1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the ScheduleDAG class, which is a base class used by 10 // scheduling implementation classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ScheduleDAGSDNodes.h" 15 #include "InstrEmitter.h" 16 #include "SDNodeDbgValue.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SelectionDAG.h" 25 #include "llvm/CodeGen/TargetInstrInfo.h" 26 #include "llvm/CodeGen/TargetLowering.h" 27 #include "llvm/CodeGen/TargetRegisterInfo.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/Config/llvm-config.h" 30 #include "llvm/MC/MCInstrItineraries.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetMachine.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "pre-RA-sched" 38 39 STATISTIC(LoadsClustered, "Number of loads clustered together"); 40 41 // This allows the latency-based scheduler to notice high latency instructions 42 // without a target itinerary. The choice of number here has more to do with 43 // balancing scheduler heuristics than with the actual machine latency. 44 static cl::opt<int> HighLatencyCycles( 45 "sched-high-latency-cycles", cl::Hidden, cl::init(10), 46 cl::desc("Roughly estimate the number of cycles that 'long latency'" 47 "instructions take for targets with no itinerary")); 48 49 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf) 50 : ScheduleDAG(mf), InstrItins(mf.getSubtarget().getInstrItineraryData()) {} 51 52 /// Run - perform scheduling. 53 /// 54 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) { 55 BB = bb; 56 DAG = dag; 57 58 // Clear the scheduler's SUnit DAG. 59 ScheduleDAG::clearDAG(); 60 Sequence.clear(); 61 62 // Invoke the target's selection of scheduler. 63 Schedule(); 64 } 65 66 /// NewSUnit - Creates a new SUnit and return a ptr to it. 67 /// 68 SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) { 69 #ifndef NDEBUG 70 const SUnit *Addr = nullptr; 71 if (!SUnits.empty()) 72 Addr = &SUnits[0]; 73 #endif 74 SUnits.emplace_back(N, (unsigned)SUnits.size()); 75 assert((Addr == nullptr || Addr == &SUnits[0]) && 76 "SUnits std::vector reallocated on the fly!"); 77 SUnits.back().OrigNode = &SUnits.back(); 78 SUnit *SU = &SUnits.back(); 79 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 80 if (!N || 81 (N->isMachineOpcode() && 82 N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)) 83 SU->SchedulingPref = Sched::None; 84 else 85 SU->SchedulingPref = TLI.getSchedulingPreference(N); 86 return SU; 87 } 88 89 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) { 90 SUnit *SU = newSUnit(Old->getNode()); 91 SU->OrigNode = Old->OrigNode; 92 SU->Latency = Old->Latency; 93 SU->isVRegCycle = Old->isVRegCycle; 94 SU->isCall = Old->isCall; 95 SU->isCallOp = Old->isCallOp; 96 SU->isTwoAddress = Old->isTwoAddress; 97 SU->isCommutable = Old->isCommutable; 98 SU->hasPhysRegDefs = Old->hasPhysRegDefs; 99 SU->hasPhysRegClobbers = Old->hasPhysRegClobbers; 100 SU->isScheduleHigh = Old->isScheduleHigh; 101 SU->isScheduleLow = Old->isScheduleLow; 102 SU->SchedulingPref = Old->SchedulingPref; 103 Old->isCloned = true; 104 return SU; 105 } 106 107 /// CheckForPhysRegDependency - Check if the dependency between def and use of 108 /// a specified operand is a physical register dependency. If so, returns the 109 /// register and the cost of copying the register. 110 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, 111 const TargetRegisterInfo *TRI, 112 const TargetInstrInfo *TII, 113 const TargetLowering &TLI, 114 unsigned &PhysReg, int &Cost) { 115 if (Op != 2 || User->getOpcode() != ISD::CopyToReg) 116 return; 117 118 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 119 if (TLI.checkForPhysRegDependency(Def, User, Op, TRI, TII, PhysReg, Cost)) 120 return; 121 122 if (Register::isVirtualRegister(Reg)) 123 return; 124 125 unsigned ResNo = User->getOperand(2).getResNo(); 126 if (Def->getOpcode() == ISD::CopyFromReg && 127 cast<RegisterSDNode>(Def->getOperand(1))->getReg() == Reg) { 128 PhysReg = Reg; 129 } else if (Def->isMachineOpcode()) { 130 const MCInstrDesc &II = TII->get(Def->getMachineOpcode()); 131 if (ResNo >= II.getNumDefs() && II.hasImplicitDefOfPhysReg(Reg)) 132 PhysReg = Reg; 133 } 134 135 if (PhysReg != 0) { 136 const TargetRegisterClass *RC = 137 TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo)); 138 Cost = RC->getCopyCost(); 139 } 140 } 141 142 // Helper for AddGlue to clone node operands. 143 static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef<EVT> VTs, 144 SDValue ExtraOper = SDValue()) { 145 SmallVector<SDValue, 8> Ops(N->op_begin(), N->op_end()); 146 if (ExtraOper.getNode()) 147 Ops.push_back(ExtraOper); 148 149 SDVTList VTList = DAG->getVTList(VTs); 150 MachineSDNode *MN = dyn_cast<MachineSDNode>(N); 151 152 // Store memory references. 153 SmallVector<MachineMemOperand *, 2> MMOs; 154 if (MN) 155 MMOs.assign(MN->memoperands_begin(), MN->memoperands_end()); 156 157 DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops); 158 159 // Reset the memory references 160 if (MN) 161 DAG->setNodeMemRefs(MN, MMOs); 162 } 163 164 static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) { 165 SDNode *GlueDestNode = Glue.getNode(); 166 167 // Don't add glue from a node to itself. 168 if (GlueDestNode == N) return false; 169 170 // Don't add a glue operand to something that already uses glue. 171 if (GlueDestNode && 172 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { 173 return false; 174 } 175 // Don't add glue to something that already has a glue value. 176 if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false; 177 178 SmallVector<EVT, 4> VTs(N->values()); 179 if (AddGlue) 180 VTs.push_back(MVT::Glue); 181 182 CloneNodeWithValues(N, DAG, VTs, Glue); 183 184 return true; 185 } 186 187 // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the 188 // node even though simply shrinking the value list is sufficient. 189 static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) { 190 assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue && 191 !N->hasAnyUseOfValue(N->getNumValues() - 1)) && 192 "expected an unused glue value"); 193 194 CloneNodeWithValues(N, DAG, 195 ArrayRef(N->value_begin(), N->getNumValues() - 1)); 196 } 197 198 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them. 199 /// This function finds loads of the same base and different offsets. If the 200 /// offsets are not far apart (target specific), it add MVT::Glue inputs and 201 /// outputs to ensure they are scheduled together and in order. This 202 /// optimization may benefit some targets by improving cache locality. 203 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) { 204 SDValue Chain; 205 unsigned NumOps = Node->getNumOperands(); 206 if (Node->getOperand(NumOps-1).getValueType() == MVT::Other) 207 Chain = Node->getOperand(NumOps-1); 208 if (!Chain) 209 return; 210 211 // Skip any load instruction that has a tied input. There may be an additional 212 // dependency requiring a different order than by increasing offsets, and the 213 // added glue may introduce a cycle. 214 auto hasTiedInput = [this](const SDNode *N) { 215 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 216 for (unsigned I = 0; I != MCID.getNumOperands(); ++I) { 217 if (MCID.getOperandConstraint(I, MCOI::TIED_TO) != -1) 218 return true; 219 } 220 221 return false; 222 }; 223 224 // Look for other loads of the same chain. Find loads that are loading from 225 // the same base pointer and different offsets. 226 SmallPtrSet<SDNode*, 16> Visited; 227 SmallVector<int64_t, 4> Offsets; 228 DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode. 229 bool Cluster = false; 230 SDNode *Base = Node; 231 232 if (hasTiedInput(Base)) 233 return; 234 235 // This algorithm requires a reasonably low use count before finding a match 236 // to avoid uselessly blowing up compile time in large blocks. 237 unsigned UseCount = 0; 238 for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end(); 239 I != E && UseCount < 100; ++I, ++UseCount) { 240 if (I.getUse().getResNo() != Chain.getResNo()) 241 continue; 242 243 SDNode *User = *I; 244 if (User == Node || !Visited.insert(User).second) 245 continue; 246 int64_t Offset1, Offset2; 247 if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) || 248 Offset1 == Offset2 || 249 hasTiedInput(User)) { 250 // FIXME: Should be ok if they addresses are identical. But earlier 251 // optimizations really should have eliminated one of the loads. 252 continue; 253 } 254 if (O2SMap.insert(std::make_pair(Offset1, Base)).second) 255 Offsets.push_back(Offset1); 256 O2SMap.insert(std::make_pair(Offset2, User)); 257 Offsets.push_back(Offset2); 258 if (Offset2 < Offset1) 259 Base = User; 260 Cluster = true; 261 // Reset UseCount to allow more matches. 262 UseCount = 0; 263 } 264 265 if (!Cluster) 266 return; 267 268 // Sort them in increasing order. 269 llvm::sort(Offsets); 270 271 // Check if the loads are close enough. 272 SmallVector<SDNode*, 4> Loads; 273 unsigned NumLoads = 0; 274 int64_t BaseOff = Offsets[0]; 275 SDNode *BaseLoad = O2SMap[BaseOff]; 276 Loads.push_back(BaseLoad); 277 for (unsigned i = 1, e = Offsets.size(); i != e; ++i) { 278 int64_t Offset = Offsets[i]; 279 SDNode *Load = O2SMap[Offset]; 280 if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads)) 281 break; // Stop right here. Ignore loads that are further away. 282 Loads.push_back(Load); 283 ++NumLoads; 284 } 285 286 if (NumLoads == 0) 287 return; 288 289 // Cluster loads by adding MVT::Glue outputs and inputs. This also 290 // ensure they are scheduled in order of increasing addresses. 291 SDNode *Lead = Loads[0]; 292 SDValue InGlue; 293 if (AddGlue(Lead, InGlue, true, DAG)) 294 InGlue = SDValue(Lead, Lead->getNumValues() - 1); 295 for (unsigned I = 1, E = Loads.size(); I != E; ++I) { 296 bool OutGlue = I < E - 1; 297 SDNode *Load = Loads[I]; 298 299 // If AddGlue fails, we could leave an unsused glue value. This should not 300 // cause any 301 if (AddGlue(Load, InGlue, OutGlue, DAG)) { 302 if (OutGlue) 303 InGlue = SDValue(Load, Load->getNumValues() - 1); 304 305 ++LoadsClustered; 306 } 307 else if (!OutGlue && InGlue.getNode()) 308 RemoveUnusedGlue(InGlue.getNode(), DAG); 309 } 310 } 311 312 /// ClusterNodes - Cluster certain nodes which should be scheduled together. 313 /// 314 void ScheduleDAGSDNodes::ClusterNodes() { 315 for (SDNode &NI : DAG->allnodes()) { 316 SDNode *Node = &NI; 317 if (!Node || !Node->isMachineOpcode()) 318 continue; 319 320 unsigned Opc = Node->getMachineOpcode(); 321 const MCInstrDesc &MCID = TII->get(Opc); 322 if (MCID.mayLoad()) 323 // Cluster loads from "near" addresses into combined SUnits. 324 ClusterNeighboringLoads(Node); 325 } 326 } 327 328 void ScheduleDAGSDNodes::BuildSchedUnits() { 329 // During scheduling, the NodeId field of SDNode is used to map SDNodes 330 // to their associated SUnits by holding SUnits table indices. A value 331 // of -1 means the SDNode does not yet have an associated SUnit. 332 unsigned NumNodes = 0; 333 for (SDNode &NI : DAG->allnodes()) { 334 NI.setNodeId(-1); 335 ++NumNodes; 336 } 337 338 // Reserve entries in the vector for each of the SUnits we are creating. This 339 // ensure that reallocation of the vector won't happen, so SUnit*'s won't get 340 // invalidated. 341 // FIXME: Multiply by 2 because we may clone nodes during scheduling. 342 // This is a temporary workaround. 343 SUnits.reserve(NumNodes * 2); 344 345 // Add all nodes in depth first order. 346 SmallVector<SDNode*, 64> Worklist; 347 SmallPtrSet<SDNode*, 32> Visited; 348 Worklist.push_back(DAG->getRoot().getNode()); 349 Visited.insert(DAG->getRoot().getNode()); 350 351 SmallVector<SUnit*, 8> CallSUnits; 352 while (!Worklist.empty()) { 353 SDNode *NI = Worklist.pop_back_val(); 354 355 // Add all operands to the worklist unless they've already been added. 356 for (const SDValue &Op : NI->op_values()) 357 if (Visited.insert(Op.getNode()).second) 358 Worklist.push_back(Op.getNode()); 359 360 if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate. 361 continue; 362 363 // If this node has already been processed, stop now. 364 if (NI->getNodeId() != -1) continue; 365 366 SUnit *NodeSUnit = newSUnit(NI); 367 368 // See if anything is glued to this node, if so, add them to glued 369 // nodes. Nodes can have at most one glue input and one glue output. Glue 370 // is required to be the last operand and result of a node. 371 372 // Scan up to find glued preds. 373 SDNode *N = NI; 374 while (N->getNumOperands() && 375 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { 376 N = N->getOperand(N->getNumOperands()-1).getNode(); 377 assert(N->getNodeId() == -1 && "Node already inserted!"); 378 N->setNodeId(NodeSUnit->NodeNum); 379 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) 380 NodeSUnit->isCall = true; 381 } 382 383 // Scan down to find any glued succs. 384 N = NI; 385 while (N->getValueType(N->getNumValues()-1) == MVT::Glue) { 386 SDValue GlueVal(N, N->getNumValues()-1); 387 388 // There are either zero or one users of the Glue result. 389 bool HasGlueUse = false; 390 for (SDNode *U : N->uses()) 391 if (GlueVal.isOperandOf(U)) { 392 HasGlueUse = true; 393 assert(N->getNodeId() == -1 && "Node already inserted!"); 394 N->setNodeId(NodeSUnit->NodeNum); 395 N = U; 396 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) 397 NodeSUnit->isCall = true; 398 break; 399 } 400 if (!HasGlueUse) break; 401 } 402 403 if (NodeSUnit->isCall) 404 CallSUnits.push_back(NodeSUnit); 405 406 // Schedule zero-latency TokenFactor below any nodes that may increase the 407 // schedule height. Otherwise, ancestors of the TokenFactor may appear to 408 // have false stalls. 409 if (NI->getOpcode() == ISD::TokenFactor) 410 NodeSUnit->isScheduleLow = true; 411 412 // If there are glue operands involved, N is now the bottom-most node 413 // of the sequence of nodes that are glued together. 414 // Update the SUnit. 415 NodeSUnit->setNode(N); 416 assert(N->getNodeId() == -1 && "Node already inserted!"); 417 N->setNodeId(NodeSUnit->NodeNum); 418 419 // Compute NumRegDefsLeft. This must be done before AddSchedEdges. 420 InitNumRegDefsLeft(NodeSUnit); 421 422 // Assign the Latency field of NodeSUnit using target-provided information. 423 computeLatency(NodeSUnit); 424 } 425 426 // Find all call operands. 427 while (!CallSUnits.empty()) { 428 SUnit *SU = CallSUnits.pop_back_val(); 429 for (const SDNode *SUNode = SU->getNode(); SUNode; 430 SUNode = SUNode->getGluedNode()) { 431 if (SUNode->getOpcode() != ISD::CopyToReg) 432 continue; 433 SDNode *SrcN = SUNode->getOperand(2).getNode(); 434 if (isPassiveNode(SrcN)) continue; // Not scheduled. 435 SUnit *SrcSU = &SUnits[SrcN->getNodeId()]; 436 SrcSU->isCallOp = true; 437 } 438 } 439 } 440 441 void ScheduleDAGSDNodes::AddSchedEdges() { 442 const TargetSubtargetInfo &ST = MF.getSubtarget(); 443 444 // Check to see if the scheduler cares about latencies. 445 bool UnitLatencies = forceUnitLatencies(); 446 447 // Pass 2: add the preds, succs, etc. 448 for (SUnit &SU : SUnits) { 449 SDNode *MainNode = SU.getNode(); 450 451 if (MainNode->isMachineOpcode()) { 452 unsigned Opc = MainNode->getMachineOpcode(); 453 const MCInstrDesc &MCID = TII->get(Opc); 454 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) { 455 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) { 456 SU.isTwoAddress = true; 457 break; 458 } 459 } 460 if (MCID.isCommutable()) 461 SU.isCommutable = true; 462 } 463 464 // Find all predecessors and successors of the group. 465 for (SDNode *N = SU.getNode(); N; N = N->getGluedNode()) { 466 if (N->isMachineOpcode() && 467 !TII->get(N->getMachineOpcode()).implicit_defs().empty()) { 468 SU.hasPhysRegClobbers = true; 469 unsigned NumUsed = InstrEmitter::CountResults(N); 470 while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1)) 471 --NumUsed; // Skip over unused values at the end. 472 if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs()) 473 SU.hasPhysRegDefs = true; 474 } 475 476 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 477 SDNode *OpN = N->getOperand(i).getNode(); 478 unsigned DefIdx = N->getOperand(i).getResNo(); 479 if (isPassiveNode(OpN)) continue; // Not scheduled. 480 SUnit *OpSU = &SUnits[OpN->getNodeId()]; 481 assert(OpSU && "Node has no SUnit!"); 482 if (OpSU == &SU) 483 continue; // In the same group. 484 485 EVT OpVT = N->getOperand(i).getValueType(); 486 assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!"); 487 bool isChain = OpVT == MVT::Other; 488 489 unsigned PhysReg = 0; 490 int Cost = 1; 491 // Determine if this is a physical register dependency. 492 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 493 CheckForPhysRegDependency(OpN, N, i, TRI, TII, TLI, PhysReg, Cost); 494 assert((PhysReg == 0 || !isChain) && 495 "Chain dependence via physreg data?"); 496 // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler 497 // emits a copy from the physical register to a virtual register unless 498 // it requires a cross class copy (cost < 0). That means we are only 499 // treating "expensive to copy" register dependency as physical register 500 // dependency. This may change in the future though. 501 if (Cost >= 0 && !StressSched) 502 PhysReg = 0; 503 504 // If this is a ctrl dep, latency is 1. 505 unsigned OpLatency = isChain ? 1 : OpSU->Latency; 506 // Special-case TokenFactor chains as zero-latency. 507 if(isChain && OpN->getOpcode() == ISD::TokenFactor) 508 OpLatency = 0; 509 510 SDep Dep = isChain ? SDep(OpSU, SDep::Barrier) 511 : SDep(OpSU, SDep::Data, PhysReg); 512 Dep.setLatency(OpLatency); 513 if (!isChain && !UnitLatencies) { 514 computeOperandLatency(OpN, N, i, Dep); 515 ST.adjustSchedDependency(OpSU, DefIdx, &SU, i, Dep); 516 } 517 518 if (!SU.addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) { 519 // Multiple register uses are combined in the same SUnit. For example, 520 // we could have a set of glued nodes with all their defs consumed by 521 // another set of glued nodes. Register pressure tracking sees this as 522 // a single use, so to keep pressure balanced we reduce the defs. 523 // 524 // We can't tell (without more book-keeping) if this results from 525 // glued nodes or duplicate operands. As long as we don't reduce 526 // NumRegDefsLeft to zero, we handle the common cases well. 527 --OpSU->NumRegDefsLeft; 528 } 529 } 530 } 531 } 532 } 533 534 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we 535 /// are input. This SUnit graph is similar to the SelectionDAG, but 536 /// excludes nodes that aren't interesting to scheduling, and represents 537 /// glued together nodes with a single SUnit. 538 void ScheduleDAGSDNodes::BuildSchedGraph(AAResults *AA) { 539 // Cluster certain nodes which should be scheduled together. 540 ClusterNodes(); 541 // Populate the SUnits array. 542 BuildSchedUnits(); 543 // Compute all the scheduling dependencies between nodes. 544 AddSchedEdges(); 545 } 546 547 // Initialize NumNodeDefs for the current Node's opcode. 548 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() { 549 // Check for phys reg copy. 550 if (!Node) 551 return; 552 553 if (!Node->isMachineOpcode()) { 554 if (Node->getOpcode() == ISD::CopyFromReg) 555 NodeNumDefs = 1; 556 else 557 NodeNumDefs = 0; 558 return; 559 } 560 unsigned POpc = Node->getMachineOpcode(); 561 if (POpc == TargetOpcode::IMPLICIT_DEF) { 562 // No register need be allocated for this. 563 NodeNumDefs = 0; 564 return; 565 } 566 if (POpc == TargetOpcode::PATCHPOINT && 567 Node->getValueType(0) == MVT::Other) { 568 // PATCHPOINT is defined to have one result, but it might really have none 569 // if we're not using CallingConv::AnyReg. Don't mistake the chain for a 570 // real definition. 571 NodeNumDefs = 0; 572 return; 573 } 574 unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs(); 575 // Some instructions define regs that are not represented in the selection DAG 576 // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues. 577 NodeNumDefs = std::min(Node->getNumValues(), NRegDefs); 578 DefIdx = 0; 579 } 580 581 // Construct a RegDefIter for this SUnit and find the first valid value. 582 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU, 583 const ScheduleDAGSDNodes *SD) 584 : SchedDAG(SD), Node(SU->getNode()) { 585 InitNodeNumDefs(); 586 Advance(); 587 } 588 589 // Advance to the next valid value defined by the SUnit. 590 void ScheduleDAGSDNodes::RegDefIter::Advance() { 591 for (;Node;) { // Visit all glued nodes. 592 for (;DefIdx < NodeNumDefs; ++DefIdx) { 593 if (!Node->hasAnyUseOfValue(DefIdx)) 594 continue; 595 ValueType = Node->getSimpleValueType(DefIdx); 596 ++DefIdx; 597 return; // Found a normal regdef. 598 } 599 Node = Node->getGluedNode(); 600 if (!Node) { 601 return; // No values left to visit. 602 } 603 InitNodeNumDefs(); 604 } 605 } 606 607 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) { 608 assert(SU->NumRegDefsLeft == 0 && "expect a new node"); 609 for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) { 610 assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected"); 611 ++SU->NumRegDefsLeft; 612 } 613 } 614 615 void ScheduleDAGSDNodes::computeLatency(SUnit *SU) { 616 SDNode *N = SU->getNode(); 617 618 // TokenFactor operands are considered zero latency, and some schedulers 619 // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero 620 // whenever node latency is nonzero. 621 if (N && N->getOpcode() == ISD::TokenFactor) { 622 SU->Latency = 0; 623 return; 624 } 625 626 // Check to see if the scheduler cares about latencies. 627 if (forceUnitLatencies()) { 628 SU->Latency = 1; 629 return; 630 } 631 632 if (!InstrItins || InstrItins->isEmpty()) { 633 if (N && N->isMachineOpcode() && 634 TII->isHighLatencyDef(N->getMachineOpcode())) 635 SU->Latency = HighLatencyCycles; 636 else 637 SU->Latency = 1; 638 return; 639 } 640 641 // Compute the latency for the node. We use the sum of the latencies for 642 // all nodes glued together into this SUnit. 643 SU->Latency = 0; 644 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) 645 if (N->isMachineOpcode()) 646 SU->Latency += TII->getInstrLatency(InstrItins, N); 647 } 648 649 void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use, 650 unsigned OpIdx, SDep& dep) const{ 651 // Check to see if the scheduler cares about latencies. 652 if (forceUnitLatencies()) 653 return; 654 655 if (dep.getKind() != SDep::Data) 656 return; 657 658 unsigned DefIdx = Use->getOperand(OpIdx).getResNo(); 659 if (Use->isMachineOpcode()) 660 // Adjust the use operand index by num of defs. 661 OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs(); 662 std::optional<unsigned> Latency = 663 TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx); 664 if (Latency > 1U && Use->getOpcode() == ISD::CopyToReg && 665 !BB->succ_empty()) { 666 unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg(); 667 if (Register::isVirtualRegister(Reg)) 668 // This copy is a liveout value. It is likely coalesced, so reduce the 669 // latency so not to penalize the def. 670 // FIXME: need target specific adjustment here? 671 Latency = *Latency - 1; 672 } 673 if (Latency) 674 dep.setLatency(*Latency); 675 } 676 677 void ScheduleDAGSDNodes::dumpNode(const SUnit &SU) const { 678 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 679 dumpNodeName(SU); 680 dbgs() << ": "; 681 682 if (!SU.getNode()) { 683 dbgs() << "PHYS REG COPY\n"; 684 return; 685 } 686 687 SU.getNode()->dump(DAG); 688 dbgs() << "\n"; 689 SmallVector<SDNode *, 4> GluedNodes; 690 for (SDNode *N = SU.getNode()->getGluedNode(); N; N = N->getGluedNode()) 691 GluedNodes.push_back(N); 692 while (!GluedNodes.empty()) { 693 dbgs() << " "; 694 GluedNodes.back()->dump(DAG); 695 dbgs() << "\n"; 696 GluedNodes.pop_back(); 697 } 698 #endif 699 } 700 701 void ScheduleDAGSDNodes::dump() const { 702 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 703 if (EntrySU.getNode() != nullptr) 704 dumpNodeAll(EntrySU); 705 for (const SUnit &SU : SUnits) 706 dumpNodeAll(SU); 707 if (ExitSU.getNode() != nullptr) 708 dumpNodeAll(ExitSU); 709 #endif 710 } 711 712 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 713 void ScheduleDAGSDNodes::dumpSchedule() const { 714 for (const SUnit *SU : Sequence) { 715 if (SU) 716 dumpNode(*SU); 717 else 718 dbgs() << "**** NOOP ****\n"; 719 } 720 } 721 #endif 722 723 #ifndef NDEBUG 724 /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that 725 /// their state is consistent with the nodes listed in Sequence. 726 /// 727 void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) { 728 unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp); 729 unsigned Noops = llvm::count(Sequence, nullptr); 730 assert(Sequence.size() - Noops == ScheduledNodes && 731 "The number of nodes scheduled doesn't match the expected number!"); 732 } 733 #endif // NDEBUG 734 735 /// ProcessSDDbgValues - Process SDDbgValues associated with this node. 736 static void 737 ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, 738 SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders, 739 DenseMap<SDValue, Register> &VRBaseMap, unsigned Order) { 740 if (!N->getHasDebugValue()) 741 return; 742 743 /// Returns true if \p DV has any VReg operand locations which don't exist in 744 /// VRBaseMap. 745 auto HasUnknownVReg = [&VRBaseMap](SDDbgValue *DV) { 746 for (const SDDbgOperand &L : DV->getLocationOps()) { 747 if (L.getKind() == SDDbgOperand::SDNODE && 748 VRBaseMap.count({L.getSDNode(), L.getResNo()}) == 0) 749 return true; 750 } 751 return false; 752 }; 753 754 // Opportunistically insert immediate dbg_value uses, i.e. those with the same 755 // source order number as N. 756 MachineBasicBlock *BB = Emitter.getBlock(); 757 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos(); 758 for (auto *DV : DAG->GetDbgValues(N)) { 759 if (DV->isEmitted()) 760 continue; 761 unsigned DVOrder = DV->getOrder(); 762 if (Order != 0 && DVOrder != Order) 763 continue; 764 // If DV has any VReg location operands which haven't been mapped then 765 // either that node is no longer available or we just haven't visited the 766 // node yet. In the former case we should emit an undef dbg_value, but we 767 // can do it later. And for the latter we'll want to wait until all 768 // dependent nodes have been visited. 769 if (!DV->isInvalidated() && HasUnknownVReg(DV)) 770 continue; 771 MachineInstr *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap); 772 if (!DbgMI) 773 continue; 774 Orders.push_back({DVOrder, DbgMI}); 775 BB->insert(InsertPos, DbgMI); 776 } 777 } 778 779 // ProcessSourceNode - Process nodes with source order numbers. These are added 780 // to a vector which EmitSchedule uses to determine how to insert dbg_value 781 // instructions in the right order. 782 static void 783 ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, 784 DenseMap<SDValue, Register> &VRBaseMap, 785 SmallVectorImpl<std::pair<unsigned, MachineInstr *>> &Orders, 786 SmallSet<Register, 8> &Seen, MachineInstr *NewInsn) { 787 unsigned Order = N->getIROrder(); 788 if (!Order || Seen.count(Order)) { 789 // Process any valid SDDbgValues even if node does not have any order 790 // assigned. 791 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0); 792 return; 793 } 794 795 // If a new instruction was generated for this Order number, record it. 796 // Otherwise, leave this order number unseen: we will either find later 797 // instructions for it, or leave it unseen if there were no instructions at 798 // all. 799 if (NewInsn) { 800 Seen.insert(Order); 801 Orders.push_back({Order, NewInsn}); 802 } 803 804 // Even if no instruction was generated, a Value may have become defined via 805 // earlier nodes. Try to process them now. 806 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order); 807 } 808 809 void ScheduleDAGSDNodes:: 810 EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, Register> &VRBaseMap, 811 MachineBasicBlock::iterator InsertPos) { 812 for (const SDep &Pred : SU->Preds) { 813 if (Pred.isCtrl()) 814 continue; // ignore chain preds 815 if (Pred.getSUnit()->CopyDstRC) { 816 // Copy to physical register. 817 DenseMap<SUnit *, Register>::iterator VRI = 818 VRBaseMap.find(Pred.getSUnit()); 819 assert(VRI != VRBaseMap.end() && "Node emitted out of order - late"); 820 // Find the destination physical register. 821 Register Reg; 822 for (const SDep &Succ : SU->Succs) { 823 if (Succ.isCtrl()) 824 continue; // ignore chain preds 825 if (Succ.getReg()) { 826 Reg = Succ.getReg(); 827 break; 828 } 829 } 830 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg) 831 .addReg(VRI->second); 832 } else { 833 // Copy from physical register. 834 assert(Pred.getReg() && "Unknown physical register!"); 835 Register VRBase = MRI.createVirtualRegister(SU->CopyDstRC); 836 bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second; 837 (void)isNew; // Silence compiler warning. 838 assert(isNew && "Node emitted out of order - early"); 839 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase) 840 .addReg(Pred.getReg()); 841 } 842 break; 843 } 844 } 845 846 /// EmitSchedule - Emit the machine code in scheduled order. Return the new 847 /// InsertPos and MachineBasicBlock that contains this insertion 848 /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does 849 /// not necessarily refer to returned BB. The emitter may split blocks. 850 MachineBasicBlock *ScheduleDAGSDNodes:: 851 EmitSchedule(MachineBasicBlock::iterator &InsertPos) { 852 InstrEmitter Emitter(DAG->getTarget(), BB, InsertPos); 853 DenseMap<SDValue, Register> VRBaseMap; 854 DenseMap<SUnit*, Register> CopyVRBaseMap; 855 SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders; 856 SmallSet<Register, 8> Seen; 857 bool HasDbg = DAG->hasDebugValues(); 858 859 // Emit a node, and determine where its first instruction is for debuginfo. 860 // Zero, one, or multiple instructions can be created when emitting a node. 861 auto EmitNode = 862 [&](SDNode *Node, bool IsClone, bool IsCloned, 863 DenseMap<SDValue, Register> &VRBaseMap) -> MachineInstr * { 864 // Fetch instruction prior to this, or end() if nonexistant. 865 auto GetPrevInsn = [&](MachineBasicBlock::iterator I) { 866 if (I == BB->begin()) 867 return BB->end(); 868 else 869 return std::prev(Emitter.getInsertPos()); 870 }; 871 872 MachineBasicBlock::iterator Before = GetPrevInsn(Emitter.getInsertPos()); 873 Emitter.EmitNode(Node, IsClone, IsCloned, VRBaseMap); 874 MachineBasicBlock::iterator After = GetPrevInsn(Emitter.getInsertPos()); 875 876 // If the iterator did not change, no instructions were inserted. 877 if (Before == After) 878 return nullptr; 879 880 MachineInstr *MI; 881 if (Before == BB->end()) { 882 // There were no prior instructions; the new ones must start at the 883 // beginning of the block. 884 MI = &Emitter.getBlock()->instr_front(); 885 } else { 886 // Return first instruction after the pre-existing instructions. 887 MI = &*std::next(Before); 888 } 889 890 if (MI->isCandidateForCallSiteEntry() && 891 DAG->getTarget().Options.EmitCallSiteInfo) 892 MF.addCallArgsForwardingRegs(MI, DAG->getCallSiteInfo(Node)); 893 894 if (DAG->getNoMergeSiteInfo(Node)) { 895 MI->setFlag(MachineInstr::MIFlag::NoMerge); 896 } 897 898 if (MDNode *MD = DAG->getPCSections(Node)) 899 MI->setPCSections(MF, MD); 900 901 return MI; 902 }; 903 904 // If this is the first BB, emit byval parameter dbg_value's. 905 if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) { 906 SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin(); 907 SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd(); 908 for (; PDI != PDE; ++PDI) { 909 MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap); 910 if (DbgMI) { 911 BB->insert(InsertPos, DbgMI); 912 // We re-emit the dbg_value closer to its use, too, after instructions 913 // are emitted to the BB. 914 (*PDI)->clearIsEmitted(); 915 } 916 } 917 } 918 919 for (SUnit *SU : Sequence) { 920 if (!SU) { 921 // Null SUnit* is a noop. 922 TII->insertNoop(*Emitter.getBlock(), InsertPos); 923 continue; 924 } 925 926 // For pre-regalloc scheduling, create instructions corresponding to the 927 // SDNode and any glued SDNodes and append them to the block. 928 if (!SU->getNode()) { 929 // Emit a copy. 930 EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos); 931 continue; 932 } 933 934 SmallVector<SDNode *, 4> GluedNodes; 935 for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode()) 936 GluedNodes.push_back(N); 937 while (!GluedNodes.empty()) { 938 SDNode *N = GluedNodes.back(); 939 auto NewInsn = EmitNode(N, SU->OrigNode != SU, SU->isCloned, VRBaseMap); 940 // Remember the source order of the inserted instruction. 941 if (HasDbg) 942 ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen, NewInsn); 943 944 if (MDNode *MD = DAG->getHeapAllocSite(N)) 945 if (NewInsn && NewInsn->isCall()) 946 NewInsn->setHeapAllocMarker(MF, MD); 947 948 GluedNodes.pop_back(); 949 } 950 auto NewInsn = 951 EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, VRBaseMap); 952 // Remember the source order of the inserted instruction. 953 if (HasDbg) 954 ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, Seen, 955 NewInsn); 956 957 if (MDNode *MD = DAG->getHeapAllocSite(SU->getNode())) { 958 if (NewInsn && NewInsn->isCall()) 959 NewInsn->setHeapAllocMarker(MF, MD); 960 } 961 } 962 963 // Insert all the dbg_values which have not already been inserted in source 964 // order sequence. 965 if (HasDbg) { 966 MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI(); 967 968 // Sort the source order instructions and use the order to insert debug 969 // values. Use stable_sort so that DBG_VALUEs are inserted in the same order 970 // regardless of the host's implementation fo std::sort. 971 llvm::stable_sort(Orders, less_first()); 972 std::stable_sort(DAG->DbgBegin(), DAG->DbgEnd(), 973 [](const SDDbgValue *LHS, const SDDbgValue *RHS) { 974 return LHS->getOrder() < RHS->getOrder(); 975 }); 976 977 SDDbgInfo::DbgIterator DI = DAG->DbgBegin(); 978 SDDbgInfo::DbgIterator DE = DAG->DbgEnd(); 979 // Now emit the rest according to source order. 980 unsigned LastOrder = 0; 981 for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) { 982 unsigned Order = Orders[i].first; 983 MachineInstr *MI = Orders[i].second; 984 // Insert all SDDbgValue's whose order(s) are before "Order". 985 assert(MI); 986 for (; DI != DE; ++DI) { 987 if ((*DI)->getOrder() < LastOrder || (*DI)->getOrder() >= Order) 988 break; 989 if ((*DI)->isEmitted()) 990 continue; 991 992 MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap); 993 if (DbgMI) { 994 if (!LastOrder) 995 // Insert to start of the BB (after PHIs). 996 BB->insert(BBBegin, DbgMI); 997 else { 998 // Insert at the instruction, which may be in a different 999 // block, if the block was split by a custom inserter. 1000 MachineBasicBlock::iterator Pos = MI; 1001 MI->getParent()->insert(Pos, DbgMI); 1002 } 1003 } 1004 } 1005 LastOrder = Order; 1006 } 1007 // Add trailing DbgValue's before the terminator. FIXME: May want to add 1008 // some of them before one or more conditional branches? 1009 SmallVector<MachineInstr*, 8> DbgMIs; 1010 for (; DI != DE; ++DI) { 1011 if ((*DI)->isEmitted()) 1012 continue; 1013 assert((*DI)->getOrder() >= LastOrder && 1014 "emitting DBG_VALUE out of order"); 1015 if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap)) 1016 DbgMIs.push_back(DbgMI); 1017 } 1018 1019 MachineBasicBlock *InsertBB = Emitter.getBlock(); 1020 MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator(); 1021 InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end()); 1022 1023 SDDbgInfo::DbgLabelIterator DLI = DAG->DbgLabelBegin(); 1024 SDDbgInfo::DbgLabelIterator DLE = DAG->DbgLabelEnd(); 1025 // Now emit the rest according to source order. 1026 LastOrder = 0; 1027 for (const auto &InstrOrder : Orders) { 1028 unsigned Order = InstrOrder.first; 1029 MachineInstr *MI = InstrOrder.second; 1030 if (!MI) 1031 continue; 1032 1033 // Insert all SDDbgLabel's whose order(s) are before "Order". 1034 for (; DLI != DLE && 1035 (*DLI)->getOrder() >= LastOrder && (*DLI)->getOrder() < Order; 1036 ++DLI) { 1037 MachineInstr *DbgMI = Emitter.EmitDbgLabel(*DLI); 1038 if (DbgMI) { 1039 if (!LastOrder) 1040 // Insert to start of the BB (after PHIs). 1041 BB->insert(BBBegin, DbgMI); 1042 else { 1043 // Insert at the instruction, which may be in a different 1044 // block, if the block was split by a custom inserter. 1045 MachineBasicBlock::iterator Pos = MI; 1046 MI->getParent()->insert(Pos, DbgMI); 1047 } 1048 } 1049 } 1050 if (DLI == DLE) 1051 break; 1052 1053 LastOrder = Order; 1054 } 1055 } 1056 1057 InsertPos = Emitter.getInsertPos(); 1058 // In some cases, DBG_VALUEs might be inserted after the first terminator, 1059 // which results in an invalid MBB. If that happens, move the DBG_VALUEs 1060 // before the first terminator. 1061 MachineBasicBlock *InsertBB = Emitter.getBlock(); 1062 auto FirstTerm = InsertBB->getFirstTerminator(); 1063 if (FirstTerm != InsertBB->end()) { 1064 assert(!FirstTerm->isDebugValue() && 1065 "first terminator cannot be a debug value"); 1066 for (MachineInstr &MI : make_early_inc_range( 1067 make_range(std::next(FirstTerm), InsertBB->end()))) { 1068 // Only scan up to insertion point. 1069 if (&MI == InsertPos) 1070 break; 1071 1072 if (!MI.isDebugValue()) 1073 continue; 1074 1075 // The DBG_VALUE was referencing a value produced by a terminator. By 1076 // moving the DBG_VALUE, the referenced value also needs invalidating. 1077 MI.getOperand(0).ChangeToRegister(0, false); 1078 MI.moveBefore(&*FirstTerm); 1079 } 1080 } 1081 return InsertBB; 1082 } 1083 1084 /// Return the basic block label. 1085 std::string ScheduleDAGSDNodes::getDAGName() const { 1086 return "sunit-dag." + BB->getFullName(); 1087 } 1088