1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::LegalizeVectors method. 10 // 11 // The vector legalizer looks for vector operations which might need to be 12 // scalarized and legalizes them. This is a separate step from Legalize because 13 // scalarizing can introduce illegal types. For example, suppose we have an 14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 16 // operation, which introduces nodes with the illegal type i64 which must be 17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 18 // the operation must be unrolled, which introduces nodes with the illegal 19 // type i8 which must be promoted. 20 // 21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 22 // or operations that happen to take a vector which are custom-lowered; 23 // the legalization for such operations never produces nodes 24 // with illegal types, so it's okay to put off legalizing them until 25 // SelectionDAG::Legalize runs. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/SelectionDAG.h" 33 #include "llvm/CodeGen/SelectionDAGNodes.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/ValueTypes.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/Compiler.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/MachineValueType.h" 42 #include <cassert> 43 #include <cstdint> 44 #include <iterator> 45 #include <utility> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "legalizevectorops" 50 51 namespace { 52 53 class VectorLegalizer { 54 SelectionDAG& DAG; 55 const TargetLowering &TLI; 56 bool Changed = false; // Keep track of whether anything changed 57 58 /// For nodes that are of legal width, and that have more than one use, this 59 /// map indicates what regularized operand to use. This allows us to avoid 60 /// legalizing the same thing more than once. 61 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 62 63 /// Adds a node to the translation cache. 64 void AddLegalizedOperand(SDValue From, SDValue To) { 65 LegalizedNodes.insert(std::make_pair(From, To)); 66 // If someone requests legalization of the new node, return itself. 67 if (From != To) 68 LegalizedNodes.insert(std::make_pair(To, To)); 69 } 70 71 /// Legalizes the given node. 72 SDValue LegalizeOp(SDValue Op); 73 74 /// Assuming the node is legal, "legalize" the results. 75 SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result); 76 77 /// Make sure Results are legal and update the translation cache. 78 SDValue RecursivelyLegalizeResults(SDValue Op, 79 MutableArrayRef<SDValue> Results); 80 81 /// Wrapper to interface LowerOperation with a vector of Results. 82 /// Returns false if the target wants to use default expansion. Otherwise 83 /// returns true. If return is true and the Results are empty, then the 84 /// target wants to keep the input node as is. 85 bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results); 86 87 /// Implements unrolling a VSETCC. 88 SDValue UnrollVSETCC(SDNode *Node); 89 90 /// Implement expand-based legalization of vector operations. 91 /// 92 /// This is just a high-level routine to dispatch to specific code paths for 93 /// operations to legalize them. 94 void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results); 95 96 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if 97 /// FP_TO_SINT isn't legal. 98 void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 99 100 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 101 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 102 void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 103 104 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 105 SDValue ExpandSEXTINREG(SDNode *Node); 106 107 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 108 /// 109 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 110 /// type. The contents of the bits in the extended part of each element are 111 /// undef. 112 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node); 113 114 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 115 /// 116 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 117 /// type, then shifts left and arithmetic shifts right to introduce a sign 118 /// extension. 119 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node); 120 121 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 122 /// 123 /// Shuffles the low lanes of the operand into place and blends zeros into 124 /// the remaining lanes, finally bitcasting to the proper type. 125 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node); 126 127 /// Expand bswap of vectors into a shuffle if legal. 128 SDValue ExpandBSWAP(SDNode *Node); 129 130 /// Implement vselect in terms of XOR, AND, OR when blend is not 131 /// supported by the target. 132 SDValue ExpandVSELECT(SDNode *Node); 133 SDValue ExpandVP_SELECT(SDNode *Node); 134 SDValue ExpandVP_MERGE(SDNode *Node); 135 SDValue ExpandVP_REM(SDNode *Node); 136 SDValue ExpandSELECT(SDNode *Node); 137 std::pair<SDValue, SDValue> ExpandLoad(SDNode *N); 138 SDValue ExpandStore(SDNode *N); 139 SDValue ExpandFNEG(SDNode *Node); 140 void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results); 141 void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results); 142 void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results); 143 void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 144 void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 145 void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 146 void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results); 147 void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 148 void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results); 149 150 void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 151 152 /// Implements vector promotion. 153 /// 154 /// This is essentially just bitcasting the operands to a different type and 155 /// bitcasting the result back to the original type. 156 void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results); 157 158 /// Implements [SU]INT_TO_FP vector promotion. 159 /// 160 /// This is a [zs]ext of the input operand to a larger integer type. 161 void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results); 162 163 /// Implements FP_TO_[SU]INT vector promotion of the result type. 164 /// 165 /// It is promoted to a larger integer type. The result is then 166 /// truncated back to the original type. 167 void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 168 169 public: 170 VectorLegalizer(SelectionDAG& dag) : 171 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 172 173 /// Begin legalizer the vector operations in the DAG. 174 bool Run(); 175 }; 176 177 } // end anonymous namespace 178 179 bool VectorLegalizer::Run() { 180 // Before we start legalizing vector nodes, check if there are any vectors. 181 bool HasVectors = false; 182 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 183 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 184 // Check if the values of the nodes contain vectors. We don't need to check 185 // the operands because we are going to check their values at some point. 186 HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); }); 187 188 // If we found a vector node we can start the legalization. 189 if (HasVectors) 190 break; 191 } 192 193 // If this basic block has no vectors then no need to legalize vectors. 194 if (!HasVectors) 195 return false; 196 197 // The legalize process is inherently a bottom-up recursive process (users 198 // legalize their uses before themselves). Given infinite stack space, we 199 // could just start legalizing on the root and traverse the whole graph. In 200 // practice however, this causes us to run out of stack space on large basic 201 // blocks. To avoid this problem, compute an ordering of the nodes where each 202 // node is only legalized after all of its operands are legalized. 203 DAG.AssignTopologicalOrder(); 204 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 205 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 206 LegalizeOp(SDValue(&*I, 0)); 207 208 // Finally, it's possible the root changed. Get the new root. 209 SDValue OldRoot = DAG.getRoot(); 210 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 211 DAG.setRoot(LegalizedNodes[OldRoot]); 212 213 LegalizedNodes.clear(); 214 215 // Remove dead nodes now. 216 DAG.RemoveDeadNodes(); 217 218 return Changed; 219 } 220 221 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) { 222 assert(Op->getNumValues() == Result->getNumValues() && 223 "Unexpected number of results"); 224 // Generic legalization: just pass the operand through. 225 for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i) 226 AddLegalizedOperand(Op.getValue(i), SDValue(Result, i)); 227 return SDValue(Result, Op.getResNo()); 228 } 229 230 SDValue 231 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op, 232 MutableArrayRef<SDValue> Results) { 233 assert(Results.size() == Op->getNumValues() && 234 "Unexpected number of results"); 235 // Make sure that the generated code is itself legal. 236 for (unsigned i = 0, e = Results.size(); i != e; ++i) { 237 Results[i] = LegalizeOp(Results[i]); 238 AddLegalizedOperand(Op.getValue(i), Results[i]); 239 } 240 241 return Results[Op.getResNo()]; 242 } 243 244 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 245 // Note that LegalizeOp may be reentered even from single-use nodes, which 246 // means that we always must cache transformed nodes. 247 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 248 if (I != LegalizedNodes.end()) return I->second; 249 250 // Legalize the operands 251 SmallVector<SDValue, 8> Ops; 252 for (const SDValue &Oper : Op->op_values()) 253 Ops.push_back(LegalizeOp(Oper)); 254 255 SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops); 256 257 bool HasVectorValueOrOp = 258 llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) || 259 llvm::any_of(Node->op_values(), 260 [](SDValue O) { return O.getValueType().isVector(); }); 261 if (!HasVectorValueOrOp) 262 return TranslateLegalizeResults(Op, Node); 263 264 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 265 EVT ValVT; 266 switch (Op.getOpcode()) { 267 default: 268 return TranslateLegalizeResults(Op, Node); 269 case ISD::LOAD: { 270 LoadSDNode *LD = cast<LoadSDNode>(Node); 271 ISD::LoadExtType ExtType = LD->getExtensionType(); 272 EVT LoadedVT = LD->getMemoryVT(); 273 if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD) 274 Action = TLI.getLoadExtAction(ExtType, LD->getValueType(0), LoadedVT); 275 break; 276 } 277 case ISD::STORE: { 278 StoreSDNode *ST = cast<StoreSDNode>(Node); 279 EVT StVT = ST->getMemoryVT(); 280 MVT ValVT = ST->getValue().getSimpleValueType(); 281 if (StVT.isVector() && ST->isTruncatingStore()) 282 Action = TLI.getTruncStoreAction(ValVT, StVT); 283 break; 284 } 285 case ISD::MERGE_VALUES: 286 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 287 // This operation lies about being legal: when it claims to be legal, 288 // it should actually be expanded. 289 if (Action == TargetLowering::Legal) 290 Action = TargetLowering::Expand; 291 break; 292 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 293 case ISD::STRICT_##DAGN: 294 #include "llvm/IR/ConstrainedOps.def" 295 ValVT = Node->getValueType(0); 296 if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP || 297 Op.getOpcode() == ISD::STRICT_UINT_TO_FP) 298 ValVT = Node->getOperand(1).getValueType(); 299 Action = TLI.getOperationAction(Node->getOpcode(), ValVT); 300 // If we're asked to expand a strict vector floating-point operation, 301 // by default we're going to simply unroll it. That is usually the 302 // best approach, except in the case where the resulting strict (scalar) 303 // operations would themselves use the fallback mutation to non-strict. 304 // In that specific case, just do the fallback on the vector op. 305 if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() && 306 TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) == 307 TargetLowering::Legal) { 308 EVT EltVT = ValVT.getVectorElementType(); 309 if (TLI.getOperationAction(Node->getOpcode(), EltVT) 310 == TargetLowering::Expand && 311 TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT) 312 == TargetLowering::Legal) 313 Action = TargetLowering::Legal; 314 } 315 break; 316 case ISD::ADD: 317 case ISD::SUB: 318 case ISD::MUL: 319 case ISD::MULHS: 320 case ISD::MULHU: 321 case ISD::SDIV: 322 case ISD::UDIV: 323 case ISD::SREM: 324 case ISD::UREM: 325 case ISD::SDIVREM: 326 case ISD::UDIVREM: 327 case ISD::FADD: 328 case ISD::FSUB: 329 case ISD::FMUL: 330 case ISD::FDIV: 331 case ISD::FREM: 332 case ISD::AND: 333 case ISD::OR: 334 case ISD::XOR: 335 case ISD::SHL: 336 case ISD::SRA: 337 case ISD::SRL: 338 case ISD::FSHL: 339 case ISD::FSHR: 340 case ISD::ROTL: 341 case ISD::ROTR: 342 case ISD::ABS: 343 case ISD::BSWAP: 344 case ISD::BITREVERSE: 345 case ISD::CTLZ: 346 case ISD::CTTZ: 347 case ISD::CTLZ_ZERO_UNDEF: 348 case ISD::CTTZ_ZERO_UNDEF: 349 case ISD::CTPOP: 350 case ISD::SELECT: 351 case ISD::VSELECT: 352 case ISD::SELECT_CC: 353 case ISD::ZERO_EXTEND: 354 case ISD::ANY_EXTEND: 355 case ISD::TRUNCATE: 356 case ISD::SIGN_EXTEND: 357 case ISD::FP_TO_SINT: 358 case ISD::FP_TO_UINT: 359 case ISD::FNEG: 360 case ISD::FABS: 361 case ISD::FMINNUM: 362 case ISD::FMAXNUM: 363 case ISD::FMINNUM_IEEE: 364 case ISD::FMAXNUM_IEEE: 365 case ISD::FMINIMUM: 366 case ISD::FMAXIMUM: 367 case ISD::FCOPYSIGN: 368 case ISD::FSQRT: 369 case ISD::FSIN: 370 case ISD::FCOS: 371 case ISD::FPOWI: 372 case ISD::FPOW: 373 case ISD::FLOG: 374 case ISD::FLOG2: 375 case ISD::FLOG10: 376 case ISD::FEXP: 377 case ISD::FEXP2: 378 case ISD::FCEIL: 379 case ISD::FTRUNC: 380 case ISD::FRINT: 381 case ISD::FNEARBYINT: 382 case ISD::FROUND: 383 case ISD::FROUNDEVEN: 384 case ISD::FFLOOR: 385 case ISD::FP_ROUND: 386 case ISD::FP_EXTEND: 387 case ISD::FMA: 388 case ISD::SIGN_EXTEND_INREG: 389 case ISD::ANY_EXTEND_VECTOR_INREG: 390 case ISD::SIGN_EXTEND_VECTOR_INREG: 391 case ISD::ZERO_EXTEND_VECTOR_INREG: 392 case ISD::SMIN: 393 case ISD::SMAX: 394 case ISD::UMIN: 395 case ISD::UMAX: 396 case ISD::SMUL_LOHI: 397 case ISD::UMUL_LOHI: 398 case ISD::SADDO: 399 case ISD::UADDO: 400 case ISD::SSUBO: 401 case ISD::USUBO: 402 case ISD::SMULO: 403 case ISD::UMULO: 404 case ISD::FCANONICALIZE: 405 case ISD::SADDSAT: 406 case ISD::UADDSAT: 407 case ISD::SSUBSAT: 408 case ISD::USUBSAT: 409 case ISD::SSHLSAT: 410 case ISD::USHLSAT: 411 case ISD::FP_TO_SINT_SAT: 412 case ISD::FP_TO_UINT_SAT: 413 case ISD::MGATHER: 414 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 415 break; 416 case ISD::SMULFIX: 417 case ISD::SMULFIXSAT: 418 case ISD::UMULFIX: 419 case ISD::UMULFIXSAT: 420 case ISD::SDIVFIX: 421 case ISD::SDIVFIXSAT: 422 case ISD::UDIVFIX: 423 case ISD::UDIVFIXSAT: { 424 unsigned Scale = Node->getConstantOperandVal(2); 425 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 426 Node->getValueType(0), Scale); 427 break; 428 } 429 case ISD::SINT_TO_FP: 430 case ISD::UINT_TO_FP: 431 case ISD::VECREDUCE_ADD: 432 case ISD::VECREDUCE_MUL: 433 case ISD::VECREDUCE_AND: 434 case ISD::VECREDUCE_OR: 435 case ISD::VECREDUCE_XOR: 436 case ISD::VECREDUCE_SMAX: 437 case ISD::VECREDUCE_SMIN: 438 case ISD::VECREDUCE_UMAX: 439 case ISD::VECREDUCE_UMIN: 440 case ISD::VECREDUCE_FADD: 441 case ISD::VECREDUCE_FMUL: 442 case ISD::VECREDUCE_FMAX: 443 case ISD::VECREDUCE_FMIN: 444 Action = TLI.getOperationAction(Node->getOpcode(), 445 Node->getOperand(0).getValueType()); 446 break; 447 case ISD::VECREDUCE_SEQ_FADD: 448 case ISD::VECREDUCE_SEQ_FMUL: 449 Action = TLI.getOperationAction(Node->getOpcode(), 450 Node->getOperand(1).getValueType()); 451 break; 452 case ISD::SETCC: { 453 MVT OpVT = Node->getOperand(0).getSimpleValueType(); 454 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 455 Action = TLI.getCondCodeAction(CCCode, OpVT); 456 if (Action == TargetLowering::Legal) 457 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 458 break; 459 } 460 461 #define BEGIN_REGISTER_VP_SDNODE(VPID, LEGALPOS, ...) \ 462 case ISD::VPID: { \ 463 EVT LegalizeVT = LEGALPOS < 0 ? Node->getValueType(-(1 + LEGALPOS)) \ 464 : Node->getOperand(LEGALPOS).getValueType(); \ 465 if (ISD::VPID == ISD::VP_SETCC) { \ 466 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); \ 467 Action = TLI.getCondCodeAction(CCCode, LegalizeVT.getSimpleVT()); \ 468 if (Action != TargetLowering::Legal) \ 469 break; \ 470 } \ 471 Action = TLI.getOperationAction(Node->getOpcode(), LegalizeVT); \ 472 } break; 473 #include "llvm/IR/VPIntrinsics.def" 474 } 475 476 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 477 478 SmallVector<SDValue, 8> ResultVals; 479 switch (Action) { 480 default: llvm_unreachable("This action is not supported yet!"); 481 case TargetLowering::Promote: 482 assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) && 483 "This action is not supported yet!"); 484 LLVM_DEBUG(dbgs() << "Promoting\n"); 485 Promote(Node, ResultVals); 486 assert(!ResultVals.empty() && "No results for promotion?"); 487 break; 488 case TargetLowering::Legal: 489 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 490 break; 491 case TargetLowering::Custom: 492 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 493 if (LowerOperationWrapper(Node, ResultVals)) 494 break; 495 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 496 [[fallthrough]]; 497 case TargetLowering::Expand: 498 LLVM_DEBUG(dbgs() << "Expanding\n"); 499 Expand(Node, ResultVals); 500 break; 501 } 502 503 if (ResultVals.empty()) 504 return TranslateLegalizeResults(Op, Node); 505 506 Changed = true; 507 return RecursivelyLegalizeResults(Op, ResultVals); 508 } 509 510 // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we 511 // merge them somehow? 512 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node, 513 SmallVectorImpl<SDValue> &Results) { 514 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 515 516 if (!Res.getNode()) 517 return false; 518 519 if (Res == SDValue(Node, 0)) 520 return true; 521 522 // If the original node has one result, take the return value from 523 // LowerOperation as is. It might not be result number 0. 524 if (Node->getNumValues() == 1) { 525 Results.push_back(Res); 526 return true; 527 } 528 529 // If the original node has multiple results, then the return node should 530 // have the same number of results. 531 assert((Node->getNumValues() == Res->getNumValues()) && 532 "Lowering returned the wrong number of results!"); 533 534 // Places new result values base on N result number. 535 for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I) 536 Results.push_back(Res.getValue(I)); 537 538 return true; 539 } 540 541 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 542 // For a few operations there is a specific concept for promotion based on 543 // the operand's type. 544 switch (Node->getOpcode()) { 545 case ISD::SINT_TO_FP: 546 case ISD::UINT_TO_FP: 547 case ISD::STRICT_SINT_TO_FP: 548 case ISD::STRICT_UINT_TO_FP: 549 // "Promote" the operation by extending the operand. 550 PromoteINT_TO_FP(Node, Results); 551 return; 552 case ISD::FP_TO_UINT: 553 case ISD::FP_TO_SINT: 554 case ISD::STRICT_FP_TO_UINT: 555 case ISD::STRICT_FP_TO_SINT: 556 // Promote the operation by extending the operand. 557 PromoteFP_TO_INT(Node, Results); 558 return; 559 case ISD::FP_ROUND: 560 case ISD::FP_EXTEND: 561 // These operations are used to do promotion so they can't be promoted 562 // themselves. 563 llvm_unreachable("Don't know how to promote this operation!"); 564 } 565 566 // There are currently two cases of vector promotion: 567 // 1) Bitcasting a vector of integers to a different type to a vector of the 568 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 569 // 2) Extending a vector of floats to a vector of the same number of larger 570 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 571 assert(Node->getNumValues() == 1 && 572 "Can't promote a vector with multiple results!"); 573 MVT VT = Node->getSimpleValueType(0); 574 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 575 SDLoc dl(Node); 576 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 577 578 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 579 if (Node->getOperand(j).getValueType().isVector()) 580 if (Node->getOperand(j) 581 .getValueType() 582 .getVectorElementType() 583 .isFloatingPoint() && 584 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 585 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j)); 586 else 587 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j)); 588 else 589 Operands[j] = Node->getOperand(j); 590 } 591 592 SDValue Res = 593 DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags()); 594 595 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 596 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 597 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 598 Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, 599 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); 600 else 601 Res = DAG.getNode(ISD::BITCAST, dl, VT, Res); 602 603 Results.push_back(Res); 604 } 605 606 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node, 607 SmallVectorImpl<SDValue> &Results) { 608 // INT_TO_FP operations may require the input operand be promoted even 609 // when the type is otherwise legal. 610 bool IsStrict = Node->isStrictFPOpcode(); 611 MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType(); 612 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 613 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 614 "Vectors have different number of elements!"); 615 616 SDLoc dl(Node); 617 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 618 619 unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP || 620 Node->getOpcode() == ISD::STRICT_UINT_TO_FP) 621 ? ISD::ZERO_EXTEND 622 : ISD::SIGN_EXTEND; 623 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 624 if (Node->getOperand(j).getValueType().isVector()) 625 Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j)); 626 else 627 Operands[j] = Node->getOperand(j); 628 } 629 630 if (IsStrict) { 631 SDValue Res = DAG.getNode(Node->getOpcode(), dl, 632 {Node->getValueType(0), MVT::Other}, Operands); 633 Results.push_back(Res); 634 Results.push_back(Res.getValue(1)); 635 return; 636 } 637 638 SDValue Res = 639 DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands); 640 Results.push_back(Res); 641 } 642 643 // For FP_TO_INT we promote the result type to a vector type with wider 644 // elements and then truncate the result. This is different from the default 645 // PromoteVector which uses bitcast to promote thus assumning that the 646 // promoted vector type has the same overall size. 647 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node, 648 SmallVectorImpl<SDValue> &Results) { 649 MVT VT = Node->getSimpleValueType(0); 650 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 651 bool IsStrict = Node->isStrictFPOpcode(); 652 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 653 "Vectors have different number of elements!"); 654 655 unsigned NewOpc = Node->getOpcode(); 656 // Change FP_TO_UINT to FP_TO_SINT if possible. 657 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 658 if (NewOpc == ISD::FP_TO_UINT && 659 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 660 NewOpc = ISD::FP_TO_SINT; 661 662 if (NewOpc == ISD::STRICT_FP_TO_UINT && 663 TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT)) 664 NewOpc = ISD::STRICT_FP_TO_SINT; 665 666 SDLoc dl(Node); 667 SDValue Promoted, Chain; 668 if (IsStrict) { 669 Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other}, 670 {Node->getOperand(0), Node->getOperand(1)}); 671 Chain = Promoted.getValue(1); 672 } else 673 Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0)); 674 675 // Assert that the converted value fits in the original type. If it doesn't 676 // (eg: because the value being converted is too big), then the result of the 677 // original operation was undefined anyway, so the assert is still correct. 678 if (Node->getOpcode() == ISD::FP_TO_UINT || 679 Node->getOpcode() == ISD::STRICT_FP_TO_UINT) 680 NewOpc = ISD::AssertZext; 681 else 682 NewOpc = ISD::AssertSext; 683 684 Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted, 685 DAG.getValueType(VT.getScalarType())); 686 Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 687 Results.push_back(Promoted); 688 if (IsStrict) 689 Results.push_back(Chain); 690 } 691 692 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) { 693 LoadSDNode *LD = cast<LoadSDNode>(N); 694 return TLI.scalarizeVectorLoad(LD, DAG); 695 } 696 697 SDValue VectorLegalizer::ExpandStore(SDNode *N) { 698 StoreSDNode *ST = cast<StoreSDNode>(N); 699 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 700 return TF; 701 } 702 703 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 704 switch (Node->getOpcode()) { 705 case ISD::LOAD: { 706 std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node); 707 Results.push_back(Tmp.first); 708 Results.push_back(Tmp.second); 709 return; 710 } 711 case ISD::STORE: 712 Results.push_back(ExpandStore(Node)); 713 return; 714 case ISD::MERGE_VALUES: 715 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 716 Results.push_back(Node->getOperand(i)); 717 return; 718 case ISD::SIGN_EXTEND_INREG: 719 Results.push_back(ExpandSEXTINREG(Node)); 720 return; 721 case ISD::ANY_EXTEND_VECTOR_INREG: 722 Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node)); 723 return; 724 case ISD::SIGN_EXTEND_VECTOR_INREG: 725 Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node)); 726 return; 727 case ISD::ZERO_EXTEND_VECTOR_INREG: 728 Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node)); 729 return; 730 case ISD::BSWAP: 731 Results.push_back(ExpandBSWAP(Node)); 732 return; 733 case ISD::VP_BSWAP: 734 Results.push_back(TLI.expandVPBSWAP(Node, DAG)); 735 return; 736 case ISD::VSELECT: 737 Results.push_back(ExpandVSELECT(Node)); 738 return; 739 case ISD::VP_SELECT: 740 Results.push_back(ExpandVP_SELECT(Node)); 741 return; 742 case ISD::VP_SREM: 743 case ISD::VP_UREM: 744 if (SDValue Expanded = ExpandVP_REM(Node)) { 745 Results.push_back(Expanded); 746 return; 747 } 748 break; 749 case ISD::SELECT: 750 Results.push_back(ExpandSELECT(Node)); 751 return; 752 case ISD::SELECT_CC: { 753 if (Node->getValueType(0).isScalableVector()) { 754 EVT CondVT = TLI.getSetCCResultType( 755 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 756 SDValue SetCC = 757 DAG.getNode(ISD::SETCC, SDLoc(Node), CondVT, Node->getOperand(0), 758 Node->getOperand(1), Node->getOperand(4)); 759 Results.push_back(DAG.getSelect(SDLoc(Node), Node->getValueType(0), SetCC, 760 Node->getOperand(2), 761 Node->getOperand(3))); 762 return; 763 } 764 break; 765 } 766 case ISD::FP_TO_UINT: 767 ExpandFP_TO_UINT(Node, Results); 768 return; 769 case ISD::UINT_TO_FP: 770 ExpandUINT_TO_FLOAT(Node, Results); 771 return; 772 case ISD::FNEG: 773 Results.push_back(ExpandFNEG(Node)); 774 return; 775 case ISD::FSUB: 776 ExpandFSUB(Node, Results); 777 return; 778 case ISD::SETCC: 779 case ISD::VP_SETCC: 780 ExpandSETCC(Node, Results); 781 return; 782 case ISD::ABS: 783 if (SDValue Expanded = TLI.expandABS(Node, DAG)) { 784 Results.push_back(Expanded); 785 return; 786 } 787 break; 788 case ISD::BITREVERSE: 789 ExpandBITREVERSE(Node, Results); 790 return; 791 case ISD::VP_BITREVERSE: 792 if (SDValue Expanded = TLI.expandVPBITREVERSE(Node, DAG)) { 793 Results.push_back(Expanded); 794 return; 795 } 796 break; 797 case ISD::CTPOP: 798 if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) { 799 Results.push_back(Expanded); 800 return; 801 } 802 break; 803 case ISD::VP_CTPOP: 804 if (SDValue Expanded = TLI.expandVPCTPOP(Node, DAG)) { 805 Results.push_back(Expanded); 806 return; 807 } 808 break; 809 case ISD::CTLZ: 810 case ISD::CTLZ_ZERO_UNDEF: 811 if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) { 812 Results.push_back(Expanded); 813 return; 814 } 815 break; 816 case ISD::VP_CTLZ: 817 case ISD::VP_CTLZ_ZERO_UNDEF: 818 if (SDValue Expanded = TLI.expandVPCTLZ(Node, DAG)) { 819 Results.push_back(Expanded); 820 return; 821 } 822 break; 823 case ISD::CTTZ: 824 case ISD::CTTZ_ZERO_UNDEF: 825 if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) { 826 Results.push_back(Expanded); 827 return; 828 } 829 break; 830 case ISD::VP_CTTZ: 831 case ISD::VP_CTTZ_ZERO_UNDEF: 832 if (SDValue Expanded = TLI.expandVPCTTZ(Node, DAG)) { 833 Results.push_back(Expanded); 834 return; 835 } 836 break; 837 case ISD::FSHL: 838 case ISD::VP_FSHL: 839 case ISD::FSHR: 840 case ISD::VP_FSHR: 841 if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) { 842 Results.push_back(Expanded); 843 return; 844 } 845 break; 846 case ISD::ROTL: 847 case ISD::ROTR: 848 if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) { 849 Results.push_back(Expanded); 850 return; 851 } 852 break; 853 case ISD::FMINNUM: 854 case ISD::FMAXNUM: 855 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) { 856 Results.push_back(Expanded); 857 return; 858 } 859 break; 860 case ISD::SMIN: 861 case ISD::SMAX: 862 case ISD::UMIN: 863 case ISD::UMAX: 864 if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) { 865 Results.push_back(Expanded); 866 return; 867 } 868 break; 869 case ISD::UADDO: 870 case ISD::USUBO: 871 ExpandUADDSUBO(Node, Results); 872 return; 873 case ISD::SADDO: 874 case ISD::SSUBO: 875 ExpandSADDSUBO(Node, Results); 876 return; 877 case ISD::UMULO: 878 case ISD::SMULO: 879 ExpandMULO(Node, Results); 880 return; 881 case ISD::USUBSAT: 882 case ISD::SSUBSAT: 883 case ISD::UADDSAT: 884 case ISD::SADDSAT: 885 if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) { 886 Results.push_back(Expanded); 887 return; 888 } 889 break; 890 case ISD::USHLSAT: 891 case ISD::SSHLSAT: 892 if (SDValue Expanded = TLI.expandShlSat(Node, DAG)) { 893 Results.push_back(Expanded); 894 return; 895 } 896 break; 897 case ISD::FP_TO_SINT_SAT: 898 case ISD::FP_TO_UINT_SAT: 899 // Expand the fpsosisat if it is scalable to prevent it from unrolling below. 900 if (Node->getValueType(0).isScalableVector()) { 901 if (SDValue Expanded = TLI.expandFP_TO_INT_SAT(Node, DAG)) { 902 Results.push_back(Expanded); 903 return; 904 } 905 } 906 break; 907 case ISD::SMULFIX: 908 case ISD::UMULFIX: 909 if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) { 910 Results.push_back(Expanded); 911 return; 912 } 913 break; 914 case ISD::SMULFIXSAT: 915 case ISD::UMULFIXSAT: 916 // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly 917 // why. Maybe it results in worse codegen compared to the unroll for some 918 // targets? This should probably be investigated. And if we still prefer to 919 // unroll an explanation could be helpful. 920 break; 921 case ISD::SDIVFIX: 922 case ISD::UDIVFIX: 923 ExpandFixedPointDiv(Node, Results); 924 return; 925 case ISD::SDIVFIXSAT: 926 case ISD::UDIVFIXSAT: 927 break; 928 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 929 case ISD::STRICT_##DAGN: 930 #include "llvm/IR/ConstrainedOps.def" 931 ExpandStrictFPOp(Node, Results); 932 return; 933 case ISD::VECREDUCE_ADD: 934 case ISD::VECREDUCE_MUL: 935 case ISD::VECREDUCE_AND: 936 case ISD::VECREDUCE_OR: 937 case ISD::VECREDUCE_XOR: 938 case ISD::VECREDUCE_SMAX: 939 case ISD::VECREDUCE_SMIN: 940 case ISD::VECREDUCE_UMAX: 941 case ISD::VECREDUCE_UMIN: 942 case ISD::VECREDUCE_FADD: 943 case ISD::VECREDUCE_FMUL: 944 case ISD::VECREDUCE_FMAX: 945 case ISD::VECREDUCE_FMIN: 946 Results.push_back(TLI.expandVecReduce(Node, DAG)); 947 return; 948 case ISD::VECREDUCE_SEQ_FADD: 949 case ISD::VECREDUCE_SEQ_FMUL: 950 Results.push_back(TLI.expandVecReduceSeq(Node, DAG)); 951 return; 952 case ISD::SREM: 953 case ISD::UREM: 954 ExpandREM(Node, Results); 955 return; 956 case ISD::VP_MERGE: 957 Results.push_back(ExpandVP_MERGE(Node)); 958 return; 959 } 960 961 Results.push_back(DAG.UnrollVectorOp(Node)); 962 } 963 964 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) { 965 // Lower a select instruction where the condition is a scalar and the 966 // operands are vectors. Lower this select to VSELECT and implement it 967 // using XOR AND OR. The selector bit is broadcasted. 968 EVT VT = Node->getValueType(0); 969 SDLoc DL(Node); 970 971 SDValue Mask = Node->getOperand(0); 972 SDValue Op1 = Node->getOperand(1); 973 SDValue Op2 = Node->getOperand(2); 974 975 assert(VT.isVector() && !Mask.getValueType().isVector() 976 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 977 978 // If we can't even use the basic vector operations of 979 // AND,OR,XOR, we will have to scalarize the op. 980 // Notice that the operation may be 'promoted' which means that it is 981 // 'bitcasted' to another type which is handled. 982 // Also, we need to be able to construct a splat vector using either 983 // BUILD_VECTOR or SPLAT_VECTOR. 984 // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to 985 // BUILD_VECTOR? 986 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 987 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 988 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 989 TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR 990 : ISD::SPLAT_VECTOR, 991 VT) == TargetLowering::Expand) 992 return DAG.UnrollVectorOp(Node); 993 994 // Generate a mask operand. 995 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 996 997 // What is the size of each element in the vector mask. 998 EVT BitTy = MaskTy.getScalarType(); 999 1000 Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy), 1001 DAG.getConstant(0, DL, BitTy)); 1002 1003 // Broadcast the mask so that the entire vector is all one or all zero. 1004 Mask = DAG.getSplat(MaskTy, DL, Mask); 1005 1006 // Bitcast the operands to be the same type as the mask. 1007 // This is needed when we select between FP types because 1008 // the mask is a vector of integers. 1009 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 1010 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 1011 1012 SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy); 1013 1014 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 1015 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 1016 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 1017 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 1018 } 1019 1020 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) { 1021 EVT VT = Node->getValueType(0); 1022 1023 // Make sure that the SRA and SHL instructions are available. 1024 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 1025 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 1026 return DAG.UnrollVectorOp(Node); 1027 1028 SDLoc DL(Node); 1029 EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1030 1031 unsigned BW = VT.getScalarSizeInBits(); 1032 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 1033 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 1034 1035 SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz); 1036 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 1037 } 1038 1039 // Generically expand a vector anyext in register to a shuffle of the relevant 1040 // lanes into the appropriate locations, with other lanes left undef. 1041 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) { 1042 SDLoc DL(Node); 1043 EVT VT = Node->getValueType(0); 1044 int NumElements = VT.getVectorNumElements(); 1045 SDValue Src = Node->getOperand(0); 1046 EVT SrcVT = Src.getValueType(); 1047 int NumSrcElements = SrcVT.getVectorNumElements(); 1048 1049 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 1050 // into a larger vector type. 1051 if (SrcVT.bitsLE(VT)) { 1052 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 1053 "ANY_EXTEND_VECTOR_INREG vector size mismatch"); 1054 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 1055 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1056 NumSrcElements); 1057 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 1058 Src, DAG.getVectorIdxConstant(0, DL)); 1059 } 1060 1061 // Build a base mask of undef shuffles. 1062 SmallVector<int, 16> ShuffleMask; 1063 ShuffleMask.resize(NumSrcElements, -1); 1064 1065 // Place the extended lanes into the correct locations. 1066 int ExtLaneScale = NumSrcElements / NumElements; 1067 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1068 for (int i = 0; i < NumElements; ++i) 1069 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 1070 1071 return DAG.getNode( 1072 ISD::BITCAST, DL, VT, 1073 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 1074 } 1075 1076 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) { 1077 SDLoc DL(Node); 1078 EVT VT = Node->getValueType(0); 1079 SDValue Src = Node->getOperand(0); 1080 EVT SrcVT = Src.getValueType(); 1081 1082 // First build an any-extend node which can be legalized above when we 1083 // recurse through it. 1084 SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); 1085 1086 // Now we need sign extend. Do this by shifting the elements. Even if these 1087 // aren't legal operations, they have a better chance of being legalized 1088 // without full scalarization than the sign extension does. 1089 unsigned EltWidth = VT.getScalarSizeInBits(); 1090 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 1091 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 1092 return DAG.getNode(ISD::SRA, DL, VT, 1093 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 1094 ShiftAmount); 1095 } 1096 1097 // Generically expand a vector zext in register to a shuffle of the relevant 1098 // lanes into the appropriate locations, a blend of zero into the high bits, 1099 // and a bitcast to the wider element type. 1100 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) { 1101 SDLoc DL(Node); 1102 EVT VT = Node->getValueType(0); 1103 int NumElements = VT.getVectorNumElements(); 1104 SDValue Src = Node->getOperand(0); 1105 EVT SrcVT = Src.getValueType(); 1106 int NumSrcElements = SrcVT.getVectorNumElements(); 1107 1108 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 1109 // into a larger vector type. 1110 if (SrcVT.bitsLE(VT)) { 1111 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 1112 "ZERO_EXTEND_VECTOR_INREG vector size mismatch"); 1113 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 1114 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1115 NumSrcElements); 1116 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 1117 Src, DAG.getVectorIdxConstant(0, DL)); 1118 } 1119 1120 // Build up a zero vector to blend into this one. 1121 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 1122 1123 // Shuffle the incoming lanes into the correct position, and pull all other 1124 // lanes from the zero vector. 1125 auto ShuffleMask = llvm::to_vector<16>(llvm::seq<int>(0, NumSrcElements)); 1126 1127 int ExtLaneScale = NumSrcElements / NumElements; 1128 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1129 for (int i = 0; i < NumElements; ++i) 1130 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 1131 1132 return DAG.getNode(ISD::BITCAST, DL, VT, 1133 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 1134 } 1135 1136 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 1137 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 1138 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 1139 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 1140 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 1141 } 1142 1143 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) { 1144 EVT VT = Node->getValueType(0); 1145 1146 // Scalable vectors can't use shuffle expansion. 1147 if (VT.isScalableVector()) 1148 return TLI.expandBSWAP(Node, DAG); 1149 1150 // Generate a byte wise shuffle mask for the BSWAP. 1151 SmallVector<int, 16> ShuffleMask; 1152 createBSWAPShuffleMask(VT, ShuffleMask); 1153 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 1154 1155 // Only emit a shuffle if the mask is legal. 1156 if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) { 1157 SDLoc DL(Node); 1158 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1159 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 1160 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1161 } 1162 1163 // If we have the appropriate vector bit operations, it is better to use them 1164 // than unrolling and expanding each component. 1165 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 1166 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1167 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && 1168 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 1169 return TLI.expandBSWAP(Node, DAG); 1170 1171 // Otherwise unroll. 1172 return DAG.UnrollVectorOp(Node); 1173 } 1174 1175 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node, 1176 SmallVectorImpl<SDValue> &Results) { 1177 EVT VT = Node->getValueType(0); 1178 1179 // We can't unroll or use shuffles for scalable vectors. 1180 if (VT.isScalableVector()) { 1181 Results.push_back(TLI.expandBITREVERSE(Node, DAG)); 1182 return; 1183 } 1184 1185 // If we have the scalar operation, it's probably cheaper to unroll it. 1186 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) { 1187 SDValue Tmp = DAG.UnrollVectorOp(Node); 1188 Results.push_back(Tmp); 1189 return; 1190 } 1191 1192 // If the vector element width is a whole number of bytes, test if its legal 1193 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 1194 // vector. This greatly reduces the number of bit shifts necessary. 1195 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 1196 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 1197 SmallVector<int, 16> BSWAPMask; 1198 createBSWAPShuffleMask(VT, BSWAPMask); 1199 1200 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 1201 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 1202 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 1203 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 1204 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 1205 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 1206 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 1207 SDLoc DL(Node); 1208 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1209 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 1210 BSWAPMask); 1211 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 1212 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 1213 Results.push_back(Op); 1214 return; 1215 } 1216 } 1217 1218 // If we have the appropriate vector bit operations, it is better to use them 1219 // than unrolling and expanding each component. 1220 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 1221 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1222 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && 1223 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) { 1224 Results.push_back(TLI.expandBITREVERSE(Node, DAG)); 1225 return; 1226 } 1227 1228 // Otherwise unroll. 1229 SDValue Tmp = DAG.UnrollVectorOp(Node); 1230 Results.push_back(Tmp); 1231 } 1232 1233 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) { 1234 // Implement VSELECT in terms of XOR, AND, OR 1235 // on platforms which do not support blend natively. 1236 SDLoc DL(Node); 1237 1238 SDValue Mask = Node->getOperand(0); 1239 SDValue Op1 = Node->getOperand(1); 1240 SDValue Op2 = Node->getOperand(2); 1241 1242 EVT VT = Mask.getValueType(); 1243 1244 // If we can't even use the basic vector operations of 1245 // AND,OR,XOR, we will have to scalarize the op. 1246 // Notice that the operation may be 'promoted' which means that it is 1247 // 'bitcasted' to another type which is handled. 1248 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1249 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1250 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand) 1251 return DAG.UnrollVectorOp(Node); 1252 1253 // This operation also isn't safe with AND, OR, XOR when the boolean type is 1254 // 0/1 and the select operands aren't also booleans, as we need an all-ones 1255 // vector constant to mask with. 1256 // FIXME: Sign extend 1 to all ones if that's legal on the target. 1257 auto BoolContents = TLI.getBooleanContents(Op1.getValueType()); 1258 if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent && 1259 !(BoolContents == TargetLowering::ZeroOrOneBooleanContent && 1260 Op1.getValueType().getVectorElementType() == MVT::i1)) 1261 return DAG.UnrollVectorOp(Node); 1262 1263 // If the mask and the type are different sizes, unroll the vector op. This 1264 // can occur when getSetCCResultType returns something that is different in 1265 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1266 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1267 return DAG.UnrollVectorOp(Node); 1268 1269 // Bitcast the operands to be the same type as the mask. 1270 // This is needed when we select between FP types because 1271 // the mask is a vector of integers. 1272 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1273 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1274 1275 SDValue NotMask = DAG.getNOT(DL, Mask, VT); 1276 1277 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1278 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1279 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1280 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 1281 } 1282 1283 SDValue VectorLegalizer::ExpandVP_SELECT(SDNode *Node) { 1284 // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which 1285 // do not support it natively. 1286 SDLoc DL(Node); 1287 1288 SDValue Mask = Node->getOperand(0); 1289 SDValue Op1 = Node->getOperand(1); 1290 SDValue Op2 = Node->getOperand(2); 1291 SDValue EVL = Node->getOperand(3); 1292 1293 EVT VT = Mask.getValueType(); 1294 1295 // If we can't even use the basic vector operations of 1296 // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op. 1297 if (TLI.getOperationAction(ISD::VP_AND, VT) == TargetLowering::Expand || 1298 TLI.getOperationAction(ISD::VP_XOR, VT) == TargetLowering::Expand || 1299 TLI.getOperationAction(ISD::VP_OR, VT) == TargetLowering::Expand) 1300 return DAG.UnrollVectorOp(Node); 1301 1302 // This operation also isn't safe when the operands aren't also booleans. 1303 if (Op1.getValueType().getVectorElementType() != MVT::i1) 1304 return DAG.UnrollVectorOp(Node); 1305 1306 SDValue Ones = DAG.getAllOnesConstant(DL, VT); 1307 SDValue NotMask = DAG.getNode(ISD::VP_XOR, DL, VT, Mask, Ones, Mask, EVL); 1308 1309 Op1 = DAG.getNode(ISD::VP_AND, DL, VT, Op1, Mask, Mask, EVL); 1310 Op2 = DAG.getNode(ISD::VP_AND, DL, VT, Op2, NotMask, Mask, EVL); 1311 return DAG.getNode(ISD::VP_OR, DL, VT, Op1, Op2, Mask, EVL); 1312 } 1313 1314 SDValue VectorLegalizer::ExpandVP_MERGE(SDNode *Node) { 1315 // Implement VP_MERGE in terms of VSELECT. Construct a mask where vector 1316 // indices less than the EVL/pivot are true. Combine that with the original 1317 // mask for a full-length mask. Use a full-length VSELECT to select between 1318 // the true and false values. 1319 SDLoc DL(Node); 1320 1321 SDValue Mask = Node->getOperand(0); 1322 SDValue Op1 = Node->getOperand(1); 1323 SDValue Op2 = Node->getOperand(2); 1324 SDValue EVL = Node->getOperand(3); 1325 1326 EVT MaskVT = Mask.getValueType(); 1327 bool IsFixedLen = MaskVT.isFixedLengthVector(); 1328 1329 EVT EVLVecVT = EVT::getVectorVT(*DAG.getContext(), EVL.getValueType(), 1330 MaskVT.getVectorElementCount()); 1331 1332 // If we can't construct the EVL mask efficiently, it's better to unroll. 1333 if ((IsFixedLen && 1334 !TLI.isOperationLegalOrCustom(ISD::BUILD_VECTOR, EVLVecVT)) || 1335 (!IsFixedLen && 1336 (!TLI.isOperationLegalOrCustom(ISD::STEP_VECTOR, EVLVecVT) || 1337 !TLI.isOperationLegalOrCustom(ISD::SPLAT_VECTOR, EVLVecVT)))) 1338 return DAG.UnrollVectorOp(Node); 1339 1340 // If using a SETCC would result in a different type than the mask type, 1341 // unroll. 1342 if (TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1343 EVLVecVT) != MaskVT) 1344 return DAG.UnrollVectorOp(Node); 1345 1346 SDValue StepVec = DAG.getStepVector(DL, EVLVecVT); 1347 SDValue SplatEVL = DAG.getSplat(EVLVecVT, DL, EVL); 1348 SDValue EVLMask = 1349 DAG.getSetCC(DL, MaskVT, StepVec, SplatEVL, ISD::CondCode::SETULT); 1350 1351 SDValue FullMask = DAG.getNode(ISD::AND, DL, MaskVT, Mask, EVLMask); 1352 return DAG.getSelect(DL, Node->getValueType(0), FullMask, Op1, Op2); 1353 } 1354 1355 SDValue VectorLegalizer::ExpandVP_REM(SDNode *Node) { 1356 // Implement VP_SREM/UREM in terms of VP_SDIV/VP_UDIV, VP_MUL, VP_SUB. 1357 EVT VT = Node->getValueType(0); 1358 1359 unsigned DivOpc = Node->getOpcode() == ISD::VP_SREM ? ISD::VP_SDIV : ISD::VP_UDIV; 1360 1361 if (!TLI.isOperationLegalOrCustom(DivOpc, VT) || 1362 !TLI.isOperationLegalOrCustom(ISD::VP_MUL, VT) || 1363 !TLI.isOperationLegalOrCustom(ISD::VP_SUB, VT)) 1364 return SDValue(); 1365 1366 SDLoc DL(Node); 1367 1368 SDValue Dividend = Node->getOperand(0); 1369 SDValue Divisor = Node->getOperand(1); 1370 SDValue Mask = Node->getOperand(2); 1371 SDValue EVL = Node->getOperand(3); 1372 1373 // X % Y -> X-X/Y*Y 1374 SDValue Div = DAG.getNode(DivOpc, DL, VT, Dividend, Divisor, Mask, EVL); 1375 SDValue Mul = DAG.getNode(ISD::VP_MUL, DL, VT, Divisor, Div, Mask, EVL); 1376 return DAG.getNode(ISD::VP_SUB, DL, VT, Dividend, Mul, Mask, EVL); 1377 } 1378 1379 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node, 1380 SmallVectorImpl<SDValue> &Results) { 1381 // Attempt to expand using TargetLowering. 1382 SDValue Result, Chain; 1383 if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) { 1384 Results.push_back(Result); 1385 if (Node->isStrictFPOpcode()) 1386 Results.push_back(Chain); 1387 return; 1388 } 1389 1390 // Otherwise go ahead and unroll. 1391 if (Node->isStrictFPOpcode()) { 1392 UnrollStrictFPOp(Node, Results); 1393 return; 1394 } 1395 1396 Results.push_back(DAG.UnrollVectorOp(Node)); 1397 } 1398 1399 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node, 1400 SmallVectorImpl<SDValue> &Results) { 1401 bool IsStrict = Node->isStrictFPOpcode(); 1402 unsigned OpNo = IsStrict ? 1 : 0; 1403 SDValue Src = Node->getOperand(OpNo); 1404 EVT VT = Src.getValueType(); 1405 SDLoc DL(Node); 1406 1407 // Attempt to expand using TargetLowering. 1408 SDValue Result; 1409 SDValue Chain; 1410 if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) { 1411 Results.push_back(Result); 1412 if (IsStrict) 1413 Results.push_back(Chain); 1414 return; 1415 } 1416 1417 // Make sure that the SINT_TO_FP and SRL instructions are available. 1418 if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) == 1419 TargetLowering::Expand) || 1420 (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) == 1421 TargetLowering::Expand)) || 1422 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) { 1423 if (IsStrict) { 1424 UnrollStrictFPOp(Node, Results); 1425 return; 1426 } 1427 1428 Results.push_back(DAG.UnrollVectorOp(Node)); 1429 return; 1430 } 1431 1432 unsigned BW = VT.getScalarSizeInBits(); 1433 assert((BW == 64 || BW == 32) && 1434 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1435 1436 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1437 1438 // Constants to clear the upper part of the word. 1439 // Notice that we can also use SHL+SHR, but using a constant is slightly 1440 // faster on x86. 1441 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1442 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1443 1444 // Two to the power of half-word-size. 1445 SDValue TWOHW = 1446 DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0)); 1447 1448 // Clear upper part of LO, lower HI 1449 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord); 1450 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask); 1451 1452 if (IsStrict) { 1453 // Convert hi and lo to floats 1454 // Convert the hi part back to the upper values 1455 // TODO: Can any fast-math-flags be set on these nodes? 1456 SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1457 {Node->getValueType(0), MVT::Other}, 1458 {Node->getOperand(0), HI}); 1459 fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other}, 1460 {fHI.getValue(1), fHI, TWOHW}); 1461 SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1462 {Node->getValueType(0), MVT::Other}, 1463 {Node->getOperand(0), LO}); 1464 1465 SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1), 1466 fLO.getValue(1)); 1467 1468 // Add the two halves 1469 SDValue Result = 1470 DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other}, 1471 {TF, fHI, fLO}); 1472 1473 Results.push_back(Result); 1474 Results.push_back(Result.getValue(1)); 1475 return; 1476 } 1477 1478 // Convert hi and lo to floats 1479 // Convert the hi part back to the upper values 1480 // TODO: Can any fast-math-flags be set on these nodes? 1481 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI); 1482 fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW); 1483 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO); 1484 1485 // Add the two halves 1486 Results.push_back( 1487 DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO)); 1488 } 1489 1490 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) { 1491 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) { 1492 SDLoc DL(Node); 1493 SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0)); 1494 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1495 return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero, 1496 Node->getOperand(0)); 1497 } 1498 return DAG.UnrollVectorOp(Node); 1499 } 1500 1501 void VectorLegalizer::ExpandFSUB(SDNode *Node, 1502 SmallVectorImpl<SDValue> &Results) { 1503 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1504 // we can defer this to operation legalization where it will be lowered as 1505 // a+(-b). 1506 EVT VT = Node->getValueType(0); 1507 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1508 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1509 return; // Defer to LegalizeDAG 1510 1511 SDValue Tmp = DAG.UnrollVectorOp(Node); 1512 Results.push_back(Tmp); 1513 } 1514 1515 void VectorLegalizer::ExpandSETCC(SDNode *Node, 1516 SmallVectorImpl<SDValue> &Results) { 1517 bool NeedInvert = false; 1518 bool IsVP = Node->getOpcode() == ISD::VP_SETCC; 1519 SDLoc dl(Node); 1520 MVT OpVT = Node->getOperand(0).getSimpleValueType(); 1521 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 1522 1523 if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) { 1524 Results.push_back(UnrollVSETCC(Node)); 1525 return; 1526 } 1527 1528 SDValue Chain; 1529 SDValue LHS = Node->getOperand(0); 1530 SDValue RHS = Node->getOperand(1); 1531 SDValue CC = Node->getOperand(2); 1532 SDValue Mask, EVL; 1533 if (IsVP) { 1534 Mask = Node->getOperand(3); 1535 EVL = Node->getOperand(4); 1536 } 1537 1538 bool Legalized = 1539 TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS, RHS, CC, Mask, 1540 EVL, NeedInvert, dl, Chain); 1541 1542 if (Legalized) { 1543 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 1544 // condition code, create a new SETCC node. 1545 if (CC.getNode()) { 1546 if (!IsVP) 1547 LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC, 1548 Node->getFlags()); 1549 else 1550 LHS = DAG.getNode(ISD::VP_SETCC, dl, Node->getValueType(0), 1551 {LHS, RHS, CC, Mask, EVL}, Node->getFlags()); 1552 } 1553 1554 // If we expanded the SETCC by inverting the condition code, then wrap 1555 // the existing SETCC in a NOT to restore the intended condition. 1556 if (NeedInvert) { 1557 if (!IsVP) 1558 LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0)); 1559 else 1560 LHS = DAG.getVPLogicalNOT(dl, LHS, Mask, EVL, LHS->getValueType(0)); 1561 } 1562 } else { 1563 // Otherwise, SETCC for the given comparison type must be completely 1564 // illegal; expand it into a SELECT_CC. 1565 EVT VT = Node->getValueType(0); 1566 LHS = 1567 DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS, 1568 DAG.getBoolConstant(true, dl, VT, LHS.getValueType()), 1569 DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC); 1570 LHS->setFlags(Node->getFlags()); 1571 } 1572 1573 Results.push_back(LHS); 1574 } 1575 1576 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node, 1577 SmallVectorImpl<SDValue> &Results) { 1578 SDValue Result, Overflow; 1579 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 1580 Results.push_back(Result); 1581 Results.push_back(Overflow); 1582 } 1583 1584 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node, 1585 SmallVectorImpl<SDValue> &Results) { 1586 SDValue Result, Overflow; 1587 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 1588 Results.push_back(Result); 1589 Results.push_back(Overflow); 1590 } 1591 1592 void VectorLegalizer::ExpandMULO(SDNode *Node, 1593 SmallVectorImpl<SDValue> &Results) { 1594 SDValue Result, Overflow; 1595 if (!TLI.expandMULO(Node, Result, Overflow, DAG)) 1596 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node); 1597 1598 Results.push_back(Result); 1599 Results.push_back(Overflow); 1600 } 1601 1602 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node, 1603 SmallVectorImpl<SDValue> &Results) { 1604 SDNode *N = Node; 1605 if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N), 1606 N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG)) 1607 Results.push_back(Expanded); 1608 } 1609 1610 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node, 1611 SmallVectorImpl<SDValue> &Results) { 1612 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) { 1613 ExpandUINT_TO_FLOAT(Node, Results); 1614 return; 1615 } 1616 if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) { 1617 ExpandFP_TO_UINT(Node, Results); 1618 return; 1619 } 1620 1621 UnrollStrictFPOp(Node, Results); 1622 } 1623 1624 void VectorLegalizer::ExpandREM(SDNode *Node, 1625 SmallVectorImpl<SDValue> &Results) { 1626 assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) && 1627 "Expected REM node"); 1628 1629 SDValue Result; 1630 if (!TLI.expandREM(Node, Result, DAG)) 1631 Result = DAG.UnrollVectorOp(Node); 1632 Results.push_back(Result); 1633 } 1634 1635 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node, 1636 SmallVectorImpl<SDValue> &Results) { 1637 EVT VT = Node->getValueType(0); 1638 EVT EltVT = VT.getVectorElementType(); 1639 unsigned NumElems = VT.getVectorNumElements(); 1640 unsigned NumOpers = Node->getNumOperands(); 1641 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1642 1643 EVT TmpEltVT = EltVT; 1644 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1645 Node->getOpcode() == ISD::STRICT_FSETCCS) 1646 TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(), 1647 *DAG.getContext(), TmpEltVT); 1648 1649 EVT ValueVTs[] = {TmpEltVT, MVT::Other}; 1650 SDValue Chain = Node->getOperand(0); 1651 SDLoc dl(Node); 1652 1653 SmallVector<SDValue, 32> OpValues; 1654 SmallVector<SDValue, 32> OpChains; 1655 for (unsigned i = 0; i < NumElems; ++i) { 1656 SmallVector<SDValue, 4> Opers; 1657 SDValue Idx = DAG.getVectorIdxConstant(i, dl); 1658 1659 // The Chain is the first operand. 1660 Opers.push_back(Chain); 1661 1662 // Now process the remaining operands. 1663 for (unsigned j = 1; j < NumOpers; ++j) { 1664 SDValue Oper = Node->getOperand(j); 1665 EVT OperVT = Oper.getValueType(); 1666 1667 if (OperVT.isVector()) 1668 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1669 OperVT.getVectorElementType(), Oper, Idx); 1670 1671 Opers.push_back(Oper); 1672 } 1673 1674 SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers); 1675 SDValue ScalarResult = ScalarOp.getValue(0); 1676 SDValue ScalarChain = ScalarOp.getValue(1); 1677 1678 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1679 Node->getOpcode() == ISD::STRICT_FSETCCS) 1680 ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult, 1681 DAG.getAllOnesConstant(dl, EltVT), 1682 DAG.getConstant(0, dl, EltVT)); 1683 1684 OpValues.push_back(ScalarResult); 1685 OpChains.push_back(ScalarChain); 1686 } 1687 1688 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1689 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1690 1691 Results.push_back(Result); 1692 Results.push_back(NewChain); 1693 } 1694 1695 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) { 1696 EVT VT = Node->getValueType(0); 1697 unsigned NumElems = VT.getVectorNumElements(); 1698 EVT EltVT = VT.getVectorElementType(); 1699 SDValue LHS = Node->getOperand(0); 1700 SDValue RHS = Node->getOperand(1); 1701 SDValue CC = Node->getOperand(2); 1702 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1703 SDLoc dl(Node); 1704 SmallVector<SDValue, 8> Ops(NumElems); 1705 for (unsigned i = 0; i < NumElems; ++i) { 1706 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1707 DAG.getVectorIdxConstant(i, dl)); 1708 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1709 DAG.getVectorIdxConstant(i, dl)); 1710 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1711 TLI.getSetCCResultType(DAG.getDataLayout(), 1712 *DAG.getContext(), TmpEltVT), 1713 LHSElem, RHSElem, CC); 1714 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getAllOnesConstant(dl, EltVT), 1715 DAG.getConstant(0, dl, EltVT)); 1716 } 1717 return DAG.getBuildVector(VT, dl, Ops); 1718 } 1719 1720 bool SelectionDAG::LegalizeVectors() { 1721 return VectorLegalizer(*this).Run(); 1722 } 1723