xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp (revision bc5304a006238115291e7568583632889dffbab9)
1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the ScheduleDAG class, which is a base class used by
10 // scheduling implementation classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ScheduleDAGSDNodes.h"
15 #include "InstrEmitter.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/TargetInstrInfo.h"
26 #include "llvm/CodeGen/TargetLowering.h"
27 #include "llvm/CodeGen/TargetRegisterInfo.h"
28 #include "llvm/CodeGen/TargetSubtargetInfo.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/MC/MCInstrItineraries.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "pre-RA-sched"
38 
39 STATISTIC(LoadsClustered, "Number of loads clustered together");
40 
41 // This allows the latency-based scheduler to notice high latency instructions
42 // without a target itinerary. The choice of number here has more to do with
43 // balancing scheduler heuristics than with the actual machine latency.
44 static cl::opt<int> HighLatencyCycles(
45   "sched-high-latency-cycles", cl::Hidden, cl::init(10),
46   cl::desc("Roughly estimate the number of cycles that 'long latency'"
47            "instructions take for targets with no itinerary"));
48 
49 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
50     : ScheduleDAG(mf), BB(nullptr), DAG(nullptr),
51       InstrItins(mf.getSubtarget().getInstrItineraryData()) {}
52 
53 /// Run - perform scheduling.
54 ///
55 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) {
56   BB = bb;
57   DAG = dag;
58 
59   // Clear the scheduler's SUnit DAG.
60   ScheduleDAG::clearDAG();
61   Sequence.clear();
62 
63   // Invoke the target's selection of scheduler.
64   Schedule();
65 }
66 
67 /// NewSUnit - Creates a new SUnit and return a ptr to it.
68 ///
69 SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) {
70 #ifndef NDEBUG
71   const SUnit *Addr = nullptr;
72   if (!SUnits.empty())
73     Addr = &SUnits[0];
74 #endif
75   SUnits.emplace_back(N, (unsigned)SUnits.size());
76   assert((Addr == nullptr || Addr == &SUnits[0]) &&
77          "SUnits std::vector reallocated on the fly!");
78   SUnits.back().OrigNode = &SUnits.back();
79   SUnit *SU = &SUnits.back();
80   const TargetLowering &TLI = DAG->getTargetLoweringInfo();
81   if (!N ||
82       (N->isMachineOpcode() &&
83        N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
84     SU->SchedulingPref = Sched::None;
85   else
86     SU->SchedulingPref = TLI.getSchedulingPreference(N);
87   return SU;
88 }
89 
90 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
91   SUnit *SU = newSUnit(Old->getNode());
92   SU->OrigNode = Old->OrigNode;
93   SU->Latency = Old->Latency;
94   SU->isVRegCycle = Old->isVRegCycle;
95   SU->isCall = Old->isCall;
96   SU->isCallOp = Old->isCallOp;
97   SU->isTwoAddress = Old->isTwoAddress;
98   SU->isCommutable = Old->isCommutable;
99   SU->hasPhysRegDefs = Old->hasPhysRegDefs;
100   SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
101   SU->isScheduleHigh = Old->isScheduleHigh;
102   SU->isScheduleLow = Old->isScheduleLow;
103   SU->SchedulingPref = Old->SchedulingPref;
104   Old->isCloned = true;
105   return SU;
106 }
107 
108 /// CheckForPhysRegDependency - Check if the dependency between def and use of
109 /// a specified operand is a physical register dependency. If so, returns the
110 /// register and the cost of copying the register.
111 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
112                                       const TargetRegisterInfo *TRI,
113                                       const TargetInstrInfo *TII,
114                                       unsigned &PhysReg, int &Cost) {
115   if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
116     return;
117 
118   unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
119   if (Register::isVirtualRegister(Reg))
120     return;
121 
122   unsigned ResNo = User->getOperand(2).getResNo();
123   if (Def->getOpcode() == ISD::CopyFromReg &&
124       cast<RegisterSDNode>(Def->getOperand(1))->getReg() == Reg) {
125     PhysReg = Reg;
126   } else if (Def->isMachineOpcode()) {
127     const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
128     if (ResNo >= II.getNumDefs() && II.hasImplicitDefOfPhysReg(Reg))
129       PhysReg = Reg;
130   }
131 
132   if (PhysReg != 0) {
133     const TargetRegisterClass *RC =
134         TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo));
135     Cost = RC->getCopyCost();
136   }
137 }
138 
139 // Helper for AddGlue to clone node operands.
140 static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef<EVT> VTs,
141                                 SDValue ExtraOper = SDValue()) {
142   SmallVector<SDValue, 8> Ops(N->op_begin(), N->op_end());
143   if (ExtraOper.getNode())
144     Ops.push_back(ExtraOper);
145 
146   SDVTList VTList = DAG->getVTList(VTs);
147   MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
148 
149   // Store memory references.
150   SmallVector<MachineMemOperand *, 2> MMOs;
151   if (MN)
152     MMOs.assign(MN->memoperands_begin(), MN->memoperands_end());
153 
154   DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops);
155 
156   // Reset the memory references
157   if (MN)
158     DAG->setNodeMemRefs(MN, MMOs);
159 }
160 
161 static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
162   SDNode *GlueDestNode = Glue.getNode();
163 
164   // Don't add glue from a node to itself.
165   if (GlueDestNode == N) return false;
166 
167   // Don't add a glue operand to something that already uses glue.
168   if (GlueDestNode &&
169       N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
170     return false;
171   }
172   // Don't add glue to something that already has a glue value.
173   if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false;
174 
175   SmallVector<EVT, 4> VTs(N->values());
176   if (AddGlue)
177     VTs.push_back(MVT::Glue);
178 
179   CloneNodeWithValues(N, DAG, VTs, Glue);
180 
181   return true;
182 }
183 
184 // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the
185 // node even though simply shrinking the value list is sufficient.
186 static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) {
187   assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue &&
188           !N->hasAnyUseOfValue(N->getNumValues() - 1)) &&
189          "expected an unused glue value");
190 
191   CloneNodeWithValues(N, DAG,
192                       makeArrayRef(N->value_begin(), N->getNumValues() - 1));
193 }
194 
195 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
196 /// This function finds loads of the same base and different offsets. If the
197 /// offsets are not far apart (target specific), it add MVT::Glue inputs and
198 /// outputs to ensure they are scheduled together and in order. This
199 /// optimization may benefit some targets by improving cache locality.
200 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
201   SDValue Chain;
202   unsigned NumOps = Node->getNumOperands();
203   if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
204     Chain = Node->getOperand(NumOps-1);
205   if (!Chain)
206     return;
207 
208   // Skip any load instruction that has a tied input. There may be an additional
209   // dependency requiring a different order than by increasing offsets, and the
210   // added glue may introduce a cycle.
211   auto hasTiedInput = [this](const SDNode *N) {
212     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
213     for (unsigned I = 0; I != MCID.getNumOperands(); ++I) {
214       if (MCID.getOperandConstraint(I, MCOI::TIED_TO) != -1)
215         return true;
216     }
217 
218     return false;
219   };
220 
221   // Look for other loads of the same chain. Find loads that are loading from
222   // the same base pointer and different offsets.
223   SmallPtrSet<SDNode*, 16> Visited;
224   SmallVector<int64_t, 4> Offsets;
225   DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
226   bool Cluster = false;
227   SDNode *Base = Node;
228 
229   if (hasTiedInput(Base))
230     return;
231 
232   // This algorithm requires a reasonably low use count before finding a match
233   // to avoid uselessly blowing up compile time in large blocks.
234   unsigned UseCount = 0;
235   for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
236        I != E && UseCount < 100; ++I, ++UseCount) {
237     if (I.getUse().getResNo() != Chain.getResNo())
238       continue;
239 
240     SDNode *User = *I;
241     if (User == Node || !Visited.insert(User).second)
242       continue;
243     int64_t Offset1, Offset2;
244     if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
245         Offset1 == Offset2 ||
246         hasTiedInput(User)) {
247       // FIXME: Should be ok if they addresses are identical. But earlier
248       // optimizations really should have eliminated one of the loads.
249       continue;
250     }
251     if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
252       Offsets.push_back(Offset1);
253     O2SMap.insert(std::make_pair(Offset2, User));
254     Offsets.push_back(Offset2);
255     if (Offset2 < Offset1)
256       Base = User;
257     Cluster = true;
258     // Reset UseCount to allow more matches.
259     UseCount = 0;
260   }
261 
262   if (!Cluster)
263     return;
264 
265   // Sort them in increasing order.
266   llvm::sort(Offsets);
267 
268   // Check if the loads are close enough.
269   SmallVector<SDNode*, 4> Loads;
270   unsigned NumLoads = 0;
271   int64_t BaseOff = Offsets[0];
272   SDNode *BaseLoad = O2SMap[BaseOff];
273   Loads.push_back(BaseLoad);
274   for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
275     int64_t Offset = Offsets[i];
276     SDNode *Load = O2SMap[Offset];
277     if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
278       break; // Stop right here. Ignore loads that are further away.
279     Loads.push_back(Load);
280     ++NumLoads;
281   }
282 
283   if (NumLoads == 0)
284     return;
285 
286   // Cluster loads by adding MVT::Glue outputs and inputs. This also
287   // ensure they are scheduled in order of increasing addresses.
288   SDNode *Lead = Loads[0];
289   SDValue InGlue = SDValue(nullptr, 0);
290   if (AddGlue(Lead, InGlue, true, DAG))
291     InGlue = SDValue(Lead, Lead->getNumValues() - 1);
292   for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
293     bool OutGlue = I < E - 1;
294     SDNode *Load = Loads[I];
295 
296     // If AddGlue fails, we could leave an unsused glue value. This should not
297     // cause any
298     if (AddGlue(Load, InGlue, OutGlue, DAG)) {
299       if (OutGlue)
300         InGlue = SDValue(Load, Load->getNumValues() - 1);
301 
302       ++LoadsClustered;
303     }
304     else if (!OutGlue && InGlue.getNode())
305       RemoveUnusedGlue(InGlue.getNode(), DAG);
306   }
307 }
308 
309 /// ClusterNodes - Cluster certain nodes which should be scheduled together.
310 ///
311 void ScheduleDAGSDNodes::ClusterNodes() {
312   for (SDNode &NI : DAG->allnodes()) {
313     SDNode *Node = &NI;
314     if (!Node || !Node->isMachineOpcode())
315       continue;
316 
317     unsigned Opc = Node->getMachineOpcode();
318     const MCInstrDesc &MCID = TII->get(Opc);
319     if (MCID.mayLoad())
320       // Cluster loads from "near" addresses into combined SUnits.
321       ClusterNeighboringLoads(Node);
322   }
323 }
324 
325 void ScheduleDAGSDNodes::BuildSchedUnits() {
326   // During scheduling, the NodeId field of SDNode is used to map SDNodes
327   // to their associated SUnits by holding SUnits table indices. A value
328   // of -1 means the SDNode does not yet have an associated SUnit.
329   unsigned NumNodes = 0;
330   for (SDNode &NI : DAG->allnodes()) {
331     NI.setNodeId(-1);
332     ++NumNodes;
333   }
334 
335   // Reserve entries in the vector for each of the SUnits we are creating.  This
336   // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
337   // invalidated.
338   // FIXME: Multiply by 2 because we may clone nodes during scheduling.
339   // This is a temporary workaround.
340   SUnits.reserve(NumNodes * 2);
341 
342   // Add all nodes in depth first order.
343   SmallVector<SDNode*, 64> Worklist;
344   SmallPtrSet<SDNode*, 32> Visited;
345   Worklist.push_back(DAG->getRoot().getNode());
346   Visited.insert(DAG->getRoot().getNode());
347 
348   SmallVector<SUnit*, 8> CallSUnits;
349   while (!Worklist.empty()) {
350     SDNode *NI = Worklist.pop_back_val();
351 
352     // Add all operands to the worklist unless they've already been added.
353     for (const SDValue &Op : NI->op_values())
354       if (Visited.insert(Op.getNode()).second)
355         Worklist.push_back(Op.getNode());
356 
357     if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
358       continue;
359 
360     // If this node has already been processed, stop now.
361     if (NI->getNodeId() != -1) continue;
362 
363     SUnit *NodeSUnit = newSUnit(NI);
364 
365     // See if anything is glued to this node, if so, add them to glued
366     // nodes.  Nodes can have at most one glue input and one glue output.  Glue
367     // is required to be the last operand and result of a node.
368 
369     // Scan up to find glued preds.
370     SDNode *N = NI;
371     while (N->getNumOperands() &&
372            N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
373       N = N->getOperand(N->getNumOperands()-1).getNode();
374       assert(N->getNodeId() == -1 && "Node already inserted!");
375       N->setNodeId(NodeSUnit->NodeNum);
376       if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
377         NodeSUnit->isCall = true;
378     }
379 
380     // Scan down to find any glued succs.
381     N = NI;
382     while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
383       SDValue GlueVal(N, N->getNumValues()-1);
384 
385       // There are either zero or one users of the Glue result.
386       bool HasGlueUse = false;
387       for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
388            UI != E; ++UI)
389         if (GlueVal.isOperandOf(*UI)) {
390           HasGlueUse = true;
391           assert(N->getNodeId() == -1 && "Node already inserted!");
392           N->setNodeId(NodeSUnit->NodeNum);
393           N = *UI;
394           if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
395             NodeSUnit->isCall = true;
396           break;
397         }
398       if (!HasGlueUse) break;
399     }
400 
401     if (NodeSUnit->isCall)
402       CallSUnits.push_back(NodeSUnit);
403 
404     // Schedule zero-latency TokenFactor below any nodes that may increase the
405     // schedule height. Otherwise, ancestors of the TokenFactor may appear to
406     // have false stalls.
407     if (NI->getOpcode() == ISD::TokenFactor)
408       NodeSUnit->isScheduleLow = true;
409 
410     // If there are glue operands involved, N is now the bottom-most node
411     // of the sequence of nodes that are glued together.
412     // Update the SUnit.
413     NodeSUnit->setNode(N);
414     assert(N->getNodeId() == -1 && "Node already inserted!");
415     N->setNodeId(NodeSUnit->NodeNum);
416 
417     // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
418     InitNumRegDefsLeft(NodeSUnit);
419 
420     // Assign the Latency field of NodeSUnit using target-provided information.
421     computeLatency(NodeSUnit);
422   }
423 
424   // Find all call operands.
425   while (!CallSUnits.empty()) {
426     SUnit *SU = CallSUnits.pop_back_val();
427     for (const SDNode *SUNode = SU->getNode(); SUNode;
428          SUNode = SUNode->getGluedNode()) {
429       if (SUNode->getOpcode() != ISD::CopyToReg)
430         continue;
431       SDNode *SrcN = SUNode->getOperand(2).getNode();
432       if (isPassiveNode(SrcN)) continue;   // Not scheduled.
433       SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
434       SrcSU->isCallOp = true;
435     }
436   }
437 }
438 
439 void ScheduleDAGSDNodes::AddSchedEdges() {
440   const TargetSubtargetInfo &ST = MF.getSubtarget();
441 
442   // Check to see if the scheduler cares about latencies.
443   bool UnitLatencies = forceUnitLatencies();
444 
445   // Pass 2: add the preds, succs, etc.
446   for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
447     SUnit *SU = &SUnits[su];
448     SDNode *MainNode = SU->getNode();
449 
450     if (MainNode->isMachineOpcode()) {
451       unsigned Opc = MainNode->getMachineOpcode();
452       const MCInstrDesc &MCID = TII->get(Opc);
453       for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
454         if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
455           SU->isTwoAddress = true;
456           break;
457         }
458       }
459       if (MCID.isCommutable())
460         SU->isCommutable = true;
461     }
462 
463     // Find all predecessors and successors of the group.
464     for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
465       if (N->isMachineOpcode() &&
466           TII->get(N->getMachineOpcode()).getImplicitDefs()) {
467         SU->hasPhysRegClobbers = true;
468         unsigned NumUsed = InstrEmitter::CountResults(N);
469         while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
470           --NumUsed;    // Skip over unused values at the end.
471         if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
472           SU->hasPhysRegDefs = true;
473       }
474 
475       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
476         SDNode *OpN = N->getOperand(i).getNode();
477         unsigned DefIdx = N->getOperand(i).getResNo();
478         if (isPassiveNode(OpN)) continue;   // Not scheduled.
479         SUnit *OpSU = &SUnits[OpN->getNodeId()];
480         assert(OpSU && "Node has no SUnit!");
481         if (OpSU == SU) continue;           // In the same group.
482 
483         EVT OpVT = N->getOperand(i).getValueType();
484         assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
485         bool isChain = OpVT == MVT::Other;
486 
487         unsigned PhysReg = 0;
488         int Cost = 1;
489         // Determine if this is a physical register dependency.
490         CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
491         assert((PhysReg == 0 || !isChain) &&
492                "Chain dependence via physreg data?");
493         // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
494         // emits a copy from the physical register to a virtual register unless
495         // it requires a cross class copy (cost < 0). That means we are only
496         // treating "expensive to copy" register dependency as physical register
497         // dependency. This may change in the future though.
498         if (Cost >= 0 && !StressSched)
499           PhysReg = 0;
500 
501         // If this is a ctrl dep, latency is 1.
502         unsigned OpLatency = isChain ? 1 : OpSU->Latency;
503         // Special-case TokenFactor chains as zero-latency.
504         if(isChain && OpN->getOpcode() == ISD::TokenFactor)
505           OpLatency = 0;
506 
507         SDep Dep = isChain ? SDep(OpSU, SDep::Barrier)
508           : SDep(OpSU, SDep::Data, PhysReg);
509         Dep.setLatency(OpLatency);
510         if (!isChain && !UnitLatencies) {
511           computeOperandLatency(OpN, N, i, Dep);
512           ST.adjustSchedDependency(OpSU, DefIdx, SU, i, Dep);
513         }
514 
515         if (!SU->addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
516           // Multiple register uses are combined in the same SUnit. For example,
517           // we could have a set of glued nodes with all their defs consumed by
518           // another set of glued nodes. Register pressure tracking sees this as
519           // a single use, so to keep pressure balanced we reduce the defs.
520           //
521           // We can't tell (without more book-keeping) if this results from
522           // glued nodes or duplicate operands. As long as we don't reduce
523           // NumRegDefsLeft to zero, we handle the common cases well.
524           --OpSU->NumRegDefsLeft;
525         }
526       }
527     }
528   }
529 }
530 
531 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we
532 /// are input.  This SUnit graph is similar to the SelectionDAG, but
533 /// excludes nodes that aren't interesting to scheduling, and represents
534 /// glued together nodes with a single SUnit.
535 void ScheduleDAGSDNodes::BuildSchedGraph(AAResults *AA) {
536   // Cluster certain nodes which should be scheduled together.
537   ClusterNodes();
538   // Populate the SUnits array.
539   BuildSchedUnits();
540   // Compute all the scheduling dependencies between nodes.
541   AddSchedEdges();
542 }
543 
544 // Initialize NumNodeDefs for the current Node's opcode.
545 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
546   // Check for phys reg copy.
547   if (!Node)
548     return;
549 
550   if (!Node->isMachineOpcode()) {
551     if (Node->getOpcode() == ISD::CopyFromReg)
552       NodeNumDefs = 1;
553     else
554       NodeNumDefs = 0;
555     return;
556   }
557   unsigned POpc = Node->getMachineOpcode();
558   if (POpc == TargetOpcode::IMPLICIT_DEF) {
559     // No register need be allocated for this.
560     NodeNumDefs = 0;
561     return;
562   }
563   if (POpc == TargetOpcode::PATCHPOINT &&
564       Node->getValueType(0) == MVT::Other) {
565     // PATCHPOINT is defined to have one result, but it might really have none
566     // if we're not using CallingConv::AnyReg. Don't mistake the chain for a
567     // real definition.
568     NodeNumDefs = 0;
569     return;
570   }
571   unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
572   // Some instructions define regs that are not represented in the selection DAG
573   // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
574   NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
575   DefIdx = 0;
576 }
577 
578 // Construct a RegDefIter for this SUnit and find the first valid value.
579 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
580                                            const ScheduleDAGSDNodes *SD)
581   : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
582   InitNodeNumDefs();
583   Advance();
584 }
585 
586 // Advance to the next valid value defined by the SUnit.
587 void ScheduleDAGSDNodes::RegDefIter::Advance() {
588   for (;Node;) { // Visit all glued nodes.
589     for (;DefIdx < NodeNumDefs; ++DefIdx) {
590       if (!Node->hasAnyUseOfValue(DefIdx))
591         continue;
592       ValueType = Node->getSimpleValueType(DefIdx);
593       ++DefIdx;
594       return; // Found a normal regdef.
595     }
596     Node = Node->getGluedNode();
597     if (!Node) {
598       return; // No values left to visit.
599     }
600     InitNodeNumDefs();
601   }
602 }
603 
604 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
605   assert(SU->NumRegDefsLeft == 0 && "expect a new node");
606   for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
607     assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
608     ++SU->NumRegDefsLeft;
609   }
610 }
611 
612 void ScheduleDAGSDNodes::computeLatency(SUnit *SU) {
613   SDNode *N = SU->getNode();
614 
615   // TokenFactor operands are considered zero latency, and some schedulers
616   // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
617   // whenever node latency is nonzero.
618   if (N && N->getOpcode() == ISD::TokenFactor) {
619     SU->Latency = 0;
620     return;
621   }
622 
623   // Check to see if the scheduler cares about latencies.
624   if (forceUnitLatencies()) {
625     SU->Latency = 1;
626     return;
627   }
628 
629   if (!InstrItins || InstrItins->isEmpty()) {
630     if (N && N->isMachineOpcode() &&
631         TII->isHighLatencyDef(N->getMachineOpcode()))
632       SU->Latency = HighLatencyCycles;
633     else
634       SU->Latency = 1;
635     return;
636   }
637 
638   // Compute the latency for the node.  We use the sum of the latencies for
639   // all nodes glued together into this SUnit.
640   SU->Latency = 0;
641   for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
642     if (N->isMachineOpcode())
643       SU->Latency += TII->getInstrLatency(InstrItins, N);
644 }
645 
646 void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use,
647                                                unsigned OpIdx, SDep& dep) const{
648   // Check to see if the scheduler cares about latencies.
649   if (forceUnitLatencies())
650     return;
651 
652   if (dep.getKind() != SDep::Data)
653     return;
654 
655   unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
656   if (Use->isMachineOpcode())
657     // Adjust the use operand index by num of defs.
658     OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
659   int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
660   if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
661       !BB->succ_empty()) {
662     unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
663     if (Register::isVirtualRegister(Reg))
664       // This copy is a liveout value. It is likely coalesced, so reduce the
665       // latency so not to penalize the def.
666       // FIXME: need target specific adjustment here?
667       Latency = (Latency > 1) ? Latency - 1 : 1;
668   }
669   if (Latency >= 0)
670     dep.setLatency(Latency);
671 }
672 
673 void ScheduleDAGSDNodes::dumpNode(const SUnit &SU) const {
674 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
675   dumpNodeName(SU);
676   dbgs() << ": ";
677 
678   if (!SU.getNode()) {
679     dbgs() << "PHYS REG COPY\n";
680     return;
681   }
682 
683   SU.getNode()->dump(DAG);
684   dbgs() << "\n";
685   SmallVector<SDNode *, 4> GluedNodes;
686   for (SDNode *N = SU.getNode()->getGluedNode(); N; N = N->getGluedNode())
687     GluedNodes.push_back(N);
688   while (!GluedNodes.empty()) {
689     dbgs() << "    ";
690     GluedNodes.back()->dump(DAG);
691     dbgs() << "\n";
692     GluedNodes.pop_back();
693   }
694 #endif
695 }
696 
697 void ScheduleDAGSDNodes::dump() const {
698 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
699   if (EntrySU.getNode() != nullptr)
700     dumpNodeAll(EntrySU);
701   for (const SUnit &SU : SUnits)
702     dumpNodeAll(SU);
703   if (ExitSU.getNode() != nullptr)
704     dumpNodeAll(ExitSU);
705 #endif
706 }
707 
708 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
709 void ScheduleDAGSDNodes::dumpSchedule() const {
710   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
711     if (SUnit *SU = Sequence[i])
712       dumpNode(*SU);
713     else
714       dbgs() << "**** NOOP ****\n";
715   }
716 }
717 #endif
718 
719 #ifndef NDEBUG
720 /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that
721 /// their state is consistent with the nodes listed in Sequence.
722 ///
723 void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) {
724   unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp);
725   unsigned Noops = 0;
726   for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
727     if (!Sequence[i])
728       ++Noops;
729   assert(Sequence.size() - Noops == ScheduledNodes &&
730          "The number of nodes scheduled doesn't match the expected number!");
731 }
732 #endif // NDEBUG
733 
734 /// ProcessSDDbgValues - Process SDDbgValues associated with this node.
735 static void
736 ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
737                    SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
738                    DenseMap<SDValue, Register> &VRBaseMap, unsigned Order) {
739   if (!N->getHasDebugValue())
740     return;
741 
742   // Opportunistically insert immediate dbg_value uses, i.e. those with the same
743   // source order number as N.
744   MachineBasicBlock *BB = Emitter.getBlock();
745   MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
746   for (auto DV : DAG->GetDbgValues(N)) {
747     if (DV->isEmitted())
748       continue;
749     unsigned DVOrder = DV->getOrder();
750     if (!Order || DVOrder == Order) {
751       MachineInstr *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap);
752       if (DbgMI) {
753         Orders.push_back({DVOrder, DbgMI});
754         BB->insert(InsertPos, DbgMI);
755       }
756     }
757   }
758 }
759 
760 // ProcessSourceNode - Process nodes with source order numbers. These are added
761 // to a vector which EmitSchedule uses to determine how to insert dbg_value
762 // instructions in the right order.
763 static void
764 ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
765                   DenseMap<SDValue, Register> &VRBaseMap,
766                   SmallVectorImpl<std::pair<unsigned, MachineInstr *>> &Orders,
767                   SmallSet<Register, 8> &Seen, MachineInstr *NewInsn) {
768   unsigned Order = N->getIROrder();
769   if (!Order || Seen.count(Order)) {
770     // Process any valid SDDbgValues even if node does not have any order
771     // assigned.
772     ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
773     return;
774   }
775 
776   // If a new instruction was generated for this Order number, record it.
777   // Otherwise, leave this order number unseen: we will either find later
778   // instructions for it, or leave it unseen if there were no instructions at
779   // all.
780   if (NewInsn) {
781     Seen.insert(Order);
782     Orders.push_back({Order, NewInsn});
783   }
784 
785   // Even if no instruction was generated, a Value may have become defined via
786   // earlier nodes. Try to process them now.
787   ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
788 }
789 
790 void ScheduleDAGSDNodes::
791 EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, Register> &VRBaseMap,
792                 MachineBasicBlock::iterator InsertPos) {
793   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
794        I != E; ++I) {
795     if (I->isCtrl()) continue;  // ignore chain preds
796     if (I->getSUnit()->CopyDstRC) {
797       // Copy to physical register.
798       DenseMap<SUnit*, Register>::iterator VRI = VRBaseMap.find(I->getSUnit());
799       assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
800       // Find the destination physical register.
801       Register Reg;
802       for (SUnit::const_succ_iterator II = SU->Succs.begin(),
803              EE = SU->Succs.end(); II != EE; ++II) {
804         if (II->isCtrl()) continue;  // ignore chain preds
805         if (II->getReg()) {
806           Reg = II->getReg();
807           break;
808         }
809       }
810       BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg)
811         .addReg(VRI->second);
812     } else {
813       // Copy from physical register.
814       assert(I->getReg() && "Unknown physical register!");
815       Register VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
816       bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
817       (void)isNew; // Silence compiler warning.
818       assert(isNew && "Node emitted out of order - early");
819       BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase)
820         .addReg(I->getReg());
821     }
822     break;
823   }
824 }
825 
826 /// EmitSchedule - Emit the machine code in scheduled order. Return the new
827 /// InsertPos and MachineBasicBlock that contains this insertion
828 /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does
829 /// not necessarily refer to returned BB. The emitter may split blocks.
830 MachineBasicBlock *ScheduleDAGSDNodes::
831 EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
832   InstrEmitter Emitter(DAG->getTarget(), BB, InsertPos);
833   DenseMap<SDValue, Register> VRBaseMap;
834   DenseMap<SUnit*, Register> CopyVRBaseMap;
835   SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
836   SmallSet<Register, 8> Seen;
837   bool HasDbg = DAG->hasDebugValues();
838 
839   // Emit a node, and determine where its first instruction is for debuginfo.
840   // Zero, one, or multiple instructions can be created when emitting a node.
841   auto EmitNode =
842       [&](SDNode *Node, bool IsClone, bool IsCloned,
843           DenseMap<SDValue, Register> &VRBaseMap) -> MachineInstr * {
844     // Fetch instruction prior to this, or end() if nonexistant.
845     auto GetPrevInsn = [&](MachineBasicBlock::iterator I) {
846       if (I == BB->begin())
847         return BB->end();
848       else
849         return std::prev(Emitter.getInsertPos());
850     };
851 
852     MachineBasicBlock::iterator Before = GetPrevInsn(Emitter.getInsertPos());
853     Emitter.EmitNode(Node, IsClone, IsCloned, VRBaseMap);
854     MachineBasicBlock::iterator After = GetPrevInsn(Emitter.getInsertPos());
855 
856     // If the iterator did not change, no instructions were inserted.
857     if (Before == After)
858       return nullptr;
859 
860     MachineInstr *MI;
861     if (Before == BB->end()) {
862       // There were no prior instructions; the new ones must start at the
863       // beginning of the block.
864       MI = &Emitter.getBlock()->instr_front();
865     } else {
866       // Return first instruction after the pre-existing instructions.
867       MI = &*std::next(Before);
868     }
869 
870     if (MI->isCandidateForCallSiteEntry() &&
871         DAG->getTarget().Options.EmitCallSiteInfo)
872       MF.addCallArgsForwardingRegs(MI, DAG->getSDCallSiteInfo(Node));
873 
874     if (DAG->getNoMergeSiteInfo(Node)) {
875       MI->setFlag(MachineInstr::MIFlag::NoMerge);
876     }
877 
878     return MI;
879   };
880 
881   // If this is the first BB, emit byval parameter dbg_value's.
882   if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
883     SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
884     SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
885     for (; PDI != PDE; ++PDI) {
886       MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
887       if (DbgMI) {
888         BB->insert(InsertPos, DbgMI);
889         // We re-emit the dbg_value closer to its use, too, after instructions
890         // are emitted to the BB.
891         (*PDI)->clearIsEmitted();
892       }
893     }
894   }
895 
896   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
897     SUnit *SU = Sequence[i];
898     if (!SU) {
899       // Null SUnit* is a noop.
900       TII->insertNoop(*Emitter.getBlock(), InsertPos);
901       continue;
902     }
903 
904     // For pre-regalloc scheduling, create instructions corresponding to the
905     // SDNode and any glued SDNodes and append them to the block.
906     if (!SU->getNode()) {
907       // Emit a copy.
908       EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos);
909       continue;
910     }
911 
912     SmallVector<SDNode *, 4> GluedNodes;
913     for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
914       GluedNodes.push_back(N);
915     while (!GluedNodes.empty()) {
916       SDNode *N = GluedNodes.back();
917       auto NewInsn = EmitNode(N, SU->OrigNode != SU, SU->isCloned, VRBaseMap);
918       // Remember the source order of the inserted instruction.
919       if (HasDbg)
920         ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen, NewInsn);
921 
922       if (MDNode *MD = DAG->getHeapAllocSite(N))
923         if (NewInsn && NewInsn->isCall())
924           NewInsn->setHeapAllocMarker(MF, MD);
925 
926       GluedNodes.pop_back();
927     }
928     auto NewInsn =
929         EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, VRBaseMap);
930     // Remember the source order of the inserted instruction.
931     if (HasDbg)
932       ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, Seen,
933                         NewInsn);
934 
935     if (MDNode *MD = DAG->getHeapAllocSite(SU->getNode())) {
936       if (NewInsn && NewInsn->isCall())
937         NewInsn->setHeapAllocMarker(MF, MD);
938     }
939   }
940 
941   // Insert all the dbg_values which have not already been inserted in source
942   // order sequence.
943   if (HasDbg) {
944     MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
945 
946     // Sort the source order instructions and use the order to insert debug
947     // values. Use stable_sort so that DBG_VALUEs are inserted in the same order
948     // regardless of the host's implementation fo std::sort.
949     llvm::stable_sort(Orders, less_first());
950     std::stable_sort(DAG->DbgBegin(), DAG->DbgEnd(),
951                      [](const SDDbgValue *LHS, const SDDbgValue *RHS) {
952                        return LHS->getOrder() < RHS->getOrder();
953                      });
954 
955     SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
956     SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
957     // Now emit the rest according to source order.
958     unsigned LastOrder = 0;
959     for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
960       unsigned Order = Orders[i].first;
961       MachineInstr *MI = Orders[i].second;
962       // Insert all SDDbgValue's whose order(s) are before "Order".
963       assert(MI);
964       for (; DI != DE; ++DI) {
965         if ((*DI)->getOrder() < LastOrder || (*DI)->getOrder() >= Order)
966           break;
967         if ((*DI)->isEmitted())
968           continue;
969 
970         MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
971         if (DbgMI) {
972           if (!LastOrder)
973             // Insert to start of the BB (after PHIs).
974             BB->insert(BBBegin, DbgMI);
975           else {
976             // Insert at the instruction, which may be in a different
977             // block, if the block was split by a custom inserter.
978             MachineBasicBlock::iterator Pos = MI;
979             MI->getParent()->insert(Pos, DbgMI);
980           }
981         }
982       }
983       LastOrder = Order;
984     }
985     // Add trailing DbgValue's before the terminator. FIXME: May want to add
986     // some of them before one or more conditional branches?
987     SmallVector<MachineInstr*, 8> DbgMIs;
988     for (; DI != DE; ++DI) {
989       if ((*DI)->isEmitted())
990         continue;
991       assert((*DI)->getOrder() >= LastOrder &&
992              "emitting DBG_VALUE out of order");
993       if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap))
994         DbgMIs.push_back(DbgMI);
995     }
996 
997     MachineBasicBlock *InsertBB = Emitter.getBlock();
998     MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator();
999     InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end());
1000 
1001     SDDbgInfo::DbgLabelIterator DLI = DAG->DbgLabelBegin();
1002     SDDbgInfo::DbgLabelIterator DLE = DAG->DbgLabelEnd();
1003     // Now emit the rest according to source order.
1004     LastOrder = 0;
1005     for (const auto &InstrOrder : Orders) {
1006       unsigned Order = InstrOrder.first;
1007       MachineInstr *MI = InstrOrder.second;
1008       if (!MI)
1009         continue;
1010 
1011       // Insert all SDDbgLabel's whose order(s) are before "Order".
1012       for (; DLI != DLE &&
1013              (*DLI)->getOrder() >= LastOrder && (*DLI)->getOrder() < Order;
1014              ++DLI) {
1015         MachineInstr *DbgMI = Emitter.EmitDbgLabel(*DLI);
1016         if (DbgMI) {
1017           if (!LastOrder)
1018             // Insert to start of the BB (after PHIs).
1019             BB->insert(BBBegin, DbgMI);
1020           else {
1021             // Insert at the instruction, which may be in a different
1022             // block, if the block was split by a custom inserter.
1023             MachineBasicBlock::iterator Pos = MI;
1024             MI->getParent()->insert(Pos, DbgMI);
1025           }
1026         }
1027       }
1028       if (DLI == DLE)
1029         break;
1030 
1031       LastOrder = Order;
1032     }
1033   }
1034 
1035   InsertPos = Emitter.getInsertPos();
1036   // In some cases, DBG_VALUEs might be inserted after the first terminator,
1037   // which results in an invalid MBB. If that happens, move the DBG_VALUEs
1038   // before the first terminator.
1039   MachineBasicBlock *InsertBB = Emitter.getBlock();
1040   auto FirstTerm = InsertBB->getFirstTerminator();
1041   if (FirstTerm != InsertBB->end()) {
1042     assert(!FirstTerm->isDebugValue() &&
1043            "first terminator cannot be a debug value");
1044     for (MachineInstr &MI : make_early_inc_range(
1045              make_range(std::next(FirstTerm), InsertBB->end()))) {
1046       if (!MI.isDebugValue())
1047         continue;
1048 
1049       if (&MI == InsertPos)
1050         InsertPos = std::prev(InsertPos->getIterator());
1051 
1052       // The DBG_VALUE was referencing a value produced by a terminator. By
1053       // moving the DBG_VALUE, the referenced value also needs invalidating.
1054       MI.getOperand(0).ChangeToRegister(0, false);
1055       MI.moveBefore(&*FirstTerm);
1056     }
1057   }
1058   return InsertBB;
1059 }
1060 
1061 /// Return the basic block label.
1062 std::string ScheduleDAGSDNodes::getDAGName() const {
1063   return "sunit-dag." + BB->getFullName();
1064 }
1065