xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp (revision 3dd5524264095ed8612c28908e13f80668eff2f9)
1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
10 //
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types.  For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
20 //
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/SelectionDAG.h"
33 #include "llvm/CodeGen/SelectionDAGNodes.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/MachineValueType.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <iterator>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "legalizevectorops"
50 
51 namespace {
52 
53 class VectorLegalizer {
54   SelectionDAG& DAG;
55   const TargetLowering &TLI;
56   bool Changed = false; // Keep track of whether anything changed
57 
58   /// For nodes that are of legal width, and that have more than one use, this
59   /// map indicates what regularized operand to use.  This allows us to avoid
60   /// legalizing the same thing more than once.
61   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
62 
63   /// Adds a node to the translation cache.
64   void AddLegalizedOperand(SDValue From, SDValue To) {
65     LegalizedNodes.insert(std::make_pair(From, To));
66     // If someone requests legalization of the new node, return itself.
67     if (From != To)
68       LegalizedNodes.insert(std::make_pair(To, To));
69   }
70 
71   /// Legalizes the given node.
72   SDValue LegalizeOp(SDValue Op);
73 
74   /// Assuming the node is legal, "legalize" the results.
75   SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result);
76 
77   /// Make sure Results are legal and update the translation cache.
78   SDValue RecursivelyLegalizeResults(SDValue Op,
79                                      MutableArrayRef<SDValue> Results);
80 
81   /// Wrapper to interface LowerOperation with a vector of Results.
82   /// Returns false if the target wants to use default expansion. Otherwise
83   /// returns true. If return is true and the Results are empty, then the
84   /// target wants to keep the input node as is.
85   bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results);
86 
87   /// Implements unrolling a VSETCC.
88   SDValue UnrollVSETCC(SDNode *Node);
89 
90   /// Implement expand-based legalization of vector operations.
91   ///
92   /// This is just a high-level routine to dispatch to specific code paths for
93   /// operations to legalize them.
94   void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results);
95 
96   /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
97   /// FP_TO_SINT isn't legal.
98   void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
99 
100   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
101   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
102   void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
103 
104   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
105   SDValue ExpandSEXTINREG(SDNode *Node);
106 
107   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
108   ///
109   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
110   /// type. The contents of the bits in the extended part of each element are
111   /// undef.
112   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node);
113 
114   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
115   ///
116   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
117   /// type, then shifts left and arithmetic shifts right to introduce a sign
118   /// extension.
119   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node);
120 
121   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
122   ///
123   /// Shuffles the low lanes of the operand into place and blends zeros into
124   /// the remaining lanes, finally bitcasting to the proper type.
125   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node);
126 
127   /// Expand bswap of vectors into a shuffle if legal.
128   SDValue ExpandBSWAP(SDNode *Node);
129 
130   /// Implement vselect in terms of XOR, AND, OR when blend is not
131   /// supported by the target.
132   SDValue ExpandVSELECT(SDNode *Node);
133   SDValue ExpandVP_SELECT(SDNode *Node);
134   SDValue ExpandVP_MERGE(SDNode *Node);
135   SDValue ExpandSELECT(SDNode *Node);
136   std::pair<SDValue, SDValue> ExpandLoad(SDNode *N);
137   SDValue ExpandStore(SDNode *N);
138   SDValue ExpandFNEG(SDNode *Node);
139   void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results);
140   void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results);
141   void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results);
142   void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
143   void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
144   void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
145   void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results);
146   void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
147   void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results);
148 
149   void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
150 
151   /// Implements vector promotion.
152   ///
153   /// This is essentially just bitcasting the operands to a different type and
154   /// bitcasting the result back to the original type.
155   void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results);
156 
157   /// Implements [SU]INT_TO_FP vector promotion.
158   ///
159   /// This is a [zs]ext of the input operand to a larger integer type.
160   void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results);
161 
162   /// Implements FP_TO_[SU]INT vector promotion of the result type.
163   ///
164   /// It is promoted to a larger integer type.  The result is then
165   /// truncated back to the original type.
166   void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
167 
168 public:
169   VectorLegalizer(SelectionDAG& dag) :
170       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
171 
172   /// Begin legalizer the vector operations in the DAG.
173   bool Run();
174 };
175 
176 } // end anonymous namespace
177 
178 bool VectorLegalizer::Run() {
179   // Before we start legalizing vector nodes, check if there are any vectors.
180   bool HasVectors = false;
181   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
182        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
183     // Check if the values of the nodes contain vectors. We don't need to check
184     // the operands because we are going to check their values at some point.
185     HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); });
186 
187     // If we found a vector node we can start the legalization.
188     if (HasVectors)
189       break;
190   }
191 
192   // If this basic block has no vectors then no need to legalize vectors.
193   if (!HasVectors)
194     return false;
195 
196   // The legalize process is inherently a bottom-up recursive process (users
197   // legalize their uses before themselves).  Given infinite stack space, we
198   // could just start legalizing on the root and traverse the whole graph.  In
199   // practice however, this causes us to run out of stack space on large basic
200   // blocks.  To avoid this problem, compute an ordering of the nodes where each
201   // node is only legalized after all of its operands are legalized.
202   DAG.AssignTopologicalOrder();
203   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
204        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
205     LegalizeOp(SDValue(&*I, 0));
206 
207   // Finally, it's possible the root changed.  Get the new root.
208   SDValue OldRoot = DAG.getRoot();
209   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
210   DAG.setRoot(LegalizedNodes[OldRoot]);
211 
212   LegalizedNodes.clear();
213 
214   // Remove dead nodes now.
215   DAG.RemoveDeadNodes();
216 
217   return Changed;
218 }
219 
220 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) {
221   assert(Op->getNumValues() == Result->getNumValues() &&
222          "Unexpected number of results");
223   // Generic legalization: just pass the operand through.
224   for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i)
225     AddLegalizedOperand(Op.getValue(i), SDValue(Result, i));
226   return SDValue(Result, Op.getResNo());
227 }
228 
229 SDValue
230 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op,
231                                             MutableArrayRef<SDValue> Results) {
232   assert(Results.size() == Op->getNumValues() &&
233          "Unexpected number of results");
234   // Make sure that the generated code is itself legal.
235   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
236     Results[i] = LegalizeOp(Results[i]);
237     AddLegalizedOperand(Op.getValue(i), Results[i]);
238   }
239 
240   return Results[Op.getResNo()];
241 }
242 
243 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
244   // Note that LegalizeOp may be reentered even from single-use nodes, which
245   // means that we always must cache transformed nodes.
246   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
247   if (I != LegalizedNodes.end()) return I->second;
248 
249   // Legalize the operands
250   SmallVector<SDValue, 8> Ops;
251   for (const SDValue &Oper : Op->op_values())
252     Ops.push_back(LegalizeOp(Oper));
253 
254   SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops);
255 
256   bool HasVectorValueOrOp =
257       llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) ||
258       llvm::any_of(Node->op_values(),
259                    [](SDValue O) { return O.getValueType().isVector(); });
260   if (!HasVectorValueOrOp)
261     return TranslateLegalizeResults(Op, Node);
262 
263   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
264   EVT ValVT;
265   switch (Op.getOpcode()) {
266   default:
267     return TranslateLegalizeResults(Op, Node);
268   case ISD::LOAD: {
269     LoadSDNode *LD = cast<LoadSDNode>(Node);
270     ISD::LoadExtType ExtType = LD->getExtensionType();
271     EVT LoadedVT = LD->getMemoryVT();
272     if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD)
273       Action = TLI.getLoadExtAction(ExtType, LD->getValueType(0), LoadedVT);
274     break;
275   }
276   case ISD::STORE: {
277     StoreSDNode *ST = cast<StoreSDNode>(Node);
278     EVT StVT = ST->getMemoryVT();
279     MVT ValVT = ST->getValue().getSimpleValueType();
280     if (StVT.isVector() && ST->isTruncatingStore())
281       Action = TLI.getTruncStoreAction(ValVT, StVT);
282     break;
283   }
284   case ISD::MERGE_VALUES:
285     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
286     // This operation lies about being legal: when it claims to be legal,
287     // it should actually be expanded.
288     if (Action == TargetLowering::Legal)
289       Action = TargetLowering::Expand;
290     break;
291 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
292   case ISD::STRICT_##DAGN:
293 #include "llvm/IR/ConstrainedOps.def"
294     ValVT = Node->getValueType(0);
295     if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
296         Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
297       ValVT = Node->getOperand(1).getValueType();
298     Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
299     // If we're asked to expand a strict vector floating-point operation,
300     // by default we're going to simply unroll it.  That is usually the
301     // best approach, except in the case where the resulting strict (scalar)
302     // operations would themselves use the fallback mutation to non-strict.
303     // In that specific case, just do the fallback on the vector op.
304     if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
305         TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
306             TargetLowering::Legal) {
307       EVT EltVT = ValVT.getVectorElementType();
308       if (TLI.getOperationAction(Node->getOpcode(), EltVT)
309           == TargetLowering::Expand &&
310           TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
311           == TargetLowering::Legal)
312         Action = TargetLowering::Legal;
313     }
314     break;
315   case ISD::ADD:
316   case ISD::SUB:
317   case ISD::MUL:
318   case ISD::MULHS:
319   case ISD::MULHU:
320   case ISD::SDIV:
321   case ISD::UDIV:
322   case ISD::SREM:
323   case ISD::UREM:
324   case ISD::SDIVREM:
325   case ISD::UDIVREM:
326   case ISD::FADD:
327   case ISD::FSUB:
328   case ISD::FMUL:
329   case ISD::FDIV:
330   case ISD::FREM:
331   case ISD::AND:
332   case ISD::OR:
333   case ISD::XOR:
334   case ISD::SHL:
335   case ISD::SRA:
336   case ISD::SRL:
337   case ISD::FSHL:
338   case ISD::FSHR:
339   case ISD::ROTL:
340   case ISD::ROTR:
341   case ISD::ABS:
342   case ISD::BSWAP:
343   case ISD::BITREVERSE:
344   case ISD::CTLZ:
345   case ISD::CTTZ:
346   case ISD::CTLZ_ZERO_UNDEF:
347   case ISD::CTTZ_ZERO_UNDEF:
348   case ISD::CTPOP:
349   case ISD::SELECT:
350   case ISD::VSELECT:
351   case ISD::SELECT_CC:
352   case ISD::ZERO_EXTEND:
353   case ISD::ANY_EXTEND:
354   case ISD::TRUNCATE:
355   case ISD::SIGN_EXTEND:
356   case ISD::FP_TO_SINT:
357   case ISD::FP_TO_UINT:
358   case ISD::FNEG:
359   case ISD::FABS:
360   case ISD::FMINNUM:
361   case ISD::FMAXNUM:
362   case ISD::FMINNUM_IEEE:
363   case ISD::FMAXNUM_IEEE:
364   case ISD::FMINIMUM:
365   case ISD::FMAXIMUM:
366   case ISD::FCOPYSIGN:
367   case ISD::FSQRT:
368   case ISD::FSIN:
369   case ISD::FCOS:
370   case ISD::FPOWI:
371   case ISD::FPOW:
372   case ISD::FLOG:
373   case ISD::FLOG2:
374   case ISD::FLOG10:
375   case ISD::FEXP:
376   case ISD::FEXP2:
377   case ISD::FCEIL:
378   case ISD::FTRUNC:
379   case ISD::FRINT:
380   case ISD::FNEARBYINT:
381   case ISD::FROUND:
382   case ISD::FROUNDEVEN:
383   case ISD::FFLOOR:
384   case ISD::FP_ROUND:
385   case ISD::FP_EXTEND:
386   case ISD::FMA:
387   case ISD::SIGN_EXTEND_INREG:
388   case ISD::ANY_EXTEND_VECTOR_INREG:
389   case ISD::SIGN_EXTEND_VECTOR_INREG:
390   case ISD::ZERO_EXTEND_VECTOR_INREG:
391   case ISD::SMIN:
392   case ISD::SMAX:
393   case ISD::UMIN:
394   case ISD::UMAX:
395   case ISD::SMUL_LOHI:
396   case ISD::UMUL_LOHI:
397   case ISD::SADDO:
398   case ISD::UADDO:
399   case ISD::SSUBO:
400   case ISD::USUBO:
401   case ISD::SMULO:
402   case ISD::UMULO:
403   case ISD::FCANONICALIZE:
404   case ISD::SADDSAT:
405   case ISD::UADDSAT:
406   case ISD::SSUBSAT:
407   case ISD::USUBSAT:
408   case ISD::SSHLSAT:
409   case ISD::USHLSAT:
410   case ISD::FP_TO_SINT_SAT:
411   case ISD::FP_TO_UINT_SAT:
412   case ISD::MGATHER:
413     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
414     break;
415   case ISD::SMULFIX:
416   case ISD::SMULFIXSAT:
417   case ISD::UMULFIX:
418   case ISD::UMULFIXSAT:
419   case ISD::SDIVFIX:
420   case ISD::SDIVFIXSAT:
421   case ISD::UDIVFIX:
422   case ISD::UDIVFIXSAT: {
423     unsigned Scale = Node->getConstantOperandVal(2);
424     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
425                                               Node->getValueType(0), Scale);
426     break;
427   }
428   case ISD::SINT_TO_FP:
429   case ISD::UINT_TO_FP:
430   case ISD::VECREDUCE_ADD:
431   case ISD::VECREDUCE_MUL:
432   case ISD::VECREDUCE_AND:
433   case ISD::VECREDUCE_OR:
434   case ISD::VECREDUCE_XOR:
435   case ISD::VECREDUCE_SMAX:
436   case ISD::VECREDUCE_SMIN:
437   case ISD::VECREDUCE_UMAX:
438   case ISD::VECREDUCE_UMIN:
439   case ISD::VECREDUCE_FADD:
440   case ISD::VECREDUCE_FMUL:
441   case ISD::VECREDUCE_FMAX:
442   case ISD::VECREDUCE_FMIN:
443     Action = TLI.getOperationAction(Node->getOpcode(),
444                                     Node->getOperand(0).getValueType());
445     break;
446   case ISD::VECREDUCE_SEQ_FADD:
447   case ISD::VECREDUCE_SEQ_FMUL:
448     Action = TLI.getOperationAction(Node->getOpcode(),
449                                     Node->getOperand(1).getValueType());
450     break;
451   case ISD::SETCC: {
452     MVT OpVT = Node->getOperand(0).getSimpleValueType();
453     ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
454     Action = TLI.getCondCodeAction(CCCode, OpVT);
455     if (Action == TargetLowering::Legal)
456       Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
457     break;
458   }
459 
460 #define BEGIN_REGISTER_VP_SDNODE(VPID, LEGALPOS, ...)                          \
461   case ISD::VPID: {                                                            \
462     EVT LegalizeVT = LEGALPOS < 0 ? Node->getValueType(-(1 + LEGALPOS))        \
463                                   : Node->getOperand(LEGALPOS).getValueType(); \
464     if (ISD::VPID == ISD::VP_SETCC) {                                          \
465       ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); \
466       Action = TLI.getCondCodeAction(CCCode, LegalizeVT.getSimpleVT());        \
467       if (Action != TargetLowering::Legal)                                     \
468         break;                                                                 \
469     }                                                                          \
470     Action = TLI.getOperationAction(Node->getOpcode(), LegalizeVT);            \
471   } break;
472 #include "llvm/IR/VPIntrinsics.def"
473   }
474 
475   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
476 
477   SmallVector<SDValue, 8> ResultVals;
478   switch (Action) {
479   default: llvm_unreachable("This action is not supported yet!");
480   case TargetLowering::Promote:
481     assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) &&
482            "This action is not supported yet!");
483     LLVM_DEBUG(dbgs() << "Promoting\n");
484     Promote(Node, ResultVals);
485     assert(!ResultVals.empty() && "No results for promotion?");
486     break;
487   case TargetLowering::Legal:
488     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
489     break;
490   case TargetLowering::Custom:
491     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
492     if (LowerOperationWrapper(Node, ResultVals))
493       break;
494     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
495     LLVM_FALLTHROUGH;
496   case TargetLowering::Expand:
497     LLVM_DEBUG(dbgs() << "Expanding\n");
498     Expand(Node, ResultVals);
499     break;
500   }
501 
502   if (ResultVals.empty())
503     return TranslateLegalizeResults(Op, Node);
504 
505   Changed = true;
506   return RecursivelyLegalizeResults(Op, ResultVals);
507 }
508 
509 // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we
510 // merge them somehow?
511 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node,
512                                             SmallVectorImpl<SDValue> &Results) {
513   SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
514 
515   if (!Res.getNode())
516     return false;
517 
518   if (Res == SDValue(Node, 0))
519     return true;
520 
521   // If the original node has one result, take the return value from
522   // LowerOperation as is. It might not be result number 0.
523   if (Node->getNumValues() == 1) {
524     Results.push_back(Res);
525     return true;
526   }
527 
528   // If the original node has multiple results, then the return node should
529   // have the same number of results.
530   assert((Node->getNumValues() == Res->getNumValues()) &&
531          "Lowering returned the wrong number of results!");
532 
533   // Places new result values base on N result number.
534   for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I)
535     Results.push_back(Res.getValue(I));
536 
537   return true;
538 }
539 
540 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
541   // For a few operations there is a specific concept for promotion based on
542   // the operand's type.
543   switch (Node->getOpcode()) {
544   case ISD::SINT_TO_FP:
545   case ISD::UINT_TO_FP:
546   case ISD::STRICT_SINT_TO_FP:
547   case ISD::STRICT_UINT_TO_FP:
548     // "Promote" the operation by extending the operand.
549     PromoteINT_TO_FP(Node, Results);
550     return;
551   case ISD::FP_TO_UINT:
552   case ISD::FP_TO_SINT:
553   case ISD::STRICT_FP_TO_UINT:
554   case ISD::STRICT_FP_TO_SINT:
555     // Promote the operation by extending the operand.
556     PromoteFP_TO_INT(Node, Results);
557     return;
558   case ISD::FP_ROUND:
559   case ISD::FP_EXTEND:
560     // These operations are used to do promotion so they can't be promoted
561     // themselves.
562     llvm_unreachable("Don't know how to promote this operation!");
563   }
564 
565   // There are currently two cases of vector promotion:
566   // 1) Bitcasting a vector of integers to a different type to a vector of the
567   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
568   // 2) Extending a vector of floats to a vector of the same number of larger
569   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
570   assert(Node->getNumValues() == 1 &&
571          "Can't promote a vector with multiple results!");
572   MVT VT = Node->getSimpleValueType(0);
573   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
574   SDLoc dl(Node);
575   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
576 
577   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
578     if (Node->getOperand(j).getValueType().isVector())
579       if (Node->getOperand(j)
580               .getValueType()
581               .getVectorElementType()
582               .isFloatingPoint() &&
583           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
584         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j));
585       else
586         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j));
587     else
588       Operands[j] = Node->getOperand(j);
589   }
590 
591   SDValue Res =
592       DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags());
593 
594   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
595       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
596        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
597     Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl));
598   else
599     Res = DAG.getNode(ISD::BITCAST, dl, VT, Res);
600 
601   Results.push_back(Res);
602 }
603 
604 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node,
605                                        SmallVectorImpl<SDValue> &Results) {
606   // INT_TO_FP operations may require the input operand be promoted even
607   // when the type is otherwise legal.
608   bool IsStrict = Node->isStrictFPOpcode();
609   MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType();
610   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
611   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
612          "Vectors have different number of elements!");
613 
614   SDLoc dl(Node);
615   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
616 
617   unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP ||
618                   Node->getOpcode() == ISD::STRICT_UINT_TO_FP)
619                      ? ISD::ZERO_EXTEND
620                      : ISD::SIGN_EXTEND;
621   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
622     if (Node->getOperand(j).getValueType().isVector())
623       Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j));
624     else
625       Operands[j] = Node->getOperand(j);
626   }
627 
628   if (IsStrict) {
629     SDValue Res = DAG.getNode(Node->getOpcode(), dl,
630                               {Node->getValueType(0), MVT::Other}, Operands);
631     Results.push_back(Res);
632     Results.push_back(Res.getValue(1));
633     return;
634   }
635 
636   SDValue Res =
637       DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands);
638   Results.push_back(Res);
639 }
640 
641 // For FP_TO_INT we promote the result type to a vector type with wider
642 // elements and then truncate the result.  This is different from the default
643 // PromoteVector which uses bitcast to promote thus assumning that the
644 // promoted vector type has the same overall size.
645 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node,
646                                        SmallVectorImpl<SDValue> &Results) {
647   MVT VT = Node->getSimpleValueType(0);
648   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
649   bool IsStrict = Node->isStrictFPOpcode();
650   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
651          "Vectors have different number of elements!");
652 
653   unsigned NewOpc = Node->getOpcode();
654   // Change FP_TO_UINT to FP_TO_SINT if possible.
655   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
656   if (NewOpc == ISD::FP_TO_UINT &&
657       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
658     NewOpc = ISD::FP_TO_SINT;
659 
660   if (NewOpc == ISD::STRICT_FP_TO_UINT &&
661       TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
662     NewOpc = ISD::STRICT_FP_TO_SINT;
663 
664   SDLoc dl(Node);
665   SDValue Promoted, Chain;
666   if (IsStrict) {
667     Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
668                            {Node->getOperand(0), Node->getOperand(1)});
669     Chain = Promoted.getValue(1);
670   } else
671     Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0));
672 
673   // Assert that the converted value fits in the original type.  If it doesn't
674   // (eg: because the value being converted is too big), then the result of the
675   // original operation was undefined anyway, so the assert is still correct.
676   if (Node->getOpcode() == ISD::FP_TO_UINT ||
677       Node->getOpcode() == ISD::STRICT_FP_TO_UINT)
678     NewOpc = ISD::AssertZext;
679   else
680     NewOpc = ISD::AssertSext;
681 
682   Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
683                          DAG.getValueType(VT.getScalarType()));
684   Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
685   Results.push_back(Promoted);
686   if (IsStrict)
687     Results.push_back(Chain);
688 }
689 
690 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) {
691   LoadSDNode *LD = cast<LoadSDNode>(N);
692   return TLI.scalarizeVectorLoad(LD, DAG);
693 }
694 
695 SDValue VectorLegalizer::ExpandStore(SDNode *N) {
696   StoreSDNode *ST = cast<StoreSDNode>(N);
697   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
698   return TF;
699 }
700 
701 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
702   switch (Node->getOpcode()) {
703   case ISD::LOAD: {
704     std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node);
705     Results.push_back(Tmp.first);
706     Results.push_back(Tmp.second);
707     return;
708   }
709   case ISD::STORE:
710     Results.push_back(ExpandStore(Node));
711     return;
712   case ISD::MERGE_VALUES:
713     for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
714       Results.push_back(Node->getOperand(i));
715     return;
716   case ISD::SIGN_EXTEND_INREG:
717     Results.push_back(ExpandSEXTINREG(Node));
718     return;
719   case ISD::ANY_EXTEND_VECTOR_INREG:
720     Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node));
721     return;
722   case ISD::SIGN_EXTEND_VECTOR_INREG:
723     Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node));
724     return;
725   case ISD::ZERO_EXTEND_VECTOR_INREG:
726     Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node));
727     return;
728   case ISD::BSWAP:
729     Results.push_back(ExpandBSWAP(Node));
730     return;
731   case ISD::VSELECT:
732     Results.push_back(ExpandVSELECT(Node));
733     return;
734   case ISD::VP_SELECT:
735     Results.push_back(ExpandVP_SELECT(Node));
736     return;
737   case ISD::SELECT:
738     Results.push_back(ExpandSELECT(Node));
739     return;
740   case ISD::SELECT_CC: {
741     if (Node->getValueType(0).isScalableVector()) {
742       EVT CondVT = TLI.getSetCCResultType(
743           DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
744       SDValue SetCC =
745           DAG.getNode(ISD::SETCC, SDLoc(Node), CondVT, Node->getOperand(0),
746                       Node->getOperand(1), Node->getOperand(4));
747       Results.push_back(DAG.getSelect(SDLoc(Node), Node->getValueType(0), SetCC,
748                                       Node->getOperand(2),
749                                       Node->getOperand(3)));
750       return;
751     }
752     break;
753   }
754   case ISD::FP_TO_UINT:
755     ExpandFP_TO_UINT(Node, Results);
756     return;
757   case ISD::UINT_TO_FP:
758     ExpandUINT_TO_FLOAT(Node, Results);
759     return;
760   case ISD::FNEG:
761     Results.push_back(ExpandFNEG(Node));
762     return;
763   case ISD::FSUB:
764     ExpandFSUB(Node, Results);
765     return;
766   case ISD::SETCC:
767   case ISD::VP_SETCC:
768     ExpandSETCC(Node, Results);
769     return;
770   case ISD::ABS:
771     if (SDValue Expanded = TLI.expandABS(Node, DAG)) {
772       Results.push_back(Expanded);
773       return;
774     }
775     break;
776   case ISD::BITREVERSE:
777     ExpandBITREVERSE(Node, Results);
778     return;
779   case ISD::CTPOP:
780     if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) {
781       Results.push_back(Expanded);
782       return;
783     }
784     break;
785   case ISD::CTLZ:
786   case ISD::CTLZ_ZERO_UNDEF:
787     if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) {
788       Results.push_back(Expanded);
789       return;
790     }
791     break;
792   case ISD::CTTZ:
793   case ISD::CTTZ_ZERO_UNDEF:
794     if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) {
795       Results.push_back(Expanded);
796       return;
797     }
798     break;
799   case ISD::FSHL:
800   case ISD::FSHR:
801     if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) {
802       Results.push_back(Expanded);
803       return;
804     }
805     break;
806   case ISD::ROTL:
807   case ISD::ROTR:
808     if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) {
809       Results.push_back(Expanded);
810       return;
811     }
812     break;
813   case ISD::FMINNUM:
814   case ISD::FMAXNUM:
815     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) {
816       Results.push_back(Expanded);
817       return;
818     }
819     break;
820   case ISD::SMIN:
821   case ISD::SMAX:
822   case ISD::UMIN:
823   case ISD::UMAX:
824     if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) {
825       Results.push_back(Expanded);
826       return;
827     }
828     break;
829   case ISD::UADDO:
830   case ISD::USUBO:
831     ExpandUADDSUBO(Node, Results);
832     return;
833   case ISD::SADDO:
834   case ISD::SSUBO:
835     ExpandSADDSUBO(Node, Results);
836     return;
837   case ISD::UMULO:
838   case ISD::SMULO:
839     ExpandMULO(Node, Results);
840     return;
841   case ISD::USUBSAT:
842   case ISD::SSUBSAT:
843   case ISD::UADDSAT:
844   case ISD::SADDSAT:
845     if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) {
846       Results.push_back(Expanded);
847       return;
848     }
849     break;
850   case ISD::FP_TO_SINT_SAT:
851   case ISD::FP_TO_UINT_SAT:
852     // Expand the fpsosisat if it is scalable to prevent it from unrolling below.
853     if (Node->getValueType(0).isScalableVector()) {
854       if (SDValue Expanded = TLI.expandFP_TO_INT_SAT(Node, DAG)) {
855         Results.push_back(Expanded);
856         return;
857       }
858     }
859     break;
860   case ISD::SMULFIX:
861   case ISD::UMULFIX:
862     if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) {
863       Results.push_back(Expanded);
864       return;
865     }
866     break;
867   case ISD::SMULFIXSAT:
868   case ISD::UMULFIXSAT:
869     // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
870     // why. Maybe it results in worse codegen compared to the unroll for some
871     // targets? This should probably be investigated. And if we still prefer to
872     // unroll an explanation could be helpful.
873     break;
874   case ISD::SDIVFIX:
875   case ISD::UDIVFIX:
876     ExpandFixedPointDiv(Node, Results);
877     return;
878   case ISD::SDIVFIXSAT:
879   case ISD::UDIVFIXSAT:
880     break;
881 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
882   case ISD::STRICT_##DAGN:
883 #include "llvm/IR/ConstrainedOps.def"
884     ExpandStrictFPOp(Node, Results);
885     return;
886   case ISD::VECREDUCE_ADD:
887   case ISD::VECREDUCE_MUL:
888   case ISD::VECREDUCE_AND:
889   case ISD::VECREDUCE_OR:
890   case ISD::VECREDUCE_XOR:
891   case ISD::VECREDUCE_SMAX:
892   case ISD::VECREDUCE_SMIN:
893   case ISD::VECREDUCE_UMAX:
894   case ISD::VECREDUCE_UMIN:
895   case ISD::VECREDUCE_FADD:
896   case ISD::VECREDUCE_FMUL:
897   case ISD::VECREDUCE_FMAX:
898   case ISD::VECREDUCE_FMIN:
899     Results.push_back(TLI.expandVecReduce(Node, DAG));
900     return;
901   case ISD::VECREDUCE_SEQ_FADD:
902   case ISD::VECREDUCE_SEQ_FMUL:
903     Results.push_back(TLI.expandVecReduceSeq(Node, DAG));
904     return;
905   case ISD::SREM:
906   case ISD::UREM:
907     ExpandREM(Node, Results);
908     return;
909   case ISD::VP_MERGE:
910     Results.push_back(ExpandVP_MERGE(Node));
911     return;
912   }
913 
914   Results.push_back(DAG.UnrollVectorOp(Node));
915 }
916 
917 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) {
918   // Lower a select instruction where the condition is a scalar and the
919   // operands are vectors. Lower this select to VSELECT and implement it
920   // using XOR AND OR. The selector bit is broadcasted.
921   EVT VT = Node->getValueType(0);
922   SDLoc DL(Node);
923 
924   SDValue Mask = Node->getOperand(0);
925   SDValue Op1 = Node->getOperand(1);
926   SDValue Op2 = Node->getOperand(2);
927 
928   assert(VT.isVector() && !Mask.getValueType().isVector()
929          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
930 
931   // If we can't even use the basic vector operations of
932   // AND,OR,XOR, we will have to scalarize the op.
933   // Notice that the operation may be 'promoted' which means that it is
934   // 'bitcasted' to another type which is handled.
935   // Also, we need to be able to construct a splat vector using either
936   // BUILD_VECTOR or SPLAT_VECTOR.
937   // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to
938   // BUILD_VECTOR?
939   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
940       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
941       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
942       TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR
943                                                       : ISD::SPLAT_VECTOR,
944                              VT) == TargetLowering::Expand)
945     return DAG.UnrollVectorOp(Node);
946 
947   // Generate a mask operand.
948   EVT MaskTy = VT.changeVectorElementTypeToInteger();
949 
950   // What is the size of each element in the vector mask.
951   EVT BitTy = MaskTy.getScalarType();
952 
953   Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy),
954                        DAG.getConstant(0, DL, BitTy));
955 
956   // Broadcast the mask so that the entire vector is all one or all zero.
957   if (VT.isFixedLengthVector())
958     Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
959   else
960     Mask = DAG.getSplatVector(MaskTy, DL, Mask);
961 
962   // Bitcast the operands to be the same type as the mask.
963   // This is needed when we select between FP types because
964   // the mask is a vector of integers.
965   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
966   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
967 
968   SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy);
969 
970   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
971   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
972   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
973   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
974 }
975 
976 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) {
977   EVT VT = Node->getValueType(0);
978 
979   // Make sure that the SRA and SHL instructions are available.
980   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
981       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
982     return DAG.UnrollVectorOp(Node);
983 
984   SDLoc DL(Node);
985   EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT();
986 
987   unsigned BW = VT.getScalarSizeInBits();
988   unsigned OrigBW = OrigTy.getScalarSizeInBits();
989   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
990 
991   SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz);
992   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
993 }
994 
995 // Generically expand a vector anyext in register to a shuffle of the relevant
996 // lanes into the appropriate locations, with other lanes left undef.
997 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) {
998   SDLoc DL(Node);
999   EVT VT = Node->getValueType(0);
1000   int NumElements = VT.getVectorNumElements();
1001   SDValue Src = Node->getOperand(0);
1002   EVT SrcVT = Src.getValueType();
1003   int NumSrcElements = SrcVT.getVectorNumElements();
1004 
1005   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1006   // into a larger vector type.
1007   if (SrcVT.bitsLE(VT)) {
1008     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1009            "ANY_EXTEND_VECTOR_INREG vector size mismatch");
1010     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1011     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1012                              NumSrcElements);
1013     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
1014                       Src, DAG.getVectorIdxConstant(0, DL));
1015   }
1016 
1017   // Build a base mask of undef shuffles.
1018   SmallVector<int, 16> ShuffleMask;
1019   ShuffleMask.resize(NumSrcElements, -1);
1020 
1021   // Place the extended lanes into the correct locations.
1022   int ExtLaneScale = NumSrcElements / NumElements;
1023   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1024   for (int i = 0; i < NumElements; ++i)
1025     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
1026 
1027   return DAG.getNode(
1028       ISD::BITCAST, DL, VT,
1029       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
1030 }
1031 
1032 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) {
1033   SDLoc DL(Node);
1034   EVT VT = Node->getValueType(0);
1035   SDValue Src = Node->getOperand(0);
1036   EVT SrcVT = Src.getValueType();
1037 
1038   // First build an any-extend node which can be legalized above when we
1039   // recurse through it.
1040   SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
1041 
1042   // Now we need sign extend. Do this by shifting the elements. Even if these
1043   // aren't legal operations, they have a better chance of being legalized
1044   // without full scalarization than the sign extension does.
1045   unsigned EltWidth = VT.getScalarSizeInBits();
1046   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
1047   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
1048   return DAG.getNode(ISD::SRA, DL, VT,
1049                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
1050                      ShiftAmount);
1051 }
1052 
1053 // Generically expand a vector zext in register to a shuffle of the relevant
1054 // lanes into the appropriate locations, a blend of zero into the high bits,
1055 // and a bitcast to the wider element type.
1056 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) {
1057   SDLoc DL(Node);
1058   EVT VT = Node->getValueType(0);
1059   int NumElements = VT.getVectorNumElements();
1060   SDValue Src = Node->getOperand(0);
1061   EVT SrcVT = Src.getValueType();
1062   int NumSrcElements = SrcVT.getVectorNumElements();
1063 
1064   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1065   // into a larger vector type.
1066   if (SrcVT.bitsLE(VT)) {
1067     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1068            "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1069     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1070     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1071                              NumSrcElements);
1072     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
1073                       Src, DAG.getVectorIdxConstant(0, DL));
1074   }
1075 
1076   // Build up a zero vector to blend into this one.
1077   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1078 
1079   // Shuffle the incoming lanes into the correct position, and pull all other
1080   // lanes from the zero vector.
1081   auto ShuffleMask = llvm::to_vector<16>(llvm::seq<int>(0, NumSrcElements));
1082 
1083   int ExtLaneScale = NumSrcElements / NumElements;
1084   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1085   for (int i = 0; i < NumElements; ++i)
1086     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1087 
1088   return DAG.getNode(ISD::BITCAST, DL, VT,
1089                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1090 }
1091 
1092 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1093   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1094   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1095     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1096       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1097 }
1098 
1099 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) {
1100   EVT VT = Node->getValueType(0);
1101 
1102   // Scalable vectors can't use shuffle expansion.
1103   if (VT.isScalableVector())
1104     return TLI.expandBSWAP(Node, DAG);
1105 
1106   // Generate a byte wise shuffle mask for the BSWAP.
1107   SmallVector<int, 16> ShuffleMask;
1108   createBSWAPShuffleMask(VT, ShuffleMask);
1109   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1110 
1111   // Only emit a shuffle if the mask is legal.
1112   if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) {
1113     SDLoc DL(Node);
1114     SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1115     Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1116     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1117   }
1118 
1119   // If we have the appropriate vector bit operations, it is better to use them
1120   // than unrolling and expanding each component.
1121   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1122       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1123       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1124       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1125     return TLI.expandBSWAP(Node, DAG);
1126 
1127   // Otherwise unroll.
1128   return DAG.UnrollVectorOp(Node);
1129 }
1130 
1131 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node,
1132                                        SmallVectorImpl<SDValue> &Results) {
1133   EVT VT = Node->getValueType(0);
1134 
1135   // We can't unroll or use shuffles for scalable vectors.
1136   if (VT.isScalableVector()) {
1137     Results.push_back(TLI.expandBITREVERSE(Node, DAG));
1138     return;
1139   }
1140 
1141   // If we have the scalar operation, it's probably cheaper to unroll it.
1142   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) {
1143     SDValue Tmp = DAG.UnrollVectorOp(Node);
1144     Results.push_back(Tmp);
1145     return;
1146   }
1147 
1148   // If the vector element width is a whole number of bytes, test if its legal
1149   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1150   // vector. This greatly reduces the number of bit shifts necessary.
1151   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1152   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1153     SmallVector<int, 16> BSWAPMask;
1154     createBSWAPShuffleMask(VT, BSWAPMask);
1155 
1156     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1157     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1158         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1159          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1160           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1161           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1162           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1163       SDLoc DL(Node);
1164       SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1165       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1166                                 BSWAPMask);
1167       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1168       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
1169       Results.push_back(Op);
1170       return;
1171     }
1172   }
1173 
1174   // If we have the appropriate vector bit operations, it is better to use them
1175   // than unrolling and expanding each component.
1176   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1177       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1178       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1179       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) {
1180     Results.push_back(TLI.expandBITREVERSE(Node, DAG));
1181     return;
1182   }
1183 
1184   // Otherwise unroll.
1185   SDValue Tmp = DAG.UnrollVectorOp(Node);
1186   Results.push_back(Tmp);
1187 }
1188 
1189 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) {
1190   // Implement VSELECT in terms of XOR, AND, OR
1191   // on platforms which do not support blend natively.
1192   SDLoc DL(Node);
1193 
1194   SDValue Mask = Node->getOperand(0);
1195   SDValue Op1 = Node->getOperand(1);
1196   SDValue Op2 = Node->getOperand(2);
1197 
1198   EVT VT = Mask.getValueType();
1199 
1200   // If we can't even use the basic vector operations of
1201   // AND,OR,XOR, we will have to scalarize the op.
1202   // Notice that the operation may be 'promoted' which means that it is
1203   // 'bitcasted' to another type which is handled.
1204   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1205       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1206       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand)
1207     return DAG.UnrollVectorOp(Node);
1208 
1209   // This operation also isn't safe with AND, OR, XOR when the boolean type is
1210   // 0/1 and the select operands aren't also booleans, as we need an all-ones
1211   // vector constant to mask with.
1212   // FIXME: Sign extend 1 to all ones if that's legal on the target.
1213   auto BoolContents = TLI.getBooleanContents(Op1.getValueType());
1214   if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent &&
1215       !(BoolContents == TargetLowering::ZeroOrOneBooleanContent &&
1216         Op1.getValueType().getVectorElementType() == MVT::i1))
1217     return DAG.UnrollVectorOp(Node);
1218 
1219   // If the mask and the type are different sizes, unroll the vector op. This
1220   // can occur when getSetCCResultType returns something that is different in
1221   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1222   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1223     return DAG.UnrollVectorOp(Node);
1224 
1225   // Bitcast the operands to be the same type as the mask.
1226   // This is needed when we select between FP types because
1227   // the mask is a vector of integers.
1228   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1229   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1230 
1231   SDValue NotMask = DAG.getNOT(DL, Mask, VT);
1232 
1233   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1234   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1235   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1236   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1237 }
1238 
1239 SDValue VectorLegalizer::ExpandVP_SELECT(SDNode *Node) {
1240   // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which
1241   // do not support it natively.
1242   SDLoc DL(Node);
1243 
1244   SDValue Mask = Node->getOperand(0);
1245   SDValue Op1 = Node->getOperand(1);
1246   SDValue Op2 = Node->getOperand(2);
1247   SDValue EVL = Node->getOperand(3);
1248 
1249   EVT VT = Mask.getValueType();
1250 
1251   // If we can't even use the basic vector operations of
1252   // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op.
1253   if (TLI.getOperationAction(ISD::VP_AND, VT) == TargetLowering::Expand ||
1254       TLI.getOperationAction(ISD::VP_XOR, VT) == TargetLowering::Expand ||
1255       TLI.getOperationAction(ISD::VP_OR, VT) == TargetLowering::Expand)
1256     return DAG.UnrollVectorOp(Node);
1257 
1258   // This operation also isn't safe when the operands aren't also booleans.
1259   if (Op1.getValueType().getVectorElementType() != MVT::i1)
1260     return DAG.UnrollVectorOp(Node);
1261 
1262   SDValue Ones = DAG.getAllOnesConstant(DL, VT);
1263   SDValue NotMask = DAG.getNode(ISD::VP_XOR, DL, VT, Mask, Ones, Mask, EVL);
1264 
1265   Op1 = DAG.getNode(ISD::VP_AND, DL, VT, Op1, Mask, Mask, EVL);
1266   Op2 = DAG.getNode(ISD::VP_AND, DL, VT, Op2, NotMask, Mask, EVL);
1267   return DAG.getNode(ISD::VP_OR, DL, VT, Op1, Op2, Mask, EVL);
1268 }
1269 
1270 SDValue VectorLegalizer::ExpandVP_MERGE(SDNode *Node) {
1271   // Implement VP_MERGE in terms of VSELECT. Construct a mask where vector
1272   // indices less than the EVL/pivot are true. Combine that with the original
1273   // mask for a full-length mask. Use a full-length VSELECT to select between
1274   // the true and false values.
1275   SDLoc DL(Node);
1276 
1277   SDValue Mask = Node->getOperand(0);
1278   SDValue Op1 = Node->getOperand(1);
1279   SDValue Op2 = Node->getOperand(2);
1280   SDValue EVL = Node->getOperand(3);
1281 
1282   EVT MaskVT = Mask.getValueType();
1283   bool IsFixedLen = MaskVT.isFixedLengthVector();
1284 
1285   EVT EVLVecVT = EVT::getVectorVT(*DAG.getContext(), EVL.getValueType(),
1286                                   MaskVT.getVectorElementCount());
1287 
1288   // If we can't construct the EVL mask efficiently, it's better to unroll.
1289   if ((IsFixedLen &&
1290        !TLI.isOperationLegalOrCustom(ISD::BUILD_VECTOR, EVLVecVT)) ||
1291       (!IsFixedLen &&
1292        (!TLI.isOperationLegalOrCustom(ISD::STEP_VECTOR, EVLVecVT) ||
1293         !TLI.isOperationLegalOrCustom(ISD::SPLAT_VECTOR, EVLVecVT))))
1294     return DAG.UnrollVectorOp(Node);
1295 
1296   // If using a SETCC would result in a different type than the mask type,
1297   // unroll.
1298   if (TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1299                              EVLVecVT) != MaskVT)
1300     return DAG.UnrollVectorOp(Node);
1301 
1302   SDValue StepVec = DAG.getStepVector(DL, EVLVecVT);
1303   SDValue SplatEVL = IsFixedLen ? DAG.getSplatBuildVector(EVLVecVT, DL, EVL)
1304                                 : DAG.getSplatVector(EVLVecVT, DL, EVL);
1305   SDValue EVLMask =
1306       DAG.getSetCC(DL, MaskVT, StepVec, SplatEVL, ISD::CondCode::SETULT);
1307 
1308   SDValue FullMask = DAG.getNode(ISD::AND, DL, MaskVT, Mask, EVLMask);
1309   return DAG.getSelect(DL, Node->getValueType(0), FullMask, Op1, Op2);
1310 }
1311 
1312 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node,
1313                                        SmallVectorImpl<SDValue> &Results) {
1314   // Attempt to expand using TargetLowering.
1315   SDValue Result, Chain;
1316   if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) {
1317     Results.push_back(Result);
1318     if (Node->isStrictFPOpcode())
1319       Results.push_back(Chain);
1320     return;
1321   }
1322 
1323   // Otherwise go ahead and unroll.
1324   if (Node->isStrictFPOpcode()) {
1325     UnrollStrictFPOp(Node, Results);
1326     return;
1327   }
1328 
1329   Results.push_back(DAG.UnrollVectorOp(Node));
1330 }
1331 
1332 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node,
1333                                           SmallVectorImpl<SDValue> &Results) {
1334   bool IsStrict = Node->isStrictFPOpcode();
1335   unsigned OpNo = IsStrict ? 1 : 0;
1336   SDValue Src = Node->getOperand(OpNo);
1337   EVT VT = Src.getValueType();
1338   SDLoc DL(Node);
1339 
1340   // Attempt to expand using TargetLowering.
1341   SDValue Result;
1342   SDValue Chain;
1343   if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) {
1344     Results.push_back(Result);
1345     if (IsStrict)
1346       Results.push_back(Chain);
1347     return;
1348   }
1349 
1350   // Make sure that the SINT_TO_FP and SRL instructions are available.
1351   if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) ==
1352                          TargetLowering::Expand) ||
1353        (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) ==
1354                         TargetLowering::Expand)) ||
1355       TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) {
1356     if (IsStrict) {
1357       UnrollStrictFPOp(Node, Results);
1358       return;
1359     }
1360 
1361     Results.push_back(DAG.UnrollVectorOp(Node));
1362     return;
1363   }
1364 
1365   unsigned BW = VT.getScalarSizeInBits();
1366   assert((BW == 64 || BW == 32) &&
1367          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1368 
1369   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1370 
1371   // Constants to clear the upper part of the word.
1372   // Notice that we can also use SHL+SHR, but using a constant is slightly
1373   // faster on x86.
1374   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1375   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1376 
1377   // Two to the power of half-word-size.
1378   SDValue TWOHW =
1379       DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0));
1380 
1381   // Clear upper part of LO, lower HI
1382   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord);
1383   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask);
1384 
1385   if (IsStrict) {
1386     // Convert hi and lo to floats
1387     // Convert the hi part back to the upper values
1388     // TODO: Can any fast-math-flags be set on these nodes?
1389     SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1390                               {Node->getValueType(0), MVT::Other},
1391                               {Node->getOperand(0), HI});
1392     fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other},
1393                       {fHI.getValue(1), fHI, TWOHW});
1394     SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1395                               {Node->getValueType(0), MVT::Other},
1396                               {Node->getOperand(0), LO});
1397 
1398     SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1),
1399                              fLO.getValue(1));
1400 
1401     // Add the two halves
1402     SDValue Result =
1403         DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other},
1404                     {TF, fHI, fLO});
1405 
1406     Results.push_back(Result);
1407     Results.push_back(Result.getValue(1));
1408     return;
1409   }
1410 
1411   // Convert hi and lo to floats
1412   // Convert the hi part back to the upper values
1413   // TODO: Can any fast-math-flags be set on these nodes?
1414   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI);
1415   fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW);
1416   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO);
1417 
1418   // Add the two halves
1419   Results.push_back(
1420       DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO));
1421 }
1422 
1423 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) {
1424   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) {
1425     SDLoc DL(Node);
1426     SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0));
1427     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1428     return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero,
1429                        Node->getOperand(0));
1430   }
1431   return DAG.UnrollVectorOp(Node);
1432 }
1433 
1434 void VectorLegalizer::ExpandFSUB(SDNode *Node,
1435                                  SmallVectorImpl<SDValue> &Results) {
1436   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1437   // we can defer this to operation legalization where it will be lowered as
1438   // a+(-b).
1439   EVT VT = Node->getValueType(0);
1440   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1441       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1442     return; // Defer to LegalizeDAG
1443 
1444   SDValue Tmp = DAG.UnrollVectorOp(Node);
1445   Results.push_back(Tmp);
1446 }
1447 
1448 void VectorLegalizer::ExpandSETCC(SDNode *Node,
1449                                   SmallVectorImpl<SDValue> &Results) {
1450   bool NeedInvert = false;
1451   bool IsVP = Node->getOpcode() == ISD::VP_SETCC;
1452   SDLoc dl(Node);
1453   MVT OpVT = Node->getOperand(0).getSimpleValueType();
1454   ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
1455 
1456   if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) {
1457     Results.push_back(UnrollVSETCC(Node));
1458     return;
1459   }
1460 
1461   SDValue Chain;
1462   SDValue LHS = Node->getOperand(0);
1463   SDValue RHS = Node->getOperand(1);
1464   SDValue CC = Node->getOperand(2);
1465   SDValue Mask, EVL;
1466   if (IsVP) {
1467     Mask = Node->getOperand(3);
1468     EVL = Node->getOperand(4);
1469   }
1470 
1471   bool Legalized =
1472       TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS, RHS, CC, Mask,
1473                                 EVL, NeedInvert, dl, Chain);
1474 
1475   if (Legalized) {
1476     // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
1477     // condition code, create a new SETCC node.
1478     if (CC.getNode()) {
1479       if (!IsVP)
1480         LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC,
1481                           Node->getFlags());
1482       else
1483         LHS = DAG.getNode(ISD::VP_SETCC, dl, Node->getValueType(0),
1484                           {LHS, RHS, CC, Mask, EVL}, Node->getFlags());
1485     }
1486 
1487     // If we expanded the SETCC by inverting the condition code, then wrap
1488     // the existing SETCC in a NOT to restore the intended condition.
1489     if (NeedInvert) {
1490       if (!IsVP)
1491         LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0));
1492       else
1493         LHS = DAG.getVPLogicalNOT(dl, LHS, Mask, EVL, LHS->getValueType(0));
1494     }
1495   } else {
1496     // Otherwise, SETCC for the given comparison type must be completely
1497     // illegal; expand it into a SELECT_CC.
1498     EVT VT = Node->getValueType(0);
1499     LHS =
1500         DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS,
1501                     DAG.getBoolConstant(true, dl, VT, LHS.getValueType()),
1502                     DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC);
1503     LHS->setFlags(Node->getFlags());
1504   }
1505 
1506   Results.push_back(LHS);
1507 }
1508 
1509 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node,
1510                                      SmallVectorImpl<SDValue> &Results) {
1511   SDValue Result, Overflow;
1512   TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
1513   Results.push_back(Result);
1514   Results.push_back(Overflow);
1515 }
1516 
1517 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node,
1518                                      SmallVectorImpl<SDValue> &Results) {
1519   SDValue Result, Overflow;
1520   TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
1521   Results.push_back(Result);
1522   Results.push_back(Overflow);
1523 }
1524 
1525 void VectorLegalizer::ExpandMULO(SDNode *Node,
1526                                  SmallVectorImpl<SDValue> &Results) {
1527   SDValue Result, Overflow;
1528   if (!TLI.expandMULO(Node, Result, Overflow, DAG))
1529     std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node);
1530 
1531   Results.push_back(Result);
1532   Results.push_back(Overflow);
1533 }
1534 
1535 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node,
1536                                           SmallVectorImpl<SDValue> &Results) {
1537   SDNode *N = Node;
1538   if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N),
1539           N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG))
1540     Results.push_back(Expanded);
1541 }
1542 
1543 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node,
1544                                        SmallVectorImpl<SDValue> &Results) {
1545   if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) {
1546     ExpandUINT_TO_FLOAT(Node, Results);
1547     return;
1548   }
1549   if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) {
1550     ExpandFP_TO_UINT(Node, Results);
1551     return;
1552   }
1553 
1554   UnrollStrictFPOp(Node, Results);
1555 }
1556 
1557 void VectorLegalizer::ExpandREM(SDNode *Node,
1558                                 SmallVectorImpl<SDValue> &Results) {
1559   assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) &&
1560          "Expected REM node");
1561 
1562   SDValue Result;
1563   if (!TLI.expandREM(Node, Result, DAG))
1564     Result = DAG.UnrollVectorOp(Node);
1565   Results.push_back(Result);
1566 }
1567 
1568 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node,
1569                                        SmallVectorImpl<SDValue> &Results) {
1570   EVT VT = Node->getValueType(0);
1571   EVT EltVT = VT.getVectorElementType();
1572   unsigned NumElems = VT.getVectorNumElements();
1573   unsigned NumOpers = Node->getNumOperands();
1574   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1575 
1576   EVT TmpEltVT = EltVT;
1577   if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1578       Node->getOpcode() == ISD::STRICT_FSETCCS)
1579     TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
1580                                       *DAG.getContext(), TmpEltVT);
1581 
1582   EVT ValueVTs[] = {TmpEltVT, MVT::Other};
1583   SDValue Chain = Node->getOperand(0);
1584   SDLoc dl(Node);
1585 
1586   SmallVector<SDValue, 32> OpValues;
1587   SmallVector<SDValue, 32> OpChains;
1588   for (unsigned i = 0; i < NumElems; ++i) {
1589     SmallVector<SDValue, 4> Opers;
1590     SDValue Idx = DAG.getVectorIdxConstant(i, dl);
1591 
1592     // The Chain is the first operand.
1593     Opers.push_back(Chain);
1594 
1595     // Now process the remaining operands.
1596     for (unsigned j = 1; j < NumOpers; ++j) {
1597       SDValue Oper = Node->getOperand(j);
1598       EVT OperVT = Oper.getValueType();
1599 
1600       if (OperVT.isVector())
1601         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1602                            OperVT.getVectorElementType(), Oper, Idx);
1603 
1604       Opers.push_back(Oper);
1605     }
1606 
1607     SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers);
1608     SDValue ScalarResult = ScalarOp.getValue(0);
1609     SDValue ScalarChain = ScalarOp.getValue(1);
1610 
1611     if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1612         Node->getOpcode() == ISD::STRICT_FSETCCS)
1613       ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
1614                                    DAG.getAllOnesConstant(dl, EltVT),
1615                                    DAG.getConstant(0, dl, EltVT));
1616 
1617     OpValues.push_back(ScalarResult);
1618     OpChains.push_back(ScalarChain);
1619   }
1620 
1621   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1622   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1623 
1624   Results.push_back(Result);
1625   Results.push_back(NewChain);
1626 }
1627 
1628 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) {
1629   EVT VT = Node->getValueType(0);
1630   unsigned NumElems = VT.getVectorNumElements();
1631   EVT EltVT = VT.getVectorElementType();
1632   SDValue LHS = Node->getOperand(0);
1633   SDValue RHS = Node->getOperand(1);
1634   SDValue CC = Node->getOperand(2);
1635   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1636   SDLoc dl(Node);
1637   SmallVector<SDValue, 8> Ops(NumElems);
1638   for (unsigned i = 0; i < NumElems; ++i) {
1639     SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1640                                   DAG.getVectorIdxConstant(i, dl));
1641     SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1642                                   DAG.getVectorIdxConstant(i, dl));
1643     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1644                          TLI.getSetCCResultType(DAG.getDataLayout(),
1645                                                 *DAG.getContext(), TmpEltVT),
1646                          LHSElem, RHSElem, CC);
1647     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getAllOnesConstant(dl, EltVT),
1648                            DAG.getConstant(0, dl, EltVT));
1649   }
1650   return DAG.getBuildVector(VT, dl, Ops);
1651 }
1652 
1653 bool SelectionDAG::LegalizeVectors() {
1654   return VectorLegalizer(*this).Run();
1655 }
1656