1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::LegalizeVectors method. 10 // 11 // The vector legalizer looks for vector operations which might need to be 12 // scalarized and legalizes them. This is a separate step from Legalize because 13 // scalarizing can introduce illegal types. For example, suppose we have an 14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 16 // operation, which introduces nodes with the illegal type i64 which must be 17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 18 // the operation must be unrolled, which introduces nodes with the illegal 19 // type i8 which must be promoted. 20 // 21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 22 // or operations that happen to take a vector which are custom-lowered; 23 // the legalization for such operations never produces nodes 24 // with illegal types, so it's okay to put off legalizing them until 25 // SelectionDAG::Legalize runs. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/SelectionDAGNodes.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include <cassert> 46 #include <cstdint> 47 #include <iterator> 48 #include <utility> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "legalizevectorops" 53 54 namespace { 55 56 class VectorLegalizer { 57 SelectionDAG& DAG; 58 const TargetLowering &TLI; 59 bool Changed = false; // Keep track of whether anything changed 60 61 /// For nodes that are of legal width, and that have more than one use, this 62 /// map indicates what regularized operand to use. This allows us to avoid 63 /// legalizing the same thing more than once. 64 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 65 66 /// Adds a node to the translation cache. 67 void AddLegalizedOperand(SDValue From, SDValue To) { 68 LegalizedNodes.insert(std::make_pair(From, To)); 69 // If someone requests legalization of the new node, return itself. 70 if (From != To) 71 LegalizedNodes.insert(std::make_pair(To, To)); 72 } 73 74 /// Legalizes the given node. 75 SDValue LegalizeOp(SDValue Op); 76 77 /// Assuming the node is legal, "legalize" the results. 78 SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result); 79 80 /// Make sure Results are legal and update the translation cache. 81 SDValue RecursivelyLegalizeResults(SDValue Op, 82 MutableArrayRef<SDValue> Results); 83 84 /// Wrapper to interface LowerOperation with a vector of Results. 85 /// Returns false if the target wants to use default expansion. Otherwise 86 /// returns true. If return is true and the Results are empty, then the 87 /// target wants to keep the input node as is. 88 bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results); 89 90 /// Implements unrolling a VSETCC. 91 SDValue UnrollVSETCC(SDNode *Node); 92 93 /// Implement expand-based legalization of vector operations. 94 /// 95 /// This is just a high-level routine to dispatch to specific code paths for 96 /// operations to legalize them. 97 void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results); 98 99 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if 100 /// FP_TO_SINT isn't legal. 101 void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 102 103 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 104 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 105 void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 106 107 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 108 SDValue ExpandSEXTINREG(SDNode *Node); 109 110 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 111 /// 112 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 113 /// type. The contents of the bits in the extended part of each element are 114 /// undef. 115 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node); 116 117 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 118 /// 119 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 120 /// type, then shifts left and arithmetic shifts right to introduce a sign 121 /// extension. 122 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node); 123 124 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 125 /// 126 /// Shuffles the low lanes of the operand into place and blends zeros into 127 /// the remaining lanes, finally bitcasting to the proper type. 128 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node); 129 130 /// Expand bswap of vectors into a shuffle if legal. 131 SDValue ExpandBSWAP(SDNode *Node); 132 133 /// Implement vselect in terms of XOR, AND, OR when blend is not 134 /// supported by the target. 135 SDValue ExpandVSELECT(SDNode *Node); 136 SDValue ExpandSELECT(SDNode *Node); 137 std::pair<SDValue, SDValue> ExpandLoad(SDNode *N); 138 SDValue ExpandStore(SDNode *N); 139 SDValue ExpandFNEG(SDNode *Node); 140 void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results); 141 void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results); 142 void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 143 void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 144 void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 145 SDValue ExpandFixedPointDiv(SDNode *Node); 146 SDValue ExpandStrictFPOp(SDNode *Node); 147 void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 148 149 void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 150 151 /// Implements vector promotion. 152 /// 153 /// This is essentially just bitcasting the operands to a different type and 154 /// bitcasting the result back to the original type. 155 void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results); 156 157 /// Implements [SU]INT_TO_FP vector promotion. 158 /// 159 /// This is a [zs]ext of the input operand to a larger integer type. 160 void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results); 161 162 /// Implements FP_TO_[SU]INT vector promotion of the result type. 163 /// 164 /// It is promoted to a larger integer type. The result is then 165 /// truncated back to the original type. 166 void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 167 168 public: 169 VectorLegalizer(SelectionDAG& dag) : 170 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 171 172 /// Begin legalizer the vector operations in the DAG. 173 bool Run(); 174 }; 175 176 } // end anonymous namespace 177 178 bool VectorLegalizer::Run() { 179 // Before we start legalizing vector nodes, check if there are any vectors. 180 bool HasVectors = false; 181 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 182 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 183 // Check if the values of the nodes contain vectors. We don't need to check 184 // the operands because we are going to check their values at some point. 185 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 186 J != E; ++J) 187 HasVectors |= J->isVector(); 188 189 // If we found a vector node we can start the legalization. 190 if (HasVectors) 191 break; 192 } 193 194 // If this basic block has no vectors then no need to legalize vectors. 195 if (!HasVectors) 196 return false; 197 198 // The legalize process is inherently a bottom-up recursive process (users 199 // legalize their uses before themselves). Given infinite stack space, we 200 // could just start legalizing on the root and traverse the whole graph. In 201 // practice however, this causes us to run out of stack space on large basic 202 // blocks. To avoid this problem, compute an ordering of the nodes where each 203 // node is only legalized after all of its operands are legalized. 204 DAG.AssignTopologicalOrder(); 205 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 206 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 207 LegalizeOp(SDValue(&*I, 0)); 208 209 // Finally, it's possible the root changed. Get the new root. 210 SDValue OldRoot = DAG.getRoot(); 211 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 212 DAG.setRoot(LegalizedNodes[OldRoot]); 213 214 LegalizedNodes.clear(); 215 216 // Remove dead nodes now. 217 DAG.RemoveDeadNodes(); 218 219 return Changed; 220 } 221 222 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) { 223 assert(Op->getNumValues() == Result->getNumValues() && 224 "Unexpected number of results"); 225 // Generic legalization: just pass the operand through. 226 for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i) 227 AddLegalizedOperand(Op.getValue(i), SDValue(Result, i)); 228 return SDValue(Result, Op.getResNo()); 229 } 230 231 SDValue 232 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op, 233 MutableArrayRef<SDValue> Results) { 234 assert(Results.size() == Op->getNumValues() && 235 "Unexpected number of results"); 236 // Make sure that the generated code is itself legal. 237 for (unsigned i = 0, e = Results.size(); i != e; ++i) { 238 Results[i] = LegalizeOp(Results[i]); 239 AddLegalizedOperand(Op.getValue(i), Results[i]); 240 } 241 242 return Results[Op.getResNo()]; 243 } 244 245 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 246 // Note that LegalizeOp may be reentered even from single-use nodes, which 247 // means that we always must cache transformed nodes. 248 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 249 if (I != LegalizedNodes.end()) return I->second; 250 251 // Legalize the operands 252 SmallVector<SDValue, 8> Ops; 253 for (const SDValue &Oper : Op->op_values()) 254 Ops.push_back(LegalizeOp(Oper)); 255 256 SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops); 257 258 if (Op.getOpcode() == ISD::LOAD) { 259 LoadSDNode *LD = cast<LoadSDNode>(Node); 260 ISD::LoadExtType ExtType = LD->getExtensionType(); 261 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { 262 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: "; 263 Node->dump(&DAG)); 264 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 265 LD->getMemoryVT())) { 266 default: llvm_unreachable("This action is not supported yet!"); 267 case TargetLowering::Legal: 268 return TranslateLegalizeResults(Op, Node); 269 case TargetLowering::Custom: { 270 SmallVector<SDValue, 2> ResultVals; 271 if (LowerOperationWrapper(Node, ResultVals)) { 272 if (ResultVals.empty()) 273 return TranslateLegalizeResults(Op, Node); 274 275 Changed = true; 276 return RecursivelyLegalizeResults(Op, ResultVals); 277 } 278 LLVM_FALLTHROUGH; 279 } 280 case TargetLowering::Expand: { 281 Changed = true; 282 std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node); 283 AddLegalizedOperand(Op.getValue(0), Tmp.first); 284 AddLegalizedOperand(Op.getValue(1), Tmp.second); 285 return Op.getResNo() ? Tmp.first : Tmp.second; 286 } 287 } 288 } 289 } else if (Op.getOpcode() == ISD::STORE) { 290 StoreSDNode *ST = cast<StoreSDNode>(Node); 291 EVT StVT = ST->getMemoryVT(); 292 MVT ValVT = ST->getValue().getSimpleValueType(); 293 if (StVT.isVector() && ST->isTruncatingStore()) { 294 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: "; 295 Node->dump(&DAG)); 296 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 297 default: llvm_unreachable("This action is not supported yet!"); 298 case TargetLowering::Legal: 299 return TranslateLegalizeResults(Op, Node); 300 case TargetLowering::Custom: { 301 SmallVector<SDValue, 1> ResultVals; 302 if (LowerOperationWrapper(Node, ResultVals)) { 303 if (ResultVals.empty()) 304 return TranslateLegalizeResults(Op, Node); 305 306 Changed = true; 307 return RecursivelyLegalizeResults(Op, ResultVals); 308 } 309 LLVM_FALLTHROUGH; 310 } 311 case TargetLowering::Expand: { 312 Changed = true; 313 SDValue Chain = ExpandStore(Node); 314 AddLegalizedOperand(Op, Chain); 315 return Chain; 316 } 317 } 318 } 319 } 320 321 bool HasVectorValueOrOp = false; 322 for (auto J = Node->value_begin(), E = Node->value_end(); J != E; ++J) 323 HasVectorValueOrOp |= J->isVector(); 324 for (const SDValue &Oper : Node->op_values()) 325 HasVectorValueOrOp |= Oper.getValueType().isVector(); 326 327 if (!HasVectorValueOrOp) 328 return TranslateLegalizeResults(Op, Node); 329 330 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 331 EVT ValVT; 332 switch (Op.getOpcode()) { 333 default: 334 return TranslateLegalizeResults(Op, Node); 335 case ISD::MERGE_VALUES: 336 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 337 // This operation lies about being legal: when it claims to be legal, 338 // it should actually be expanded. 339 if (Action == TargetLowering::Legal) 340 Action = TargetLowering::Expand; 341 break; 342 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 343 case ISD::STRICT_##DAGN: 344 #include "llvm/IR/ConstrainedOps.def" 345 ValVT = Node->getValueType(0); 346 if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP || 347 Op.getOpcode() == ISD::STRICT_UINT_TO_FP) 348 ValVT = Node->getOperand(1).getValueType(); 349 Action = TLI.getOperationAction(Node->getOpcode(), ValVT); 350 // If we're asked to expand a strict vector floating-point operation, 351 // by default we're going to simply unroll it. That is usually the 352 // best approach, except in the case where the resulting strict (scalar) 353 // operations would themselves use the fallback mutation to non-strict. 354 // In that specific case, just do the fallback on the vector op. 355 if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() && 356 TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) == 357 TargetLowering::Legal) { 358 EVT EltVT = ValVT.getVectorElementType(); 359 if (TLI.getOperationAction(Node->getOpcode(), EltVT) 360 == TargetLowering::Expand && 361 TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT) 362 == TargetLowering::Legal) 363 Action = TargetLowering::Legal; 364 } 365 break; 366 case ISD::ADD: 367 case ISD::SUB: 368 case ISD::MUL: 369 case ISD::MULHS: 370 case ISD::MULHU: 371 case ISD::SDIV: 372 case ISD::UDIV: 373 case ISD::SREM: 374 case ISD::UREM: 375 case ISD::SDIVREM: 376 case ISD::UDIVREM: 377 case ISD::FADD: 378 case ISD::FSUB: 379 case ISD::FMUL: 380 case ISD::FDIV: 381 case ISD::FREM: 382 case ISD::AND: 383 case ISD::OR: 384 case ISD::XOR: 385 case ISD::SHL: 386 case ISD::SRA: 387 case ISD::SRL: 388 case ISD::FSHL: 389 case ISD::FSHR: 390 case ISD::ROTL: 391 case ISD::ROTR: 392 case ISD::ABS: 393 case ISD::BSWAP: 394 case ISD::BITREVERSE: 395 case ISD::CTLZ: 396 case ISD::CTTZ: 397 case ISD::CTLZ_ZERO_UNDEF: 398 case ISD::CTTZ_ZERO_UNDEF: 399 case ISD::CTPOP: 400 case ISD::SELECT: 401 case ISD::VSELECT: 402 case ISD::SELECT_CC: 403 case ISD::SETCC: 404 case ISD::ZERO_EXTEND: 405 case ISD::ANY_EXTEND: 406 case ISD::TRUNCATE: 407 case ISD::SIGN_EXTEND: 408 case ISD::FP_TO_SINT: 409 case ISD::FP_TO_UINT: 410 case ISD::FNEG: 411 case ISD::FABS: 412 case ISD::FMINNUM: 413 case ISD::FMAXNUM: 414 case ISD::FMINNUM_IEEE: 415 case ISD::FMAXNUM_IEEE: 416 case ISD::FMINIMUM: 417 case ISD::FMAXIMUM: 418 case ISD::FCOPYSIGN: 419 case ISD::FSQRT: 420 case ISD::FSIN: 421 case ISD::FCOS: 422 case ISD::FPOWI: 423 case ISD::FPOW: 424 case ISD::FLOG: 425 case ISD::FLOG2: 426 case ISD::FLOG10: 427 case ISD::FEXP: 428 case ISD::FEXP2: 429 case ISD::FCEIL: 430 case ISD::FTRUNC: 431 case ISD::FRINT: 432 case ISD::FNEARBYINT: 433 case ISD::FROUND: 434 case ISD::FFLOOR: 435 case ISD::FP_ROUND: 436 case ISD::FP_EXTEND: 437 case ISD::FMA: 438 case ISD::SIGN_EXTEND_INREG: 439 case ISD::ANY_EXTEND_VECTOR_INREG: 440 case ISD::SIGN_EXTEND_VECTOR_INREG: 441 case ISD::ZERO_EXTEND_VECTOR_INREG: 442 case ISD::SMIN: 443 case ISD::SMAX: 444 case ISD::UMIN: 445 case ISD::UMAX: 446 case ISD::SMUL_LOHI: 447 case ISD::UMUL_LOHI: 448 case ISD::SADDO: 449 case ISD::UADDO: 450 case ISD::SSUBO: 451 case ISD::USUBO: 452 case ISD::SMULO: 453 case ISD::UMULO: 454 case ISD::FCANONICALIZE: 455 case ISD::SADDSAT: 456 case ISD::UADDSAT: 457 case ISD::SSUBSAT: 458 case ISD::USUBSAT: 459 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 460 break; 461 case ISD::SMULFIX: 462 case ISD::SMULFIXSAT: 463 case ISD::UMULFIX: 464 case ISD::UMULFIXSAT: 465 case ISD::SDIVFIX: 466 case ISD::UDIVFIX: { 467 unsigned Scale = Node->getConstantOperandVal(2); 468 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 469 Node->getValueType(0), Scale); 470 break; 471 } 472 case ISD::SINT_TO_FP: 473 case ISD::UINT_TO_FP: 474 case ISD::VECREDUCE_ADD: 475 case ISD::VECREDUCE_MUL: 476 case ISD::VECREDUCE_AND: 477 case ISD::VECREDUCE_OR: 478 case ISD::VECREDUCE_XOR: 479 case ISD::VECREDUCE_SMAX: 480 case ISD::VECREDUCE_SMIN: 481 case ISD::VECREDUCE_UMAX: 482 case ISD::VECREDUCE_UMIN: 483 case ISD::VECREDUCE_FADD: 484 case ISD::VECREDUCE_FMUL: 485 case ISD::VECREDUCE_FMAX: 486 case ISD::VECREDUCE_FMIN: 487 Action = TLI.getOperationAction(Node->getOpcode(), 488 Node->getOperand(0).getValueType()); 489 break; 490 } 491 492 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 493 494 SmallVector<SDValue, 8> ResultVals; 495 switch (Action) { 496 default: llvm_unreachable("This action is not supported yet!"); 497 case TargetLowering::Promote: 498 LLVM_DEBUG(dbgs() << "Promoting\n"); 499 Promote(Node, ResultVals); 500 assert(!ResultVals.empty() && "No results for promotion?"); 501 break; 502 case TargetLowering::Legal: 503 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 504 break; 505 case TargetLowering::Custom: 506 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 507 if (LowerOperationWrapper(Node, ResultVals)) 508 break; 509 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 510 LLVM_FALLTHROUGH; 511 case TargetLowering::Expand: 512 LLVM_DEBUG(dbgs() << "Expanding\n"); 513 Expand(Node, ResultVals); 514 break; 515 } 516 517 if (ResultVals.empty()) 518 return TranslateLegalizeResults(Op, Node); 519 520 Changed = true; 521 return RecursivelyLegalizeResults(Op, ResultVals); 522 } 523 524 // FIME: This is very similar to the X86 override of 525 // TargetLowering::LowerOperationWrapper. Can we merge them somehow? 526 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node, 527 SmallVectorImpl<SDValue> &Results) { 528 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 529 530 if (!Res.getNode()) 531 return false; 532 533 if (Res == SDValue(Node, 0)) 534 return true; 535 536 // If the original node has one result, take the return value from 537 // LowerOperation as is. It might not be result number 0. 538 if (Node->getNumValues() == 1) { 539 Results.push_back(Res); 540 return true; 541 } 542 543 // If the original node has multiple results, then the return node should 544 // have the same number of results. 545 assert((Node->getNumValues() == Res->getNumValues()) && 546 "Lowering returned the wrong number of results!"); 547 548 // Places new result values base on N result number. 549 for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I) 550 Results.push_back(Res.getValue(I)); 551 552 return true; 553 } 554 555 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 556 // For a few operations there is a specific concept for promotion based on 557 // the operand's type. 558 switch (Node->getOpcode()) { 559 case ISD::SINT_TO_FP: 560 case ISD::UINT_TO_FP: 561 case ISD::STRICT_SINT_TO_FP: 562 case ISD::STRICT_UINT_TO_FP: 563 // "Promote" the operation by extending the operand. 564 PromoteINT_TO_FP(Node, Results); 565 return; 566 case ISD::FP_TO_UINT: 567 case ISD::FP_TO_SINT: 568 case ISD::STRICT_FP_TO_UINT: 569 case ISD::STRICT_FP_TO_SINT: 570 // Promote the operation by extending the operand. 571 PromoteFP_TO_INT(Node, Results); 572 return; 573 case ISD::FP_ROUND: 574 case ISD::FP_EXTEND: 575 // These operations are used to do promotion so they can't be promoted 576 // themselves. 577 llvm_unreachable("Don't know how to promote this operation!"); 578 } 579 580 // There are currently two cases of vector promotion: 581 // 1) Bitcasting a vector of integers to a different type to a vector of the 582 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 583 // 2) Extending a vector of floats to a vector of the same number of larger 584 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 585 assert(Node->getNumValues() == 1 && 586 "Can't promote a vector with multiple results!"); 587 MVT VT = Node->getSimpleValueType(0); 588 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 589 SDLoc dl(Node); 590 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 591 592 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 593 if (Node->getOperand(j).getValueType().isVector()) 594 if (Node->getOperand(j) 595 .getValueType() 596 .getVectorElementType() 597 .isFloatingPoint() && 598 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 599 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j)); 600 else 601 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j)); 602 else 603 Operands[j] = Node->getOperand(j); 604 } 605 606 SDValue Res = 607 DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags()); 608 609 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 610 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 611 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 612 Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl)); 613 else 614 Res = DAG.getNode(ISD::BITCAST, dl, VT, Res); 615 616 Results.push_back(Res); 617 } 618 619 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node, 620 SmallVectorImpl<SDValue> &Results) { 621 // INT_TO_FP operations may require the input operand be promoted even 622 // when the type is otherwise legal. 623 bool IsStrict = Node->isStrictFPOpcode(); 624 MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType(); 625 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 626 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 627 "Vectors have different number of elements!"); 628 629 SDLoc dl(Node); 630 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 631 632 unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP || 633 Node->getOpcode() == ISD::STRICT_UINT_TO_FP) 634 ? ISD::ZERO_EXTEND 635 : ISD::SIGN_EXTEND; 636 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 637 if (Node->getOperand(j).getValueType().isVector()) 638 Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j)); 639 else 640 Operands[j] = Node->getOperand(j); 641 } 642 643 if (IsStrict) { 644 SDValue Res = DAG.getNode(Node->getOpcode(), dl, 645 {Node->getValueType(0), MVT::Other}, Operands); 646 Results.push_back(Res); 647 Results.push_back(Res.getValue(1)); 648 return; 649 } 650 651 SDValue Res = 652 DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands); 653 Results.push_back(Res); 654 } 655 656 // For FP_TO_INT we promote the result type to a vector type with wider 657 // elements and then truncate the result. This is different from the default 658 // PromoteVector which uses bitcast to promote thus assumning that the 659 // promoted vector type has the same overall size. 660 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node, 661 SmallVectorImpl<SDValue> &Results) { 662 MVT VT = Node->getSimpleValueType(0); 663 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 664 bool IsStrict = Node->isStrictFPOpcode(); 665 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 666 "Vectors have different number of elements!"); 667 668 unsigned NewOpc = Node->getOpcode(); 669 // Change FP_TO_UINT to FP_TO_SINT if possible. 670 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 671 if (NewOpc == ISD::FP_TO_UINT && 672 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 673 NewOpc = ISD::FP_TO_SINT; 674 675 if (NewOpc == ISD::STRICT_FP_TO_UINT && 676 TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT)) 677 NewOpc = ISD::STRICT_FP_TO_SINT; 678 679 SDLoc dl(Node); 680 SDValue Promoted, Chain; 681 if (IsStrict) { 682 Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other}, 683 {Node->getOperand(0), Node->getOperand(1)}); 684 Chain = Promoted.getValue(1); 685 } else 686 Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0)); 687 688 // Assert that the converted value fits in the original type. If it doesn't 689 // (eg: because the value being converted is too big), then the result of the 690 // original operation was undefined anyway, so the assert is still correct. 691 if (Node->getOpcode() == ISD::FP_TO_UINT || 692 Node->getOpcode() == ISD::STRICT_FP_TO_UINT) 693 NewOpc = ISD::AssertZext; 694 else 695 NewOpc = ISD::AssertSext; 696 697 Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted, 698 DAG.getValueType(VT.getScalarType())); 699 Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 700 Results.push_back(Promoted); 701 if (IsStrict) 702 Results.push_back(Chain); 703 } 704 705 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) { 706 LoadSDNode *LD = cast<LoadSDNode>(N); 707 708 EVT SrcVT = LD->getMemoryVT(); 709 EVT SrcEltVT = SrcVT.getScalarType(); 710 unsigned NumElem = SrcVT.getVectorNumElements(); 711 712 SDValue NewChain; 713 SDValue Value; 714 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 715 SDLoc dl(N); 716 717 SmallVector<SDValue, 8> Vals; 718 SmallVector<SDValue, 8> LoadChains; 719 720 EVT DstEltVT = LD->getValueType(0).getScalarType(); 721 SDValue Chain = LD->getChain(); 722 SDValue BasePTR = LD->getBasePtr(); 723 ISD::LoadExtType ExtType = LD->getExtensionType(); 724 725 // When elements in a vector is not byte-addressable, we cannot directly 726 // load each element by advancing pointer, which could only address bytes. 727 // Instead, we load all significant words, mask bits off, and concatenate 728 // them to form each element. Finally, they are extended to destination 729 // scalar type to build the destination vector. 730 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 731 732 assert(WideVT.isRound() && 733 "Could not handle the sophisticated case when the widest integer is" 734 " not power of 2."); 735 assert(WideVT.bitsGE(SrcEltVT) && 736 "Type is not legalized?"); 737 738 unsigned WideBytes = WideVT.getStoreSize(); 739 unsigned Offset = 0; 740 unsigned RemainingBytes = SrcVT.getStoreSize(); 741 SmallVector<SDValue, 8> LoadVals; 742 while (RemainingBytes > 0) { 743 SDValue ScalarLoad; 744 unsigned LoadBytes = WideBytes; 745 746 if (RemainingBytes >= LoadBytes) { 747 ScalarLoad = 748 DAG.getLoad(WideVT, dl, Chain, BasePTR, 749 LD->getPointerInfo().getWithOffset(Offset), 750 MinAlign(LD->getAlignment(), Offset), 751 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 752 } else { 753 EVT LoadVT = WideVT; 754 while (RemainingBytes < LoadBytes) { 755 LoadBytes >>= 1; // Reduce the load size by half. 756 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 757 } 758 ScalarLoad = 759 DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 760 LD->getPointerInfo().getWithOffset(Offset), LoadVT, 761 MinAlign(LD->getAlignment(), Offset), 762 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 763 } 764 765 RemainingBytes -= LoadBytes; 766 Offset += LoadBytes; 767 768 BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes); 769 770 LoadVals.push_back(ScalarLoad.getValue(0)); 771 LoadChains.push_back(ScalarLoad.getValue(1)); 772 } 773 774 unsigned BitOffset = 0; 775 unsigned WideIdx = 0; 776 unsigned WideBits = WideVT.getSizeInBits(); 777 778 // Extract bits, pack and extend/trunc them into destination type. 779 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 780 SDValue SrcEltBitMask = DAG.getConstant( 781 APInt::getLowBitsSet(WideBits, SrcEltBits), dl, WideVT); 782 783 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 784 assert(BitOffset < WideBits && "Unexpected offset!"); 785 786 SDValue ShAmt = DAG.getConstant( 787 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 788 SDValue Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 789 790 BitOffset += SrcEltBits; 791 if (BitOffset >= WideBits) { 792 WideIdx++; 793 BitOffset -= WideBits; 794 if (BitOffset > 0) { 795 ShAmt = DAG.getConstant( 796 SrcEltBits - BitOffset, dl, 797 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 798 SDValue Hi = 799 DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 800 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 801 } 802 } 803 804 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 805 806 switch (ExtType) { 807 default: llvm_unreachable("Unknown extended-load op!"); 808 case ISD::EXTLOAD: 809 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 810 break; 811 case ISD::ZEXTLOAD: 812 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 813 break; 814 case ISD::SEXTLOAD: 815 ShAmt = 816 DAG.getConstant(WideBits - SrcEltBits, dl, 817 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 818 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 819 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 820 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 821 break; 822 } 823 Vals.push_back(Lo); 824 } 825 826 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 827 Value = DAG.getBuildVector(N->getValueType(0), dl, Vals); 828 } else { 829 std::tie(Value, NewChain) = TLI.scalarizeVectorLoad(LD, DAG); 830 } 831 832 return std::make_pair(Value, NewChain); 833 } 834 835 SDValue VectorLegalizer::ExpandStore(SDNode *N) { 836 StoreSDNode *ST = cast<StoreSDNode>(N); 837 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 838 return TF; 839 } 840 841 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 842 SDValue Tmp; 843 switch (Node->getOpcode()) { 844 case ISD::MERGE_VALUES: 845 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 846 Results.push_back(Node->getOperand(i)); 847 return; 848 case ISD::SIGN_EXTEND_INREG: 849 Results.push_back(ExpandSEXTINREG(Node)); 850 return; 851 case ISD::ANY_EXTEND_VECTOR_INREG: 852 Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node)); 853 return; 854 case ISD::SIGN_EXTEND_VECTOR_INREG: 855 Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node)); 856 return; 857 case ISD::ZERO_EXTEND_VECTOR_INREG: 858 Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node)); 859 return; 860 case ISD::BSWAP: 861 Results.push_back(ExpandBSWAP(Node)); 862 return; 863 case ISD::VSELECT: 864 Results.push_back(ExpandVSELECT(Node)); 865 return; 866 case ISD::SELECT: 867 Results.push_back(ExpandSELECT(Node)); 868 return; 869 case ISD::FP_TO_UINT: 870 ExpandFP_TO_UINT(Node, Results); 871 return; 872 case ISD::UINT_TO_FP: 873 ExpandUINT_TO_FLOAT(Node, Results); 874 return; 875 case ISD::FNEG: 876 Results.push_back(ExpandFNEG(Node)); 877 return; 878 case ISD::FSUB: 879 ExpandFSUB(Node, Results); 880 return; 881 case ISD::SETCC: 882 Results.push_back(UnrollVSETCC(Node)); 883 return; 884 case ISD::ABS: 885 if (TLI.expandABS(Node, Tmp, DAG)) { 886 Results.push_back(Tmp); 887 return; 888 } 889 break; 890 case ISD::BITREVERSE: 891 ExpandBITREVERSE(Node, Results); 892 return; 893 case ISD::CTPOP: 894 if (TLI.expandCTPOP(Node, Tmp, DAG)) { 895 Results.push_back(Tmp); 896 return; 897 } 898 break; 899 case ISD::CTLZ: 900 case ISD::CTLZ_ZERO_UNDEF: 901 if (TLI.expandCTLZ(Node, Tmp, DAG)) { 902 Results.push_back(Tmp); 903 return; 904 } 905 break; 906 case ISD::CTTZ: 907 case ISD::CTTZ_ZERO_UNDEF: 908 if (TLI.expandCTTZ(Node, Tmp, DAG)) { 909 Results.push_back(Tmp); 910 return; 911 } 912 break; 913 case ISD::FSHL: 914 case ISD::FSHR: 915 if (TLI.expandFunnelShift(Node, Tmp, DAG)) { 916 Results.push_back(Tmp); 917 return; 918 } 919 break; 920 case ISD::ROTL: 921 case ISD::ROTR: 922 if (TLI.expandROT(Node, Tmp, DAG)) { 923 Results.push_back(Tmp); 924 return; 925 } 926 break; 927 case ISD::FMINNUM: 928 case ISD::FMAXNUM: 929 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) { 930 Results.push_back(Expanded); 931 return; 932 } 933 break; 934 case ISD::UADDO: 935 case ISD::USUBO: 936 ExpandUADDSUBO(Node, Results); 937 return; 938 case ISD::SADDO: 939 case ISD::SSUBO: 940 ExpandSADDSUBO(Node, Results); 941 return; 942 case ISD::UMULO: 943 case ISD::SMULO: 944 ExpandMULO(Node, Results); 945 return; 946 case ISD::USUBSAT: 947 case ISD::SSUBSAT: 948 case ISD::UADDSAT: 949 case ISD::SADDSAT: 950 if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) { 951 Results.push_back(Expanded); 952 return; 953 } 954 break; 955 case ISD::SMULFIX: 956 case ISD::UMULFIX: 957 if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) { 958 Results.push_back(Expanded); 959 return; 960 } 961 break; 962 case ISD::SMULFIXSAT: 963 case ISD::UMULFIXSAT: 964 // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly 965 // why. Maybe it results in worse codegen compared to the unroll for some 966 // targets? This should probably be investigated. And if we still prefer to 967 // unroll an explanation could be helpful. 968 break; 969 case ISD::SDIVFIX: 970 case ISD::UDIVFIX: 971 Results.push_back(ExpandFixedPointDiv(Node)); 972 return; 973 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 974 case ISD::STRICT_##DAGN: 975 #include "llvm/IR/ConstrainedOps.def" 976 ExpandStrictFPOp(Node, Results); 977 return; 978 case ISD::VECREDUCE_ADD: 979 case ISD::VECREDUCE_MUL: 980 case ISD::VECREDUCE_AND: 981 case ISD::VECREDUCE_OR: 982 case ISD::VECREDUCE_XOR: 983 case ISD::VECREDUCE_SMAX: 984 case ISD::VECREDUCE_SMIN: 985 case ISD::VECREDUCE_UMAX: 986 case ISD::VECREDUCE_UMIN: 987 case ISD::VECREDUCE_FADD: 988 case ISD::VECREDUCE_FMUL: 989 case ISD::VECREDUCE_FMAX: 990 case ISD::VECREDUCE_FMIN: 991 Results.push_back(TLI.expandVecReduce(Node, DAG)); 992 return; 993 } 994 995 Results.push_back(DAG.UnrollVectorOp(Node)); 996 } 997 998 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) { 999 // Lower a select instruction where the condition is a scalar and the 1000 // operands are vectors. Lower this select to VSELECT and implement it 1001 // using XOR AND OR. The selector bit is broadcasted. 1002 EVT VT = Node->getValueType(0); 1003 SDLoc DL(Node); 1004 1005 SDValue Mask = Node->getOperand(0); 1006 SDValue Op1 = Node->getOperand(1); 1007 SDValue Op2 = Node->getOperand(2); 1008 1009 assert(VT.isVector() && !Mask.getValueType().isVector() 1010 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 1011 1012 // If we can't even use the basic vector operations of 1013 // AND,OR,XOR, we will have to scalarize the op. 1014 // Notice that the operation may be 'promoted' which means that it is 1015 // 'bitcasted' to another type which is handled. 1016 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 1017 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1018 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1019 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 1020 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 1021 return DAG.UnrollVectorOp(Node); 1022 1023 // Generate a mask operand. 1024 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 1025 1026 // What is the size of each element in the vector mask. 1027 EVT BitTy = MaskTy.getScalarType(); 1028 1029 Mask = DAG.getSelect(DL, BitTy, Mask, 1030 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 1031 BitTy), 1032 DAG.getConstant(0, DL, BitTy)); 1033 1034 // Broadcast the mask so that the entire vector is all-one or all zero. 1035 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 1036 1037 // Bitcast the operands to be the same type as the mask. 1038 // This is needed when we select between FP types because 1039 // the mask is a vector of integers. 1040 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 1041 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 1042 1043 SDValue AllOnes = DAG.getConstant( 1044 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 1045 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 1046 1047 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 1048 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 1049 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 1050 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 1051 } 1052 1053 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) { 1054 EVT VT = Node->getValueType(0); 1055 1056 // Make sure that the SRA and SHL instructions are available. 1057 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 1058 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 1059 return DAG.UnrollVectorOp(Node); 1060 1061 SDLoc DL(Node); 1062 EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1063 1064 unsigned BW = VT.getScalarSizeInBits(); 1065 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 1066 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 1067 1068 SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz); 1069 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 1070 } 1071 1072 // Generically expand a vector anyext in register to a shuffle of the relevant 1073 // lanes into the appropriate locations, with other lanes left undef. 1074 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) { 1075 SDLoc DL(Node); 1076 EVT VT = Node->getValueType(0); 1077 int NumElements = VT.getVectorNumElements(); 1078 SDValue Src = Node->getOperand(0); 1079 EVT SrcVT = Src.getValueType(); 1080 int NumSrcElements = SrcVT.getVectorNumElements(); 1081 1082 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 1083 // into a larger vector type. 1084 if (SrcVT.bitsLE(VT)) { 1085 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 1086 "ANY_EXTEND_VECTOR_INREG vector size mismatch"); 1087 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 1088 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1089 NumSrcElements); 1090 Src = DAG.getNode( 1091 ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src, 1092 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1093 } 1094 1095 // Build a base mask of undef shuffles. 1096 SmallVector<int, 16> ShuffleMask; 1097 ShuffleMask.resize(NumSrcElements, -1); 1098 1099 // Place the extended lanes into the correct locations. 1100 int ExtLaneScale = NumSrcElements / NumElements; 1101 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1102 for (int i = 0; i < NumElements; ++i) 1103 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 1104 1105 return DAG.getNode( 1106 ISD::BITCAST, DL, VT, 1107 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 1108 } 1109 1110 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) { 1111 SDLoc DL(Node); 1112 EVT VT = Node->getValueType(0); 1113 SDValue Src = Node->getOperand(0); 1114 EVT SrcVT = Src.getValueType(); 1115 1116 // First build an any-extend node which can be legalized above when we 1117 // recurse through it. 1118 SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); 1119 1120 // Now we need sign extend. Do this by shifting the elements. Even if these 1121 // aren't legal operations, they have a better chance of being legalized 1122 // without full scalarization than the sign extension does. 1123 unsigned EltWidth = VT.getScalarSizeInBits(); 1124 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 1125 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 1126 return DAG.getNode(ISD::SRA, DL, VT, 1127 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 1128 ShiftAmount); 1129 } 1130 1131 // Generically expand a vector zext in register to a shuffle of the relevant 1132 // lanes into the appropriate locations, a blend of zero into the high bits, 1133 // and a bitcast to the wider element type. 1134 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) { 1135 SDLoc DL(Node); 1136 EVT VT = Node->getValueType(0); 1137 int NumElements = VT.getVectorNumElements(); 1138 SDValue Src = Node->getOperand(0); 1139 EVT SrcVT = Src.getValueType(); 1140 int NumSrcElements = SrcVT.getVectorNumElements(); 1141 1142 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 1143 // into a larger vector type. 1144 if (SrcVT.bitsLE(VT)) { 1145 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 1146 "ZERO_EXTEND_VECTOR_INREG vector size mismatch"); 1147 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 1148 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1149 NumSrcElements); 1150 Src = DAG.getNode( 1151 ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src, 1152 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1153 } 1154 1155 // Build up a zero vector to blend into this one. 1156 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 1157 1158 // Shuffle the incoming lanes into the correct position, and pull all other 1159 // lanes from the zero vector. 1160 SmallVector<int, 16> ShuffleMask; 1161 ShuffleMask.reserve(NumSrcElements); 1162 for (int i = 0; i < NumSrcElements; ++i) 1163 ShuffleMask.push_back(i); 1164 1165 int ExtLaneScale = NumSrcElements / NumElements; 1166 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1167 for (int i = 0; i < NumElements; ++i) 1168 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 1169 1170 return DAG.getNode(ISD::BITCAST, DL, VT, 1171 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 1172 } 1173 1174 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 1175 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 1176 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 1177 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 1178 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 1179 } 1180 1181 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) { 1182 EVT VT = Node->getValueType(0); 1183 1184 // Generate a byte wise shuffle mask for the BSWAP. 1185 SmallVector<int, 16> ShuffleMask; 1186 createBSWAPShuffleMask(VT, ShuffleMask); 1187 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 1188 1189 // Only emit a shuffle if the mask is legal. 1190 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 1191 return DAG.UnrollVectorOp(Node); 1192 1193 SDLoc DL(Node); 1194 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1195 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 1196 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1197 } 1198 1199 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node, 1200 SmallVectorImpl<SDValue> &Results) { 1201 EVT VT = Node->getValueType(0); 1202 1203 // If we have the scalar operation, it's probably cheaper to unroll it. 1204 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) { 1205 SDValue Tmp = DAG.UnrollVectorOp(Node); 1206 Results.push_back(Tmp); 1207 return; 1208 } 1209 1210 // If the vector element width is a whole number of bytes, test if its legal 1211 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 1212 // vector. This greatly reduces the number of bit shifts necessary. 1213 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 1214 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 1215 SmallVector<int, 16> BSWAPMask; 1216 createBSWAPShuffleMask(VT, BSWAPMask); 1217 1218 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 1219 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 1220 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 1221 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 1222 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 1223 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 1224 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 1225 SDLoc DL(Node); 1226 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1227 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 1228 BSWAPMask); 1229 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 1230 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 1231 Results.push_back(Op); 1232 return; 1233 } 1234 } 1235 1236 // If we have the appropriate vector bit operations, it is better to use them 1237 // than unrolling and expanding each component. 1238 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 1239 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1240 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && 1241 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 1242 // Let LegalizeDAG handle this later. 1243 return; 1244 1245 // Otherwise unroll. 1246 SDValue Tmp = DAG.UnrollVectorOp(Node); 1247 Results.push_back(Tmp); 1248 } 1249 1250 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) { 1251 // Implement VSELECT in terms of XOR, AND, OR 1252 // on platforms which do not support blend natively. 1253 SDLoc DL(Node); 1254 1255 SDValue Mask = Node->getOperand(0); 1256 SDValue Op1 = Node->getOperand(1); 1257 SDValue Op2 = Node->getOperand(2); 1258 1259 EVT VT = Mask.getValueType(); 1260 1261 // If we can't even use the basic vector operations of 1262 // AND,OR,XOR, we will have to scalarize the op. 1263 // Notice that the operation may be 'promoted' which means that it is 1264 // 'bitcasted' to another type which is handled. 1265 // This operation also isn't safe with AND, OR, XOR when the boolean 1266 // type is 0/1 as we need an all ones vector constant to mask with. 1267 // FIXME: Sign extend 1 to all ones if thats legal on the target. 1268 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1269 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1270 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 1271 TLI.getBooleanContents(Op1.getValueType()) != 1272 TargetLowering::ZeroOrNegativeOneBooleanContent) 1273 return DAG.UnrollVectorOp(Node); 1274 1275 // If the mask and the type are different sizes, unroll the vector op. This 1276 // can occur when getSetCCResultType returns something that is different in 1277 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1278 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1279 return DAG.UnrollVectorOp(Node); 1280 1281 // Bitcast the operands to be the same type as the mask. 1282 // This is needed when we select between FP types because 1283 // the mask is a vector of integers. 1284 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1285 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1286 1287 SDValue AllOnes = DAG.getConstant( 1288 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); 1289 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 1290 1291 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1292 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1293 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1294 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 1295 } 1296 1297 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node, 1298 SmallVectorImpl<SDValue> &Results) { 1299 // Attempt to expand using TargetLowering. 1300 SDValue Result, Chain; 1301 if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) { 1302 Results.push_back(Result); 1303 if (Node->isStrictFPOpcode()) 1304 Results.push_back(Chain); 1305 return; 1306 } 1307 1308 // Otherwise go ahead and unroll. 1309 if (Node->isStrictFPOpcode()) { 1310 UnrollStrictFPOp(Node, Results); 1311 return; 1312 } 1313 1314 Results.push_back(DAG.UnrollVectorOp(Node)); 1315 } 1316 1317 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node, 1318 SmallVectorImpl<SDValue> &Results) { 1319 bool IsStrict = Node->isStrictFPOpcode(); 1320 unsigned OpNo = IsStrict ? 1 : 0; 1321 SDValue Src = Node->getOperand(OpNo); 1322 EVT VT = Src.getValueType(); 1323 SDLoc DL(Node); 1324 1325 // Attempt to expand using TargetLowering. 1326 SDValue Result; 1327 SDValue Chain; 1328 if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) { 1329 Results.push_back(Result); 1330 if (IsStrict) 1331 Results.push_back(Chain); 1332 return; 1333 } 1334 1335 // Make sure that the SINT_TO_FP and SRL instructions are available. 1336 if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) == 1337 TargetLowering::Expand) || 1338 (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) == 1339 TargetLowering::Expand)) || 1340 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) { 1341 if (IsStrict) { 1342 UnrollStrictFPOp(Node, Results); 1343 return; 1344 } 1345 1346 Results.push_back(DAG.UnrollVectorOp(Node)); 1347 return; 1348 } 1349 1350 unsigned BW = VT.getScalarSizeInBits(); 1351 assert((BW == 64 || BW == 32) && 1352 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1353 1354 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1355 1356 // Constants to clear the upper part of the word. 1357 // Notice that we can also use SHL+SHR, but using a constant is slightly 1358 // faster on x86. 1359 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1360 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1361 1362 // Two to the power of half-word-size. 1363 SDValue TWOHW = 1364 DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0)); 1365 1366 // Clear upper part of LO, lower HI 1367 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord); 1368 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask); 1369 1370 if (IsStrict) { 1371 // Convert hi and lo to floats 1372 // Convert the hi part back to the upper values 1373 // TODO: Can any fast-math-flags be set on these nodes? 1374 SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1375 {Node->getValueType(0), MVT::Other}, 1376 {Node->getOperand(0), HI}); 1377 fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other}, 1378 {fHI.getValue(1), fHI, TWOHW}); 1379 SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1380 {Node->getValueType(0), MVT::Other}, 1381 {Node->getOperand(0), LO}); 1382 1383 SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1), 1384 fLO.getValue(1)); 1385 1386 // Add the two halves 1387 SDValue Result = 1388 DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other}, 1389 {TF, fHI, fLO}); 1390 1391 Results.push_back(Result); 1392 Results.push_back(Result.getValue(1)); 1393 return; 1394 } 1395 1396 // Convert hi and lo to floats 1397 // Convert the hi part back to the upper values 1398 // TODO: Can any fast-math-flags be set on these nodes? 1399 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI); 1400 fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW); 1401 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO); 1402 1403 // Add the two halves 1404 Results.push_back( 1405 DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO)); 1406 } 1407 1408 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) { 1409 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) { 1410 SDLoc DL(Node); 1411 SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0)); 1412 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1413 return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero, 1414 Node->getOperand(0)); 1415 } 1416 return DAG.UnrollVectorOp(Node); 1417 } 1418 1419 void VectorLegalizer::ExpandFSUB(SDNode *Node, 1420 SmallVectorImpl<SDValue> &Results) { 1421 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1422 // we can defer this to operation legalization where it will be lowered as 1423 // a+(-b). 1424 EVT VT = Node->getValueType(0); 1425 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1426 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1427 return; // Defer to LegalizeDAG 1428 1429 SDValue Tmp = DAG.UnrollVectorOp(Node); 1430 Results.push_back(Tmp); 1431 } 1432 1433 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node, 1434 SmallVectorImpl<SDValue> &Results) { 1435 SDValue Result, Overflow; 1436 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 1437 Results.push_back(Result); 1438 Results.push_back(Overflow); 1439 } 1440 1441 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node, 1442 SmallVectorImpl<SDValue> &Results) { 1443 SDValue Result, Overflow; 1444 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 1445 Results.push_back(Result); 1446 Results.push_back(Overflow); 1447 } 1448 1449 void VectorLegalizer::ExpandMULO(SDNode *Node, 1450 SmallVectorImpl<SDValue> &Results) { 1451 SDValue Result, Overflow; 1452 if (!TLI.expandMULO(Node, Result, Overflow, DAG)) 1453 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node); 1454 1455 Results.push_back(Result); 1456 Results.push_back(Overflow); 1457 } 1458 1459 SDValue VectorLegalizer::ExpandFixedPointDiv(SDNode *Node) { 1460 SDNode *N = Node; 1461 if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N), 1462 N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG)) 1463 return Expanded; 1464 return DAG.UnrollVectorOp(N); 1465 } 1466 1467 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node, 1468 SmallVectorImpl<SDValue> &Results) { 1469 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) { 1470 ExpandUINT_TO_FLOAT(Node, Results); 1471 return; 1472 } 1473 if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) { 1474 ExpandFP_TO_UINT(Node, Results); 1475 return; 1476 } 1477 1478 UnrollStrictFPOp(Node, Results); 1479 } 1480 1481 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node, 1482 SmallVectorImpl<SDValue> &Results) { 1483 EVT VT = Node->getValueType(0); 1484 EVT EltVT = VT.getVectorElementType(); 1485 unsigned NumElems = VT.getVectorNumElements(); 1486 unsigned NumOpers = Node->getNumOperands(); 1487 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1488 1489 EVT TmpEltVT = EltVT; 1490 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1491 Node->getOpcode() == ISD::STRICT_FSETCCS) 1492 TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(), 1493 *DAG.getContext(), TmpEltVT); 1494 1495 EVT ValueVTs[] = {TmpEltVT, MVT::Other}; 1496 SDValue Chain = Node->getOperand(0); 1497 SDLoc dl(Node); 1498 1499 SmallVector<SDValue, 32> OpValues; 1500 SmallVector<SDValue, 32> OpChains; 1501 for (unsigned i = 0; i < NumElems; ++i) { 1502 SmallVector<SDValue, 4> Opers; 1503 SDValue Idx = DAG.getConstant(i, dl, 1504 TLI.getVectorIdxTy(DAG.getDataLayout())); 1505 1506 // The Chain is the first operand. 1507 Opers.push_back(Chain); 1508 1509 // Now process the remaining operands. 1510 for (unsigned j = 1; j < NumOpers; ++j) { 1511 SDValue Oper = Node->getOperand(j); 1512 EVT OperVT = Oper.getValueType(); 1513 1514 if (OperVT.isVector()) 1515 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1516 OperVT.getVectorElementType(), Oper, Idx); 1517 1518 Opers.push_back(Oper); 1519 } 1520 1521 SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers); 1522 SDValue ScalarResult = ScalarOp.getValue(0); 1523 SDValue ScalarChain = ScalarOp.getValue(1); 1524 1525 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1526 Node->getOpcode() == ISD::STRICT_FSETCCS) 1527 ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult, 1528 DAG.getConstant(APInt::getAllOnesValue 1529 (EltVT.getSizeInBits()), dl, EltVT), 1530 DAG.getConstant(0, dl, EltVT)); 1531 1532 OpValues.push_back(ScalarResult); 1533 OpChains.push_back(ScalarChain); 1534 } 1535 1536 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1537 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1538 1539 Results.push_back(Result); 1540 Results.push_back(NewChain); 1541 } 1542 1543 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) { 1544 EVT VT = Node->getValueType(0); 1545 unsigned NumElems = VT.getVectorNumElements(); 1546 EVT EltVT = VT.getVectorElementType(); 1547 SDValue LHS = Node->getOperand(0); 1548 SDValue RHS = Node->getOperand(1); 1549 SDValue CC = Node->getOperand(2); 1550 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1551 SDLoc dl(Node); 1552 SmallVector<SDValue, 8> Ops(NumElems); 1553 for (unsigned i = 0; i < NumElems; ++i) { 1554 SDValue LHSElem = DAG.getNode( 1555 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1556 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1557 SDValue RHSElem = DAG.getNode( 1558 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1559 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1560 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1561 TLI.getSetCCResultType(DAG.getDataLayout(), 1562 *DAG.getContext(), TmpEltVT), 1563 LHSElem, RHSElem, CC); 1564 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1565 DAG.getConstant(APInt::getAllOnesValue 1566 (EltVT.getSizeInBits()), dl, EltVT), 1567 DAG.getConstant(0, dl, EltVT)); 1568 } 1569 return DAG.getBuildVector(VT, dl, Ops); 1570 } 1571 1572 bool SelectionDAG::LegalizeVectors() { 1573 return VectorLegalizer(*this).Run(); 1574 } 1575