xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
10 //
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types.  For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
20 //
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/VectorUtils.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/CodeGenTypes/MachineValueType.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <iterator>
47 #include <utility>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "legalizevectorops"
52 
53 namespace {
54 
55 class VectorLegalizer {
56   SelectionDAG& DAG;
57   const TargetLowering &TLI;
58   bool Changed = false; // Keep track of whether anything changed
59 
60   /// For nodes that are of legal width, and that have more than one use, this
61   /// map indicates what regularized operand to use.  This allows us to avoid
62   /// legalizing the same thing more than once.
63   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
64 
65   /// Adds a node to the translation cache.
66   void AddLegalizedOperand(SDValue From, SDValue To) {
67     LegalizedNodes.insert(std::make_pair(From, To));
68     // If someone requests legalization of the new node, return itself.
69     if (From != To)
70       LegalizedNodes.insert(std::make_pair(To, To));
71   }
72 
73   /// Legalizes the given node.
74   SDValue LegalizeOp(SDValue Op);
75 
76   /// Assuming the node is legal, "legalize" the results.
77   SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result);
78 
79   /// Make sure Results are legal and update the translation cache.
80   SDValue RecursivelyLegalizeResults(SDValue Op,
81                                      MutableArrayRef<SDValue> Results);
82 
83   /// Wrapper to interface LowerOperation with a vector of Results.
84   /// Returns false if the target wants to use default expansion. Otherwise
85   /// returns true. If return is true and the Results are empty, then the
86   /// target wants to keep the input node as is.
87   bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results);
88 
89   /// Implements unrolling a VSETCC.
90   SDValue UnrollVSETCC(SDNode *Node);
91 
92   /// Implement expand-based legalization of vector operations.
93   ///
94   /// This is just a high-level routine to dispatch to specific code paths for
95   /// operations to legalize them.
96   void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results);
97 
98   /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
99   /// FP_TO_SINT isn't legal.
100   void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
101 
102   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
103   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
104   void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
105 
106   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
107   SDValue ExpandSEXTINREG(SDNode *Node);
108 
109   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
110   ///
111   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
112   /// type. The contents of the bits in the extended part of each element are
113   /// undef.
114   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node);
115 
116   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
117   ///
118   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
119   /// type, then shifts left and arithmetic shifts right to introduce a sign
120   /// extension.
121   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node);
122 
123   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
124   ///
125   /// Shuffles the low lanes of the operand into place and blends zeros into
126   /// the remaining lanes, finally bitcasting to the proper type.
127   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node);
128 
129   /// Expand bswap of vectors into a shuffle if legal.
130   SDValue ExpandBSWAP(SDNode *Node);
131 
132   /// Implement vselect in terms of XOR, AND, OR when blend is not
133   /// supported by the target.
134   SDValue ExpandVSELECT(SDNode *Node);
135   SDValue ExpandVP_SELECT(SDNode *Node);
136   SDValue ExpandVP_MERGE(SDNode *Node);
137   SDValue ExpandVP_REM(SDNode *Node);
138   SDValue ExpandSELECT(SDNode *Node);
139   std::pair<SDValue, SDValue> ExpandLoad(SDNode *N);
140   SDValue ExpandStore(SDNode *N);
141   SDValue ExpandFNEG(SDNode *Node);
142   void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results);
143   void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results);
144   void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results);
145   void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
146   void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
147   void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
148   void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results);
149   void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
150   void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results);
151 
152   bool tryExpandVecMathCall(SDNode *Node, RTLIB::Libcall LC,
153                             SmallVectorImpl<SDValue> &Results);
154   bool tryExpandVecMathCall(SDNode *Node, RTLIB::Libcall Call_F32,
155                             RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
156                             RTLIB::Libcall Call_F128,
157                             RTLIB::Libcall Call_PPCF128,
158                             SmallVectorImpl<SDValue> &Results);
159 
160   void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
161 
162   /// Implements vector promotion.
163   ///
164   /// This is essentially just bitcasting the operands to a different type and
165   /// bitcasting the result back to the original type.
166   void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results);
167 
168   /// Implements [SU]INT_TO_FP vector promotion.
169   ///
170   /// This is a [zs]ext of the input operand to a larger integer type.
171   void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results);
172 
173   /// Implements FP_TO_[SU]INT vector promotion of the result type.
174   ///
175   /// It is promoted to a larger integer type.  The result is then
176   /// truncated back to the original type.
177   void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
178 
179   /// Implements vector setcc operation promotion.
180   ///
181   /// All vector operands are promoted to a vector type with larger element
182   /// type.
183   void PromoteSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results);
184 
185   void PromoteSTRICT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
186 
187 public:
188   VectorLegalizer(SelectionDAG& dag) :
189       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
190 
191   /// Begin legalizer the vector operations in the DAG.
192   bool Run();
193 };
194 
195 } // end anonymous namespace
196 
197 bool VectorLegalizer::Run() {
198   // Before we start legalizing vector nodes, check if there are any vectors.
199   bool HasVectors = false;
200   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
201        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
202     // Check if the values of the nodes contain vectors. We don't need to check
203     // the operands because we are going to check their values at some point.
204     HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); });
205 
206     // If we found a vector node we can start the legalization.
207     if (HasVectors)
208       break;
209   }
210 
211   // If this basic block has no vectors then no need to legalize vectors.
212   if (!HasVectors)
213     return false;
214 
215   // The legalize process is inherently a bottom-up recursive process (users
216   // legalize their uses before themselves).  Given infinite stack space, we
217   // could just start legalizing on the root and traverse the whole graph.  In
218   // practice however, this causes us to run out of stack space on large basic
219   // blocks.  To avoid this problem, compute an ordering of the nodes where each
220   // node is only legalized after all of its operands are legalized.
221   DAG.AssignTopologicalOrder();
222   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
223        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
224     LegalizeOp(SDValue(&*I, 0));
225 
226   // Finally, it's possible the root changed.  Get the new root.
227   SDValue OldRoot = DAG.getRoot();
228   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
229   DAG.setRoot(LegalizedNodes[OldRoot]);
230 
231   LegalizedNodes.clear();
232 
233   // Remove dead nodes now.
234   DAG.RemoveDeadNodes();
235 
236   return Changed;
237 }
238 
239 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) {
240   assert(Op->getNumValues() == Result->getNumValues() &&
241          "Unexpected number of results");
242   // Generic legalization: just pass the operand through.
243   for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i)
244     AddLegalizedOperand(Op.getValue(i), SDValue(Result, i));
245   return SDValue(Result, Op.getResNo());
246 }
247 
248 SDValue
249 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op,
250                                             MutableArrayRef<SDValue> Results) {
251   assert(Results.size() == Op->getNumValues() &&
252          "Unexpected number of results");
253   // Make sure that the generated code is itself legal.
254   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
255     Results[i] = LegalizeOp(Results[i]);
256     AddLegalizedOperand(Op.getValue(i), Results[i]);
257   }
258 
259   return Results[Op.getResNo()];
260 }
261 
262 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
263   // Note that LegalizeOp may be reentered even from single-use nodes, which
264   // means that we always must cache transformed nodes.
265   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
266   if (I != LegalizedNodes.end()) return I->second;
267 
268   // Legalize the operands
269   SmallVector<SDValue, 8> Ops;
270   for (const SDValue &Oper : Op->op_values())
271     Ops.push_back(LegalizeOp(Oper));
272 
273   SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops);
274 
275   bool HasVectorValueOrOp =
276       llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) ||
277       llvm::any_of(Node->op_values(),
278                    [](SDValue O) { return O.getValueType().isVector(); });
279   if (!HasVectorValueOrOp)
280     return TranslateLegalizeResults(Op, Node);
281 
282   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
283   EVT ValVT;
284   switch (Op.getOpcode()) {
285   default:
286     return TranslateLegalizeResults(Op, Node);
287   case ISD::LOAD: {
288     LoadSDNode *LD = cast<LoadSDNode>(Node);
289     ISD::LoadExtType ExtType = LD->getExtensionType();
290     EVT LoadedVT = LD->getMemoryVT();
291     if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD)
292       Action = TLI.getLoadExtAction(ExtType, LD->getValueType(0), LoadedVT);
293     break;
294   }
295   case ISD::STORE: {
296     StoreSDNode *ST = cast<StoreSDNode>(Node);
297     EVT StVT = ST->getMemoryVT();
298     MVT ValVT = ST->getValue().getSimpleValueType();
299     if (StVT.isVector() && ST->isTruncatingStore())
300       Action = TLI.getTruncStoreAction(ValVT, StVT);
301     break;
302   }
303   case ISD::MERGE_VALUES:
304     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
305     // This operation lies about being legal: when it claims to be legal,
306     // it should actually be expanded.
307     if (Action == TargetLowering::Legal)
308       Action = TargetLowering::Expand;
309     break;
310 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
311   case ISD::STRICT_##DAGN:
312 #include "llvm/IR/ConstrainedOps.def"
313     ValVT = Node->getValueType(0);
314     if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
315         Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
316       ValVT = Node->getOperand(1).getValueType();
317     if (Op.getOpcode() == ISD::STRICT_FSETCC ||
318         Op.getOpcode() == ISD::STRICT_FSETCCS) {
319       MVT OpVT = Node->getOperand(1).getSimpleValueType();
320       ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(3))->get();
321       Action = TLI.getCondCodeAction(CCCode, OpVT);
322       if (Action == TargetLowering::Legal)
323         Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
324     } else {
325       Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
326     }
327     // If we're asked to expand a strict vector floating-point operation,
328     // by default we're going to simply unroll it.  That is usually the
329     // best approach, except in the case where the resulting strict (scalar)
330     // operations would themselves use the fallback mutation to non-strict.
331     // In that specific case, just do the fallback on the vector op.
332     if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
333         TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
334             TargetLowering::Legal) {
335       EVT EltVT = ValVT.getVectorElementType();
336       if (TLI.getOperationAction(Node->getOpcode(), EltVT)
337           == TargetLowering::Expand &&
338           TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
339           == TargetLowering::Legal)
340         Action = TargetLowering::Legal;
341     }
342     break;
343   case ISD::ADD:
344   case ISD::SUB:
345   case ISD::MUL:
346   case ISD::MULHS:
347   case ISD::MULHU:
348   case ISD::SDIV:
349   case ISD::UDIV:
350   case ISD::SREM:
351   case ISD::UREM:
352   case ISD::SDIVREM:
353   case ISD::UDIVREM:
354   case ISD::FADD:
355   case ISD::FSUB:
356   case ISD::FMUL:
357   case ISD::FDIV:
358   case ISD::FREM:
359   case ISD::AND:
360   case ISD::OR:
361   case ISD::XOR:
362   case ISD::SHL:
363   case ISD::SRA:
364   case ISD::SRL:
365   case ISD::FSHL:
366   case ISD::FSHR:
367   case ISD::ROTL:
368   case ISD::ROTR:
369   case ISD::ABS:
370   case ISD::ABDS:
371   case ISD::ABDU:
372   case ISD::AVGCEILS:
373   case ISD::AVGCEILU:
374   case ISD::AVGFLOORS:
375   case ISD::AVGFLOORU:
376   case ISD::BSWAP:
377   case ISD::BITREVERSE:
378   case ISD::CTLZ:
379   case ISD::CTTZ:
380   case ISD::CTLZ_ZERO_UNDEF:
381   case ISD::CTTZ_ZERO_UNDEF:
382   case ISD::CTPOP:
383   case ISD::SELECT:
384   case ISD::VSELECT:
385   case ISD::SELECT_CC:
386   case ISD::ZERO_EXTEND:
387   case ISD::ANY_EXTEND:
388   case ISD::TRUNCATE:
389   case ISD::SIGN_EXTEND:
390   case ISD::FP_TO_SINT:
391   case ISD::FP_TO_UINT:
392   case ISD::FNEG:
393   case ISD::FABS:
394   case ISD::FMINNUM:
395   case ISD::FMAXNUM:
396   case ISD::FMINNUM_IEEE:
397   case ISD::FMAXNUM_IEEE:
398   case ISD::FMINIMUM:
399   case ISD::FMAXIMUM:
400   case ISD::FCOPYSIGN:
401   case ISD::FSQRT:
402   case ISD::FSIN:
403   case ISD::FCOS:
404   case ISD::FTAN:
405   case ISD::FASIN:
406   case ISD::FACOS:
407   case ISD::FATAN:
408   case ISD::FSINH:
409   case ISD::FCOSH:
410   case ISD::FTANH:
411   case ISD::FLDEXP:
412   case ISD::FPOWI:
413   case ISD::FPOW:
414   case ISD::FLOG:
415   case ISD::FLOG2:
416   case ISD::FLOG10:
417   case ISD::FEXP:
418   case ISD::FEXP2:
419   case ISD::FEXP10:
420   case ISD::FCEIL:
421   case ISD::FTRUNC:
422   case ISD::FRINT:
423   case ISD::FNEARBYINT:
424   case ISD::FROUND:
425   case ISD::FROUNDEVEN:
426   case ISD::FFLOOR:
427   case ISD::FP_ROUND:
428   case ISD::FP_EXTEND:
429   case ISD::FPTRUNC_ROUND:
430   case ISD::FMA:
431   case ISD::SIGN_EXTEND_INREG:
432   case ISD::ANY_EXTEND_VECTOR_INREG:
433   case ISD::SIGN_EXTEND_VECTOR_INREG:
434   case ISD::ZERO_EXTEND_VECTOR_INREG:
435   case ISD::SMIN:
436   case ISD::SMAX:
437   case ISD::UMIN:
438   case ISD::UMAX:
439   case ISD::SMUL_LOHI:
440   case ISD::UMUL_LOHI:
441   case ISD::SADDO:
442   case ISD::UADDO:
443   case ISD::SSUBO:
444   case ISD::USUBO:
445   case ISD::SMULO:
446   case ISD::UMULO:
447   case ISD::FCANONICALIZE:
448   case ISD::FFREXP:
449   case ISD::SADDSAT:
450   case ISD::UADDSAT:
451   case ISD::SSUBSAT:
452   case ISD::USUBSAT:
453   case ISD::SSHLSAT:
454   case ISD::USHLSAT:
455   case ISD::FP_TO_SINT_SAT:
456   case ISD::FP_TO_UINT_SAT:
457   case ISD::MGATHER:
458   case ISD::VECTOR_COMPRESS:
459   case ISD::SCMP:
460   case ISD::UCMP:
461     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
462     break;
463   case ISD::SMULFIX:
464   case ISD::SMULFIXSAT:
465   case ISD::UMULFIX:
466   case ISD::UMULFIXSAT:
467   case ISD::SDIVFIX:
468   case ISD::SDIVFIXSAT:
469   case ISD::UDIVFIX:
470   case ISD::UDIVFIXSAT: {
471     unsigned Scale = Node->getConstantOperandVal(2);
472     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
473                                               Node->getValueType(0), Scale);
474     break;
475   }
476   case ISD::LRINT:
477   case ISD::LLRINT:
478   case ISD::SINT_TO_FP:
479   case ISD::UINT_TO_FP:
480   case ISD::VECREDUCE_ADD:
481   case ISD::VECREDUCE_MUL:
482   case ISD::VECREDUCE_AND:
483   case ISD::VECREDUCE_OR:
484   case ISD::VECREDUCE_XOR:
485   case ISD::VECREDUCE_SMAX:
486   case ISD::VECREDUCE_SMIN:
487   case ISD::VECREDUCE_UMAX:
488   case ISD::VECREDUCE_UMIN:
489   case ISD::VECREDUCE_FADD:
490   case ISD::VECREDUCE_FMUL:
491   case ISD::VECREDUCE_FMAX:
492   case ISD::VECREDUCE_FMIN:
493   case ISD::VECREDUCE_FMAXIMUM:
494   case ISD::VECREDUCE_FMINIMUM:
495     Action = TLI.getOperationAction(Node->getOpcode(),
496                                     Node->getOperand(0).getValueType());
497     break;
498   case ISD::VECREDUCE_SEQ_FADD:
499   case ISD::VECREDUCE_SEQ_FMUL:
500     Action = TLI.getOperationAction(Node->getOpcode(),
501                                     Node->getOperand(1).getValueType());
502     break;
503   case ISD::SETCC: {
504     MVT OpVT = Node->getOperand(0).getSimpleValueType();
505     ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
506     Action = TLI.getCondCodeAction(CCCode, OpVT);
507     if (Action == TargetLowering::Legal)
508       Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
509     break;
510   }
511 
512 #define BEGIN_REGISTER_VP_SDNODE(VPID, LEGALPOS, ...)                          \
513   case ISD::VPID: {                                                            \
514     EVT LegalizeVT = LEGALPOS < 0 ? Node->getValueType(-(1 + LEGALPOS))        \
515                                   : Node->getOperand(LEGALPOS).getValueType(); \
516     if (ISD::VPID == ISD::VP_SETCC) {                                          \
517       ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); \
518       Action = TLI.getCondCodeAction(CCCode, LegalizeVT.getSimpleVT());        \
519       if (Action != TargetLowering::Legal)                                     \
520         break;                                                                 \
521     }                                                                          \
522     /* Defer non-vector results to LegalizeDAG. */                             \
523     if (!Node->getValueType(0).isVector() &&                                   \
524         Node->getValueType(0) != MVT::Other) {                                 \
525       Action = TargetLowering::Legal;                                          \
526       break;                                                                   \
527     }                                                                          \
528     Action = TLI.getOperationAction(Node->getOpcode(), LegalizeVT);            \
529   } break;
530 #include "llvm/IR/VPIntrinsics.def"
531   }
532 
533   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
534 
535   SmallVector<SDValue, 8> ResultVals;
536   switch (Action) {
537   default: llvm_unreachable("This action is not supported yet!");
538   case TargetLowering::Promote:
539     assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) &&
540            "This action is not supported yet!");
541     LLVM_DEBUG(dbgs() << "Promoting\n");
542     Promote(Node, ResultVals);
543     assert(!ResultVals.empty() && "No results for promotion?");
544     break;
545   case TargetLowering::Legal:
546     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
547     break;
548   case TargetLowering::Custom:
549     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
550     if (LowerOperationWrapper(Node, ResultVals))
551       break;
552     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
553     [[fallthrough]];
554   case TargetLowering::Expand:
555     LLVM_DEBUG(dbgs() << "Expanding\n");
556     Expand(Node, ResultVals);
557     break;
558   }
559 
560   if (ResultVals.empty())
561     return TranslateLegalizeResults(Op, Node);
562 
563   Changed = true;
564   return RecursivelyLegalizeResults(Op, ResultVals);
565 }
566 
567 // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we
568 // merge them somehow?
569 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node,
570                                             SmallVectorImpl<SDValue> &Results) {
571   SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
572 
573   if (!Res.getNode())
574     return false;
575 
576   if (Res == SDValue(Node, 0))
577     return true;
578 
579   // If the original node has one result, take the return value from
580   // LowerOperation as is. It might not be result number 0.
581   if (Node->getNumValues() == 1) {
582     Results.push_back(Res);
583     return true;
584   }
585 
586   // If the original node has multiple results, then the return node should
587   // have the same number of results.
588   assert((Node->getNumValues() == Res->getNumValues()) &&
589          "Lowering returned the wrong number of results!");
590 
591   // Places new result values base on N result number.
592   for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I)
593     Results.push_back(Res.getValue(I));
594 
595   return true;
596 }
597 
598 void VectorLegalizer::PromoteSETCC(SDNode *Node,
599                                    SmallVectorImpl<SDValue> &Results) {
600   MVT VecVT = Node->getOperand(0).getSimpleValueType();
601   MVT NewVecVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VecVT);
602 
603   unsigned ExtOp = VecVT.isFloatingPoint() ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
604 
605   SDLoc DL(Node);
606   SmallVector<SDValue, 5> Operands(Node->getNumOperands());
607 
608   Operands[0] = DAG.getNode(ExtOp, DL, NewVecVT, Node->getOperand(0));
609   Operands[1] = DAG.getNode(ExtOp, DL, NewVecVT, Node->getOperand(1));
610   Operands[2] = Node->getOperand(2);
611 
612   if (Node->getOpcode() == ISD::VP_SETCC) {
613     Operands[3] = Node->getOperand(3); // mask
614     Operands[4] = Node->getOperand(4); // evl
615   }
616 
617   SDValue Res = DAG.getNode(Node->getOpcode(), DL, Node->getSimpleValueType(0),
618                             Operands, Node->getFlags());
619 
620   Results.push_back(Res);
621 }
622 
623 void VectorLegalizer::PromoteSTRICT(SDNode *Node,
624                                     SmallVectorImpl<SDValue> &Results) {
625   MVT VecVT = Node->getOperand(1).getSimpleValueType();
626   MVT NewVecVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VecVT);
627 
628   assert(VecVT.isFloatingPoint());
629 
630   SDLoc DL(Node);
631   SmallVector<SDValue, 5> Operands(Node->getNumOperands());
632   SmallVector<SDValue, 2> Chains;
633 
634   for (unsigned j = 1; j != Node->getNumOperands(); ++j)
635     if (Node->getOperand(j).getValueType().isVector() &&
636         !(ISD::isVPOpcode(Node->getOpcode()) &&
637           ISD::getVPMaskIdx(Node->getOpcode()) == j)) // Skip mask operand.
638     {
639       // promote the vector operand.
640       SDValue Ext =
641           DAG.getNode(ISD::STRICT_FP_EXTEND, DL, {NewVecVT, MVT::Other},
642                       {Node->getOperand(0), Node->getOperand(j)});
643       Operands[j] = Ext.getValue(0);
644       Chains.push_back(Ext.getValue(1));
645     } else
646       Operands[j] = Node->getOperand(j); // Skip no vector operand.
647 
648   SDVTList VTs = DAG.getVTList(NewVecVT, Node->getValueType(1));
649 
650   Operands[0] = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
651 
652   SDValue Res =
653       DAG.getNode(Node->getOpcode(), DL, VTs, Operands, Node->getFlags());
654 
655   SDValue Round =
656       DAG.getNode(ISD::STRICT_FP_ROUND, DL, {VecVT, MVT::Other},
657                   {Res.getValue(1), Res.getValue(0),
658                    DAG.getIntPtrConstant(0, DL, /*isTarget=*/true)});
659 
660   Results.push_back(Round.getValue(0));
661   Results.push_back(Round.getValue(1));
662 }
663 
664 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
665   // For a few operations there is a specific concept for promotion based on
666   // the operand's type.
667   switch (Node->getOpcode()) {
668   case ISD::SINT_TO_FP:
669   case ISD::UINT_TO_FP:
670   case ISD::STRICT_SINT_TO_FP:
671   case ISD::STRICT_UINT_TO_FP:
672     // "Promote" the operation by extending the operand.
673     PromoteINT_TO_FP(Node, Results);
674     return;
675   case ISD::FP_TO_UINT:
676   case ISD::FP_TO_SINT:
677   case ISD::STRICT_FP_TO_UINT:
678   case ISD::STRICT_FP_TO_SINT:
679     // Promote the operation by extending the operand.
680     PromoteFP_TO_INT(Node, Results);
681     return;
682   case ISD::VP_SETCC:
683   case ISD::SETCC:
684     // Promote the operation by extending the operand.
685     PromoteSETCC(Node, Results);
686     return;
687   case ISD::STRICT_FADD:
688   case ISD::STRICT_FSUB:
689   case ISD::STRICT_FMUL:
690   case ISD::STRICT_FDIV:
691   case ISD::STRICT_FSQRT:
692   case ISD::STRICT_FMA:
693     PromoteSTRICT(Node, Results);
694     return;
695   case ISD::FP_ROUND:
696   case ISD::FP_EXTEND:
697     // These operations are used to do promotion so they can't be promoted
698     // themselves.
699     llvm_unreachable("Don't know how to promote this operation!");
700   }
701 
702   // There are currently two cases of vector promotion:
703   // 1) Bitcasting a vector of integers to a different type to a vector of the
704   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
705   // 2) Extending a vector of floats to a vector of the same number of larger
706   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
707   assert(Node->getNumValues() == 1 &&
708          "Can't promote a vector with multiple results!");
709   MVT VT = Node->getSimpleValueType(0);
710   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
711   SDLoc dl(Node);
712   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
713 
714   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
715     // Do not promote the mask operand of a VP OP.
716     bool SkipPromote = ISD::isVPOpcode(Node->getOpcode()) &&
717                        ISD::getVPMaskIdx(Node->getOpcode()) == j;
718     if (Node->getOperand(j).getValueType().isVector() && !SkipPromote)
719       if (Node->getOperand(j)
720               .getValueType()
721               .getVectorElementType()
722               .isFloatingPoint() &&
723           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
724         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j));
725       else
726         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j));
727     else
728       Operands[j] = Node->getOperand(j);
729   }
730 
731   SDValue Res =
732       DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags());
733 
734   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
735       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
736        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
737     Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res,
738                       DAG.getIntPtrConstant(0, dl, /*isTarget=*/true));
739   else
740     Res = DAG.getNode(ISD::BITCAST, dl, VT, Res);
741 
742   Results.push_back(Res);
743 }
744 
745 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node,
746                                        SmallVectorImpl<SDValue> &Results) {
747   // INT_TO_FP operations may require the input operand be promoted even
748   // when the type is otherwise legal.
749   bool IsStrict = Node->isStrictFPOpcode();
750   MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType();
751   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
752   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
753          "Vectors have different number of elements!");
754 
755   SDLoc dl(Node);
756   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
757 
758   unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP ||
759                   Node->getOpcode() == ISD::STRICT_UINT_TO_FP)
760                      ? ISD::ZERO_EXTEND
761                      : ISD::SIGN_EXTEND;
762   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
763     if (Node->getOperand(j).getValueType().isVector())
764       Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j));
765     else
766       Operands[j] = Node->getOperand(j);
767   }
768 
769   if (IsStrict) {
770     SDValue Res = DAG.getNode(Node->getOpcode(), dl,
771                               {Node->getValueType(0), MVT::Other}, Operands);
772     Results.push_back(Res);
773     Results.push_back(Res.getValue(1));
774     return;
775   }
776 
777   SDValue Res =
778       DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands);
779   Results.push_back(Res);
780 }
781 
782 // For FP_TO_INT we promote the result type to a vector type with wider
783 // elements and then truncate the result.  This is different from the default
784 // PromoteVector which uses bitcast to promote thus assumning that the
785 // promoted vector type has the same overall size.
786 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node,
787                                        SmallVectorImpl<SDValue> &Results) {
788   MVT VT = Node->getSimpleValueType(0);
789   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
790   bool IsStrict = Node->isStrictFPOpcode();
791   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
792          "Vectors have different number of elements!");
793 
794   unsigned NewOpc = Node->getOpcode();
795   // Change FP_TO_UINT to FP_TO_SINT if possible.
796   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
797   if (NewOpc == ISD::FP_TO_UINT &&
798       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
799     NewOpc = ISD::FP_TO_SINT;
800 
801   if (NewOpc == ISD::STRICT_FP_TO_UINT &&
802       TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
803     NewOpc = ISD::STRICT_FP_TO_SINT;
804 
805   SDLoc dl(Node);
806   SDValue Promoted, Chain;
807   if (IsStrict) {
808     Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
809                            {Node->getOperand(0), Node->getOperand(1)});
810     Chain = Promoted.getValue(1);
811   } else
812     Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0));
813 
814   // Assert that the converted value fits in the original type.  If it doesn't
815   // (eg: because the value being converted is too big), then the result of the
816   // original operation was undefined anyway, so the assert is still correct.
817   if (Node->getOpcode() == ISD::FP_TO_UINT ||
818       Node->getOpcode() == ISD::STRICT_FP_TO_UINT)
819     NewOpc = ISD::AssertZext;
820   else
821     NewOpc = ISD::AssertSext;
822 
823   Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
824                          DAG.getValueType(VT.getScalarType()));
825   Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
826   Results.push_back(Promoted);
827   if (IsStrict)
828     Results.push_back(Chain);
829 }
830 
831 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) {
832   LoadSDNode *LD = cast<LoadSDNode>(N);
833   return TLI.scalarizeVectorLoad(LD, DAG);
834 }
835 
836 SDValue VectorLegalizer::ExpandStore(SDNode *N) {
837   StoreSDNode *ST = cast<StoreSDNode>(N);
838   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
839   return TF;
840 }
841 
842 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
843   switch (Node->getOpcode()) {
844   case ISD::LOAD: {
845     std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node);
846     Results.push_back(Tmp.first);
847     Results.push_back(Tmp.second);
848     return;
849   }
850   case ISD::STORE:
851     Results.push_back(ExpandStore(Node));
852     return;
853   case ISD::MERGE_VALUES:
854     for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
855       Results.push_back(Node->getOperand(i));
856     return;
857   case ISD::SIGN_EXTEND_INREG:
858     Results.push_back(ExpandSEXTINREG(Node));
859     return;
860   case ISD::ANY_EXTEND_VECTOR_INREG:
861     Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node));
862     return;
863   case ISD::SIGN_EXTEND_VECTOR_INREG:
864     Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node));
865     return;
866   case ISD::ZERO_EXTEND_VECTOR_INREG:
867     Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node));
868     return;
869   case ISD::BSWAP:
870     Results.push_back(ExpandBSWAP(Node));
871     return;
872   case ISD::VP_BSWAP:
873     Results.push_back(TLI.expandVPBSWAP(Node, DAG));
874     return;
875   case ISD::VSELECT:
876     Results.push_back(ExpandVSELECT(Node));
877     return;
878   case ISD::VP_SELECT:
879     Results.push_back(ExpandVP_SELECT(Node));
880     return;
881   case ISD::VP_SREM:
882   case ISD::VP_UREM:
883     if (SDValue Expanded = ExpandVP_REM(Node)) {
884       Results.push_back(Expanded);
885       return;
886     }
887     break;
888   case ISD::SELECT:
889     Results.push_back(ExpandSELECT(Node));
890     return;
891   case ISD::SELECT_CC: {
892     if (Node->getValueType(0).isScalableVector()) {
893       EVT CondVT = TLI.getSetCCResultType(
894           DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
895       SDValue SetCC =
896           DAG.getNode(ISD::SETCC, SDLoc(Node), CondVT, Node->getOperand(0),
897                       Node->getOperand(1), Node->getOperand(4));
898       Results.push_back(DAG.getSelect(SDLoc(Node), Node->getValueType(0), SetCC,
899                                       Node->getOperand(2),
900                                       Node->getOperand(3)));
901       return;
902     }
903     break;
904   }
905   case ISD::FP_TO_UINT:
906     ExpandFP_TO_UINT(Node, Results);
907     return;
908   case ISD::UINT_TO_FP:
909     ExpandUINT_TO_FLOAT(Node, Results);
910     return;
911   case ISD::FNEG:
912     Results.push_back(ExpandFNEG(Node));
913     return;
914   case ISD::FSUB:
915     ExpandFSUB(Node, Results);
916     return;
917   case ISD::SETCC:
918   case ISD::VP_SETCC:
919     ExpandSETCC(Node, Results);
920     return;
921   case ISD::ABS:
922     if (SDValue Expanded = TLI.expandABS(Node, DAG)) {
923       Results.push_back(Expanded);
924       return;
925     }
926     break;
927   case ISD::ABDS:
928   case ISD::ABDU:
929     if (SDValue Expanded = TLI.expandABD(Node, DAG)) {
930       Results.push_back(Expanded);
931       return;
932     }
933     break;
934   case ISD::AVGCEILS:
935   case ISD::AVGCEILU:
936   case ISD::AVGFLOORS:
937   case ISD::AVGFLOORU:
938     if (SDValue Expanded = TLI.expandAVG(Node, DAG)) {
939       Results.push_back(Expanded);
940       return;
941     }
942     break;
943   case ISD::BITREVERSE:
944     ExpandBITREVERSE(Node, Results);
945     return;
946   case ISD::VP_BITREVERSE:
947     if (SDValue Expanded = TLI.expandVPBITREVERSE(Node, DAG)) {
948       Results.push_back(Expanded);
949       return;
950     }
951     break;
952   case ISD::CTPOP:
953     if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) {
954       Results.push_back(Expanded);
955       return;
956     }
957     break;
958   case ISD::VP_CTPOP:
959     if (SDValue Expanded = TLI.expandVPCTPOP(Node, DAG)) {
960       Results.push_back(Expanded);
961       return;
962     }
963     break;
964   case ISD::CTLZ:
965   case ISD::CTLZ_ZERO_UNDEF:
966     if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) {
967       Results.push_back(Expanded);
968       return;
969     }
970     break;
971   case ISD::VP_CTLZ:
972   case ISD::VP_CTLZ_ZERO_UNDEF:
973     if (SDValue Expanded = TLI.expandVPCTLZ(Node, DAG)) {
974       Results.push_back(Expanded);
975       return;
976     }
977     break;
978   case ISD::CTTZ:
979   case ISD::CTTZ_ZERO_UNDEF:
980     if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) {
981       Results.push_back(Expanded);
982       return;
983     }
984     break;
985   case ISD::VP_CTTZ:
986   case ISD::VP_CTTZ_ZERO_UNDEF:
987     if (SDValue Expanded = TLI.expandVPCTTZ(Node, DAG)) {
988       Results.push_back(Expanded);
989       return;
990     }
991     break;
992   case ISD::FSHL:
993   case ISD::VP_FSHL:
994   case ISD::FSHR:
995   case ISD::VP_FSHR:
996     if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) {
997       Results.push_back(Expanded);
998       return;
999     }
1000     break;
1001   case ISD::ROTL:
1002   case ISD::ROTR:
1003     if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) {
1004       Results.push_back(Expanded);
1005       return;
1006     }
1007     break;
1008   case ISD::FMINNUM:
1009   case ISD::FMAXNUM:
1010     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) {
1011       Results.push_back(Expanded);
1012       return;
1013     }
1014     break;
1015   case ISD::FMINIMUM:
1016   case ISD::FMAXIMUM:
1017     Results.push_back(TLI.expandFMINIMUM_FMAXIMUM(Node, DAG));
1018     return;
1019   case ISD::SMIN:
1020   case ISD::SMAX:
1021   case ISD::UMIN:
1022   case ISD::UMAX:
1023     if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) {
1024       Results.push_back(Expanded);
1025       return;
1026     }
1027     break;
1028   case ISD::UADDO:
1029   case ISD::USUBO:
1030     ExpandUADDSUBO(Node, Results);
1031     return;
1032   case ISD::SADDO:
1033   case ISD::SSUBO:
1034     ExpandSADDSUBO(Node, Results);
1035     return;
1036   case ISD::UMULO:
1037   case ISD::SMULO:
1038     ExpandMULO(Node, Results);
1039     return;
1040   case ISD::USUBSAT:
1041   case ISD::SSUBSAT:
1042   case ISD::UADDSAT:
1043   case ISD::SADDSAT:
1044     if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) {
1045       Results.push_back(Expanded);
1046       return;
1047     }
1048     break;
1049   case ISD::USHLSAT:
1050   case ISD::SSHLSAT:
1051     if (SDValue Expanded = TLI.expandShlSat(Node, DAG)) {
1052       Results.push_back(Expanded);
1053       return;
1054     }
1055     break;
1056   case ISD::FP_TO_SINT_SAT:
1057   case ISD::FP_TO_UINT_SAT:
1058     // Expand the fpsosisat if it is scalable to prevent it from unrolling below.
1059     if (Node->getValueType(0).isScalableVector()) {
1060       if (SDValue Expanded = TLI.expandFP_TO_INT_SAT(Node, DAG)) {
1061         Results.push_back(Expanded);
1062         return;
1063       }
1064     }
1065     break;
1066   case ISD::SMULFIX:
1067   case ISD::UMULFIX:
1068     if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) {
1069       Results.push_back(Expanded);
1070       return;
1071     }
1072     break;
1073   case ISD::SMULFIXSAT:
1074   case ISD::UMULFIXSAT:
1075     // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
1076     // why. Maybe it results in worse codegen compared to the unroll for some
1077     // targets? This should probably be investigated. And if we still prefer to
1078     // unroll an explanation could be helpful.
1079     break;
1080   case ISD::SDIVFIX:
1081   case ISD::UDIVFIX:
1082     ExpandFixedPointDiv(Node, Results);
1083     return;
1084   case ISD::SDIVFIXSAT:
1085   case ISD::UDIVFIXSAT:
1086     break;
1087 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
1088   case ISD::STRICT_##DAGN:
1089 #include "llvm/IR/ConstrainedOps.def"
1090     ExpandStrictFPOp(Node, Results);
1091     return;
1092   case ISD::VECREDUCE_ADD:
1093   case ISD::VECREDUCE_MUL:
1094   case ISD::VECREDUCE_AND:
1095   case ISD::VECREDUCE_OR:
1096   case ISD::VECREDUCE_XOR:
1097   case ISD::VECREDUCE_SMAX:
1098   case ISD::VECREDUCE_SMIN:
1099   case ISD::VECREDUCE_UMAX:
1100   case ISD::VECREDUCE_UMIN:
1101   case ISD::VECREDUCE_FADD:
1102   case ISD::VECREDUCE_FMUL:
1103   case ISD::VECREDUCE_FMAX:
1104   case ISD::VECREDUCE_FMIN:
1105   case ISD::VECREDUCE_FMAXIMUM:
1106   case ISD::VECREDUCE_FMINIMUM:
1107     Results.push_back(TLI.expandVecReduce(Node, DAG));
1108     return;
1109   case ISD::VECREDUCE_SEQ_FADD:
1110   case ISD::VECREDUCE_SEQ_FMUL:
1111     Results.push_back(TLI.expandVecReduceSeq(Node, DAG));
1112     return;
1113   case ISD::SREM:
1114   case ISD::UREM:
1115     ExpandREM(Node, Results);
1116     return;
1117   case ISD::VP_MERGE:
1118     Results.push_back(ExpandVP_MERGE(Node));
1119     return;
1120   case ISD::FREM:
1121     if (tryExpandVecMathCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
1122                              RTLIB::REM_F80, RTLIB::REM_F128,
1123                              RTLIB::REM_PPCF128, Results))
1124       return;
1125 
1126     break;
1127   case ISD::VECTOR_COMPRESS:
1128     Results.push_back(TLI.expandVECTOR_COMPRESS(Node, DAG));
1129     return;
1130   }
1131 
1132   SDValue Unrolled = DAG.UnrollVectorOp(Node);
1133   if (Node->getNumValues() == 1) {
1134     Results.push_back(Unrolled);
1135   } else {
1136     assert(Node->getNumValues() == Unrolled->getNumValues() &&
1137       "VectorLegalizer Expand returned wrong number of results!");
1138     for (unsigned I = 0, E = Unrolled->getNumValues(); I != E; ++I)
1139       Results.push_back(Unrolled.getValue(I));
1140   }
1141 }
1142 
1143 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) {
1144   // Lower a select instruction where the condition is a scalar and the
1145   // operands are vectors. Lower this select to VSELECT and implement it
1146   // using XOR AND OR. The selector bit is broadcasted.
1147   EVT VT = Node->getValueType(0);
1148   SDLoc DL(Node);
1149 
1150   SDValue Mask = Node->getOperand(0);
1151   SDValue Op1 = Node->getOperand(1);
1152   SDValue Op2 = Node->getOperand(2);
1153 
1154   assert(VT.isVector() && !Mask.getValueType().isVector()
1155          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
1156 
1157   // If we can't even use the basic vector operations of
1158   // AND,OR,XOR, we will have to scalarize the op.
1159   // Notice that the operation may be 'promoted' which means that it is
1160   // 'bitcasted' to another type which is handled.
1161   // Also, we need to be able to construct a splat vector using either
1162   // BUILD_VECTOR or SPLAT_VECTOR.
1163   // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to
1164   // BUILD_VECTOR?
1165   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1166       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1167       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1168       TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR
1169                                                       : ISD::SPLAT_VECTOR,
1170                              VT) == TargetLowering::Expand)
1171     return DAG.UnrollVectorOp(Node);
1172 
1173   // Generate a mask operand.
1174   EVT MaskTy = VT.changeVectorElementTypeToInteger();
1175 
1176   // What is the size of each element in the vector mask.
1177   EVT BitTy = MaskTy.getScalarType();
1178 
1179   Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy),
1180                        DAG.getConstant(0, DL, BitTy));
1181 
1182   // Broadcast the mask so that the entire vector is all one or all zero.
1183   Mask = DAG.getSplat(MaskTy, DL, Mask);
1184 
1185   // Bitcast the operands to be the same type as the mask.
1186   // This is needed when we select between FP types because
1187   // the mask is a vector of integers.
1188   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
1189   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
1190 
1191   SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy);
1192 
1193   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
1194   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
1195   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
1196   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1197 }
1198 
1199 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) {
1200   EVT VT = Node->getValueType(0);
1201 
1202   // Make sure that the SRA and SHL instructions are available.
1203   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
1204       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
1205     return DAG.UnrollVectorOp(Node);
1206 
1207   SDLoc DL(Node);
1208   EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT();
1209 
1210   unsigned BW = VT.getScalarSizeInBits();
1211   unsigned OrigBW = OrigTy.getScalarSizeInBits();
1212   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
1213 
1214   SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz);
1215   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
1216 }
1217 
1218 // Generically expand a vector anyext in register to a shuffle of the relevant
1219 // lanes into the appropriate locations, with other lanes left undef.
1220 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) {
1221   SDLoc DL(Node);
1222   EVT VT = Node->getValueType(0);
1223   int NumElements = VT.getVectorNumElements();
1224   SDValue Src = Node->getOperand(0);
1225   EVT SrcVT = Src.getValueType();
1226   int NumSrcElements = SrcVT.getVectorNumElements();
1227 
1228   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1229   // into a larger vector type.
1230   if (SrcVT.bitsLE(VT)) {
1231     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1232            "ANY_EXTEND_VECTOR_INREG vector size mismatch");
1233     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1234     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1235                              NumSrcElements);
1236     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
1237                       Src, DAG.getVectorIdxConstant(0, DL));
1238   }
1239 
1240   // Build a base mask of undef shuffles.
1241   SmallVector<int, 16> ShuffleMask;
1242   ShuffleMask.resize(NumSrcElements, -1);
1243 
1244   // Place the extended lanes into the correct locations.
1245   int ExtLaneScale = NumSrcElements / NumElements;
1246   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1247   for (int i = 0; i < NumElements; ++i)
1248     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
1249 
1250   return DAG.getNode(
1251       ISD::BITCAST, DL, VT,
1252       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
1253 }
1254 
1255 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) {
1256   SDLoc DL(Node);
1257   EVT VT = Node->getValueType(0);
1258   SDValue Src = Node->getOperand(0);
1259   EVT SrcVT = Src.getValueType();
1260 
1261   // First build an any-extend node which can be legalized above when we
1262   // recurse through it.
1263   SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
1264 
1265   // Now we need sign extend. Do this by shifting the elements. Even if these
1266   // aren't legal operations, they have a better chance of being legalized
1267   // without full scalarization than the sign extension does.
1268   unsigned EltWidth = VT.getScalarSizeInBits();
1269   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
1270   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
1271   return DAG.getNode(ISD::SRA, DL, VT,
1272                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
1273                      ShiftAmount);
1274 }
1275 
1276 // Generically expand a vector zext in register to a shuffle of the relevant
1277 // lanes into the appropriate locations, a blend of zero into the high bits,
1278 // and a bitcast to the wider element type.
1279 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) {
1280   SDLoc DL(Node);
1281   EVT VT = Node->getValueType(0);
1282   int NumElements = VT.getVectorNumElements();
1283   SDValue Src = Node->getOperand(0);
1284   EVT SrcVT = Src.getValueType();
1285   int NumSrcElements = SrcVT.getVectorNumElements();
1286 
1287   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1288   // into a larger vector type.
1289   if (SrcVT.bitsLE(VT)) {
1290     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1291            "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1292     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1293     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1294                              NumSrcElements);
1295     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
1296                       Src, DAG.getVectorIdxConstant(0, DL));
1297   }
1298 
1299   // Build up a zero vector to blend into this one.
1300   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1301 
1302   // Shuffle the incoming lanes into the correct position, and pull all other
1303   // lanes from the zero vector.
1304   auto ShuffleMask = llvm::to_vector<16>(llvm::seq<int>(0, NumSrcElements));
1305 
1306   int ExtLaneScale = NumSrcElements / NumElements;
1307   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1308   for (int i = 0; i < NumElements; ++i)
1309     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1310 
1311   return DAG.getNode(ISD::BITCAST, DL, VT,
1312                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1313 }
1314 
1315 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1316   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1317   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1318     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1319       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1320 }
1321 
1322 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) {
1323   EVT VT = Node->getValueType(0);
1324 
1325   // Scalable vectors can't use shuffle expansion.
1326   if (VT.isScalableVector())
1327     return TLI.expandBSWAP(Node, DAG);
1328 
1329   // Generate a byte wise shuffle mask for the BSWAP.
1330   SmallVector<int, 16> ShuffleMask;
1331   createBSWAPShuffleMask(VT, ShuffleMask);
1332   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1333 
1334   // Only emit a shuffle if the mask is legal.
1335   if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) {
1336     SDLoc DL(Node);
1337     SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1338     Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1339     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1340   }
1341 
1342   // If we have the appropriate vector bit operations, it is better to use them
1343   // than unrolling and expanding each component.
1344   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1345       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1346       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1347       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1348     return TLI.expandBSWAP(Node, DAG);
1349 
1350   // Otherwise unroll.
1351   return DAG.UnrollVectorOp(Node);
1352 }
1353 
1354 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node,
1355                                        SmallVectorImpl<SDValue> &Results) {
1356   EVT VT = Node->getValueType(0);
1357 
1358   // We can't unroll or use shuffles for scalable vectors.
1359   if (VT.isScalableVector()) {
1360     Results.push_back(TLI.expandBITREVERSE(Node, DAG));
1361     return;
1362   }
1363 
1364   // If we have the scalar operation, it's probably cheaper to unroll it.
1365   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) {
1366     SDValue Tmp = DAG.UnrollVectorOp(Node);
1367     Results.push_back(Tmp);
1368     return;
1369   }
1370 
1371   // If the vector element width is a whole number of bytes, test if its legal
1372   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1373   // vector. This greatly reduces the number of bit shifts necessary.
1374   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1375   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1376     SmallVector<int, 16> BSWAPMask;
1377     createBSWAPShuffleMask(VT, BSWAPMask);
1378 
1379     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1380     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1381         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1382          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1383           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1384           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1385           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1386       SDLoc DL(Node);
1387       SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1388       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1389                                 BSWAPMask);
1390       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1391       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
1392       Results.push_back(Op);
1393       return;
1394     }
1395   }
1396 
1397   // If we have the appropriate vector bit operations, it is better to use them
1398   // than unrolling and expanding each component.
1399   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1400       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1401       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1402       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) {
1403     Results.push_back(TLI.expandBITREVERSE(Node, DAG));
1404     return;
1405   }
1406 
1407   // Otherwise unroll.
1408   SDValue Tmp = DAG.UnrollVectorOp(Node);
1409   Results.push_back(Tmp);
1410 }
1411 
1412 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) {
1413   // Implement VSELECT in terms of XOR, AND, OR
1414   // on platforms which do not support blend natively.
1415   SDLoc DL(Node);
1416 
1417   SDValue Mask = Node->getOperand(0);
1418   SDValue Op1 = Node->getOperand(1);
1419   SDValue Op2 = Node->getOperand(2);
1420 
1421   EVT VT = Mask.getValueType();
1422 
1423   // If we can't even use the basic vector operations of
1424   // AND,OR,XOR, we will have to scalarize the op.
1425   // Notice that the operation may be 'promoted' which means that it is
1426   // 'bitcasted' to another type which is handled.
1427   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1428       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1429       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand)
1430     return DAG.UnrollVectorOp(Node);
1431 
1432   // This operation also isn't safe with AND, OR, XOR when the boolean type is
1433   // 0/1 and the select operands aren't also booleans, as we need an all-ones
1434   // vector constant to mask with.
1435   // FIXME: Sign extend 1 to all ones if that's legal on the target.
1436   auto BoolContents = TLI.getBooleanContents(Op1.getValueType());
1437   if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent &&
1438       !(BoolContents == TargetLowering::ZeroOrOneBooleanContent &&
1439         Op1.getValueType().getVectorElementType() == MVT::i1))
1440     return DAG.UnrollVectorOp(Node);
1441 
1442   // If the mask and the type are different sizes, unroll the vector op. This
1443   // can occur when getSetCCResultType returns something that is different in
1444   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1445   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1446     return DAG.UnrollVectorOp(Node);
1447 
1448   // Bitcast the operands to be the same type as the mask.
1449   // This is needed when we select between FP types because
1450   // the mask is a vector of integers.
1451   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1452   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1453 
1454   SDValue NotMask = DAG.getNOT(DL, Mask, VT);
1455 
1456   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1457   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1458   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1459   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1460 }
1461 
1462 SDValue VectorLegalizer::ExpandVP_SELECT(SDNode *Node) {
1463   // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which
1464   // do not support it natively.
1465   SDLoc DL(Node);
1466 
1467   SDValue Mask = Node->getOperand(0);
1468   SDValue Op1 = Node->getOperand(1);
1469   SDValue Op2 = Node->getOperand(2);
1470   SDValue EVL = Node->getOperand(3);
1471 
1472   EVT VT = Mask.getValueType();
1473 
1474   // If we can't even use the basic vector operations of
1475   // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op.
1476   if (TLI.getOperationAction(ISD::VP_AND, VT) == TargetLowering::Expand ||
1477       TLI.getOperationAction(ISD::VP_XOR, VT) == TargetLowering::Expand ||
1478       TLI.getOperationAction(ISD::VP_OR, VT) == TargetLowering::Expand)
1479     return DAG.UnrollVectorOp(Node);
1480 
1481   // This operation also isn't safe when the operands aren't also booleans.
1482   if (Op1.getValueType().getVectorElementType() != MVT::i1)
1483     return DAG.UnrollVectorOp(Node);
1484 
1485   SDValue Ones = DAG.getAllOnesConstant(DL, VT);
1486   SDValue NotMask = DAG.getNode(ISD::VP_XOR, DL, VT, Mask, Ones, Ones, EVL);
1487 
1488   Op1 = DAG.getNode(ISD::VP_AND, DL, VT, Op1, Mask, Ones, EVL);
1489   Op2 = DAG.getNode(ISD::VP_AND, DL, VT, Op2, NotMask, Ones, EVL);
1490   return DAG.getNode(ISD::VP_OR, DL, VT, Op1, Op2, Ones, EVL);
1491 }
1492 
1493 SDValue VectorLegalizer::ExpandVP_MERGE(SDNode *Node) {
1494   // Implement VP_MERGE in terms of VSELECT. Construct a mask where vector
1495   // indices less than the EVL/pivot are true. Combine that with the original
1496   // mask for a full-length mask. Use a full-length VSELECT to select between
1497   // the true and false values.
1498   SDLoc DL(Node);
1499 
1500   SDValue Mask = Node->getOperand(0);
1501   SDValue Op1 = Node->getOperand(1);
1502   SDValue Op2 = Node->getOperand(2);
1503   SDValue EVL = Node->getOperand(3);
1504 
1505   EVT MaskVT = Mask.getValueType();
1506   bool IsFixedLen = MaskVT.isFixedLengthVector();
1507 
1508   EVT EVLVecVT = EVT::getVectorVT(*DAG.getContext(), EVL.getValueType(),
1509                                   MaskVT.getVectorElementCount());
1510 
1511   // If we can't construct the EVL mask efficiently, it's better to unroll.
1512   if ((IsFixedLen &&
1513        !TLI.isOperationLegalOrCustom(ISD::BUILD_VECTOR, EVLVecVT)) ||
1514       (!IsFixedLen &&
1515        (!TLI.isOperationLegalOrCustom(ISD::STEP_VECTOR, EVLVecVT) ||
1516         !TLI.isOperationLegalOrCustom(ISD::SPLAT_VECTOR, EVLVecVT))))
1517     return DAG.UnrollVectorOp(Node);
1518 
1519   // If using a SETCC would result in a different type than the mask type,
1520   // unroll.
1521   if (TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1522                              EVLVecVT) != MaskVT)
1523     return DAG.UnrollVectorOp(Node);
1524 
1525   SDValue StepVec = DAG.getStepVector(DL, EVLVecVT);
1526   SDValue SplatEVL = DAG.getSplat(EVLVecVT, DL, EVL);
1527   SDValue EVLMask =
1528       DAG.getSetCC(DL, MaskVT, StepVec, SplatEVL, ISD::CondCode::SETULT);
1529 
1530   SDValue FullMask = DAG.getNode(ISD::AND, DL, MaskVT, Mask, EVLMask);
1531   return DAG.getSelect(DL, Node->getValueType(0), FullMask, Op1, Op2);
1532 }
1533 
1534 SDValue VectorLegalizer::ExpandVP_REM(SDNode *Node) {
1535   // Implement VP_SREM/UREM in terms of VP_SDIV/VP_UDIV, VP_MUL, VP_SUB.
1536   EVT VT = Node->getValueType(0);
1537 
1538   unsigned DivOpc = Node->getOpcode() == ISD::VP_SREM ? ISD::VP_SDIV : ISD::VP_UDIV;
1539 
1540   if (!TLI.isOperationLegalOrCustom(DivOpc, VT) ||
1541       !TLI.isOperationLegalOrCustom(ISD::VP_MUL, VT) ||
1542       !TLI.isOperationLegalOrCustom(ISD::VP_SUB, VT))
1543     return SDValue();
1544 
1545   SDLoc DL(Node);
1546 
1547   SDValue Dividend = Node->getOperand(0);
1548   SDValue Divisor = Node->getOperand(1);
1549   SDValue Mask = Node->getOperand(2);
1550   SDValue EVL = Node->getOperand(3);
1551 
1552   // X % Y -> X-X/Y*Y
1553   SDValue Div = DAG.getNode(DivOpc, DL, VT, Dividend, Divisor, Mask, EVL);
1554   SDValue Mul = DAG.getNode(ISD::VP_MUL, DL, VT, Divisor, Div, Mask, EVL);
1555   return DAG.getNode(ISD::VP_SUB, DL, VT, Dividend, Mul, Mask, EVL);
1556 }
1557 
1558 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node,
1559                                        SmallVectorImpl<SDValue> &Results) {
1560   // Attempt to expand using TargetLowering.
1561   SDValue Result, Chain;
1562   if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) {
1563     Results.push_back(Result);
1564     if (Node->isStrictFPOpcode())
1565       Results.push_back(Chain);
1566     return;
1567   }
1568 
1569   // Otherwise go ahead and unroll.
1570   if (Node->isStrictFPOpcode()) {
1571     UnrollStrictFPOp(Node, Results);
1572     return;
1573   }
1574 
1575   Results.push_back(DAG.UnrollVectorOp(Node));
1576 }
1577 
1578 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node,
1579                                           SmallVectorImpl<SDValue> &Results) {
1580   bool IsStrict = Node->isStrictFPOpcode();
1581   unsigned OpNo = IsStrict ? 1 : 0;
1582   SDValue Src = Node->getOperand(OpNo);
1583   EVT VT = Src.getValueType();
1584   SDLoc DL(Node);
1585 
1586   // Attempt to expand using TargetLowering.
1587   SDValue Result;
1588   SDValue Chain;
1589   if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) {
1590     Results.push_back(Result);
1591     if (IsStrict)
1592       Results.push_back(Chain);
1593     return;
1594   }
1595 
1596   // Make sure that the SINT_TO_FP and SRL instructions are available.
1597   if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) ==
1598                          TargetLowering::Expand) ||
1599        (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) ==
1600                         TargetLowering::Expand)) ||
1601       TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) {
1602     if (IsStrict) {
1603       UnrollStrictFPOp(Node, Results);
1604       return;
1605     }
1606 
1607     Results.push_back(DAG.UnrollVectorOp(Node));
1608     return;
1609   }
1610 
1611   unsigned BW = VT.getScalarSizeInBits();
1612   assert((BW == 64 || BW == 32) &&
1613          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1614 
1615   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1616 
1617   // Constants to clear the upper part of the word.
1618   // Notice that we can also use SHL+SHR, but using a constant is slightly
1619   // faster on x86.
1620   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1621   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1622 
1623   // Two to the power of half-word-size.
1624   SDValue TWOHW =
1625       DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0));
1626 
1627   // Clear upper part of LO, lower HI
1628   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord);
1629   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask);
1630 
1631   if (IsStrict) {
1632     // Convert hi and lo to floats
1633     // Convert the hi part back to the upper values
1634     // TODO: Can any fast-math-flags be set on these nodes?
1635     SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1636                               {Node->getValueType(0), MVT::Other},
1637                               {Node->getOperand(0), HI});
1638     fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other},
1639                       {fHI.getValue(1), fHI, TWOHW});
1640     SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1641                               {Node->getValueType(0), MVT::Other},
1642                               {Node->getOperand(0), LO});
1643 
1644     SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1),
1645                              fLO.getValue(1));
1646 
1647     // Add the two halves
1648     SDValue Result =
1649         DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other},
1650                     {TF, fHI, fLO});
1651 
1652     Results.push_back(Result);
1653     Results.push_back(Result.getValue(1));
1654     return;
1655   }
1656 
1657   // Convert hi and lo to floats
1658   // Convert the hi part back to the upper values
1659   // TODO: Can any fast-math-flags be set on these nodes?
1660   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI);
1661   fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW);
1662   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO);
1663 
1664   // Add the two halves
1665   Results.push_back(
1666       DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO));
1667 }
1668 
1669 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) {
1670   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) {
1671     SDLoc DL(Node);
1672     SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0));
1673     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1674     return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero,
1675                        Node->getOperand(0));
1676   }
1677   return DAG.UnrollVectorOp(Node);
1678 }
1679 
1680 void VectorLegalizer::ExpandFSUB(SDNode *Node,
1681                                  SmallVectorImpl<SDValue> &Results) {
1682   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1683   // we can defer this to operation legalization where it will be lowered as
1684   // a+(-b).
1685   EVT VT = Node->getValueType(0);
1686   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1687       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1688     return; // Defer to LegalizeDAG
1689 
1690   SDValue Tmp = DAG.UnrollVectorOp(Node);
1691   Results.push_back(Tmp);
1692 }
1693 
1694 void VectorLegalizer::ExpandSETCC(SDNode *Node,
1695                                   SmallVectorImpl<SDValue> &Results) {
1696   bool NeedInvert = false;
1697   bool IsVP = Node->getOpcode() == ISD::VP_SETCC;
1698   bool IsStrict = Node->getOpcode() == ISD::STRICT_FSETCC ||
1699                   Node->getOpcode() == ISD::STRICT_FSETCCS;
1700   bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS;
1701   unsigned Offset = IsStrict ? 1 : 0;
1702 
1703   SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
1704   SDValue LHS = Node->getOperand(0 + Offset);
1705   SDValue RHS = Node->getOperand(1 + Offset);
1706   SDValue CC = Node->getOperand(2 + Offset);
1707 
1708   MVT OpVT = LHS.getSimpleValueType();
1709   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1710 
1711   if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) {
1712     if (IsStrict) {
1713       UnrollStrictFPOp(Node, Results);
1714       return;
1715     }
1716     Results.push_back(UnrollVSETCC(Node));
1717     return;
1718   }
1719 
1720   SDValue Mask, EVL;
1721   if (IsVP) {
1722     Mask = Node->getOperand(3 + Offset);
1723     EVL = Node->getOperand(4 + Offset);
1724   }
1725 
1726   SDLoc dl(Node);
1727   bool Legalized =
1728       TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS, RHS, CC, Mask,
1729                                 EVL, NeedInvert, dl, Chain, IsSignaling);
1730 
1731   if (Legalized) {
1732     // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
1733     // condition code, create a new SETCC node.
1734     if (CC.getNode()) {
1735       if (IsStrict) {
1736         LHS = DAG.getNode(Node->getOpcode(), dl, Node->getVTList(),
1737                           {Chain, LHS, RHS, CC}, Node->getFlags());
1738         Chain = LHS.getValue(1);
1739       } else if (IsVP) {
1740         LHS = DAG.getNode(ISD::VP_SETCC, dl, Node->getValueType(0),
1741                           {LHS, RHS, CC, Mask, EVL}, Node->getFlags());
1742       } else {
1743         LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC,
1744                           Node->getFlags());
1745       }
1746     }
1747 
1748     // If we expanded the SETCC by inverting the condition code, then wrap
1749     // the existing SETCC in a NOT to restore the intended condition.
1750     if (NeedInvert) {
1751       if (!IsVP)
1752         LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0));
1753       else
1754         LHS = DAG.getVPLogicalNOT(dl, LHS, Mask, EVL, LHS->getValueType(0));
1755     }
1756   } else {
1757     assert(!IsStrict && "Don't know how to expand for strict nodes.");
1758 
1759     // Otherwise, SETCC for the given comparison type must be completely
1760     // illegal; expand it into a SELECT_CC.
1761     EVT VT = Node->getValueType(0);
1762     LHS =
1763         DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS,
1764                     DAG.getBoolConstant(true, dl, VT, LHS.getValueType()),
1765                     DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC);
1766     LHS->setFlags(Node->getFlags());
1767   }
1768 
1769   Results.push_back(LHS);
1770   if (IsStrict)
1771     Results.push_back(Chain);
1772 }
1773 
1774 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node,
1775                                      SmallVectorImpl<SDValue> &Results) {
1776   SDValue Result, Overflow;
1777   TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
1778   Results.push_back(Result);
1779   Results.push_back(Overflow);
1780 }
1781 
1782 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node,
1783                                      SmallVectorImpl<SDValue> &Results) {
1784   SDValue Result, Overflow;
1785   TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
1786   Results.push_back(Result);
1787   Results.push_back(Overflow);
1788 }
1789 
1790 void VectorLegalizer::ExpandMULO(SDNode *Node,
1791                                  SmallVectorImpl<SDValue> &Results) {
1792   SDValue Result, Overflow;
1793   if (!TLI.expandMULO(Node, Result, Overflow, DAG))
1794     std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node);
1795 
1796   Results.push_back(Result);
1797   Results.push_back(Overflow);
1798 }
1799 
1800 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node,
1801                                           SmallVectorImpl<SDValue> &Results) {
1802   SDNode *N = Node;
1803   if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N),
1804           N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG))
1805     Results.push_back(Expanded);
1806 }
1807 
1808 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node,
1809                                        SmallVectorImpl<SDValue> &Results) {
1810   if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) {
1811     ExpandUINT_TO_FLOAT(Node, Results);
1812     return;
1813   }
1814   if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) {
1815     ExpandFP_TO_UINT(Node, Results);
1816     return;
1817   }
1818 
1819   if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1820       Node->getOpcode() == ISD::STRICT_FSETCCS) {
1821     ExpandSETCC(Node, Results);
1822     return;
1823   }
1824 
1825   UnrollStrictFPOp(Node, Results);
1826 }
1827 
1828 void VectorLegalizer::ExpandREM(SDNode *Node,
1829                                 SmallVectorImpl<SDValue> &Results) {
1830   assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) &&
1831          "Expected REM node");
1832 
1833   SDValue Result;
1834   if (!TLI.expandREM(Node, Result, DAG))
1835     Result = DAG.UnrollVectorOp(Node);
1836   Results.push_back(Result);
1837 }
1838 
1839 // Try to expand libm nodes into vector math routine calls. Callers provide the
1840 // LibFunc equivalent of the passed in Node, which is used to lookup mappings
1841 // within TargetLibraryInfo. The only mappings considered are those where the
1842 // result and all operands are the same vector type. While predicated nodes are
1843 // not supported, we will emit calls to masked routines by passing in an all
1844 // true mask.
1845 bool VectorLegalizer::tryExpandVecMathCall(SDNode *Node, RTLIB::Libcall LC,
1846                                            SmallVectorImpl<SDValue> &Results) {
1847   // Chain must be propagated but currently strict fp operations are down
1848   // converted to their none strict counterpart.
1849   assert(!Node->isStrictFPOpcode() && "Unexpected strict fp operation!");
1850 
1851   const char *LCName = TLI.getLibcallName(LC);
1852   if (!LCName)
1853     return false;
1854   LLVM_DEBUG(dbgs() << "Looking for vector variant of " << LCName << "\n");
1855 
1856   EVT VT = Node->getValueType(0);
1857   ElementCount VL = VT.getVectorElementCount();
1858 
1859   // Lookup a vector function equivalent to the specified libcall. Prefer
1860   // unmasked variants but we will generate a mask if need be.
1861   const TargetLibraryInfo &TLibInfo = DAG.getLibInfo();
1862   const VecDesc *VD = TLibInfo.getVectorMappingInfo(LCName, VL, false);
1863   if (!VD)
1864     VD = TLibInfo.getVectorMappingInfo(LCName, VL, /*Masked=*/true);
1865   if (!VD)
1866     return false;
1867 
1868   LLVMContext *Ctx = DAG.getContext();
1869   Type *Ty = VT.getTypeForEVT(*Ctx);
1870   Type *ScalarTy = Ty->getScalarType();
1871 
1872   // Construct a scalar function type based on Node's operands.
1873   SmallVector<Type *, 8> ArgTys;
1874   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
1875     assert(Node->getOperand(i).getValueType() == VT &&
1876            "Expected matching vector types!");
1877     ArgTys.push_back(ScalarTy);
1878   }
1879   FunctionType *ScalarFTy = FunctionType::get(ScalarTy, ArgTys, false);
1880 
1881   // Generate call information for the vector function.
1882   const std::string MangledName = VD->getVectorFunctionABIVariantString();
1883   auto OptVFInfo = VFABI::tryDemangleForVFABI(MangledName, ScalarFTy);
1884   if (!OptVFInfo)
1885     return false;
1886 
1887   LLVM_DEBUG(dbgs() << "Found vector variant " << VD->getVectorFnName()
1888                     << "\n");
1889 
1890   // Sanity check just in case OptVFInfo has unexpected parameters.
1891   if (OptVFInfo->Shape.Parameters.size() !=
1892       Node->getNumOperands() + VD->isMasked())
1893     return false;
1894 
1895   // Collect vector call operands.
1896 
1897   SDLoc DL(Node);
1898   TargetLowering::ArgListTy Args;
1899   TargetLowering::ArgListEntry Entry;
1900   Entry.IsSExt = false;
1901   Entry.IsZExt = false;
1902 
1903   unsigned OpNum = 0;
1904   for (auto &VFParam : OptVFInfo->Shape.Parameters) {
1905     if (VFParam.ParamKind == VFParamKind::GlobalPredicate) {
1906       EVT MaskVT = TLI.getSetCCResultType(DAG.getDataLayout(), *Ctx, VT);
1907       Entry.Node = DAG.getBoolConstant(true, DL, MaskVT, VT);
1908       Entry.Ty = MaskVT.getTypeForEVT(*Ctx);
1909       Args.push_back(Entry);
1910       continue;
1911     }
1912 
1913     // Only vector operands are supported.
1914     if (VFParam.ParamKind != VFParamKind::Vector)
1915       return false;
1916 
1917     Entry.Node = Node->getOperand(OpNum++);
1918     Entry.Ty = Ty;
1919     Args.push_back(Entry);
1920   }
1921 
1922   // Emit a call to the vector function.
1923   SDValue Callee = DAG.getExternalSymbol(VD->getVectorFnName().data(),
1924                                          TLI.getPointerTy(DAG.getDataLayout()));
1925   TargetLowering::CallLoweringInfo CLI(DAG);
1926   CLI.setDebugLoc(DL)
1927       .setChain(DAG.getEntryNode())
1928       .setLibCallee(CallingConv::C, Ty, Callee, std::move(Args));
1929 
1930   std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
1931   Results.push_back(CallResult.first);
1932   return true;
1933 }
1934 
1935 /// Try to expand the node to a vector libcall based on the result type.
1936 bool VectorLegalizer::tryExpandVecMathCall(
1937     SDNode *Node, RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64,
1938     RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128,
1939     RTLIB::Libcall Call_PPCF128, SmallVectorImpl<SDValue> &Results) {
1940   RTLIB::Libcall LC = RTLIB::getFPLibCall(
1941       Node->getValueType(0).getVectorElementType(), Call_F32, Call_F64,
1942       Call_F80, Call_F128, Call_PPCF128);
1943 
1944   if (LC == RTLIB::UNKNOWN_LIBCALL)
1945     return false;
1946 
1947   return tryExpandVecMathCall(Node, LC, Results);
1948 }
1949 
1950 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node,
1951                                        SmallVectorImpl<SDValue> &Results) {
1952   EVT VT = Node->getValueType(0);
1953   EVT EltVT = VT.getVectorElementType();
1954   unsigned NumElems = VT.getVectorNumElements();
1955   unsigned NumOpers = Node->getNumOperands();
1956   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1957 
1958   EVT TmpEltVT = EltVT;
1959   if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1960       Node->getOpcode() == ISD::STRICT_FSETCCS)
1961     TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
1962                                       *DAG.getContext(), TmpEltVT);
1963 
1964   EVT ValueVTs[] = {TmpEltVT, MVT::Other};
1965   SDValue Chain = Node->getOperand(0);
1966   SDLoc dl(Node);
1967 
1968   SmallVector<SDValue, 32> OpValues;
1969   SmallVector<SDValue, 32> OpChains;
1970   for (unsigned i = 0; i < NumElems; ++i) {
1971     SmallVector<SDValue, 4> Opers;
1972     SDValue Idx = DAG.getVectorIdxConstant(i, dl);
1973 
1974     // The Chain is the first operand.
1975     Opers.push_back(Chain);
1976 
1977     // Now process the remaining operands.
1978     for (unsigned j = 1; j < NumOpers; ++j) {
1979       SDValue Oper = Node->getOperand(j);
1980       EVT OperVT = Oper.getValueType();
1981 
1982       if (OperVT.isVector())
1983         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1984                            OperVT.getVectorElementType(), Oper, Idx);
1985 
1986       Opers.push_back(Oper);
1987     }
1988 
1989     SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers);
1990     SDValue ScalarResult = ScalarOp.getValue(0);
1991     SDValue ScalarChain = ScalarOp.getValue(1);
1992 
1993     if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1994         Node->getOpcode() == ISD::STRICT_FSETCCS)
1995       ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
1996                                    DAG.getAllOnesConstant(dl, EltVT),
1997                                    DAG.getConstant(0, dl, EltVT));
1998 
1999     OpValues.push_back(ScalarResult);
2000     OpChains.push_back(ScalarChain);
2001   }
2002 
2003   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
2004   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
2005 
2006   Results.push_back(Result);
2007   Results.push_back(NewChain);
2008 }
2009 
2010 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) {
2011   EVT VT = Node->getValueType(0);
2012   unsigned NumElems = VT.getVectorNumElements();
2013   EVT EltVT = VT.getVectorElementType();
2014   SDValue LHS = Node->getOperand(0);
2015   SDValue RHS = Node->getOperand(1);
2016   SDValue CC = Node->getOperand(2);
2017   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
2018   SDLoc dl(Node);
2019   SmallVector<SDValue, 8> Ops(NumElems);
2020   for (unsigned i = 0; i < NumElems; ++i) {
2021     SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
2022                                   DAG.getVectorIdxConstant(i, dl));
2023     SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
2024                                   DAG.getVectorIdxConstant(i, dl));
2025     Ops[i] = DAG.getNode(ISD::SETCC, dl,
2026                          TLI.getSetCCResultType(DAG.getDataLayout(),
2027                                                 *DAG.getContext(), TmpEltVT),
2028                          LHSElem, RHSElem, CC);
2029     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getAllOnesConstant(dl, EltVT),
2030                            DAG.getConstant(0, dl, EltVT));
2031   }
2032   return DAG.getBuildVector(VT, dl, Ops);
2033 }
2034 
2035 bool SelectionDAG::LegalizeVectors() {
2036   return VectorLegalizer(*this).Run();
2037 }
2038