xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
10 //
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types.  For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
20 //
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "legalizevectorops"
53 
54 namespace {
55 
56 class VectorLegalizer {
57   SelectionDAG& DAG;
58   const TargetLowering &TLI;
59   bool Changed = false; // Keep track of whether anything changed
60 
61   /// For nodes that are of legal width, and that have more than one use, this
62   /// map indicates what regularized operand to use.  This allows us to avoid
63   /// legalizing the same thing more than once.
64   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
65 
66   /// Adds a node to the translation cache.
67   void AddLegalizedOperand(SDValue From, SDValue To) {
68     LegalizedNodes.insert(std::make_pair(From, To));
69     // If someone requests legalization of the new node, return itself.
70     if (From != To)
71       LegalizedNodes.insert(std::make_pair(To, To));
72   }
73 
74   /// Legalizes the given node.
75   SDValue LegalizeOp(SDValue Op);
76 
77   /// Assuming the node is legal, "legalize" the results.
78   SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result);
79 
80   /// Make sure Results are legal and update the translation cache.
81   SDValue RecursivelyLegalizeResults(SDValue Op,
82                                      MutableArrayRef<SDValue> Results);
83 
84   /// Wrapper to interface LowerOperation with a vector of Results.
85   /// Returns false if the target wants to use default expansion. Otherwise
86   /// returns true. If return is true and the Results are empty, then the
87   /// target wants to keep the input node as is.
88   bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results);
89 
90   /// Implements unrolling a VSETCC.
91   SDValue UnrollVSETCC(SDNode *Node);
92 
93   /// Implement expand-based legalization of vector operations.
94   ///
95   /// This is just a high-level routine to dispatch to specific code paths for
96   /// operations to legalize them.
97   void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results);
98 
99   /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
100   /// FP_TO_SINT isn't legal.
101   void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
102 
103   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
104   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
105   void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
106 
107   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
108   SDValue ExpandSEXTINREG(SDNode *Node);
109 
110   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
111   ///
112   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
113   /// type. The contents of the bits in the extended part of each element are
114   /// undef.
115   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node);
116 
117   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
118   ///
119   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
120   /// type, then shifts left and arithmetic shifts right to introduce a sign
121   /// extension.
122   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node);
123 
124   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
125   ///
126   /// Shuffles the low lanes of the operand into place and blends zeros into
127   /// the remaining lanes, finally bitcasting to the proper type.
128   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node);
129 
130   /// Expand bswap of vectors into a shuffle if legal.
131   SDValue ExpandBSWAP(SDNode *Node);
132 
133   /// Implement vselect in terms of XOR, AND, OR when blend is not
134   /// supported by the target.
135   SDValue ExpandVSELECT(SDNode *Node);
136   SDValue ExpandSELECT(SDNode *Node);
137   std::pair<SDValue, SDValue> ExpandLoad(SDNode *N);
138   SDValue ExpandStore(SDNode *N);
139   SDValue ExpandFNEG(SDNode *Node);
140   void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results);
141   void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results);
142   void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results);
143   void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
144   void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
145   void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
146   void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results);
147   void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
148   void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results);
149 
150   void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
151 
152   /// Implements vector promotion.
153   ///
154   /// This is essentially just bitcasting the operands to a different type and
155   /// bitcasting the result back to the original type.
156   void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results);
157 
158   /// Implements [SU]INT_TO_FP vector promotion.
159   ///
160   /// This is a [zs]ext of the input operand to a larger integer type.
161   void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results);
162 
163   /// Implements FP_TO_[SU]INT vector promotion of the result type.
164   ///
165   /// It is promoted to a larger integer type.  The result is then
166   /// truncated back to the original type.
167   void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
168 
169 public:
170   VectorLegalizer(SelectionDAG& dag) :
171       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
172 
173   /// Begin legalizer the vector operations in the DAG.
174   bool Run();
175 };
176 
177 } // end anonymous namespace
178 
179 bool VectorLegalizer::Run() {
180   // Before we start legalizing vector nodes, check if there are any vectors.
181   bool HasVectors = false;
182   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
183        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
184     // Check if the values of the nodes contain vectors. We don't need to check
185     // the operands because we are going to check their values at some point.
186     HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); });
187 
188     // If we found a vector node we can start the legalization.
189     if (HasVectors)
190       break;
191   }
192 
193   // If this basic block has no vectors then no need to legalize vectors.
194   if (!HasVectors)
195     return false;
196 
197   // The legalize process is inherently a bottom-up recursive process (users
198   // legalize their uses before themselves).  Given infinite stack space, we
199   // could just start legalizing on the root and traverse the whole graph.  In
200   // practice however, this causes us to run out of stack space on large basic
201   // blocks.  To avoid this problem, compute an ordering of the nodes where each
202   // node is only legalized after all of its operands are legalized.
203   DAG.AssignTopologicalOrder();
204   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
205        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
206     LegalizeOp(SDValue(&*I, 0));
207 
208   // Finally, it's possible the root changed.  Get the new root.
209   SDValue OldRoot = DAG.getRoot();
210   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
211   DAG.setRoot(LegalizedNodes[OldRoot]);
212 
213   LegalizedNodes.clear();
214 
215   // Remove dead nodes now.
216   DAG.RemoveDeadNodes();
217 
218   return Changed;
219 }
220 
221 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) {
222   assert(Op->getNumValues() == Result->getNumValues() &&
223          "Unexpected number of results");
224   // Generic legalization: just pass the operand through.
225   for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i)
226     AddLegalizedOperand(Op.getValue(i), SDValue(Result, i));
227   return SDValue(Result, Op.getResNo());
228 }
229 
230 SDValue
231 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op,
232                                             MutableArrayRef<SDValue> Results) {
233   assert(Results.size() == Op->getNumValues() &&
234          "Unexpected number of results");
235   // Make sure that the generated code is itself legal.
236   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
237     Results[i] = LegalizeOp(Results[i]);
238     AddLegalizedOperand(Op.getValue(i), Results[i]);
239   }
240 
241   return Results[Op.getResNo()];
242 }
243 
244 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
245   // Note that LegalizeOp may be reentered even from single-use nodes, which
246   // means that we always must cache transformed nodes.
247   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
248   if (I != LegalizedNodes.end()) return I->second;
249 
250   // Legalize the operands
251   SmallVector<SDValue, 8> Ops;
252   for (const SDValue &Oper : Op->op_values())
253     Ops.push_back(LegalizeOp(Oper));
254 
255   SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops);
256 
257   if (Op.getOpcode() == ISD::LOAD) {
258     LoadSDNode *LD = cast<LoadSDNode>(Node);
259     ISD::LoadExtType ExtType = LD->getExtensionType();
260     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
261       LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
262                  Node->dump(&DAG));
263       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
264                                    LD->getMemoryVT())) {
265       default: llvm_unreachable("This action is not supported yet!");
266       case TargetLowering::Legal:
267         return TranslateLegalizeResults(Op, Node);
268       case TargetLowering::Custom: {
269         SmallVector<SDValue, 2> ResultVals;
270         if (LowerOperationWrapper(Node, ResultVals)) {
271           if (ResultVals.empty())
272             return TranslateLegalizeResults(Op, Node);
273 
274           Changed = true;
275           return RecursivelyLegalizeResults(Op, ResultVals);
276         }
277         LLVM_FALLTHROUGH;
278       }
279       case TargetLowering::Expand: {
280         Changed = true;
281         std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node);
282         AddLegalizedOperand(Op.getValue(0), Tmp.first);
283         AddLegalizedOperand(Op.getValue(1), Tmp.second);
284         return Op.getResNo() ? Tmp.first : Tmp.second;
285       }
286       }
287     }
288   } else if (Op.getOpcode() == ISD::STORE) {
289     StoreSDNode *ST = cast<StoreSDNode>(Node);
290     EVT StVT = ST->getMemoryVT();
291     MVT ValVT = ST->getValue().getSimpleValueType();
292     if (StVT.isVector() && ST->isTruncatingStore()) {
293       LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
294                  Node->dump(&DAG));
295       switch (TLI.getTruncStoreAction(ValVT, StVT)) {
296       default: llvm_unreachable("This action is not supported yet!");
297       case TargetLowering::Legal:
298         return TranslateLegalizeResults(Op, Node);
299       case TargetLowering::Custom: {
300         SmallVector<SDValue, 1> ResultVals;
301         if (LowerOperationWrapper(Node, ResultVals)) {
302           if (ResultVals.empty())
303             return TranslateLegalizeResults(Op, Node);
304 
305           Changed = true;
306           return RecursivelyLegalizeResults(Op, ResultVals);
307         }
308         LLVM_FALLTHROUGH;
309       }
310       case TargetLowering::Expand: {
311         Changed = true;
312         SDValue Chain = ExpandStore(Node);
313         AddLegalizedOperand(Op, Chain);
314         return Chain;
315       }
316       }
317     }
318   }
319 
320   bool HasVectorValueOrOp =
321       llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) ||
322       llvm::any_of(Node->op_values(),
323                    [](SDValue O) { return O.getValueType().isVector(); });
324   if (!HasVectorValueOrOp)
325     return TranslateLegalizeResults(Op, Node);
326 
327   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
328   EVT ValVT;
329   switch (Op.getOpcode()) {
330   default:
331     return TranslateLegalizeResults(Op, Node);
332   case ISD::MERGE_VALUES:
333     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
334     // This operation lies about being legal: when it claims to be legal,
335     // it should actually be expanded.
336     if (Action == TargetLowering::Legal)
337       Action = TargetLowering::Expand;
338     break;
339 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
340   case ISD::STRICT_##DAGN:
341 #include "llvm/IR/ConstrainedOps.def"
342     ValVT = Node->getValueType(0);
343     if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
344         Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
345       ValVT = Node->getOperand(1).getValueType();
346     Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
347     // If we're asked to expand a strict vector floating-point operation,
348     // by default we're going to simply unroll it.  That is usually the
349     // best approach, except in the case where the resulting strict (scalar)
350     // operations would themselves use the fallback mutation to non-strict.
351     // In that specific case, just do the fallback on the vector op.
352     if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
353         TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
354             TargetLowering::Legal) {
355       EVT EltVT = ValVT.getVectorElementType();
356       if (TLI.getOperationAction(Node->getOpcode(), EltVT)
357           == TargetLowering::Expand &&
358           TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
359           == TargetLowering::Legal)
360         Action = TargetLowering::Legal;
361     }
362     break;
363   case ISD::ADD:
364   case ISD::SUB:
365   case ISD::MUL:
366   case ISD::MULHS:
367   case ISD::MULHU:
368   case ISD::SDIV:
369   case ISD::UDIV:
370   case ISD::SREM:
371   case ISD::UREM:
372   case ISD::SDIVREM:
373   case ISD::UDIVREM:
374   case ISD::FADD:
375   case ISD::FSUB:
376   case ISD::FMUL:
377   case ISD::FDIV:
378   case ISD::FREM:
379   case ISD::AND:
380   case ISD::OR:
381   case ISD::XOR:
382   case ISD::SHL:
383   case ISD::SRA:
384   case ISD::SRL:
385   case ISD::FSHL:
386   case ISD::FSHR:
387   case ISD::ROTL:
388   case ISD::ROTR:
389   case ISD::ABS:
390   case ISD::BSWAP:
391   case ISD::BITREVERSE:
392   case ISD::CTLZ:
393   case ISD::CTTZ:
394   case ISD::CTLZ_ZERO_UNDEF:
395   case ISD::CTTZ_ZERO_UNDEF:
396   case ISD::CTPOP:
397   case ISD::SELECT:
398   case ISD::VSELECT:
399   case ISD::SELECT_CC:
400   case ISD::ZERO_EXTEND:
401   case ISD::ANY_EXTEND:
402   case ISD::TRUNCATE:
403   case ISD::SIGN_EXTEND:
404   case ISD::FP_TO_SINT:
405   case ISD::FP_TO_UINT:
406   case ISD::FNEG:
407   case ISD::FABS:
408   case ISD::FMINNUM:
409   case ISD::FMAXNUM:
410   case ISD::FMINNUM_IEEE:
411   case ISD::FMAXNUM_IEEE:
412   case ISD::FMINIMUM:
413   case ISD::FMAXIMUM:
414   case ISD::FCOPYSIGN:
415   case ISD::FSQRT:
416   case ISD::FSIN:
417   case ISD::FCOS:
418   case ISD::FPOWI:
419   case ISD::FPOW:
420   case ISD::FLOG:
421   case ISD::FLOG2:
422   case ISD::FLOG10:
423   case ISD::FEXP:
424   case ISD::FEXP2:
425   case ISD::FCEIL:
426   case ISD::FTRUNC:
427   case ISD::FRINT:
428   case ISD::FNEARBYINT:
429   case ISD::FROUND:
430   case ISD::FROUNDEVEN:
431   case ISD::FFLOOR:
432   case ISD::FP_ROUND:
433   case ISD::FP_EXTEND:
434   case ISD::FMA:
435   case ISD::SIGN_EXTEND_INREG:
436   case ISD::ANY_EXTEND_VECTOR_INREG:
437   case ISD::SIGN_EXTEND_VECTOR_INREG:
438   case ISD::ZERO_EXTEND_VECTOR_INREG:
439   case ISD::SMIN:
440   case ISD::SMAX:
441   case ISD::UMIN:
442   case ISD::UMAX:
443   case ISD::SMUL_LOHI:
444   case ISD::UMUL_LOHI:
445   case ISD::SADDO:
446   case ISD::UADDO:
447   case ISD::SSUBO:
448   case ISD::USUBO:
449   case ISD::SMULO:
450   case ISD::UMULO:
451   case ISD::FCANONICALIZE:
452   case ISD::SADDSAT:
453   case ISD::UADDSAT:
454   case ISD::SSUBSAT:
455   case ISD::USUBSAT:
456   case ISD::SSHLSAT:
457   case ISD::USHLSAT:
458   case ISD::FP_TO_SINT_SAT:
459   case ISD::FP_TO_UINT_SAT:
460   case ISD::MGATHER:
461     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
462     break;
463   case ISD::SMULFIX:
464   case ISD::SMULFIXSAT:
465   case ISD::UMULFIX:
466   case ISD::UMULFIXSAT:
467   case ISD::SDIVFIX:
468   case ISD::SDIVFIXSAT:
469   case ISD::UDIVFIX:
470   case ISD::UDIVFIXSAT: {
471     unsigned Scale = Node->getConstantOperandVal(2);
472     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
473                                               Node->getValueType(0), Scale);
474     break;
475   }
476   case ISD::SINT_TO_FP:
477   case ISD::UINT_TO_FP:
478   case ISD::VECREDUCE_ADD:
479   case ISD::VECREDUCE_MUL:
480   case ISD::VECREDUCE_AND:
481   case ISD::VECREDUCE_OR:
482   case ISD::VECREDUCE_XOR:
483   case ISD::VECREDUCE_SMAX:
484   case ISD::VECREDUCE_SMIN:
485   case ISD::VECREDUCE_UMAX:
486   case ISD::VECREDUCE_UMIN:
487   case ISD::VECREDUCE_FADD:
488   case ISD::VECREDUCE_FMUL:
489   case ISD::VECREDUCE_FMAX:
490   case ISD::VECREDUCE_FMIN:
491     Action = TLI.getOperationAction(Node->getOpcode(),
492                                     Node->getOperand(0).getValueType());
493     break;
494   case ISD::VECREDUCE_SEQ_FADD:
495   case ISD::VECREDUCE_SEQ_FMUL:
496     Action = TLI.getOperationAction(Node->getOpcode(),
497                                     Node->getOperand(1).getValueType());
498     break;
499   case ISD::SETCC: {
500     MVT OpVT = Node->getOperand(0).getSimpleValueType();
501     ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
502     Action = TLI.getCondCodeAction(CCCode, OpVT);
503     if (Action == TargetLowering::Legal)
504       Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
505     break;
506   }
507   }
508 
509   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
510 
511   SmallVector<SDValue, 8> ResultVals;
512   switch (Action) {
513   default: llvm_unreachable("This action is not supported yet!");
514   case TargetLowering::Promote:
515     LLVM_DEBUG(dbgs() << "Promoting\n");
516     Promote(Node, ResultVals);
517     assert(!ResultVals.empty() && "No results for promotion?");
518     break;
519   case TargetLowering::Legal:
520     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
521     break;
522   case TargetLowering::Custom:
523     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
524     if (LowerOperationWrapper(Node, ResultVals))
525       break;
526     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
527     LLVM_FALLTHROUGH;
528   case TargetLowering::Expand:
529     LLVM_DEBUG(dbgs() << "Expanding\n");
530     Expand(Node, ResultVals);
531     break;
532   }
533 
534   if (ResultVals.empty())
535     return TranslateLegalizeResults(Op, Node);
536 
537   Changed = true;
538   return RecursivelyLegalizeResults(Op, ResultVals);
539 }
540 
541 // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we
542 // merge them somehow?
543 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node,
544                                             SmallVectorImpl<SDValue> &Results) {
545   SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
546 
547   if (!Res.getNode())
548     return false;
549 
550   if (Res == SDValue(Node, 0))
551     return true;
552 
553   // If the original node has one result, take the return value from
554   // LowerOperation as is. It might not be result number 0.
555   if (Node->getNumValues() == 1) {
556     Results.push_back(Res);
557     return true;
558   }
559 
560   // If the original node has multiple results, then the return node should
561   // have the same number of results.
562   assert((Node->getNumValues() == Res->getNumValues()) &&
563          "Lowering returned the wrong number of results!");
564 
565   // Places new result values base on N result number.
566   for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I)
567     Results.push_back(Res.getValue(I));
568 
569   return true;
570 }
571 
572 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
573   // For a few operations there is a specific concept for promotion based on
574   // the operand's type.
575   switch (Node->getOpcode()) {
576   case ISD::SINT_TO_FP:
577   case ISD::UINT_TO_FP:
578   case ISD::STRICT_SINT_TO_FP:
579   case ISD::STRICT_UINT_TO_FP:
580     // "Promote" the operation by extending the operand.
581     PromoteINT_TO_FP(Node, Results);
582     return;
583   case ISD::FP_TO_UINT:
584   case ISD::FP_TO_SINT:
585   case ISD::STRICT_FP_TO_UINT:
586   case ISD::STRICT_FP_TO_SINT:
587     // Promote the operation by extending the operand.
588     PromoteFP_TO_INT(Node, Results);
589     return;
590   case ISD::FP_ROUND:
591   case ISD::FP_EXTEND:
592     // These operations are used to do promotion so they can't be promoted
593     // themselves.
594     llvm_unreachable("Don't know how to promote this operation!");
595   }
596 
597   // There are currently two cases of vector promotion:
598   // 1) Bitcasting a vector of integers to a different type to a vector of the
599   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
600   // 2) Extending a vector of floats to a vector of the same number of larger
601   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
602   assert(Node->getNumValues() == 1 &&
603          "Can't promote a vector with multiple results!");
604   MVT VT = Node->getSimpleValueType(0);
605   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
606   SDLoc dl(Node);
607   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
608 
609   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
610     if (Node->getOperand(j).getValueType().isVector())
611       if (Node->getOperand(j)
612               .getValueType()
613               .getVectorElementType()
614               .isFloatingPoint() &&
615           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
616         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j));
617       else
618         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j));
619     else
620       Operands[j] = Node->getOperand(j);
621   }
622 
623   SDValue Res =
624       DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags());
625 
626   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
627       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
628        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
629     Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl));
630   else
631     Res = DAG.getNode(ISD::BITCAST, dl, VT, Res);
632 
633   Results.push_back(Res);
634 }
635 
636 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node,
637                                        SmallVectorImpl<SDValue> &Results) {
638   // INT_TO_FP operations may require the input operand be promoted even
639   // when the type is otherwise legal.
640   bool IsStrict = Node->isStrictFPOpcode();
641   MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType();
642   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
643   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
644          "Vectors have different number of elements!");
645 
646   SDLoc dl(Node);
647   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
648 
649   unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP ||
650                   Node->getOpcode() == ISD::STRICT_UINT_TO_FP)
651                      ? ISD::ZERO_EXTEND
652                      : ISD::SIGN_EXTEND;
653   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
654     if (Node->getOperand(j).getValueType().isVector())
655       Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j));
656     else
657       Operands[j] = Node->getOperand(j);
658   }
659 
660   if (IsStrict) {
661     SDValue Res = DAG.getNode(Node->getOpcode(), dl,
662                               {Node->getValueType(0), MVT::Other}, Operands);
663     Results.push_back(Res);
664     Results.push_back(Res.getValue(1));
665     return;
666   }
667 
668   SDValue Res =
669       DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands);
670   Results.push_back(Res);
671 }
672 
673 // For FP_TO_INT we promote the result type to a vector type with wider
674 // elements and then truncate the result.  This is different from the default
675 // PromoteVector which uses bitcast to promote thus assumning that the
676 // promoted vector type has the same overall size.
677 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node,
678                                        SmallVectorImpl<SDValue> &Results) {
679   MVT VT = Node->getSimpleValueType(0);
680   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
681   bool IsStrict = Node->isStrictFPOpcode();
682   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
683          "Vectors have different number of elements!");
684 
685   unsigned NewOpc = Node->getOpcode();
686   // Change FP_TO_UINT to FP_TO_SINT if possible.
687   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
688   if (NewOpc == ISD::FP_TO_UINT &&
689       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
690     NewOpc = ISD::FP_TO_SINT;
691 
692   if (NewOpc == ISD::STRICT_FP_TO_UINT &&
693       TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
694     NewOpc = ISD::STRICT_FP_TO_SINT;
695 
696   SDLoc dl(Node);
697   SDValue Promoted, Chain;
698   if (IsStrict) {
699     Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
700                            {Node->getOperand(0), Node->getOperand(1)});
701     Chain = Promoted.getValue(1);
702   } else
703     Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0));
704 
705   // Assert that the converted value fits in the original type.  If it doesn't
706   // (eg: because the value being converted is too big), then the result of the
707   // original operation was undefined anyway, so the assert is still correct.
708   if (Node->getOpcode() == ISD::FP_TO_UINT ||
709       Node->getOpcode() == ISD::STRICT_FP_TO_UINT)
710     NewOpc = ISD::AssertZext;
711   else
712     NewOpc = ISD::AssertSext;
713 
714   Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
715                          DAG.getValueType(VT.getScalarType()));
716   Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
717   Results.push_back(Promoted);
718   if (IsStrict)
719     Results.push_back(Chain);
720 }
721 
722 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) {
723   LoadSDNode *LD = cast<LoadSDNode>(N);
724   return TLI.scalarizeVectorLoad(LD, DAG);
725 }
726 
727 SDValue VectorLegalizer::ExpandStore(SDNode *N) {
728   StoreSDNode *ST = cast<StoreSDNode>(N);
729   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
730   return TF;
731 }
732 
733 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
734   SDValue Tmp;
735   switch (Node->getOpcode()) {
736   case ISD::MERGE_VALUES:
737     for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
738       Results.push_back(Node->getOperand(i));
739     return;
740   case ISD::SIGN_EXTEND_INREG:
741     Results.push_back(ExpandSEXTINREG(Node));
742     return;
743   case ISD::ANY_EXTEND_VECTOR_INREG:
744     Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node));
745     return;
746   case ISD::SIGN_EXTEND_VECTOR_INREG:
747     Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node));
748     return;
749   case ISD::ZERO_EXTEND_VECTOR_INREG:
750     Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node));
751     return;
752   case ISD::BSWAP:
753     Results.push_back(ExpandBSWAP(Node));
754     return;
755   case ISD::VSELECT:
756     Results.push_back(ExpandVSELECT(Node));
757     return;
758   case ISD::SELECT:
759     Results.push_back(ExpandSELECT(Node));
760     return;
761   case ISD::FP_TO_UINT:
762     ExpandFP_TO_UINT(Node, Results);
763     return;
764   case ISD::UINT_TO_FP:
765     ExpandUINT_TO_FLOAT(Node, Results);
766     return;
767   case ISD::FNEG:
768     Results.push_back(ExpandFNEG(Node));
769     return;
770   case ISD::FSUB:
771     ExpandFSUB(Node, Results);
772     return;
773   case ISD::SETCC:
774     ExpandSETCC(Node, Results);
775     return;
776   case ISD::ABS:
777     if (SDValue Expanded = TLI.expandABS(Node, DAG)) {
778       Results.push_back(Expanded);
779       return;
780     }
781     break;
782   case ISD::BITREVERSE:
783     ExpandBITREVERSE(Node, Results);
784     return;
785   case ISD::CTPOP:
786     if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) {
787       Results.push_back(Expanded);
788       return;
789     }
790     break;
791   case ISD::CTLZ:
792   case ISD::CTLZ_ZERO_UNDEF:
793     if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) {
794       Results.push_back(Expanded);
795       return;
796     }
797     break;
798   case ISD::CTTZ:
799   case ISD::CTTZ_ZERO_UNDEF:
800     if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) {
801       Results.push_back(Expanded);
802       return;
803     }
804     break;
805   case ISD::FSHL:
806   case ISD::FSHR:
807     if (TLI.expandFunnelShift(Node, Tmp, DAG)) {
808       Results.push_back(Tmp);
809       return;
810     }
811     break;
812   case ISD::ROTL:
813   case ISD::ROTR:
814     if (TLI.expandROT(Node, false /*AllowVectorOps*/, Tmp, DAG)) {
815       Results.push_back(Tmp);
816       return;
817     }
818     break;
819   case ISD::FMINNUM:
820   case ISD::FMAXNUM:
821     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) {
822       Results.push_back(Expanded);
823       return;
824     }
825     break;
826   case ISD::SMIN:
827   case ISD::SMAX:
828   case ISD::UMIN:
829   case ISD::UMAX:
830     if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) {
831       Results.push_back(Expanded);
832       return;
833     }
834     break;
835   case ISD::UADDO:
836   case ISD::USUBO:
837     ExpandUADDSUBO(Node, Results);
838     return;
839   case ISD::SADDO:
840   case ISD::SSUBO:
841     ExpandSADDSUBO(Node, Results);
842     return;
843   case ISD::UMULO:
844   case ISD::SMULO:
845     ExpandMULO(Node, Results);
846     return;
847   case ISD::USUBSAT:
848   case ISD::SSUBSAT:
849   case ISD::UADDSAT:
850   case ISD::SADDSAT:
851     if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) {
852       Results.push_back(Expanded);
853       return;
854     }
855     break;
856   case ISD::SMULFIX:
857   case ISD::UMULFIX:
858     if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) {
859       Results.push_back(Expanded);
860       return;
861     }
862     break;
863   case ISD::SMULFIXSAT:
864   case ISD::UMULFIXSAT:
865     // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
866     // why. Maybe it results in worse codegen compared to the unroll for some
867     // targets? This should probably be investigated. And if we still prefer to
868     // unroll an explanation could be helpful.
869     break;
870   case ISD::SDIVFIX:
871   case ISD::UDIVFIX:
872     ExpandFixedPointDiv(Node, Results);
873     return;
874   case ISD::SDIVFIXSAT:
875   case ISD::UDIVFIXSAT:
876     break;
877 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
878   case ISD::STRICT_##DAGN:
879 #include "llvm/IR/ConstrainedOps.def"
880     ExpandStrictFPOp(Node, Results);
881     return;
882   case ISD::VECREDUCE_ADD:
883   case ISD::VECREDUCE_MUL:
884   case ISD::VECREDUCE_AND:
885   case ISD::VECREDUCE_OR:
886   case ISD::VECREDUCE_XOR:
887   case ISD::VECREDUCE_SMAX:
888   case ISD::VECREDUCE_SMIN:
889   case ISD::VECREDUCE_UMAX:
890   case ISD::VECREDUCE_UMIN:
891   case ISD::VECREDUCE_FADD:
892   case ISD::VECREDUCE_FMUL:
893   case ISD::VECREDUCE_FMAX:
894   case ISD::VECREDUCE_FMIN:
895     Results.push_back(TLI.expandVecReduce(Node, DAG));
896     return;
897   case ISD::VECREDUCE_SEQ_FADD:
898   case ISD::VECREDUCE_SEQ_FMUL:
899     Results.push_back(TLI.expandVecReduceSeq(Node, DAG));
900     return;
901   case ISD::SREM:
902   case ISD::UREM:
903     ExpandREM(Node, Results);
904     return;
905   }
906 
907   Results.push_back(DAG.UnrollVectorOp(Node));
908 }
909 
910 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) {
911   // Lower a select instruction where the condition is a scalar and the
912   // operands are vectors. Lower this select to VSELECT and implement it
913   // using XOR AND OR. The selector bit is broadcasted.
914   EVT VT = Node->getValueType(0);
915   SDLoc DL(Node);
916 
917   SDValue Mask = Node->getOperand(0);
918   SDValue Op1 = Node->getOperand(1);
919   SDValue Op2 = Node->getOperand(2);
920 
921   assert(VT.isVector() && !Mask.getValueType().isVector()
922          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
923 
924   // If we can't even use the basic vector operations of
925   // AND,OR,XOR, we will have to scalarize the op.
926   // Notice that the operation may be 'promoted' which means that it is
927   // 'bitcasted' to another type which is handled.
928   // Also, we need to be able to construct a splat vector using either
929   // BUILD_VECTOR or SPLAT_VECTOR.
930   // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to
931   // BUILD_VECTOR?
932   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
933       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
934       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
935       TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR
936                                                       : ISD::SPLAT_VECTOR,
937                              VT) == TargetLowering::Expand)
938     return DAG.UnrollVectorOp(Node);
939 
940   // Generate a mask operand.
941   EVT MaskTy = VT.changeVectorElementTypeToInteger();
942 
943   // What is the size of each element in the vector mask.
944   EVT BitTy = MaskTy.getScalarType();
945 
946   Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy),
947                        DAG.getConstant(0, DL, BitTy));
948 
949   // Broadcast the mask so that the entire vector is all one or all zero.
950   if (VT.isFixedLengthVector())
951     Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
952   else
953     Mask = DAG.getSplatVector(MaskTy, DL, Mask);
954 
955   // Bitcast the operands to be the same type as the mask.
956   // This is needed when we select between FP types because
957   // the mask is a vector of integers.
958   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
959   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
960 
961   SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy);
962 
963   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
964   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
965   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
966   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
967 }
968 
969 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) {
970   EVT VT = Node->getValueType(0);
971 
972   // Make sure that the SRA and SHL instructions are available.
973   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
974       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
975     return DAG.UnrollVectorOp(Node);
976 
977   SDLoc DL(Node);
978   EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT();
979 
980   unsigned BW = VT.getScalarSizeInBits();
981   unsigned OrigBW = OrigTy.getScalarSizeInBits();
982   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
983 
984   SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz);
985   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
986 }
987 
988 // Generically expand a vector anyext in register to a shuffle of the relevant
989 // lanes into the appropriate locations, with other lanes left undef.
990 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) {
991   SDLoc DL(Node);
992   EVT VT = Node->getValueType(0);
993   int NumElements = VT.getVectorNumElements();
994   SDValue Src = Node->getOperand(0);
995   EVT SrcVT = Src.getValueType();
996   int NumSrcElements = SrcVT.getVectorNumElements();
997 
998   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
999   // into a larger vector type.
1000   if (SrcVT.bitsLE(VT)) {
1001     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1002            "ANY_EXTEND_VECTOR_INREG vector size mismatch");
1003     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1004     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1005                              NumSrcElements);
1006     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
1007                       Src, DAG.getVectorIdxConstant(0, DL));
1008   }
1009 
1010   // Build a base mask of undef shuffles.
1011   SmallVector<int, 16> ShuffleMask;
1012   ShuffleMask.resize(NumSrcElements, -1);
1013 
1014   // Place the extended lanes into the correct locations.
1015   int ExtLaneScale = NumSrcElements / NumElements;
1016   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1017   for (int i = 0; i < NumElements; ++i)
1018     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
1019 
1020   return DAG.getNode(
1021       ISD::BITCAST, DL, VT,
1022       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
1023 }
1024 
1025 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) {
1026   SDLoc DL(Node);
1027   EVT VT = Node->getValueType(0);
1028   SDValue Src = Node->getOperand(0);
1029   EVT SrcVT = Src.getValueType();
1030 
1031   // First build an any-extend node which can be legalized above when we
1032   // recurse through it.
1033   SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
1034 
1035   // Now we need sign extend. Do this by shifting the elements. Even if these
1036   // aren't legal operations, they have a better chance of being legalized
1037   // without full scalarization than the sign extension does.
1038   unsigned EltWidth = VT.getScalarSizeInBits();
1039   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
1040   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
1041   return DAG.getNode(ISD::SRA, DL, VT,
1042                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
1043                      ShiftAmount);
1044 }
1045 
1046 // Generically expand a vector zext in register to a shuffle of the relevant
1047 // lanes into the appropriate locations, a blend of zero into the high bits,
1048 // and a bitcast to the wider element type.
1049 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) {
1050   SDLoc DL(Node);
1051   EVT VT = Node->getValueType(0);
1052   int NumElements = VT.getVectorNumElements();
1053   SDValue Src = Node->getOperand(0);
1054   EVT SrcVT = Src.getValueType();
1055   int NumSrcElements = SrcVT.getVectorNumElements();
1056 
1057   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1058   // into a larger vector type.
1059   if (SrcVT.bitsLE(VT)) {
1060     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1061            "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1062     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1063     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1064                              NumSrcElements);
1065     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
1066                       Src, DAG.getVectorIdxConstant(0, DL));
1067   }
1068 
1069   // Build up a zero vector to blend into this one.
1070   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1071 
1072   // Shuffle the incoming lanes into the correct position, and pull all other
1073   // lanes from the zero vector.
1074   SmallVector<int, 16> ShuffleMask;
1075   ShuffleMask.reserve(NumSrcElements);
1076   for (int i = 0; i < NumSrcElements; ++i)
1077     ShuffleMask.push_back(i);
1078 
1079   int ExtLaneScale = NumSrcElements / NumElements;
1080   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1081   for (int i = 0; i < NumElements; ++i)
1082     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1083 
1084   return DAG.getNode(ISD::BITCAST, DL, VT,
1085                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1086 }
1087 
1088 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1089   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1090   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1091     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1092       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1093 }
1094 
1095 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) {
1096   EVT VT = Node->getValueType(0);
1097 
1098   // Scalable vectors can't use shuffle expansion.
1099   if (VT.isScalableVector())
1100     return TLI.expandBSWAP(Node, DAG);
1101 
1102   // Generate a byte wise shuffle mask for the BSWAP.
1103   SmallVector<int, 16> ShuffleMask;
1104   createBSWAPShuffleMask(VT, ShuffleMask);
1105   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1106 
1107   // Only emit a shuffle if the mask is legal.
1108   if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) {
1109     SDLoc DL(Node);
1110     SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1111     Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1112     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1113   }
1114 
1115   // If we have the appropriate vector bit operations, it is better to use them
1116   // than unrolling and expanding each component.
1117   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1118       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1119       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1120       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1121     return TLI.expandBSWAP(Node, DAG);
1122 
1123   // Otherwise unroll.
1124   return DAG.UnrollVectorOp(Node);
1125 }
1126 
1127 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node,
1128                                        SmallVectorImpl<SDValue> &Results) {
1129   EVT VT = Node->getValueType(0);
1130 
1131   // We can't unroll or use shuffles for scalable vectors.
1132   if (VT.isScalableVector()) {
1133     Results.push_back(TLI.expandBITREVERSE(Node, DAG));
1134     return;
1135   }
1136 
1137   // If we have the scalar operation, it's probably cheaper to unroll it.
1138   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) {
1139     SDValue Tmp = DAG.UnrollVectorOp(Node);
1140     Results.push_back(Tmp);
1141     return;
1142   }
1143 
1144   // If the vector element width is a whole number of bytes, test if its legal
1145   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1146   // vector. This greatly reduces the number of bit shifts necessary.
1147   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1148   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1149     SmallVector<int, 16> BSWAPMask;
1150     createBSWAPShuffleMask(VT, BSWAPMask);
1151 
1152     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1153     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1154         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1155          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1156           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1157           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1158           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1159       SDLoc DL(Node);
1160       SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1161       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1162                                 BSWAPMask);
1163       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1164       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
1165       Results.push_back(Op);
1166       return;
1167     }
1168   }
1169 
1170   // If we have the appropriate vector bit operations, it is better to use them
1171   // than unrolling and expanding each component.
1172   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1173       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1174       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1175       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) {
1176     Results.push_back(TLI.expandBITREVERSE(Node, DAG));
1177     return;
1178   }
1179 
1180   // Otherwise unroll.
1181   SDValue Tmp = DAG.UnrollVectorOp(Node);
1182   Results.push_back(Tmp);
1183 }
1184 
1185 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) {
1186   // Implement VSELECT in terms of XOR, AND, OR
1187   // on platforms which do not support blend natively.
1188   SDLoc DL(Node);
1189 
1190   SDValue Mask = Node->getOperand(0);
1191   SDValue Op1 = Node->getOperand(1);
1192   SDValue Op2 = Node->getOperand(2);
1193 
1194   EVT VT = Mask.getValueType();
1195 
1196   // If we can't even use the basic vector operations of
1197   // AND,OR,XOR, we will have to scalarize the op.
1198   // Notice that the operation may be 'promoted' which means that it is
1199   // 'bitcasted' to another type which is handled.
1200   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1201       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1202       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand)
1203     return DAG.UnrollVectorOp(Node);
1204 
1205   // This operation also isn't safe with AND, OR, XOR when the boolean type is
1206   // 0/1 and the select operands aren't also booleans, as we need an all-ones
1207   // vector constant to mask with.
1208   // FIXME: Sign extend 1 to all ones if that's legal on the target.
1209   auto BoolContents = TLI.getBooleanContents(Op1.getValueType());
1210   if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent &&
1211       !(BoolContents == TargetLowering::ZeroOrOneBooleanContent &&
1212         Op1.getValueType().getVectorElementType() == MVT::i1))
1213     return DAG.UnrollVectorOp(Node);
1214 
1215   // If the mask and the type are different sizes, unroll the vector op. This
1216   // can occur when getSetCCResultType returns something that is different in
1217   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1218   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1219     return DAG.UnrollVectorOp(Node);
1220 
1221   // Bitcast the operands to be the same type as the mask.
1222   // This is needed when we select between FP types because
1223   // the mask is a vector of integers.
1224   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1225   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1226 
1227   SDValue NotMask = DAG.getNOT(DL, Mask, VT);
1228 
1229   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1230   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1231   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1232   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1233 }
1234 
1235 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node,
1236                                        SmallVectorImpl<SDValue> &Results) {
1237   // Attempt to expand using TargetLowering.
1238   SDValue Result, Chain;
1239   if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) {
1240     Results.push_back(Result);
1241     if (Node->isStrictFPOpcode())
1242       Results.push_back(Chain);
1243     return;
1244   }
1245 
1246   // Otherwise go ahead and unroll.
1247   if (Node->isStrictFPOpcode()) {
1248     UnrollStrictFPOp(Node, Results);
1249     return;
1250   }
1251 
1252   Results.push_back(DAG.UnrollVectorOp(Node));
1253 }
1254 
1255 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node,
1256                                           SmallVectorImpl<SDValue> &Results) {
1257   bool IsStrict = Node->isStrictFPOpcode();
1258   unsigned OpNo = IsStrict ? 1 : 0;
1259   SDValue Src = Node->getOperand(OpNo);
1260   EVT VT = Src.getValueType();
1261   SDLoc DL(Node);
1262 
1263   // Attempt to expand using TargetLowering.
1264   SDValue Result;
1265   SDValue Chain;
1266   if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) {
1267     Results.push_back(Result);
1268     if (IsStrict)
1269       Results.push_back(Chain);
1270     return;
1271   }
1272 
1273   // Make sure that the SINT_TO_FP and SRL instructions are available.
1274   if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) ==
1275                          TargetLowering::Expand) ||
1276        (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) ==
1277                         TargetLowering::Expand)) ||
1278       TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) {
1279     if (IsStrict) {
1280       UnrollStrictFPOp(Node, Results);
1281       return;
1282     }
1283 
1284     Results.push_back(DAG.UnrollVectorOp(Node));
1285     return;
1286   }
1287 
1288   unsigned BW = VT.getScalarSizeInBits();
1289   assert((BW == 64 || BW == 32) &&
1290          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1291 
1292   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1293 
1294   // Constants to clear the upper part of the word.
1295   // Notice that we can also use SHL+SHR, but using a constant is slightly
1296   // faster on x86.
1297   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1298   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1299 
1300   // Two to the power of half-word-size.
1301   SDValue TWOHW =
1302       DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0));
1303 
1304   // Clear upper part of LO, lower HI
1305   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord);
1306   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask);
1307 
1308   if (IsStrict) {
1309     // Convert hi and lo to floats
1310     // Convert the hi part back to the upper values
1311     // TODO: Can any fast-math-flags be set on these nodes?
1312     SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1313                               {Node->getValueType(0), MVT::Other},
1314                               {Node->getOperand(0), HI});
1315     fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other},
1316                       {fHI.getValue(1), fHI, TWOHW});
1317     SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1318                               {Node->getValueType(0), MVT::Other},
1319                               {Node->getOperand(0), LO});
1320 
1321     SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1),
1322                              fLO.getValue(1));
1323 
1324     // Add the two halves
1325     SDValue Result =
1326         DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other},
1327                     {TF, fHI, fLO});
1328 
1329     Results.push_back(Result);
1330     Results.push_back(Result.getValue(1));
1331     return;
1332   }
1333 
1334   // Convert hi and lo to floats
1335   // Convert the hi part back to the upper values
1336   // TODO: Can any fast-math-flags be set on these nodes?
1337   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI);
1338   fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW);
1339   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO);
1340 
1341   // Add the two halves
1342   Results.push_back(
1343       DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO));
1344 }
1345 
1346 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) {
1347   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) {
1348     SDLoc DL(Node);
1349     SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0));
1350     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1351     return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero,
1352                        Node->getOperand(0));
1353   }
1354   return DAG.UnrollVectorOp(Node);
1355 }
1356 
1357 void VectorLegalizer::ExpandFSUB(SDNode *Node,
1358                                  SmallVectorImpl<SDValue> &Results) {
1359   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1360   // we can defer this to operation legalization where it will be lowered as
1361   // a+(-b).
1362   EVT VT = Node->getValueType(0);
1363   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1364       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1365     return; // Defer to LegalizeDAG
1366 
1367   SDValue Tmp = DAG.UnrollVectorOp(Node);
1368   Results.push_back(Tmp);
1369 }
1370 
1371 void VectorLegalizer::ExpandSETCC(SDNode *Node,
1372                                   SmallVectorImpl<SDValue> &Results) {
1373   bool NeedInvert = false;
1374   SDLoc dl(Node);
1375   MVT OpVT = Node->getOperand(0).getSimpleValueType();
1376   ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
1377 
1378   if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) {
1379     Results.push_back(UnrollVSETCC(Node));
1380     return;
1381   }
1382 
1383   SDValue Chain;
1384   SDValue LHS = Node->getOperand(0);
1385   SDValue RHS = Node->getOperand(1);
1386   SDValue CC = Node->getOperand(2);
1387   bool Legalized = TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS,
1388                                              RHS, CC, NeedInvert, dl, Chain);
1389 
1390   if (Legalized) {
1391     // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
1392     // condition code, create a new SETCC node.
1393     if (CC.getNode())
1394       LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC,
1395                         Node->getFlags());
1396 
1397     // If we expanded the SETCC by inverting the condition code, then wrap
1398     // the existing SETCC in a NOT to restore the intended condition.
1399     if (NeedInvert)
1400       LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0));
1401   } else {
1402     // Otherwise, SETCC for the given comparison type must be completely
1403     // illegal; expand it into a SELECT_CC.
1404     EVT VT = Node->getValueType(0);
1405     LHS =
1406         DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS,
1407                     DAG.getBoolConstant(true, dl, VT, LHS.getValueType()),
1408                     DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC);
1409     LHS->setFlags(Node->getFlags());
1410   }
1411 
1412   Results.push_back(LHS);
1413 }
1414 
1415 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node,
1416                                      SmallVectorImpl<SDValue> &Results) {
1417   SDValue Result, Overflow;
1418   TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
1419   Results.push_back(Result);
1420   Results.push_back(Overflow);
1421 }
1422 
1423 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node,
1424                                      SmallVectorImpl<SDValue> &Results) {
1425   SDValue Result, Overflow;
1426   TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
1427   Results.push_back(Result);
1428   Results.push_back(Overflow);
1429 }
1430 
1431 void VectorLegalizer::ExpandMULO(SDNode *Node,
1432                                  SmallVectorImpl<SDValue> &Results) {
1433   SDValue Result, Overflow;
1434   if (!TLI.expandMULO(Node, Result, Overflow, DAG))
1435     std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node);
1436 
1437   Results.push_back(Result);
1438   Results.push_back(Overflow);
1439 }
1440 
1441 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node,
1442                                           SmallVectorImpl<SDValue> &Results) {
1443   SDNode *N = Node;
1444   if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N),
1445           N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG))
1446     Results.push_back(Expanded);
1447 }
1448 
1449 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node,
1450                                        SmallVectorImpl<SDValue> &Results) {
1451   if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) {
1452     ExpandUINT_TO_FLOAT(Node, Results);
1453     return;
1454   }
1455   if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) {
1456     ExpandFP_TO_UINT(Node, Results);
1457     return;
1458   }
1459 
1460   UnrollStrictFPOp(Node, Results);
1461 }
1462 
1463 void VectorLegalizer::ExpandREM(SDNode *Node,
1464                                 SmallVectorImpl<SDValue> &Results) {
1465   assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) &&
1466          "Expected REM node");
1467 
1468   SDValue Result;
1469   if (!TLI.expandREM(Node, Result, DAG))
1470     Result = DAG.UnrollVectorOp(Node);
1471   Results.push_back(Result);
1472 }
1473 
1474 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node,
1475                                        SmallVectorImpl<SDValue> &Results) {
1476   EVT VT = Node->getValueType(0);
1477   EVT EltVT = VT.getVectorElementType();
1478   unsigned NumElems = VT.getVectorNumElements();
1479   unsigned NumOpers = Node->getNumOperands();
1480   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1481 
1482   EVT TmpEltVT = EltVT;
1483   if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1484       Node->getOpcode() == ISD::STRICT_FSETCCS)
1485     TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
1486                                       *DAG.getContext(), TmpEltVT);
1487 
1488   EVT ValueVTs[] = {TmpEltVT, MVT::Other};
1489   SDValue Chain = Node->getOperand(0);
1490   SDLoc dl(Node);
1491 
1492   SmallVector<SDValue, 32> OpValues;
1493   SmallVector<SDValue, 32> OpChains;
1494   for (unsigned i = 0; i < NumElems; ++i) {
1495     SmallVector<SDValue, 4> Opers;
1496     SDValue Idx = DAG.getVectorIdxConstant(i, dl);
1497 
1498     // The Chain is the first operand.
1499     Opers.push_back(Chain);
1500 
1501     // Now process the remaining operands.
1502     for (unsigned j = 1; j < NumOpers; ++j) {
1503       SDValue Oper = Node->getOperand(j);
1504       EVT OperVT = Oper.getValueType();
1505 
1506       if (OperVT.isVector())
1507         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1508                            OperVT.getVectorElementType(), Oper, Idx);
1509 
1510       Opers.push_back(Oper);
1511     }
1512 
1513     SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers);
1514     SDValue ScalarResult = ScalarOp.getValue(0);
1515     SDValue ScalarChain = ScalarOp.getValue(1);
1516 
1517     if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1518         Node->getOpcode() == ISD::STRICT_FSETCCS)
1519       ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
1520                                    DAG.getAllOnesConstant(dl, EltVT),
1521                                    DAG.getConstant(0, dl, EltVT));
1522 
1523     OpValues.push_back(ScalarResult);
1524     OpChains.push_back(ScalarChain);
1525   }
1526 
1527   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1528   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1529 
1530   Results.push_back(Result);
1531   Results.push_back(NewChain);
1532 }
1533 
1534 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) {
1535   EVT VT = Node->getValueType(0);
1536   unsigned NumElems = VT.getVectorNumElements();
1537   EVT EltVT = VT.getVectorElementType();
1538   SDValue LHS = Node->getOperand(0);
1539   SDValue RHS = Node->getOperand(1);
1540   SDValue CC = Node->getOperand(2);
1541   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1542   SDLoc dl(Node);
1543   SmallVector<SDValue, 8> Ops(NumElems);
1544   for (unsigned i = 0; i < NumElems; ++i) {
1545     SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1546                                   DAG.getVectorIdxConstant(i, dl));
1547     SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1548                                   DAG.getVectorIdxConstant(i, dl));
1549     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1550                          TLI.getSetCCResultType(DAG.getDataLayout(),
1551                                                 *DAG.getContext(), TmpEltVT),
1552                          LHSElem, RHSElem, CC);
1553     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getAllOnesConstant(dl, EltVT),
1554                            DAG.getConstant(0, dl, EltVT));
1555   }
1556   return DAG.getBuildVector(VT, dl, Ops);
1557 }
1558 
1559 bool SelectionDAG::LegalizeVectors() {
1560   return VectorLegalizer(*this).Run();
1561 }
1562