1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the ScheduleDAG class, which is a base class used by 10 // scheduling implementation classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ScheduleDAGSDNodes.h" 15 #include "InstrEmitter.h" 16 #include "SDNodeDbgValue.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SelectionDAG.h" 25 #include "llvm/CodeGen/TargetInstrInfo.h" 26 #include "llvm/CodeGen/TargetLowering.h" 27 #include "llvm/CodeGen/TargetRegisterInfo.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/Config/llvm-config.h" 30 #include "llvm/MC/MCInstrItineraries.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetMachine.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "pre-RA-sched" 38 39 STATISTIC(LoadsClustered, "Number of loads clustered together"); 40 41 // This allows the latency-based scheduler to notice high latency instructions 42 // without a target itinerary. The choice of number here has more to do with 43 // balancing scheduler heuristics than with the actual machine latency. 44 static cl::opt<int> HighLatencyCycles( 45 "sched-high-latency-cycles", cl::Hidden, cl::init(10), 46 cl::desc("Roughly estimate the number of cycles that 'long latency'" 47 "instructions take for targets with no itinerary")); 48 49 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf) 50 : ScheduleDAG(mf), BB(nullptr), DAG(nullptr), 51 InstrItins(mf.getSubtarget().getInstrItineraryData()) {} 52 53 /// Run - perform scheduling. 54 /// 55 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) { 56 BB = bb; 57 DAG = dag; 58 59 // Clear the scheduler's SUnit DAG. 60 ScheduleDAG::clearDAG(); 61 Sequence.clear(); 62 63 // Invoke the target's selection of scheduler. 64 Schedule(); 65 } 66 67 /// NewSUnit - Creates a new SUnit and return a ptr to it. 68 /// 69 SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) { 70 #ifndef NDEBUG 71 const SUnit *Addr = nullptr; 72 if (!SUnits.empty()) 73 Addr = &SUnits[0]; 74 #endif 75 SUnits.emplace_back(N, (unsigned)SUnits.size()); 76 assert((Addr == nullptr || Addr == &SUnits[0]) && 77 "SUnits std::vector reallocated on the fly!"); 78 SUnits.back().OrigNode = &SUnits.back(); 79 SUnit *SU = &SUnits.back(); 80 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 81 if (!N || 82 (N->isMachineOpcode() && 83 N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)) 84 SU->SchedulingPref = Sched::None; 85 else 86 SU->SchedulingPref = TLI.getSchedulingPreference(N); 87 return SU; 88 } 89 90 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) { 91 SUnit *SU = newSUnit(Old->getNode()); 92 SU->OrigNode = Old->OrigNode; 93 SU->Latency = Old->Latency; 94 SU->isVRegCycle = Old->isVRegCycle; 95 SU->isCall = Old->isCall; 96 SU->isCallOp = Old->isCallOp; 97 SU->isTwoAddress = Old->isTwoAddress; 98 SU->isCommutable = Old->isCommutable; 99 SU->hasPhysRegDefs = Old->hasPhysRegDefs; 100 SU->hasPhysRegClobbers = Old->hasPhysRegClobbers; 101 SU->isScheduleHigh = Old->isScheduleHigh; 102 SU->isScheduleLow = Old->isScheduleLow; 103 SU->SchedulingPref = Old->SchedulingPref; 104 Old->isCloned = true; 105 return SU; 106 } 107 108 /// CheckForPhysRegDependency - Check if the dependency between def and use of 109 /// a specified operand is a physical register dependency. If so, returns the 110 /// register and the cost of copying the register. 111 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, 112 const TargetRegisterInfo *TRI, 113 const TargetInstrInfo *TII, 114 unsigned &PhysReg, int &Cost) { 115 if (Op != 2 || User->getOpcode() != ISD::CopyToReg) 116 return; 117 118 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 119 if (Register::isVirtualRegister(Reg)) 120 return; 121 122 unsigned ResNo = User->getOperand(2).getResNo(); 123 if (Def->getOpcode() == ISD::CopyFromReg && 124 cast<RegisterSDNode>(Def->getOperand(1))->getReg() == Reg) { 125 PhysReg = Reg; 126 } else if (Def->isMachineOpcode()) { 127 const MCInstrDesc &II = TII->get(Def->getMachineOpcode()); 128 if (ResNo >= II.getNumDefs() && II.hasImplicitDefOfPhysReg(Reg)) 129 PhysReg = Reg; 130 } 131 132 if (PhysReg != 0) { 133 const TargetRegisterClass *RC = 134 TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo)); 135 Cost = RC->getCopyCost(); 136 } 137 } 138 139 // Helper for AddGlue to clone node operands. 140 static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef<EVT> VTs, 141 SDValue ExtraOper = SDValue()) { 142 SmallVector<SDValue, 8> Ops(N->op_begin(), N->op_end()); 143 if (ExtraOper.getNode()) 144 Ops.push_back(ExtraOper); 145 146 SDVTList VTList = DAG->getVTList(VTs); 147 MachineSDNode *MN = dyn_cast<MachineSDNode>(N); 148 149 // Store memory references. 150 SmallVector<MachineMemOperand *, 2> MMOs; 151 if (MN) 152 MMOs.assign(MN->memoperands_begin(), MN->memoperands_end()); 153 154 DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops); 155 156 // Reset the memory references 157 if (MN) 158 DAG->setNodeMemRefs(MN, MMOs); 159 } 160 161 static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) { 162 SDNode *GlueDestNode = Glue.getNode(); 163 164 // Don't add glue from a node to itself. 165 if (GlueDestNode == N) return false; 166 167 // Don't add a glue operand to something that already uses glue. 168 if (GlueDestNode && 169 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { 170 return false; 171 } 172 // Don't add glue to something that already has a glue value. 173 if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false; 174 175 SmallVector<EVT, 4> VTs(N->values()); 176 if (AddGlue) 177 VTs.push_back(MVT::Glue); 178 179 CloneNodeWithValues(N, DAG, VTs, Glue); 180 181 return true; 182 } 183 184 // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the 185 // node even though simply shrinking the value list is sufficient. 186 static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) { 187 assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue && 188 !N->hasAnyUseOfValue(N->getNumValues() - 1)) && 189 "expected an unused glue value"); 190 191 CloneNodeWithValues(N, DAG, 192 makeArrayRef(N->value_begin(), N->getNumValues() - 1)); 193 } 194 195 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them. 196 /// This function finds loads of the same base and different offsets. If the 197 /// offsets are not far apart (target specific), it add MVT::Glue inputs and 198 /// outputs to ensure they are scheduled together and in order. This 199 /// optimization may benefit some targets by improving cache locality. 200 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) { 201 SDValue Chain; 202 unsigned NumOps = Node->getNumOperands(); 203 if (Node->getOperand(NumOps-1).getValueType() == MVT::Other) 204 Chain = Node->getOperand(NumOps-1); 205 if (!Chain) 206 return; 207 208 // Skip any load instruction that has a tied input. There may be an additional 209 // dependency requiring a different order than by increasing offsets, and the 210 // added glue may introduce a cycle. 211 auto hasTiedInput = [this](const SDNode *N) { 212 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 213 for (unsigned I = 0; I != MCID.getNumOperands(); ++I) { 214 if (MCID.getOperandConstraint(I, MCOI::TIED_TO) != -1) 215 return true; 216 } 217 218 return false; 219 }; 220 221 // Look for other loads of the same chain. Find loads that are loading from 222 // the same base pointer and different offsets. 223 SmallPtrSet<SDNode*, 16> Visited; 224 SmallVector<int64_t, 4> Offsets; 225 DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode. 226 bool Cluster = false; 227 SDNode *Base = Node; 228 229 if (hasTiedInput(Base)) 230 return; 231 232 // This algorithm requires a reasonably low use count before finding a match 233 // to avoid uselessly blowing up compile time in large blocks. 234 unsigned UseCount = 0; 235 for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end(); 236 I != E && UseCount < 100; ++I, ++UseCount) { 237 if (I.getUse().getResNo() != Chain.getResNo()) 238 continue; 239 240 SDNode *User = *I; 241 if (User == Node || !Visited.insert(User).second) 242 continue; 243 int64_t Offset1, Offset2; 244 if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) || 245 Offset1 == Offset2 || 246 hasTiedInput(User)) { 247 // FIXME: Should be ok if they addresses are identical. But earlier 248 // optimizations really should have eliminated one of the loads. 249 continue; 250 } 251 if (O2SMap.insert(std::make_pair(Offset1, Base)).second) 252 Offsets.push_back(Offset1); 253 O2SMap.insert(std::make_pair(Offset2, User)); 254 Offsets.push_back(Offset2); 255 if (Offset2 < Offset1) 256 Base = User; 257 Cluster = true; 258 // Reset UseCount to allow more matches. 259 UseCount = 0; 260 } 261 262 if (!Cluster) 263 return; 264 265 // Sort them in increasing order. 266 llvm::sort(Offsets); 267 268 // Check if the loads are close enough. 269 SmallVector<SDNode*, 4> Loads; 270 unsigned NumLoads = 0; 271 int64_t BaseOff = Offsets[0]; 272 SDNode *BaseLoad = O2SMap[BaseOff]; 273 Loads.push_back(BaseLoad); 274 for (unsigned i = 1, e = Offsets.size(); i != e; ++i) { 275 int64_t Offset = Offsets[i]; 276 SDNode *Load = O2SMap[Offset]; 277 if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads)) 278 break; // Stop right here. Ignore loads that are further away. 279 Loads.push_back(Load); 280 ++NumLoads; 281 } 282 283 if (NumLoads == 0) 284 return; 285 286 // Cluster loads by adding MVT::Glue outputs and inputs. This also 287 // ensure they are scheduled in order of increasing addresses. 288 SDNode *Lead = Loads[0]; 289 SDValue InGlue = SDValue(nullptr, 0); 290 if (AddGlue(Lead, InGlue, true, DAG)) 291 InGlue = SDValue(Lead, Lead->getNumValues() - 1); 292 for (unsigned I = 1, E = Loads.size(); I != E; ++I) { 293 bool OutGlue = I < E - 1; 294 SDNode *Load = Loads[I]; 295 296 // If AddGlue fails, we could leave an unsused glue value. This should not 297 // cause any 298 if (AddGlue(Load, InGlue, OutGlue, DAG)) { 299 if (OutGlue) 300 InGlue = SDValue(Load, Load->getNumValues() - 1); 301 302 ++LoadsClustered; 303 } 304 else if (!OutGlue && InGlue.getNode()) 305 RemoveUnusedGlue(InGlue.getNode(), DAG); 306 } 307 } 308 309 /// ClusterNodes - Cluster certain nodes which should be scheduled together. 310 /// 311 void ScheduleDAGSDNodes::ClusterNodes() { 312 for (SDNode &NI : DAG->allnodes()) { 313 SDNode *Node = &NI; 314 if (!Node || !Node->isMachineOpcode()) 315 continue; 316 317 unsigned Opc = Node->getMachineOpcode(); 318 const MCInstrDesc &MCID = TII->get(Opc); 319 if (MCID.mayLoad()) 320 // Cluster loads from "near" addresses into combined SUnits. 321 ClusterNeighboringLoads(Node); 322 } 323 } 324 325 void ScheduleDAGSDNodes::BuildSchedUnits() { 326 // During scheduling, the NodeId field of SDNode is used to map SDNodes 327 // to their associated SUnits by holding SUnits table indices. A value 328 // of -1 means the SDNode does not yet have an associated SUnit. 329 unsigned NumNodes = 0; 330 for (SDNode &NI : DAG->allnodes()) { 331 NI.setNodeId(-1); 332 ++NumNodes; 333 } 334 335 // Reserve entries in the vector for each of the SUnits we are creating. This 336 // ensure that reallocation of the vector won't happen, so SUnit*'s won't get 337 // invalidated. 338 // FIXME: Multiply by 2 because we may clone nodes during scheduling. 339 // This is a temporary workaround. 340 SUnits.reserve(NumNodes * 2); 341 342 // Add all nodes in depth first order. 343 SmallVector<SDNode*, 64> Worklist; 344 SmallPtrSet<SDNode*, 32> Visited; 345 Worklist.push_back(DAG->getRoot().getNode()); 346 Visited.insert(DAG->getRoot().getNode()); 347 348 SmallVector<SUnit*, 8> CallSUnits; 349 while (!Worklist.empty()) { 350 SDNode *NI = Worklist.pop_back_val(); 351 352 // Add all operands to the worklist unless they've already been added. 353 for (const SDValue &Op : NI->op_values()) 354 if (Visited.insert(Op.getNode()).second) 355 Worklist.push_back(Op.getNode()); 356 357 if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate. 358 continue; 359 360 // If this node has already been processed, stop now. 361 if (NI->getNodeId() != -1) continue; 362 363 SUnit *NodeSUnit = newSUnit(NI); 364 365 // See if anything is glued to this node, if so, add them to glued 366 // nodes. Nodes can have at most one glue input and one glue output. Glue 367 // is required to be the last operand and result of a node. 368 369 // Scan up to find glued preds. 370 SDNode *N = NI; 371 while (N->getNumOperands() && 372 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { 373 N = N->getOperand(N->getNumOperands()-1).getNode(); 374 assert(N->getNodeId() == -1 && "Node already inserted!"); 375 N->setNodeId(NodeSUnit->NodeNum); 376 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) 377 NodeSUnit->isCall = true; 378 } 379 380 // Scan down to find any glued succs. 381 N = NI; 382 while (N->getValueType(N->getNumValues()-1) == MVT::Glue) { 383 SDValue GlueVal(N, N->getNumValues()-1); 384 385 // There are either zero or one users of the Glue result. 386 bool HasGlueUse = false; 387 for (SDNode *U : N->uses()) 388 if (GlueVal.isOperandOf(U)) { 389 HasGlueUse = true; 390 assert(N->getNodeId() == -1 && "Node already inserted!"); 391 N->setNodeId(NodeSUnit->NodeNum); 392 N = U; 393 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) 394 NodeSUnit->isCall = true; 395 break; 396 } 397 if (!HasGlueUse) break; 398 } 399 400 if (NodeSUnit->isCall) 401 CallSUnits.push_back(NodeSUnit); 402 403 // Schedule zero-latency TokenFactor below any nodes that may increase the 404 // schedule height. Otherwise, ancestors of the TokenFactor may appear to 405 // have false stalls. 406 if (NI->getOpcode() == ISD::TokenFactor) 407 NodeSUnit->isScheduleLow = true; 408 409 // If there are glue operands involved, N is now the bottom-most node 410 // of the sequence of nodes that are glued together. 411 // Update the SUnit. 412 NodeSUnit->setNode(N); 413 assert(N->getNodeId() == -1 && "Node already inserted!"); 414 N->setNodeId(NodeSUnit->NodeNum); 415 416 // Compute NumRegDefsLeft. This must be done before AddSchedEdges. 417 InitNumRegDefsLeft(NodeSUnit); 418 419 // Assign the Latency field of NodeSUnit using target-provided information. 420 computeLatency(NodeSUnit); 421 } 422 423 // Find all call operands. 424 while (!CallSUnits.empty()) { 425 SUnit *SU = CallSUnits.pop_back_val(); 426 for (const SDNode *SUNode = SU->getNode(); SUNode; 427 SUNode = SUNode->getGluedNode()) { 428 if (SUNode->getOpcode() != ISD::CopyToReg) 429 continue; 430 SDNode *SrcN = SUNode->getOperand(2).getNode(); 431 if (isPassiveNode(SrcN)) continue; // Not scheduled. 432 SUnit *SrcSU = &SUnits[SrcN->getNodeId()]; 433 SrcSU->isCallOp = true; 434 } 435 } 436 } 437 438 void ScheduleDAGSDNodes::AddSchedEdges() { 439 const TargetSubtargetInfo &ST = MF.getSubtarget(); 440 441 // Check to see if the scheduler cares about latencies. 442 bool UnitLatencies = forceUnitLatencies(); 443 444 // Pass 2: add the preds, succs, etc. 445 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { 446 SUnit *SU = &SUnits[su]; 447 SDNode *MainNode = SU->getNode(); 448 449 if (MainNode->isMachineOpcode()) { 450 unsigned Opc = MainNode->getMachineOpcode(); 451 const MCInstrDesc &MCID = TII->get(Opc); 452 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) { 453 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) { 454 SU->isTwoAddress = true; 455 break; 456 } 457 } 458 if (MCID.isCommutable()) 459 SU->isCommutable = true; 460 } 461 462 // Find all predecessors and successors of the group. 463 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) { 464 if (N->isMachineOpcode() && 465 TII->get(N->getMachineOpcode()).getImplicitDefs()) { 466 SU->hasPhysRegClobbers = true; 467 unsigned NumUsed = InstrEmitter::CountResults(N); 468 while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1)) 469 --NumUsed; // Skip over unused values at the end. 470 if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs()) 471 SU->hasPhysRegDefs = true; 472 } 473 474 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 475 SDNode *OpN = N->getOperand(i).getNode(); 476 unsigned DefIdx = N->getOperand(i).getResNo(); 477 if (isPassiveNode(OpN)) continue; // Not scheduled. 478 SUnit *OpSU = &SUnits[OpN->getNodeId()]; 479 assert(OpSU && "Node has no SUnit!"); 480 if (OpSU == SU) continue; // In the same group. 481 482 EVT OpVT = N->getOperand(i).getValueType(); 483 assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!"); 484 bool isChain = OpVT == MVT::Other; 485 486 unsigned PhysReg = 0; 487 int Cost = 1; 488 // Determine if this is a physical register dependency. 489 CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost); 490 assert((PhysReg == 0 || !isChain) && 491 "Chain dependence via physreg data?"); 492 // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler 493 // emits a copy from the physical register to a virtual register unless 494 // it requires a cross class copy (cost < 0). That means we are only 495 // treating "expensive to copy" register dependency as physical register 496 // dependency. This may change in the future though. 497 if (Cost >= 0 && !StressSched) 498 PhysReg = 0; 499 500 // If this is a ctrl dep, latency is 1. 501 unsigned OpLatency = isChain ? 1 : OpSU->Latency; 502 // Special-case TokenFactor chains as zero-latency. 503 if(isChain && OpN->getOpcode() == ISD::TokenFactor) 504 OpLatency = 0; 505 506 SDep Dep = isChain ? SDep(OpSU, SDep::Barrier) 507 : SDep(OpSU, SDep::Data, PhysReg); 508 Dep.setLatency(OpLatency); 509 if (!isChain && !UnitLatencies) { 510 computeOperandLatency(OpN, N, i, Dep); 511 ST.adjustSchedDependency(OpSU, DefIdx, SU, i, Dep); 512 } 513 514 if (!SU->addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) { 515 // Multiple register uses are combined in the same SUnit. For example, 516 // we could have a set of glued nodes with all their defs consumed by 517 // another set of glued nodes. Register pressure tracking sees this as 518 // a single use, so to keep pressure balanced we reduce the defs. 519 // 520 // We can't tell (without more book-keeping) if this results from 521 // glued nodes or duplicate operands. As long as we don't reduce 522 // NumRegDefsLeft to zero, we handle the common cases well. 523 --OpSU->NumRegDefsLeft; 524 } 525 } 526 } 527 } 528 } 529 530 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we 531 /// are input. This SUnit graph is similar to the SelectionDAG, but 532 /// excludes nodes that aren't interesting to scheduling, and represents 533 /// glued together nodes with a single SUnit. 534 void ScheduleDAGSDNodes::BuildSchedGraph(AAResults *AA) { 535 // Cluster certain nodes which should be scheduled together. 536 ClusterNodes(); 537 // Populate the SUnits array. 538 BuildSchedUnits(); 539 // Compute all the scheduling dependencies between nodes. 540 AddSchedEdges(); 541 } 542 543 // Initialize NumNodeDefs for the current Node's opcode. 544 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() { 545 // Check for phys reg copy. 546 if (!Node) 547 return; 548 549 if (!Node->isMachineOpcode()) { 550 if (Node->getOpcode() == ISD::CopyFromReg) 551 NodeNumDefs = 1; 552 else 553 NodeNumDefs = 0; 554 return; 555 } 556 unsigned POpc = Node->getMachineOpcode(); 557 if (POpc == TargetOpcode::IMPLICIT_DEF) { 558 // No register need be allocated for this. 559 NodeNumDefs = 0; 560 return; 561 } 562 if (POpc == TargetOpcode::PATCHPOINT && 563 Node->getValueType(0) == MVT::Other) { 564 // PATCHPOINT is defined to have one result, but it might really have none 565 // if we're not using CallingConv::AnyReg. Don't mistake the chain for a 566 // real definition. 567 NodeNumDefs = 0; 568 return; 569 } 570 unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs(); 571 // Some instructions define regs that are not represented in the selection DAG 572 // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues. 573 NodeNumDefs = std::min(Node->getNumValues(), NRegDefs); 574 DefIdx = 0; 575 } 576 577 // Construct a RegDefIter for this SUnit and find the first valid value. 578 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU, 579 const ScheduleDAGSDNodes *SD) 580 : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) { 581 InitNodeNumDefs(); 582 Advance(); 583 } 584 585 // Advance to the next valid value defined by the SUnit. 586 void ScheduleDAGSDNodes::RegDefIter::Advance() { 587 for (;Node;) { // Visit all glued nodes. 588 for (;DefIdx < NodeNumDefs; ++DefIdx) { 589 if (!Node->hasAnyUseOfValue(DefIdx)) 590 continue; 591 ValueType = Node->getSimpleValueType(DefIdx); 592 ++DefIdx; 593 return; // Found a normal regdef. 594 } 595 Node = Node->getGluedNode(); 596 if (!Node) { 597 return; // No values left to visit. 598 } 599 InitNodeNumDefs(); 600 } 601 } 602 603 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) { 604 assert(SU->NumRegDefsLeft == 0 && "expect a new node"); 605 for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) { 606 assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected"); 607 ++SU->NumRegDefsLeft; 608 } 609 } 610 611 void ScheduleDAGSDNodes::computeLatency(SUnit *SU) { 612 SDNode *N = SU->getNode(); 613 614 // TokenFactor operands are considered zero latency, and some schedulers 615 // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero 616 // whenever node latency is nonzero. 617 if (N && N->getOpcode() == ISD::TokenFactor) { 618 SU->Latency = 0; 619 return; 620 } 621 622 // Check to see if the scheduler cares about latencies. 623 if (forceUnitLatencies()) { 624 SU->Latency = 1; 625 return; 626 } 627 628 if (!InstrItins || InstrItins->isEmpty()) { 629 if (N && N->isMachineOpcode() && 630 TII->isHighLatencyDef(N->getMachineOpcode())) 631 SU->Latency = HighLatencyCycles; 632 else 633 SU->Latency = 1; 634 return; 635 } 636 637 // Compute the latency for the node. We use the sum of the latencies for 638 // all nodes glued together into this SUnit. 639 SU->Latency = 0; 640 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) 641 if (N->isMachineOpcode()) 642 SU->Latency += TII->getInstrLatency(InstrItins, N); 643 } 644 645 void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use, 646 unsigned OpIdx, SDep& dep) const{ 647 // Check to see if the scheduler cares about latencies. 648 if (forceUnitLatencies()) 649 return; 650 651 if (dep.getKind() != SDep::Data) 652 return; 653 654 unsigned DefIdx = Use->getOperand(OpIdx).getResNo(); 655 if (Use->isMachineOpcode()) 656 // Adjust the use operand index by num of defs. 657 OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs(); 658 int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx); 659 if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg && 660 !BB->succ_empty()) { 661 unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg(); 662 if (Register::isVirtualRegister(Reg)) 663 // This copy is a liveout value. It is likely coalesced, so reduce the 664 // latency so not to penalize the def. 665 // FIXME: need target specific adjustment here? 666 Latency = (Latency > 1) ? Latency - 1 : 1; 667 } 668 if (Latency >= 0) 669 dep.setLatency(Latency); 670 } 671 672 void ScheduleDAGSDNodes::dumpNode(const SUnit &SU) const { 673 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 674 dumpNodeName(SU); 675 dbgs() << ": "; 676 677 if (!SU.getNode()) { 678 dbgs() << "PHYS REG COPY\n"; 679 return; 680 } 681 682 SU.getNode()->dump(DAG); 683 dbgs() << "\n"; 684 SmallVector<SDNode *, 4> GluedNodes; 685 for (SDNode *N = SU.getNode()->getGluedNode(); N; N = N->getGluedNode()) 686 GluedNodes.push_back(N); 687 while (!GluedNodes.empty()) { 688 dbgs() << " "; 689 GluedNodes.back()->dump(DAG); 690 dbgs() << "\n"; 691 GluedNodes.pop_back(); 692 } 693 #endif 694 } 695 696 void ScheduleDAGSDNodes::dump() const { 697 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 698 if (EntrySU.getNode() != nullptr) 699 dumpNodeAll(EntrySU); 700 for (const SUnit &SU : SUnits) 701 dumpNodeAll(SU); 702 if (ExitSU.getNode() != nullptr) 703 dumpNodeAll(ExitSU); 704 #endif 705 } 706 707 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 708 void ScheduleDAGSDNodes::dumpSchedule() const { 709 for (unsigned i = 0, e = Sequence.size(); i != e; i++) { 710 if (SUnit *SU = Sequence[i]) 711 dumpNode(*SU); 712 else 713 dbgs() << "**** NOOP ****\n"; 714 } 715 } 716 #endif 717 718 #ifndef NDEBUG 719 /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that 720 /// their state is consistent with the nodes listed in Sequence. 721 /// 722 void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) { 723 unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp); 724 unsigned Noops = 0; 725 for (unsigned i = 0, e = Sequence.size(); i != e; ++i) 726 if (!Sequence[i]) 727 ++Noops; 728 assert(Sequence.size() - Noops == ScheduledNodes && 729 "The number of nodes scheduled doesn't match the expected number!"); 730 } 731 #endif // NDEBUG 732 733 /// ProcessSDDbgValues - Process SDDbgValues associated with this node. 734 static void 735 ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, 736 SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders, 737 DenseMap<SDValue, Register> &VRBaseMap, unsigned Order) { 738 if (!N->getHasDebugValue()) 739 return; 740 741 /// Returns true if \p DV has any VReg operand locations which don't exist in 742 /// VRBaseMap. 743 auto HasUnknownVReg = [&VRBaseMap](SDDbgValue *DV) { 744 for (const SDDbgOperand &L : DV->getLocationOps()) { 745 if (L.getKind() == SDDbgOperand::SDNODE && 746 VRBaseMap.count({L.getSDNode(), L.getResNo()}) == 0) 747 return true; 748 } 749 return false; 750 }; 751 752 // Opportunistically insert immediate dbg_value uses, i.e. those with the same 753 // source order number as N. 754 MachineBasicBlock *BB = Emitter.getBlock(); 755 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos(); 756 for (auto DV : DAG->GetDbgValues(N)) { 757 if (DV->isEmitted()) 758 continue; 759 unsigned DVOrder = DV->getOrder(); 760 if (Order != 0 && DVOrder != Order) 761 continue; 762 // If DV has any VReg location operands which haven't been mapped then 763 // either that node is no longer available or we just haven't visited the 764 // node yet. In the former case we should emit an undef dbg_value, but we 765 // can do it later. And for the latter we'll want to wait until all 766 // dependent nodes have been visited. 767 if (!DV->isInvalidated() && HasUnknownVReg(DV)) 768 continue; 769 MachineInstr *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap); 770 if (!DbgMI) 771 continue; 772 Orders.push_back({DVOrder, DbgMI}); 773 BB->insert(InsertPos, DbgMI); 774 } 775 } 776 777 // ProcessSourceNode - Process nodes with source order numbers. These are added 778 // to a vector which EmitSchedule uses to determine how to insert dbg_value 779 // instructions in the right order. 780 static void 781 ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, 782 DenseMap<SDValue, Register> &VRBaseMap, 783 SmallVectorImpl<std::pair<unsigned, MachineInstr *>> &Orders, 784 SmallSet<Register, 8> &Seen, MachineInstr *NewInsn) { 785 unsigned Order = N->getIROrder(); 786 if (!Order || Seen.count(Order)) { 787 // Process any valid SDDbgValues even if node does not have any order 788 // assigned. 789 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0); 790 return; 791 } 792 793 // If a new instruction was generated for this Order number, record it. 794 // Otherwise, leave this order number unseen: we will either find later 795 // instructions for it, or leave it unseen if there were no instructions at 796 // all. 797 if (NewInsn) { 798 Seen.insert(Order); 799 Orders.push_back({Order, NewInsn}); 800 } 801 802 // Even if no instruction was generated, a Value may have become defined via 803 // earlier nodes. Try to process them now. 804 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order); 805 } 806 807 void ScheduleDAGSDNodes:: 808 EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, Register> &VRBaseMap, 809 MachineBasicBlock::iterator InsertPos) { 810 for (const SDep &Pred : SU->Preds) { 811 if (Pred.isCtrl()) 812 continue; // ignore chain preds 813 if (Pred.getSUnit()->CopyDstRC) { 814 // Copy to physical register. 815 DenseMap<SUnit *, Register>::iterator VRI = 816 VRBaseMap.find(Pred.getSUnit()); 817 assert(VRI != VRBaseMap.end() && "Node emitted out of order - late"); 818 // Find the destination physical register. 819 Register Reg; 820 for (const SDep &Succ : SU->Succs) { 821 if (Succ.isCtrl()) 822 continue; // ignore chain preds 823 if (Succ.getReg()) { 824 Reg = Succ.getReg(); 825 break; 826 } 827 } 828 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg) 829 .addReg(VRI->second); 830 } else { 831 // Copy from physical register. 832 assert(Pred.getReg() && "Unknown physical register!"); 833 Register VRBase = MRI.createVirtualRegister(SU->CopyDstRC); 834 bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second; 835 (void)isNew; // Silence compiler warning. 836 assert(isNew && "Node emitted out of order - early"); 837 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase) 838 .addReg(Pred.getReg()); 839 } 840 break; 841 } 842 } 843 844 /// EmitSchedule - Emit the machine code in scheduled order. Return the new 845 /// InsertPos and MachineBasicBlock that contains this insertion 846 /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does 847 /// not necessarily refer to returned BB. The emitter may split blocks. 848 MachineBasicBlock *ScheduleDAGSDNodes:: 849 EmitSchedule(MachineBasicBlock::iterator &InsertPos) { 850 InstrEmitter Emitter(DAG->getTarget(), BB, InsertPos); 851 DenseMap<SDValue, Register> VRBaseMap; 852 DenseMap<SUnit*, Register> CopyVRBaseMap; 853 SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders; 854 SmallSet<Register, 8> Seen; 855 bool HasDbg = DAG->hasDebugValues(); 856 857 // Emit a node, and determine where its first instruction is for debuginfo. 858 // Zero, one, or multiple instructions can be created when emitting a node. 859 auto EmitNode = 860 [&](SDNode *Node, bool IsClone, bool IsCloned, 861 DenseMap<SDValue, Register> &VRBaseMap) -> MachineInstr * { 862 // Fetch instruction prior to this, or end() if nonexistant. 863 auto GetPrevInsn = [&](MachineBasicBlock::iterator I) { 864 if (I == BB->begin()) 865 return BB->end(); 866 else 867 return std::prev(Emitter.getInsertPos()); 868 }; 869 870 MachineBasicBlock::iterator Before = GetPrevInsn(Emitter.getInsertPos()); 871 Emitter.EmitNode(Node, IsClone, IsCloned, VRBaseMap); 872 MachineBasicBlock::iterator After = GetPrevInsn(Emitter.getInsertPos()); 873 874 // If the iterator did not change, no instructions were inserted. 875 if (Before == After) 876 return nullptr; 877 878 MachineInstr *MI; 879 if (Before == BB->end()) { 880 // There were no prior instructions; the new ones must start at the 881 // beginning of the block. 882 MI = &Emitter.getBlock()->instr_front(); 883 } else { 884 // Return first instruction after the pre-existing instructions. 885 MI = &*std::next(Before); 886 } 887 888 if (MI->isCandidateForCallSiteEntry() && 889 DAG->getTarget().Options.EmitCallSiteInfo) 890 MF.addCallArgsForwardingRegs(MI, DAG->getSDCallSiteInfo(Node)); 891 892 if (DAG->getNoMergeSiteInfo(Node)) { 893 MI->setFlag(MachineInstr::MIFlag::NoMerge); 894 } 895 896 return MI; 897 }; 898 899 // If this is the first BB, emit byval parameter dbg_value's. 900 if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) { 901 SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin(); 902 SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd(); 903 for (; PDI != PDE; ++PDI) { 904 MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap); 905 if (DbgMI) { 906 BB->insert(InsertPos, DbgMI); 907 // We re-emit the dbg_value closer to its use, too, after instructions 908 // are emitted to the BB. 909 (*PDI)->clearIsEmitted(); 910 } 911 } 912 } 913 914 for (unsigned i = 0, e = Sequence.size(); i != e; i++) { 915 SUnit *SU = Sequence[i]; 916 if (!SU) { 917 // Null SUnit* is a noop. 918 TII->insertNoop(*Emitter.getBlock(), InsertPos); 919 continue; 920 } 921 922 // For pre-regalloc scheduling, create instructions corresponding to the 923 // SDNode and any glued SDNodes and append them to the block. 924 if (!SU->getNode()) { 925 // Emit a copy. 926 EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos); 927 continue; 928 } 929 930 SmallVector<SDNode *, 4> GluedNodes; 931 for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode()) 932 GluedNodes.push_back(N); 933 while (!GluedNodes.empty()) { 934 SDNode *N = GluedNodes.back(); 935 auto NewInsn = EmitNode(N, SU->OrigNode != SU, SU->isCloned, VRBaseMap); 936 // Remember the source order of the inserted instruction. 937 if (HasDbg) 938 ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen, NewInsn); 939 940 if (MDNode *MD = DAG->getHeapAllocSite(N)) 941 if (NewInsn && NewInsn->isCall()) 942 NewInsn->setHeapAllocMarker(MF, MD); 943 944 GluedNodes.pop_back(); 945 } 946 auto NewInsn = 947 EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, VRBaseMap); 948 // Remember the source order of the inserted instruction. 949 if (HasDbg) 950 ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, Seen, 951 NewInsn); 952 953 if (MDNode *MD = DAG->getHeapAllocSite(SU->getNode())) { 954 if (NewInsn && NewInsn->isCall()) 955 NewInsn->setHeapAllocMarker(MF, MD); 956 } 957 } 958 959 // Insert all the dbg_values which have not already been inserted in source 960 // order sequence. 961 if (HasDbg) { 962 MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI(); 963 964 // Sort the source order instructions and use the order to insert debug 965 // values. Use stable_sort so that DBG_VALUEs are inserted in the same order 966 // regardless of the host's implementation fo std::sort. 967 llvm::stable_sort(Orders, less_first()); 968 std::stable_sort(DAG->DbgBegin(), DAG->DbgEnd(), 969 [](const SDDbgValue *LHS, const SDDbgValue *RHS) { 970 return LHS->getOrder() < RHS->getOrder(); 971 }); 972 973 SDDbgInfo::DbgIterator DI = DAG->DbgBegin(); 974 SDDbgInfo::DbgIterator DE = DAG->DbgEnd(); 975 // Now emit the rest according to source order. 976 unsigned LastOrder = 0; 977 for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) { 978 unsigned Order = Orders[i].first; 979 MachineInstr *MI = Orders[i].second; 980 // Insert all SDDbgValue's whose order(s) are before "Order". 981 assert(MI); 982 for (; DI != DE; ++DI) { 983 if ((*DI)->getOrder() < LastOrder || (*DI)->getOrder() >= Order) 984 break; 985 if ((*DI)->isEmitted()) 986 continue; 987 988 MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap); 989 if (DbgMI) { 990 if (!LastOrder) 991 // Insert to start of the BB (after PHIs). 992 BB->insert(BBBegin, DbgMI); 993 else { 994 // Insert at the instruction, which may be in a different 995 // block, if the block was split by a custom inserter. 996 MachineBasicBlock::iterator Pos = MI; 997 MI->getParent()->insert(Pos, DbgMI); 998 } 999 } 1000 } 1001 LastOrder = Order; 1002 } 1003 // Add trailing DbgValue's before the terminator. FIXME: May want to add 1004 // some of them before one or more conditional branches? 1005 SmallVector<MachineInstr*, 8> DbgMIs; 1006 for (; DI != DE; ++DI) { 1007 if ((*DI)->isEmitted()) 1008 continue; 1009 assert((*DI)->getOrder() >= LastOrder && 1010 "emitting DBG_VALUE out of order"); 1011 if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap)) 1012 DbgMIs.push_back(DbgMI); 1013 } 1014 1015 MachineBasicBlock *InsertBB = Emitter.getBlock(); 1016 MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator(); 1017 InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end()); 1018 1019 SDDbgInfo::DbgLabelIterator DLI = DAG->DbgLabelBegin(); 1020 SDDbgInfo::DbgLabelIterator DLE = DAG->DbgLabelEnd(); 1021 // Now emit the rest according to source order. 1022 LastOrder = 0; 1023 for (const auto &InstrOrder : Orders) { 1024 unsigned Order = InstrOrder.first; 1025 MachineInstr *MI = InstrOrder.second; 1026 if (!MI) 1027 continue; 1028 1029 // Insert all SDDbgLabel's whose order(s) are before "Order". 1030 for (; DLI != DLE && 1031 (*DLI)->getOrder() >= LastOrder && (*DLI)->getOrder() < Order; 1032 ++DLI) { 1033 MachineInstr *DbgMI = Emitter.EmitDbgLabel(*DLI); 1034 if (DbgMI) { 1035 if (!LastOrder) 1036 // Insert to start of the BB (after PHIs). 1037 BB->insert(BBBegin, DbgMI); 1038 else { 1039 // Insert at the instruction, which may be in a different 1040 // block, if the block was split by a custom inserter. 1041 MachineBasicBlock::iterator Pos = MI; 1042 MI->getParent()->insert(Pos, DbgMI); 1043 } 1044 } 1045 } 1046 if (DLI == DLE) 1047 break; 1048 1049 LastOrder = Order; 1050 } 1051 } 1052 1053 InsertPos = Emitter.getInsertPos(); 1054 // In some cases, DBG_VALUEs might be inserted after the first terminator, 1055 // which results in an invalid MBB. If that happens, move the DBG_VALUEs 1056 // before the first terminator. 1057 MachineBasicBlock *InsertBB = Emitter.getBlock(); 1058 auto FirstTerm = InsertBB->getFirstTerminator(); 1059 if (FirstTerm != InsertBB->end()) { 1060 assert(!FirstTerm->isDebugValue() && 1061 "first terminator cannot be a debug value"); 1062 for (MachineInstr &MI : make_early_inc_range( 1063 make_range(std::next(FirstTerm), InsertBB->end()))) { 1064 if (!MI.isDebugValue()) 1065 continue; 1066 1067 if (&MI == InsertPos) 1068 InsertPos = std::prev(InsertPos->getIterator()); 1069 1070 // The DBG_VALUE was referencing a value produced by a terminator. By 1071 // moving the DBG_VALUE, the referenced value also needs invalidating. 1072 MI.getOperand(0).ChangeToRegister(0, false); 1073 MI.moveBefore(&*FirstTerm); 1074 } 1075 } 1076 return InsertBB; 1077 } 1078 1079 /// Return the basic block label. 1080 std::string ScheduleDAGSDNodes::getDAGName() const { 1081 return "sunit-dag." + BB->getFullName(); 1082 } 1083