1 //===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements a fast scheduler. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstrEmitter.h" 14 #include "ScheduleDAGSDNodes.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/SchedulerRegistry.h" 20 #include "llvm/CodeGen/SelectionDAGISel.h" 21 #include "llvm/CodeGen/TargetInstrInfo.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/raw_ostream.h" 28 using namespace llvm; 29 30 #define DEBUG_TYPE "pre-RA-sched" 31 32 STATISTIC(NumUnfolds, "Number of nodes unfolded"); 33 STATISTIC(NumDups, "Number of duplicated nodes"); 34 STATISTIC(NumPRCopies, "Number of physical copies"); 35 36 static RegisterScheduler 37 fastDAGScheduler("fast", "Fast suboptimal list scheduling", 38 createFastDAGScheduler); 39 static RegisterScheduler 40 linearizeDAGScheduler("linearize", "Linearize DAG, no scheduling", 41 createDAGLinearizer); 42 43 44 namespace { 45 /// FastPriorityQueue - A degenerate priority queue that considers 46 /// all nodes to have the same priority. 47 /// 48 struct FastPriorityQueue { 49 SmallVector<SUnit *, 16> Queue; 50 51 bool empty() const { return Queue.empty(); } 52 53 void push(SUnit *U) { 54 Queue.push_back(U); 55 } 56 57 SUnit *pop() { 58 if (empty()) return nullptr; 59 SUnit *V = Queue.back(); 60 Queue.pop_back(); 61 return V; 62 } 63 }; 64 65 //===----------------------------------------------------------------------===// 66 /// ScheduleDAGFast - The actual "fast" list scheduler implementation. 67 /// 68 class ScheduleDAGFast : public ScheduleDAGSDNodes { 69 private: 70 /// AvailableQueue - The priority queue to use for the available SUnits. 71 FastPriorityQueue AvailableQueue; 72 73 /// LiveRegDefs - A set of physical registers and their definition 74 /// that are "live". These nodes must be scheduled before any other nodes that 75 /// modifies the registers can be scheduled. 76 unsigned NumLiveRegs; 77 std::vector<SUnit*> LiveRegDefs; 78 std::vector<unsigned> LiveRegCycles; 79 80 public: 81 ScheduleDAGFast(MachineFunction &mf) 82 : ScheduleDAGSDNodes(mf) {} 83 84 void Schedule() override; 85 86 /// AddPred - adds a predecessor edge to SUnit SU. 87 /// This returns true if this is a new predecessor. 88 void AddPred(SUnit *SU, const SDep &D) { 89 SU->addPred(D); 90 } 91 92 /// RemovePred - removes a predecessor edge from SUnit SU. 93 /// This returns true if an edge was removed. 94 void RemovePred(SUnit *SU, const SDep &D) { 95 SU->removePred(D); 96 } 97 98 private: 99 void ReleasePred(SUnit *SU, SDep *PredEdge); 100 void ReleasePredecessors(SUnit *SU, unsigned CurCycle); 101 void ScheduleNodeBottomUp(SUnit*, unsigned); 102 SUnit *CopyAndMoveSuccessors(SUnit*); 103 void InsertCopiesAndMoveSuccs(SUnit*, unsigned, 104 const TargetRegisterClass*, 105 const TargetRegisterClass*, 106 SmallVectorImpl<SUnit*>&); 107 bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&); 108 void ListScheduleBottomUp(); 109 110 /// forceUnitLatencies - The fast scheduler doesn't care about real latencies. 111 bool forceUnitLatencies() const override { return true; } 112 }; 113 } // end anonymous namespace 114 115 116 /// Schedule - Schedule the DAG using list scheduling. 117 void ScheduleDAGFast::Schedule() { 118 LLVM_DEBUG(dbgs() << "********** List Scheduling **********\n"); 119 120 NumLiveRegs = 0; 121 LiveRegDefs.resize(TRI->getNumRegs(), nullptr); 122 LiveRegCycles.resize(TRI->getNumRegs(), 0); 123 124 // Build the scheduling graph. 125 BuildSchedGraph(nullptr); 126 127 LLVM_DEBUG(dump()); 128 129 // Execute the actual scheduling loop. 130 ListScheduleBottomUp(); 131 } 132 133 //===----------------------------------------------------------------------===// 134 // Bottom-Up Scheduling 135 //===----------------------------------------------------------------------===// 136 137 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to 138 /// the AvailableQueue if the count reaches zero. Also update its cycle bound. 139 void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) { 140 SUnit *PredSU = PredEdge->getSUnit(); 141 142 #ifndef NDEBUG 143 if (PredSU->NumSuccsLeft == 0) { 144 dbgs() << "*** Scheduling failed! ***\n"; 145 dumpNode(*PredSU); 146 dbgs() << " has been released too many times!\n"; 147 llvm_unreachable(nullptr); 148 } 149 #endif 150 --PredSU->NumSuccsLeft; 151 152 // If all the node's successors are scheduled, this node is ready 153 // to be scheduled. Ignore the special EntrySU node. 154 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) { 155 PredSU->isAvailable = true; 156 AvailableQueue.push(PredSU); 157 } 158 } 159 160 void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) { 161 // Bottom up: release predecessors 162 for (SDep &Pred : SU->Preds) { 163 ReleasePred(SU, &Pred); 164 if (Pred.isAssignedRegDep()) { 165 // This is a physical register dependency and it's impossible or 166 // expensive to copy the register. Make sure nothing that can 167 // clobber the register is scheduled between the predecessor and 168 // this node. 169 if (!LiveRegDefs[Pred.getReg()]) { 170 ++NumLiveRegs; 171 LiveRegDefs[Pred.getReg()] = Pred.getSUnit(); 172 LiveRegCycles[Pred.getReg()] = CurCycle; 173 } 174 } 175 } 176 } 177 178 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending 179 /// count of its predecessors. If a predecessor pending count is zero, add it to 180 /// the Available queue. 181 void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) { 182 LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: "); 183 LLVM_DEBUG(dumpNode(*SU)); 184 185 assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!"); 186 SU->setHeightToAtLeast(CurCycle); 187 Sequence.push_back(SU); 188 189 ReleasePredecessors(SU, CurCycle); 190 191 // Release all the implicit physical register defs that are live. 192 for (SDep &Succ : SU->Succs) { 193 if (Succ.isAssignedRegDep()) { 194 if (LiveRegCycles[Succ.getReg()] == Succ.getSUnit()->getHeight()) { 195 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!"); 196 assert(LiveRegDefs[Succ.getReg()] == SU && 197 "Physical register dependency violated?"); 198 --NumLiveRegs; 199 LiveRegDefs[Succ.getReg()] = nullptr; 200 LiveRegCycles[Succ.getReg()] = 0; 201 } 202 } 203 } 204 205 SU->isScheduled = true; 206 } 207 208 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled 209 /// successors to the newly created node. 210 SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) { 211 if (SU->getNode()->getGluedNode()) 212 return nullptr; 213 214 SDNode *N = SU->getNode(); 215 if (!N) 216 return nullptr; 217 218 SUnit *NewSU; 219 bool TryUnfold = false; 220 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { 221 MVT VT = N->getSimpleValueType(i); 222 if (VT == MVT::Glue) 223 return nullptr; 224 else if (VT == MVT::Other) 225 TryUnfold = true; 226 } 227 for (const SDValue &Op : N->op_values()) { 228 MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo()); 229 if (VT == MVT::Glue) 230 return nullptr; 231 } 232 233 if (TryUnfold) { 234 SmallVector<SDNode*, 2> NewNodes; 235 if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes)) 236 return nullptr; 237 238 LLVM_DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n"); 239 assert(NewNodes.size() == 2 && "Expected a load folding node!"); 240 241 N = NewNodes[1]; 242 SDNode *LoadNode = NewNodes[0]; 243 unsigned NumVals = N->getNumValues(); 244 unsigned OldNumVals = SU->getNode()->getNumValues(); 245 for (unsigned i = 0; i != NumVals; ++i) 246 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i)); 247 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1), 248 SDValue(LoadNode, 1)); 249 250 SUnit *NewSU = newSUnit(N); 251 assert(N->getNodeId() == -1 && "Node already inserted!"); 252 N->setNodeId(NewSU->NodeNum); 253 254 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 255 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) { 256 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) { 257 NewSU->isTwoAddress = true; 258 break; 259 } 260 } 261 if (MCID.isCommutable()) 262 NewSU->isCommutable = true; 263 264 // LoadNode may already exist. This can happen when there is another 265 // load from the same location and producing the same type of value 266 // but it has different alignment or volatileness. 267 bool isNewLoad = true; 268 SUnit *LoadSU; 269 if (LoadNode->getNodeId() != -1) { 270 LoadSU = &SUnits[LoadNode->getNodeId()]; 271 isNewLoad = false; 272 } else { 273 LoadSU = newSUnit(LoadNode); 274 LoadNode->setNodeId(LoadSU->NodeNum); 275 } 276 277 SDep ChainPred; 278 SmallVector<SDep, 4> ChainSuccs; 279 SmallVector<SDep, 4> LoadPreds; 280 SmallVector<SDep, 4> NodePreds; 281 SmallVector<SDep, 4> NodeSuccs; 282 for (SDep &Pred : SU->Preds) { 283 if (Pred.isCtrl()) 284 ChainPred = Pred; 285 else if (Pred.getSUnit()->getNode() && 286 Pred.getSUnit()->getNode()->isOperandOf(LoadNode)) 287 LoadPreds.push_back(Pred); 288 else 289 NodePreds.push_back(Pred); 290 } 291 for (SDep &Succ : SU->Succs) { 292 if (Succ.isCtrl()) 293 ChainSuccs.push_back(Succ); 294 else 295 NodeSuccs.push_back(Succ); 296 } 297 298 if (ChainPred.getSUnit()) { 299 RemovePred(SU, ChainPred); 300 if (isNewLoad) 301 AddPred(LoadSU, ChainPred); 302 } 303 for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) { 304 const SDep &Pred = LoadPreds[i]; 305 RemovePred(SU, Pred); 306 if (isNewLoad) { 307 AddPred(LoadSU, Pred); 308 } 309 } 310 for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) { 311 const SDep &Pred = NodePreds[i]; 312 RemovePred(SU, Pred); 313 AddPred(NewSU, Pred); 314 } 315 for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) { 316 SDep D = NodeSuccs[i]; 317 SUnit *SuccDep = D.getSUnit(); 318 D.setSUnit(SU); 319 RemovePred(SuccDep, D); 320 D.setSUnit(NewSU); 321 AddPred(SuccDep, D); 322 } 323 for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) { 324 SDep D = ChainSuccs[i]; 325 SUnit *SuccDep = D.getSUnit(); 326 D.setSUnit(SU); 327 RemovePred(SuccDep, D); 328 if (isNewLoad) { 329 D.setSUnit(LoadSU); 330 AddPred(SuccDep, D); 331 } 332 } 333 if (isNewLoad) { 334 SDep D(LoadSU, SDep::Barrier); 335 D.setLatency(LoadSU->Latency); 336 AddPred(NewSU, D); 337 } 338 339 ++NumUnfolds; 340 341 if (NewSU->NumSuccsLeft == 0) { 342 NewSU->isAvailable = true; 343 return NewSU; 344 } 345 SU = NewSU; 346 } 347 348 LLVM_DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n"); 349 NewSU = Clone(SU); 350 351 // New SUnit has the exact same predecessors. 352 for (SDep &Pred : SU->Preds) 353 if (!Pred.isArtificial()) 354 AddPred(NewSU, Pred); 355 356 // Only copy scheduled successors. Cut them from old node's successor 357 // list and move them over. 358 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps; 359 for (SDep &Succ : SU->Succs) { 360 if (Succ.isArtificial()) 361 continue; 362 SUnit *SuccSU = Succ.getSUnit(); 363 if (SuccSU->isScheduled) { 364 SDep D = Succ; 365 D.setSUnit(NewSU); 366 AddPred(SuccSU, D); 367 D.setSUnit(SU); 368 DelDeps.push_back(std::make_pair(SuccSU, D)); 369 } 370 } 371 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) 372 RemovePred(DelDeps[i].first, DelDeps[i].second); 373 374 ++NumDups; 375 return NewSU; 376 } 377 378 /// InsertCopiesAndMoveSuccs - Insert register copies and move all 379 /// scheduled successors of the given SUnit to the last copy. 380 void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg, 381 const TargetRegisterClass *DestRC, 382 const TargetRegisterClass *SrcRC, 383 SmallVectorImpl<SUnit*> &Copies) { 384 SUnit *CopyFromSU = newSUnit(static_cast<SDNode *>(nullptr)); 385 CopyFromSU->CopySrcRC = SrcRC; 386 CopyFromSU->CopyDstRC = DestRC; 387 388 SUnit *CopyToSU = newSUnit(static_cast<SDNode *>(nullptr)); 389 CopyToSU->CopySrcRC = DestRC; 390 CopyToSU->CopyDstRC = SrcRC; 391 392 // Only copy scheduled successors. Cut them from old node's successor 393 // list and move them over. 394 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps; 395 for (SDep &Succ : SU->Succs) { 396 if (Succ.isArtificial()) 397 continue; 398 SUnit *SuccSU = Succ.getSUnit(); 399 if (SuccSU->isScheduled) { 400 SDep D = Succ; 401 D.setSUnit(CopyToSU); 402 AddPred(SuccSU, D); 403 DelDeps.push_back(std::make_pair(SuccSU, Succ)); 404 } 405 } 406 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) { 407 RemovePred(DelDeps[i].first, DelDeps[i].second); 408 } 409 SDep FromDep(SU, SDep::Data, Reg); 410 FromDep.setLatency(SU->Latency); 411 AddPred(CopyFromSU, FromDep); 412 SDep ToDep(CopyFromSU, SDep::Data, 0); 413 ToDep.setLatency(CopyFromSU->Latency); 414 AddPred(CopyToSU, ToDep); 415 416 Copies.push_back(CopyFromSU); 417 Copies.push_back(CopyToSU); 418 419 ++NumPRCopies; 420 } 421 422 /// getPhysicalRegisterVT - Returns the ValueType of the physical register 423 /// definition of the specified node. 424 /// FIXME: Move to SelectionDAG? 425 static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg, 426 const TargetInstrInfo *TII) { 427 unsigned NumRes; 428 if (N->getOpcode() == ISD::CopyFromReg) { 429 // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type. 430 NumRes = 1; 431 } else { 432 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 433 assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!"); 434 NumRes = MCID.getNumDefs(); 435 for (const MCPhysReg *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) { 436 if (Reg == *ImpDef) 437 break; 438 ++NumRes; 439 } 440 } 441 return N->getSimpleValueType(NumRes); 442 } 443 444 /// CheckForLiveRegDef - Return true and update live register vector if the 445 /// specified register def of the specified SUnit clobbers any "live" registers. 446 static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg, 447 std::vector<SUnit*> &LiveRegDefs, 448 SmallSet<unsigned, 4> &RegAdded, 449 SmallVectorImpl<unsigned> &LRegs, 450 const TargetRegisterInfo *TRI) { 451 bool Added = false; 452 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 453 if (LiveRegDefs[*AI] && LiveRegDefs[*AI] != SU) { 454 if (RegAdded.insert(*AI).second) { 455 LRegs.push_back(*AI); 456 Added = true; 457 } 458 } 459 } 460 return Added; 461 } 462 463 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay 464 /// scheduling of the given node to satisfy live physical register dependencies. 465 /// If the specific node is the last one that's available to schedule, do 466 /// whatever is necessary (i.e. backtracking or cloning) to make it possible. 467 bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU, 468 SmallVectorImpl<unsigned> &LRegs){ 469 if (NumLiveRegs == 0) 470 return false; 471 472 SmallSet<unsigned, 4> RegAdded; 473 // If this node would clobber any "live" register, then it's not ready. 474 for (SDep &Pred : SU->Preds) { 475 if (Pred.isAssignedRegDep()) { 476 CheckForLiveRegDef(Pred.getSUnit(), Pred.getReg(), LiveRegDefs, 477 RegAdded, LRegs, TRI); 478 } 479 } 480 481 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) { 482 if (Node->getOpcode() == ISD::INLINEASM || 483 Node->getOpcode() == ISD::INLINEASM_BR) { 484 // Inline asm can clobber physical defs. 485 unsigned NumOps = Node->getNumOperands(); 486 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue) 487 --NumOps; // Ignore the glue operand. 488 489 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 490 unsigned Flags = 491 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue(); 492 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 493 494 ++i; // Skip the ID value. 495 if (InlineAsm::isRegDefKind(Flags) || 496 InlineAsm::isRegDefEarlyClobberKind(Flags) || 497 InlineAsm::isClobberKind(Flags)) { 498 // Check for def of register or earlyclobber register. 499 for (; NumVals; --NumVals, ++i) { 500 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 501 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 502 CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI); 503 } 504 } else 505 i += NumVals; 506 } 507 continue; 508 } 509 if (!Node->isMachineOpcode()) 510 continue; 511 const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode()); 512 if (!MCID.ImplicitDefs) 513 continue; 514 for (const MCPhysReg *Reg = MCID.getImplicitDefs(); *Reg; ++Reg) { 515 CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI); 516 } 517 } 518 return !LRegs.empty(); 519 } 520 521 522 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up 523 /// schedulers. 524 void ScheduleDAGFast::ListScheduleBottomUp() { 525 unsigned CurCycle = 0; 526 527 // Release any predecessors of the special Exit node. 528 ReleasePredecessors(&ExitSU, CurCycle); 529 530 // Add root to Available queue. 531 if (!SUnits.empty()) { 532 SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()]; 533 assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!"); 534 RootSU->isAvailable = true; 535 AvailableQueue.push(RootSU); 536 } 537 538 // While Available queue is not empty, grab the node with the highest 539 // priority. If it is not ready put it back. Schedule the node. 540 SmallVector<SUnit*, 4> NotReady; 541 DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap; 542 Sequence.reserve(SUnits.size()); 543 while (!AvailableQueue.empty()) { 544 bool Delayed = false; 545 LRegsMap.clear(); 546 SUnit *CurSU = AvailableQueue.pop(); 547 while (CurSU) { 548 SmallVector<unsigned, 4> LRegs; 549 if (!DelayForLiveRegsBottomUp(CurSU, LRegs)) 550 break; 551 Delayed = true; 552 LRegsMap.insert(std::make_pair(CurSU, LRegs)); 553 554 CurSU->isPending = true; // This SU is not in AvailableQueue right now. 555 NotReady.push_back(CurSU); 556 CurSU = AvailableQueue.pop(); 557 } 558 559 // All candidates are delayed due to live physical reg dependencies. 560 // Try code duplication or inserting cross class copies 561 // to resolve it. 562 if (Delayed && !CurSU) { 563 if (!CurSU) { 564 // Try duplicating the nodes that produces these 565 // "expensive to copy" values to break the dependency. In case even 566 // that doesn't work, insert cross class copies. 567 SUnit *TrySU = NotReady[0]; 568 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU]; 569 assert(LRegs.size() == 1 && "Can't handle this yet!"); 570 unsigned Reg = LRegs[0]; 571 SUnit *LRDef = LiveRegDefs[Reg]; 572 MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII); 573 const TargetRegisterClass *RC = 574 TRI->getMinimalPhysRegClass(Reg, VT); 575 const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC); 576 577 // If cross copy register class is the same as RC, then it must be 578 // possible copy the value directly. Do not try duplicate the def. 579 // If cross copy register class is not the same as RC, then it's 580 // possible to copy the value but it require cross register class copies 581 // and it is expensive. 582 // If cross copy register class is null, then it's not possible to copy 583 // the value at all. 584 SUnit *NewDef = nullptr; 585 if (DestRC != RC) { 586 NewDef = CopyAndMoveSuccessors(LRDef); 587 if (!DestRC && !NewDef) 588 report_fatal_error("Can't handle live physical " 589 "register dependency!"); 590 } 591 if (!NewDef) { 592 // Issue copies, these can be expensive cross register class copies. 593 SmallVector<SUnit*, 2> Copies; 594 InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies); 595 LLVM_DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum 596 << " to SU #" << Copies.front()->NodeNum << "\n"); 597 AddPred(TrySU, SDep(Copies.front(), SDep::Artificial)); 598 NewDef = Copies.back(); 599 } 600 601 LLVM_DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum 602 << " to SU #" << TrySU->NodeNum << "\n"); 603 LiveRegDefs[Reg] = NewDef; 604 AddPred(NewDef, SDep(TrySU, SDep::Artificial)); 605 TrySU->isAvailable = false; 606 CurSU = NewDef; 607 } 608 609 if (!CurSU) { 610 llvm_unreachable("Unable to resolve live physical register dependencies!"); 611 } 612 } 613 614 // Add the nodes that aren't ready back onto the available list. 615 for (unsigned i = 0, e = NotReady.size(); i != e; ++i) { 616 NotReady[i]->isPending = false; 617 // May no longer be available due to backtracking. 618 if (NotReady[i]->isAvailable) 619 AvailableQueue.push(NotReady[i]); 620 } 621 NotReady.clear(); 622 623 if (CurSU) 624 ScheduleNodeBottomUp(CurSU, CurCycle); 625 ++CurCycle; 626 } 627 628 // Reverse the order since it is bottom up. 629 std::reverse(Sequence.begin(), Sequence.end()); 630 631 #ifndef NDEBUG 632 VerifyScheduledSequence(/*isBottomUp=*/true); 633 #endif 634 } 635 636 637 namespace { 638 //===----------------------------------------------------------------------===// 639 // ScheduleDAGLinearize - No scheduling scheduler, it simply linearize the 640 // DAG in topological order. 641 // IMPORTANT: this may not work for targets with phyreg dependency. 642 // 643 class ScheduleDAGLinearize : public ScheduleDAGSDNodes { 644 public: 645 ScheduleDAGLinearize(MachineFunction &mf) : ScheduleDAGSDNodes(mf) {} 646 647 void Schedule() override; 648 649 MachineBasicBlock * 650 EmitSchedule(MachineBasicBlock::iterator &InsertPos) override; 651 652 private: 653 std::vector<SDNode*> Sequence; 654 DenseMap<SDNode*, SDNode*> GluedMap; // Cache glue to its user 655 656 void ScheduleNode(SDNode *N); 657 }; 658 } // end anonymous namespace 659 660 void ScheduleDAGLinearize::ScheduleNode(SDNode *N) { 661 if (N->getNodeId() != 0) 662 llvm_unreachable(nullptr); 663 664 if (!N->isMachineOpcode() && 665 (N->getOpcode() == ISD::EntryToken || isPassiveNode(N))) 666 // These nodes do not need to be translated into MIs. 667 return; 668 669 LLVM_DEBUG(dbgs() << "\n*** Scheduling: "); 670 LLVM_DEBUG(N->dump(DAG)); 671 Sequence.push_back(N); 672 673 unsigned NumOps = N->getNumOperands(); 674 if (unsigned NumLeft = NumOps) { 675 SDNode *GluedOpN = nullptr; 676 do { 677 const SDValue &Op = N->getOperand(NumLeft-1); 678 SDNode *OpN = Op.getNode(); 679 680 if (NumLeft == NumOps && Op.getValueType() == MVT::Glue) { 681 // Schedule glue operand right above N. 682 GluedOpN = OpN; 683 assert(OpN->getNodeId() != 0 && "Glue operand not ready?"); 684 OpN->setNodeId(0); 685 ScheduleNode(OpN); 686 continue; 687 } 688 689 if (OpN == GluedOpN) 690 // Glue operand is already scheduled. 691 continue; 692 693 DenseMap<SDNode*, SDNode*>::iterator DI = GluedMap.find(OpN); 694 if (DI != GluedMap.end() && DI->second != N) 695 // Users of glues are counted against the glued users. 696 OpN = DI->second; 697 698 unsigned Degree = OpN->getNodeId(); 699 assert(Degree > 0 && "Predecessor over-released!"); 700 OpN->setNodeId(--Degree); 701 if (Degree == 0) 702 ScheduleNode(OpN); 703 } while (--NumLeft); 704 } 705 } 706 707 /// findGluedUser - Find the representative use of a glue value by walking 708 /// the use chain. 709 static SDNode *findGluedUser(SDNode *N) { 710 while (SDNode *Glued = N->getGluedUser()) 711 N = Glued; 712 return N; 713 } 714 715 void ScheduleDAGLinearize::Schedule() { 716 LLVM_DEBUG(dbgs() << "********** DAG Linearization **********\n"); 717 718 SmallVector<SDNode*, 8> Glues; 719 unsigned DAGSize = 0; 720 for (SDNode &Node : DAG->allnodes()) { 721 SDNode *N = &Node; 722 723 // Use node id to record degree. 724 unsigned Degree = N->use_size(); 725 N->setNodeId(Degree); 726 unsigned NumVals = N->getNumValues(); 727 if (NumVals && N->getValueType(NumVals-1) == MVT::Glue && 728 N->hasAnyUseOfValue(NumVals-1)) { 729 SDNode *User = findGluedUser(N); 730 if (User) { 731 Glues.push_back(N); 732 GluedMap.insert(std::make_pair(N, User)); 733 } 734 } 735 736 if (N->isMachineOpcode() || 737 (N->getOpcode() != ISD::EntryToken && !isPassiveNode(N))) 738 ++DAGSize; 739 } 740 741 for (unsigned i = 0, e = Glues.size(); i != e; ++i) { 742 SDNode *Glue = Glues[i]; 743 SDNode *GUser = GluedMap[Glue]; 744 unsigned Degree = Glue->getNodeId(); 745 unsigned UDegree = GUser->getNodeId(); 746 747 // Glue user must be scheduled together with the glue operand. So other 748 // users of the glue operand must be treated as its users. 749 SDNode *ImmGUser = Glue->getGluedUser(); 750 for (const SDNode *U : Glue->uses()) 751 if (U == ImmGUser) 752 --Degree; 753 GUser->setNodeId(UDegree + Degree); 754 Glue->setNodeId(1); 755 } 756 757 Sequence.reserve(DAGSize); 758 ScheduleNode(DAG->getRoot().getNode()); 759 } 760 761 MachineBasicBlock* 762 ScheduleDAGLinearize::EmitSchedule(MachineBasicBlock::iterator &InsertPos) { 763 InstrEmitter Emitter(BB, InsertPos); 764 DenseMap<SDValue, unsigned> VRBaseMap; 765 766 LLVM_DEBUG({ dbgs() << "\n*** Final schedule ***\n"; }); 767 768 unsigned NumNodes = Sequence.size(); 769 MachineBasicBlock *BB = Emitter.getBlock(); 770 for (unsigned i = 0; i != NumNodes; ++i) { 771 SDNode *N = Sequence[NumNodes-i-1]; 772 LLVM_DEBUG(N->dump(DAG)); 773 Emitter.EmitNode(N, false, false, VRBaseMap); 774 775 // Emit any debug values associated with the node. 776 if (N->getHasDebugValue()) { 777 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos(); 778 for (auto DV : DAG->GetDbgValues(N)) { 779 if (!DV->isEmitted()) 780 if (auto *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap)) 781 BB->insert(InsertPos, DbgMI); 782 } 783 } 784 } 785 786 LLVM_DEBUG(dbgs() << '\n'); 787 788 InsertPos = Emitter.getInsertPos(); 789 return Emitter.getBlock(); 790 } 791 792 //===----------------------------------------------------------------------===// 793 // Public Constructor Functions 794 //===----------------------------------------------------------------------===// 795 796 llvm::ScheduleDAGSDNodes * 797 llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) { 798 return new ScheduleDAGFast(*IS->MF); 799 } 800 801 llvm::ScheduleDAGSDNodes * 802 llvm::createDAGLinearizer(SelectionDAGISel *IS, CodeGenOpt::Level) { 803 return new ScheduleDAGLinearize(*IS->MF); 804 } 805