1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the ScheduleDAG class, which is a base class used by 10 // scheduling implementation classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ScheduleDAGSDNodes.h" 15 #include "InstrEmitter.h" 16 #include "SDNodeDbgValue.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SelectionDAG.h" 25 #include "llvm/CodeGen/TargetInstrInfo.h" 26 #include "llvm/CodeGen/TargetLowering.h" 27 #include "llvm/CodeGen/TargetRegisterInfo.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/Config/llvm-config.h" 30 #include "llvm/MC/MCInstrItineraries.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetMachine.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "pre-RA-sched" 38 39 STATISTIC(LoadsClustered, "Number of loads clustered together"); 40 41 // This allows the latency-based scheduler to notice high latency instructions 42 // without a target itinerary. The choice of number here has more to do with 43 // balancing scheduler heuristics than with the actual machine latency. 44 static cl::opt<int> HighLatencyCycles( 45 "sched-high-latency-cycles", cl::Hidden, cl::init(10), 46 cl::desc("Roughly estimate the number of cycles that 'long latency'" 47 "instructions take for targets with no itinerary")); 48 49 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf) 50 : ScheduleDAG(mf), InstrItins(mf.getSubtarget().getInstrItineraryData()) {} 51 52 /// Run - perform scheduling. 53 /// 54 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) { 55 BB = bb; 56 DAG = dag; 57 58 // Clear the scheduler's SUnit DAG. 59 ScheduleDAG::clearDAG(); 60 Sequence.clear(); 61 62 // Invoke the target's selection of scheduler. 63 Schedule(); 64 } 65 66 /// NewSUnit - Creates a new SUnit and return a ptr to it. 67 /// 68 SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) { 69 #ifndef NDEBUG 70 const SUnit *Addr = nullptr; 71 if (!SUnits.empty()) 72 Addr = &SUnits[0]; 73 #endif 74 SUnits.emplace_back(N, (unsigned)SUnits.size()); 75 assert((Addr == nullptr || Addr == &SUnits[0]) && 76 "SUnits std::vector reallocated on the fly!"); 77 SUnits.back().OrigNode = &SUnits.back(); 78 SUnit *SU = &SUnits.back(); 79 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 80 if (!N || 81 (N->isMachineOpcode() && 82 N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)) 83 SU->SchedulingPref = Sched::None; 84 else 85 SU->SchedulingPref = TLI.getSchedulingPreference(N); 86 return SU; 87 } 88 89 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) { 90 SUnit *SU = newSUnit(Old->getNode()); 91 SU->OrigNode = Old->OrigNode; 92 SU->Latency = Old->Latency; 93 SU->isVRegCycle = Old->isVRegCycle; 94 SU->isCall = Old->isCall; 95 SU->isCallOp = Old->isCallOp; 96 SU->isTwoAddress = Old->isTwoAddress; 97 SU->isCommutable = Old->isCommutable; 98 SU->hasPhysRegDefs = Old->hasPhysRegDefs; 99 SU->hasPhysRegClobbers = Old->hasPhysRegClobbers; 100 SU->isScheduleHigh = Old->isScheduleHigh; 101 SU->isScheduleLow = Old->isScheduleLow; 102 SU->SchedulingPref = Old->SchedulingPref; 103 Old->isCloned = true; 104 return SU; 105 } 106 107 /// CheckForPhysRegDependency - Check if the dependency between def and use of 108 /// a specified operand is a physical register dependency. If so, returns the 109 /// register and the cost of copying the register. 110 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, 111 const TargetRegisterInfo *TRI, 112 const TargetInstrInfo *TII, 113 unsigned &PhysReg, int &Cost) { 114 if (Op != 2 || User->getOpcode() != ISD::CopyToReg) 115 return; 116 117 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 118 if (Register::isVirtualRegister(Reg)) 119 return; 120 121 unsigned ResNo = User->getOperand(2).getResNo(); 122 if (Def->getOpcode() == ISD::CopyFromReg && 123 cast<RegisterSDNode>(Def->getOperand(1))->getReg() == Reg) { 124 PhysReg = Reg; 125 } else if (Def->isMachineOpcode()) { 126 const MCInstrDesc &II = TII->get(Def->getMachineOpcode()); 127 if (ResNo >= II.getNumDefs() && II.hasImplicitDefOfPhysReg(Reg)) 128 PhysReg = Reg; 129 } 130 131 if (PhysReg != 0) { 132 const TargetRegisterClass *RC = 133 TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo)); 134 Cost = RC->getCopyCost(); 135 } 136 } 137 138 // Helper for AddGlue to clone node operands. 139 static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef<EVT> VTs, 140 SDValue ExtraOper = SDValue()) { 141 SmallVector<SDValue, 8> Ops(N->op_begin(), N->op_end()); 142 if (ExtraOper.getNode()) 143 Ops.push_back(ExtraOper); 144 145 SDVTList VTList = DAG->getVTList(VTs); 146 MachineSDNode *MN = dyn_cast<MachineSDNode>(N); 147 148 // Store memory references. 149 SmallVector<MachineMemOperand *, 2> MMOs; 150 if (MN) 151 MMOs.assign(MN->memoperands_begin(), MN->memoperands_end()); 152 153 DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops); 154 155 // Reset the memory references 156 if (MN) 157 DAG->setNodeMemRefs(MN, MMOs); 158 } 159 160 static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) { 161 SDNode *GlueDestNode = Glue.getNode(); 162 163 // Don't add glue from a node to itself. 164 if (GlueDestNode == N) return false; 165 166 // Don't add a glue operand to something that already uses glue. 167 if (GlueDestNode && 168 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { 169 return false; 170 } 171 // Don't add glue to something that already has a glue value. 172 if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false; 173 174 SmallVector<EVT, 4> VTs(N->values()); 175 if (AddGlue) 176 VTs.push_back(MVT::Glue); 177 178 CloneNodeWithValues(N, DAG, VTs, Glue); 179 180 return true; 181 } 182 183 // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the 184 // node even though simply shrinking the value list is sufficient. 185 static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) { 186 assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue && 187 !N->hasAnyUseOfValue(N->getNumValues() - 1)) && 188 "expected an unused glue value"); 189 190 CloneNodeWithValues(N, DAG, 191 makeArrayRef(N->value_begin(), N->getNumValues() - 1)); 192 } 193 194 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them. 195 /// This function finds loads of the same base and different offsets. If the 196 /// offsets are not far apart (target specific), it add MVT::Glue inputs and 197 /// outputs to ensure they are scheduled together and in order. This 198 /// optimization may benefit some targets by improving cache locality. 199 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) { 200 SDValue Chain; 201 unsigned NumOps = Node->getNumOperands(); 202 if (Node->getOperand(NumOps-1).getValueType() == MVT::Other) 203 Chain = Node->getOperand(NumOps-1); 204 if (!Chain) 205 return; 206 207 // Skip any load instruction that has a tied input. There may be an additional 208 // dependency requiring a different order than by increasing offsets, and the 209 // added glue may introduce a cycle. 210 auto hasTiedInput = [this](const SDNode *N) { 211 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 212 for (unsigned I = 0; I != MCID.getNumOperands(); ++I) { 213 if (MCID.getOperandConstraint(I, MCOI::TIED_TO) != -1) 214 return true; 215 } 216 217 return false; 218 }; 219 220 // Look for other loads of the same chain. Find loads that are loading from 221 // the same base pointer and different offsets. 222 SmallPtrSet<SDNode*, 16> Visited; 223 SmallVector<int64_t, 4> Offsets; 224 DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode. 225 bool Cluster = false; 226 SDNode *Base = Node; 227 228 if (hasTiedInput(Base)) 229 return; 230 231 // This algorithm requires a reasonably low use count before finding a match 232 // to avoid uselessly blowing up compile time in large blocks. 233 unsigned UseCount = 0; 234 for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end(); 235 I != E && UseCount < 100; ++I, ++UseCount) { 236 if (I.getUse().getResNo() != Chain.getResNo()) 237 continue; 238 239 SDNode *User = *I; 240 if (User == Node || !Visited.insert(User).second) 241 continue; 242 int64_t Offset1, Offset2; 243 if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) || 244 Offset1 == Offset2 || 245 hasTiedInput(User)) { 246 // FIXME: Should be ok if they addresses are identical. But earlier 247 // optimizations really should have eliminated one of the loads. 248 continue; 249 } 250 if (O2SMap.insert(std::make_pair(Offset1, Base)).second) 251 Offsets.push_back(Offset1); 252 O2SMap.insert(std::make_pair(Offset2, User)); 253 Offsets.push_back(Offset2); 254 if (Offset2 < Offset1) 255 Base = User; 256 Cluster = true; 257 // Reset UseCount to allow more matches. 258 UseCount = 0; 259 } 260 261 if (!Cluster) 262 return; 263 264 // Sort them in increasing order. 265 llvm::sort(Offsets); 266 267 // Check if the loads are close enough. 268 SmallVector<SDNode*, 4> Loads; 269 unsigned NumLoads = 0; 270 int64_t BaseOff = Offsets[0]; 271 SDNode *BaseLoad = O2SMap[BaseOff]; 272 Loads.push_back(BaseLoad); 273 for (unsigned i = 1, e = Offsets.size(); i != e; ++i) { 274 int64_t Offset = Offsets[i]; 275 SDNode *Load = O2SMap[Offset]; 276 if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads)) 277 break; // Stop right here. Ignore loads that are further away. 278 Loads.push_back(Load); 279 ++NumLoads; 280 } 281 282 if (NumLoads == 0) 283 return; 284 285 // Cluster loads by adding MVT::Glue outputs and inputs. This also 286 // ensure they are scheduled in order of increasing addresses. 287 SDNode *Lead = Loads[0]; 288 SDValue InGlue; 289 if (AddGlue(Lead, InGlue, true, DAG)) 290 InGlue = SDValue(Lead, Lead->getNumValues() - 1); 291 for (unsigned I = 1, E = Loads.size(); I != E; ++I) { 292 bool OutGlue = I < E - 1; 293 SDNode *Load = Loads[I]; 294 295 // If AddGlue fails, we could leave an unsused glue value. This should not 296 // cause any 297 if (AddGlue(Load, InGlue, OutGlue, DAG)) { 298 if (OutGlue) 299 InGlue = SDValue(Load, Load->getNumValues() - 1); 300 301 ++LoadsClustered; 302 } 303 else if (!OutGlue && InGlue.getNode()) 304 RemoveUnusedGlue(InGlue.getNode(), DAG); 305 } 306 } 307 308 /// ClusterNodes - Cluster certain nodes which should be scheduled together. 309 /// 310 void ScheduleDAGSDNodes::ClusterNodes() { 311 for (SDNode &NI : DAG->allnodes()) { 312 SDNode *Node = &NI; 313 if (!Node || !Node->isMachineOpcode()) 314 continue; 315 316 unsigned Opc = Node->getMachineOpcode(); 317 const MCInstrDesc &MCID = TII->get(Opc); 318 if (MCID.mayLoad()) 319 // Cluster loads from "near" addresses into combined SUnits. 320 ClusterNeighboringLoads(Node); 321 } 322 } 323 324 void ScheduleDAGSDNodes::BuildSchedUnits() { 325 // During scheduling, the NodeId field of SDNode is used to map SDNodes 326 // to their associated SUnits by holding SUnits table indices. A value 327 // of -1 means the SDNode does not yet have an associated SUnit. 328 unsigned NumNodes = 0; 329 for (SDNode &NI : DAG->allnodes()) { 330 NI.setNodeId(-1); 331 ++NumNodes; 332 } 333 334 // Reserve entries in the vector for each of the SUnits we are creating. This 335 // ensure that reallocation of the vector won't happen, so SUnit*'s won't get 336 // invalidated. 337 // FIXME: Multiply by 2 because we may clone nodes during scheduling. 338 // This is a temporary workaround. 339 SUnits.reserve(NumNodes * 2); 340 341 // Add all nodes in depth first order. 342 SmallVector<SDNode*, 64> Worklist; 343 SmallPtrSet<SDNode*, 32> Visited; 344 Worklist.push_back(DAG->getRoot().getNode()); 345 Visited.insert(DAG->getRoot().getNode()); 346 347 SmallVector<SUnit*, 8> CallSUnits; 348 while (!Worklist.empty()) { 349 SDNode *NI = Worklist.pop_back_val(); 350 351 // Add all operands to the worklist unless they've already been added. 352 for (const SDValue &Op : NI->op_values()) 353 if (Visited.insert(Op.getNode()).second) 354 Worklist.push_back(Op.getNode()); 355 356 if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate. 357 continue; 358 359 // If this node has already been processed, stop now. 360 if (NI->getNodeId() != -1) continue; 361 362 SUnit *NodeSUnit = newSUnit(NI); 363 364 // See if anything is glued to this node, if so, add them to glued 365 // nodes. Nodes can have at most one glue input and one glue output. Glue 366 // is required to be the last operand and result of a node. 367 368 // Scan up to find glued preds. 369 SDNode *N = NI; 370 while (N->getNumOperands() && 371 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { 372 N = N->getOperand(N->getNumOperands()-1).getNode(); 373 assert(N->getNodeId() == -1 && "Node already inserted!"); 374 N->setNodeId(NodeSUnit->NodeNum); 375 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) 376 NodeSUnit->isCall = true; 377 } 378 379 // Scan down to find any glued succs. 380 N = NI; 381 while (N->getValueType(N->getNumValues()-1) == MVT::Glue) { 382 SDValue GlueVal(N, N->getNumValues()-1); 383 384 // There are either zero or one users of the Glue result. 385 bool HasGlueUse = false; 386 for (SDNode *U : N->uses()) 387 if (GlueVal.isOperandOf(U)) { 388 HasGlueUse = true; 389 assert(N->getNodeId() == -1 && "Node already inserted!"); 390 N->setNodeId(NodeSUnit->NodeNum); 391 N = U; 392 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) 393 NodeSUnit->isCall = true; 394 break; 395 } 396 if (!HasGlueUse) break; 397 } 398 399 if (NodeSUnit->isCall) 400 CallSUnits.push_back(NodeSUnit); 401 402 // Schedule zero-latency TokenFactor below any nodes that may increase the 403 // schedule height. Otherwise, ancestors of the TokenFactor may appear to 404 // have false stalls. 405 if (NI->getOpcode() == ISD::TokenFactor) 406 NodeSUnit->isScheduleLow = true; 407 408 // If there are glue operands involved, N is now the bottom-most node 409 // of the sequence of nodes that are glued together. 410 // Update the SUnit. 411 NodeSUnit->setNode(N); 412 assert(N->getNodeId() == -1 && "Node already inserted!"); 413 N->setNodeId(NodeSUnit->NodeNum); 414 415 // Compute NumRegDefsLeft. This must be done before AddSchedEdges. 416 InitNumRegDefsLeft(NodeSUnit); 417 418 // Assign the Latency field of NodeSUnit using target-provided information. 419 computeLatency(NodeSUnit); 420 } 421 422 // Find all call operands. 423 while (!CallSUnits.empty()) { 424 SUnit *SU = CallSUnits.pop_back_val(); 425 for (const SDNode *SUNode = SU->getNode(); SUNode; 426 SUNode = SUNode->getGluedNode()) { 427 if (SUNode->getOpcode() != ISD::CopyToReg) 428 continue; 429 SDNode *SrcN = SUNode->getOperand(2).getNode(); 430 if (isPassiveNode(SrcN)) continue; // Not scheduled. 431 SUnit *SrcSU = &SUnits[SrcN->getNodeId()]; 432 SrcSU->isCallOp = true; 433 } 434 } 435 } 436 437 void ScheduleDAGSDNodes::AddSchedEdges() { 438 const TargetSubtargetInfo &ST = MF.getSubtarget(); 439 440 // Check to see if the scheduler cares about latencies. 441 bool UnitLatencies = forceUnitLatencies(); 442 443 // Pass 2: add the preds, succs, etc. 444 for (SUnit &SU : SUnits) { 445 SDNode *MainNode = SU.getNode(); 446 447 if (MainNode->isMachineOpcode()) { 448 unsigned Opc = MainNode->getMachineOpcode(); 449 const MCInstrDesc &MCID = TII->get(Opc); 450 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) { 451 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) { 452 SU.isTwoAddress = true; 453 break; 454 } 455 } 456 if (MCID.isCommutable()) 457 SU.isCommutable = true; 458 } 459 460 // Find all predecessors and successors of the group. 461 for (SDNode *N = SU.getNode(); N; N = N->getGluedNode()) { 462 if (N->isMachineOpcode() && 463 TII->get(N->getMachineOpcode()).getImplicitDefs()) { 464 SU.hasPhysRegClobbers = true; 465 unsigned NumUsed = InstrEmitter::CountResults(N); 466 while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1)) 467 --NumUsed; // Skip over unused values at the end. 468 if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs()) 469 SU.hasPhysRegDefs = true; 470 } 471 472 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 473 SDNode *OpN = N->getOperand(i).getNode(); 474 unsigned DefIdx = N->getOperand(i).getResNo(); 475 if (isPassiveNode(OpN)) continue; // Not scheduled. 476 SUnit *OpSU = &SUnits[OpN->getNodeId()]; 477 assert(OpSU && "Node has no SUnit!"); 478 if (OpSU == &SU) 479 continue; // In the same group. 480 481 EVT OpVT = N->getOperand(i).getValueType(); 482 assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!"); 483 bool isChain = OpVT == MVT::Other; 484 485 unsigned PhysReg = 0; 486 int Cost = 1; 487 // Determine if this is a physical register dependency. 488 CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost); 489 assert((PhysReg == 0 || !isChain) && 490 "Chain dependence via physreg data?"); 491 // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler 492 // emits a copy from the physical register to a virtual register unless 493 // it requires a cross class copy (cost < 0). That means we are only 494 // treating "expensive to copy" register dependency as physical register 495 // dependency. This may change in the future though. 496 if (Cost >= 0 && !StressSched) 497 PhysReg = 0; 498 499 // If this is a ctrl dep, latency is 1. 500 unsigned OpLatency = isChain ? 1 : OpSU->Latency; 501 // Special-case TokenFactor chains as zero-latency. 502 if(isChain && OpN->getOpcode() == ISD::TokenFactor) 503 OpLatency = 0; 504 505 SDep Dep = isChain ? SDep(OpSU, SDep::Barrier) 506 : SDep(OpSU, SDep::Data, PhysReg); 507 Dep.setLatency(OpLatency); 508 if (!isChain && !UnitLatencies) { 509 computeOperandLatency(OpN, N, i, Dep); 510 ST.adjustSchedDependency(OpSU, DefIdx, &SU, i, Dep); 511 } 512 513 if (!SU.addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) { 514 // Multiple register uses are combined in the same SUnit. For example, 515 // we could have a set of glued nodes with all their defs consumed by 516 // another set of glued nodes. Register pressure tracking sees this as 517 // a single use, so to keep pressure balanced we reduce the defs. 518 // 519 // We can't tell (without more book-keeping) if this results from 520 // glued nodes or duplicate operands. As long as we don't reduce 521 // NumRegDefsLeft to zero, we handle the common cases well. 522 --OpSU->NumRegDefsLeft; 523 } 524 } 525 } 526 } 527 } 528 529 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we 530 /// are input. This SUnit graph is similar to the SelectionDAG, but 531 /// excludes nodes that aren't interesting to scheduling, and represents 532 /// glued together nodes with a single SUnit. 533 void ScheduleDAGSDNodes::BuildSchedGraph(AAResults *AA) { 534 // Cluster certain nodes which should be scheduled together. 535 ClusterNodes(); 536 // Populate the SUnits array. 537 BuildSchedUnits(); 538 // Compute all the scheduling dependencies between nodes. 539 AddSchedEdges(); 540 } 541 542 // Initialize NumNodeDefs for the current Node's opcode. 543 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() { 544 // Check for phys reg copy. 545 if (!Node) 546 return; 547 548 if (!Node->isMachineOpcode()) { 549 if (Node->getOpcode() == ISD::CopyFromReg) 550 NodeNumDefs = 1; 551 else 552 NodeNumDefs = 0; 553 return; 554 } 555 unsigned POpc = Node->getMachineOpcode(); 556 if (POpc == TargetOpcode::IMPLICIT_DEF) { 557 // No register need be allocated for this. 558 NodeNumDefs = 0; 559 return; 560 } 561 if (POpc == TargetOpcode::PATCHPOINT && 562 Node->getValueType(0) == MVT::Other) { 563 // PATCHPOINT is defined to have one result, but it might really have none 564 // if we're not using CallingConv::AnyReg. Don't mistake the chain for a 565 // real definition. 566 NodeNumDefs = 0; 567 return; 568 } 569 unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs(); 570 // Some instructions define regs that are not represented in the selection DAG 571 // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues. 572 NodeNumDefs = std::min(Node->getNumValues(), NRegDefs); 573 DefIdx = 0; 574 } 575 576 // Construct a RegDefIter for this SUnit and find the first valid value. 577 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU, 578 const ScheduleDAGSDNodes *SD) 579 : SchedDAG(SD), Node(SU->getNode()) { 580 InitNodeNumDefs(); 581 Advance(); 582 } 583 584 // Advance to the next valid value defined by the SUnit. 585 void ScheduleDAGSDNodes::RegDefIter::Advance() { 586 for (;Node;) { // Visit all glued nodes. 587 for (;DefIdx < NodeNumDefs; ++DefIdx) { 588 if (!Node->hasAnyUseOfValue(DefIdx)) 589 continue; 590 ValueType = Node->getSimpleValueType(DefIdx); 591 ++DefIdx; 592 return; // Found a normal regdef. 593 } 594 Node = Node->getGluedNode(); 595 if (!Node) { 596 return; // No values left to visit. 597 } 598 InitNodeNumDefs(); 599 } 600 } 601 602 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) { 603 assert(SU->NumRegDefsLeft == 0 && "expect a new node"); 604 for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) { 605 assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected"); 606 ++SU->NumRegDefsLeft; 607 } 608 } 609 610 void ScheduleDAGSDNodes::computeLatency(SUnit *SU) { 611 SDNode *N = SU->getNode(); 612 613 // TokenFactor operands are considered zero latency, and some schedulers 614 // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero 615 // whenever node latency is nonzero. 616 if (N && N->getOpcode() == ISD::TokenFactor) { 617 SU->Latency = 0; 618 return; 619 } 620 621 // Check to see if the scheduler cares about latencies. 622 if (forceUnitLatencies()) { 623 SU->Latency = 1; 624 return; 625 } 626 627 if (!InstrItins || InstrItins->isEmpty()) { 628 if (N && N->isMachineOpcode() && 629 TII->isHighLatencyDef(N->getMachineOpcode())) 630 SU->Latency = HighLatencyCycles; 631 else 632 SU->Latency = 1; 633 return; 634 } 635 636 // Compute the latency for the node. We use the sum of the latencies for 637 // all nodes glued together into this SUnit. 638 SU->Latency = 0; 639 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) 640 if (N->isMachineOpcode()) 641 SU->Latency += TII->getInstrLatency(InstrItins, N); 642 } 643 644 void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use, 645 unsigned OpIdx, SDep& dep) const{ 646 // Check to see if the scheduler cares about latencies. 647 if (forceUnitLatencies()) 648 return; 649 650 if (dep.getKind() != SDep::Data) 651 return; 652 653 unsigned DefIdx = Use->getOperand(OpIdx).getResNo(); 654 if (Use->isMachineOpcode()) 655 // Adjust the use operand index by num of defs. 656 OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs(); 657 int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx); 658 if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg && 659 !BB->succ_empty()) { 660 unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg(); 661 if (Register::isVirtualRegister(Reg)) 662 // This copy is a liveout value. It is likely coalesced, so reduce the 663 // latency so not to penalize the def. 664 // FIXME: need target specific adjustment here? 665 Latency = (Latency > 1) ? Latency - 1 : 1; 666 } 667 if (Latency >= 0) 668 dep.setLatency(Latency); 669 } 670 671 void ScheduleDAGSDNodes::dumpNode(const SUnit &SU) const { 672 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 673 dumpNodeName(SU); 674 dbgs() << ": "; 675 676 if (!SU.getNode()) { 677 dbgs() << "PHYS REG COPY\n"; 678 return; 679 } 680 681 SU.getNode()->dump(DAG); 682 dbgs() << "\n"; 683 SmallVector<SDNode *, 4> GluedNodes; 684 for (SDNode *N = SU.getNode()->getGluedNode(); N; N = N->getGluedNode()) 685 GluedNodes.push_back(N); 686 while (!GluedNodes.empty()) { 687 dbgs() << " "; 688 GluedNodes.back()->dump(DAG); 689 dbgs() << "\n"; 690 GluedNodes.pop_back(); 691 } 692 #endif 693 } 694 695 void ScheduleDAGSDNodes::dump() const { 696 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 697 if (EntrySU.getNode() != nullptr) 698 dumpNodeAll(EntrySU); 699 for (const SUnit &SU : SUnits) 700 dumpNodeAll(SU); 701 if (ExitSU.getNode() != nullptr) 702 dumpNodeAll(ExitSU); 703 #endif 704 } 705 706 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 707 void ScheduleDAGSDNodes::dumpSchedule() const { 708 for (const SUnit *SU : Sequence) { 709 if (SU) 710 dumpNode(*SU); 711 else 712 dbgs() << "**** NOOP ****\n"; 713 } 714 } 715 #endif 716 717 #ifndef NDEBUG 718 /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that 719 /// their state is consistent with the nodes listed in Sequence. 720 /// 721 void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) { 722 unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp); 723 unsigned Noops = llvm::count(Sequence, nullptr); 724 assert(Sequence.size() - Noops == ScheduledNodes && 725 "The number of nodes scheduled doesn't match the expected number!"); 726 } 727 #endif // NDEBUG 728 729 /// ProcessSDDbgValues - Process SDDbgValues associated with this node. 730 static void 731 ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, 732 SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders, 733 DenseMap<SDValue, Register> &VRBaseMap, unsigned Order) { 734 if (!N->getHasDebugValue()) 735 return; 736 737 /// Returns true if \p DV has any VReg operand locations which don't exist in 738 /// VRBaseMap. 739 auto HasUnknownVReg = [&VRBaseMap](SDDbgValue *DV) { 740 for (const SDDbgOperand &L : DV->getLocationOps()) { 741 if (L.getKind() == SDDbgOperand::SDNODE && 742 VRBaseMap.count({L.getSDNode(), L.getResNo()}) == 0) 743 return true; 744 } 745 return false; 746 }; 747 748 // Opportunistically insert immediate dbg_value uses, i.e. those with the same 749 // source order number as N. 750 MachineBasicBlock *BB = Emitter.getBlock(); 751 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos(); 752 for (auto *DV : DAG->GetDbgValues(N)) { 753 if (DV->isEmitted()) 754 continue; 755 unsigned DVOrder = DV->getOrder(); 756 if (Order != 0 && DVOrder != Order) 757 continue; 758 // If DV has any VReg location operands which haven't been mapped then 759 // either that node is no longer available or we just haven't visited the 760 // node yet. In the former case we should emit an undef dbg_value, but we 761 // can do it later. And for the latter we'll want to wait until all 762 // dependent nodes have been visited. 763 if (!DV->isInvalidated() && HasUnknownVReg(DV)) 764 continue; 765 MachineInstr *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap); 766 if (!DbgMI) 767 continue; 768 Orders.push_back({DVOrder, DbgMI}); 769 BB->insert(InsertPos, DbgMI); 770 } 771 } 772 773 // ProcessSourceNode - Process nodes with source order numbers. These are added 774 // to a vector which EmitSchedule uses to determine how to insert dbg_value 775 // instructions in the right order. 776 static void 777 ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, 778 DenseMap<SDValue, Register> &VRBaseMap, 779 SmallVectorImpl<std::pair<unsigned, MachineInstr *>> &Orders, 780 SmallSet<Register, 8> &Seen, MachineInstr *NewInsn) { 781 unsigned Order = N->getIROrder(); 782 if (!Order || Seen.count(Order)) { 783 // Process any valid SDDbgValues even if node does not have any order 784 // assigned. 785 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0); 786 return; 787 } 788 789 // If a new instruction was generated for this Order number, record it. 790 // Otherwise, leave this order number unseen: we will either find later 791 // instructions for it, or leave it unseen if there were no instructions at 792 // all. 793 if (NewInsn) { 794 Seen.insert(Order); 795 Orders.push_back({Order, NewInsn}); 796 } 797 798 // Even if no instruction was generated, a Value may have become defined via 799 // earlier nodes. Try to process them now. 800 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order); 801 } 802 803 void ScheduleDAGSDNodes:: 804 EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, Register> &VRBaseMap, 805 MachineBasicBlock::iterator InsertPos) { 806 for (const SDep &Pred : SU->Preds) { 807 if (Pred.isCtrl()) 808 continue; // ignore chain preds 809 if (Pred.getSUnit()->CopyDstRC) { 810 // Copy to physical register. 811 DenseMap<SUnit *, Register>::iterator VRI = 812 VRBaseMap.find(Pred.getSUnit()); 813 assert(VRI != VRBaseMap.end() && "Node emitted out of order - late"); 814 // Find the destination physical register. 815 Register Reg; 816 for (const SDep &Succ : SU->Succs) { 817 if (Succ.isCtrl()) 818 continue; // ignore chain preds 819 if (Succ.getReg()) { 820 Reg = Succ.getReg(); 821 break; 822 } 823 } 824 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg) 825 .addReg(VRI->second); 826 } else { 827 // Copy from physical register. 828 assert(Pred.getReg() && "Unknown physical register!"); 829 Register VRBase = MRI.createVirtualRegister(SU->CopyDstRC); 830 bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second; 831 (void)isNew; // Silence compiler warning. 832 assert(isNew && "Node emitted out of order - early"); 833 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase) 834 .addReg(Pred.getReg()); 835 } 836 break; 837 } 838 } 839 840 /// EmitSchedule - Emit the machine code in scheduled order. Return the new 841 /// InsertPos and MachineBasicBlock that contains this insertion 842 /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does 843 /// not necessarily refer to returned BB. The emitter may split blocks. 844 MachineBasicBlock *ScheduleDAGSDNodes:: 845 EmitSchedule(MachineBasicBlock::iterator &InsertPos) { 846 InstrEmitter Emitter(DAG->getTarget(), BB, InsertPos, 847 DAG->getUseInstrRefDebugInfo()); 848 DenseMap<SDValue, Register> VRBaseMap; 849 DenseMap<SUnit*, Register> CopyVRBaseMap; 850 SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders; 851 SmallSet<Register, 8> Seen; 852 bool HasDbg = DAG->hasDebugValues(); 853 854 // Emit a node, and determine where its first instruction is for debuginfo. 855 // Zero, one, or multiple instructions can be created when emitting a node. 856 auto EmitNode = 857 [&](SDNode *Node, bool IsClone, bool IsCloned, 858 DenseMap<SDValue, Register> &VRBaseMap) -> MachineInstr * { 859 // Fetch instruction prior to this, or end() if nonexistant. 860 auto GetPrevInsn = [&](MachineBasicBlock::iterator I) { 861 if (I == BB->begin()) 862 return BB->end(); 863 else 864 return std::prev(Emitter.getInsertPos()); 865 }; 866 867 MachineBasicBlock::iterator Before = GetPrevInsn(Emitter.getInsertPos()); 868 Emitter.EmitNode(Node, IsClone, IsCloned, VRBaseMap); 869 MachineBasicBlock::iterator After = GetPrevInsn(Emitter.getInsertPos()); 870 871 // If the iterator did not change, no instructions were inserted. 872 if (Before == After) 873 return nullptr; 874 875 MachineInstr *MI; 876 if (Before == BB->end()) { 877 // There were no prior instructions; the new ones must start at the 878 // beginning of the block. 879 MI = &Emitter.getBlock()->instr_front(); 880 } else { 881 // Return first instruction after the pre-existing instructions. 882 MI = &*std::next(Before); 883 } 884 885 if (MI->isCandidateForCallSiteEntry() && 886 DAG->getTarget().Options.EmitCallSiteInfo) 887 MF.addCallArgsForwardingRegs(MI, DAG->getCallSiteInfo(Node)); 888 889 if (DAG->getNoMergeSiteInfo(Node)) { 890 MI->setFlag(MachineInstr::MIFlag::NoMerge); 891 } 892 893 return MI; 894 }; 895 896 // If this is the first BB, emit byval parameter dbg_value's. 897 if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) { 898 SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin(); 899 SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd(); 900 for (; PDI != PDE; ++PDI) { 901 MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap); 902 if (DbgMI) { 903 BB->insert(InsertPos, DbgMI); 904 // We re-emit the dbg_value closer to its use, too, after instructions 905 // are emitted to the BB. 906 (*PDI)->clearIsEmitted(); 907 } 908 } 909 } 910 911 for (SUnit *SU : Sequence) { 912 if (!SU) { 913 // Null SUnit* is a noop. 914 TII->insertNoop(*Emitter.getBlock(), InsertPos); 915 continue; 916 } 917 918 // For pre-regalloc scheduling, create instructions corresponding to the 919 // SDNode and any glued SDNodes and append them to the block. 920 if (!SU->getNode()) { 921 // Emit a copy. 922 EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos); 923 continue; 924 } 925 926 SmallVector<SDNode *, 4> GluedNodes; 927 for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode()) 928 GluedNodes.push_back(N); 929 while (!GluedNodes.empty()) { 930 SDNode *N = GluedNodes.back(); 931 auto NewInsn = EmitNode(N, SU->OrigNode != SU, SU->isCloned, VRBaseMap); 932 // Remember the source order of the inserted instruction. 933 if (HasDbg) 934 ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen, NewInsn); 935 936 if (MDNode *MD = DAG->getHeapAllocSite(N)) 937 if (NewInsn && NewInsn->isCall()) 938 NewInsn->setHeapAllocMarker(MF, MD); 939 940 GluedNodes.pop_back(); 941 } 942 auto NewInsn = 943 EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, VRBaseMap); 944 // Remember the source order of the inserted instruction. 945 if (HasDbg) 946 ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, Seen, 947 NewInsn); 948 949 if (MDNode *MD = DAG->getHeapAllocSite(SU->getNode())) { 950 if (NewInsn && NewInsn->isCall()) 951 NewInsn->setHeapAllocMarker(MF, MD); 952 } 953 } 954 955 // Insert all the dbg_values which have not already been inserted in source 956 // order sequence. 957 if (HasDbg) { 958 MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI(); 959 960 // Sort the source order instructions and use the order to insert debug 961 // values. Use stable_sort so that DBG_VALUEs are inserted in the same order 962 // regardless of the host's implementation fo std::sort. 963 llvm::stable_sort(Orders, less_first()); 964 std::stable_sort(DAG->DbgBegin(), DAG->DbgEnd(), 965 [](const SDDbgValue *LHS, const SDDbgValue *RHS) { 966 return LHS->getOrder() < RHS->getOrder(); 967 }); 968 969 SDDbgInfo::DbgIterator DI = DAG->DbgBegin(); 970 SDDbgInfo::DbgIterator DE = DAG->DbgEnd(); 971 // Now emit the rest according to source order. 972 unsigned LastOrder = 0; 973 for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) { 974 unsigned Order = Orders[i].first; 975 MachineInstr *MI = Orders[i].second; 976 // Insert all SDDbgValue's whose order(s) are before "Order". 977 assert(MI); 978 for (; DI != DE; ++DI) { 979 if ((*DI)->getOrder() < LastOrder || (*DI)->getOrder() >= Order) 980 break; 981 if ((*DI)->isEmitted()) 982 continue; 983 984 MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap); 985 if (DbgMI) { 986 if (!LastOrder) 987 // Insert to start of the BB (after PHIs). 988 BB->insert(BBBegin, DbgMI); 989 else { 990 // Insert at the instruction, which may be in a different 991 // block, if the block was split by a custom inserter. 992 MachineBasicBlock::iterator Pos = MI; 993 MI->getParent()->insert(Pos, DbgMI); 994 } 995 } 996 } 997 LastOrder = Order; 998 } 999 // Add trailing DbgValue's before the terminator. FIXME: May want to add 1000 // some of them before one or more conditional branches? 1001 SmallVector<MachineInstr*, 8> DbgMIs; 1002 for (; DI != DE; ++DI) { 1003 if ((*DI)->isEmitted()) 1004 continue; 1005 assert((*DI)->getOrder() >= LastOrder && 1006 "emitting DBG_VALUE out of order"); 1007 if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap)) 1008 DbgMIs.push_back(DbgMI); 1009 } 1010 1011 MachineBasicBlock *InsertBB = Emitter.getBlock(); 1012 MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator(); 1013 InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end()); 1014 1015 SDDbgInfo::DbgLabelIterator DLI = DAG->DbgLabelBegin(); 1016 SDDbgInfo::DbgLabelIterator DLE = DAG->DbgLabelEnd(); 1017 // Now emit the rest according to source order. 1018 LastOrder = 0; 1019 for (const auto &InstrOrder : Orders) { 1020 unsigned Order = InstrOrder.first; 1021 MachineInstr *MI = InstrOrder.second; 1022 if (!MI) 1023 continue; 1024 1025 // Insert all SDDbgLabel's whose order(s) are before "Order". 1026 for (; DLI != DLE && 1027 (*DLI)->getOrder() >= LastOrder && (*DLI)->getOrder() < Order; 1028 ++DLI) { 1029 MachineInstr *DbgMI = Emitter.EmitDbgLabel(*DLI); 1030 if (DbgMI) { 1031 if (!LastOrder) 1032 // Insert to start of the BB (after PHIs). 1033 BB->insert(BBBegin, DbgMI); 1034 else { 1035 // Insert at the instruction, which may be in a different 1036 // block, if the block was split by a custom inserter. 1037 MachineBasicBlock::iterator Pos = MI; 1038 MI->getParent()->insert(Pos, DbgMI); 1039 } 1040 } 1041 } 1042 if (DLI == DLE) 1043 break; 1044 1045 LastOrder = Order; 1046 } 1047 } 1048 1049 InsertPos = Emitter.getInsertPos(); 1050 // In some cases, DBG_VALUEs might be inserted after the first terminator, 1051 // which results in an invalid MBB. If that happens, move the DBG_VALUEs 1052 // before the first terminator. 1053 MachineBasicBlock *InsertBB = Emitter.getBlock(); 1054 auto FirstTerm = InsertBB->getFirstTerminator(); 1055 if (FirstTerm != InsertBB->end()) { 1056 assert(!FirstTerm->isDebugValue() && 1057 "first terminator cannot be a debug value"); 1058 for (MachineInstr &MI : make_early_inc_range( 1059 make_range(std::next(FirstTerm), InsertBB->end()))) { 1060 // Only scan up to insertion point. 1061 if (&MI == InsertPos) 1062 break; 1063 1064 if (!MI.isDebugValue()) 1065 continue; 1066 1067 // The DBG_VALUE was referencing a value produced by a terminator. By 1068 // moving the DBG_VALUE, the referenced value also needs invalidating. 1069 MI.getOperand(0).ChangeToRegister(0, false); 1070 MI.moveBefore(&*FirstTerm); 1071 } 1072 } 1073 return InsertBB; 1074 } 1075 1076 /// Return the basic block label. 1077 std::string ScheduleDAGSDNodes::getDAGName() const { 1078 return "sunit-dag." + BB->getFullName(); 1079 } 1080