xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp (revision cb14a3fe5122c879eae1fb480ed7ce82a699ddb6)
1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
10 //
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types.  For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
20 //
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineValueType.h"
33 #include "llvm/CodeGen/SelectionDAG.h"
34 #include "llvm/CodeGen/SelectionDAGNodes.h"
35 #include "llvm/CodeGen/TargetLowering.h"
36 #include "llvm/CodeGen/ValueTypes.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Compiler.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <iterator>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "legalizevectorops"
50 
51 namespace {
52 
53 class VectorLegalizer {
54   SelectionDAG& DAG;
55   const TargetLowering &TLI;
56   bool Changed = false; // Keep track of whether anything changed
57 
58   /// For nodes that are of legal width, and that have more than one use, this
59   /// map indicates what regularized operand to use.  This allows us to avoid
60   /// legalizing the same thing more than once.
61   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
62 
63   /// Adds a node to the translation cache.
64   void AddLegalizedOperand(SDValue From, SDValue To) {
65     LegalizedNodes.insert(std::make_pair(From, To));
66     // If someone requests legalization of the new node, return itself.
67     if (From != To)
68       LegalizedNodes.insert(std::make_pair(To, To));
69   }
70 
71   /// Legalizes the given node.
72   SDValue LegalizeOp(SDValue Op);
73 
74   /// Assuming the node is legal, "legalize" the results.
75   SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result);
76 
77   /// Make sure Results are legal and update the translation cache.
78   SDValue RecursivelyLegalizeResults(SDValue Op,
79                                      MutableArrayRef<SDValue> Results);
80 
81   /// Wrapper to interface LowerOperation with a vector of Results.
82   /// Returns false if the target wants to use default expansion. Otherwise
83   /// returns true. If return is true and the Results are empty, then the
84   /// target wants to keep the input node as is.
85   bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results);
86 
87   /// Implements unrolling a VSETCC.
88   SDValue UnrollVSETCC(SDNode *Node);
89 
90   /// Implement expand-based legalization of vector operations.
91   ///
92   /// This is just a high-level routine to dispatch to specific code paths for
93   /// operations to legalize them.
94   void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results);
95 
96   /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
97   /// FP_TO_SINT isn't legal.
98   void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
99 
100   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
101   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
102   void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
103 
104   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
105   SDValue ExpandSEXTINREG(SDNode *Node);
106 
107   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
108   ///
109   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
110   /// type. The contents of the bits in the extended part of each element are
111   /// undef.
112   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node);
113 
114   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
115   ///
116   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
117   /// type, then shifts left and arithmetic shifts right to introduce a sign
118   /// extension.
119   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node);
120 
121   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
122   ///
123   /// Shuffles the low lanes of the operand into place and blends zeros into
124   /// the remaining lanes, finally bitcasting to the proper type.
125   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node);
126 
127   /// Expand bswap of vectors into a shuffle if legal.
128   SDValue ExpandBSWAP(SDNode *Node);
129 
130   /// Implement vselect in terms of XOR, AND, OR when blend is not
131   /// supported by the target.
132   SDValue ExpandVSELECT(SDNode *Node);
133   SDValue ExpandVP_SELECT(SDNode *Node);
134   SDValue ExpandVP_MERGE(SDNode *Node);
135   SDValue ExpandVP_REM(SDNode *Node);
136   SDValue ExpandSELECT(SDNode *Node);
137   std::pair<SDValue, SDValue> ExpandLoad(SDNode *N);
138   SDValue ExpandStore(SDNode *N);
139   SDValue ExpandFNEG(SDNode *Node);
140   void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results);
141   void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results);
142   void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results);
143   void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
144   void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
145   void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
146   void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results);
147   void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
148   void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results);
149 
150   void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
151 
152   /// Implements vector promotion.
153   ///
154   /// This is essentially just bitcasting the operands to a different type and
155   /// bitcasting the result back to the original type.
156   void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results);
157 
158   /// Implements [SU]INT_TO_FP vector promotion.
159   ///
160   /// This is a [zs]ext of the input operand to a larger integer type.
161   void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results);
162 
163   /// Implements FP_TO_[SU]INT vector promotion of the result type.
164   ///
165   /// It is promoted to a larger integer type.  The result is then
166   /// truncated back to the original type.
167   void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
168 
169   /// Implements vector reduce operation promotion.
170   ///
171   /// All vector operands are promoted to a vector type with larger element
172   /// type, and the start value is promoted to a larger scalar type. Then the
173   /// result is truncated back to the original scalar type.
174   void PromoteReduction(SDNode *Node, SmallVectorImpl<SDValue> &Results);
175 
176   /// Implements vector setcc operation promotion.
177   ///
178   /// All vector operands are promoted to a vector type with larger element
179   /// type.
180   void PromoteSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results);
181 
182   void PromoteSTRICT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
183 
184 public:
185   VectorLegalizer(SelectionDAG& dag) :
186       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
187 
188   /// Begin legalizer the vector operations in the DAG.
189   bool Run();
190 };
191 
192 } // end anonymous namespace
193 
194 bool VectorLegalizer::Run() {
195   // Before we start legalizing vector nodes, check if there are any vectors.
196   bool HasVectors = false;
197   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
198        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
199     // Check if the values of the nodes contain vectors. We don't need to check
200     // the operands because we are going to check their values at some point.
201     HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); });
202 
203     // If we found a vector node we can start the legalization.
204     if (HasVectors)
205       break;
206   }
207 
208   // If this basic block has no vectors then no need to legalize vectors.
209   if (!HasVectors)
210     return false;
211 
212   // The legalize process is inherently a bottom-up recursive process (users
213   // legalize their uses before themselves).  Given infinite stack space, we
214   // could just start legalizing on the root and traverse the whole graph.  In
215   // practice however, this causes us to run out of stack space on large basic
216   // blocks.  To avoid this problem, compute an ordering of the nodes where each
217   // node is only legalized after all of its operands are legalized.
218   DAG.AssignTopologicalOrder();
219   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
220        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
221     LegalizeOp(SDValue(&*I, 0));
222 
223   // Finally, it's possible the root changed.  Get the new root.
224   SDValue OldRoot = DAG.getRoot();
225   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
226   DAG.setRoot(LegalizedNodes[OldRoot]);
227 
228   LegalizedNodes.clear();
229 
230   // Remove dead nodes now.
231   DAG.RemoveDeadNodes();
232 
233   return Changed;
234 }
235 
236 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) {
237   assert(Op->getNumValues() == Result->getNumValues() &&
238          "Unexpected number of results");
239   // Generic legalization: just pass the operand through.
240   for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i)
241     AddLegalizedOperand(Op.getValue(i), SDValue(Result, i));
242   return SDValue(Result, Op.getResNo());
243 }
244 
245 SDValue
246 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op,
247                                             MutableArrayRef<SDValue> Results) {
248   assert(Results.size() == Op->getNumValues() &&
249          "Unexpected number of results");
250   // Make sure that the generated code is itself legal.
251   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
252     Results[i] = LegalizeOp(Results[i]);
253     AddLegalizedOperand(Op.getValue(i), Results[i]);
254   }
255 
256   return Results[Op.getResNo()];
257 }
258 
259 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
260   // Note that LegalizeOp may be reentered even from single-use nodes, which
261   // means that we always must cache transformed nodes.
262   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
263   if (I != LegalizedNodes.end()) return I->second;
264 
265   // Legalize the operands
266   SmallVector<SDValue, 8> Ops;
267   for (const SDValue &Oper : Op->op_values())
268     Ops.push_back(LegalizeOp(Oper));
269 
270   SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops);
271 
272   bool HasVectorValueOrOp =
273       llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) ||
274       llvm::any_of(Node->op_values(),
275                    [](SDValue O) { return O.getValueType().isVector(); });
276   if (!HasVectorValueOrOp)
277     return TranslateLegalizeResults(Op, Node);
278 
279   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
280   EVT ValVT;
281   switch (Op.getOpcode()) {
282   default:
283     return TranslateLegalizeResults(Op, Node);
284   case ISD::LOAD: {
285     LoadSDNode *LD = cast<LoadSDNode>(Node);
286     ISD::LoadExtType ExtType = LD->getExtensionType();
287     EVT LoadedVT = LD->getMemoryVT();
288     if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD)
289       Action = TLI.getLoadExtAction(ExtType, LD->getValueType(0), LoadedVT);
290     break;
291   }
292   case ISD::STORE: {
293     StoreSDNode *ST = cast<StoreSDNode>(Node);
294     EVT StVT = ST->getMemoryVT();
295     MVT ValVT = ST->getValue().getSimpleValueType();
296     if (StVT.isVector() && ST->isTruncatingStore())
297       Action = TLI.getTruncStoreAction(ValVT, StVT);
298     break;
299   }
300   case ISD::MERGE_VALUES:
301     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
302     // This operation lies about being legal: when it claims to be legal,
303     // it should actually be expanded.
304     if (Action == TargetLowering::Legal)
305       Action = TargetLowering::Expand;
306     break;
307 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
308   case ISD::STRICT_##DAGN:
309 #include "llvm/IR/ConstrainedOps.def"
310     ValVT = Node->getValueType(0);
311     if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
312         Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
313       ValVT = Node->getOperand(1).getValueType();
314     if (Op.getOpcode() == ISD::STRICT_FSETCC ||
315         Op.getOpcode() == ISD::STRICT_FSETCCS) {
316       MVT OpVT = Node->getOperand(1).getSimpleValueType();
317       ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(3))->get();
318       Action = TLI.getCondCodeAction(CCCode, OpVT);
319       if (Action == TargetLowering::Legal)
320         Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
321     } else {
322       Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
323     }
324     // If we're asked to expand a strict vector floating-point operation,
325     // by default we're going to simply unroll it.  That is usually the
326     // best approach, except in the case where the resulting strict (scalar)
327     // operations would themselves use the fallback mutation to non-strict.
328     // In that specific case, just do the fallback on the vector op.
329     if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
330         TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
331             TargetLowering::Legal) {
332       EVT EltVT = ValVT.getVectorElementType();
333       if (TLI.getOperationAction(Node->getOpcode(), EltVT)
334           == TargetLowering::Expand &&
335           TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
336           == TargetLowering::Legal)
337         Action = TargetLowering::Legal;
338     }
339     break;
340   case ISD::ADD:
341   case ISD::SUB:
342   case ISD::MUL:
343   case ISD::MULHS:
344   case ISD::MULHU:
345   case ISD::SDIV:
346   case ISD::UDIV:
347   case ISD::SREM:
348   case ISD::UREM:
349   case ISD::SDIVREM:
350   case ISD::UDIVREM:
351   case ISD::FADD:
352   case ISD::FSUB:
353   case ISD::FMUL:
354   case ISD::FDIV:
355   case ISD::FREM:
356   case ISD::AND:
357   case ISD::OR:
358   case ISD::XOR:
359   case ISD::SHL:
360   case ISD::SRA:
361   case ISD::SRL:
362   case ISD::FSHL:
363   case ISD::FSHR:
364   case ISD::ROTL:
365   case ISD::ROTR:
366   case ISD::ABS:
367   case ISD::BSWAP:
368   case ISD::BITREVERSE:
369   case ISD::CTLZ:
370   case ISD::CTTZ:
371   case ISD::CTLZ_ZERO_UNDEF:
372   case ISD::CTTZ_ZERO_UNDEF:
373   case ISD::CTPOP:
374   case ISD::SELECT:
375   case ISD::VSELECT:
376   case ISD::SELECT_CC:
377   case ISD::ZERO_EXTEND:
378   case ISD::ANY_EXTEND:
379   case ISD::TRUNCATE:
380   case ISD::SIGN_EXTEND:
381   case ISD::FP_TO_SINT:
382   case ISD::FP_TO_UINT:
383   case ISD::FNEG:
384   case ISD::FABS:
385   case ISD::FMINNUM:
386   case ISD::FMAXNUM:
387   case ISD::FMINNUM_IEEE:
388   case ISD::FMAXNUM_IEEE:
389   case ISD::FMINIMUM:
390   case ISD::FMAXIMUM:
391   case ISD::FCOPYSIGN:
392   case ISD::FSQRT:
393   case ISD::FSIN:
394   case ISD::FCOS:
395   case ISD::FLDEXP:
396   case ISD::FPOWI:
397   case ISD::FPOW:
398   case ISD::FLOG:
399   case ISD::FLOG2:
400   case ISD::FLOG10:
401   case ISD::FEXP:
402   case ISD::FEXP2:
403   case ISD::FEXP10:
404   case ISD::FCEIL:
405   case ISD::FTRUNC:
406   case ISD::FRINT:
407   case ISD::LRINT:
408   case ISD::LLRINT:
409   case ISD::FNEARBYINT:
410   case ISD::FROUND:
411   case ISD::FROUNDEVEN:
412   case ISD::FFLOOR:
413   case ISD::FP_ROUND:
414   case ISD::FP_EXTEND:
415   case ISD::FMA:
416   case ISD::SIGN_EXTEND_INREG:
417   case ISD::ANY_EXTEND_VECTOR_INREG:
418   case ISD::SIGN_EXTEND_VECTOR_INREG:
419   case ISD::ZERO_EXTEND_VECTOR_INREG:
420   case ISD::SMIN:
421   case ISD::SMAX:
422   case ISD::UMIN:
423   case ISD::UMAX:
424   case ISD::SMUL_LOHI:
425   case ISD::UMUL_LOHI:
426   case ISD::SADDO:
427   case ISD::UADDO:
428   case ISD::SSUBO:
429   case ISD::USUBO:
430   case ISD::SMULO:
431   case ISD::UMULO:
432   case ISD::FCANONICALIZE:
433   case ISD::FFREXP:
434   case ISD::SADDSAT:
435   case ISD::UADDSAT:
436   case ISD::SSUBSAT:
437   case ISD::USUBSAT:
438   case ISD::SSHLSAT:
439   case ISD::USHLSAT:
440   case ISD::FP_TO_SINT_SAT:
441   case ISD::FP_TO_UINT_SAT:
442   case ISD::MGATHER:
443     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
444     break;
445   case ISD::SMULFIX:
446   case ISD::SMULFIXSAT:
447   case ISD::UMULFIX:
448   case ISD::UMULFIXSAT:
449   case ISD::SDIVFIX:
450   case ISD::SDIVFIXSAT:
451   case ISD::UDIVFIX:
452   case ISD::UDIVFIXSAT: {
453     unsigned Scale = Node->getConstantOperandVal(2);
454     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
455                                               Node->getValueType(0), Scale);
456     break;
457   }
458   case ISD::SINT_TO_FP:
459   case ISD::UINT_TO_FP:
460   case ISD::VECREDUCE_ADD:
461   case ISD::VECREDUCE_MUL:
462   case ISD::VECREDUCE_AND:
463   case ISD::VECREDUCE_OR:
464   case ISD::VECREDUCE_XOR:
465   case ISD::VECREDUCE_SMAX:
466   case ISD::VECREDUCE_SMIN:
467   case ISD::VECREDUCE_UMAX:
468   case ISD::VECREDUCE_UMIN:
469   case ISD::VECREDUCE_FADD:
470   case ISD::VECREDUCE_FMUL:
471   case ISD::VECREDUCE_FMAX:
472   case ISD::VECREDUCE_FMIN:
473   case ISD::VECREDUCE_FMAXIMUM:
474   case ISD::VECREDUCE_FMINIMUM:
475     Action = TLI.getOperationAction(Node->getOpcode(),
476                                     Node->getOperand(0).getValueType());
477     break;
478   case ISD::VECREDUCE_SEQ_FADD:
479   case ISD::VECREDUCE_SEQ_FMUL:
480     Action = TLI.getOperationAction(Node->getOpcode(),
481                                     Node->getOperand(1).getValueType());
482     break;
483   case ISD::SETCC: {
484     MVT OpVT = Node->getOperand(0).getSimpleValueType();
485     ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
486     Action = TLI.getCondCodeAction(CCCode, OpVT);
487     if (Action == TargetLowering::Legal)
488       Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
489     break;
490   }
491 
492 #define BEGIN_REGISTER_VP_SDNODE(VPID, LEGALPOS, ...)                          \
493   case ISD::VPID: {                                                            \
494     EVT LegalizeVT = LEGALPOS < 0 ? Node->getValueType(-(1 + LEGALPOS))        \
495                                   : Node->getOperand(LEGALPOS).getValueType(); \
496     if (ISD::VPID == ISD::VP_SETCC) {                                          \
497       ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); \
498       Action = TLI.getCondCodeAction(CCCode, LegalizeVT.getSimpleVT());        \
499       if (Action != TargetLowering::Legal)                                     \
500         break;                                                                 \
501     }                                                                          \
502     Action = TLI.getOperationAction(Node->getOpcode(), LegalizeVT);            \
503   } break;
504 #include "llvm/IR/VPIntrinsics.def"
505   }
506 
507   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
508 
509   SmallVector<SDValue, 8> ResultVals;
510   switch (Action) {
511   default: llvm_unreachable("This action is not supported yet!");
512   case TargetLowering::Promote:
513     assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) &&
514            "This action is not supported yet!");
515     LLVM_DEBUG(dbgs() << "Promoting\n");
516     Promote(Node, ResultVals);
517     assert(!ResultVals.empty() && "No results for promotion?");
518     break;
519   case TargetLowering::Legal:
520     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
521     break;
522   case TargetLowering::Custom:
523     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
524     if (LowerOperationWrapper(Node, ResultVals))
525       break;
526     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
527     [[fallthrough]];
528   case TargetLowering::Expand:
529     LLVM_DEBUG(dbgs() << "Expanding\n");
530     Expand(Node, ResultVals);
531     break;
532   }
533 
534   if (ResultVals.empty())
535     return TranslateLegalizeResults(Op, Node);
536 
537   Changed = true;
538   return RecursivelyLegalizeResults(Op, ResultVals);
539 }
540 
541 // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we
542 // merge them somehow?
543 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node,
544                                             SmallVectorImpl<SDValue> &Results) {
545   SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
546 
547   if (!Res.getNode())
548     return false;
549 
550   if (Res == SDValue(Node, 0))
551     return true;
552 
553   // If the original node has one result, take the return value from
554   // LowerOperation as is. It might not be result number 0.
555   if (Node->getNumValues() == 1) {
556     Results.push_back(Res);
557     return true;
558   }
559 
560   // If the original node has multiple results, then the return node should
561   // have the same number of results.
562   assert((Node->getNumValues() == Res->getNumValues()) &&
563          "Lowering returned the wrong number of results!");
564 
565   // Places new result values base on N result number.
566   for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I)
567     Results.push_back(Res.getValue(I));
568 
569   return true;
570 }
571 
572 void VectorLegalizer::PromoteReduction(SDNode *Node,
573                                        SmallVectorImpl<SDValue> &Results) {
574   MVT VecVT = Node->getOperand(1).getSimpleValueType();
575   MVT NewVecVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VecVT);
576   MVT ScalarVT = Node->getSimpleValueType(0);
577   MVT NewScalarVT = NewVecVT.getVectorElementType();
578 
579   SDLoc DL(Node);
580   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
581 
582   // promote the initial value.
583   if (Node->getOperand(0).getValueType().isFloatingPoint())
584     Operands[0] =
585         DAG.getNode(ISD::FP_EXTEND, DL, NewScalarVT, Node->getOperand(0));
586   else
587     Operands[0] =
588         DAG.getNode(ISD::ANY_EXTEND, DL, NewScalarVT, Node->getOperand(0));
589 
590   for (unsigned j = 1; j != Node->getNumOperands(); ++j)
591     if (Node->getOperand(j).getValueType().isVector() &&
592         !(ISD::isVPOpcode(Node->getOpcode()) &&
593           ISD::getVPMaskIdx(Node->getOpcode()) == j)) // Skip mask operand.
594       // promote the vector operand.
595       if (Node->getOperand(j).getValueType().isFloatingPoint())
596         Operands[j] =
597             DAG.getNode(ISD::FP_EXTEND, DL, NewVecVT, Node->getOperand(j));
598       else
599         Operands[j] =
600             DAG.getNode(ISD::ANY_EXTEND, DL, NewVecVT, Node->getOperand(j));
601     else
602       Operands[j] = Node->getOperand(j); // Skip VL operand.
603 
604   SDValue Res = DAG.getNode(Node->getOpcode(), DL, NewScalarVT, Operands,
605                             Node->getFlags());
606 
607   if (ScalarVT.isFloatingPoint())
608     Res = DAG.getNode(ISD::FP_ROUND, DL, ScalarVT, Res,
609                       DAG.getIntPtrConstant(0, DL, /*isTarget=*/true));
610   else
611     Res = DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, Res);
612 
613   Results.push_back(Res);
614 }
615 
616 void VectorLegalizer::PromoteSETCC(SDNode *Node,
617                                    SmallVectorImpl<SDValue> &Results) {
618   MVT VecVT = Node->getOperand(0).getSimpleValueType();
619   MVT NewVecVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VecVT);
620 
621   unsigned ExtOp = VecVT.isFloatingPoint() ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
622 
623   SDLoc DL(Node);
624   SmallVector<SDValue, 5> Operands(Node->getNumOperands());
625 
626   Operands[0] = DAG.getNode(ExtOp, DL, NewVecVT, Node->getOperand(0));
627   Operands[1] = DAG.getNode(ExtOp, DL, NewVecVT, Node->getOperand(1));
628   Operands[2] = Node->getOperand(2);
629 
630   if (Node->getOpcode() == ISD::VP_SETCC) {
631     Operands[3] = Node->getOperand(3); // mask
632     Operands[4] = Node->getOperand(4); // evl
633   }
634 
635   SDValue Res = DAG.getNode(Node->getOpcode(), DL, Node->getSimpleValueType(0),
636                             Operands, Node->getFlags());
637 
638   Results.push_back(Res);
639 }
640 
641 void VectorLegalizer::PromoteSTRICT(SDNode *Node,
642                                     SmallVectorImpl<SDValue> &Results) {
643   MVT VecVT = Node->getOperand(1).getSimpleValueType();
644   MVT NewVecVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VecVT);
645 
646   assert(VecVT.isFloatingPoint());
647 
648   SDLoc DL(Node);
649   SmallVector<SDValue, 5> Operands(Node->getNumOperands());
650   SmallVector<SDValue, 2> Chains;
651 
652   for (unsigned j = 1; j != Node->getNumOperands(); ++j)
653     if (Node->getOperand(j).getValueType().isVector() &&
654         !(ISD::isVPOpcode(Node->getOpcode()) &&
655           ISD::getVPMaskIdx(Node->getOpcode()) == j)) // Skip mask operand.
656     {
657       // promote the vector operand.
658       SDValue Ext =
659           DAG.getNode(ISD::STRICT_FP_EXTEND, DL, {NewVecVT, MVT::Other},
660                       {Node->getOperand(0), Node->getOperand(j)});
661       Operands[j] = Ext.getValue(0);
662       Chains.push_back(Ext.getValue(1));
663     } else
664       Operands[j] = Node->getOperand(j); // Skip no vector operand.
665 
666   SDVTList VTs = DAG.getVTList(NewVecVT, Node->getValueType(1));
667 
668   Operands[0] = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
669 
670   SDValue Res =
671       DAG.getNode(Node->getOpcode(), DL, VTs, Operands, Node->getFlags());
672 
673   SDValue Round =
674       DAG.getNode(ISD::STRICT_FP_ROUND, DL, {VecVT, MVT::Other},
675                   {Res.getValue(1), Res.getValue(0),
676                    DAG.getIntPtrConstant(0, DL, /*isTarget=*/true)});
677 
678   Results.push_back(Round.getValue(0));
679   Results.push_back(Round.getValue(1));
680 }
681 
682 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
683   // For a few operations there is a specific concept for promotion based on
684   // the operand's type.
685   switch (Node->getOpcode()) {
686   case ISD::SINT_TO_FP:
687   case ISD::UINT_TO_FP:
688   case ISD::STRICT_SINT_TO_FP:
689   case ISD::STRICT_UINT_TO_FP:
690     // "Promote" the operation by extending the operand.
691     PromoteINT_TO_FP(Node, Results);
692     return;
693   case ISD::FP_TO_UINT:
694   case ISD::FP_TO_SINT:
695   case ISD::STRICT_FP_TO_UINT:
696   case ISD::STRICT_FP_TO_SINT:
697     // Promote the operation by extending the operand.
698     PromoteFP_TO_INT(Node, Results);
699     return;
700   case ISD::VP_REDUCE_ADD:
701   case ISD::VP_REDUCE_MUL:
702   case ISD::VP_REDUCE_AND:
703   case ISD::VP_REDUCE_OR:
704   case ISD::VP_REDUCE_XOR:
705   case ISD::VP_REDUCE_SMAX:
706   case ISD::VP_REDUCE_SMIN:
707   case ISD::VP_REDUCE_UMAX:
708   case ISD::VP_REDUCE_UMIN:
709   case ISD::VP_REDUCE_FADD:
710   case ISD::VP_REDUCE_FMUL:
711   case ISD::VP_REDUCE_FMAX:
712   case ISD::VP_REDUCE_FMIN:
713   case ISD::VP_REDUCE_SEQ_FADD:
714     // Promote the operation by extending the operand.
715     PromoteReduction(Node, Results);
716     return;
717   case ISD::VP_SETCC:
718   case ISD::SETCC:
719     // Promote the operation by extending the operand.
720     PromoteSETCC(Node, Results);
721     return;
722   case ISD::STRICT_FADD:
723   case ISD::STRICT_FSUB:
724   case ISD::STRICT_FMUL:
725   case ISD::STRICT_FDIV:
726   case ISD::STRICT_FSQRT:
727   case ISD::STRICT_FMA:
728     PromoteSTRICT(Node, Results);
729     return;
730   case ISD::FP_ROUND:
731   case ISD::FP_EXTEND:
732     // These operations are used to do promotion so they can't be promoted
733     // themselves.
734     llvm_unreachable("Don't know how to promote this operation!");
735   }
736 
737   // There are currently two cases of vector promotion:
738   // 1) Bitcasting a vector of integers to a different type to a vector of the
739   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
740   // 2) Extending a vector of floats to a vector of the same number of larger
741   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
742   assert(Node->getNumValues() == 1 &&
743          "Can't promote a vector with multiple results!");
744   MVT VT = Node->getSimpleValueType(0);
745   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
746   SDLoc dl(Node);
747   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
748 
749   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
750     // Do not promote the mask operand of a VP OP.
751     bool SkipPromote = ISD::isVPOpcode(Node->getOpcode()) &&
752                        ISD::getVPMaskIdx(Node->getOpcode()) == j;
753     if (Node->getOperand(j).getValueType().isVector() && !SkipPromote)
754       if (Node->getOperand(j)
755               .getValueType()
756               .getVectorElementType()
757               .isFloatingPoint() &&
758           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
759         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j));
760       else
761         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j));
762     else
763       Operands[j] = Node->getOperand(j);
764   }
765 
766   SDValue Res =
767       DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags());
768 
769   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
770       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
771        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
772     Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res,
773                       DAG.getIntPtrConstant(0, dl, /*isTarget=*/true));
774   else
775     Res = DAG.getNode(ISD::BITCAST, dl, VT, Res);
776 
777   Results.push_back(Res);
778 }
779 
780 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node,
781                                        SmallVectorImpl<SDValue> &Results) {
782   // INT_TO_FP operations may require the input operand be promoted even
783   // when the type is otherwise legal.
784   bool IsStrict = Node->isStrictFPOpcode();
785   MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType();
786   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
787   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
788          "Vectors have different number of elements!");
789 
790   SDLoc dl(Node);
791   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
792 
793   unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP ||
794                   Node->getOpcode() == ISD::STRICT_UINT_TO_FP)
795                      ? ISD::ZERO_EXTEND
796                      : ISD::SIGN_EXTEND;
797   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
798     if (Node->getOperand(j).getValueType().isVector())
799       Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j));
800     else
801       Operands[j] = Node->getOperand(j);
802   }
803 
804   if (IsStrict) {
805     SDValue Res = DAG.getNode(Node->getOpcode(), dl,
806                               {Node->getValueType(0), MVT::Other}, Operands);
807     Results.push_back(Res);
808     Results.push_back(Res.getValue(1));
809     return;
810   }
811 
812   SDValue Res =
813       DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands);
814   Results.push_back(Res);
815 }
816 
817 // For FP_TO_INT we promote the result type to a vector type with wider
818 // elements and then truncate the result.  This is different from the default
819 // PromoteVector which uses bitcast to promote thus assumning that the
820 // promoted vector type has the same overall size.
821 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node,
822                                        SmallVectorImpl<SDValue> &Results) {
823   MVT VT = Node->getSimpleValueType(0);
824   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
825   bool IsStrict = Node->isStrictFPOpcode();
826   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
827          "Vectors have different number of elements!");
828 
829   unsigned NewOpc = Node->getOpcode();
830   // Change FP_TO_UINT to FP_TO_SINT if possible.
831   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
832   if (NewOpc == ISD::FP_TO_UINT &&
833       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
834     NewOpc = ISD::FP_TO_SINT;
835 
836   if (NewOpc == ISD::STRICT_FP_TO_UINT &&
837       TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
838     NewOpc = ISD::STRICT_FP_TO_SINT;
839 
840   SDLoc dl(Node);
841   SDValue Promoted, Chain;
842   if (IsStrict) {
843     Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
844                            {Node->getOperand(0), Node->getOperand(1)});
845     Chain = Promoted.getValue(1);
846   } else
847     Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0));
848 
849   // Assert that the converted value fits in the original type.  If it doesn't
850   // (eg: because the value being converted is too big), then the result of the
851   // original operation was undefined anyway, so the assert is still correct.
852   if (Node->getOpcode() == ISD::FP_TO_UINT ||
853       Node->getOpcode() == ISD::STRICT_FP_TO_UINT)
854     NewOpc = ISD::AssertZext;
855   else
856     NewOpc = ISD::AssertSext;
857 
858   Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
859                          DAG.getValueType(VT.getScalarType()));
860   Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
861   Results.push_back(Promoted);
862   if (IsStrict)
863     Results.push_back(Chain);
864 }
865 
866 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) {
867   LoadSDNode *LD = cast<LoadSDNode>(N);
868   return TLI.scalarizeVectorLoad(LD, DAG);
869 }
870 
871 SDValue VectorLegalizer::ExpandStore(SDNode *N) {
872   StoreSDNode *ST = cast<StoreSDNode>(N);
873   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
874   return TF;
875 }
876 
877 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
878   switch (Node->getOpcode()) {
879   case ISD::LOAD: {
880     std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node);
881     Results.push_back(Tmp.first);
882     Results.push_back(Tmp.second);
883     return;
884   }
885   case ISD::STORE:
886     Results.push_back(ExpandStore(Node));
887     return;
888   case ISD::MERGE_VALUES:
889     for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
890       Results.push_back(Node->getOperand(i));
891     return;
892   case ISD::SIGN_EXTEND_INREG:
893     Results.push_back(ExpandSEXTINREG(Node));
894     return;
895   case ISD::ANY_EXTEND_VECTOR_INREG:
896     Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node));
897     return;
898   case ISD::SIGN_EXTEND_VECTOR_INREG:
899     Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node));
900     return;
901   case ISD::ZERO_EXTEND_VECTOR_INREG:
902     Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node));
903     return;
904   case ISD::BSWAP:
905     Results.push_back(ExpandBSWAP(Node));
906     return;
907   case ISD::VP_BSWAP:
908     Results.push_back(TLI.expandVPBSWAP(Node, DAG));
909     return;
910   case ISD::VSELECT:
911     Results.push_back(ExpandVSELECT(Node));
912     return;
913   case ISD::VP_SELECT:
914     Results.push_back(ExpandVP_SELECT(Node));
915     return;
916   case ISD::VP_SREM:
917   case ISD::VP_UREM:
918     if (SDValue Expanded = ExpandVP_REM(Node)) {
919       Results.push_back(Expanded);
920       return;
921     }
922     break;
923   case ISD::SELECT:
924     Results.push_back(ExpandSELECT(Node));
925     return;
926   case ISD::SELECT_CC: {
927     if (Node->getValueType(0).isScalableVector()) {
928       EVT CondVT = TLI.getSetCCResultType(
929           DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
930       SDValue SetCC =
931           DAG.getNode(ISD::SETCC, SDLoc(Node), CondVT, Node->getOperand(0),
932                       Node->getOperand(1), Node->getOperand(4));
933       Results.push_back(DAG.getSelect(SDLoc(Node), Node->getValueType(0), SetCC,
934                                       Node->getOperand(2),
935                                       Node->getOperand(3)));
936       return;
937     }
938     break;
939   }
940   case ISD::FP_TO_UINT:
941     ExpandFP_TO_UINT(Node, Results);
942     return;
943   case ISD::UINT_TO_FP:
944     ExpandUINT_TO_FLOAT(Node, Results);
945     return;
946   case ISD::FNEG:
947     Results.push_back(ExpandFNEG(Node));
948     return;
949   case ISD::FSUB:
950     ExpandFSUB(Node, Results);
951     return;
952   case ISD::SETCC:
953   case ISD::VP_SETCC:
954     ExpandSETCC(Node, Results);
955     return;
956   case ISD::ABS:
957     if (SDValue Expanded = TLI.expandABS(Node, DAG)) {
958       Results.push_back(Expanded);
959       return;
960     }
961     break;
962   case ISD::ABDS:
963   case ISD::ABDU:
964     if (SDValue Expanded = TLI.expandABD(Node, DAG)) {
965       Results.push_back(Expanded);
966       return;
967     }
968     break;
969   case ISD::BITREVERSE:
970     ExpandBITREVERSE(Node, Results);
971     return;
972   case ISD::VP_BITREVERSE:
973     if (SDValue Expanded = TLI.expandVPBITREVERSE(Node, DAG)) {
974       Results.push_back(Expanded);
975       return;
976     }
977     break;
978   case ISD::CTPOP:
979     if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) {
980       Results.push_back(Expanded);
981       return;
982     }
983     break;
984   case ISD::VP_CTPOP:
985     if (SDValue Expanded = TLI.expandVPCTPOP(Node, DAG)) {
986       Results.push_back(Expanded);
987       return;
988     }
989     break;
990   case ISD::CTLZ:
991   case ISD::CTLZ_ZERO_UNDEF:
992     if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) {
993       Results.push_back(Expanded);
994       return;
995     }
996     break;
997   case ISD::VP_CTLZ:
998   case ISD::VP_CTLZ_ZERO_UNDEF:
999     if (SDValue Expanded = TLI.expandVPCTLZ(Node, DAG)) {
1000       Results.push_back(Expanded);
1001       return;
1002     }
1003     break;
1004   case ISD::CTTZ:
1005   case ISD::CTTZ_ZERO_UNDEF:
1006     if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) {
1007       Results.push_back(Expanded);
1008       return;
1009     }
1010     break;
1011   case ISD::VP_CTTZ:
1012   case ISD::VP_CTTZ_ZERO_UNDEF:
1013     if (SDValue Expanded = TLI.expandVPCTTZ(Node, DAG)) {
1014       Results.push_back(Expanded);
1015       return;
1016     }
1017     break;
1018   case ISD::FSHL:
1019   case ISD::VP_FSHL:
1020   case ISD::FSHR:
1021   case ISD::VP_FSHR:
1022     if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) {
1023       Results.push_back(Expanded);
1024       return;
1025     }
1026     break;
1027   case ISD::ROTL:
1028   case ISD::ROTR:
1029     if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) {
1030       Results.push_back(Expanded);
1031       return;
1032     }
1033     break;
1034   case ISD::FMINNUM:
1035   case ISD::FMAXNUM:
1036     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) {
1037       Results.push_back(Expanded);
1038       return;
1039     }
1040     break;
1041   case ISD::SMIN:
1042   case ISD::SMAX:
1043   case ISD::UMIN:
1044   case ISD::UMAX:
1045     if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) {
1046       Results.push_back(Expanded);
1047       return;
1048     }
1049     break;
1050   case ISD::UADDO:
1051   case ISD::USUBO:
1052     ExpandUADDSUBO(Node, Results);
1053     return;
1054   case ISD::SADDO:
1055   case ISD::SSUBO:
1056     ExpandSADDSUBO(Node, Results);
1057     return;
1058   case ISD::UMULO:
1059   case ISD::SMULO:
1060     ExpandMULO(Node, Results);
1061     return;
1062   case ISD::USUBSAT:
1063   case ISD::SSUBSAT:
1064   case ISD::UADDSAT:
1065   case ISD::SADDSAT:
1066     if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) {
1067       Results.push_back(Expanded);
1068       return;
1069     }
1070     break;
1071   case ISD::USHLSAT:
1072   case ISD::SSHLSAT:
1073     if (SDValue Expanded = TLI.expandShlSat(Node, DAG)) {
1074       Results.push_back(Expanded);
1075       return;
1076     }
1077     break;
1078   case ISD::FP_TO_SINT_SAT:
1079   case ISD::FP_TO_UINT_SAT:
1080     // Expand the fpsosisat if it is scalable to prevent it from unrolling below.
1081     if (Node->getValueType(0).isScalableVector()) {
1082       if (SDValue Expanded = TLI.expandFP_TO_INT_SAT(Node, DAG)) {
1083         Results.push_back(Expanded);
1084         return;
1085       }
1086     }
1087     break;
1088   case ISD::SMULFIX:
1089   case ISD::UMULFIX:
1090     if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) {
1091       Results.push_back(Expanded);
1092       return;
1093     }
1094     break;
1095   case ISD::SMULFIXSAT:
1096   case ISD::UMULFIXSAT:
1097     // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
1098     // why. Maybe it results in worse codegen compared to the unroll for some
1099     // targets? This should probably be investigated. And if we still prefer to
1100     // unroll an explanation could be helpful.
1101     break;
1102   case ISD::SDIVFIX:
1103   case ISD::UDIVFIX:
1104     ExpandFixedPointDiv(Node, Results);
1105     return;
1106   case ISD::SDIVFIXSAT:
1107   case ISD::UDIVFIXSAT:
1108     break;
1109 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
1110   case ISD::STRICT_##DAGN:
1111 #include "llvm/IR/ConstrainedOps.def"
1112     ExpandStrictFPOp(Node, Results);
1113     return;
1114   case ISD::VECREDUCE_ADD:
1115   case ISD::VECREDUCE_MUL:
1116   case ISD::VECREDUCE_AND:
1117   case ISD::VECREDUCE_OR:
1118   case ISD::VECREDUCE_XOR:
1119   case ISD::VECREDUCE_SMAX:
1120   case ISD::VECREDUCE_SMIN:
1121   case ISD::VECREDUCE_UMAX:
1122   case ISD::VECREDUCE_UMIN:
1123   case ISD::VECREDUCE_FADD:
1124   case ISD::VECREDUCE_FMUL:
1125   case ISD::VECREDUCE_FMAX:
1126   case ISD::VECREDUCE_FMIN:
1127   case ISD::VECREDUCE_FMAXIMUM:
1128   case ISD::VECREDUCE_FMINIMUM:
1129     Results.push_back(TLI.expandVecReduce(Node, DAG));
1130     return;
1131   case ISD::VECREDUCE_SEQ_FADD:
1132   case ISD::VECREDUCE_SEQ_FMUL:
1133     Results.push_back(TLI.expandVecReduceSeq(Node, DAG));
1134     return;
1135   case ISD::SREM:
1136   case ISD::UREM:
1137     ExpandREM(Node, Results);
1138     return;
1139   case ISD::VP_MERGE:
1140     Results.push_back(ExpandVP_MERGE(Node));
1141     return;
1142   }
1143 
1144   SDValue Unrolled = DAG.UnrollVectorOp(Node);
1145   for (unsigned I = 0, E = Unrolled->getNumValues(); I != E; ++I)
1146     Results.push_back(Unrolled.getValue(I));
1147 }
1148 
1149 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) {
1150   // Lower a select instruction where the condition is a scalar and the
1151   // operands are vectors. Lower this select to VSELECT and implement it
1152   // using XOR AND OR. The selector bit is broadcasted.
1153   EVT VT = Node->getValueType(0);
1154   SDLoc DL(Node);
1155 
1156   SDValue Mask = Node->getOperand(0);
1157   SDValue Op1 = Node->getOperand(1);
1158   SDValue Op2 = Node->getOperand(2);
1159 
1160   assert(VT.isVector() && !Mask.getValueType().isVector()
1161          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
1162 
1163   // If we can't even use the basic vector operations of
1164   // AND,OR,XOR, we will have to scalarize the op.
1165   // Notice that the operation may be 'promoted' which means that it is
1166   // 'bitcasted' to another type which is handled.
1167   // Also, we need to be able to construct a splat vector using either
1168   // BUILD_VECTOR or SPLAT_VECTOR.
1169   // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to
1170   // BUILD_VECTOR?
1171   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1172       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1173       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1174       TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR
1175                                                       : ISD::SPLAT_VECTOR,
1176                              VT) == TargetLowering::Expand)
1177     return DAG.UnrollVectorOp(Node);
1178 
1179   // Generate a mask operand.
1180   EVT MaskTy = VT.changeVectorElementTypeToInteger();
1181 
1182   // What is the size of each element in the vector mask.
1183   EVT BitTy = MaskTy.getScalarType();
1184 
1185   Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy),
1186                        DAG.getConstant(0, DL, BitTy));
1187 
1188   // Broadcast the mask so that the entire vector is all one or all zero.
1189   Mask = DAG.getSplat(MaskTy, DL, Mask);
1190 
1191   // Bitcast the operands to be the same type as the mask.
1192   // This is needed when we select between FP types because
1193   // the mask is a vector of integers.
1194   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
1195   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
1196 
1197   SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy);
1198 
1199   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
1200   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
1201   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
1202   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1203 }
1204 
1205 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) {
1206   EVT VT = Node->getValueType(0);
1207 
1208   // Make sure that the SRA and SHL instructions are available.
1209   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
1210       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
1211     return DAG.UnrollVectorOp(Node);
1212 
1213   SDLoc DL(Node);
1214   EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT();
1215 
1216   unsigned BW = VT.getScalarSizeInBits();
1217   unsigned OrigBW = OrigTy.getScalarSizeInBits();
1218   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
1219 
1220   SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz);
1221   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
1222 }
1223 
1224 // Generically expand a vector anyext in register to a shuffle of the relevant
1225 // lanes into the appropriate locations, with other lanes left undef.
1226 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) {
1227   SDLoc DL(Node);
1228   EVT VT = Node->getValueType(0);
1229   int NumElements = VT.getVectorNumElements();
1230   SDValue Src = Node->getOperand(0);
1231   EVT SrcVT = Src.getValueType();
1232   int NumSrcElements = SrcVT.getVectorNumElements();
1233 
1234   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1235   // into a larger vector type.
1236   if (SrcVT.bitsLE(VT)) {
1237     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1238            "ANY_EXTEND_VECTOR_INREG vector size mismatch");
1239     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1240     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1241                              NumSrcElements);
1242     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
1243                       Src, DAG.getVectorIdxConstant(0, DL));
1244   }
1245 
1246   // Build a base mask of undef shuffles.
1247   SmallVector<int, 16> ShuffleMask;
1248   ShuffleMask.resize(NumSrcElements, -1);
1249 
1250   // Place the extended lanes into the correct locations.
1251   int ExtLaneScale = NumSrcElements / NumElements;
1252   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1253   for (int i = 0; i < NumElements; ++i)
1254     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
1255 
1256   return DAG.getNode(
1257       ISD::BITCAST, DL, VT,
1258       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
1259 }
1260 
1261 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) {
1262   SDLoc DL(Node);
1263   EVT VT = Node->getValueType(0);
1264   SDValue Src = Node->getOperand(0);
1265   EVT SrcVT = Src.getValueType();
1266 
1267   // First build an any-extend node which can be legalized above when we
1268   // recurse through it.
1269   SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
1270 
1271   // Now we need sign extend. Do this by shifting the elements. Even if these
1272   // aren't legal operations, they have a better chance of being legalized
1273   // without full scalarization than the sign extension does.
1274   unsigned EltWidth = VT.getScalarSizeInBits();
1275   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
1276   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
1277   return DAG.getNode(ISD::SRA, DL, VT,
1278                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
1279                      ShiftAmount);
1280 }
1281 
1282 // Generically expand a vector zext in register to a shuffle of the relevant
1283 // lanes into the appropriate locations, a blend of zero into the high bits,
1284 // and a bitcast to the wider element type.
1285 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) {
1286   SDLoc DL(Node);
1287   EVT VT = Node->getValueType(0);
1288   int NumElements = VT.getVectorNumElements();
1289   SDValue Src = Node->getOperand(0);
1290   EVT SrcVT = Src.getValueType();
1291   int NumSrcElements = SrcVT.getVectorNumElements();
1292 
1293   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1294   // into a larger vector type.
1295   if (SrcVT.bitsLE(VT)) {
1296     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1297            "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1298     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1299     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1300                              NumSrcElements);
1301     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
1302                       Src, DAG.getVectorIdxConstant(0, DL));
1303   }
1304 
1305   // Build up a zero vector to blend into this one.
1306   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1307 
1308   // Shuffle the incoming lanes into the correct position, and pull all other
1309   // lanes from the zero vector.
1310   auto ShuffleMask = llvm::to_vector<16>(llvm::seq<int>(0, NumSrcElements));
1311 
1312   int ExtLaneScale = NumSrcElements / NumElements;
1313   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1314   for (int i = 0; i < NumElements; ++i)
1315     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1316 
1317   return DAG.getNode(ISD::BITCAST, DL, VT,
1318                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1319 }
1320 
1321 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1322   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1323   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1324     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1325       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1326 }
1327 
1328 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) {
1329   EVT VT = Node->getValueType(0);
1330 
1331   // Scalable vectors can't use shuffle expansion.
1332   if (VT.isScalableVector())
1333     return TLI.expandBSWAP(Node, DAG);
1334 
1335   // Generate a byte wise shuffle mask for the BSWAP.
1336   SmallVector<int, 16> ShuffleMask;
1337   createBSWAPShuffleMask(VT, ShuffleMask);
1338   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1339 
1340   // Only emit a shuffle if the mask is legal.
1341   if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) {
1342     SDLoc DL(Node);
1343     SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1344     Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1345     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1346   }
1347 
1348   // If we have the appropriate vector bit operations, it is better to use them
1349   // than unrolling and expanding each component.
1350   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1351       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1352       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1353       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1354     return TLI.expandBSWAP(Node, DAG);
1355 
1356   // Otherwise unroll.
1357   return DAG.UnrollVectorOp(Node);
1358 }
1359 
1360 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node,
1361                                        SmallVectorImpl<SDValue> &Results) {
1362   EVT VT = Node->getValueType(0);
1363 
1364   // We can't unroll or use shuffles for scalable vectors.
1365   if (VT.isScalableVector()) {
1366     Results.push_back(TLI.expandBITREVERSE(Node, DAG));
1367     return;
1368   }
1369 
1370   // If we have the scalar operation, it's probably cheaper to unroll it.
1371   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) {
1372     SDValue Tmp = DAG.UnrollVectorOp(Node);
1373     Results.push_back(Tmp);
1374     return;
1375   }
1376 
1377   // If the vector element width is a whole number of bytes, test if its legal
1378   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1379   // vector. This greatly reduces the number of bit shifts necessary.
1380   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1381   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1382     SmallVector<int, 16> BSWAPMask;
1383     createBSWAPShuffleMask(VT, BSWAPMask);
1384 
1385     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1386     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1387         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1388          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1389           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1390           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1391           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1392       SDLoc DL(Node);
1393       SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1394       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1395                                 BSWAPMask);
1396       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1397       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
1398       Results.push_back(Op);
1399       return;
1400     }
1401   }
1402 
1403   // If we have the appropriate vector bit operations, it is better to use them
1404   // than unrolling and expanding each component.
1405   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1406       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1407       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1408       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) {
1409     Results.push_back(TLI.expandBITREVERSE(Node, DAG));
1410     return;
1411   }
1412 
1413   // Otherwise unroll.
1414   SDValue Tmp = DAG.UnrollVectorOp(Node);
1415   Results.push_back(Tmp);
1416 }
1417 
1418 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) {
1419   // Implement VSELECT in terms of XOR, AND, OR
1420   // on platforms which do not support blend natively.
1421   SDLoc DL(Node);
1422 
1423   SDValue Mask = Node->getOperand(0);
1424   SDValue Op1 = Node->getOperand(1);
1425   SDValue Op2 = Node->getOperand(2);
1426 
1427   EVT VT = Mask.getValueType();
1428 
1429   // If we can't even use the basic vector operations of
1430   // AND,OR,XOR, we will have to scalarize the op.
1431   // Notice that the operation may be 'promoted' which means that it is
1432   // 'bitcasted' to another type which is handled.
1433   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1434       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1435       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand)
1436     return DAG.UnrollVectorOp(Node);
1437 
1438   // This operation also isn't safe with AND, OR, XOR when the boolean type is
1439   // 0/1 and the select operands aren't also booleans, as we need an all-ones
1440   // vector constant to mask with.
1441   // FIXME: Sign extend 1 to all ones if that's legal on the target.
1442   auto BoolContents = TLI.getBooleanContents(Op1.getValueType());
1443   if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent &&
1444       !(BoolContents == TargetLowering::ZeroOrOneBooleanContent &&
1445         Op1.getValueType().getVectorElementType() == MVT::i1))
1446     return DAG.UnrollVectorOp(Node);
1447 
1448   // If the mask and the type are different sizes, unroll the vector op. This
1449   // can occur when getSetCCResultType returns something that is different in
1450   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1451   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1452     return DAG.UnrollVectorOp(Node);
1453 
1454   // Bitcast the operands to be the same type as the mask.
1455   // This is needed when we select between FP types because
1456   // the mask is a vector of integers.
1457   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1458   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1459 
1460   SDValue NotMask = DAG.getNOT(DL, Mask, VT);
1461 
1462   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1463   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1464   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1465   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1466 }
1467 
1468 SDValue VectorLegalizer::ExpandVP_SELECT(SDNode *Node) {
1469   // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which
1470   // do not support it natively.
1471   SDLoc DL(Node);
1472 
1473   SDValue Mask = Node->getOperand(0);
1474   SDValue Op1 = Node->getOperand(1);
1475   SDValue Op2 = Node->getOperand(2);
1476   SDValue EVL = Node->getOperand(3);
1477 
1478   EVT VT = Mask.getValueType();
1479 
1480   // If we can't even use the basic vector operations of
1481   // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op.
1482   if (TLI.getOperationAction(ISD::VP_AND, VT) == TargetLowering::Expand ||
1483       TLI.getOperationAction(ISD::VP_XOR, VT) == TargetLowering::Expand ||
1484       TLI.getOperationAction(ISD::VP_OR, VT) == TargetLowering::Expand)
1485     return DAG.UnrollVectorOp(Node);
1486 
1487   // This operation also isn't safe when the operands aren't also booleans.
1488   if (Op1.getValueType().getVectorElementType() != MVT::i1)
1489     return DAG.UnrollVectorOp(Node);
1490 
1491   SDValue Ones = DAG.getAllOnesConstant(DL, VT);
1492   SDValue NotMask = DAG.getNode(ISD::VP_XOR, DL, VT, Mask, Ones, Ones, EVL);
1493 
1494   Op1 = DAG.getNode(ISD::VP_AND, DL, VT, Op1, Mask, Ones, EVL);
1495   Op2 = DAG.getNode(ISD::VP_AND, DL, VT, Op2, NotMask, Ones, EVL);
1496   return DAG.getNode(ISD::VP_OR, DL, VT, Op1, Op2, Ones, EVL);
1497 }
1498 
1499 SDValue VectorLegalizer::ExpandVP_MERGE(SDNode *Node) {
1500   // Implement VP_MERGE in terms of VSELECT. Construct a mask where vector
1501   // indices less than the EVL/pivot are true. Combine that with the original
1502   // mask for a full-length mask. Use a full-length VSELECT to select between
1503   // the true and false values.
1504   SDLoc DL(Node);
1505 
1506   SDValue Mask = Node->getOperand(0);
1507   SDValue Op1 = Node->getOperand(1);
1508   SDValue Op2 = Node->getOperand(2);
1509   SDValue EVL = Node->getOperand(3);
1510 
1511   EVT MaskVT = Mask.getValueType();
1512   bool IsFixedLen = MaskVT.isFixedLengthVector();
1513 
1514   EVT EVLVecVT = EVT::getVectorVT(*DAG.getContext(), EVL.getValueType(),
1515                                   MaskVT.getVectorElementCount());
1516 
1517   // If we can't construct the EVL mask efficiently, it's better to unroll.
1518   if ((IsFixedLen &&
1519        !TLI.isOperationLegalOrCustom(ISD::BUILD_VECTOR, EVLVecVT)) ||
1520       (!IsFixedLen &&
1521        (!TLI.isOperationLegalOrCustom(ISD::STEP_VECTOR, EVLVecVT) ||
1522         !TLI.isOperationLegalOrCustom(ISD::SPLAT_VECTOR, EVLVecVT))))
1523     return DAG.UnrollVectorOp(Node);
1524 
1525   // If using a SETCC would result in a different type than the mask type,
1526   // unroll.
1527   if (TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1528                              EVLVecVT) != MaskVT)
1529     return DAG.UnrollVectorOp(Node);
1530 
1531   SDValue StepVec = DAG.getStepVector(DL, EVLVecVT);
1532   SDValue SplatEVL = DAG.getSplat(EVLVecVT, DL, EVL);
1533   SDValue EVLMask =
1534       DAG.getSetCC(DL, MaskVT, StepVec, SplatEVL, ISD::CondCode::SETULT);
1535 
1536   SDValue FullMask = DAG.getNode(ISD::AND, DL, MaskVT, Mask, EVLMask);
1537   return DAG.getSelect(DL, Node->getValueType(0), FullMask, Op1, Op2);
1538 }
1539 
1540 SDValue VectorLegalizer::ExpandVP_REM(SDNode *Node) {
1541   // Implement VP_SREM/UREM in terms of VP_SDIV/VP_UDIV, VP_MUL, VP_SUB.
1542   EVT VT = Node->getValueType(0);
1543 
1544   unsigned DivOpc = Node->getOpcode() == ISD::VP_SREM ? ISD::VP_SDIV : ISD::VP_UDIV;
1545 
1546   if (!TLI.isOperationLegalOrCustom(DivOpc, VT) ||
1547       !TLI.isOperationLegalOrCustom(ISD::VP_MUL, VT) ||
1548       !TLI.isOperationLegalOrCustom(ISD::VP_SUB, VT))
1549     return SDValue();
1550 
1551   SDLoc DL(Node);
1552 
1553   SDValue Dividend = Node->getOperand(0);
1554   SDValue Divisor = Node->getOperand(1);
1555   SDValue Mask = Node->getOperand(2);
1556   SDValue EVL = Node->getOperand(3);
1557 
1558   // X % Y -> X-X/Y*Y
1559   SDValue Div = DAG.getNode(DivOpc, DL, VT, Dividend, Divisor, Mask, EVL);
1560   SDValue Mul = DAG.getNode(ISD::VP_MUL, DL, VT, Divisor, Div, Mask, EVL);
1561   return DAG.getNode(ISD::VP_SUB, DL, VT, Dividend, Mul, Mask, EVL);
1562 }
1563 
1564 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node,
1565                                        SmallVectorImpl<SDValue> &Results) {
1566   // Attempt to expand using TargetLowering.
1567   SDValue Result, Chain;
1568   if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) {
1569     Results.push_back(Result);
1570     if (Node->isStrictFPOpcode())
1571       Results.push_back(Chain);
1572     return;
1573   }
1574 
1575   // Otherwise go ahead and unroll.
1576   if (Node->isStrictFPOpcode()) {
1577     UnrollStrictFPOp(Node, Results);
1578     return;
1579   }
1580 
1581   Results.push_back(DAG.UnrollVectorOp(Node));
1582 }
1583 
1584 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node,
1585                                           SmallVectorImpl<SDValue> &Results) {
1586   bool IsStrict = Node->isStrictFPOpcode();
1587   unsigned OpNo = IsStrict ? 1 : 0;
1588   SDValue Src = Node->getOperand(OpNo);
1589   EVT VT = Src.getValueType();
1590   SDLoc DL(Node);
1591 
1592   // Attempt to expand using TargetLowering.
1593   SDValue Result;
1594   SDValue Chain;
1595   if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) {
1596     Results.push_back(Result);
1597     if (IsStrict)
1598       Results.push_back(Chain);
1599     return;
1600   }
1601 
1602   // Make sure that the SINT_TO_FP and SRL instructions are available.
1603   if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) ==
1604                          TargetLowering::Expand) ||
1605        (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) ==
1606                         TargetLowering::Expand)) ||
1607       TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) {
1608     if (IsStrict) {
1609       UnrollStrictFPOp(Node, Results);
1610       return;
1611     }
1612 
1613     Results.push_back(DAG.UnrollVectorOp(Node));
1614     return;
1615   }
1616 
1617   unsigned BW = VT.getScalarSizeInBits();
1618   assert((BW == 64 || BW == 32) &&
1619          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1620 
1621   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1622 
1623   // Constants to clear the upper part of the word.
1624   // Notice that we can also use SHL+SHR, but using a constant is slightly
1625   // faster on x86.
1626   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1627   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1628 
1629   // Two to the power of half-word-size.
1630   SDValue TWOHW =
1631       DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0));
1632 
1633   // Clear upper part of LO, lower HI
1634   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord);
1635   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask);
1636 
1637   if (IsStrict) {
1638     // Convert hi and lo to floats
1639     // Convert the hi part back to the upper values
1640     // TODO: Can any fast-math-flags be set on these nodes?
1641     SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1642                               {Node->getValueType(0), MVT::Other},
1643                               {Node->getOperand(0), HI});
1644     fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other},
1645                       {fHI.getValue(1), fHI, TWOHW});
1646     SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1647                               {Node->getValueType(0), MVT::Other},
1648                               {Node->getOperand(0), LO});
1649 
1650     SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1),
1651                              fLO.getValue(1));
1652 
1653     // Add the two halves
1654     SDValue Result =
1655         DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other},
1656                     {TF, fHI, fLO});
1657 
1658     Results.push_back(Result);
1659     Results.push_back(Result.getValue(1));
1660     return;
1661   }
1662 
1663   // Convert hi and lo to floats
1664   // Convert the hi part back to the upper values
1665   // TODO: Can any fast-math-flags be set on these nodes?
1666   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI);
1667   fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW);
1668   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO);
1669 
1670   // Add the two halves
1671   Results.push_back(
1672       DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO));
1673 }
1674 
1675 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) {
1676   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) {
1677     SDLoc DL(Node);
1678     SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0));
1679     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1680     return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero,
1681                        Node->getOperand(0));
1682   }
1683   return DAG.UnrollVectorOp(Node);
1684 }
1685 
1686 void VectorLegalizer::ExpandFSUB(SDNode *Node,
1687                                  SmallVectorImpl<SDValue> &Results) {
1688   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1689   // we can defer this to operation legalization where it will be lowered as
1690   // a+(-b).
1691   EVT VT = Node->getValueType(0);
1692   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1693       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1694     return; // Defer to LegalizeDAG
1695 
1696   SDValue Tmp = DAG.UnrollVectorOp(Node);
1697   Results.push_back(Tmp);
1698 }
1699 
1700 void VectorLegalizer::ExpandSETCC(SDNode *Node,
1701                                   SmallVectorImpl<SDValue> &Results) {
1702   bool NeedInvert = false;
1703   bool IsVP = Node->getOpcode() == ISD::VP_SETCC;
1704   bool IsStrict = Node->getOpcode() == ISD::STRICT_FSETCC ||
1705                   Node->getOpcode() == ISD::STRICT_FSETCCS;
1706   bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS;
1707   unsigned Offset = IsStrict ? 1 : 0;
1708 
1709   SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
1710   SDValue LHS = Node->getOperand(0 + Offset);
1711   SDValue RHS = Node->getOperand(1 + Offset);
1712   SDValue CC = Node->getOperand(2 + Offset);
1713 
1714   MVT OpVT = LHS.getSimpleValueType();
1715   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1716 
1717   if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) {
1718     if (IsStrict) {
1719       UnrollStrictFPOp(Node, Results);
1720       return;
1721     }
1722     Results.push_back(UnrollVSETCC(Node));
1723     return;
1724   }
1725 
1726   SDValue Mask, EVL;
1727   if (IsVP) {
1728     Mask = Node->getOperand(3 + Offset);
1729     EVL = Node->getOperand(4 + Offset);
1730   }
1731 
1732   SDLoc dl(Node);
1733   bool Legalized =
1734       TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS, RHS, CC, Mask,
1735                                 EVL, NeedInvert, dl, Chain, IsSignaling);
1736 
1737   if (Legalized) {
1738     // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
1739     // condition code, create a new SETCC node.
1740     if (CC.getNode()) {
1741       if (IsStrict) {
1742         LHS = DAG.getNode(Node->getOpcode(), dl, Node->getVTList(),
1743                           {Chain, LHS, RHS, CC}, Node->getFlags());
1744         Chain = LHS.getValue(1);
1745       } else if (IsVP) {
1746         LHS = DAG.getNode(ISD::VP_SETCC, dl, Node->getValueType(0),
1747                           {LHS, RHS, CC, Mask, EVL}, Node->getFlags());
1748       } else {
1749         LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC,
1750                           Node->getFlags());
1751       }
1752     }
1753 
1754     // If we expanded the SETCC by inverting the condition code, then wrap
1755     // the existing SETCC in a NOT to restore the intended condition.
1756     if (NeedInvert) {
1757       if (!IsVP)
1758         LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0));
1759       else
1760         LHS = DAG.getVPLogicalNOT(dl, LHS, Mask, EVL, LHS->getValueType(0));
1761     }
1762   } else {
1763     assert(!IsStrict && "Don't know how to expand for strict nodes.");
1764 
1765     // Otherwise, SETCC for the given comparison type must be completely
1766     // illegal; expand it into a SELECT_CC.
1767     EVT VT = Node->getValueType(0);
1768     LHS =
1769         DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS,
1770                     DAG.getBoolConstant(true, dl, VT, LHS.getValueType()),
1771                     DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC);
1772     LHS->setFlags(Node->getFlags());
1773   }
1774 
1775   Results.push_back(LHS);
1776   if (IsStrict)
1777     Results.push_back(Chain);
1778 }
1779 
1780 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node,
1781                                      SmallVectorImpl<SDValue> &Results) {
1782   SDValue Result, Overflow;
1783   TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
1784   Results.push_back(Result);
1785   Results.push_back(Overflow);
1786 }
1787 
1788 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node,
1789                                      SmallVectorImpl<SDValue> &Results) {
1790   SDValue Result, Overflow;
1791   TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
1792   Results.push_back(Result);
1793   Results.push_back(Overflow);
1794 }
1795 
1796 void VectorLegalizer::ExpandMULO(SDNode *Node,
1797                                  SmallVectorImpl<SDValue> &Results) {
1798   SDValue Result, Overflow;
1799   if (!TLI.expandMULO(Node, Result, Overflow, DAG))
1800     std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node);
1801 
1802   Results.push_back(Result);
1803   Results.push_back(Overflow);
1804 }
1805 
1806 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node,
1807                                           SmallVectorImpl<SDValue> &Results) {
1808   SDNode *N = Node;
1809   if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N),
1810           N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG))
1811     Results.push_back(Expanded);
1812 }
1813 
1814 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node,
1815                                        SmallVectorImpl<SDValue> &Results) {
1816   if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) {
1817     ExpandUINT_TO_FLOAT(Node, Results);
1818     return;
1819   }
1820   if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) {
1821     ExpandFP_TO_UINT(Node, Results);
1822     return;
1823   }
1824 
1825   if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1826       Node->getOpcode() == ISD::STRICT_FSETCCS) {
1827     ExpandSETCC(Node, Results);
1828     return;
1829   }
1830 
1831   UnrollStrictFPOp(Node, Results);
1832 }
1833 
1834 void VectorLegalizer::ExpandREM(SDNode *Node,
1835                                 SmallVectorImpl<SDValue> &Results) {
1836   assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) &&
1837          "Expected REM node");
1838 
1839   SDValue Result;
1840   if (!TLI.expandREM(Node, Result, DAG))
1841     Result = DAG.UnrollVectorOp(Node);
1842   Results.push_back(Result);
1843 }
1844 
1845 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node,
1846                                        SmallVectorImpl<SDValue> &Results) {
1847   EVT VT = Node->getValueType(0);
1848   EVT EltVT = VT.getVectorElementType();
1849   unsigned NumElems = VT.getVectorNumElements();
1850   unsigned NumOpers = Node->getNumOperands();
1851   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1852 
1853   EVT TmpEltVT = EltVT;
1854   if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1855       Node->getOpcode() == ISD::STRICT_FSETCCS)
1856     TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
1857                                       *DAG.getContext(), TmpEltVT);
1858 
1859   EVT ValueVTs[] = {TmpEltVT, MVT::Other};
1860   SDValue Chain = Node->getOperand(0);
1861   SDLoc dl(Node);
1862 
1863   SmallVector<SDValue, 32> OpValues;
1864   SmallVector<SDValue, 32> OpChains;
1865   for (unsigned i = 0; i < NumElems; ++i) {
1866     SmallVector<SDValue, 4> Opers;
1867     SDValue Idx = DAG.getVectorIdxConstant(i, dl);
1868 
1869     // The Chain is the first operand.
1870     Opers.push_back(Chain);
1871 
1872     // Now process the remaining operands.
1873     for (unsigned j = 1; j < NumOpers; ++j) {
1874       SDValue Oper = Node->getOperand(j);
1875       EVT OperVT = Oper.getValueType();
1876 
1877       if (OperVT.isVector())
1878         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1879                            OperVT.getVectorElementType(), Oper, Idx);
1880 
1881       Opers.push_back(Oper);
1882     }
1883 
1884     SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers);
1885     SDValue ScalarResult = ScalarOp.getValue(0);
1886     SDValue ScalarChain = ScalarOp.getValue(1);
1887 
1888     if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1889         Node->getOpcode() == ISD::STRICT_FSETCCS)
1890       ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
1891                                    DAG.getAllOnesConstant(dl, EltVT),
1892                                    DAG.getConstant(0, dl, EltVT));
1893 
1894     OpValues.push_back(ScalarResult);
1895     OpChains.push_back(ScalarChain);
1896   }
1897 
1898   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1899   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1900 
1901   Results.push_back(Result);
1902   Results.push_back(NewChain);
1903 }
1904 
1905 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) {
1906   EVT VT = Node->getValueType(0);
1907   unsigned NumElems = VT.getVectorNumElements();
1908   EVT EltVT = VT.getVectorElementType();
1909   SDValue LHS = Node->getOperand(0);
1910   SDValue RHS = Node->getOperand(1);
1911   SDValue CC = Node->getOperand(2);
1912   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1913   SDLoc dl(Node);
1914   SmallVector<SDValue, 8> Ops(NumElems);
1915   for (unsigned i = 0; i < NumElems; ++i) {
1916     SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1917                                   DAG.getVectorIdxConstant(i, dl));
1918     SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1919                                   DAG.getVectorIdxConstant(i, dl));
1920     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1921                          TLI.getSetCCResultType(DAG.getDataLayout(),
1922                                                 *DAG.getContext(), TmpEltVT),
1923                          LHSElem, RHSElem, CC);
1924     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getAllOnesConstant(dl, EltVT),
1925                            DAG.getConstant(0, dl, EltVT));
1926   }
1927   return DAG.getBuildVector(VT, dl, Ops);
1928 }
1929 
1930 bool SelectionDAG::LegalizeVectors() {
1931   return VectorLegalizer(*this).Run();
1932 }
1933