xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGRRList.cpp (revision afdb42987ca82869eeaecf6dc25c2b6fb7b8370e)
1 //===- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements bottom-up and top-down register pressure reduction list
10 // schedulers, using standard algorithms.  The basic approach uses a priority
11 // queue of available nodes to schedule.  One at a time, nodes are taken from
12 // the priority queue (thus in priority order), checked for legality to
13 // schedule, and emitted if legal.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "ScheduleDAGSDNodes.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/ISDOpcodes.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/ScheduleDAG.h"
29 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
30 #include "llvm/CodeGen/SchedulerRegistry.h"
31 #include "llvm/CodeGen/SelectionDAGISel.h"
32 #include "llvm/CodeGen/SelectionDAGNodes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/Config/llvm-config.h"
39 #include "llvm/IR/InlineAsm.h"
40 #include "llvm/MC/MCInstrDesc.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/CodeGen.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/MachineValueType.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstdint>
53 #include <cstdlib>
54 #include <iterator>
55 #include <limits>
56 #include <memory>
57 #include <utility>
58 #include <vector>
59 
60 using namespace llvm;
61 
62 #define DEBUG_TYPE "pre-RA-sched"
63 
64 STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
65 STATISTIC(NumUnfolds,    "Number of nodes unfolded");
66 STATISTIC(NumDups,       "Number of duplicated nodes");
67 STATISTIC(NumPRCopies,   "Number of physical register copies");
68 
69 static RegisterScheduler
70   burrListDAGScheduler("list-burr",
71                        "Bottom-up register reduction list scheduling",
72                        createBURRListDAGScheduler);
73 
74 static RegisterScheduler
75   sourceListDAGScheduler("source",
76                          "Similar to list-burr but schedules in source "
77                          "order when possible",
78                          createSourceListDAGScheduler);
79 
80 static RegisterScheduler
81   hybridListDAGScheduler("list-hybrid",
82                          "Bottom-up register pressure aware list scheduling "
83                          "which tries to balance latency and register pressure",
84                          createHybridListDAGScheduler);
85 
86 static RegisterScheduler
87   ILPListDAGScheduler("list-ilp",
88                       "Bottom-up register pressure aware list scheduling "
89                       "which tries to balance ILP and register pressure",
90                       createILPListDAGScheduler);
91 
92 static cl::opt<bool> DisableSchedCycles(
93   "disable-sched-cycles", cl::Hidden, cl::init(false),
94   cl::desc("Disable cycle-level precision during preRA scheduling"));
95 
96 // Temporary sched=list-ilp flags until the heuristics are robust.
97 // Some options are also available under sched=list-hybrid.
98 static cl::opt<bool> DisableSchedRegPressure(
99   "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
100   cl::desc("Disable regpressure priority in sched=list-ilp"));
101 static cl::opt<bool> DisableSchedLiveUses(
102   "disable-sched-live-uses", cl::Hidden, cl::init(true),
103   cl::desc("Disable live use priority in sched=list-ilp"));
104 static cl::opt<bool> DisableSchedVRegCycle(
105   "disable-sched-vrcycle", cl::Hidden, cl::init(false),
106   cl::desc("Disable virtual register cycle interference checks"));
107 static cl::opt<bool> DisableSchedPhysRegJoin(
108   "disable-sched-physreg-join", cl::Hidden, cl::init(false),
109   cl::desc("Disable physreg def-use affinity"));
110 static cl::opt<bool> DisableSchedStalls(
111   "disable-sched-stalls", cl::Hidden, cl::init(true),
112   cl::desc("Disable no-stall priority in sched=list-ilp"));
113 static cl::opt<bool> DisableSchedCriticalPath(
114   "disable-sched-critical-path", cl::Hidden, cl::init(false),
115   cl::desc("Disable critical path priority in sched=list-ilp"));
116 static cl::opt<bool> DisableSchedHeight(
117   "disable-sched-height", cl::Hidden, cl::init(false),
118   cl::desc("Disable scheduled-height priority in sched=list-ilp"));
119 static cl::opt<bool> Disable2AddrHack(
120   "disable-2addr-hack", cl::Hidden, cl::init(true),
121   cl::desc("Disable scheduler's two-address hack"));
122 
123 static cl::opt<int> MaxReorderWindow(
124   "max-sched-reorder", cl::Hidden, cl::init(6),
125   cl::desc("Number of instructions to allow ahead of the critical path "
126            "in sched=list-ilp"));
127 
128 static cl::opt<unsigned> AvgIPC(
129   "sched-avg-ipc", cl::Hidden, cl::init(1),
130   cl::desc("Average inst/cycle whan no target itinerary exists."));
131 
132 namespace {
133 
134 //===----------------------------------------------------------------------===//
135 /// ScheduleDAGRRList - The actual register reduction list scheduler
136 /// implementation.  This supports both top-down and bottom-up scheduling.
137 ///
138 class ScheduleDAGRRList : public ScheduleDAGSDNodes {
139 private:
140   /// NeedLatency - True if the scheduler will make use of latency information.
141   bool NeedLatency;
142 
143   /// AvailableQueue - The priority queue to use for the available SUnits.
144   SchedulingPriorityQueue *AvailableQueue;
145 
146   /// PendingQueue - This contains all of the instructions whose operands have
147   /// been issued, but their results are not ready yet (due to the latency of
148   /// the operation).  Once the operands becomes available, the instruction is
149   /// added to the AvailableQueue.
150   std::vector<SUnit *> PendingQueue;
151 
152   /// HazardRec - The hazard recognizer to use.
153   ScheduleHazardRecognizer *HazardRec;
154 
155   /// CurCycle - The current scheduler state corresponds to this cycle.
156   unsigned CurCycle = 0;
157 
158   /// MinAvailableCycle - Cycle of the soonest available instruction.
159   unsigned MinAvailableCycle;
160 
161   /// IssueCount - Count instructions issued in this cycle
162   /// Currently valid only for bottom-up scheduling.
163   unsigned IssueCount;
164 
165   /// LiveRegDefs - A set of physical registers and their definition
166   /// that are "live". These nodes must be scheduled before any other nodes that
167   /// modifies the registers can be scheduled.
168   unsigned NumLiveRegs;
169   std::unique_ptr<SUnit*[]> LiveRegDefs;
170   std::unique_ptr<SUnit*[]> LiveRegGens;
171 
172   // Collect interferences between physical register use/defs.
173   // Each interference is an SUnit and set of physical registers.
174   SmallVector<SUnit*, 4> Interferences;
175 
176   using LRegsMapT = DenseMap<SUnit *, SmallVector<unsigned, 4>>;
177 
178   LRegsMapT LRegsMap;
179 
180   /// Topo - A topological ordering for SUnits which permits fast IsReachable
181   /// and similar queries.
182   ScheduleDAGTopologicalSort Topo;
183 
184   // Hack to keep track of the inverse of FindCallSeqStart without more crazy
185   // DAG crawling.
186   DenseMap<SUnit*, SUnit*> CallSeqEndForStart;
187 
188 public:
189   ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
190                     SchedulingPriorityQueue *availqueue,
191                     CodeGenOpt::Level OptLevel)
192     : ScheduleDAGSDNodes(mf),
193       NeedLatency(needlatency), AvailableQueue(availqueue),
194       Topo(SUnits, nullptr) {
195     const TargetSubtargetInfo &STI = mf.getSubtarget();
196     if (DisableSchedCycles || !NeedLatency)
197       HazardRec = new ScheduleHazardRecognizer();
198     else
199       HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(&STI, this);
200   }
201 
202   ~ScheduleDAGRRList() override {
203     delete HazardRec;
204     delete AvailableQueue;
205   }
206 
207   void Schedule() override;
208 
209   ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
210 
211   /// IsReachable - Checks if SU is reachable from TargetSU.
212   bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
213     return Topo.IsReachable(SU, TargetSU);
214   }
215 
216   /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
217   /// create a cycle.
218   bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
219     return Topo.WillCreateCycle(SU, TargetSU);
220   }
221 
222   /// AddPredQueued - Queues and update to add a predecessor edge to SUnit SU.
223   /// This returns true if this is a new predecessor.
224   /// Does *NOT* update the topological ordering! It just queues an update.
225   void AddPredQueued(SUnit *SU, const SDep &D) {
226     Topo.AddPredQueued(SU, D.getSUnit());
227     SU->addPred(D);
228   }
229 
230   /// AddPred - adds a predecessor edge to SUnit SU.
231   /// This returns true if this is a new predecessor.
232   /// Updates the topological ordering if required.
233   void AddPred(SUnit *SU, const SDep &D) {
234     Topo.AddPred(SU, D.getSUnit());
235     SU->addPred(D);
236   }
237 
238   /// RemovePred - removes a predecessor edge from SUnit SU.
239   /// This returns true if an edge was removed.
240   /// Updates the topological ordering if required.
241   void RemovePred(SUnit *SU, const SDep &D) {
242     Topo.RemovePred(SU, D.getSUnit());
243     SU->removePred(D);
244   }
245 
246 private:
247   bool isReady(SUnit *SU) {
248     return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
249       AvailableQueue->isReady(SU);
250   }
251 
252   void ReleasePred(SUnit *SU, const SDep *PredEdge);
253   void ReleasePredecessors(SUnit *SU);
254   void ReleasePending();
255   void AdvanceToCycle(unsigned NextCycle);
256   void AdvancePastStalls(SUnit *SU);
257   void EmitNode(SUnit *SU);
258   void ScheduleNodeBottomUp(SUnit*);
259   void CapturePred(SDep *PredEdge);
260   void UnscheduleNodeBottomUp(SUnit*);
261   void RestoreHazardCheckerBottomUp();
262   void BacktrackBottomUp(SUnit*, SUnit*);
263   SUnit *TryUnfoldSU(SUnit *);
264   SUnit *CopyAndMoveSuccessors(SUnit*);
265   void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
266                                 const TargetRegisterClass*,
267                                 const TargetRegisterClass*,
268                                 SmallVectorImpl<SUnit*>&);
269   bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
270 
271   void releaseInterferences(unsigned Reg = 0);
272 
273   SUnit *PickNodeToScheduleBottomUp();
274   void ListScheduleBottomUp();
275 
276   /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
277   SUnit *CreateNewSUnit(SDNode *N) {
278     unsigned NumSUnits = SUnits.size();
279     SUnit *NewNode = newSUnit(N);
280     // Update the topological ordering.
281     if (NewNode->NodeNum >= NumSUnits)
282       Topo.AddSUnitWithoutPredecessors(NewNode);
283     return NewNode;
284   }
285 
286   /// CreateClone - Creates a new SUnit from an existing one.
287   SUnit *CreateClone(SUnit *N) {
288     unsigned NumSUnits = SUnits.size();
289     SUnit *NewNode = Clone(N);
290     // Update the topological ordering.
291     if (NewNode->NodeNum >= NumSUnits)
292       Topo.AddSUnitWithoutPredecessors(NewNode);
293     return NewNode;
294   }
295 
296   /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
297   /// need actual latency information but the hybrid scheduler does.
298   bool forceUnitLatencies() const override {
299     return !NeedLatency;
300   }
301 };
302 
303 }  // end anonymous namespace
304 
305 /// GetCostForDef - Looks up the register class and cost for a given definition.
306 /// Typically this just means looking up the representative register class,
307 /// but for untyped values (MVT::Untyped) it means inspecting the node's
308 /// opcode to determine what register class is being generated.
309 static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
310                           const TargetLowering *TLI,
311                           const TargetInstrInfo *TII,
312                           const TargetRegisterInfo *TRI,
313                           unsigned &RegClass, unsigned &Cost,
314                           const MachineFunction &MF) {
315   MVT VT = RegDefPos.GetValue();
316 
317   // Special handling for untyped values.  These values can only come from
318   // the expansion of custom DAG-to-DAG patterns.
319   if (VT == MVT::Untyped) {
320     const SDNode *Node = RegDefPos.GetNode();
321 
322     // Special handling for CopyFromReg of untyped values.
323     if (!Node->isMachineOpcode() && Node->getOpcode() == ISD::CopyFromReg) {
324       unsigned Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
325       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg);
326       RegClass = RC->getID();
327       Cost = 1;
328       return;
329     }
330 
331     unsigned Opcode = Node->getMachineOpcode();
332     if (Opcode == TargetOpcode::REG_SEQUENCE) {
333       unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
334       const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
335       RegClass = RC->getID();
336       Cost = 1;
337       return;
338     }
339 
340     unsigned Idx = RegDefPos.GetIdx();
341     const MCInstrDesc Desc = TII->get(Opcode);
342     const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
343     RegClass = RC->getID();
344     // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
345     // better way to determine it.
346     Cost = 1;
347   } else {
348     RegClass = TLI->getRepRegClassFor(VT)->getID();
349     Cost = TLI->getRepRegClassCostFor(VT);
350   }
351 }
352 
353 /// Schedule - Schedule the DAG using list scheduling.
354 void ScheduleDAGRRList::Schedule() {
355   LLVM_DEBUG(dbgs() << "********** List Scheduling " << printMBBReference(*BB)
356                     << " '" << BB->getName() << "' **********\n");
357 
358   CurCycle = 0;
359   IssueCount = 0;
360   MinAvailableCycle =
361       DisableSchedCycles ? 0 : std::numeric_limits<unsigned>::max();
362   NumLiveRegs = 0;
363   // Allocate slots for each physical register, plus one for a special register
364   // to track the virtual resource of a calling sequence.
365   LiveRegDefs.reset(new SUnit*[TRI->getNumRegs() + 1]());
366   LiveRegGens.reset(new SUnit*[TRI->getNumRegs() + 1]());
367   CallSeqEndForStart.clear();
368   assert(Interferences.empty() && LRegsMap.empty() && "stale Interferences");
369 
370   // Build the scheduling graph.
371   BuildSchedGraph(nullptr);
372 
373   LLVM_DEBUG(dump());
374   Topo.MarkDirty();
375 
376   AvailableQueue->initNodes(SUnits);
377 
378   HazardRec->Reset();
379 
380   // Execute the actual scheduling loop.
381   ListScheduleBottomUp();
382 
383   AvailableQueue->releaseState();
384 
385   LLVM_DEBUG({
386     dbgs() << "*** Final schedule ***\n";
387     dumpSchedule();
388     dbgs() << '\n';
389   });
390 }
391 
392 //===----------------------------------------------------------------------===//
393 //  Bottom-Up Scheduling
394 //===----------------------------------------------------------------------===//
395 
396 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
397 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
398 void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
399   SUnit *PredSU = PredEdge->getSUnit();
400 
401 #ifndef NDEBUG
402   if (PredSU->NumSuccsLeft == 0) {
403     dbgs() << "*** Scheduling failed! ***\n";
404     dumpNode(*PredSU);
405     dbgs() << " has been released too many times!\n";
406     llvm_unreachable(nullptr);
407   }
408 #endif
409   --PredSU->NumSuccsLeft;
410 
411   if (!forceUnitLatencies()) {
412     // Updating predecessor's height. This is now the cycle when the
413     // predecessor can be scheduled without causing a pipeline stall.
414     PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
415   }
416 
417   // If all the node's successors are scheduled, this node is ready
418   // to be scheduled. Ignore the special EntrySU node.
419   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
420     PredSU->isAvailable = true;
421 
422     unsigned Height = PredSU->getHeight();
423     if (Height < MinAvailableCycle)
424       MinAvailableCycle = Height;
425 
426     if (isReady(PredSU)) {
427       AvailableQueue->push(PredSU);
428     }
429     // CapturePred and others may have left the node in the pending queue, avoid
430     // adding it twice.
431     else if (!PredSU->isPending) {
432       PredSU->isPending = true;
433       PendingQueue.push_back(PredSU);
434     }
435   }
436 }
437 
438 /// IsChainDependent - Test if Outer is reachable from Inner through
439 /// chain dependencies.
440 static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
441                              unsigned NestLevel,
442                              const TargetInstrInfo *TII) {
443   SDNode *N = Outer;
444   while (true) {
445     if (N == Inner)
446       return true;
447     // For a TokenFactor, examine each operand. There may be multiple ways
448     // to get to the CALLSEQ_BEGIN, but we need to find the path with the
449     // most nesting in order to ensure that we find the corresponding match.
450     if (N->getOpcode() == ISD::TokenFactor) {
451       for (const SDValue &Op : N->op_values())
452         if (IsChainDependent(Op.getNode(), Inner, NestLevel, TII))
453           return true;
454       return false;
455     }
456     // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
457     if (N->isMachineOpcode()) {
458       if (N->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
459         ++NestLevel;
460       } else if (N->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
461         if (NestLevel == 0)
462           return false;
463         --NestLevel;
464       }
465     }
466     // Otherwise, find the chain and continue climbing.
467     for (const SDValue &Op : N->op_values())
468       if (Op.getValueType() == MVT::Other) {
469         N = Op.getNode();
470         goto found_chain_operand;
471       }
472     return false;
473   found_chain_operand:;
474     if (N->getOpcode() == ISD::EntryToken)
475       return false;
476   }
477 }
478 
479 /// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
480 /// the corresponding (lowered) CALLSEQ_BEGIN node.
481 ///
482 /// NestLevel and MaxNested are used in recursion to indcate the current level
483 /// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
484 /// level seen so far.
485 ///
486 /// TODO: It would be better to give CALLSEQ_END an explicit operand to point
487 /// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
488 static SDNode *
489 FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
490                  const TargetInstrInfo *TII) {
491   while (true) {
492     // For a TokenFactor, examine each operand. There may be multiple ways
493     // to get to the CALLSEQ_BEGIN, but we need to find the path with the
494     // most nesting in order to ensure that we find the corresponding match.
495     if (N->getOpcode() == ISD::TokenFactor) {
496       SDNode *Best = nullptr;
497       unsigned BestMaxNest = MaxNest;
498       for (const SDValue &Op : N->op_values()) {
499         unsigned MyNestLevel = NestLevel;
500         unsigned MyMaxNest = MaxNest;
501         if (SDNode *New = FindCallSeqStart(Op.getNode(),
502                                            MyNestLevel, MyMaxNest, TII))
503           if (!Best || (MyMaxNest > BestMaxNest)) {
504             Best = New;
505             BestMaxNest = MyMaxNest;
506           }
507       }
508       assert(Best);
509       MaxNest = BestMaxNest;
510       return Best;
511     }
512     // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
513     if (N->isMachineOpcode()) {
514       if (N->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
515         ++NestLevel;
516         MaxNest = std::max(MaxNest, NestLevel);
517       } else if (N->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
518         assert(NestLevel != 0);
519         --NestLevel;
520         if (NestLevel == 0)
521           return N;
522       }
523     }
524     // Otherwise, find the chain and continue climbing.
525     for (const SDValue &Op : N->op_values())
526       if (Op.getValueType() == MVT::Other) {
527         N = Op.getNode();
528         goto found_chain_operand;
529       }
530     return nullptr;
531   found_chain_operand:;
532     if (N->getOpcode() == ISD::EntryToken)
533       return nullptr;
534   }
535 }
536 
537 /// Call ReleasePred for each predecessor, then update register live def/gen.
538 /// Always update LiveRegDefs for a register dependence even if the current SU
539 /// also defines the register. This effectively create one large live range
540 /// across a sequence of two-address node. This is important because the
541 /// entire chain must be scheduled together. Example:
542 ///
543 /// flags = (3) add
544 /// flags = (2) addc flags
545 /// flags = (1) addc flags
546 ///
547 /// results in
548 ///
549 /// LiveRegDefs[flags] = 3
550 /// LiveRegGens[flags] = 1
551 ///
552 /// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
553 /// interference on flags.
554 void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
555   // Bottom up: release predecessors
556   for (SDep &Pred : SU->Preds) {
557     ReleasePred(SU, &Pred);
558     if (Pred.isAssignedRegDep()) {
559       // This is a physical register dependency and it's impossible or
560       // expensive to copy the register. Make sure nothing that can
561       // clobber the register is scheduled between the predecessor and
562       // this node.
563       SUnit *RegDef = LiveRegDefs[Pred.getReg()]; (void)RegDef;
564       assert((!RegDef || RegDef == SU || RegDef == Pred.getSUnit()) &&
565              "interference on register dependence");
566       LiveRegDefs[Pred.getReg()] = Pred.getSUnit();
567       if (!LiveRegGens[Pred.getReg()]) {
568         ++NumLiveRegs;
569         LiveRegGens[Pred.getReg()] = SU;
570       }
571     }
572   }
573 
574   // If we're scheduling a lowered CALLSEQ_END, find the corresponding
575   // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
576   // these nodes, to prevent other calls from being interscheduled with them.
577   unsigned CallResource = TRI->getNumRegs();
578   if (!LiveRegDefs[CallResource])
579     for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
580       if (Node->isMachineOpcode() &&
581           Node->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
582         unsigned NestLevel = 0;
583         unsigned MaxNest = 0;
584         SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
585         assert(N && "Must find call sequence start");
586 
587         SUnit *Def = &SUnits[N->getNodeId()];
588         CallSeqEndForStart[Def] = SU;
589 
590         ++NumLiveRegs;
591         LiveRegDefs[CallResource] = Def;
592         LiveRegGens[CallResource] = SU;
593         break;
594       }
595 }
596 
597 /// Check to see if any of the pending instructions are ready to issue.  If
598 /// so, add them to the available queue.
599 void ScheduleDAGRRList::ReleasePending() {
600   if (DisableSchedCycles) {
601     assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
602     return;
603   }
604 
605   // If the available queue is empty, it is safe to reset MinAvailableCycle.
606   if (AvailableQueue->empty())
607     MinAvailableCycle = std::numeric_limits<unsigned>::max();
608 
609   // Check to see if any of the pending instructions are ready to issue.  If
610   // so, add them to the available queue.
611   for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
612     unsigned ReadyCycle = PendingQueue[i]->getHeight();
613     if (ReadyCycle < MinAvailableCycle)
614       MinAvailableCycle = ReadyCycle;
615 
616     if (PendingQueue[i]->isAvailable) {
617       if (!isReady(PendingQueue[i]))
618           continue;
619       AvailableQueue->push(PendingQueue[i]);
620     }
621     PendingQueue[i]->isPending = false;
622     PendingQueue[i] = PendingQueue.back();
623     PendingQueue.pop_back();
624     --i; --e;
625   }
626 }
627 
628 /// Move the scheduler state forward by the specified number of Cycles.
629 void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
630   if (NextCycle <= CurCycle)
631     return;
632 
633   IssueCount = 0;
634   AvailableQueue->setCurCycle(NextCycle);
635   if (!HazardRec->isEnabled()) {
636     // Bypass lots of virtual calls in case of long latency.
637     CurCycle = NextCycle;
638   }
639   else {
640     for (; CurCycle != NextCycle; ++CurCycle) {
641       HazardRec->RecedeCycle();
642     }
643   }
644   // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
645   // available Q to release pending nodes at least once before popping.
646   ReleasePending();
647 }
648 
649 /// Move the scheduler state forward until the specified node's dependents are
650 /// ready and can be scheduled with no resource conflicts.
651 void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
652   if (DisableSchedCycles)
653     return;
654 
655   // FIXME: Nodes such as CopyFromReg probably should not advance the current
656   // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
657   // has predecessors the cycle will be advanced when they are scheduled.
658   // But given the crude nature of modeling latency though such nodes, we
659   // currently need to treat these nodes like real instructions.
660   // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
661 
662   unsigned ReadyCycle = SU->getHeight();
663 
664   // Bump CurCycle to account for latency. We assume the latency of other
665   // available instructions may be hidden by the stall (not a full pipe stall).
666   // This updates the hazard recognizer's cycle before reserving resources for
667   // this instruction.
668   AdvanceToCycle(ReadyCycle);
669 
670   // Calls are scheduled in their preceding cycle, so don't conflict with
671   // hazards from instructions after the call. EmitNode will reset the
672   // scoreboard state before emitting the call.
673   if (SU->isCall)
674     return;
675 
676   // FIXME: For resource conflicts in very long non-pipelined stages, we
677   // should probably skip ahead here to avoid useless scoreboard checks.
678   int Stalls = 0;
679   while (true) {
680     ScheduleHazardRecognizer::HazardType HT =
681       HazardRec->getHazardType(SU, -Stalls);
682 
683     if (HT == ScheduleHazardRecognizer::NoHazard)
684       break;
685 
686     ++Stalls;
687   }
688   AdvanceToCycle(CurCycle + Stalls);
689 }
690 
691 /// Record this SUnit in the HazardRecognizer.
692 /// Does not update CurCycle.
693 void ScheduleDAGRRList::EmitNode(SUnit *SU) {
694   if (!HazardRec->isEnabled())
695     return;
696 
697   // Check for phys reg copy.
698   if (!SU->getNode())
699     return;
700 
701   switch (SU->getNode()->getOpcode()) {
702   default:
703     assert(SU->getNode()->isMachineOpcode() &&
704            "This target-independent node should not be scheduled.");
705     break;
706   case ISD::MERGE_VALUES:
707   case ISD::TokenFactor:
708   case ISD::LIFETIME_START:
709   case ISD::LIFETIME_END:
710   case ISD::CopyToReg:
711   case ISD::CopyFromReg:
712   case ISD::EH_LABEL:
713     // Noops don't affect the scoreboard state. Copies are likely to be
714     // removed.
715     return;
716   case ISD::INLINEASM:
717   case ISD::INLINEASM_BR:
718     // For inline asm, clear the pipeline state.
719     HazardRec->Reset();
720     return;
721   }
722   if (SU->isCall) {
723     // Calls are scheduled with their preceding instructions. For bottom-up
724     // scheduling, clear the pipeline state before emitting.
725     HazardRec->Reset();
726   }
727 
728   HazardRec->EmitInstruction(SU);
729 }
730 
731 static void resetVRegCycle(SUnit *SU);
732 
733 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
734 /// count of its predecessors. If a predecessor pending count is zero, add it to
735 /// the Available queue.
736 void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
737   LLVM_DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
738   LLVM_DEBUG(dumpNode(*SU));
739 
740 #ifndef NDEBUG
741   if (CurCycle < SU->getHeight())
742     LLVM_DEBUG(dbgs() << "   Height [" << SU->getHeight()
743                       << "] pipeline stall!\n");
744 #endif
745 
746   // FIXME: Do not modify node height. It may interfere with
747   // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
748   // node its ready cycle can aid heuristics, and after scheduling it can
749   // indicate the scheduled cycle.
750   SU->setHeightToAtLeast(CurCycle);
751 
752   // Reserve resources for the scheduled instruction.
753   EmitNode(SU);
754 
755   Sequence.push_back(SU);
756 
757   AvailableQueue->scheduledNode(SU);
758 
759   // If HazardRec is disabled, and each inst counts as one cycle, then
760   // advance CurCycle before ReleasePredecessors to avoid useless pushes to
761   // PendingQueue for schedulers that implement HasReadyFilter.
762   if (!HazardRec->isEnabled() && AvgIPC < 2)
763     AdvanceToCycle(CurCycle + 1);
764 
765   // Update liveness of predecessors before successors to avoid treating a
766   // two-address node as a live range def.
767   ReleasePredecessors(SU);
768 
769   // Release all the implicit physical register defs that are live.
770   for (SDep &Succ : SU->Succs) {
771     // LiveRegDegs[Succ.getReg()] != SU when SU is a two-address node.
772     if (Succ.isAssignedRegDep() && LiveRegDefs[Succ.getReg()] == SU) {
773       assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
774       --NumLiveRegs;
775       LiveRegDefs[Succ.getReg()] = nullptr;
776       LiveRegGens[Succ.getReg()] = nullptr;
777       releaseInterferences(Succ.getReg());
778     }
779   }
780   // Release the special call resource dependence, if this is the beginning
781   // of a call.
782   unsigned CallResource = TRI->getNumRegs();
783   if (LiveRegDefs[CallResource] == SU)
784     for (const SDNode *SUNode = SU->getNode(); SUNode;
785          SUNode = SUNode->getGluedNode()) {
786       if (SUNode->isMachineOpcode() &&
787           SUNode->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
788         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
789         --NumLiveRegs;
790         LiveRegDefs[CallResource] = nullptr;
791         LiveRegGens[CallResource] = nullptr;
792         releaseInterferences(CallResource);
793       }
794     }
795 
796   resetVRegCycle(SU);
797 
798   SU->isScheduled = true;
799 
800   // Conditions under which the scheduler should eagerly advance the cycle:
801   // (1) No available instructions
802   // (2) All pipelines full, so available instructions must have hazards.
803   //
804   // If HazardRec is disabled, the cycle was pre-advanced before calling
805   // ReleasePredecessors. In that case, IssueCount should remain 0.
806   //
807   // Check AvailableQueue after ReleasePredecessors in case of zero latency.
808   if (HazardRec->isEnabled() || AvgIPC > 1) {
809     if (SU->getNode() && SU->getNode()->isMachineOpcode())
810       ++IssueCount;
811     if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
812         || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
813       AdvanceToCycle(CurCycle + 1);
814   }
815 }
816 
817 /// CapturePred - This does the opposite of ReleasePred. Since SU is being
818 /// unscheduled, increase the succ left count of its predecessors. Remove
819 /// them from AvailableQueue if necessary.
820 void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
821   SUnit *PredSU = PredEdge->getSUnit();
822   if (PredSU->isAvailable) {
823     PredSU->isAvailable = false;
824     if (!PredSU->isPending)
825       AvailableQueue->remove(PredSU);
826   }
827 
828   assert(PredSU->NumSuccsLeft < std::numeric_limits<unsigned>::max() &&
829          "NumSuccsLeft will overflow!");
830   ++PredSU->NumSuccsLeft;
831 }
832 
833 /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
834 /// its predecessor states to reflect the change.
835 void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
836   LLVM_DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
837   LLVM_DEBUG(dumpNode(*SU));
838 
839   for (SDep &Pred : SU->Preds) {
840     CapturePred(&Pred);
841     if (Pred.isAssignedRegDep() && SU == LiveRegGens[Pred.getReg()]){
842       assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
843       assert(LiveRegDefs[Pred.getReg()] == Pred.getSUnit() &&
844              "Physical register dependency violated?");
845       --NumLiveRegs;
846       LiveRegDefs[Pred.getReg()] = nullptr;
847       LiveRegGens[Pred.getReg()] = nullptr;
848       releaseInterferences(Pred.getReg());
849     }
850   }
851 
852   // Reclaim the special call resource dependence, if this is the beginning
853   // of a call.
854   unsigned CallResource = TRI->getNumRegs();
855   for (const SDNode *SUNode = SU->getNode(); SUNode;
856        SUNode = SUNode->getGluedNode()) {
857     if (SUNode->isMachineOpcode() &&
858         SUNode->getMachineOpcode() == TII->getCallFrameSetupOpcode()) {
859       SUnit *SeqEnd = CallSeqEndForStart[SU];
860       assert(SeqEnd && "Call sequence start/end must be known");
861       assert(!LiveRegDefs[CallResource]);
862       assert(!LiveRegGens[CallResource]);
863       ++NumLiveRegs;
864       LiveRegDefs[CallResource] = SU;
865       LiveRegGens[CallResource] = SeqEnd;
866     }
867   }
868 
869   // Release the special call resource dependence, if this is the end
870   // of a call.
871   if (LiveRegGens[CallResource] == SU)
872     for (const SDNode *SUNode = SU->getNode(); SUNode;
873          SUNode = SUNode->getGluedNode()) {
874       if (SUNode->isMachineOpcode() &&
875           SUNode->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
876         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
877         assert(LiveRegDefs[CallResource]);
878         assert(LiveRegGens[CallResource]);
879         --NumLiveRegs;
880         LiveRegDefs[CallResource] = nullptr;
881         LiveRegGens[CallResource] = nullptr;
882         releaseInterferences(CallResource);
883       }
884     }
885 
886   for (auto &Succ : SU->Succs) {
887     if (Succ.isAssignedRegDep()) {
888       auto Reg = Succ.getReg();
889       if (!LiveRegDefs[Reg])
890         ++NumLiveRegs;
891       // This becomes the nearest def. Note that an earlier def may still be
892       // pending if this is a two-address node.
893       LiveRegDefs[Reg] = SU;
894 
895       // Update LiveRegGen only if was empty before this unscheduling.
896       // This is to avoid incorrect updating LiveRegGen set in previous run.
897       if (!LiveRegGens[Reg]) {
898         // Find the successor with the lowest height.
899         LiveRegGens[Reg] = Succ.getSUnit();
900         for (auto &Succ2 : SU->Succs) {
901           if (Succ2.isAssignedRegDep() && Succ2.getReg() == Reg &&
902               Succ2.getSUnit()->getHeight() < LiveRegGens[Reg]->getHeight())
903             LiveRegGens[Reg] = Succ2.getSUnit();
904         }
905       }
906     }
907   }
908   if (SU->getHeight() < MinAvailableCycle)
909     MinAvailableCycle = SU->getHeight();
910 
911   SU->setHeightDirty();
912   SU->isScheduled = false;
913   SU->isAvailable = true;
914   if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
915     // Don't make available until backtracking is complete.
916     SU->isPending = true;
917     PendingQueue.push_back(SU);
918   }
919   else {
920     AvailableQueue->push(SU);
921   }
922   AvailableQueue->unscheduledNode(SU);
923 }
924 
925 /// After backtracking, the hazard checker needs to be restored to a state
926 /// corresponding the current cycle.
927 void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
928   HazardRec->Reset();
929 
930   unsigned LookAhead = std::min((unsigned)Sequence.size(),
931                                 HazardRec->getMaxLookAhead());
932   if (LookAhead == 0)
933     return;
934 
935   std::vector<SUnit *>::const_iterator I = (Sequence.end() - LookAhead);
936   unsigned HazardCycle = (*I)->getHeight();
937   for (auto E = Sequence.end(); I != E; ++I) {
938     SUnit *SU = *I;
939     for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
940       HazardRec->RecedeCycle();
941     }
942     EmitNode(SU);
943   }
944 }
945 
946 /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
947 /// BTCycle in order to schedule a specific node.
948 void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
949   SUnit *OldSU = Sequence.back();
950   while (true) {
951     Sequence.pop_back();
952     // FIXME: use ready cycle instead of height
953     CurCycle = OldSU->getHeight();
954     UnscheduleNodeBottomUp(OldSU);
955     AvailableQueue->setCurCycle(CurCycle);
956     if (OldSU == BtSU)
957       break;
958     OldSU = Sequence.back();
959   }
960 
961   assert(!SU->isSucc(OldSU) && "Something is wrong!");
962 
963   RestoreHazardCheckerBottomUp();
964 
965   ReleasePending();
966 
967   ++NumBacktracks;
968 }
969 
970 static bool isOperandOf(const SUnit *SU, SDNode *N) {
971   for (const SDNode *SUNode = SU->getNode(); SUNode;
972        SUNode = SUNode->getGluedNode()) {
973     if (SUNode->isOperandOf(N))
974       return true;
975   }
976   return false;
977 }
978 
979 /// TryUnfold - Attempt to unfold
980 SUnit *ScheduleDAGRRList::TryUnfoldSU(SUnit *SU) {
981   SDNode *N = SU->getNode();
982   // Use while over if to ease fall through.
983   SmallVector<SDNode *, 2> NewNodes;
984   if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
985     return nullptr;
986 
987   // unfolding an x86 DEC64m operation results in store, dec, load which
988   // can't be handled here so quit
989   if (NewNodes.size() == 3)
990     return nullptr;
991 
992   assert(NewNodes.size() == 2 && "Expected a load folding node!");
993 
994   N = NewNodes[1];
995   SDNode *LoadNode = NewNodes[0];
996   unsigned NumVals = N->getNumValues();
997   unsigned OldNumVals = SU->getNode()->getNumValues();
998 
999   // LoadNode may already exist. This can happen when there is another
1000   // load from the same location and producing the same type of value
1001   // but it has different alignment or volatileness.
1002   bool isNewLoad = true;
1003   SUnit *LoadSU;
1004   if (LoadNode->getNodeId() != -1) {
1005     LoadSU = &SUnits[LoadNode->getNodeId()];
1006     // If LoadSU has already been scheduled, we should clone it but
1007     // this would negate the benefit to unfolding so just return SU.
1008     if (LoadSU->isScheduled)
1009       return SU;
1010     isNewLoad = false;
1011   } else {
1012     LoadSU = CreateNewSUnit(LoadNode);
1013     LoadNode->setNodeId(LoadSU->NodeNum);
1014 
1015     InitNumRegDefsLeft(LoadSU);
1016     computeLatency(LoadSU);
1017   }
1018 
1019   bool isNewN = true;
1020   SUnit *NewSU;
1021   // This can only happen when isNewLoad is false.
1022   if (N->getNodeId() != -1) {
1023     NewSU = &SUnits[N->getNodeId()];
1024     // If NewSU has already been scheduled, we need to clone it, but this
1025     // negates the benefit to unfolding so just return SU.
1026     if (NewSU->isScheduled) {
1027       return SU;
1028     }
1029     isNewN = false;
1030   } else {
1031     NewSU = CreateNewSUnit(N);
1032     N->setNodeId(NewSU->NodeNum);
1033 
1034     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1035     for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
1036       if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
1037         NewSU->isTwoAddress = true;
1038         break;
1039       }
1040     }
1041     if (MCID.isCommutable())
1042       NewSU->isCommutable = true;
1043 
1044     InitNumRegDefsLeft(NewSU);
1045     computeLatency(NewSU);
1046   }
1047 
1048   LLVM_DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
1049 
1050   // Now that we are committed to unfolding replace DAG Uses.
1051   for (unsigned i = 0; i != NumVals; ++i)
1052     DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
1053   DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals - 1),
1054                                  SDValue(LoadNode, 1));
1055 
1056   // Record all the edges to and from the old SU, by category.
1057   SmallVector<SDep, 4> ChainPreds;
1058   SmallVector<SDep, 4> ChainSuccs;
1059   SmallVector<SDep, 4> LoadPreds;
1060   SmallVector<SDep, 4> NodePreds;
1061   SmallVector<SDep, 4> NodeSuccs;
1062   for (SDep &Pred : SU->Preds) {
1063     if (Pred.isCtrl())
1064       ChainPreds.push_back(Pred);
1065     else if (isOperandOf(Pred.getSUnit(), LoadNode))
1066       LoadPreds.push_back(Pred);
1067     else
1068       NodePreds.push_back(Pred);
1069   }
1070   for (SDep &Succ : SU->Succs) {
1071     if (Succ.isCtrl())
1072       ChainSuccs.push_back(Succ);
1073     else
1074       NodeSuccs.push_back(Succ);
1075   }
1076 
1077   // Now assign edges to the newly-created nodes.
1078   for (const SDep &Pred : ChainPreds) {
1079     RemovePred(SU, Pred);
1080     if (isNewLoad)
1081       AddPredQueued(LoadSU, Pred);
1082   }
1083   for (const SDep &Pred : LoadPreds) {
1084     RemovePred(SU, Pred);
1085     if (isNewLoad)
1086       AddPredQueued(LoadSU, Pred);
1087   }
1088   for (const SDep &Pred : NodePreds) {
1089     RemovePred(SU, Pred);
1090     AddPredQueued(NewSU, Pred);
1091   }
1092   for (SDep D : NodeSuccs) {
1093     SUnit *SuccDep = D.getSUnit();
1094     D.setSUnit(SU);
1095     RemovePred(SuccDep, D);
1096     D.setSUnit(NewSU);
1097     AddPredQueued(SuccDep, D);
1098     // Balance register pressure.
1099     if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled &&
1100         !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
1101       --NewSU->NumRegDefsLeft;
1102   }
1103   for (SDep D : ChainSuccs) {
1104     SUnit *SuccDep = D.getSUnit();
1105     D.setSUnit(SU);
1106     RemovePred(SuccDep, D);
1107     if (isNewLoad) {
1108       D.setSUnit(LoadSU);
1109       AddPredQueued(SuccDep, D);
1110     }
1111   }
1112 
1113   // Add a data dependency to reflect that NewSU reads the value defined
1114   // by LoadSU.
1115   SDep D(LoadSU, SDep::Data, 0);
1116   D.setLatency(LoadSU->Latency);
1117   AddPredQueued(NewSU, D);
1118 
1119   if (isNewLoad)
1120     AvailableQueue->addNode(LoadSU);
1121   if (isNewN)
1122     AvailableQueue->addNode(NewSU);
1123 
1124   ++NumUnfolds;
1125 
1126   if (NewSU->NumSuccsLeft == 0)
1127     NewSU->isAvailable = true;
1128 
1129   return NewSU;
1130 }
1131 
1132 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
1133 /// successors to the newly created node.
1134 SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
1135   SDNode *N = SU->getNode();
1136   if (!N)
1137     return nullptr;
1138 
1139   LLVM_DEBUG(dbgs() << "Considering duplicating the SU\n");
1140   LLVM_DEBUG(dumpNode(*SU));
1141 
1142   if (N->getGluedNode() &&
1143       !TII->canCopyGluedNodeDuringSchedule(N)) {
1144     LLVM_DEBUG(
1145         dbgs()
1146         << "Giving up because it has incoming glue and the target does not "
1147            "want to copy it\n");
1148     return nullptr;
1149   }
1150 
1151   SUnit *NewSU;
1152   bool TryUnfold = false;
1153   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
1154     MVT VT = N->getSimpleValueType(i);
1155     if (VT == MVT::Glue) {
1156       LLVM_DEBUG(dbgs() << "Giving up because it has outgoing glue\n");
1157       return nullptr;
1158     } else if (VT == MVT::Other)
1159       TryUnfold = true;
1160   }
1161   for (const SDValue &Op : N->op_values()) {
1162     MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
1163     if (VT == MVT::Glue && !TII->canCopyGluedNodeDuringSchedule(N)) {
1164       LLVM_DEBUG(
1165           dbgs() << "Giving up because it one of the operands is glue and "
1166                     "the target does not want to copy it\n");
1167       return nullptr;
1168     }
1169   }
1170 
1171   // If possible unfold instruction.
1172   if (TryUnfold) {
1173     SUnit *UnfoldSU = TryUnfoldSU(SU);
1174     if (!UnfoldSU)
1175       return nullptr;
1176     SU = UnfoldSU;
1177     N = SU->getNode();
1178     // If this can be scheduled don't bother duplicating and just return
1179     if (SU->NumSuccsLeft == 0)
1180       return SU;
1181   }
1182 
1183   LLVM_DEBUG(dbgs() << "    Duplicating SU #" << SU->NodeNum << "\n");
1184   NewSU = CreateClone(SU);
1185 
1186   // New SUnit has the exact same predecessors.
1187   for (SDep &Pred : SU->Preds)
1188     if (!Pred.isArtificial())
1189       AddPredQueued(NewSU, Pred);
1190 
1191   // Make sure the clone comes after the original. (InstrEmitter assumes
1192   // this ordering.)
1193   AddPredQueued(NewSU, SDep(SU, SDep::Artificial));
1194 
1195   // Only copy scheduled successors. Cut them from old node's successor
1196   // list and move them over.
1197   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1198   for (SDep &Succ : SU->Succs) {
1199     if (Succ.isArtificial())
1200       continue;
1201     SUnit *SuccSU = Succ.getSUnit();
1202     if (SuccSU->isScheduled) {
1203       SDep D = Succ;
1204       D.setSUnit(NewSU);
1205       AddPredQueued(SuccSU, D);
1206       D.setSUnit(SU);
1207       DelDeps.push_back(std::make_pair(SuccSU, D));
1208     }
1209   }
1210   for (auto &DelDep : DelDeps)
1211     RemovePred(DelDep.first, DelDep.second);
1212 
1213   AvailableQueue->updateNode(SU);
1214   AvailableQueue->addNode(NewSU);
1215 
1216   ++NumDups;
1217   return NewSU;
1218 }
1219 
1220 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
1221 /// scheduled successors of the given SUnit to the last copy.
1222 void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
1223                                               const TargetRegisterClass *DestRC,
1224                                               const TargetRegisterClass *SrcRC,
1225                                               SmallVectorImpl<SUnit*> &Copies) {
1226   SUnit *CopyFromSU = CreateNewSUnit(nullptr);
1227   CopyFromSU->CopySrcRC = SrcRC;
1228   CopyFromSU->CopyDstRC = DestRC;
1229 
1230   SUnit *CopyToSU = CreateNewSUnit(nullptr);
1231   CopyToSU->CopySrcRC = DestRC;
1232   CopyToSU->CopyDstRC = SrcRC;
1233 
1234   // Only copy scheduled successors. Cut them from old node's successor
1235   // list and move them over.
1236   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1237   for (SDep &Succ : SU->Succs) {
1238     if (Succ.isArtificial())
1239       continue;
1240     SUnit *SuccSU = Succ.getSUnit();
1241     if (SuccSU->isScheduled) {
1242       SDep D = Succ;
1243       D.setSUnit(CopyToSU);
1244       AddPredQueued(SuccSU, D);
1245       DelDeps.push_back(std::make_pair(SuccSU, Succ));
1246     }
1247     else {
1248       // Avoid scheduling the def-side copy before other successors. Otherwise
1249       // we could introduce another physreg interference on the copy and
1250       // continue inserting copies indefinitely.
1251       AddPredQueued(SuccSU, SDep(CopyFromSU, SDep::Artificial));
1252     }
1253   }
1254   for (auto &DelDep : DelDeps)
1255     RemovePred(DelDep.first, DelDep.second);
1256 
1257   SDep FromDep(SU, SDep::Data, Reg);
1258   FromDep.setLatency(SU->Latency);
1259   AddPredQueued(CopyFromSU, FromDep);
1260   SDep ToDep(CopyFromSU, SDep::Data, 0);
1261   ToDep.setLatency(CopyFromSU->Latency);
1262   AddPredQueued(CopyToSU, ToDep);
1263 
1264   AvailableQueue->updateNode(SU);
1265   AvailableQueue->addNode(CopyFromSU);
1266   AvailableQueue->addNode(CopyToSU);
1267   Copies.push_back(CopyFromSU);
1268   Copies.push_back(CopyToSU);
1269 
1270   ++NumPRCopies;
1271 }
1272 
1273 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
1274 /// definition of the specified node.
1275 /// FIXME: Move to SelectionDAG?
1276 static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
1277                                  const TargetInstrInfo *TII) {
1278   unsigned NumRes;
1279   if (N->getOpcode() == ISD::CopyFromReg) {
1280     // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
1281     NumRes = 1;
1282   } else {
1283     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1284     assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
1285     NumRes = MCID.getNumDefs();
1286     for (const MCPhysReg *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
1287       if (Reg == *ImpDef)
1288         break;
1289       ++NumRes;
1290     }
1291   }
1292   return N->getSimpleValueType(NumRes);
1293 }
1294 
1295 /// CheckForLiveRegDef - Return true and update live register vector if the
1296 /// specified register def of the specified SUnit clobbers any "live" registers.
1297 static void CheckForLiveRegDef(SUnit *SU, unsigned Reg, SUnit **LiveRegDefs,
1298                                SmallSet<unsigned, 4> &RegAdded,
1299                                SmallVectorImpl<unsigned> &LRegs,
1300                                const TargetRegisterInfo *TRI,
1301                                const SDNode *Node = nullptr) {
1302   for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) {
1303 
1304     // Check if Ref is live.
1305     if (!LiveRegDefs[*AliasI]) continue;
1306 
1307     // Allow multiple uses of the same def.
1308     if (LiveRegDefs[*AliasI] == SU) continue;
1309 
1310     // Allow multiple uses of same def
1311     if (Node && LiveRegDefs[*AliasI]->getNode() == Node)
1312       continue;
1313 
1314     // Add Reg to the set of interfering live regs.
1315     if (RegAdded.insert(*AliasI).second) {
1316       LRegs.push_back(*AliasI);
1317     }
1318   }
1319 }
1320 
1321 /// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
1322 /// by RegMask, and add them to LRegs.
1323 static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
1324                                      ArrayRef<SUnit*> LiveRegDefs,
1325                                      SmallSet<unsigned, 4> &RegAdded,
1326                                      SmallVectorImpl<unsigned> &LRegs) {
1327   // Look at all live registers. Skip Reg0 and the special CallResource.
1328   for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
1329     if (!LiveRegDefs[i]) continue;
1330     if (LiveRegDefs[i] == SU) continue;
1331     if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
1332     if (RegAdded.insert(i).second)
1333       LRegs.push_back(i);
1334   }
1335 }
1336 
1337 /// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
1338 static const uint32_t *getNodeRegMask(const SDNode *N) {
1339   for (const SDValue &Op : N->op_values())
1340     if (const auto *RegOp = dyn_cast<RegisterMaskSDNode>(Op.getNode()))
1341       return RegOp->getRegMask();
1342   return nullptr;
1343 }
1344 
1345 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
1346 /// scheduling of the given node to satisfy live physical register dependencies.
1347 /// If the specific node is the last one that's available to schedule, do
1348 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
1349 bool ScheduleDAGRRList::
1350 DelayForLiveRegsBottomUp(SUnit *SU, SmallVectorImpl<unsigned> &LRegs) {
1351   if (NumLiveRegs == 0)
1352     return false;
1353 
1354   SmallSet<unsigned, 4> RegAdded;
1355   // If this node would clobber any "live" register, then it's not ready.
1356   //
1357   // If SU is the currently live definition of the same register that it uses,
1358   // then we are free to schedule it.
1359   for (SDep &Pred : SU->Preds) {
1360     if (Pred.isAssignedRegDep() && LiveRegDefs[Pred.getReg()] != SU)
1361       CheckForLiveRegDef(Pred.getSUnit(), Pred.getReg(), LiveRegDefs.get(),
1362                          RegAdded, LRegs, TRI);
1363   }
1364 
1365   for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
1366     if (Node->getOpcode() == ISD::INLINEASM ||
1367         Node->getOpcode() == ISD::INLINEASM_BR) {
1368       // Inline asm can clobber physical defs.
1369       unsigned NumOps = Node->getNumOperands();
1370       if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1371         --NumOps;  // Ignore the glue operand.
1372 
1373       for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1374         unsigned Flags =
1375           cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1376         unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1377 
1378         ++i; // Skip the ID value.
1379         if (InlineAsm::isRegDefKind(Flags) ||
1380             InlineAsm::isRegDefEarlyClobberKind(Flags) ||
1381             InlineAsm::isClobberKind(Flags)) {
1382           // Check for def of register or earlyclobber register.
1383           for (; NumVals; --NumVals, ++i) {
1384             unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1385             if (Register::isPhysicalRegister(Reg))
1386               CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1387           }
1388         } else
1389           i += NumVals;
1390       }
1391       continue;
1392     }
1393 
1394     if (Node->getOpcode() == ISD::CopyToReg) {
1395       Register Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1396       if (Reg.isPhysical()) {
1397         SDNode *SrcNode = Node->getOperand(2).getNode();
1398         CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI,
1399                            SrcNode);
1400       }
1401     }
1402 
1403     if (!Node->isMachineOpcode())
1404       continue;
1405     // If we're in the middle of scheduling a call, don't begin scheduling
1406     // another call. Also, don't allow any physical registers to be live across
1407     // the call.
1408     if (Node->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) {
1409       // Check the special calling-sequence resource.
1410       unsigned CallResource = TRI->getNumRegs();
1411       if (LiveRegDefs[CallResource]) {
1412         SDNode *Gen = LiveRegGens[CallResource]->getNode();
1413         while (SDNode *Glued = Gen->getGluedNode())
1414           Gen = Glued;
1415         if (!IsChainDependent(Gen, Node, 0, TII) &&
1416             RegAdded.insert(CallResource).second)
1417           LRegs.push_back(CallResource);
1418       }
1419     }
1420     if (const uint32_t *RegMask = getNodeRegMask(Node))
1421       CheckForLiveRegDefMasked(SU, RegMask,
1422                                makeArrayRef(LiveRegDefs.get(), TRI->getNumRegs()),
1423                                RegAdded, LRegs);
1424 
1425     const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
1426     if (MCID.hasOptionalDef()) {
1427       // Most ARM instructions have an OptionalDef for CPSR, to model the S-bit.
1428       // This operand can be either a def of CPSR, if the S bit is set; or a use
1429       // of %noreg.  When the OptionalDef is set to a valid register, we need to
1430       // handle it in the same way as an ImplicitDef.
1431       for (unsigned i = 0; i < MCID.getNumDefs(); ++i)
1432         if (MCID.OpInfo[i].isOptionalDef()) {
1433           const SDValue &OptionalDef = Node->getOperand(i - Node->getNumValues());
1434           unsigned Reg = cast<RegisterSDNode>(OptionalDef)->getReg();
1435           CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1436         }
1437     }
1438     if (!MCID.ImplicitDefs)
1439       continue;
1440     for (const MCPhysReg *Reg = MCID.getImplicitDefs(); *Reg; ++Reg)
1441       CheckForLiveRegDef(SU, *Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1442   }
1443 
1444   return !LRegs.empty();
1445 }
1446 
1447 void ScheduleDAGRRList::releaseInterferences(unsigned Reg) {
1448   // Add the nodes that aren't ready back onto the available list.
1449   for (unsigned i = Interferences.size(); i > 0; --i) {
1450     SUnit *SU = Interferences[i-1];
1451     LRegsMapT::iterator LRegsPos = LRegsMap.find(SU);
1452     if (Reg) {
1453       SmallVectorImpl<unsigned> &LRegs = LRegsPos->second;
1454       if (!is_contained(LRegs, Reg))
1455         continue;
1456     }
1457     SU->isPending = false;
1458     // The interfering node may no longer be available due to backtracking.
1459     // Furthermore, it may have been made available again, in which case it is
1460     // now already in the AvailableQueue.
1461     if (SU->isAvailable && !SU->NodeQueueId) {
1462       LLVM_DEBUG(dbgs() << "    Repushing SU #" << SU->NodeNum << '\n');
1463       AvailableQueue->push(SU);
1464     }
1465     if (i < Interferences.size())
1466       Interferences[i-1] = Interferences.back();
1467     Interferences.pop_back();
1468     LRegsMap.erase(LRegsPos);
1469   }
1470 }
1471 
1472 /// Return a node that can be scheduled in this cycle. Requirements:
1473 /// (1) Ready: latency has been satisfied
1474 /// (2) No Hazards: resources are available
1475 /// (3) No Interferences: may unschedule to break register interferences.
1476 SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
1477   SUnit *CurSU = AvailableQueue->empty() ? nullptr : AvailableQueue->pop();
1478   auto FindAvailableNode = [&]() {
1479     while (CurSU) {
1480       SmallVector<unsigned, 4> LRegs;
1481       if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
1482         break;
1483       LLVM_DEBUG(dbgs() << "    Interfering reg ";
1484                  if (LRegs[0] == TRI->getNumRegs()) dbgs() << "CallResource";
1485                  else dbgs() << printReg(LRegs[0], TRI);
1486                  dbgs() << " SU #" << CurSU->NodeNum << '\n');
1487       std::pair<LRegsMapT::iterator, bool> LRegsPair =
1488         LRegsMap.insert(std::make_pair(CurSU, LRegs));
1489       if (LRegsPair.second) {
1490         CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
1491         Interferences.push_back(CurSU);
1492       }
1493       else {
1494         assert(CurSU->isPending && "Interferences are pending");
1495         // Update the interference with current live regs.
1496         LRegsPair.first->second = LRegs;
1497       }
1498       CurSU = AvailableQueue->pop();
1499     }
1500   };
1501   FindAvailableNode();
1502   if (CurSU)
1503     return CurSU;
1504 
1505   // We query the topological order in the loop body, so make sure outstanding
1506   // updates are applied before entering it (we only enter the loop if there
1507   // are some interferences). If we make changes to the ordering, we exit
1508   // the loop.
1509 
1510   // All candidates are delayed due to live physical reg dependencies.
1511   // Try backtracking, code duplication, or inserting cross class copies
1512   // to resolve it.
1513   for (SUnit *TrySU : Interferences) {
1514     SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1515 
1516     // Try unscheduling up to the point where it's safe to schedule
1517     // this node.
1518     SUnit *BtSU = nullptr;
1519     unsigned LiveCycle = std::numeric_limits<unsigned>::max();
1520     for (unsigned Reg : LRegs) {
1521       if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
1522         BtSU = LiveRegGens[Reg];
1523         LiveCycle = BtSU->getHeight();
1524       }
1525     }
1526     if (!WillCreateCycle(TrySU, BtSU))  {
1527       // BacktrackBottomUp mutates Interferences!
1528       BacktrackBottomUp(TrySU, BtSU);
1529 
1530       // Force the current node to be scheduled before the node that
1531       // requires the physical reg dep.
1532       if (BtSU->isAvailable) {
1533         BtSU->isAvailable = false;
1534         if (!BtSU->isPending)
1535           AvailableQueue->remove(BtSU);
1536       }
1537       LLVM_DEBUG(dbgs() << "ARTIFICIAL edge from SU(" << BtSU->NodeNum
1538                         << ") to SU(" << TrySU->NodeNum << ")\n");
1539       AddPredQueued(TrySU, SDep(BtSU, SDep::Artificial));
1540 
1541       // If one or more successors has been unscheduled, then the current
1542       // node is no longer available.
1543       if (!TrySU->isAvailable || !TrySU->NodeQueueId) {
1544         LLVM_DEBUG(dbgs() << "TrySU not available; choosing node from queue\n");
1545         CurSU = AvailableQueue->pop();
1546       } else {
1547         LLVM_DEBUG(dbgs() << "TrySU available\n");
1548         // Available and in AvailableQueue
1549         AvailableQueue->remove(TrySU);
1550         CurSU = TrySU;
1551       }
1552       FindAvailableNode();
1553       // Interferences has been mutated. We must break.
1554       break;
1555     }
1556   }
1557 
1558   if (!CurSU) {
1559     // Can't backtrack. If it's too expensive to copy the value, then try
1560     // duplicate the nodes that produces these "too expensive to copy"
1561     // values to break the dependency. In case even that doesn't work,
1562     // insert cross class copies.
1563     // If it's not too expensive, i.e. cost != -1, issue copies.
1564     SUnit *TrySU = Interferences[0];
1565     SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1566     assert(LRegs.size() == 1 && "Can't handle this yet!");
1567     unsigned Reg = LRegs[0];
1568     SUnit *LRDef = LiveRegDefs[Reg];
1569     MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
1570     const TargetRegisterClass *RC =
1571       TRI->getMinimalPhysRegClass(Reg, VT);
1572     const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1573 
1574     // If cross copy register class is the same as RC, then it must be possible
1575     // copy the value directly. Do not try duplicate the def.
1576     // If cross copy register class is not the same as RC, then it's possible to
1577     // copy the value but it require cross register class copies and it is
1578     // expensive.
1579     // If cross copy register class is null, then it's not possible to copy
1580     // the value at all.
1581     SUnit *NewDef = nullptr;
1582     if (DestRC != RC) {
1583       NewDef = CopyAndMoveSuccessors(LRDef);
1584       if (!DestRC && !NewDef)
1585         report_fatal_error("Can't handle live physical register dependency!");
1586     }
1587     if (!NewDef) {
1588       // Issue copies, these can be expensive cross register class copies.
1589       SmallVector<SUnit*, 2> Copies;
1590       InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1591       LLVM_DEBUG(dbgs() << "    Adding an edge from SU #" << TrySU->NodeNum
1592                         << " to SU #" << Copies.front()->NodeNum << "\n");
1593       AddPredQueued(TrySU, SDep(Copies.front(), SDep::Artificial));
1594       NewDef = Copies.back();
1595     }
1596 
1597     LLVM_DEBUG(dbgs() << "    Adding an edge from SU #" << NewDef->NodeNum
1598                       << " to SU #" << TrySU->NodeNum << "\n");
1599     LiveRegDefs[Reg] = NewDef;
1600     AddPredQueued(NewDef, SDep(TrySU, SDep::Artificial));
1601     TrySU->isAvailable = false;
1602     CurSU = NewDef;
1603   }
1604   assert(CurSU && "Unable to resolve live physical register dependencies!");
1605   return CurSU;
1606 }
1607 
1608 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
1609 /// schedulers.
1610 void ScheduleDAGRRList::ListScheduleBottomUp() {
1611   // Release any predecessors of the special Exit node.
1612   ReleasePredecessors(&ExitSU);
1613 
1614   // Add root to Available queue.
1615   if (!SUnits.empty()) {
1616     SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
1617     assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
1618     RootSU->isAvailable = true;
1619     AvailableQueue->push(RootSU);
1620   }
1621 
1622   // While Available queue is not empty, grab the node with the highest
1623   // priority. If it is not ready put it back.  Schedule the node.
1624   Sequence.reserve(SUnits.size());
1625   while (!AvailableQueue->empty() || !Interferences.empty()) {
1626     LLVM_DEBUG(dbgs() << "\nExamining Available:\n";
1627                AvailableQueue->dump(this));
1628 
1629     // Pick the best node to schedule taking all constraints into
1630     // consideration.
1631     SUnit *SU = PickNodeToScheduleBottomUp();
1632 
1633     AdvancePastStalls(SU);
1634 
1635     ScheduleNodeBottomUp(SU);
1636 
1637     while (AvailableQueue->empty() && !PendingQueue.empty()) {
1638       // Advance the cycle to free resources. Skip ahead to the next ready SU.
1639       assert(MinAvailableCycle < std::numeric_limits<unsigned>::max() &&
1640              "MinAvailableCycle uninitialized");
1641       AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
1642     }
1643   }
1644 
1645   // Reverse the order if it is bottom up.
1646   std::reverse(Sequence.begin(), Sequence.end());
1647 
1648 #ifndef NDEBUG
1649   VerifyScheduledSequence(/*isBottomUp=*/true);
1650 #endif
1651 }
1652 
1653 namespace {
1654 
1655 class RegReductionPQBase;
1656 
1657 struct queue_sort {
1658   bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
1659 };
1660 
1661 #ifndef NDEBUG
1662 template<class SF>
1663 struct reverse_sort : public queue_sort {
1664   SF &SortFunc;
1665 
1666   reverse_sort(SF &sf) : SortFunc(sf) {}
1667 
1668   bool operator()(SUnit* left, SUnit* right) const {
1669     // reverse left/right rather than simply !SortFunc(left, right)
1670     // to expose different paths in the comparison logic.
1671     return SortFunc(right, left);
1672   }
1673 };
1674 #endif // NDEBUG
1675 
1676 /// bu_ls_rr_sort - Priority function for bottom up register pressure
1677 // reduction scheduler.
1678 struct bu_ls_rr_sort : public queue_sort {
1679   enum {
1680     IsBottomUp = true,
1681     HasReadyFilter = false
1682   };
1683 
1684   RegReductionPQBase *SPQ;
1685 
1686   bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1687 
1688   bool operator()(SUnit* left, SUnit* right) const;
1689 };
1690 
1691 // src_ls_rr_sort - Priority function for source order scheduler.
1692 struct src_ls_rr_sort : public queue_sort {
1693   enum {
1694     IsBottomUp = true,
1695     HasReadyFilter = false
1696   };
1697 
1698   RegReductionPQBase *SPQ;
1699 
1700   src_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1701 
1702   bool operator()(SUnit* left, SUnit* right) const;
1703 };
1704 
1705 // hybrid_ls_rr_sort - Priority function for hybrid scheduler.
1706 struct hybrid_ls_rr_sort : public queue_sort {
1707   enum {
1708     IsBottomUp = true,
1709     HasReadyFilter = false
1710   };
1711 
1712   RegReductionPQBase *SPQ;
1713 
1714   hybrid_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1715 
1716   bool isReady(SUnit *SU, unsigned CurCycle) const;
1717 
1718   bool operator()(SUnit* left, SUnit* right) const;
1719 };
1720 
1721 // ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
1722 // scheduler.
1723 struct ilp_ls_rr_sort : public queue_sort {
1724   enum {
1725     IsBottomUp = true,
1726     HasReadyFilter = false
1727   };
1728 
1729   RegReductionPQBase *SPQ;
1730 
1731   ilp_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1732 
1733   bool isReady(SUnit *SU, unsigned CurCycle) const;
1734 
1735   bool operator()(SUnit* left, SUnit* right) const;
1736 };
1737 
1738 class RegReductionPQBase : public SchedulingPriorityQueue {
1739 protected:
1740   std::vector<SUnit *> Queue;
1741   unsigned CurQueueId = 0;
1742   bool TracksRegPressure;
1743   bool SrcOrder;
1744 
1745   // SUnits - The SUnits for the current graph.
1746   std::vector<SUnit> *SUnits;
1747 
1748   MachineFunction &MF;
1749   const TargetInstrInfo *TII;
1750   const TargetRegisterInfo *TRI;
1751   const TargetLowering *TLI;
1752   ScheduleDAGRRList *scheduleDAG = nullptr;
1753 
1754   // SethiUllmanNumbers - The SethiUllman number for each node.
1755   std::vector<unsigned> SethiUllmanNumbers;
1756 
1757   /// RegPressure - Tracking current reg pressure per register class.
1758   std::vector<unsigned> RegPressure;
1759 
1760   /// RegLimit - Tracking the number of allocatable registers per register
1761   /// class.
1762   std::vector<unsigned> RegLimit;
1763 
1764 public:
1765   RegReductionPQBase(MachineFunction &mf,
1766                      bool hasReadyFilter,
1767                      bool tracksrp,
1768                      bool srcorder,
1769                      const TargetInstrInfo *tii,
1770                      const TargetRegisterInfo *tri,
1771                      const TargetLowering *tli)
1772     : SchedulingPriorityQueue(hasReadyFilter), TracksRegPressure(tracksrp),
1773       SrcOrder(srcorder), MF(mf), TII(tii), TRI(tri), TLI(tli) {
1774     if (TracksRegPressure) {
1775       unsigned NumRC = TRI->getNumRegClasses();
1776       RegLimit.resize(NumRC);
1777       RegPressure.resize(NumRC);
1778       std::fill(RegLimit.begin(), RegLimit.end(), 0);
1779       std::fill(RegPressure.begin(), RegPressure.end(), 0);
1780       for (const TargetRegisterClass *RC : TRI->regclasses())
1781         RegLimit[RC->getID()] = tri->getRegPressureLimit(RC, MF);
1782     }
1783   }
1784 
1785   void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1786     scheduleDAG = scheduleDag;
1787   }
1788 
1789   ScheduleHazardRecognizer* getHazardRec() {
1790     return scheduleDAG->getHazardRec();
1791   }
1792 
1793   void initNodes(std::vector<SUnit> &sunits) override;
1794 
1795   void addNode(const SUnit *SU) override;
1796 
1797   void updateNode(const SUnit *SU) override;
1798 
1799   void releaseState() override {
1800     SUnits = nullptr;
1801     SethiUllmanNumbers.clear();
1802     std::fill(RegPressure.begin(), RegPressure.end(), 0);
1803   }
1804 
1805   unsigned getNodePriority(const SUnit *SU) const;
1806 
1807   unsigned getNodeOrdering(const SUnit *SU) const {
1808     if (!SU->getNode()) return 0;
1809 
1810     return SU->getNode()->getIROrder();
1811   }
1812 
1813   bool empty() const override { return Queue.empty(); }
1814 
1815   void push(SUnit *U) override {
1816     assert(!U->NodeQueueId && "Node in the queue already");
1817     U->NodeQueueId = ++CurQueueId;
1818     Queue.push_back(U);
1819   }
1820 
1821   void remove(SUnit *SU) override {
1822     assert(!Queue.empty() && "Queue is empty!");
1823     assert(SU->NodeQueueId != 0 && "Not in queue!");
1824     std::vector<SUnit *>::iterator I = llvm::find(Queue, SU);
1825     if (I != std::prev(Queue.end()))
1826       std::swap(*I, Queue.back());
1827     Queue.pop_back();
1828     SU->NodeQueueId = 0;
1829   }
1830 
1831   bool tracksRegPressure() const override { return TracksRegPressure; }
1832 
1833   void dumpRegPressure() const;
1834 
1835   bool HighRegPressure(const SUnit *SU) const;
1836 
1837   bool MayReduceRegPressure(SUnit *SU) const;
1838 
1839   int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
1840 
1841   void scheduledNode(SUnit *SU) override;
1842 
1843   void unscheduledNode(SUnit *SU) override;
1844 
1845 protected:
1846   bool canClobber(const SUnit *SU, const SUnit *Op);
1847   void AddPseudoTwoAddrDeps();
1848   void PrescheduleNodesWithMultipleUses();
1849   void CalculateSethiUllmanNumbers();
1850 };
1851 
1852 template<class SF>
1853 static SUnit *popFromQueueImpl(std::vector<SUnit *> &Q, SF &Picker) {
1854   unsigned BestIdx = 0;
1855   // Only compute the cost for the first 1000 items in the queue, to avoid
1856   // excessive compile-times for very large queues.
1857   for (unsigned I = 1, E = std::min(Q.size(), (decltype(Q.size()))1000); I != E;
1858        I++)
1859     if (Picker(Q[BestIdx], Q[I]))
1860       BestIdx = I;
1861   SUnit *V = Q[BestIdx];
1862   if (BestIdx + 1 != Q.size())
1863     std::swap(Q[BestIdx], Q.back());
1864   Q.pop_back();
1865   return V;
1866 }
1867 
1868 template<class SF>
1869 SUnit *popFromQueue(std::vector<SUnit *> &Q, SF &Picker, ScheduleDAG *DAG) {
1870 #ifndef NDEBUG
1871   if (DAG->StressSched) {
1872     reverse_sort<SF> RPicker(Picker);
1873     return popFromQueueImpl(Q, RPicker);
1874   }
1875 #endif
1876   (void)DAG;
1877   return popFromQueueImpl(Q, Picker);
1878 }
1879 
1880 //===----------------------------------------------------------------------===//
1881 //                RegReductionPriorityQueue Definition
1882 //===----------------------------------------------------------------------===//
1883 //
1884 // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1885 // to reduce register pressure.
1886 //
1887 template<class SF>
1888 class RegReductionPriorityQueue : public RegReductionPQBase {
1889   SF Picker;
1890 
1891 public:
1892   RegReductionPriorityQueue(MachineFunction &mf,
1893                             bool tracksrp,
1894                             bool srcorder,
1895                             const TargetInstrInfo *tii,
1896                             const TargetRegisterInfo *tri,
1897                             const TargetLowering *tli)
1898     : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
1899                          tii, tri, tli),
1900       Picker(this) {}
1901 
1902   bool isBottomUp() const override { return SF::IsBottomUp; }
1903 
1904   bool isReady(SUnit *U) const override {
1905     return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
1906   }
1907 
1908   SUnit *pop() override {
1909     if (Queue.empty()) return nullptr;
1910 
1911     SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
1912     V->NodeQueueId = 0;
1913     return V;
1914   }
1915 
1916 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1917   LLVM_DUMP_METHOD void dump(ScheduleDAG *DAG) const override {
1918     // Emulate pop() without clobbering NodeQueueIds.
1919     std::vector<SUnit *> DumpQueue = Queue;
1920     SF DumpPicker = Picker;
1921     while (!DumpQueue.empty()) {
1922       SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
1923       dbgs() << "Height " << SU->getHeight() << ": ";
1924       DAG->dumpNode(*SU);
1925     }
1926   }
1927 #endif
1928 };
1929 
1930 using BURegReductionPriorityQueue = RegReductionPriorityQueue<bu_ls_rr_sort>;
1931 using SrcRegReductionPriorityQueue = RegReductionPriorityQueue<src_ls_rr_sort>;
1932 using HybridBURRPriorityQueue = RegReductionPriorityQueue<hybrid_ls_rr_sort>;
1933 using ILPBURRPriorityQueue = RegReductionPriorityQueue<ilp_ls_rr_sort>;
1934 
1935 } // end anonymous namespace
1936 
1937 //===----------------------------------------------------------------------===//
1938 //           Static Node Priority for Register Pressure Reduction
1939 //===----------------------------------------------------------------------===//
1940 
1941 // Check for special nodes that bypass scheduling heuristics.
1942 // Currently this pushes TokenFactor nodes down, but may be used for other
1943 // pseudo-ops as well.
1944 //
1945 // Return -1 to schedule right above left, 1 for left above right.
1946 // Return 0 if no bias exists.
1947 static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
1948   bool LSchedLow = left->isScheduleLow;
1949   bool RSchedLow = right->isScheduleLow;
1950   if (LSchedLow != RSchedLow)
1951     return LSchedLow < RSchedLow ? 1 : -1;
1952   return 0;
1953 }
1954 
1955 /// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
1956 /// Smaller number is the higher priority.
1957 static unsigned
1958 CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1959   if (SUNumbers[SU->NodeNum] != 0)
1960     return SUNumbers[SU->NodeNum];
1961 
1962   // Use WorkList to avoid stack overflow on excessively large IRs.
1963   struct WorkState {
1964     WorkState(const SUnit *SU) : SU(SU) {}
1965     const SUnit *SU;
1966     unsigned PredsProcessed = 0;
1967   };
1968 
1969   SmallVector<WorkState, 16> WorkList;
1970   WorkList.push_back(SU);
1971   while (!WorkList.empty()) {
1972     auto &Temp = WorkList.back();
1973     auto *TempSU = Temp.SU;
1974     bool AllPredsKnown = true;
1975     // Try to find a non-evaluated pred and push it into the processing stack.
1976     for (unsigned P = Temp.PredsProcessed; P < TempSU->Preds.size(); ++P) {
1977       auto &Pred = TempSU->Preds[P];
1978       if (Pred.isCtrl()) continue;  // ignore chain preds
1979       SUnit *PredSU = Pred.getSUnit();
1980       if (SUNumbers[PredSU->NodeNum] == 0) {
1981 #ifndef NDEBUG
1982         // In debug mode, check that we don't have such element in the stack.
1983         for (auto It : WorkList)
1984           assert(It.SU != PredSU && "Trying to push an element twice?");
1985 #endif
1986         // Next time start processing this one starting from the next pred.
1987         Temp.PredsProcessed = P + 1;
1988         WorkList.push_back(PredSU);
1989         AllPredsKnown = false;
1990         break;
1991       }
1992     }
1993 
1994     if (!AllPredsKnown)
1995       continue;
1996 
1997     // Once all preds are known, we can calculate the answer for this one.
1998     unsigned SethiUllmanNumber = 0;
1999     unsigned Extra = 0;
2000     for (const SDep &Pred : TempSU->Preds) {
2001       if (Pred.isCtrl()) continue;  // ignore chain preds
2002       SUnit *PredSU = Pred.getSUnit();
2003       unsigned PredSethiUllman = SUNumbers[PredSU->NodeNum];
2004       assert(PredSethiUllman > 0 && "We should have evaluated this pred!");
2005       if (PredSethiUllman > SethiUllmanNumber) {
2006         SethiUllmanNumber = PredSethiUllman;
2007         Extra = 0;
2008       } else if (PredSethiUllman == SethiUllmanNumber)
2009         ++Extra;
2010     }
2011 
2012     SethiUllmanNumber += Extra;
2013     if (SethiUllmanNumber == 0)
2014       SethiUllmanNumber = 1;
2015     SUNumbers[TempSU->NodeNum] = SethiUllmanNumber;
2016     WorkList.pop_back();
2017   }
2018 
2019   assert(SUNumbers[SU->NodeNum] > 0 && "SethiUllman should never be zero!");
2020   return SUNumbers[SU->NodeNum];
2021 }
2022 
2023 /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
2024 /// scheduling units.
2025 void RegReductionPQBase::CalculateSethiUllmanNumbers() {
2026   SethiUllmanNumbers.assign(SUnits->size(), 0);
2027 
2028   for (const SUnit &SU : *SUnits)
2029     CalcNodeSethiUllmanNumber(&SU, SethiUllmanNumbers);
2030 }
2031 
2032 void RegReductionPQBase::addNode(const SUnit *SU) {
2033   unsigned SUSize = SethiUllmanNumbers.size();
2034   if (SUnits->size() > SUSize)
2035     SethiUllmanNumbers.resize(SUSize*2, 0);
2036   CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
2037 }
2038 
2039 void RegReductionPQBase::updateNode(const SUnit *SU) {
2040   SethiUllmanNumbers[SU->NodeNum] = 0;
2041   CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
2042 }
2043 
2044 // Lower priority means schedule further down. For bottom-up scheduling, lower
2045 // priority SUs are scheduled before higher priority SUs.
2046 unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
2047   assert(SU->NodeNum < SethiUllmanNumbers.size());
2048   unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2049   if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2050     // CopyToReg should be close to its uses to facilitate coalescing and
2051     // avoid spilling.
2052     return 0;
2053   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2054       Opc == TargetOpcode::SUBREG_TO_REG ||
2055       Opc == TargetOpcode::INSERT_SUBREG)
2056     // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2057     // close to their uses to facilitate coalescing.
2058     return 0;
2059   if (SU->NumSuccs == 0 && SU->NumPreds != 0)
2060     // If SU does not have a register use, i.e. it doesn't produce a value
2061     // that would be consumed (e.g. store), then it terminates a chain of
2062     // computation.  Give it a large SethiUllman number so it will be
2063     // scheduled right before its predecessors that it doesn't lengthen
2064     // their live ranges.
2065     return 0xffff;
2066   if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2067     // If SU does not have a register def, schedule it close to its uses
2068     // because it does not lengthen any live ranges.
2069     return 0;
2070 #if 1
2071   return SethiUllmanNumbers[SU->NodeNum];
2072 #else
2073   unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
2074   if (SU->isCallOp) {
2075     // FIXME: This assumes all of the defs are used as call operands.
2076     int NP = (int)Priority - SU->getNode()->getNumValues();
2077     return (NP > 0) ? NP : 0;
2078   }
2079   return Priority;
2080 #endif
2081 }
2082 
2083 //===----------------------------------------------------------------------===//
2084 //                     Register Pressure Tracking
2085 //===----------------------------------------------------------------------===//
2086 
2087 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2088 LLVM_DUMP_METHOD void RegReductionPQBase::dumpRegPressure() const {
2089   for (const TargetRegisterClass *RC : TRI->regclasses()) {
2090     unsigned Id = RC->getID();
2091     unsigned RP = RegPressure[Id];
2092     if (!RP) continue;
2093     LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << ": " << RP << " / "
2094                       << RegLimit[Id] << '\n');
2095   }
2096 }
2097 #endif
2098 
2099 bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
2100   if (!TLI)
2101     return false;
2102 
2103   for (const SDep &Pred : SU->Preds) {
2104     if (Pred.isCtrl())
2105       continue;
2106     SUnit *PredSU = Pred.getSUnit();
2107     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2108     // to cover the number of registers defined (they are all live).
2109     if (PredSU->NumRegDefsLeft == 0) {
2110       continue;
2111     }
2112     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2113          RegDefPos.IsValid(); RegDefPos.Advance()) {
2114       unsigned RCId, Cost;
2115       GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2116 
2117       if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
2118         return true;
2119     }
2120   }
2121   return false;
2122 }
2123 
2124 bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
2125   const SDNode *N = SU->getNode();
2126 
2127   if (!N->isMachineOpcode() || !SU->NumSuccs)
2128     return false;
2129 
2130   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2131   for (unsigned i = 0; i != NumDefs; ++i) {
2132     MVT VT = N->getSimpleValueType(i);
2133     if (!N->hasAnyUseOfValue(i))
2134       continue;
2135     unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2136     if (RegPressure[RCId] >= RegLimit[RCId])
2137       return true;
2138   }
2139   return false;
2140 }
2141 
2142 // Compute the register pressure contribution by this instruction by count up
2143 // for uses that are not live and down for defs. Only count register classes
2144 // that are already under high pressure. As a side effect, compute the number of
2145 // uses of registers that are already live.
2146 //
2147 // FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
2148 // so could probably be factored.
2149 int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
2150   LiveUses = 0;
2151   int PDiff = 0;
2152   for (const SDep &Pred : SU->Preds) {
2153     if (Pred.isCtrl())
2154       continue;
2155     SUnit *PredSU = Pred.getSUnit();
2156     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2157     // to cover the number of registers defined (they are all live).
2158     if (PredSU->NumRegDefsLeft == 0) {
2159       if (PredSU->getNode()->isMachineOpcode())
2160         ++LiveUses;
2161       continue;
2162     }
2163     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2164          RegDefPos.IsValid(); RegDefPos.Advance()) {
2165       MVT VT = RegDefPos.GetValue();
2166       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2167       if (RegPressure[RCId] >= RegLimit[RCId])
2168         ++PDiff;
2169     }
2170   }
2171   const SDNode *N = SU->getNode();
2172 
2173   if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
2174     return PDiff;
2175 
2176   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2177   for (unsigned i = 0; i != NumDefs; ++i) {
2178     MVT VT = N->getSimpleValueType(i);
2179     if (!N->hasAnyUseOfValue(i))
2180       continue;
2181     unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2182     if (RegPressure[RCId] >= RegLimit[RCId])
2183       --PDiff;
2184   }
2185   return PDiff;
2186 }
2187 
2188 void RegReductionPQBase::scheduledNode(SUnit *SU) {
2189   if (!TracksRegPressure)
2190     return;
2191 
2192   if (!SU->getNode())
2193     return;
2194 
2195   for (const SDep &Pred : SU->Preds) {
2196     if (Pred.isCtrl())
2197       continue;
2198     SUnit *PredSU = Pred.getSUnit();
2199     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2200     // to cover the number of registers defined (they are all live).
2201     if (PredSU->NumRegDefsLeft == 0) {
2202       continue;
2203     }
2204     // FIXME: The ScheduleDAG currently loses information about which of a
2205     // node's values is consumed by each dependence. Consequently, if the node
2206     // defines multiple register classes, we don't know which to pressurize
2207     // here. Instead the following loop consumes the register defs in an
2208     // arbitrary order. At least it handles the common case of clustered loads
2209     // to the same class. For precise liveness, each SDep needs to indicate the
2210     // result number. But that tightly couples the ScheduleDAG with the
2211     // SelectionDAG making updates tricky. A simpler hack would be to attach a
2212     // value type or register class to SDep.
2213     //
2214     // The most important aspect of register tracking is balancing the increase
2215     // here with the reduction further below. Note that this SU may use multiple
2216     // defs in PredSU. The can't be determined here, but we've already
2217     // compensated by reducing NumRegDefsLeft in PredSU during
2218     // ScheduleDAGSDNodes::AddSchedEdges.
2219     --PredSU->NumRegDefsLeft;
2220     unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
2221     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2222          RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2223       if (SkipRegDefs)
2224         continue;
2225 
2226       unsigned RCId, Cost;
2227       GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2228       RegPressure[RCId] += Cost;
2229       break;
2230     }
2231   }
2232 
2233   // We should have this assert, but there may be dead SDNodes that never
2234   // materialize as SUnits, so they don't appear to generate liveness.
2235   //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
2236   int SkipRegDefs = (int)SU->NumRegDefsLeft;
2237   for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
2238        RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2239     if (SkipRegDefs > 0)
2240       continue;
2241     unsigned RCId, Cost;
2242     GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2243     if (RegPressure[RCId] < Cost) {
2244       // Register pressure tracking is imprecise. This can happen. But we try
2245       // hard not to let it happen because it likely results in poor scheduling.
2246       LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum
2247                         << ") has too many regdefs\n");
2248       RegPressure[RCId] = 0;
2249     }
2250     else {
2251       RegPressure[RCId] -= Cost;
2252     }
2253   }
2254   LLVM_DEBUG(dumpRegPressure());
2255 }
2256 
2257 void RegReductionPQBase::unscheduledNode(SUnit *SU) {
2258   if (!TracksRegPressure)
2259     return;
2260 
2261   const SDNode *N = SU->getNode();
2262   if (!N) return;
2263 
2264   if (!N->isMachineOpcode()) {
2265     if (N->getOpcode() != ISD::CopyToReg)
2266       return;
2267   } else {
2268     unsigned Opc = N->getMachineOpcode();
2269     if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2270         Opc == TargetOpcode::INSERT_SUBREG ||
2271         Opc == TargetOpcode::SUBREG_TO_REG ||
2272         Opc == TargetOpcode::REG_SEQUENCE ||
2273         Opc == TargetOpcode::IMPLICIT_DEF)
2274       return;
2275   }
2276 
2277   for (const SDep &Pred : SU->Preds) {
2278     if (Pred.isCtrl())
2279       continue;
2280     SUnit *PredSU = Pred.getSUnit();
2281     // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
2282     // counts data deps.
2283     if (PredSU->NumSuccsLeft != PredSU->Succs.size())
2284       continue;
2285     const SDNode *PN = PredSU->getNode();
2286     if (!PN->isMachineOpcode()) {
2287       if (PN->getOpcode() == ISD::CopyFromReg) {
2288         MVT VT = PN->getSimpleValueType(0);
2289         unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2290         RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2291       }
2292       continue;
2293     }
2294     unsigned POpc = PN->getMachineOpcode();
2295     if (POpc == TargetOpcode::IMPLICIT_DEF)
2296       continue;
2297     if (POpc == TargetOpcode::EXTRACT_SUBREG ||
2298         POpc == TargetOpcode::INSERT_SUBREG ||
2299         POpc == TargetOpcode::SUBREG_TO_REG) {
2300       MVT VT = PN->getSimpleValueType(0);
2301       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2302       RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2303       continue;
2304     }
2305     unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
2306     for (unsigned i = 0; i != NumDefs; ++i) {
2307       MVT VT = PN->getSimpleValueType(i);
2308       if (!PN->hasAnyUseOfValue(i))
2309         continue;
2310       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2311       if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
2312         // Register pressure tracking is imprecise. This can happen.
2313         RegPressure[RCId] = 0;
2314       else
2315         RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
2316     }
2317   }
2318 
2319   // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
2320   // may transfer data dependencies to CopyToReg.
2321   if (SU->NumSuccs && N->isMachineOpcode()) {
2322     unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2323     for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2324       MVT VT = N->getSimpleValueType(i);
2325       if (VT == MVT::Glue || VT == MVT::Other)
2326         continue;
2327       if (!N->hasAnyUseOfValue(i))
2328         continue;
2329       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2330       RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2331     }
2332   }
2333 
2334   LLVM_DEBUG(dumpRegPressure());
2335 }
2336 
2337 //===----------------------------------------------------------------------===//
2338 //           Dynamic Node Priority for Register Pressure Reduction
2339 //===----------------------------------------------------------------------===//
2340 
2341 /// closestSucc - Returns the scheduled cycle of the successor which is
2342 /// closest to the current cycle.
2343 static unsigned closestSucc(const SUnit *SU) {
2344   unsigned MaxHeight = 0;
2345   for (const SDep &Succ : SU->Succs) {
2346     if (Succ.isCtrl()) continue;  // ignore chain succs
2347     unsigned Height = Succ.getSUnit()->getHeight();
2348     // If there are bunch of CopyToRegs stacked up, they should be considered
2349     // to be at the same position.
2350     if (Succ.getSUnit()->getNode() &&
2351         Succ.getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
2352       Height = closestSucc(Succ.getSUnit())+1;
2353     if (Height > MaxHeight)
2354       MaxHeight = Height;
2355   }
2356   return MaxHeight;
2357 }
2358 
2359 /// calcMaxScratches - Returns an cost estimate of the worse case requirement
2360 /// for scratch registers, i.e. number of data dependencies.
2361 static unsigned calcMaxScratches(const SUnit *SU) {
2362   unsigned Scratches = 0;
2363   for (const SDep &Pred : SU->Preds) {
2364     if (Pred.isCtrl()) continue;  // ignore chain preds
2365     Scratches++;
2366   }
2367   return Scratches;
2368 }
2369 
2370 /// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
2371 /// CopyFromReg from a virtual register.
2372 static bool hasOnlyLiveInOpers(const SUnit *SU) {
2373   bool RetVal = false;
2374   for (const SDep &Pred : SU->Preds) {
2375     if (Pred.isCtrl()) continue;
2376     const SUnit *PredSU = Pred.getSUnit();
2377     if (PredSU->getNode() &&
2378         PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
2379       unsigned Reg =
2380         cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
2381       if (Register::isVirtualRegister(Reg)) {
2382         RetVal = true;
2383         continue;
2384       }
2385     }
2386     return false;
2387   }
2388   return RetVal;
2389 }
2390 
2391 /// hasOnlyLiveOutUses - Return true if SU has only value successors that are
2392 /// CopyToReg to a virtual register. This SU def is probably a liveout and
2393 /// it has no other use. It should be scheduled closer to the terminator.
2394 static bool hasOnlyLiveOutUses(const SUnit *SU) {
2395   bool RetVal = false;
2396   for (const SDep &Succ : SU->Succs) {
2397     if (Succ.isCtrl()) continue;
2398     const SUnit *SuccSU = Succ.getSUnit();
2399     if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
2400       unsigned Reg =
2401         cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
2402       if (Register::isVirtualRegister(Reg)) {
2403         RetVal = true;
2404         continue;
2405       }
2406     }
2407     return false;
2408   }
2409   return RetVal;
2410 }
2411 
2412 // Set isVRegCycle for a node with only live in opers and live out uses. Also
2413 // set isVRegCycle for its CopyFromReg operands.
2414 //
2415 // This is only relevant for single-block loops, in which case the VRegCycle
2416 // node is likely an induction variable in which the operand and target virtual
2417 // registers should be coalesced (e.g. pre/post increment values). Setting the
2418 // isVRegCycle flag helps the scheduler prioritize other uses of the same
2419 // CopyFromReg so that this node becomes the virtual register "kill". This
2420 // avoids interference between the values live in and out of the block and
2421 // eliminates a copy inside the loop.
2422 static void initVRegCycle(SUnit *SU) {
2423   if (DisableSchedVRegCycle)
2424     return;
2425 
2426   if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
2427     return;
2428 
2429   LLVM_DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
2430 
2431   SU->isVRegCycle = true;
2432 
2433   for (const SDep &Pred : SU->Preds) {
2434     if (Pred.isCtrl()) continue;
2435     Pred.getSUnit()->isVRegCycle = true;
2436   }
2437 }
2438 
2439 // After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
2440 // CopyFromReg operands. We should no longer penalize other uses of this VReg.
2441 static void resetVRegCycle(SUnit *SU) {
2442   if (!SU->isVRegCycle)
2443     return;
2444 
2445   for (const SDep &Pred : SU->Preds) {
2446     if (Pred.isCtrl()) continue;  // ignore chain preds
2447     SUnit *PredSU = Pred.getSUnit();
2448     if (PredSU->isVRegCycle) {
2449       assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
2450              "VRegCycle def must be CopyFromReg");
2451       Pred.getSUnit()->isVRegCycle = false;
2452     }
2453   }
2454 }
2455 
2456 // Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
2457 // means a node that defines the VRegCycle has not been scheduled yet.
2458 static bool hasVRegCycleUse(const SUnit *SU) {
2459   // If this SU also defines the VReg, don't hoist it as a "use".
2460   if (SU->isVRegCycle)
2461     return false;
2462 
2463   for (const SDep &Pred : SU->Preds) {
2464     if (Pred.isCtrl()) continue;  // ignore chain preds
2465     if (Pred.getSUnit()->isVRegCycle &&
2466         Pred.getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
2467       LLVM_DEBUG(dbgs() << "  VReg cycle use: SU (" << SU->NodeNum << ")\n");
2468       return true;
2469     }
2470   }
2471   return false;
2472 }
2473 
2474 // Check for either a dependence (latency) or resource (hazard) stall.
2475 //
2476 // Note: The ScheduleHazardRecognizer interface requires a non-const SU.
2477 static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
2478   if ((int)SPQ->getCurCycle() < Height) return true;
2479   if (SPQ->getHazardRec()->getHazardType(SU, 0)
2480       != ScheduleHazardRecognizer::NoHazard)
2481     return true;
2482   return false;
2483 }
2484 
2485 // Return -1 if left has higher priority, 1 if right has higher priority.
2486 // Return 0 if latency-based priority is equivalent.
2487 static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
2488                             RegReductionPQBase *SPQ) {
2489   // Scheduling an instruction that uses a VReg whose postincrement has not yet
2490   // been scheduled will induce a copy. Model this as an extra cycle of latency.
2491   int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
2492   int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
2493   int LHeight = (int)left->getHeight() + LPenalty;
2494   int RHeight = (int)right->getHeight() + RPenalty;
2495 
2496   bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
2497     BUHasStall(left, LHeight, SPQ);
2498   bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
2499     BUHasStall(right, RHeight, SPQ);
2500 
2501   // If scheduling one of the node will cause a pipeline stall, delay it.
2502   // If scheduling either one of the node will cause a pipeline stall, sort
2503   // them according to their height.
2504   if (LStall) {
2505     if (!RStall)
2506       return 1;
2507     if (LHeight != RHeight)
2508       return LHeight > RHeight ? 1 : -1;
2509   } else if (RStall)
2510     return -1;
2511 
2512   // If either node is scheduling for latency, sort them by height/depth
2513   // and latency.
2514   if (!checkPref || (left->SchedulingPref == Sched::ILP ||
2515                      right->SchedulingPref == Sched::ILP)) {
2516     // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
2517     // is enabled, grouping instructions by cycle, then its height is already
2518     // covered so only its depth matters. We also reach this point if both stall
2519     // but have the same height.
2520     if (!SPQ->getHazardRec()->isEnabled()) {
2521       if (LHeight != RHeight)
2522         return LHeight > RHeight ? 1 : -1;
2523     }
2524     int LDepth = left->getDepth() - LPenalty;
2525     int RDepth = right->getDepth() - RPenalty;
2526     if (LDepth != RDepth) {
2527       LLVM_DEBUG(dbgs() << "  Comparing latency of SU (" << left->NodeNum
2528                         << ") depth " << LDepth << " vs SU (" << right->NodeNum
2529                         << ") depth " << RDepth << "\n");
2530       return LDepth < RDepth ? 1 : -1;
2531     }
2532     if (left->Latency != right->Latency)
2533       return left->Latency > right->Latency ? 1 : -1;
2534   }
2535   return 0;
2536 }
2537 
2538 static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
2539   // Schedule physical register definitions close to their use. This is
2540   // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
2541   // long as shortening physreg live ranges is generally good, we can defer
2542   // creating a subtarget hook.
2543   if (!DisableSchedPhysRegJoin) {
2544     bool LHasPhysReg = left->hasPhysRegDefs;
2545     bool RHasPhysReg = right->hasPhysRegDefs;
2546     if (LHasPhysReg != RHasPhysReg) {
2547       #ifndef NDEBUG
2548       static const char *const PhysRegMsg[] = { " has no physreg",
2549                                                 " defines a physreg" };
2550       #endif
2551       LLVM_DEBUG(dbgs() << "  SU (" << left->NodeNum << ") "
2552                         << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum
2553                         << ") " << PhysRegMsg[RHasPhysReg] << "\n");
2554       return LHasPhysReg < RHasPhysReg;
2555     }
2556   }
2557 
2558   // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
2559   unsigned LPriority = SPQ->getNodePriority(left);
2560   unsigned RPriority = SPQ->getNodePriority(right);
2561 
2562   // Be really careful about hoisting call operands above previous calls.
2563   // Only allows it if it would reduce register pressure.
2564   if (left->isCall && right->isCallOp) {
2565     unsigned RNumVals = right->getNode()->getNumValues();
2566     RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
2567   }
2568   if (right->isCall && left->isCallOp) {
2569     unsigned LNumVals = left->getNode()->getNumValues();
2570     LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
2571   }
2572 
2573   if (LPriority != RPriority)
2574     return LPriority > RPriority;
2575 
2576   // One or both of the nodes are calls and their sethi-ullman numbers are the
2577   // same, then keep source order.
2578   if (left->isCall || right->isCall) {
2579     unsigned LOrder = SPQ->getNodeOrdering(left);
2580     unsigned ROrder = SPQ->getNodeOrdering(right);
2581 
2582     // Prefer an ordering where the lower the non-zero order number, the higher
2583     // the preference.
2584     if ((LOrder || ROrder) && LOrder != ROrder)
2585       return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2586   }
2587 
2588   // Try schedule def + use closer when Sethi-Ullman numbers are the same.
2589   // e.g.
2590   // t1 = op t2, c1
2591   // t3 = op t4, c2
2592   //
2593   // and the following instructions are both ready.
2594   // t2 = op c3
2595   // t4 = op c4
2596   //
2597   // Then schedule t2 = op first.
2598   // i.e.
2599   // t4 = op c4
2600   // t2 = op c3
2601   // t1 = op t2, c1
2602   // t3 = op t4, c2
2603   //
2604   // This creates more short live intervals.
2605   unsigned LDist = closestSucc(left);
2606   unsigned RDist = closestSucc(right);
2607   if (LDist != RDist)
2608     return LDist < RDist;
2609 
2610   // How many registers becomes live when the node is scheduled.
2611   unsigned LScratch = calcMaxScratches(left);
2612   unsigned RScratch = calcMaxScratches(right);
2613   if (LScratch != RScratch)
2614     return LScratch > RScratch;
2615 
2616   // Comparing latency against a call makes little sense unless the node
2617   // is register pressure-neutral.
2618   if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
2619     return (left->NodeQueueId > right->NodeQueueId);
2620 
2621   // Do not compare latencies when one or both of the nodes are calls.
2622   if (!DisableSchedCycles &&
2623       !(left->isCall || right->isCall)) {
2624     int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
2625     if (result != 0)
2626       return result > 0;
2627   }
2628   else {
2629     if (left->getHeight() != right->getHeight())
2630       return left->getHeight() > right->getHeight();
2631 
2632     if (left->getDepth() != right->getDepth())
2633       return left->getDepth() < right->getDepth();
2634   }
2635 
2636   assert(left->NodeQueueId && right->NodeQueueId &&
2637          "NodeQueueId cannot be zero");
2638   return (left->NodeQueueId > right->NodeQueueId);
2639 }
2640 
2641 // Bottom up
2642 bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2643   if (int res = checkSpecialNodes(left, right))
2644     return res > 0;
2645 
2646   return BURRSort(left, right, SPQ);
2647 }
2648 
2649 // Source order, otherwise bottom up.
2650 bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2651   if (int res = checkSpecialNodes(left, right))
2652     return res > 0;
2653 
2654   unsigned LOrder = SPQ->getNodeOrdering(left);
2655   unsigned ROrder = SPQ->getNodeOrdering(right);
2656 
2657   // Prefer an ordering where the lower the non-zero order number, the higher
2658   // the preference.
2659   if ((LOrder || ROrder) && LOrder != ROrder)
2660     return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2661 
2662   return BURRSort(left, right, SPQ);
2663 }
2664 
2665 // If the time between now and when the instruction will be ready can cover
2666 // the spill code, then avoid adding it to the ready queue. This gives long
2667 // stalls highest priority and allows hoisting across calls. It should also
2668 // speed up processing the available queue.
2669 bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2670   static const unsigned ReadyDelay = 3;
2671 
2672   if (SPQ->MayReduceRegPressure(SU)) return true;
2673 
2674   if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
2675 
2676   if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
2677       != ScheduleHazardRecognizer::NoHazard)
2678     return false;
2679 
2680   return true;
2681 }
2682 
2683 // Return true if right should be scheduled with higher priority than left.
2684 bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2685   if (int res = checkSpecialNodes(left, right))
2686     return res > 0;
2687 
2688   if (left->isCall || right->isCall)
2689     // No way to compute latency of calls.
2690     return BURRSort(left, right, SPQ);
2691 
2692   bool LHigh = SPQ->HighRegPressure(left);
2693   bool RHigh = SPQ->HighRegPressure(right);
2694   // Avoid causing spills. If register pressure is high, schedule for
2695   // register pressure reduction.
2696   if (LHigh && !RHigh) {
2697     LLVM_DEBUG(dbgs() << "  pressure SU(" << left->NodeNum << ") > SU("
2698                       << right->NodeNum << ")\n");
2699     return true;
2700   }
2701   else if (!LHigh && RHigh) {
2702     LLVM_DEBUG(dbgs() << "  pressure SU(" << right->NodeNum << ") > SU("
2703                       << left->NodeNum << ")\n");
2704     return false;
2705   }
2706   if (!LHigh && !RHigh) {
2707     int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
2708     if (result != 0)
2709       return result > 0;
2710   }
2711   return BURRSort(left, right, SPQ);
2712 }
2713 
2714 // Schedule as many instructions in each cycle as possible. So don't make an
2715 // instruction available unless it is ready in the current cycle.
2716 bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2717   if (SU->getHeight() > CurCycle) return false;
2718 
2719   if (SPQ->getHazardRec()->getHazardType(SU, 0)
2720       != ScheduleHazardRecognizer::NoHazard)
2721     return false;
2722 
2723   return true;
2724 }
2725 
2726 static bool canEnableCoalescing(SUnit *SU) {
2727   unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2728   if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2729     // CopyToReg should be close to its uses to facilitate coalescing and
2730     // avoid spilling.
2731     return true;
2732 
2733   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2734       Opc == TargetOpcode::SUBREG_TO_REG ||
2735       Opc == TargetOpcode::INSERT_SUBREG)
2736     // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2737     // close to their uses to facilitate coalescing.
2738     return true;
2739 
2740   if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2741     // If SU does not have a register def, schedule it close to its uses
2742     // because it does not lengthen any live ranges.
2743     return true;
2744 
2745   return false;
2746 }
2747 
2748 // list-ilp is currently an experimental scheduler that allows various
2749 // heuristics to be enabled prior to the normal register reduction logic.
2750 bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2751   if (int res = checkSpecialNodes(left, right))
2752     return res > 0;
2753 
2754   if (left->isCall || right->isCall)
2755     // No way to compute latency of calls.
2756     return BURRSort(left, right, SPQ);
2757 
2758   unsigned LLiveUses = 0, RLiveUses = 0;
2759   int LPDiff = 0, RPDiff = 0;
2760   if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
2761     LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
2762     RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
2763   }
2764   if (!DisableSchedRegPressure && LPDiff != RPDiff) {
2765     LLVM_DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum
2766                       << "): " << LPDiff << " != SU(" << right->NodeNum
2767                       << "): " << RPDiff << "\n");
2768     return LPDiff > RPDiff;
2769   }
2770 
2771   if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
2772     bool LReduce = canEnableCoalescing(left);
2773     bool RReduce = canEnableCoalescing(right);
2774     if (LReduce && !RReduce) return false;
2775     if (RReduce && !LReduce) return true;
2776   }
2777 
2778   if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
2779     LLVM_DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
2780                       << " != SU(" << right->NodeNum << "): " << RLiveUses
2781                       << "\n");
2782     return LLiveUses < RLiveUses;
2783   }
2784 
2785   if (!DisableSchedStalls) {
2786     bool LStall = BUHasStall(left, left->getHeight(), SPQ);
2787     bool RStall = BUHasStall(right, right->getHeight(), SPQ);
2788     if (LStall != RStall)
2789       return left->getHeight() > right->getHeight();
2790   }
2791 
2792   if (!DisableSchedCriticalPath) {
2793     int spread = (int)left->getDepth() - (int)right->getDepth();
2794     if (std::abs(spread) > MaxReorderWindow) {
2795       LLVM_DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
2796                         << left->getDepth() << " != SU(" << right->NodeNum
2797                         << "): " << right->getDepth() << "\n");
2798       return left->getDepth() < right->getDepth();
2799     }
2800   }
2801 
2802   if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
2803     int spread = (int)left->getHeight() - (int)right->getHeight();
2804     if (std::abs(spread) > MaxReorderWindow)
2805       return left->getHeight() > right->getHeight();
2806   }
2807 
2808   return BURRSort(left, right, SPQ);
2809 }
2810 
2811 void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
2812   SUnits = &sunits;
2813   // Add pseudo dependency edges for two-address nodes.
2814   if (!Disable2AddrHack)
2815     AddPseudoTwoAddrDeps();
2816   // Reroute edges to nodes with multiple uses.
2817   if (!TracksRegPressure && !SrcOrder)
2818     PrescheduleNodesWithMultipleUses();
2819   // Calculate node priorities.
2820   CalculateSethiUllmanNumbers();
2821 
2822   // For single block loops, mark nodes that look like canonical IV increments.
2823   if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB))
2824     for (SUnit &SU : sunits)
2825       initVRegCycle(&SU);
2826 }
2827 
2828 //===----------------------------------------------------------------------===//
2829 //                    Preschedule for Register Pressure
2830 //===----------------------------------------------------------------------===//
2831 
2832 bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
2833   if (SU->isTwoAddress) {
2834     unsigned Opc = SU->getNode()->getMachineOpcode();
2835     const MCInstrDesc &MCID = TII->get(Opc);
2836     unsigned NumRes = MCID.getNumDefs();
2837     unsigned NumOps = MCID.getNumOperands() - NumRes;
2838     for (unsigned i = 0; i != NumOps; ++i) {
2839       if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
2840         SDNode *DU = SU->getNode()->getOperand(i).getNode();
2841         if (DU->getNodeId() != -1 &&
2842             Op->OrigNode == &(*SUnits)[DU->getNodeId()])
2843           return true;
2844       }
2845     }
2846   }
2847   return false;
2848 }
2849 
2850 /// canClobberReachingPhysRegUse - True if SU would clobber one of it's
2851 /// successor's explicit physregs whose definition can reach DepSU.
2852 /// i.e. DepSU should not be scheduled above SU.
2853 static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
2854                                          ScheduleDAGRRList *scheduleDAG,
2855                                          const TargetInstrInfo *TII,
2856                                          const TargetRegisterInfo *TRI) {
2857   const MCPhysReg *ImpDefs
2858     = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
2859   const uint32_t *RegMask = getNodeRegMask(SU->getNode());
2860   if(!ImpDefs && !RegMask)
2861     return false;
2862 
2863   for (const SDep &Succ : SU->Succs) {
2864     SUnit *SuccSU = Succ.getSUnit();
2865     for (const SDep &SuccPred : SuccSU->Preds) {
2866       if (!SuccPred.isAssignedRegDep())
2867         continue;
2868 
2869       if (RegMask &&
2870           MachineOperand::clobbersPhysReg(RegMask, SuccPred.getReg()) &&
2871           scheduleDAG->IsReachable(DepSU, SuccPred.getSUnit()))
2872         return true;
2873 
2874       if (ImpDefs)
2875         for (const MCPhysReg *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
2876           // Return true if SU clobbers this physical register use and the
2877           // definition of the register reaches from DepSU. IsReachable queries
2878           // a topological forward sort of the DAG (following the successors).
2879           if (TRI->regsOverlap(*ImpDef, SuccPred.getReg()) &&
2880               scheduleDAG->IsReachable(DepSU, SuccPred.getSUnit()))
2881             return true;
2882     }
2883   }
2884   return false;
2885 }
2886 
2887 /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
2888 /// physical register defs.
2889 static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
2890                                   const TargetInstrInfo *TII,
2891                                   const TargetRegisterInfo *TRI) {
2892   SDNode *N = SuccSU->getNode();
2893   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2894   const MCPhysReg *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
2895   assert(ImpDefs && "Caller should check hasPhysRegDefs");
2896   for (const SDNode *SUNode = SU->getNode(); SUNode;
2897        SUNode = SUNode->getGluedNode()) {
2898     if (!SUNode->isMachineOpcode())
2899       continue;
2900     const MCPhysReg *SUImpDefs =
2901       TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
2902     const uint32_t *SURegMask = getNodeRegMask(SUNode);
2903     if (!SUImpDefs && !SURegMask)
2904       continue;
2905     for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2906       MVT VT = N->getSimpleValueType(i);
2907       if (VT == MVT::Glue || VT == MVT::Other)
2908         continue;
2909       if (!N->hasAnyUseOfValue(i))
2910         continue;
2911       unsigned Reg = ImpDefs[i - NumDefs];
2912       if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
2913         return true;
2914       if (!SUImpDefs)
2915         continue;
2916       for (;*SUImpDefs; ++SUImpDefs) {
2917         unsigned SUReg = *SUImpDefs;
2918         if (TRI->regsOverlap(Reg, SUReg))
2919           return true;
2920       }
2921     }
2922   }
2923   return false;
2924 }
2925 
2926 /// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
2927 /// are not handled well by the general register pressure reduction
2928 /// heuristics. When presented with code like this:
2929 ///
2930 ///      N
2931 ///    / |
2932 ///   /  |
2933 ///  U  store
2934 ///  |
2935 /// ...
2936 ///
2937 /// the heuristics tend to push the store up, but since the
2938 /// operand of the store has another use (U), this would increase
2939 /// the length of that other use (the U->N edge).
2940 ///
2941 /// This function transforms code like the above to route U's
2942 /// dependence through the store when possible, like this:
2943 ///
2944 ///      N
2945 ///      ||
2946 ///      ||
2947 ///     store
2948 ///       |
2949 ///       U
2950 ///       |
2951 ///      ...
2952 ///
2953 /// This results in the store being scheduled immediately
2954 /// after N, which shortens the U->N live range, reducing
2955 /// register pressure.
2956 void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
2957   // Visit all the nodes in topological order, working top-down.
2958   for (SUnit &SU : *SUnits) {
2959     // For now, only look at nodes with no data successors, such as stores.
2960     // These are especially important, due to the heuristics in
2961     // getNodePriority for nodes with no data successors.
2962     if (SU.NumSuccs != 0)
2963       continue;
2964     // For now, only look at nodes with exactly one data predecessor.
2965     if (SU.NumPreds != 1)
2966       continue;
2967     // Avoid prescheduling copies to virtual registers, which don't behave
2968     // like other nodes from the perspective of scheduling heuristics.
2969     if (SDNode *N = SU.getNode())
2970       if (N->getOpcode() == ISD::CopyToReg &&
2971           Register::isVirtualRegister(
2972               cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2973         continue;
2974 
2975     SDNode *PredFrameSetup = nullptr;
2976     for (const SDep &Pred : SU.Preds)
2977       if (Pred.isCtrl() && Pred.getSUnit()) {
2978         // Find the predecessor which is not data dependence.
2979         SDNode *PredND = Pred.getSUnit()->getNode();
2980 
2981         // If PredND is FrameSetup, we should not pre-scheduled the node,
2982         // or else, when bottom up scheduling, ADJCALLSTACKDOWN and
2983         // ADJCALLSTACKUP may hold CallResource too long and make other
2984         // calls can't be scheduled. If there's no other available node
2985         // to schedule, the schedular will try to rename the register by
2986         // creating copy to avoid the conflict which will fail because
2987         // CallResource is not a real physical register.
2988         if (PredND && PredND->isMachineOpcode() &&
2989             (PredND->getMachineOpcode() == TII->getCallFrameSetupOpcode())) {
2990           PredFrameSetup = PredND;
2991           break;
2992         }
2993       }
2994     // Skip the node has FrameSetup parent.
2995     if (PredFrameSetup != nullptr)
2996       continue;
2997 
2998     // Locate the single data predecessor.
2999     SUnit *PredSU = nullptr;
3000     for (const SDep &Pred : SU.Preds)
3001       if (!Pred.isCtrl()) {
3002         PredSU = Pred.getSUnit();
3003         break;
3004       }
3005     assert(PredSU);
3006 
3007     // Don't rewrite edges that carry physregs, because that requires additional
3008     // support infrastructure.
3009     if (PredSU->hasPhysRegDefs)
3010       continue;
3011     // Short-circuit the case where SU is PredSU's only data successor.
3012     if (PredSU->NumSuccs == 1)
3013       continue;
3014     // Avoid prescheduling to copies from virtual registers, which don't behave
3015     // like other nodes from the perspective of scheduling heuristics.
3016     if (SDNode *N = SU.getNode())
3017       if (N->getOpcode() == ISD::CopyFromReg &&
3018           Register::isVirtualRegister(
3019               cast<RegisterSDNode>(N->getOperand(1))->getReg()))
3020         continue;
3021 
3022     // Perform checks on the successors of PredSU.
3023     for (const SDep &PredSucc : PredSU->Succs) {
3024       SUnit *PredSuccSU = PredSucc.getSUnit();
3025       if (PredSuccSU == &SU) continue;
3026       // If PredSU has another successor with no data successors, for
3027       // now don't attempt to choose either over the other.
3028       if (PredSuccSU->NumSuccs == 0)
3029         goto outer_loop_continue;
3030       // Don't break physical register dependencies.
3031       if (SU.hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
3032         if (canClobberPhysRegDefs(PredSuccSU, &SU, TII, TRI))
3033           goto outer_loop_continue;
3034       // Don't introduce graph cycles.
3035       if (scheduleDAG->IsReachable(&SU, PredSuccSU))
3036         goto outer_loop_continue;
3037     }
3038 
3039     // Ok, the transformation is safe and the heuristics suggest it is
3040     // profitable. Update the graph.
3041     LLVM_DEBUG(
3042         dbgs() << "    Prescheduling SU #" << SU.NodeNum << " next to PredSU #"
3043                << PredSU->NodeNum
3044                << " to guide scheduling in the presence of multiple uses\n");
3045     for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
3046       SDep Edge = PredSU->Succs[i];
3047       assert(!Edge.isAssignedRegDep());
3048       SUnit *SuccSU = Edge.getSUnit();
3049       if (SuccSU != &SU) {
3050         Edge.setSUnit(PredSU);
3051         scheduleDAG->RemovePred(SuccSU, Edge);
3052         scheduleDAG->AddPredQueued(&SU, Edge);
3053         Edge.setSUnit(&SU);
3054         scheduleDAG->AddPredQueued(SuccSU, Edge);
3055         --i;
3056       }
3057     }
3058   outer_loop_continue:;
3059   }
3060 }
3061 
3062 /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
3063 /// it as a def&use operand. Add a pseudo control edge from it to the other
3064 /// node (if it won't create a cycle) so the two-address one will be scheduled
3065 /// first (lower in the schedule). If both nodes are two-address, favor the
3066 /// one that has a CopyToReg use (more likely to be a loop induction update).
3067 /// If both are two-address, but one is commutable while the other is not
3068 /// commutable, favor the one that's not commutable.
3069 void RegReductionPQBase::AddPseudoTwoAddrDeps() {
3070   for (SUnit &SU : *SUnits) {
3071     if (!SU.isTwoAddress)
3072       continue;
3073 
3074     SDNode *Node = SU.getNode();
3075     if (!Node || !Node->isMachineOpcode() || SU.getNode()->getGluedNode())
3076       continue;
3077 
3078     bool isLiveOut = hasOnlyLiveOutUses(&SU);
3079     unsigned Opc = Node->getMachineOpcode();
3080     const MCInstrDesc &MCID = TII->get(Opc);
3081     unsigned NumRes = MCID.getNumDefs();
3082     unsigned NumOps = MCID.getNumOperands() - NumRes;
3083     for (unsigned j = 0; j != NumOps; ++j) {
3084       if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
3085         continue;
3086       SDNode *DU = SU.getNode()->getOperand(j).getNode();
3087       if (DU->getNodeId() == -1)
3088         continue;
3089       const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
3090       if (!DUSU)
3091         continue;
3092       for (const SDep &Succ : DUSU->Succs) {
3093         if (Succ.isCtrl())
3094           continue;
3095         SUnit *SuccSU = Succ.getSUnit();
3096         if (SuccSU == &SU)
3097           continue;
3098         // Be conservative. Ignore if nodes aren't at roughly the same
3099         // depth and height.
3100         if (SuccSU->getHeight() < SU.getHeight() &&
3101             (SU.getHeight() - SuccSU->getHeight()) > 1)
3102           continue;
3103         // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
3104         // constrains whatever is using the copy, instead of the copy
3105         // itself. In the case that the copy is coalesced, this
3106         // preserves the intent of the pseudo two-address heurietics.
3107         while (SuccSU->Succs.size() == 1 &&
3108                SuccSU->getNode()->isMachineOpcode() &&
3109                SuccSU->getNode()->getMachineOpcode() ==
3110                  TargetOpcode::COPY_TO_REGCLASS)
3111           SuccSU = SuccSU->Succs.front().getSUnit();
3112         // Don't constrain non-instruction nodes.
3113         if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
3114           continue;
3115         // Don't constrain nodes with physical register defs if the
3116         // predecessor can clobber them.
3117         if (SuccSU->hasPhysRegDefs && SU.hasPhysRegClobbers) {
3118           if (canClobberPhysRegDefs(SuccSU, &SU, TII, TRI))
3119             continue;
3120         }
3121         // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
3122         // these may be coalesced away. We want them close to their uses.
3123         unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
3124         if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
3125             SuccOpc == TargetOpcode::INSERT_SUBREG ||
3126             SuccOpc == TargetOpcode::SUBREG_TO_REG)
3127           continue;
3128         if (!canClobberReachingPhysRegUse(SuccSU, &SU, scheduleDAG, TII, TRI) &&
3129             (!canClobber(SuccSU, DUSU) ||
3130              (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
3131              (!SU.isCommutable && SuccSU->isCommutable)) &&
3132             !scheduleDAG->IsReachable(SuccSU, &SU)) {
3133           LLVM_DEBUG(dbgs()
3134                      << "    Adding a pseudo-two-addr edge from SU #"
3135                      << SU.NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
3136           scheduleDAG->AddPredQueued(&SU, SDep(SuccSU, SDep::Artificial));
3137         }
3138       }
3139     }
3140   }
3141 }
3142 
3143 //===----------------------------------------------------------------------===//
3144 //                         Public Constructor Functions
3145 //===----------------------------------------------------------------------===//
3146 
3147 ScheduleDAGSDNodes *
3148 llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
3149                                  CodeGenOpt::Level OptLevel) {
3150   const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3151   const TargetInstrInfo *TII = STI.getInstrInfo();
3152   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3153 
3154   BURegReductionPriorityQueue *PQ =
3155     new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, nullptr);
3156   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
3157   PQ->setScheduleDAG(SD);
3158   return SD;
3159 }
3160 
3161 ScheduleDAGSDNodes *
3162 llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
3163                                    CodeGenOpt::Level OptLevel) {
3164   const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3165   const TargetInstrInfo *TII = STI.getInstrInfo();
3166   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3167 
3168   SrcRegReductionPriorityQueue *PQ =
3169     new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, nullptr);
3170   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
3171   PQ->setScheduleDAG(SD);
3172   return SD;
3173 }
3174 
3175 ScheduleDAGSDNodes *
3176 llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
3177                                    CodeGenOpt::Level OptLevel) {
3178   const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3179   const TargetInstrInfo *TII = STI.getInstrInfo();
3180   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3181   const TargetLowering *TLI = IS->TLI;
3182 
3183   HybridBURRPriorityQueue *PQ =
3184     new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3185 
3186   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3187   PQ->setScheduleDAG(SD);
3188   return SD;
3189 }
3190 
3191 ScheduleDAGSDNodes *
3192 llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
3193                                 CodeGenOpt::Level OptLevel) {
3194   const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3195   const TargetInstrInfo *TII = STI.getInstrInfo();
3196   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3197   const TargetLowering *TLI = IS->TLI;
3198 
3199   ILPBURRPriorityQueue *PQ =
3200     new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3201   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3202   PQ->setScheduleDAG(SD);
3203   return SD;
3204 }
3205