1 //===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements a fast scheduler. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstrEmitter.h" 14 #include "ScheduleDAGSDNodes.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/SchedulerRegistry.h" 20 #include "llvm/CodeGen/SelectionDAGISel.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/raw_ostream.h" 28 using namespace llvm; 29 30 #define DEBUG_TYPE "pre-RA-sched" 31 32 STATISTIC(NumUnfolds, "Number of nodes unfolded"); 33 STATISTIC(NumDups, "Number of duplicated nodes"); 34 STATISTIC(NumPRCopies, "Number of physical copies"); 35 36 static RegisterScheduler 37 fastDAGScheduler("fast", "Fast suboptimal list scheduling", 38 createFastDAGScheduler); 39 static RegisterScheduler 40 linearizeDAGScheduler("linearize", "Linearize DAG, no scheduling", 41 createDAGLinearizer); 42 43 44 namespace { 45 /// FastPriorityQueue - A degenerate priority queue that considers 46 /// all nodes to have the same priority. 47 /// 48 struct FastPriorityQueue { 49 SmallVector<SUnit *, 16> Queue; 50 51 bool empty() const { return Queue.empty(); } 52 53 void push(SUnit *U) { 54 Queue.push_back(U); 55 } 56 57 SUnit *pop() { 58 if (empty()) return nullptr; 59 return Queue.pop_back_val(); 60 } 61 }; 62 63 //===----------------------------------------------------------------------===// 64 /// ScheduleDAGFast - The actual "fast" list scheduler implementation. 65 /// 66 class ScheduleDAGFast : public ScheduleDAGSDNodes { 67 private: 68 /// AvailableQueue - The priority queue to use for the available SUnits. 69 FastPriorityQueue AvailableQueue; 70 71 /// LiveRegDefs - A set of physical registers and their definition 72 /// that are "live". These nodes must be scheduled before any other nodes that 73 /// modifies the registers can be scheduled. 74 unsigned NumLiveRegs; 75 std::vector<SUnit*> LiveRegDefs; 76 std::vector<unsigned> LiveRegCycles; 77 78 public: 79 ScheduleDAGFast(MachineFunction &mf) 80 : ScheduleDAGSDNodes(mf) {} 81 82 void Schedule() override; 83 84 /// AddPred - adds a predecessor edge to SUnit SU. 85 /// This returns true if this is a new predecessor. 86 void AddPred(SUnit *SU, const SDep &D) { 87 SU->addPred(D); 88 } 89 90 /// RemovePred - removes a predecessor edge from SUnit SU. 91 /// This returns true if an edge was removed. 92 void RemovePred(SUnit *SU, const SDep &D) { 93 SU->removePred(D); 94 } 95 96 private: 97 void ReleasePred(SUnit *SU, SDep *PredEdge); 98 void ReleasePredecessors(SUnit *SU, unsigned CurCycle); 99 void ScheduleNodeBottomUp(SUnit*, unsigned); 100 SUnit *CopyAndMoveSuccessors(SUnit*); 101 void InsertCopiesAndMoveSuccs(SUnit*, unsigned, 102 const TargetRegisterClass*, 103 const TargetRegisterClass*, 104 SmallVectorImpl<SUnit*>&); 105 bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&); 106 void ListScheduleBottomUp(); 107 108 /// forceUnitLatencies - The fast scheduler doesn't care about real latencies. 109 bool forceUnitLatencies() const override { return true; } 110 }; 111 } // end anonymous namespace 112 113 114 /// Schedule - Schedule the DAG using list scheduling. 115 void ScheduleDAGFast::Schedule() { 116 LLVM_DEBUG(dbgs() << "********** List Scheduling **********\n"); 117 118 NumLiveRegs = 0; 119 LiveRegDefs.resize(TRI->getNumRegs(), nullptr); 120 LiveRegCycles.resize(TRI->getNumRegs(), 0); 121 122 // Build the scheduling graph. 123 BuildSchedGraph(nullptr); 124 125 LLVM_DEBUG(dump()); 126 127 // Execute the actual scheduling loop. 128 ListScheduleBottomUp(); 129 } 130 131 //===----------------------------------------------------------------------===// 132 // Bottom-Up Scheduling 133 //===----------------------------------------------------------------------===// 134 135 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to 136 /// the AvailableQueue if the count reaches zero. Also update its cycle bound. 137 void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) { 138 SUnit *PredSU = PredEdge->getSUnit(); 139 140 #ifndef NDEBUG 141 if (PredSU->NumSuccsLeft == 0) { 142 dbgs() << "*** Scheduling failed! ***\n"; 143 dumpNode(*PredSU); 144 dbgs() << " has been released too many times!\n"; 145 llvm_unreachable(nullptr); 146 } 147 #endif 148 --PredSU->NumSuccsLeft; 149 150 // If all the node's successors are scheduled, this node is ready 151 // to be scheduled. Ignore the special EntrySU node. 152 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) { 153 PredSU->isAvailable = true; 154 AvailableQueue.push(PredSU); 155 } 156 } 157 158 void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) { 159 // Bottom up: release predecessors 160 for (SDep &Pred : SU->Preds) { 161 ReleasePred(SU, &Pred); 162 if (Pred.isAssignedRegDep()) { 163 // This is a physical register dependency and it's impossible or 164 // expensive to copy the register. Make sure nothing that can 165 // clobber the register is scheduled between the predecessor and 166 // this node. 167 if (!LiveRegDefs[Pred.getReg()]) { 168 ++NumLiveRegs; 169 LiveRegDefs[Pred.getReg()] = Pred.getSUnit(); 170 LiveRegCycles[Pred.getReg()] = CurCycle; 171 } 172 } 173 } 174 } 175 176 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending 177 /// count of its predecessors. If a predecessor pending count is zero, add it to 178 /// the Available queue. 179 void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) { 180 LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: "); 181 LLVM_DEBUG(dumpNode(*SU)); 182 183 assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!"); 184 SU->setHeightToAtLeast(CurCycle); 185 Sequence.push_back(SU); 186 187 ReleasePredecessors(SU, CurCycle); 188 189 // Release all the implicit physical register defs that are live. 190 for (SDep &Succ : SU->Succs) { 191 if (Succ.isAssignedRegDep()) { 192 if (LiveRegCycles[Succ.getReg()] == Succ.getSUnit()->getHeight()) { 193 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!"); 194 assert(LiveRegDefs[Succ.getReg()] == SU && 195 "Physical register dependency violated?"); 196 --NumLiveRegs; 197 LiveRegDefs[Succ.getReg()] = nullptr; 198 LiveRegCycles[Succ.getReg()] = 0; 199 } 200 } 201 } 202 203 SU->isScheduled = true; 204 } 205 206 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled 207 /// successors to the newly created node. 208 SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) { 209 if (SU->getNode()->getGluedNode()) 210 return nullptr; 211 212 SDNode *N = SU->getNode(); 213 if (!N) 214 return nullptr; 215 216 SUnit *NewSU; 217 bool TryUnfold = false; 218 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { 219 MVT VT = N->getSimpleValueType(i); 220 if (VT == MVT::Glue) 221 return nullptr; 222 else if (VT == MVT::Other) 223 TryUnfold = true; 224 } 225 for (const SDValue &Op : N->op_values()) { 226 MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo()); 227 if (VT == MVT::Glue) 228 return nullptr; 229 } 230 231 if (TryUnfold) { 232 SmallVector<SDNode*, 2> NewNodes; 233 if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes)) 234 return nullptr; 235 236 LLVM_DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n"); 237 assert(NewNodes.size() == 2 && "Expected a load folding node!"); 238 239 N = NewNodes[1]; 240 SDNode *LoadNode = NewNodes[0]; 241 unsigned NumVals = N->getNumValues(); 242 unsigned OldNumVals = SU->getNode()->getNumValues(); 243 for (unsigned i = 0; i != NumVals; ++i) 244 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i)); 245 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1), 246 SDValue(LoadNode, 1)); 247 248 SUnit *NewSU = newSUnit(N); 249 assert(N->getNodeId() == -1 && "Node already inserted!"); 250 N->setNodeId(NewSU->NodeNum); 251 252 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 253 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) { 254 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) { 255 NewSU->isTwoAddress = true; 256 break; 257 } 258 } 259 if (MCID.isCommutable()) 260 NewSU->isCommutable = true; 261 262 // LoadNode may already exist. This can happen when there is another 263 // load from the same location and producing the same type of value 264 // but it has different alignment or volatileness. 265 bool isNewLoad = true; 266 SUnit *LoadSU; 267 if (LoadNode->getNodeId() != -1) { 268 LoadSU = &SUnits[LoadNode->getNodeId()]; 269 isNewLoad = false; 270 } else { 271 LoadSU = newSUnit(LoadNode); 272 LoadNode->setNodeId(LoadSU->NodeNum); 273 } 274 275 SDep ChainPred; 276 SmallVector<SDep, 4> ChainSuccs; 277 SmallVector<SDep, 4> LoadPreds; 278 SmallVector<SDep, 4> NodePreds; 279 SmallVector<SDep, 4> NodeSuccs; 280 for (SDep &Pred : SU->Preds) { 281 if (Pred.isCtrl()) 282 ChainPred = Pred; 283 else if (Pred.getSUnit()->getNode() && 284 Pred.getSUnit()->getNode()->isOperandOf(LoadNode)) 285 LoadPreds.push_back(Pred); 286 else 287 NodePreds.push_back(Pred); 288 } 289 for (SDep &Succ : SU->Succs) { 290 if (Succ.isCtrl()) 291 ChainSuccs.push_back(Succ); 292 else 293 NodeSuccs.push_back(Succ); 294 } 295 296 if (ChainPred.getSUnit()) { 297 RemovePred(SU, ChainPred); 298 if (isNewLoad) 299 AddPred(LoadSU, ChainPred); 300 } 301 for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) { 302 const SDep &Pred = LoadPreds[i]; 303 RemovePred(SU, Pred); 304 if (isNewLoad) { 305 AddPred(LoadSU, Pred); 306 } 307 } 308 for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) { 309 const SDep &Pred = NodePreds[i]; 310 RemovePred(SU, Pred); 311 AddPred(NewSU, Pred); 312 } 313 for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) { 314 SDep D = NodeSuccs[i]; 315 SUnit *SuccDep = D.getSUnit(); 316 D.setSUnit(SU); 317 RemovePred(SuccDep, D); 318 D.setSUnit(NewSU); 319 AddPred(SuccDep, D); 320 } 321 for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) { 322 SDep D = ChainSuccs[i]; 323 SUnit *SuccDep = D.getSUnit(); 324 D.setSUnit(SU); 325 RemovePred(SuccDep, D); 326 if (isNewLoad) { 327 D.setSUnit(LoadSU); 328 AddPred(SuccDep, D); 329 } 330 } 331 if (isNewLoad) { 332 SDep D(LoadSU, SDep::Barrier); 333 D.setLatency(LoadSU->Latency); 334 AddPred(NewSU, D); 335 } 336 337 ++NumUnfolds; 338 339 if (NewSU->NumSuccsLeft == 0) { 340 NewSU->isAvailable = true; 341 return NewSU; 342 } 343 SU = NewSU; 344 } 345 346 LLVM_DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n"); 347 NewSU = Clone(SU); 348 349 // New SUnit has the exact same predecessors. 350 for (SDep &Pred : SU->Preds) 351 if (!Pred.isArtificial()) 352 AddPred(NewSU, Pred); 353 354 // Only copy scheduled successors. Cut them from old node's successor 355 // list and move them over. 356 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps; 357 for (SDep &Succ : SU->Succs) { 358 if (Succ.isArtificial()) 359 continue; 360 SUnit *SuccSU = Succ.getSUnit(); 361 if (SuccSU->isScheduled) { 362 SDep D = Succ; 363 D.setSUnit(NewSU); 364 AddPred(SuccSU, D); 365 D.setSUnit(SU); 366 DelDeps.push_back(std::make_pair(SuccSU, D)); 367 } 368 } 369 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) 370 RemovePred(DelDeps[i].first, DelDeps[i].second); 371 372 ++NumDups; 373 return NewSU; 374 } 375 376 /// InsertCopiesAndMoveSuccs - Insert register copies and move all 377 /// scheduled successors of the given SUnit to the last copy. 378 void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg, 379 const TargetRegisterClass *DestRC, 380 const TargetRegisterClass *SrcRC, 381 SmallVectorImpl<SUnit*> &Copies) { 382 SUnit *CopyFromSU = newSUnit(static_cast<SDNode *>(nullptr)); 383 CopyFromSU->CopySrcRC = SrcRC; 384 CopyFromSU->CopyDstRC = DestRC; 385 386 SUnit *CopyToSU = newSUnit(static_cast<SDNode *>(nullptr)); 387 CopyToSU->CopySrcRC = DestRC; 388 CopyToSU->CopyDstRC = SrcRC; 389 390 // Only copy scheduled successors. Cut them from old node's successor 391 // list and move them over. 392 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps; 393 for (SDep &Succ : SU->Succs) { 394 if (Succ.isArtificial()) 395 continue; 396 SUnit *SuccSU = Succ.getSUnit(); 397 if (SuccSU->isScheduled) { 398 SDep D = Succ; 399 D.setSUnit(CopyToSU); 400 AddPred(SuccSU, D); 401 DelDeps.push_back(std::make_pair(SuccSU, Succ)); 402 } 403 } 404 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) { 405 RemovePred(DelDeps[i].first, DelDeps[i].second); 406 } 407 SDep FromDep(SU, SDep::Data, Reg); 408 FromDep.setLatency(SU->Latency); 409 AddPred(CopyFromSU, FromDep); 410 SDep ToDep(CopyFromSU, SDep::Data, 0); 411 ToDep.setLatency(CopyFromSU->Latency); 412 AddPred(CopyToSU, ToDep); 413 414 Copies.push_back(CopyFromSU); 415 Copies.push_back(CopyToSU); 416 417 ++NumPRCopies; 418 } 419 420 /// getPhysicalRegisterVT - Returns the ValueType of the physical register 421 /// definition of the specified node. 422 /// FIXME: Move to SelectionDAG? 423 static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg, 424 const TargetInstrInfo *TII) { 425 unsigned NumRes; 426 if (N->getOpcode() == ISD::CopyFromReg) { 427 // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type. 428 NumRes = 1; 429 } else { 430 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 431 assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!"); 432 NumRes = MCID.getNumDefs(); 433 for (const MCPhysReg *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) { 434 if (Reg == *ImpDef) 435 break; 436 ++NumRes; 437 } 438 } 439 return N->getSimpleValueType(NumRes); 440 } 441 442 /// CheckForLiveRegDef - Return true and update live register vector if the 443 /// specified register def of the specified SUnit clobbers any "live" registers. 444 static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg, 445 std::vector<SUnit*> &LiveRegDefs, 446 SmallSet<unsigned, 4> &RegAdded, 447 SmallVectorImpl<unsigned> &LRegs, 448 const TargetRegisterInfo *TRI) { 449 bool Added = false; 450 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 451 if (LiveRegDefs[*AI] && LiveRegDefs[*AI] != SU) { 452 if (RegAdded.insert(*AI).second) { 453 LRegs.push_back(*AI); 454 Added = true; 455 } 456 } 457 } 458 return Added; 459 } 460 461 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay 462 /// scheduling of the given node to satisfy live physical register dependencies. 463 /// If the specific node is the last one that's available to schedule, do 464 /// whatever is necessary (i.e. backtracking or cloning) to make it possible. 465 bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU, 466 SmallVectorImpl<unsigned> &LRegs){ 467 if (NumLiveRegs == 0) 468 return false; 469 470 SmallSet<unsigned, 4> RegAdded; 471 // If this node would clobber any "live" register, then it's not ready. 472 for (SDep &Pred : SU->Preds) { 473 if (Pred.isAssignedRegDep()) { 474 CheckForLiveRegDef(Pred.getSUnit(), Pred.getReg(), LiveRegDefs, 475 RegAdded, LRegs, TRI); 476 } 477 } 478 479 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) { 480 if (Node->getOpcode() == ISD::INLINEASM || 481 Node->getOpcode() == ISD::INLINEASM_BR) { 482 // Inline asm can clobber physical defs. 483 unsigned NumOps = Node->getNumOperands(); 484 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue) 485 --NumOps; // Ignore the glue operand. 486 487 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 488 unsigned Flags = 489 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue(); 490 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 491 492 ++i; // Skip the ID value. 493 if (InlineAsm::isRegDefKind(Flags) || 494 InlineAsm::isRegDefEarlyClobberKind(Flags) || 495 InlineAsm::isClobberKind(Flags)) { 496 // Check for def of register or earlyclobber register. 497 for (; NumVals; --NumVals, ++i) { 498 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 499 if (Register::isPhysicalRegister(Reg)) 500 CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI); 501 } 502 } else 503 i += NumVals; 504 } 505 continue; 506 } 507 if (!Node->isMachineOpcode()) 508 continue; 509 const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode()); 510 if (!MCID.ImplicitDefs) 511 continue; 512 for (const MCPhysReg *Reg = MCID.getImplicitDefs(); *Reg; ++Reg) { 513 CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI); 514 } 515 } 516 return !LRegs.empty(); 517 } 518 519 520 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up 521 /// schedulers. 522 void ScheduleDAGFast::ListScheduleBottomUp() { 523 unsigned CurCycle = 0; 524 525 // Release any predecessors of the special Exit node. 526 ReleasePredecessors(&ExitSU, CurCycle); 527 528 // Add root to Available queue. 529 if (!SUnits.empty()) { 530 SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()]; 531 assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!"); 532 RootSU->isAvailable = true; 533 AvailableQueue.push(RootSU); 534 } 535 536 // While Available queue is not empty, grab the node with the highest 537 // priority. If it is not ready put it back. Schedule the node. 538 SmallVector<SUnit*, 4> NotReady; 539 DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap; 540 Sequence.reserve(SUnits.size()); 541 while (!AvailableQueue.empty()) { 542 bool Delayed = false; 543 LRegsMap.clear(); 544 SUnit *CurSU = AvailableQueue.pop(); 545 while (CurSU) { 546 SmallVector<unsigned, 4> LRegs; 547 if (!DelayForLiveRegsBottomUp(CurSU, LRegs)) 548 break; 549 Delayed = true; 550 LRegsMap.insert(std::make_pair(CurSU, LRegs)); 551 552 CurSU->isPending = true; // This SU is not in AvailableQueue right now. 553 NotReady.push_back(CurSU); 554 CurSU = AvailableQueue.pop(); 555 } 556 557 // All candidates are delayed due to live physical reg dependencies. 558 // Try code duplication or inserting cross class copies 559 // to resolve it. 560 if (Delayed && !CurSU) { 561 if (!CurSU) { 562 // Try duplicating the nodes that produces these 563 // "expensive to copy" values to break the dependency. In case even 564 // that doesn't work, insert cross class copies. 565 SUnit *TrySU = NotReady[0]; 566 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU]; 567 assert(LRegs.size() == 1 && "Can't handle this yet!"); 568 unsigned Reg = LRegs[0]; 569 SUnit *LRDef = LiveRegDefs[Reg]; 570 MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII); 571 const TargetRegisterClass *RC = 572 TRI->getMinimalPhysRegClass(Reg, VT); 573 const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC); 574 575 // If cross copy register class is the same as RC, then it must be 576 // possible copy the value directly. Do not try duplicate the def. 577 // If cross copy register class is not the same as RC, then it's 578 // possible to copy the value but it require cross register class copies 579 // and it is expensive. 580 // If cross copy register class is null, then it's not possible to copy 581 // the value at all. 582 SUnit *NewDef = nullptr; 583 if (DestRC != RC) { 584 NewDef = CopyAndMoveSuccessors(LRDef); 585 if (!DestRC && !NewDef) 586 report_fatal_error("Can't handle live physical " 587 "register dependency!"); 588 } 589 if (!NewDef) { 590 // Issue copies, these can be expensive cross register class copies. 591 SmallVector<SUnit*, 2> Copies; 592 InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies); 593 LLVM_DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum 594 << " to SU #" << Copies.front()->NodeNum << "\n"); 595 AddPred(TrySU, SDep(Copies.front(), SDep::Artificial)); 596 NewDef = Copies.back(); 597 } 598 599 LLVM_DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum 600 << " to SU #" << TrySU->NodeNum << "\n"); 601 LiveRegDefs[Reg] = NewDef; 602 AddPred(NewDef, SDep(TrySU, SDep::Artificial)); 603 TrySU->isAvailable = false; 604 CurSU = NewDef; 605 } 606 607 if (!CurSU) { 608 llvm_unreachable("Unable to resolve live physical register dependencies!"); 609 } 610 } 611 612 // Add the nodes that aren't ready back onto the available list. 613 for (unsigned i = 0, e = NotReady.size(); i != e; ++i) { 614 NotReady[i]->isPending = false; 615 // May no longer be available due to backtracking. 616 if (NotReady[i]->isAvailable) 617 AvailableQueue.push(NotReady[i]); 618 } 619 NotReady.clear(); 620 621 if (CurSU) 622 ScheduleNodeBottomUp(CurSU, CurCycle); 623 ++CurCycle; 624 } 625 626 // Reverse the order since it is bottom up. 627 std::reverse(Sequence.begin(), Sequence.end()); 628 629 #ifndef NDEBUG 630 VerifyScheduledSequence(/*isBottomUp=*/true); 631 #endif 632 } 633 634 635 namespace { 636 //===----------------------------------------------------------------------===// 637 // ScheduleDAGLinearize - No scheduling scheduler, it simply linearize the 638 // DAG in topological order. 639 // IMPORTANT: this may not work for targets with phyreg dependency. 640 // 641 class ScheduleDAGLinearize : public ScheduleDAGSDNodes { 642 public: 643 ScheduleDAGLinearize(MachineFunction &mf) : ScheduleDAGSDNodes(mf) {} 644 645 void Schedule() override; 646 647 MachineBasicBlock * 648 EmitSchedule(MachineBasicBlock::iterator &InsertPos) override; 649 650 private: 651 std::vector<SDNode*> Sequence; 652 DenseMap<SDNode*, SDNode*> GluedMap; // Cache glue to its user 653 654 void ScheduleNode(SDNode *N); 655 }; 656 } // end anonymous namespace 657 658 void ScheduleDAGLinearize::ScheduleNode(SDNode *N) { 659 if (N->getNodeId() != 0) 660 llvm_unreachable(nullptr); 661 662 if (!N->isMachineOpcode() && 663 (N->getOpcode() == ISD::EntryToken || isPassiveNode(N))) 664 // These nodes do not need to be translated into MIs. 665 return; 666 667 LLVM_DEBUG(dbgs() << "\n*** Scheduling: "); 668 LLVM_DEBUG(N->dump(DAG)); 669 Sequence.push_back(N); 670 671 unsigned NumOps = N->getNumOperands(); 672 if (unsigned NumLeft = NumOps) { 673 SDNode *GluedOpN = nullptr; 674 do { 675 const SDValue &Op = N->getOperand(NumLeft-1); 676 SDNode *OpN = Op.getNode(); 677 678 if (NumLeft == NumOps && Op.getValueType() == MVT::Glue) { 679 // Schedule glue operand right above N. 680 GluedOpN = OpN; 681 assert(OpN->getNodeId() != 0 && "Glue operand not ready?"); 682 OpN->setNodeId(0); 683 ScheduleNode(OpN); 684 continue; 685 } 686 687 if (OpN == GluedOpN) 688 // Glue operand is already scheduled. 689 continue; 690 691 DenseMap<SDNode*, SDNode*>::iterator DI = GluedMap.find(OpN); 692 if (DI != GluedMap.end() && DI->second != N) 693 // Users of glues are counted against the glued users. 694 OpN = DI->second; 695 696 unsigned Degree = OpN->getNodeId(); 697 assert(Degree > 0 && "Predecessor over-released!"); 698 OpN->setNodeId(--Degree); 699 if (Degree == 0) 700 ScheduleNode(OpN); 701 } while (--NumLeft); 702 } 703 } 704 705 /// findGluedUser - Find the representative use of a glue value by walking 706 /// the use chain. 707 static SDNode *findGluedUser(SDNode *N) { 708 while (SDNode *Glued = N->getGluedUser()) 709 N = Glued; 710 return N; 711 } 712 713 void ScheduleDAGLinearize::Schedule() { 714 LLVM_DEBUG(dbgs() << "********** DAG Linearization **********\n"); 715 716 SmallVector<SDNode*, 8> Glues; 717 unsigned DAGSize = 0; 718 for (SDNode &Node : DAG->allnodes()) { 719 SDNode *N = &Node; 720 721 // Use node id to record degree. 722 unsigned Degree = N->use_size(); 723 N->setNodeId(Degree); 724 unsigned NumVals = N->getNumValues(); 725 if (NumVals && N->getValueType(NumVals-1) == MVT::Glue && 726 N->hasAnyUseOfValue(NumVals-1)) { 727 SDNode *User = findGluedUser(N); 728 if (User) { 729 Glues.push_back(N); 730 GluedMap.insert(std::make_pair(N, User)); 731 } 732 } 733 734 if (N->isMachineOpcode() || 735 (N->getOpcode() != ISD::EntryToken && !isPassiveNode(N))) 736 ++DAGSize; 737 } 738 739 for (unsigned i = 0, e = Glues.size(); i != e; ++i) { 740 SDNode *Glue = Glues[i]; 741 SDNode *GUser = GluedMap[Glue]; 742 unsigned Degree = Glue->getNodeId(); 743 unsigned UDegree = GUser->getNodeId(); 744 745 // Glue user must be scheduled together with the glue operand. So other 746 // users of the glue operand must be treated as its users. 747 SDNode *ImmGUser = Glue->getGluedUser(); 748 for (const SDNode *U : Glue->uses()) 749 if (U == ImmGUser) 750 --Degree; 751 GUser->setNodeId(UDegree + Degree); 752 Glue->setNodeId(1); 753 } 754 755 Sequence.reserve(DAGSize); 756 ScheduleNode(DAG->getRoot().getNode()); 757 } 758 759 MachineBasicBlock* 760 ScheduleDAGLinearize::EmitSchedule(MachineBasicBlock::iterator &InsertPos) { 761 InstrEmitter Emitter(DAG->getTarget(), BB, InsertPos, 762 DAG->getUseInstrRefDebugInfo()); 763 DenseMap<SDValue, Register> VRBaseMap; 764 765 LLVM_DEBUG({ dbgs() << "\n*** Final schedule ***\n"; }); 766 767 unsigned NumNodes = Sequence.size(); 768 MachineBasicBlock *BB = Emitter.getBlock(); 769 for (unsigned i = 0; i != NumNodes; ++i) { 770 SDNode *N = Sequence[NumNodes-i-1]; 771 LLVM_DEBUG(N->dump(DAG)); 772 Emitter.EmitNode(N, false, false, VRBaseMap); 773 774 // Emit any debug values associated with the node. 775 if (N->getHasDebugValue()) { 776 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos(); 777 for (auto DV : DAG->GetDbgValues(N)) { 778 if (!DV->isEmitted()) 779 if (auto *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap)) 780 BB->insert(InsertPos, DbgMI); 781 } 782 } 783 } 784 785 LLVM_DEBUG(dbgs() << '\n'); 786 787 InsertPos = Emitter.getInsertPos(); 788 return Emitter.getBlock(); 789 } 790 791 //===----------------------------------------------------------------------===// 792 // Public Constructor Functions 793 //===----------------------------------------------------------------------===// 794 795 llvm::ScheduleDAGSDNodes * 796 llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) { 797 return new ScheduleDAGFast(*IS->MF); 798 } 799 800 llvm::ScheduleDAGSDNodes * 801 llvm::createDAGLinearizer(SelectionDAGISel *IS, CodeGenOpt::Level) { 802 return new ScheduleDAGLinearize(*IS->MF); 803 } 804