1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::LegalizeVectors method. 10 // 11 // The vector legalizer looks for vector operations which might need to be 12 // scalarized and legalizes them. This is a separate step from Legalize because 13 // scalarizing can introduce illegal types. For example, suppose we have an 14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 16 // operation, which introduces nodes with the illegal type i64 which must be 17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 18 // the operation must be unrolled, which introduces nodes with the illegal 19 // type i8 which must be promoted. 20 // 21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 22 // or operations that happen to take a vector which are custom-lowered; 23 // the legalization for such operations never produces nodes 24 // with illegal types, so it's okay to put off legalizing them until 25 // SelectionDAG::Legalize runs. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/SelectionDAG.h" 33 #include "llvm/CodeGen/SelectionDAGNodes.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/ValueTypes.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/Compiler.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/MachineValueType.h" 42 #include <cassert> 43 #include <cstdint> 44 #include <iterator> 45 #include <utility> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "legalizevectorops" 50 51 namespace { 52 53 class VectorLegalizer { 54 SelectionDAG& DAG; 55 const TargetLowering &TLI; 56 bool Changed = false; // Keep track of whether anything changed 57 58 /// For nodes that are of legal width, and that have more than one use, this 59 /// map indicates what regularized operand to use. This allows us to avoid 60 /// legalizing the same thing more than once. 61 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 62 63 /// Adds a node to the translation cache. 64 void AddLegalizedOperand(SDValue From, SDValue To) { 65 LegalizedNodes.insert(std::make_pair(From, To)); 66 // If someone requests legalization of the new node, return itself. 67 if (From != To) 68 LegalizedNodes.insert(std::make_pair(To, To)); 69 } 70 71 /// Legalizes the given node. 72 SDValue LegalizeOp(SDValue Op); 73 74 /// Assuming the node is legal, "legalize" the results. 75 SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result); 76 77 /// Make sure Results are legal and update the translation cache. 78 SDValue RecursivelyLegalizeResults(SDValue Op, 79 MutableArrayRef<SDValue> Results); 80 81 /// Wrapper to interface LowerOperation with a vector of Results. 82 /// Returns false if the target wants to use default expansion. Otherwise 83 /// returns true. If return is true and the Results are empty, then the 84 /// target wants to keep the input node as is. 85 bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results); 86 87 /// Implements unrolling a VSETCC. 88 SDValue UnrollVSETCC(SDNode *Node); 89 90 /// Implement expand-based legalization of vector operations. 91 /// 92 /// This is just a high-level routine to dispatch to specific code paths for 93 /// operations to legalize them. 94 void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results); 95 96 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if 97 /// FP_TO_SINT isn't legal. 98 void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 99 100 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 101 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 102 void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 103 104 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 105 SDValue ExpandSEXTINREG(SDNode *Node); 106 107 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 108 /// 109 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 110 /// type. The contents of the bits in the extended part of each element are 111 /// undef. 112 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node); 113 114 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 115 /// 116 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 117 /// type, then shifts left and arithmetic shifts right to introduce a sign 118 /// extension. 119 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node); 120 121 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 122 /// 123 /// Shuffles the low lanes of the operand into place and blends zeros into 124 /// the remaining lanes, finally bitcasting to the proper type. 125 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node); 126 127 /// Expand bswap of vectors into a shuffle if legal. 128 SDValue ExpandBSWAP(SDNode *Node); 129 130 /// Implement vselect in terms of XOR, AND, OR when blend is not 131 /// supported by the target. 132 SDValue ExpandVSELECT(SDNode *Node); 133 SDValue ExpandVP_SELECT(SDNode *Node); 134 SDValue ExpandVP_MERGE(SDNode *Node); 135 SDValue ExpandSELECT(SDNode *Node); 136 std::pair<SDValue, SDValue> ExpandLoad(SDNode *N); 137 SDValue ExpandStore(SDNode *N); 138 SDValue ExpandFNEG(SDNode *Node); 139 void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results); 140 void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results); 141 void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results); 142 void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 143 void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 144 void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 145 void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results); 146 void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 147 void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results); 148 149 void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 150 151 /// Implements vector promotion. 152 /// 153 /// This is essentially just bitcasting the operands to a different type and 154 /// bitcasting the result back to the original type. 155 void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results); 156 157 /// Implements [SU]INT_TO_FP vector promotion. 158 /// 159 /// This is a [zs]ext of the input operand to a larger integer type. 160 void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results); 161 162 /// Implements FP_TO_[SU]INT vector promotion of the result type. 163 /// 164 /// It is promoted to a larger integer type. The result is then 165 /// truncated back to the original type. 166 void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 167 168 public: 169 VectorLegalizer(SelectionDAG& dag) : 170 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 171 172 /// Begin legalizer the vector operations in the DAG. 173 bool Run(); 174 }; 175 176 } // end anonymous namespace 177 178 bool VectorLegalizer::Run() { 179 // Before we start legalizing vector nodes, check if there are any vectors. 180 bool HasVectors = false; 181 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 182 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 183 // Check if the values of the nodes contain vectors. We don't need to check 184 // the operands because we are going to check their values at some point. 185 HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); }); 186 187 // If we found a vector node we can start the legalization. 188 if (HasVectors) 189 break; 190 } 191 192 // If this basic block has no vectors then no need to legalize vectors. 193 if (!HasVectors) 194 return false; 195 196 // The legalize process is inherently a bottom-up recursive process (users 197 // legalize their uses before themselves). Given infinite stack space, we 198 // could just start legalizing on the root and traverse the whole graph. In 199 // practice however, this causes us to run out of stack space on large basic 200 // blocks. To avoid this problem, compute an ordering of the nodes where each 201 // node is only legalized after all of its operands are legalized. 202 DAG.AssignTopologicalOrder(); 203 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 204 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 205 LegalizeOp(SDValue(&*I, 0)); 206 207 // Finally, it's possible the root changed. Get the new root. 208 SDValue OldRoot = DAG.getRoot(); 209 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 210 DAG.setRoot(LegalizedNodes[OldRoot]); 211 212 LegalizedNodes.clear(); 213 214 // Remove dead nodes now. 215 DAG.RemoveDeadNodes(); 216 217 return Changed; 218 } 219 220 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) { 221 assert(Op->getNumValues() == Result->getNumValues() && 222 "Unexpected number of results"); 223 // Generic legalization: just pass the operand through. 224 for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i) 225 AddLegalizedOperand(Op.getValue(i), SDValue(Result, i)); 226 return SDValue(Result, Op.getResNo()); 227 } 228 229 SDValue 230 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op, 231 MutableArrayRef<SDValue> Results) { 232 assert(Results.size() == Op->getNumValues() && 233 "Unexpected number of results"); 234 // Make sure that the generated code is itself legal. 235 for (unsigned i = 0, e = Results.size(); i != e; ++i) { 236 Results[i] = LegalizeOp(Results[i]); 237 AddLegalizedOperand(Op.getValue(i), Results[i]); 238 } 239 240 return Results[Op.getResNo()]; 241 } 242 243 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 244 // Note that LegalizeOp may be reentered even from single-use nodes, which 245 // means that we always must cache transformed nodes. 246 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 247 if (I != LegalizedNodes.end()) return I->second; 248 249 // Legalize the operands 250 SmallVector<SDValue, 8> Ops; 251 for (const SDValue &Oper : Op->op_values()) 252 Ops.push_back(LegalizeOp(Oper)); 253 254 SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops); 255 256 bool HasVectorValueOrOp = 257 llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) || 258 llvm::any_of(Node->op_values(), 259 [](SDValue O) { return O.getValueType().isVector(); }); 260 if (!HasVectorValueOrOp) 261 return TranslateLegalizeResults(Op, Node); 262 263 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 264 EVT ValVT; 265 switch (Op.getOpcode()) { 266 default: 267 return TranslateLegalizeResults(Op, Node); 268 case ISD::LOAD: { 269 LoadSDNode *LD = cast<LoadSDNode>(Node); 270 ISD::LoadExtType ExtType = LD->getExtensionType(); 271 EVT LoadedVT = LD->getMemoryVT(); 272 if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD) 273 Action = TLI.getLoadExtAction(ExtType, LD->getValueType(0), LoadedVT); 274 break; 275 } 276 case ISD::STORE: { 277 StoreSDNode *ST = cast<StoreSDNode>(Node); 278 EVT StVT = ST->getMemoryVT(); 279 MVT ValVT = ST->getValue().getSimpleValueType(); 280 if (StVT.isVector() && ST->isTruncatingStore()) 281 Action = TLI.getTruncStoreAction(ValVT, StVT); 282 break; 283 } 284 case ISD::MERGE_VALUES: 285 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 286 // This operation lies about being legal: when it claims to be legal, 287 // it should actually be expanded. 288 if (Action == TargetLowering::Legal) 289 Action = TargetLowering::Expand; 290 break; 291 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 292 case ISD::STRICT_##DAGN: 293 #include "llvm/IR/ConstrainedOps.def" 294 ValVT = Node->getValueType(0); 295 if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP || 296 Op.getOpcode() == ISD::STRICT_UINT_TO_FP) 297 ValVT = Node->getOperand(1).getValueType(); 298 Action = TLI.getOperationAction(Node->getOpcode(), ValVT); 299 // If we're asked to expand a strict vector floating-point operation, 300 // by default we're going to simply unroll it. That is usually the 301 // best approach, except in the case where the resulting strict (scalar) 302 // operations would themselves use the fallback mutation to non-strict. 303 // In that specific case, just do the fallback on the vector op. 304 if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() && 305 TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) == 306 TargetLowering::Legal) { 307 EVT EltVT = ValVT.getVectorElementType(); 308 if (TLI.getOperationAction(Node->getOpcode(), EltVT) 309 == TargetLowering::Expand && 310 TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT) 311 == TargetLowering::Legal) 312 Action = TargetLowering::Legal; 313 } 314 break; 315 case ISD::ADD: 316 case ISD::SUB: 317 case ISD::MUL: 318 case ISD::MULHS: 319 case ISD::MULHU: 320 case ISD::SDIV: 321 case ISD::UDIV: 322 case ISD::SREM: 323 case ISD::UREM: 324 case ISD::SDIVREM: 325 case ISD::UDIVREM: 326 case ISD::FADD: 327 case ISD::FSUB: 328 case ISD::FMUL: 329 case ISD::FDIV: 330 case ISD::FREM: 331 case ISD::AND: 332 case ISD::OR: 333 case ISD::XOR: 334 case ISD::SHL: 335 case ISD::SRA: 336 case ISD::SRL: 337 case ISD::FSHL: 338 case ISD::FSHR: 339 case ISD::ROTL: 340 case ISD::ROTR: 341 case ISD::ABS: 342 case ISD::BSWAP: 343 case ISD::BITREVERSE: 344 case ISD::CTLZ: 345 case ISD::CTTZ: 346 case ISD::CTLZ_ZERO_UNDEF: 347 case ISD::CTTZ_ZERO_UNDEF: 348 case ISD::CTPOP: 349 case ISD::SELECT: 350 case ISD::VSELECT: 351 case ISD::SELECT_CC: 352 case ISD::ZERO_EXTEND: 353 case ISD::ANY_EXTEND: 354 case ISD::TRUNCATE: 355 case ISD::SIGN_EXTEND: 356 case ISD::FP_TO_SINT: 357 case ISD::FP_TO_UINT: 358 case ISD::FNEG: 359 case ISD::FABS: 360 case ISD::FMINNUM: 361 case ISD::FMAXNUM: 362 case ISD::FMINNUM_IEEE: 363 case ISD::FMAXNUM_IEEE: 364 case ISD::FMINIMUM: 365 case ISD::FMAXIMUM: 366 case ISD::FCOPYSIGN: 367 case ISD::FSQRT: 368 case ISD::FSIN: 369 case ISD::FCOS: 370 case ISD::FPOWI: 371 case ISD::FPOW: 372 case ISD::FLOG: 373 case ISD::FLOG2: 374 case ISD::FLOG10: 375 case ISD::FEXP: 376 case ISD::FEXP2: 377 case ISD::FCEIL: 378 case ISD::FTRUNC: 379 case ISD::FRINT: 380 case ISD::FNEARBYINT: 381 case ISD::FROUND: 382 case ISD::FROUNDEVEN: 383 case ISD::FFLOOR: 384 case ISD::FP_ROUND: 385 case ISD::FP_EXTEND: 386 case ISD::FMA: 387 case ISD::SIGN_EXTEND_INREG: 388 case ISD::ANY_EXTEND_VECTOR_INREG: 389 case ISD::SIGN_EXTEND_VECTOR_INREG: 390 case ISD::ZERO_EXTEND_VECTOR_INREG: 391 case ISD::SMIN: 392 case ISD::SMAX: 393 case ISD::UMIN: 394 case ISD::UMAX: 395 case ISD::SMUL_LOHI: 396 case ISD::UMUL_LOHI: 397 case ISD::SADDO: 398 case ISD::UADDO: 399 case ISD::SSUBO: 400 case ISD::USUBO: 401 case ISD::SMULO: 402 case ISD::UMULO: 403 case ISD::FCANONICALIZE: 404 case ISD::SADDSAT: 405 case ISD::UADDSAT: 406 case ISD::SSUBSAT: 407 case ISD::USUBSAT: 408 case ISD::SSHLSAT: 409 case ISD::USHLSAT: 410 case ISD::FP_TO_SINT_SAT: 411 case ISD::FP_TO_UINT_SAT: 412 case ISD::MGATHER: 413 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 414 break; 415 case ISD::SMULFIX: 416 case ISD::SMULFIXSAT: 417 case ISD::UMULFIX: 418 case ISD::UMULFIXSAT: 419 case ISD::SDIVFIX: 420 case ISD::SDIVFIXSAT: 421 case ISD::UDIVFIX: 422 case ISD::UDIVFIXSAT: { 423 unsigned Scale = Node->getConstantOperandVal(2); 424 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 425 Node->getValueType(0), Scale); 426 break; 427 } 428 case ISD::SINT_TO_FP: 429 case ISD::UINT_TO_FP: 430 case ISD::VECREDUCE_ADD: 431 case ISD::VECREDUCE_MUL: 432 case ISD::VECREDUCE_AND: 433 case ISD::VECREDUCE_OR: 434 case ISD::VECREDUCE_XOR: 435 case ISD::VECREDUCE_SMAX: 436 case ISD::VECREDUCE_SMIN: 437 case ISD::VECREDUCE_UMAX: 438 case ISD::VECREDUCE_UMIN: 439 case ISD::VECREDUCE_FADD: 440 case ISD::VECREDUCE_FMUL: 441 case ISD::VECREDUCE_FMAX: 442 case ISD::VECREDUCE_FMIN: 443 Action = TLI.getOperationAction(Node->getOpcode(), 444 Node->getOperand(0).getValueType()); 445 break; 446 case ISD::VECREDUCE_SEQ_FADD: 447 case ISD::VECREDUCE_SEQ_FMUL: 448 Action = TLI.getOperationAction(Node->getOpcode(), 449 Node->getOperand(1).getValueType()); 450 break; 451 case ISD::SETCC: { 452 MVT OpVT = Node->getOperand(0).getSimpleValueType(); 453 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 454 Action = TLI.getCondCodeAction(CCCode, OpVT); 455 if (Action == TargetLowering::Legal) 456 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 457 break; 458 } 459 460 #define BEGIN_REGISTER_VP_SDNODE(VPID, LEGALPOS, ...) \ 461 case ISD::VPID: { \ 462 EVT LegalizeVT = LEGALPOS < 0 ? Node->getValueType(-(1 + LEGALPOS)) \ 463 : Node->getOperand(LEGALPOS).getValueType(); \ 464 if (ISD::VPID == ISD::VP_SETCC) { \ 465 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); \ 466 Action = TLI.getCondCodeAction(CCCode, LegalizeVT.getSimpleVT()); \ 467 if (Action != TargetLowering::Legal) \ 468 break; \ 469 } \ 470 Action = TLI.getOperationAction(Node->getOpcode(), LegalizeVT); \ 471 } break; 472 #include "llvm/IR/VPIntrinsics.def" 473 } 474 475 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 476 477 SmallVector<SDValue, 8> ResultVals; 478 switch (Action) { 479 default: llvm_unreachable("This action is not supported yet!"); 480 case TargetLowering::Promote: 481 assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) && 482 "This action is not supported yet!"); 483 LLVM_DEBUG(dbgs() << "Promoting\n"); 484 Promote(Node, ResultVals); 485 assert(!ResultVals.empty() && "No results for promotion?"); 486 break; 487 case TargetLowering::Legal: 488 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 489 break; 490 case TargetLowering::Custom: 491 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 492 if (LowerOperationWrapper(Node, ResultVals)) 493 break; 494 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 495 LLVM_FALLTHROUGH; 496 case TargetLowering::Expand: 497 LLVM_DEBUG(dbgs() << "Expanding\n"); 498 Expand(Node, ResultVals); 499 break; 500 } 501 502 if (ResultVals.empty()) 503 return TranslateLegalizeResults(Op, Node); 504 505 Changed = true; 506 return RecursivelyLegalizeResults(Op, ResultVals); 507 } 508 509 // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we 510 // merge them somehow? 511 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node, 512 SmallVectorImpl<SDValue> &Results) { 513 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 514 515 if (!Res.getNode()) 516 return false; 517 518 if (Res == SDValue(Node, 0)) 519 return true; 520 521 // If the original node has one result, take the return value from 522 // LowerOperation as is. It might not be result number 0. 523 if (Node->getNumValues() == 1) { 524 Results.push_back(Res); 525 return true; 526 } 527 528 // If the original node has multiple results, then the return node should 529 // have the same number of results. 530 assert((Node->getNumValues() == Res->getNumValues()) && 531 "Lowering returned the wrong number of results!"); 532 533 // Places new result values base on N result number. 534 for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I) 535 Results.push_back(Res.getValue(I)); 536 537 return true; 538 } 539 540 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 541 // For a few operations there is a specific concept for promotion based on 542 // the operand's type. 543 switch (Node->getOpcode()) { 544 case ISD::SINT_TO_FP: 545 case ISD::UINT_TO_FP: 546 case ISD::STRICT_SINT_TO_FP: 547 case ISD::STRICT_UINT_TO_FP: 548 // "Promote" the operation by extending the operand. 549 PromoteINT_TO_FP(Node, Results); 550 return; 551 case ISD::FP_TO_UINT: 552 case ISD::FP_TO_SINT: 553 case ISD::STRICT_FP_TO_UINT: 554 case ISD::STRICT_FP_TO_SINT: 555 // Promote the operation by extending the operand. 556 PromoteFP_TO_INT(Node, Results); 557 return; 558 case ISD::FP_ROUND: 559 case ISD::FP_EXTEND: 560 // These operations are used to do promotion so they can't be promoted 561 // themselves. 562 llvm_unreachable("Don't know how to promote this operation!"); 563 } 564 565 // There are currently two cases of vector promotion: 566 // 1) Bitcasting a vector of integers to a different type to a vector of the 567 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 568 // 2) Extending a vector of floats to a vector of the same number of larger 569 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 570 assert(Node->getNumValues() == 1 && 571 "Can't promote a vector with multiple results!"); 572 MVT VT = Node->getSimpleValueType(0); 573 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 574 SDLoc dl(Node); 575 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 576 577 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 578 if (Node->getOperand(j).getValueType().isVector()) 579 if (Node->getOperand(j) 580 .getValueType() 581 .getVectorElementType() 582 .isFloatingPoint() && 583 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 584 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j)); 585 else 586 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j)); 587 else 588 Operands[j] = Node->getOperand(j); 589 } 590 591 SDValue Res = 592 DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags()); 593 594 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 595 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 596 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 597 Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl)); 598 else 599 Res = DAG.getNode(ISD::BITCAST, dl, VT, Res); 600 601 Results.push_back(Res); 602 } 603 604 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node, 605 SmallVectorImpl<SDValue> &Results) { 606 // INT_TO_FP operations may require the input operand be promoted even 607 // when the type is otherwise legal. 608 bool IsStrict = Node->isStrictFPOpcode(); 609 MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType(); 610 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 611 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 612 "Vectors have different number of elements!"); 613 614 SDLoc dl(Node); 615 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 616 617 unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP || 618 Node->getOpcode() == ISD::STRICT_UINT_TO_FP) 619 ? ISD::ZERO_EXTEND 620 : ISD::SIGN_EXTEND; 621 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 622 if (Node->getOperand(j).getValueType().isVector()) 623 Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j)); 624 else 625 Operands[j] = Node->getOperand(j); 626 } 627 628 if (IsStrict) { 629 SDValue Res = DAG.getNode(Node->getOpcode(), dl, 630 {Node->getValueType(0), MVT::Other}, Operands); 631 Results.push_back(Res); 632 Results.push_back(Res.getValue(1)); 633 return; 634 } 635 636 SDValue Res = 637 DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands); 638 Results.push_back(Res); 639 } 640 641 // For FP_TO_INT we promote the result type to a vector type with wider 642 // elements and then truncate the result. This is different from the default 643 // PromoteVector which uses bitcast to promote thus assumning that the 644 // promoted vector type has the same overall size. 645 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node, 646 SmallVectorImpl<SDValue> &Results) { 647 MVT VT = Node->getSimpleValueType(0); 648 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 649 bool IsStrict = Node->isStrictFPOpcode(); 650 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 651 "Vectors have different number of elements!"); 652 653 unsigned NewOpc = Node->getOpcode(); 654 // Change FP_TO_UINT to FP_TO_SINT if possible. 655 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 656 if (NewOpc == ISD::FP_TO_UINT && 657 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 658 NewOpc = ISD::FP_TO_SINT; 659 660 if (NewOpc == ISD::STRICT_FP_TO_UINT && 661 TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT)) 662 NewOpc = ISD::STRICT_FP_TO_SINT; 663 664 SDLoc dl(Node); 665 SDValue Promoted, Chain; 666 if (IsStrict) { 667 Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other}, 668 {Node->getOperand(0), Node->getOperand(1)}); 669 Chain = Promoted.getValue(1); 670 } else 671 Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0)); 672 673 // Assert that the converted value fits in the original type. If it doesn't 674 // (eg: because the value being converted is too big), then the result of the 675 // original operation was undefined anyway, so the assert is still correct. 676 if (Node->getOpcode() == ISD::FP_TO_UINT || 677 Node->getOpcode() == ISD::STRICT_FP_TO_UINT) 678 NewOpc = ISD::AssertZext; 679 else 680 NewOpc = ISD::AssertSext; 681 682 Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted, 683 DAG.getValueType(VT.getScalarType())); 684 Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 685 Results.push_back(Promoted); 686 if (IsStrict) 687 Results.push_back(Chain); 688 } 689 690 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) { 691 LoadSDNode *LD = cast<LoadSDNode>(N); 692 return TLI.scalarizeVectorLoad(LD, DAG); 693 } 694 695 SDValue VectorLegalizer::ExpandStore(SDNode *N) { 696 StoreSDNode *ST = cast<StoreSDNode>(N); 697 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 698 return TF; 699 } 700 701 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 702 switch (Node->getOpcode()) { 703 case ISD::LOAD: { 704 std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node); 705 Results.push_back(Tmp.first); 706 Results.push_back(Tmp.second); 707 return; 708 } 709 case ISD::STORE: 710 Results.push_back(ExpandStore(Node)); 711 return; 712 case ISD::MERGE_VALUES: 713 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 714 Results.push_back(Node->getOperand(i)); 715 return; 716 case ISD::SIGN_EXTEND_INREG: 717 Results.push_back(ExpandSEXTINREG(Node)); 718 return; 719 case ISD::ANY_EXTEND_VECTOR_INREG: 720 Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node)); 721 return; 722 case ISD::SIGN_EXTEND_VECTOR_INREG: 723 Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node)); 724 return; 725 case ISD::ZERO_EXTEND_VECTOR_INREG: 726 Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node)); 727 return; 728 case ISD::BSWAP: 729 Results.push_back(ExpandBSWAP(Node)); 730 return; 731 case ISD::VSELECT: 732 Results.push_back(ExpandVSELECT(Node)); 733 return; 734 case ISD::VP_SELECT: 735 Results.push_back(ExpandVP_SELECT(Node)); 736 return; 737 case ISD::SELECT: 738 Results.push_back(ExpandSELECT(Node)); 739 return; 740 case ISD::SELECT_CC: { 741 if (Node->getValueType(0).isScalableVector()) { 742 EVT CondVT = TLI.getSetCCResultType( 743 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 744 SDValue SetCC = 745 DAG.getNode(ISD::SETCC, SDLoc(Node), CondVT, Node->getOperand(0), 746 Node->getOperand(1), Node->getOperand(4)); 747 Results.push_back(DAG.getSelect(SDLoc(Node), Node->getValueType(0), SetCC, 748 Node->getOperand(2), 749 Node->getOperand(3))); 750 return; 751 } 752 break; 753 } 754 case ISD::FP_TO_UINT: 755 ExpandFP_TO_UINT(Node, Results); 756 return; 757 case ISD::UINT_TO_FP: 758 ExpandUINT_TO_FLOAT(Node, Results); 759 return; 760 case ISD::FNEG: 761 Results.push_back(ExpandFNEG(Node)); 762 return; 763 case ISD::FSUB: 764 ExpandFSUB(Node, Results); 765 return; 766 case ISD::SETCC: 767 case ISD::VP_SETCC: 768 ExpandSETCC(Node, Results); 769 return; 770 case ISD::ABS: 771 if (SDValue Expanded = TLI.expandABS(Node, DAG)) { 772 Results.push_back(Expanded); 773 return; 774 } 775 break; 776 case ISD::BITREVERSE: 777 ExpandBITREVERSE(Node, Results); 778 return; 779 case ISD::CTPOP: 780 if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) { 781 Results.push_back(Expanded); 782 return; 783 } 784 break; 785 case ISD::CTLZ: 786 case ISD::CTLZ_ZERO_UNDEF: 787 if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) { 788 Results.push_back(Expanded); 789 return; 790 } 791 break; 792 case ISD::CTTZ: 793 case ISD::CTTZ_ZERO_UNDEF: 794 if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) { 795 Results.push_back(Expanded); 796 return; 797 } 798 break; 799 case ISD::FSHL: 800 case ISD::FSHR: 801 if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) { 802 Results.push_back(Expanded); 803 return; 804 } 805 break; 806 case ISD::ROTL: 807 case ISD::ROTR: 808 if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) { 809 Results.push_back(Expanded); 810 return; 811 } 812 break; 813 case ISD::FMINNUM: 814 case ISD::FMAXNUM: 815 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) { 816 Results.push_back(Expanded); 817 return; 818 } 819 break; 820 case ISD::SMIN: 821 case ISD::SMAX: 822 case ISD::UMIN: 823 case ISD::UMAX: 824 if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) { 825 Results.push_back(Expanded); 826 return; 827 } 828 break; 829 case ISD::UADDO: 830 case ISD::USUBO: 831 ExpandUADDSUBO(Node, Results); 832 return; 833 case ISD::SADDO: 834 case ISD::SSUBO: 835 ExpandSADDSUBO(Node, Results); 836 return; 837 case ISD::UMULO: 838 case ISD::SMULO: 839 ExpandMULO(Node, Results); 840 return; 841 case ISD::USUBSAT: 842 case ISD::SSUBSAT: 843 case ISD::UADDSAT: 844 case ISD::SADDSAT: 845 if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) { 846 Results.push_back(Expanded); 847 return; 848 } 849 break; 850 case ISD::FP_TO_SINT_SAT: 851 case ISD::FP_TO_UINT_SAT: 852 // Expand the fpsosisat if it is scalable to prevent it from unrolling below. 853 if (Node->getValueType(0).isScalableVector()) { 854 if (SDValue Expanded = TLI.expandFP_TO_INT_SAT(Node, DAG)) { 855 Results.push_back(Expanded); 856 return; 857 } 858 } 859 break; 860 case ISD::SMULFIX: 861 case ISD::UMULFIX: 862 if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) { 863 Results.push_back(Expanded); 864 return; 865 } 866 break; 867 case ISD::SMULFIXSAT: 868 case ISD::UMULFIXSAT: 869 // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly 870 // why. Maybe it results in worse codegen compared to the unroll for some 871 // targets? This should probably be investigated. And if we still prefer to 872 // unroll an explanation could be helpful. 873 break; 874 case ISD::SDIVFIX: 875 case ISD::UDIVFIX: 876 ExpandFixedPointDiv(Node, Results); 877 return; 878 case ISD::SDIVFIXSAT: 879 case ISD::UDIVFIXSAT: 880 break; 881 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 882 case ISD::STRICT_##DAGN: 883 #include "llvm/IR/ConstrainedOps.def" 884 ExpandStrictFPOp(Node, Results); 885 return; 886 case ISD::VECREDUCE_ADD: 887 case ISD::VECREDUCE_MUL: 888 case ISD::VECREDUCE_AND: 889 case ISD::VECREDUCE_OR: 890 case ISD::VECREDUCE_XOR: 891 case ISD::VECREDUCE_SMAX: 892 case ISD::VECREDUCE_SMIN: 893 case ISD::VECREDUCE_UMAX: 894 case ISD::VECREDUCE_UMIN: 895 case ISD::VECREDUCE_FADD: 896 case ISD::VECREDUCE_FMUL: 897 case ISD::VECREDUCE_FMAX: 898 case ISD::VECREDUCE_FMIN: 899 Results.push_back(TLI.expandVecReduce(Node, DAG)); 900 return; 901 case ISD::VECREDUCE_SEQ_FADD: 902 case ISD::VECREDUCE_SEQ_FMUL: 903 Results.push_back(TLI.expandVecReduceSeq(Node, DAG)); 904 return; 905 case ISD::SREM: 906 case ISD::UREM: 907 ExpandREM(Node, Results); 908 return; 909 case ISD::VP_MERGE: 910 Results.push_back(ExpandVP_MERGE(Node)); 911 return; 912 } 913 914 Results.push_back(DAG.UnrollVectorOp(Node)); 915 } 916 917 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) { 918 // Lower a select instruction where the condition is a scalar and the 919 // operands are vectors. Lower this select to VSELECT and implement it 920 // using XOR AND OR. The selector bit is broadcasted. 921 EVT VT = Node->getValueType(0); 922 SDLoc DL(Node); 923 924 SDValue Mask = Node->getOperand(0); 925 SDValue Op1 = Node->getOperand(1); 926 SDValue Op2 = Node->getOperand(2); 927 928 assert(VT.isVector() && !Mask.getValueType().isVector() 929 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 930 931 // If we can't even use the basic vector operations of 932 // AND,OR,XOR, we will have to scalarize the op. 933 // Notice that the operation may be 'promoted' which means that it is 934 // 'bitcasted' to another type which is handled. 935 // Also, we need to be able to construct a splat vector using either 936 // BUILD_VECTOR or SPLAT_VECTOR. 937 // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to 938 // BUILD_VECTOR? 939 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 940 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 941 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 942 TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR 943 : ISD::SPLAT_VECTOR, 944 VT) == TargetLowering::Expand) 945 return DAG.UnrollVectorOp(Node); 946 947 // Generate a mask operand. 948 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 949 950 // What is the size of each element in the vector mask. 951 EVT BitTy = MaskTy.getScalarType(); 952 953 Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy), 954 DAG.getConstant(0, DL, BitTy)); 955 956 // Broadcast the mask so that the entire vector is all one or all zero. 957 if (VT.isFixedLengthVector()) 958 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 959 else 960 Mask = DAG.getSplatVector(MaskTy, DL, Mask); 961 962 // Bitcast the operands to be the same type as the mask. 963 // This is needed when we select between FP types because 964 // the mask is a vector of integers. 965 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 966 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 967 968 SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy); 969 970 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 971 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 972 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 973 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 974 } 975 976 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) { 977 EVT VT = Node->getValueType(0); 978 979 // Make sure that the SRA and SHL instructions are available. 980 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 981 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 982 return DAG.UnrollVectorOp(Node); 983 984 SDLoc DL(Node); 985 EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT(); 986 987 unsigned BW = VT.getScalarSizeInBits(); 988 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 989 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 990 991 SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz); 992 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 993 } 994 995 // Generically expand a vector anyext in register to a shuffle of the relevant 996 // lanes into the appropriate locations, with other lanes left undef. 997 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) { 998 SDLoc DL(Node); 999 EVT VT = Node->getValueType(0); 1000 int NumElements = VT.getVectorNumElements(); 1001 SDValue Src = Node->getOperand(0); 1002 EVT SrcVT = Src.getValueType(); 1003 int NumSrcElements = SrcVT.getVectorNumElements(); 1004 1005 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 1006 // into a larger vector type. 1007 if (SrcVT.bitsLE(VT)) { 1008 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 1009 "ANY_EXTEND_VECTOR_INREG vector size mismatch"); 1010 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 1011 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1012 NumSrcElements); 1013 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 1014 Src, DAG.getVectorIdxConstant(0, DL)); 1015 } 1016 1017 // Build a base mask of undef shuffles. 1018 SmallVector<int, 16> ShuffleMask; 1019 ShuffleMask.resize(NumSrcElements, -1); 1020 1021 // Place the extended lanes into the correct locations. 1022 int ExtLaneScale = NumSrcElements / NumElements; 1023 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1024 for (int i = 0; i < NumElements; ++i) 1025 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 1026 1027 return DAG.getNode( 1028 ISD::BITCAST, DL, VT, 1029 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 1030 } 1031 1032 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) { 1033 SDLoc DL(Node); 1034 EVT VT = Node->getValueType(0); 1035 SDValue Src = Node->getOperand(0); 1036 EVT SrcVT = Src.getValueType(); 1037 1038 // First build an any-extend node which can be legalized above when we 1039 // recurse through it. 1040 SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); 1041 1042 // Now we need sign extend. Do this by shifting the elements. Even if these 1043 // aren't legal operations, they have a better chance of being legalized 1044 // without full scalarization than the sign extension does. 1045 unsigned EltWidth = VT.getScalarSizeInBits(); 1046 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 1047 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 1048 return DAG.getNode(ISD::SRA, DL, VT, 1049 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 1050 ShiftAmount); 1051 } 1052 1053 // Generically expand a vector zext in register to a shuffle of the relevant 1054 // lanes into the appropriate locations, a blend of zero into the high bits, 1055 // and a bitcast to the wider element type. 1056 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) { 1057 SDLoc DL(Node); 1058 EVT VT = Node->getValueType(0); 1059 int NumElements = VT.getVectorNumElements(); 1060 SDValue Src = Node->getOperand(0); 1061 EVT SrcVT = Src.getValueType(); 1062 int NumSrcElements = SrcVT.getVectorNumElements(); 1063 1064 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 1065 // into a larger vector type. 1066 if (SrcVT.bitsLE(VT)) { 1067 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 1068 "ZERO_EXTEND_VECTOR_INREG vector size mismatch"); 1069 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 1070 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1071 NumSrcElements); 1072 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 1073 Src, DAG.getVectorIdxConstant(0, DL)); 1074 } 1075 1076 // Build up a zero vector to blend into this one. 1077 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 1078 1079 // Shuffle the incoming lanes into the correct position, and pull all other 1080 // lanes from the zero vector. 1081 auto ShuffleMask = llvm::to_vector<16>(llvm::seq<int>(0, NumSrcElements)); 1082 1083 int ExtLaneScale = NumSrcElements / NumElements; 1084 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1085 for (int i = 0; i < NumElements; ++i) 1086 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 1087 1088 return DAG.getNode(ISD::BITCAST, DL, VT, 1089 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 1090 } 1091 1092 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 1093 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 1094 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 1095 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 1096 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 1097 } 1098 1099 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) { 1100 EVT VT = Node->getValueType(0); 1101 1102 // Scalable vectors can't use shuffle expansion. 1103 if (VT.isScalableVector()) 1104 return TLI.expandBSWAP(Node, DAG); 1105 1106 // Generate a byte wise shuffle mask for the BSWAP. 1107 SmallVector<int, 16> ShuffleMask; 1108 createBSWAPShuffleMask(VT, ShuffleMask); 1109 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 1110 1111 // Only emit a shuffle if the mask is legal. 1112 if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) { 1113 SDLoc DL(Node); 1114 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1115 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 1116 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1117 } 1118 1119 // If we have the appropriate vector bit operations, it is better to use them 1120 // than unrolling and expanding each component. 1121 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 1122 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1123 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && 1124 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 1125 return TLI.expandBSWAP(Node, DAG); 1126 1127 // Otherwise unroll. 1128 return DAG.UnrollVectorOp(Node); 1129 } 1130 1131 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node, 1132 SmallVectorImpl<SDValue> &Results) { 1133 EVT VT = Node->getValueType(0); 1134 1135 // We can't unroll or use shuffles for scalable vectors. 1136 if (VT.isScalableVector()) { 1137 Results.push_back(TLI.expandBITREVERSE(Node, DAG)); 1138 return; 1139 } 1140 1141 // If we have the scalar operation, it's probably cheaper to unroll it. 1142 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) { 1143 SDValue Tmp = DAG.UnrollVectorOp(Node); 1144 Results.push_back(Tmp); 1145 return; 1146 } 1147 1148 // If the vector element width is a whole number of bytes, test if its legal 1149 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 1150 // vector. This greatly reduces the number of bit shifts necessary. 1151 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 1152 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 1153 SmallVector<int, 16> BSWAPMask; 1154 createBSWAPShuffleMask(VT, BSWAPMask); 1155 1156 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 1157 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 1158 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 1159 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 1160 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 1161 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 1162 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 1163 SDLoc DL(Node); 1164 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1165 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 1166 BSWAPMask); 1167 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 1168 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 1169 Results.push_back(Op); 1170 return; 1171 } 1172 } 1173 1174 // If we have the appropriate vector bit operations, it is better to use them 1175 // than unrolling and expanding each component. 1176 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 1177 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1178 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && 1179 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) { 1180 Results.push_back(TLI.expandBITREVERSE(Node, DAG)); 1181 return; 1182 } 1183 1184 // Otherwise unroll. 1185 SDValue Tmp = DAG.UnrollVectorOp(Node); 1186 Results.push_back(Tmp); 1187 } 1188 1189 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) { 1190 // Implement VSELECT in terms of XOR, AND, OR 1191 // on platforms which do not support blend natively. 1192 SDLoc DL(Node); 1193 1194 SDValue Mask = Node->getOperand(0); 1195 SDValue Op1 = Node->getOperand(1); 1196 SDValue Op2 = Node->getOperand(2); 1197 1198 EVT VT = Mask.getValueType(); 1199 1200 // If we can't even use the basic vector operations of 1201 // AND,OR,XOR, we will have to scalarize the op. 1202 // Notice that the operation may be 'promoted' which means that it is 1203 // 'bitcasted' to another type which is handled. 1204 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1205 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1206 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand) 1207 return DAG.UnrollVectorOp(Node); 1208 1209 // This operation also isn't safe with AND, OR, XOR when the boolean type is 1210 // 0/1 and the select operands aren't also booleans, as we need an all-ones 1211 // vector constant to mask with. 1212 // FIXME: Sign extend 1 to all ones if that's legal on the target. 1213 auto BoolContents = TLI.getBooleanContents(Op1.getValueType()); 1214 if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent && 1215 !(BoolContents == TargetLowering::ZeroOrOneBooleanContent && 1216 Op1.getValueType().getVectorElementType() == MVT::i1)) 1217 return DAG.UnrollVectorOp(Node); 1218 1219 // If the mask and the type are different sizes, unroll the vector op. This 1220 // can occur when getSetCCResultType returns something that is different in 1221 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1222 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1223 return DAG.UnrollVectorOp(Node); 1224 1225 // Bitcast the operands to be the same type as the mask. 1226 // This is needed when we select between FP types because 1227 // the mask is a vector of integers. 1228 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1229 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1230 1231 SDValue NotMask = DAG.getNOT(DL, Mask, VT); 1232 1233 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1234 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1235 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1236 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 1237 } 1238 1239 SDValue VectorLegalizer::ExpandVP_SELECT(SDNode *Node) { 1240 // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which 1241 // do not support it natively. 1242 SDLoc DL(Node); 1243 1244 SDValue Mask = Node->getOperand(0); 1245 SDValue Op1 = Node->getOperand(1); 1246 SDValue Op2 = Node->getOperand(2); 1247 SDValue EVL = Node->getOperand(3); 1248 1249 EVT VT = Mask.getValueType(); 1250 1251 // If we can't even use the basic vector operations of 1252 // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op. 1253 if (TLI.getOperationAction(ISD::VP_AND, VT) == TargetLowering::Expand || 1254 TLI.getOperationAction(ISD::VP_XOR, VT) == TargetLowering::Expand || 1255 TLI.getOperationAction(ISD::VP_OR, VT) == TargetLowering::Expand) 1256 return DAG.UnrollVectorOp(Node); 1257 1258 // This operation also isn't safe when the operands aren't also booleans. 1259 if (Op1.getValueType().getVectorElementType() != MVT::i1) 1260 return DAG.UnrollVectorOp(Node); 1261 1262 SDValue Ones = DAG.getAllOnesConstant(DL, VT); 1263 SDValue NotMask = DAG.getNode(ISD::VP_XOR, DL, VT, Mask, Ones, Mask, EVL); 1264 1265 Op1 = DAG.getNode(ISD::VP_AND, DL, VT, Op1, Mask, Mask, EVL); 1266 Op2 = DAG.getNode(ISD::VP_AND, DL, VT, Op2, NotMask, Mask, EVL); 1267 return DAG.getNode(ISD::VP_OR, DL, VT, Op1, Op2, Mask, EVL); 1268 } 1269 1270 SDValue VectorLegalizer::ExpandVP_MERGE(SDNode *Node) { 1271 // Implement VP_MERGE in terms of VSELECT. Construct a mask where vector 1272 // indices less than the EVL/pivot are true. Combine that with the original 1273 // mask for a full-length mask. Use a full-length VSELECT to select between 1274 // the true and false values. 1275 SDLoc DL(Node); 1276 1277 SDValue Mask = Node->getOperand(0); 1278 SDValue Op1 = Node->getOperand(1); 1279 SDValue Op2 = Node->getOperand(2); 1280 SDValue EVL = Node->getOperand(3); 1281 1282 EVT MaskVT = Mask.getValueType(); 1283 bool IsFixedLen = MaskVT.isFixedLengthVector(); 1284 1285 EVT EVLVecVT = EVT::getVectorVT(*DAG.getContext(), EVL.getValueType(), 1286 MaskVT.getVectorElementCount()); 1287 1288 // If we can't construct the EVL mask efficiently, it's better to unroll. 1289 if ((IsFixedLen && 1290 !TLI.isOperationLegalOrCustom(ISD::BUILD_VECTOR, EVLVecVT)) || 1291 (!IsFixedLen && 1292 (!TLI.isOperationLegalOrCustom(ISD::STEP_VECTOR, EVLVecVT) || 1293 !TLI.isOperationLegalOrCustom(ISD::SPLAT_VECTOR, EVLVecVT)))) 1294 return DAG.UnrollVectorOp(Node); 1295 1296 // If using a SETCC would result in a different type than the mask type, 1297 // unroll. 1298 if (TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1299 EVLVecVT) != MaskVT) 1300 return DAG.UnrollVectorOp(Node); 1301 1302 SDValue StepVec = DAG.getStepVector(DL, EVLVecVT); 1303 SDValue SplatEVL = IsFixedLen ? DAG.getSplatBuildVector(EVLVecVT, DL, EVL) 1304 : DAG.getSplatVector(EVLVecVT, DL, EVL); 1305 SDValue EVLMask = 1306 DAG.getSetCC(DL, MaskVT, StepVec, SplatEVL, ISD::CondCode::SETULT); 1307 1308 SDValue FullMask = DAG.getNode(ISD::AND, DL, MaskVT, Mask, EVLMask); 1309 return DAG.getSelect(DL, Node->getValueType(0), FullMask, Op1, Op2); 1310 } 1311 1312 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node, 1313 SmallVectorImpl<SDValue> &Results) { 1314 // Attempt to expand using TargetLowering. 1315 SDValue Result, Chain; 1316 if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) { 1317 Results.push_back(Result); 1318 if (Node->isStrictFPOpcode()) 1319 Results.push_back(Chain); 1320 return; 1321 } 1322 1323 // Otherwise go ahead and unroll. 1324 if (Node->isStrictFPOpcode()) { 1325 UnrollStrictFPOp(Node, Results); 1326 return; 1327 } 1328 1329 Results.push_back(DAG.UnrollVectorOp(Node)); 1330 } 1331 1332 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node, 1333 SmallVectorImpl<SDValue> &Results) { 1334 bool IsStrict = Node->isStrictFPOpcode(); 1335 unsigned OpNo = IsStrict ? 1 : 0; 1336 SDValue Src = Node->getOperand(OpNo); 1337 EVT VT = Src.getValueType(); 1338 SDLoc DL(Node); 1339 1340 // Attempt to expand using TargetLowering. 1341 SDValue Result; 1342 SDValue Chain; 1343 if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) { 1344 Results.push_back(Result); 1345 if (IsStrict) 1346 Results.push_back(Chain); 1347 return; 1348 } 1349 1350 // Make sure that the SINT_TO_FP and SRL instructions are available. 1351 if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) == 1352 TargetLowering::Expand) || 1353 (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) == 1354 TargetLowering::Expand)) || 1355 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) { 1356 if (IsStrict) { 1357 UnrollStrictFPOp(Node, Results); 1358 return; 1359 } 1360 1361 Results.push_back(DAG.UnrollVectorOp(Node)); 1362 return; 1363 } 1364 1365 unsigned BW = VT.getScalarSizeInBits(); 1366 assert((BW == 64 || BW == 32) && 1367 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1368 1369 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1370 1371 // Constants to clear the upper part of the word. 1372 // Notice that we can also use SHL+SHR, but using a constant is slightly 1373 // faster on x86. 1374 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1375 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1376 1377 // Two to the power of half-word-size. 1378 SDValue TWOHW = 1379 DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0)); 1380 1381 // Clear upper part of LO, lower HI 1382 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord); 1383 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask); 1384 1385 if (IsStrict) { 1386 // Convert hi and lo to floats 1387 // Convert the hi part back to the upper values 1388 // TODO: Can any fast-math-flags be set on these nodes? 1389 SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1390 {Node->getValueType(0), MVT::Other}, 1391 {Node->getOperand(0), HI}); 1392 fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other}, 1393 {fHI.getValue(1), fHI, TWOHW}); 1394 SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1395 {Node->getValueType(0), MVT::Other}, 1396 {Node->getOperand(0), LO}); 1397 1398 SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1), 1399 fLO.getValue(1)); 1400 1401 // Add the two halves 1402 SDValue Result = 1403 DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other}, 1404 {TF, fHI, fLO}); 1405 1406 Results.push_back(Result); 1407 Results.push_back(Result.getValue(1)); 1408 return; 1409 } 1410 1411 // Convert hi and lo to floats 1412 // Convert the hi part back to the upper values 1413 // TODO: Can any fast-math-flags be set on these nodes? 1414 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI); 1415 fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW); 1416 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO); 1417 1418 // Add the two halves 1419 Results.push_back( 1420 DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO)); 1421 } 1422 1423 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) { 1424 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) { 1425 SDLoc DL(Node); 1426 SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0)); 1427 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1428 return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero, 1429 Node->getOperand(0)); 1430 } 1431 return DAG.UnrollVectorOp(Node); 1432 } 1433 1434 void VectorLegalizer::ExpandFSUB(SDNode *Node, 1435 SmallVectorImpl<SDValue> &Results) { 1436 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1437 // we can defer this to operation legalization where it will be lowered as 1438 // a+(-b). 1439 EVT VT = Node->getValueType(0); 1440 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1441 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1442 return; // Defer to LegalizeDAG 1443 1444 SDValue Tmp = DAG.UnrollVectorOp(Node); 1445 Results.push_back(Tmp); 1446 } 1447 1448 void VectorLegalizer::ExpandSETCC(SDNode *Node, 1449 SmallVectorImpl<SDValue> &Results) { 1450 bool NeedInvert = false; 1451 bool IsVP = Node->getOpcode() == ISD::VP_SETCC; 1452 SDLoc dl(Node); 1453 MVT OpVT = Node->getOperand(0).getSimpleValueType(); 1454 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 1455 1456 if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) { 1457 Results.push_back(UnrollVSETCC(Node)); 1458 return; 1459 } 1460 1461 SDValue Chain; 1462 SDValue LHS = Node->getOperand(0); 1463 SDValue RHS = Node->getOperand(1); 1464 SDValue CC = Node->getOperand(2); 1465 SDValue Mask, EVL; 1466 if (IsVP) { 1467 Mask = Node->getOperand(3); 1468 EVL = Node->getOperand(4); 1469 } 1470 1471 bool Legalized = 1472 TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS, RHS, CC, Mask, 1473 EVL, NeedInvert, dl, Chain); 1474 1475 if (Legalized) { 1476 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 1477 // condition code, create a new SETCC node. 1478 if (CC.getNode()) { 1479 if (!IsVP) 1480 LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC, 1481 Node->getFlags()); 1482 else 1483 LHS = DAG.getNode(ISD::VP_SETCC, dl, Node->getValueType(0), 1484 {LHS, RHS, CC, Mask, EVL}, Node->getFlags()); 1485 } 1486 1487 // If we expanded the SETCC by inverting the condition code, then wrap 1488 // the existing SETCC in a NOT to restore the intended condition. 1489 if (NeedInvert) { 1490 if (!IsVP) 1491 LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0)); 1492 else 1493 LHS = DAG.getVPLogicalNOT(dl, LHS, Mask, EVL, LHS->getValueType(0)); 1494 } 1495 } else { 1496 // Otherwise, SETCC for the given comparison type must be completely 1497 // illegal; expand it into a SELECT_CC. 1498 EVT VT = Node->getValueType(0); 1499 LHS = 1500 DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS, 1501 DAG.getBoolConstant(true, dl, VT, LHS.getValueType()), 1502 DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC); 1503 LHS->setFlags(Node->getFlags()); 1504 } 1505 1506 Results.push_back(LHS); 1507 } 1508 1509 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node, 1510 SmallVectorImpl<SDValue> &Results) { 1511 SDValue Result, Overflow; 1512 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 1513 Results.push_back(Result); 1514 Results.push_back(Overflow); 1515 } 1516 1517 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node, 1518 SmallVectorImpl<SDValue> &Results) { 1519 SDValue Result, Overflow; 1520 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 1521 Results.push_back(Result); 1522 Results.push_back(Overflow); 1523 } 1524 1525 void VectorLegalizer::ExpandMULO(SDNode *Node, 1526 SmallVectorImpl<SDValue> &Results) { 1527 SDValue Result, Overflow; 1528 if (!TLI.expandMULO(Node, Result, Overflow, DAG)) 1529 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node); 1530 1531 Results.push_back(Result); 1532 Results.push_back(Overflow); 1533 } 1534 1535 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node, 1536 SmallVectorImpl<SDValue> &Results) { 1537 SDNode *N = Node; 1538 if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N), 1539 N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG)) 1540 Results.push_back(Expanded); 1541 } 1542 1543 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node, 1544 SmallVectorImpl<SDValue> &Results) { 1545 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) { 1546 ExpandUINT_TO_FLOAT(Node, Results); 1547 return; 1548 } 1549 if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) { 1550 ExpandFP_TO_UINT(Node, Results); 1551 return; 1552 } 1553 1554 UnrollStrictFPOp(Node, Results); 1555 } 1556 1557 void VectorLegalizer::ExpandREM(SDNode *Node, 1558 SmallVectorImpl<SDValue> &Results) { 1559 assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) && 1560 "Expected REM node"); 1561 1562 SDValue Result; 1563 if (!TLI.expandREM(Node, Result, DAG)) 1564 Result = DAG.UnrollVectorOp(Node); 1565 Results.push_back(Result); 1566 } 1567 1568 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node, 1569 SmallVectorImpl<SDValue> &Results) { 1570 EVT VT = Node->getValueType(0); 1571 EVT EltVT = VT.getVectorElementType(); 1572 unsigned NumElems = VT.getVectorNumElements(); 1573 unsigned NumOpers = Node->getNumOperands(); 1574 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1575 1576 EVT TmpEltVT = EltVT; 1577 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1578 Node->getOpcode() == ISD::STRICT_FSETCCS) 1579 TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(), 1580 *DAG.getContext(), TmpEltVT); 1581 1582 EVT ValueVTs[] = {TmpEltVT, MVT::Other}; 1583 SDValue Chain = Node->getOperand(0); 1584 SDLoc dl(Node); 1585 1586 SmallVector<SDValue, 32> OpValues; 1587 SmallVector<SDValue, 32> OpChains; 1588 for (unsigned i = 0; i < NumElems; ++i) { 1589 SmallVector<SDValue, 4> Opers; 1590 SDValue Idx = DAG.getVectorIdxConstant(i, dl); 1591 1592 // The Chain is the first operand. 1593 Opers.push_back(Chain); 1594 1595 // Now process the remaining operands. 1596 for (unsigned j = 1; j < NumOpers; ++j) { 1597 SDValue Oper = Node->getOperand(j); 1598 EVT OperVT = Oper.getValueType(); 1599 1600 if (OperVT.isVector()) 1601 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1602 OperVT.getVectorElementType(), Oper, Idx); 1603 1604 Opers.push_back(Oper); 1605 } 1606 1607 SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers); 1608 SDValue ScalarResult = ScalarOp.getValue(0); 1609 SDValue ScalarChain = ScalarOp.getValue(1); 1610 1611 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1612 Node->getOpcode() == ISD::STRICT_FSETCCS) 1613 ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult, 1614 DAG.getAllOnesConstant(dl, EltVT), 1615 DAG.getConstant(0, dl, EltVT)); 1616 1617 OpValues.push_back(ScalarResult); 1618 OpChains.push_back(ScalarChain); 1619 } 1620 1621 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1622 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1623 1624 Results.push_back(Result); 1625 Results.push_back(NewChain); 1626 } 1627 1628 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) { 1629 EVT VT = Node->getValueType(0); 1630 unsigned NumElems = VT.getVectorNumElements(); 1631 EVT EltVT = VT.getVectorElementType(); 1632 SDValue LHS = Node->getOperand(0); 1633 SDValue RHS = Node->getOperand(1); 1634 SDValue CC = Node->getOperand(2); 1635 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1636 SDLoc dl(Node); 1637 SmallVector<SDValue, 8> Ops(NumElems); 1638 for (unsigned i = 0; i < NumElems; ++i) { 1639 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1640 DAG.getVectorIdxConstant(i, dl)); 1641 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1642 DAG.getVectorIdxConstant(i, dl)); 1643 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1644 TLI.getSetCCResultType(DAG.getDataLayout(), 1645 *DAG.getContext(), TmpEltVT), 1646 LHSElem, RHSElem, CC); 1647 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getAllOnesConstant(dl, EltVT), 1648 DAG.getConstant(0, dl, EltVT)); 1649 } 1650 return DAG.getBuildVector(VT, dl, Ops); 1651 } 1652 1653 bool SelectionDAG::LegalizeVectors() { 1654 return VectorLegalizer(*this).Run(); 1655 } 1656