xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
10 //
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types.  For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
20 //
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "legalizevectorops"
53 
54 namespace {
55 
56 class VectorLegalizer {
57   SelectionDAG& DAG;
58   const TargetLowering &TLI;
59   bool Changed = false; // Keep track of whether anything changed
60 
61   /// For nodes that are of legal width, and that have more than one use, this
62   /// map indicates what regularized operand to use.  This allows us to avoid
63   /// legalizing the same thing more than once.
64   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
65 
66   /// Adds a node to the translation cache.
67   void AddLegalizedOperand(SDValue From, SDValue To) {
68     LegalizedNodes.insert(std::make_pair(From, To));
69     // If someone requests legalization of the new node, return itself.
70     if (From != To)
71       LegalizedNodes.insert(std::make_pair(To, To));
72   }
73 
74   /// Legalizes the given node.
75   SDValue LegalizeOp(SDValue Op);
76 
77   /// Assuming the node is legal, "legalize" the results.
78   SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result);
79 
80   /// Make sure Results are legal and update the translation cache.
81   SDValue RecursivelyLegalizeResults(SDValue Op,
82                                      MutableArrayRef<SDValue> Results);
83 
84   /// Wrapper to interface LowerOperation with a vector of Results.
85   /// Returns false if the target wants to use default expansion. Otherwise
86   /// returns true. If return is true and the Results are empty, then the
87   /// target wants to keep the input node as is.
88   bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results);
89 
90   /// Implements unrolling a VSETCC.
91   SDValue UnrollVSETCC(SDNode *Node);
92 
93   /// Implement expand-based legalization of vector operations.
94   ///
95   /// This is just a high-level routine to dispatch to specific code paths for
96   /// operations to legalize them.
97   void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results);
98 
99   /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
100   /// FP_TO_SINT isn't legal.
101   void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
102 
103   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
104   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
105   void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
106 
107   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
108   SDValue ExpandSEXTINREG(SDNode *Node);
109 
110   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
111   ///
112   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
113   /// type. The contents of the bits in the extended part of each element are
114   /// undef.
115   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node);
116 
117   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
118   ///
119   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
120   /// type, then shifts left and arithmetic shifts right to introduce a sign
121   /// extension.
122   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node);
123 
124   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
125   ///
126   /// Shuffles the low lanes of the operand into place and blends zeros into
127   /// the remaining lanes, finally bitcasting to the proper type.
128   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node);
129 
130   /// Expand bswap of vectors into a shuffle if legal.
131   SDValue ExpandBSWAP(SDNode *Node);
132 
133   /// Implement vselect in terms of XOR, AND, OR when blend is not
134   /// supported by the target.
135   SDValue ExpandVSELECT(SDNode *Node);
136   SDValue ExpandSELECT(SDNode *Node);
137   std::pair<SDValue, SDValue> ExpandLoad(SDNode *N);
138   SDValue ExpandStore(SDNode *N);
139   SDValue ExpandFNEG(SDNode *Node);
140   void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results);
141   void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results);
142   void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
143   void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
144   void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
145   SDValue ExpandFixedPointDiv(SDNode *Node);
146   SDValue ExpandStrictFPOp(SDNode *Node);
147   void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
148 
149   void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
150 
151   /// Implements vector promotion.
152   ///
153   /// This is essentially just bitcasting the operands to a different type and
154   /// bitcasting the result back to the original type.
155   void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results);
156 
157   /// Implements [SU]INT_TO_FP vector promotion.
158   ///
159   /// This is a [zs]ext of the input operand to a larger integer type.
160   void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results);
161 
162   /// Implements FP_TO_[SU]INT vector promotion of the result type.
163   ///
164   /// It is promoted to a larger integer type.  The result is then
165   /// truncated back to the original type.
166   void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
167 
168 public:
169   VectorLegalizer(SelectionDAG& dag) :
170       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
171 
172   /// Begin legalizer the vector operations in the DAG.
173   bool Run();
174 };
175 
176 } // end anonymous namespace
177 
178 bool VectorLegalizer::Run() {
179   // Before we start legalizing vector nodes, check if there are any vectors.
180   bool HasVectors = false;
181   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
182        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
183     // Check if the values of the nodes contain vectors. We don't need to check
184     // the operands because we are going to check their values at some point.
185     for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
186          J != E; ++J)
187       HasVectors |= J->isVector();
188 
189     // If we found a vector node we can start the legalization.
190     if (HasVectors)
191       break;
192   }
193 
194   // If this basic block has no vectors then no need to legalize vectors.
195   if (!HasVectors)
196     return false;
197 
198   // The legalize process is inherently a bottom-up recursive process (users
199   // legalize their uses before themselves).  Given infinite stack space, we
200   // could just start legalizing on the root and traverse the whole graph.  In
201   // practice however, this causes us to run out of stack space on large basic
202   // blocks.  To avoid this problem, compute an ordering of the nodes where each
203   // node is only legalized after all of its operands are legalized.
204   DAG.AssignTopologicalOrder();
205   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
206        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
207     LegalizeOp(SDValue(&*I, 0));
208 
209   // Finally, it's possible the root changed.  Get the new root.
210   SDValue OldRoot = DAG.getRoot();
211   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
212   DAG.setRoot(LegalizedNodes[OldRoot]);
213 
214   LegalizedNodes.clear();
215 
216   // Remove dead nodes now.
217   DAG.RemoveDeadNodes();
218 
219   return Changed;
220 }
221 
222 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) {
223   assert(Op->getNumValues() == Result->getNumValues() &&
224          "Unexpected number of results");
225   // Generic legalization: just pass the operand through.
226   for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i)
227     AddLegalizedOperand(Op.getValue(i), SDValue(Result, i));
228   return SDValue(Result, Op.getResNo());
229 }
230 
231 SDValue
232 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op,
233                                             MutableArrayRef<SDValue> Results) {
234   assert(Results.size() == Op->getNumValues() &&
235          "Unexpected number of results");
236   // Make sure that the generated code is itself legal.
237   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
238     Results[i] = LegalizeOp(Results[i]);
239     AddLegalizedOperand(Op.getValue(i), Results[i]);
240   }
241 
242   return Results[Op.getResNo()];
243 }
244 
245 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
246   // Note that LegalizeOp may be reentered even from single-use nodes, which
247   // means that we always must cache transformed nodes.
248   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
249   if (I != LegalizedNodes.end()) return I->second;
250 
251   // Legalize the operands
252   SmallVector<SDValue, 8> Ops;
253   for (const SDValue &Oper : Op->op_values())
254     Ops.push_back(LegalizeOp(Oper));
255 
256   SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops);
257 
258   if (Op.getOpcode() == ISD::LOAD) {
259     LoadSDNode *LD = cast<LoadSDNode>(Node);
260     ISD::LoadExtType ExtType = LD->getExtensionType();
261     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
262       LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
263                  Node->dump(&DAG));
264       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
265                                    LD->getMemoryVT())) {
266       default: llvm_unreachable("This action is not supported yet!");
267       case TargetLowering::Legal:
268         return TranslateLegalizeResults(Op, Node);
269       case TargetLowering::Custom: {
270         SmallVector<SDValue, 2> ResultVals;
271         if (LowerOperationWrapper(Node, ResultVals)) {
272           if (ResultVals.empty())
273             return TranslateLegalizeResults(Op, Node);
274 
275           Changed = true;
276           return RecursivelyLegalizeResults(Op, ResultVals);
277         }
278         LLVM_FALLTHROUGH;
279       }
280       case TargetLowering::Expand: {
281         Changed = true;
282         std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node);
283         AddLegalizedOperand(Op.getValue(0), Tmp.first);
284         AddLegalizedOperand(Op.getValue(1), Tmp.second);
285         return Op.getResNo() ? Tmp.first : Tmp.second;
286       }
287       }
288     }
289   } else if (Op.getOpcode() == ISD::STORE) {
290     StoreSDNode *ST = cast<StoreSDNode>(Node);
291     EVT StVT = ST->getMemoryVT();
292     MVT ValVT = ST->getValue().getSimpleValueType();
293     if (StVT.isVector() && ST->isTruncatingStore()) {
294       LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
295                  Node->dump(&DAG));
296       switch (TLI.getTruncStoreAction(ValVT, StVT)) {
297       default: llvm_unreachable("This action is not supported yet!");
298       case TargetLowering::Legal:
299         return TranslateLegalizeResults(Op, Node);
300       case TargetLowering::Custom: {
301         SmallVector<SDValue, 1> ResultVals;
302         if (LowerOperationWrapper(Node, ResultVals)) {
303           if (ResultVals.empty())
304             return TranslateLegalizeResults(Op, Node);
305 
306           Changed = true;
307           return RecursivelyLegalizeResults(Op, ResultVals);
308         }
309         LLVM_FALLTHROUGH;
310       }
311       case TargetLowering::Expand: {
312         Changed = true;
313         SDValue Chain = ExpandStore(Node);
314         AddLegalizedOperand(Op, Chain);
315         return Chain;
316       }
317       }
318     }
319   }
320 
321   bool HasVectorValueOrOp = false;
322   for (auto J = Node->value_begin(), E = Node->value_end(); J != E; ++J)
323     HasVectorValueOrOp |= J->isVector();
324   for (const SDValue &Oper : Node->op_values())
325     HasVectorValueOrOp |= Oper.getValueType().isVector();
326 
327   if (!HasVectorValueOrOp)
328     return TranslateLegalizeResults(Op, Node);
329 
330   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
331   EVT ValVT;
332   switch (Op.getOpcode()) {
333   default:
334     return TranslateLegalizeResults(Op, Node);
335   case ISD::MERGE_VALUES:
336     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
337     // This operation lies about being legal: when it claims to be legal,
338     // it should actually be expanded.
339     if (Action == TargetLowering::Legal)
340       Action = TargetLowering::Expand;
341     break;
342 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
343   case ISD::STRICT_##DAGN:
344 #include "llvm/IR/ConstrainedOps.def"
345     ValVT = Node->getValueType(0);
346     if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
347         Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
348       ValVT = Node->getOperand(1).getValueType();
349     Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
350     // If we're asked to expand a strict vector floating-point operation,
351     // by default we're going to simply unroll it.  That is usually the
352     // best approach, except in the case where the resulting strict (scalar)
353     // operations would themselves use the fallback mutation to non-strict.
354     // In that specific case, just do the fallback on the vector op.
355     if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
356         TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
357             TargetLowering::Legal) {
358       EVT EltVT = ValVT.getVectorElementType();
359       if (TLI.getOperationAction(Node->getOpcode(), EltVT)
360           == TargetLowering::Expand &&
361           TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
362           == TargetLowering::Legal)
363         Action = TargetLowering::Legal;
364     }
365     break;
366   case ISD::ADD:
367   case ISD::SUB:
368   case ISD::MUL:
369   case ISD::MULHS:
370   case ISD::MULHU:
371   case ISD::SDIV:
372   case ISD::UDIV:
373   case ISD::SREM:
374   case ISD::UREM:
375   case ISD::SDIVREM:
376   case ISD::UDIVREM:
377   case ISD::FADD:
378   case ISD::FSUB:
379   case ISD::FMUL:
380   case ISD::FDIV:
381   case ISD::FREM:
382   case ISD::AND:
383   case ISD::OR:
384   case ISD::XOR:
385   case ISD::SHL:
386   case ISD::SRA:
387   case ISD::SRL:
388   case ISD::FSHL:
389   case ISD::FSHR:
390   case ISD::ROTL:
391   case ISD::ROTR:
392   case ISD::ABS:
393   case ISD::BSWAP:
394   case ISD::BITREVERSE:
395   case ISD::CTLZ:
396   case ISD::CTTZ:
397   case ISD::CTLZ_ZERO_UNDEF:
398   case ISD::CTTZ_ZERO_UNDEF:
399   case ISD::CTPOP:
400   case ISD::SELECT:
401   case ISD::VSELECT:
402   case ISD::SELECT_CC:
403   case ISD::SETCC:
404   case ISD::ZERO_EXTEND:
405   case ISD::ANY_EXTEND:
406   case ISD::TRUNCATE:
407   case ISD::SIGN_EXTEND:
408   case ISD::FP_TO_SINT:
409   case ISD::FP_TO_UINT:
410   case ISD::FNEG:
411   case ISD::FABS:
412   case ISD::FMINNUM:
413   case ISD::FMAXNUM:
414   case ISD::FMINNUM_IEEE:
415   case ISD::FMAXNUM_IEEE:
416   case ISD::FMINIMUM:
417   case ISD::FMAXIMUM:
418   case ISD::FCOPYSIGN:
419   case ISD::FSQRT:
420   case ISD::FSIN:
421   case ISD::FCOS:
422   case ISD::FPOWI:
423   case ISD::FPOW:
424   case ISD::FLOG:
425   case ISD::FLOG2:
426   case ISD::FLOG10:
427   case ISD::FEXP:
428   case ISD::FEXP2:
429   case ISD::FCEIL:
430   case ISD::FTRUNC:
431   case ISD::FRINT:
432   case ISD::FNEARBYINT:
433   case ISD::FROUND:
434   case ISD::FFLOOR:
435   case ISD::FP_ROUND:
436   case ISD::FP_EXTEND:
437   case ISD::FMA:
438   case ISD::SIGN_EXTEND_INREG:
439   case ISD::ANY_EXTEND_VECTOR_INREG:
440   case ISD::SIGN_EXTEND_VECTOR_INREG:
441   case ISD::ZERO_EXTEND_VECTOR_INREG:
442   case ISD::SMIN:
443   case ISD::SMAX:
444   case ISD::UMIN:
445   case ISD::UMAX:
446   case ISD::SMUL_LOHI:
447   case ISD::UMUL_LOHI:
448   case ISD::SADDO:
449   case ISD::UADDO:
450   case ISD::SSUBO:
451   case ISD::USUBO:
452   case ISD::SMULO:
453   case ISD::UMULO:
454   case ISD::FCANONICALIZE:
455   case ISD::SADDSAT:
456   case ISD::UADDSAT:
457   case ISD::SSUBSAT:
458   case ISD::USUBSAT:
459     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
460     break;
461   case ISD::SMULFIX:
462   case ISD::SMULFIXSAT:
463   case ISD::UMULFIX:
464   case ISD::UMULFIXSAT:
465   case ISD::SDIVFIX:
466   case ISD::UDIVFIX: {
467     unsigned Scale = Node->getConstantOperandVal(2);
468     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
469                                               Node->getValueType(0), Scale);
470     break;
471   }
472   case ISD::SINT_TO_FP:
473   case ISD::UINT_TO_FP:
474   case ISD::VECREDUCE_ADD:
475   case ISD::VECREDUCE_MUL:
476   case ISD::VECREDUCE_AND:
477   case ISD::VECREDUCE_OR:
478   case ISD::VECREDUCE_XOR:
479   case ISD::VECREDUCE_SMAX:
480   case ISD::VECREDUCE_SMIN:
481   case ISD::VECREDUCE_UMAX:
482   case ISD::VECREDUCE_UMIN:
483   case ISD::VECREDUCE_FADD:
484   case ISD::VECREDUCE_FMUL:
485   case ISD::VECREDUCE_FMAX:
486   case ISD::VECREDUCE_FMIN:
487     Action = TLI.getOperationAction(Node->getOpcode(),
488                                     Node->getOperand(0).getValueType());
489     break;
490   }
491 
492   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
493 
494   SmallVector<SDValue, 8> ResultVals;
495   switch (Action) {
496   default: llvm_unreachable("This action is not supported yet!");
497   case TargetLowering::Promote:
498     LLVM_DEBUG(dbgs() << "Promoting\n");
499     Promote(Node, ResultVals);
500     assert(!ResultVals.empty() && "No results for promotion?");
501     break;
502   case TargetLowering::Legal:
503     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
504     break;
505   case TargetLowering::Custom:
506     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
507     if (LowerOperationWrapper(Node, ResultVals))
508       break;
509     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
510     LLVM_FALLTHROUGH;
511   case TargetLowering::Expand:
512     LLVM_DEBUG(dbgs() << "Expanding\n");
513     Expand(Node, ResultVals);
514     break;
515   }
516 
517   if (ResultVals.empty())
518     return TranslateLegalizeResults(Op, Node);
519 
520   Changed = true;
521   return RecursivelyLegalizeResults(Op, ResultVals);
522 }
523 
524 // FIME: This is very similar to the X86 override of
525 // TargetLowering::LowerOperationWrapper. Can we merge them somehow?
526 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node,
527                                             SmallVectorImpl<SDValue> &Results) {
528   SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
529 
530   if (!Res.getNode())
531     return false;
532 
533   if (Res == SDValue(Node, 0))
534     return true;
535 
536   // If the original node has one result, take the return value from
537   // LowerOperation as is. It might not be result number 0.
538   if (Node->getNumValues() == 1) {
539     Results.push_back(Res);
540     return true;
541   }
542 
543   // If the original node has multiple results, then the return node should
544   // have the same number of results.
545   assert((Node->getNumValues() == Res->getNumValues()) &&
546          "Lowering returned the wrong number of results!");
547 
548   // Places new result values base on N result number.
549   for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I)
550     Results.push_back(Res.getValue(I));
551 
552   return true;
553 }
554 
555 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
556   // For a few operations there is a specific concept for promotion based on
557   // the operand's type.
558   switch (Node->getOpcode()) {
559   case ISD::SINT_TO_FP:
560   case ISD::UINT_TO_FP:
561   case ISD::STRICT_SINT_TO_FP:
562   case ISD::STRICT_UINT_TO_FP:
563     // "Promote" the operation by extending the operand.
564     PromoteINT_TO_FP(Node, Results);
565     return;
566   case ISD::FP_TO_UINT:
567   case ISD::FP_TO_SINT:
568   case ISD::STRICT_FP_TO_UINT:
569   case ISD::STRICT_FP_TO_SINT:
570     // Promote the operation by extending the operand.
571     PromoteFP_TO_INT(Node, Results);
572     return;
573   case ISD::FP_ROUND:
574   case ISD::FP_EXTEND:
575     // These operations are used to do promotion so they can't be promoted
576     // themselves.
577     llvm_unreachable("Don't know how to promote this operation!");
578   }
579 
580   // There are currently two cases of vector promotion:
581   // 1) Bitcasting a vector of integers to a different type to a vector of the
582   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
583   // 2) Extending a vector of floats to a vector of the same number of larger
584   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
585   assert(Node->getNumValues() == 1 &&
586          "Can't promote a vector with multiple results!");
587   MVT VT = Node->getSimpleValueType(0);
588   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
589   SDLoc dl(Node);
590   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
591 
592   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
593     if (Node->getOperand(j).getValueType().isVector())
594       if (Node->getOperand(j)
595               .getValueType()
596               .getVectorElementType()
597               .isFloatingPoint() &&
598           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
599         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j));
600       else
601         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j));
602     else
603       Operands[j] = Node->getOperand(j);
604   }
605 
606   SDValue Res =
607       DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags());
608 
609   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
610       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
611        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
612     Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl));
613   else
614     Res = DAG.getNode(ISD::BITCAST, dl, VT, Res);
615 
616   Results.push_back(Res);
617 }
618 
619 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node,
620                                        SmallVectorImpl<SDValue> &Results) {
621   // INT_TO_FP operations may require the input operand be promoted even
622   // when the type is otherwise legal.
623   bool IsStrict = Node->isStrictFPOpcode();
624   MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType();
625   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
626   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
627          "Vectors have different number of elements!");
628 
629   SDLoc dl(Node);
630   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
631 
632   unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP ||
633                   Node->getOpcode() == ISD::STRICT_UINT_TO_FP)
634                      ? ISD::ZERO_EXTEND
635                      : ISD::SIGN_EXTEND;
636   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
637     if (Node->getOperand(j).getValueType().isVector())
638       Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j));
639     else
640       Operands[j] = Node->getOperand(j);
641   }
642 
643   if (IsStrict) {
644     SDValue Res = DAG.getNode(Node->getOpcode(), dl,
645                               {Node->getValueType(0), MVT::Other}, Operands);
646     Results.push_back(Res);
647     Results.push_back(Res.getValue(1));
648     return;
649   }
650 
651   SDValue Res =
652       DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands);
653   Results.push_back(Res);
654 }
655 
656 // For FP_TO_INT we promote the result type to a vector type with wider
657 // elements and then truncate the result.  This is different from the default
658 // PromoteVector which uses bitcast to promote thus assumning that the
659 // promoted vector type has the same overall size.
660 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node,
661                                        SmallVectorImpl<SDValue> &Results) {
662   MVT VT = Node->getSimpleValueType(0);
663   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
664   bool IsStrict = Node->isStrictFPOpcode();
665   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
666          "Vectors have different number of elements!");
667 
668   unsigned NewOpc = Node->getOpcode();
669   // Change FP_TO_UINT to FP_TO_SINT if possible.
670   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
671   if (NewOpc == ISD::FP_TO_UINT &&
672       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
673     NewOpc = ISD::FP_TO_SINT;
674 
675   if (NewOpc == ISD::STRICT_FP_TO_UINT &&
676       TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
677     NewOpc = ISD::STRICT_FP_TO_SINT;
678 
679   SDLoc dl(Node);
680   SDValue Promoted, Chain;
681   if (IsStrict) {
682     Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
683                            {Node->getOperand(0), Node->getOperand(1)});
684     Chain = Promoted.getValue(1);
685   } else
686     Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0));
687 
688   // Assert that the converted value fits in the original type.  If it doesn't
689   // (eg: because the value being converted is too big), then the result of the
690   // original operation was undefined anyway, so the assert is still correct.
691   if (Node->getOpcode() == ISD::FP_TO_UINT ||
692       Node->getOpcode() == ISD::STRICT_FP_TO_UINT)
693     NewOpc = ISD::AssertZext;
694   else
695     NewOpc = ISD::AssertSext;
696 
697   Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
698                          DAG.getValueType(VT.getScalarType()));
699   Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
700   Results.push_back(Promoted);
701   if (IsStrict)
702     Results.push_back(Chain);
703 }
704 
705 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) {
706   LoadSDNode *LD = cast<LoadSDNode>(N);
707 
708   EVT SrcVT = LD->getMemoryVT();
709   EVT SrcEltVT = SrcVT.getScalarType();
710   unsigned NumElem = SrcVT.getVectorNumElements();
711 
712   SDValue NewChain;
713   SDValue Value;
714   if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
715     SDLoc dl(N);
716 
717     SmallVector<SDValue, 8> Vals;
718     SmallVector<SDValue, 8> LoadChains;
719 
720     EVT DstEltVT = LD->getValueType(0).getScalarType();
721     SDValue Chain = LD->getChain();
722     SDValue BasePTR = LD->getBasePtr();
723     ISD::LoadExtType ExtType = LD->getExtensionType();
724 
725     // When elements in a vector is not byte-addressable, we cannot directly
726     // load each element by advancing pointer, which could only address bytes.
727     // Instead, we load all significant words, mask bits off, and concatenate
728     // them to form each element. Finally, they are extended to destination
729     // scalar type to build the destination vector.
730     EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
731 
732     assert(WideVT.isRound() &&
733            "Could not handle the sophisticated case when the widest integer is"
734            " not power of 2.");
735     assert(WideVT.bitsGE(SrcEltVT) &&
736            "Type is not legalized?");
737 
738     unsigned WideBytes = WideVT.getStoreSize();
739     unsigned Offset = 0;
740     unsigned RemainingBytes = SrcVT.getStoreSize();
741     SmallVector<SDValue, 8> LoadVals;
742     while (RemainingBytes > 0) {
743       SDValue ScalarLoad;
744       unsigned LoadBytes = WideBytes;
745 
746       if (RemainingBytes >= LoadBytes) {
747         ScalarLoad =
748             DAG.getLoad(WideVT, dl, Chain, BasePTR,
749                         LD->getPointerInfo().getWithOffset(Offset),
750                         MinAlign(LD->getAlignment(), Offset),
751                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
752       } else {
753         EVT LoadVT = WideVT;
754         while (RemainingBytes < LoadBytes) {
755           LoadBytes >>= 1; // Reduce the load size by half.
756           LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
757         }
758         ScalarLoad =
759             DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
760                            LD->getPointerInfo().getWithOffset(Offset), LoadVT,
761                            MinAlign(LD->getAlignment(), Offset),
762                            LD->getMemOperand()->getFlags(), LD->getAAInfo());
763       }
764 
765       RemainingBytes -= LoadBytes;
766       Offset += LoadBytes;
767 
768       BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes);
769 
770       LoadVals.push_back(ScalarLoad.getValue(0));
771       LoadChains.push_back(ScalarLoad.getValue(1));
772     }
773 
774     unsigned BitOffset = 0;
775     unsigned WideIdx = 0;
776     unsigned WideBits = WideVT.getSizeInBits();
777 
778     // Extract bits, pack and extend/trunc them into destination type.
779     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
780     SDValue SrcEltBitMask = DAG.getConstant(
781         APInt::getLowBitsSet(WideBits, SrcEltBits), dl, WideVT);
782 
783     for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
784       assert(BitOffset < WideBits && "Unexpected offset!");
785 
786       SDValue ShAmt = DAG.getConstant(
787           BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
788       SDValue Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
789 
790       BitOffset += SrcEltBits;
791       if (BitOffset >= WideBits) {
792         WideIdx++;
793         BitOffset -= WideBits;
794         if (BitOffset > 0) {
795           ShAmt = DAG.getConstant(
796               SrcEltBits - BitOffset, dl,
797               TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
798           SDValue Hi =
799               DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
800           Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
801         }
802       }
803 
804       Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
805 
806       switch (ExtType) {
807       default: llvm_unreachable("Unknown extended-load op!");
808       case ISD::EXTLOAD:
809         Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
810         break;
811       case ISD::ZEXTLOAD:
812         Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
813         break;
814       case ISD::SEXTLOAD:
815         ShAmt =
816             DAG.getConstant(WideBits - SrcEltBits, dl,
817                             TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
818         Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
819         Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
820         Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
821         break;
822       }
823       Vals.push_back(Lo);
824     }
825 
826     NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
827     Value = DAG.getBuildVector(N->getValueType(0), dl, Vals);
828   } else {
829     std::tie(Value, NewChain) = TLI.scalarizeVectorLoad(LD, DAG);
830   }
831 
832   return std::make_pair(Value, NewChain);
833 }
834 
835 SDValue VectorLegalizer::ExpandStore(SDNode *N) {
836   StoreSDNode *ST = cast<StoreSDNode>(N);
837   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
838   return TF;
839 }
840 
841 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
842   SDValue Tmp;
843   switch (Node->getOpcode()) {
844   case ISD::MERGE_VALUES:
845     for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
846       Results.push_back(Node->getOperand(i));
847     return;
848   case ISD::SIGN_EXTEND_INREG:
849     Results.push_back(ExpandSEXTINREG(Node));
850     return;
851   case ISD::ANY_EXTEND_VECTOR_INREG:
852     Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node));
853     return;
854   case ISD::SIGN_EXTEND_VECTOR_INREG:
855     Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node));
856     return;
857   case ISD::ZERO_EXTEND_VECTOR_INREG:
858     Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node));
859     return;
860   case ISD::BSWAP:
861     Results.push_back(ExpandBSWAP(Node));
862     return;
863   case ISD::VSELECT:
864     Results.push_back(ExpandVSELECT(Node));
865     return;
866   case ISD::SELECT:
867     Results.push_back(ExpandSELECT(Node));
868     return;
869   case ISD::FP_TO_UINT:
870     ExpandFP_TO_UINT(Node, Results);
871     return;
872   case ISD::UINT_TO_FP:
873     ExpandUINT_TO_FLOAT(Node, Results);
874     return;
875   case ISD::FNEG:
876     Results.push_back(ExpandFNEG(Node));
877     return;
878   case ISD::FSUB:
879     ExpandFSUB(Node, Results);
880     return;
881   case ISD::SETCC:
882     Results.push_back(UnrollVSETCC(Node));
883     return;
884   case ISD::ABS:
885     if (TLI.expandABS(Node, Tmp, DAG)) {
886       Results.push_back(Tmp);
887       return;
888     }
889     break;
890   case ISD::BITREVERSE:
891     ExpandBITREVERSE(Node, Results);
892     return;
893   case ISD::CTPOP:
894     if (TLI.expandCTPOP(Node, Tmp, DAG)) {
895       Results.push_back(Tmp);
896       return;
897     }
898     break;
899   case ISD::CTLZ:
900   case ISD::CTLZ_ZERO_UNDEF:
901     if (TLI.expandCTLZ(Node, Tmp, DAG)) {
902       Results.push_back(Tmp);
903       return;
904     }
905     break;
906   case ISD::CTTZ:
907   case ISD::CTTZ_ZERO_UNDEF:
908     if (TLI.expandCTTZ(Node, Tmp, DAG)) {
909       Results.push_back(Tmp);
910       return;
911     }
912     break;
913   case ISD::FSHL:
914   case ISD::FSHR:
915     if (TLI.expandFunnelShift(Node, Tmp, DAG)) {
916       Results.push_back(Tmp);
917       return;
918     }
919     break;
920   case ISD::ROTL:
921   case ISD::ROTR:
922     if (TLI.expandROT(Node, Tmp, DAG)) {
923       Results.push_back(Tmp);
924       return;
925     }
926     break;
927   case ISD::FMINNUM:
928   case ISD::FMAXNUM:
929     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) {
930       Results.push_back(Expanded);
931       return;
932     }
933     break;
934   case ISD::UADDO:
935   case ISD::USUBO:
936     ExpandUADDSUBO(Node, Results);
937     return;
938   case ISD::SADDO:
939   case ISD::SSUBO:
940     ExpandSADDSUBO(Node, Results);
941     return;
942   case ISD::UMULO:
943   case ISD::SMULO:
944     ExpandMULO(Node, Results);
945     return;
946   case ISD::USUBSAT:
947   case ISD::SSUBSAT:
948   case ISD::UADDSAT:
949   case ISD::SADDSAT:
950     if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) {
951       Results.push_back(Expanded);
952       return;
953     }
954     break;
955   case ISD::SMULFIX:
956   case ISD::UMULFIX:
957     if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) {
958       Results.push_back(Expanded);
959       return;
960     }
961     break;
962   case ISD::SMULFIXSAT:
963   case ISD::UMULFIXSAT:
964     // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
965     // why. Maybe it results in worse codegen compared to the unroll for some
966     // targets? This should probably be investigated. And if we still prefer to
967     // unroll an explanation could be helpful.
968     break;
969   case ISD::SDIVFIX:
970   case ISD::UDIVFIX:
971     Results.push_back(ExpandFixedPointDiv(Node));
972     return;
973 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
974   case ISD::STRICT_##DAGN:
975 #include "llvm/IR/ConstrainedOps.def"
976     ExpandStrictFPOp(Node, Results);
977     return;
978   case ISD::VECREDUCE_ADD:
979   case ISD::VECREDUCE_MUL:
980   case ISD::VECREDUCE_AND:
981   case ISD::VECREDUCE_OR:
982   case ISD::VECREDUCE_XOR:
983   case ISD::VECREDUCE_SMAX:
984   case ISD::VECREDUCE_SMIN:
985   case ISD::VECREDUCE_UMAX:
986   case ISD::VECREDUCE_UMIN:
987   case ISD::VECREDUCE_FADD:
988   case ISD::VECREDUCE_FMUL:
989   case ISD::VECREDUCE_FMAX:
990   case ISD::VECREDUCE_FMIN:
991     Results.push_back(TLI.expandVecReduce(Node, DAG));
992     return;
993   }
994 
995   Results.push_back(DAG.UnrollVectorOp(Node));
996 }
997 
998 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) {
999   // Lower a select instruction where the condition is a scalar and the
1000   // operands are vectors. Lower this select to VSELECT and implement it
1001   // using XOR AND OR. The selector bit is broadcasted.
1002   EVT VT = Node->getValueType(0);
1003   SDLoc DL(Node);
1004 
1005   SDValue Mask = Node->getOperand(0);
1006   SDValue Op1 = Node->getOperand(1);
1007   SDValue Op2 = Node->getOperand(2);
1008 
1009   assert(VT.isVector() && !Mask.getValueType().isVector()
1010          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
1011 
1012   // If we can't even use the basic vector operations of
1013   // AND,OR,XOR, we will have to scalarize the op.
1014   // Notice that the operation may be 'promoted' which means that it is
1015   // 'bitcasted' to another type which is handled.
1016   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
1017   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1018       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1019       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
1020       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
1021     return DAG.UnrollVectorOp(Node);
1022 
1023   // Generate a mask operand.
1024   EVT MaskTy = VT.changeVectorElementTypeToInteger();
1025 
1026   // What is the size of each element in the vector mask.
1027   EVT BitTy = MaskTy.getScalarType();
1028 
1029   Mask = DAG.getSelect(DL, BitTy, Mask,
1030           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
1031                           BitTy),
1032           DAG.getConstant(0, DL, BitTy));
1033 
1034   // Broadcast the mask so that the entire vector is all-one or all zero.
1035   Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
1036 
1037   // Bitcast the operands to be the same type as the mask.
1038   // This is needed when we select between FP types because
1039   // the mask is a vector of integers.
1040   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
1041   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
1042 
1043   SDValue AllOnes = DAG.getConstant(
1044             APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
1045   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
1046 
1047   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
1048   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
1049   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
1050   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1051 }
1052 
1053 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) {
1054   EVT VT = Node->getValueType(0);
1055 
1056   // Make sure that the SRA and SHL instructions are available.
1057   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
1058       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
1059     return DAG.UnrollVectorOp(Node);
1060 
1061   SDLoc DL(Node);
1062   EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT();
1063 
1064   unsigned BW = VT.getScalarSizeInBits();
1065   unsigned OrigBW = OrigTy.getScalarSizeInBits();
1066   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
1067 
1068   SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz);
1069   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
1070 }
1071 
1072 // Generically expand a vector anyext in register to a shuffle of the relevant
1073 // lanes into the appropriate locations, with other lanes left undef.
1074 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) {
1075   SDLoc DL(Node);
1076   EVT VT = Node->getValueType(0);
1077   int NumElements = VT.getVectorNumElements();
1078   SDValue Src = Node->getOperand(0);
1079   EVT SrcVT = Src.getValueType();
1080   int NumSrcElements = SrcVT.getVectorNumElements();
1081 
1082   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1083   // into a larger vector type.
1084   if (SrcVT.bitsLE(VT)) {
1085     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1086            "ANY_EXTEND_VECTOR_INREG vector size mismatch");
1087     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1088     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1089                              NumSrcElements);
1090     Src = DAG.getNode(
1091         ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src,
1092         DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
1093   }
1094 
1095   // Build a base mask of undef shuffles.
1096   SmallVector<int, 16> ShuffleMask;
1097   ShuffleMask.resize(NumSrcElements, -1);
1098 
1099   // Place the extended lanes into the correct locations.
1100   int ExtLaneScale = NumSrcElements / NumElements;
1101   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1102   for (int i = 0; i < NumElements; ++i)
1103     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
1104 
1105   return DAG.getNode(
1106       ISD::BITCAST, DL, VT,
1107       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
1108 }
1109 
1110 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) {
1111   SDLoc DL(Node);
1112   EVT VT = Node->getValueType(0);
1113   SDValue Src = Node->getOperand(0);
1114   EVT SrcVT = Src.getValueType();
1115 
1116   // First build an any-extend node which can be legalized above when we
1117   // recurse through it.
1118   SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
1119 
1120   // Now we need sign extend. Do this by shifting the elements. Even if these
1121   // aren't legal operations, they have a better chance of being legalized
1122   // without full scalarization than the sign extension does.
1123   unsigned EltWidth = VT.getScalarSizeInBits();
1124   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
1125   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
1126   return DAG.getNode(ISD::SRA, DL, VT,
1127                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
1128                      ShiftAmount);
1129 }
1130 
1131 // Generically expand a vector zext in register to a shuffle of the relevant
1132 // lanes into the appropriate locations, a blend of zero into the high bits,
1133 // and a bitcast to the wider element type.
1134 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) {
1135   SDLoc DL(Node);
1136   EVT VT = Node->getValueType(0);
1137   int NumElements = VT.getVectorNumElements();
1138   SDValue Src = Node->getOperand(0);
1139   EVT SrcVT = Src.getValueType();
1140   int NumSrcElements = SrcVT.getVectorNumElements();
1141 
1142   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1143   // into a larger vector type.
1144   if (SrcVT.bitsLE(VT)) {
1145     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1146            "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1147     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1148     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1149                              NumSrcElements);
1150     Src = DAG.getNode(
1151         ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src,
1152         DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
1153   }
1154 
1155   // Build up a zero vector to blend into this one.
1156   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1157 
1158   // Shuffle the incoming lanes into the correct position, and pull all other
1159   // lanes from the zero vector.
1160   SmallVector<int, 16> ShuffleMask;
1161   ShuffleMask.reserve(NumSrcElements);
1162   for (int i = 0; i < NumSrcElements; ++i)
1163     ShuffleMask.push_back(i);
1164 
1165   int ExtLaneScale = NumSrcElements / NumElements;
1166   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1167   for (int i = 0; i < NumElements; ++i)
1168     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1169 
1170   return DAG.getNode(ISD::BITCAST, DL, VT,
1171                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1172 }
1173 
1174 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1175   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1176   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1177     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1178       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1179 }
1180 
1181 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) {
1182   EVT VT = Node->getValueType(0);
1183 
1184   // Generate a byte wise shuffle mask for the BSWAP.
1185   SmallVector<int, 16> ShuffleMask;
1186   createBSWAPShuffleMask(VT, ShuffleMask);
1187   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1188 
1189   // Only emit a shuffle if the mask is legal.
1190   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
1191     return DAG.UnrollVectorOp(Node);
1192 
1193   SDLoc DL(Node);
1194   SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1195   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1196   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1197 }
1198 
1199 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node,
1200                                        SmallVectorImpl<SDValue> &Results) {
1201   EVT VT = Node->getValueType(0);
1202 
1203   // If we have the scalar operation, it's probably cheaper to unroll it.
1204   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) {
1205     SDValue Tmp = DAG.UnrollVectorOp(Node);
1206     Results.push_back(Tmp);
1207     return;
1208   }
1209 
1210   // If the vector element width is a whole number of bytes, test if its legal
1211   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1212   // vector. This greatly reduces the number of bit shifts necessary.
1213   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1214   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1215     SmallVector<int, 16> BSWAPMask;
1216     createBSWAPShuffleMask(VT, BSWAPMask);
1217 
1218     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1219     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1220         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1221          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1222           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1223           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1224           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1225       SDLoc DL(Node);
1226       SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1227       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1228                                 BSWAPMask);
1229       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1230       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
1231       Results.push_back(Op);
1232       return;
1233     }
1234   }
1235 
1236   // If we have the appropriate vector bit operations, it is better to use them
1237   // than unrolling and expanding each component.
1238   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1239       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1240       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1241       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1242     // Let LegalizeDAG handle this later.
1243     return;
1244 
1245   // Otherwise unroll.
1246   SDValue Tmp = DAG.UnrollVectorOp(Node);
1247   Results.push_back(Tmp);
1248 }
1249 
1250 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) {
1251   // Implement VSELECT in terms of XOR, AND, OR
1252   // on platforms which do not support blend natively.
1253   SDLoc DL(Node);
1254 
1255   SDValue Mask = Node->getOperand(0);
1256   SDValue Op1 = Node->getOperand(1);
1257   SDValue Op2 = Node->getOperand(2);
1258 
1259   EVT VT = Mask.getValueType();
1260 
1261   // If we can't even use the basic vector operations of
1262   // AND,OR,XOR, we will have to scalarize the op.
1263   // Notice that the operation may be 'promoted' which means that it is
1264   // 'bitcasted' to another type which is handled.
1265   // This operation also isn't safe with AND, OR, XOR when the boolean
1266   // type is 0/1 as we need an all ones vector constant to mask with.
1267   // FIXME: Sign extend 1 to all ones if thats legal on the target.
1268   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1269       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1270       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1271       TLI.getBooleanContents(Op1.getValueType()) !=
1272           TargetLowering::ZeroOrNegativeOneBooleanContent)
1273     return DAG.UnrollVectorOp(Node);
1274 
1275   // If the mask and the type are different sizes, unroll the vector op. This
1276   // can occur when getSetCCResultType returns something that is different in
1277   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1278   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1279     return DAG.UnrollVectorOp(Node);
1280 
1281   // Bitcast the operands to be the same type as the mask.
1282   // This is needed when we select between FP types because
1283   // the mask is a vector of integers.
1284   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1285   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1286 
1287   SDValue AllOnes = DAG.getConstant(
1288     APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
1289   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
1290 
1291   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1292   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1293   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1294   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1295 }
1296 
1297 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node,
1298                                        SmallVectorImpl<SDValue> &Results) {
1299   // Attempt to expand using TargetLowering.
1300   SDValue Result, Chain;
1301   if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) {
1302     Results.push_back(Result);
1303     if (Node->isStrictFPOpcode())
1304       Results.push_back(Chain);
1305     return;
1306   }
1307 
1308   // Otherwise go ahead and unroll.
1309   if (Node->isStrictFPOpcode()) {
1310     UnrollStrictFPOp(Node, Results);
1311     return;
1312   }
1313 
1314   Results.push_back(DAG.UnrollVectorOp(Node));
1315 }
1316 
1317 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node,
1318                                           SmallVectorImpl<SDValue> &Results) {
1319   bool IsStrict = Node->isStrictFPOpcode();
1320   unsigned OpNo = IsStrict ? 1 : 0;
1321   SDValue Src = Node->getOperand(OpNo);
1322   EVT VT = Src.getValueType();
1323   SDLoc DL(Node);
1324 
1325   // Attempt to expand using TargetLowering.
1326   SDValue Result;
1327   SDValue Chain;
1328   if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) {
1329     Results.push_back(Result);
1330     if (IsStrict)
1331       Results.push_back(Chain);
1332     return;
1333   }
1334 
1335   // Make sure that the SINT_TO_FP and SRL instructions are available.
1336   if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) ==
1337                          TargetLowering::Expand) ||
1338        (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) ==
1339                         TargetLowering::Expand)) ||
1340       TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) {
1341     if (IsStrict) {
1342       UnrollStrictFPOp(Node, Results);
1343       return;
1344     }
1345 
1346     Results.push_back(DAG.UnrollVectorOp(Node));
1347     return;
1348   }
1349 
1350   unsigned BW = VT.getScalarSizeInBits();
1351   assert((BW == 64 || BW == 32) &&
1352          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1353 
1354   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1355 
1356   // Constants to clear the upper part of the word.
1357   // Notice that we can also use SHL+SHR, but using a constant is slightly
1358   // faster on x86.
1359   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1360   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1361 
1362   // Two to the power of half-word-size.
1363   SDValue TWOHW =
1364       DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0));
1365 
1366   // Clear upper part of LO, lower HI
1367   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord);
1368   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask);
1369 
1370   if (IsStrict) {
1371     // Convert hi and lo to floats
1372     // Convert the hi part back to the upper values
1373     // TODO: Can any fast-math-flags be set on these nodes?
1374     SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1375                               {Node->getValueType(0), MVT::Other},
1376                               {Node->getOperand(0), HI});
1377     fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other},
1378                       {fHI.getValue(1), fHI, TWOHW});
1379     SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1380                               {Node->getValueType(0), MVT::Other},
1381                               {Node->getOperand(0), LO});
1382 
1383     SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1),
1384                              fLO.getValue(1));
1385 
1386     // Add the two halves
1387     SDValue Result =
1388         DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other},
1389                     {TF, fHI, fLO});
1390 
1391     Results.push_back(Result);
1392     Results.push_back(Result.getValue(1));
1393     return;
1394   }
1395 
1396   // Convert hi and lo to floats
1397   // Convert the hi part back to the upper values
1398   // TODO: Can any fast-math-flags be set on these nodes?
1399   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI);
1400   fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW);
1401   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO);
1402 
1403   // Add the two halves
1404   Results.push_back(
1405       DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO));
1406 }
1407 
1408 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) {
1409   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) {
1410     SDLoc DL(Node);
1411     SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0));
1412     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1413     return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero,
1414                        Node->getOperand(0));
1415   }
1416   return DAG.UnrollVectorOp(Node);
1417 }
1418 
1419 void VectorLegalizer::ExpandFSUB(SDNode *Node,
1420                                  SmallVectorImpl<SDValue> &Results) {
1421   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1422   // we can defer this to operation legalization where it will be lowered as
1423   // a+(-b).
1424   EVT VT = Node->getValueType(0);
1425   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1426       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1427     return; // Defer to LegalizeDAG
1428 
1429   SDValue Tmp = DAG.UnrollVectorOp(Node);
1430   Results.push_back(Tmp);
1431 }
1432 
1433 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node,
1434                                      SmallVectorImpl<SDValue> &Results) {
1435   SDValue Result, Overflow;
1436   TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
1437   Results.push_back(Result);
1438   Results.push_back(Overflow);
1439 }
1440 
1441 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node,
1442                                      SmallVectorImpl<SDValue> &Results) {
1443   SDValue Result, Overflow;
1444   TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
1445   Results.push_back(Result);
1446   Results.push_back(Overflow);
1447 }
1448 
1449 void VectorLegalizer::ExpandMULO(SDNode *Node,
1450                                  SmallVectorImpl<SDValue> &Results) {
1451   SDValue Result, Overflow;
1452   if (!TLI.expandMULO(Node, Result, Overflow, DAG))
1453     std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node);
1454 
1455   Results.push_back(Result);
1456   Results.push_back(Overflow);
1457 }
1458 
1459 SDValue VectorLegalizer::ExpandFixedPointDiv(SDNode *Node) {
1460   SDNode *N = Node;
1461   if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N),
1462           N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG))
1463     return Expanded;
1464   return DAG.UnrollVectorOp(N);
1465 }
1466 
1467 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node,
1468                                        SmallVectorImpl<SDValue> &Results) {
1469   if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) {
1470     ExpandUINT_TO_FLOAT(Node, Results);
1471     return;
1472   }
1473   if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) {
1474     ExpandFP_TO_UINT(Node, Results);
1475     return;
1476   }
1477 
1478   UnrollStrictFPOp(Node, Results);
1479 }
1480 
1481 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node,
1482                                        SmallVectorImpl<SDValue> &Results) {
1483   EVT VT = Node->getValueType(0);
1484   EVT EltVT = VT.getVectorElementType();
1485   unsigned NumElems = VT.getVectorNumElements();
1486   unsigned NumOpers = Node->getNumOperands();
1487   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1488 
1489   EVT TmpEltVT = EltVT;
1490   if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1491       Node->getOpcode() == ISD::STRICT_FSETCCS)
1492     TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
1493                                       *DAG.getContext(), TmpEltVT);
1494 
1495   EVT ValueVTs[] = {TmpEltVT, MVT::Other};
1496   SDValue Chain = Node->getOperand(0);
1497   SDLoc dl(Node);
1498 
1499   SmallVector<SDValue, 32> OpValues;
1500   SmallVector<SDValue, 32> OpChains;
1501   for (unsigned i = 0; i < NumElems; ++i) {
1502     SmallVector<SDValue, 4> Opers;
1503     SDValue Idx = DAG.getConstant(i, dl,
1504                                   TLI.getVectorIdxTy(DAG.getDataLayout()));
1505 
1506     // The Chain is the first operand.
1507     Opers.push_back(Chain);
1508 
1509     // Now process the remaining operands.
1510     for (unsigned j = 1; j < NumOpers; ++j) {
1511       SDValue Oper = Node->getOperand(j);
1512       EVT OperVT = Oper.getValueType();
1513 
1514       if (OperVT.isVector())
1515         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1516                            OperVT.getVectorElementType(), Oper, Idx);
1517 
1518       Opers.push_back(Oper);
1519     }
1520 
1521     SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers);
1522     SDValue ScalarResult = ScalarOp.getValue(0);
1523     SDValue ScalarChain = ScalarOp.getValue(1);
1524 
1525     if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1526         Node->getOpcode() == ISD::STRICT_FSETCCS)
1527       ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
1528                            DAG.getConstant(APInt::getAllOnesValue
1529                                            (EltVT.getSizeInBits()), dl, EltVT),
1530                            DAG.getConstant(0, dl, EltVT));
1531 
1532     OpValues.push_back(ScalarResult);
1533     OpChains.push_back(ScalarChain);
1534   }
1535 
1536   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1537   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1538 
1539   Results.push_back(Result);
1540   Results.push_back(NewChain);
1541 }
1542 
1543 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) {
1544   EVT VT = Node->getValueType(0);
1545   unsigned NumElems = VT.getVectorNumElements();
1546   EVT EltVT = VT.getVectorElementType();
1547   SDValue LHS = Node->getOperand(0);
1548   SDValue RHS = Node->getOperand(1);
1549   SDValue CC = Node->getOperand(2);
1550   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1551   SDLoc dl(Node);
1552   SmallVector<SDValue, 8> Ops(NumElems);
1553   for (unsigned i = 0; i < NumElems; ++i) {
1554     SDValue LHSElem = DAG.getNode(
1555         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1556         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1557     SDValue RHSElem = DAG.getNode(
1558         ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1559         DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1560     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1561                          TLI.getSetCCResultType(DAG.getDataLayout(),
1562                                                 *DAG.getContext(), TmpEltVT),
1563                          LHSElem, RHSElem, CC);
1564     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1565                            DAG.getConstant(APInt::getAllOnesValue
1566                                            (EltVT.getSizeInBits()), dl, EltVT),
1567                            DAG.getConstant(0, dl, EltVT));
1568   }
1569   return DAG.getBuildVector(VT, dl, Ops);
1570 }
1571 
1572 bool SelectionDAG::LegalizeVectors() {
1573   return VectorLegalizer(*this).Run();
1574 }
1575