1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the ScheduleDAG class, which is a base class used by 10 // scheduling implementation classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ScheduleDAGSDNodes.h" 15 #include "InstrEmitter.h" 16 #include "SDNodeDbgValue.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SelectionDAG.h" 25 #include "llvm/CodeGen/TargetInstrInfo.h" 26 #include "llvm/CodeGen/TargetLowering.h" 27 #include "llvm/CodeGen/TargetRegisterInfo.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/Config/llvm-config.h" 30 #include "llvm/MC/MCInstrItineraries.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetMachine.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "pre-RA-sched" 38 39 STATISTIC(LoadsClustered, "Number of loads clustered together"); 40 41 // This allows the latency-based scheduler to notice high latency instructions 42 // without a target itinerary. The choice of number here has more to do with 43 // balancing scheduler heuristics than with the actual machine latency. 44 static cl::opt<int> HighLatencyCycles( 45 "sched-high-latency-cycles", cl::Hidden, cl::init(10), 46 cl::desc("Roughly estimate the number of cycles that 'long latency'" 47 "instructions take for targets with no itinerary")); 48 49 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf) 50 : ScheduleDAG(mf), BB(nullptr), DAG(nullptr), 51 InstrItins(mf.getSubtarget().getInstrItineraryData()) {} 52 53 /// Run - perform scheduling. 54 /// 55 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) { 56 BB = bb; 57 DAG = dag; 58 59 // Clear the scheduler's SUnit DAG. 60 ScheduleDAG::clearDAG(); 61 Sequence.clear(); 62 63 // Invoke the target's selection of scheduler. 64 Schedule(); 65 } 66 67 /// NewSUnit - Creates a new SUnit and return a ptr to it. 68 /// 69 SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) { 70 #ifndef NDEBUG 71 const SUnit *Addr = nullptr; 72 if (!SUnits.empty()) 73 Addr = &SUnits[0]; 74 #endif 75 SUnits.emplace_back(N, (unsigned)SUnits.size()); 76 assert((Addr == nullptr || Addr == &SUnits[0]) && 77 "SUnits std::vector reallocated on the fly!"); 78 SUnits.back().OrigNode = &SUnits.back(); 79 SUnit *SU = &SUnits.back(); 80 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 81 if (!N || 82 (N->isMachineOpcode() && 83 N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)) 84 SU->SchedulingPref = Sched::None; 85 else 86 SU->SchedulingPref = TLI.getSchedulingPreference(N); 87 return SU; 88 } 89 90 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) { 91 SUnit *SU = newSUnit(Old->getNode()); 92 SU->OrigNode = Old->OrigNode; 93 SU->Latency = Old->Latency; 94 SU->isVRegCycle = Old->isVRegCycle; 95 SU->isCall = Old->isCall; 96 SU->isCallOp = Old->isCallOp; 97 SU->isTwoAddress = Old->isTwoAddress; 98 SU->isCommutable = Old->isCommutable; 99 SU->hasPhysRegDefs = Old->hasPhysRegDefs; 100 SU->hasPhysRegClobbers = Old->hasPhysRegClobbers; 101 SU->isScheduleHigh = Old->isScheduleHigh; 102 SU->isScheduleLow = Old->isScheduleLow; 103 SU->SchedulingPref = Old->SchedulingPref; 104 Old->isCloned = true; 105 return SU; 106 } 107 108 /// CheckForPhysRegDependency - Check if the dependency between def and use of 109 /// a specified operand is a physical register dependency. If so, returns the 110 /// register and the cost of copying the register. 111 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, 112 const TargetRegisterInfo *TRI, 113 const TargetInstrInfo *TII, 114 unsigned &PhysReg, int &Cost) { 115 if (Op != 2 || User->getOpcode() != ISD::CopyToReg) 116 return; 117 118 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 119 if (Register::isVirtualRegister(Reg)) 120 return; 121 122 unsigned ResNo = User->getOperand(2).getResNo(); 123 if (Def->getOpcode() == ISD::CopyFromReg && 124 cast<RegisterSDNode>(Def->getOperand(1))->getReg() == Reg) { 125 PhysReg = Reg; 126 } else if (Def->isMachineOpcode()) { 127 const MCInstrDesc &II = TII->get(Def->getMachineOpcode()); 128 if (ResNo >= II.getNumDefs() && 129 II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) 130 PhysReg = Reg; 131 } 132 133 if (PhysReg != 0) { 134 const TargetRegisterClass *RC = 135 TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo)); 136 Cost = RC->getCopyCost(); 137 } 138 } 139 140 // Helper for AddGlue to clone node operands. 141 static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef<EVT> VTs, 142 SDValue ExtraOper = SDValue()) { 143 SmallVector<SDValue, 8> Ops(N->op_begin(), N->op_end()); 144 if (ExtraOper.getNode()) 145 Ops.push_back(ExtraOper); 146 147 SDVTList VTList = DAG->getVTList(VTs); 148 MachineSDNode *MN = dyn_cast<MachineSDNode>(N); 149 150 // Store memory references. 151 SmallVector<MachineMemOperand *, 2> MMOs; 152 if (MN) 153 MMOs.assign(MN->memoperands_begin(), MN->memoperands_end()); 154 155 DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops); 156 157 // Reset the memory references 158 if (MN) 159 DAG->setNodeMemRefs(MN, MMOs); 160 } 161 162 static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) { 163 SDNode *GlueDestNode = Glue.getNode(); 164 165 // Don't add glue from a node to itself. 166 if (GlueDestNode == N) return false; 167 168 // Don't add a glue operand to something that already uses glue. 169 if (GlueDestNode && 170 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { 171 return false; 172 } 173 // Don't add glue to something that already has a glue value. 174 if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false; 175 176 SmallVector<EVT, 4> VTs(N->value_begin(), N->value_end()); 177 if (AddGlue) 178 VTs.push_back(MVT::Glue); 179 180 CloneNodeWithValues(N, DAG, VTs, Glue); 181 182 return true; 183 } 184 185 // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the 186 // node even though simply shrinking the value list is sufficient. 187 static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) { 188 assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue && 189 !N->hasAnyUseOfValue(N->getNumValues() - 1)) && 190 "expected an unused glue value"); 191 192 CloneNodeWithValues(N, DAG, 193 makeArrayRef(N->value_begin(), N->getNumValues() - 1)); 194 } 195 196 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them. 197 /// This function finds loads of the same base and different offsets. If the 198 /// offsets are not far apart (target specific), it add MVT::Glue inputs and 199 /// outputs to ensure they are scheduled together and in order. This 200 /// optimization may benefit some targets by improving cache locality. 201 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) { 202 SDValue Chain; 203 unsigned NumOps = Node->getNumOperands(); 204 if (Node->getOperand(NumOps-1).getValueType() == MVT::Other) 205 Chain = Node->getOperand(NumOps-1); 206 if (!Chain) 207 return; 208 209 // Skip any load instruction that has a tied input. There may be an additional 210 // dependency requiring a different order than by increasing offsets, and the 211 // added glue may introduce a cycle. 212 auto hasTiedInput = [this](const SDNode *N) { 213 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 214 for (unsigned I = 0; I != MCID.getNumOperands(); ++I) { 215 if (MCID.getOperandConstraint(I, MCOI::TIED_TO) != -1) 216 return true; 217 } 218 219 return false; 220 }; 221 222 // Look for other loads of the same chain. Find loads that are loading from 223 // the same base pointer and different offsets. 224 SmallPtrSet<SDNode*, 16> Visited; 225 SmallVector<int64_t, 4> Offsets; 226 DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode. 227 bool Cluster = false; 228 SDNode *Base = Node; 229 230 if (hasTiedInput(Base)) 231 return; 232 233 // This algorithm requires a reasonably low use count before finding a match 234 // to avoid uselessly blowing up compile time in large blocks. 235 unsigned UseCount = 0; 236 for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end(); 237 I != E && UseCount < 100; ++I, ++UseCount) { 238 if (I.getUse().getResNo() != Chain.getResNo()) 239 continue; 240 241 SDNode *User = *I; 242 if (User == Node || !Visited.insert(User).second) 243 continue; 244 int64_t Offset1, Offset2; 245 if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) || 246 Offset1 == Offset2 || 247 hasTiedInput(User)) { 248 // FIXME: Should be ok if they addresses are identical. But earlier 249 // optimizations really should have eliminated one of the loads. 250 continue; 251 } 252 if (O2SMap.insert(std::make_pair(Offset1, Base)).second) 253 Offsets.push_back(Offset1); 254 O2SMap.insert(std::make_pair(Offset2, User)); 255 Offsets.push_back(Offset2); 256 if (Offset2 < Offset1) 257 Base = User; 258 Cluster = true; 259 // Reset UseCount to allow more matches. 260 UseCount = 0; 261 } 262 263 if (!Cluster) 264 return; 265 266 // Sort them in increasing order. 267 llvm::sort(Offsets); 268 269 // Check if the loads are close enough. 270 SmallVector<SDNode*, 4> Loads; 271 unsigned NumLoads = 0; 272 int64_t BaseOff = Offsets[0]; 273 SDNode *BaseLoad = O2SMap[BaseOff]; 274 Loads.push_back(BaseLoad); 275 for (unsigned i = 1, e = Offsets.size(); i != e; ++i) { 276 int64_t Offset = Offsets[i]; 277 SDNode *Load = O2SMap[Offset]; 278 if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads)) 279 break; // Stop right here. Ignore loads that are further away. 280 Loads.push_back(Load); 281 ++NumLoads; 282 } 283 284 if (NumLoads == 0) 285 return; 286 287 // Cluster loads by adding MVT::Glue outputs and inputs. This also 288 // ensure they are scheduled in order of increasing addresses. 289 SDNode *Lead = Loads[0]; 290 SDValue InGlue = SDValue(nullptr, 0); 291 if (AddGlue(Lead, InGlue, true, DAG)) 292 InGlue = SDValue(Lead, Lead->getNumValues() - 1); 293 for (unsigned I = 1, E = Loads.size(); I != E; ++I) { 294 bool OutGlue = I < E - 1; 295 SDNode *Load = Loads[I]; 296 297 // If AddGlue fails, we could leave an unsused glue value. This should not 298 // cause any 299 if (AddGlue(Load, InGlue, OutGlue, DAG)) { 300 if (OutGlue) 301 InGlue = SDValue(Load, Load->getNumValues() - 1); 302 303 ++LoadsClustered; 304 } 305 else if (!OutGlue && InGlue.getNode()) 306 RemoveUnusedGlue(InGlue.getNode(), DAG); 307 } 308 } 309 310 /// ClusterNodes - Cluster certain nodes which should be scheduled together. 311 /// 312 void ScheduleDAGSDNodes::ClusterNodes() { 313 for (SDNode &NI : DAG->allnodes()) { 314 SDNode *Node = &NI; 315 if (!Node || !Node->isMachineOpcode()) 316 continue; 317 318 unsigned Opc = Node->getMachineOpcode(); 319 const MCInstrDesc &MCID = TII->get(Opc); 320 if (MCID.mayLoad()) 321 // Cluster loads from "near" addresses into combined SUnits. 322 ClusterNeighboringLoads(Node); 323 } 324 } 325 326 void ScheduleDAGSDNodes::BuildSchedUnits() { 327 // During scheduling, the NodeId field of SDNode is used to map SDNodes 328 // to their associated SUnits by holding SUnits table indices. A value 329 // of -1 means the SDNode does not yet have an associated SUnit. 330 unsigned NumNodes = 0; 331 for (SDNode &NI : DAG->allnodes()) { 332 NI.setNodeId(-1); 333 ++NumNodes; 334 } 335 336 // Reserve entries in the vector for each of the SUnits we are creating. This 337 // ensure that reallocation of the vector won't happen, so SUnit*'s won't get 338 // invalidated. 339 // FIXME: Multiply by 2 because we may clone nodes during scheduling. 340 // This is a temporary workaround. 341 SUnits.reserve(NumNodes * 2); 342 343 // Add all nodes in depth first order. 344 SmallVector<SDNode*, 64> Worklist; 345 SmallPtrSet<SDNode*, 32> Visited; 346 Worklist.push_back(DAG->getRoot().getNode()); 347 Visited.insert(DAG->getRoot().getNode()); 348 349 SmallVector<SUnit*, 8> CallSUnits; 350 while (!Worklist.empty()) { 351 SDNode *NI = Worklist.pop_back_val(); 352 353 // Add all operands to the worklist unless they've already been added. 354 for (const SDValue &Op : NI->op_values()) 355 if (Visited.insert(Op.getNode()).second) 356 Worklist.push_back(Op.getNode()); 357 358 if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate. 359 continue; 360 361 // If this node has already been processed, stop now. 362 if (NI->getNodeId() != -1) continue; 363 364 SUnit *NodeSUnit = newSUnit(NI); 365 366 // See if anything is glued to this node, if so, add them to glued 367 // nodes. Nodes can have at most one glue input and one glue output. Glue 368 // is required to be the last operand and result of a node. 369 370 // Scan up to find glued preds. 371 SDNode *N = NI; 372 while (N->getNumOperands() && 373 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { 374 N = N->getOperand(N->getNumOperands()-1).getNode(); 375 assert(N->getNodeId() == -1 && "Node already inserted!"); 376 N->setNodeId(NodeSUnit->NodeNum); 377 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) 378 NodeSUnit->isCall = true; 379 } 380 381 // Scan down to find any glued succs. 382 N = NI; 383 while (N->getValueType(N->getNumValues()-1) == MVT::Glue) { 384 SDValue GlueVal(N, N->getNumValues()-1); 385 386 // There are either zero or one users of the Glue result. 387 bool HasGlueUse = false; 388 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 389 UI != E; ++UI) 390 if (GlueVal.isOperandOf(*UI)) { 391 HasGlueUse = true; 392 assert(N->getNodeId() == -1 && "Node already inserted!"); 393 N->setNodeId(NodeSUnit->NodeNum); 394 N = *UI; 395 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) 396 NodeSUnit->isCall = true; 397 break; 398 } 399 if (!HasGlueUse) break; 400 } 401 402 if (NodeSUnit->isCall) 403 CallSUnits.push_back(NodeSUnit); 404 405 // Schedule zero-latency TokenFactor below any nodes that may increase the 406 // schedule height. Otherwise, ancestors of the TokenFactor may appear to 407 // have false stalls. 408 if (NI->getOpcode() == ISD::TokenFactor) 409 NodeSUnit->isScheduleLow = true; 410 411 // If there are glue operands involved, N is now the bottom-most node 412 // of the sequence of nodes that are glued together. 413 // Update the SUnit. 414 NodeSUnit->setNode(N); 415 assert(N->getNodeId() == -1 && "Node already inserted!"); 416 N->setNodeId(NodeSUnit->NodeNum); 417 418 // Compute NumRegDefsLeft. This must be done before AddSchedEdges. 419 InitNumRegDefsLeft(NodeSUnit); 420 421 // Assign the Latency field of NodeSUnit using target-provided information. 422 computeLatency(NodeSUnit); 423 } 424 425 // Find all call operands. 426 while (!CallSUnits.empty()) { 427 SUnit *SU = CallSUnits.pop_back_val(); 428 for (const SDNode *SUNode = SU->getNode(); SUNode; 429 SUNode = SUNode->getGluedNode()) { 430 if (SUNode->getOpcode() != ISD::CopyToReg) 431 continue; 432 SDNode *SrcN = SUNode->getOperand(2).getNode(); 433 if (isPassiveNode(SrcN)) continue; // Not scheduled. 434 SUnit *SrcSU = &SUnits[SrcN->getNodeId()]; 435 SrcSU->isCallOp = true; 436 } 437 } 438 } 439 440 void ScheduleDAGSDNodes::AddSchedEdges() { 441 const TargetSubtargetInfo &ST = MF.getSubtarget(); 442 443 // Check to see if the scheduler cares about latencies. 444 bool UnitLatencies = forceUnitLatencies(); 445 446 // Pass 2: add the preds, succs, etc. 447 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { 448 SUnit *SU = &SUnits[su]; 449 SDNode *MainNode = SU->getNode(); 450 451 if (MainNode->isMachineOpcode()) { 452 unsigned Opc = MainNode->getMachineOpcode(); 453 const MCInstrDesc &MCID = TII->get(Opc); 454 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) { 455 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) { 456 SU->isTwoAddress = true; 457 break; 458 } 459 } 460 if (MCID.isCommutable()) 461 SU->isCommutable = true; 462 } 463 464 // Find all predecessors and successors of the group. 465 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) { 466 if (N->isMachineOpcode() && 467 TII->get(N->getMachineOpcode()).getImplicitDefs()) { 468 SU->hasPhysRegClobbers = true; 469 unsigned NumUsed = InstrEmitter::CountResults(N); 470 while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1)) 471 --NumUsed; // Skip over unused values at the end. 472 if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs()) 473 SU->hasPhysRegDefs = true; 474 } 475 476 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 477 SDNode *OpN = N->getOperand(i).getNode(); 478 unsigned DefIdx = N->getOperand(i).getResNo(); 479 if (isPassiveNode(OpN)) continue; // Not scheduled. 480 SUnit *OpSU = &SUnits[OpN->getNodeId()]; 481 assert(OpSU && "Node has no SUnit!"); 482 if (OpSU == SU) continue; // In the same group. 483 484 EVT OpVT = N->getOperand(i).getValueType(); 485 assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!"); 486 bool isChain = OpVT == MVT::Other; 487 488 unsigned PhysReg = 0; 489 int Cost = 1; 490 // Determine if this is a physical register dependency. 491 CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost); 492 assert((PhysReg == 0 || !isChain) && 493 "Chain dependence via physreg data?"); 494 // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler 495 // emits a copy from the physical register to a virtual register unless 496 // it requires a cross class copy (cost < 0). That means we are only 497 // treating "expensive to copy" register dependency as physical register 498 // dependency. This may change in the future though. 499 if (Cost >= 0 && !StressSched) 500 PhysReg = 0; 501 502 // If this is a ctrl dep, latency is 1. 503 unsigned OpLatency = isChain ? 1 : OpSU->Latency; 504 // Special-case TokenFactor chains as zero-latency. 505 if(isChain && OpN->getOpcode() == ISD::TokenFactor) 506 OpLatency = 0; 507 508 SDep Dep = isChain ? SDep(OpSU, SDep::Barrier) 509 : SDep(OpSU, SDep::Data, PhysReg); 510 Dep.setLatency(OpLatency); 511 if (!isChain && !UnitLatencies) { 512 computeOperandLatency(OpN, N, i, Dep); 513 ST.adjustSchedDependency(OpSU, DefIdx, SU, i, Dep); 514 } 515 516 if (!SU->addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) { 517 // Multiple register uses are combined in the same SUnit. For example, 518 // we could have a set of glued nodes with all their defs consumed by 519 // another set of glued nodes. Register pressure tracking sees this as 520 // a single use, so to keep pressure balanced we reduce the defs. 521 // 522 // We can't tell (without more book-keeping) if this results from 523 // glued nodes or duplicate operands. As long as we don't reduce 524 // NumRegDefsLeft to zero, we handle the common cases well. 525 --OpSU->NumRegDefsLeft; 526 } 527 } 528 } 529 } 530 } 531 532 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we 533 /// are input. This SUnit graph is similar to the SelectionDAG, but 534 /// excludes nodes that aren't interesting to scheduling, and represents 535 /// glued together nodes with a single SUnit. 536 void ScheduleDAGSDNodes::BuildSchedGraph(AAResults *AA) { 537 // Cluster certain nodes which should be scheduled together. 538 ClusterNodes(); 539 // Populate the SUnits array. 540 BuildSchedUnits(); 541 // Compute all the scheduling dependencies between nodes. 542 AddSchedEdges(); 543 } 544 545 // Initialize NumNodeDefs for the current Node's opcode. 546 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() { 547 // Check for phys reg copy. 548 if (!Node) 549 return; 550 551 if (!Node->isMachineOpcode()) { 552 if (Node->getOpcode() == ISD::CopyFromReg) 553 NodeNumDefs = 1; 554 else 555 NodeNumDefs = 0; 556 return; 557 } 558 unsigned POpc = Node->getMachineOpcode(); 559 if (POpc == TargetOpcode::IMPLICIT_DEF) { 560 // No register need be allocated for this. 561 NodeNumDefs = 0; 562 return; 563 } 564 if (POpc == TargetOpcode::PATCHPOINT && 565 Node->getValueType(0) == MVT::Other) { 566 // PATCHPOINT is defined to have one result, but it might really have none 567 // if we're not using CallingConv::AnyReg. Don't mistake the chain for a 568 // real definition. 569 NodeNumDefs = 0; 570 return; 571 } 572 unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs(); 573 // Some instructions define regs that are not represented in the selection DAG 574 // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues. 575 NodeNumDefs = std::min(Node->getNumValues(), NRegDefs); 576 DefIdx = 0; 577 } 578 579 // Construct a RegDefIter for this SUnit and find the first valid value. 580 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU, 581 const ScheduleDAGSDNodes *SD) 582 : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) { 583 InitNodeNumDefs(); 584 Advance(); 585 } 586 587 // Advance to the next valid value defined by the SUnit. 588 void ScheduleDAGSDNodes::RegDefIter::Advance() { 589 for (;Node;) { // Visit all glued nodes. 590 for (;DefIdx < NodeNumDefs; ++DefIdx) { 591 if (!Node->hasAnyUseOfValue(DefIdx)) 592 continue; 593 ValueType = Node->getSimpleValueType(DefIdx); 594 ++DefIdx; 595 return; // Found a normal regdef. 596 } 597 Node = Node->getGluedNode(); 598 if (!Node) { 599 return; // No values left to visit. 600 } 601 InitNodeNumDefs(); 602 } 603 } 604 605 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) { 606 assert(SU->NumRegDefsLeft == 0 && "expect a new node"); 607 for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) { 608 assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected"); 609 ++SU->NumRegDefsLeft; 610 } 611 } 612 613 void ScheduleDAGSDNodes::computeLatency(SUnit *SU) { 614 SDNode *N = SU->getNode(); 615 616 // TokenFactor operands are considered zero latency, and some schedulers 617 // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero 618 // whenever node latency is nonzero. 619 if (N && N->getOpcode() == ISD::TokenFactor) { 620 SU->Latency = 0; 621 return; 622 } 623 624 // Check to see if the scheduler cares about latencies. 625 if (forceUnitLatencies()) { 626 SU->Latency = 1; 627 return; 628 } 629 630 if (!InstrItins || InstrItins->isEmpty()) { 631 if (N && N->isMachineOpcode() && 632 TII->isHighLatencyDef(N->getMachineOpcode())) 633 SU->Latency = HighLatencyCycles; 634 else 635 SU->Latency = 1; 636 return; 637 } 638 639 // Compute the latency for the node. We use the sum of the latencies for 640 // all nodes glued together into this SUnit. 641 SU->Latency = 0; 642 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) 643 if (N->isMachineOpcode()) 644 SU->Latency += TII->getInstrLatency(InstrItins, N); 645 } 646 647 void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use, 648 unsigned OpIdx, SDep& dep) const{ 649 // Check to see if the scheduler cares about latencies. 650 if (forceUnitLatencies()) 651 return; 652 653 if (dep.getKind() != SDep::Data) 654 return; 655 656 unsigned DefIdx = Use->getOperand(OpIdx).getResNo(); 657 if (Use->isMachineOpcode()) 658 // Adjust the use operand index by num of defs. 659 OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs(); 660 int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx); 661 if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg && 662 !BB->succ_empty()) { 663 unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg(); 664 if (Register::isVirtualRegister(Reg)) 665 // This copy is a liveout value. It is likely coalesced, so reduce the 666 // latency so not to penalize the def. 667 // FIXME: need target specific adjustment here? 668 Latency = (Latency > 1) ? Latency - 1 : 1; 669 } 670 if (Latency >= 0) 671 dep.setLatency(Latency); 672 } 673 674 void ScheduleDAGSDNodes::dumpNode(const SUnit &SU) const { 675 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 676 dumpNodeName(SU); 677 dbgs() << ": "; 678 679 if (!SU.getNode()) { 680 dbgs() << "PHYS REG COPY\n"; 681 return; 682 } 683 684 SU.getNode()->dump(DAG); 685 dbgs() << "\n"; 686 SmallVector<SDNode *, 4> GluedNodes; 687 for (SDNode *N = SU.getNode()->getGluedNode(); N; N = N->getGluedNode()) 688 GluedNodes.push_back(N); 689 while (!GluedNodes.empty()) { 690 dbgs() << " "; 691 GluedNodes.back()->dump(DAG); 692 dbgs() << "\n"; 693 GluedNodes.pop_back(); 694 } 695 #endif 696 } 697 698 void ScheduleDAGSDNodes::dump() const { 699 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 700 if (EntrySU.getNode() != nullptr) 701 dumpNodeAll(EntrySU); 702 for (const SUnit &SU : SUnits) 703 dumpNodeAll(SU); 704 if (ExitSU.getNode() != nullptr) 705 dumpNodeAll(ExitSU); 706 #endif 707 } 708 709 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 710 void ScheduleDAGSDNodes::dumpSchedule() const { 711 for (unsigned i = 0, e = Sequence.size(); i != e; i++) { 712 if (SUnit *SU = Sequence[i]) 713 dumpNode(*SU); 714 else 715 dbgs() << "**** NOOP ****\n"; 716 } 717 } 718 #endif 719 720 #ifndef NDEBUG 721 /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that 722 /// their state is consistent with the nodes listed in Sequence. 723 /// 724 void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) { 725 unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp); 726 unsigned Noops = 0; 727 for (unsigned i = 0, e = Sequence.size(); i != e; ++i) 728 if (!Sequence[i]) 729 ++Noops; 730 assert(Sequence.size() - Noops == ScheduledNodes && 731 "The number of nodes scheduled doesn't match the expected number!"); 732 } 733 #endif // NDEBUG 734 735 /// ProcessSDDbgValues - Process SDDbgValues associated with this node. 736 static void 737 ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, 738 SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders, 739 DenseMap<SDValue, Register> &VRBaseMap, unsigned Order) { 740 if (!N->getHasDebugValue()) 741 return; 742 743 // Opportunistically insert immediate dbg_value uses, i.e. those with the same 744 // source order number as N. 745 MachineBasicBlock *BB = Emitter.getBlock(); 746 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos(); 747 for (auto DV : DAG->GetDbgValues(N)) { 748 if (DV->isEmitted()) 749 continue; 750 unsigned DVOrder = DV->getOrder(); 751 if (!Order || DVOrder == Order) { 752 MachineInstr *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap); 753 if (DbgMI) { 754 Orders.push_back({DVOrder, DbgMI}); 755 BB->insert(InsertPos, DbgMI); 756 } 757 } 758 } 759 } 760 761 // ProcessSourceNode - Process nodes with source order numbers. These are added 762 // to a vector which EmitSchedule uses to determine how to insert dbg_value 763 // instructions in the right order. 764 static void 765 ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, 766 DenseMap<SDValue, Register> &VRBaseMap, 767 SmallVectorImpl<std::pair<unsigned, MachineInstr *>> &Orders, 768 SmallSet<Register, 8> &Seen, MachineInstr *NewInsn) { 769 unsigned Order = N->getIROrder(); 770 if (!Order || Seen.count(Order)) { 771 // Process any valid SDDbgValues even if node does not have any order 772 // assigned. 773 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0); 774 return; 775 } 776 777 // If a new instruction was generated for this Order number, record it. 778 // Otherwise, leave this order number unseen: we will either find later 779 // instructions for it, or leave it unseen if there were no instructions at 780 // all. 781 if (NewInsn) { 782 Seen.insert(Order); 783 Orders.push_back({Order, NewInsn}); 784 } 785 786 // Even if no instruction was generated, a Value may have become defined via 787 // earlier nodes. Try to process them now. 788 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order); 789 } 790 791 void ScheduleDAGSDNodes:: 792 EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, Register> &VRBaseMap, 793 MachineBasicBlock::iterator InsertPos) { 794 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 795 I != E; ++I) { 796 if (I->isCtrl()) continue; // ignore chain preds 797 if (I->getSUnit()->CopyDstRC) { 798 // Copy to physical register. 799 DenseMap<SUnit*, Register>::iterator VRI = VRBaseMap.find(I->getSUnit()); 800 assert(VRI != VRBaseMap.end() && "Node emitted out of order - late"); 801 // Find the destination physical register. 802 Register Reg; 803 for (SUnit::const_succ_iterator II = SU->Succs.begin(), 804 EE = SU->Succs.end(); II != EE; ++II) { 805 if (II->isCtrl()) continue; // ignore chain preds 806 if (II->getReg()) { 807 Reg = II->getReg(); 808 break; 809 } 810 } 811 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg) 812 .addReg(VRI->second); 813 } else { 814 // Copy from physical register. 815 assert(I->getReg() && "Unknown physical register!"); 816 Register VRBase = MRI.createVirtualRegister(SU->CopyDstRC); 817 bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second; 818 (void)isNew; // Silence compiler warning. 819 assert(isNew && "Node emitted out of order - early"); 820 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase) 821 .addReg(I->getReg()); 822 } 823 break; 824 } 825 } 826 827 /// EmitSchedule - Emit the machine code in scheduled order. Return the new 828 /// InsertPos and MachineBasicBlock that contains this insertion 829 /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does 830 /// not necessarily refer to returned BB. The emitter may split blocks. 831 MachineBasicBlock *ScheduleDAGSDNodes:: 832 EmitSchedule(MachineBasicBlock::iterator &InsertPos) { 833 InstrEmitter Emitter(BB, InsertPos); 834 DenseMap<SDValue, Register> VRBaseMap; 835 DenseMap<SUnit*, Register> CopyVRBaseMap; 836 SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders; 837 SmallSet<Register, 8> Seen; 838 bool HasDbg = DAG->hasDebugValues(); 839 840 // Emit a node, and determine where its first instruction is for debuginfo. 841 // Zero, one, or multiple instructions can be created when emitting a node. 842 auto EmitNode = 843 [&](SDNode *Node, bool IsClone, bool IsCloned, 844 DenseMap<SDValue, Register> &VRBaseMap) -> MachineInstr * { 845 // Fetch instruction prior to this, or end() if nonexistant. 846 auto GetPrevInsn = [&](MachineBasicBlock::iterator I) { 847 if (I == BB->begin()) 848 return BB->end(); 849 else 850 return std::prev(Emitter.getInsertPos()); 851 }; 852 853 MachineBasicBlock::iterator Before = GetPrevInsn(Emitter.getInsertPos()); 854 Emitter.EmitNode(Node, IsClone, IsCloned, VRBaseMap); 855 MachineBasicBlock::iterator After = GetPrevInsn(Emitter.getInsertPos()); 856 857 // If the iterator did not change, no instructions were inserted. 858 if (Before == After) 859 return nullptr; 860 861 MachineInstr *MI; 862 if (Before == BB->end()) { 863 // There were no prior instructions; the new ones must start at the 864 // beginning of the block. 865 MI = &Emitter.getBlock()->instr_front(); 866 } else { 867 // Return first instruction after the pre-existing instructions. 868 MI = &*std::next(Before); 869 } 870 871 if (MI->isCandidateForCallSiteEntry() && 872 DAG->getTarget().Options.EmitCallSiteInfo) 873 MF.addCallArgsForwardingRegs(MI, DAG->getSDCallSiteInfo(Node)); 874 875 if (DAG->getNoMergeSiteInfo(Node)) { 876 MI->setFlag(MachineInstr::MIFlag::NoMerge); 877 } 878 879 return MI; 880 }; 881 882 // If this is the first BB, emit byval parameter dbg_value's. 883 if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) { 884 SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin(); 885 SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd(); 886 for (; PDI != PDE; ++PDI) { 887 MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap); 888 if (DbgMI) { 889 BB->insert(InsertPos, DbgMI); 890 // We re-emit the dbg_value closer to its use, too, after instructions 891 // are emitted to the BB. 892 (*PDI)->clearIsEmitted(); 893 } 894 } 895 } 896 897 for (unsigned i = 0, e = Sequence.size(); i != e; i++) { 898 SUnit *SU = Sequence[i]; 899 if (!SU) { 900 // Null SUnit* is a noop. 901 TII->insertNoop(*Emitter.getBlock(), InsertPos); 902 continue; 903 } 904 905 // For pre-regalloc scheduling, create instructions corresponding to the 906 // SDNode and any glued SDNodes and append them to the block. 907 if (!SU->getNode()) { 908 // Emit a copy. 909 EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos); 910 continue; 911 } 912 913 SmallVector<SDNode *, 4> GluedNodes; 914 for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode()) 915 GluedNodes.push_back(N); 916 while (!GluedNodes.empty()) { 917 SDNode *N = GluedNodes.back(); 918 auto NewInsn = EmitNode(N, SU->OrigNode != SU, SU->isCloned, VRBaseMap); 919 // Remember the source order of the inserted instruction. 920 if (HasDbg) 921 ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen, NewInsn); 922 923 if (MDNode *MD = DAG->getHeapAllocSite(N)) 924 if (NewInsn && NewInsn->isCall()) 925 NewInsn->setHeapAllocMarker(MF, MD); 926 927 GluedNodes.pop_back(); 928 } 929 auto NewInsn = 930 EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, VRBaseMap); 931 // Remember the source order of the inserted instruction. 932 if (HasDbg) 933 ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, Seen, 934 NewInsn); 935 936 if (MDNode *MD = DAG->getHeapAllocSite(SU->getNode())) { 937 if (NewInsn && NewInsn->isCall()) 938 NewInsn->setHeapAllocMarker(MF, MD); 939 } 940 } 941 942 // Insert all the dbg_values which have not already been inserted in source 943 // order sequence. 944 if (HasDbg) { 945 MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI(); 946 947 // Sort the source order instructions and use the order to insert debug 948 // values. Use stable_sort so that DBG_VALUEs are inserted in the same order 949 // regardless of the host's implementation fo std::sort. 950 llvm::stable_sort(Orders, less_first()); 951 std::stable_sort(DAG->DbgBegin(), DAG->DbgEnd(), 952 [](const SDDbgValue *LHS, const SDDbgValue *RHS) { 953 return LHS->getOrder() < RHS->getOrder(); 954 }); 955 956 SDDbgInfo::DbgIterator DI = DAG->DbgBegin(); 957 SDDbgInfo::DbgIterator DE = DAG->DbgEnd(); 958 // Now emit the rest according to source order. 959 unsigned LastOrder = 0; 960 for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) { 961 unsigned Order = Orders[i].first; 962 MachineInstr *MI = Orders[i].second; 963 // Insert all SDDbgValue's whose order(s) are before "Order". 964 assert(MI); 965 for (; DI != DE; ++DI) { 966 if ((*DI)->getOrder() < LastOrder || (*DI)->getOrder() >= Order) 967 break; 968 if ((*DI)->isEmitted()) 969 continue; 970 971 MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap); 972 if (DbgMI) { 973 if (!LastOrder) 974 // Insert to start of the BB (after PHIs). 975 BB->insert(BBBegin, DbgMI); 976 else { 977 // Insert at the instruction, which may be in a different 978 // block, if the block was split by a custom inserter. 979 MachineBasicBlock::iterator Pos = MI; 980 MI->getParent()->insert(Pos, DbgMI); 981 } 982 } 983 } 984 LastOrder = Order; 985 } 986 // Add trailing DbgValue's before the terminator. FIXME: May want to add 987 // some of them before one or more conditional branches? 988 SmallVector<MachineInstr*, 8> DbgMIs; 989 for (; DI != DE; ++DI) { 990 if ((*DI)->isEmitted()) 991 continue; 992 assert((*DI)->getOrder() >= LastOrder && 993 "emitting DBG_VALUE out of order"); 994 if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap)) 995 DbgMIs.push_back(DbgMI); 996 } 997 998 MachineBasicBlock *InsertBB = Emitter.getBlock(); 999 MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator(); 1000 InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end()); 1001 1002 SDDbgInfo::DbgLabelIterator DLI = DAG->DbgLabelBegin(); 1003 SDDbgInfo::DbgLabelIterator DLE = DAG->DbgLabelEnd(); 1004 // Now emit the rest according to source order. 1005 LastOrder = 0; 1006 for (const auto &InstrOrder : Orders) { 1007 unsigned Order = InstrOrder.first; 1008 MachineInstr *MI = InstrOrder.second; 1009 if (!MI) 1010 continue; 1011 1012 // Insert all SDDbgLabel's whose order(s) are before "Order". 1013 for (; DLI != DLE && 1014 (*DLI)->getOrder() >= LastOrder && (*DLI)->getOrder() < Order; 1015 ++DLI) { 1016 MachineInstr *DbgMI = Emitter.EmitDbgLabel(*DLI); 1017 if (DbgMI) { 1018 if (!LastOrder) 1019 // Insert to start of the BB (after PHIs). 1020 BB->insert(BBBegin, DbgMI); 1021 else { 1022 // Insert at the instruction, which may be in a different 1023 // block, if the block was split by a custom inserter. 1024 MachineBasicBlock::iterator Pos = MI; 1025 MI->getParent()->insert(Pos, DbgMI); 1026 } 1027 } 1028 } 1029 if (DLI == DLE) 1030 break; 1031 1032 LastOrder = Order; 1033 } 1034 } 1035 1036 InsertPos = Emitter.getInsertPos(); 1037 return Emitter.getBlock(); 1038 } 1039 1040 /// Return the basic block label. 1041 std::string ScheduleDAGSDNodes::getDAGName() const { 1042 return "sunit-dag." + BB->getFullName(); 1043 } 1044