1 //===- ScheduleDAGVLIW.cpp - SelectionDAG list scheduler for VLIW -*- C++ -*-=// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements a top-down list scheduler, using standard algorithms. 10 // The basic approach uses a priority queue of available nodes to schedule. 11 // One at a time, nodes are taken from the priority queue (thus in priority 12 // order), checked for legality to schedule, and emitted if legal. 13 // 14 // Nodes may not be legal to schedule either due to structural hazards (e.g. 15 // pipeline or resource constraints) or because an input to the instruction has 16 // not completed execution. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "ScheduleDAGSDNodes.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/LatencyPriorityQueue.h" 23 #include "llvm/CodeGen/ResourcePriorityQueue.h" 24 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 25 #include "llvm/CodeGen/SchedulerRegistry.h" 26 #include "llvm/CodeGen/SelectionDAGISel.h" 27 #include "llvm/CodeGen/TargetInstrInfo.h" 28 #include "llvm/CodeGen/TargetRegisterInfo.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <climits> 35 using namespace llvm; 36 37 #define DEBUG_TYPE "pre-RA-sched" 38 39 STATISTIC(NumNoops , "Number of noops inserted"); 40 STATISTIC(NumStalls, "Number of pipeline stalls"); 41 42 static RegisterScheduler 43 VLIWScheduler("vliw-td", "VLIW scheduler", 44 createVLIWDAGScheduler); 45 46 namespace { 47 //===----------------------------------------------------------------------===// 48 /// ScheduleDAGVLIW - The actual DFA list scheduler implementation. This 49 /// supports / top-down scheduling. 50 /// 51 class ScheduleDAGVLIW : public ScheduleDAGSDNodes { 52 private: 53 /// AvailableQueue - The priority queue to use for the available SUnits. 54 /// 55 SchedulingPriorityQueue *AvailableQueue; 56 57 /// PendingQueue - This contains all of the instructions whose operands have 58 /// been issued, but their results are not ready yet (due to the latency of 59 /// the operation). Once the operands become available, the instruction is 60 /// added to the AvailableQueue. 61 std::vector<SUnit*> PendingQueue; 62 63 /// HazardRec - The hazard recognizer to use. 64 ScheduleHazardRecognizer *HazardRec; 65 66 /// AA - AAResults for making memory reference queries. 67 AAResults *AA; 68 69 public: 70 ScheduleDAGVLIW(MachineFunction &mf, AAResults *aa, 71 SchedulingPriorityQueue *availqueue) 72 : ScheduleDAGSDNodes(mf), AvailableQueue(availqueue), AA(aa) { 73 const TargetSubtargetInfo &STI = mf.getSubtarget(); 74 HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(&STI, this); 75 } 76 77 ~ScheduleDAGVLIW() override { 78 delete HazardRec; 79 delete AvailableQueue; 80 } 81 82 void Schedule() override; 83 84 private: 85 void releaseSucc(SUnit *SU, const SDep &D); 86 void releaseSuccessors(SUnit *SU); 87 void scheduleNodeTopDown(SUnit *SU, unsigned CurCycle); 88 void listScheduleTopDown(); 89 }; 90 } // end anonymous namespace 91 92 /// Schedule - Schedule the DAG using list scheduling. 93 void ScheduleDAGVLIW::Schedule() { 94 LLVM_DEBUG(dbgs() << "********** List Scheduling " << printMBBReference(*BB) 95 << " '" << BB->getName() << "' **********\n"); 96 97 // Build the scheduling graph. 98 BuildSchedGraph(AA); 99 100 AvailableQueue->initNodes(SUnits); 101 102 listScheduleTopDown(); 103 104 AvailableQueue->releaseState(); 105 } 106 107 //===----------------------------------------------------------------------===// 108 // Top-Down Scheduling 109 //===----------------------------------------------------------------------===// 110 111 /// releaseSucc - Decrement the NumPredsLeft count of a successor. Add it to 112 /// the PendingQueue if the count reaches zero. Also update its cycle bound. 113 void ScheduleDAGVLIW::releaseSucc(SUnit *SU, const SDep &D) { 114 SUnit *SuccSU = D.getSUnit(); 115 116 #ifndef NDEBUG 117 if (SuccSU->NumPredsLeft == 0) { 118 dbgs() << "*** Scheduling failed! ***\n"; 119 dumpNode(*SuccSU); 120 dbgs() << " has been released too many times!\n"; 121 llvm_unreachable(nullptr); 122 } 123 #endif 124 assert(!D.isWeak() && "unexpected artificial DAG edge"); 125 126 --SuccSU->NumPredsLeft; 127 128 SuccSU->setDepthToAtLeast(SU->getDepth() + D.getLatency()); 129 130 // If all the node's predecessors are scheduled, this node is ready 131 // to be scheduled. Ignore the special ExitSU node. 132 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) { 133 PendingQueue.push_back(SuccSU); 134 } 135 } 136 137 void ScheduleDAGVLIW::releaseSuccessors(SUnit *SU) { 138 // Top down: release successors. 139 for (SDep &Succ : SU->Succs) { 140 assert(!Succ.isAssignedRegDep() && 141 "The list-td scheduler doesn't yet support physreg dependencies!"); 142 143 releaseSucc(SU, Succ); 144 } 145 } 146 147 /// scheduleNodeTopDown - Add the node to the schedule. Decrement the pending 148 /// count of its successors. If a successor pending count is zero, add it to 149 /// the Available queue. 150 void ScheduleDAGVLIW::scheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { 151 LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: "); 152 LLVM_DEBUG(dumpNode(*SU)); 153 154 Sequence.push_back(SU); 155 assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!"); 156 SU->setDepthToAtLeast(CurCycle); 157 158 releaseSuccessors(SU); 159 SU->isScheduled = true; 160 AvailableQueue->scheduledNode(SU); 161 } 162 163 /// listScheduleTopDown - The main loop of list scheduling for top-down 164 /// schedulers. 165 void ScheduleDAGVLIW::listScheduleTopDown() { 166 unsigned CurCycle = 0; 167 168 // Release any successors of the special Entry node. 169 releaseSuccessors(&EntrySU); 170 171 // All leaves to AvailableQueue. 172 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 173 // It is available if it has no predecessors. 174 if (SUnits[i].Preds.empty()) { 175 AvailableQueue->push(&SUnits[i]); 176 SUnits[i].isAvailable = true; 177 } 178 } 179 180 // While AvailableQueue is not empty, grab the node with the highest 181 // priority. If it is not ready put it back. Schedule the node. 182 std::vector<SUnit*> NotReady; 183 Sequence.reserve(SUnits.size()); 184 while (!AvailableQueue->empty() || !PendingQueue.empty()) { 185 // Check to see if any of the pending instructions are ready to issue. If 186 // so, add them to the available queue. 187 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { 188 if (PendingQueue[i]->getDepth() == CurCycle) { 189 AvailableQueue->push(PendingQueue[i]); 190 PendingQueue[i]->isAvailable = true; 191 PendingQueue[i] = PendingQueue.back(); 192 PendingQueue.pop_back(); 193 --i; --e; 194 } 195 else { 196 assert(PendingQueue[i]->getDepth() > CurCycle && "Negative latency?"); 197 } 198 } 199 200 // If there are no instructions available, don't try to issue anything, and 201 // don't advance the hazard recognizer. 202 if (AvailableQueue->empty()) { 203 // Reset DFA state. 204 AvailableQueue->scheduledNode(nullptr); 205 ++CurCycle; 206 continue; 207 } 208 209 SUnit *FoundSUnit = nullptr; 210 211 bool HasNoopHazards = false; 212 while (!AvailableQueue->empty()) { 213 SUnit *CurSUnit = AvailableQueue->pop(); 214 215 ScheduleHazardRecognizer::HazardType HT = 216 HazardRec->getHazardType(CurSUnit, 0/*no stalls*/); 217 if (HT == ScheduleHazardRecognizer::NoHazard) { 218 FoundSUnit = CurSUnit; 219 break; 220 } 221 222 // Remember if this is a noop hazard. 223 HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard; 224 225 NotReady.push_back(CurSUnit); 226 } 227 228 // Add the nodes that aren't ready back onto the available list. 229 if (!NotReady.empty()) { 230 AvailableQueue->push_all(NotReady); 231 NotReady.clear(); 232 } 233 234 // If we found a node to schedule, do it now. 235 if (FoundSUnit) { 236 scheduleNodeTopDown(FoundSUnit, CurCycle); 237 HazardRec->EmitInstruction(FoundSUnit); 238 239 // If this is a pseudo-op node, we don't want to increment the current 240 // cycle. 241 if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops! 242 ++CurCycle; 243 } else if (!HasNoopHazards) { 244 // Otherwise, we have a pipeline stall, but no other problem, just advance 245 // the current cycle and try again. 246 LLVM_DEBUG(dbgs() << "*** Advancing cycle, no work to do\n"); 247 HazardRec->AdvanceCycle(); 248 ++NumStalls; 249 ++CurCycle; 250 } else { 251 // Otherwise, we have no instructions to issue and we have instructions 252 // that will fault if we don't do this right. This is the case for 253 // processors without pipeline interlocks and other cases. 254 LLVM_DEBUG(dbgs() << "*** Emitting noop\n"); 255 HazardRec->EmitNoop(); 256 Sequence.push_back(nullptr); // NULL here means noop 257 ++NumNoops; 258 ++CurCycle; 259 } 260 } 261 262 #ifndef NDEBUG 263 VerifyScheduledSequence(/*isBottomUp=*/false); 264 #endif 265 } 266 267 //===----------------------------------------------------------------------===// 268 // Public Constructor Functions 269 //===----------------------------------------------------------------------===// 270 271 /// createVLIWDAGScheduler - This creates a top-down list scheduler. 272 ScheduleDAGSDNodes * 273 llvm::createVLIWDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) { 274 return new ScheduleDAGVLIW(*IS->MF, IS->AA, new ResourcePriorityQueue(IS)); 275 } 276