1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::LegalizeVectors method. 10 // 11 // The vector legalizer looks for vector operations which might need to be 12 // scalarized and legalizes them. This is a separate step from Legalize because 13 // scalarizing can introduce illegal types. For example, suppose we have an 14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 16 // operation, which introduces nodes with the illegal type i64 which must be 17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 18 // the operation must be unrolled, which introduces nodes with the illegal 19 // type i8 which must be promoted. 20 // 21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 22 // or operations that happen to take a vector which are custom-lowered; 23 // the legalization for such operations never produces nodes 24 // with illegal types, so it's okay to put off legalizing them until 25 // SelectionDAG::Legalize runs. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineValueType.h" 33 #include "llvm/CodeGen/SelectionDAG.h" 34 #include "llvm/CodeGen/SelectionDAGNodes.h" 35 #include "llvm/CodeGen/TargetLowering.h" 36 #include "llvm/CodeGen/ValueTypes.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/Compiler.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include <cassert> 43 #include <cstdint> 44 #include <iterator> 45 #include <utility> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "legalizevectorops" 50 51 namespace { 52 53 class VectorLegalizer { 54 SelectionDAG& DAG; 55 const TargetLowering &TLI; 56 bool Changed = false; // Keep track of whether anything changed 57 58 /// For nodes that are of legal width, and that have more than one use, this 59 /// map indicates what regularized operand to use. This allows us to avoid 60 /// legalizing the same thing more than once. 61 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 62 63 /// Adds a node to the translation cache. 64 void AddLegalizedOperand(SDValue From, SDValue To) { 65 LegalizedNodes.insert(std::make_pair(From, To)); 66 // If someone requests legalization of the new node, return itself. 67 if (From != To) 68 LegalizedNodes.insert(std::make_pair(To, To)); 69 } 70 71 /// Legalizes the given node. 72 SDValue LegalizeOp(SDValue Op); 73 74 /// Assuming the node is legal, "legalize" the results. 75 SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result); 76 77 /// Make sure Results are legal and update the translation cache. 78 SDValue RecursivelyLegalizeResults(SDValue Op, 79 MutableArrayRef<SDValue> Results); 80 81 /// Wrapper to interface LowerOperation with a vector of Results. 82 /// Returns false if the target wants to use default expansion. Otherwise 83 /// returns true. If return is true and the Results are empty, then the 84 /// target wants to keep the input node as is. 85 bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results); 86 87 /// Implements unrolling a VSETCC. 88 SDValue UnrollVSETCC(SDNode *Node); 89 90 /// Implement expand-based legalization of vector operations. 91 /// 92 /// This is just a high-level routine to dispatch to specific code paths for 93 /// operations to legalize them. 94 void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results); 95 96 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if 97 /// FP_TO_SINT isn't legal. 98 void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 99 100 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 101 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 102 void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 103 104 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 105 SDValue ExpandSEXTINREG(SDNode *Node); 106 107 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 108 /// 109 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 110 /// type. The contents of the bits in the extended part of each element are 111 /// undef. 112 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node); 113 114 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 115 /// 116 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 117 /// type, then shifts left and arithmetic shifts right to introduce a sign 118 /// extension. 119 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node); 120 121 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 122 /// 123 /// Shuffles the low lanes of the operand into place and blends zeros into 124 /// the remaining lanes, finally bitcasting to the proper type. 125 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node); 126 127 /// Expand bswap of vectors into a shuffle if legal. 128 SDValue ExpandBSWAP(SDNode *Node); 129 130 /// Implement vselect in terms of XOR, AND, OR when blend is not 131 /// supported by the target. 132 SDValue ExpandVSELECT(SDNode *Node); 133 SDValue ExpandVP_SELECT(SDNode *Node); 134 SDValue ExpandVP_MERGE(SDNode *Node); 135 SDValue ExpandVP_REM(SDNode *Node); 136 SDValue ExpandSELECT(SDNode *Node); 137 std::pair<SDValue, SDValue> ExpandLoad(SDNode *N); 138 SDValue ExpandStore(SDNode *N); 139 SDValue ExpandFNEG(SDNode *Node); 140 void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results); 141 void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results); 142 void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results); 143 void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 144 void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 145 void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 146 void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results); 147 void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 148 void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results); 149 150 void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 151 152 /// Implements vector promotion. 153 /// 154 /// This is essentially just bitcasting the operands to a different type and 155 /// bitcasting the result back to the original type. 156 void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results); 157 158 /// Implements [SU]INT_TO_FP vector promotion. 159 /// 160 /// This is a [zs]ext of the input operand to a larger integer type. 161 void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results); 162 163 /// Implements FP_TO_[SU]INT vector promotion of the result type. 164 /// 165 /// It is promoted to a larger integer type. The result is then 166 /// truncated back to the original type. 167 void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 168 169 /// Implements vector reduce operation promotion. 170 /// 171 /// All vector operands are promoted to a vector type with larger element 172 /// type, and the start value is promoted to a larger scalar type. Then the 173 /// result is truncated back to the original scalar type. 174 void PromoteReduction(SDNode *Node, SmallVectorImpl<SDValue> &Results); 175 176 /// Implements vector setcc operation promotion. 177 /// 178 /// All vector operands are promoted to a vector type with larger element 179 /// type. 180 void PromoteSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results); 181 182 void PromoteSTRICT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 183 184 public: 185 VectorLegalizer(SelectionDAG& dag) : 186 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 187 188 /// Begin legalizer the vector operations in the DAG. 189 bool Run(); 190 }; 191 192 } // end anonymous namespace 193 194 bool VectorLegalizer::Run() { 195 // Before we start legalizing vector nodes, check if there are any vectors. 196 bool HasVectors = false; 197 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 198 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 199 // Check if the values of the nodes contain vectors. We don't need to check 200 // the operands because we are going to check their values at some point. 201 HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); }); 202 203 // If we found a vector node we can start the legalization. 204 if (HasVectors) 205 break; 206 } 207 208 // If this basic block has no vectors then no need to legalize vectors. 209 if (!HasVectors) 210 return false; 211 212 // The legalize process is inherently a bottom-up recursive process (users 213 // legalize their uses before themselves). Given infinite stack space, we 214 // could just start legalizing on the root and traverse the whole graph. In 215 // practice however, this causes us to run out of stack space on large basic 216 // blocks. To avoid this problem, compute an ordering of the nodes where each 217 // node is only legalized after all of its operands are legalized. 218 DAG.AssignTopologicalOrder(); 219 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 220 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 221 LegalizeOp(SDValue(&*I, 0)); 222 223 // Finally, it's possible the root changed. Get the new root. 224 SDValue OldRoot = DAG.getRoot(); 225 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 226 DAG.setRoot(LegalizedNodes[OldRoot]); 227 228 LegalizedNodes.clear(); 229 230 // Remove dead nodes now. 231 DAG.RemoveDeadNodes(); 232 233 return Changed; 234 } 235 236 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) { 237 assert(Op->getNumValues() == Result->getNumValues() && 238 "Unexpected number of results"); 239 // Generic legalization: just pass the operand through. 240 for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i) 241 AddLegalizedOperand(Op.getValue(i), SDValue(Result, i)); 242 return SDValue(Result, Op.getResNo()); 243 } 244 245 SDValue 246 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op, 247 MutableArrayRef<SDValue> Results) { 248 assert(Results.size() == Op->getNumValues() && 249 "Unexpected number of results"); 250 // Make sure that the generated code is itself legal. 251 for (unsigned i = 0, e = Results.size(); i != e; ++i) { 252 Results[i] = LegalizeOp(Results[i]); 253 AddLegalizedOperand(Op.getValue(i), Results[i]); 254 } 255 256 return Results[Op.getResNo()]; 257 } 258 259 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 260 // Note that LegalizeOp may be reentered even from single-use nodes, which 261 // means that we always must cache transformed nodes. 262 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 263 if (I != LegalizedNodes.end()) return I->second; 264 265 // Legalize the operands 266 SmallVector<SDValue, 8> Ops; 267 for (const SDValue &Oper : Op->op_values()) 268 Ops.push_back(LegalizeOp(Oper)); 269 270 SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops); 271 272 bool HasVectorValueOrOp = 273 llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) || 274 llvm::any_of(Node->op_values(), 275 [](SDValue O) { return O.getValueType().isVector(); }); 276 if (!HasVectorValueOrOp) 277 return TranslateLegalizeResults(Op, Node); 278 279 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 280 EVT ValVT; 281 switch (Op.getOpcode()) { 282 default: 283 return TranslateLegalizeResults(Op, Node); 284 case ISD::LOAD: { 285 LoadSDNode *LD = cast<LoadSDNode>(Node); 286 ISD::LoadExtType ExtType = LD->getExtensionType(); 287 EVT LoadedVT = LD->getMemoryVT(); 288 if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD) 289 Action = TLI.getLoadExtAction(ExtType, LD->getValueType(0), LoadedVT); 290 break; 291 } 292 case ISD::STORE: { 293 StoreSDNode *ST = cast<StoreSDNode>(Node); 294 EVT StVT = ST->getMemoryVT(); 295 MVT ValVT = ST->getValue().getSimpleValueType(); 296 if (StVT.isVector() && ST->isTruncatingStore()) 297 Action = TLI.getTruncStoreAction(ValVT, StVT); 298 break; 299 } 300 case ISD::MERGE_VALUES: 301 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 302 // This operation lies about being legal: when it claims to be legal, 303 // it should actually be expanded. 304 if (Action == TargetLowering::Legal) 305 Action = TargetLowering::Expand; 306 break; 307 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 308 case ISD::STRICT_##DAGN: 309 #include "llvm/IR/ConstrainedOps.def" 310 ValVT = Node->getValueType(0); 311 if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP || 312 Op.getOpcode() == ISD::STRICT_UINT_TO_FP) 313 ValVT = Node->getOperand(1).getValueType(); 314 if (Op.getOpcode() == ISD::STRICT_FSETCC || 315 Op.getOpcode() == ISD::STRICT_FSETCCS) { 316 MVT OpVT = Node->getOperand(1).getSimpleValueType(); 317 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(3))->get(); 318 Action = TLI.getCondCodeAction(CCCode, OpVT); 319 if (Action == TargetLowering::Legal) 320 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 321 } else { 322 Action = TLI.getOperationAction(Node->getOpcode(), ValVT); 323 } 324 // If we're asked to expand a strict vector floating-point operation, 325 // by default we're going to simply unroll it. That is usually the 326 // best approach, except in the case where the resulting strict (scalar) 327 // operations would themselves use the fallback mutation to non-strict. 328 // In that specific case, just do the fallback on the vector op. 329 if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() && 330 TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) == 331 TargetLowering::Legal) { 332 EVT EltVT = ValVT.getVectorElementType(); 333 if (TLI.getOperationAction(Node->getOpcode(), EltVT) 334 == TargetLowering::Expand && 335 TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT) 336 == TargetLowering::Legal) 337 Action = TargetLowering::Legal; 338 } 339 break; 340 case ISD::ADD: 341 case ISD::SUB: 342 case ISD::MUL: 343 case ISD::MULHS: 344 case ISD::MULHU: 345 case ISD::SDIV: 346 case ISD::UDIV: 347 case ISD::SREM: 348 case ISD::UREM: 349 case ISD::SDIVREM: 350 case ISD::UDIVREM: 351 case ISD::FADD: 352 case ISD::FSUB: 353 case ISD::FMUL: 354 case ISD::FDIV: 355 case ISD::FREM: 356 case ISD::AND: 357 case ISD::OR: 358 case ISD::XOR: 359 case ISD::SHL: 360 case ISD::SRA: 361 case ISD::SRL: 362 case ISD::FSHL: 363 case ISD::FSHR: 364 case ISD::ROTL: 365 case ISD::ROTR: 366 case ISD::ABS: 367 case ISD::BSWAP: 368 case ISD::BITREVERSE: 369 case ISD::CTLZ: 370 case ISD::CTTZ: 371 case ISD::CTLZ_ZERO_UNDEF: 372 case ISD::CTTZ_ZERO_UNDEF: 373 case ISD::CTPOP: 374 case ISD::SELECT: 375 case ISD::VSELECT: 376 case ISD::SELECT_CC: 377 case ISD::ZERO_EXTEND: 378 case ISD::ANY_EXTEND: 379 case ISD::TRUNCATE: 380 case ISD::SIGN_EXTEND: 381 case ISD::FP_TO_SINT: 382 case ISD::FP_TO_UINT: 383 case ISD::FNEG: 384 case ISD::FABS: 385 case ISD::FMINNUM: 386 case ISD::FMAXNUM: 387 case ISD::FMINNUM_IEEE: 388 case ISD::FMAXNUM_IEEE: 389 case ISD::FMINIMUM: 390 case ISD::FMAXIMUM: 391 case ISD::FCOPYSIGN: 392 case ISD::FSQRT: 393 case ISD::FSIN: 394 case ISD::FCOS: 395 case ISD::FLDEXP: 396 case ISD::FPOWI: 397 case ISD::FPOW: 398 case ISD::FLOG: 399 case ISD::FLOG2: 400 case ISD::FLOG10: 401 case ISD::FEXP: 402 case ISD::FEXP2: 403 case ISD::FEXP10: 404 case ISD::FCEIL: 405 case ISD::FTRUNC: 406 case ISD::FRINT: 407 case ISD::LRINT: 408 case ISD::LLRINT: 409 case ISD::FNEARBYINT: 410 case ISD::FROUND: 411 case ISD::FROUNDEVEN: 412 case ISD::FFLOOR: 413 case ISD::FP_ROUND: 414 case ISD::FP_EXTEND: 415 case ISD::FMA: 416 case ISD::SIGN_EXTEND_INREG: 417 case ISD::ANY_EXTEND_VECTOR_INREG: 418 case ISD::SIGN_EXTEND_VECTOR_INREG: 419 case ISD::ZERO_EXTEND_VECTOR_INREG: 420 case ISD::SMIN: 421 case ISD::SMAX: 422 case ISD::UMIN: 423 case ISD::UMAX: 424 case ISD::SMUL_LOHI: 425 case ISD::UMUL_LOHI: 426 case ISD::SADDO: 427 case ISD::UADDO: 428 case ISD::SSUBO: 429 case ISD::USUBO: 430 case ISD::SMULO: 431 case ISD::UMULO: 432 case ISD::FCANONICALIZE: 433 case ISD::FFREXP: 434 case ISD::SADDSAT: 435 case ISD::UADDSAT: 436 case ISD::SSUBSAT: 437 case ISD::USUBSAT: 438 case ISD::SSHLSAT: 439 case ISD::USHLSAT: 440 case ISD::FP_TO_SINT_SAT: 441 case ISD::FP_TO_UINT_SAT: 442 case ISD::MGATHER: 443 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 444 break; 445 case ISD::SMULFIX: 446 case ISD::SMULFIXSAT: 447 case ISD::UMULFIX: 448 case ISD::UMULFIXSAT: 449 case ISD::SDIVFIX: 450 case ISD::SDIVFIXSAT: 451 case ISD::UDIVFIX: 452 case ISD::UDIVFIXSAT: { 453 unsigned Scale = Node->getConstantOperandVal(2); 454 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 455 Node->getValueType(0), Scale); 456 break; 457 } 458 case ISD::SINT_TO_FP: 459 case ISD::UINT_TO_FP: 460 case ISD::VECREDUCE_ADD: 461 case ISD::VECREDUCE_MUL: 462 case ISD::VECREDUCE_AND: 463 case ISD::VECREDUCE_OR: 464 case ISD::VECREDUCE_XOR: 465 case ISD::VECREDUCE_SMAX: 466 case ISD::VECREDUCE_SMIN: 467 case ISD::VECREDUCE_UMAX: 468 case ISD::VECREDUCE_UMIN: 469 case ISD::VECREDUCE_FADD: 470 case ISD::VECREDUCE_FMUL: 471 case ISD::VECREDUCE_FMAX: 472 case ISD::VECREDUCE_FMIN: 473 case ISD::VECREDUCE_FMAXIMUM: 474 case ISD::VECREDUCE_FMINIMUM: 475 Action = TLI.getOperationAction(Node->getOpcode(), 476 Node->getOperand(0).getValueType()); 477 break; 478 case ISD::VECREDUCE_SEQ_FADD: 479 case ISD::VECREDUCE_SEQ_FMUL: 480 Action = TLI.getOperationAction(Node->getOpcode(), 481 Node->getOperand(1).getValueType()); 482 break; 483 case ISD::SETCC: { 484 MVT OpVT = Node->getOperand(0).getSimpleValueType(); 485 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 486 Action = TLI.getCondCodeAction(CCCode, OpVT); 487 if (Action == TargetLowering::Legal) 488 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 489 break; 490 } 491 492 #define BEGIN_REGISTER_VP_SDNODE(VPID, LEGALPOS, ...) \ 493 case ISD::VPID: { \ 494 EVT LegalizeVT = LEGALPOS < 0 ? Node->getValueType(-(1 + LEGALPOS)) \ 495 : Node->getOperand(LEGALPOS).getValueType(); \ 496 if (ISD::VPID == ISD::VP_SETCC) { \ 497 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); \ 498 Action = TLI.getCondCodeAction(CCCode, LegalizeVT.getSimpleVT()); \ 499 if (Action != TargetLowering::Legal) \ 500 break; \ 501 } \ 502 Action = TLI.getOperationAction(Node->getOpcode(), LegalizeVT); \ 503 } break; 504 #include "llvm/IR/VPIntrinsics.def" 505 } 506 507 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 508 509 SmallVector<SDValue, 8> ResultVals; 510 switch (Action) { 511 default: llvm_unreachable("This action is not supported yet!"); 512 case TargetLowering::Promote: 513 assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) && 514 "This action is not supported yet!"); 515 LLVM_DEBUG(dbgs() << "Promoting\n"); 516 Promote(Node, ResultVals); 517 assert(!ResultVals.empty() && "No results for promotion?"); 518 break; 519 case TargetLowering::Legal: 520 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 521 break; 522 case TargetLowering::Custom: 523 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 524 if (LowerOperationWrapper(Node, ResultVals)) 525 break; 526 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 527 [[fallthrough]]; 528 case TargetLowering::Expand: 529 LLVM_DEBUG(dbgs() << "Expanding\n"); 530 Expand(Node, ResultVals); 531 break; 532 } 533 534 if (ResultVals.empty()) 535 return TranslateLegalizeResults(Op, Node); 536 537 Changed = true; 538 return RecursivelyLegalizeResults(Op, ResultVals); 539 } 540 541 // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we 542 // merge them somehow? 543 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node, 544 SmallVectorImpl<SDValue> &Results) { 545 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 546 547 if (!Res.getNode()) 548 return false; 549 550 if (Res == SDValue(Node, 0)) 551 return true; 552 553 // If the original node has one result, take the return value from 554 // LowerOperation as is. It might not be result number 0. 555 if (Node->getNumValues() == 1) { 556 Results.push_back(Res); 557 return true; 558 } 559 560 // If the original node has multiple results, then the return node should 561 // have the same number of results. 562 assert((Node->getNumValues() == Res->getNumValues()) && 563 "Lowering returned the wrong number of results!"); 564 565 // Places new result values base on N result number. 566 for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I) 567 Results.push_back(Res.getValue(I)); 568 569 return true; 570 } 571 572 void VectorLegalizer::PromoteReduction(SDNode *Node, 573 SmallVectorImpl<SDValue> &Results) { 574 MVT VecVT = Node->getOperand(1).getSimpleValueType(); 575 MVT NewVecVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VecVT); 576 MVT ScalarVT = Node->getSimpleValueType(0); 577 MVT NewScalarVT = NewVecVT.getVectorElementType(); 578 579 SDLoc DL(Node); 580 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 581 582 // promote the initial value. 583 if (Node->getOperand(0).getValueType().isFloatingPoint()) 584 Operands[0] = 585 DAG.getNode(ISD::FP_EXTEND, DL, NewScalarVT, Node->getOperand(0)); 586 else 587 Operands[0] = 588 DAG.getNode(ISD::ANY_EXTEND, DL, NewScalarVT, Node->getOperand(0)); 589 590 for (unsigned j = 1; j != Node->getNumOperands(); ++j) 591 if (Node->getOperand(j).getValueType().isVector() && 592 !(ISD::isVPOpcode(Node->getOpcode()) && 593 ISD::getVPMaskIdx(Node->getOpcode()) == j)) // Skip mask operand. 594 // promote the vector operand. 595 if (Node->getOperand(j).getValueType().isFloatingPoint()) 596 Operands[j] = 597 DAG.getNode(ISD::FP_EXTEND, DL, NewVecVT, Node->getOperand(j)); 598 else 599 Operands[j] = 600 DAG.getNode(ISD::ANY_EXTEND, DL, NewVecVT, Node->getOperand(j)); 601 else 602 Operands[j] = Node->getOperand(j); // Skip VL operand. 603 604 SDValue Res = DAG.getNode(Node->getOpcode(), DL, NewScalarVT, Operands, 605 Node->getFlags()); 606 607 if (ScalarVT.isFloatingPoint()) 608 Res = DAG.getNode(ISD::FP_ROUND, DL, ScalarVT, Res, 609 DAG.getIntPtrConstant(0, DL, /*isTarget=*/true)); 610 else 611 Res = DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, Res); 612 613 Results.push_back(Res); 614 } 615 616 void VectorLegalizer::PromoteSETCC(SDNode *Node, 617 SmallVectorImpl<SDValue> &Results) { 618 MVT VecVT = Node->getOperand(0).getSimpleValueType(); 619 MVT NewVecVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VecVT); 620 621 unsigned ExtOp = VecVT.isFloatingPoint() ? ISD::FP_EXTEND : ISD::ANY_EXTEND; 622 623 SDLoc DL(Node); 624 SmallVector<SDValue, 5> Operands(Node->getNumOperands()); 625 626 Operands[0] = DAG.getNode(ExtOp, DL, NewVecVT, Node->getOperand(0)); 627 Operands[1] = DAG.getNode(ExtOp, DL, NewVecVT, Node->getOperand(1)); 628 Operands[2] = Node->getOperand(2); 629 630 if (Node->getOpcode() == ISD::VP_SETCC) { 631 Operands[3] = Node->getOperand(3); // mask 632 Operands[4] = Node->getOperand(4); // evl 633 } 634 635 SDValue Res = DAG.getNode(Node->getOpcode(), DL, Node->getSimpleValueType(0), 636 Operands, Node->getFlags()); 637 638 Results.push_back(Res); 639 } 640 641 void VectorLegalizer::PromoteSTRICT(SDNode *Node, 642 SmallVectorImpl<SDValue> &Results) { 643 MVT VecVT = Node->getOperand(1).getSimpleValueType(); 644 MVT NewVecVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VecVT); 645 646 assert(VecVT.isFloatingPoint()); 647 648 SDLoc DL(Node); 649 SmallVector<SDValue, 5> Operands(Node->getNumOperands()); 650 SmallVector<SDValue, 2> Chains; 651 652 for (unsigned j = 1; j != Node->getNumOperands(); ++j) 653 if (Node->getOperand(j).getValueType().isVector() && 654 !(ISD::isVPOpcode(Node->getOpcode()) && 655 ISD::getVPMaskIdx(Node->getOpcode()) == j)) // Skip mask operand. 656 { 657 // promote the vector operand. 658 SDValue Ext = 659 DAG.getNode(ISD::STRICT_FP_EXTEND, DL, {NewVecVT, MVT::Other}, 660 {Node->getOperand(0), Node->getOperand(j)}); 661 Operands[j] = Ext.getValue(0); 662 Chains.push_back(Ext.getValue(1)); 663 } else 664 Operands[j] = Node->getOperand(j); // Skip no vector operand. 665 666 SDVTList VTs = DAG.getVTList(NewVecVT, Node->getValueType(1)); 667 668 Operands[0] = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 669 670 SDValue Res = 671 DAG.getNode(Node->getOpcode(), DL, VTs, Operands, Node->getFlags()); 672 673 SDValue Round = 674 DAG.getNode(ISD::STRICT_FP_ROUND, DL, {VecVT, MVT::Other}, 675 {Res.getValue(1), Res.getValue(0), 676 DAG.getIntPtrConstant(0, DL, /*isTarget=*/true)}); 677 678 Results.push_back(Round.getValue(0)); 679 Results.push_back(Round.getValue(1)); 680 } 681 682 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 683 // For a few operations there is a specific concept for promotion based on 684 // the operand's type. 685 switch (Node->getOpcode()) { 686 case ISD::SINT_TO_FP: 687 case ISD::UINT_TO_FP: 688 case ISD::STRICT_SINT_TO_FP: 689 case ISD::STRICT_UINT_TO_FP: 690 // "Promote" the operation by extending the operand. 691 PromoteINT_TO_FP(Node, Results); 692 return; 693 case ISD::FP_TO_UINT: 694 case ISD::FP_TO_SINT: 695 case ISD::STRICT_FP_TO_UINT: 696 case ISD::STRICT_FP_TO_SINT: 697 // Promote the operation by extending the operand. 698 PromoteFP_TO_INT(Node, Results); 699 return; 700 case ISD::VP_REDUCE_ADD: 701 case ISD::VP_REDUCE_MUL: 702 case ISD::VP_REDUCE_AND: 703 case ISD::VP_REDUCE_OR: 704 case ISD::VP_REDUCE_XOR: 705 case ISD::VP_REDUCE_SMAX: 706 case ISD::VP_REDUCE_SMIN: 707 case ISD::VP_REDUCE_UMAX: 708 case ISD::VP_REDUCE_UMIN: 709 case ISD::VP_REDUCE_FADD: 710 case ISD::VP_REDUCE_FMUL: 711 case ISD::VP_REDUCE_FMAX: 712 case ISD::VP_REDUCE_FMIN: 713 case ISD::VP_REDUCE_SEQ_FADD: 714 // Promote the operation by extending the operand. 715 PromoteReduction(Node, Results); 716 return; 717 case ISD::VP_SETCC: 718 case ISD::SETCC: 719 // Promote the operation by extending the operand. 720 PromoteSETCC(Node, Results); 721 return; 722 case ISD::STRICT_FADD: 723 case ISD::STRICT_FSUB: 724 case ISD::STRICT_FMUL: 725 case ISD::STRICT_FDIV: 726 case ISD::STRICT_FSQRT: 727 case ISD::STRICT_FMA: 728 PromoteSTRICT(Node, Results); 729 return; 730 case ISD::FP_ROUND: 731 case ISD::FP_EXTEND: 732 // These operations are used to do promotion so they can't be promoted 733 // themselves. 734 llvm_unreachable("Don't know how to promote this operation!"); 735 } 736 737 // There are currently two cases of vector promotion: 738 // 1) Bitcasting a vector of integers to a different type to a vector of the 739 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 740 // 2) Extending a vector of floats to a vector of the same number of larger 741 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 742 assert(Node->getNumValues() == 1 && 743 "Can't promote a vector with multiple results!"); 744 MVT VT = Node->getSimpleValueType(0); 745 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 746 SDLoc dl(Node); 747 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 748 749 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 750 // Do not promote the mask operand of a VP OP. 751 bool SkipPromote = ISD::isVPOpcode(Node->getOpcode()) && 752 ISD::getVPMaskIdx(Node->getOpcode()) == j; 753 if (Node->getOperand(j).getValueType().isVector() && !SkipPromote) 754 if (Node->getOperand(j) 755 .getValueType() 756 .getVectorElementType() 757 .isFloatingPoint() && 758 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 759 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j)); 760 else 761 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j)); 762 else 763 Operands[j] = Node->getOperand(j); 764 } 765 766 SDValue Res = 767 DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags()); 768 769 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 770 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 771 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 772 Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, 773 DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); 774 else 775 Res = DAG.getNode(ISD::BITCAST, dl, VT, Res); 776 777 Results.push_back(Res); 778 } 779 780 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node, 781 SmallVectorImpl<SDValue> &Results) { 782 // INT_TO_FP operations may require the input operand be promoted even 783 // when the type is otherwise legal. 784 bool IsStrict = Node->isStrictFPOpcode(); 785 MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType(); 786 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 787 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 788 "Vectors have different number of elements!"); 789 790 SDLoc dl(Node); 791 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 792 793 unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP || 794 Node->getOpcode() == ISD::STRICT_UINT_TO_FP) 795 ? ISD::ZERO_EXTEND 796 : ISD::SIGN_EXTEND; 797 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 798 if (Node->getOperand(j).getValueType().isVector()) 799 Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j)); 800 else 801 Operands[j] = Node->getOperand(j); 802 } 803 804 if (IsStrict) { 805 SDValue Res = DAG.getNode(Node->getOpcode(), dl, 806 {Node->getValueType(0), MVT::Other}, Operands); 807 Results.push_back(Res); 808 Results.push_back(Res.getValue(1)); 809 return; 810 } 811 812 SDValue Res = 813 DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands); 814 Results.push_back(Res); 815 } 816 817 // For FP_TO_INT we promote the result type to a vector type with wider 818 // elements and then truncate the result. This is different from the default 819 // PromoteVector which uses bitcast to promote thus assumning that the 820 // promoted vector type has the same overall size. 821 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node, 822 SmallVectorImpl<SDValue> &Results) { 823 MVT VT = Node->getSimpleValueType(0); 824 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 825 bool IsStrict = Node->isStrictFPOpcode(); 826 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 827 "Vectors have different number of elements!"); 828 829 unsigned NewOpc = Node->getOpcode(); 830 // Change FP_TO_UINT to FP_TO_SINT if possible. 831 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 832 if (NewOpc == ISD::FP_TO_UINT && 833 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 834 NewOpc = ISD::FP_TO_SINT; 835 836 if (NewOpc == ISD::STRICT_FP_TO_UINT && 837 TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT)) 838 NewOpc = ISD::STRICT_FP_TO_SINT; 839 840 SDLoc dl(Node); 841 SDValue Promoted, Chain; 842 if (IsStrict) { 843 Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other}, 844 {Node->getOperand(0), Node->getOperand(1)}); 845 Chain = Promoted.getValue(1); 846 } else 847 Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0)); 848 849 // Assert that the converted value fits in the original type. If it doesn't 850 // (eg: because the value being converted is too big), then the result of the 851 // original operation was undefined anyway, so the assert is still correct. 852 if (Node->getOpcode() == ISD::FP_TO_UINT || 853 Node->getOpcode() == ISD::STRICT_FP_TO_UINT) 854 NewOpc = ISD::AssertZext; 855 else 856 NewOpc = ISD::AssertSext; 857 858 Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted, 859 DAG.getValueType(VT.getScalarType())); 860 Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 861 Results.push_back(Promoted); 862 if (IsStrict) 863 Results.push_back(Chain); 864 } 865 866 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) { 867 LoadSDNode *LD = cast<LoadSDNode>(N); 868 return TLI.scalarizeVectorLoad(LD, DAG); 869 } 870 871 SDValue VectorLegalizer::ExpandStore(SDNode *N) { 872 StoreSDNode *ST = cast<StoreSDNode>(N); 873 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 874 return TF; 875 } 876 877 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 878 switch (Node->getOpcode()) { 879 case ISD::LOAD: { 880 std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node); 881 Results.push_back(Tmp.first); 882 Results.push_back(Tmp.second); 883 return; 884 } 885 case ISD::STORE: 886 Results.push_back(ExpandStore(Node)); 887 return; 888 case ISD::MERGE_VALUES: 889 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 890 Results.push_back(Node->getOperand(i)); 891 return; 892 case ISD::SIGN_EXTEND_INREG: 893 Results.push_back(ExpandSEXTINREG(Node)); 894 return; 895 case ISD::ANY_EXTEND_VECTOR_INREG: 896 Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node)); 897 return; 898 case ISD::SIGN_EXTEND_VECTOR_INREG: 899 Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node)); 900 return; 901 case ISD::ZERO_EXTEND_VECTOR_INREG: 902 Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node)); 903 return; 904 case ISD::BSWAP: 905 Results.push_back(ExpandBSWAP(Node)); 906 return; 907 case ISD::VP_BSWAP: 908 Results.push_back(TLI.expandVPBSWAP(Node, DAG)); 909 return; 910 case ISD::VSELECT: 911 Results.push_back(ExpandVSELECT(Node)); 912 return; 913 case ISD::VP_SELECT: 914 Results.push_back(ExpandVP_SELECT(Node)); 915 return; 916 case ISD::VP_SREM: 917 case ISD::VP_UREM: 918 if (SDValue Expanded = ExpandVP_REM(Node)) { 919 Results.push_back(Expanded); 920 return; 921 } 922 break; 923 case ISD::SELECT: 924 Results.push_back(ExpandSELECT(Node)); 925 return; 926 case ISD::SELECT_CC: { 927 if (Node->getValueType(0).isScalableVector()) { 928 EVT CondVT = TLI.getSetCCResultType( 929 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 930 SDValue SetCC = 931 DAG.getNode(ISD::SETCC, SDLoc(Node), CondVT, Node->getOperand(0), 932 Node->getOperand(1), Node->getOperand(4)); 933 Results.push_back(DAG.getSelect(SDLoc(Node), Node->getValueType(0), SetCC, 934 Node->getOperand(2), 935 Node->getOperand(3))); 936 return; 937 } 938 break; 939 } 940 case ISD::FP_TO_UINT: 941 ExpandFP_TO_UINT(Node, Results); 942 return; 943 case ISD::UINT_TO_FP: 944 ExpandUINT_TO_FLOAT(Node, Results); 945 return; 946 case ISD::FNEG: 947 Results.push_back(ExpandFNEG(Node)); 948 return; 949 case ISD::FSUB: 950 ExpandFSUB(Node, Results); 951 return; 952 case ISD::SETCC: 953 case ISD::VP_SETCC: 954 ExpandSETCC(Node, Results); 955 return; 956 case ISD::ABS: 957 if (SDValue Expanded = TLI.expandABS(Node, DAG)) { 958 Results.push_back(Expanded); 959 return; 960 } 961 break; 962 case ISD::ABDS: 963 case ISD::ABDU: 964 if (SDValue Expanded = TLI.expandABD(Node, DAG)) { 965 Results.push_back(Expanded); 966 return; 967 } 968 break; 969 case ISD::BITREVERSE: 970 ExpandBITREVERSE(Node, Results); 971 return; 972 case ISD::VP_BITREVERSE: 973 if (SDValue Expanded = TLI.expandVPBITREVERSE(Node, DAG)) { 974 Results.push_back(Expanded); 975 return; 976 } 977 break; 978 case ISD::CTPOP: 979 if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) { 980 Results.push_back(Expanded); 981 return; 982 } 983 break; 984 case ISD::VP_CTPOP: 985 if (SDValue Expanded = TLI.expandVPCTPOP(Node, DAG)) { 986 Results.push_back(Expanded); 987 return; 988 } 989 break; 990 case ISD::CTLZ: 991 case ISD::CTLZ_ZERO_UNDEF: 992 if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) { 993 Results.push_back(Expanded); 994 return; 995 } 996 break; 997 case ISD::VP_CTLZ: 998 case ISD::VP_CTLZ_ZERO_UNDEF: 999 if (SDValue Expanded = TLI.expandVPCTLZ(Node, DAG)) { 1000 Results.push_back(Expanded); 1001 return; 1002 } 1003 break; 1004 case ISD::CTTZ: 1005 case ISD::CTTZ_ZERO_UNDEF: 1006 if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) { 1007 Results.push_back(Expanded); 1008 return; 1009 } 1010 break; 1011 case ISD::VP_CTTZ: 1012 case ISD::VP_CTTZ_ZERO_UNDEF: 1013 if (SDValue Expanded = TLI.expandVPCTTZ(Node, DAG)) { 1014 Results.push_back(Expanded); 1015 return; 1016 } 1017 break; 1018 case ISD::FSHL: 1019 case ISD::VP_FSHL: 1020 case ISD::FSHR: 1021 case ISD::VP_FSHR: 1022 if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) { 1023 Results.push_back(Expanded); 1024 return; 1025 } 1026 break; 1027 case ISD::ROTL: 1028 case ISD::ROTR: 1029 if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) { 1030 Results.push_back(Expanded); 1031 return; 1032 } 1033 break; 1034 case ISD::FMINNUM: 1035 case ISD::FMAXNUM: 1036 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) { 1037 Results.push_back(Expanded); 1038 return; 1039 } 1040 break; 1041 case ISD::SMIN: 1042 case ISD::SMAX: 1043 case ISD::UMIN: 1044 case ISD::UMAX: 1045 if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) { 1046 Results.push_back(Expanded); 1047 return; 1048 } 1049 break; 1050 case ISD::UADDO: 1051 case ISD::USUBO: 1052 ExpandUADDSUBO(Node, Results); 1053 return; 1054 case ISD::SADDO: 1055 case ISD::SSUBO: 1056 ExpandSADDSUBO(Node, Results); 1057 return; 1058 case ISD::UMULO: 1059 case ISD::SMULO: 1060 ExpandMULO(Node, Results); 1061 return; 1062 case ISD::USUBSAT: 1063 case ISD::SSUBSAT: 1064 case ISD::UADDSAT: 1065 case ISD::SADDSAT: 1066 if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) { 1067 Results.push_back(Expanded); 1068 return; 1069 } 1070 break; 1071 case ISD::USHLSAT: 1072 case ISD::SSHLSAT: 1073 if (SDValue Expanded = TLI.expandShlSat(Node, DAG)) { 1074 Results.push_back(Expanded); 1075 return; 1076 } 1077 break; 1078 case ISD::FP_TO_SINT_SAT: 1079 case ISD::FP_TO_UINT_SAT: 1080 // Expand the fpsosisat if it is scalable to prevent it from unrolling below. 1081 if (Node->getValueType(0).isScalableVector()) { 1082 if (SDValue Expanded = TLI.expandFP_TO_INT_SAT(Node, DAG)) { 1083 Results.push_back(Expanded); 1084 return; 1085 } 1086 } 1087 break; 1088 case ISD::SMULFIX: 1089 case ISD::UMULFIX: 1090 if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) { 1091 Results.push_back(Expanded); 1092 return; 1093 } 1094 break; 1095 case ISD::SMULFIXSAT: 1096 case ISD::UMULFIXSAT: 1097 // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly 1098 // why. Maybe it results in worse codegen compared to the unroll for some 1099 // targets? This should probably be investigated. And if we still prefer to 1100 // unroll an explanation could be helpful. 1101 break; 1102 case ISD::SDIVFIX: 1103 case ISD::UDIVFIX: 1104 ExpandFixedPointDiv(Node, Results); 1105 return; 1106 case ISD::SDIVFIXSAT: 1107 case ISD::UDIVFIXSAT: 1108 break; 1109 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 1110 case ISD::STRICT_##DAGN: 1111 #include "llvm/IR/ConstrainedOps.def" 1112 ExpandStrictFPOp(Node, Results); 1113 return; 1114 case ISD::VECREDUCE_ADD: 1115 case ISD::VECREDUCE_MUL: 1116 case ISD::VECREDUCE_AND: 1117 case ISD::VECREDUCE_OR: 1118 case ISD::VECREDUCE_XOR: 1119 case ISD::VECREDUCE_SMAX: 1120 case ISD::VECREDUCE_SMIN: 1121 case ISD::VECREDUCE_UMAX: 1122 case ISD::VECREDUCE_UMIN: 1123 case ISD::VECREDUCE_FADD: 1124 case ISD::VECREDUCE_FMUL: 1125 case ISD::VECREDUCE_FMAX: 1126 case ISD::VECREDUCE_FMIN: 1127 case ISD::VECREDUCE_FMAXIMUM: 1128 case ISD::VECREDUCE_FMINIMUM: 1129 Results.push_back(TLI.expandVecReduce(Node, DAG)); 1130 return; 1131 case ISD::VECREDUCE_SEQ_FADD: 1132 case ISD::VECREDUCE_SEQ_FMUL: 1133 Results.push_back(TLI.expandVecReduceSeq(Node, DAG)); 1134 return; 1135 case ISD::SREM: 1136 case ISD::UREM: 1137 ExpandREM(Node, Results); 1138 return; 1139 case ISD::VP_MERGE: 1140 Results.push_back(ExpandVP_MERGE(Node)); 1141 return; 1142 } 1143 1144 SDValue Unrolled = DAG.UnrollVectorOp(Node); 1145 for (unsigned I = 0, E = Unrolled->getNumValues(); I != E; ++I) 1146 Results.push_back(Unrolled.getValue(I)); 1147 } 1148 1149 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) { 1150 // Lower a select instruction where the condition is a scalar and the 1151 // operands are vectors. Lower this select to VSELECT and implement it 1152 // using XOR AND OR. The selector bit is broadcasted. 1153 EVT VT = Node->getValueType(0); 1154 SDLoc DL(Node); 1155 1156 SDValue Mask = Node->getOperand(0); 1157 SDValue Op1 = Node->getOperand(1); 1158 SDValue Op2 = Node->getOperand(2); 1159 1160 assert(VT.isVector() && !Mask.getValueType().isVector() 1161 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 1162 1163 // If we can't even use the basic vector operations of 1164 // AND,OR,XOR, we will have to scalarize the op. 1165 // Notice that the operation may be 'promoted' which means that it is 1166 // 'bitcasted' to another type which is handled. 1167 // Also, we need to be able to construct a splat vector using either 1168 // BUILD_VECTOR or SPLAT_VECTOR. 1169 // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to 1170 // BUILD_VECTOR? 1171 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1172 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1173 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 1174 TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR 1175 : ISD::SPLAT_VECTOR, 1176 VT) == TargetLowering::Expand) 1177 return DAG.UnrollVectorOp(Node); 1178 1179 // Generate a mask operand. 1180 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 1181 1182 // What is the size of each element in the vector mask. 1183 EVT BitTy = MaskTy.getScalarType(); 1184 1185 Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy), 1186 DAG.getConstant(0, DL, BitTy)); 1187 1188 // Broadcast the mask so that the entire vector is all one or all zero. 1189 Mask = DAG.getSplat(MaskTy, DL, Mask); 1190 1191 // Bitcast the operands to be the same type as the mask. 1192 // This is needed when we select between FP types because 1193 // the mask is a vector of integers. 1194 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 1195 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 1196 1197 SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy); 1198 1199 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 1200 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 1201 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 1202 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 1203 } 1204 1205 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) { 1206 EVT VT = Node->getValueType(0); 1207 1208 // Make sure that the SRA and SHL instructions are available. 1209 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 1210 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 1211 return DAG.UnrollVectorOp(Node); 1212 1213 SDLoc DL(Node); 1214 EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1215 1216 unsigned BW = VT.getScalarSizeInBits(); 1217 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 1218 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 1219 1220 SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz); 1221 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 1222 } 1223 1224 // Generically expand a vector anyext in register to a shuffle of the relevant 1225 // lanes into the appropriate locations, with other lanes left undef. 1226 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) { 1227 SDLoc DL(Node); 1228 EVT VT = Node->getValueType(0); 1229 int NumElements = VT.getVectorNumElements(); 1230 SDValue Src = Node->getOperand(0); 1231 EVT SrcVT = Src.getValueType(); 1232 int NumSrcElements = SrcVT.getVectorNumElements(); 1233 1234 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 1235 // into a larger vector type. 1236 if (SrcVT.bitsLE(VT)) { 1237 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 1238 "ANY_EXTEND_VECTOR_INREG vector size mismatch"); 1239 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 1240 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1241 NumSrcElements); 1242 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 1243 Src, DAG.getVectorIdxConstant(0, DL)); 1244 } 1245 1246 // Build a base mask of undef shuffles. 1247 SmallVector<int, 16> ShuffleMask; 1248 ShuffleMask.resize(NumSrcElements, -1); 1249 1250 // Place the extended lanes into the correct locations. 1251 int ExtLaneScale = NumSrcElements / NumElements; 1252 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1253 for (int i = 0; i < NumElements; ++i) 1254 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 1255 1256 return DAG.getNode( 1257 ISD::BITCAST, DL, VT, 1258 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 1259 } 1260 1261 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) { 1262 SDLoc DL(Node); 1263 EVT VT = Node->getValueType(0); 1264 SDValue Src = Node->getOperand(0); 1265 EVT SrcVT = Src.getValueType(); 1266 1267 // First build an any-extend node which can be legalized above when we 1268 // recurse through it. 1269 SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); 1270 1271 // Now we need sign extend. Do this by shifting the elements. Even if these 1272 // aren't legal operations, they have a better chance of being legalized 1273 // without full scalarization than the sign extension does. 1274 unsigned EltWidth = VT.getScalarSizeInBits(); 1275 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 1276 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 1277 return DAG.getNode(ISD::SRA, DL, VT, 1278 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 1279 ShiftAmount); 1280 } 1281 1282 // Generically expand a vector zext in register to a shuffle of the relevant 1283 // lanes into the appropriate locations, a blend of zero into the high bits, 1284 // and a bitcast to the wider element type. 1285 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) { 1286 SDLoc DL(Node); 1287 EVT VT = Node->getValueType(0); 1288 int NumElements = VT.getVectorNumElements(); 1289 SDValue Src = Node->getOperand(0); 1290 EVT SrcVT = Src.getValueType(); 1291 int NumSrcElements = SrcVT.getVectorNumElements(); 1292 1293 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 1294 // into a larger vector type. 1295 if (SrcVT.bitsLE(VT)) { 1296 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 1297 "ZERO_EXTEND_VECTOR_INREG vector size mismatch"); 1298 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 1299 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1300 NumSrcElements); 1301 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 1302 Src, DAG.getVectorIdxConstant(0, DL)); 1303 } 1304 1305 // Build up a zero vector to blend into this one. 1306 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 1307 1308 // Shuffle the incoming lanes into the correct position, and pull all other 1309 // lanes from the zero vector. 1310 auto ShuffleMask = llvm::to_vector<16>(llvm::seq<int>(0, NumSrcElements)); 1311 1312 int ExtLaneScale = NumSrcElements / NumElements; 1313 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1314 for (int i = 0; i < NumElements; ++i) 1315 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 1316 1317 return DAG.getNode(ISD::BITCAST, DL, VT, 1318 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 1319 } 1320 1321 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 1322 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 1323 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 1324 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 1325 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 1326 } 1327 1328 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) { 1329 EVT VT = Node->getValueType(0); 1330 1331 // Scalable vectors can't use shuffle expansion. 1332 if (VT.isScalableVector()) 1333 return TLI.expandBSWAP(Node, DAG); 1334 1335 // Generate a byte wise shuffle mask for the BSWAP. 1336 SmallVector<int, 16> ShuffleMask; 1337 createBSWAPShuffleMask(VT, ShuffleMask); 1338 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 1339 1340 // Only emit a shuffle if the mask is legal. 1341 if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) { 1342 SDLoc DL(Node); 1343 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1344 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 1345 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1346 } 1347 1348 // If we have the appropriate vector bit operations, it is better to use them 1349 // than unrolling and expanding each component. 1350 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 1351 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1352 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && 1353 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 1354 return TLI.expandBSWAP(Node, DAG); 1355 1356 // Otherwise unroll. 1357 return DAG.UnrollVectorOp(Node); 1358 } 1359 1360 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node, 1361 SmallVectorImpl<SDValue> &Results) { 1362 EVT VT = Node->getValueType(0); 1363 1364 // We can't unroll or use shuffles for scalable vectors. 1365 if (VT.isScalableVector()) { 1366 Results.push_back(TLI.expandBITREVERSE(Node, DAG)); 1367 return; 1368 } 1369 1370 // If we have the scalar operation, it's probably cheaper to unroll it. 1371 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) { 1372 SDValue Tmp = DAG.UnrollVectorOp(Node); 1373 Results.push_back(Tmp); 1374 return; 1375 } 1376 1377 // If the vector element width is a whole number of bytes, test if its legal 1378 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 1379 // vector. This greatly reduces the number of bit shifts necessary. 1380 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 1381 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 1382 SmallVector<int, 16> BSWAPMask; 1383 createBSWAPShuffleMask(VT, BSWAPMask); 1384 1385 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 1386 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 1387 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 1388 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 1389 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 1390 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 1391 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 1392 SDLoc DL(Node); 1393 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1394 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 1395 BSWAPMask); 1396 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 1397 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 1398 Results.push_back(Op); 1399 return; 1400 } 1401 } 1402 1403 // If we have the appropriate vector bit operations, it is better to use them 1404 // than unrolling and expanding each component. 1405 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 1406 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1407 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && 1408 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) { 1409 Results.push_back(TLI.expandBITREVERSE(Node, DAG)); 1410 return; 1411 } 1412 1413 // Otherwise unroll. 1414 SDValue Tmp = DAG.UnrollVectorOp(Node); 1415 Results.push_back(Tmp); 1416 } 1417 1418 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) { 1419 // Implement VSELECT in terms of XOR, AND, OR 1420 // on platforms which do not support blend natively. 1421 SDLoc DL(Node); 1422 1423 SDValue Mask = Node->getOperand(0); 1424 SDValue Op1 = Node->getOperand(1); 1425 SDValue Op2 = Node->getOperand(2); 1426 1427 EVT VT = Mask.getValueType(); 1428 1429 // If we can't even use the basic vector operations of 1430 // AND,OR,XOR, we will have to scalarize the op. 1431 // Notice that the operation may be 'promoted' which means that it is 1432 // 'bitcasted' to another type which is handled. 1433 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1434 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1435 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand) 1436 return DAG.UnrollVectorOp(Node); 1437 1438 // This operation also isn't safe with AND, OR, XOR when the boolean type is 1439 // 0/1 and the select operands aren't also booleans, as we need an all-ones 1440 // vector constant to mask with. 1441 // FIXME: Sign extend 1 to all ones if that's legal on the target. 1442 auto BoolContents = TLI.getBooleanContents(Op1.getValueType()); 1443 if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent && 1444 !(BoolContents == TargetLowering::ZeroOrOneBooleanContent && 1445 Op1.getValueType().getVectorElementType() == MVT::i1)) 1446 return DAG.UnrollVectorOp(Node); 1447 1448 // If the mask and the type are different sizes, unroll the vector op. This 1449 // can occur when getSetCCResultType returns something that is different in 1450 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1451 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1452 return DAG.UnrollVectorOp(Node); 1453 1454 // Bitcast the operands to be the same type as the mask. 1455 // This is needed when we select between FP types because 1456 // the mask is a vector of integers. 1457 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1458 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1459 1460 SDValue NotMask = DAG.getNOT(DL, Mask, VT); 1461 1462 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1463 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1464 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1465 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 1466 } 1467 1468 SDValue VectorLegalizer::ExpandVP_SELECT(SDNode *Node) { 1469 // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which 1470 // do not support it natively. 1471 SDLoc DL(Node); 1472 1473 SDValue Mask = Node->getOperand(0); 1474 SDValue Op1 = Node->getOperand(1); 1475 SDValue Op2 = Node->getOperand(2); 1476 SDValue EVL = Node->getOperand(3); 1477 1478 EVT VT = Mask.getValueType(); 1479 1480 // If we can't even use the basic vector operations of 1481 // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op. 1482 if (TLI.getOperationAction(ISD::VP_AND, VT) == TargetLowering::Expand || 1483 TLI.getOperationAction(ISD::VP_XOR, VT) == TargetLowering::Expand || 1484 TLI.getOperationAction(ISD::VP_OR, VT) == TargetLowering::Expand) 1485 return DAG.UnrollVectorOp(Node); 1486 1487 // This operation also isn't safe when the operands aren't also booleans. 1488 if (Op1.getValueType().getVectorElementType() != MVT::i1) 1489 return DAG.UnrollVectorOp(Node); 1490 1491 SDValue Ones = DAG.getAllOnesConstant(DL, VT); 1492 SDValue NotMask = DAG.getNode(ISD::VP_XOR, DL, VT, Mask, Ones, Ones, EVL); 1493 1494 Op1 = DAG.getNode(ISD::VP_AND, DL, VT, Op1, Mask, Ones, EVL); 1495 Op2 = DAG.getNode(ISD::VP_AND, DL, VT, Op2, NotMask, Ones, EVL); 1496 return DAG.getNode(ISD::VP_OR, DL, VT, Op1, Op2, Ones, EVL); 1497 } 1498 1499 SDValue VectorLegalizer::ExpandVP_MERGE(SDNode *Node) { 1500 // Implement VP_MERGE in terms of VSELECT. Construct a mask where vector 1501 // indices less than the EVL/pivot are true. Combine that with the original 1502 // mask for a full-length mask. Use a full-length VSELECT to select between 1503 // the true and false values. 1504 SDLoc DL(Node); 1505 1506 SDValue Mask = Node->getOperand(0); 1507 SDValue Op1 = Node->getOperand(1); 1508 SDValue Op2 = Node->getOperand(2); 1509 SDValue EVL = Node->getOperand(3); 1510 1511 EVT MaskVT = Mask.getValueType(); 1512 bool IsFixedLen = MaskVT.isFixedLengthVector(); 1513 1514 EVT EVLVecVT = EVT::getVectorVT(*DAG.getContext(), EVL.getValueType(), 1515 MaskVT.getVectorElementCount()); 1516 1517 // If we can't construct the EVL mask efficiently, it's better to unroll. 1518 if ((IsFixedLen && 1519 !TLI.isOperationLegalOrCustom(ISD::BUILD_VECTOR, EVLVecVT)) || 1520 (!IsFixedLen && 1521 (!TLI.isOperationLegalOrCustom(ISD::STEP_VECTOR, EVLVecVT) || 1522 !TLI.isOperationLegalOrCustom(ISD::SPLAT_VECTOR, EVLVecVT)))) 1523 return DAG.UnrollVectorOp(Node); 1524 1525 // If using a SETCC would result in a different type than the mask type, 1526 // unroll. 1527 if (TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1528 EVLVecVT) != MaskVT) 1529 return DAG.UnrollVectorOp(Node); 1530 1531 SDValue StepVec = DAG.getStepVector(DL, EVLVecVT); 1532 SDValue SplatEVL = DAG.getSplat(EVLVecVT, DL, EVL); 1533 SDValue EVLMask = 1534 DAG.getSetCC(DL, MaskVT, StepVec, SplatEVL, ISD::CondCode::SETULT); 1535 1536 SDValue FullMask = DAG.getNode(ISD::AND, DL, MaskVT, Mask, EVLMask); 1537 return DAG.getSelect(DL, Node->getValueType(0), FullMask, Op1, Op2); 1538 } 1539 1540 SDValue VectorLegalizer::ExpandVP_REM(SDNode *Node) { 1541 // Implement VP_SREM/UREM in terms of VP_SDIV/VP_UDIV, VP_MUL, VP_SUB. 1542 EVT VT = Node->getValueType(0); 1543 1544 unsigned DivOpc = Node->getOpcode() == ISD::VP_SREM ? ISD::VP_SDIV : ISD::VP_UDIV; 1545 1546 if (!TLI.isOperationLegalOrCustom(DivOpc, VT) || 1547 !TLI.isOperationLegalOrCustom(ISD::VP_MUL, VT) || 1548 !TLI.isOperationLegalOrCustom(ISD::VP_SUB, VT)) 1549 return SDValue(); 1550 1551 SDLoc DL(Node); 1552 1553 SDValue Dividend = Node->getOperand(0); 1554 SDValue Divisor = Node->getOperand(1); 1555 SDValue Mask = Node->getOperand(2); 1556 SDValue EVL = Node->getOperand(3); 1557 1558 // X % Y -> X-X/Y*Y 1559 SDValue Div = DAG.getNode(DivOpc, DL, VT, Dividend, Divisor, Mask, EVL); 1560 SDValue Mul = DAG.getNode(ISD::VP_MUL, DL, VT, Divisor, Div, Mask, EVL); 1561 return DAG.getNode(ISD::VP_SUB, DL, VT, Dividend, Mul, Mask, EVL); 1562 } 1563 1564 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node, 1565 SmallVectorImpl<SDValue> &Results) { 1566 // Attempt to expand using TargetLowering. 1567 SDValue Result, Chain; 1568 if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) { 1569 Results.push_back(Result); 1570 if (Node->isStrictFPOpcode()) 1571 Results.push_back(Chain); 1572 return; 1573 } 1574 1575 // Otherwise go ahead and unroll. 1576 if (Node->isStrictFPOpcode()) { 1577 UnrollStrictFPOp(Node, Results); 1578 return; 1579 } 1580 1581 Results.push_back(DAG.UnrollVectorOp(Node)); 1582 } 1583 1584 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node, 1585 SmallVectorImpl<SDValue> &Results) { 1586 bool IsStrict = Node->isStrictFPOpcode(); 1587 unsigned OpNo = IsStrict ? 1 : 0; 1588 SDValue Src = Node->getOperand(OpNo); 1589 EVT VT = Src.getValueType(); 1590 SDLoc DL(Node); 1591 1592 // Attempt to expand using TargetLowering. 1593 SDValue Result; 1594 SDValue Chain; 1595 if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) { 1596 Results.push_back(Result); 1597 if (IsStrict) 1598 Results.push_back(Chain); 1599 return; 1600 } 1601 1602 // Make sure that the SINT_TO_FP and SRL instructions are available. 1603 if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) == 1604 TargetLowering::Expand) || 1605 (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) == 1606 TargetLowering::Expand)) || 1607 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) { 1608 if (IsStrict) { 1609 UnrollStrictFPOp(Node, Results); 1610 return; 1611 } 1612 1613 Results.push_back(DAG.UnrollVectorOp(Node)); 1614 return; 1615 } 1616 1617 unsigned BW = VT.getScalarSizeInBits(); 1618 assert((BW == 64 || BW == 32) && 1619 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1620 1621 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1622 1623 // Constants to clear the upper part of the word. 1624 // Notice that we can also use SHL+SHR, but using a constant is slightly 1625 // faster on x86. 1626 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1627 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1628 1629 // Two to the power of half-word-size. 1630 SDValue TWOHW = 1631 DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0)); 1632 1633 // Clear upper part of LO, lower HI 1634 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord); 1635 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask); 1636 1637 if (IsStrict) { 1638 // Convert hi and lo to floats 1639 // Convert the hi part back to the upper values 1640 // TODO: Can any fast-math-flags be set on these nodes? 1641 SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1642 {Node->getValueType(0), MVT::Other}, 1643 {Node->getOperand(0), HI}); 1644 fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other}, 1645 {fHI.getValue(1), fHI, TWOHW}); 1646 SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1647 {Node->getValueType(0), MVT::Other}, 1648 {Node->getOperand(0), LO}); 1649 1650 SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1), 1651 fLO.getValue(1)); 1652 1653 // Add the two halves 1654 SDValue Result = 1655 DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other}, 1656 {TF, fHI, fLO}); 1657 1658 Results.push_back(Result); 1659 Results.push_back(Result.getValue(1)); 1660 return; 1661 } 1662 1663 // Convert hi and lo to floats 1664 // Convert the hi part back to the upper values 1665 // TODO: Can any fast-math-flags be set on these nodes? 1666 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI); 1667 fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW); 1668 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO); 1669 1670 // Add the two halves 1671 Results.push_back( 1672 DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO)); 1673 } 1674 1675 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) { 1676 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) { 1677 SDLoc DL(Node); 1678 SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0)); 1679 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1680 return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero, 1681 Node->getOperand(0)); 1682 } 1683 return DAG.UnrollVectorOp(Node); 1684 } 1685 1686 void VectorLegalizer::ExpandFSUB(SDNode *Node, 1687 SmallVectorImpl<SDValue> &Results) { 1688 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1689 // we can defer this to operation legalization where it will be lowered as 1690 // a+(-b). 1691 EVT VT = Node->getValueType(0); 1692 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1693 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1694 return; // Defer to LegalizeDAG 1695 1696 SDValue Tmp = DAG.UnrollVectorOp(Node); 1697 Results.push_back(Tmp); 1698 } 1699 1700 void VectorLegalizer::ExpandSETCC(SDNode *Node, 1701 SmallVectorImpl<SDValue> &Results) { 1702 bool NeedInvert = false; 1703 bool IsVP = Node->getOpcode() == ISD::VP_SETCC; 1704 bool IsStrict = Node->getOpcode() == ISD::STRICT_FSETCC || 1705 Node->getOpcode() == ISD::STRICT_FSETCCS; 1706 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 1707 unsigned Offset = IsStrict ? 1 : 0; 1708 1709 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 1710 SDValue LHS = Node->getOperand(0 + Offset); 1711 SDValue RHS = Node->getOperand(1 + Offset); 1712 SDValue CC = Node->getOperand(2 + Offset); 1713 1714 MVT OpVT = LHS.getSimpleValueType(); 1715 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1716 1717 if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) { 1718 if (IsStrict) { 1719 UnrollStrictFPOp(Node, Results); 1720 return; 1721 } 1722 Results.push_back(UnrollVSETCC(Node)); 1723 return; 1724 } 1725 1726 SDValue Mask, EVL; 1727 if (IsVP) { 1728 Mask = Node->getOperand(3 + Offset); 1729 EVL = Node->getOperand(4 + Offset); 1730 } 1731 1732 SDLoc dl(Node); 1733 bool Legalized = 1734 TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS, RHS, CC, Mask, 1735 EVL, NeedInvert, dl, Chain, IsSignaling); 1736 1737 if (Legalized) { 1738 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 1739 // condition code, create a new SETCC node. 1740 if (CC.getNode()) { 1741 if (IsStrict) { 1742 LHS = DAG.getNode(Node->getOpcode(), dl, Node->getVTList(), 1743 {Chain, LHS, RHS, CC}, Node->getFlags()); 1744 Chain = LHS.getValue(1); 1745 } else if (IsVP) { 1746 LHS = DAG.getNode(ISD::VP_SETCC, dl, Node->getValueType(0), 1747 {LHS, RHS, CC, Mask, EVL}, Node->getFlags()); 1748 } else { 1749 LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC, 1750 Node->getFlags()); 1751 } 1752 } 1753 1754 // If we expanded the SETCC by inverting the condition code, then wrap 1755 // the existing SETCC in a NOT to restore the intended condition. 1756 if (NeedInvert) { 1757 if (!IsVP) 1758 LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0)); 1759 else 1760 LHS = DAG.getVPLogicalNOT(dl, LHS, Mask, EVL, LHS->getValueType(0)); 1761 } 1762 } else { 1763 assert(!IsStrict && "Don't know how to expand for strict nodes."); 1764 1765 // Otherwise, SETCC for the given comparison type must be completely 1766 // illegal; expand it into a SELECT_CC. 1767 EVT VT = Node->getValueType(0); 1768 LHS = 1769 DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS, 1770 DAG.getBoolConstant(true, dl, VT, LHS.getValueType()), 1771 DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC); 1772 LHS->setFlags(Node->getFlags()); 1773 } 1774 1775 Results.push_back(LHS); 1776 if (IsStrict) 1777 Results.push_back(Chain); 1778 } 1779 1780 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node, 1781 SmallVectorImpl<SDValue> &Results) { 1782 SDValue Result, Overflow; 1783 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 1784 Results.push_back(Result); 1785 Results.push_back(Overflow); 1786 } 1787 1788 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node, 1789 SmallVectorImpl<SDValue> &Results) { 1790 SDValue Result, Overflow; 1791 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 1792 Results.push_back(Result); 1793 Results.push_back(Overflow); 1794 } 1795 1796 void VectorLegalizer::ExpandMULO(SDNode *Node, 1797 SmallVectorImpl<SDValue> &Results) { 1798 SDValue Result, Overflow; 1799 if (!TLI.expandMULO(Node, Result, Overflow, DAG)) 1800 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node); 1801 1802 Results.push_back(Result); 1803 Results.push_back(Overflow); 1804 } 1805 1806 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node, 1807 SmallVectorImpl<SDValue> &Results) { 1808 SDNode *N = Node; 1809 if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N), 1810 N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG)) 1811 Results.push_back(Expanded); 1812 } 1813 1814 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node, 1815 SmallVectorImpl<SDValue> &Results) { 1816 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) { 1817 ExpandUINT_TO_FLOAT(Node, Results); 1818 return; 1819 } 1820 if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) { 1821 ExpandFP_TO_UINT(Node, Results); 1822 return; 1823 } 1824 1825 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1826 Node->getOpcode() == ISD::STRICT_FSETCCS) { 1827 ExpandSETCC(Node, Results); 1828 return; 1829 } 1830 1831 UnrollStrictFPOp(Node, Results); 1832 } 1833 1834 void VectorLegalizer::ExpandREM(SDNode *Node, 1835 SmallVectorImpl<SDValue> &Results) { 1836 assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) && 1837 "Expected REM node"); 1838 1839 SDValue Result; 1840 if (!TLI.expandREM(Node, Result, DAG)) 1841 Result = DAG.UnrollVectorOp(Node); 1842 Results.push_back(Result); 1843 } 1844 1845 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node, 1846 SmallVectorImpl<SDValue> &Results) { 1847 EVT VT = Node->getValueType(0); 1848 EVT EltVT = VT.getVectorElementType(); 1849 unsigned NumElems = VT.getVectorNumElements(); 1850 unsigned NumOpers = Node->getNumOperands(); 1851 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1852 1853 EVT TmpEltVT = EltVT; 1854 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1855 Node->getOpcode() == ISD::STRICT_FSETCCS) 1856 TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(), 1857 *DAG.getContext(), TmpEltVT); 1858 1859 EVT ValueVTs[] = {TmpEltVT, MVT::Other}; 1860 SDValue Chain = Node->getOperand(0); 1861 SDLoc dl(Node); 1862 1863 SmallVector<SDValue, 32> OpValues; 1864 SmallVector<SDValue, 32> OpChains; 1865 for (unsigned i = 0; i < NumElems; ++i) { 1866 SmallVector<SDValue, 4> Opers; 1867 SDValue Idx = DAG.getVectorIdxConstant(i, dl); 1868 1869 // The Chain is the first operand. 1870 Opers.push_back(Chain); 1871 1872 // Now process the remaining operands. 1873 for (unsigned j = 1; j < NumOpers; ++j) { 1874 SDValue Oper = Node->getOperand(j); 1875 EVT OperVT = Oper.getValueType(); 1876 1877 if (OperVT.isVector()) 1878 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1879 OperVT.getVectorElementType(), Oper, Idx); 1880 1881 Opers.push_back(Oper); 1882 } 1883 1884 SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers); 1885 SDValue ScalarResult = ScalarOp.getValue(0); 1886 SDValue ScalarChain = ScalarOp.getValue(1); 1887 1888 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1889 Node->getOpcode() == ISD::STRICT_FSETCCS) 1890 ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult, 1891 DAG.getAllOnesConstant(dl, EltVT), 1892 DAG.getConstant(0, dl, EltVT)); 1893 1894 OpValues.push_back(ScalarResult); 1895 OpChains.push_back(ScalarChain); 1896 } 1897 1898 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1899 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1900 1901 Results.push_back(Result); 1902 Results.push_back(NewChain); 1903 } 1904 1905 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) { 1906 EVT VT = Node->getValueType(0); 1907 unsigned NumElems = VT.getVectorNumElements(); 1908 EVT EltVT = VT.getVectorElementType(); 1909 SDValue LHS = Node->getOperand(0); 1910 SDValue RHS = Node->getOperand(1); 1911 SDValue CC = Node->getOperand(2); 1912 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1913 SDLoc dl(Node); 1914 SmallVector<SDValue, 8> Ops(NumElems); 1915 for (unsigned i = 0; i < NumElems; ++i) { 1916 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1917 DAG.getVectorIdxConstant(i, dl)); 1918 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1919 DAG.getVectorIdxConstant(i, dl)); 1920 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1921 TLI.getSetCCResultType(DAG.getDataLayout(), 1922 *DAG.getContext(), TmpEltVT), 1923 LHSElem, RHSElem, CC); 1924 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getAllOnesConstant(dl, EltVT), 1925 DAG.getConstant(0, dl, EltVT)); 1926 } 1927 return DAG.getBuildVector(VT, dl, Ops); 1928 } 1929 1930 bool SelectionDAG::LegalizeVectors() { 1931 return VectorLegalizer(*this).Run(); 1932 } 1933