1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::LegalizeVectors method. 10 // 11 // The vector legalizer looks for vector operations which might need to be 12 // scalarized and legalizes them. This is a separate step from Legalize because 13 // scalarizing can introduce illegal types. For example, suppose we have an 14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 16 // operation, which introduces nodes with the illegal type i64 which must be 17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 18 // the operation must be unrolled, which introduces nodes with the illegal 19 // type i8 which must be promoted. 20 // 21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 22 // or operations that happen to take a vector which are custom-lowered; 23 // the legalization for such operations never produces nodes 24 // with illegal types, so it's okay to put off legalizing them until 25 // SelectionDAG::Legalize runs. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/SelectionDAGNodes.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include <cassert> 46 #include <cstdint> 47 #include <iterator> 48 #include <utility> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "legalizevectorops" 53 54 namespace { 55 56 class VectorLegalizer { 57 SelectionDAG& DAG; 58 const TargetLowering &TLI; 59 bool Changed = false; // Keep track of whether anything changed 60 61 /// For nodes that are of legal width, and that have more than one use, this 62 /// map indicates what regularized operand to use. This allows us to avoid 63 /// legalizing the same thing more than once. 64 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 65 66 /// Adds a node to the translation cache. 67 void AddLegalizedOperand(SDValue From, SDValue To) { 68 LegalizedNodes.insert(std::make_pair(From, To)); 69 // If someone requests legalization of the new node, return itself. 70 if (From != To) 71 LegalizedNodes.insert(std::make_pair(To, To)); 72 } 73 74 /// Legalizes the given node. 75 SDValue LegalizeOp(SDValue Op); 76 77 /// Assuming the node is legal, "legalize" the results. 78 SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result); 79 80 /// Make sure Results are legal and update the translation cache. 81 SDValue RecursivelyLegalizeResults(SDValue Op, 82 MutableArrayRef<SDValue> Results); 83 84 /// Wrapper to interface LowerOperation with a vector of Results. 85 /// Returns false if the target wants to use default expansion. Otherwise 86 /// returns true. If return is true and the Results are empty, then the 87 /// target wants to keep the input node as is. 88 bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results); 89 90 /// Implements unrolling a VSETCC. 91 SDValue UnrollVSETCC(SDNode *Node); 92 93 /// Implement expand-based legalization of vector operations. 94 /// 95 /// This is just a high-level routine to dispatch to specific code paths for 96 /// operations to legalize them. 97 void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results); 98 99 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if 100 /// FP_TO_SINT isn't legal. 101 void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 102 103 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 104 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 105 void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 106 107 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 108 SDValue ExpandSEXTINREG(SDNode *Node); 109 110 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 111 /// 112 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 113 /// type. The contents of the bits in the extended part of each element are 114 /// undef. 115 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node); 116 117 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 118 /// 119 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 120 /// type, then shifts left and arithmetic shifts right to introduce a sign 121 /// extension. 122 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node); 123 124 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 125 /// 126 /// Shuffles the low lanes of the operand into place and blends zeros into 127 /// the remaining lanes, finally bitcasting to the proper type. 128 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node); 129 130 /// Expand bswap of vectors into a shuffle if legal. 131 SDValue ExpandBSWAP(SDNode *Node); 132 133 /// Implement vselect in terms of XOR, AND, OR when blend is not 134 /// supported by the target. 135 SDValue ExpandVSELECT(SDNode *Node); 136 SDValue ExpandVP_SELECT(SDNode *Node); 137 SDValue ExpandVP_MERGE(SDNode *Node); 138 SDValue ExpandSELECT(SDNode *Node); 139 std::pair<SDValue, SDValue> ExpandLoad(SDNode *N); 140 SDValue ExpandStore(SDNode *N); 141 SDValue ExpandFNEG(SDNode *Node); 142 void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results); 143 void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results); 144 void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results); 145 void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 146 void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 147 void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 148 void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results); 149 void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 150 void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results); 151 152 void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 153 154 /// Implements vector promotion. 155 /// 156 /// This is essentially just bitcasting the operands to a different type and 157 /// bitcasting the result back to the original type. 158 void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results); 159 160 /// Implements [SU]INT_TO_FP vector promotion. 161 /// 162 /// This is a [zs]ext of the input operand to a larger integer type. 163 void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results); 164 165 /// Implements FP_TO_[SU]INT vector promotion of the result type. 166 /// 167 /// It is promoted to a larger integer type. The result is then 168 /// truncated back to the original type. 169 void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 170 171 public: 172 VectorLegalizer(SelectionDAG& dag) : 173 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 174 175 /// Begin legalizer the vector operations in the DAG. 176 bool Run(); 177 }; 178 179 } // end anonymous namespace 180 181 bool VectorLegalizer::Run() { 182 // Before we start legalizing vector nodes, check if there are any vectors. 183 bool HasVectors = false; 184 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 185 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 186 // Check if the values of the nodes contain vectors. We don't need to check 187 // the operands because we are going to check their values at some point. 188 HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); }); 189 190 // If we found a vector node we can start the legalization. 191 if (HasVectors) 192 break; 193 } 194 195 // If this basic block has no vectors then no need to legalize vectors. 196 if (!HasVectors) 197 return false; 198 199 // The legalize process is inherently a bottom-up recursive process (users 200 // legalize their uses before themselves). Given infinite stack space, we 201 // could just start legalizing on the root and traverse the whole graph. In 202 // practice however, this causes us to run out of stack space on large basic 203 // blocks. To avoid this problem, compute an ordering of the nodes where each 204 // node is only legalized after all of its operands are legalized. 205 DAG.AssignTopologicalOrder(); 206 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 207 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 208 LegalizeOp(SDValue(&*I, 0)); 209 210 // Finally, it's possible the root changed. Get the new root. 211 SDValue OldRoot = DAG.getRoot(); 212 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 213 DAG.setRoot(LegalizedNodes[OldRoot]); 214 215 LegalizedNodes.clear(); 216 217 // Remove dead nodes now. 218 DAG.RemoveDeadNodes(); 219 220 return Changed; 221 } 222 223 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) { 224 assert(Op->getNumValues() == Result->getNumValues() && 225 "Unexpected number of results"); 226 // Generic legalization: just pass the operand through. 227 for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i) 228 AddLegalizedOperand(Op.getValue(i), SDValue(Result, i)); 229 return SDValue(Result, Op.getResNo()); 230 } 231 232 SDValue 233 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op, 234 MutableArrayRef<SDValue> Results) { 235 assert(Results.size() == Op->getNumValues() && 236 "Unexpected number of results"); 237 // Make sure that the generated code is itself legal. 238 for (unsigned i = 0, e = Results.size(); i != e; ++i) { 239 Results[i] = LegalizeOp(Results[i]); 240 AddLegalizedOperand(Op.getValue(i), Results[i]); 241 } 242 243 return Results[Op.getResNo()]; 244 } 245 246 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 247 // Note that LegalizeOp may be reentered even from single-use nodes, which 248 // means that we always must cache transformed nodes. 249 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 250 if (I != LegalizedNodes.end()) return I->second; 251 252 // Legalize the operands 253 SmallVector<SDValue, 8> Ops; 254 for (const SDValue &Oper : Op->op_values()) 255 Ops.push_back(LegalizeOp(Oper)); 256 257 SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops); 258 259 bool HasVectorValueOrOp = 260 llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) || 261 llvm::any_of(Node->op_values(), 262 [](SDValue O) { return O.getValueType().isVector(); }); 263 if (!HasVectorValueOrOp) 264 return TranslateLegalizeResults(Op, Node); 265 266 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 267 EVT ValVT; 268 switch (Op.getOpcode()) { 269 default: 270 return TranslateLegalizeResults(Op, Node); 271 case ISD::LOAD: { 272 LoadSDNode *LD = cast<LoadSDNode>(Node); 273 ISD::LoadExtType ExtType = LD->getExtensionType(); 274 EVT LoadedVT = LD->getMemoryVT(); 275 if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD) 276 Action = TLI.getLoadExtAction(ExtType, LD->getValueType(0), LoadedVT); 277 break; 278 } 279 case ISD::STORE: { 280 StoreSDNode *ST = cast<StoreSDNode>(Node); 281 EVT StVT = ST->getMemoryVT(); 282 MVT ValVT = ST->getValue().getSimpleValueType(); 283 if (StVT.isVector() && ST->isTruncatingStore()) 284 Action = TLI.getTruncStoreAction(ValVT, StVT); 285 break; 286 } 287 case ISD::MERGE_VALUES: 288 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 289 // This operation lies about being legal: when it claims to be legal, 290 // it should actually be expanded. 291 if (Action == TargetLowering::Legal) 292 Action = TargetLowering::Expand; 293 break; 294 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 295 case ISD::STRICT_##DAGN: 296 #include "llvm/IR/ConstrainedOps.def" 297 ValVT = Node->getValueType(0); 298 if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP || 299 Op.getOpcode() == ISD::STRICT_UINT_TO_FP) 300 ValVT = Node->getOperand(1).getValueType(); 301 Action = TLI.getOperationAction(Node->getOpcode(), ValVT); 302 // If we're asked to expand a strict vector floating-point operation, 303 // by default we're going to simply unroll it. That is usually the 304 // best approach, except in the case where the resulting strict (scalar) 305 // operations would themselves use the fallback mutation to non-strict. 306 // In that specific case, just do the fallback on the vector op. 307 if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() && 308 TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) == 309 TargetLowering::Legal) { 310 EVT EltVT = ValVT.getVectorElementType(); 311 if (TLI.getOperationAction(Node->getOpcode(), EltVT) 312 == TargetLowering::Expand && 313 TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT) 314 == TargetLowering::Legal) 315 Action = TargetLowering::Legal; 316 } 317 break; 318 case ISD::ADD: 319 case ISD::SUB: 320 case ISD::MUL: 321 case ISD::MULHS: 322 case ISD::MULHU: 323 case ISD::SDIV: 324 case ISD::UDIV: 325 case ISD::SREM: 326 case ISD::UREM: 327 case ISD::SDIVREM: 328 case ISD::UDIVREM: 329 case ISD::FADD: 330 case ISD::FSUB: 331 case ISD::FMUL: 332 case ISD::FDIV: 333 case ISD::FREM: 334 case ISD::AND: 335 case ISD::OR: 336 case ISD::XOR: 337 case ISD::SHL: 338 case ISD::SRA: 339 case ISD::SRL: 340 case ISD::FSHL: 341 case ISD::FSHR: 342 case ISD::ROTL: 343 case ISD::ROTR: 344 case ISD::ABS: 345 case ISD::BSWAP: 346 case ISD::BITREVERSE: 347 case ISD::CTLZ: 348 case ISD::CTTZ: 349 case ISD::CTLZ_ZERO_UNDEF: 350 case ISD::CTTZ_ZERO_UNDEF: 351 case ISD::CTPOP: 352 case ISD::SELECT: 353 case ISD::VSELECT: 354 case ISD::SELECT_CC: 355 case ISD::ZERO_EXTEND: 356 case ISD::ANY_EXTEND: 357 case ISD::TRUNCATE: 358 case ISD::SIGN_EXTEND: 359 case ISD::FP_TO_SINT: 360 case ISD::FP_TO_UINT: 361 case ISD::FNEG: 362 case ISD::FABS: 363 case ISD::FMINNUM: 364 case ISD::FMAXNUM: 365 case ISD::FMINNUM_IEEE: 366 case ISD::FMAXNUM_IEEE: 367 case ISD::FMINIMUM: 368 case ISD::FMAXIMUM: 369 case ISD::FCOPYSIGN: 370 case ISD::FSQRT: 371 case ISD::FSIN: 372 case ISD::FCOS: 373 case ISD::FPOWI: 374 case ISD::FPOW: 375 case ISD::FLOG: 376 case ISD::FLOG2: 377 case ISD::FLOG10: 378 case ISD::FEXP: 379 case ISD::FEXP2: 380 case ISD::FCEIL: 381 case ISD::FTRUNC: 382 case ISD::FRINT: 383 case ISD::FNEARBYINT: 384 case ISD::FROUND: 385 case ISD::FROUNDEVEN: 386 case ISD::FFLOOR: 387 case ISD::FP_ROUND: 388 case ISD::FP_EXTEND: 389 case ISD::FMA: 390 case ISD::SIGN_EXTEND_INREG: 391 case ISD::ANY_EXTEND_VECTOR_INREG: 392 case ISD::SIGN_EXTEND_VECTOR_INREG: 393 case ISD::ZERO_EXTEND_VECTOR_INREG: 394 case ISD::SMIN: 395 case ISD::SMAX: 396 case ISD::UMIN: 397 case ISD::UMAX: 398 case ISD::SMUL_LOHI: 399 case ISD::UMUL_LOHI: 400 case ISD::SADDO: 401 case ISD::UADDO: 402 case ISD::SSUBO: 403 case ISD::USUBO: 404 case ISD::SMULO: 405 case ISD::UMULO: 406 case ISD::FCANONICALIZE: 407 case ISD::SADDSAT: 408 case ISD::UADDSAT: 409 case ISD::SSUBSAT: 410 case ISD::USUBSAT: 411 case ISD::SSHLSAT: 412 case ISD::USHLSAT: 413 case ISD::FP_TO_SINT_SAT: 414 case ISD::FP_TO_UINT_SAT: 415 case ISD::MGATHER: 416 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 417 break; 418 case ISD::SMULFIX: 419 case ISD::SMULFIXSAT: 420 case ISD::UMULFIX: 421 case ISD::UMULFIXSAT: 422 case ISD::SDIVFIX: 423 case ISD::SDIVFIXSAT: 424 case ISD::UDIVFIX: 425 case ISD::UDIVFIXSAT: { 426 unsigned Scale = Node->getConstantOperandVal(2); 427 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 428 Node->getValueType(0), Scale); 429 break; 430 } 431 case ISD::SINT_TO_FP: 432 case ISD::UINT_TO_FP: 433 case ISD::VECREDUCE_ADD: 434 case ISD::VECREDUCE_MUL: 435 case ISD::VECREDUCE_AND: 436 case ISD::VECREDUCE_OR: 437 case ISD::VECREDUCE_XOR: 438 case ISD::VECREDUCE_SMAX: 439 case ISD::VECREDUCE_SMIN: 440 case ISD::VECREDUCE_UMAX: 441 case ISD::VECREDUCE_UMIN: 442 case ISD::VECREDUCE_FADD: 443 case ISD::VECREDUCE_FMUL: 444 case ISD::VECREDUCE_FMAX: 445 case ISD::VECREDUCE_FMIN: 446 Action = TLI.getOperationAction(Node->getOpcode(), 447 Node->getOperand(0).getValueType()); 448 break; 449 case ISD::VECREDUCE_SEQ_FADD: 450 case ISD::VECREDUCE_SEQ_FMUL: 451 Action = TLI.getOperationAction(Node->getOpcode(), 452 Node->getOperand(1).getValueType()); 453 break; 454 case ISD::SETCC: { 455 MVT OpVT = Node->getOperand(0).getSimpleValueType(); 456 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 457 Action = TLI.getCondCodeAction(CCCode, OpVT); 458 if (Action == TargetLowering::Legal) 459 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 460 break; 461 } 462 463 #define BEGIN_REGISTER_VP_SDNODE(VPID, LEGALPOS, ...) \ 464 case ISD::VPID: { \ 465 EVT LegalizeVT = LEGALPOS < 0 ? Node->getValueType(-(1 + LEGALPOS)) \ 466 : Node->getOperand(LEGALPOS).getValueType(); \ 467 Action = TLI.getOperationAction(Node->getOpcode(), LegalizeVT); \ 468 } break; 469 #include "llvm/IR/VPIntrinsics.def" 470 } 471 472 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 473 474 SmallVector<SDValue, 8> ResultVals; 475 switch (Action) { 476 default: llvm_unreachable("This action is not supported yet!"); 477 case TargetLowering::Promote: 478 assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) && 479 "This action is not supported yet!"); 480 LLVM_DEBUG(dbgs() << "Promoting\n"); 481 Promote(Node, ResultVals); 482 assert(!ResultVals.empty() && "No results for promotion?"); 483 break; 484 case TargetLowering::Legal: 485 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 486 break; 487 case TargetLowering::Custom: 488 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 489 if (LowerOperationWrapper(Node, ResultVals)) 490 break; 491 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 492 LLVM_FALLTHROUGH; 493 case TargetLowering::Expand: 494 LLVM_DEBUG(dbgs() << "Expanding\n"); 495 Expand(Node, ResultVals); 496 break; 497 } 498 499 if (ResultVals.empty()) 500 return TranslateLegalizeResults(Op, Node); 501 502 Changed = true; 503 return RecursivelyLegalizeResults(Op, ResultVals); 504 } 505 506 // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we 507 // merge them somehow? 508 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node, 509 SmallVectorImpl<SDValue> &Results) { 510 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 511 512 if (!Res.getNode()) 513 return false; 514 515 if (Res == SDValue(Node, 0)) 516 return true; 517 518 // If the original node has one result, take the return value from 519 // LowerOperation as is. It might not be result number 0. 520 if (Node->getNumValues() == 1) { 521 Results.push_back(Res); 522 return true; 523 } 524 525 // If the original node has multiple results, then the return node should 526 // have the same number of results. 527 assert((Node->getNumValues() == Res->getNumValues()) && 528 "Lowering returned the wrong number of results!"); 529 530 // Places new result values base on N result number. 531 for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I) 532 Results.push_back(Res.getValue(I)); 533 534 return true; 535 } 536 537 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 538 // For a few operations there is a specific concept for promotion based on 539 // the operand's type. 540 switch (Node->getOpcode()) { 541 case ISD::SINT_TO_FP: 542 case ISD::UINT_TO_FP: 543 case ISD::STRICT_SINT_TO_FP: 544 case ISD::STRICT_UINT_TO_FP: 545 // "Promote" the operation by extending the operand. 546 PromoteINT_TO_FP(Node, Results); 547 return; 548 case ISD::FP_TO_UINT: 549 case ISD::FP_TO_SINT: 550 case ISD::STRICT_FP_TO_UINT: 551 case ISD::STRICT_FP_TO_SINT: 552 // Promote the operation by extending the operand. 553 PromoteFP_TO_INT(Node, Results); 554 return; 555 case ISD::FP_ROUND: 556 case ISD::FP_EXTEND: 557 // These operations are used to do promotion so they can't be promoted 558 // themselves. 559 llvm_unreachable("Don't know how to promote this operation!"); 560 } 561 562 // There are currently two cases of vector promotion: 563 // 1) Bitcasting a vector of integers to a different type to a vector of the 564 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 565 // 2) Extending a vector of floats to a vector of the same number of larger 566 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 567 assert(Node->getNumValues() == 1 && 568 "Can't promote a vector with multiple results!"); 569 MVT VT = Node->getSimpleValueType(0); 570 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 571 SDLoc dl(Node); 572 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 573 574 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 575 if (Node->getOperand(j).getValueType().isVector()) 576 if (Node->getOperand(j) 577 .getValueType() 578 .getVectorElementType() 579 .isFloatingPoint() && 580 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 581 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j)); 582 else 583 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j)); 584 else 585 Operands[j] = Node->getOperand(j); 586 } 587 588 SDValue Res = 589 DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags()); 590 591 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 592 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 593 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 594 Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl)); 595 else 596 Res = DAG.getNode(ISD::BITCAST, dl, VT, Res); 597 598 Results.push_back(Res); 599 } 600 601 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node, 602 SmallVectorImpl<SDValue> &Results) { 603 // INT_TO_FP operations may require the input operand be promoted even 604 // when the type is otherwise legal. 605 bool IsStrict = Node->isStrictFPOpcode(); 606 MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType(); 607 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 608 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 609 "Vectors have different number of elements!"); 610 611 SDLoc dl(Node); 612 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 613 614 unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP || 615 Node->getOpcode() == ISD::STRICT_UINT_TO_FP) 616 ? ISD::ZERO_EXTEND 617 : ISD::SIGN_EXTEND; 618 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 619 if (Node->getOperand(j).getValueType().isVector()) 620 Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j)); 621 else 622 Operands[j] = Node->getOperand(j); 623 } 624 625 if (IsStrict) { 626 SDValue Res = DAG.getNode(Node->getOpcode(), dl, 627 {Node->getValueType(0), MVT::Other}, Operands); 628 Results.push_back(Res); 629 Results.push_back(Res.getValue(1)); 630 return; 631 } 632 633 SDValue Res = 634 DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands); 635 Results.push_back(Res); 636 } 637 638 // For FP_TO_INT we promote the result type to a vector type with wider 639 // elements and then truncate the result. This is different from the default 640 // PromoteVector which uses bitcast to promote thus assumning that the 641 // promoted vector type has the same overall size. 642 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node, 643 SmallVectorImpl<SDValue> &Results) { 644 MVT VT = Node->getSimpleValueType(0); 645 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 646 bool IsStrict = Node->isStrictFPOpcode(); 647 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 648 "Vectors have different number of elements!"); 649 650 unsigned NewOpc = Node->getOpcode(); 651 // Change FP_TO_UINT to FP_TO_SINT if possible. 652 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 653 if (NewOpc == ISD::FP_TO_UINT && 654 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 655 NewOpc = ISD::FP_TO_SINT; 656 657 if (NewOpc == ISD::STRICT_FP_TO_UINT && 658 TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT)) 659 NewOpc = ISD::STRICT_FP_TO_SINT; 660 661 SDLoc dl(Node); 662 SDValue Promoted, Chain; 663 if (IsStrict) { 664 Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other}, 665 {Node->getOperand(0), Node->getOperand(1)}); 666 Chain = Promoted.getValue(1); 667 } else 668 Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0)); 669 670 // Assert that the converted value fits in the original type. If it doesn't 671 // (eg: because the value being converted is too big), then the result of the 672 // original operation was undefined anyway, so the assert is still correct. 673 if (Node->getOpcode() == ISD::FP_TO_UINT || 674 Node->getOpcode() == ISD::STRICT_FP_TO_UINT) 675 NewOpc = ISD::AssertZext; 676 else 677 NewOpc = ISD::AssertSext; 678 679 Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted, 680 DAG.getValueType(VT.getScalarType())); 681 Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 682 Results.push_back(Promoted); 683 if (IsStrict) 684 Results.push_back(Chain); 685 } 686 687 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) { 688 LoadSDNode *LD = cast<LoadSDNode>(N); 689 return TLI.scalarizeVectorLoad(LD, DAG); 690 } 691 692 SDValue VectorLegalizer::ExpandStore(SDNode *N) { 693 StoreSDNode *ST = cast<StoreSDNode>(N); 694 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 695 return TF; 696 } 697 698 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 699 switch (Node->getOpcode()) { 700 case ISD::LOAD: { 701 std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node); 702 Results.push_back(Tmp.first); 703 Results.push_back(Tmp.second); 704 return; 705 } 706 case ISD::STORE: 707 Results.push_back(ExpandStore(Node)); 708 return; 709 case ISD::MERGE_VALUES: 710 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 711 Results.push_back(Node->getOperand(i)); 712 return; 713 case ISD::SIGN_EXTEND_INREG: 714 Results.push_back(ExpandSEXTINREG(Node)); 715 return; 716 case ISD::ANY_EXTEND_VECTOR_INREG: 717 Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node)); 718 return; 719 case ISD::SIGN_EXTEND_VECTOR_INREG: 720 Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node)); 721 return; 722 case ISD::ZERO_EXTEND_VECTOR_INREG: 723 Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node)); 724 return; 725 case ISD::BSWAP: 726 Results.push_back(ExpandBSWAP(Node)); 727 return; 728 case ISD::VSELECT: 729 Results.push_back(ExpandVSELECT(Node)); 730 return; 731 case ISD::VP_SELECT: 732 Results.push_back(ExpandVP_SELECT(Node)); 733 return; 734 case ISD::SELECT: 735 Results.push_back(ExpandSELECT(Node)); 736 return; 737 case ISD::FP_TO_UINT: 738 ExpandFP_TO_UINT(Node, Results); 739 return; 740 case ISD::UINT_TO_FP: 741 ExpandUINT_TO_FLOAT(Node, Results); 742 return; 743 case ISD::FNEG: 744 Results.push_back(ExpandFNEG(Node)); 745 return; 746 case ISD::FSUB: 747 ExpandFSUB(Node, Results); 748 return; 749 case ISD::SETCC: 750 ExpandSETCC(Node, Results); 751 return; 752 case ISD::ABS: 753 if (SDValue Expanded = TLI.expandABS(Node, DAG)) { 754 Results.push_back(Expanded); 755 return; 756 } 757 break; 758 case ISD::BITREVERSE: 759 ExpandBITREVERSE(Node, Results); 760 return; 761 case ISD::CTPOP: 762 if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) { 763 Results.push_back(Expanded); 764 return; 765 } 766 break; 767 case ISD::CTLZ: 768 case ISD::CTLZ_ZERO_UNDEF: 769 if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) { 770 Results.push_back(Expanded); 771 return; 772 } 773 break; 774 case ISD::CTTZ: 775 case ISD::CTTZ_ZERO_UNDEF: 776 if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) { 777 Results.push_back(Expanded); 778 return; 779 } 780 break; 781 case ISD::FSHL: 782 case ISD::FSHR: 783 if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) { 784 Results.push_back(Expanded); 785 return; 786 } 787 break; 788 case ISD::ROTL: 789 case ISD::ROTR: 790 if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) { 791 Results.push_back(Expanded); 792 return; 793 } 794 break; 795 case ISD::FMINNUM: 796 case ISD::FMAXNUM: 797 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) { 798 Results.push_back(Expanded); 799 return; 800 } 801 break; 802 case ISD::SMIN: 803 case ISD::SMAX: 804 case ISD::UMIN: 805 case ISD::UMAX: 806 if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) { 807 Results.push_back(Expanded); 808 return; 809 } 810 break; 811 case ISD::UADDO: 812 case ISD::USUBO: 813 ExpandUADDSUBO(Node, Results); 814 return; 815 case ISD::SADDO: 816 case ISD::SSUBO: 817 ExpandSADDSUBO(Node, Results); 818 return; 819 case ISD::UMULO: 820 case ISD::SMULO: 821 ExpandMULO(Node, Results); 822 return; 823 case ISD::USUBSAT: 824 case ISD::SSUBSAT: 825 case ISD::UADDSAT: 826 case ISD::SADDSAT: 827 if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) { 828 Results.push_back(Expanded); 829 return; 830 } 831 break; 832 case ISD::SMULFIX: 833 case ISD::UMULFIX: 834 if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) { 835 Results.push_back(Expanded); 836 return; 837 } 838 break; 839 case ISD::SMULFIXSAT: 840 case ISD::UMULFIXSAT: 841 // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly 842 // why. Maybe it results in worse codegen compared to the unroll for some 843 // targets? This should probably be investigated. And if we still prefer to 844 // unroll an explanation could be helpful. 845 break; 846 case ISD::SDIVFIX: 847 case ISD::UDIVFIX: 848 ExpandFixedPointDiv(Node, Results); 849 return; 850 case ISD::SDIVFIXSAT: 851 case ISD::UDIVFIXSAT: 852 break; 853 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 854 case ISD::STRICT_##DAGN: 855 #include "llvm/IR/ConstrainedOps.def" 856 ExpandStrictFPOp(Node, Results); 857 return; 858 case ISD::VECREDUCE_ADD: 859 case ISD::VECREDUCE_MUL: 860 case ISD::VECREDUCE_AND: 861 case ISD::VECREDUCE_OR: 862 case ISD::VECREDUCE_XOR: 863 case ISD::VECREDUCE_SMAX: 864 case ISD::VECREDUCE_SMIN: 865 case ISD::VECREDUCE_UMAX: 866 case ISD::VECREDUCE_UMIN: 867 case ISD::VECREDUCE_FADD: 868 case ISD::VECREDUCE_FMUL: 869 case ISD::VECREDUCE_FMAX: 870 case ISD::VECREDUCE_FMIN: 871 Results.push_back(TLI.expandVecReduce(Node, DAG)); 872 return; 873 case ISD::VECREDUCE_SEQ_FADD: 874 case ISD::VECREDUCE_SEQ_FMUL: 875 Results.push_back(TLI.expandVecReduceSeq(Node, DAG)); 876 return; 877 case ISD::SREM: 878 case ISD::UREM: 879 ExpandREM(Node, Results); 880 return; 881 case ISD::VP_MERGE: 882 Results.push_back(ExpandVP_MERGE(Node)); 883 return; 884 } 885 886 Results.push_back(DAG.UnrollVectorOp(Node)); 887 } 888 889 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) { 890 // Lower a select instruction where the condition is a scalar and the 891 // operands are vectors. Lower this select to VSELECT and implement it 892 // using XOR AND OR. The selector bit is broadcasted. 893 EVT VT = Node->getValueType(0); 894 SDLoc DL(Node); 895 896 SDValue Mask = Node->getOperand(0); 897 SDValue Op1 = Node->getOperand(1); 898 SDValue Op2 = Node->getOperand(2); 899 900 assert(VT.isVector() && !Mask.getValueType().isVector() 901 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 902 903 // If we can't even use the basic vector operations of 904 // AND,OR,XOR, we will have to scalarize the op. 905 // Notice that the operation may be 'promoted' which means that it is 906 // 'bitcasted' to another type which is handled. 907 // Also, we need to be able to construct a splat vector using either 908 // BUILD_VECTOR or SPLAT_VECTOR. 909 // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to 910 // BUILD_VECTOR? 911 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 912 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 913 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 914 TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR 915 : ISD::SPLAT_VECTOR, 916 VT) == TargetLowering::Expand) 917 return DAG.UnrollVectorOp(Node); 918 919 // Generate a mask operand. 920 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 921 922 // What is the size of each element in the vector mask. 923 EVT BitTy = MaskTy.getScalarType(); 924 925 Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy), 926 DAG.getConstant(0, DL, BitTy)); 927 928 // Broadcast the mask so that the entire vector is all one or all zero. 929 if (VT.isFixedLengthVector()) 930 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 931 else 932 Mask = DAG.getSplatVector(MaskTy, DL, Mask); 933 934 // Bitcast the operands to be the same type as the mask. 935 // This is needed when we select between FP types because 936 // the mask is a vector of integers. 937 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 938 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 939 940 SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy); 941 942 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 943 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 944 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 945 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 946 } 947 948 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) { 949 EVT VT = Node->getValueType(0); 950 951 // Make sure that the SRA and SHL instructions are available. 952 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 953 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 954 return DAG.UnrollVectorOp(Node); 955 956 SDLoc DL(Node); 957 EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT(); 958 959 unsigned BW = VT.getScalarSizeInBits(); 960 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 961 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 962 963 SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz); 964 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 965 } 966 967 // Generically expand a vector anyext in register to a shuffle of the relevant 968 // lanes into the appropriate locations, with other lanes left undef. 969 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) { 970 SDLoc DL(Node); 971 EVT VT = Node->getValueType(0); 972 int NumElements = VT.getVectorNumElements(); 973 SDValue Src = Node->getOperand(0); 974 EVT SrcVT = Src.getValueType(); 975 int NumSrcElements = SrcVT.getVectorNumElements(); 976 977 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 978 // into a larger vector type. 979 if (SrcVT.bitsLE(VT)) { 980 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 981 "ANY_EXTEND_VECTOR_INREG vector size mismatch"); 982 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 983 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 984 NumSrcElements); 985 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 986 Src, DAG.getVectorIdxConstant(0, DL)); 987 } 988 989 // Build a base mask of undef shuffles. 990 SmallVector<int, 16> ShuffleMask; 991 ShuffleMask.resize(NumSrcElements, -1); 992 993 // Place the extended lanes into the correct locations. 994 int ExtLaneScale = NumSrcElements / NumElements; 995 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 996 for (int i = 0; i < NumElements; ++i) 997 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 998 999 return DAG.getNode( 1000 ISD::BITCAST, DL, VT, 1001 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 1002 } 1003 1004 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) { 1005 SDLoc DL(Node); 1006 EVT VT = Node->getValueType(0); 1007 SDValue Src = Node->getOperand(0); 1008 EVT SrcVT = Src.getValueType(); 1009 1010 // First build an any-extend node which can be legalized above when we 1011 // recurse through it. 1012 SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); 1013 1014 // Now we need sign extend. Do this by shifting the elements. Even if these 1015 // aren't legal operations, they have a better chance of being legalized 1016 // without full scalarization than the sign extension does. 1017 unsigned EltWidth = VT.getScalarSizeInBits(); 1018 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 1019 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 1020 return DAG.getNode(ISD::SRA, DL, VT, 1021 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 1022 ShiftAmount); 1023 } 1024 1025 // Generically expand a vector zext in register to a shuffle of the relevant 1026 // lanes into the appropriate locations, a blend of zero into the high bits, 1027 // and a bitcast to the wider element type. 1028 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) { 1029 SDLoc DL(Node); 1030 EVT VT = Node->getValueType(0); 1031 int NumElements = VT.getVectorNumElements(); 1032 SDValue Src = Node->getOperand(0); 1033 EVT SrcVT = Src.getValueType(); 1034 int NumSrcElements = SrcVT.getVectorNumElements(); 1035 1036 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 1037 // into a larger vector type. 1038 if (SrcVT.bitsLE(VT)) { 1039 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 1040 "ZERO_EXTEND_VECTOR_INREG vector size mismatch"); 1041 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 1042 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1043 NumSrcElements); 1044 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 1045 Src, DAG.getVectorIdxConstant(0, DL)); 1046 } 1047 1048 // Build up a zero vector to blend into this one. 1049 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 1050 1051 // Shuffle the incoming lanes into the correct position, and pull all other 1052 // lanes from the zero vector. 1053 SmallVector<int, 16> ShuffleMask; 1054 ShuffleMask.reserve(NumSrcElements); 1055 for (int i = 0; i < NumSrcElements; ++i) 1056 ShuffleMask.push_back(i); 1057 1058 int ExtLaneScale = NumSrcElements / NumElements; 1059 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1060 for (int i = 0; i < NumElements; ++i) 1061 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 1062 1063 return DAG.getNode(ISD::BITCAST, DL, VT, 1064 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 1065 } 1066 1067 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 1068 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 1069 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 1070 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 1071 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 1072 } 1073 1074 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) { 1075 EVT VT = Node->getValueType(0); 1076 1077 // Scalable vectors can't use shuffle expansion. 1078 if (VT.isScalableVector()) 1079 return TLI.expandBSWAP(Node, DAG); 1080 1081 // Generate a byte wise shuffle mask for the BSWAP. 1082 SmallVector<int, 16> ShuffleMask; 1083 createBSWAPShuffleMask(VT, ShuffleMask); 1084 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 1085 1086 // Only emit a shuffle if the mask is legal. 1087 if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) { 1088 SDLoc DL(Node); 1089 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1090 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 1091 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1092 } 1093 1094 // If we have the appropriate vector bit operations, it is better to use them 1095 // than unrolling and expanding each component. 1096 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 1097 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1098 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && 1099 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 1100 return TLI.expandBSWAP(Node, DAG); 1101 1102 // Otherwise unroll. 1103 return DAG.UnrollVectorOp(Node); 1104 } 1105 1106 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node, 1107 SmallVectorImpl<SDValue> &Results) { 1108 EVT VT = Node->getValueType(0); 1109 1110 // We can't unroll or use shuffles for scalable vectors. 1111 if (VT.isScalableVector()) { 1112 Results.push_back(TLI.expandBITREVERSE(Node, DAG)); 1113 return; 1114 } 1115 1116 // If we have the scalar operation, it's probably cheaper to unroll it. 1117 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) { 1118 SDValue Tmp = DAG.UnrollVectorOp(Node); 1119 Results.push_back(Tmp); 1120 return; 1121 } 1122 1123 // If the vector element width is a whole number of bytes, test if its legal 1124 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 1125 // vector. This greatly reduces the number of bit shifts necessary. 1126 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 1127 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 1128 SmallVector<int, 16> BSWAPMask; 1129 createBSWAPShuffleMask(VT, BSWAPMask); 1130 1131 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 1132 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 1133 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 1134 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 1135 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 1136 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 1137 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 1138 SDLoc DL(Node); 1139 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1140 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 1141 BSWAPMask); 1142 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 1143 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 1144 Results.push_back(Op); 1145 return; 1146 } 1147 } 1148 1149 // If we have the appropriate vector bit operations, it is better to use them 1150 // than unrolling and expanding each component. 1151 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 1152 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1153 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && 1154 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) { 1155 Results.push_back(TLI.expandBITREVERSE(Node, DAG)); 1156 return; 1157 } 1158 1159 // Otherwise unroll. 1160 SDValue Tmp = DAG.UnrollVectorOp(Node); 1161 Results.push_back(Tmp); 1162 } 1163 1164 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) { 1165 // Implement VSELECT in terms of XOR, AND, OR 1166 // on platforms which do not support blend natively. 1167 SDLoc DL(Node); 1168 1169 SDValue Mask = Node->getOperand(0); 1170 SDValue Op1 = Node->getOperand(1); 1171 SDValue Op2 = Node->getOperand(2); 1172 1173 EVT VT = Mask.getValueType(); 1174 1175 // If we can't even use the basic vector operations of 1176 // AND,OR,XOR, we will have to scalarize the op. 1177 // Notice that the operation may be 'promoted' which means that it is 1178 // 'bitcasted' to another type which is handled. 1179 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1180 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1181 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand) 1182 return DAG.UnrollVectorOp(Node); 1183 1184 // This operation also isn't safe with AND, OR, XOR when the boolean type is 1185 // 0/1 and the select operands aren't also booleans, as we need an all-ones 1186 // vector constant to mask with. 1187 // FIXME: Sign extend 1 to all ones if that's legal on the target. 1188 auto BoolContents = TLI.getBooleanContents(Op1.getValueType()); 1189 if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent && 1190 !(BoolContents == TargetLowering::ZeroOrOneBooleanContent && 1191 Op1.getValueType().getVectorElementType() == MVT::i1)) 1192 return DAG.UnrollVectorOp(Node); 1193 1194 // If the mask and the type are different sizes, unroll the vector op. This 1195 // can occur when getSetCCResultType returns something that is different in 1196 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1197 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1198 return DAG.UnrollVectorOp(Node); 1199 1200 // Bitcast the operands to be the same type as the mask. 1201 // This is needed when we select between FP types because 1202 // the mask is a vector of integers. 1203 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1204 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1205 1206 SDValue NotMask = DAG.getNOT(DL, Mask, VT); 1207 1208 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1209 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1210 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1211 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 1212 } 1213 1214 SDValue VectorLegalizer::ExpandVP_SELECT(SDNode *Node) { 1215 // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which 1216 // do not support it natively. 1217 SDLoc DL(Node); 1218 1219 SDValue Mask = Node->getOperand(0); 1220 SDValue Op1 = Node->getOperand(1); 1221 SDValue Op2 = Node->getOperand(2); 1222 SDValue EVL = Node->getOperand(3); 1223 1224 EVT VT = Mask.getValueType(); 1225 1226 // If we can't even use the basic vector operations of 1227 // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op. 1228 if (TLI.getOperationAction(ISD::VP_AND, VT) == TargetLowering::Expand || 1229 TLI.getOperationAction(ISD::VP_XOR, VT) == TargetLowering::Expand || 1230 TLI.getOperationAction(ISD::VP_OR, VT) == TargetLowering::Expand) 1231 return DAG.UnrollVectorOp(Node); 1232 1233 // This operation also isn't safe when the operands aren't also booleans. 1234 if (Op1.getValueType().getVectorElementType() != MVT::i1) 1235 return DAG.UnrollVectorOp(Node); 1236 1237 SDValue Ones = DAG.getAllOnesConstant(DL, VT); 1238 SDValue NotMask = DAG.getNode(ISD::VP_XOR, DL, VT, Mask, Ones, Mask, EVL); 1239 1240 Op1 = DAG.getNode(ISD::VP_AND, DL, VT, Op1, Mask, Mask, EVL); 1241 Op2 = DAG.getNode(ISD::VP_AND, DL, VT, Op2, NotMask, Mask, EVL); 1242 return DAG.getNode(ISD::VP_OR, DL, VT, Op1, Op2, Mask, EVL); 1243 } 1244 1245 SDValue VectorLegalizer::ExpandVP_MERGE(SDNode *Node) { 1246 // Implement VP_MERGE in terms of VSELECT. Construct a mask where vector 1247 // indices less than the EVL/pivot are true. Combine that with the original 1248 // mask for a full-length mask. Use a full-length VSELECT to select between 1249 // the true and false values. 1250 SDLoc DL(Node); 1251 1252 SDValue Mask = Node->getOperand(0); 1253 SDValue Op1 = Node->getOperand(1); 1254 SDValue Op2 = Node->getOperand(2); 1255 SDValue EVL = Node->getOperand(3); 1256 1257 EVT MaskVT = Mask.getValueType(); 1258 bool IsFixedLen = MaskVT.isFixedLengthVector(); 1259 1260 EVT EVLVecVT = EVT::getVectorVT(*DAG.getContext(), EVL.getValueType(), 1261 MaskVT.getVectorElementCount()); 1262 1263 // If we can't construct the EVL mask efficiently, it's better to unroll. 1264 if ((IsFixedLen && 1265 !TLI.isOperationLegalOrCustom(ISD::BUILD_VECTOR, EVLVecVT)) || 1266 (!IsFixedLen && 1267 (!TLI.isOperationLegalOrCustom(ISD::STEP_VECTOR, EVLVecVT) || 1268 !TLI.isOperationLegalOrCustom(ISD::SPLAT_VECTOR, EVLVecVT)))) 1269 return DAG.UnrollVectorOp(Node); 1270 1271 // If using a SETCC would result in a different type than the mask type, 1272 // unroll. 1273 if (TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1274 EVLVecVT) != MaskVT) 1275 return DAG.UnrollVectorOp(Node); 1276 1277 SDValue StepVec = DAG.getStepVector(DL, EVLVecVT); 1278 SDValue SplatEVL = IsFixedLen ? DAG.getSplatBuildVector(EVLVecVT, DL, EVL) 1279 : DAG.getSplatVector(EVLVecVT, DL, EVL); 1280 SDValue EVLMask = 1281 DAG.getSetCC(DL, MaskVT, StepVec, SplatEVL, ISD::CondCode::SETULT); 1282 1283 SDValue FullMask = DAG.getNode(ISD::AND, DL, MaskVT, Mask, EVLMask); 1284 return DAG.getSelect(DL, Node->getValueType(0), FullMask, Op1, Op2); 1285 } 1286 1287 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node, 1288 SmallVectorImpl<SDValue> &Results) { 1289 // Attempt to expand using TargetLowering. 1290 SDValue Result, Chain; 1291 if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) { 1292 Results.push_back(Result); 1293 if (Node->isStrictFPOpcode()) 1294 Results.push_back(Chain); 1295 return; 1296 } 1297 1298 // Otherwise go ahead and unroll. 1299 if (Node->isStrictFPOpcode()) { 1300 UnrollStrictFPOp(Node, Results); 1301 return; 1302 } 1303 1304 Results.push_back(DAG.UnrollVectorOp(Node)); 1305 } 1306 1307 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node, 1308 SmallVectorImpl<SDValue> &Results) { 1309 bool IsStrict = Node->isStrictFPOpcode(); 1310 unsigned OpNo = IsStrict ? 1 : 0; 1311 SDValue Src = Node->getOperand(OpNo); 1312 EVT VT = Src.getValueType(); 1313 SDLoc DL(Node); 1314 1315 // Attempt to expand using TargetLowering. 1316 SDValue Result; 1317 SDValue Chain; 1318 if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) { 1319 Results.push_back(Result); 1320 if (IsStrict) 1321 Results.push_back(Chain); 1322 return; 1323 } 1324 1325 // Make sure that the SINT_TO_FP and SRL instructions are available. 1326 if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) == 1327 TargetLowering::Expand) || 1328 (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) == 1329 TargetLowering::Expand)) || 1330 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) { 1331 if (IsStrict) { 1332 UnrollStrictFPOp(Node, Results); 1333 return; 1334 } 1335 1336 Results.push_back(DAG.UnrollVectorOp(Node)); 1337 return; 1338 } 1339 1340 unsigned BW = VT.getScalarSizeInBits(); 1341 assert((BW == 64 || BW == 32) && 1342 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1343 1344 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1345 1346 // Constants to clear the upper part of the word. 1347 // Notice that we can also use SHL+SHR, but using a constant is slightly 1348 // faster on x86. 1349 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1350 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1351 1352 // Two to the power of half-word-size. 1353 SDValue TWOHW = 1354 DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0)); 1355 1356 // Clear upper part of LO, lower HI 1357 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord); 1358 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask); 1359 1360 if (IsStrict) { 1361 // Convert hi and lo to floats 1362 // Convert the hi part back to the upper values 1363 // TODO: Can any fast-math-flags be set on these nodes? 1364 SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1365 {Node->getValueType(0), MVT::Other}, 1366 {Node->getOperand(0), HI}); 1367 fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other}, 1368 {fHI.getValue(1), fHI, TWOHW}); 1369 SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1370 {Node->getValueType(0), MVT::Other}, 1371 {Node->getOperand(0), LO}); 1372 1373 SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1), 1374 fLO.getValue(1)); 1375 1376 // Add the two halves 1377 SDValue Result = 1378 DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other}, 1379 {TF, fHI, fLO}); 1380 1381 Results.push_back(Result); 1382 Results.push_back(Result.getValue(1)); 1383 return; 1384 } 1385 1386 // Convert hi and lo to floats 1387 // Convert the hi part back to the upper values 1388 // TODO: Can any fast-math-flags be set on these nodes? 1389 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI); 1390 fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW); 1391 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO); 1392 1393 // Add the two halves 1394 Results.push_back( 1395 DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO)); 1396 } 1397 1398 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) { 1399 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) { 1400 SDLoc DL(Node); 1401 SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0)); 1402 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1403 return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero, 1404 Node->getOperand(0)); 1405 } 1406 return DAG.UnrollVectorOp(Node); 1407 } 1408 1409 void VectorLegalizer::ExpandFSUB(SDNode *Node, 1410 SmallVectorImpl<SDValue> &Results) { 1411 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1412 // we can defer this to operation legalization where it will be lowered as 1413 // a+(-b). 1414 EVT VT = Node->getValueType(0); 1415 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1416 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1417 return; // Defer to LegalizeDAG 1418 1419 SDValue Tmp = DAG.UnrollVectorOp(Node); 1420 Results.push_back(Tmp); 1421 } 1422 1423 void VectorLegalizer::ExpandSETCC(SDNode *Node, 1424 SmallVectorImpl<SDValue> &Results) { 1425 bool NeedInvert = false; 1426 SDLoc dl(Node); 1427 MVT OpVT = Node->getOperand(0).getSimpleValueType(); 1428 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 1429 1430 if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) { 1431 Results.push_back(UnrollVSETCC(Node)); 1432 return; 1433 } 1434 1435 SDValue Chain; 1436 SDValue LHS = Node->getOperand(0); 1437 SDValue RHS = Node->getOperand(1); 1438 SDValue CC = Node->getOperand(2); 1439 bool Legalized = TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS, 1440 RHS, CC, NeedInvert, dl, Chain); 1441 1442 if (Legalized) { 1443 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 1444 // condition code, create a new SETCC node. 1445 if (CC.getNode()) 1446 LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC, 1447 Node->getFlags()); 1448 1449 // If we expanded the SETCC by inverting the condition code, then wrap 1450 // the existing SETCC in a NOT to restore the intended condition. 1451 if (NeedInvert) 1452 LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0)); 1453 } else { 1454 // Otherwise, SETCC for the given comparison type must be completely 1455 // illegal; expand it into a SELECT_CC. 1456 EVT VT = Node->getValueType(0); 1457 LHS = 1458 DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS, 1459 DAG.getBoolConstant(true, dl, VT, LHS.getValueType()), 1460 DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC); 1461 LHS->setFlags(Node->getFlags()); 1462 } 1463 1464 Results.push_back(LHS); 1465 } 1466 1467 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node, 1468 SmallVectorImpl<SDValue> &Results) { 1469 SDValue Result, Overflow; 1470 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 1471 Results.push_back(Result); 1472 Results.push_back(Overflow); 1473 } 1474 1475 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node, 1476 SmallVectorImpl<SDValue> &Results) { 1477 SDValue Result, Overflow; 1478 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 1479 Results.push_back(Result); 1480 Results.push_back(Overflow); 1481 } 1482 1483 void VectorLegalizer::ExpandMULO(SDNode *Node, 1484 SmallVectorImpl<SDValue> &Results) { 1485 SDValue Result, Overflow; 1486 if (!TLI.expandMULO(Node, Result, Overflow, DAG)) 1487 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node); 1488 1489 Results.push_back(Result); 1490 Results.push_back(Overflow); 1491 } 1492 1493 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node, 1494 SmallVectorImpl<SDValue> &Results) { 1495 SDNode *N = Node; 1496 if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N), 1497 N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG)) 1498 Results.push_back(Expanded); 1499 } 1500 1501 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node, 1502 SmallVectorImpl<SDValue> &Results) { 1503 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) { 1504 ExpandUINT_TO_FLOAT(Node, Results); 1505 return; 1506 } 1507 if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) { 1508 ExpandFP_TO_UINT(Node, Results); 1509 return; 1510 } 1511 1512 UnrollStrictFPOp(Node, Results); 1513 } 1514 1515 void VectorLegalizer::ExpandREM(SDNode *Node, 1516 SmallVectorImpl<SDValue> &Results) { 1517 assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) && 1518 "Expected REM node"); 1519 1520 SDValue Result; 1521 if (!TLI.expandREM(Node, Result, DAG)) 1522 Result = DAG.UnrollVectorOp(Node); 1523 Results.push_back(Result); 1524 } 1525 1526 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node, 1527 SmallVectorImpl<SDValue> &Results) { 1528 EVT VT = Node->getValueType(0); 1529 EVT EltVT = VT.getVectorElementType(); 1530 unsigned NumElems = VT.getVectorNumElements(); 1531 unsigned NumOpers = Node->getNumOperands(); 1532 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1533 1534 EVT TmpEltVT = EltVT; 1535 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1536 Node->getOpcode() == ISD::STRICT_FSETCCS) 1537 TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(), 1538 *DAG.getContext(), TmpEltVT); 1539 1540 EVT ValueVTs[] = {TmpEltVT, MVT::Other}; 1541 SDValue Chain = Node->getOperand(0); 1542 SDLoc dl(Node); 1543 1544 SmallVector<SDValue, 32> OpValues; 1545 SmallVector<SDValue, 32> OpChains; 1546 for (unsigned i = 0; i < NumElems; ++i) { 1547 SmallVector<SDValue, 4> Opers; 1548 SDValue Idx = DAG.getVectorIdxConstant(i, dl); 1549 1550 // The Chain is the first operand. 1551 Opers.push_back(Chain); 1552 1553 // Now process the remaining operands. 1554 for (unsigned j = 1; j < NumOpers; ++j) { 1555 SDValue Oper = Node->getOperand(j); 1556 EVT OperVT = Oper.getValueType(); 1557 1558 if (OperVT.isVector()) 1559 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1560 OperVT.getVectorElementType(), Oper, Idx); 1561 1562 Opers.push_back(Oper); 1563 } 1564 1565 SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers); 1566 SDValue ScalarResult = ScalarOp.getValue(0); 1567 SDValue ScalarChain = ScalarOp.getValue(1); 1568 1569 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1570 Node->getOpcode() == ISD::STRICT_FSETCCS) 1571 ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult, 1572 DAG.getAllOnesConstant(dl, EltVT), 1573 DAG.getConstant(0, dl, EltVT)); 1574 1575 OpValues.push_back(ScalarResult); 1576 OpChains.push_back(ScalarChain); 1577 } 1578 1579 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1580 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1581 1582 Results.push_back(Result); 1583 Results.push_back(NewChain); 1584 } 1585 1586 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) { 1587 EVT VT = Node->getValueType(0); 1588 unsigned NumElems = VT.getVectorNumElements(); 1589 EVT EltVT = VT.getVectorElementType(); 1590 SDValue LHS = Node->getOperand(0); 1591 SDValue RHS = Node->getOperand(1); 1592 SDValue CC = Node->getOperand(2); 1593 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1594 SDLoc dl(Node); 1595 SmallVector<SDValue, 8> Ops(NumElems); 1596 for (unsigned i = 0; i < NumElems; ++i) { 1597 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1598 DAG.getVectorIdxConstant(i, dl)); 1599 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1600 DAG.getVectorIdxConstant(i, dl)); 1601 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1602 TLI.getSetCCResultType(DAG.getDataLayout(), 1603 *DAG.getContext(), TmpEltVT), 1604 LHSElem, RHSElem, CC); 1605 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getAllOnesConstant(dl, EltVT), 1606 DAG.getConstant(0, dl, EltVT)); 1607 } 1608 return DAG.getBuildVector(VT, dl, Ops); 1609 } 1610 1611 bool SelectionDAG::LegalizeVectors() { 1612 return VectorLegalizer(*this).Run(); 1613 } 1614