1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the ScheduleDAG class, which is a base class used by 10 // scheduling implementation classes. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ScheduleDAGSDNodes.h" 15 #include "InstrEmitter.h" 16 #include "SDNodeDbgValue.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SelectionDAG.h" 25 #include "llvm/CodeGen/TargetInstrInfo.h" 26 #include "llvm/CodeGen/TargetLowering.h" 27 #include "llvm/CodeGen/TargetRegisterInfo.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/Config/llvm-config.h" 30 #include "llvm/MC/MCInstrItineraries.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 using namespace llvm; 35 36 #define DEBUG_TYPE "pre-RA-sched" 37 38 STATISTIC(LoadsClustered, "Number of loads clustered together"); 39 40 // This allows the latency-based scheduler to notice high latency instructions 41 // without a target itinerary. The choice of number here has more to do with 42 // balancing scheduler heuristics than with the actual machine latency. 43 static cl::opt<int> HighLatencyCycles( 44 "sched-high-latency-cycles", cl::Hidden, cl::init(10), 45 cl::desc("Roughly estimate the number of cycles that 'long latency'" 46 "instructions take for targets with no itinerary")); 47 48 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf) 49 : ScheduleDAG(mf), BB(nullptr), DAG(nullptr), 50 InstrItins(mf.getSubtarget().getInstrItineraryData()) {} 51 52 /// Run - perform scheduling. 53 /// 54 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) { 55 BB = bb; 56 DAG = dag; 57 58 // Clear the scheduler's SUnit DAG. 59 ScheduleDAG::clearDAG(); 60 Sequence.clear(); 61 62 // Invoke the target's selection of scheduler. 63 Schedule(); 64 } 65 66 /// NewSUnit - Creates a new SUnit and return a ptr to it. 67 /// 68 SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) { 69 #ifndef NDEBUG 70 const SUnit *Addr = nullptr; 71 if (!SUnits.empty()) 72 Addr = &SUnits[0]; 73 #endif 74 SUnits.emplace_back(N, (unsigned)SUnits.size()); 75 assert((Addr == nullptr || Addr == &SUnits[0]) && 76 "SUnits std::vector reallocated on the fly!"); 77 SUnits.back().OrigNode = &SUnits.back(); 78 SUnit *SU = &SUnits.back(); 79 const TargetLowering &TLI = DAG->getTargetLoweringInfo(); 80 if (!N || 81 (N->isMachineOpcode() && 82 N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)) 83 SU->SchedulingPref = Sched::None; 84 else 85 SU->SchedulingPref = TLI.getSchedulingPreference(N); 86 return SU; 87 } 88 89 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) { 90 SUnit *SU = newSUnit(Old->getNode()); 91 SU->OrigNode = Old->OrigNode; 92 SU->Latency = Old->Latency; 93 SU->isVRegCycle = Old->isVRegCycle; 94 SU->isCall = Old->isCall; 95 SU->isCallOp = Old->isCallOp; 96 SU->isTwoAddress = Old->isTwoAddress; 97 SU->isCommutable = Old->isCommutable; 98 SU->hasPhysRegDefs = Old->hasPhysRegDefs; 99 SU->hasPhysRegClobbers = Old->hasPhysRegClobbers; 100 SU->isScheduleHigh = Old->isScheduleHigh; 101 SU->isScheduleLow = Old->isScheduleLow; 102 SU->SchedulingPref = Old->SchedulingPref; 103 Old->isCloned = true; 104 return SU; 105 } 106 107 /// CheckForPhysRegDependency - Check if the dependency between def and use of 108 /// a specified operand is a physical register dependency. If so, returns the 109 /// register and the cost of copying the register. 110 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, 111 const TargetRegisterInfo *TRI, 112 const TargetInstrInfo *TII, 113 unsigned &PhysReg, int &Cost) { 114 if (Op != 2 || User->getOpcode() != ISD::CopyToReg) 115 return; 116 117 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 118 if (TargetRegisterInfo::isVirtualRegister(Reg)) 119 return; 120 121 unsigned ResNo = User->getOperand(2).getResNo(); 122 if (Def->getOpcode() == ISD::CopyFromReg && 123 cast<RegisterSDNode>(Def->getOperand(1))->getReg() == Reg) { 124 PhysReg = Reg; 125 } else if (Def->isMachineOpcode()) { 126 const MCInstrDesc &II = TII->get(Def->getMachineOpcode()); 127 if (ResNo >= II.getNumDefs() && 128 II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) 129 PhysReg = Reg; 130 } 131 132 if (PhysReg != 0) { 133 const TargetRegisterClass *RC = 134 TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo)); 135 Cost = RC->getCopyCost(); 136 } 137 } 138 139 // Helper for AddGlue to clone node operands. 140 static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef<EVT> VTs, 141 SDValue ExtraOper = SDValue()) { 142 SmallVector<SDValue, 8> Ops(N->op_begin(), N->op_end()); 143 if (ExtraOper.getNode()) 144 Ops.push_back(ExtraOper); 145 146 SDVTList VTList = DAG->getVTList(VTs); 147 MachineSDNode *MN = dyn_cast<MachineSDNode>(N); 148 149 // Store memory references. 150 SmallVector<MachineMemOperand *, 2> MMOs; 151 if (MN) 152 MMOs.assign(MN->memoperands_begin(), MN->memoperands_end()); 153 154 DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops); 155 156 // Reset the memory references 157 if (MN) 158 DAG->setNodeMemRefs(MN, MMOs); 159 } 160 161 static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) { 162 SDNode *GlueDestNode = Glue.getNode(); 163 164 // Don't add glue from a node to itself. 165 if (GlueDestNode == N) return false; 166 167 // Don't add a glue operand to something that already uses glue. 168 if (GlueDestNode && 169 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { 170 return false; 171 } 172 // Don't add glue to something that already has a glue value. 173 if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false; 174 175 SmallVector<EVT, 4> VTs(N->value_begin(), N->value_end()); 176 if (AddGlue) 177 VTs.push_back(MVT::Glue); 178 179 CloneNodeWithValues(N, DAG, VTs, Glue); 180 181 return true; 182 } 183 184 // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the 185 // node even though simply shrinking the value list is sufficient. 186 static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) { 187 assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue && 188 !N->hasAnyUseOfValue(N->getNumValues() - 1)) && 189 "expected an unused glue value"); 190 191 CloneNodeWithValues(N, DAG, 192 makeArrayRef(N->value_begin(), N->getNumValues() - 1)); 193 } 194 195 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them. 196 /// This function finds loads of the same base and different offsets. If the 197 /// offsets are not far apart (target specific), it add MVT::Glue inputs and 198 /// outputs to ensure they are scheduled together and in order. This 199 /// optimization may benefit some targets by improving cache locality. 200 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) { 201 SDNode *Chain = nullptr; 202 unsigned NumOps = Node->getNumOperands(); 203 if (Node->getOperand(NumOps-1).getValueType() == MVT::Other) 204 Chain = Node->getOperand(NumOps-1).getNode(); 205 if (!Chain) 206 return; 207 208 // Skip any load instruction that has a tied input. There may be an additional 209 // dependency requiring a different order than by increasing offsets, and the 210 // added glue may introduce a cycle. 211 auto hasTiedInput = [this](const SDNode *N) { 212 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 213 for (unsigned I = 0; I != MCID.getNumOperands(); ++I) { 214 if (MCID.getOperandConstraint(I, MCOI::TIED_TO) != -1) 215 return true; 216 } 217 218 return false; 219 }; 220 221 // Look for other loads of the same chain. Find loads that are loading from 222 // the same base pointer and different offsets. 223 SmallPtrSet<SDNode*, 16> Visited; 224 SmallVector<int64_t, 4> Offsets; 225 DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode. 226 bool Cluster = false; 227 SDNode *Base = Node; 228 229 if (hasTiedInput(Base)) 230 return; 231 232 // This algorithm requires a reasonably low use count before finding a match 233 // to avoid uselessly blowing up compile time in large blocks. 234 unsigned UseCount = 0; 235 for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end(); 236 I != E && UseCount < 100; ++I, ++UseCount) { 237 SDNode *User = *I; 238 if (User == Node || !Visited.insert(User).second) 239 continue; 240 int64_t Offset1, Offset2; 241 if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) || 242 Offset1 == Offset2 || 243 hasTiedInput(User)) { 244 // FIXME: Should be ok if they addresses are identical. But earlier 245 // optimizations really should have eliminated one of the loads. 246 continue; 247 } 248 if (O2SMap.insert(std::make_pair(Offset1, Base)).second) 249 Offsets.push_back(Offset1); 250 O2SMap.insert(std::make_pair(Offset2, User)); 251 Offsets.push_back(Offset2); 252 if (Offset2 < Offset1) 253 Base = User; 254 Cluster = true; 255 // Reset UseCount to allow more matches. 256 UseCount = 0; 257 } 258 259 if (!Cluster) 260 return; 261 262 // Sort them in increasing order. 263 llvm::sort(Offsets); 264 265 // Check if the loads are close enough. 266 SmallVector<SDNode*, 4> Loads; 267 unsigned NumLoads = 0; 268 int64_t BaseOff = Offsets[0]; 269 SDNode *BaseLoad = O2SMap[BaseOff]; 270 Loads.push_back(BaseLoad); 271 for (unsigned i = 1, e = Offsets.size(); i != e; ++i) { 272 int64_t Offset = Offsets[i]; 273 SDNode *Load = O2SMap[Offset]; 274 if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads)) 275 break; // Stop right here. Ignore loads that are further away. 276 Loads.push_back(Load); 277 ++NumLoads; 278 } 279 280 if (NumLoads == 0) 281 return; 282 283 // Cluster loads by adding MVT::Glue outputs and inputs. This also 284 // ensure they are scheduled in order of increasing addresses. 285 SDNode *Lead = Loads[0]; 286 SDValue InGlue = SDValue(nullptr, 0); 287 if (AddGlue(Lead, InGlue, true, DAG)) 288 InGlue = SDValue(Lead, Lead->getNumValues() - 1); 289 for (unsigned I = 1, E = Loads.size(); I != E; ++I) { 290 bool OutGlue = I < E - 1; 291 SDNode *Load = Loads[I]; 292 293 // If AddGlue fails, we could leave an unsused glue value. This should not 294 // cause any 295 if (AddGlue(Load, InGlue, OutGlue, DAG)) { 296 if (OutGlue) 297 InGlue = SDValue(Load, Load->getNumValues() - 1); 298 299 ++LoadsClustered; 300 } 301 else if (!OutGlue && InGlue.getNode()) 302 RemoveUnusedGlue(InGlue.getNode(), DAG); 303 } 304 } 305 306 /// ClusterNodes - Cluster certain nodes which should be scheduled together. 307 /// 308 void ScheduleDAGSDNodes::ClusterNodes() { 309 for (SDNode &NI : DAG->allnodes()) { 310 SDNode *Node = &NI; 311 if (!Node || !Node->isMachineOpcode()) 312 continue; 313 314 unsigned Opc = Node->getMachineOpcode(); 315 const MCInstrDesc &MCID = TII->get(Opc); 316 if (MCID.mayLoad()) 317 // Cluster loads from "near" addresses into combined SUnits. 318 ClusterNeighboringLoads(Node); 319 } 320 } 321 322 void ScheduleDAGSDNodes::BuildSchedUnits() { 323 // During scheduling, the NodeId field of SDNode is used to map SDNodes 324 // to their associated SUnits by holding SUnits table indices. A value 325 // of -1 means the SDNode does not yet have an associated SUnit. 326 unsigned NumNodes = 0; 327 for (SDNode &NI : DAG->allnodes()) { 328 NI.setNodeId(-1); 329 ++NumNodes; 330 } 331 332 // Reserve entries in the vector for each of the SUnits we are creating. This 333 // ensure that reallocation of the vector won't happen, so SUnit*'s won't get 334 // invalidated. 335 // FIXME: Multiply by 2 because we may clone nodes during scheduling. 336 // This is a temporary workaround. 337 SUnits.reserve(NumNodes * 2); 338 339 // Add all nodes in depth first order. 340 SmallVector<SDNode*, 64> Worklist; 341 SmallPtrSet<SDNode*, 32> Visited; 342 Worklist.push_back(DAG->getRoot().getNode()); 343 Visited.insert(DAG->getRoot().getNode()); 344 345 SmallVector<SUnit*, 8> CallSUnits; 346 while (!Worklist.empty()) { 347 SDNode *NI = Worklist.pop_back_val(); 348 349 // Add all operands to the worklist unless they've already been added. 350 for (const SDValue &Op : NI->op_values()) 351 if (Visited.insert(Op.getNode()).second) 352 Worklist.push_back(Op.getNode()); 353 354 if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate. 355 continue; 356 357 // If this node has already been processed, stop now. 358 if (NI->getNodeId() != -1) continue; 359 360 SUnit *NodeSUnit = newSUnit(NI); 361 362 // See if anything is glued to this node, if so, add them to glued 363 // nodes. Nodes can have at most one glue input and one glue output. Glue 364 // is required to be the last operand and result of a node. 365 366 // Scan up to find glued preds. 367 SDNode *N = NI; 368 while (N->getNumOperands() && 369 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { 370 N = N->getOperand(N->getNumOperands()-1).getNode(); 371 assert(N->getNodeId() == -1 && "Node already inserted!"); 372 N->setNodeId(NodeSUnit->NodeNum); 373 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) 374 NodeSUnit->isCall = true; 375 } 376 377 // Scan down to find any glued succs. 378 N = NI; 379 while (N->getValueType(N->getNumValues()-1) == MVT::Glue) { 380 SDValue GlueVal(N, N->getNumValues()-1); 381 382 // There are either zero or one users of the Glue result. 383 bool HasGlueUse = false; 384 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 385 UI != E; ++UI) 386 if (GlueVal.isOperandOf(*UI)) { 387 HasGlueUse = true; 388 assert(N->getNodeId() == -1 && "Node already inserted!"); 389 N->setNodeId(NodeSUnit->NodeNum); 390 N = *UI; 391 if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) 392 NodeSUnit->isCall = true; 393 break; 394 } 395 if (!HasGlueUse) break; 396 } 397 398 if (NodeSUnit->isCall) 399 CallSUnits.push_back(NodeSUnit); 400 401 // Schedule zero-latency TokenFactor below any nodes that may increase the 402 // schedule height. Otherwise, ancestors of the TokenFactor may appear to 403 // have false stalls. 404 if (NI->getOpcode() == ISD::TokenFactor) 405 NodeSUnit->isScheduleLow = true; 406 407 // If there are glue operands involved, N is now the bottom-most node 408 // of the sequence of nodes that are glued together. 409 // Update the SUnit. 410 NodeSUnit->setNode(N); 411 assert(N->getNodeId() == -1 && "Node already inserted!"); 412 N->setNodeId(NodeSUnit->NodeNum); 413 414 // Compute NumRegDefsLeft. This must be done before AddSchedEdges. 415 InitNumRegDefsLeft(NodeSUnit); 416 417 // Assign the Latency field of NodeSUnit using target-provided information. 418 computeLatency(NodeSUnit); 419 } 420 421 // Find all call operands. 422 while (!CallSUnits.empty()) { 423 SUnit *SU = CallSUnits.pop_back_val(); 424 for (const SDNode *SUNode = SU->getNode(); SUNode; 425 SUNode = SUNode->getGluedNode()) { 426 if (SUNode->getOpcode() != ISD::CopyToReg) 427 continue; 428 SDNode *SrcN = SUNode->getOperand(2).getNode(); 429 if (isPassiveNode(SrcN)) continue; // Not scheduled. 430 SUnit *SrcSU = &SUnits[SrcN->getNodeId()]; 431 SrcSU->isCallOp = true; 432 } 433 } 434 } 435 436 void ScheduleDAGSDNodes::AddSchedEdges() { 437 const TargetSubtargetInfo &ST = MF.getSubtarget(); 438 439 // Check to see if the scheduler cares about latencies. 440 bool UnitLatencies = forceUnitLatencies(); 441 442 // Pass 2: add the preds, succs, etc. 443 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { 444 SUnit *SU = &SUnits[su]; 445 SDNode *MainNode = SU->getNode(); 446 447 if (MainNode->isMachineOpcode()) { 448 unsigned Opc = MainNode->getMachineOpcode(); 449 const MCInstrDesc &MCID = TII->get(Opc); 450 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) { 451 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) { 452 SU->isTwoAddress = true; 453 break; 454 } 455 } 456 if (MCID.isCommutable()) 457 SU->isCommutable = true; 458 } 459 460 // Find all predecessors and successors of the group. 461 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) { 462 if (N->isMachineOpcode() && 463 TII->get(N->getMachineOpcode()).getImplicitDefs()) { 464 SU->hasPhysRegClobbers = true; 465 unsigned NumUsed = InstrEmitter::CountResults(N); 466 while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1)) 467 --NumUsed; // Skip over unused values at the end. 468 if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs()) 469 SU->hasPhysRegDefs = true; 470 } 471 472 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 473 SDNode *OpN = N->getOperand(i).getNode(); 474 if (isPassiveNode(OpN)) continue; // Not scheduled. 475 SUnit *OpSU = &SUnits[OpN->getNodeId()]; 476 assert(OpSU && "Node has no SUnit!"); 477 if (OpSU == SU) continue; // In the same group. 478 479 EVT OpVT = N->getOperand(i).getValueType(); 480 assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!"); 481 bool isChain = OpVT == MVT::Other; 482 483 unsigned PhysReg = 0; 484 int Cost = 1; 485 // Determine if this is a physical register dependency. 486 CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost); 487 assert((PhysReg == 0 || !isChain) && 488 "Chain dependence via physreg data?"); 489 // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler 490 // emits a copy from the physical register to a virtual register unless 491 // it requires a cross class copy (cost < 0). That means we are only 492 // treating "expensive to copy" register dependency as physical register 493 // dependency. This may change in the future though. 494 if (Cost >= 0 && !StressSched) 495 PhysReg = 0; 496 497 // If this is a ctrl dep, latency is 1. 498 unsigned OpLatency = isChain ? 1 : OpSU->Latency; 499 // Special-case TokenFactor chains as zero-latency. 500 if(isChain && OpN->getOpcode() == ISD::TokenFactor) 501 OpLatency = 0; 502 503 SDep Dep = isChain ? SDep(OpSU, SDep::Barrier) 504 : SDep(OpSU, SDep::Data, PhysReg); 505 Dep.setLatency(OpLatency); 506 if (!isChain && !UnitLatencies) { 507 computeOperandLatency(OpN, N, i, Dep); 508 ST.adjustSchedDependency(OpSU, SU, Dep); 509 } 510 511 if (!SU->addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) { 512 // Multiple register uses are combined in the same SUnit. For example, 513 // we could have a set of glued nodes with all their defs consumed by 514 // another set of glued nodes. Register pressure tracking sees this as 515 // a single use, so to keep pressure balanced we reduce the defs. 516 // 517 // We can't tell (without more book-keeping) if this results from 518 // glued nodes or duplicate operands. As long as we don't reduce 519 // NumRegDefsLeft to zero, we handle the common cases well. 520 --OpSU->NumRegDefsLeft; 521 } 522 } 523 } 524 } 525 } 526 527 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we 528 /// are input. This SUnit graph is similar to the SelectionDAG, but 529 /// excludes nodes that aren't interesting to scheduling, and represents 530 /// glued together nodes with a single SUnit. 531 void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) { 532 // Cluster certain nodes which should be scheduled together. 533 ClusterNodes(); 534 // Populate the SUnits array. 535 BuildSchedUnits(); 536 // Compute all the scheduling dependencies between nodes. 537 AddSchedEdges(); 538 } 539 540 // Initialize NumNodeDefs for the current Node's opcode. 541 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() { 542 // Check for phys reg copy. 543 if (!Node) 544 return; 545 546 if (!Node->isMachineOpcode()) { 547 if (Node->getOpcode() == ISD::CopyFromReg) 548 NodeNumDefs = 1; 549 else 550 NodeNumDefs = 0; 551 return; 552 } 553 unsigned POpc = Node->getMachineOpcode(); 554 if (POpc == TargetOpcode::IMPLICIT_DEF) { 555 // No register need be allocated for this. 556 NodeNumDefs = 0; 557 return; 558 } 559 if (POpc == TargetOpcode::PATCHPOINT && 560 Node->getValueType(0) == MVT::Other) { 561 // PATCHPOINT is defined to have one result, but it might really have none 562 // if we're not using CallingConv::AnyReg. Don't mistake the chain for a 563 // real definition. 564 NodeNumDefs = 0; 565 return; 566 } 567 unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs(); 568 // Some instructions define regs that are not represented in the selection DAG 569 // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues. 570 NodeNumDefs = std::min(Node->getNumValues(), NRegDefs); 571 DefIdx = 0; 572 } 573 574 // Construct a RegDefIter for this SUnit and find the first valid value. 575 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU, 576 const ScheduleDAGSDNodes *SD) 577 : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) { 578 InitNodeNumDefs(); 579 Advance(); 580 } 581 582 // Advance to the next valid value defined by the SUnit. 583 void ScheduleDAGSDNodes::RegDefIter::Advance() { 584 for (;Node;) { // Visit all glued nodes. 585 for (;DefIdx < NodeNumDefs; ++DefIdx) { 586 if (!Node->hasAnyUseOfValue(DefIdx)) 587 continue; 588 ValueType = Node->getSimpleValueType(DefIdx); 589 ++DefIdx; 590 return; // Found a normal regdef. 591 } 592 Node = Node->getGluedNode(); 593 if (!Node) { 594 return; // No values left to visit. 595 } 596 InitNodeNumDefs(); 597 } 598 } 599 600 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) { 601 assert(SU->NumRegDefsLeft == 0 && "expect a new node"); 602 for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) { 603 assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected"); 604 ++SU->NumRegDefsLeft; 605 } 606 } 607 608 void ScheduleDAGSDNodes::computeLatency(SUnit *SU) { 609 SDNode *N = SU->getNode(); 610 611 // TokenFactor operands are considered zero latency, and some schedulers 612 // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero 613 // whenever node latency is nonzero. 614 if (N && N->getOpcode() == ISD::TokenFactor) { 615 SU->Latency = 0; 616 return; 617 } 618 619 // Check to see if the scheduler cares about latencies. 620 if (forceUnitLatencies()) { 621 SU->Latency = 1; 622 return; 623 } 624 625 if (!InstrItins || InstrItins->isEmpty()) { 626 if (N && N->isMachineOpcode() && 627 TII->isHighLatencyDef(N->getMachineOpcode())) 628 SU->Latency = HighLatencyCycles; 629 else 630 SU->Latency = 1; 631 return; 632 } 633 634 // Compute the latency for the node. We use the sum of the latencies for 635 // all nodes glued together into this SUnit. 636 SU->Latency = 0; 637 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) 638 if (N->isMachineOpcode()) 639 SU->Latency += TII->getInstrLatency(InstrItins, N); 640 } 641 642 void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use, 643 unsigned OpIdx, SDep& dep) const{ 644 // Check to see if the scheduler cares about latencies. 645 if (forceUnitLatencies()) 646 return; 647 648 if (dep.getKind() != SDep::Data) 649 return; 650 651 unsigned DefIdx = Use->getOperand(OpIdx).getResNo(); 652 if (Use->isMachineOpcode()) 653 // Adjust the use operand index by num of defs. 654 OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs(); 655 int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx); 656 if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg && 657 !BB->succ_empty()) { 658 unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg(); 659 if (TargetRegisterInfo::isVirtualRegister(Reg)) 660 // This copy is a liveout value. It is likely coalesced, so reduce the 661 // latency so not to penalize the def. 662 // FIXME: need target specific adjustment here? 663 Latency = (Latency > 1) ? Latency - 1 : 1; 664 } 665 if (Latency >= 0) 666 dep.setLatency(Latency); 667 } 668 669 void ScheduleDAGSDNodes::dumpNode(const SUnit &SU) const { 670 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 671 dumpNodeName(SU); 672 dbgs() << ": "; 673 674 if (!SU.getNode()) { 675 dbgs() << "PHYS REG COPY\n"; 676 return; 677 } 678 679 SU.getNode()->dump(DAG); 680 dbgs() << "\n"; 681 SmallVector<SDNode *, 4> GluedNodes; 682 for (SDNode *N = SU.getNode()->getGluedNode(); N; N = N->getGluedNode()) 683 GluedNodes.push_back(N); 684 while (!GluedNodes.empty()) { 685 dbgs() << " "; 686 GluedNodes.back()->dump(DAG); 687 dbgs() << "\n"; 688 GluedNodes.pop_back(); 689 } 690 #endif 691 } 692 693 void ScheduleDAGSDNodes::dump() const { 694 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 695 if (EntrySU.getNode() != nullptr) 696 dumpNodeAll(EntrySU); 697 for (const SUnit &SU : SUnits) 698 dumpNodeAll(SU); 699 if (ExitSU.getNode() != nullptr) 700 dumpNodeAll(ExitSU); 701 #endif 702 } 703 704 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 705 void ScheduleDAGSDNodes::dumpSchedule() const { 706 for (unsigned i = 0, e = Sequence.size(); i != e; i++) { 707 if (SUnit *SU = Sequence[i]) 708 dumpNode(*SU); 709 else 710 dbgs() << "**** NOOP ****\n"; 711 } 712 } 713 #endif 714 715 #ifndef NDEBUG 716 /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that 717 /// their state is consistent with the nodes listed in Sequence. 718 /// 719 void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) { 720 unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp); 721 unsigned Noops = 0; 722 for (unsigned i = 0, e = Sequence.size(); i != e; ++i) 723 if (!Sequence[i]) 724 ++Noops; 725 assert(Sequence.size() - Noops == ScheduledNodes && 726 "The number of nodes scheduled doesn't match the expected number!"); 727 } 728 #endif // NDEBUG 729 730 /// ProcessSDDbgValues - Process SDDbgValues associated with this node. 731 static void 732 ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, 733 SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders, 734 DenseMap<SDValue, unsigned> &VRBaseMap, unsigned Order) { 735 if (!N->getHasDebugValue()) 736 return; 737 738 // Opportunistically insert immediate dbg_value uses, i.e. those with the same 739 // source order number as N. 740 MachineBasicBlock *BB = Emitter.getBlock(); 741 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos(); 742 for (auto DV : DAG->GetDbgValues(N)) { 743 if (DV->isEmitted()) 744 continue; 745 unsigned DVOrder = DV->getOrder(); 746 if (!Order || DVOrder == Order) { 747 MachineInstr *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap); 748 if (DbgMI) { 749 Orders.push_back({DVOrder, DbgMI}); 750 BB->insert(InsertPos, DbgMI); 751 } 752 } 753 } 754 } 755 756 // ProcessSourceNode - Process nodes with source order numbers. These are added 757 // to a vector which EmitSchedule uses to determine how to insert dbg_value 758 // instructions in the right order. 759 static void 760 ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, 761 DenseMap<SDValue, unsigned> &VRBaseMap, 762 SmallVectorImpl<std::pair<unsigned, MachineInstr *>> &Orders, 763 SmallSet<unsigned, 8> &Seen, MachineInstr *NewInsn) { 764 unsigned Order = N->getIROrder(); 765 if (!Order || Seen.count(Order)) { 766 // Process any valid SDDbgValues even if node does not have any order 767 // assigned. 768 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0); 769 return; 770 } 771 772 // If a new instruction was generated for this Order number, record it. 773 // Otherwise, leave this order number unseen: we will either find later 774 // instructions for it, or leave it unseen if there were no instructions at 775 // all. 776 if (NewInsn) { 777 Seen.insert(Order); 778 Orders.push_back({Order, NewInsn}); 779 } 780 781 // Even if no instruction was generated, a Value may have become defined via 782 // earlier nodes. Try to process them now. 783 ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order); 784 } 785 786 void ScheduleDAGSDNodes:: 787 EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap, 788 MachineBasicBlock::iterator InsertPos) { 789 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 790 I != E; ++I) { 791 if (I->isCtrl()) continue; // ignore chain preds 792 if (I->getSUnit()->CopyDstRC) { 793 // Copy to physical register. 794 DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->getSUnit()); 795 assert(VRI != VRBaseMap.end() && "Node emitted out of order - late"); 796 // Find the destination physical register. 797 unsigned Reg = 0; 798 for (SUnit::const_succ_iterator II = SU->Succs.begin(), 799 EE = SU->Succs.end(); II != EE; ++II) { 800 if (II->isCtrl()) continue; // ignore chain preds 801 if (II->getReg()) { 802 Reg = II->getReg(); 803 break; 804 } 805 } 806 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg) 807 .addReg(VRI->second); 808 } else { 809 // Copy from physical register. 810 assert(I->getReg() && "Unknown physical register!"); 811 unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC); 812 bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second; 813 (void)isNew; // Silence compiler warning. 814 assert(isNew && "Node emitted out of order - early"); 815 BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase) 816 .addReg(I->getReg()); 817 } 818 break; 819 } 820 } 821 822 /// EmitSchedule - Emit the machine code in scheduled order. Return the new 823 /// InsertPos and MachineBasicBlock that contains this insertion 824 /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does 825 /// not necessarily refer to returned BB. The emitter may split blocks. 826 MachineBasicBlock *ScheduleDAGSDNodes:: 827 EmitSchedule(MachineBasicBlock::iterator &InsertPos) { 828 InstrEmitter Emitter(BB, InsertPos); 829 DenseMap<SDValue, unsigned> VRBaseMap; 830 DenseMap<SUnit*, unsigned> CopyVRBaseMap; 831 SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders; 832 SmallSet<unsigned, 8> Seen; 833 bool HasDbg = DAG->hasDebugValues(); 834 835 // Emit a node, and determine where its first instruction is for debuginfo. 836 // Zero, one, or multiple instructions can be created when emitting a node. 837 auto EmitNode = 838 [&](SDNode *Node, bool IsClone, bool IsCloned, 839 DenseMap<SDValue, unsigned> &VRBaseMap) -> MachineInstr * { 840 // Fetch instruction prior to this, or end() if nonexistant. 841 auto GetPrevInsn = [&](MachineBasicBlock::iterator I) { 842 if (I == BB->begin()) 843 return BB->end(); 844 else 845 return std::prev(Emitter.getInsertPos()); 846 }; 847 848 MachineBasicBlock::iterator Before = GetPrevInsn(Emitter.getInsertPos()); 849 Emitter.EmitNode(Node, IsClone, IsCloned, VRBaseMap); 850 MachineBasicBlock::iterator After = GetPrevInsn(Emitter.getInsertPos()); 851 852 // If the iterator did not change, no instructions were inserted. 853 if (Before == After) 854 return nullptr; 855 856 MachineInstr *MI; 857 if (Before == BB->end()) { 858 // There were no prior instructions; the new ones must start at the 859 // beginning of the block. 860 MI = &Emitter.getBlock()->instr_front(); 861 } else { 862 // Return first instruction after the pre-existing instructions. 863 MI = &*std::next(Before); 864 } 865 866 if (MI->isCall() && DAG->getTarget().Options.EnableDebugEntryValues) 867 MF.addCallArgsForwardingRegs(MI, DAG->getSDCallSiteInfo(Node)); 868 869 return MI; 870 }; 871 872 // If this is the first BB, emit byval parameter dbg_value's. 873 if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) { 874 SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin(); 875 SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd(); 876 for (; PDI != PDE; ++PDI) { 877 MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap); 878 if (DbgMI) { 879 BB->insert(InsertPos, DbgMI); 880 // We re-emit the dbg_value closer to its use, too, after instructions 881 // are emitted to the BB. 882 (*PDI)->clearIsEmitted(); 883 } 884 } 885 } 886 887 for (unsigned i = 0, e = Sequence.size(); i != e; i++) { 888 SUnit *SU = Sequence[i]; 889 if (!SU) { 890 // Null SUnit* is a noop. 891 TII->insertNoop(*Emitter.getBlock(), InsertPos); 892 continue; 893 } 894 895 // For pre-regalloc scheduling, create instructions corresponding to the 896 // SDNode and any glued SDNodes and append them to the block. 897 if (!SU->getNode()) { 898 // Emit a copy. 899 EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos); 900 continue; 901 } 902 903 SmallVector<SDNode *, 4> GluedNodes; 904 for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode()) 905 GluedNodes.push_back(N); 906 while (!GluedNodes.empty()) { 907 SDNode *N = GluedNodes.back(); 908 auto NewInsn = EmitNode(N, SU->OrigNode != SU, SU->isCloned, VRBaseMap); 909 // Remember the source order of the inserted instruction. 910 if (HasDbg) 911 ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen, NewInsn); 912 913 if (MDNode *MD = DAG->getHeapAllocSite(N)) 914 if (NewInsn && NewInsn->isCall()) 915 NewInsn->setHeapAllocMarker(MF, MD); 916 917 GluedNodes.pop_back(); 918 } 919 auto NewInsn = 920 EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, VRBaseMap); 921 // Remember the source order of the inserted instruction. 922 if (HasDbg) 923 ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, Seen, 924 NewInsn); 925 926 if (MDNode *MD = DAG->getHeapAllocSite(SU->getNode())) { 927 if (NewInsn && NewInsn->isCall()) 928 NewInsn->setHeapAllocMarker(MF, MD); 929 } 930 } 931 932 // Insert all the dbg_values which have not already been inserted in source 933 // order sequence. 934 if (HasDbg) { 935 MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI(); 936 937 // Sort the source order instructions and use the order to insert debug 938 // values. Use stable_sort so that DBG_VALUEs are inserted in the same order 939 // regardless of the host's implementation fo std::sort. 940 llvm::stable_sort(Orders, less_first()); 941 std::stable_sort(DAG->DbgBegin(), DAG->DbgEnd(), 942 [](const SDDbgValue *LHS, const SDDbgValue *RHS) { 943 return LHS->getOrder() < RHS->getOrder(); 944 }); 945 946 SDDbgInfo::DbgIterator DI = DAG->DbgBegin(); 947 SDDbgInfo::DbgIterator DE = DAG->DbgEnd(); 948 // Now emit the rest according to source order. 949 unsigned LastOrder = 0; 950 for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) { 951 unsigned Order = Orders[i].first; 952 MachineInstr *MI = Orders[i].second; 953 // Insert all SDDbgValue's whose order(s) are before "Order". 954 assert(MI); 955 for (; DI != DE; ++DI) { 956 if ((*DI)->getOrder() < LastOrder || (*DI)->getOrder() >= Order) 957 break; 958 if ((*DI)->isEmitted()) 959 continue; 960 961 MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap); 962 if (DbgMI) { 963 if (!LastOrder) 964 // Insert to start of the BB (after PHIs). 965 BB->insert(BBBegin, DbgMI); 966 else { 967 // Insert at the instruction, which may be in a different 968 // block, if the block was split by a custom inserter. 969 MachineBasicBlock::iterator Pos = MI; 970 MI->getParent()->insert(Pos, DbgMI); 971 } 972 } 973 } 974 LastOrder = Order; 975 } 976 // Add trailing DbgValue's before the terminator. FIXME: May want to add 977 // some of them before one or more conditional branches? 978 SmallVector<MachineInstr*, 8> DbgMIs; 979 for (; DI != DE; ++DI) { 980 if ((*DI)->isEmitted()) 981 continue; 982 assert((*DI)->getOrder() >= LastOrder && 983 "emitting DBG_VALUE out of order"); 984 if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap)) 985 DbgMIs.push_back(DbgMI); 986 } 987 988 MachineBasicBlock *InsertBB = Emitter.getBlock(); 989 MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator(); 990 InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end()); 991 992 SDDbgInfo::DbgLabelIterator DLI = DAG->DbgLabelBegin(); 993 SDDbgInfo::DbgLabelIterator DLE = DAG->DbgLabelEnd(); 994 // Now emit the rest according to source order. 995 LastOrder = 0; 996 for (const auto &InstrOrder : Orders) { 997 unsigned Order = InstrOrder.first; 998 MachineInstr *MI = InstrOrder.second; 999 if (!MI) 1000 continue; 1001 1002 // Insert all SDDbgLabel's whose order(s) are before "Order". 1003 for (; DLI != DLE && 1004 (*DLI)->getOrder() >= LastOrder && (*DLI)->getOrder() < Order; 1005 ++DLI) { 1006 MachineInstr *DbgMI = Emitter.EmitDbgLabel(*DLI); 1007 if (DbgMI) { 1008 if (!LastOrder) 1009 // Insert to start of the BB (after PHIs). 1010 BB->insert(BBBegin, DbgMI); 1011 else { 1012 // Insert at the instruction, which may be in a different 1013 // block, if the block was split by a custom inserter. 1014 MachineBasicBlock::iterator Pos = MI; 1015 MI->getParent()->insert(Pos, DbgMI); 1016 } 1017 } 1018 } 1019 if (DLI == DLE) 1020 break; 1021 1022 LastOrder = Order; 1023 } 1024 } 1025 1026 InsertPos = Emitter.getInsertPos(); 1027 return Emitter.getBlock(); 1028 } 1029 1030 /// Return the basic block label. 1031 std::string ScheduleDAGSDNodes::getDAGName() const { 1032 return "sunit-dag." + BB->getFullName(); 1033 } 1034