1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::LegalizeVectors method. 10 // 11 // The vector legalizer looks for vector operations which might need to be 12 // scalarized and legalizes them. This is a separate step from Legalize because 13 // scalarizing can introduce illegal types. For example, suppose we have an 14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition 15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the 16 // operation, which introduces nodes with the illegal type i64 which must be 17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; 18 // the operation must be unrolled, which introduces nodes with the illegal 19 // type i8 which must be promoted. 20 // 21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR, 22 // or operations that happen to take a vector which are custom-lowered; 23 // the legalization for such operations never produces nodes 24 // with illegal types, so it's okay to put off legalizing them until 25 // SelectionDAG::Legalize runs. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/CodeGen/ISDOpcodes.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/SelectionDAGNodes.h" 36 #include "llvm/CodeGen/TargetLowering.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include <cassert> 46 #include <cstdint> 47 #include <iterator> 48 #include <utility> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "legalizevectorops" 53 54 namespace { 55 56 class VectorLegalizer { 57 SelectionDAG& DAG; 58 const TargetLowering &TLI; 59 bool Changed = false; // Keep track of whether anything changed 60 61 /// For nodes that are of legal width, and that have more than one use, this 62 /// map indicates what regularized operand to use. This allows us to avoid 63 /// legalizing the same thing more than once. 64 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; 65 66 /// Adds a node to the translation cache. 67 void AddLegalizedOperand(SDValue From, SDValue To) { 68 LegalizedNodes.insert(std::make_pair(From, To)); 69 // If someone requests legalization of the new node, return itself. 70 if (From != To) 71 LegalizedNodes.insert(std::make_pair(To, To)); 72 } 73 74 /// Legalizes the given node. 75 SDValue LegalizeOp(SDValue Op); 76 77 /// Assuming the node is legal, "legalize" the results. 78 SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result); 79 80 /// Make sure Results are legal and update the translation cache. 81 SDValue RecursivelyLegalizeResults(SDValue Op, 82 MutableArrayRef<SDValue> Results); 83 84 /// Wrapper to interface LowerOperation with a vector of Results. 85 /// Returns false if the target wants to use default expansion. Otherwise 86 /// returns true. If return is true and the Results are empty, then the 87 /// target wants to keep the input node as is. 88 bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results); 89 90 /// Implements unrolling a VSETCC. 91 SDValue UnrollVSETCC(SDNode *Node); 92 93 /// Implement expand-based legalization of vector operations. 94 /// 95 /// This is just a high-level routine to dispatch to specific code paths for 96 /// operations to legalize them. 97 void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results); 98 99 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if 100 /// FP_TO_SINT isn't legal. 101 void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 102 103 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if 104 /// SINT_TO_FLOAT and SHR on vectors isn't legal. 105 void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 106 107 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. 108 SDValue ExpandSEXTINREG(SDNode *Node); 109 110 /// Implement expansion for ANY_EXTEND_VECTOR_INREG. 111 /// 112 /// Shuffles the low lanes of the operand into place and bitcasts to the proper 113 /// type. The contents of the bits in the extended part of each element are 114 /// undef. 115 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node); 116 117 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. 118 /// 119 /// Shuffles the low lanes of the operand into place, bitcasts to the proper 120 /// type, then shifts left and arithmetic shifts right to introduce a sign 121 /// extension. 122 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node); 123 124 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. 125 /// 126 /// Shuffles the low lanes of the operand into place and blends zeros into 127 /// the remaining lanes, finally bitcasting to the proper type. 128 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node); 129 130 /// Expand bswap of vectors into a shuffle if legal. 131 SDValue ExpandBSWAP(SDNode *Node); 132 133 /// Implement vselect in terms of XOR, AND, OR when blend is not 134 /// supported by the target. 135 SDValue ExpandVSELECT(SDNode *Node); 136 SDValue ExpandSELECT(SDNode *Node); 137 std::pair<SDValue, SDValue> ExpandLoad(SDNode *N); 138 SDValue ExpandStore(SDNode *N); 139 SDValue ExpandFNEG(SDNode *Node); 140 void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results); 141 void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results); 142 void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 143 void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 144 void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results); 145 void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results); 146 void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 147 void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results); 148 149 void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); 150 151 /// Implements vector promotion. 152 /// 153 /// This is essentially just bitcasting the operands to a different type and 154 /// bitcasting the result back to the original type. 155 void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results); 156 157 /// Implements [SU]INT_TO_FP vector promotion. 158 /// 159 /// This is a [zs]ext of the input operand to a larger integer type. 160 void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results); 161 162 /// Implements FP_TO_[SU]INT vector promotion of the result type. 163 /// 164 /// It is promoted to a larger integer type. The result is then 165 /// truncated back to the original type. 166 void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results); 167 168 public: 169 VectorLegalizer(SelectionDAG& dag) : 170 DAG(dag), TLI(dag.getTargetLoweringInfo()) {} 171 172 /// Begin legalizer the vector operations in the DAG. 173 bool Run(); 174 }; 175 176 } // end anonymous namespace 177 178 bool VectorLegalizer::Run() { 179 // Before we start legalizing vector nodes, check if there are any vectors. 180 bool HasVectors = false; 181 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 182 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { 183 // Check if the values of the nodes contain vectors. We don't need to check 184 // the operands because we are going to check their values at some point. 185 HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); }); 186 187 // If we found a vector node we can start the legalization. 188 if (HasVectors) 189 break; 190 } 191 192 // If this basic block has no vectors then no need to legalize vectors. 193 if (!HasVectors) 194 return false; 195 196 // The legalize process is inherently a bottom-up recursive process (users 197 // legalize their uses before themselves). Given infinite stack space, we 198 // could just start legalizing on the root and traverse the whole graph. In 199 // practice however, this causes us to run out of stack space on large basic 200 // blocks. To avoid this problem, compute an ordering of the nodes where each 201 // node is only legalized after all of its operands are legalized. 202 DAG.AssignTopologicalOrder(); 203 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), 204 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) 205 LegalizeOp(SDValue(&*I, 0)); 206 207 // Finally, it's possible the root changed. Get the new root. 208 SDValue OldRoot = DAG.getRoot(); 209 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); 210 DAG.setRoot(LegalizedNodes[OldRoot]); 211 212 LegalizedNodes.clear(); 213 214 // Remove dead nodes now. 215 DAG.RemoveDeadNodes(); 216 217 return Changed; 218 } 219 220 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) { 221 assert(Op->getNumValues() == Result->getNumValues() && 222 "Unexpected number of results"); 223 // Generic legalization: just pass the operand through. 224 for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i) 225 AddLegalizedOperand(Op.getValue(i), SDValue(Result, i)); 226 return SDValue(Result, Op.getResNo()); 227 } 228 229 SDValue 230 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op, 231 MutableArrayRef<SDValue> Results) { 232 assert(Results.size() == Op->getNumValues() && 233 "Unexpected number of results"); 234 // Make sure that the generated code is itself legal. 235 for (unsigned i = 0, e = Results.size(); i != e; ++i) { 236 Results[i] = LegalizeOp(Results[i]); 237 AddLegalizedOperand(Op.getValue(i), Results[i]); 238 } 239 240 return Results[Op.getResNo()]; 241 } 242 243 SDValue VectorLegalizer::LegalizeOp(SDValue Op) { 244 // Note that LegalizeOp may be reentered even from single-use nodes, which 245 // means that we always must cache transformed nodes. 246 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); 247 if (I != LegalizedNodes.end()) return I->second; 248 249 // Legalize the operands 250 SmallVector<SDValue, 8> Ops; 251 for (const SDValue &Oper : Op->op_values()) 252 Ops.push_back(LegalizeOp(Oper)); 253 254 SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops); 255 256 if (Op.getOpcode() == ISD::LOAD) { 257 LoadSDNode *LD = cast<LoadSDNode>(Node); 258 ISD::LoadExtType ExtType = LD->getExtensionType(); 259 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) { 260 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: "; 261 Node->dump(&DAG)); 262 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0), 263 LD->getMemoryVT())) { 264 default: llvm_unreachable("This action is not supported yet!"); 265 case TargetLowering::Legal: 266 return TranslateLegalizeResults(Op, Node); 267 case TargetLowering::Custom: { 268 SmallVector<SDValue, 2> ResultVals; 269 if (LowerOperationWrapper(Node, ResultVals)) { 270 if (ResultVals.empty()) 271 return TranslateLegalizeResults(Op, Node); 272 273 Changed = true; 274 return RecursivelyLegalizeResults(Op, ResultVals); 275 } 276 LLVM_FALLTHROUGH; 277 } 278 case TargetLowering::Expand: { 279 Changed = true; 280 std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node); 281 AddLegalizedOperand(Op.getValue(0), Tmp.first); 282 AddLegalizedOperand(Op.getValue(1), Tmp.second); 283 return Op.getResNo() ? Tmp.first : Tmp.second; 284 } 285 } 286 } 287 } else if (Op.getOpcode() == ISD::STORE) { 288 StoreSDNode *ST = cast<StoreSDNode>(Node); 289 EVT StVT = ST->getMemoryVT(); 290 MVT ValVT = ST->getValue().getSimpleValueType(); 291 if (StVT.isVector() && ST->isTruncatingStore()) { 292 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: "; 293 Node->dump(&DAG)); 294 switch (TLI.getTruncStoreAction(ValVT, StVT)) { 295 default: llvm_unreachable("This action is not supported yet!"); 296 case TargetLowering::Legal: 297 return TranslateLegalizeResults(Op, Node); 298 case TargetLowering::Custom: { 299 SmallVector<SDValue, 1> ResultVals; 300 if (LowerOperationWrapper(Node, ResultVals)) { 301 if (ResultVals.empty()) 302 return TranslateLegalizeResults(Op, Node); 303 304 Changed = true; 305 return RecursivelyLegalizeResults(Op, ResultVals); 306 } 307 LLVM_FALLTHROUGH; 308 } 309 case TargetLowering::Expand: { 310 Changed = true; 311 SDValue Chain = ExpandStore(Node); 312 AddLegalizedOperand(Op, Chain); 313 return Chain; 314 } 315 } 316 } 317 } 318 319 bool HasVectorValueOrOp = 320 llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) || 321 llvm::any_of(Node->op_values(), 322 [](SDValue O) { return O.getValueType().isVector(); }); 323 if (!HasVectorValueOrOp) 324 return TranslateLegalizeResults(Op, Node); 325 326 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 327 EVT ValVT; 328 switch (Op.getOpcode()) { 329 default: 330 return TranslateLegalizeResults(Op, Node); 331 case ISD::MERGE_VALUES: 332 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 333 // This operation lies about being legal: when it claims to be legal, 334 // it should actually be expanded. 335 if (Action == TargetLowering::Legal) 336 Action = TargetLowering::Expand; 337 break; 338 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 339 case ISD::STRICT_##DAGN: 340 #include "llvm/IR/ConstrainedOps.def" 341 ValVT = Node->getValueType(0); 342 if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP || 343 Op.getOpcode() == ISD::STRICT_UINT_TO_FP) 344 ValVT = Node->getOperand(1).getValueType(); 345 Action = TLI.getOperationAction(Node->getOpcode(), ValVT); 346 // If we're asked to expand a strict vector floating-point operation, 347 // by default we're going to simply unroll it. That is usually the 348 // best approach, except in the case where the resulting strict (scalar) 349 // operations would themselves use the fallback mutation to non-strict. 350 // In that specific case, just do the fallback on the vector op. 351 if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() && 352 TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) == 353 TargetLowering::Legal) { 354 EVT EltVT = ValVT.getVectorElementType(); 355 if (TLI.getOperationAction(Node->getOpcode(), EltVT) 356 == TargetLowering::Expand && 357 TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT) 358 == TargetLowering::Legal) 359 Action = TargetLowering::Legal; 360 } 361 break; 362 case ISD::ADD: 363 case ISD::SUB: 364 case ISD::MUL: 365 case ISD::MULHS: 366 case ISD::MULHU: 367 case ISD::SDIV: 368 case ISD::UDIV: 369 case ISD::SREM: 370 case ISD::UREM: 371 case ISD::SDIVREM: 372 case ISD::UDIVREM: 373 case ISD::FADD: 374 case ISD::FSUB: 375 case ISD::FMUL: 376 case ISD::FDIV: 377 case ISD::FREM: 378 case ISD::AND: 379 case ISD::OR: 380 case ISD::XOR: 381 case ISD::SHL: 382 case ISD::SRA: 383 case ISD::SRL: 384 case ISD::FSHL: 385 case ISD::FSHR: 386 case ISD::ROTL: 387 case ISD::ROTR: 388 case ISD::ABS: 389 case ISD::BSWAP: 390 case ISD::BITREVERSE: 391 case ISD::CTLZ: 392 case ISD::CTTZ: 393 case ISD::CTLZ_ZERO_UNDEF: 394 case ISD::CTTZ_ZERO_UNDEF: 395 case ISD::CTPOP: 396 case ISD::SELECT: 397 case ISD::VSELECT: 398 case ISD::SELECT_CC: 399 case ISD::SETCC: 400 case ISD::ZERO_EXTEND: 401 case ISD::ANY_EXTEND: 402 case ISD::TRUNCATE: 403 case ISD::SIGN_EXTEND: 404 case ISD::FP_TO_SINT: 405 case ISD::FP_TO_UINT: 406 case ISD::FNEG: 407 case ISD::FABS: 408 case ISD::FMINNUM: 409 case ISD::FMAXNUM: 410 case ISD::FMINNUM_IEEE: 411 case ISD::FMAXNUM_IEEE: 412 case ISD::FMINIMUM: 413 case ISD::FMAXIMUM: 414 case ISD::FCOPYSIGN: 415 case ISD::FSQRT: 416 case ISD::FSIN: 417 case ISD::FCOS: 418 case ISD::FPOWI: 419 case ISD::FPOW: 420 case ISD::FLOG: 421 case ISD::FLOG2: 422 case ISD::FLOG10: 423 case ISD::FEXP: 424 case ISD::FEXP2: 425 case ISD::FCEIL: 426 case ISD::FTRUNC: 427 case ISD::FRINT: 428 case ISD::FNEARBYINT: 429 case ISD::FROUND: 430 case ISD::FROUNDEVEN: 431 case ISD::FFLOOR: 432 case ISD::FP_ROUND: 433 case ISD::FP_EXTEND: 434 case ISD::FMA: 435 case ISD::SIGN_EXTEND_INREG: 436 case ISD::ANY_EXTEND_VECTOR_INREG: 437 case ISD::SIGN_EXTEND_VECTOR_INREG: 438 case ISD::ZERO_EXTEND_VECTOR_INREG: 439 case ISD::SMIN: 440 case ISD::SMAX: 441 case ISD::UMIN: 442 case ISD::UMAX: 443 case ISD::SMUL_LOHI: 444 case ISD::UMUL_LOHI: 445 case ISD::SADDO: 446 case ISD::UADDO: 447 case ISD::SSUBO: 448 case ISD::USUBO: 449 case ISD::SMULO: 450 case ISD::UMULO: 451 case ISD::FCANONICALIZE: 452 case ISD::SADDSAT: 453 case ISD::UADDSAT: 454 case ISD::SSUBSAT: 455 case ISD::USUBSAT: 456 case ISD::SSHLSAT: 457 case ISD::USHLSAT: 458 case ISD::FP_TO_SINT_SAT: 459 case ISD::FP_TO_UINT_SAT: 460 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 461 break; 462 case ISD::SMULFIX: 463 case ISD::SMULFIXSAT: 464 case ISD::UMULFIX: 465 case ISD::UMULFIXSAT: 466 case ISD::SDIVFIX: 467 case ISD::SDIVFIXSAT: 468 case ISD::UDIVFIX: 469 case ISD::UDIVFIXSAT: { 470 unsigned Scale = Node->getConstantOperandVal(2); 471 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 472 Node->getValueType(0), Scale); 473 break; 474 } 475 case ISD::SINT_TO_FP: 476 case ISD::UINT_TO_FP: 477 case ISD::VECREDUCE_ADD: 478 case ISD::VECREDUCE_MUL: 479 case ISD::VECREDUCE_AND: 480 case ISD::VECREDUCE_OR: 481 case ISD::VECREDUCE_XOR: 482 case ISD::VECREDUCE_SMAX: 483 case ISD::VECREDUCE_SMIN: 484 case ISD::VECREDUCE_UMAX: 485 case ISD::VECREDUCE_UMIN: 486 case ISD::VECREDUCE_FADD: 487 case ISD::VECREDUCE_FMUL: 488 case ISD::VECREDUCE_FMAX: 489 case ISD::VECREDUCE_FMIN: 490 Action = TLI.getOperationAction(Node->getOpcode(), 491 Node->getOperand(0).getValueType()); 492 break; 493 case ISD::VECREDUCE_SEQ_FADD: 494 case ISD::VECREDUCE_SEQ_FMUL: 495 Action = TLI.getOperationAction(Node->getOpcode(), 496 Node->getOperand(1).getValueType()); 497 break; 498 } 499 500 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); 501 502 SmallVector<SDValue, 8> ResultVals; 503 switch (Action) { 504 default: llvm_unreachable("This action is not supported yet!"); 505 case TargetLowering::Promote: 506 LLVM_DEBUG(dbgs() << "Promoting\n"); 507 Promote(Node, ResultVals); 508 assert(!ResultVals.empty() && "No results for promotion?"); 509 break; 510 case TargetLowering::Legal: 511 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 512 break; 513 case TargetLowering::Custom: 514 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 515 if (LowerOperationWrapper(Node, ResultVals)) 516 break; 517 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 518 LLVM_FALLTHROUGH; 519 case TargetLowering::Expand: 520 LLVM_DEBUG(dbgs() << "Expanding\n"); 521 Expand(Node, ResultVals); 522 break; 523 } 524 525 if (ResultVals.empty()) 526 return TranslateLegalizeResults(Op, Node); 527 528 Changed = true; 529 return RecursivelyLegalizeResults(Op, ResultVals); 530 } 531 532 // FIME: This is very similar to the X86 override of 533 // TargetLowering::LowerOperationWrapper. Can we merge them somehow? 534 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node, 535 SmallVectorImpl<SDValue> &Results) { 536 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 537 538 if (!Res.getNode()) 539 return false; 540 541 if (Res == SDValue(Node, 0)) 542 return true; 543 544 // If the original node has one result, take the return value from 545 // LowerOperation as is. It might not be result number 0. 546 if (Node->getNumValues() == 1) { 547 Results.push_back(Res); 548 return true; 549 } 550 551 // If the original node has multiple results, then the return node should 552 // have the same number of results. 553 assert((Node->getNumValues() == Res->getNumValues()) && 554 "Lowering returned the wrong number of results!"); 555 556 // Places new result values base on N result number. 557 for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I) 558 Results.push_back(Res.getValue(I)); 559 560 return true; 561 } 562 563 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 564 // For a few operations there is a specific concept for promotion based on 565 // the operand's type. 566 switch (Node->getOpcode()) { 567 case ISD::SINT_TO_FP: 568 case ISD::UINT_TO_FP: 569 case ISD::STRICT_SINT_TO_FP: 570 case ISD::STRICT_UINT_TO_FP: 571 // "Promote" the operation by extending the operand. 572 PromoteINT_TO_FP(Node, Results); 573 return; 574 case ISD::FP_TO_UINT: 575 case ISD::FP_TO_SINT: 576 case ISD::STRICT_FP_TO_UINT: 577 case ISD::STRICT_FP_TO_SINT: 578 // Promote the operation by extending the operand. 579 PromoteFP_TO_INT(Node, Results); 580 return; 581 case ISD::FP_ROUND: 582 case ISD::FP_EXTEND: 583 // These operations are used to do promotion so they can't be promoted 584 // themselves. 585 llvm_unreachable("Don't know how to promote this operation!"); 586 } 587 588 // There are currently two cases of vector promotion: 589 // 1) Bitcasting a vector of integers to a different type to a vector of the 590 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. 591 // 2) Extending a vector of floats to a vector of the same number of larger 592 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. 593 assert(Node->getNumValues() == 1 && 594 "Can't promote a vector with multiple results!"); 595 MVT VT = Node->getSimpleValueType(0); 596 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 597 SDLoc dl(Node); 598 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 599 600 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 601 if (Node->getOperand(j).getValueType().isVector()) 602 if (Node->getOperand(j) 603 .getValueType() 604 .getVectorElementType() 605 .isFloatingPoint() && 606 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) 607 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j)); 608 else 609 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j)); 610 else 611 Operands[j] = Node->getOperand(j); 612 } 613 614 SDValue Res = 615 DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags()); 616 617 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || 618 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && 619 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) 620 Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl)); 621 else 622 Res = DAG.getNode(ISD::BITCAST, dl, VT, Res); 623 624 Results.push_back(Res); 625 } 626 627 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node, 628 SmallVectorImpl<SDValue> &Results) { 629 // INT_TO_FP operations may require the input operand be promoted even 630 // when the type is otherwise legal. 631 bool IsStrict = Node->isStrictFPOpcode(); 632 MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType(); 633 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 634 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 635 "Vectors have different number of elements!"); 636 637 SDLoc dl(Node); 638 SmallVector<SDValue, 4> Operands(Node->getNumOperands()); 639 640 unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP || 641 Node->getOpcode() == ISD::STRICT_UINT_TO_FP) 642 ? ISD::ZERO_EXTEND 643 : ISD::SIGN_EXTEND; 644 for (unsigned j = 0; j != Node->getNumOperands(); ++j) { 645 if (Node->getOperand(j).getValueType().isVector()) 646 Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j)); 647 else 648 Operands[j] = Node->getOperand(j); 649 } 650 651 if (IsStrict) { 652 SDValue Res = DAG.getNode(Node->getOpcode(), dl, 653 {Node->getValueType(0), MVT::Other}, Operands); 654 Results.push_back(Res); 655 Results.push_back(Res.getValue(1)); 656 return; 657 } 658 659 SDValue Res = 660 DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands); 661 Results.push_back(Res); 662 } 663 664 // For FP_TO_INT we promote the result type to a vector type with wider 665 // elements and then truncate the result. This is different from the default 666 // PromoteVector which uses bitcast to promote thus assumning that the 667 // promoted vector type has the same overall size. 668 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node, 669 SmallVectorImpl<SDValue> &Results) { 670 MVT VT = Node->getSimpleValueType(0); 671 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 672 bool IsStrict = Node->isStrictFPOpcode(); 673 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && 674 "Vectors have different number of elements!"); 675 676 unsigned NewOpc = Node->getOpcode(); 677 // Change FP_TO_UINT to FP_TO_SINT if possible. 678 // TODO: Should we only do this if FP_TO_UINT itself isn't legal? 679 if (NewOpc == ISD::FP_TO_UINT && 680 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) 681 NewOpc = ISD::FP_TO_SINT; 682 683 if (NewOpc == ISD::STRICT_FP_TO_UINT && 684 TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT)) 685 NewOpc = ISD::STRICT_FP_TO_SINT; 686 687 SDLoc dl(Node); 688 SDValue Promoted, Chain; 689 if (IsStrict) { 690 Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other}, 691 {Node->getOperand(0), Node->getOperand(1)}); 692 Chain = Promoted.getValue(1); 693 } else 694 Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0)); 695 696 // Assert that the converted value fits in the original type. If it doesn't 697 // (eg: because the value being converted is too big), then the result of the 698 // original operation was undefined anyway, so the assert is still correct. 699 if (Node->getOpcode() == ISD::FP_TO_UINT || 700 Node->getOpcode() == ISD::STRICT_FP_TO_UINT) 701 NewOpc = ISD::AssertZext; 702 else 703 NewOpc = ISD::AssertSext; 704 705 Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted, 706 DAG.getValueType(VT.getScalarType())); 707 Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); 708 Results.push_back(Promoted); 709 if (IsStrict) 710 Results.push_back(Chain); 711 } 712 713 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) { 714 LoadSDNode *LD = cast<LoadSDNode>(N); 715 return TLI.scalarizeVectorLoad(LD, DAG); 716 } 717 718 SDValue VectorLegalizer::ExpandStore(SDNode *N) { 719 StoreSDNode *ST = cast<StoreSDNode>(N); 720 SDValue TF = TLI.scalarizeVectorStore(ST, DAG); 721 return TF; 722 } 723 724 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) { 725 SDValue Tmp; 726 switch (Node->getOpcode()) { 727 case ISD::MERGE_VALUES: 728 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 729 Results.push_back(Node->getOperand(i)); 730 return; 731 case ISD::SIGN_EXTEND_INREG: 732 Results.push_back(ExpandSEXTINREG(Node)); 733 return; 734 case ISD::ANY_EXTEND_VECTOR_INREG: 735 Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node)); 736 return; 737 case ISD::SIGN_EXTEND_VECTOR_INREG: 738 Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node)); 739 return; 740 case ISD::ZERO_EXTEND_VECTOR_INREG: 741 Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node)); 742 return; 743 case ISD::BSWAP: 744 Results.push_back(ExpandBSWAP(Node)); 745 return; 746 case ISD::VSELECT: 747 Results.push_back(ExpandVSELECT(Node)); 748 return; 749 case ISD::SELECT: 750 Results.push_back(ExpandSELECT(Node)); 751 return; 752 case ISD::FP_TO_UINT: 753 ExpandFP_TO_UINT(Node, Results); 754 return; 755 case ISD::UINT_TO_FP: 756 ExpandUINT_TO_FLOAT(Node, Results); 757 return; 758 case ISD::FNEG: 759 Results.push_back(ExpandFNEG(Node)); 760 return; 761 case ISD::FSUB: 762 ExpandFSUB(Node, Results); 763 return; 764 case ISD::SETCC: 765 Results.push_back(UnrollVSETCC(Node)); 766 return; 767 case ISD::ABS: 768 if (TLI.expandABS(Node, Tmp, DAG)) { 769 Results.push_back(Tmp); 770 return; 771 } 772 break; 773 case ISD::BITREVERSE: 774 ExpandBITREVERSE(Node, Results); 775 return; 776 case ISD::CTPOP: 777 if (TLI.expandCTPOP(Node, Tmp, DAG)) { 778 Results.push_back(Tmp); 779 return; 780 } 781 break; 782 case ISD::CTLZ: 783 case ISD::CTLZ_ZERO_UNDEF: 784 if (TLI.expandCTLZ(Node, Tmp, DAG)) { 785 Results.push_back(Tmp); 786 return; 787 } 788 break; 789 case ISD::CTTZ: 790 case ISD::CTTZ_ZERO_UNDEF: 791 if (TLI.expandCTTZ(Node, Tmp, DAG)) { 792 Results.push_back(Tmp); 793 return; 794 } 795 break; 796 case ISD::FSHL: 797 case ISD::FSHR: 798 if (TLI.expandFunnelShift(Node, Tmp, DAG)) { 799 Results.push_back(Tmp); 800 return; 801 } 802 break; 803 case ISD::ROTL: 804 case ISD::ROTR: 805 if (TLI.expandROT(Node, false /*AllowVectorOps*/, Tmp, DAG)) { 806 Results.push_back(Tmp); 807 return; 808 } 809 break; 810 case ISD::FMINNUM: 811 case ISD::FMAXNUM: 812 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) { 813 Results.push_back(Expanded); 814 return; 815 } 816 break; 817 case ISD::SMIN: 818 case ISD::SMAX: 819 case ISD::UMIN: 820 case ISD::UMAX: 821 if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) { 822 Results.push_back(Expanded); 823 return; 824 } 825 break; 826 case ISD::UADDO: 827 case ISD::USUBO: 828 ExpandUADDSUBO(Node, Results); 829 return; 830 case ISD::SADDO: 831 case ISD::SSUBO: 832 ExpandSADDSUBO(Node, Results); 833 return; 834 case ISD::UMULO: 835 case ISD::SMULO: 836 ExpandMULO(Node, Results); 837 return; 838 case ISD::USUBSAT: 839 case ISD::SSUBSAT: 840 case ISD::UADDSAT: 841 case ISD::SADDSAT: 842 if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) { 843 Results.push_back(Expanded); 844 return; 845 } 846 break; 847 case ISD::SMULFIX: 848 case ISD::UMULFIX: 849 if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) { 850 Results.push_back(Expanded); 851 return; 852 } 853 break; 854 case ISD::SMULFIXSAT: 855 case ISD::UMULFIXSAT: 856 // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly 857 // why. Maybe it results in worse codegen compared to the unroll for some 858 // targets? This should probably be investigated. And if we still prefer to 859 // unroll an explanation could be helpful. 860 break; 861 case ISD::SDIVFIX: 862 case ISD::UDIVFIX: 863 ExpandFixedPointDiv(Node, Results); 864 return; 865 case ISD::SDIVFIXSAT: 866 case ISD::UDIVFIXSAT: 867 break; 868 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 869 case ISD::STRICT_##DAGN: 870 #include "llvm/IR/ConstrainedOps.def" 871 ExpandStrictFPOp(Node, Results); 872 return; 873 case ISD::VECREDUCE_ADD: 874 case ISD::VECREDUCE_MUL: 875 case ISD::VECREDUCE_AND: 876 case ISD::VECREDUCE_OR: 877 case ISD::VECREDUCE_XOR: 878 case ISD::VECREDUCE_SMAX: 879 case ISD::VECREDUCE_SMIN: 880 case ISD::VECREDUCE_UMAX: 881 case ISD::VECREDUCE_UMIN: 882 case ISD::VECREDUCE_FADD: 883 case ISD::VECREDUCE_FMUL: 884 case ISD::VECREDUCE_FMAX: 885 case ISD::VECREDUCE_FMIN: 886 Results.push_back(TLI.expandVecReduce(Node, DAG)); 887 return; 888 case ISD::VECREDUCE_SEQ_FADD: 889 case ISD::VECREDUCE_SEQ_FMUL: 890 Results.push_back(TLI.expandVecReduceSeq(Node, DAG)); 891 return; 892 case ISD::SREM: 893 case ISD::UREM: 894 ExpandREM(Node, Results); 895 return; 896 } 897 898 Results.push_back(DAG.UnrollVectorOp(Node)); 899 } 900 901 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) { 902 // Lower a select instruction where the condition is a scalar and the 903 // operands are vectors. Lower this select to VSELECT and implement it 904 // using XOR AND OR. The selector bit is broadcasted. 905 EVT VT = Node->getValueType(0); 906 SDLoc DL(Node); 907 908 SDValue Mask = Node->getOperand(0); 909 SDValue Op1 = Node->getOperand(1); 910 SDValue Op2 = Node->getOperand(2); 911 912 assert(VT.isVector() && !Mask.getValueType().isVector() 913 && Op1.getValueType() == Op2.getValueType() && "Invalid type"); 914 915 // If we can't even use the basic vector operations of 916 // AND,OR,XOR, we will have to scalarize the op. 917 // Notice that the operation may be 'promoted' which means that it is 918 // 'bitcasted' to another type which is handled. 919 // Also, we need to be able to construct a splat vector using BUILD_VECTOR. 920 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 921 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 922 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 923 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand) 924 return DAG.UnrollVectorOp(Node); 925 926 // Generate a mask operand. 927 EVT MaskTy = VT.changeVectorElementTypeToInteger(); 928 929 // What is the size of each element in the vector mask. 930 EVT BitTy = MaskTy.getScalarType(); 931 932 Mask = DAG.getSelect(DL, BitTy, Mask, 933 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, 934 BitTy), 935 DAG.getConstant(0, DL, BitTy)); 936 937 // Broadcast the mask so that the entire vector is all-one or all zero. 938 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); 939 940 // Bitcast the operands to be the same type as the mask. 941 // This is needed when we select between FP types because 942 // the mask is a vector of integers. 943 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); 944 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); 945 946 SDValue AllOnes = DAG.getConstant( 947 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy); 948 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes); 949 950 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); 951 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); 952 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); 953 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 954 } 955 956 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) { 957 EVT VT = Node->getValueType(0); 958 959 // Make sure that the SRA and SHL instructions are available. 960 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || 961 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) 962 return DAG.UnrollVectorOp(Node); 963 964 SDLoc DL(Node); 965 EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT(); 966 967 unsigned BW = VT.getScalarSizeInBits(); 968 unsigned OrigBW = OrigTy.getScalarSizeInBits(); 969 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); 970 971 SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz); 972 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); 973 } 974 975 // Generically expand a vector anyext in register to a shuffle of the relevant 976 // lanes into the appropriate locations, with other lanes left undef. 977 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) { 978 SDLoc DL(Node); 979 EVT VT = Node->getValueType(0); 980 int NumElements = VT.getVectorNumElements(); 981 SDValue Src = Node->getOperand(0); 982 EVT SrcVT = Src.getValueType(); 983 int NumSrcElements = SrcVT.getVectorNumElements(); 984 985 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 986 // into a larger vector type. 987 if (SrcVT.bitsLE(VT)) { 988 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 989 "ANY_EXTEND_VECTOR_INREG vector size mismatch"); 990 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 991 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 992 NumSrcElements); 993 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 994 Src, DAG.getVectorIdxConstant(0, DL)); 995 } 996 997 // Build a base mask of undef shuffles. 998 SmallVector<int, 16> ShuffleMask; 999 ShuffleMask.resize(NumSrcElements, -1); 1000 1001 // Place the extended lanes into the correct locations. 1002 int ExtLaneScale = NumSrcElements / NumElements; 1003 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1004 for (int i = 0; i < NumElements; ++i) 1005 ShuffleMask[i * ExtLaneScale + EndianOffset] = i; 1006 1007 return DAG.getNode( 1008 ISD::BITCAST, DL, VT, 1009 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); 1010 } 1011 1012 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) { 1013 SDLoc DL(Node); 1014 EVT VT = Node->getValueType(0); 1015 SDValue Src = Node->getOperand(0); 1016 EVT SrcVT = Src.getValueType(); 1017 1018 // First build an any-extend node which can be legalized above when we 1019 // recurse through it. 1020 SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); 1021 1022 // Now we need sign extend. Do this by shifting the elements. Even if these 1023 // aren't legal operations, they have a better chance of being legalized 1024 // without full scalarization than the sign extension does. 1025 unsigned EltWidth = VT.getScalarSizeInBits(); 1026 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); 1027 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); 1028 return DAG.getNode(ISD::SRA, DL, VT, 1029 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), 1030 ShiftAmount); 1031 } 1032 1033 // Generically expand a vector zext in register to a shuffle of the relevant 1034 // lanes into the appropriate locations, a blend of zero into the high bits, 1035 // and a bitcast to the wider element type. 1036 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) { 1037 SDLoc DL(Node); 1038 EVT VT = Node->getValueType(0); 1039 int NumElements = VT.getVectorNumElements(); 1040 SDValue Src = Node->getOperand(0); 1041 EVT SrcVT = Src.getValueType(); 1042 int NumSrcElements = SrcVT.getVectorNumElements(); 1043 1044 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector 1045 // into a larger vector type. 1046 if (SrcVT.bitsLE(VT)) { 1047 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && 1048 "ZERO_EXTEND_VECTOR_INREG vector size mismatch"); 1049 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); 1050 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), 1051 NumSrcElements); 1052 Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), 1053 Src, DAG.getVectorIdxConstant(0, DL)); 1054 } 1055 1056 // Build up a zero vector to blend into this one. 1057 SDValue Zero = DAG.getConstant(0, DL, SrcVT); 1058 1059 // Shuffle the incoming lanes into the correct position, and pull all other 1060 // lanes from the zero vector. 1061 SmallVector<int, 16> ShuffleMask; 1062 ShuffleMask.reserve(NumSrcElements); 1063 for (int i = 0; i < NumSrcElements; ++i) 1064 ShuffleMask.push_back(i); 1065 1066 int ExtLaneScale = NumSrcElements / NumElements; 1067 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; 1068 for (int i = 0; i < NumElements; ++i) 1069 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; 1070 1071 return DAG.getNode(ISD::BITCAST, DL, VT, 1072 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); 1073 } 1074 1075 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { 1076 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; 1077 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) 1078 for (int J = ScalarSizeInBytes - 1; J >= 0; --J) 1079 ShuffleMask.push_back((I * ScalarSizeInBytes) + J); 1080 } 1081 1082 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) { 1083 EVT VT = Node->getValueType(0); 1084 1085 // Generate a byte wise shuffle mask for the BSWAP. 1086 SmallVector<int, 16> ShuffleMask; 1087 createBSWAPShuffleMask(VT, ShuffleMask); 1088 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); 1089 1090 // Only emit a shuffle if the mask is legal. 1091 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) 1092 return DAG.UnrollVectorOp(Node); 1093 1094 SDLoc DL(Node); 1095 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1096 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); 1097 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 1098 } 1099 1100 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node, 1101 SmallVectorImpl<SDValue> &Results) { 1102 EVT VT = Node->getValueType(0); 1103 1104 // If we have the scalar operation, it's probably cheaper to unroll it. 1105 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) { 1106 SDValue Tmp = DAG.UnrollVectorOp(Node); 1107 Results.push_back(Tmp); 1108 return; 1109 } 1110 1111 // If the vector element width is a whole number of bytes, test if its legal 1112 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte 1113 // vector. This greatly reduces the number of bit shifts necessary. 1114 unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); 1115 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { 1116 SmallVector<int, 16> BSWAPMask; 1117 createBSWAPShuffleMask(VT, BSWAPMask); 1118 1119 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); 1120 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && 1121 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || 1122 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && 1123 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && 1124 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && 1125 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { 1126 SDLoc DL(Node); 1127 SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); 1128 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), 1129 BSWAPMask); 1130 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); 1131 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 1132 Results.push_back(Op); 1133 return; 1134 } 1135 } 1136 1137 // If we have the appropriate vector bit operations, it is better to use them 1138 // than unrolling and expanding each component. 1139 if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 1140 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 1141 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && 1142 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) 1143 // Let LegalizeDAG handle this later. 1144 return; 1145 1146 // Otherwise unroll. 1147 SDValue Tmp = DAG.UnrollVectorOp(Node); 1148 Results.push_back(Tmp); 1149 } 1150 1151 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) { 1152 // Implement VSELECT in terms of XOR, AND, OR 1153 // on platforms which do not support blend natively. 1154 SDLoc DL(Node); 1155 1156 SDValue Mask = Node->getOperand(0); 1157 SDValue Op1 = Node->getOperand(1); 1158 SDValue Op2 = Node->getOperand(2); 1159 1160 EVT VT = Mask.getValueType(); 1161 1162 // If we can't even use the basic vector operations of 1163 // AND,OR,XOR, we will have to scalarize the op. 1164 // Notice that the operation may be 'promoted' which means that it is 1165 // 'bitcasted' to another type which is handled. 1166 // This operation also isn't safe with AND, OR, XOR when the boolean 1167 // type is 0/1 as we need an all ones vector constant to mask with. 1168 // FIXME: Sign extend 1 to all ones if thats legal on the target. 1169 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || 1170 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || 1171 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || 1172 TLI.getBooleanContents(Op1.getValueType()) != 1173 TargetLowering::ZeroOrNegativeOneBooleanContent) 1174 return DAG.UnrollVectorOp(Node); 1175 1176 // If the mask and the type are different sizes, unroll the vector op. This 1177 // can occur when getSetCCResultType returns something that is different in 1178 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. 1179 if (VT.getSizeInBits() != Op1.getValueSizeInBits()) 1180 return DAG.UnrollVectorOp(Node); 1181 1182 // Bitcast the operands to be the same type as the mask. 1183 // This is needed when we select between FP types because 1184 // the mask is a vector of integers. 1185 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); 1186 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); 1187 1188 SDValue AllOnes = DAG.getConstant( 1189 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT); 1190 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); 1191 1192 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); 1193 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); 1194 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); 1195 return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); 1196 } 1197 1198 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node, 1199 SmallVectorImpl<SDValue> &Results) { 1200 // Attempt to expand using TargetLowering. 1201 SDValue Result, Chain; 1202 if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) { 1203 Results.push_back(Result); 1204 if (Node->isStrictFPOpcode()) 1205 Results.push_back(Chain); 1206 return; 1207 } 1208 1209 // Otherwise go ahead and unroll. 1210 if (Node->isStrictFPOpcode()) { 1211 UnrollStrictFPOp(Node, Results); 1212 return; 1213 } 1214 1215 Results.push_back(DAG.UnrollVectorOp(Node)); 1216 } 1217 1218 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node, 1219 SmallVectorImpl<SDValue> &Results) { 1220 bool IsStrict = Node->isStrictFPOpcode(); 1221 unsigned OpNo = IsStrict ? 1 : 0; 1222 SDValue Src = Node->getOperand(OpNo); 1223 EVT VT = Src.getValueType(); 1224 SDLoc DL(Node); 1225 1226 // Attempt to expand using TargetLowering. 1227 SDValue Result; 1228 SDValue Chain; 1229 if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) { 1230 Results.push_back(Result); 1231 if (IsStrict) 1232 Results.push_back(Chain); 1233 return; 1234 } 1235 1236 // Make sure that the SINT_TO_FP and SRL instructions are available. 1237 if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) == 1238 TargetLowering::Expand) || 1239 (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) == 1240 TargetLowering::Expand)) || 1241 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) { 1242 if (IsStrict) { 1243 UnrollStrictFPOp(Node, Results); 1244 return; 1245 } 1246 1247 Results.push_back(DAG.UnrollVectorOp(Node)); 1248 return; 1249 } 1250 1251 unsigned BW = VT.getScalarSizeInBits(); 1252 assert((BW == 64 || BW == 32) && 1253 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); 1254 1255 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); 1256 1257 // Constants to clear the upper part of the word. 1258 // Notice that we can also use SHL+SHR, but using a constant is slightly 1259 // faster on x86. 1260 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; 1261 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); 1262 1263 // Two to the power of half-word-size. 1264 SDValue TWOHW = 1265 DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0)); 1266 1267 // Clear upper part of LO, lower HI 1268 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord); 1269 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask); 1270 1271 if (IsStrict) { 1272 // Convert hi and lo to floats 1273 // Convert the hi part back to the upper values 1274 // TODO: Can any fast-math-flags be set on these nodes? 1275 SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1276 {Node->getValueType(0), MVT::Other}, 1277 {Node->getOperand(0), HI}); 1278 fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other}, 1279 {fHI.getValue(1), fHI, TWOHW}); 1280 SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, 1281 {Node->getValueType(0), MVT::Other}, 1282 {Node->getOperand(0), LO}); 1283 1284 SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1), 1285 fLO.getValue(1)); 1286 1287 // Add the two halves 1288 SDValue Result = 1289 DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other}, 1290 {TF, fHI, fLO}); 1291 1292 Results.push_back(Result); 1293 Results.push_back(Result.getValue(1)); 1294 return; 1295 } 1296 1297 // Convert hi and lo to floats 1298 // Convert the hi part back to the upper values 1299 // TODO: Can any fast-math-flags be set on these nodes? 1300 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI); 1301 fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW); 1302 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO); 1303 1304 // Add the two halves 1305 Results.push_back( 1306 DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO)); 1307 } 1308 1309 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) { 1310 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) { 1311 SDLoc DL(Node); 1312 SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0)); 1313 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. 1314 return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero, 1315 Node->getOperand(0)); 1316 } 1317 return DAG.UnrollVectorOp(Node); 1318 } 1319 1320 void VectorLegalizer::ExpandFSUB(SDNode *Node, 1321 SmallVectorImpl<SDValue> &Results) { 1322 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, 1323 // we can defer this to operation legalization where it will be lowered as 1324 // a+(-b). 1325 EVT VT = Node->getValueType(0); 1326 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && 1327 TLI.isOperationLegalOrCustom(ISD::FADD, VT)) 1328 return; // Defer to LegalizeDAG 1329 1330 SDValue Tmp = DAG.UnrollVectorOp(Node); 1331 Results.push_back(Tmp); 1332 } 1333 1334 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node, 1335 SmallVectorImpl<SDValue> &Results) { 1336 SDValue Result, Overflow; 1337 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 1338 Results.push_back(Result); 1339 Results.push_back(Overflow); 1340 } 1341 1342 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node, 1343 SmallVectorImpl<SDValue> &Results) { 1344 SDValue Result, Overflow; 1345 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 1346 Results.push_back(Result); 1347 Results.push_back(Overflow); 1348 } 1349 1350 void VectorLegalizer::ExpandMULO(SDNode *Node, 1351 SmallVectorImpl<SDValue> &Results) { 1352 SDValue Result, Overflow; 1353 if (!TLI.expandMULO(Node, Result, Overflow, DAG)) 1354 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node); 1355 1356 Results.push_back(Result); 1357 Results.push_back(Overflow); 1358 } 1359 1360 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node, 1361 SmallVectorImpl<SDValue> &Results) { 1362 SDNode *N = Node; 1363 if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N), 1364 N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG)) 1365 Results.push_back(Expanded); 1366 } 1367 1368 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node, 1369 SmallVectorImpl<SDValue> &Results) { 1370 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) { 1371 ExpandUINT_TO_FLOAT(Node, Results); 1372 return; 1373 } 1374 if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) { 1375 ExpandFP_TO_UINT(Node, Results); 1376 return; 1377 } 1378 1379 UnrollStrictFPOp(Node, Results); 1380 } 1381 1382 void VectorLegalizer::ExpandREM(SDNode *Node, 1383 SmallVectorImpl<SDValue> &Results) { 1384 assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) && 1385 "Expected REM node"); 1386 1387 SDValue Result; 1388 if (!TLI.expandREM(Node, Result, DAG)) 1389 Result = DAG.UnrollVectorOp(Node); 1390 Results.push_back(Result); 1391 } 1392 1393 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node, 1394 SmallVectorImpl<SDValue> &Results) { 1395 EVT VT = Node->getValueType(0); 1396 EVT EltVT = VT.getVectorElementType(); 1397 unsigned NumElems = VT.getVectorNumElements(); 1398 unsigned NumOpers = Node->getNumOperands(); 1399 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1400 1401 EVT TmpEltVT = EltVT; 1402 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1403 Node->getOpcode() == ISD::STRICT_FSETCCS) 1404 TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(), 1405 *DAG.getContext(), TmpEltVT); 1406 1407 EVT ValueVTs[] = {TmpEltVT, MVT::Other}; 1408 SDValue Chain = Node->getOperand(0); 1409 SDLoc dl(Node); 1410 1411 SmallVector<SDValue, 32> OpValues; 1412 SmallVector<SDValue, 32> OpChains; 1413 for (unsigned i = 0; i < NumElems; ++i) { 1414 SmallVector<SDValue, 4> Opers; 1415 SDValue Idx = DAG.getVectorIdxConstant(i, dl); 1416 1417 // The Chain is the first operand. 1418 Opers.push_back(Chain); 1419 1420 // Now process the remaining operands. 1421 for (unsigned j = 1; j < NumOpers; ++j) { 1422 SDValue Oper = Node->getOperand(j); 1423 EVT OperVT = Oper.getValueType(); 1424 1425 if (OperVT.isVector()) 1426 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 1427 OperVT.getVectorElementType(), Oper, Idx); 1428 1429 Opers.push_back(Oper); 1430 } 1431 1432 SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers); 1433 SDValue ScalarResult = ScalarOp.getValue(0); 1434 SDValue ScalarChain = ScalarOp.getValue(1); 1435 1436 if (Node->getOpcode() == ISD::STRICT_FSETCC || 1437 Node->getOpcode() == ISD::STRICT_FSETCCS) 1438 ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult, 1439 DAG.getConstant(APInt::getAllOnesValue 1440 (EltVT.getSizeInBits()), dl, EltVT), 1441 DAG.getConstant(0, dl, EltVT)); 1442 1443 OpValues.push_back(ScalarResult); 1444 OpChains.push_back(ScalarChain); 1445 } 1446 1447 SDValue Result = DAG.getBuildVector(VT, dl, OpValues); 1448 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); 1449 1450 Results.push_back(Result); 1451 Results.push_back(NewChain); 1452 } 1453 1454 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) { 1455 EVT VT = Node->getValueType(0); 1456 unsigned NumElems = VT.getVectorNumElements(); 1457 EVT EltVT = VT.getVectorElementType(); 1458 SDValue LHS = Node->getOperand(0); 1459 SDValue RHS = Node->getOperand(1); 1460 SDValue CC = Node->getOperand(2); 1461 EVT TmpEltVT = LHS.getValueType().getVectorElementType(); 1462 SDLoc dl(Node); 1463 SmallVector<SDValue, 8> Ops(NumElems); 1464 for (unsigned i = 0; i < NumElems; ++i) { 1465 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, 1466 DAG.getVectorIdxConstant(i, dl)); 1467 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, 1468 DAG.getVectorIdxConstant(i, dl)); 1469 Ops[i] = DAG.getNode(ISD::SETCC, dl, 1470 TLI.getSetCCResultType(DAG.getDataLayout(), 1471 *DAG.getContext(), TmpEltVT), 1472 LHSElem, RHSElem, CC); 1473 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], 1474 DAG.getConstant(APInt::getAllOnesValue 1475 (EltVT.getSizeInBits()), dl, EltVT), 1476 DAG.getConstant(0, dl, EltVT)); 1477 } 1478 return DAG.getBuildVector(VT, dl, Ops); 1479 } 1480 1481 bool SelectionDAG::LegalizeVectors() { 1482 return VectorLegalizer(*this).Run(); 1483 } 1484