1 //===- ScheduleDAGVLIW.cpp - SelectionDAG list scheduler for VLIW -*- C++ -*-=// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements a top-down list scheduler, using standard algorithms. 10 // The basic approach uses a priority queue of available nodes to schedule. 11 // One at a time, nodes are taken from the priority queue (thus in priority 12 // order), checked for legality to schedule, and emitted if legal. 13 // 14 // Nodes may not be legal to schedule either due to structural hazards (e.g. 15 // pipeline or resource constraints) or because an input to the instruction has 16 // not completed execution. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "ScheduleDAGSDNodes.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/LatencyPriorityQueue.h" 23 #include "llvm/CodeGen/ResourcePriorityQueue.h" 24 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 25 #include "llvm/CodeGen/SchedulerRegistry.h" 26 #include "llvm/CodeGen/SelectionDAGISel.h" 27 #include "llvm/CodeGen/TargetInstrInfo.h" 28 #include "llvm/CodeGen/TargetRegisterInfo.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <climits> 35 using namespace llvm; 36 37 #define DEBUG_TYPE "pre-RA-sched" 38 39 STATISTIC(NumNoops , "Number of noops inserted"); 40 STATISTIC(NumStalls, "Number of pipeline stalls"); 41 42 static RegisterScheduler 43 VLIWScheduler("vliw-td", "VLIW scheduler", 44 createVLIWDAGScheduler); 45 46 namespace { 47 //===----------------------------------------------------------------------===// 48 /// ScheduleDAGVLIW - The actual DFA list scheduler implementation. This 49 /// supports / top-down scheduling. 50 /// 51 class ScheduleDAGVLIW : public ScheduleDAGSDNodes { 52 private: 53 /// AvailableQueue - The priority queue to use for the available SUnits. 54 /// 55 SchedulingPriorityQueue *AvailableQueue; 56 57 /// PendingQueue - This contains all of the instructions whose operands have 58 /// been issued, but their results are not ready yet (due to the latency of 59 /// the operation). Once the operands become available, the instruction is 60 /// added to the AvailableQueue. 61 std::vector<SUnit*> PendingQueue; 62 63 /// HazardRec - The hazard recognizer to use. 64 ScheduleHazardRecognizer *HazardRec; 65 66 /// AA - AliasAnalysis for making memory reference queries. 67 AliasAnalysis *AA; 68 69 public: 70 ScheduleDAGVLIW(MachineFunction &mf, 71 AliasAnalysis *aa, 72 SchedulingPriorityQueue *availqueue) 73 : ScheduleDAGSDNodes(mf), AvailableQueue(availqueue), AA(aa) { 74 const TargetSubtargetInfo &STI = mf.getSubtarget(); 75 HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(&STI, this); 76 } 77 78 ~ScheduleDAGVLIW() override { 79 delete HazardRec; 80 delete AvailableQueue; 81 } 82 83 void Schedule() override; 84 85 private: 86 void releaseSucc(SUnit *SU, const SDep &D); 87 void releaseSuccessors(SUnit *SU); 88 void scheduleNodeTopDown(SUnit *SU, unsigned CurCycle); 89 void listScheduleTopDown(); 90 }; 91 } // end anonymous namespace 92 93 /// Schedule - Schedule the DAG using list scheduling. 94 void ScheduleDAGVLIW::Schedule() { 95 LLVM_DEBUG(dbgs() << "********** List Scheduling " << printMBBReference(*BB) 96 << " '" << BB->getName() << "' **********\n"); 97 98 // Build the scheduling graph. 99 BuildSchedGraph(AA); 100 101 AvailableQueue->initNodes(SUnits); 102 103 listScheduleTopDown(); 104 105 AvailableQueue->releaseState(); 106 } 107 108 //===----------------------------------------------------------------------===// 109 // Top-Down Scheduling 110 //===----------------------------------------------------------------------===// 111 112 /// releaseSucc - Decrement the NumPredsLeft count of a successor. Add it to 113 /// the PendingQueue if the count reaches zero. Also update its cycle bound. 114 void ScheduleDAGVLIW::releaseSucc(SUnit *SU, const SDep &D) { 115 SUnit *SuccSU = D.getSUnit(); 116 117 #ifndef NDEBUG 118 if (SuccSU->NumPredsLeft == 0) { 119 dbgs() << "*** Scheduling failed! ***\n"; 120 dumpNode(*SuccSU); 121 dbgs() << " has been released too many times!\n"; 122 llvm_unreachable(nullptr); 123 } 124 #endif 125 assert(!D.isWeak() && "unexpected artificial DAG edge"); 126 127 --SuccSU->NumPredsLeft; 128 129 SuccSU->setDepthToAtLeast(SU->getDepth() + D.getLatency()); 130 131 // If all the node's predecessors are scheduled, this node is ready 132 // to be scheduled. Ignore the special ExitSU node. 133 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) { 134 PendingQueue.push_back(SuccSU); 135 } 136 } 137 138 void ScheduleDAGVLIW::releaseSuccessors(SUnit *SU) { 139 // Top down: release successors. 140 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 141 I != E; ++I) { 142 assert(!I->isAssignedRegDep() && 143 "The list-td scheduler doesn't yet support physreg dependencies!"); 144 145 releaseSucc(SU, *I); 146 } 147 } 148 149 /// scheduleNodeTopDown - Add the node to the schedule. Decrement the pending 150 /// count of its successors. If a successor pending count is zero, add it to 151 /// the Available queue. 152 void ScheduleDAGVLIW::scheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { 153 LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: "); 154 LLVM_DEBUG(dumpNode(*SU)); 155 156 Sequence.push_back(SU); 157 assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!"); 158 SU->setDepthToAtLeast(CurCycle); 159 160 releaseSuccessors(SU); 161 SU->isScheduled = true; 162 AvailableQueue->scheduledNode(SU); 163 } 164 165 /// listScheduleTopDown - The main loop of list scheduling for top-down 166 /// schedulers. 167 void ScheduleDAGVLIW::listScheduleTopDown() { 168 unsigned CurCycle = 0; 169 170 // Release any successors of the special Entry node. 171 releaseSuccessors(&EntrySU); 172 173 // All leaves to AvailableQueue. 174 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 175 // It is available if it has no predecessors. 176 if (SUnits[i].Preds.empty()) { 177 AvailableQueue->push(&SUnits[i]); 178 SUnits[i].isAvailable = true; 179 } 180 } 181 182 // While AvailableQueue is not empty, grab the node with the highest 183 // priority. If it is not ready put it back. Schedule the node. 184 std::vector<SUnit*> NotReady; 185 Sequence.reserve(SUnits.size()); 186 while (!AvailableQueue->empty() || !PendingQueue.empty()) { 187 // Check to see if any of the pending instructions are ready to issue. If 188 // so, add them to the available queue. 189 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { 190 if (PendingQueue[i]->getDepth() == CurCycle) { 191 AvailableQueue->push(PendingQueue[i]); 192 PendingQueue[i]->isAvailable = true; 193 PendingQueue[i] = PendingQueue.back(); 194 PendingQueue.pop_back(); 195 --i; --e; 196 } 197 else { 198 assert(PendingQueue[i]->getDepth() > CurCycle && "Negative latency?"); 199 } 200 } 201 202 // If there are no instructions available, don't try to issue anything, and 203 // don't advance the hazard recognizer. 204 if (AvailableQueue->empty()) { 205 // Reset DFA state. 206 AvailableQueue->scheduledNode(nullptr); 207 ++CurCycle; 208 continue; 209 } 210 211 SUnit *FoundSUnit = nullptr; 212 213 bool HasNoopHazards = false; 214 while (!AvailableQueue->empty()) { 215 SUnit *CurSUnit = AvailableQueue->pop(); 216 217 ScheduleHazardRecognizer::HazardType HT = 218 HazardRec->getHazardType(CurSUnit, 0/*no stalls*/); 219 if (HT == ScheduleHazardRecognizer::NoHazard) { 220 FoundSUnit = CurSUnit; 221 break; 222 } 223 224 // Remember if this is a noop hazard. 225 HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard; 226 227 NotReady.push_back(CurSUnit); 228 } 229 230 // Add the nodes that aren't ready back onto the available list. 231 if (!NotReady.empty()) { 232 AvailableQueue->push_all(NotReady); 233 NotReady.clear(); 234 } 235 236 // If we found a node to schedule, do it now. 237 if (FoundSUnit) { 238 scheduleNodeTopDown(FoundSUnit, CurCycle); 239 HazardRec->EmitInstruction(FoundSUnit); 240 241 // If this is a pseudo-op node, we don't want to increment the current 242 // cycle. 243 if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops! 244 ++CurCycle; 245 } else if (!HasNoopHazards) { 246 // Otherwise, we have a pipeline stall, but no other problem, just advance 247 // the current cycle and try again. 248 LLVM_DEBUG(dbgs() << "*** Advancing cycle, no work to do\n"); 249 HazardRec->AdvanceCycle(); 250 ++NumStalls; 251 ++CurCycle; 252 } else { 253 // Otherwise, we have no instructions to issue and we have instructions 254 // that will fault if we don't do this right. This is the case for 255 // processors without pipeline interlocks and other cases. 256 LLVM_DEBUG(dbgs() << "*** Emitting noop\n"); 257 HazardRec->EmitNoop(); 258 Sequence.push_back(nullptr); // NULL here means noop 259 ++NumNoops; 260 ++CurCycle; 261 } 262 } 263 264 #ifndef NDEBUG 265 VerifyScheduledSequence(/*isBottomUp=*/false); 266 #endif 267 } 268 269 //===----------------------------------------------------------------------===// 270 // Public Constructor Functions 271 //===----------------------------------------------------------------------===// 272 273 /// createVLIWDAGScheduler - This creates a top-down list scheduler. 274 ScheduleDAGSDNodes * 275 llvm::createVLIWDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) { 276 return new ScheduleDAGVLIW(*IS->MF, IS->AA, new ResourcePriorityQueue(IS)); 277 } 278