 uint64_t SrcOff = 0, DstOff = 0; 7494 SmallVector<SDValue, 8> LoadValues; 7495 SmallVector<SDValue, 8> LoadChains; 7496 SmallVector<SDValue, 8> OutChains; 7497 unsigned NumMemOps = MemOps.size(); 7498 for (unsigned i = 0; i < NumMemOps; i++) { 7499 EVT VT = MemOps[i]; 7500 unsigned VTSize = VT.getSizeInBits() / 8; 7501 SDValue Value; 7502 7503 bool isDereferenceable = 7504 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL); 7505 MachineMemOperand::Flags SrcMMOFlags = MMOFlags; 7506 if (isDereferenceable) 7507 SrcMMOFlags |= MachineMemOperand::MODereferenceable; 7508 7509 Value = DAG.getLoad( 7510 VT, dl, Chain, 7511 DAG.getMemBasePlusOffset(Src, TypeSize::Fixed(SrcOff), dl), 7512 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo); 7513 LoadValues.push_back(Value); 7514 LoadChains.push_back(Value.getValue(1)); 7515 SrcOff += VTSize; 7516 } 7517 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 7518 OutChains.clear(); 7519 for (unsigned i = 0; i < NumMemOps; i++) { 7520 EVT VT = MemOps[i]; 7521 unsigned VTSize = VT.getSizeInBits() / 8; 7522 SDValue Store; 7523 7524 Store = DAG.getStore( 7525 Chain, dl, LoadValues[i], 7526 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 7527 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo); 7528 OutChains.push_back(Store); 7529 DstOff += VTSize; 7530 } 7531 7532 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 7533 } 7534 7535 /// Lower the call to 'memset' intrinsic function into a series of store 7536 /// operations. 7537 /// 7538 /// \param DAG Selection DAG where lowered code is placed. 7539 /// \param dl Link to corresponding IR location. 7540 /// \param Chain Control flow dependency. 7541 /// \param Dst Pointer to destination memory location. 7542 /// \param Src Value of byte to write into the memory. 7543 /// \param Size Number of bytes to write. 7544 /// \param Alignment Alignment of the destination in bytes. 7545 /// \param isVol True if destination is volatile. 7546 /// \param AlwaysInline Makes sure no function call is generated. 7547 /// \param DstPtrInfo IR information on the memory pointer. 7548 /// \returns New head in the control flow, if lowering was successful, empty 7549 /// SDValue otherwise. 7550 /// 7551 /// The function tries to replace 'llvm.memset' intrinsic with several store 7552 /// operations and value calculation code. This is usually profitable for small 7553 /// memory size or when the semantic requires inlining. 7554 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, 7555 SDValue Chain, SDValue Dst, SDValue Src, 7556 uint64_t Size, Align Alignment, bool isVol, 7557 bool AlwaysInline, MachinePointerInfo DstPtrInfo, 7558 const AAMDNodes &AAInfo) { 7559 // Turn a memset of undef to nop. 7560 // FIXME: We need to honor volatile even is Src is undef. 7561 if (Src.isUndef()) 7562 return Chain; 7563 7564 // Expand memset to a series of load/store ops if the size operand 7565 // falls below a certain threshold. 7566 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7567 std::vector<EVT> MemOps; 7568 bool DstAlignCanChange = false; 7569 MachineFunction &MF = DAG.getMachineFunction(); 7570 MachineFrameInfo &MFI = MF.getFrameInfo(); 7571 bool OptSize = shouldLowerMemFuncForSize(MF, DAG); 7572 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); 7573 if (FI && !MFI.isFixedObjectIndex(FI->getIndex())) 7574 DstAlignCanChange = true; 7575 bool IsZeroVal = isNullConstant(Src); 7576 unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize); 7577 7578 if (!TLI.findOptimalMemOpLowering( 7579 MemOps, Limit, 7580 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol), 7581 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes())) 7582 return SDValue(); 7583 7584 if (DstAlignCanChange) { 7585 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); 7586 const DataLayout &DL = DAG.getDataLayout(); 7587 Align NewAlign = DL.getABITypeAlign(Ty); 7588 7589 // Don't promote to an alignment that would require dynamic stack 7590 // realignment which may conflict with optimizations such as tail call 7591 // optimization. 7592 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 7593 if (!TRI->hasStackRealignment(MF)) 7594 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) 7595 NewAlign = NewAlign.previous(); 7596 7597 if (NewAlign > Alignment) { 7598 // Give the stack frame object a larger alignment if needed. 7599 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign) 7600 MFI.setObjectAlignment(FI->getIndex(), NewAlign); 7601 Alignment = NewAlign; 7602 } 7603 } 7604 7605 SmallVector<SDValue, 8> OutChains; 7606 uint64_t DstOff = 0; 7607 unsigned NumMemOps = MemOps.size(); 7608 7609 // Find the largest store and generate the bit pattern for it. 7610 EVT LargestVT = MemOps[0]; 7611 for (unsigned i = 1; i < NumMemOps; i++) 7612 if (MemOps[i].bitsGT(LargestVT)) 7613 LargestVT = MemOps[i]; 7614 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); 7615 7616 // Prepare AAInfo for loads/stores after lowering this memset. 7617 AAMDNodes NewAAInfo = AAInfo; 7618 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr; 7619 7620 for (unsigned i = 0; i < NumMemOps; i++) { 7621 EVT VT = MemOps[i]; 7622 unsigned VTSize = VT.getSizeInBits() / 8; 7623 if (VTSize > Size) { 7624 // Issuing an unaligned load / store pair that overlaps with the previous 7625 // pair. Adjust the offset accordingly. 7626 assert(i == NumMemOps-1 && i != 0); 7627 DstOff -= VTSize - Size; 7628 } 7629 7630 // If this store is smaller than the largest store see whether we can get 7631 // the smaller value for free with a truncate. 7632 SDValue Value = MemSetValue; 7633 if (VT.bitsLT(LargestVT)) { 7634 if (!LargestVT.isVector() && !VT.isVector() && 7635 TLI.isTruncateFree(LargestVT, VT)) 7636 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); 7637 else 7638 Value = getMemsetValue(Src, VT, DAG, dl); 7639 } 7640 assert(Value.getValueType() == VT && "Value with wrong type."); 7641 SDValue Store = DAG.getStore( 7642 Chain, dl, Value, 7643 DAG.getMemBasePlusOffset(Dst, TypeSize::Fixed(DstOff), dl), 7644 DstPtrInfo.getWithOffset(DstOff), Alignment, 7645 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone, 7646 NewAAInfo); 7647 OutChains.push_back(Store); 7648 DstOff += VT.getSizeInBits() / 8; 7649 Size -= VTSize; 7650 } 7651 7652 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 7653 } 7654 7655 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, 7656 unsigned AS) { 7657 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all 7658 // pointer operands can be losslessly bitcasted to pointers of address space 0 7659 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) { 7660 report_fatal_error("cannot lower memory intrinsic in address space " + 7661 Twine(AS)); 7662 } 7663 } 7664 7665 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, 7666 SDValue Src, SDValue Size, Align Alignment, 7667 bool isVol, bool AlwaysInline, bool isTailCall, 7668 MachinePointerInfo DstPtrInfo, 7669 MachinePointerInfo SrcPtrInfo, 7670 const AAMDNodes &AAInfo, AAResults *AA) { 7671 // Check to see if we should lower the memcpy to loads and stores first. 7672 // For cases within the target-specified limits, this is the best choice. 7673 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7674 if (ConstantSize) { 7675 // Memcpy with size zero? Just return the original chain. 7676 if (ConstantSize->isZero()) 7677 return Chain; 7678 7679 SDValue Result = getMemcpyLoadsAndStores( 7680 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7681 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo, AA); 7682 if (Result.getNode()) 7683 return Result; 7684 } 7685 7686 // Then check to see if we should lower the memcpy with target-specific 7687 // code. If the target chooses to do this, this is the next best. 7688 if (TSI) { 7689 SDValue Result = TSI->EmitTargetCodeForMemcpy( 7690 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, 7691 DstPtrInfo, SrcPtrInfo); 7692 if (Result.getNode()) 7693 return Result; 7694 } 7695 7696 // If we really need inline code and the target declined to provide it, 7697 // use a (potentially long) sequence of loads and stores. 7698 if (AlwaysInline) { 7699 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7700 return getMemcpyLoadsAndStores( 7701 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7702 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo, AA); 7703 } 7704 7705 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7706 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7707 7708 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc 7709 // memcpy is not guaranteed to be safe. libc memcpys aren't required to 7710 // respect volatile, so they may do things like read or write memory 7711 // beyond the given memory regions. But fixing this isn't easy, and most 7712 // people don't care. 7713 7714 // Emit a library call. 7715 TargetLowering::ArgListTy Args; 7716 TargetLowering::ArgListEntry Entry; 7717 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7718 Entry.Node = Dst; Args.push_back(Entry); 7719 Entry.Node = Src; Args.push_back(Entry); 7720 7721 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7722 Entry.Node = Size; Args.push_back(Entry); 7723 // FIXME: pass in SDLoc 7724 TargetLowering::CallLoweringInfo CLI(*this); 7725 CLI.setDebugLoc(dl) 7726 .setChain(Chain) 7727 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), 7728 Dst.getValueType().getTypeForEVT(*getContext()), 7729 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), 7730 TLI->getPointerTy(getDataLayout())), 7731 std::move(Args)) 7732 .setDiscardResult() 7733 .setTailCall(isTailCall); 7734 7735 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7736 return CallResult.second; 7737 } 7738 7739 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl, 7740 SDValue Dst, SDValue Src, SDValue Size, 7741 Type *SizeTy, unsigned ElemSz, 7742 bool isTailCall, 7743 MachinePointerInfo DstPtrInfo, 7744 MachinePointerInfo SrcPtrInfo) { 7745 // Emit a library call. 7746 TargetLowering::ArgListTy Args; 7747 TargetLowering::ArgListEntry Entry; 7748 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7749 Entry.Node = Dst; 7750 Args.push_back(Entry); 7751 7752 Entry.Node = Src; 7753 Args.push_back(Entry); 7754 7755 Entry.Ty = SizeTy; 7756 Entry.Node = Size; 7757 Args.push_back(Entry); 7758 7759 RTLIB::Libcall LibraryCall = 7760 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7761 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7762 report_fatal_error("Unsupported element size"); 7763 7764 TargetLowering::CallLoweringInfo CLI(*this); 7765 CLI.setDebugLoc(dl) 7766 .setChain(Chain) 7767 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7768 Type::getVoidTy(*getContext()), 7769 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7770 TLI->getPointerTy(getDataLayout())), 7771 std::move(Args)) 7772 .setDiscardResult() 7773 .setTailCall(isTailCall); 7774 7775 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7776 return CallResult.second; 7777 } 7778 7779 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, 7780 SDValue Src, SDValue Size, Align Alignment, 7781 bool isVol, bool isTailCall, 7782 MachinePointerInfo DstPtrInfo, 7783 MachinePointerInfo SrcPtrInfo, 7784 const AAMDNodes &AAInfo, AAResults *AA) { 7785 // Check to see if we should lower the memmove to loads and stores first. 7786 // For cases within the target-specified limits, this is the best choice. 7787 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7788 if (ConstantSize) { 7789 // Memmove with size zero? Just return the original chain. 7790 if (ConstantSize->isZero()) 7791 return Chain; 7792 7793 SDValue Result = getMemmoveLoadsAndStores( 7794 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment, 7795 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo); 7796 if (Result.getNode()) 7797 return Result; 7798 } 7799 7800 // Then check to see if we should lower the memmove with target-specific 7801 // code. If the target chooses to do this, this is the next best. 7802 if (TSI) { 7803 SDValue Result = 7804 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, 7805 Alignment, isVol, DstPtrInfo, SrcPtrInfo); 7806 if (Result.getNode()) 7807 return Result; 7808 } 7809 7810 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7811 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace()); 7812 7813 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may 7814 // not be safe. See memcpy above for more details. 7815 7816 // Emit a library call. 7817 TargetLowering::ArgListTy Args; 7818 TargetLowering::ArgListEntry Entry; 7819 Entry.Ty = Type::getInt8PtrTy(*getContext()); 7820 Entry.Node = Dst; Args.push_back(Entry); 7821 Entry.Node = Src; Args.push_back(Entry); 7822 7823 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7824 Entry.Node = Size; Args.push_back(Entry); 7825 // FIXME: pass in SDLoc 7826 TargetLowering::CallLoweringInfo CLI(*this); 7827 CLI.setDebugLoc(dl) 7828 .setChain(Chain) 7829 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), 7830 Dst.getValueType().getTypeForEVT(*getContext()), 7831 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), 7832 TLI->getPointerTy(getDataLayout())), 7833 std::move(Args)) 7834 .setDiscardResult() 7835 .setTailCall(isTailCall); 7836 7837 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); 7838 return CallResult.second; 7839 } 7840 7841 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl, 7842 SDValue Dst, SDValue Src, SDValue Size, 7843 Type *SizeTy, unsigned ElemSz, 7844 bool isTailCall, 7845 MachinePointerInfo DstPtrInfo, 7846 MachinePointerInfo SrcPtrInfo) { 7847 // Emit a library call. 7848 TargetLowering::ArgListTy Args; 7849 TargetLowering::ArgListEntry Entry; 7850 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7851 Entry.Node = Dst; 7852 Args.push_back(Entry); 7853 7854 Entry.Node = Src; 7855 Args.push_back(Entry); 7856 7857 Entry.Ty = SizeTy; 7858 Entry.Node = Size; 7859 Args.push_back(Entry); 7860 7861 RTLIB::Libcall LibraryCall = 7862 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7863 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7864 report_fatal_error("Unsupported element size"); 7865 7866 TargetLowering::CallLoweringInfo CLI(*this); 7867 CLI.setDebugLoc(dl) 7868 .setChain(Chain) 7869 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 7870 Type::getVoidTy(*getContext()), 7871 getExternalSymbol(TLI->getLibcallName(LibraryCall), 7872 TLI->getPointerTy(getDataLayout())), 7873 std::move(Args)) 7874 .setDiscardResult() 7875 .setTailCall(isTailCall); 7876 7877 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7878 return CallResult.second; 7879 } 7880 7881 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, 7882 SDValue Src, SDValue Size, Align Alignment, 7883 bool isVol, bool AlwaysInline, bool isTailCall, 7884 MachinePointerInfo DstPtrInfo, 7885 const AAMDNodes &AAInfo) { 7886 // Check to see if we should lower the memset to stores first. 7887 // For cases within the target-specified limits, this is the best choice. 7888 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 7889 if (ConstantSize) { 7890 // Memset with size zero? Just return the original chain. 7891 if (ConstantSize->isZero()) 7892 return Chain; 7893 7894 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7895 ConstantSize->getZExtValue(), Alignment, 7896 isVol, false, DstPtrInfo, AAInfo); 7897 7898 if (Result.getNode()) 7899 return Result; 7900 } 7901 7902 // Then check to see if we should lower the memset with target-specific 7903 // code. If the target chooses to do this, this is the next best. 7904 if (TSI) { 7905 SDValue Result = TSI->EmitTargetCodeForMemset( 7906 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo); 7907 if (Result.getNode()) 7908 return Result; 7909 } 7910 7911 // If we really need inline code and the target declined to provide it, 7912 // use a (potentially long) sequence of loads and stores. 7913 if (AlwaysInline) { 7914 assert(ConstantSize && "AlwaysInline requires a constant size!"); 7915 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src, 7916 ConstantSize->getZExtValue(), Alignment, 7917 isVol, true, DstPtrInfo, AAInfo); 7918 assert(Result && 7919 "getMemsetStores must return a valid sequence when AlwaysInline"); 7920 return Result; 7921 } 7922 7923 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace()); 7924 7925 // Emit a library call. 7926 auto &Ctx = *getContext(); 7927 const auto& DL = getDataLayout(); 7928 7929 TargetLowering::CallLoweringInfo CLI(*this); 7930 // FIXME: pass in SDLoc 7931 CLI.setDebugLoc(dl).setChain(Chain); 7932 7933 ConstantSDNode *ConstantSrc = dyn_cast<ConstantSDNode>(Src); 7934 const bool SrcIsZero = ConstantSrc && ConstantSrc->isZero(); 7935 const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO); 7936 7937 // Helper function to create an Entry from Node and Type. 7938 const auto CreateEntry = [](SDValue Node, Type *Ty) { 7939 TargetLowering::ArgListEntry Entry; 7940 Entry.Node = Node; 7941 Entry.Ty = Ty; 7942 return Entry; 7943 }; 7944 7945 // If zeroing out and bzero is present, use it. 7946 if (SrcIsZero && BzeroName) { 7947 TargetLowering::ArgListTy Args; 7948 Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx))); 7949 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx))); 7950 CLI.setLibCallee( 7951 TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx), 7952 getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args)); 7953 } else { 7954 TargetLowering::ArgListTy Args; 7955 Args.push_back(CreateEntry(Dst, Type::getInt8PtrTy(Ctx))); 7956 Args.push_back(CreateEntry(Src, Src.getValueType().getTypeForEVT(Ctx))); 7957 Args.push_back(CreateEntry(Size, DL.getIntPtrType(Ctx))); 7958 CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), 7959 Dst.getValueType().getTypeForEVT(Ctx), 7960 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), 7961 TLI->getPointerTy(DL)), 7962 std::move(Args)); 7963 } 7964 7965 CLI.setDiscardResult().setTailCall(isTailCall); 7966 7967 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 7968 return CallResult.second; 7969 } 7970 7971 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl, 7972 SDValue Dst, SDValue Value, SDValue Size, 7973 Type *SizeTy, unsigned ElemSz, 7974 bool isTailCall, 7975 MachinePointerInfo DstPtrInfo) { 7976 // Emit a library call. 7977 TargetLowering::ArgListTy Args; 7978 TargetLowering::ArgListEntry Entry; 7979 Entry.Ty = getDataLayout().getIntPtrType(*getContext()); 7980 Entry.Node = Dst; 7981 Args.push_back(Entry); 7982 7983 Entry.Ty = Type::getInt8Ty(*getContext()); 7984 Entry.Node = Value; 7985 Args.push_back(Entry); 7986 7987 Entry.Ty = SizeTy; 7988 Entry.Node = Size; 7989 Args.push_back(Entry); 7990 7991 RTLIB::Libcall LibraryCall = 7992 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz); 7993 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 7994 report_fatal_error("Unsupported element size"); 7995 7996 TargetLowering::CallLoweringInfo CLI(*this); 7997 CLI.setDebugLoc(dl) 7998 .setChain(Chain) 7999 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall), 8000 Type::getVoidTy(*getContext()), 8001 getExternalSymbol(TLI->getLibcallName(LibraryCall), 8002 TLI->getPointerTy(getDataLayout())), 8003 std::move(Args)) 8004 .setDiscardResult() 8005 .setTailCall(isTailCall); 8006 8007 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI); 8008 return CallResult.second; 8009 } 8010 8011 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 8012 SDVTList VTList, ArrayRef<SDValue> Ops, 8013 MachineMemOperand *MMO) { 8014 FoldingSetNodeID ID; 8015 ID.AddInteger(MemVT.getRawBits()); 8016 AddNodeIDNode(ID, Opcode, VTList, Ops); 8017 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8018 ID.AddInteger(MMO->getFlags()); 8019 void* IP = nullptr; 8020 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8021 cast<AtomicSDNode>(E)->refineAlignment(MMO); 8022 return SDValue(E, 0); 8023 } 8024 8025 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 8026 VTList, MemVT, MMO); 8027 createOperands(N, Ops); 8028 8029 CSEMap.InsertNode(N, IP); 8030 InsertNode(N); 8031 return SDValue(N, 0); 8032 } 8033 8034 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, 8035 EVT MemVT, SDVTList VTs, SDValue Chain, 8036 SDValue Ptr, SDValue Cmp, SDValue Swp, 8037 MachineMemOperand *MMO) { 8038 assert(Opcode == ISD::ATOMIC_CMP_SWAP || 8039 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); 8040 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); 8041 8042 SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; 8043 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 8044 } 8045 8046 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 8047 SDValue Chain, SDValue Ptr, SDValue Val, 8048 MachineMemOperand *MMO) { 8049 assert((Opcode == ISD::ATOMIC_LOAD_ADD || 8050 Opcode == ISD::ATOMIC_LOAD_SUB || 8051 Opcode == ISD::ATOMIC_LOAD_AND || 8052 Opcode == ISD::ATOMIC_LOAD_CLR || 8053 Opcode == ISD::ATOMIC_LOAD_OR || 8054 Opcode == ISD::ATOMIC_LOAD_XOR || 8055 Opcode == ISD::ATOMIC_LOAD_NAND || 8056 Opcode == ISD::ATOMIC_LOAD_MIN || 8057 Opcode == ISD::ATOMIC_LOAD_MAX || 8058 Opcode == ISD::ATOMIC_LOAD_UMIN || 8059 Opcode == ISD::ATOMIC_LOAD_UMAX || 8060 Opcode == ISD::ATOMIC_LOAD_FADD || 8061 Opcode == ISD::ATOMIC_LOAD_FSUB || 8062 Opcode == ISD::ATOMIC_LOAD_FMAX || 8063 Opcode == ISD::ATOMIC_LOAD_FMIN || 8064 Opcode == ISD::ATOMIC_LOAD_UINC_WRAP || 8065 Opcode == ISD::ATOMIC_LOAD_UDEC_WRAP || 8066 Opcode == ISD::ATOMIC_SWAP || 8067 Opcode == ISD::ATOMIC_STORE) && 8068 "Invalid Atomic Op"); 8069 8070 EVT VT = Val.getValueType(); 8071 8072 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : 8073 getVTList(VT, MVT::Other); 8074 SDValue Ops[] = {Chain, Ptr, Val}; 8075 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 8076 } 8077 8078 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, 8079 EVT VT, SDValue Chain, SDValue Ptr, 8080 MachineMemOperand *MMO) { 8081 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); 8082 8083 SDVTList VTs = getVTList(VT, MVT::Other); 8084 SDValue Ops[] = {Chain, Ptr}; 8085 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO); 8086 } 8087 8088 /// getMergeValues - Create a MERGE_VALUES node from the given operands. 8089 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) { 8090 if (Ops.size() == 1) 8091 return Ops[0]; 8092 8093 SmallVector<EVT, 4> VTs; 8094 VTs.reserve(Ops.size()); 8095 for (const SDValue &Op : Ops) 8096 VTs.push_back(Op.getValueType()); 8097 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); 8098 } 8099 8100 SDValue SelectionDAG::getMemIntrinsicNode( 8101 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, 8102 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, 8103 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) { 8104 if (!Size && MemVT.isScalableVector()) 8105 Size = MemoryLocation::UnknownSize; 8106 else if (!Size) 8107 Size = MemVT.getStoreSize(); 8108 8109 MachineFunction &MF = getMachineFunction(); 8110 MachineMemOperand *MMO = 8111 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo); 8112 8113 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); 8114 } 8115 8116 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, 8117 SDVTList VTList, 8118 ArrayRef<SDValue> Ops, EVT MemVT, 8119 MachineMemOperand *MMO) { 8120 assert((Opcode == ISD::INTRINSIC_VOID || 8121 Opcode == ISD::INTRINSIC_W_CHAIN || 8122 Opcode == ISD::PREFETCH || 8123 (Opcode <= (unsigned)std::numeric_limits<int>::max() && 8124 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && 8125 "Opcode is not a memory-accessing opcode!"); 8126 8127 // Memoize the node unless it returns a flag. 8128 MemIntrinsicSDNode *N; 8129 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 8130 FoldingSetNodeID ID; 8131 AddNodeIDNode(ID, Opcode, VTList, Ops); 8132 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>( 8133 Opcode, dl.getIROrder(), VTList, MemVT, MMO)); 8134 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8135 ID.AddInteger(MMO->getFlags()); 8136 ID.AddInteger(MemVT.getRawBits()); 8137 void *IP = nullptr; 8138 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8139 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); 8140 return SDValue(E, 0); 8141 } 8142 8143 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 8144 VTList, MemVT, MMO); 8145 createOperands(N, Ops); 8146 8147 CSEMap.InsertNode(N, IP); 8148 } else { 8149 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), 8150 VTList, MemVT, MMO); 8151 createOperands(N, Ops); 8152 } 8153 InsertNode(N); 8154 SDValue V(N, 0); 8155 NewSDValueDbgMsg(V, "Creating new node: ", this); 8156 return V; 8157 } 8158 8159 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl, 8160 SDValue Chain, int FrameIndex, 8161 int64_t Size, int64_t Offset) { 8162 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END; 8163 const auto VTs = getVTList(MVT::Other); 8164 SDValue Ops[2] = { 8165 Chain, 8166 getFrameIndex(FrameIndex, 8167 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()), 8168 true)}; 8169 8170 FoldingSetNodeID ID; 8171 AddNodeIDNode(ID, Opcode, VTs, Ops); 8172 ID.AddInteger(FrameIndex); 8173 ID.AddInteger(Size); 8174 ID.AddInteger(Offset); 8175 void *IP = nullptr; 8176 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 8177 return SDValue(E, 0); 8178 8179 LifetimeSDNode *N = newSDNode<LifetimeSDNode>( 8180 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset); 8181 createOperands(N, Ops); 8182 CSEMap.InsertNode(N, IP); 8183 InsertNode(N); 8184 SDValue V(N, 0); 8185 NewSDValueDbgMsg(V, "Creating new node: ", this); 8186 return V; 8187 } 8188 8189 SDValue SelectionDAG::getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, 8190 uint64_t Guid, uint64_t Index, 8191 uint32_t Attr) { 8192 const unsigned Opcode = ISD::PSEUDO_PROBE; 8193 const auto VTs = getVTList(MVT::Other); 8194 SDValue Ops[] = {Chain}; 8195 FoldingSetNodeID ID; 8196 AddNodeIDNode(ID, Opcode, VTs, Ops); 8197 ID.AddInteger(Guid); 8198 ID.AddInteger(Index); 8199 void *IP = nullptr; 8200 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP)) 8201 return SDValue(E, 0); 8202 8203 auto *N = newSDNode<PseudoProbeSDNode>( 8204 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr); 8205 createOperands(N, Ops); 8206 CSEMap.InsertNode(N, IP); 8207 InsertNode(N); 8208 SDValue V(N, 0); 8209 NewSDValueDbgMsg(V, "Creating new node: ", this); 8210 return V; 8211 } 8212 8213 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 8214 /// MachinePointerInfo record from it. This is particularly useful because the 8215 /// code generator has many cases where it doesn't bother passing in a 8216 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 8217 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 8218 SelectionDAG &DAG, SDValue Ptr, 8219 int64_t Offset = 0) { 8220 // If this is FI+Offset, we can model it. 8221 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) 8222 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), 8223 FI->getIndex(), Offset); 8224 8225 // If this is (FI+Offset1)+Offset2, we can model it. 8226 if (Ptr.getOpcode() != ISD::ADD || 8227 !isa<ConstantSDNode>(Ptr.getOperand(1)) || 8228 !isa<FrameIndexSDNode>(Ptr.getOperand(0))) 8229 return Info; 8230 8231 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 8232 return MachinePointerInfo::getFixedStack( 8233 DAG.getMachineFunction(), FI, 8234 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); 8235 } 8236 8237 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a 8238 /// MachinePointerInfo record from it. This is particularly useful because the 8239 /// code generator has many cases where it doesn't bother passing in a 8240 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". 8241 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, 8242 SelectionDAG &DAG, SDValue Ptr, 8243 SDValue OffsetOp) { 8244 // If the 'Offset' value isn't a constant, we can't handle this. 8245 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) 8246 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue()); 8247 if (OffsetOp.isUndef()) 8248 return InferPointerInfo(Info, DAG, Ptr); 8249 return Info; 8250 } 8251 8252 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 8253 EVT VT, const SDLoc &dl, SDValue Chain, 8254 SDValue Ptr, SDValue Offset, 8255 MachinePointerInfo PtrInfo, EVT MemVT, 8256 Align Alignment, 8257 MachineMemOperand::Flags MMOFlags, 8258 const AAMDNodes &AAInfo, const MDNode *Ranges) { 8259 assert(Chain.getValueType() == MVT::Other && 8260 "Invalid chain type"); 8261 8262 MMOFlags |= MachineMemOperand::MOLoad; 8263 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 8264 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 8265 // clients. 8266 if (PtrInfo.V.isNull()) 8267 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 8268 8269 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 8270 MachineFunction &MF = getMachineFunction(); 8271 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 8272 Alignment, AAInfo, Ranges); 8273 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); 8274 } 8275 8276 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 8277 EVT VT, const SDLoc &dl, SDValue Chain, 8278 SDValue Ptr, SDValue Offset, EVT MemVT, 8279 MachineMemOperand *MMO) { 8280 if (VT == MemVT) { 8281 ExtType = ISD::NON_EXTLOAD; 8282 } else if (ExtType == ISD::NON_EXTLOAD) { 8283 assert(VT == MemVT && "Non-extending load from different memory type!"); 8284 } else { 8285 // Extending load. 8286 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && 8287 "Should only be an extending load, not truncating!"); 8288 assert(VT.isInteger() == MemVT.isInteger() && 8289 "Cannot convert from FP to Int or Int -> FP!"); 8290 assert(VT.isVector() == MemVT.isVector() && 8291 "Cannot use an ext load to convert to or from a vector!"); 8292 assert((!VT.isVector() || 8293 VT.getVectorElementCount() == MemVT.getVectorElementCount()) && 8294 "Cannot use an ext load to change the number of vector elements!"); 8295 } 8296 8297 bool Indexed = AM != ISD::UNINDEXED; 8298 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 8299 8300 SDVTList VTs = Indexed ? 8301 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); 8302 SDValue Ops[] = { Chain, Ptr, Offset }; 8303 FoldingSetNodeID ID; 8304 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); 8305 ID.AddInteger(MemVT.getRawBits()); 8306 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>( 8307 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO)); 8308 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8309 ID.AddInteger(MMO->getFlags()); 8310 void *IP = nullptr; 8311 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8312 cast<LoadSDNode>(E)->refineAlignment(MMO); 8313 return SDValue(E, 0); 8314 } 8315 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8316 ExtType, MemVT, MMO); 8317 createOperands(N, Ops); 8318 8319 CSEMap.InsertNode(N, IP); 8320 InsertNode(N); 8321 SDValue V(N, 0); 8322 NewSDValueDbgMsg(V, "Creating new node: ", this); 8323 return V; 8324 } 8325 8326 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8327 SDValue Ptr, MachinePointerInfo PtrInfo, 8328 MaybeAlign Alignment, 8329 MachineMemOperand::Flags MMOFlags, 8330 const AAMDNodes &AAInfo, const MDNode *Ranges) { 8331 SDValue Undef = getUNDEF(Ptr.getValueType()); 8332 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8333 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges); 8334 } 8335 8336 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain, 8337 SDValue Ptr, MachineMemOperand *MMO) { 8338 SDValue Undef = getUNDEF(Ptr.getValueType()); 8339 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8340 VT, MMO); 8341 } 8342 8343 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 8344 EVT VT, SDValue Chain, SDValue Ptr, 8345 MachinePointerInfo PtrInfo, EVT MemVT, 8346 MaybeAlign Alignment, 8347 MachineMemOperand::Flags MMOFlags, 8348 const AAMDNodes &AAInfo) { 8349 SDValue Undef = getUNDEF(Ptr.getValueType()); 8350 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo, 8351 MemVT, Alignment, MMOFlags, AAInfo); 8352 } 8353 8354 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, 8355 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, 8356 MachineMemOperand *MMO) { 8357 SDValue Undef = getUNDEF(Ptr.getValueType()); 8358 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, 8359 MemVT, MMO); 8360 } 8361 8362 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, 8363 SDValue Base, SDValue Offset, 8364 ISD::MemIndexedMode AM) { 8365 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); 8366 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 8367 // Don't propagate the invariant or dereferenceable flags. 8368 auto MMOFlags = 8369 LD->getMemOperand()->getFlags() & 8370 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8371 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 8372 LD->getChain(), Base, Offset, LD->getPointerInfo(), 8373 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo()); 8374 } 8375 8376 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 8377 SDValue Ptr, MachinePointerInfo PtrInfo, 8378 Align Alignment, 8379 MachineMemOperand::Flags MMOFlags, 8380 const AAMDNodes &AAInfo) { 8381 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8382 8383 MMOFlags |= MachineMemOperand::MOStore; 8384 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8385 8386 if (PtrInfo.V.isNull()) 8387 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8388 8389 MachineFunction &MF = getMachineFunction(); 8390 uint64_t Size = 8391 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize()); 8392 MachineMemOperand *MMO = 8393 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo); 8394 return getStore(Chain, dl, Val, Ptr, MMO); 8395 } 8396 8397 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val, 8398 SDValue Ptr, MachineMemOperand *MMO) { 8399 assert(Chain.getValueType() == MVT::Other && 8400 "Invalid chain type"); 8401 EVT VT = Val.getValueType(); 8402 SDVTList VTs = getVTList(MVT::Other); 8403 SDValue Undef = getUNDEF(Ptr.getValueType()); 8404 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 8405 FoldingSetNodeID ID; 8406 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 8407 ID.AddInteger(VT.getRawBits()); 8408 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 8409 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO)); 8410 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8411 ID.AddInteger(MMO->getFlags()); 8412 void *IP = nullptr; 8413 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8414 cast<StoreSDNode>(E)->refineAlignment(MMO); 8415 return SDValue(E, 0); 8416 } 8417 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8418 ISD::UNINDEXED, false, VT, MMO); 8419 createOperands(N, Ops); 8420 8421 CSEMap.InsertNode(N, IP); 8422 InsertNode(N); 8423 SDValue V(N, 0); 8424 NewSDValueDbgMsg(V, "Creating new node: ", this); 8425 return V; 8426 } 8427 8428 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 8429 SDValue Ptr, MachinePointerInfo PtrInfo, 8430 EVT SVT, Align Alignment, 8431 MachineMemOperand::Flags MMOFlags, 8432 const AAMDNodes &AAInfo) { 8433 assert(Chain.getValueType() == MVT::Other && 8434 "Invalid chain type"); 8435 8436 MMOFlags |= MachineMemOperand::MOStore; 8437 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8438 8439 if (PtrInfo.V.isNull()) 8440 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8441 8442 MachineFunction &MF = getMachineFunction(); 8443 MachineMemOperand *MMO = MF.getMachineMemOperand( 8444 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 8445 Alignment, AAInfo); 8446 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); 8447 } 8448 8449 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, 8450 SDValue Ptr, EVT SVT, 8451 MachineMemOperand *MMO) { 8452 EVT VT = Val.getValueType(); 8453 8454 assert(Chain.getValueType() == MVT::Other && 8455 "Invalid chain type"); 8456 if (VT == SVT) 8457 return getStore(Chain, dl, Val, Ptr, MMO); 8458 8459 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8460 "Should only be a truncating store, not extending!"); 8461 assert(VT.isInteger() == SVT.isInteger() && 8462 "Can't do FP-INT conversion!"); 8463 assert(VT.isVector() == SVT.isVector() && 8464 "Cannot use trunc store to convert to or from a vector!"); 8465 assert((!VT.isVector() || 8466 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8467 "Cannot use trunc store to change the number of vector elements!"); 8468 8469 SDVTList VTs = getVTList(MVT::Other); 8470 SDValue Undef = getUNDEF(Ptr.getValueType()); 8471 SDValue Ops[] = { Chain, Val, Ptr, Undef }; 8472 FoldingSetNodeID ID; 8473 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 8474 ID.AddInteger(SVT.getRawBits()); 8475 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>( 8476 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO)); 8477 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8478 ID.AddInteger(MMO->getFlags()); 8479 void *IP = nullptr; 8480 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8481 cast<StoreSDNode>(E)->refineAlignment(MMO); 8482 return SDValue(E, 0); 8483 } 8484 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8485 ISD::UNINDEXED, true, SVT, MMO); 8486 createOperands(N, Ops); 8487 8488 CSEMap.InsertNode(N, IP); 8489 InsertNode(N); 8490 SDValue V(N, 0); 8491 NewSDValueDbgMsg(V, "Creating new node: ", this); 8492 return V; 8493 } 8494 8495 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl, 8496 SDValue Base, SDValue Offset, 8497 ISD::MemIndexedMode AM) { 8498 StoreSDNode *ST = cast<StoreSDNode>(OrigStore); 8499 assert(ST->getOffset().isUndef() && "Store is already a indexed store!"); 8500 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8501 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; 8502 FoldingSetNodeID ID; 8503 AddNodeIDNode(ID, ISD::STORE, VTs, Ops); 8504 ID.AddInteger(ST->getMemoryVT().getRawBits()); 8505 ID.AddInteger(ST->getRawSubclassData()); 8506 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 8507 ID.AddInteger(ST->getMemOperand()->getFlags()); 8508 void *IP = nullptr; 8509 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 8510 return SDValue(E, 0); 8511 8512 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8513 ST->isTruncatingStore(), ST->getMemoryVT(), 8514 ST->getMemOperand()); 8515 createOperands(N, Ops); 8516 8517 CSEMap.InsertNode(N, IP); 8518 InsertNode(N); 8519 SDValue V(N, 0); 8520 NewSDValueDbgMsg(V, "Creating new node: ", this); 8521 return V; 8522 } 8523 8524 SDValue SelectionDAG::getLoadVP( 8525 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, 8526 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, 8527 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 8528 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8529 const MDNode *Ranges, bool IsExpanding) { 8530 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8531 8532 MMOFlags |= MachineMemOperand::MOLoad; 8533 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 8534 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 8535 // clients. 8536 if (PtrInfo.V.isNull()) 8537 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 8538 8539 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize()); 8540 MachineFunction &MF = getMachineFunction(); 8541 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 8542 Alignment, AAInfo, Ranges); 8543 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT, 8544 MMO, IsExpanding); 8545 } 8546 8547 SDValue SelectionDAG::getLoadVP(ISD::MemIndexedMode AM, 8548 ISD::LoadExtType ExtType, EVT VT, 8549 const SDLoc &dl, SDValue Chain, SDValue Ptr, 8550 SDValue Offset, SDValue Mask, SDValue EVL, 8551 EVT MemVT, MachineMemOperand *MMO, 8552 bool IsExpanding) { 8553 bool Indexed = AM != ISD::UNINDEXED; 8554 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 8555 8556 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 8557 : getVTList(VT, MVT::Other); 8558 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL}; 8559 FoldingSetNodeID ID; 8560 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops); 8561 ID.AddInteger(MemVT.getRawBits()); 8562 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>( 8563 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 8564 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8565 ID.AddInteger(MMO->getFlags()); 8566 void *IP = nullptr; 8567 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8568 cast<VPLoadSDNode>(E)->refineAlignment(MMO); 8569 return SDValue(E, 0); 8570 } 8571 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8572 ExtType, IsExpanding, MemVT, MMO); 8573 createOperands(N, Ops); 8574 8575 CSEMap.InsertNode(N, IP); 8576 InsertNode(N); 8577 SDValue V(N, 0); 8578 NewSDValueDbgMsg(V, "Creating new node: ", this); 8579 return V; 8580 } 8581 8582 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 8583 SDValue Ptr, SDValue Mask, SDValue EVL, 8584 MachinePointerInfo PtrInfo, 8585 MaybeAlign Alignment, 8586 MachineMemOperand::Flags MMOFlags, 8587 const AAMDNodes &AAInfo, const MDNode *Ranges, 8588 bool IsExpanding) { 8589 SDValue Undef = getUNDEF(Ptr.getValueType()); 8590 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8591 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges, 8592 IsExpanding); 8593 } 8594 8595 SDValue SelectionDAG::getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, 8596 SDValue Ptr, SDValue Mask, SDValue EVL, 8597 MachineMemOperand *MMO, bool IsExpanding) { 8598 SDValue Undef = getUNDEF(Ptr.getValueType()); 8599 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, 8600 Mask, EVL, VT, MMO, IsExpanding); 8601 } 8602 8603 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8604 EVT VT, SDValue Chain, SDValue Ptr, 8605 SDValue Mask, SDValue EVL, 8606 MachinePointerInfo PtrInfo, EVT MemVT, 8607 MaybeAlign Alignment, 8608 MachineMemOperand::Flags MMOFlags, 8609 const AAMDNodes &AAInfo, bool IsExpanding) { 8610 SDValue Undef = getUNDEF(Ptr.getValueType()); 8611 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8612 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr, 8613 IsExpanding); 8614 } 8615 8616 SDValue SelectionDAG::getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, 8617 EVT VT, SDValue Chain, SDValue Ptr, 8618 SDValue Mask, SDValue EVL, EVT MemVT, 8619 MachineMemOperand *MMO, bool IsExpanding) { 8620 SDValue Undef = getUNDEF(Ptr.getValueType()); 8621 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask, 8622 EVL, MemVT, MMO, IsExpanding); 8623 } 8624 8625 SDValue SelectionDAG::getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, 8626 SDValue Base, SDValue Offset, 8627 ISD::MemIndexedMode AM) { 8628 auto *LD = cast<VPLoadSDNode>(OrigLoad); 8629 assert(LD->getOffset().isUndef() && "Load is already a indexed load!"); 8630 // Don't propagate the invariant or dereferenceable flags. 8631 auto MMOFlags = 8632 LD->getMemOperand()->getFlags() & 8633 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8634 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, 8635 LD->getChain(), Base, Offset, LD->getMask(), 8636 LD->getVectorLength(), LD->getPointerInfo(), 8637 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(), 8638 nullptr, LD->isExpandingLoad()); 8639 } 8640 8641 SDValue SelectionDAG::getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, 8642 SDValue Ptr, SDValue Offset, SDValue Mask, 8643 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, 8644 ISD::MemIndexedMode AM, bool IsTruncating, 8645 bool IsCompressing) { 8646 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8647 bool Indexed = AM != ISD::UNINDEXED; 8648 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8649 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8650 : getVTList(MVT::Other); 8651 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL}; 8652 FoldingSetNodeID ID; 8653 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8654 ID.AddInteger(MemVT.getRawBits()); 8655 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8656 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8657 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8658 ID.AddInteger(MMO->getFlags()); 8659 void *IP = nullptr; 8660 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8661 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8662 return SDValue(E, 0); 8663 } 8664 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 8665 IsTruncating, IsCompressing, MemVT, MMO); 8666 createOperands(N, Ops); 8667 8668 CSEMap.InsertNode(N, IP); 8669 InsertNode(N); 8670 SDValue V(N, 0); 8671 NewSDValueDbgMsg(V, "Creating new node: ", this); 8672 return V; 8673 } 8674 8675 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8676 SDValue Val, SDValue Ptr, SDValue Mask, 8677 SDValue EVL, MachinePointerInfo PtrInfo, 8678 EVT SVT, Align Alignment, 8679 MachineMemOperand::Flags MMOFlags, 8680 const AAMDNodes &AAInfo, 8681 bool IsCompressing) { 8682 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8683 8684 MMOFlags |= MachineMemOperand::MOStore; 8685 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8686 8687 if (PtrInfo.V.isNull()) 8688 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8689 8690 MachineFunction &MF = getMachineFunction(); 8691 MachineMemOperand *MMO = MF.getMachineMemOperand( 8692 PtrInfo, MMOFlags, MemoryLocation::getSizeOrUnknown(SVT.getStoreSize()), 8693 Alignment, AAInfo); 8694 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO, 8695 IsCompressing); 8696 } 8697 8698 SDValue SelectionDAG::getTruncStoreVP(SDValue Chain, const SDLoc &dl, 8699 SDValue Val, SDValue Ptr, SDValue Mask, 8700 SDValue EVL, EVT SVT, 8701 MachineMemOperand *MMO, 8702 bool IsCompressing) { 8703 EVT VT = Val.getValueType(); 8704 8705 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8706 if (VT == SVT) 8707 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask, 8708 EVL, VT, MMO, ISD::UNINDEXED, 8709 /*IsTruncating*/ false, IsCompressing); 8710 8711 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8712 "Should only be a truncating store, not extending!"); 8713 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8714 assert(VT.isVector() == SVT.isVector() && 8715 "Cannot use trunc store to convert to or from a vector!"); 8716 assert((!VT.isVector() || 8717 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8718 "Cannot use trunc store to change the number of vector elements!"); 8719 8720 SDVTList VTs = getVTList(MVT::Other); 8721 SDValue Undef = getUNDEF(Ptr.getValueType()); 8722 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL}; 8723 FoldingSetNodeID ID; 8724 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8725 ID.AddInteger(SVT.getRawBits()); 8726 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>( 8727 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8728 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8729 ID.AddInteger(MMO->getFlags()); 8730 void *IP = nullptr; 8731 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 8732 cast<VPStoreSDNode>(E)->refineAlignment(MMO); 8733 return SDValue(E, 0); 8734 } 8735 auto *N = 8736 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 8737 ISD::UNINDEXED, true, IsCompressing, SVT, MMO); 8738 createOperands(N, Ops); 8739 8740 CSEMap.InsertNode(N, IP); 8741 InsertNode(N); 8742 SDValue V(N, 0); 8743 NewSDValueDbgMsg(V, "Creating new node: ", this); 8744 return V; 8745 } 8746 8747 SDValue SelectionDAG::getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, 8748 SDValue Base, SDValue Offset, 8749 ISD::MemIndexedMode AM) { 8750 auto *ST = cast<VPStoreSDNode>(OrigStore); 8751 assert(ST->getOffset().isUndef() && "Store is already an indexed store!"); 8752 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 8753 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base, 8754 Offset, ST->getMask(), ST->getVectorLength()}; 8755 FoldingSetNodeID ID; 8756 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops); 8757 ID.AddInteger(ST->getMemoryVT().getRawBits()); 8758 ID.AddInteger(ST->getRawSubclassData()); 8759 ID.AddInteger(ST->getPointerInfo().getAddrSpace()); 8760 ID.AddInteger(ST->getMemOperand()->getFlags()); 8761 void *IP = nullptr; 8762 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 8763 return SDValue(E, 0); 8764 8765 auto *N = newSDNode<VPStoreSDNode>( 8766 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(), 8767 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand()); 8768 createOperands(N, Ops); 8769 8770 CSEMap.InsertNode(N, IP); 8771 InsertNode(N); 8772 SDValue V(N, 0); 8773 NewSDValueDbgMsg(V, "Creating new node: ", this); 8774 return V; 8775 } 8776 8777 SDValue SelectionDAG::getStridedLoadVP( 8778 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8779 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8780 SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, 8781 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8782 const MDNode *Ranges, bool IsExpanding) { 8783 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8784 8785 MMOFlags |= MachineMemOperand::MOLoad; 8786 assert((MMOFlags & MachineMemOperand::MOStore) == 0); 8787 // If we don't have a PtrInfo, infer the trivial frame index case to simplify 8788 // clients. 8789 if (PtrInfo.V.isNull()) 8790 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset); 8791 8792 uint64_t Size = MemoryLocation::UnknownSize; 8793 MachineFunction &MF = getMachineFunction(); 8794 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, 8795 Alignment, AAInfo, Ranges); 8796 return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, Mask, 8797 EVL, MemVT, MMO, IsExpanding); 8798 } 8799 8800 SDValue SelectionDAG::getStridedLoadVP( 8801 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, 8802 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, 8803 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) { 8804 bool Indexed = AM != ISD::UNINDEXED; 8805 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!"); 8806 8807 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL}; 8808 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other) 8809 : getVTList(VT, MVT::Other); 8810 FoldingSetNodeID ID; 8811 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops); 8812 ID.AddInteger(VT.getRawBits()); 8813 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>( 8814 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO)); 8815 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8816 8817 void *IP = nullptr; 8818 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8819 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO); 8820 return SDValue(E, 0); 8821 } 8822 8823 auto *N = 8824 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM, 8825 ExtType, IsExpanding, MemVT, MMO); 8826 createOperands(N, Ops); 8827 CSEMap.InsertNode(N, IP); 8828 InsertNode(N); 8829 SDValue V(N, 0); 8830 NewSDValueDbgMsg(V, "Creating new node: ", this); 8831 return V; 8832 } 8833 8834 SDValue SelectionDAG::getStridedLoadVP( 8835 EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Stride, 8836 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, MaybeAlign Alignment, 8837 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8838 const MDNode *Ranges, bool IsExpanding) { 8839 SDValue Undef = getUNDEF(Ptr.getValueType()); 8840 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8841 Undef, Stride, Mask, EVL, PtrInfo, VT, Alignment, 8842 MMOFlags, AAInfo, Ranges, IsExpanding); 8843 } 8844 8845 SDValue SelectionDAG::getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain, 8846 SDValue Ptr, SDValue Stride, 8847 SDValue Mask, SDValue EVL, 8848 MachineMemOperand *MMO, 8849 bool IsExpanding) { 8850 SDValue Undef = getUNDEF(Ptr.getValueType()); 8851 return getStridedLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, DL, Chain, Ptr, 8852 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding); 8853 } 8854 8855 SDValue SelectionDAG::getExtStridedLoadVP( 8856 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8857 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, 8858 MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, 8859 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8860 bool IsExpanding) { 8861 SDValue Undef = getUNDEF(Ptr.getValueType()); 8862 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8863 Stride, Mask, EVL, PtrInfo, MemVT, Alignment, 8864 MMOFlags, AAInfo, nullptr, IsExpanding); 8865 } 8866 8867 SDValue SelectionDAG::getExtStridedLoadVP( 8868 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, 8869 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, 8870 MachineMemOperand *MMO, bool IsExpanding) { 8871 SDValue Undef = getUNDEF(Ptr.getValueType()); 8872 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef, 8873 Stride, Mask, EVL, MemVT, MMO, IsExpanding); 8874 } 8875 8876 SDValue SelectionDAG::getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL, 8877 SDValue Base, SDValue Offset, 8878 ISD::MemIndexedMode AM) { 8879 auto *SLD = cast<VPStridedLoadSDNode>(OrigLoad); 8880 assert(SLD->getOffset().isUndef() && 8881 "Strided load is already a indexed load!"); 8882 // Don't propagate the invariant or dereferenceable flags. 8883 auto MMOFlags = 8884 SLD->getMemOperand()->getFlags() & 8885 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); 8886 return getStridedLoadVP( 8887 AM, SLD->getExtensionType(), OrigLoad.getValueType(), DL, SLD->getChain(), 8888 Base, Offset, SLD->getStride(), SLD->getMask(), SLD->getVectorLength(), 8889 SLD->getPointerInfo(), SLD->getMemoryVT(), SLD->getAlign(), MMOFlags, 8890 SLD->getAAInfo(), nullptr, SLD->isExpandingLoad()); 8891 } 8892 8893 SDValue SelectionDAG::getStridedStoreVP(SDValue Chain, const SDLoc &DL, 8894 SDValue Val, SDValue Ptr, 8895 SDValue Offset, SDValue Stride, 8896 SDValue Mask, SDValue EVL, EVT MemVT, 8897 MachineMemOperand *MMO, 8898 ISD::MemIndexedMode AM, 8899 bool IsTruncating, bool IsCompressing) { 8900 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8901 bool Indexed = AM != ISD::UNINDEXED; 8902 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!"); 8903 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other) 8904 : getVTList(MVT::Other); 8905 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL}; 8906 FoldingSetNodeID ID; 8907 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8908 ID.AddInteger(MemVT.getRawBits()); 8909 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8910 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 8911 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8912 void *IP = nullptr; 8913 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8914 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8915 return SDValue(E, 0); 8916 } 8917 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8918 VTs, AM, IsTruncating, 8919 IsCompressing, MemVT, MMO); 8920 createOperands(N, Ops); 8921 8922 CSEMap.InsertNode(N, IP); 8923 InsertNode(N); 8924 SDValue V(N, 0); 8925 NewSDValueDbgMsg(V, "Creating new node: ", this); 8926 return V; 8927 } 8928 8929 SDValue SelectionDAG::getTruncStridedStoreVP( 8930 SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, 8931 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, 8932 Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, 8933 bool IsCompressing) { 8934 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8935 8936 MMOFlags |= MachineMemOperand::MOStore; 8937 assert((MMOFlags & MachineMemOperand::MOLoad) == 0); 8938 8939 if (PtrInfo.V.isNull()) 8940 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr); 8941 8942 MachineFunction &MF = getMachineFunction(); 8943 MachineMemOperand *MMO = MF.getMachineMemOperand( 8944 PtrInfo, MMOFlags, MemoryLocation::UnknownSize, Alignment, AAInfo); 8945 return getTruncStridedStoreVP(Chain, DL, Val, Ptr, Stride, Mask, EVL, SVT, 8946 MMO, IsCompressing); 8947 } 8948 8949 SDValue SelectionDAG::getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, 8950 SDValue Val, SDValue Ptr, 8951 SDValue Stride, SDValue Mask, 8952 SDValue EVL, EVT SVT, 8953 MachineMemOperand *MMO, 8954 bool IsCompressing) { 8955 EVT VT = Val.getValueType(); 8956 8957 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 8958 if (VT == SVT) 8959 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()), 8960 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED, 8961 /*IsTruncating*/ false, IsCompressing); 8962 8963 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && 8964 "Should only be a truncating store, not extending!"); 8965 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!"); 8966 assert(VT.isVector() == SVT.isVector() && 8967 "Cannot use trunc store to convert to or from a vector!"); 8968 assert((!VT.isVector() || 8969 VT.getVectorElementCount() == SVT.getVectorElementCount()) && 8970 "Cannot use trunc store to change the number of vector elements!"); 8971 8972 SDVTList VTs = getVTList(MVT::Other); 8973 SDValue Undef = getUNDEF(Ptr.getValueType()); 8974 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL}; 8975 FoldingSetNodeID ID; 8976 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 8977 ID.AddInteger(SVT.getRawBits()); 8978 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>( 8979 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO)); 8980 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 8981 void *IP = nullptr; 8982 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 8983 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO); 8984 return SDValue(E, 0); 8985 } 8986 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(), 8987 VTs, ISD::UNINDEXED, true, 8988 IsCompressing, SVT, MMO); 8989 createOperands(N, Ops); 8990 8991 CSEMap.InsertNode(N, IP); 8992 InsertNode(N); 8993 SDValue V(N, 0); 8994 NewSDValueDbgMsg(V, "Creating new node: ", this); 8995 return V; 8996 } 8997 8998 SDValue SelectionDAG::getIndexedStridedStoreVP(SDValue OrigStore, 8999 const SDLoc &DL, SDValue Base, 9000 SDValue Offset, 9001 ISD::MemIndexedMode AM) { 9002 auto *SST = cast<VPStridedStoreSDNode>(OrigStore); 9003 assert(SST->getOffset().isUndef() && 9004 "Strided store is already an indexed store!"); 9005 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); 9006 SDValue Ops[] = { 9007 SST->getChain(), SST->getValue(), Base, Offset, SST->getStride(), 9008 SST->getMask(), SST->getVectorLength()}; 9009 FoldingSetNodeID ID; 9010 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops); 9011 ID.AddInteger(SST->getMemoryVT().getRawBits()); 9012 ID.AddInteger(SST->getRawSubclassData()); 9013 ID.AddInteger(SST->getPointerInfo().getAddrSpace()); 9014 void *IP = nullptr; 9015 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 9016 return SDValue(E, 0); 9017 9018 auto *N = newSDNode<VPStridedStoreSDNode>( 9019 DL.getIROrder(), DL.getDebugLoc(), VTs, AM, SST->isTruncatingStore(), 9020 SST->isCompressingStore(), SST->getMemoryVT(), SST->getMemOperand()); 9021 createOperands(N, Ops); 9022 9023 CSEMap.InsertNode(N, IP); 9024 InsertNode(N); 9025 SDValue V(N, 0); 9026 NewSDValueDbgMsg(V, "Creating new node: ", this); 9027 return V; 9028 } 9029 9030 SDValue SelectionDAG::getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, 9031 ArrayRef<SDValue> Ops, MachineMemOperand *MMO, 9032 ISD::MemIndexType IndexType) { 9033 assert(Ops.size() == 6 && "Incompatible number of operands"); 9034 9035 FoldingSetNodeID ID; 9036 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops); 9037 ID.AddInteger(VT.getRawBits()); 9038 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>( 9039 dl.getIROrder(), VTs, VT, MMO, IndexType)); 9040 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 9041 ID.AddInteger(MMO->getFlags()); 9042 void *IP = nullptr; 9043 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 9044 cast<VPGatherSDNode>(E)->refineAlignment(MMO); 9045 return SDValue(E, 0); 9046 } 9047 9048 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 9049 VT, MMO, IndexType); 9050 createOperands(N, Ops); 9051 9052 assert(N->getMask().getValueType().getVectorElementCount() == 9053 N->getValueType(0).getVectorElementCount() && 9054 "Vector width mismatch between mask and data"); 9055 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 9056 N->getValueType(0).getVectorElementCount().isScalable() && 9057 "Scalable flags of index and data do not match"); 9058 assert(ElementCount::isKnownGE( 9059 N->getIndex().getValueType().getVectorElementCount(), 9060 N->getValueType(0).getVectorElementCount()) && 9061 "Vector width mismatch between index and data"); 9062 assert(isa<ConstantSDNode>(N->getScale()) && 9063 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 9064 "Scale should be a constant power of 2"); 9065 9066 CSEMap.InsertNode(N, IP); 9067 InsertNode(N); 9068 SDValue V(N, 0); 9069 NewSDValueDbgMsg(V, "Creating new node: ", this); 9070 return V; 9071 } 9072 9073 SDValue SelectionDAG::getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, 9074 ArrayRef<SDValue> Ops, 9075 MachineMemOperand *MMO, 9076 ISD::MemIndexType IndexType) { 9077 assert(Ops.size() == 7 && "Incompatible number of operands"); 9078 9079 FoldingSetNodeID ID; 9080 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops); 9081 ID.AddInteger(VT.getRawBits()); 9082 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>( 9083 dl.getIROrder(), VTs, VT, MMO, IndexType)); 9084 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 9085 ID.AddInteger(MMO->getFlags()); 9086 void *IP = nullptr; 9087 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 9088 cast<VPScatterSDNode>(E)->refineAlignment(MMO); 9089 return SDValue(E, 0); 9090 } 9091 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 9092 VT, MMO, IndexType); 9093 createOperands(N, Ops); 9094 9095 assert(N->getMask().getValueType().getVectorElementCount() == 9096 N->getValue().getValueType().getVectorElementCount() && 9097 "Vector width mismatch between mask and data"); 9098 assert( 9099 N->getIndex().getValueType().getVectorElementCount().isScalable() == 9100 N->getValue().getValueType().getVectorElementCount().isScalable() && 9101 "Scalable flags of index and data do not match"); 9102 assert(ElementCount::isKnownGE( 9103 N->getIndex().getValueType().getVectorElementCount(), 9104 N->getValue().getValueType().getVectorElementCount()) && 9105 "Vector width mismatch between index and data"); 9106 assert(isa<ConstantSDNode>(N->getScale()) && 9107 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 9108 "Scale should be a constant power of 2"); 9109 9110 CSEMap.InsertNode(N, IP); 9111 InsertNode(N); 9112 SDValue V(N, 0); 9113 NewSDValueDbgMsg(V, "Creating new node: ", this); 9114 return V; 9115 } 9116 9117 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, 9118 SDValue Base, SDValue Offset, SDValue Mask, 9119 SDValue PassThru, EVT MemVT, 9120 MachineMemOperand *MMO, 9121 ISD::MemIndexedMode AM, 9122 ISD::LoadExtType ExtTy, bool isExpanding) { 9123 bool Indexed = AM != ISD::UNINDEXED; 9124 assert((Indexed || Offset.isUndef()) && 9125 "Unindexed masked load with an offset!"); 9126 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other) 9127 : getVTList(VT, MVT::Other); 9128 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru}; 9129 FoldingSetNodeID ID; 9130 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); 9131 ID.AddInteger(MemVT.getRawBits()); 9132 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>( 9133 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO)); 9134 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 9135 ID.AddInteger(MMO->getFlags()); 9136 void *IP = nullptr; 9137 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 9138 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); 9139 return SDValue(E, 0); 9140 } 9141 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, 9142 AM, ExtTy, isExpanding, MemVT, MMO); 9143 createOperands(N, Ops); 9144 9145 CSEMap.InsertNode(N, IP); 9146 InsertNode(N); 9147 SDValue V(N, 0); 9148 NewSDValueDbgMsg(V, "Creating new node: ", this); 9149 return V; 9150 } 9151 9152 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, 9153 SDValue Base, SDValue Offset, 9154 ISD::MemIndexedMode AM) { 9155 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad); 9156 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!"); 9157 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base, 9158 Offset, LD->getMask(), LD->getPassThru(), 9159 LD->getMemoryVT(), LD->getMemOperand(), AM, 9160 LD->getExtensionType(), LD->isExpandingLoad()); 9161 } 9162 9163 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl, 9164 SDValue Val, SDValue Base, SDValue Offset, 9165 SDValue Mask, EVT MemVT, 9166 MachineMemOperand *MMO, 9167 ISD::MemIndexedMode AM, bool IsTruncating, 9168 bool IsCompressing) { 9169 assert(Chain.getValueType() == MVT::Other && 9170 "Invalid chain type"); 9171 bool Indexed = AM != ISD::UNINDEXED; 9172 assert((Indexed || Offset.isUndef()) && 9173 "Unindexed masked store with an offset!"); 9174 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other) 9175 : getVTList(MVT::Other); 9176 SDValue Ops[] = {Chain, Val, Base, Offset, Mask}; 9177 FoldingSetNodeID ID; 9178 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); 9179 ID.AddInteger(MemVT.getRawBits()); 9180 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>( 9181 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO)); 9182 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 9183 ID.AddInteger(MMO->getFlags()); 9184 void *IP = nullptr; 9185 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 9186 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); 9187 return SDValue(E, 0); 9188 } 9189 auto *N = 9190 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM, 9191 IsTruncating, IsCompressing, MemVT, MMO); 9192 createOperands(N, Ops); 9193 9194 CSEMap.InsertNode(N, IP); 9195 InsertNode(N); 9196 SDValue V(N, 0); 9197 NewSDValueDbgMsg(V, "Creating new node: ", this); 9198 return V; 9199 } 9200 9201 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, 9202 SDValue Base, SDValue Offset, 9203 ISD::MemIndexedMode AM) { 9204 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore); 9205 assert(ST->getOffset().isUndef() && 9206 "Masked store is already a indexed store!"); 9207 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset, 9208 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(), 9209 AM, ST->isTruncatingStore(), ST->isCompressingStore()); 9210 } 9211 9212 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, 9213 ArrayRef<SDValue> Ops, 9214 MachineMemOperand *MMO, 9215 ISD::MemIndexType IndexType, 9216 ISD::LoadExtType ExtTy) { 9217 assert(Ops.size() == 6 && "Incompatible number of operands"); 9218 9219 FoldingSetNodeID ID; 9220 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); 9221 ID.AddInteger(MemVT.getRawBits()); 9222 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>( 9223 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy)); 9224 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 9225 ID.AddInteger(MMO->getFlags()); 9226 void *IP = nullptr; 9227 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 9228 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); 9229 return SDValue(E, 0); 9230 } 9231 9232 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), 9233 VTs, MemVT, MMO, IndexType, ExtTy); 9234 createOperands(N, Ops); 9235 9236 assert(N->getPassThru().getValueType() == N->getValueType(0) && 9237 "Incompatible type of the PassThru value in MaskedGatherSDNode"); 9238 assert(N->getMask().getValueType().getVectorElementCount() == 9239 N->getValueType(0).getVectorElementCount() && 9240 "Vector width mismatch between mask and data"); 9241 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() == 9242 N->getValueType(0).getVectorElementCount().isScalable() && 9243 "Scalable flags of index and data do not match"); 9244 assert(ElementCount::isKnownGE( 9245 N->getIndex().getValueType().getVectorElementCount(), 9246 N->getValueType(0).getVectorElementCount()) && 9247 "Vector width mismatch between index and data"); 9248 assert(isa<ConstantSDNode>(N->getScale()) && 9249 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 9250 "Scale should be a constant power of 2"); 9251 9252 CSEMap.InsertNode(N, IP); 9253 InsertNode(N); 9254 SDValue V(N, 0); 9255 NewSDValueDbgMsg(V, "Creating new node: ", this); 9256 return V; 9257 } 9258 9259 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, 9260 ArrayRef<SDValue> Ops, 9261 MachineMemOperand *MMO, 9262 ISD::MemIndexType IndexType, 9263 bool IsTrunc) { 9264 assert(Ops.size() == 6 && "Incompatible number of operands"); 9265 9266 FoldingSetNodeID ID; 9267 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); 9268 ID.AddInteger(MemVT.getRawBits()); 9269 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>( 9270 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc)); 9271 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 9272 ID.AddInteger(MMO->getFlags()); 9273 void *IP = nullptr; 9274 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { 9275 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); 9276 return SDValue(E, 0); 9277 } 9278 9279 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), 9280 VTs, MemVT, MMO, IndexType, IsTrunc); 9281 createOperands(N, Ops); 9282 9283 assert(N->getMask().getValueType().getVectorElementCount() == 9284 N->getValue().getValueType().getVectorElementCount() && 9285 "Vector width mismatch between mask and data"); 9286 assert( 9287 N->getIndex().getValueType().getVectorElementCount().isScalable() == 9288 N->getValue().getValueType().getVectorElementCount().isScalable() && 9289 "Scalable flags of index and data do not match"); 9290 assert(ElementCount::isKnownGE( 9291 N->getIndex().getValueType().getVectorElementCount(), 9292 N->getValue().getValueType().getVectorElementCount()) && 9293 "Vector width mismatch between index and data"); 9294 assert(isa<ConstantSDNode>(N->getScale()) && 9295 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() && 9296 "Scale should be a constant power of 2"); 9297 9298 CSEMap.InsertNode(N, IP); 9299 InsertNode(N); 9300 SDValue V(N, 0); 9301 NewSDValueDbgMsg(V, "Creating new node: ", this); 9302 return V; 9303 } 9304 9305 SDValue SelectionDAG::getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, 9306 EVT MemVT, MachineMemOperand *MMO) { 9307 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 9308 SDVTList VTs = getVTList(MVT::Other); 9309 SDValue Ops[] = {Chain, Ptr}; 9310 FoldingSetNodeID ID; 9311 AddNodeIDNode(ID, ISD::GET_FPENV_MEM, VTs, Ops); 9312 ID.AddInteger(MemVT.getRawBits()); 9313 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>( 9314 ISD::GET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO)); 9315 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 9316 ID.AddInteger(MMO->getFlags()); 9317 void *IP = nullptr; 9318 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 9319 return SDValue(E, 0); 9320 9321 auto *N = newSDNode<FPStateAccessSDNode>(ISD::GET_FPENV_MEM, dl.getIROrder(), 9322 dl.getDebugLoc(), VTs, MemVT, MMO); 9323 createOperands(N, Ops); 9324 9325 CSEMap.InsertNode(N, IP); 9326 InsertNode(N); 9327 SDValue V(N, 0); 9328 NewSDValueDbgMsg(V, "Creating new node: ", this); 9329 return V; 9330 } 9331 9332 SDValue SelectionDAG::getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, 9333 EVT MemVT, MachineMemOperand *MMO) { 9334 assert(Chain.getValueType() == MVT::Other && "Invalid chain type"); 9335 SDVTList VTs = getVTList(MVT::Other); 9336 SDValue Ops[] = {Chain, Ptr}; 9337 FoldingSetNodeID ID; 9338 AddNodeIDNode(ID, ISD::SET_FPENV_MEM, VTs, Ops); 9339 ID.AddInteger(MemVT.getRawBits()); 9340 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>( 9341 ISD::SET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO)); 9342 ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); 9343 ID.AddInteger(MMO->getFlags()); 9344 void *IP = nullptr; 9345 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) 9346 return SDValue(E, 0); 9347 9348 auto *N = newSDNode<FPStateAccessSDNode>(ISD::SET_FPENV_MEM, dl.getIROrder(), 9349 dl.getDebugLoc(), VTs, MemVT, MMO); 9350 createOperands(N, Ops); 9351 9352 CSEMap.InsertNode(N, IP); 9353 InsertNode(N); 9354 SDValue V(N, 0); 9355 NewSDValueDbgMsg(V, "Creating new node: ", this); 9356 return V; 9357 } 9358 9359 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) { 9360 // select undef, T, F --> T (if T is a constant), otherwise F 9361 // select, ?, undef, F --> F 9362 // select, ?, T, undef --> T 9363 if (Cond.isUndef()) 9364 return isConstantValueOfAnyType(T) ? T : F; 9365 if (T.isUndef()) 9366 return F; 9367 if (F.isUndef()) 9368 return T; 9369 9370 // select true, T, F --> T 9371 // select false, T, F --> F 9372 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond)) 9373 return CondC->isZero() ? F : T; 9374 9375 // TODO: This should simplify VSELECT with non-zero constant condition using 9376 // something like this (but check boolean contents to be complete?): 9377 if (ConstantSDNode *CondC = isConstOrConstSplat(Cond, /*AllowUndefs*/ false, 9378 /*AllowTruncation*/ true)) 9379 if (CondC->isZero()) 9380 return F; 9381 9382 // select ?, T, T --> T 9383 if (T == F) 9384 return T; 9385 9386 return SDValue(); 9387 } 9388 9389 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) { 9390 // shift undef, Y --> 0 (can always assume that the undef value is 0) 9391 if (X.isUndef()) 9392 return getConstant(0, SDLoc(X.getNode()), X.getValueType()); 9393 // shift X, undef --> undef (because it may shift by the bitwidth) 9394 if (Y.isUndef()) 9395 return getUNDEF(X.getValueType()); 9396 9397 // shift 0, Y --> 0 9398 // shift X, 0 --> X 9399 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y)) 9400 return X; 9401 9402 // shift X, C >= bitwidth(X) --> undef 9403 // All vector elements must be too big (or undef) to avoid partial undefs. 9404 auto isShiftTooBig = [X](ConstantSDNode *Val) { 9405 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits()); 9406 }; 9407 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true)) 9408 return getUNDEF(X.getValueType()); 9409 9410 return SDValue(); 9411 } 9412 9413 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, 9414 SDNodeFlags Flags) { 9415 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 9416 // (an undef operand can be chosen to be Nan/Inf), then the result of this 9417 // operation is poison. That result can be relaxed to undef. 9418 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true); 9419 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true); 9420 bool HasNan = (XC && XC->getValueAPF().isNaN()) || 9421 (YC && YC->getValueAPF().isNaN()); 9422 bool HasInf = (XC && XC->getValueAPF().isInfinity()) || 9423 (YC && YC->getValueAPF().isInfinity()); 9424 9425 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef())) 9426 return getUNDEF(X.getValueType()); 9427 9428 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef())) 9429 return getUNDEF(X.getValueType()); 9430 9431 if (!YC) 9432 return SDValue(); 9433 9434 // X + -0.0 --> X 9435 if (Opcode == ISD::FADD) 9436 if (YC->getValueAPF().isNegZero()) 9437 return X; 9438 9439 // X - +0.0 --> X 9440 if (Opcode == ISD::FSUB) 9441 if (YC->getValueAPF().isPosZero()) 9442 return X; 9443 9444 // X * 1.0 --> X 9445 // X / 1.0 --> X 9446 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV) 9447 if (YC->getValueAPF().isExactlyValue(1.0)) 9448 return X; 9449 9450 // X * 0.0 --> 0.0 9451 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros()) 9452 if (YC->getValueAPF().isZero()) 9453 return getConstantFP(0.0, SDLoc(Y), Y.getValueType()); 9454 9455 return SDValue(); 9456 } 9457 9458 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, 9459 SDValue Ptr, SDValue SV, unsigned Align) { 9460 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; 9461 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); 9462 } 9463 9464 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 9465 ArrayRef<SDUse> Ops) { 9466 switch (Ops.size()) { 9467 case 0: return getNode(Opcode, DL, VT); 9468 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); 9469 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); 9470 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); 9471 default: break; 9472 } 9473 9474 // Copy from an SDUse array into an SDValue array for use with 9475 // the regular getNode logic. 9476 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); 9477 return getNode(Opcode, DL, VT, NewOps); 9478 } 9479 9480 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 9481 ArrayRef<SDValue> Ops) { 9482 SDNodeFlags Flags; 9483 if (Inserter) 9484 Flags = Inserter->getFlags(); 9485 return getNode(Opcode, DL, VT, Ops, Flags); 9486 } 9487 9488 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT, 9489 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 9490 unsigned NumOps = Ops.size(); 9491 switch (NumOps) { 9492 case 0: return getNode(Opcode, DL, VT); 9493 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags); 9494 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags); 9495 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags); 9496 default: break; 9497 } 9498 9499 #ifndef NDEBUG 9500 for (const auto &Op : Ops) 9501 assert(Op.getOpcode() != ISD::DELETED_NODE && 9502 "Operand is DELETED_NODE!"); 9503 #endif 9504 9505 switch (Opcode) { 9506 default: break; 9507 case ISD::BUILD_VECTOR: 9508 // Attempt to simplify BUILD_VECTOR. 9509 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this)) 9510 return V; 9511 break; 9512 case ISD::CONCAT_VECTORS: 9513 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this)) 9514 return V; 9515 break; 9516 case ISD::SELECT_CC: 9517 assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); 9518 assert(Ops[0].getValueType() == Ops[1].getValueType() && 9519 "LHS and RHS of condition must have same type!"); 9520 assert(Ops[2].getValueType() == Ops[3].getValueType() && 9521 "True and False arms of SelectCC must have same type!"); 9522 assert(Ops[2].getValueType() == VT && 9523 "select_cc node must be of same type as true and false value!"); 9524 assert((!Ops[0].getValueType().isVector() || 9525 Ops[0].getValueType().getVectorElementCount() == 9526 VT.getVectorElementCount()) && 9527 "Expected select_cc with vector result to have the same sized " 9528 "comparison type!"); 9529 break; 9530 case ISD::BR_CC: 9531 assert(NumOps == 5 && "BR_CC takes 5 operands!"); 9532 assert(Ops[2].getValueType() == Ops[3].getValueType() && 9533 "LHS/RHS of comparison should match types!"); 9534 break; 9535 case ISD::VP_ADD: 9536 case ISD::VP_SUB: 9537 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR 9538 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 9539 Opcode = ISD::VP_XOR; 9540 break; 9541 case ISD::VP_MUL: 9542 // If it is VP_MUL mask operation then turn it to VP_AND 9543 if (VT.isVector() && VT.getVectorElementType() == MVT::i1) 9544 Opcode = ISD::VP_AND; 9545 break; 9546 case ISD::VP_REDUCE_MUL: 9547 // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND 9548 if (VT == MVT::i1) 9549 Opcode = ISD::VP_REDUCE_AND; 9550 break; 9551 case ISD::VP_REDUCE_ADD: 9552 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR 9553 if (VT == MVT::i1) 9554 Opcode = ISD::VP_REDUCE_XOR; 9555 break; 9556 case ISD::VP_REDUCE_SMAX: 9557 case ISD::VP_REDUCE_UMIN: 9558 // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to 9559 // VP_REDUCE_AND. 9560 if (VT == MVT::i1) 9561 Opcode = ISD::VP_REDUCE_AND; 9562 break; 9563 case ISD::VP_REDUCE_SMIN: 9564 case ISD::VP_REDUCE_UMAX: 9565 // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to 9566 // VP_REDUCE_OR. 9567 if (VT == MVT::i1) 9568 Opcode = ISD::VP_REDUCE_OR; 9569 break; 9570 } 9571 9572 // Memoize nodes. 9573 SDNode *N; 9574 SDVTList VTs = getVTList(VT); 9575 9576 if (VT != MVT::Glue) { 9577 FoldingSetNodeID ID; 9578 AddNodeIDNode(ID, Opcode, VTs, Ops); 9579 void *IP = nullptr; 9580 9581 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 9582 return SDValue(E, 0); 9583 9584 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9585 createOperands(N, Ops); 9586 9587 CSEMap.InsertNode(N, IP); 9588 } else { 9589 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 9590 createOperands(N, Ops); 9591 } 9592 9593 N->setFlags(Flags); 9594 InsertNode(N); 9595 SDValue V(N, 0); 9596 NewSDValueDbgMsg(V, "Creating new node: ", this); 9597 return V; 9598 } 9599 9600 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 9601 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { 9602 return getNode(Opcode, DL, getVTList(ResultTys), Ops); 9603 } 9604 9605 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9606 ArrayRef<SDValue> Ops) { 9607 SDNodeFlags Flags; 9608 if (Inserter) 9609 Flags = Inserter->getFlags(); 9610 return getNode(Opcode, DL, VTList, Ops, Flags); 9611 } 9612 9613 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9614 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) { 9615 if (VTList.NumVTs == 1) 9616 return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags); 9617 9618 #ifndef NDEBUG 9619 for (const auto &Op : Ops) 9620 assert(Op.getOpcode() != ISD::DELETED_NODE && 9621 "Operand is DELETED_NODE!"); 9622 #endif 9623 9624 switch (Opcode) { 9625 case ISD::SADDO: 9626 case ISD::UADDO: 9627 case ISD::SSUBO: 9628 case ISD::USUBO: { 9629 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 9630 "Invalid add/sub overflow op!"); 9631 assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() && 9632 Ops[0].getValueType() == Ops[1].getValueType() && 9633 Ops[0].getValueType() == VTList.VTs[0] && 9634 "Binary operator types must match!"); 9635 SDValue N1 = Ops[0], N2 = Ops[1]; 9636 canonicalizeCommutativeBinop(Opcode, N1, N2); 9637 9638 // (X +- 0) -> X with zero-overflow. 9639 ConstantSDNode *N2CV = isConstOrConstSplat(N2, /*AllowUndefs*/ false, 9640 /*AllowTruncation*/ true); 9641 if (N2CV && N2CV->isZero()) { 9642 SDValue ZeroOverFlow = getConstant(0, DL, VTList.VTs[1]); 9643 return getNode(ISD::MERGE_VALUES, DL, VTList, {N1, ZeroOverFlow}, Flags); 9644 } 9645 break; 9646 } 9647 case ISD::SMUL_LOHI: 9648 case ISD::UMUL_LOHI: { 9649 assert(VTList.NumVTs == 2 && Ops.size() == 2 && "Invalid mul lo/hi op!"); 9650 assert(VTList.VTs[0].isInteger() && VTList.VTs[0] == VTList.VTs[1] && 9651 VTList.VTs[0] == Ops[0].getValueType() && 9652 VTList.VTs[0] == Ops[1].getValueType() && 9653 "Binary operator types must match!"); 9654 break; 9655 } 9656 case ISD::FFREXP: { 9657 assert(VTList.NumVTs == 2 && Ops.size() == 1 && "Invalid ffrexp op!"); 9658 assert(VTList.VTs[0].isFloatingPoint() && VTList.VTs[1].isInteger() && 9659 VTList.VTs[0] == Ops[0].getValueType() && "frexp type mismatch"); 9660 9661 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Ops[0])) { 9662 int FrexpExp; 9663 APFloat FrexpMant = 9664 frexp(C->getValueAPF(), FrexpExp, APFloat::rmNearestTiesToEven); 9665 SDValue Result0 = getConstantFP(FrexpMant, DL, VTList.VTs[0]); 9666 SDValue Result1 = 9667 getConstant(FrexpMant.isFinite() ? FrexpExp : 0, DL, VTList.VTs[1]); 9668 return getNode(ISD::MERGE_VALUES, DL, VTList, {Result0, Result1}, Flags); 9669 } 9670 9671 break; 9672 } 9673 case ISD::STRICT_FP_EXTEND: 9674 assert(VTList.NumVTs == 2 && Ops.size() == 2 && 9675 "Invalid STRICT_FP_EXTEND!"); 9676 assert(VTList.VTs[0].isFloatingPoint() && 9677 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!"); 9678 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 9679 "STRICT_FP_EXTEND result type should be vector iff the operand " 9680 "type is vector!"); 9681 assert((!VTList.VTs[0].isVector() || 9682 VTList.VTs[0].getVectorElementCount() == 9683 Ops[1].getValueType().getVectorElementCount()) && 9684 "Vector element count mismatch!"); 9685 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) && 9686 "Invalid fpext node, dst <= src!"); 9687 break; 9688 case ISD::STRICT_FP_ROUND: 9689 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!"); 9690 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() && 9691 "STRICT_FP_ROUND result type should be vector iff the operand " 9692 "type is vector!"); 9693 assert((!VTList.VTs[0].isVector() || 9694 VTList.VTs[0].getVectorElementCount() == 9695 Ops[1].getValueType().getVectorElementCount()) && 9696 "Vector element count mismatch!"); 9697 assert(VTList.VTs[0].isFloatingPoint() && 9698 Ops[1].getValueType().isFloatingPoint() && 9699 VTList.VTs[0].bitsLT(Ops[1].getValueType()) && 9700 isa<ConstantSDNode>(Ops[2]) && 9701 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 || 9702 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) && 9703 "Invalid STRICT_FP_ROUND!"); 9704 break; 9705 #if 0 9706 // FIXME: figure out how to safely handle things like 9707 // int foo(int x) { return 1 << (x & 255); } 9708 // int bar() { return foo(256); } 9709 case ISD::SRA_PARTS: 9710 case ISD::SRL_PARTS: 9711 case ISD::SHL_PARTS: 9712 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && 9713 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) 9714 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9715 else if (N3.getOpcode() == ISD::AND) 9716 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { 9717 // If the and is only masking out bits that cannot effect the shift, 9718 // eliminate the and. 9719 unsigned NumBits = VT.getScalarSizeInBits()*2; 9720 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) 9721 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); 9722 } 9723 break; 9724 #endif 9725 } 9726 9727 // Memoize the node unless it returns a flag. 9728 SDNode *N; 9729 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { 9730 FoldingSetNodeID ID; 9731 AddNodeIDNode(ID, Opcode, VTList, Ops); 9732 void *IP = nullptr; 9733 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) 9734 return SDValue(E, 0); 9735 9736 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9737 createOperands(N, Ops); 9738 CSEMap.InsertNode(N, IP); 9739 } else { 9740 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList); 9741 createOperands(N, Ops); 9742 } 9743 9744 N->setFlags(Flags); 9745 InsertNode(N); 9746 SDValue V(N, 0); 9747 NewSDValueDbgMsg(V, "Creating new node: ", this); 9748 return V; 9749 } 9750 9751 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, 9752 SDVTList VTList) { 9753 return getNode(Opcode, DL, VTList, std::nullopt); 9754 } 9755 9756 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9757 SDValue N1) { 9758 SDValue Ops[] = { N1 }; 9759 return getNode(Opcode, DL, VTList, Ops); 9760 } 9761 9762 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9763 SDValue N1, SDValue N2) { 9764 SDValue Ops[] = { N1, N2 }; 9765 return getNode(Opcode, DL, VTList, Ops); 9766 } 9767 9768 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9769 SDValue N1, SDValue N2, SDValue N3) { 9770 SDValue Ops[] = { N1, N2, N3 }; 9771 return getNode(Opcode, DL, VTList, Ops); 9772 } 9773 9774 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9775 SDValue N1, SDValue N2, SDValue N3, SDValue N4) { 9776 SDValue Ops[] = { N1, N2, N3, N4 }; 9777 return getNode(Opcode, DL, VTList, Ops); 9778 } 9779 9780 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, 9781 SDValue N1, SDValue N2, SDValue N3, SDValue N4, 9782 SDValue N5) { 9783 SDValue Ops[] = { N1, N2, N3, N4, N5 }; 9784 return getNode(Opcode, DL, VTList, Ops); 9785 } 9786 9787 SDVTList SelectionDAG::getVTList(EVT VT) { 9788 return makeVTList(SDNode::getValueTypeList(VT), 1); 9789 } 9790 9791 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { 9792 FoldingSetNodeID ID; 9793 ID.AddInteger(2U); 9794 ID.AddInteger(VT1.getRawBits()); 9795 ID.AddInteger(VT2.getRawBits()); 9796 9797 void *IP = nullptr; 9798 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9799 if (!Result) { 9800 EVT *Array = Allocator.Allocate<EVT>(2); 9801 Array[0] = VT1; 9802 Array[1] = VT2; 9803 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); 9804 VTListMap.InsertNode(Result, IP); 9805 } 9806 return Result->getSDVTList(); 9807 } 9808 9809 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { 9810 FoldingSetNodeID ID; 9811 ID.AddInteger(3U); 9812 ID.AddInteger(VT1.getRawBits()); 9813 ID.AddInteger(VT2.getRawBits()); 9814 ID.AddInteger(VT3.getRawBits()); 9815 9816 void *IP = nullptr; 9817 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9818 if (!Result) { 9819 EVT *Array = Allocator.Allocate<EVT>(3); 9820 Array[0] = VT1; 9821 Array[1] = VT2; 9822 Array[2] = VT3; 9823 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); 9824 VTListMap.InsertNode(Result, IP); 9825 } 9826 return Result->getSDVTList(); 9827 } 9828 9829 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { 9830 FoldingSetNodeID ID; 9831 ID.AddInteger(4U); 9832 ID.AddInteger(VT1.getRawBits()); 9833 ID.AddInteger(VT2.getRawBits()); 9834 ID.AddInteger(VT3.getRawBits()); 9835 ID.AddInteger(VT4.getRawBits()); 9836 9837 void *IP = nullptr; 9838 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9839 if (!Result) { 9840 EVT *Array = Allocator.Allocate<EVT>(4); 9841 Array[0] = VT1; 9842 Array[1] = VT2; 9843 Array[2] = VT3; 9844 Array[3] = VT4; 9845 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); 9846 VTListMap.InsertNode(Result, IP); 9847 } 9848 return Result->getSDVTList(); 9849 } 9850 9851 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { 9852 unsigned NumVTs = VTs.size(); 9853 FoldingSetNodeID ID; 9854 ID.AddInteger(NumVTs); 9855 for (unsigned index = 0; index < NumVTs; index++) { 9856 ID.AddInteger(VTs[index].getRawBits()); 9857 } 9858 9859 void *IP = nullptr; 9860 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); 9861 if (!Result) { 9862 EVT *Array = Allocator.Allocate<EVT>(NumVTs); 9863 llvm::copy(VTs, Array); 9864 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); 9865 VTListMap.InsertNode(Result, IP); 9866 } 9867 return Result->getSDVTList(); 9868 } 9869 9870 9871 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the 9872 /// specified operands. If the resultant node already exists in the DAG, 9873 /// this does not modify the specified node, instead it returns the node that 9874 /// already exists. If the resultant node does not exist in the DAG, the 9875 /// input node is returned. As a degenerate case, if you specify the same 9876 /// input operands as the node already has, the input node is returned. 9877 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { 9878 assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); 9879 9880 // Check to see if there is no change. 9881 if (Op == N->getOperand(0)) return N; 9882 9883 // See if the modified node already exists. 9884 void *InsertPos = nullptr; 9885 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) 9886 return Existing; 9887 9888 // Nope it doesn't. Remove the node from its current place in the maps. 9889 if (InsertPos) 9890 if (!RemoveNodeFromCSEMaps(N)) 9891 InsertPos = nullptr; 9892 9893 // Now we update the operands. 9894 N->OperandList[0].set(Op); 9895 9896 updateDivergence(N); 9897 // If this gets put into a CSE map, add it. 9898 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9899 return N; 9900 } 9901 9902 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { 9903 assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); 9904 9905 // Check to see if there is no change. 9906 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) 9907 return N; // No operands changed, just return the input node. 9908 9909 // See if the modified node already exists. 9910 void *InsertPos = nullptr; 9911 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) 9912 return Existing; 9913 9914 // Nope it doesn't. Remove the node from its current place in the maps. 9915 if (InsertPos) 9916 if (!RemoveNodeFromCSEMaps(N)) 9917 InsertPos = nullptr; 9918 9919 // Now we update the operands. 9920 if (N->OperandList[0] != Op1) 9921 N->OperandList[0].set(Op1); 9922 if (N->OperandList[1] != Op2) 9923 N->OperandList[1].set(Op2); 9924 9925 updateDivergence(N); 9926 // If this gets put into a CSE map, add it. 9927 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9928 return N; 9929 } 9930 9931 SDNode *SelectionDAG:: 9932 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { 9933 SDValue Ops[] = { Op1, Op2, Op3 }; 9934 return UpdateNodeOperands(N, Ops); 9935 } 9936 9937 SDNode *SelectionDAG:: 9938 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9939 SDValue Op3, SDValue Op4) { 9940 SDValue Ops[] = { Op1, Op2, Op3, Op4 }; 9941 return UpdateNodeOperands(N, Ops); 9942 } 9943 9944 SDNode *SelectionDAG:: 9945 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, 9946 SDValue Op3, SDValue Op4, SDValue Op5) { 9947 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; 9948 return UpdateNodeOperands(N, Ops); 9949 } 9950 9951 SDNode *SelectionDAG:: 9952 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { 9953 unsigned NumOps = Ops.size(); 9954 assert(N->getNumOperands() == NumOps && 9955 "Update with wrong number of operands"); 9956 9957 // If no operands changed just return the input node. 9958 if (std::equal(Ops.begin(), Ops.end(), N->op_begin())) 9959 return N; 9960 9961 // See if the modified node already exists. 9962 void *InsertPos = nullptr; 9963 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) 9964 return Existing; 9965 9966 // Nope it doesn't. Remove the node from its current place in the maps. 9967 if (InsertPos) 9968 if (!RemoveNodeFromCSEMaps(N)) 9969 InsertPos = nullptr; 9970 9971 // Now we update the operands. 9972 for (unsigned i = 0; i != NumOps; ++i) 9973 if (N->OperandList[i] != Ops[i]) 9974 N->OperandList[i].set(Ops[i]); 9975 9976 updateDivergence(N); 9977 // If this gets put into a CSE map, add it. 9978 if (InsertPos) CSEMap.InsertNode(N, InsertPos); 9979 return N; 9980 } 9981 9982 /// DropOperands - Release the operands and set this node to have 9983 /// zero operands. 9984 void SDNode::DropOperands() { 9985 // Unlike the code in MorphNodeTo that does this, we don't need to 9986 // watch for dead nodes here. 9987 for (op_iterator I = op_begin(), E = op_end(); I != E; ) { 9988 SDUse &Use = *I++; 9989 Use.set(SDValue()); 9990 } 9991 } 9992 9993 void SelectionDAG::setNodeMemRefs(MachineSDNode *N, 9994 ArrayRef<MachineMemOperand *> NewMemRefs) { 9995 if (NewMemRefs.empty()) { 9996 N->clearMemRefs(); 9997 return; 9998 } 9999 10000 // Check if we can avoid allocating by storing a single reference directly. 10001 if (NewMemRefs.size() == 1) { 10002 N->MemRefs = NewMemRefs[0]; 10003 N->NumMemRefs = 1; 10004 return; 10005 } 10006 10007 MachineMemOperand **MemRefsBuffer = 10008 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size()); 10009 llvm::copy(NewMemRefs, MemRefsBuffer); 10010 N->MemRefs = MemRefsBuffer; 10011 N->NumMemRefs = static_cast<int>(NewMemRefs.size()); 10012 } 10013 10014 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a 10015 /// machine opcode. 10016 /// 10017 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 10018 EVT VT) { 10019 SDVTList VTs = getVTList(VT); 10020 return SelectNodeTo(N, MachineOpc, VTs, std::nullopt); 10021 } 10022 10023 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 10024 EVT VT, SDValue Op1) { 10025 SDVTList VTs = getVTList(VT); 10026 SDValue Ops[] = { Op1 }; 10027 return SelectNodeTo(N, MachineOpc, VTs, Ops); 10028 } 10029 10030 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 10031 EVT VT, SDValue Op1, 10032 SDValue Op2) { 10033 SDVTList VTs = getVTList(VT); 10034 SDValue Ops[] = { Op1, Op2 }; 10035 return SelectNodeTo(N, MachineOpc, VTs, Ops); 10036 } 10037 10038 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 10039 EVT VT, SDValue Op1, 10040 SDValue Op2, SDValue Op3) { 10041 SDVTList VTs = getVTList(VT); 10042 SDValue Ops[] = { Op1, Op2, Op3 }; 10043 return SelectNodeTo(N, MachineOpc, VTs, Ops); 10044 } 10045 10046 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 10047 EVT VT, ArrayRef<SDValue> Ops) { 10048 SDVTList VTs = getVTList(VT); 10049 return SelectNodeTo(N, MachineOpc, VTs, Ops); 10050 } 10051 10052 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 10053 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { 10054 SDVTList VTs = getVTList(VT1, VT2); 10055 return SelectNodeTo(N, MachineOpc, VTs, Ops); 10056 } 10057 10058 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 10059 EVT VT1, EVT VT2) { 10060 SDVTList VTs = getVTList(VT1, VT2); 10061 return SelectNodeTo(N, MachineOpc, VTs, std::nullopt); 10062 } 10063 10064 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 10065 EVT VT1, EVT VT2, EVT VT3, 10066 ArrayRef<SDValue> Ops) { 10067 SDVTList VTs = getVTList(VT1, VT2, VT3); 10068 return SelectNodeTo(N, MachineOpc, VTs, Ops); 10069 } 10070 10071 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 10072 EVT VT1, EVT VT2, 10073 SDValue Op1, SDValue Op2) { 10074 SDVTList VTs = getVTList(VT1, VT2); 10075 SDValue Ops[] = { Op1, Op2 }; 10076 return SelectNodeTo(N, MachineOpc, VTs, Ops); 10077 } 10078 10079 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, 10080 SDVTList VTs,ArrayRef<SDValue> Ops) { 10081 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops); 10082 // Reset the NodeID to -1. 10083 New->setNodeId(-1); 10084 if (New != N) { 10085 ReplaceAllUsesWith(N, New); 10086 RemoveDeadNode(N); 10087 } 10088 return New; 10089 } 10090 10091 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away 10092 /// the line number information on the merged node since it is not possible to 10093 /// preserve the information that operation is associated with multiple lines. 10094 /// This will make the debugger working better at -O0, were there is a higher 10095 /// probability having other instructions associated with that line. 10096 /// 10097 /// For IROrder, we keep the smaller of the two 10098 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) { 10099 DebugLoc NLoc = N->getDebugLoc(); 10100 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { 10101 N->setDebugLoc(DebugLoc()); 10102 } 10103 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); 10104 N->setIROrder(Order); 10105 return N; 10106 } 10107 10108 /// MorphNodeTo - This *mutates* the specified node to have the specified 10109 /// return type, opcode, and operands. 10110 /// 10111 /// Note that MorphNodeTo returns the resultant node. If there is already a 10112 /// node of the specified opcode and operands, it returns that node instead of 10113 /// the current one. Note that the SDLoc need not be the same. 10114 /// 10115 /// Using MorphNodeTo is faster than creating a new node and swapping it in 10116 /// with ReplaceAllUsesWith both because it often avoids allocating a new 10117 /// node, and because it doesn't require CSE recalculation for any of 10118 /// the node's users. 10119 /// 10120 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. 10121 /// As a consequence it isn't appropriate to use from within the DAG combiner or 10122 /// the legalizer which maintain worklists that would need to be updated when 10123 /// deleting things. 10124 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, 10125 SDVTList VTs, ArrayRef<SDValue> Ops) { 10126 // If an identical node already exists, use it. 10127 void *IP = nullptr; 10128 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { 10129 FoldingSetNodeID ID; 10130 AddNodeIDNode(ID, Opc, VTs, Ops); 10131 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP)) 10132 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N)); 10133 } 10134 10135 if (!RemoveNodeFromCSEMaps(N)) 10136 IP = nullptr; 10137 10138 // Start the morphing. 10139 N->NodeType = Opc; 10140 N->ValueList = VTs.VTs; 10141 N->NumValues = VTs.NumVTs; 10142 10143 // Clear the operands list, updating used nodes to remove this from their 10144 // use list. Keep track of any operands that become dead as a result. 10145 SmallPtrSet<SDNode*, 16> DeadNodeSet; 10146 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { 10147 SDUse &Use = *I++; 10148 SDNode *Used = Use.getNode(); 10149 Use.set(SDValue()); 10150 if (Used->use_empty()) 10151 DeadNodeSet.insert(Used); 10152 } 10153 10154 // For MachineNode, initialize the memory references information. 10155 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) 10156 MN->clearMemRefs(); 10157 10158 // Swap for an appropriately sized array from the recycler. 10159 removeOperands(N); 10160 createOperands(N, Ops); 10161 10162 // Delete any nodes that are still dead after adding the uses for the 10163 // new operands. 10164 if (!DeadNodeSet.empty()) { 10165 SmallVector<SDNode *, 16> DeadNodes; 10166 for (SDNode *N : DeadNodeSet) 10167 if (N->use_empty()) 10168 DeadNodes.push_back(N); 10169 RemoveDeadNodes(DeadNodes); 10170 } 10171 10172 if (IP) 10173 CSEMap.InsertNode(N, IP); // Memoize the new node. 10174 return N; 10175 } 10176 10177 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) { 10178 unsigned OrigOpc = Node->getOpcode(); 10179 unsigned NewOpc; 10180 switch (OrigOpc) { 10181 default: 10182 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!"); 10183 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 10184 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break; 10185 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 10186 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break; 10187 #include "llvm/IR/ConstrainedOps.def" 10188 } 10189 10190 assert(Node->getNumValues() == 2 && "Unexpected number of results!"); 10191 10192 // We're taking this node out of the chain, so we need to re-link things. 10193 SDValue InputChain = Node->getOperand(0); 10194 SDValue OutputChain = SDValue(Node, 1); 10195 ReplaceAllUsesOfValueWith(OutputChain, InputChain); 10196 10197 SmallVector<SDValue, 3> Ops; 10198 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) 10199 Ops.push_back(Node->getOperand(i)); 10200 10201 SDVTList VTs = getVTList(Node->getValueType(0)); 10202 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops); 10203 10204 // MorphNodeTo can operate in two ways: if an existing node with the 10205 // specified operands exists, it can just return it. Otherwise, it 10206 // updates the node in place to have the requested operands. 10207 if (Res == Node) { 10208 // If we updated the node in place, reset the node ID. To the isel, 10209 // this should be just like a newly allocated machine node. 10210 Res->setNodeId(-1); 10211 } else { 10212 ReplaceAllUsesWith(Node, Res); 10213 RemoveDeadNode(Node); 10214 } 10215 10216 return Res; 10217 } 10218 10219 /// getMachineNode - These are used for target selectors to create a new node 10220 /// with specified return type(s), MachineInstr opcode, and operands. 10221 /// 10222 /// Note that getMachineNode returns the resultant node. If there is already a 10223 /// node of the specified opcode and operands, it returns that node instead of 10224 /// the current one. 10225 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10226 EVT VT) { 10227 SDVTList VTs = getVTList(VT); 10228 return getMachineNode(Opcode, dl, VTs, std::nullopt); 10229 } 10230 10231 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10232 EVT VT, SDValue Op1) { 10233 SDVTList VTs = getVTList(VT); 10234 SDValue Ops[] = { Op1 }; 10235 return getMachineNode(Opcode, dl, VTs, Ops); 10236 } 10237 10238 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10239 EVT VT, SDValue Op1, SDValue Op2) { 10240 SDVTList VTs = getVTList(VT); 10241 SDValue Ops[] = { Op1, Op2 }; 10242 return getMachineNode(Opcode, dl, VTs, Ops); 10243 } 10244 10245 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10246 EVT VT, SDValue Op1, SDValue Op2, 10247 SDValue Op3) { 10248 SDVTList VTs = getVTList(VT); 10249 SDValue Ops[] = { Op1, Op2, Op3 }; 10250 return getMachineNode(Opcode, dl, VTs, Ops); 10251 } 10252 10253 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10254 EVT VT, ArrayRef<SDValue> Ops) { 10255 SDVTList VTs = getVTList(VT); 10256 return getMachineNode(Opcode, dl, VTs, Ops); 10257 } 10258 10259 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10260 EVT VT1, EVT VT2, SDValue Op1, 10261 SDValue Op2) { 10262 SDVTList VTs = getVTList(VT1, VT2); 10263 SDValue Ops[] = { Op1, Op2 }; 10264 return getMachineNode(Opcode, dl, VTs, Ops); 10265 } 10266 10267 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10268 EVT VT1, EVT VT2, SDValue Op1, 10269 SDValue Op2, SDValue Op3) { 10270 SDVTList VTs = getVTList(VT1, VT2); 10271 SDValue Ops[] = { Op1, Op2, Op3 }; 10272 return getMachineNode(Opcode, dl, VTs, Ops); 10273 } 10274 10275 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10276 EVT VT1, EVT VT2, 10277 ArrayRef<SDValue> Ops) { 10278 SDVTList VTs = getVTList(VT1, VT2); 10279 return getMachineNode(Opcode, dl, VTs, Ops); 10280 } 10281 10282 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10283 EVT VT1, EVT VT2, EVT VT3, 10284 SDValue Op1, SDValue Op2) { 10285 SDVTList VTs = getVTList(VT1, VT2, VT3); 10286 SDValue Ops[] = { Op1, Op2 }; 10287 return getMachineNode(Opcode, dl, VTs, Ops); 10288 } 10289 10290 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10291 EVT VT1, EVT VT2, EVT VT3, 10292 SDValue Op1, SDValue Op2, 10293 SDValue Op3) { 10294 SDVTList VTs = getVTList(VT1, VT2, VT3); 10295 SDValue Ops[] = { Op1, Op2, Op3 }; 10296 return getMachineNode(Opcode, dl, VTs, Ops); 10297 } 10298 10299 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10300 EVT VT1, EVT VT2, EVT VT3, 10301 ArrayRef<SDValue> Ops) { 10302 SDVTList VTs = getVTList(VT1, VT2, VT3); 10303 return getMachineNode(Opcode, dl, VTs, Ops); 10304 } 10305 10306 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl, 10307 ArrayRef<EVT> ResultTys, 10308 ArrayRef<SDValue> Ops) { 10309 SDVTList VTs = getVTList(ResultTys); 10310 return getMachineNode(Opcode, dl, VTs, Ops); 10311 } 10312 10313 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL, 10314 SDVTList VTs, 10315 ArrayRef<SDValue> Ops) { 10316 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; 10317 MachineSDNode *N; 10318 void *IP = nullptr; 10319 10320 if (DoCSE) { 10321 FoldingSetNodeID ID; 10322 AddNodeIDNode(ID, ~Opcode, VTs, Ops); 10323 IP = nullptr; 10324 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) { 10325 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL)); 10326 } 10327 } 10328 10329 // Allocate a new MachineSDNode. 10330 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs); 10331 createOperands(N, Ops); 10332 10333 if (DoCSE) 10334 CSEMap.InsertNode(N, IP); 10335 10336 InsertNode(N); 10337 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this); 10338 return N; 10339 } 10340 10341 /// getTargetExtractSubreg - A convenience function for creating 10342 /// TargetOpcode::EXTRACT_SUBREG nodes. 10343 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, 10344 SDValue Operand) { 10345 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 10346 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 10347 VT, Operand, SRIdxVal); 10348 return SDValue(Subreg, 0); 10349 } 10350 10351 /// getTargetInsertSubreg - A convenience function for creating 10352 /// TargetOpcode::INSERT_SUBREG nodes. 10353 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, 10354 SDValue Operand, SDValue Subreg) { 10355 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); 10356 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, 10357 VT, Operand, Subreg, SRIdxVal); 10358 return SDValue(Result, 0); 10359 } 10360 10361 /// getNodeIfExists - Get the specified node if it's already available, or 10362 /// else return NULL. 10363 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 10364 ArrayRef<SDValue> Ops) { 10365 SDNodeFlags Flags; 10366 if (Inserter) 10367 Flags = Inserter->getFlags(); 10368 return getNodeIfExists(Opcode, VTList, Ops, Flags); 10369 } 10370 10371 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, 10372 ArrayRef<SDValue> Ops, 10373 const SDNodeFlags Flags) { 10374 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 10375 FoldingSetNodeID ID; 10376 AddNodeIDNode(ID, Opcode, VTList, Ops); 10377 void *IP = nullptr; 10378 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) { 10379 E->intersectFlagsWith(Flags); 10380 return E; 10381 } 10382 } 10383 return nullptr; 10384 } 10385 10386 /// doesNodeExist - Check if a node exists without modifying its flags. 10387 bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList, 10388 ArrayRef<SDValue> Ops) { 10389 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { 10390 FoldingSetNodeID ID; 10391 AddNodeIDNode(ID, Opcode, VTList, Ops); 10392 void *IP = nullptr; 10393 if (FindNodeOrInsertPos(ID, SDLoc(), IP)) 10394 return true; 10395 } 10396 return false; 10397 } 10398 10399 /// getDbgValue - Creates a SDDbgValue node. 10400 /// 10401 /// SDNode 10402 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr, 10403 SDNode *N, unsigned R, bool IsIndirect, 10404 const DebugLoc &DL, unsigned O) { 10405 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 10406 "Expected inlined-at fields to agree"); 10407 return new (DbgInfo->getAlloc()) 10408 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R), 10409 {}, IsIndirect, DL, O, 10410 /*IsVariadic=*/false); 10411 } 10412 10413 /// Constant 10414 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var, 10415 DIExpression *Expr, 10416 const Value *C, 10417 const DebugLoc &DL, unsigned O) { 10418 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 10419 "Expected inlined-at fields to agree"); 10420 return new (DbgInfo->getAlloc()) 10421 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {}, 10422 /*IsIndirect=*/false, DL, O, 10423 /*IsVariadic=*/false); 10424 } 10425 10426 /// FrameIndex 10427 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 10428 DIExpression *Expr, unsigned FI, 10429 bool IsIndirect, 10430 const DebugLoc &DL, 10431 unsigned O) { 10432 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 10433 "Expected inlined-at fields to agree"); 10434 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O); 10435 } 10436 10437 /// FrameIndex with dependencies 10438 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var, 10439 DIExpression *Expr, unsigned FI, 10440 ArrayRef<SDNode *> Dependencies, 10441 bool IsIndirect, 10442 const DebugLoc &DL, 10443 unsigned O) { 10444 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 10445 "Expected inlined-at fields to agree"); 10446 return new (DbgInfo->getAlloc()) 10447 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI), 10448 Dependencies, IsIndirect, DL, O, 10449 /*IsVariadic=*/false); 10450 } 10451 10452 /// VReg 10453 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var, DIExpression *Expr, 10454 unsigned VReg, bool IsIndirect, 10455 const DebugLoc &DL, unsigned O) { 10456 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 10457 "Expected inlined-at fields to agree"); 10458 return new (DbgInfo->getAlloc()) 10459 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg), 10460 {}, IsIndirect, DL, O, 10461 /*IsVariadic=*/false); 10462 } 10463 10464 SDDbgValue *SelectionDAG::getDbgValueList(DIVariable *Var, DIExpression *Expr, 10465 ArrayRef<SDDbgOperand> Locs, 10466 ArrayRef<SDNode *> Dependencies, 10467 bool IsIndirect, const DebugLoc &DL, 10468 unsigned O, bool IsVariadic) { 10469 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 10470 "Expected inlined-at fields to agree"); 10471 return new (DbgInfo->getAlloc()) 10472 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect, 10473 DL, O, IsVariadic); 10474 } 10475 10476 void SelectionDAG::transferDbgValues(SDValue From, SDValue To, 10477 unsigned OffsetInBits, unsigned SizeInBits, 10478 bool InvalidateDbg) { 10479 SDNode *FromNode = From.getNode(); 10480 SDNode *ToNode = To.getNode(); 10481 assert(FromNode && ToNode && "Can't modify dbg values"); 10482 10483 // PR35338 10484 // TODO: assert(From != To && "Redundant dbg value transfer"); 10485 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer"); 10486 if (From == To || FromNode == ToNode) 10487 return; 10488 10489 if (!FromNode->getHasDebugValue()) 10490 return; 10491 10492 SDDbgOperand FromLocOp = 10493 SDDbgOperand::fromNode(From.getNode(), From.getResNo()); 10494 SDDbgOperand ToLocOp = SDDbgOperand::fromNode(To.getNode(), To.getResNo()); 10495 10496 SmallVector<SDDbgValue *, 2> ClonedDVs; 10497 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) { 10498 if (Dbg->isInvalidated()) 10499 continue; 10500 10501 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value"); 10502 10503 // Create a new location ops vector that is equal to the old vector, but 10504 // with each instance of FromLocOp replaced with ToLocOp. 10505 bool Changed = false; 10506 auto NewLocOps = Dbg->copyLocationOps(); 10507 std::replace_if( 10508 NewLocOps.begin(), NewLocOps.end(), 10509 [&Changed, FromLocOp](const SDDbgOperand &Op) { 10510 bool Match = Op == FromLocOp; 10511 Changed |= Match; 10512 return Match; 10513 }, 10514 ToLocOp); 10515 // Ignore this SDDbgValue if we didn't find a matching location. 10516 if (!Changed) 10517 continue; 10518 10519 DIVariable *Var = Dbg->getVariable(); 10520 auto *Expr = Dbg->getExpression(); 10521 // If a fragment is requested, update the expression. 10522 if (SizeInBits) { 10523 // When splitting a larger (e.g., sign-extended) value whose 10524 // lower bits are described with an SDDbgValue, do not attempt 10525 // to transfer the SDDbgValue to the upper bits. 10526 if (auto FI = Expr->getFragmentInfo()) 10527 if (OffsetInBits + SizeInBits > FI->SizeInBits) 10528 continue; 10529 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits, 10530 SizeInBits); 10531 if (!Fragment) 10532 continue; 10533 Expr = *Fragment; 10534 } 10535 10536 auto AdditionalDependencies = Dbg->getAdditionalDependencies(); 10537 // Clone the SDDbgValue and move it to To. 10538 SDDbgValue *Clone = getDbgValueList( 10539 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(), 10540 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()), 10541 Dbg->isVariadic()); 10542 ClonedDVs.push_back(Clone); 10543 10544 if (InvalidateDbg) { 10545 // Invalidate value and indicate the SDDbgValue should not be emitted. 10546 Dbg->setIsInvalidated(); 10547 Dbg->setIsEmitted(); 10548 } 10549 } 10550 10551 for (SDDbgValue *Dbg : ClonedDVs) { 10552 assert(is_contained(Dbg->getSDNodes(), ToNode) && 10553 "Transferred DbgValues should depend on the new SDNode"); 10554 AddDbgValue(Dbg, false); 10555 } 10556 } 10557 10558 void SelectionDAG::salvageDebugInfo(SDNode &N) { 10559 if (!N.getHasDebugValue()) 10560 return; 10561 10562 SmallVector<SDDbgValue *, 2> ClonedDVs; 10563 for (auto *DV : GetDbgValues(&N)) { 10564 if (DV->isInvalidated()) 10565 continue; 10566 switch (N.getOpcode()) { 10567 default: 10568 break; 10569 case ISD::ADD: 10570 SDValue N0 = N.getOperand(0); 10571 SDValue N1 = N.getOperand(1); 10572 if (!isa<ConstantSDNode>(N0) && isa<ConstantSDNode>(N1)) { 10573 uint64_t Offset = N.getConstantOperandVal(1); 10574 10575 // Rewrite an ADD constant node into a DIExpression. Since we are 10576 // performing arithmetic to compute the variable's *value* in the 10577 // DIExpression, we need to mark the expression with a 10578 // DW_OP_stack_value. 10579 auto *DIExpr = DV->getExpression(); 10580 auto NewLocOps = DV->copyLocationOps(); 10581 bool Changed = false; 10582 for (size_t i = 0; i < NewLocOps.size(); ++i) { 10583 // We're not given a ResNo to compare against because the whole 10584 // node is going away. We know that any ISD::ADD only has one 10585 // result, so we can assume any node match is using the result. 10586 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE || 10587 NewLocOps[i].getSDNode() != &N) 10588 continue; 10589 NewLocOps[i] = SDDbgOperand::fromNode(N0.getNode(), N0.getResNo()); 10590 SmallVector<uint64_t, 3> ExprOps; 10591 DIExpression::appendOffset(ExprOps, Offset); 10592 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true); 10593 Changed = true; 10594 } 10595 (void)Changed; 10596 assert(Changed && "Salvage target doesn't use N"); 10597 10598 auto AdditionalDependencies = DV->getAdditionalDependencies(); 10599 SDDbgValue *Clone = getDbgValueList(DV->getVariable(), DIExpr, 10600 NewLocOps, AdditionalDependencies, 10601 DV->isIndirect(), DV->getDebugLoc(), 10602 DV->getOrder(), DV->isVariadic()); 10603 ClonedDVs.push_back(Clone); 10604 DV->setIsInvalidated(); 10605 DV->setIsEmitted(); 10606 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; 10607 N0.getNode()->dumprFull(this); 10608 dbgs() << " into " << *DIExpr << '\n'); 10609 } 10610 } 10611 } 10612 10613 for (SDDbgValue *Dbg : ClonedDVs) { 10614 assert(!Dbg->getSDNodes().empty() && 10615 "Salvaged DbgValue should depend on a new SDNode"); 10616 AddDbgValue(Dbg, false); 10617 } 10618 } 10619 10620 /// Creates a SDDbgLabel node. 10621 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label, 10622 const DebugLoc &DL, unsigned O) { 10623 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 10624 "Expected inlined-at fields to agree"); 10625 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O); 10626 } 10627 10628 namespace { 10629 10630 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node 10631 /// pointed to by a use iterator is deleted, increment the use iterator 10632 /// so that it doesn't dangle. 10633 /// 10634 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { 10635 SDNode::use_iterator &UI; 10636 SDNode::use_iterator &UE; 10637 10638 void NodeDeleted(SDNode *N, SDNode *E) override { 10639 // Increment the iterator as needed. 10640 while (UI != UE && N == *UI) 10641 ++UI; 10642 } 10643 10644 public: 10645 RAUWUpdateListener(SelectionDAG &d, 10646 SDNode::use_iterator &ui, 10647 SDNode::use_iterator &ue) 10648 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} 10649 }; 10650 10651 } // end anonymous namespace 10652 10653 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10654 /// This can cause recursive merging of nodes in the DAG. 10655 /// 10656 /// This version assumes From has a single result value. 10657 /// 10658 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { 10659 SDNode *From = FromN.getNode(); 10660 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && 10661 "Cannot replace with this method!"); 10662 assert(From != To.getNode() && "Cannot replace uses of with self"); 10663 10664 // Preserve Debug Values 10665 transferDbgValues(FromN, To); 10666 // Preserve extra info. 10667 copyExtraInfo(From, To.getNode()); 10668 10669 // Iterate over all the existing uses of From. New uses will be added 10670 // to the beginning of the use list, which we avoid visiting. 10671 // This specifically avoids visiting uses of From that arise while the 10672 // replacement is happening, because any such uses would be the result 10673 // of CSE: If an existing node looks like From after one of its operands 10674 // is replaced by To, we don't want to replace of all its users with To 10675 // too. See PR3018 for more info. 10676 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10677 RAUWUpdateListener Listener(*this, UI, UE); 10678 while (UI != UE) { 10679 SDNode *User = *UI; 10680 10681 // This node is about to morph, remove its old self from the CSE maps. 10682 RemoveNodeFromCSEMaps(User); 10683 10684 // A user can appear in a use list multiple times, and when this 10685 // happens the uses are usually next to each other in the list. 10686 // To help reduce the number of CSE recomputations, process all 10687 // the uses of this user that we can find this way. 10688 do { 10689 SDUse &Use = UI.getUse(); 10690 ++UI; 10691 Use.set(To); 10692 if (To->isDivergent() != From->isDivergent()) 10693 updateDivergence(User); 10694 } while (UI != UE && *UI == User); 10695 // Now that we have modified User, add it back to the CSE maps. If it 10696 // already exists there, recursively merge the results together. 10697 AddModifiedNodeToCSEMaps(User); 10698 } 10699 10700 // If we just RAUW'd the root, take note. 10701 if (FromN == getRoot()) 10702 setRoot(To); 10703 } 10704 10705 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10706 /// This can cause recursive merging of nodes in the DAG. 10707 /// 10708 /// This version assumes that for each value of From, there is a 10709 /// corresponding value in To in the same position with the same type. 10710 /// 10711 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { 10712 #ifndef NDEBUG 10713 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10714 assert((!From->hasAnyUseOfValue(i) || 10715 From->getValueType(i) == To->getValueType(i)) && 10716 "Cannot use this version of ReplaceAllUsesWith!"); 10717 #endif 10718 10719 // Handle the trivial case. 10720 if (From == To) 10721 return; 10722 10723 // Preserve Debug Info. Only do this if there's a use. 10724 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) 10725 if (From->hasAnyUseOfValue(i)) { 10726 assert((i < To->getNumValues()) && "Invalid To location"); 10727 transferDbgValues(SDValue(From, i), SDValue(To, i)); 10728 } 10729 // Preserve extra info. 10730 copyExtraInfo(From, To); 10731 10732 // Iterate over just the existing users of From. See the comments in 10733 // the ReplaceAllUsesWith above. 10734 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10735 RAUWUpdateListener Listener(*this, UI, UE); 10736 while (UI != UE) { 10737 SDNode *User = *UI; 10738 10739 // This node is about to morph, remove its old self from the CSE maps. 10740 RemoveNodeFromCSEMaps(User); 10741 10742 // A user can appear in a use list multiple times, and when this 10743 // happens the uses are usually next to each other in the list. 10744 // To help reduce the number of CSE recomputations, process all 10745 // the uses of this user that we can find this way. 10746 do { 10747 SDUse &Use = UI.getUse(); 10748 ++UI; 10749 Use.setNode(To); 10750 if (To->isDivergent() != From->isDivergent()) 10751 updateDivergence(User); 10752 } while (UI != UE && *UI == User); 10753 10754 // Now that we have modified User, add it back to the CSE maps. If it 10755 // already exists there, recursively merge the results together. 10756 AddModifiedNodeToCSEMaps(User); 10757 } 10758 10759 // If we just RAUW'd the root, take note. 10760 if (From == getRoot().getNode()) 10761 setRoot(SDValue(To, getRoot().getResNo())); 10762 } 10763 10764 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. 10765 /// This can cause recursive merging of nodes in the DAG. 10766 /// 10767 /// This version can replace From with any result values. To must match the 10768 /// number and types of values returned by From. 10769 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { 10770 if (From->getNumValues() == 1) // Handle the simple case efficiently. 10771 return ReplaceAllUsesWith(SDValue(From, 0), To[0]); 10772 10773 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) { 10774 // Preserve Debug Info. 10775 transferDbgValues(SDValue(From, i), To[i]); 10776 // Preserve extra info. 10777 copyExtraInfo(From, To[i].getNode()); 10778 } 10779 10780 // Iterate over just the existing users of From. See the comments in 10781 // the ReplaceAllUsesWith above. 10782 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); 10783 RAUWUpdateListener Listener(*this, UI, UE); 10784 while (UI != UE) { 10785 SDNode *User = *UI; 10786 10787 // This node is about to morph, remove its old self from the CSE maps. 10788 RemoveNodeFromCSEMaps(User); 10789 10790 // A user can appear in a use list multiple times, and when this happens the 10791 // uses are usually next to each other in the list. To help reduce the 10792 // number of CSE and divergence recomputations, process all the uses of this 10793 // user that we can find this way. 10794 bool To_IsDivergent = false; 10795 do { 10796 SDUse &Use = UI.getUse(); 10797 const SDValue &ToOp = To[Use.getResNo()]; 10798 ++UI; 10799 Use.set(ToOp); 10800 To_IsDivergent |= ToOp->isDivergent(); 10801 } while (UI != UE && *UI == User); 10802 10803 if (To_IsDivergent != From->isDivergent()) 10804 updateDivergence(User); 10805 10806 // Now that we have modified User, add it back to the CSE maps. If it 10807 // already exists there, recursively merge the results together. 10808 AddModifiedNodeToCSEMaps(User); 10809 } 10810 10811 // If we just RAUW'd the root, take note. 10812 if (From == getRoot().getNode()) 10813 setRoot(SDValue(To[getRoot().getResNo()])); 10814 } 10815 10816 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving 10817 /// uses of other values produced by From.getNode() alone. The Deleted 10818 /// vector is handled the same way as for ReplaceAllUsesWith. 10819 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ 10820 // Handle the really simple, really trivial case efficiently. 10821 if (From == To) return; 10822 10823 // Handle the simple, trivial, case efficiently. 10824 if (From.getNode()->getNumValues() == 1) { 10825 ReplaceAllUsesWith(From, To); 10826 return; 10827 } 10828 10829 // Preserve Debug Info. 10830 transferDbgValues(From, To); 10831 copyExtraInfo(From.getNode(), To.getNode()); 10832 10833 // Iterate over just the existing users of From. See the comments in 10834 // the ReplaceAllUsesWith above. 10835 SDNode::use_iterator UI = From.getNode()->use_begin(), 10836 UE = From.getNode()->use_end(); 10837 RAUWUpdateListener Listener(*this, UI, UE); 10838 while (UI != UE) { 10839 SDNode *User = *UI; 10840 bool UserRemovedFromCSEMaps = false; 10841 10842 // A user can appear in a use list multiple times, and when this 10843 // happens the uses are usually next to each other in the list. 10844 // To help reduce the number of CSE recomputations, process all 10845 // the uses of this user that we can find this way. 10846 do { 10847 SDUse &Use = UI.getUse(); 10848 10849 // Skip uses of different values from the same node. 10850 if (Use.getResNo() != From.getResNo()) { 10851 ++UI; 10852 continue; 10853 } 10854 10855 // If this node hasn't been modified yet, it's still in the CSE maps, 10856 // so remove its old self from the CSE maps. 10857 if (!UserRemovedFromCSEMaps) { 10858 RemoveNodeFromCSEMaps(User); 10859 UserRemovedFromCSEMaps = true; 10860 } 10861 10862 ++UI; 10863 Use.set(To); 10864 if (To->isDivergent() != From->isDivergent()) 10865 updateDivergence(User); 10866 } while (UI != UE && *UI == User); 10867 // We are iterating over all uses of the From node, so if a use 10868 // doesn't use the specific value, no changes are made. 10869 if (!UserRemovedFromCSEMaps) 10870 continue; 10871 10872 // Now that we have modified User, add it back to the CSE maps. If it 10873 // already exists there, recursively merge the results together. 10874 AddModifiedNodeToCSEMaps(User); 10875 } 10876 10877 // If we just RAUW'd the root, take note. 10878 if (From == getRoot()) 10879 setRoot(To); 10880 } 10881 10882 namespace { 10883 10884 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith 10885 /// to record information about a use. 10886 struct UseMemo { 10887 SDNode *User; 10888 unsigned Index; 10889 SDUse *Use; 10890 }; 10891 10892 /// operator< - Sort Memos by User. 10893 bool operator<(const UseMemo &L, const UseMemo &R) { 10894 return (intptr_t)L.User < (intptr_t)R.User; 10895 } 10896 10897 /// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node 10898 /// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that 10899 /// the node already has been taken care of recursively. 10900 class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener { 10901 SmallVector<UseMemo, 4> &Uses; 10902 10903 void NodeDeleted(SDNode *N, SDNode *E) override { 10904 for (UseMemo &Memo : Uses) 10905 if (Memo.User == N) 10906 Memo.User = nullptr; 10907 } 10908 10909 public: 10910 RAUOVWUpdateListener(SelectionDAG &d, SmallVector<UseMemo, 4> &uses) 10911 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {} 10912 }; 10913 10914 } // end anonymous namespace 10915 10916 bool SelectionDAG::calculateDivergence(SDNode *N) { 10917 if (TLI->isSDNodeAlwaysUniform(N)) { 10918 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, UA) && 10919 "Conflicting divergence information!"); 10920 return false; 10921 } 10922 if (TLI->isSDNodeSourceOfDivergence(N, FLI, UA)) 10923 return true; 10924 for (const auto &Op : N->ops()) { 10925 if (Op.Val.getValueType() != MVT::Other && Op.getNode()->isDivergent()) 10926 return true; 10927 } 10928 return false; 10929 } 10930 10931 void SelectionDAG::updateDivergence(SDNode *N) { 10932 SmallVector<SDNode *, 16> Worklist(1, N); 10933 do { 10934 N = Worklist.pop_back_val(); 10935 bool IsDivergent = calculateDivergence(N); 10936 if (N->SDNodeBits.IsDivergent != IsDivergent) { 10937 N->SDNodeBits.IsDivergent = IsDivergent; 10938 llvm::append_range(Worklist, N->uses()); 10939 } 10940 } while (!Worklist.empty()); 10941 } 10942 10943 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) { 10944 DenseMap<SDNode *, unsigned> Degree; 10945 Order.reserve(AllNodes.size()); 10946 for (auto &N : allnodes()) { 10947 unsigned NOps = N.getNumOperands(); 10948 Degree[&N] = NOps; 10949 if (0 == NOps) 10950 Order.push_back(&N); 10951 } 10952 for (size_t I = 0; I != Order.size(); ++I) { 10953 SDNode *N = Order[I]; 10954 for (auto *U : N->uses()) { 10955 unsigned &UnsortedOps = Degree[U]; 10956 if (0 == --UnsortedOps) 10957 Order.push_back(U); 10958 } 10959 } 10960 } 10961 10962 #ifndef NDEBUG 10963 void SelectionDAG::VerifyDAGDivergence() { 10964 std::vector<SDNode *> TopoOrder; 10965 CreateTopologicalOrder(TopoOrder); 10966 for (auto *N : TopoOrder) { 10967 assert(calculateDivergence(N) == N->isDivergent() && 10968 "Divergence bit inconsistency detected"); 10969 } 10970 } 10971 #endif 10972 10973 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving 10974 /// uses of other values produced by From.getNode() alone. The same value 10975 /// may appear in both the From and To list. The Deleted vector is 10976 /// handled the same way as for ReplaceAllUsesWith. 10977 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, 10978 const SDValue *To, 10979 unsigned Num){ 10980 // Handle the simple, trivial case efficiently. 10981 if (Num == 1) 10982 return ReplaceAllUsesOfValueWith(*From, *To); 10983 10984 transferDbgValues(*From, *To); 10985 copyExtraInfo(From->getNode(), To->getNode()); 10986 10987 // Read up all the uses and make records of them. This helps 10988 // processing new uses that are introduced during the 10989 // replacement process. 10990 SmallVector<UseMemo, 4> Uses; 10991 for (unsigned i = 0; i != Num; ++i) { 10992 unsigned FromResNo = From[i].getResNo(); 10993 SDNode *FromNode = From[i].getNode(); 10994 for (SDNode::use_iterator UI = FromNode->use_begin(), 10995 E = FromNode->use_end(); UI != E; ++UI) { 10996 SDUse &Use = UI.getUse(); 10997 if (Use.getResNo() == FromResNo) { 10998 UseMemo Memo = { *UI, i, &Use }; 10999 Uses.push_back(Memo); 11000 } 11001 } 11002 } 11003 11004 // Sort the uses, so that all the uses from a given User are together. 11005 llvm::sort(Uses); 11006 RAUOVWUpdateListener Listener(*this, Uses); 11007 11008 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); 11009 UseIndex != UseIndexEnd; ) { 11010 // We know that this user uses some value of From. If it is the right 11011 // value, update it. 11012 SDNode *User = Uses[UseIndex].User; 11013 // If the node has been deleted by recursive CSE updates when updating 11014 // another node, then just skip this entry. 11015 if (User == nullptr) { 11016 ++UseIndex; 11017 continue; 11018 } 11019 11020 // This node is about to morph, remove its old self from the CSE maps. 11021 RemoveNodeFromCSEMaps(User); 11022 11023 // The Uses array is sorted, so all the uses for a given User 11024 // are next to each other in the list. 11025 // To help reduce the number of CSE recomputations, process all 11026 // the uses of this user that we can find this way. 11027 do { 11028 unsigned i = Uses[UseIndex].Index; 11029 SDUse &Use = *Uses[UseIndex].Use; 11030 ++UseIndex; 11031 11032 Use.set(To[i]); 11033 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); 11034 11035 // Now that we have modified User, add it back to the CSE maps. If it 11036 // already exists there, recursively merge the results together. 11037 AddModifiedNodeToCSEMaps(User); 11038 } 11039 } 11040 11041 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG 11042 /// based on their topological order. It returns the maximum id and a vector 11043 /// of the SDNodes* in assigned order by reference. 11044 unsigned SelectionDAG::AssignTopologicalOrder() { 11045 unsigned DAGSize = 0; 11046 11047 // SortedPos tracks the progress of the algorithm. Nodes before it are 11048 // sorted, nodes after it are unsorted. When the algorithm completes 11049 // it is at the end of the list. 11050 allnodes_iterator SortedPos = allnodes_begin(); 11051 11052 // Visit all the nodes. Move nodes with no operands to the front of 11053 // the list immediately. Annotate nodes that do have operands with their 11054 // operand count. Before we do this, the Node Id fields of the nodes 11055 // may contain arbitrary values. After, the Node Id fields for nodes 11056 // before SortedPos will contain the topological sort index, and the 11057 // Node Id fields for nodes At SortedPos and after will contain the 11058 // count of outstanding operands. 11059 for (SDNode &N : llvm::make_early_inc_range(allnodes())) { 11060 checkForCycles(&N, this); 11061 unsigned Degree = N.getNumOperands(); 11062 if (Degree == 0) { 11063 // A node with no uses, add it to the result array immediately. 11064 N.setNodeId(DAGSize++); 11065 allnodes_iterator Q(&N); 11066 if (Q != SortedPos) 11067 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); 11068 assert(SortedPos != AllNodes.end() && "Overran node list"); 11069 ++SortedPos; 11070 } else { 11071 // Temporarily use the Node Id as scratch space for the degree count. 11072 N.setNodeId(Degree); 11073 } 11074 } 11075 11076 // Visit all the nodes. As we iterate, move nodes into sorted order, 11077 // such that by the time the end is reached all nodes will be sorted. 11078 for (SDNode &Node : allnodes()) { 11079 SDNode *N = &Node; 11080 checkForCycles(N, this); 11081 // N is in sorted position, so all its uses have one less operand 11082 // that needs to be sorted. 11083 for (SDNode *P : N->uses()) { 11084 unsigned Degree = P->getNodeId(); 11085 assert(Degree != 0 && "Invalid node degree"); 11086 --Degree; 11087 if (Degree == 0) { 11088 // All of P's operands are sorted, so P may sorted now. 11089 P->setNodeId(DAGSize++); 11090 if (P->getIterator() != SortedPos) 11091 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); 11092 assert(SortedPos != AllNodes.end() && "Overran node list"); 11093 ++SortedPos; 11094 } else { 11095 // Update P's outstanding operand count. 11096 P->setNodeId(Degree); 11097 } 11098 } 11099 if (Node.getIterator() == SortedPos) { 11100 #ifndef NDEBUG 11101 allnodes_iterator I(N); 11102 SDNode *S = &*++I; 11103 dbgs() << "Overran sorted position:\n"; 11104 S->dumprFull(this); dbgs() << "\n"; 11105 dbgs() << "Checking if this is due to cycles\n"; 11106 checkForCycles(this, true); 11107 #endif 11108 llvm_unreachable(nullptr); 11109 } 11110 } 11111 11112 assert(SortedPos == AllNodes.end() && 11113 "Topological sort incomplete!"); 11114 assert(AllNodes.front().getOpcode() == ISD::EntryToken && 11115 "First node in topological sort is not the entry token!"); 11116 assert(AllNodes.front().getNodeId() == 0 && 11117 "First node in topological sort has non-zero id!"); 11118 assert(AllNodes.front().getNumOperands() == 0 && 11119 "First node in topological sort has operands!"); 11120 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && 11121 "Last node in topologic sort has unexpected id!"); 11122 assert(AllNodes.back().use_empty() && 11123 "Last node in topologic sort has users!"); 11124 assert(DAGSize == allnodes_size() && "Node count mismatch!"); 11125 return DAGSize; 11126 } 11127 11128 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the 11129 /// value is produced by SD. 11130 void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) { 11131 for (SDNode *SD : DB->getSDNodes()) { 11132 if (!SD) 11133 continue; 11134 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); 11135 SD->setHasDebugValue(true); 11136 } 11137 DbgInfo->add(DB, isParameter); 11138 } 11139 11140 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); } 11141 11142 SDValue SelectionDAG::makeEquivalentMemoryOrdering(SDValue OldChain, 11143 SDValue NewMemOpChain) { 11144 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node"); 11145 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT"); 11146 // The new memory operation must have the same position as the old load in 11147 // terms of memory dependency. Create a TokenFactor for the old load and new 11148 // memory operation and update uses of the old load's output chain to use that 11149 // TokenFactor. 11150 if (OldChain == NewMemOpChain || OldChain.use_empty()) 11151 return NewMemOpChain; 11152 11153 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other, 11154 OldChain, NewMemOpChain); 11155 ReplaceAllUsesOfValueWith(OldChain, TokenFactor); 11156 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain); 11157 return TokenFactor; 11158 } 11159 11160 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, 11161 SDValue NewMemOp) { 11162 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node"); 11163 SDValue OldChain = SDValue(OldLoad, 1); 11164 SDValue NewMemOpChain = NewMemOp.getValue(1); 11165 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain); 11166 } 11167 11168 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op, 11169 Function **OutFunction) { 11170 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol"); 11171 11172 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 11173 auto *Module = MF->getFunction().getParent(); 11174 auto *Function = Module->getFunction(Symbol); 11175 11176 if (OutFunction != nullptr) 11177 *OutFunction = Function; 11178 11179 if (Function != nullptr) { 11180 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace()); 11181 return getGlobalAddress(Function, SDLoc(Op), PtrTy); 11182 } 11183 11184 std::string ErrorStr; 11185 raw_string_ostream ErrorFormatter(ErrorStr); 11186 ErrorFormatter << "Undefined external symbol "; 11187 ErrorFormatter << '"' << Symbol << '"'; 11188 report_fatal_error(Twine(ErrorFormatter.str())); 11189 } 11190 11191 //===----------------------------------------------------------------------===// 11192 // SDNode Class 11193 //===----------------------------------------------------------------------===// 11194 11195 bool llvm::isNullConstant(SDValue V) { 11196 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 11197 return Const != nullptr && Const->isZero(); 11198 } 11199 11200 bool llvm::isNullFPConstant(SDValue V) { 11201 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V); 11202 return Const != nullptr && Const->isZero() && !Const->isNegative(); 11203 } 11204 11205 bool llvm::isAllOnesConstant(SDValue V) { 11206 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 11207 return Const != nullptr && Const->isAllOnes(); 11208 } 11209 11210 bool llvm::isOneConstant(SDValue V) { 11211 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 11212 return Const != nullptr && Const->isOne(); 11213 } 11214 11215 bool llvm::isMinSignedConstant(SDValue V) { 11216 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 11217 return Const != nullptr && Const->isMinSignedValue(); 11218 } 11219 11220 bool llvm::isNeutralConstant(unsigned Opcode, SDNodeFlags Flags, SDValue V, 11221 unsigned OperandNo) { 11222 // NOTE: The cases should match with IR's ConstantExpr::getBinOpIdentity(). 11223 // TODO: Target-specific opcodes could be added. 11224 if (auto *Const = isConstOrConstSplat(V)) { 11225 switch (Opcode) { 11226 case ISD::ADD: 11227 case ISD::OR: 11228 case ISD::XOR: 11229 case ISD::UMAX: 11230 return Const->isZero(); 11231 case ISD::MUL: 11232 return Const->isOne(); 11233 case ISD::AND: 11234 case ISD::UMIN: 11235 return Const->isAllOnes(); 11236 case ISD::SMAX: 11237 return Const->isMinSignedValue(); 11238 case ISD::SMIN: 11239 return Const->isMaxSignedValue(); 11240 case ISD::SUB: 11241 case ISD::SHL: 11242 case ISD::SRA: 11243 case ISD::SRL: 11244 return OperandNo == 1 && Const->isZero(); 11245 case ISD::UDIV: 11246 case ISD::SDIV: 11247 return OperandNo == 1 && Const->isOne(); 11248 } 11249 } else if (auto *ConstFP = isConstOrConstSplatFP(V)) { 11250 switch (Opcode) { 11251 case ISD::FADD: 11252 return ConstFP->isZero() && 11253 (Flags.hasNoSignedZeros() || ConstFP->isNegative()); 11254 case ISD::FSUB: 11255 return OperandNo == 1 && ConstFP->isZero() && 11256 (Flags.hasNoSignedZeros() || !ConstFP->isNegative()); 11257 case ISD::FMUL: 11258 return ConstFP->isExactlyValue(1.0); 11259 case ISD::FDIV: 11260 return OperandNo == 1 && ConstFP->isExactlyValue(1.0); 11261 case ISD::FMINNUM: 11262 case ISD::FMAXNUM: { 11263 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 11264 EVT VT = V.getValueType(); 11265 const fltSemantics &Semantics = SelectionDAG::EVTToAPFloatSemantics(VT); 11266 APFloat NeutralAF = !Flags.hasNoNaNs() 11267 ? APFloat::getQNaN(Semantics) 11268 : !Flags.hasNoInfs() 11269 ? APFloat::getInf(Semantics) 11270 : APFloat::getLargest(Semantics); 11271 if (Opcode == ISD::FMAXNUM) 11272 NeutralAF.changeSign(); 11273 11274 return ConstFP->isExactlyValue(NeutralAF); 11275 } 11276 } 11277 } 11278 return false; 11279 } 11280 11281 SDValue llvm::peekThroughBitcasts(SDValue V) { 11282 while (V.getOpcode() == ISD::BITCAST) 11283 V = V.getOperand(0); 11284 return V; 11285 } 11286 11287 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) { 11288 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse()) 11289 V = V.getOperand(0); 11290 return V; 11291 } 11292 11293 SDValue llvm::peekThroughExtractSubvectors(SDValue V) { 11294 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR) 11295 V = V.getOperand(0); 11296 return V; 11297 } 11298 11299 SDValue llvm::peekThroughTruncates(SDValue V) { 11300 while (V.getOpcode() == ISD::TRUNCATE) 11301 V = V.getOperand(0); 11302 return V; 11303 } 11304 11305 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) { 11306 if (V.getOpcode() != ISD::XOR) 11307 return false; 11308 V = peekThroughBitcasts(V.getOperand(1)); 11309 unsigned NumBits = V.getScalarValueSizeInBits(); 11310 ConstantSDNode *C = 11311 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true); 11312 return C && (C->getAPIntValue().countr_one() >= NumBits); 11313 } 11314 11315 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs, 11316 bool AllowTruncation) { 11317 EVT VT = N.getValueType(); 11318 APInt DemandedElts = VT.isFixedLengthVector() 11319 ? APInt::getAllOnes(VT.getVectorMinNumElements()) 11320 : APInt(1, 1); 11321 return isConstOrConstSplat(N, DemandedElts, AllowUndefs, AllowTruncation); 11322 } 11323 11324 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 11325 bool AllowUndefs, 11326 bool AllowTruncation) { 11327 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) 11328 return CN; 11329 11330 // SplatVectors can truncate their operands. Ignore that case here unless 11331 // AllowTruncation is set. 11332 if (N->getOpcode() == ISD::SPLAT_VECTOR) { 11333 EVT VecEltVT = N->getValueType(0).getVectorElementType(); 11334 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 11335 EVT CVT = CN->getValueType(0); 11336 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension"); 11337 if (AllowTruncation || CVT == VecEltVT) 11338 return CN; 11339 } 11340 } 11341 11342 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 11343 BitVector UndefElements; 11344 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements); 11345 11346 // BuildVectors can truncate their operands. Ignore that case here unless 11347 // AllowTruncation is set. 11348 // TODO: Look into whether we should allow UndefElements in non-DemandedElts 11349 if (CN && (UndefElements.none() || AllowUndefs)) { 11350 EVT CVT = CN->getValueType(0); 11351 EVT NSVT = N.getValueType().getScalarType(); 11352 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension"); 11353 if (AllowTruncation || (CVT == NSVT)) 11354 return CN; 11355 } 11356 } 11357 11358 return nullptr; 11359 } 11360 11361 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) { 11362 EVT VT = N.getValueType(); 11363 APInt DemandedElts = VT.isFixedLengthVector() 11364 ? APInt::getAllOnes(VT.getVectorMinNumElements()) 11365 : APInt(1, 1); 11366 return isConstOrConstSplatFP(N, DemandedElts, AllowUndefs); 11367 } 11368 11369 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, 11370 const APInt &DemandedElts, 11371 bool AllowUndefs) { 11372 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) 11373 return CN; 11374 11375 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) { 11376 BitVector UndefElements; 11377 ConstantFPSDNode *CN = 11378 BV->getConstantFPSplatNode(DemandedElts, &UndefElements); 11379 // TODO: Look into whether we should allow UndefElements in non-DemandedElts 11380 if (CN && (UndefElements.none() || AllowUndefs)) 11381 return CN; 11382 } 11383 11384 if (N.getOpcode() == ISD::SPLAT_VECTOR) 11385 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0))) 11386 return CN; 11387 11388 return nullptr; 11389 } 11390 11391 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) { 11392 // TODO: may want to use peekThroughBitcast() here. 11393 ConstantSDNode *C = 11394 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true); 11395 return C && C->isZero(); 11396 } 11397 11398 bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) { 11399 ConstantSDNode *C = 11400 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true); 11401 return C && C->isOne(); 11402 } 11403 11404 bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) { 11405 N = peekThroughBitcasts(N); 11406 unsigned BitWidth = N.getScalarValueSizeInBits(); 11407 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs); 11408 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth; 11409 } 11410 11411 HandleSDNode::~HandleSDNode() { 11412 DropOperands(); 11413 } 11414 11415 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, 11416 const DebugLoc &DL, 11417 const GlobalValue *GA, EVT VT, 11418 int64_t o, unsigned TF) 11419 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { 11420 TheGlobal = GA; 11421 } 11422 11423 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, 11424 EVT VT, unsigned SrcAS, 11425 unsigned DestAS) 11426 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)), 11427 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} 11428 11429 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 11430 SDVTList VTs, EVT memvt, MachineMemOperand *mmo) 11431 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { 11432 MemSDNodeBits.IsVolatile = MMO->isVolatile(); 11433 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal(); 11434 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable(); 11435 MemSDNodeBits.IsInvariant = MMO->isInvariant(); 11436 11437 // We check here that the size of the memory operand fits within the size of 11438 // the MMO. This is because the MMO might indicate only a possible address 11439 // range instead of specifying the affected memory addresses precisely. 11440 // TODO: Make MachineMemOperands aware of scalable vectors. 11441 assert(memvt.getStoreSize().getKnownMinValue() <= MMO->getSize() && 11442 "Size mismatch!"); 11443 } 11444 11445 /// Profile - Gather unique data for the node. 11446 /// 11447 void SDNode::Profile(FoldingSetNodeID &ID) const { 11448 AddNodeIDNode(ID, this); 11449 } 11450 11451 namespace { 11452 11453 struct EVTArray { 11454 std::vector<EVT> VTs; 11455 11456 EVTArray() { 11457 VTs.reserve(MVT::VALUETYPE_SIZE); 11458 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i) 11459 VTs.push_back(MVT((MVT::SimpleValueType)i)); 11460 } 11461 }; 11462 11463 } // end anonymous namespace 11464 11465 /// getValueTypeList - Return a pointer to the specified value type. 11466 /// 11467 const EVT *SDNode::getValueTypeList(EVT VT) { 11468 static std::set<EVT, EVT::compareRawBits> EVTs; 11469 static EVTArray SimpleVTArray; 11470 static sys::SmartMutex<true> VTMutex; 11471 11472 if (VT.isExtended()) { 11473 sys::SmartScopedLock<true> Lock(VTMutex); 11474 return &(*EVTs.insert(VT).first); 11475 } 11476 assert(VT.getSimpleVT() < MVT::VALUETYPE_SIZE && "Value type out of range!"); 11477 return &SimpleVTArray.VTs[VT.getSimpleVT().SimpleTy]; 11478 } 11479 11480 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the 11481 /// indicated value. This method ignores uses of other values defined by this 11482 /// operation. 11483 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { 11484 assert(Value < getNumValues() && "Bad value!"); 11485 11486 // TODO: Only iterate over uses of a given value of the node 11487 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { 11488 if (UI.getUse().getResNo() == Value) { 11489 if (NUses == 0) 11490 return false; 11491 --NUses; 11492 } 11493 } 11494 11495 // Found exactly the right number of uses? 11496 return NUses == 0; 11497 } 11498 11499 /// hasAnyUseOfValue - Return true if there are any use of the indicated 11500 /// value. This method ignores uses of other values defined by this operation. 11501 bool SDNode::hasAnyUseOfValue(unsigned Value) const { 11502 assert(Value < getNumValues() && "Bad value!"); 11503 11504 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) 11505 if (UI.getUse().getResNo() == Value) 11506 return true; 11507 11508 return false; 11509 } 11510 11511 /// isOnlyUserOf - Return true if this node is the only use of N. 11512 bool SDNode::isOnlyUserOf(const SDNode *N) const { 11513 bool Seen = false; 11514 for (const SDNode *User : N->uses()) { 11515 if (User == this) 11516 Seen = true; 11517 else 11518 return false; 11519 } 11520 11521 return Seen; 11522 } 11523 11524 /// Return true if the only users of N are contained in Nodes. 11525 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) { 11526 bool Seen = false; 11527 for (const SDNode *User : N->uses()) { 11528 if (llvm::is_contained(Nodes, User)) 11529 Seen = true; 11530 else 11531 return false; 11532 } 11533 11534 return Seen; 11535 } 11536 11537 /// isOperand - Return true if this node is an operand of N. 11538 bool SDValue::isOperandOf(const SDNode *N) const { 11539 return is_contained(N->op_values(), *this); 11540 } 11541 11542 bool SDNode::isOperandOf(const SDNode *N) const { 11543 return any_of(N->op_values(), 11544 [this](SDValue Op) { return this == Op.getNode(); }); 11545 } 11546 11547 /// reachesChainWithoutSideEffects - Return true if this operand (which must 11548 /// be a chain) reaches the specified operand without crossing any 11549 /// side-effecting instructions on any chain path. In practice, this looks 11550 /// through token factors and non-volatile loads. In order to remain efficient, 11551 /// this only looks a couple of nodes in, it does not do an exhaustive search. 11552 /// 11553 /// Note that we only need to examine chains when we're searching for 11554 /// side-effects; SelectionDAG requires that all side-effects are represented 11555 /// by chains, even if another operand would force a specific ordering. This 11556 /// constraint is necessary to allow transformations like splitting loads. 11557 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, 11558 unsigned Depth) const { 11559 if (*this == Dest) return true; 11560 11561 // Don't search too deeply, we just want to be able to see through 11562 // TokenFactor's etc. 11563 if (Depth == 0) return false; 11564 11565 // If this is a token factor, all inputs to the TF happen in parallel. 11566 if (getOpcode() == ISD::TokenFactor) { 11567 // First, try a shallow search. 11568 if (is_contained((*this)->ops(), Dest)) { 11569 // We found the chain we want as an operand of this TokenFactor. 11570 // Essentially, we reach the chain without side-effects if we could 11571 // serialize the TokenFactor into a simple chain of operations with 11572 // Dest as the last operation. This is automatically true if the 11573 // chain has one use: there are no other ordering constraints. 11574 // If the chain has more than one use, we give up: some other 11575 // use of Dest might force a side-effect between Dest and the current 11576 // node. 11577 if (Dest.hasOneUse()) 11578 return true; 11579 } 11580 // Next, try a deep search: check whether every operand of the TokenFactor 11581 // reaches Dest. 11582 return llvm::all_of((*this)->ops(), [=](SDValue Op) { 11583 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1); 11584 }); 11585 } 11586 11587 // Loads don't have side effects, look through them. 11588 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { 11589 if (Ld->isUnordered()) 11590 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); 11591 } 11592 return false; 11593 } 11594 11595 bool SDNode::hasPredecessor(const SDNode *N) const { 11596 SmallPtrSet<const SDNode *, 32> Visited; 11597 SmallVector<const SDNode *, 16> Worklist; 11598 Worklist.push_back(this); 11599 return hasPredecessorHelper(N, Visited, Worklist); 11600 } 11601 11602 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) { 11603 this->Flags.intersectWith(Flags); 11604 } 11605 11606 SDValue 11607 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, 11608 ArrayRef<ISD::NodeType> CandidateBinOps, 11609 bool AllowPartials) { 11610 // The pattern must end in an extract from index 0. 11611 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT || 11612 !isNullConstant(Extract->getOperand(1))) 11613 return SDValue(); 11614 11615 // Match against one of the candidate binary ops. 11616 SDValue Op = Extract->getOperand(0); 11617 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) { 11618 return Op.getOpcode() == unsigned(BinOp); 11619 })) 11620 return SDValue(); 11621 11622 // Floating-point reductions may require relaxed constraints on the final step 11623 // of the reduction because they may reorder intermediate operations. 11624 unsigned CandidateBinOp = Op.getOpcode(); 11625 if (Op.getValueType().isFloatingPoint()) { 11626 SDNodeFlags Flags = Op->getFlags(); 11627 switch (CandidateBinOp) { 11628 case ISD::FADD: 11629 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation()) 11630 return SDValue(); 11631 break; 11632 default: 11633 llvm_unreachable("Unhandled FP opcode for binop reduction"); 11634 } 11635 } 11636 11637 // Matching failed - attempt to see if we did enough stages that a partial 11638 // reduction from a subvector is possible. 11639 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) { 11640 if (!AllowPartials || !Op) 11641 return SDValue(); 11642 EVT OpVT = Op.getValueType(); 11643 EVT OpSVT = OpVT.getScalarType(); 11644 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts); 11645 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0)) 11646 return SDValue(); 11647 BinOp = (ISD::NodeType)CandidateBinOp; 11648 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op, 11649 getVectorIdxConstant(0, SDLoc(Op))); 11650 }; 11651 11652 // At each stage, we're looking for something that looks like: 11653 // %s = shufflevector <8 x i32> %op, <8 x i32> undef, 11654 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef, 11655 // i32 undef, i32 undef, i32 undef, i32 undef> 11656 // %a = binop <8 x i32> %op, %s 11657 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid, 11658 // we expect something like: 11659 // <4,5,6,7,u,u,u,u> 11660 // <2,3,u,u,u,u,u,u> 11661 // <1,u,u,u,u,u,u,u> 11662 // While a partial reduction match would be: 11663 // <2,3,u,u,u,u,u,u> 11664 // <1,u,u,u,u,u,u,u> 11665 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements()); 11666 SDValue PrevOp; 11667 for (unsigned i = 0; i < Stages; ++i) { 11668 unsigned MaskEnd = (1 << i); 11669 11670 if (Op.getOpcode() != CandidateBinOp) 11671 return PartialReduction(PrevOp, MaskEnd); 11672 11673 SDValue Op0 = Op.getOperand(0); 11674 SDValue Op1 = Op.getOperand(1); 11675 11676 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0); 11677 if (Shuffle) { 11678 Op = Op1; 11679 } else { 11680 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1); 11681 Op = Op0; 11682 } 11683 11684 // The first operand of the shuffle should be the same as the other operand 11685 // of the binop. 11686 if (!Shuffle || Shuffle->getOperand(0) != Op) 11687 return PartialReduction(PrevOp, MaskEnd); 11688 11689 // Verify the shuffle has the expected (at this stage of the pyramid) mask. 11690 for (int Index = 0; Index < (int)MaskEnd; ++Index) 11691 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index)) 11692 return PartialReduction(PrevOp, MaskEnd); 11693 11694 PrevOp = Op; 11695 } 11696 11697 // Handle subvector reductions, which tend to appear after the shuffle 11698 // reduction stages. 11699 while (Op.getOpcode() == CandidateBinOp) { 11700 unsigned NumElts = Op.getValueType().getVectorNumElements(); 11701 SDValue Op0 = Op.getOperand(0); 11702 SDValue Op1 = Op.getOperand(1); 11703 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR || 11704 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR || 11705 Op0.getOperand(0) != Op1.getOperand(0)) 11706 break; 11707 SDValue Src = Op0.getOperand(0); 11708 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 11709 if (NumSrcElts != (2 * NumElts)) 11710 break; 11711 if (!(Op0.getConstantOperandAPInt(1) == 0 && 11712 Op1.getConstantOperandAPInt(1) == NumElts) && 11713 !(Op1.getConstantOperandAPInt(1) == 0 && 11714 Op0.getConstantOperandAPInt(1) == NumElts)) 11715 break; 11716 Op = Src; 11717 } 11718 11719 BinOp = (ISD::NodeType)CandidateBinOp; 11720 return Op; 11721 } 11722 11723 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { 11724 EVT VT = N->getValueType(0); 11725 EVT EltVT = VT.getVectorElementType(); 11726 unsigned NE = VT.getVectorNumElements(); 11727 11728 SDLoc dl(N); 11729 11730 // If ResNE is 0, fully unroll the vector op. 11731 if (ResNE == 0) 11732 ResNE = NE; 11733 else if (NE > ResNE) 11734 NE = ResNE; 11735 11736 if (N->getNumValues() == 2) { 11737 SmallVector<SDValue, 8> Scalars0, Scalars1; 11738 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 11739 EVT VT1 = N->getValueType(1); 11740 EVT EltVT1 = VT1.getVectorElementType(); 11741 11742 unsigned i; 11743 for (i = 0; i != NE; ++i) { 11744 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 11745 SDValue Operand = N->getOperand(j); 11746 EVT OperandVT = Operand.getValueType(); 11747 11748 // A vector operand; extract a single element. 11749 EVT OperandEltVT = OperandVT.getVectorElementType(); 11750 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 11751 Operand, getVectorIdxConstant(i, dl)); 11752 } 11753 11754 SDValue EltOp = getNode(N->getOpcode(), dl, {EltVT, EltVT1}, Operands); 11755 Scalars0.push_back(EltOp); 11756 Scalars1.push_back(EltOp.getValue(1)); 11757 } 11758 11759 SDValue Vec0 = getBuildVector(VT, dl, Scalars0); 11760 SDValue Vec1 = getBuildVector(VT1, dl, Scalars1); 11761 return getMergeValues({Vec0, Vec1}, dl); 11762 } 11763 11764 assert(N->getNumValues() == 1 && 11765 "Can't unroll a vector with multiple results!"); 11766 11767 SmallVector<SDValue, 8> Scalars; 11768 SmallVector<SDValue, 4> Operands(N->getNumOperands()); 11769 11770 unsigned i; 11771 for (i= 0; i != NE; ++i) { 11772 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { 11773 SDValue Operand = N->getOperand(j); 11774 EVT OperandVT = Operand.getValueType(); 11775 if (OperandVT.isVector()) { 11776 // A vector operand; extract a single element. 11777 EVT OperandEltVT = OperandVT.getVectorElementType(); 11778 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT, 11779 Operand, getVectorIdxConstant(i, dl)); 11780 } else { 11781 // A scalar operand; just use it as is. 11782 Operands[j] = Operand; 11783 } 11784 } 11785 11786 switch (N->getOpcode()) { 11787 default: { 11788 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands, 11789 N->getFlags())); 11790 break; 11791 } 11792 case ISD::VSELECT: 11793 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); 11794 break; 11795 case ISD::SHL: 11796 case ISD::SRA: 11797 case ISD::SRL: 11798 case ISD::ROTL: 11799 case ISD::ROTR: 11800 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], 11801 getShiftAmountOperand(Operands[0].getValueType(), 11802 Operands[1]))); 11803 break; 11804 case ISD::SIGN_EXTEND_INREG: { 11805 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); 11806 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, 11807 Operands[0], 11808 getValueType(ExtVT))); 11809 } 11810 } 11811 } 11812 11813 for (; i < ResNE; ++i) 11814 Scalars.push_back(getUNDEF(EltVT)); 11815 11816 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE); 11817 return getBuildVector(VecVT, dl, Scalars); 11818 } 11819 11820 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp( 11821 SDNode *N, unsigned ResNE) { 11822 unsigned Opcode = N->getOpcode(); 11823 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO || 11824 Opcode == ISD::USUBO || Opcode == ISD::SSUBO || 11825 Opcode == ISD::UMULO || Opcode == ISD::SMULO) && 11826 "Expected an overflow opcode"); 11827 11828 EVT ResVT = N->getValueType(0); 11829 EVT OvVT = N->getValueType(1); 11830 EVT ResEltVT = ResVT.getVectorElementType(); 11831 EVT OvEltVT = OvVT.getVectorElementType(); 11832 SDLoc dl(N); 11833 11834 // If ResNE is 0, fully unroll the vector op. 11835 unsigned NE = ResVT.getVectorNumElements(); 11836 if (ResNE == 0) 11837 ResNE = NE; 11838 else if (NE > ResNE) 11839 NE = ResNE; 11840 11841 SmallVector<SDValue, 8> LHSScalars; 11842 SmallVector<SDValue, 8> RHSScalars; 11843 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE); 11844 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE); 11845 11846 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT); 11847 SDVTList VTs = getVTList(ResEltVT, SVT); 11848 SmallVector<SDValue, 8> ResScalars; 11849 SmallVector<SDValue, 8> OvScalars; 11850 for (unsigned i = 0; i < NE; ++i) { 11851 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]); 11852 SDValue Ov = 11853 getSelect(dl, OvEltVT, Res.getValue(1), 11854 getBoolConstant(true, dl, OvEltVT, ResVT), 11855 getConstant(0, dl, OvEltVT)); 11856 11857 ResScalars.push_back(Res); 11858 OvScalars.push_back(Ov); 11859 } 11860 11861 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT)); 11862 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT)); 11863 11864 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE); 11865 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE); 11866 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars), 11867 getBuildVector(NewOvVT, dl, OvScalars)); 11868 } 11869 11870 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD, 11871 LoadSDNode *Base, 11872 unsigned Bytes, 11873 int Dist) const { 11874 if (LD->isVolatile() || Base->isVolatile()) 11875 return false; 11876 // TODO: probably too restrictive for atomics, revisit 11877 if (!LD->isSimple()) 11878 return false; 11879 if (LD->isIndexed() || Base->isIndexed()) 11880 return false; 11881 if (LD->getChain() != Base->getChain()) 11882 return false; 11883 EVT VT = LD->getMemoryVT(); 11884 if (VT.getSizeInBits() / 8 != Bytes) 11885 return false; 11886 11887 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this); 11888 auto LocDecomp = BaseIndexOffset::match(LD, *this); 11889 11890 int64_t Offset = 0; 11891 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset)) 11892 return (Dist * (int64_t)Bytes == Offset); 11893 return false; 11894 } 11895 11896 /// InferPtrAlignment - Infer alignment of a load / store address. Return 11897 /// std::nullopt if it cannot be inferred. 11898 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const { 11899 // If this is a GlobalAddress + cst, return the alignment. 11900 const GlobalValue *GV = nullptr; 11901 int64_t GVOffset = 0; 11902 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { 11903 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType()); 11904 KnownBits Known(PtrWidth); 11905 llvm::computeKnownBits(GV, Known, getDataLayout()); 11906 unsigned AlignBits = Known.countMinTrailingZeros(); 11907 if (AlignBits) 11908 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset); 11909 } 11910 11911 // If this is a direct reference to a stack slot, use information about the 11912 // stack slot's alignment. 11913 int FrameIdx = INT_MIN; 11914 int64_t FrameOffset = 0; 11915 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { 11916 FrameIdx = FI->getIndex(); 11917 } else if (isBaseWithConstantOffset(Ptr) && 11918 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 11919 // Handle FI+Cst 11920 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 11921 FrameOffset = Ptr.getConstantOperandVal(1); 11922 } 11923 11924 if (FrameIdx != INT_MIN) { 11925 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo(); 11926 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset); 11927 } 11928 11929 return std::nullopt; 11930 } 11931 11932 /// Split the scalar node with EXTRACT_ELEMENT using the provided 11933 /// VTs and return the low/high part. 11934 std::pair<SDValue, SDValue> SelectionDAG::SplitScalar(const SDValue &N, 11935 const SDLoc &DL, 11936 const EVT &LoVT, 11937 const EVT &HiVT) { 11938 assert(!LoVT.isVector() && !HiVT.isVector() && !N.getValueType().isVector() && 11939 "Split node must be a scalar type"); 11940 SDValue Lo = 11941 getNode(ISD::EXTRACT_ELEMENT, DL, LoVT, N, getIntPtrConstant(0, DL)); 11942 SDValue Hi = 11943 getNode(ISD::EXTRACT_ELEMENT, DL, HiVT, N, getIntPtrConstant(1, DL)); 11944 return std::make_pair(Lo, Hi); 11945 } 11946 11947 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type 11948 /// which is split (or expanded) into two not necessarily identical pieces. 11949 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { 11950 // Currently all types are split in half. 11951 EVT LoVT, HiVT; 11952 if (!VT.isVector()) 11953 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); 11954 else 11955 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext()); 11956 11957 return std::make_pair(LoVT, HiVT); 11958 } 11959 11960 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a 11961 /// type, dependent on an enveloping VT that has been split into two identical 11962 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size. 11963 std::pair<EVT, EVT> 11964 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, 11965 bool *HiIsEmpty) const { 11966 EVT EltTp = VT.getVectorElementType(); 11967 // Examples: 11968 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty) 11969 // custom VL=9 with enveloping VL=8/8 yields 8/1 11970 // custom VL=10 with enveloping VL=8/8 yields 8/2 11971 // etc. 11972 ElementCount VTNumElts = VT.getVectorElementCount(); 11973 ElementCount EnvNumElts = EnvVT.getVectorElementCount(); 11974 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() && 11975 "Mixing fixed width and scalable vectors when enveloping a type"); 11976 EVT LoVT, HiVT; 11977 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) { 11978 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11979 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts); 11980 *HiIsEmpty = false; 11981 } else { 11982 // Flag that hi type has zero storage size, but return split envelop type 11983 // (this would be easier if vector types with zero elements were allowed). 11984 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts); 11985 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts); 11986 *HiIsEmpty = true; 11987 } 11988 return std::make_pair(LoVT, HiVT); 11989 } 11990 11991 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the 11992 /// low/high part. 11993 std::pair<SDValue, SDValue> 11994 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, 11995 const EVT &HiVT) { 11996 assert(LoVT.isScalableVector() == HiVT.isScalableVector() && 11997 LoVT.isScalableVector() == N.getValueType().isScalableVector() && 11998 "Splitting vector with an invalid mixture of fixed and scalable " 11999 "vector types"); 12000 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <= 12001 N.getValueType().getVectorMinNumElements() && 12002 "More vector elements requested than available!"); 12003 SDValue Lo, Hi; 12004 Lo = 12005 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL)); 12006 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements() 12007 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales 12008 // IDX with the runtime scaling factor of the result vector type. For 12009 // fixed-width result vectors, that runtime scaling factor is 1. 12010 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, 12011 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL)); 12012 return std::make_pair(Lo, Hi); 12013 } 12014 12015 std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT, 12016 const SDLoc &DL) { 12017 // Split the vector length parameter. 12018 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts). 12019 EVT VT = N.getValueType(); 12020 assert(VecVT.getVectorElementCount().isKnownEven() && 12021 "Expecting the mask to be an evenly-sized vector"); 12022 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2; 12023 SDValue HalfNumElts = 12024 VecVT.isFixedLengthVector() 12025 ? getConstant(HalfMinNumElts, DL, VT) 12026 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts)); 12027 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts); 12028 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts); 12029 return std::make_pair(Lo, Hi); 12030 } 12031 12032 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. 12033 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) { 12034 EVT VT = N.getValueType(); 12035 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), 12036 NextPowerOf2(VT.getVectorNumElements())); 12037 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N, 12038 getVectorIdxConstant(0, DL)); 12039 } 12040 12041 void SelectionDAG::ExtractVectorElements(SDValue Op, 12042 SmallVectorImpl<SDValue> &Args, 12043 unsigned Start, unsigned Count, 12044 EVT EltVT) { 12045 EVT VT = Op.getValueType(); 12046 if (Count == 0) 12047 Count = VT.getVectorNumElements(); 12048 if (EltVT == EVT()) 12049 EltVT = VT.getVectorElementType(); 12050 SDLoc SL(Op); 12051 for (unsigned i = Start, e = Start + Count; i != e; ++i) { 12052 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op, 12053 getVectorIdxConstant(i, SL))); 12054 } 12055 } 12056 12057 // getAddressSpace - Return the address space this GlobalAddress belongs to. 12058 unsigned GlobalAddressSDNode::getAddressSpace() const { 12059 return getGlobal()->getType()->getAddressSpace(); 12060 } 12061 12062 Type *ConstantPoolSDNode::getType() const { 12063 if (isMachineConstantPoolEntry()) 12064 return Val.MachineCPVal->getType(); 12065 return Val.ConstVal->getType(); 12066 } 12067 12068 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 12069 unsigned &SplatBitSize, 12070 bool &HasAnyUndefs, 12071 unsigned MinSplatBits, 12072 bool IsBigEndian) const { 12073 EVT VT = getValueType(0); 12074 assert(VT.isVector() && "Expected a vector type"); 12075 unsigned VecWidth = VT.getSizeInBits(); 12076 if (MinSplatBits > VecWidth) 12077 return false; 12078 12079 // FIXME: The widths are based on this node's type, but build vectors can 12080 // truncate their operands. 12081 SplatValue = APInt(VecWidth, 0); 12082 SplatUndef = APInt(VecWidth, 0); 12083 12084 // Get the bits. Bits with undefined values (when the corresponding element 12085 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared 12086 // in SplatValue. If any of the values are not constant, give up and return 12087 // false. 12088 unsigned int NumOps = getNumOperands(); 12089 assert(NumOps > 0 && "isConstantSplat has 0-size build vector"); 12090 unsigned EltWidth = VT.getScalarSizeInBits(); 12091 12092 for (unsigned j = 0; j < NumOps; ++j) { 12093 unsigned i = IsBigEndian ? NumOps - 1 - j : j; 12094 SDValue OpVal = getOperand(i); 12095 unsigned BitPos = j * EltWidth; 12096 12097 if (OpVal.isUndef()) 12098 SplatUndef.setBits(BitPos, BitPos + EltWidth); 12099 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal)) 12100 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos); 12101 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal)) 12102 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos); 12103 else 12104 return false; 12105 } 12106 12107 // The build_vector is all constants or undefs. Find the smallest element 12108 // size that splats the vector. 12109 HasAnyUndefs = (SplatUndef != 0); 12110 12111 // FIXME: This does not work for vectors with elements less than 8 bits. 12112 while (VecWidth > 8) { 12113 unsigned HalfSize = VecWidth / 2; 12114 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize); 12115 APInt LowValue = SplatValue.extractBits(HalfSize, 0); 12116 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize); 12117 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0); 12118 12119 // If the two halves do not match (ignoring undef bits), stop here. 12120 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || 12121 MinSplatBits > HalfSize) 12122 break; 12123 12124 SplatValue = HighValue | LowValue; 12125 SplatUndef = HighUndef & LowUndef; 12126 12127 VecWidth = HalfSize; 12128 } 12129 12130 SplatBitSize = VecWidth; 12131 return true; 12132 } 12133 12134 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts, 12135 BitVector *UndefElements) const { 12136 unsigned NumOps = getNumOperands(); 12137 if (UndefElements) { 12138 UndefElements->clear(); 12139 UndefElements->resize(NumOps); 12140 } 12141 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 12142 if (!DemandedElts) 12143 return SDValue(); 12144 SDValue Splatted; 12145 for (unsigned i = 0; i != NumOps; ++i) { 12146 if (!DemandedElts[i]) 12147 continue; 12148 SDValue Op = getOperand(i); 12149 if (Op.isUndef()) { 12150 if (UndefElements) 12151 (*UndefElements)[i] = true; 12152 } else if (!Splatted) { 12153 Splatted = Op; 12154 } else if (Splatted != Op) { 12155 return SDValue(); 12156 } 12157 } 12158 12159 if (!Splatted) { 12160 unsigned FirstDemandedIdx = DemandedElts.countr_zero(); 12161 assert(getOperand(FirstDemandedIdx).isUndef() && 12162 "Can only have a splat without a constant for all undefs."); 12163 return getOperand(FirstDemandedIdx); 12164 } 12165 12166 return Splatted; 12167 } 12168 12169 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { 12170 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 12171 return getSplatValue(DemandedElts, UndefElements); 12172 } 12173 12174 bool BuildVectorSDNode::getRepeatedSequence(const APInt &DemandedElts, 12175 SmallVectorImpl<SDValue> &Sequence, 12176 BitVector *UndefElements) const { 12177 unsigned NumOps = getNumOperands(); 12178 Sequence.clear(); 12179 if (UndefElements) { 12180 UndefElements->clear(); 12181 UndefElements->resize(NumOps); 12182 } 12183 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size"); 12184 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps)) 12185 return false; 12186 12187 // Set the undefs even if we don't find a sequence (like getSplatValue). 12188 if (UndefElements) 12189 for (unsigned I = 0; I != NumOps; ++I) 12190 if (DemandedElts[I] && getOperand(I).isUndef()) 12191 (*UndefElements)[I] = true; 12192 12193 // Iteratively widen the sequence length looking for repetitions. 12194 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) { 12195 Sequence.append(SeqLen, SDValue()); 12196 for (unsigned I = 0; I != NumOps; ++I) { 12197 if (!DemandedElts[I]) 12198 continue; 12199 SDValue &SeqOp = Sequence[I % SeqLen]; 12200 SDValue Op = getOperand(I); 12201 if (Op.isUndef()) { 12202 if (!SeqOp) 12203 SeqOp = Op; 12204 continue; 12205 } 12206 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) { 12207 Sequence.clear(); 12208 break; 12209 } 12210 SeqOp = Op; 12211 } 12212 if (!Sequence.empty()) 12213 return true; 12214 } 12215 12216 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern"); 12217 return false; 12218 } 12219 12220 bool BuildVectorSDNode::getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 12221 BitVector *UndefElements) const { 12222 APInt DemandedElts = APInt::getAllOnes(getNumOperands()); 12223 return getRepeatedSequence(DemandedElts, Sequence, UndefElements); 12224 } 12225 12226 ConstantSDNode * 12227 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts, 12228 BitVector *UndefElements) const { 12229 return dyn_cast_or_null<ConstantSDNode>( 12230 getSplatValue(DemandedElts, UndefElements)); 12231 } 12232 12233 ConstantSDNode * 12234 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { 12235 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements)); 12236 } 12237 12238 ConstantFPSDNode * 12239 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts, 12240 BitVector *UndefElements) const { 12241 return dyn_cast_or_null<ConstantFPSDNode>( 12242 getSplatValue(DemandedElts, UndefElements)); 12243 } 12244 12245 ConstantFPSDNode * 12246 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { 12247 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements)); 12248 } 12249 12250 int32_t 12251 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 12252 uint32_t BitWidth) const { 12253 if (ConstantFPSDNode *CN = 12254 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) { 12255 bool IsExact; 12256 APSInt IntVal(BitWidth); 12257 const APFloat &APF = CN->getValueAPF(); 12258 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) != 12259 APFloat::opOK || 12260 !IsExact) 12261 return -1; 12262 12263 return IntVal.exactLogBase2(); 12264 } 12265 return -1; 12266 } 12267 12268 bool BuildVectorSDNode::getConstantRawBits( 12269 bool IsLittleEndian, unsigned DstEltSizeInBits, 12270 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const { 12271 // Early-out if this contains anything but Undef/Constant/ConstantFP. 12272 if (!isConstant()) 12273 return false; 12274 12275 unsigned NumSrcOps = getNumOperands(); 12276 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits(); 12277 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 12278 "Invalid bitcast scale"); 12279 12280 // Extract raw src bits. 12281 SmallVector<APInt> SrcBitElements(NumSrcOps, 12282 APInt::getZero(SrcEltSizeInBits)); 12283 BitVector SrcUndeElements(NumSrcOps, false); 12284 12285 for (unsigned I = 0; I != NumSrcOps; ++I) { 12286 SDValue Op = getOperand(I); 12287 if (Op.isUndef()) { 12288 SrcUndeElements.set(I); 12289 continue; 12290 } 12291 auto *CInt = dyn_cast<ConstantSDNode>(Op); 12292 auto *CFP = dyn_cast<ConstantFPSDNode>(Op); 12293 assert((CInt || CFP) && "Unknown constant"); 12294 SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits) 12295 : CFP->getValueAPF().bitcastToAPInt(); 12296 } 12297 12298 // Recast to dst width. 12299 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements, 12300 SrcBitElements, UndefElements, SrcUndeElements); 12301 return true; 12302 } 12303 12304 void BuildVectorSDNode::recastRawBits(bool IsLittleEndian, 12305 unsigned DstEltSizeInBits, 12306 SmallVectorImpl<APInt> &DstBitElements, 12307 ArrayRef<APInt> SrcBitElements, 12308 BitVector &DstUndefElements, 12309 const BitVector &SrcUndefElements) { 12310 unsigned NumSrcOps = SrcBitElements.size(); 12311 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth(); 12312 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 && 12313 "Invalid bitcast scale"); 12314 assert(NumSrcOps == SrcUndefElements.size() && 12315 "Vector size mismatch"); 12316 12317 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits; 12318 DstUndefElements.clear(); 12319 DstUndefElements.resize(NumDstOps, false); 12320 DstBitElements.assign(NumDstOps, APInt::getZero(DstEltSizeInBits)); 12321 12322 // Concatenate src elements constant bits together into dst element. 12323 if (SrcEltSizeInBits <= DstEltSizeInBits) { 12324 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits; 12325 for (unsigned I = 0; I != NumDstOps; ++I) { 12326 DstUndefElements.set(I); 12327 APInt &DstBits = DstBitElements[I]; 12328 for (unsigned J = 0; J != Scale; ++J) { 12329 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 12330 if (SrcUndefElements[Idx]) 12331 continue; 12332 DstUndefElements.reset(I); 12333 const APInt &SrcBits = SrcBitElements[Idx]; 12334 assert(SrcBits.getBitWidth() == SrcEltSizeInBits && 12335 "Illegal constant bitwidths"); 12336 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits); 12337 } 12338 } 12339 return; 12340 } 12341 12342 // Split src element constant bits into dst elements. 12343 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits; 12344 for (unsigned I = 0; I != NumSrcOps; ++I) { 12345 if (SrcUndefElements[I]) { 12346 DstUndefElements.set(I * Scale, (I + 1) * Scale); 12347 continue; 12348 } 12349 const APInt &SrcBits = SrcBitElements[I]; 12350 for (unsigned J = 0; J != Scale; ++J) { 12351 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1)); 12352 APInt &DstBits = DstBitElements[Idx]; 12353 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits); 12354 } 12355 } 12356 } 12357 12358 bool BuildVectorSDNode::isConstant() const { 12359 for (const SDValue &Op : op_values()) { 12360 unsigned Opc = Op.getOpcode(); 12361 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) 12362 return false; 12363 } 12364 return true; 12365 } 12366 12367 std::optional<std::pair<APInt, APInt>> 12368 BuildVectorSDNode::isConstantSequence() const { 12369 unsigned NumOps = getNumOperands(); 12370 if (NumOps < 2) 12371 return std::nullopt; 12372 12373 if (!isa<ConstantSDNode>(getOperand(0)) || 12374 !isa<ConstantSDNode>(getOperand(1))) 12375 return std::nullopt; 12376 12377 unsigned EltSize = getValueType(0).getScalarSizeInBits(); 12378 APInt Start = getConstantOperandAPInt(0).trunc(EltSize); 12379 APInt Stride = getConstantOperandAPInt(1).trunc(EltSize) - Start; 12380 12381 if (Stride.isZero()) 12382 return std::nullopt; 12383 12384 for (unsigned i = 2; i < NumOps; ++i) { 12385 if (!isa<ConstantSDNode>(getOperand(i))) 12386 return std::nullopt; 12387 12388 APInt Val = getConstantOperandAPInt(i).trunc(EltSize); 12389 if (Val != (Start + (Stride * i))) 12390 return std::nullopt; 12391 } 12392 12393 return std::make_pair(Start, Stride); 12394 } 12395 12396 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { 12397 // Find the first non-undef value in the shuffle mask. 12398 unsigned i, e; 12399 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) 12400 /* search */; 12401 12402 // If all elements are undefined, this shuffle can be considered a splat 12403 // (although it should eventually get simplified away completely). 12404 if (i == e) 12405 return true; 12406 12407 // Make sure all remaining elements are either undef or the same as the first 12408 // non-undef value. 12409 for (int Idx = Mask[i]; i != e; ++i) 12410 if (Mask[i] >= 0 && Mask[i] != Idx) 12411 return false; 12412 return true; 12413 } 12414 12415 // Returns the SDNode if it is a constant integer BuildVector 12416 // or constant integer. 12417 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) const { 12418 if (isa<ConstantSDNode>(N)) 12419 return N.getNode(); 12420 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode())) 12421 return N.getNode(); 12422 // Treat a GlobalAddress supporting constant offset folding as a 12423 // constant integer. 12424 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N)) 12425 if (GA->getOpcode() == ISD::GlobalAddress && 12426 TLI->isOffsetFoldingLegal(GA)) 12427 return GA; 12428 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 12429 isa<ConstantSDNode>(N.getOperand(0))) 12430 return N.getNode(); 12431 return nullptr; 12432 } 12433 12434 // Returns the SDNode if it is a constant float BuildVector 12435 // or constant float. 12436 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) const { 12437 if (isa<ConstantFPSDNode>(N)) 12438 return N.getNode(); 12439 12440 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode())) 12441 return N.getNode(); 12442 12443 if ((N.getOpcode() == ISD::SPLAT_VECTOR) && 12444 isa<ConstantFPSDNode>(N.getOperand(0))) 12445 return N.getNode(); 12446 12447 return nullptr; 12448 } 12449 12450 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) { 12451 assert(!Node->OperandList && "Node already has operands"); 12452 assert(SDNode::getMaxNumOperands() >= Vals.size() && 12453 "too many operands to fit into SDNode"); 12454 SDUse *Ops = OperandRecycler.allocate( 12455 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator); 12456 12457 bool IsDivergent = false; 12458 for (unsigned I = 0; I != Vals.size(); ++I) { 12459 Ops[I].setUser(Node); 12460 Ops[I].setInitial(Vals[I]); 12461 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence. 12462 IsDivergent |= Ops[I].getNode()->isDivergent(); 12463 } 12464 Node->NumOperands = Vals.size(); 12465 Node->OperandList = Ops; 12466 if (!TLI->isSDNodeAlwaysUniform(Node)) { 12467 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA); 12468 Node->SDNodeBits.IsDivergent = IsDivergent; 12469 } 12470 checkForCycles(Node); 12471 } 12472 12473 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL, 12474 SmallVectorImpl<SDValue> &Vals) { 12475 size_t Limit = SDNode::getMaxNumOperands(); 12476 while (Vals.size() > Limit) { 12477 unsigned SliceIdx = Vals.size() - Limit; 12478 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit); 12479 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs); 12480 Vals.erase(Vals.begin() + SliceIdx, Vals.end()); 12481 Vals.emplace_back(NewTF); 12482 } 12483 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals); 12484 } 12485 12486 SDValue SelectionDAG::getNeutralElement(unsigned Opcode, const SDLoc &DL, 12487 EVT VT, SDNodeFlags Flags) { 12488 switch (Opcode) { 12489 default: 12490 return SDValue(); 12491 case ISD::ADD: 12492 case ISD::OR: 12493 case ISD::XOR: 12494 case ISD::UMAX: 12495 return getConstant(0, DL, VT); 12496 case ISD::MUL: 12497 return getConstant(1, DL, VT); 12498 case ISD::AND: 12499 case ISD::UMIN: 12500 return getAllOnesConstant(DL, VT); 12501 case ISD::SMAX: 12502 return getConstant(APInt::getSignedMinValue(VT.getSizeInBits()), DL, VT); 12503 case ISD::SMIN: 12504 return getConstant(APInt::getSignedMaxValue(VT.getSizeInBits()), DL, VT); 12505 case ISD::FADD: 12506 return getConstantFP(-0.0, DL, VT); 12507 case ISD::FMUL: 12508 return getConstantFP(1.0, DL, VT); 12509 case ISD::FMINNUM: 12510 case ISD::FMAXNUM: { 12511 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF. 12512 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 12513 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) : 12514 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) : 12515 APFloat::getLargest(Semantics); 12516 if (Opcode == ISD::FMAXNUM) 12517 NeutralAF.changeSign(); 12518 12519 return getConstantFP(NeutralAF, DL, VT); 12520 } 12521 case ISD::FMINIMUM: 12522 case ISD::FMAXIMUM: { 12523 // Neutral element for fminimum is Inf or FLT_MAX, depending on FMF. 12524 const fltSemantics &Semantics = EVTToAPFloatSemantics(VT); 12525 APFloat NeutralAF = !Flags.hasNoInfs() ? APFloat::getInf(Semantics) 12526 : APFloat::getLargest(Semantics); 12527 if (Opcode == ISD::FMAXIMUM) 12528 NeutralAF.changeSign(); 12529 12530 return getConstantFP(NeutralAF, DL, VT); 12531 } 12532 12533 } 12534 } 12535 12536 /// Helper used to make a call to a library function that has one argument of 12537 /// pointer type. 12538 /// 12539 /// Such functions include 'fegetmode', 'fesetenv' and some others, which are 12540 /// used to get or set floating-point state. They have one argument of pointer 12541 /// type, which points to the memory region containing bits of the 12542 /// floating-point state. The value returned by such function is ignored in the 12543 /// created call. 12544 /// 12545 /// \param LibFunc Reference to library function (value of RTLIB::Libcall). 12546 /// \param Ptr Pointer used to save/load state. 12547 /// \param InChain Ingoing token chain. 12548 /// \returns Outgoing chain token. 12549 SDValue SelectionDAG::makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, 12550 SDValue InChain, 12551 const SDLoc &DLoc) { 12552 assert(InChain.getValueType() == MVT::Other && "Expected token chain"); 12553 TargetLowering::ArgListTy Args; 12554 TargetLowering::ArgListEntry Entry; 12555 Entry.Node = Ptr; 12556 Entry.Ty = Ptr.getValueType().getTypeForEVT(*getContext()); 12557 Args.push_back(Entry); 12558 RTLIB::Libcall LC = static_cast<RTLIB::Libcall>(LibFunc); 12559 SDValue Callee = getExternalSymbol(TLI->getLibcallName(LC), 12560 TLI->getPointerTy(getDataLayout())); 12561 TargetLowering::CallLoweringInfo CLI(*this); 12562 CLI.setDebugLoc(DLoc).setChain(InChain).setLibCallee( 12563 TLI->getLibcallCallingConv(LC), Type::getVoidTy(*getContext()), Callee, 12564 std::move(Args)); 12565 return TLI->LowerCallTo(CLI).second; 12566 } 12567 12568 void SelectionDAG::copyExtraInfo(SDNode *From, SDNode *To) { 12569 assert(From && To && "Invalid SDNode; empty source SDValue?"); 12570 auto I = SDEI.find(From); 12571 if (I == SDEI.end()) 12572 return; 12573 12574 // Use of operator[] on the DenseMap may cause an insertion, which invalidates 12575 // the iterator, hence the need to make a copy to prevent a use-after-free. 12576 NodeExtraInfo NEI = I->second; 12577 if (LLVM_LIKELY(!NEI.PCSections)) { 12578 // No deep copy required for the types of extra info set. 12579 // 12580 // FIXME: Investigate if other types of extra info also need deep copy. This 12581 // depends on the types of nodes they can be attached to: if some extra info 12582 // is only ever attached to nodes where a replacement To node is always the 12583 // node where later use and propagation of the extra info has the intended 12584 // semantics, no deep copy is required. 12585 SDEI[To] = std::move(NEI); 12586 return; 12587 } 12588 12589 // We need to copy NodeExtraInfo to all _new_ nodes that are being introduced 12590 // through the replacement of From with To. Otherwise, replacements of a node 12591 // (From) with more complex nodes (To and its operands) may result in lost 12592 // extra info where the root node (To) is insignificant in further propagating 12593 // and using extra info when further lowering to MIR. 12594 // 12595 // In the first step pre-populate the visited set with the nodes reachable 12596 // from the old From node. This avoids copying NodeExtraInfo to parts of the 12597 // DAG that is not new and should be left untouched. 12598 SmallVector<const SDNode *> Leafs{From}; // Leafs reachable with VisitFrom. 12599 DenseSet<const SDNode *> FromReach; // The set of nodes reachable from From. 12600 auto VisitFrom = [&](auto &&Self, const SDNode *N, int MaxDepth) { 12601 if (MaxDepth == 0) { 12602 // Remember this node in case we need to increase MaxDepth and continue 12603 // populating FromReach from this node. 12604 Leafs.emplace_back(N); 12605 return; 12606 } 12607 if (!FromReach.insert(N).second) 12608 return; 12609 for (const SDValue &Op : N->op_values()) 12610 Self(Self, Op.getNode(), MaxDepth - 1); 12611 }; 12612 12613 // Copy extra info to To and all its transitive operands (that are new). 12614 SmallPtrSet<const SDNode *, 8> Visited; 12615 auto DeepCopyTo = [&](auto &&Self, const SDNode *N) { 12616 if (FromReach.contains(N)) 12617 return true; 12618 if (!Visited.insert(N).second) 12619 return true; 12620 if (getEntryNode().getNode() == N) 12621 return false; 12622 for (const SDValue &Op : N->op_values()) { 12623 if (!Self(Self, Op.getNode())) 12624 return false; 12625 } 12626 // Copy only if entry node was not reached. 12627 SDEI[N] = NEI; 12628 return true; 12629 }; 12630 12631 // We first try with a lower MaxDepth, assuming that the path to common 12632 // operands between From and To is relatively short. This significantly 12633 // improves performance in the common case. The initial MaxDepth is big 12634 // enough to avoid retry in the common case; the last MaxDepth is large 12635 // enough to avoid having to use the fallback below (and protects from 12636 // potential stack exhaustion from recursion). 12637 for (int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024; 12638 PrevDepth = MaxDepth, MaxDepth *= 2, Visited.clear()) { 12639 // StartFrom is the previous (or initial) set of leafs reachable at the 12640 // previous maximum depth. 12641 SmallVector<const SDNode *> StartFrom; 12642 std::swap(StartFrom, Leafs); 12643 for (const SDNode *N : StartFrom) 12644 VisitFrom(VisitFrom, N, MaxDepth - PrevDepth); 12645 if (LLVM_LIKELY(DeepCopyTo(DeepCopyTo, To))) 12646 return; 12647 // This should happen very rarely (reached the entry node). 12648 LLVM_DEBUG(dbgs() << __func__ << ": MaxDepth=" << MaxDepth << " too low\n"); 12649 assert(!Leafs.empty()); 12650 } 12651 12652 // This should not happen - but if it did, that means the subgraph reachable 12653 // from From has depth greater or equal to maximum MaxDepth, and VisitFrom() 12654 // could not visit all reachable common operands. Consequently, we were able 12655 // to reach the entry node. 12656 errs() << "warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n"; 12657 assert(false && "From subgraph too complex - increase max. MaxDepth?"); 12658 // Best-effort fallback if assertions disabled. 12659 SDEI[To] = std::move(NEI); 12660 } 12661 12662 #ifndef NDEBUG 12663 static void checkForCyclesHelper(const SDNode *N, 12664 SmallPtrSetImpl<const SDNode*> &Visited, 12665 SmallPtrSetImpl<const SDNode*> &Checked, 12666 const llvm::SelectionDAG *DAG) { 12667 // If this node has already been checked, don't check it again. 12668 if (Checked.count(N)) 12669 return; 12670 12671 // If a node has already been visited on this depth-first walk, reject it as 12672 // a cycle. 12673 if (!Visited.insert(N).second) { 12674 errs() << "Detected cycle in SelectionDAG\n"; 12675 dbgs() << "Offending node:\n"; 12676 N->dumprFull(DAG); dbgs() << "\n"; 12677 abort(); 12678 } 12679 12680 for (const SDValue &Op : N->op_values()) 12681 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG); 12682 12683 Checked.insert(N); 12684 Visited.erase(N); 12685 } 12686 #endif 12687 12688 void llvm::checkForCycles(const llvm::SDNode *N, 12689 const llvm::SelectionDAG *DAG, 12690 bool force) { 12691 #ifndef NDEBUG 12692 bool check = force; 12693 #ifdef EXPENSIVE_CHECKS 12694 check = true; 12695 #endif // EXPENSIVE_CHECKS 12696 if (check) { 12697 assert(N && "Checking nonexistent SDNode"); 12698 SmallPtrSet<const SDNode*, 32> visited; 12699 SmallPtrSet<const SDNode*, 32> checked; 12700 checkForCyclesHelper(N, visited, checked, DAG); 12701 } 12702 #endif // !NDEBUG 12703 } 12704 12705 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { 12706 checkForCycles(DAG->getRoot().getNode(), DAG, force); 12707 } 12708