xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp (revision 914752d0f7f874ab4fc8393aee28c22df87324f2)
1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the ScheduleDAG class, which is a base class used by
10 // scheduling implementation classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ScheduleDAGSDNodes.h"
15 #include "InstrEmitter.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/TargetInstrInfo.h"
26 #include "llvm/CodeGen/TargetLowering.h"
27 #include "llvm/CodeGen/TargetRegisterInfo.h"
28 #include "llvm/CodeGen/TargetSubtargetInfo.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
31 #include "llvm/MC/MCInstrItineraries.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "pre-RA-sched"
39 
40 STATISTIC(LoadsClustered, "Number of loads clustered together");
41 
42 // This allows the latency-based scheduler to notice high latency instructions
43 // without a target itinerary. The choice of number here has more to do with
44 // balancing scheduler heuristics than with the actual machine latency.
45 static cl::opt<int> HighLatencyCycles(
46   "sched-high-latency-cycles", cl::Hidden, cl::init(10),
47   cl::desc("Roughly estimate the number of cycles that 'long latency'"
48            "instructions take for targets with no itinerary"));
49 
50 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
51     : ScheduleDAG(mf), InstrItins(mf.getSubtarget().getInstrItineraryData()) {}
52 
53 /// Run - perform scheduling.
54 ///
55 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) {
56   BB = bb;
57   DAG = dag;
58 
59   // Clear the scheduler's SUnit DAG.
60   ScheduleDAG::clearDAG();
61   Sequence.clear();
62 
63   // Invoke the target's selection of scheduler.
64   Schedule();
65 }
66 
67 /// NewSUnit - Creates a new SUnit and return a ptr to it.
68 ///
69 SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) {
70 #ifndef NDEBUG
71   const SUnit *Addr = nullptr;
72   if (!SUnits.empty())
73     Addr = &SUnits[0];
74 #endif
75   SUnits.emplace_back(N, (unsigned)SUnits.size());
76   assert((Addr == nullptr || Addr == &SUnits[0]) &&
77          "SUnits std::vector reallocated on the fly!");
78   SUnits.back().OrigNode = &SUnits.back();
79   SUnit *SU = &SUnits.back();
80   const TargetLowering &TLI = DAG->getTargetLoweringInfo();
81   if (!N ||
82       (N->isMachineOpcode() &&
83        N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
84     SU->SchedulingPref = Sched::None;
85   else
86     SU->SchedulingPref = TLI.getSchedulingPreference(N);
87   return SU;
88 }
89 
90 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
91   SUnit *SU = newSUnit(Old->getNode());
92   SU->OrigNode = Old->OrigNode;
93   SU->Latency = Old->Latency;
94   SU->isVRegCycle = Old->isVRegCycle;
95   SU->isCall = Old->isCall;
96   SU->isCallOp = Old->isCallOp;
97   SU->isTwoAddress = Old->isTwoAddress;
98   SU->isCommutable = Old->isCommutable;
99   SU->hasPhysRegDefs = Old->hasPhysRegDefs;
100   SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
101   SU->isScheduleHigh = Old->isScheduleHigh;
102   SU->isScheduleLow = Old->isScheduleLow;
103   SU->SchedulingPref = Old->SchedulingPref;
104   Old->isCloned = true;
105   return SU;
106 }
107 
108 /// CheckForPhysRegDependency - Check if the dependency between def and use of
109 /// a specified operand is a physical register dependency. If so, returns the
110 /// register and the cost of copying the register.
111 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
112                                       const TargetRegisterInfo *TRI,
113                                       const TargetInstrInfo *TII,
114                                       const TargetLowering &TLI,
115                                       unsigned &PhysReg, int &Cost) {
116   if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
117     return;
118 
119   unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
120   if (TLI.checkForPhysRegDependency(Def, User, Op, TRI, TII, PhysReg, Cost))
121     return;
122 
123   if (Register::isVirtualRegister(Reg))
124     return;
125 
126   unsigned ResNo = User->getOperand(2).getResNo();
127   if (Def->getOpcode() == ISD::CopyFromReg &&
128       cast<RegisterSDNode>(Def->getOperand(1))->getReg() == Reg) {
129     PhysReg = Reg;
130   } else if (Def->isMachineOpcode()) {
131     const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
132     if (ResNo >= II.getNumDefs() && II.hasImplicitDefOfPhysReg(Reg))
133       PhysReg = Reg;
134   }
135 
136   if (PhysReg != 0) {
137     const TargetRegisterClass *RC =
138         TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo));
139     Cost = RC->getCopyCost();
140   }
141 }
142 
143 // Helper for AddGlue to clone node operands.
144 static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef<EVT> VTs,
145                                 SDValue ExtraOper = SDValue()) {
146   SmallVector<SDValue, 8> Ops(N->op_begin(), N->op_end());
147   if (ExtraOper.getNode())
148     Ops.push_back(ExtraOper);
149 
150   SDVTList VTList = DAG->getVTList(VTs);
151   MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
152 
153   // Store memory references.
154   SmallVector<MachineMemOperand *, 2> MMOs;
155   if (MN)
156     MMOs.assign(MN->memoperands_begin(), MN->memoperands_end());
157 
158   DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops);
159 
160   // Reset the memory references
161   if (MN)
162     DAG->setNodeMemRefs(MN, MMOs);
163 }
164 
165 static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
166   SDNode *GlueDestNode = Glue.getNode();
167 
168   // Don't add glue from a node to itself.
169   if (GlueDestNode == N) return false;
170 
171   // Don't add a glue operand to something that already uses glue.
172   if (GlueDestNode &&
173       N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
174     return false;
175   }
176   // Don't add glue to something that already has a glue value.
177   if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false;
178 
179   SmallVector<EVT, 4> VTs(N->values());
180   if (AddGlue)
181     VTs.push_back(MVT::Glue);
182 
183   CloneNodeWithValues(N, DAG, VTs, Glue);
184 
185   return true;
186 }
187 
188 // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the
189 // node even though simply shrinking the value list is sufficient.
190 static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) {
191   assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue &&
192           !N->hasAnyUseOfValue(N->getNumValues() - 1)) &&
193          "expected an unused glue value");
194 
195   CloneNodeWithValues(N, DAG,
196                       ArrayRef(N->value_begin(), N->getNumValues() - 1));
197 }
198 
199 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
200 /// This function finds loads of the same base and different offsets. If the
201 /// offsets are not far apart (target specific), it add MVT::Glue inputs and
202 /// outputs to ensure they are scheduled together and in order. This
203 /// optimization may benefit some targets by improving cache locality.
204 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
205   SDValue Chain;
206   unsigned NumOps = Node->getNumOperands();
207   if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
208     Chain = Node->getOperand(NumOps-1);
209   if (!Chain)
210     return;
211 
212   // Skip any load instruction that has a tied input. There may be an additional
213   // dependency requiring a different order than by increasing offsets, and the
214   // added glue may introduce a cycle.
215   auto hasTiedInput = [this](const SDNode *N) {
216     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
217     for (unsigned I = 0; I != MCID.getNumOperands(); ++I) {
218       if (MCID.getOperandConstraint(I, MCOI::TIED_TO) != -1)
219         return true;
220     }
221 
222     return false;
223   };
224 
225   // Look for other loads of the same chain. Find loads that are loading from
226   // the same base pointer and different offsets.
227   SmallPtrSet<SDNode*, 16> Visited;
228   SmallVector<int64_t, 4> Offsets;
229   DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
230   bool Cluster = false;
231   SDNode *Base = Node;
232 
233   if (hasTiedInput(Base))
234     return;
235 
236   // This algorithm requires a reasonably low use count before finding a match
237   // to avoid uselessly blowing up compile time in large blocks.
238   unsigned UseCount = 0;
239   for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
240        I != E && UseCount < 100; ++I, ++UseCount) {
241     if (I.getUse().getResNo() != Chain.getResNo())
242       continue;
243 
244     SDNode *User = *I;
245     if (User == Node || !Visited.insert(User).second)
246       continue;
247     int64_t Offset1, Offset2;
248     if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
249         Offset1 == Offset2 ||
250         hasTiedInput(User)) {
251       // FIXME: Should be ok if they addresses are identical. But earlier
252       // optimizations really should have eliminated one of the loads.
253       continue;
254     }
255     if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
256       Offsets.push_back(Offset1);
257     O2SMap.insert(std::make_pair(Offset2, User));
258     Offsets.push_back(Offset2);
259     if (Offset2 < Offset1)
260       Base = User;
261     Cluster = true;
262     // Reset UseCount to allow more matches.
263     UseCount = 0;
264   }
265 
266   if (!Cluster)
267     return;
268 
269   // Sort them in increasing order.
270   llvm::sort(Offsets);
271 
272   // Check if the loads are close enough.
273   SmallVector<SDNode*, 4> Loads;
274   unsigned NumLoads = 0;
275   int64_t BaseOff = Offsets[0];
276   SDNode *BaseLoad = O2SMap[BaseOff];
277   Loads.push_back(BaseLoad);
278   for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
279     int64_t Offset = Offsets[i];
280     SDNode *Load = O2SMap[Offset];
281     if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
282       break; // Stop right here. Ignore loads that are further away.
283     Loads.push_back(Load);
284     ++NumLoads;
285   }
286 
287   if (NumLoads == 0)
288     return;
289 
290   // Cluster loads by adding MVT::Glue outputs and inputs. This also
291   // ensure they are scheduled in order of increasing addresses.
292   SDNode *Lead = Loads[0];
293   SDValue InGlue;
294   if (AddGlue(Lead, InGlue, true, DAG))
295     InGlue = SDValue(Lead, Lead->getNumValues() - 1);
296   for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
297     bool OutGlue = I < E - 1;
298     SDNode *Load = Loads[I];
299 
300     // If AddGlue fails, we could leave an unsused glue value. This should not
301     // cause any
302     if (AddGlue(Load, InGlue, OutGlue, DAG)) {
303       if (OutGlue)
304         InGlue = SDValue(Load, Load->getNumValues() - 1);
305 
306       ++LoadsClustered;
307     }
308     else if (!OutGlue && InGlue.getNode())
309       RemoveUnusedGlue(InGlue.getNode(), DAG);
310   }
311 }
312 
313 /// ClusterNodes - Cluster certain nodes which should be scheduled together.
314 ///
315 void ScheduleDAGSDNodes::ClusterNodes() {
316   for (SDNode &NI : DAG->allnodes()) {
317     SDNode *Node = &NI;
318     if (!Node || !Node->isMachineOpcode())
319       continue;
320 
321     unsigned Opc = Node->getMachineOpcode();
322     const MCInstrDesc &MCID = TII->get(Opc);
323     if (MCID.mayLoad())
324       // Cluster loads from "near" addresses into combined SUnits.
325       ClusterNeighboringLoads(Node);
326   }
327 }
328 
329 void ScheduleDAGSDNodes::BuildSchedUnits() {
330   // During scheduling, the NodeId field of SDNode is used to map SDNodes
331   // to their associated SUnits by holding SUnits table indices. A value
332   // of -1 means the SDNode does not yet have an associated SUnit.
333   unsigned NumNodes = 0;
334   for (SDNode &NI : DAG->allnodes()) {
335     NI.setNodeId(-1);
336     ++NumNodes;
337   }
338 
339   // Reserve entries in the vector for each of the SUnits we are creating.  This
340   // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
341   // invalidated.
342   // FIXME: Multiply by 2 because we may clone nodes during scheduling.
343   // This is a temporary workaround.
344   SUnits.reserve(NumNodes * 2);
345 
346   // Add all nodes in depth first order.
347   SmallVector<SDNode*, 64> Worklist;
348   SmallPtrSet<SDNode*, 32> Visited;
349   Worklist.push_back(DAG->getRoot().getNode());
350   Visited.insert(DAG->getRoot().getNode());
351 
352   SmallVector<SUnit*, 8> CallSUnits;
353   while (!Worklist.empty()) {
354     SDNode *NI = Worklist.pop_back_val();
355 
356     // Add all operands to the worklist unless they've already been added.
357     for (const SDValue &Op : NI->op_values())
358       if (Visited.insert(Op.getNode()).second)
359         Worklist.push_back(Op.getNode());
360 
361     if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
362       continue;
363 
364     // If this node has already been processed, stop now.
365     if (NI->getNodeId() != -1) continue;
366 
367     SUnit *NodeSUnit = newSUnit(NI);
368 
369     // See if anything is glued to this node, if so, add them to glued
370     // nodes.  Nodes can have at most one glue input and one glue output.  Glue
371     // is required to be the last operand and result of a node.
372 
373     // Scan up to find glued preds.
374     SDNode *N = NI;
375     while (N->getNumOperands() &&
376            N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
377       N = N->getOperand(N->getNumOperands()-1).getNode();
378       assert(N->getNodeId() == -1 && "Node already inserted!");
379       N->setNodeId(NodeSUnit->NodeNum);
380       if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
381         NodeSUnit->isCall = true;
382     }
383 
384     // Scan down to find any glued succs.
385     N = NI;
386     while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
387       SDValue GlueVal(N, N->getNumValues()-1);
388 
389       // There are either zero or one users of the Glue result.
390       bool HasGlueUse = false;
391       for (SDNode *U : N->uses())
392         if (GlueVal.isOperandOf(U)) {
393           HasGlueUse = true;
394           assert(N->getNodeId() == -1 && "Node already inserted!");
395           N->setNodeId(NodeSUnit->NodeNum);
396           N = U;
397           if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
398             NodeSUnit->isCall = true;
399           break;
400         }
401       if (!HasGlueUse) break;
402     }
403 
404     if (NodeSUnit->isCall)
405       CallSUnits.push_back(NodeSUnit);
406 
407     // Schedule zero-latency TokenFactor below any nodes that may increase the
408     // schedule height. Otherwise, ancestors of the TokenFactor may appear to
409     // have false stalls.
410     if (NI->getOpcode() == ISD::TokenFactor)
411       NodeSUnit->isScheduleLow = true;
412 
413     // If there are glue operands involved, N is now the bottom-most node
414     // of the sequence of nodes that are glued together.
415     // Update the SUnit.
416     NodeSUnit->setNode(N);
417     assert(N->getNodeId() == -1 && "Node already inserted!");
418     N->setNodeId(NodeSUnit->NodeNum);
419 
420     // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
421     InitNumRegDefsLeft(NodeSUnit);
422 
423     // Assign the Latency field of NodeSUnit using target-provided information.
424     computeLatency(NodeSUnit);
425   }
426 
427   // Find all call operands.
428   while (!CallSUnits.empty()) {
429     SUnit *SU = CallSUnits.pop_back_val();
430     for (const SDNode *SUNode = SU->getNode(); SUNode;
431          SUNode = SUNode->getGluedNode()) {
432       if (SUNode->getOpcode() != ISD::CopyToReg)
433         continue;
434       SDNode *SrcN = SUNode->getOperand(2).getNode();
435       if (isPassiveNode(SrcN)) continue;   // Not scheduled.
436       SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
437       SrcSU->isCallOp = true;
438     }
439   }
440 }
441 
442 void ScheduleDAGSDNodes::AddSchedEdges() {
443   const TargetSubtargetInfo &ST = MF.getSubtarget();
444 
445   // Check to see if the scheduler cares about latencies.
446   bool UnitLatencies = forceUnitLatencies();
447 
448   // Pass 2: add the preds, succs, etc.
449   for (SUnit &SU : SUnits) {
450     SDNode *MainNode = SU.getNode();
451 
452     if (MainNode->isMachineOpcode()) {
453       unsigned Opc = MainNode->getMachineOpcode();
454       const MCInstrDesc &MCID = TII->get(Opc);
455       for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
456         if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
457           SU.isTwoAddress = true;
458           break;
459         }
460       }
461       if (MCID.isCommutable())
462         SU.isCommutable = true;
463     }
464 
465     // Find all predecessors and successors of the group.
466     for (SDNode *N = SU.getNode(); N; N = N->getGluedNode()) {
467       if (N->isMachineOpcode() &&
468           !TII->get(N->getMachineOpcode()).implicit_defs().empty()) {
469         SU.hasPhysRegClobbers = true;
470         unsigned NumUsed = InstrEmitter::CountResults(N);
471         while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
472           --NumUsed;    // Skip over unused values at the end.
473         if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
474           SU.hasPhysRegDefs = true;
475       }
476 
477       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
478         SDNode *OpN = N->getOperand(i).getNode();
479         unsigned DefIdx = N->getOperand(i).getResNo();
480         if (isPassiveNode(OpN)) continue;   // Not scheduled.
481         SUnit *OpSU = &SUnits[OpN->getNodeId()];
482         assert(OpSU && "Node has no SUnit!");
483         if (OpSU == &SU)
484           continue; // In the same group.
485 
486         EVT OpVT = N->getOperand(i).getValueType();
487         assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
488         bool isChain = OpVT == MVT::Other;
489 
490         unsigned PhysReg = 0;
491         int Cost = 1;
492         // Determine if this is a physical register dependency.
493         const TargetLowering &TLI = DAG->getTargetLoweringInfo();
494         CheckForPhysRegDependency(OpN, N, i, TRI, TII, TLI, PhysReg, Cost);
495         assert((PhysReg == 0 || !isChain) &&
496                "Chain dependence via physreg data?");
497         // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
498         // emits a copy from the physical register to a virtual register unless
499         // it requires a cross class copy (cost < 0). That means we are only
500         // treating "expensive to copy" register dependency as physical register
501         // dependency. This may change in the future though.
502         if (Cost >= 0 && !StressSched)
503           PhysReg = 0;
504 
505         // If this is a ctrl dep, latency is 1.
506         unsigned OpLatency = isChain ? 1 : OpSU->Latency;
507         // Special-case TokenFactor chains as zero-latency.
508         if(isChain && OpN->getOpcode() == ISD::TokenFactor)
509           OpLatency = 0;
510 
511         SDep Dep = isChain ? SDep(OpSU, SDep::Barrier)
512           : SDep(OpSU, SDep::Data, PhysReg);
513         Dep.setLatency(OpLatency);
514         if (!isChain && !UnitLatencies) {
515           computeOperandLatency(OpN, N, i, Dep);
516           ST.adjustSchedDependency(OpSU, DefIdx, &SU, i, Dep, nullptr);
517         }
518 
519         if (!SU.addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
520           // Multiple register uses are combined in the same SUnit. For example,
521           // we could have a set of glued nodes with all their defs consumed by
522           // another set of glued nodes. Register pressure tracking sees this as
523           // a single use, so to keep pressure balanced we reduce the defs.
524           //
525           // We can't tell (without more book-keeping) if this results from
526           // glued nodes or duplicate operands. As long as we don't reduce
527           // NumRegDefsLeft to zero, we handle the common cases well.
528           --OpSU->NumRegDefsLeft;
529         }
530       }
531     }
532   }
533 }
534 
535 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we
536 /// are input.  This SUnit graph is similar to the SelectionDAG, but
537 /// excludes nodes that aren't interesting to scheduling, and represents
538 /// glued together nodes with a single SUnit.
539 void ScheduleDAGSDNodes::BuildSchedGraph(AAResults *AA) {
540   // Cluster certain nodes which should be scheduled together.
541   ClusterNodes();
542   // Populate the SUnits array.
543   BuildSchedUnits();
544   // Compute all the scheduling dependencies between nodes.
545   AddSchedEdges();
546 }
547 
548 // Initialize NumNodeDefs for the current Node's opcode.
549 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
550   // Check for phys reg copy.
551   if (!Node)
552     return;
553 
554   if (!Node->isMachineOpcode()) {
555     if (Node->getOpcode() == ISD::CopyFromReg)
556       NodeNumDefs = 1;
557     else
558       NodeNumDefs = 0;
559     return;
560   }
561   unsigned POpc = Node->getMachineOpcode();
562   if (POpc == TargetOpcode::IMPLICIT_DEF) {
563     // No register need be allocated for this.
564     NodeNumDefs = 0;
565     return;
566   }
567   if (POpc == TargetOpcode::PATCHPOINT &&
568       Node->getValueType(0) == MVT::Other) {
569     // PATCHPOINT is defined to have one result, but it might really have none
570     // if we're not using CallingConv::AnyReg. Don't mistake the chain for a
571     // real definition.
572     NodeNumDefs = 0;
573     return;
574   }
575   unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
576   // Some instructions define regs that are not represented in the selection DAG
577   // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
578   NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
579   DefIdx = 0;
580 }
581 
582 // Construct a RegDefIter for this SUnit and find the first valid value.
583 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
584                                            const ScheduleDAGSDNodes *SD)
585     : SchedDAG(SD), Node(SU->getNode()) {
586   InitNodeNumDefs();
587   Advance();
588 }
589 
590 // Advance to the next valid value defined by the SUnit.
591 void ScheduleDAGSDNodes::RegDefIter::Advance() {
592   for (;Node;) { // Visit all glued nodes.
593     for (;DefIdx < NodeNumDefs; ++DefIdx) {
594       if (!Node->hasAnyUseOfValue(DefIdx))
595         continue;
596       ValueType = Node->getSimpleValueType(DefIdx);
597       ++DefIdx;
598       return; // Found a normal regdef.
599     }
600     Node = Node->getGluedNode();
601     if (!Node) {
602       return; // No values left to visit.
603     }
604     InitNodeNumDefs();
605   }
606 }
607 
608 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
609   assert(SU->NumRegDefsLeft == 0 && "expect a new node");
610   for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
611     assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
612     ++SU->NumRegDefsLeft;
613   }
614 }
615 
616 void ScheduleDAGSDNodes::computeLatency(SUnit *SU) {
617   SDNode *N = SU->getNode();
618 
619   // TokenFactor operands are considered zero latency, and some schedulers
620   // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
621   // whenever node latency is nonzero.
622   if (N && N->getOpcode() == ISD::TokenFactor) {
623     SU->Latency = 0;
624     return;
625   }
626 
627   // Check to see if the scheduler cares about latencies.
628   if (forceUnitLatencies()) {
629     SU->Latency = 1;
630     return;
631   }
632 
633   if (!InstrItins || InstrItins->isEmpty()) {
634     if (N && N->isMachineOpcode() &&
635         TII->isHighLatencyDef(N->getMachineOpcode()))
636       SU->Latency = HighLatencyCycles;
637     else
638       SU->Latency = 1;
639     return;
640   }
641 
642   // Compute the latency for the node.  We use the sum of the latencies for
643   // all nodes glued together into this SUnit.
644   SU->Latency = 0;
645   for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
646     if (N->isMachineOpcode())
647       SU->Latency += TII->getInstrLatency(InstrItins, N);
648 }
649 
650 void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use,
651                                                unsigned OpIdx, SDep& dep) const{
652   // Check to see if the scheduler cares about latencies.
653   if (forceUnitLatencies())
654     return;
655 
656   if (dep.getKind() != SDep::Data)
657     return;
658 
659   unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
660   if (Use->isMachineOpcode())
661     // Adjust the use operand index by num of defs.
662     OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
663   std::optional<unsigned> Latency =
664       TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
665   if (Latency > 1U && Use->getOpcode() == ISD::CopyToReg &&
666       !BB->succ_empty()) {
667     unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
668     if (Register::isVirtualRegister(Reg))
669       // This copy is a liveout value. It is likely coalesced, so reduce the
670       // latency so not to penalize the def.
671       // FIXME: need target specific adjustment here?
672       Latency = *Latency - 1;
673   }
674   if (Latency)
675     dep.setLatency(*Latency);
676 }
677 
678 void ScheduleDAGSDNodes::dumpNode(const SUnit &SU) const {
679 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
680   dumpNodeName(SU);
681   dbgs() << ": ";
682 
683   if (!SU.getNode()) {
684     dbgs() << "PHYS REG COPY\n";
685     return;
686   }
687 
688   SU.getNode()->dump(DAG);
689   dbgs() << "\n";
690   SmallVector<SDNode *, 4> GluedNodes;
691   for (SDNode *N = SU.getNode()->getGluedNode(); N; N = N->getGluedNode())
692     GluedNodes.push_back(N);
693   while (!GluedNodes.empty()) {
694     dbgs() << "    ";
695     GluedNodes.back()->dump(DAG);
696     dbgs() << "\n";
697     GluedNodes.pop_back();
698   }
699 #endif
700 }
701 
702 void ScheduleDAGSDNodes::dump() const {
703 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
704   if (EntrySU.getNode() != nullptr)
705     dumpNodeAll(EntrySU);
706   for (const SUnit &SU : SUnits)
707     dumpNodeAll(SU);
708   if (ExitSU.getNode() != nullptr)
709     dumpNodeAll(ExitSU);
710 #endif
711 }
712 
713 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
714 void ScheduleDAGSDNodes::dumpSchedule() const {
715   for (const SUnit *SU : Sequence) {
716     if (SU)
717       dumpNode(*SU);
718     else
719       dbgs() << "**** NOOP ****\n";
720   }
721 }
722 #endif
723 
724 #ifndef NDEBUG
725 /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that
726 /// their state is consistent with the nodes listed in Sequence.
727 ///
728 void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) {
729   unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp);
730   unsigned Noops = llvm::count(Sequence, nullptr);
731   assert(Sequence.size() - Noops == ScheduledNodes &&
732          "The number of nodes scheduled doesn't match the expected number!");
733 }
734 #endif // NDEBUG
735 
736 /// ProcessSDDbgValues - Process SDDbgValues associated with this node.
737 static void
738 ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
739                    SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
740                    DenseMap<SDValue, Register> &VRBaseMap, unsigned Order) {
741   if (!N->getHasDebugValue())
742     return;
743 
744   /// Returns true if \p DV has any VReg operand locations which don't exist in
745   /// VRBaseMap.
746   auto HasUnknownVReg = [&VRBaseMap](SDDbgValue *DV) {
747     for (const SDDbgOperand &L : DV->getLocationOps()) {
748       if (L.getKind() == SDDbgOperand::SDNODE &&
749           VRBaseMap.count({L.getSDNode(), L.getResNo()}) == 0)
750         return true;
751     }
752     return false;
753   };
754 
755   // Opportunistically insert immediate dbg_value uses, i.e. those with the same
756   // source order number as N.
757   MachineBasicBlock *BB = Emitter.getBlock();
758   MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
759   for (auto *DV : DAG->GetDbgValues(N)) {
760     if (DV->isEmitted())
761       continue;
762     unsigned DVOrder = DV->getOrder();
763     if (Order != 0 && DVOrder != Order)
764       continue;
765     // If DV has any VReg location operands which haven't been mapped then
766     // either that node is no longer available or we just haven't visited the
767     // node yet. In the former case we should emit an undef dbg_value, but we
768     // can do it later. And for the latter we'll want to wait until all
769     // dependent nodes have been visited.
770     if (!DV->isInvalidated() && HasUnknownVReg(DV))
771       continue;
772     MachineInstr *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap);
773     if (!DbgMI)
774       continue;
775     Orders.push_back({DVOrder, DbgMI});
776     BB->insert(InsertPos, DbgMI);
777   }
778 }
779 
780 // ProcessSourceNode - Process nodes with source order numbers. These are added
781 // to a vector which EmitSchedule uses to determine how to insert dbg_value
782 // instructions in the right order.
783 static void
784 ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
785                   DenseMap<SDValue, Register> &VRBaseMap,
786                   SmallVectorImpl<std::pair<unsigned, MachineInstr *>> &Orders,
787                   SmallSet<Register, 8> &Seen, MachineInstr *NewInsn) {
788   unsigned Order = N->getIROrder();
789   if (!Order || Seen.count(Order)) {
790     // Process any valid SDDbgValues even if node does not have any order
791     // assigned.
792     ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
793     return;
794   }
795 
796   // If a new instruction was generated for this Order number, record it.
797   // Otherwise, leave this order number unseen: we will either find later
798   // instructions for it, or leave it unseen if there were no instructions at
799   // all.
800   if (NewInsn) {
801     Seen.insert(Order);
802     Orders.push_back({Order, NewInsn});
803   }
804 
805   // Even if no instruction was generated, a Value may have become defined via
806   // earlier nodes. Try to process them now.
807   ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
808 }
809 
810 void ScheduleDAGSDNodes::
811 EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, Register> &VRBaseMap,
812                 MachineBasicBlock::iterator InsertPos) {
813   for (const SDep &Pred : SU->Preds) {
814     if (Pred.isCtrl())
815       continue; // ignore chain preds
816     if (Pred.getSUnit()->CopyDstRC) {
817       // Copy to physical register.
818       DenseMap<SUnit *, Register>::iterator VRI =
819           VRBaseMap.find(Pred.getSUnit());
820       assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
821       // Find the destination physical register.
822       Register Reg;
823       for (const SDep &Succ : SU->Succs) {
824         if (Succ.isCtrl())
825           continue; // ignore chain preds
826         if (Succ.getReg()) {
827           Reg = Succ.getReg();
828           break;
829         }
830       }
831       BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg)
832         .addReg(VRI->second);
833     } else {
834       // Copy from physical register.
835       assert(Pred.getReg() && "Unknown physical register!");
836       Register VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
837       bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
838       (void)isNew; // Silence compiler warning.
839       assert(isNew && "Node emitted out of order - early");
840       BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase)
841           .addReg(Pred.getReg());
842     }
843     break;
844   }
845 }
846 
847 /// EmitSchedule - Emit the machine code in scheduled order. Return the new
848 /// InsertPos and MachineBasicBlock that contains this insertion
849 /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does
850 /// not necessarily refer to returned BB. The emitter may split blocks.
851 MachineBasicBlock *ScheduleDAGSDNodes::
852 EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
853   InstrEmitter Emitter(DAG->getTarget(), BB, InsertPos);
854   DenseMap<SDValue, Register> VRBaseMap;
855   DenseMap<SUnit*, Register> CopyVRBaseMap;
856   SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
857   SmallSet<Register, 8> Seen;
858   bool HasDbg = DAG->hasDebugValues();
859 
860   // Emit a node, and determine where its first instruction is for debuginfo.
861   // Zero, one, or multiple instructions can be created when emitting a node.
862   auto EmitNode =
863       [&](SDNode *Node, bool IsClone, bool IsCloned,
864           DenseMap<SDValue, Register> &VRBaseMap) -> MachineInstr * {
865     // Fetch instruction prior to this, or end() if nonexistant.
866     auto GetPrevInsn = [&](MachineBasicBlock::iterator I) {
867       if (I == BB->begin())
868         return BB->end();
869       else
870         return std::prev(Emitter.getInsertPos());
871     };
872 
873     MachineBasicBlock::iterator Before = GetPrevInsn(Emitter.getInsertPos());
874     Emitter.EmitNode(Node, IsClone, IsCloned, VRBaseMap);
875     MachineBasicBlock::iterator After = GetPrevInsn(Emitter.getInsertPos());
876 
877     // If the iterator did not change, no instructions were inserted.
878     if (Before == After)
879       return nullptr;
880 
881     MachineInstr *MI;
882     if (Before == BB->end()) {
883       // There were no prior instructions; the new ones must start at the
884       // beginning of the block.
885       MI = &Emitter.getBlock()->instr_front();
886     } else {
887       // Return first instruction after the pre-existing instructions.
888       MI = &*std::next(Before);
889     }
890 
891     if (MI->isCandidateForCallSiteEntry() &&
892         DAG->getTarget().Options.EmitCallSiteInfo) {
893       MF.addCallSiteInfo(MI, DAG->getCallSiteInfo(Node));
894     }
895 
896     if (DAG->getNoMergeSiteInfo(Node)) {
897       MI->setFlag(MachineInstr::MIFlag::NoMerge);
898     }
899 
900     if (MDNode *MD = DAG->getPCSections(Node))
901       MI->setPCSections(MF, MD);
902 
903     // Set MMRAs on _all_ added instructions.
904     if (MDNode *MMRA = DAG->getMMRAMetadata(Node)) {
905       for (MachineBasicBlock::iterator It = MI->getIterator(),
906                                        End = std::next(After);
907            It != End; ++It)
908         It->setMMRAMetadata(MF, MMRA);
909     }
910 
911     return MI;
912   };
913 
914   // If this is the first BB, emit byval parameter dbg_value's.
915   if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
916     SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
917     SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
918     for (; PDI != PDE; ++PDI) {
919       MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
920       if (DbgMI) {
921         BB->insert(InsertPos, DbgMI);
922         // We re-emit the dbg_value closer to its use, too, after instructions
923         // are emitted to the BB.
924         (*PDI)->clearIsEmitted();
925       }
926     }
927   }
928 
929   for (SUnit *SU : Sequence) {
930     if (!SU) {
931       // Null SUnit* is a noop.
932       TII->insertNoop(*Emitter.getBlock(), InsertPos);
933       continue;
934     }
935 
936     // For pre-regalloc scheduling, create instructions corresponding to the
937     // SDNode and any glued SDNodes and append them to the block.
938     if (!SU->getNode()) {
939       // Emit a copy.
940       EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos);
941       continue;
942     }
943 
944     SmallVector<SDNode *, 4> GluedNodes;
945     for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
946       GluedNodes.push_back(N);
947     while (!GluedNodes.empty()) {
948       SDNode *N = GluedNodes.back();
949       auto NewInsn = EmitNode(N, SU->OrigNode != SU, SU->isCloned, VRBaseMap);
950       // Remember the source order of the inserted instruction.
951       if (HasDbg)
952         ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen, NewInsn);
953 
954       if (MDNode *MD = DAG->getHeapAllocSite(N))
955         if (NewInsn && NewInsn->isCall())
956           NewInsn->setHeapAllocMarker(MF, MD);
957 
958       GluedNodes.pop_back();
959     }
960     auto NewInsn =
961         EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, VRBaseMap);
962     // Remember the source order of the inserted instruction.
963     if (HasDbg)
964       ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, Seen,
965                         NewInsn);
966 
967     if (MDNode *MD = DAG->getHeapAllocSite(SU->getNode())) {
968       if (NewInsn && NewInsn->isCall())
969         NewInsn->setHeapAllocMarker(MF, MD);
970     }
971   }
972 
973   // Insert all the dbg_values which have not already been inserted in source
974   // order sequence.
975   if (HasDbg) {
976     MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
977 
978     // Sort the source order instructions and use the order to insert debug
979     // values. Use stable_sort so that DBG_VALUEs are inserted in the same order
980     // regardless of the host's implementation fo std::sort.
981     llvm::stable_sort(Orders, less_first());
982     std::stable_sort(DAG->DbgBegin(), DAG->DbgEnd(),
983                      [](const SDDbgValue *LHS, const SDDbgValue *RHS) {
984                        return LHS->getOrder() < RHS->getOrder();
985                      });
986 
987     SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
988     SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
989     // Now emit the rest according to source order.
990     unsigned LastOrder = 0;
991     for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
992       unsigned Order = Orders[i].first;
993       MachineInstr *MI = Orders[i].second;
994       // Insert all SDDbgValue's whose order(s) are before "Order".
995       assert(MI);
996       for (; DI != DE; ++DI) {
997         if ((*DI)->getOrder() < LastOrder || (*DI)->getOrder() >= Order)
998           break;
999         if ((*DI)->isEmitted())
1000           continue;
1001 
1002         MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
1003         if (DbgMI) {
1004           if (!LastOrder)
1005             // Insert to start of the BB (after PHIs).
1006             BB->insert(BBBegin, DbgMI);
1007           else {
1008             // Insert at the instruction, which may be in a different
1009             // block, if the block was split by a custom inserter.
1010             MachineBasicBlock::iterator Pos = MI;
1011             MI->getParent()->insert(Pos, DbgMI);
1012           }
1013         }
1014       }
1015       LastOrder = Order;
1016     }
1017     // Add trailing DbgValue's before the terminator. FIXME: May want to add
1018     // some of them before one or more conditional branches?
1019     SmallVector<MachineInstr*, 8> DbgMIs;
1020     for (; DI != DE; ++DI) {
1021       if ((*DI)->isEmitted())
1022         continue;
1023       assert((*DI)->getOrder() >= LastOrder &&
1024              "emitting DBG_VALUE out of order");
1025       if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap))
1026         DbgMIs.push_back(DbgMI);
1027     }
1028 
1029     MachineBasicBlock *InsertBB = Emitter.getBlock();
1030     MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator();
1031     InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end());
1032 
1033     SDDbgInfo::DbgLabelIterator DLI = DAG->DbgLabelBegin();
1034     SDDbgInfo::DbgLabelIterator DLE = DAG->DbgLabelEnd();
1035     // Now emit the rest according to source order.
1036     LastOrder = 0;
1037     for (const auto &InstrOrder : Orders) {
1038       unsigned Order = InstrOrder.first;
1039       MachineInstr *MI = InstrOrder.second;
1040       if (!MI)
1041         continue;
1042 
1043       // Insert all SDDbgLabel's whose order(s) are before "Order".
1044       for (; DLI != DLE &&
1045              (*DLI)->getOrder() >= LastOrder && (*DLI)->getOrder() < Order;
1046              ++DLI) {
1047         MachineInstr *DbgMI = Emitter.EmitDbgLabel(*DLI);
1048         if (DbgMI) {
1049           if (!LastOrder)
1050             // Insert to start of the BB (after PHIs).
1051             BB->insert(BBBegin, DbgMI);
1052           else {
1053             // Insert at the instruction, which may be in a different
1054             // block, if the block was split by a custom inserter.
1055             MachineBasicBlock::iterator Pos = MI;
1056             MI->getParent()->insert(Pos, DbgMI);
1057           }
1058         }
1059       }
1060       if (DLI == DLE)
1061         break;
1062 
1063       LastOrder = Order;
1064     }
1065   }
1066 
1067   InsertPos = Emitter.getInsertPos();
1068   // In some cases, DBG_VALUEs might be inserted after the first terminator,
1069   // which results in an invalid MBB. If that happens, move the DBG_VALUEs
1070   // before the first terminator.
1071   MachineBasicBlock *InsertBB = Emitter.getBlock();
1072   auto FirstTerm = InsertBB->getFirstTerminator();
1073   if (FirstTerm != InsertBB->end()) {
1074     assert(!FirstTerm->isDebugValue() &&
1075            "first terminator cannot be a debug value");
1076     for (MachineInstr &MI : make_early_inc_range(
1077              make_range(std::next(FirstTerm), InsertBB->end()))) {
1078       // Only scan up to insertion point.
1079       if (&MI == InsertPos)
1080         break;
1081 
1082       if (!MI.isDebugValue())
1083         continue;
1084 
1085       // The DBG_VALUE was referencing a value produced by a terminator. By
1086       // moving the DBG_VALUE, the referenced value also needs invalidating.
1087       MI.getOperand(0).ChangeToRegister(0, false);
1088       MI.moveBefore(&*FirstTerm);
1089     }
1090   }
1091   return InsertBB;
1092 }
1093 
1094 /// Return the basic block label.
1095 std::string ScheduleDAGSDNodes::getDAGName() const {
1096   return "sunit-dag." + BB->getFullName();
1097 }
1098