1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the ScheduleDAG class, which is a base class used by 10 // scheduling implementation classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ScheduleDAGSDNodes.h" 15 #include "InstrEmitter.h" 16 #include "SDNodeDbgValue.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SelectionDAG.h" 25 #include "llvm/CodeGen/TargetInstrInfo.h" 26 #include "llvm/CodeGen/TargetLowering.h" 27 #include "llvm/CodeGen/TargetRegisterInfo.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/Config/llvm-config.h" 30 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 31 #include "llvm/MC/MCInstrItineraries.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "pre-RA-sched" 39 40 STATISTIC(LoadsClustered, "Number of loads clustered together"); 41 42 // This allows the latency-based scheduler to notice high latency instructions 43 // without a target itinerary. The choice of number here has more to do with 44 // balancing scheduler heuristics than with the actual machine latency. 45 static cl::opt<int> HighLatencyCycles( 46 "sched-high-latency-cycles", cl::Hidden, cl::init(10), 47 cl::desc("Roughly estimate the number of cycles that 'long latency'" 48 "instructions take for targets with no itinerary")); 49 50 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf) 51 : ScheduleDAG(mf), InstrItins(mf.getSubtarget().getInstrItineraryData()) {} 52 53 /// Run - perform scheduling. 54 /// 55 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) { 56 BB = bb; 57 DAG = dag; 58 59 // Clear the scheduler's SUnit DAG. 60 ScheduleDAG::clearDAG(); 61 Sequence.clear(); 62 63 // Invoke the target's selection of scheduler. 64 Schedule(); 65 } 66 67 /// NewSUnit - Creates a new SUnit and return a ptr to it. 68 /// 69 SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) { 70 #ifndef NDEBUG 71 const SUnit *Addr = nullptr; 72 if (!SUnits.empty()) 73 Addr = &SUnits[0]; 74 #endif 75 SUnits.emplace_back(N, (unsigned)SUnits.size()); 76 assert((Addr == nullptr || Addr == &SUnits[0]) && 77 "SUnits std::vector reallocated on the fly!"); 78 SUnits.back().OrigNode = &SUnits.back(); 79 SUnit *SU = &SUnits.back(); 80 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 81 if (!N || 82 (N->isMachineOpcode() && 83 N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)) 84 SU->SchedulingPref = Sched::None; 85 else 86 SU->SchedulingPref = TLI.getSchedulingPreference(N); 87 return SU; 88 } 89 90 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) { 91 SUnit *SU = newSUnit(Old->getNode()); 92 SU->OrigNode = Old->OrigNode; 93 SU->Latency = Old->Latency; 94 SU->isVRegCycle = Old->isVRegCycle; 95 SU->isCall = Old->isCall; 96 SU->isCallOp = Old->isCallOp; 97 SU->isTwoAddress = Old->isTwoAddress; 98 SU->isCommutable = Old->isCommutable; 99 SU->hasPhysRegDefs = Old->hasPhysRegDefs; 100 SU->hasPhysRegClobbers = Old->hasPhysRegClobbers; 101 SU->isScheduleHigh = Old->isScheduleHigh; 102 SU->isScheduleLow = Old->isScheduleLow; 103 SU->SchedulingPref = Old->SchedulingPref; 104 Old->isCloned = true; 105 return SU; 106 } 107 108 /// CheckForPhysRegDependency - Check if the dependency between def and use of 109 /// a specified operand is a physical register dependency. If so, returns the 110 /// register and the cost of copying the register. 111 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, 112 const TargetRegisterInfo *TRI, 113 const TargetInstrInfo *TII, 114 const TargetLowering &TLI, 115 unsigned &PhysReg, int &Cost) { 116 if (Op != 2 || User->getOpcode() != ISD::CopyToReg) 117 return; 118 119 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 120 if (TLI.checkForPhysRegDependency(Def, User, Op, TRI, TII, PhysReg, Cost)) 121 return; 122 123 if (Register::isVirtualRegister(Reg)) 124 return; 125 126 unsigned ResNo = User->getOperand(2).getResNo(); 127 if (Def->getOpcode() == ISD::CopyFromReg && 128 cast<RegisterSDNode>(Def->getOperand(1))->getReg() == Reg) { 129 PhysReg = Reg; 130 } else if (Def->isMachineOpcode()) { 131 const MCInstrDesc &II = TII->get(Def->getMachineOpcode()); 132 if (ResNo >= II.getNumDefs() && II.hasImplicitDefOfPhysReg(Reg)) 133 PhysReg = Reg; 134 } 135 136 if (PhysReg != 0) { 137 const TargetRegisterClass *RC = 138 TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo)); 139 Cost = RC->getCopyCost(); 140 } 141 } 142 143 // Helper for AddGlue to clone node operands. 144 static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef<EVT> VTs, 145 SDValue ExtraOper = SDValue()) { 146 SmallVector<SDValue, 8> Ops(N->op_begin(), N->op_end()); 147 if (ExtraOper.getNode()) 148 Ops.push_back(ExtraOper); 149 150 SDVTList VTList = DAG->getVTList(VTs); 151 MachineSDNode *MN = dyn_cast<MachineSDNode>(N); 152 153 // Store memory references. 154 SmallVector<MachineMemOperand *, 2> MMOs; 155 if (MN) 156 MMOs.assign(MN->memoperands_begin(), MN->memoperands_end()); 157 158 DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops); 159 160 // Reset the memory references 161 if (MN) 162 DAG->setNodeMemRefs(MN, MMOs); 163 } 164 165 static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) { 166 SDNode *GlueDestNode = Glue.getNode(); 167 168 // Don't add glue from a node to itself. 169 if (GlueDestNode == N) return false; 170 171 // Don't add a glue operand to something that already uses glue. 172 if (GlueDestNode && 173 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { 174 return false; 175 } 176 // Don't add glue to something that already has a glue value. 177 if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false; 178 179 SmallVector<EVT, 4> VTs(N->values()); 180 if (AddGlue) 181 VTs.push_back(MVT::Glue); 182 183 CloneNodeWithValues(N, DAG, VTs, Glue); 184 185 return true; 186 } 187 188 // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the 189 // node even though simply shrinking the value list is sufficient. 190 static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) { 191 assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue && 192 !N->hasAnyUseOfValue(N->getNumValues() - 1)) && 193 "expected an unused glue value"); 194 195 CloneNodeWithValues(N, DAG, 196 ArrayRef(N->value_begin(), N->getNumValues() - 1)); 197 } 198 199 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them. 200 /// This function finds loads of the same base and different offsets. If the 201 /// offsets are not far apart (target specific), it add MVT::Glue inputs and 202 /// outputs to ensure they are scheduled together and in order. This 203 /// optimization may benefit some targets by improving cache locality. 204 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) { 205 SDValue Chain; 206 unsigned NumOps = Node->getNumOperands(); 207 if (Node->getOperand(NumOps-1).getValueType() == MVT::Other) 208 Chain = Node->getOperand(NumOps-1); 209 if (!Chain) 210 return; 211 212 // Skip any load instruction that has a tied input. There may be an additional 213 // dependency requiring a different order than by increasing offsets, and the 214 // added glue may introduce a cycle. 215 auto hasTiedInput = [this](const SDNode *N) { 216 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 217 for (unsigned I = 0; I != MCID.getNumOperands(); ++I) { 218 if (MCID.getOperandConstraint(I, MCOI::TIED_TO) != -1) 219 return true; 220 } 221 222 return false; 223 }; 224 225 // Look for other loads of the same chain. Find loads that are loading from 226 // the same base pointer and different offsets. 227 SmallPtrSet<SDNode*, 16> Visited; 228 SmallVector<int64_t, 4> Offsets; 229 DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode. 230 bool Cluster = false; 231 SDNode *Base = Node; 232 233 if (hasTiedInput(Base)) 234 return; 235 236 // This algorithm requires a reasonably low use count before finding a match 237 // to avoid uselessly blowing up compile time in large blocks. 238 unsigned UseCount = 0; 239 for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end(); 240 I != E && UseCount < 100; ++I, ++UseCount) { 241 if (I.getUse().getResNo() != Chain.getResNo()) 242 continue; 243 244 SDNode *User = *I; 245 if (User == Node || !Visited.insert(User).second) 246 continue; 247 int64_t Offset1, Offset2; 248 if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) || 249 Offset1 == Offset2 || 250 hasTiedInput(User)) { 251 // FIXME: Should be ok if they addresses are identical. But earlier 252 // optimizations really should have eliminated one of the loads. 253 continue; 254 } 255 if (O2SMap.insert(std::make_pair(Offset1, Base)).second) 256 Offsets.push_back(Offset1); 257 O2SMap.insert(std::make_pair(Offset2, User)); 258 Offsets.push_back(Offset2); 259 if (Offset2 < Offset1) 260 Base = User; 261 Cluster = true; 262 // Reset UseCount to allow more matches. 263 UseCount = 0; 264 } 265 266 if (!Cluster) 267 return; 268 269 // Sort them in increasing order. 270 llvm::sort(Offsets); 271 272 // Check if the loads are close enough. 273 SmallVector<SDNode*, 4> Loads; 274 unsigned NumLoads = 0; 275 int64_t BaseOff = Offsets[0]; 276 SDNode *BaseLoad = O2SMap[BaseOff]; 277 Loads.push_back(BaseLoad); 278 for (unsigned i = 1, e = Offsets.size(); i != e; ++i) { 279 int64_t Offset = Offsets[i]; 280 SDNode *Load = O2SMap[Offset]; 281 if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads)) 282 break; // Stop right here. Ignore loads that are further away. 283 Loads.push_back(Load); 284 ++NumLoads; 285 } 286 287 if (NumLoads == 0) 288 return; 289 290 // Cluster loads by adding MVT::Glue outputs and inputs. This also 291 // ensure they are scheduled in order of increasing addresses. 292 SDNode *Lead = Loads[0]; 293 SDValue InGlue; 294 if (AddGlue(Lead, InGlue, true, DAG)) 295 InGlue = SDValue(Lead, Lead->getNumValues() - 1); 296 for (unsigned I = 1, E = Loads.size(); I != E; ++I) { 297 bool OutGlue = I < E - 1; 298 SDNode *Load = Loads[I]; 299 300 // If AddGlue fails, we could leave an unsused glue value. This should not 301 // cause any 302 if (AddGlue(Load, InGlue, OutGlue, DAG)) { 303 if (OutGlue) 304 InGlue = SDValue(Load, Load->getNumValues() - 1); 305 306 ++LoadsClustered; 307 } 308 else if (!OutGlue && InGlue.getNode()) 309 RemoveUnusedGlue(InGlue.getNode(), DAG); 310 } 311 } 312 313 /// ClusterNodes - Cluster certain nodes which should be scheduled together. 314 /// 315 void ScheduleDAGSDNodes::ClusterNodes() { 316 for (SDNode &NI : DAG->allnodes()) { 317 SDNode *Node = &NI; 318 if (!Node || !Node->isMachineOpcode()) 319 continue; 320 321 unsigned Opc = Node->getMachineOpcode(); 322 const MCInstrDesc &MCID = TII->get(Opc); 323 if (MCID.mayLoad()) 324 // Cluster loads from "near" addresses into combined SUnits. 325 ClusterNeighboringLoads(Node); 326 } 327 } 328 329 void ScheduleDAGSDNodes::BuildSchedUnits() { 330 // During scheduling, the NodeId field of SDNode is used to map SDNodes 331 // to their associated SUnits by holding SUnits table indices. A value 332 // of -1 means the SDNode does not yet have an associated SUnit. 333 unsigned NumNodes = 0; 334 for (SDNode &NI : DAG->allnodes()) { 335 NI.setNodeId(-1); 336 ++NumNodes; 337 } 338 339 // Reserve entries in the vector for each of the SUnits we are creating. This 340 // ensure that reallocation of the vector won't happen, so SUnit*'s won't get 341 // invalidated. 342 // FIXME: Multiply by 2 because we may clone nodes during scheduling. 343 // This is a temporary workaround. 344 SUnits.reserve(NumNodes * 2); 345 346 // Add all nodes in depth first order. 347 SmallVector<SDNode*, 64> Worklist; 348 SmallPtrSet<SDNode*, 32> Visited; 349 Worklist.push_back(DAG->getRoot().getNode()); 350 Visited.insert(DAG->getRoot().getNode()); 351 352 SmallVector<SUnit*, 8> CallSUnits; 353 while (!Worklist.empty()) { 354 SDNode *NI = Worklist.pop_back_val(); 355 356 // Add all operands to the worklist unless they've already been added. 357 for (const SDValue &Op : NI->op_values()) 358 if (Visited.insert(Op.getNode()).second) 359 Worklist.push_back(Op.getNode()); 360 361 if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate. 362 continue; 363 364 // If this node has already been processed, stop now. 365 if (NI->getNodeId() != -1) continue; 366 367 SUnit *NodeSUnit = newSUnit(NI); 368 369 // See if anything is glued to this node, if so, add them to glued 370 // nodes. Nodes can have at most one glue input and one glue output. Glue 371 // is required to be the last operand and result of a node. 372 373 // Scan up to find glued preds. 374 SDNode *N = NI; 375 while (N->getNumOperands() && 376 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { 377 N = N->getOperand(N->getNumOperands()-1).getNode(); 378 assert(N->getNodeId() == -1 && "Node already inserted!"); 379 N->setNodeId(NodeSUnit->NodeNum); 380 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) 381 NodeSUnit->isCall = true; 382 } 383 384 // Scan down to find any glued succs. 385 N = NI; 386 while (N->getValueType(N->getNumValues()-1) == MVT::Glue) { 387 SDValue GlueVal(N, N->getNumValues()-1); 388 389 // There are either zero or one users of the Glue result. 390 bool HasGlueUse = false; 391 for (SDNode *U : N->uses()) 392 if (GlueVal.isOperandOf(U)) { 393 HasGlueUse = true; 394 assert(N->getNodeId() == -1 && "Node already inserted!"); 395 N->setNodeId(NodeSUnit->NodeNum); 396 N = U; 397 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) 398 NodeSUnit->isCall = true; 399 break; 400 } 401 if (!HasGlueUse) break; 402 } 403 404 if (NodeSUnit->isCall) 405 CallSUnits.push_back(NodeSUnit); 406 407 // Schedule zero-latency TokenFactor below any nodes that may increase the 408 // schedule height. Otherwise, ancestors of the TokenFactor may appear to 409 // have false stalls. 410 if (NI->getOpcode() == ISD::TokenFactor) 411 NodeSUnit->isScheduleLow = true; 412 413 // If there are glue operands involved, N is now the bottom-most node 414 // of the sequence of nodes that are glued together. 415 // Update the SUnit. 416 NodeSUnit->setNode(N); 417 assert(N->getNodeId() == -1 && "Node already inserted!"); 418 N->setNodeId(NodeSUnit->NodeNum); 419 420 // Compute NumRegDefsLeft. This must be done before AddSchedEdges. 421 InitNumRegDefsLeft(NodeSUnit); 422 423 // Assign the Latency field of NodeSUnit using target-provided information. 424 computeLatency(NodeSUnit); 425 } 426 427 // Find all call operands. 428 while (!CallSUnits.empty()) { 429 SUnit *SU = CallSUnits.pop_back_val(); 430 for (const SDNode *SUNode = SU->getNode(); SUNode; 431 SUNode = SUNode->getGluedNode()) { 432 if (SUNode->getOpcode() != ISD::CopyToReg) 433 continue; 434 SDNode *SrcN = SUNode->getOperand(2).getNode(); 435 if (isPassiveNode(SrcN)) continue; // Not scheduled. 436 SUnit *SrcSU = &SUnits[SrcN->getNodeId()]; 437 SrcSU->isCallOp = true; 438 } 439 } 440 } 441 442 void ScheduleDAGSDNodes::AddSchedEdges() { 443 const TargetSubtargetInfo &ST = MF.getSubtarget(); 444 445 // Check to see if the scheduler cares about latencies. 446 bool UnitLatencies = forceUnitLatencies(); 447 448 // Pass 2: add the preds, succs, etc. 449 for (SUnit &SU : SUnits) { 450 SDNode *MainNode = SU.getNode(); 451 452 if (MainNode->isMachineOpcode()) { 453 unsigned Opc = MainNode->getMachineOpcode(); 454 const MCInstrDesc &MCID = TII->get(Opc); 455 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) { 456 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) { 457 SU.isTwoAddress = true; 458 break; 459 } 460 } 461 if (MCID.isCommutable()) 462 SU.isCommutable = true; 463 } 464 465 // Find all predecessors and successors of the group. 466 for (SDNode *N = SU.getNode(); N; N = N->getGluedNode()) { 467 if (N->isMachineOpcode() && 468 !TII->get(N->getMachineOpcode()).implicit_defs().empty()) { 469 SU.hasPhysRegClobbers = true; 470 unsigned NumUsed = InstrEmitter::CountResults(N); 471 while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1)) 472 --NumUsed; // Skip over unused values at the end. 473 if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs()) 474 SU.hasPhysRegDefs = true; 475 } 476 477 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 478 SDNode *OpN = N->getOperand(i).getNode(); 479 unsigned DefIdx = N->getOperand(i).getResNo(); 480 if (isPassiveNode(OpN)) continue; // Not scheduled. 481 SUnit *OpSU = &SUnits[OpN->getNodeId()]; 482 assert(OpSU && "Node has no SUnit!"); 483 if (OpSU == &SU) 484 continue; // In the same group. 485 486 EVT OpVT = N->getOperand(i).getValueType(); 487 assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!"); 488 bool isChain = OpVT == MVT::Other; 489 490 unsigned PhysReg = 0; 491 int Cost = 1; 492 // Determine if this is a physical register dependency. 493 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 494 CheckForPhysRegDependency(OpN, N, i, TRI, TII, TLI, PhysReg, Cost); 495 assert((PhysReg == 0 || !isChain) && 496 "Chain dependence via physreg data?"); 497 // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler 498 // emits a copy from the physical register to a virtual register unless 499 // it requires a cross class copy (cost < 0). That means we are only 500 // treating "expensive to copy" register dependency as physical register 501 // dependency. This may change in the future though. 502 if (Cost >= 0 && !StressSched) 503 PhysReg = 0; 504 505 // If this is a ctrl dep, latency is 1. 506 unsigned OpLatency = isChain ? 1 : OpSU->Latency; 507 // Special-case TokenFactor chains as zero-latency. 508 if(isChain && OpN->getOpcode() == ISD::TokenFactor) 509 OpLatency = 0; 510 511 SDep Dep = isChain ? SDep(OpSU, SDep::Barrier) 512 : SDep(OpSU, SDep::Data, PhysReg); 513 Dep.setLatency(OpLatency); 514 if (!isChain && !UnitLatencies) { 515 computeOperandLatency(OpN, N, i, Dep); 516 ST.adjustSchedDependency(OpSU, DefIdx, &SU, i, Dep, nullptr); 517 } 518 519 if (!SU.addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) { 520 // Multiple register uses are combined in the same SUnit. For example, 521 // we could have a set of glued nodes with all their defs consumed by 522 // another set of glued nodes. Register pressure tracking sees this as 523 // a single use, so to keep pressure balanced we reduce the defs. 524 // 525 // We can't tell (without more book-keeping) if this results from 526 // glued nodes or duplicate operands. As long as we don't reduce 527 // NumRegDefsLeft to zero, we handle the common cases well. 528 --OpSU->NumRegDefsLeft; 529 } 530 } 531 } 532 } 533 } 534 535 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we 536 /// are input. This SUnit graph is similar to the SelectionDAG, but 537 /// excludes nodes that aren't interesting to scheduling, and represents 538 /// glued together nodes with a single SUnit. 539 void ScheduleDAGSDNodes::BuildSchedGraph(AAResults *AA) { 540 // Cluster certain nodes which should be scheduled together. 541 ClusterNodes(); 542 // Populate the SUnits array. 543 BuildSchedUnits(); 544 // Compute all the scheduling dependencies between nodes. 545 AddSchedEdges(); 546 } 547 548 // Initialize NumNodeDefs for the current Node's opcode. 549 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() { 550 // Check for phys reg copy. 551 if (!Node) 552 return; 553 554 if (!Node->isMachineOpcode()) { 555 if (Node->getOpcode() == ISD::CopyFromReg) 556 NodeNumDefs = 1; 557 else 558 NodeNumDefs = 0; 559 return; 560 } 561 unsigned POpc = Node->getMachineOpcode(); 562 if (POpc == TargetOpcode::IMPLICIT_DEF) { 563 // No register need be allocated for this. 564 NodeNumDefs = 0; 565 return; 566 } 567 if (POpc == TargetOpcode::PATCHPOINT && 568 Node->getValueType(0) == MVT::Other) { 569 // PATCHPOINT is defined to have one result, but it might really have none 570 // if we're not using CallingConv::AnyReg. Don't mistake the chain for a 571 // real definition. 572 NodeNumDefs = 0; 573 return; 574 } 575 unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs(); 576 // Some instructions define regs that are not represented in the selection DAG 577 // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues. 578 NodeNumDefs = std::min(Node->getNumValues(), NRegDefs); 579 DefIdx = 0; 580 } 581 582 // Construct a RegDefIter for this SUnit and find the first valid value. 583 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU, 584 const ScheduleDAGSDNodes *SD) 585 : SchedDAG(SD), Node(SU->getNode()) { 586 InitNodeNumDefs(); 587 Advance(); 588 } 589 590 // Advance to the next valid value defined by the SUnit. 591 void ScheduleDAGSDNodes::RegDefIter::Advance() { 592 for (;Node;) { // Visit all glued nodes. 593 for (;DefIdx < NodeNumDefs; ++DefIdx) { 594 if (!Node->hasAnyUseOfValue(DefIdx)) 595 continue; 596 ValueType = Node->getSimpleValueType(DefIdx); 597 ++DefIdx; 598 return; // Found a normal regdef. 599 } 600 Node = Node->getGluedNode(); 601 if (!Node) { 602 return; // No values left to visit. 603 } 604 InitNodeNumDefs(); 605 } 606 } 607 608 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) { 609 assert(SU->NumRegDefsLeft == 0 && "expect a new node"); 610 for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) { 611 assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected"); 612 ++SU->NumRegDefsLeft; 613 } 614 } 615 616 void ScheduleDAGSDNodes::computeLatency(SUnit *SU) { 617 SDNode *N = SU->getNode(); 618 619 // TokenFactor operands are considered zero latency, and some schedulers 620 // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero 621 // whenever node latency is nonzero. 622 if (N && N->getOpcode() == ISD::TokenFactor) { 623 SU->Latency = 0; 624 return; 625 } 626 627 // Check to see if the scheduler cares about latencies. 628 if (forceUnitLatencies()) { 629 SU->Latency = 1; 630 return; 631 } 632 633 if (!InstrItins || InstrItins->isEmpty()) { 634 if (N && N->isMachineOpcode() && 635 TII->isHighLatencyDef(N->getMachineOpcode())) 636 SU->Latency = HighLatencyCycles; 637 else 638 SU->Latency = 1; 639 return; 640 } 641 642 // Compute the latency for the node. We use the sum of the latencies for 643 // all nodes glued together into this SUnit. 644 SU->Latency = 0; 645 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) 646 if (N->isMachineOpcode()) 647 SU->Latency += TII->getInstrLatency(InstrItins, N); 648 } 649 650 void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use, 651 unsigned OpIdx, SDep& dep) const{ 652 // Check to see if the scheduler cares about latencies. 653 if (forceUnitLatencies()) 654 return; 655 656 if (dep.getKind() != SDep::Data) 657 return; 658 659 unsigned DefIdx = Use->getOperand(OpIdx).getResNo(); 660 if (Use->isMachineOpcode()) 661 // Adjust the use operand index by num of defs. 662 OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs(); 663 std::optional<unsigned> Latency = 664 TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx); 665 if (Latency > 1U && Use->getOpcode() == ISD::CopyToReg && 666 !BB->succ_empty()) { 667 unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg(); 668 if (Register::isVirtualRegister(Reg)) 669 // This copy is a liveout value. It is likely coalesced, so reduce the 670 // latency so not to penalize the def. 671 // FIXME: need target specific adjustment here? 672 Latency = *Latency - 1; 673 } 674 if (Latency) 675 dep.setLatency(*Latency); 676 } 677 678 void ScheduleDAGSDNodes::dumpNode(const SUnit &SU) const { 679 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 680 dumpNodeName(SU); 681 dbgs() << ": "; 682 683 if (!SU.getNode()) { 684 dbgs() << "PHYS REG COPY\n"; 685 return; 686 } 687 688 SU.getNode()->dump(DAG); 689 dbgs() << "\n"; 690 SmallVector<SDNode *, 4> GluedNodes; 691 for (SDNode *N = SU.getNode()->getGluedNode(); N; N = N->getGluedNode()) 692 GluedNodes.push_back(N); 693 while (!GluedNodes.empty()) { 694 dbgs() << " "; 695 GluedNodes.back()->dump(DAG); 696 dbgs() << "\n"; 697 GluedNodes.pop_back(); 698 } 699 #endif 700 } 701 702 void ScheduleDAGSDNodes::dump() const { 703 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 704 if (EntrySU.getNode() != nullptr) 705 dumpNodeAll(EntrySU); 706 for (const SUnit &SU : SUnits) 707 dumpNodeAll(SU); 708 if (ExitSU.getNode() != nullptr) 709 dumpNodeAll(ExitSU); 710 #endif 711 } 712 713 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 714 void ScheduleDAGSDNodes::dumpSchedule() const { 715 for (const SUnit *SU : Sequence) { 716 if (SU) 717 dumpNode(*SU); 718 else 719 dbgs() << "**** NOOP ****\n"; 720 } 721 } 722 #endif 723 724 #ifndef NDEBUG 725 /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that 726 /// their state is consistent with the nodes listed in Sequence. 727 /// 728 void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) { 729 unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp); 730 unsigned Noops = llvm::count(Sequence, nullptr); 731 assert(Sequence.size() - Noops == ScheduledNodes && 732 "The number of nodes scheduled doesn't match the expected number!"); 733 } 734 #endif // NDEBUG 735 736 /// ProcessSDDbgValues - Process SDDbgValues associated with this node. 737 static void 738 ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, 739 SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders, 740 DenseMap<SDValue, Register> &VRBaseMap, unsigned Order) { 741 if (!N->getHasDebugValue()) 742 return; 743 744 /// Returns true if \p DV has any VReg operand locations which don't exist in 745 /// VRBaseMap. 746 auto HasUnknownVReg = [&VRBaseMap](SDDbgValue *DV) { 747 for (const SDDbgOperand &L : DV->getLocationOps()) { 748 if (L.getKind() == SDDbgOperand::SDNODE && 749 VRBaseMap.count({L.getSDNode(), L.getResNo()}) == 0) 750 return true; 751 } 752 return false; 753 }; 754 755 // Opportunistically insert immediate dbg_value uses, i.e. those with the same 756 // source order number as N. 757 MachineBasicBlock *BB = Emitter.getBlock(); 758 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos(); 759 for (auto *DV : DAG->GetDbgValues(N)) { 760 if (DV->isEmitted()) 761 continue; 762 unsigned DVOrder = DV->getOrder(); 763 if (Order != 0 && DVOrder != Order) 764 continue; 765 // If DV has any VReg location operands which haven't been mapped then 766 // either that node is no longer available or we just haven't visited the 767 // node yet. In the former case we should emit an undef dbg_value, but we 768 // can do it later. And for the latter we'll want to wait until all 769 // dependent nodes have been visited. 770 if (!DV->isInvalidated() && HasUnknownVReg(DV)) 771 continue; 772 MachineInstr *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap); 773 if (!DbgMI) 774 continue; 775 Orders.push_back({DVOrder, DbgMI}); 776 BB->insert(InsertPos, DbgMI); 777 } 778 } 779 780 // ProcessSourceNode - Process nodes with source order numbers. These are added 781 // to a vector which EmitSchedule uses to determine how to insert dbg_value 782 // instructions in the right order. 783 static void 784 ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, 785 DenseMap<SDValue, Register> &VRBaseMap, 786 SmallVectorImpl<std::pair<unsigned, MachineInstr *>> &Orders, 787 SmallSet<Register, 8> &Seen, MachineInstr *NewInsn) { 788 unsigned Order = N->getIROrder(); 789 if (!Order || Seen.count(Order)) { 790 // Process any valid SDDbgValues even if node does not have any order 791 // assigned. 792 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0); 793 return; 794 } 795 796 // If a new instruction was generated for this Order number, record it. 797 // Otherwise, leave this order number unseen: we will either find later 798 // instructions for it, or leave it unseen if there were no instructions at 799 // all. 800 if (NewInsn) { 801 Seen.insert(Order); 802 Orders.push_back({Order, NewInsn}); 803 } 804 805 // Even if no instruction was generated, a Value may have become defined via 806 // earlier nodes. Try to process them now. 807 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order); 808 } 809 810 void ScheduleDAGSDNodes:: 811 EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, Register> &VRBaseMap, 812 MachineBasicBlock::iterator InsertPos) { 813 for (const SDep &Pred : SU->Preds) { 814 if (Pred.isCtrl()) 815 continue; // ignore chain preds 816 if (Pred.getSUnit()->CopyDstRC) { 817 // Copy to physical register. 818 DenseMap<SUnit *, Register>::iterator VRI = 819 VRBaseMap.find(Pred.getSUnit()); 820 assert(VRI != VRBaseMap.end() && "Node emitted out of order - late"); 821 // Find the destination physical register. 822 Register Reg; 823 for (const SDep &Succ : SU->Succs) { 824 if (Succ.isCtrl()) 825 continue; // ignore chain preds 826 if (Succ.getReg()) { 827 Reg = Succ.getReg(); 828 break; 829 } 830 } 831 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg) 832 .addReg(VRI->second); 833 } else { 834 // Copy from physical register. 835 assert(Pred.getReg() && "Unknown physical register!"); 836 Register VRBase = MRI.createVirtualRegister(SU->CopyDstRC); 837 bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second; 838 (void)isNew; // Silence compiler warning. 839 assert(isNew && "Node emitted out of order - early"); 840 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase) 841 .addReg(Pred.getReg()); 842 } 843 break; 844 } 845 } 846 847 /// EmitSchedule - Emit the machine code in scheduled order. Return the new 848 /// InsertPos and MachineBasicBlock that contains this insertion 849 /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does 850 /// not necessarily refer to returned BB. The emitter may split blocks. 851 MachineBasicBlock *ScheduleDAGSDNodes:: 852 EmitSchedule(MachineBasicBlock::iterator &InsertPos) { 853 InstrEmitter Emitter(DAG->getTarget(), BB, InsertPos); 854 DenseMap<SDValue, Register> VRBaseMap; 855 DenseMap<SUnit*, Register> CopyVRBaseMap; 856 SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders; 857 SmallSet<Register, 8> Seen; 858 bool HasDbg = DAG->hasDebugValues(); 859 860 // Emit a node, and determine where its first instruction is for debuginfo. 861 // Zero, one, or multiple instructions can be created when emitting a node. 862 auto EmitNode = 863 [&](SDNode *Node, bool IsClone, bool IsCloned, 864 DenseMap<SDValue, Register> &VRBaseMap) -> MachineInstr * { 865 // Fetch instruction prior to this, or end() if nonexistant. 866 auto GetPrevInsn = [&](MachineBasicBlock::iterator I) { 867 if (I == BB->begin()) 868 return BB->end(); 869 else 870 return std::prev(Emitter.getInsertPos()); 871 }; 872 873 MachineBasicBlock::iterator Before = GetPrevInsn(Emitter.getInsertPos()); 874 Emitter.EmitNode(Node, IsClone, IsCloned, VRBaseMap); 875 MachineBasicBlock::iterator After = GetPrevInsn(Emitter.getInsertPos()); 876 877 // If the iterator did not change, no instructions were inserted. 878 if (Before == After) 879 return nullptr; 880 881 MachineInstr *MI; 882 if (Before == BB->end()) { 883 // There were no prior instructions; the new ones must start at the 884 // beginning of the block. 885 MI = &Emitter.getBlock()->instr_front(); 886 } else { 887 // Return first instruction after the pre-existing instructions. 888 MI = &*std::next(Before); 889 } 890 891 if (MI->isCandidateForCallSiteEntry() && 892 DAG->getTarget().Options.EmitCallSiteInfo) { 893 MF.addCallSiteInfo(MI, DAG->getCallSiteInfo(Node)); 894 } 895 896 if (DAG->getNoMergeSiteInfo(Node)) { 897 MI->setFlag(MachineInstr::MIFlag::NoMerge); 898 } 899 900 if (MDNode *MD = DAG->getPCSections(Node)) 901 MI->setPCSections(MF, MD); 902 903 // Set MMRAs on _all_ added instructions. 904 if (MDNode *MMRA = DAG->getMMRAMetadata(Node)) { 905 for (MachineBasicBlock::iterator It = MI->getIterator(), 906 End = std::next(After); 907 It != End; ++It) 908 It->setMMRAMetadata(MF, MMRA); 909 } 910 911 return MI; 912 }; 913 914 // If this is the first BB, emit byval parameter dbg_value's. 915 if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) { 916 SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin(); 917 SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd(); 918 for (; PDI != PDE; ++PDI) { 919 MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap); 920 if (DbgMI) { 921 BB->insert(InsertPos, DbgMI); 922 // We re-emit the dbg_value closer to its use, too, after instructions 923 // are emitted to the BB. 924 (*PDI)->clearIsEmitted(); 925 } 926 } 927 } 928 929 for (SUnit *SU : Sequence) { 930 if (!SU) { 931 // Null SUnit* is a noop. 932 TII->insertNoop(*Emitter.getBlock(), InsertPos); 933 continue; 934 } 935 936 // For pre-regalloc scheduling, create instructions corresponding to the 937 // SDNode and any glued SDNodes and append them to the block. 938 if (!SU->getNode()) { 939 // Emit a copy. 940 EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos); 941 continue; 942 } 943 944 SmallVector<SDNode *, 4> GluedNodes; 945 for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode()) 946 GluedNodes.push_back(N); 947 while (!GluedNodes.empty()) { 948 SDNode *N = GluedNodes.back(); 949 auto NewInsn = EmitNode(N, SU->OrigNode != SU, SU->isCloned, VRBaseMap); 950 // Remember the source order of the inserted instruction. 951 if (HasDbg) 952 ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen, NewInsn); 953 954 if (MDNode *MD = DAG->getHeapAllocSite(N)) 955 if (NewInsn && NewInsn->isCall()) 956 NewInsn->setHeapAllocMarker(MF, MD); 957 958 GluedNodes.pop_back(); 959 } 960 auto NewInsn = 961 EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, VRBaseMap); 962 // Remember the source order of the inserted instruction. 963 if (HasDbg) 964 ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, Seen, 965 NewInsn); 966 967 if (MDNode *MD = DAG->getHeapAllocSite(SU->getNode())) { 968 if (NewInsn && NewInsn->isCall()) 969 NewInsn->setHeapAllocMarker(MF, MD); 970 } 971 } 972 973 // Insert all the dbg_values which have not already been inserted in source 974 // order sequence. 975 if (HasDbg) { 976 MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI(); 977 978 // Sort the source order instructions and use the order to insert debug 979 // values. Use stable_sort so that DBG_VALUEs are inserted in the same order 980 // regardless of the host's implementation fo std::sort. 981 llvm::stable_sort(Orders, less_first()); 982 std::stable_sort(DAG->DbgBegin(), DAG->DbgEnd(), 983 [](const SDDbgValue *LHS, const SDDbgValue *RHS) { 984 return LHS->getOrder() < RHS->getOrder(); 985 }); 986 987 SDDbgInfo::DbgIterator DI = DAG->DbgBegin(); 988 SDDbgInfo::DbgIterator DE = DAG->DbgEnd(); 989 // Now emit the rest according to source order. 990 unsigned LastOrder = 0; 991 for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) { 992 unsigned Order = Orders[i].first; 993 MachineInstr *MI = Orders[i].second; 994 // Insert all SDDbgValue's whose order(s) are before "Order". 995 assert(MI); 996 for (; DI != DE; ++DI) { 997 if ((*DI)->getOrder() < LastOrder || (*DI)->getOrder() >= Order) 998 break; 999 if ((*DI)->isEmitted()) 1000 continue; 1001 1002 MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap); 1003 if (DbgMI) { 1004 if (!LastOrder) 1005 // Insert to start of the BB (after PHIs). 1006 BB->insert(BBBegin, DbgMI); 1007 else { 1008 // Insert at the instruction, which may be in a different 1009 // block, if the block was split by a custom inserter. 1010 MachineBasicBlock::iterator Pos = MI; 1011 MI->getParent()->insert(Pos, DbgMI); 1012 } 1013 } 1014 } 1015 LastOrder = Order; 1016 } 1017 // Add trailing DbgValue's before the terminator. FIXME: May want to add 1018 // some of them before one or more conditional branches? 1019 SmallVector<MachineInstr*, 8> DbgMIs; 1020 for (; DI != DE; ++DI) { 1021 if ((*DI)->isEmitted()) 1022 continue; 1023 assert((*DI)->getOrder() >= LastOrder && 1024 "emitting DBG_VALUE out of order"); 1025 if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap)) 1026 DbgMIs.push_back(DbgMI); 1027 } 1028 1029 MachineBasicBlock *InsertBB = Emitter.getBlock(); 1030 MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator(); 1031 InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end()); 1032 1033 SDDbgInfo::DbgLabelIterator DLI = DAG->DbgLabelBegin(); 1034 SDDbgInfo::DbgLabelIterator DLE = DAG->DbgLabelEnd(); 1035 // Now emit the rest according to source order. 1036 LastOrder = 0; 1037 for (const auto &InstrOrder : Orders) { 1038 unsigned Order = InstrOrder.first; 1039 MachineInstr *MI = InstrOrder.second; 1040 if (!MI) 1041 continue; 1042 1043 // Insert all SDDbgLabel's whose order(s) are before "Order". 1044 for (; DLI != DLE && 1045 (*DLI)->getOrder() >= LastOrder && (*DLI)->getOrder() < Order; 1046 ++DLI) { 1047 MachineInstr *DbgMI = Emitter.EmitDbgLabel(*DLI); 1048 if (DbgMI) { 1049 if (!LastOrder) 1050 // Insert to start of the BB (after PHIs). 1051 BB->insert(BBBegin, DbgMI); 1052 else { 1053 // Insert at the instruction, which may be in a different 1054 // block, if the block was split by a custom inserter. 1055 MachineBasicBlock::iterator Pos = MI; 1056 MI->getParent()->insert(Pos, DbgMI); 1057 } 1058 } 1059 } 1060 if (DLI == DLE) 1061 break; 1062 1063 LastOrder = Order; 1064 } 1065 } 1066 1067 InsertPos = Emitter.getInsertPos(); 1068 // In some cases, DBG_VALUEs might be inserted after the first terminator, 1069 // which results in an invalid MBB. If that happens, move the DBG_VALUEs 1070 // before the first terminator. 1071 MachineBasicBlock *InsertBB = Emitter.getBlock(); 1072 auto FirstTerm = InsertBB->getFirstTerminator(); 1073 if (FirstTerm != InsertBB->end()) { 1074 assert(!FirstTerm->isDebugValue() && 1075 "first terminator cannot be a debug value"); 1076 for (MachineInstr &MI : make_early_inc_range( 1077 make_range(std::next(FirstTerm), InsertBB->end()))) { 1078 // Only scan up to insertion point. 1079 if (&MI == InsertPos) 1080 break; 1081 1082 if (!MI.isDebugValue()) 1083 continue; 1084 1085 // The DBG_VALUE was referencing a value produced by a terminator. By 1086 // moving the DBG_VALUE, the referenced value also needs invalidating. 1087 MI.getOperand(0).ChangeToRegister(0, false); 1088 MI.moveBefore(&*FirstTerm); 1089 } 1090 } 1091 return InsertBB; 1092 } 1093 1094 /// Return the basic block label. 1095 std::string ScheduleDAGSDNodes::getDAGName() const { 1096 return "sunit-dag." + BB->getFullName(); 1097 } 1098