1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::LegalizeVectors method. 10 // 11 // The vector legalizer looks for vector operations which might need to be 12 // scalarized and legalizes them. This is a separate step from Legalize because 13 // scalarizing can introduce illegal types. For example, suppose we have an 14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 16 // operation, which introduces nodes with the illegal type i64 which must be 17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 18 // the operation must be unrolled, which introduces nodes with the illegal 19 // type i8 which must be promoted. 20 // 21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 22 // or operations that happen to take a vector which are custom-lowered; 23 // the legalization for such operations never produces nodes 24 // with illegal types, so it's okay to put off legalizing them until 25 // SelectionDAG::Legalize runs. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/SelectionDAGNodes.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include <cassert> 46 #include <cstdint> 47 #include <iterator> 48 #include <utility> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "legalizevectorops" 53 54 namespace { 55 56 class VectorLegalizer { 57 SelectionDAG& DAG; 58 const TargetLowering &TLI; 59 bool Changed = false; // Keep track of whether anything changed 60 61 /// For nodes that are of legal width, and that have more than one use, this 62 /// map indicates what regularized operand to use. This allows us to avoid 63 /// legalizing the same thing more than once. 64 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 65 66 /// Adds a node to the translation cache. 67 void AddLegalizedOperand(SDValue From, SDValue To) { 68 LegalizedNodes.insert(std::make_pair(From, To)); 69 // If someone requests legalization of the new node, return itself. 70 if (From != To) 71 LegalizedNodes.insert(std::make_pair(To, To)); 72 } 73 74 /// Legalizes the given node. 75 SDValue LegalizeOp(SDValue Op); 76 77 /// Assuming the node is legal, "legalize" the results. 78 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); 79 80 /// Implements unrolling a VSETCC. 81 SDValue UnrollVSETCC(SDValue Op); 82 83 /// Implement expand-based legalization of vector operations. 84 /// 85 /// This is just a high-level routine to dispatch to specific code paths for 86 /// operations to legalize them. 87 SDValue Expand(SDValue Op); 88 89 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if 90 /// FP_TO_SINT isn't legal. 91 SDValue ExpandFP_TO_UINT(SDValue Op); 92 93 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 94 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 95 SDValue ExpandUINT_TO_FLOAT(SDValue Op); 96 97 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 98 SDValue ExpandSEXTINREG(SDValue Op); 99 100 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 101 /// 102 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 103 /// type. The contents of the bits in the extended part of each element are 104 /// undef. 105 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op); 106 107 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 108 /// 109 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 110 /// type, then shifts left and arithmetic shifts right to introduce a sign 111 /// extension. 112 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op); 113 114 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 115 /// 116 /// Shuffles the low lanes of the operand into place and blends zeros into 117 /// the remaining lanes, finally bitcasting to the proper type. 118 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op); 119 120 /// Implement expand-based legalization of ABS vector operations. 121 /// If following expanding is legal/custom then do it: 122 /// (ABS x) --> (XOR (ADD x, (SRA x, sizeof(x)-1)), (SRA x, sizeof(x)-1)) 123 /// else unroll the operation. 124 SDValue ExpandABS(SDValue Op); 125 126 /// Expand bswap of vectors into a shuffle if legal. 127 SDValue ExpandBSWAP(SDValue Op); 128 129 /// Implement vselect in terms of XOR, AND, OR when blend is not 130 /// supported by the target. 131 SDValue ExpandVSELECT(SDValue Op); 132 SDValue ExpandSELECT(SDValue Op); 133 SDValue ExpandLoad(SDValue Op); 134 SDValue ExpandStore(SDValue Op); 135 SDValue ExpandFNEG(SDValue Op); 136 SDValue ExpandFSUB(SDValue Op); 137 SDValue ExpandBITREVERSE(SDValue Op); 138 SDValue ExpandCTPOP(SDValue Op); 139 SDValue ExpandCTLZ(SDValue Op); 140 SDValue ExpandCTTZ(SDValue Op); 141 SDValue ExpandFunnelShift(SDValue Op); 142 SDValue ExpandROT(SDValue Op); 143 SDValue ExpandFMINNUM_FMAXNUM(SDValue Op); 144 SDValue ExpandUADDSUBO(SDValue Op); 145 SDValue ExpandSADDSUBO(SDValue Op); 146 SDValue ExpandMULO(SDValue Op); 147 SDValue ExpandAddSubSat(SDValue Op); 148 SDValue ExpandFixedPointMul(SDValue Op); 149 SDValue ExpandStrictFPOp(SDValue Op); 150 151 /// Implements vector promotion. 152 /// 153 /// This is essentially just bitcasting the operands to a different type and 154 /// bitcasting the result back to the original type. 155 SDValue Promote(SDValue Op); 156 157 /// Implements [SU]INT_TO_FP vector promotion. 158 /// 159 /// This is a [zs]ext of the input operand to a larger integer type. 160 SDValue PromoteINT_TO_FP(SDValue Op); 161 162 /// Implements FP_TO_[SU]INT vector promotion of the result type. 163 /// 164 /// It is promoted to a larger integer type. The result is then 165 /// truncated back to the original type. 166 SDValue PromoteFP_TO_INT(SDValue Op); 167 168 public: 169 VectorLegalizer(SelectionDAG& dag) : 170 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 171 172 /// Begin legalizer the vector operations in the DAG. 173 bool Run(); 174 }; 175 176 } // end anonymous namespace 177 178 bool VectorLegalizer::Run() { 179 // Before we start legalizing vector nodes, check if there are any vectors. 180 bool HasVectors = false; 181 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 182 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 183 // Check if the values of the nodes contain vectors. We don't need to check 184 // the operands because we are going to check their values at some point. 185 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end(); 186 J != E; ++J) 187 HasVectors |= J->isVector(); 188 189 // If we found a vector node we can start the legalization. 190 if (HasVectors) 191 break; 192 } 193 194 // If this basic block has no vectors then no need to legalize vectors. 195 if (!HasVectors) 196 return false; 197 198 // The legalize process is inherently a bottom-up recursive process (users 199 // legalize their uses before themselves). Given infinite stack space, we 200 // could just start legalizing on the root and traverse the whole graph. In 201 // practice however, this causes us to run out of stack space on large basic 202 // blocks. To avoid this problem, compute an ordering of the nodes where each 203 // node is only legalized after all of its operands are legalized. 204 DAG.AssignTopologicalOrder(); 205 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 206 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 207 LegalizeOp(SDValue(&*I, 0)); 208 209 // Finally, it's possible the root changed. Get the new root. 210 SDValue OldRoot = DAG.getRoot(); 211 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 212 DAG.setRoot(LegalizedNodes[OldRoot]); 213 214 LegalizedNodes.clear(); 215 216 // Remove dead nodes now. 217 DAG.RemoveDeadNodes(); 218 219 return Changed; 220 } 221 222 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { 223 // Generic legalization: just pass the operand through. 224 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) 225 AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); 226 return Result.getValue(Op.getResNo()); 227 } 228 229 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 230 // Note that LegalizeOp may be reentered even from single-use nodes, which 231 // means that we always must cache transformed nodes. 232 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 233 if (I != LegalizedNodes.end()) return I->second; 234 235 SDNode* Node = Op.getNode(); 236 237 // Legalize the operands 238 SmallVector<SDValue, 8> Ops; 239 for (const SDValue &Op : Node->op_values()) 240 Ops.push_back(LegalizeOp(Op)); 241 242 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 243 Op.getResNo()); 244 245 if (Op.getOpcode() == ISD::LOAD) { 246 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 247 ISD::LoadExtType ExtType = LD->getExtensionType(); 248 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { 249 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: "; 250 Node->dump(&DAG)); 251 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 252 LD->getMemoryVT())) { 253 default: llvm_unreachable("This action is not supported yet!"); 254 case TargetLowering::Legal: 255 return TranslateLegalizeResults(Op, Result); 256 case TargetLowering::Custom: 257 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) { 258 assert(Lowered->getNumValues() == Op->getNumValues() && 259 "Unexpected number of results"); 260 if (Lowered != Result) { 261 // Make sure the new code is also legal. 262 Lowered = LegalizeOp(Lowered); 263 Changed = true; 264 } 265 return TranslateLegalizeResults(Op, Lowered); 266 } 267 LLVM_FALLTHROUGH; 268 case TargetLowering::Expand: 269 Changed = true; 270 return ExpandLoad(Op); 271 } 272 } 273 } else if (Op.getOpcode() == ISD::STORE) { 274 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 275 EVT StVT = ST->getMemoryVT(); 276 MVT ValVT = ST->getValue().getSimpleValueType(); 277 if (StVT.isVector() && ST->isTruncatingStore()) { 278 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: "; 279 Node->dump(&DAG)); 280 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 281 default: llvm_unreachable("This action is not supported yet!"); 282 case TargetLowering::Legal: 283 return TranslateLegalizeResults(Op, Result); 284 case TargetLowering::Custom: { 285 SDValue Lowered = TLI.LowerOperation(Result, DAG); 286 if (Lowered != Result) { 287 // Make sure the new code is also legal. 288 Lowered = LegalizeOp(Lowered); 289 Changed = true; 290 } 291 return TranslateLegalizeResults(Op, Lowered); 292 } 293 case TargetLowering::Expand: 294 Changed = true; 295 return ExpandStore(Op); 296 } 297 } 298 } 299 300 bool HasVectorValueOrOp = false; 301 for (auto J = Node->value_begin(), E = Node->value_end(); J != E; ++J) 302 HasVectorValueOrOp |= J->isVector(); 303 for (const SDValue &Op : Node->op_values()) 304 HasVectorValueOrOp |= Op.getValueType().isVector(); 305 306 if (!HasVectorValueOrOp) 307 return TranslateLegalizeResults(Op, Result); 308 309 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 310 switch (Op.getOpcode()) { 311 default: 312 return TranslateLegalizeResults(Op, Result); 313 case ISD::STRICT_FADD: 314 case ISD::STRICT_FSUB: 315 case ISD::STRICT_FMUL: 316 case ISD::STRICT_FDIV: 317 case ISD::STRICT_FREM: 318 case ISD::STRICT_FSQRT: 319 case ISD::STRICT_FMA: 320 case ISD::STRICT_FPOW: 321 case ISD::STRICT_FPOWI: 322 case ISD::STRICT_FSIN: 323 case ISD::STRICT_FCOS: 324 case ISD::STRICT_FEXP: 325 case ISD::STRICT_FEXP2: 326 case ISD::STRICT_FLOG: 327 case ISD::STRICT_FLOG10: 328 case ISD::STRICT_FLOG2: 329 case ISD::STRICT_FRINT: 330 case ISD::STRICT_FNEARBYINT: 331 case ISD::STRICT_FMAXNUM: 332 case ISD::STRICT_FMINNUM: 333 case ISD::STRICT_FCEIL: 334 case ISD::STRICT_FFLOOR: 335 case ISD::STRICT_FROUND: 336 case ISD::STRICT_FTRUNC: 337 case ISD::STRICT_FP_TO_SINT: 338 case ISD::STRICT_FP_TO_UINT: 339 case ISD::STRICT_FP_ROUND: 340 case ISD::STRICT_FP_EXTEND: 341 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 342 // If we're asked to expand a strict vector floating-point operation, 343 // by default we're going to simply unroll it. That is usually the 344 // best approach, except in the case where the resulting strict (scalar) 345 // operations would themselves use the fallback mutation to non-strict. 346 // In that specific case, just do the fallback on the vector op. 347 if (Action == TargetLowering::Expand && 348 TLI.getStrictFPOperationAction(Node->getOpcode(), 349 Node->getValueType(0)) 350 == TargetLowering::Legal) { 351 EVT EltVT = Node->getValueType(0).getVectorElementType(); 352 if (TLI.getOperationAction(Node->getOpcode(), EltVT) 353 == TargetLowering::Expand && 354 TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT) 355 == TargetLowering::Legal) 356 Action = TargetLowering::Legal; 357 } 358 break; 359 case ISD::ADD: 360 case ISD::SUB: 361 case ISD::MUL: 362 case ISD::MULHS: 363 case ISD::MULHU: 364 case ISD::SDIV: 365 case ISD::UDIV: 366 case ISD::SREM: 367 case ISD::UREM: 368 case ISD::SDIVREM: 369 case ISD::UDIVREM: 370 case ISD::FADD: 371 case ISD::FSUB: 372 case ISD::FMUL: 373 case ISD::FDIV: 374 case ISD::FREM: 375 case ISD::AND: 376 case ISD::OR: 377 case ISD::XOR: 378 case ISD::SHL: 379 case ISD::SRA: 380 case ISD::SRL: 381 case ISD::FSHL: 382 case ISD::FSHR: 383 case ISD::ROTL: 384 case ISD::ROTR: 385 case ISD::ABS: 386 case ISD::BSWAP: 387 case ISD::BITREVERSE: 388 case ISD::CTLZ: 389 case ISD::CTTZ: 390 case ISD::CTLZ_ZERO_UNDEF: 391 case ISD::CTTZ_ZERO_UNDEF: 392 case ISD::CTPOP: 393 case ISD::SELECT: 394 case ISD::VSELECT: 395 case ISD::SELECT_CC: 396 case ISD::SETCC: 397 case ISD::ZERO_EXTEND: 398 case ISD::ANY_EXTEND: 399 case ISD::TRUNCATE: 400 case ISD::SIGN_EXTEND: 401 case ISD::FP_TO_SINT: 402 case ISD::FP_TO_UINT: 403 case ISD::FNEG: 404 case ISD::FABS: 405 case ISD::FMINNUM: 406 case ISD::FMAXNUM: 407 case ISD::FMINNUM_IEEE: 408 case ISD::FMAXNUM_IEEE: 409 case ISD::FMINIMUM: 410 case ISD::FMAXIMUM: 411 case ISD::FCOPYSIGN: 412 case ISD::FSQRT: 413 case ISD::FSIN: 414 case ISD::FCOS: 415 case ISD::FPOWI: 416 case ISD::FPOW: 417 case ISD::FLOG: 418 case ISD::FLOG2: 419 case ISD::FLOG10: 420 case ISD::FEXP: 421 case ISD::FEXP2: 422 case ISD::FCEIL: 423 case ISD::FTRUNC: 424 case ISD::FRINT: 425 case ISD::FNEARBYINT: 426 case ISD::FROUND: 427 case ISD::FFLOOR: 428 case ISD::FP_ROUND: 429 case ISD::FP_EXTEND: 430 case ISD::FMA: 431 case ISD::SIGN_EXTEND_INREG: 432 case ISD::ANY_EXTEND_VECTOR_INREG: 433 case ISD::SIGN_EXTEND_VECTOR_INREG: 434 case ISD::ZERO_EXTEND_VECTOR_INREG: 435 case ISD::SMIN: 436 case ISD::SMAX: 437 case ISD::UMIN: 438 case ISD::UMAX: 439 case ISD::SMUL_LOHI: 440 case ISD::UMUL_LOHI: 441 case ISD::SADDO: 442 case ISD::UADDO: 443 case ISD::SSUBO: 444 case ISD::USUBO: 445 case ISD::SMULO: 446 case ISD::UMULO: 447 case ISD::FCANONICALIZE: 448 case ISD::SADDSAT: 449 case ISD::UADDSAT: 450 case ISD::SSUBSAT: 451 case ISD::USUBSAT: 452 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 453 break; 454 case ISD::SMULFIX: 455 case ISD::SMULFIXSAT: 456 case ISD::UMULFIX: 457 case ISD::UMULFIXSAT: { 458 unsigned Scale = Node->getConstantOperandVal(2); 459 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 460 Node->getValueType(0), Scale); 461 break; 462 } 463 case ISD::SINT_TO_FP: 464 case ISD::UINT_TO_FP: 465 case ISD::VECREDUCE_ADD: 466 case ISD::VECREDUCE_MUL: 467 case ISD::VECREDUCE_AND: 468 case ISD::VECREDUCE_OR: 469 case ISD::VECREDUCE_XOR: 470 case ISD::VECREDUCE_SMAX: 471 case ISD::VECREDUCE_SMIN: 472 case ISD::VECREDUCE_UMAX: 473 case ISD::VECREDUCE_UMIN: 474 case ISD::VECREDUCE_FADD: 475 case ISD::VECREDUCE_FMUL: 476 case ISD::VECREDUCE_FMAX: 477 case ISD::VECREDUCE_FMIN: 478 Action = TLI.getOperationAction(Node->getOpcode(), 479 Node->getOperand(0).getValueType()); 480 break; 481 } 482 483 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 484 485 switch (Action) { 486 default: llvm_unreachable("This action is not supported yet!"); 487 case TargetLowering::Promote: 488 Result = Promote(Op); 489 Changed = true; 490 break; 491 case TargetLowering::Legal: 492 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 493 break; 494 case TargetLowering::Custom: { 495 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 496 if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) { 497 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 498 Result = Tmp1; 499 break; 500 } 501 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 502 LLVM_FALLTHROUGH; 503 } 504 case TargetLowering::Expand: 505 Result = Expand(Op); 506 } 507 508 // Make sure that the generated code is itself legal. 509 if (Result != Op) { 510 Result = LegalizeOp(Result); 511 Changed = true; 512 } 513 514 // Note that LegalizeOp may be reentered even from single-use nodes, which 515 // means that we always must cache transformed nodes. 516 AddLegalizedOperand(Op, Result); 517 return Result; 518 } 519 520 SDValue VectorLegalizer::Promote(SDValue Op) { 521 // For a few operations there is a specific concept for promotion based on 522 // the operand's type. 523 switch (Op.getOpcode()) { 524 case ISD::SINT_TO_FP: 525 case ISD::UINT_TO_FP: 526 // "Promote" the operation by extending the operand. 527 return PromoteINT_TO_FP(Op); 528 case ISD::FP_TO_UINT: 529 case ISD::FP_TO_SINT: 530 // Promote the operation by extending the operand. 531 return PromoteFP_TO_INT(Op); 532 } 533 534 // There are currently two cases of vector promotion: 535 // 1) Bitcasting a vector of integers to a different type to a vector of the 536 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 537 // 2) Extending a vector of floats to a vector of the same number of larger 538 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 539 MVT VT = Op.getSimpleValueType(); 540 assert(Op.getNode()->getNumValues() == 1 && 541 "Can't promote a vector with multiple results!"); 542 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 543 SDLoc dl(Op); 544 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 545 546 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 547 if (Op.getOperand(j).getValueType().isVector()) 548 if (Op.getOperand(j) 549 .getValueType() 550 .getVectorElementType() 551 .isFloatingPoint() && 552 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 553 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j)); 554 else 555 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); 556 else 557 Operands[j] = Op.getOperand(j); 558 } 559 560 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags()); 561 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 562 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 563 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 564 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl)); 565 else 566 return DAG.getNode(ISD::BITCAST, dl, VT, Op); 567 } 568 569 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) { 570 // INT_TO_FP operations may require the input operand be promoted even 571 // when the type is otherwise legal. 572 MVT VT = Op.getOperand(0).getSimpleValueType(); 573 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 574 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 575 "Vectors have different number of elements!"); 576 577 SDLoc dl(Op); 578 SmallVector<SDValue, 4> Operands(Op.getNumOperands()); 579 580 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : 581 ISD::SIGN_EXTEND; 582 for (unsigned j = 0; j != Op.getNumOperands(); ++j) { 583 if (Op.getOperand(j).getValueType().isVector()) 584 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j)); 585 else 586 Operands[j] = Op.getOperand(j); 587 } 588 589 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands); 590 } 591 592 // For FP_TO_INT we promote the result type to a vector type with wider 593 // elements and then truncate the result. This is different from the default 594 // PromoteVector which uses bitcast to promote thus assumning that the 595 // promoted vector type has the same overall size. 596 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) { 597 MVT VT = Op.getSimpleValueType(); 598 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); 599 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 600 "Vectors have different number of elements!"); 601 602 unsigned NewOpc = Op->getOpcode(); 603 // Change FP_TO_UINT to FP_TO_SINT if possible. 604 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 605 if (NewOpc == ISD::FP_TO_UINT && 606 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 607 NewOpc = ISD::FP_TO_SINT; 608 609 SDLoc dl(Op); 610 SDValue Promoted = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0)); 611 612 // Assert that the converted value fits in the original type. If it doesn't 613 // (eg: because the value being converted is too big), then the result of the 614 // original operation was undefined anyway, so the assert is still correct. 615 Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext 616 : ISD::AssertSext, 617 dl, NVT, Promoted, 618 DAG.getValueType(VT.getScalarType())); 619 return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 620 } 621 622 SDValue VectorLegalizer::ExpandLoad(SDValue Op) { 623 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode()); 624 625 EVT SrcVT = LD->getMemoryVT(); 626 EVT SrcEltVT = SrcVT.getScalarType(); 627 unsigned NumElem = SrcVT.getVectorNumElements(); 628 629 SDValue NewChain; 630 SDValue Value; 631 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) { 632 SDLoc dl(Op); 633 634 SmallVector<SDValue, 8> Vals; 635 SmallVector<SDValue, 8> LoadChains; 636 637 EVT DstEltVT = LD->getValueType(0).getScalarType(); 638 SDValue Chain = LD->getChain(); 639 SDValue BasePTR = LD->getBasePtr(); 640 ISD::LoadExtType ExtType = LD->getExtensionType(); 641 642 // When elements in a vector is not byte-addressable, we cannot directly 643 // load each element by advancing pointer, which could only address bytes. 644 // Instead, we load all significant words, mask bits off, and concatenate 645 // them to form each element. Finally, they are extended to destination 646 // scalar type to build the destination vector. 647 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout()); 648 649 assert(WideVT.isRound() && 650 "Could not handle the sophisticated case when the widest integer is" 651 " not power of 2."); 652 assert(WideVT.bitsGE(SrcEltVT) && 653 "Type is not legalized?"); 654 655 unsigned WideBytes = WideVT.getStoreSize(); 656 unsigned Offset = 0; 657 unsigned RemainingBytes = SrcVT.getStoreSize(); 658 SmallVector<SDValue, 8> LoadVals; 659 while (RemainingBytes > 0) { 660 SDValue ScalarLoad; 661 unsigned LoadBytes = WideBytes; 662 663 if (RemainingBytes >= LoadBytes) { 664 ScalarLoad = 665 DAG.getLoad(WideVT, dl, Chain, BasePTR, 666 LD->getPointerInfo().getWithOffset(Offset), 667 MinAlign(LD->getAlignment(), Offset), 668 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 669 } else { 670 EVT LoadVT = WideVT; 671 while (RemainingBytes < LoadBytes) { 672 LoadBytes >>= 1; // Reduce the load size by half. 673 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3); 674 } 675 ScalarLoad = 676 DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR, 677 LD->getPointerInfo().getWithOffset(Offset), LoadVT, 678 MinAlign(LD->getAlignment(), Offset), 679 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 680 } 681 682 RemainingBytes -= LoadBytes; 683 Offset += LoadBytes; 684 685 BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes); 686 687 LoadVals.push_back(ScalarLoad.getValue(0)); 688 LoadChains.push_back(ScalarLoad.getValue(1)); 689 } 690 691 unsigned BitOffset = 0; 692 unsigned WideIdx = 0; 693 unsigned WideBits = WideVT.getSizeInBits(); 694 695 // Extract bits, pack and extend/trunc them into destination type. 696 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 697 SDValue SrcEltBitMask = DAG.getConstant( 698 APInt::getLowBitsSet(WideBits, SrcEltBits), dl, WideVT); 699 700 for (unsigned Idx = 0; Idx != NumElem; ++Idx) { 701 assert(BitOffset < WideBits && "Unexpected offset!"); 702 703 SDValue ShAmt = DAG.getConstant( 704 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 705 SDValue Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt); 706 707 BitOffset += SrcEltBits; 708 if (BitOffset >= WideBits) { 709 WideIdx++; 710 BitOffset -= WideBits; 711 if (BitOffset > 0) { 712 ShAmt = DAG.getConstant( 713 SrcEltBits - BitOffset, dl, 714 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 715 SDValue Hi = 716 DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt); 717 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi); 718 } 719 } 720 721 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask); 722 723 switch (ExtType) { 724 default: llvm_unreachable("Unknown extended-load op!"); 725 case ISD::EXTLOAD: 726 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT); 727 break; 728 case ISD::ZEXTLOAD: 729 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT); 730 break; 731 case ISD::SEXTLOAD: 732 ShAmt = 733 DAG.getConstant(WideBits - SrcEltBits, dl, 734 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout())); 735 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt); 736 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt); 737 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT); 738 break; 739 } 740 Vals.push_back(Lo); 741 } 742 743 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 744 Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals); 745 } else { 746 SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG); 747 // Skip past MERGE_VALUE node if known. 748 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) { 749 NewChain = Scalarized.getOperand(1); 750 Value = Scalarized.getOperand(0); 751 } else { 752 NewChain = Scalarized.getValue(1); 753 Value = Scalarized.getValue(0); 754 } 755 } 756 757 AddLegalizedOperand(Op.getValue(0), Value); 758 AddLegalizedOperand(Op.getValue(1), NewChain); 759 760 return (Op.getResNo() ? NewChain : Value); 761 } 762 763 SDValue VectorLegalizer::ExpandStore(SDValue Op) { 764 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode()); 765 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 766 AddLegalizedOperand(Op, TF); 767 return TF; 768 } 769 770 SDValue VectorLegalizer::Expand(SDValue Op) { 771 switch (Op->getOpcode()) { 772 case ISD::SIGN_EXTEND_INREG: 773 return ExpandSEXTINREG(Op); 774 case ISD::ANY_EXTEND_VECTOR_INREG: 775 return ExpandANY_EXTEND_VECTOR_INREG(Op); 776 case ISD::SIGN_EXTEND_VECTOR_INREG: 777 return ExpandSIGN_EXTEND_VECTOR_INREG(Op); 778 case ISD::ZERO_EXTEND_VECTOR_INREG: 779 return ExpandZERO_EXTEND_VECTOR_INREG(Op); 780 case ISD::BSWAP: 781 return ExpandBSWAP(Op); 782 case ISD::VSELECT: 783 return ExpandVSELECT(Op); 784 case ISD::SELECT: 785 return ExpandSELECT(Op); 786 case ISD::FP_TO_UINT: 787 return ExpandFP_TO_UINT(Op); 788 case ISD::UINT_TO_FP: 789 return ExpandUINT_TO_FLOAT(Op); 790 case ISD::FNEG: 791 return ExpandFNEG(Op); 792 case ISD::FSUB: 793 return ExpandFSUB(Op); 794 case ISD::SETCC: 795 return UnrollVSETCC(Op); 796 case ISD::ABS: 797 return ExpandABS(Op); 798 case ISD::BITREVERSE: 799 return ExpandBITREVERSE(Op); 800 case ISD::CTPOP: 801 return ExpandCTPOP(Op); 802 case ISD::CTLZ: 803 case ISD::CTLZ_ZERO_UNDEF: 804 return ExpandCTLZ(Op); 805 case ISD::CTTZ: 806 case ISD::CTTZ_ZERO_UNDEF: 807 return ExpandCTTZ(Op); 808 case ISD::FSHL: 809 case ISD::FSHR: 810 return ExpandFunnelShift(Op); 811 case ISD::ROTL: 812 case ISD::ROTR: 813 return ExpandROT(Op); 814 case ISD::FMINNUM: 815 case ISD::FMAXNUM: 816 return ExpandFMINNUM_FMAXNUM(Op); 817 case ISD::UADDO: 818 case ISD::USUBO: 819 return ExpandUADDSUBO(Op); 820 case ISD::SADDO: 821 case ISD::SSUBO: 822 return ExpandSADDSUBO(Op); 823 case ISD::UMULO: 824 case ISD::SMULO: 825 return ExpandMULO(Op); 826 case ISD::USUBSAT: 827 case ISD::SSUBSAT: 828 case ISD::UADDSAT: 829 case ISD::SADDSAT: 830 return ExpandAddSubSat(Op); 831 case ISD::SMULFIX: 832 case ISD::UMULFIX: 833 return ExpandFixedPointMul(Op); 834 case ISD::SMULFIXSAT: 835 case ISD::UMULFIXSAT: 836 // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly 837 // why. Maybe it results in worse codegen compared to the unroll for some 838 // targets? This should probably be investigated. And if we still prefer to 839 // unroll an explanation could be helpful. 840 return DAG.UnrollVectorOp(Op.getNode()); 841 case ISD::STRICT_FADD: 842 case ISD::STRICT_FSUB: 843 case ISD::STRICT_FMUL: 844 case ISD::STRICT_FDIV: 845 case ISD::STRICT_FREM: 846 case ISD::STRICT_FSQRT: 847 case ISD::STRICT_FMA: 848 case ISD::STRICT_FPOW: 849 case ISD::STRICT_FPOWI: 850 case ISD::STRICT_FSIN: 851 case ISD::STRICT_FCOS: 852 case ISD::STRICT_FEXP: 853 case ISD::STRICT_FEXP2: 854 case ISD::STRICT_FLOG: 855 case ISD::STRICT_FLOG10: 856 case ISD::STRICT_FLOG2: 857 case ISD::STRICT_FRINT: 858 case ISD::STRICT_FNEARBYINT: 859 case ISD::STRICT_FMAXNUM: 860 case ISD::STRICT_FMINNUM: 861 case ISD::STRICT_FCEIL: 862 case ISD::STRICT_FFLOOR: 863 case ISD::STRICT_FROUND: 864 case ISD::STRICT_FTRUNC: 865 case ISD::STRICT_FP_TO_SINT: 866 case ISD::STRICT_FP_TO_UINT: 867 return ExpandStrictFPOp(Op); 868 case ISD::VECREDUCE_ADD: 869 case ISD::VECREDUCE_MUL: 870 case ISD::VECREDUCE_AND: 871 case ISD::VECREDUCE_OR: 872 case ISD::VECREDUCE_XOR: 873 case ISD::VECREDUCE_SMAX: 874 case ISD::VECREDUCE_SMIN: 875 case ISD::VECREDUCE_UMAX: 876 case ISD::VECREDUCE_UMIN: 877 case ISD::VECREDUCE_FADD: 878 case ISD::VECREDUCE_FMUL: 879 case ISD::VECREDUCE_FMAX: 880 case ISD::VECREDUCE_FMIN: 881 return TLI.expandVecReduce(Op.getNode(), DAG); 882 default: 883 return DAG.UnrollVectorOp(Op.getNode()); 884 } 885 } 886 887 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) { 888 // Lower a select instruction where the condition is a scalar and the 889 // operands are vectors. Lower this select to VSELECT and implement it 890 // using XOR AND OR. The selector bit is broadcasted. 891 EVT VT = Op.getValueType(); 892 SDLoc DL(Op); 893 894 SDValue Mask = Op.getOperand(0); 895 SDValue Op1 = Op.getOperand(1); 896 SDValue Op2 = Op.getOperand(2); 897 898 assert(VT.isVector() && !Mask.getValueType().isVector() 899 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 900 901 // If we can't even use the basic vector operations of 902 // AND,OR,XOR, we will have to scalarize the op. 903 // Notice that the operation may be 'promoted' which means that it is 904 // 'bitcasted' to another type which is handled. 905 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 906 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 907 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 908 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 909 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 910 return DAG.UnrollVectorOp(Op.getNode()); 911 912 // Generate a mask operand. 913 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 914 915 // What is the size of each element in the vector mask. 916 EVT BitTy = MaskTy.getScalarType(); 917 918 Mask = DAG.getSelect(DL, BitTy, Mask, 919 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 920 BitTy), 921 DAG.getConstant(0, DL, BitTy)); 922 923 // Broadcast the mask so that the entire vector is all-one or all zero. 924 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 925 926 // Bitcast the operands to be the same type as the mask. 927 // This is needed when we select between FP types because 928 // the mask is a vector of integers. 929 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 930 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 931 932 SDValue AllOnes = DAG.getConstant( 933 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 934 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 935 936 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 937 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 938 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 939 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 940 } 941 942 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) { 943 EVT VT = Op.getValueType(); 944 945 // Make sure that the SRA and SHL instructions are available. 946 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 947 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 948 return DAG.UnrollVectorOp(Op.getNode()); 949 950 SDLoc DL(Op); 951 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT(); 952 953 unsigned BW = VT.getScalarSizeInBits(); 954 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 955 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 956 957 Op = Op.getOperand(0); 958 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz); 959 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 960 } 961 962 // Generically expand a vector anyext in register to a shuffle of the relevant 963 // lanes into the appropriate locations, with other lanes left undef. 964 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) { 965 SDLoc DL(Op); 966 EVT VT = Op.getValueType(); 967 int NumElements = VT.getVectorNumElements(); 968 SDValue Src = Op.getOperand(0); 969 EVT SrcVT = Src.getValueType(); 970 int NumSrcElements = SrcVT.getVectorNumElements(); 971 972 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 973 // into a larger vector type. 974 if (SrcVT.bitsLE(VT)) { 975 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 976 "ANY_EXTEND_VECTOR_INREG vector size mismatch"); 977 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 978 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 979 NumSrcElements); 980 Src = DAG.getNode( 981 ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src, 982 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 983 } 984 985 // Build a base mask of undef shuffles. 986 SmallVector<int, 16> ShuffleMask; 987 ShuffleMask.resize(NumSrcElements, -1); 988 989 // Place the extended lanes into the correct locations. 990 int ExtLaneScale = NumSrcElements / NumElements; 991 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 992 for (int i = 0; i < NumElements; ++i) 993 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 994 995 return DAG.getNode( 996 ISD::BITCAST, DL, VT, 997 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 998 } 999 1000 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) { 1001 SDLoc DL(Op); 1002 EVT VT = Op.getValueType(); 1003 SDValue Src = Op.getOperand(0); 1004 EVT SrcVT = Src.getValueType(); 1005 1006 // First build an any-extend node which can be legalized above when we 1007 // recurse through it. 1008 Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); 1009 1010 // Now we need sign extend. Do this by shifting the elements. Even if these 1011 // aren't legal operations, they have a better chance of being legalized 1012 // without full scalarization than the sign extension does. 1013 unsigned EltWidth = VT.getScalarSizeInBits(); 1014 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 1015 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 1016 return DAG.getNode(ISD::SRA, DL, VT, 1017 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 1018 ShiftAmount); 1019 } 1020 1021 // Generically expand a vector zext in register to a shuffle of the relevant 1022 // lanes into the appropriate locations, a blend of zero into the high bits, 1023 // and a bitcast to the wider element type. 1024 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) { 1025 SDLoc DL(Op); 1026 EVT VT = Op.getValueType(); 1027 int NumElements = VT.getVectorNumElements(); 1028 SDValue Src = Op.getOperand(0); 1029 EVT SrcVT = Src.getValueType(); 1030 int NumSrcElements = SrcVT.getVectorNumElements(); 1031 1032 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 1033 // into a larger vector type. 1034 if (SrcVT.bitsLE(VT)) { 1035 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 1036 "ZERO_EXTEND_VECTOR_INREG vector size mismatch"); 1037 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 1038 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1039 NumSrcElements); 1040 Src = DAG.getNode( 1041 ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src, 1042 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1043 } 1044 1045 // Build up a zero vector to blend into this one. 1046 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 1047 1048 // Shuffle the incoming lanes into the correct position, and pull all other 1049 // lanes from the zero vector. 1050 SmallVector<int, 16> ShuffleMask; 1051 ShuffleMask.reserve(NumSrcElements); 1052 for (int i = 0; i < NumSrcElements; ++i) 1053 ShuffleMask.push_back(i); 1054 1055 int ExtLaneScale = NumSrcElements / NumElements; 1056 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1057 for (int i = 0; i < NumElements; ++i) 1058 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 1059 1060 return DAG.getNode(ISD::BITCAST, DL, VT, 1061 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 1062 } 1063 1064 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 1065 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 1066 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 1067 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 1068 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 1069 } 1070 1071 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) { 1072 EVT VT = Op.getValueType(); 1073 1074 // Generate a byte wise shuffle mask for the BSWAP. 1075 SmallVector<int, 16> ShuffleMask; 1076 createBSWAPShuffleMask(VT, ShuffleMask); 1077 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 1078 1079 // Only emit a shuffle if the mask is legal. 1080 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 1081 return DAG.UnrollVectorOp(Op.getNode()); 1082 1083 SDLoc DL(Op); 1084 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 1085 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 1086 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1087 } 1088 1089 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) { 1090 EVT VT = Op.getValueType(); 1091 1092 // If we have the scalar operation, it's probably cheaper to unroll it. 1093 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) 1094 return DAG.UnrollVectorOp(Op.getNode()); 1095 1096 // If the vector element width is a whole number of bytes, test if its legal 1097 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 1098 // vector. This greatly reduces the number of bit shifts necessary. 1099 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 1100 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 1101 SmallVector<int, 16> BSWAPMask; 1102 createBSWAPShuffleMask(VT, BSWAPMask); 1103 1104 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 1105 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 1106 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 1107 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 1108 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 1109 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 1110 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 1111 SDLoc DL(Op); 1112 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0)); 1113 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 1114 BSWAPMask); 1115 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 1116 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1117 } 1118 } 1119 1120 // If we have the appropriate vector bit operations, it is better to use them 1121 // than unrolling and expanding each component. 1122 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) || 1123 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) || 1124 !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 1125 !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 1126 return DAG.UnrollVectorOp(Op.getNode()); 1127 1128 // Let LegalizeDAG handle this later. 1129 return Op; 1130 } 1131 1132 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { 1133 // Implement VSELECT in terms of XOR, AND, OR 1134 // on platforms which do not support blend natively. 1135 SDLoc DL(Op); 1136 1137 SDValue Mask = Op.getOperand(0); 1138 SDValue Op1 = Op.getOperand(1); 1139 SDValue Op2 = Op.getOperand(2); 1140 1141 EVT VT = Mask.getValueType(); 1142 1143 // If we can't even use the basic vector operations of 1144 // AND,OR,XOR, we will have to scalarize the op. 1145 // Notice that the operation may be 'promoted' which means that it is 1146 // 'bitcasted' to another type which is handled. 1147 // This operation also isn't safe with AND, OR, XOR when the boolean 1148 // type is 0/1 as we need an all ones vector constant to mask with. 1149 // FIXME: Sign extend 1 to all ones if thats legal on the target. 1150 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1151 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1152 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 1153 TLI.getBooleanContents(Op1.getValueType()) != 1154 TargetLowering::ZeroOrNegativeOneBooleanContent) 1155 return DAG.UnrollVectorOp(Op.getNode()); 1156 1157 // If the mask and the type are different sizes, unroll the vector op. This 1158 // can occur when getSetCCResultType returns something that is different in 1159 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1160 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1161 return DAG.UnrollVectorOp(Op.getNode()); 1162 1163 // Bitcast the operands to be the same type as the mask. 1164 // This is needed when we select between FP types because 1165 // the mask is a vector of integers. 1166 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1167 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1168 1169 SDValue AllOnes = DAG.getConstant( 1170 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); 1171 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 1172 1173 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1174 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1175 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1176 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val); 1177 } 1178 1179 SDValue VectorLegalizer::ExpandABS(SDValue Op) { 1180 // Attempt to expand using TargetLowering. 1181 SDValue Result; 1182 if (TLI.expandABS(Op.getNode(), Result, DAG)) 1183 return Result; 1184 1185 // Otherwise go ahead and unroll. 1186 return DAG.UnrollVectorOp(Op.getNode()); 1187 } 1188 1189 SDValue VectorLegalizer::ExpandFP_TO_UINT(SDValue Op) { 1190 // Attempt to expand using TargetLowering. 1191 SDValue Result, Chain; 1192 if (TLI.expandFP_TO_UINT(Op.getNode(), Result, Chain, DAG)) { 1193 if (Op.getNode()->isStrictFPOpcode()) 1194 // Relink the chain 1195 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Chain); 1196 return Result; 1197 } 1198 1199 // Otherwise go ahead and unroll. 1200 return DAG.UnrollVectorOp(Op.getNode()); 1201 } 1202 1203 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { 1204 EVT VT = Op.getOperand(0).getValueType(); 1205 SDLoc DL(Op); 1206 1207 // Attempt to expand using TargetLowering. 1208 SDValue Result; 1209 if (TLI.expandUINT_TO_FP(Op.getNode(), Result, DAG)) 1210 return Result; 1211 1212 // Make sure that the SINT_TO_FP and SRL instructions are available. 1213 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand || 1214 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) 1215 return DAG.UnrollVectorOp(Op.getNode()); 1216 1217 unsigned BW = VT.getScalarSizeInBits(); 1218 assert((BW == 64 || BW == 32) && 1219 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1220 1221 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1222 1223 // Constants to clear the upper part of the word. 1224 // Notice that we can also use SHL+SHR, but using a constant is slightly 1225 // faster on x86. 1226 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1227 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1228 1229 // Two to the power of half-word-size. 1230 SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType()); 1231 1232 // Clear upper part of LO, lower HI 1233 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); 1234 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); 1235 1236 // Convert hi and lo to floats 1237 // Convert the hi part back to the upper values 1238 // TODO: Can any fast-math-flags be set on these nodes? 1239 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); 1240 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); 1241 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); 1242 1243 // Add the two halves 1244 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); 1245 } 1246 1247 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { 1248 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { 1249 SDLoc DL(Op); 1250 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType()); 1251 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1252 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(), 1253 Zero, Op.getOperand(0)); 1254 } 1255 return DAG.UnrollVectorOp(Op.getNode()); 1256 } 1257 1258 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) { 1259 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1260 // we can defer this to operation legalization where it will be lowered as 1261 // a+(-b). 1262 EVT VT = Op.getValueType(); 1263 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1264 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1265 return Op; // Defer to LegalizeDAG 1266 1267 return DAG.UnrollVectorOp(Op.getNode()); 1268 } 1269 1270 SDValue VectorLegalizer::ExpandCTPOP(SDValue Op) { 1271 SDValue Result; 1272 if (TLI.expandCTPOP(Op.getNode(), Result, DAG)) 1273 return Result; 1274 1275 return DAG.UnrollVectorOp(Op.getNode()); 1276 } 1277 1278 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) { 1279 SDValue Result; 1280 if (TLI.expandCTLZ(Op.getNode(), Result, DAG)) 1281 return Result; 1282 1283 return DAG.UnrollVectorOp(Op.getNode()); 1284 } 1285 1286 SDValue VectorLegalizer::ExpandCTTZ(SDValue Op) { 1287 SDValue Result; 1288 if (TLI.expandCTTZ(Op.getNode(), Result, DAG)) 1289 return Result; 1290 1291 return DAG.UnrollVectorOp(Op.getNode()); 1292 } 1293 1294 SDValue VectorLegalizer::ExpandFunnelShift(SDValue Op) { 1295 SDValue Result; 1296 if (TLI.expandFunnelShift(Op.getNode(), Result, DAG)) 1297 return Result; 1298 1299 return DAG.UnrollVectorOp(Op.getNode()); 1300 } 1301 1302 SDValue VectorLegalizer::ExpandROT(SDValue Op) { 1303 SDValue Result; 1304 if (TLI.expandROT(Op.getNode(), Result, DAG)) 1305 return Result; 1306 1307 return DAG.UnrollVectorOp(Op.getNode()); 1308 } 1309 1310 SDValue VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op) { 1311 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Op.getNode(), DAG)) 1312 return Expanded; 1313 return DAG.UnrollVectorOp(Op.getNode()); 1314 } 1315 1316 SDValue VectorLegalizer::ExpandUADDSUBO(SDValue Op) { 1317 SDValue Result, Overflow; 1318 TLI.expandUADDSUBO(Op.getNode(), Result, Overflow, DAG); 1319 1320 if (Op.getResNo() == 0) { 1321 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow)); 1322 return Result; 1323 } else { 1324 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result)); 1325 return Overflow; 1326 } 1327 } 1328 1329 SDValue VectorLegalizer::ExpandSADDSUBO(SDValue Op) { 1330 SDValue Result, Overflow; 1331 TLI.expandSADDSUBO(Op.getNode(), Result, Overflow, DAG); 1332 1333 if (Op.getResNo() == 0) { 1334 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow)); 1335 return Result; 1336 } else { 1337 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result)); 1338 return Overflow; 1339 } 1340 } 1341 1342 SDValue VectorLegalizer::ExpandMULO(SDValue Op) { 1343 SDValue Result, Overflow; 1344 if (!TLI.expandMULO(Op.getNode(), Result, Overflow, DAG)) 1345 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Op.getNode()); 1346 1347 if (Op.getResNo() == 0) { 1348 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow)); 1349 return Result; 1350 } else { 1351 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result)); 1352 return Overflow; 1353 } 1354 } 1355 1356 SDValue VectorLegalizer::ExpandAddSubSat(SDValue Op) { 1357 if (SDValue Expanded = TLI.expandAddSubSat(Op.getNode(), DAG)) 1358 return Expanded; 1359 return DAG.UnrollVectorOp(Op.getNode()); 1360 } 1361 1362 SDValue VectorLegalizer::ExpandFixedPointMul(SDValue Op) { 1363 if (SDValue Expanded = TLI.expandFixedPointMul(Op.getNode(), DAG)) 1364 return Expanded; 1365 return DAG.UnrollVectorOp(Op.getNode()); 1366 } 1367 1368 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) { 1369 EVT VT = Op.getValueType(); 1370 EVT EltVT = VT.getVectorElementType(); 1371 unsigned NumElems = VT.getVectorNumElements(); 1372 unsigned NumOpers = Op.getNumOperands(); 1373 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1374 EVT ValueVTs[] = {EltVT, MVT::Other}; 1375 SDValue Chain = Op.getOperand(0); 1376 SDLoc dl(Op); 1377 1378 SmallVector<SDValue, 32> OpValues; 1379 SmallVector<SDValue, 32> OpChains; 1380 for (unsigned i = 0; i < NumElems; ++i) { 1381 SmallVector<SDValue, 4> Opers; 1382 SDValue Idx = DAG.getConstant(i, dl, 1383 TLI.getVectorIdxTy(DAG.getDataLayout())); 1384 1385 // The Chain is the first operand. 1386 Opers.push_back(Chain); 1387 1388 // Now process the remaining operands. 1389 for (unsigned j = 1; j < NumOpers; ++j) { 1390 SDValue Oper = Op.getOperand(j); 1391 EVT OperVT = Oper.getValueType(); 1392 1393 if (OperVT.isVector()) 1394 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1395 OperVT.getVectorElementType(), Oper, Idx); 1396 1397 Opers.push_back(Oper); 1398 } 1399 1400 SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers); 1401 1402 OpValues.push_back(ScalarOp.getValue(0)); 1403 OpChains.push_back(ScalarOp.getValue(1)); 1404 } 1405 1406 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1407 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1408 1409 AddLegalizedOperand(Op.getValue(0), Result); 1410 AddLegalizedOperand(Op.getValue(1), NewChain); 1411 1412 return Op.getResNo() ? NewChain : Result; 1413 } 1414 1415 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { 1416 EVT VT = Op.getValueType(); 1417 unsigned NumElems = VT.getVectorNumElements(); 1418 EVT EltVT = VT.getVectorElementType(); 1419 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); 1420 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1421 SDLoc dl(Op); 1422 SmallVector<SDValue, 8> Ops(NumElems); 1423 for (unsigned i = 0; i < NumElems; ++i) { 1424 SDValue LHSElem = DAG.getNode( 1425 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1426 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1427 SDValue RHSElem = DAG.getNode( 1428 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1429 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 1430 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1431 TLI.getSetCCResultType(DAG.getDataLayout(), 1432 *DAG.getContext(), TmpEltVT), 1433 LHSElem, RHSElem, CC); 1434 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1435 DAG.getConstant(APInt::getAllOnesValue 1436 (EltVT.getSizeInBits()), dl, EltVT), 1437 DAG.getConstant(0, dl, EltVT)); 1438 } 1439 return DAG.getBuildVector(VT, dl, Ops); 1440 } 1441 1442 bool SelectionDAG::LegalizeVectors() { 1443 return VectorLegalizer(*this).Run(); 1444 } 1445