xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGFast.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements a fast scheduler.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstrEmitter.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/SchedulerRegistry.h"
20 #include "llvm/CodeGen/SelectionDAGISel.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "pre-RA-sched"
31 
32 STATISTIC(NumUnfolds,    "Number of nodes unfolded");
33 STATISTIC(NumDups,       "Number of duplicated nodes");
34 STATISTIC(NumPRCopies,   "Number of physical copies");
35 
36 static RegisterScheduler
37   fastDAGScheduler("fast", "Fast suboptimal list scheduling",
38                    createFastDAGScheduler);
39 static RegisterScheduler
40   linearizeDAGScheduler("linearize", "Linearize DAG, no scheduling",
41                         createDAGLinearizer);
42 
43 
44 namespace {
45   /// FastPriorityQueue - A degenerate priority queue that considers
46   /// all nodes to have the same priority.
47   ///
48   struct FastPriorityQueue {
49     SmallVector<SUnit *, 16> Queue;
50 
51     bool empty() const { return Queue.empty(); }
52 
53     void push(SUnit *U) {
54       Queue.push_back(U);
55     }
56 
57     SUnit *pop() {
58       if (empty()) return nullptr;
59       SUnit *V = Queue.back();
60       Queue.pop_back();
61       return V;
62     }
63   };
64 
65 //===----------------------------------------------------------------------===//
66 /// ScheduleDAGFast - The actual "fast" list scheduler implementation.
67 ///
68 class ScheduleDAGFast : public ScheduleDAGSDNodes {
69 private:
70   /// AvailableQueue - The priority queue to use for the available SUnits.
71   FastPriorityQueue AvailableQueue;
72 
73   /// LiveRegDefs - A set of physical registers and their definition
74   /// that are "live". These nodes must be scheduled before any other nodes that
75   /// modifies the registers can be scheduled.
76   unsigned NumLiveRegs;
77   std::vector<SUnit*> LiveRegDefs;
78   std::vector<unsigned> LiveRegCycles;
79 
80 public:
81   ScheduleDAGFast(MachineFunction &mf)
82     : ScheduleDAGSDNodes(mf) {}
83 
84   void Schedule() override;
85 
86   /// AddPred - adds a predecessor edge to SUnit SU.
87   /// This returns true if this is a new predecessor.
88   void AddPred(SUnit *SU, const SDep &D) {
89     SU->addPred(D);
90   }
91 
92   /// RemovePred - removes a predecessor edge from SUnit SU.
93   /// This returns true if an edge was removed.
94   void RemovePred(SUnit *SU, const SDep &D) {
95     SU->removePred(D);
96   }
97 
98 private:
99   void ReleasePred(SUnit *SU, SDep *PredEdge);
100   void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
101   void ScheduleNodeBottomUp(SUnit*, unsigned);
102   SUnit *CopyAndMoveSuccessors(SUnit*);
103   void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
104                                 const TargetRegisterClass*,
105                                 const TargetRegisterClass*,
106                                 SmallVectorImpl<SUnit*>&);
107   bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
108   void ListScheduleBottomUp();
109 
110   /// forceUnitLatencies - The fast scheduler doesn't care about real latencies.
111   bool forceUnitLatencies() const override { return true; }
112 };
113 }  // end anonymous namespace
114 
115 
116 /// Schedule - Schedule the DAG using list scheduling.
117 void ScheduleDAGFast::Schedule() {
118   LLVM_DEBUG(dbgs() << "********** List Scheduling **********\n");
119 
120   NumLiveRegs = 0;
121   LiveRegDefs.resize(TRI->getNumRegs(), nullptr);
122   LiveRegCycles.resize(TRI->getNumRegs(), 0);
123 
124   // Build the scheduling graph.
125   BuildSchedGraph(nullptr);
126 
127   LLVM_DEBUG(dump());
128 
129   // Execute the actual scheduling loop.
130   ListScheduleBottomUp();
131 }
132 
133 //===----------------------------------------------------------------------===//
134 //  Bottom-Up Scheduling
135 //===----------------------------------------------------------------------===//
136 
137 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
138 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
139 void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
140   SUnit *PredSU = PredEdge->getSUnit();
141 
142 #ifndef NDEBUG
143   if (PredSU->NumSuccsLeft == 0) {
144     dbgs() << "*** Scheduling failed! ***\n";
145     dumpNode(*PredSU);
146     dbgs() << " has been released too many times!\n";
147     llvm_unreachable(nullptr);
148   }
149 #endif
150   --PredSU->NumSuccsLeft;
151 
152   // If all the node's successors are scheduled, this node is ready
153   // to be scheduled. Ignore the special EntrySU node.
154   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
155     PredSU->isAvailable = true;
156     AvailableQueue.push(PredSU);
157   }
158 }
159 
160 void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
161   // Bottom up: release predecessors
162   for (SDep &Pred : SU->Preds) {
163     ReleasePred(SU, &Pred);
164     if (Pred.isAssignedRegDep()) {
165       // This is a physical register dependency and it's impossible or
166       // expensive to copy the register. Make sure nothing that can
167       // clobber the register is scheduled between the predecessor and
168       // this node.
169       if (!LiveRegDefs[Pred.getReg()]) {
170         ++NumLiveRegs;
171         LiveRegDefs[Pred.getReg()] = Pred.getSUnit();
172         LiveRegCycles[Pred.getReg()] = CurCycle;
173       }
174     }
175   }
176 }
177 
178 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
179 /// count of its predecessors. If a predecessor pending count is zero, add it to
180 /// the Available queue.
181 void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
182   LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
183   LLVM_DEBUG(dumpNode(*SU));
184 
185   assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
186   SU->setHeightToAtLeast(CurCycle);
187   Sequence.push_back(SU);
188 
189   ReleasePredecessors(SU, CurCycle);
190 
191   // Release all the implicit physical register defs that are live.
192   for (SDep &Succ : SU->Succs) {
193     if (Succ.isAssignedRegDep()) {
194       if (LiveRegCycles[Succ.getReg()] == Succ.getSUnit()->getHeight()) {
195         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
196         assert(LiveRegDefs[Succ.getReg()] == SU &&
197                "Physical register dependency violated?");
198         --NumLiveRegs;
199         LiveRegDefs[Succ.getReg()] = nullptr;
200         LiveRegCycles[Succ.getReg()] = 0;
201       }
202     }
203   }
204 
205   SU->isScheduled = true;
206 }
207 
208 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
209 /// successors to the newly created node.
210 SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
211   if (SU->getNode()->getGluedNode())
212     return nullptr;
213 
214   SDNode *N = SU->getNode();
215   if (!N)
216     return nullptr;
217 
218   SUnit *NewSU;
219   bool TryUnfold = false;
220   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
221     MVT VT = N->getSimpleValueType(i);
222     if (VT == MVT::Glue)
223       return nullptr;
224     else if (VT == MVT::Other)
225       TryUnfold = true;
226   }
227   for (const SDValue &Op : N->op_values()) {
228     MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
229     if (VT == MVT::Glue)
230       return nullptr;
231   }
232 
233   if (TryUnfold) {
234     SmallVector<SDNode*, 2> NewNodes;
235     if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
236       return nullptr;
237 
238     LLVM_DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n");
239     assert(NewNodes.size() == 2 && "Expected a load folding node!");
240 
241     N = NewNodes[1];
242     SDNode *LoadNode = NewNodes[0];
243     unsigned NumVals = N->getNumValues();
244     unsigned OldNumVals = SU->getNode()->getNumValues();
245     for (unsigned i = 0; i != NumVals; ++i)
246       DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
247     DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
248                                    SDValue(LoadNode, 1));
249 
250     SUnit *NewSU = newSUnit(N);
251     assert(N->getNodeId() == -1 && "Node already inserted!");
252     N->setNodeId(NewSU->NodeNum);
253 
254     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
255     for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
256       if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
257         NewSU->isTwoAddress = true;
258         break;
259       }
260     }
261     if (MCID.isCommutable())
262       NewSU->isCommutable = true;
263 
264     // LoadNode may already exist. This can happen when there is another
265     // load from the same location and producing the same type of value
266     // but it has different alignment or volatileness.
267     bool isNewLoad = true;
268     SUnit *LoadSU;
269     if (LoadNode->getNodeId() != -1) {
270       LoadSU = &SUnits[LoadNode->getNodeId()];
271       isNewLoad = false;
272     } else {
273       LoadSU = newSUnit(LoadNode);
274       LoadNode->setNodeId(LoadSU->NodeNum);
275     }
276 
277     SDep ChainPred;
278     SmallVector<SDep, 4> ChainSuccs;
279     SmallVector<SDep, 4> LoadPreds;
280     SmallVector<SDep, 4> NodePreds;
281     SmallVector<SDep, 4> NodeSuccs;
282     for (SDep &Pred : SU->Preds) {
283       if (Pred.isCtrl())
284         ChainPred = Pred;
285       else if (Pred.getSUnit()->getNode() &&
286                Pred.getSUnit()->getNode()->isOperandOf(LoadNode))
287         LoadPreds.push_back(Pred);
288       else
289         NodePreds.push_back(Pred);
290     }
291     for (SDep &Succ : SU->Succs) {
292       if (Succ.isCtrl())
293         ChainSuccs.push_back(Succ);
294       else
295         NodeSuccs.push_back(Succ);
296     }
297 
298     if (ChainPred.getSUnit()) {
299       RemovePred(SU, ChainPred);
300       if (isNewLoad)
301         AddPred(LoadSU, ChainPred);
302     }
303     for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
304       const SDep &Pred = LoadPreds[i];
305       RemovePred(SU, Pred);
306       if (isNewLoad) {
307         AddPred(LoadSU, Pred);
308       }
309     }
310     for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
311       const SDep &Pred = NodePreds[i];
312       RemovePred(SU, Pred);
313       AddPred(NewSU, Pred);
314     }
315     for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
316       SDep D = NodeSuccs[i];
317       SUnit *SuccDep = D.getSUnit();
318       D.setSUnit(SU);
319       RemovePred(SuccDep, D);
320       D.setSUnit(NewSU);
321       AddPred(SuccDep, D);
322     }
323     for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
324       SDep D = ChainSuccs[i];
325       SUnit *SuccDep = D.getSUnit();
326       D.setSUnit(SU);
327       RemovePred(SuccDep, D);
328       if (isNewLoad) {
329         D.setSUnit(LoadSU);
330         AddPred(SuccDep, D);
331       }
332     }
333     if (isNewLoad) {
334       SDep D(LoadSU, SDep::Barrier);
335       D.setLatency(LoadSU->Latency);
336       AddPred(NewSU, D);
337     }
338 
339     ++NumUnfolds;
340 
341     if (NewSU->NumSuccsLeft == 0) {
342       NewSU->isAvailable = true;
343       return NewSU;
344     }
345     SU = NewSU;
346   }
347 
348   LLVM_DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n");
349   NewSU = Clone(SU);
350 
351   // New SUnit has the exact same predecessors.
352   for (SDep &Pred : SU->Preds)
353     if (!Pred.isArtificial())
354       AddPred(NewSU, Pred);
355 
356   // Only copy scheduled successors. Cut them from old node's successor
357   // list and move them over.
358   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
359   for (SDep &Succ : SU->Succs) {
360     if (Succ.isArtificial())
361       continue;
362     SUnit *SuccSU = Succ.getSUnit();
363     if (SuccSU->isScheduled) {
364       SDep D = Succ;
365       D.setSUnit(NewSU);
366       AddPred(SuccSU, D);
367       D.setSUnit(SU);
368       DelDeps.push_back(std::make_pair(SuccSU, D));
369     }
370   }
371   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
372     RemovePred(DelDeps[i].first, DelDeps[i].second);
373 
374   ++NumDups;
375   return NewSU;
376 }
377 
378 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
379 /// scheduled successors of the given SUnit to the last copy.
380 void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
381                                               const TargetRegisterClass *DestRC,
382                                               const TargetRegisterClass *SrcRC,
383                                               SmallVectorImpl<SUnit*> &Copies) {
384   SUnit *CopyFromSU = newSUnit(static_cast<SDNode *>(nullptr));
385   CopyFromSU->CopySrcRC = SrcRC;
386   CopyFromSU->CopyDstRC = DestRC;
387 
388   SUnit *CopyToSU = newSUnit(static_cast<SDNode *>(nullptr));
389   CopyToSU->CopySrcRC = DestRC;
390   CopyToSU->CopyDstRC = SrcRC;
391 
392   // Only copy scheduled successors. Cut them from old node's successor
393   // list and move them over.
394   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
395   for (SDep &Succ : SU->Succs) {
396     if (Succ.isArtificial())
397       continue;
398     SUnit *SuccSU = Succ.getSUnit();
399     if (SuccSU->isScheduled) {
400       SDep D = Succ;
401       D.setSUnit(CopyToSU);
402       AddPred(SuccSU, D);
403       DelDeps.push_back(std::make_pair(SuccSU, Succ));
404     }
405   }
406   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
407     RemovePred(DelDeps[i].first, DelDeps[i].second);
408   }
409   SDep FromDep(SU, SDep::Data, Reg);
410   FromDep.setLatency(SU->Latency);
411   AddPred(CopyFromSU, FromDep);
412   SDep ToDep(CopyFromSU, SDep::Data, 0);
413   ToDep.setLatency(CopyFromSU->Latency);
414   AddPred(CopyToSU, ToDep);
415 
416   Copies.push_back(CopyFromSU);
417   Copies.push_back(CopyToSU);
418 
419   ++NumPRCopies;
420 }
421 
422 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
423 /// definition of the specified node.
424 /// FIXME: Move to SelectionDAG?
425 static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
426                                  const TargetInstrInfo *TII) {
427   unsigned NumRes;
428   if (N->getOpcode() == ISD::CopyFromReg) {
429     // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
430     NumRes = 1;
431   } else {
432     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
433     assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
434     NumRes = MCID.getNumDefs();
435     for (const MCPhysReg *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
436       if (Reg == *ImpDef)
437         break;
438       ++NumRes;
439     }
440   }
441   return N->getSimpleValueType(NumRes);
442 }
443 
444 /// CheckForLiveRegDef - Return true and update live register vector if the
445 /// specified register def of the specified SUnit clobbers any "live" registers.
446 static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
447                                std::vector<SUnit*> &LiveRegDefs,
448                                SmallSet<unsigned, 4> &RegAdded,
449                                SmallVectorImpl<unsigned> &LRegs,
450                                const TargetRegisterInfo *TRI) {
451   bool Added = false;
452   for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
453     if (LiveRegDefs[*AI] && LiveRegDefs[*AI] != SU) {
454       if (RegAdded.insert(*AI).second) {
455         LRegs.push_back(*AI);
456         Added = true;
457       }
458     }
459   }
460   return Added;
461 }
462 
463 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
464 /// scheduling of the given node to satisfy live physical register dependencies.
465 /// If the specific node is the last one that's available to schedule, do
466 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
467 bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
468                                               SmallVectorImpl<unsigned> &LRegs){
469   if (NumLiveRegs == 0)
470     return false;
471 
472   SmallSet<unsigned, 4> RegAdded;
473   // If this node would clobber any "live" register, then it's not ready.
474   for (SDep &Pred : SU->Preds) {
475     if (Pred.isAssignedRegDep()) {
476       CheckForLiveRegDef(Pred.getSUnit(), Pred.getReg(), LiveRegDefs,
477                          RegAdded, LRegs, TRI);
478     }
479   }
480 
481   for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
482     if (Node->getOpcode() == ISD::INLINEASM ||
483         Node->getOpcode() == ISD::INLINEASM_BR) {
484       // Inline asm can clobber physical defs.
485       unsigned NumOps = Node->getNumOperands();
486       if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
487         --NumOps;  // Ignore the glue operand.
488 
489       for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
490         unsigned Flags =
491           cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
492         unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
493 
494         ++i; // Skip the ID value.
495         if (InlineAsm::isRegDefKind(Flags) ||
496             InlineAsm::isRegDefEarlyClobberKind(Flags) ||
497             InlineAsm::isClobberKind(Flags)) {
498           // Check for def of register or earlyclobber register.
499           for (; NumVals; --NumVals, ++i) {
500             unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
501             if (Register::isPhysicalRegister(Reg))
502               CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
503           }
504         } else
505           i += NumVals;
506       }
507       continue;
508     }
509     if (!Node->isMachineOpcode())
510       continue;
511     const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
512     if (!MCID.ImplicitDefs)
513       continue;
514     for (const MCPhysReg *Reg = MCID.getImplicitDefs(); *Reg; ++Reg) {
515       CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
516     }
517   }
518   return !LRegs.empty();
519 }
520 
521 
522 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
523 /// schedulers.
524 void ScheduleDAGFast::ListScheduleBottomUp() {
525   unsigned CurCycle = 0;
526 
527   // Release any predecessors of the special Exit node.
528   ReleasePredecessors(&ExitSU, CurCycle);
529 
530   // Add root to Available queue.
531   if (!SUnits.empty()) {
532     SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
533     assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
534     RootSU->isAvailable = true;
535     AvailableQueue.push(RootSU);
536   }
537 
538   // While Available queue is not empty, grab the node with the highest
539   // priority. If it is not ready put it back.  Schedule the node.
540   SmallVector<SUnit*, 4> NotReady;
541   DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
542   Sequence.reserve(SUnits.size());
543   while (!AvailableQueue.empty()) {
544     bool Delayed = false;
545     LRegsMap.clear();
546     SUnit *CurSU = AvailableQueue.pop();
547     while (CurSU) {
548       SmallVector<unsigned, 4> LRegs;
549       if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
550         break;
551       Delayed = true;
552       LRegsMap.insert(std::make_pair(CurSU, LRegs));
553 
554       CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
555       NotReady.push_back(CurSU);
556       CurSU = AvailableQueue.pop();
557     }
558 
559     // All candidates are delayed due to live physical reg dependencies.
560     // Try code duplication or inserting cross class copies
561     // to resolve it.
562     if (Delayed && !CurSU) {
563       if (!CurSU) {
564         // Try duplicating the nodes that produces these
565         // "expensive to copy" values to break the dependency. In case even
566         // that doesn't work, insert cross class copies.
567         SUnit *TrySU = NotReady[0];
568         SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
569         assert(LRegs.size() == 1 && "Can't handle this yet!");
570         unsigned Reg = LRegs[0];
571         SUnit *LRDef = LiveRegDefs[Reg];
572         MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
573         const TargetRegisterClass *RC =
574           TRI->getMinimalPhysRegClass(Reg, VT);
575         const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
576 
577         // If cross copy register class is the same as RC, then it must be
578         // possible copy the value directly. Do not try duplicate the def.
579         // If cross copy register class is not the same as RC, then it's
580         // possible to copy the value but it require cross register class copies
581         // and it is expensive.
582         // If cross copy register class is null, then it's not possible to copy
583         // the value at all.
584         SUnit *NewDef = nullptr;
585         if (DestRC != RC) {
586           NewDef = CopyAndMoveSuccessors(LRDef);
587           if (!DestRC && !NewDef)
588             report_fatal_error("Can't handle live physical "
589                                "register dependency!");
590         }
591         if (!NewDef) {
592           // Issue copies, these can be expensive cross register class copies.
593           SmallVector<SUnit*, 2> Copies;
594           InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
595           LLVM_DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum
596                             << " to SU #" << Copies.front()->NodeNum << "\n");
597           AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
598           NewDef = Copies.back();
599         }
600 
601         LLVM_DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum
602                           << " to SU #" << TrySU->NodeNum << "\n");
603         LiveRegDefs[Reg] = NewDef;
604         AddPred(NewDef, SDep(TrySU, SDep::Artificial));
605         TrySU->isAvailable = false;
606         CurSU = NewDef;
607       }
608 
609       if (!CurSU) {
610         llvm_unreachable("Unable to resolve live physical register dependencies!");
611       }
612     }
613 
614     // Add the nodes that aren't ready back onto the available list.
615     for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
616       NotReady[i]->isPending = false;
617       // May no longer be available due to backtracking.
618       if (NotReady[i]->isAvailable)
619         AvailableQueue.push(NotReady[i]);
620     }
621     NotReady.clear();
622 
623     if (CurSU)
624       ScheduleNodeBottomUp(CurSU, CurCycle);
625     ++CurCycle;
626   }
627 
628   // Reverse the order since it is bottom up.
629   std::reverse(Sequence.begin(), Sequence.end());
630 
631 #ifndef NDEBUG
632   VerifyScheduledSequence(/*isBottomUp=*/true);
633 #endif
634 }
635 
636 
637 namespace {
638 //===----------------------------------------------------------------------===//
639 // ScheduleDAGLinearize - No scheduling scheduler, it simply linearize the
640 // DAG in topological order.
641 // IMPORTANT: this may not work for targets with phyreg dependency.
642 //
643 class ScheduleDAGLinearize : public ScheduleDAGSDNodes {
644 public:
645   ScheduleDAGLinearize(MachineFunction &mf) : ScheduleDAGSDNodes(mf) {}
646 
647   void Schedule() override;
648 
649   MachineBasicBlock *
650     EmitSchedule(MachineBasicBlock::iterator &InsertPos) override;
651 
652 private:
653   std::vector<SDNode*> Sequence;
654   DenseMap<SDNode*, SDNode*> GluedMap;  // Cache glue to its user
655 
656   void ScheduleNode(SDNode *N);
657 };
658 } // end anonymous namespace
659 
660 void ScheduleDAGLinearize::ScheduleNode(SDNode *N) {
661   if (N->getNodeId() != 0)
662     llvm_unreachable(nullptr);
663 
664   if (!N->isMachineOpcode() &&
665       (N->getOpcode() == ISD::EntryToken || isPassiveNode(N)))
666     // These nodes do not need to be translated into MIs.
667     return;
668 
669   LLVM_DEBUG(dbgs() << "\n*** Scheduling: ");
670   LLVM_DEBUG(N->dump(DAG));
671   Sequence.push_back(N);
672 
673   unsigned NumOps = N->getNumOperands();
674   if (unsigned NumLeft = NumOps) {
675     SDNode *GluedOpN = nullptr;
676     do {
677       const SDValue &Op = N->getOperand(NumLeft-1);
678       SDNode *OpN = Op.getNode();
679 
680       if (NumLeft == NumOps && Op.getValueType() == MVT::Glue) {
681         // Schedule glue operand right above N.
682         GluedOpN = OpN;
683         assert(OpN->getNodeId() != 0 && "Glue operand not ready?");
684         OpN->setNodeId(0);
685         ScheduleNode(OpN);
686         continue;
687       }
688 
689       if (OpN == GluedOpN)
690         // Glue operand is already scheduled.
691         continue;
692 
693       DenseMap<SDNode*, SDNode*>::iterator DI = GluedMap.find(OpN);
694       if (DI != GluedMap.end() && DI->second != N)
695         // Users of glues are counted against the glued users.
696         OpN = DI->second;
697 
698       unsigned Degree = OpN->getNodeId();
699       assert(Degree > 0 && "Predecessor over-released!");
700       OpN->setNodeId(--Degree);
701       if (Degree == 0)
702         ScheduleNode(OpN);
703     } while (--NumLeft);
704   }
705 }
706 
707 /// findGluedUser - Find the representative use of a glue value by walking
708 /// the use chain.
709 static SDNode *findGluedUser(SDNode *N) {
710   while (SDNode *Glued = N->getGluedUser())
711     N = Glued;
712   return N;
713 }
714 
715 void ScheduleDAGLinearize::Schedule() {
716   LLVM_DEBUG(dbgs() << "********** DAG Linearization **********\n");
717 
718   SmallVector<SDNode*, 8> Glues;
719   unsigned DAGSize = 0;
720   for (SDNode &Node : DAG->allnodes()) {
721     SDNode *N = &Node;
722 
723     // Use node id to record degree.
724     unsigned Degree = N->use_size();
725     N->setNodeId(Degree);
726     unsigned NumVals = N->getNumValues();
727     if (NumVals && N->getValueType(NumVals-1) == MVT::Glue &&
728         N->hasAnyUseOfValue(NumVals-1)) {
729       SDNode *User = findGluedUser(N);
730       if (User) {
731         Glues.push_back(N);
732         GluedMap.insert(std::make_pair(N, User));
733       }
734     }
735 
736     if (N->isMachineOpcode() ||
737         (N->getOpcode() != ISD::EntryToken && !isPassiveNode(N)))
738       ++DAGSize;
739   }
740 
741   for (unsigned i = 0, e = Glues.size(); i != e; ++i) {
742     SDNode *Glue = Glues[i];
743     SDNode *GUser = GluedMap[Glue];
744     unsigned Degree = Glue->getNodeId();
745     unsigned UDegree = GUser->getNodeId();
746 
747     // Glue user must be scheduled together with the glue operand. So other
748     // users of the glue operand must be treated as its users.
749     SDNode *ImmGUser = Glue->getGluedUser();
750     for (const SDNode *U : Glue->uses())
751       if (U == ImmGUser)
752         --Degree;
753     GUser->setNodeId(UDegree + Degree);
754     Glue->setNodeId(1);
755   }
756 
757   Sequence.reserve(DAGSize);
758   ScheduleNode(DAG->getRoot().getNode());
759 }
760 
761 MachineBasicBlock*
762 ScheduleDAGLinearize::EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
763   InstrEmitter Emitter(BB, InsertPos);
764   DenseMap<SDValue, unsigned> VRBaseMap;
765 
766   LLVM_DEBUG({ dbgs() << "\n*** Final schedule ***\n"; });
767 
768   unsigned NumNodes = Sequence.size();
769   MachineBasicBlock *BB = Emitter.getBlock();
770   for (unsigned i = 0; i != NumNodes; ++i) {
771     SDNode *N = Sequence[NumNodes-i-1];
772     LLVM_DEBUG(N->dump(DAG));
773     Emitter.EmitNode(N, false, false, VRBaseMap);
774 
775     // Emit any debug values associated with the node.
776     if (N->getHasDebugValue()) {
777       MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
778       for (auto DV : DAG->GetDbgValues(N)) {
779         if (!DV->isEmitted())
780           if (auto *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap))
781             BB->insert(InsertPos, DbgMI);
782       }
783     }
784   }
785 
786   LLVM_DEBUG(dbgs() << '\n');
787 
788   InsertPos = Emitter.getInsertPos();
789   return Emitter.getBlock();
790 }
791 
792 //===----------------------------------------------------------------------===//
793 //                         Public Constructor Functions
794 //===----------------------------------------------------------------------===//
795 
796 llvm::ScheduleDAGSDNodes *
797 llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
798   return new ScheduleDAGFast(*IS->MF);
799 }
800 
801 llvm::ScheduleDAGSDNodes *
802 llvm::createDAGLinearizer(SelectionDAGISel *IS, CodeGenOpt::Level) {
803   return new ScheduleDAGLinearize(*IS->MF);
804 }
805