1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SelectionDAG::Legalize method. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FloatingPointMode.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/CodeGen/ISDOpcodes.h" 23 #include "llvm/CodeGen/MachineFunction.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/RuntimeLibcalls.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/SelectionDAGNodes.h" 29 #include "llvm/CodeGen/TargetFrameLowering.h" 30 #include "llvm/CodeGen/TargetLowering.h" 31 #include "llvm/CodeGen/TargetSubtargetInfo.h" 32 #include "llvm/CodeGen/ValueTypes.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Compiler.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/MachineValueType.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include <cassert> 50 #include <cstdint> 51 #include <tuple> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "legalizedag" 57 58 namespace { 59 60 /// Keeps track of state when getting the sign of a floating-point value as an 61 /// integer. 62 struct FloatSignAsInt { 63 EVT FloatVT; 64 SDValue Chain; 65 SDValue FloatPtr; 66 SDValue IntPtr; 67 MachinePointerInfo IntPointerInfo; 68 MachinePointerInfo FloatPointerInfo; 69 SDValue IntValue; 70 APInt SignMask; 71 uint8_t SignBit; 72 }; 73 74 //===----------------------------------------------------------------------===// 75 /// This takes an arbitrary SelectionDAG as input and 76 /// hacks on it until the target machine can handle it. This involves 77 /// eliminating value sizes the machine cannot handle (promoting small sizes to 78 /// large sizes or splitting up large values into small values) as well as 79 /// eliminating operations the machine cannot handle. 80 /// 81 /// This code also does a small amount of optimization and recognition of idioms 82 /// as part of its processing. For example, if a target does not support a 83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 84 /// will attempt merge setcc and brc instructions into brcc's. 85 class SelectionDAGLegalize { 86 const TargetMachine &TM; 87 const TargetLowering &TLI; 88 SelectionDAG &DAG; 89 90 /// The set of nodes which have already been legalized. We hold a 91 /// reference to it in order to update as necessary on node deletion. 92 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 93 94 /// A set of all the nodes updated during legalization. 95 SmallSetVector<SDNode *, 16> *UpdatedNodes; 96 97 EVT getSetCCResultType(EVT VT) const { 98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 99 } 100 101 // Libcall insertion helpers. 102 103 public: 104 SelectionDAGLegalize(SelectionDAG &DAG, 105 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 109 110 /// Legalizes the given operation. 111 void LegalizeOp(SDNode *Node); 112 113 private: 114 SDValue OptimizeFloatStore(StoreSDNode *ST); 115 116 void LegalizeLoadOps(SDNode *Node); 117 void LegalizeStoreOps(SDNode *Node); 118 119 /// Some targets cannot handle a variable 120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 121 /// is necessary to spill the vector being inserted into to memory, perform 122 /// the insert there, and then read the result back. 123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 124 const SDLoc &dl); 125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, 126 const SDLoc &dl); 127 128 /// Return a vector shuffle operation which 129 /// performs the same shuffe in terms of order or result bytes, but on a type 130 /// whose vector element type is narrower than the original shuffle type. 131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, 133 SDValue N1, SDValue N2, 134 ArrayRef<int> Mask) const; 135 136 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 137 138 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall LC, 139 SmallVectorImpl<SDValue> &Results); 140 void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 141 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 142 RTLIB::Libcall Call_F128, 143 RTLIB::Libcall Call_PPCF128, 144 SmallVectorImpl<SDValue> &Results); 145 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, RTLIB::Libcall Call_I8, 146 RTLIB::Libcall Call_I16, RTLIB::Libcall Call_I32, 147 RTLIB::Libcall Call_I64, RTLIB::Libcall Call_I128, 148 RTLIB::Libcall Call_IEXT); 149 void ExpandArgFPLibCall(SDNode *Node, 150 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, 151 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128, 152 RTLIB::Libcall Call_PPCF128, 153 SmallVectorImpl<SDValue> &Results); 154 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 155 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 156 157 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 158 const SDLoc &dl); 159 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, 160 const SDLoc &dl, SDValue ChainIn); 161 SDValue ExpandBUILD_VECTOR(SDNode *Node); 162 SDValue ExpandSPLAT_VECTOR(SDNode *Node); 163 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 164 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 165 SmallVectorImpl<SDValue> &Results); 166 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, 167 SDValue Value) const; 168 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, 169 SDValue NewIntValue) const; 170 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 171 SDValue ExpandFABS(SDNode *Node) const; 172 SDValue ExpandFNEG(SDNode *Node) const; 173 SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain); 174 void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl, 175 SmallVectorImpl<SDValue> &Results); 176 void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 177 SmallVectorImpl<SDValue> &Results); 178 SDValue PromoteLegalFP_TO_INT_SAT(SDNode *Node, const SDLoc &dl); 179 180 SDValue ExpandPARITY(SDValue Op, const SDLoc &dl); 181 182 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 183 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 184 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 185 186 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 187 SDValue ExpandConstant(ConstantSDNode *CP); 188 189 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 190 bool ExpandNode(SDNode *Node); 191 void ConvertNodeToLibcall(SDNode *Node); 192 void PromoteNode(SDNode *Node); 193 194 public: 195 // Node replacement helpers 196 197 void ReplacedNode(SDNode *N) { 198 LegalizedNodes.erase(N); 199 if (UpdatedNodes) 200 UpdatedNodes->insert(N); 201 } 202 203 void ReplaceNode(SDNode *Old, SDNode *New) { 204 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 205 dbgs() << " with: "; New->dump(&DAG)); 206 207 assert(Old->getNumValues() == New->getNumValues() && 208 "Replacing one node with another that produces a different number " 209 "of values!"); 210 DAG.ReplaceAllUsesWith(Old, New); 211 if (UpdatedNodes) 212 UpdatedNodes->insert(New); 213 ReplacedNode(Old); 214 } 215 216 void ReplaceNode(SDValue Old, SDValue New) { 217 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 218 dbgs() << " with: "; New->dump(&DAG)); 219 220 DAG.ReplaceAllUsesWith(Old, New); 221 if (UpdatedNodes) 222 UpdatedNodes->insert(New.getNode()); 223 ReplacedNode(Old.getNode()); 224 } 225 226 void ReplaceNode(SDNode *Old, const SDValue *New) { 227 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 228 229 DAG.ReplaceAllUsesWith(Old, New); 230 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 231 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: "); 232 New[i]->dump(&DAG)); 233 if (UpdatedNodes) 234 UpdatedNodes->insert(New[i].getNode()); 235 } 236 ReplacedNode(Old); 237 } 238 239 void ReplaceNodeWithValue(SDValue Old, SDValue New) { 240 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 241 dbgs() << " with: "; New->dump(&DAG)); 242 243 DAG.ReplaceAllUsesOfValueWith(Old, New); 244 if (UpdatedNodes) 245 UpdatedNodes->insert(New.getNode()); 246 ReplacedNode(Old.getNode()); 247 } 248 }; 249 250 } // end anonymous namespace 251 252 /// Return a vector shuffle operation which 253 /// performs the same shuffle in terms of order or result bytes, but on a type 254 /// whose vector element type is narrower than the original shuffle type. 255 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 256 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( 257 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, 258 ArrayRef<int> Mask) const { 259 unsigned NumMaskElts = VT.getVectorNumElements(); 260 unsigned NumDestElts = NVT.getVectorNumElements(); 261 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 262 263 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 264 265 if (NumEltsGrowth == 1) 266 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); 267 268 SmallVector<int, 8> NewMask; 269 for (unsigned i = 0; i != NumMaskElts; ++i) { 270 int Idx = Mask[i]; 271 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 272 if (Idx < 0) 273 NewMask.push_back(-1); 274 else 275 NewMask.push_back(Idx * NumEltsGrowth + j); 276 } 277 } 278 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 279 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 280 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); 281 } 282 283 /// Expands the ConstantFP node to an integer constant or 284 /// a load from the constant pool. 285 SDValue 286 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 287 bool Extend = false; 288 SDLoc dl(CFP); 289 290 // If a FP immediate is precise when represented as a float and if the 291 // target can do an extending load from float to double, we put it into 292 // the constant pool as a float, even if it's is statically typed as a 293 // double. This shrinks FP constants and canonicalizes them for targets where 294 // an FP extending load is the same cost as a normal load (such as on the x87 295 // fp stack or PPC FP unit). 296 EVT VT = CFP->getValueType(0); 297 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 298 if (!UseCP) { 299 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 300 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 301 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 302 } 303 304 APFloat APF = CFP->getValueAPF(); 305 EVT OrigVT = VT; 306 EVT SVT = VT; 307 308 // We don't want to shrink SNaNs. Converting the SNaN back to its real type 309 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). 310 if (!APF.isSignaling()) { 311 while (SVT != MVT::f32 && SVT != MVT::f16) { 312 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 313 if (ConstantFPSDNode::isValueValidForType(SVT, APF) && 314 // Only do this if the target has a native EXTLOAD instruction from 315 // smaller type. 316 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 317 TLI.ShouldShrinkFPConstant(OrigVT)) { 318 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 319 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 320 VT = SVT; 321 Extend = true; 322 } 323 } 324 } 325 326 SDValue CPIdx = 327 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 328 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 329 if (Extend) { 330 SDValue Result = DAG.getExtLoad( 331 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 332 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 333 Alignment); 334 return Result; 335 } 336 SDValue Result = DAG.getLoad( 337 OrigVT, dl, DAG.getEntryNode(), CPIdx, 338 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 339 return Result; 340 } 341 342 /// Expands the Constant node to a load from the constant pool. 343 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 344 SDLoc dl(CP); 345 EVT VT = CP->getValueType(0); 346 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 347 TLI.getPointerTy(DAG.getDataLayout())); 348 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 349 SDValue Result = DAG.getLoad( 350 VT, dl, DAG.getEntryNode(), CPIdx, 351 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); 352 return Result; 353 } 354 355 /// Some target cannot handle a variable insertion index for the 356 /// INSERT_VECTOR_ELT instruction. In this case, it 357 /// is necessary to spill the vector being inserted into to memory, perform 358 /// the insert there, and then read the result back. 359 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, 360 SDValue Val, 361 SDValue Idx, 362 const SDLoc &dl) { 363 SDValue Tmp1 = Vec; 364 SDValue Tmp2 = Val; 365 SDValue Tmp3 = Idx; 366 367 // If the target doesn't support this, we have to spill the input vector 368 // to a temporary stack slot, update the element, then reload it. This is 369 // badness. We could also load the value into a vector register (either 370 // with a "move to register" or "extload into register" instruction, then 371 // permute it into place, if the idx is a constant and if the idx is 372 // supported by the target. 373 EVT VT = Tmp1.getValueType(); 374 EVT EltVT = VT.getVectorElementType(); 375 SDValue StackPtr = DAG.CreateStackTemporary(VT); 376 377 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 378 379 // Store the vector. 380 SDValue Ch = DAG.getStore( 381 DAG.getEntryNode(), dl, Tmp1, StackPtr, 382 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 383 384 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); 385 386 // Store the scalar value. 387 Ch = DAG.getTruncStore( 388 Ch, dl, Tmp2, StackPtr2, 389 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT); 390 // Load the updated vector. 391 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 392 DAG.getMachineFunction(), SPFI)); 393 } 394 395 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 396 SDValue Idx, 397 const SDLoc &dl) { 398 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 399 // SCALAR_TO_VECTOR requires that the type of the value being inserted 400 // match the element type of the vector being created, except for 401 // integers in which case the inserted value can be over width. 402 EVT EltVT = Vec.getValueType().getVectorElementType(); 403 if (Val.getValueType() == EltVT || 404 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 405 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 406 Vec.getValueType(), Val); 407 408 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 409 // We generate a shuffle of InVec and ScVec, so the shuffle mask 410 // should be 0,1,2,3,4,5... with the appropriate element replaced with 411 // elt 0 of the RHS. 412 SmallVector<int, 8> ShufOps; 413 for (unsigned i = 0; i != NumElts; ++i) 414 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 415 416 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); 417 } 418 } 419 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 420 } 421 422 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 423 if (!ISD::isNormalStore(ST)) 424 return SDValue(); 425 426 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); 427 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 428 // FIXME: move this to the DAG Combiner! Note that we can't regress due 429 // to phase ordering between legalized code and the dag combiner. This 430 // probably means that we need to integrate dag combiner and legalizer 431 // together. 432 // We generally can't do this one for long doubles. 433 SDValue Chain = ST->getChain(); 434 SDValue Ptr = ST->getBasePtr(); 435 SDValue Value = ST->getValue(); 436 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 437 AAMDNodes AAInfo = ST->getAAInfo(); 438 SDLoc dl(ST); 439 440 // Don't optimise TargetConstantFP 441 if (Value.getOpcode() == ISD::TargetConstantFP) 442 return SDValue(); 443 444 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) { 445 if (CFP->getValueType(0) == MVT::f32 && 446 TLI.isTypeLegal(MVT::i32)) { 447 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 448 bitcastToAPInt().zextOrTrunc(32), 449 SDLoc(CFP), MVT::i32); 450 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 451 ST->getOriginalAlign(), MMOFlags, AAInfo); 452 } 453 454 if (CFP->getValueType(0) == MVT::f64) { 455 // If this target supports 64-bit registers, do a single 64-bit store. 456 if (TLI.isTypeLegal(MVT::i64)) { 457 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 458 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 459 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 460 ST->getOriginalAlign(), MMOFlags, AAInfo); 461 } 462 463 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 464 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 465 // stores. If the target supports neither 32- nor 64-bits, this 466 // xform is certainly not worth it. 467 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 468 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 469 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 470 if (DAG.getDataLayout().isBigEndian()) 471 std::swap(Lo, Hi); 472 473 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), 474 ST->getOriginalAlign(), MMOFlags, AAInfo); 475 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), dl); 476 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 477 ST->getPointerInfo().getWithOffset(4), 478 ST->getOriginalAlign(), MMOFlags, AAInfo); 479 480 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 481 } 482 } 483 } 484 return SDValue(); 485 } 486 487 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 488 StoreSDNode *ST = cast<StoreSDNode>(Node); 489 SDValue Chain = ST->getChain(); 490 SDValue Ptr = ST->getBasePtr(); 491 SDLoc dl(Node); 492 493 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); 494 AAMDNodes AAInfo = ST->getAAInfo(); 495 496 if (!ST->isTruncatingStore()) { 497 LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); 498 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 499 ReplaceNode(ST, OptStore); 500 return; 501 } 502 503 SDValue Value = ST->getValue(); 504 MVT VT = Value.getSimpleValueType(); 505 switch (TLI.getOperationAction(ISD::STORE, VT)) { 506 default: llvm_unreachable("This action is not supported yet!"); 507 case TargetLowering::Legal: { 508 // If this is an unaligned store and the target doesn't support it, 509 // expand it. 510 EVT MemVT = ST->getMemoryVT(); 511 const DataLayout &DL = DAG.getDataLayout(); 512 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 513 *ST->getMemOperand())) { 514 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); 515 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 516 ReplaceNode(SDValue(ST, 0), Result); 517 } else 518 LLVM_DEBUG(dbgs() << "Legal store\n"); 519 break; 520 } 521 case TargetLowering::Custom: { 522 LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); 523 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 524 if (Res && Res != SDValue(Node, 0)) 525 ReplaceNode(SDValue(Node, 0), Res); 526 return; 527 } 528 case TargetLowering::Promote: { 529 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 530 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 531 "Can only promote stores to same size type"); 532 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 533 SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 534 ST->getOriginalAlign(), MMOFlags, AAInfo); 535 ReplaceNode(SDValue(Node, 0), Result); 536 break; 537 } 538 } 539 return; 540 } 541 542 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); 543 SDValue Value = ST->getValue(); 544 EVT StVT = ST->getMemoryVT(); 545 TypeSize StWidth = StVT.getSizeInBits(); 546 TypeSize StSize = StVT.getStoreSizeInBits(); 547 auto &DL = DAG.getDataLayout(); 548 549 if (StWidth != StSize) { 550 // Promote to a byte-sized store with upper bits zero if not 551 // storing an integral number of bytes. For example, promote 552 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 553 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StSize.getFixedSize()); 554 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 555 SDValue Result = 556 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, 557 ST->getOriginalAlign(), MMOFlags, AAInfo); 558 ReplaceNode(SDValue(Node, 0), Result); 559 } else if (!StVT.isVector() && !isPowerOf2_64(StWidth.getFixedSize())) { 560 // If not storing a power-of-2 number of bits, expand as two stores. 561 assert(!StVT.isVector() && "Unsupported truncstore!"); 562 unsigned StWidthBits = StWidth.getFixedSize(); 563 unsigned LogStWidth = Log2_32(StWidthBits); 564 assert(LogStWidth < 32); 565 unsigned RoundWidth = 1 << LogStWidth; 566 assert(RoundWidth < StWidthBits); 567 unsigned ExtraWidth = StWidthBits - RoundWidth; 568 assert(ExtraWidth < RoundWidth); 569 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 570 "Store size not an integral number of bytes!"); 571 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 572 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 573 SDValue Lo, Hi; 574 unsigned IncrementSize; 575 576 if (DL.isLittleEndian()) { 577 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 578 // Store the bottom RoundWidth bits. 579 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 580 RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 581 582 // Store the remaining ExtraWidth bits. 583 IncrementSize = RoundWidth / 8; 584 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 585 Hi = DAG.getNode( 586 ISD::SRL, dl, Value.getValueType(), Value, 587 DAG.getConstant(RoundWidth, dl, 588 TLI.getShiftAmountTy(Value.getValueType(), DL))); 589 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 590 ST->getPointerInfo().getWithOffset(IncrementSize), 591 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 592 } else { 593 // Big endian - avoid unaligned stores. 594 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 595 // Store the top RoundWidth bits. 596 Hi = DAG.getNode( 597 ISD::SRL, dl, Value.getValueType(), Value, 598 DAG.getConstant(ExtraWidth, dl, 599 TLI.getShiftAmountTy(Value.getValueType(), DL))); 600 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT, 601 ST->getOriginalAlign(), MMOFlags, AAInfo); 602 603 // Store the remaining ExtraWidth bits. 604 IncrementSize = RoundWidth / 8; 605 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 606 DAG.getConstant(IncrementSize, dl, 607 Ptr.getValueType())); 608 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 609 ST->getPointerInfo().getWithOffset(IncrementSize), 610 ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo); 611 } 612 613 // The order of the stores doesn't matter. 614 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 615 ReplaceNode(SDValue(Node, 0), Result); 616 } else { 617 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 618 default: llvm_unreachable("This action is not supported yet!"); 619 case TargetLowering::Legal: { 620 EVT MemVT = ST->getMemoryVT(); 621 // If this is an unaligned store and the target doesn't support it, 622 // expand it. 623 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 624 *ST->getMemOperand())) { 625 SDValue Result = TLI.expandUnalignedStore(ST, DAG); 626 ReplaceNode(SDValue(ST, 0), Result); 627 } 628 break; 629 } 630 case TargetLowering::Custom: { 631 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 632 if (Res && Res != SDValue(Node, 0)) 633 ReplaceNode(SDValue(Node, 0), Res); 634 return; 635 } 636 case TargetLowering::Expand: 637 assert(!StVT.isVector() && 638 "Vector Stores are handled in LegalizeVectorOps"); 639 640 SDValue Result; 641 642 // TRUNCSTORE:i16 i32 -> STORE i16 643 if (TLI.isTypeLegal(StVT)) { 644 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 645 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 646 ST->getOriginalAlign(), MMOFlags, AAInfo); 647 } else { 648 // The in-memory type isn't legal. Truncate to the type it would promote 649 // to, and then do a truncstore. 650 Value = DAG.getNode(ISD::TRUNCATE, dl, 651 TLI.getTypeToTransformTo(*DAG.getContext(), StVT), 652 Value); 653 Result = 654 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT, 655 ST->getOriginalAlign(), MMOFlags, AAInfo); 656 } 657 658 ReplaceNode(SDValue(Node, 0), Result); 659 break; 660 } 661 } 662 } 663 664 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 665 LoadSDNode *LD = cast<LoadSDNode>(Node); 666 SDValue Chain = LD->getChain(); // The chain. 667 SDValue Ptr = LD->getBasePtr(); // The base pointer. 668 SDValue Value; // The value returned by the load op. 669 SDLoc dl(Node); 670 671 ISD::LoadExtType ExtType = LD->getExtensionType(); 672 if (ExtType == ISD::NON_EXTLOAD) { 673 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); 674 MVT VT = Node->getSimpleValueType(0); 675 SDValue RVal = SDValue(Node, 0); 676 SDValue RChain = SDValue(Node, 1); 677 678 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 679 default: llvm_unreachable("This action is not supported yet!"); 680 case TargetLowering::Legal: { 681 EVT MemVT = LD->getMemoryVT(); 682 const DataLayout &DL = DAG.getDataLayout(); 683 // If this is an unaligned load and the target doesn't support it, 684 // expand it. 685 if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT, 686 *LD->getMemOperand())) { 687 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG); 688 } 689 break; 690 } 691 case TargetLowering::Custom: 692 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { 693 RVal = Res; 694 RChain = Res.getValue(1); 695 } 696 break; 697 698 case TargetLowering::Promote: { 699 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 700 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 701 "Can only promote loads to same size type"); 702 703 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 704 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 705 RChain = Res.getValue(1); 706 break; 707 } 708 } 709 if (RChain.getNode() != Node) { 710 assert(RVal.getNode() != Node && "Load must be completely replaced"); 711 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 712 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 713 if (UpdatedNodes) { 714 UpdatedNodes->insert(RVal.getNode()); 715 UpdatedNodes->insert(RChain.getNode()); 716 } 717 ReplacedNode(Node); 718 } 719 return; 720 } 721 722 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); 723 EVT SrcVT = LD->getMemoryVT(); 724 TypeSize SrcWidth = SrcVT.getSizeInBits(); 725 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); 726 AAMDNodes AAInfo = LD->getAAInfo(); 727 728 if (SrcWidth != SrcVT.getStoreSizeInBits() && 729 // Some targets pretend to have an i1 loading operation, and actually 730 // load an i8. This trick is correct for ZEXTLOAD because the top 7 731 // bits are guaranteed to be zero; it helps the optimizers understand 732 // that these bits are zero. It is also useful for EXTLOAD, since it 733 // tells the optimizers that those bits are undefined. It would be 734 // nice to have an effective generic way of getting these benefits... 735 // Until such a way is found, don't insist on promoting i1 here. 736 (SrcVT != MVT::i1 || 737 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 738 TargetLowering::Promote)) { 739 // Promote to a byte-sized load if not loading an integral number of 740 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 741 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 742 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 743 SDValue Ch; 744 745 // The extra bits are guaranteed to be zero, since we stored them that 746 // way. A zext load from NVT thus automatically gives zext from SrcVT. 747 748 ISD::LoadExtType NewExtType = 749 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 750 751 SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 752 Chain, Ptr, LD->getPointerInfo(), NVT, 753 LD->getOriginalAlign(), MMOFlags, AAInfo); 754 755 Ch = Result.getValue(1); // The chain. 756 757 if (ExtType == ISD::SEXTLOAD) 758 // Having the top bits zero doesn't help when sign extending. 759 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 760 Result.getValueType(), 761 Result, DAG.getValueType(SrcVT)); 762 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 763 // All the top bits are guaranteed to be zero - inform the optimizers. 764 Result = DAG.getNode(ISD::AssertZext, dl, 765 Result.getValueType(), Result, 766 DAG.getValueType(SrcVT)); 767 768 Value = Result; 769 Chain = Ch; 770 } else if (!isPowerOf2_64(SrcWidth.getKnownMinSize())) { 771 // If not loading a power-of-2 number of bits, expand as two loads. 772 assert(!SrcVT.isVector() && "Unsupported extload!"); 773 unsigned SrcWidthBits = SrcWidth.getFixedSize(); 774 unsigned LogSrcWidth = Log2_32(SrcWidthBits); 775 assert(LogSrcWidth < 32); 776 unsigned RoundWidth = 1 << LogSrcWidth; 777 assert(RoundWidth < SrcWidthBits); 778 unsigned ExtraWidth = SrcWidthBits - RoundWidth; 779 assert(ExtraWidth < RoundWidth); 780 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 781 "Load size not an integral number of bytes!"); 782 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 783 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 784 SDValue Lo, Hi, Ch; 785 unsigned IncrementSize; 786 auto &DL = DAG.getDataLayout(); 787 788 if (DL.isLittleEndian()) { 789 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 790 // Load the bottom RoundWidth bits. 791 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 792 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 793 MMOFlags, AAInfo); 794 795 // Load the remaining ExtraWidth bits. 796 IncrementSize = RoundWidth / 8; 797 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 798 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 799 LD->getPointerInfo().getWithOffset(IncrementSize), 800 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 801 802 // Build a factor node to remember that this load is independent of 803 // the other one. 804 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 805 Hi.getValue(1)); 806 807 // Move the top bits to the right place. 808 Hi = DAG.getNode( 809 ISD::SHL, dl, Hi.getValueType(), Hi, 810 DAG.getConstant(RoundWidth, dl, 811 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 812 813 // Join the hi and lo parts. 814 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 815 } else { 816 // Big endian - avoid unaligned loads. 817 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 818 // Load the top RoundWidth bits. 819 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 820 LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(), 821 MMOFlags, AAInfo); 822 823 // Load the remaining ExtraWidth bits. 824 IncrementSize = RoundWidth / 8; 825 Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(IncrementSize), dl); 826 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, 827 LD->getPointerInfo().getWithOffset(IncrementSize), 828 ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo); 829 830 // Build a factor node to remember that this load is independent of 831 // the other one. 832 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 833 Hi.getValue(1)); 834 835 // Move the top bits to the right place. 836 Hi = DAG.getNode( 837 ISD::SHL, dl, Hi.getValueType(), Hi, 838 DAG.getConstant(ExtraWidth, dl, 839 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 840 841 // Join the hi and lo parts. 842 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 843 } 844 845 Chain = Ch; 846 } else { 847 bool isCustom = false; 848 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 849 SrcVT.getSimpleVT())) { 850 default: llvm_unreachable("This action is not supported yet!"); 851 case TargetLowering::Custom: 852 isCustom = true; 853 LLVM_FALLTHROUGH; 854 case TargetLowering::Legal: 855 Value = SDValue(Node, 0); 856 Chain = SDValue(Node, 1); 857 858 if (isCustom) { 859 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 860 Value = Res; 861 Chain = Res.getValue(1); 862 } 863 } else { 864 // If this is an unaligned load and the target doesn't support it, 865 // expand it. 866 EVT MemVT = LD->getMemoryVT(); 867 const DataLayout &DL = DAG.getDataLayout(); 868 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, 869 *LD->getMemOperand())) { 870 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); 871 } 872 } 873 break; 874 875 case TargetLowering::Expand: { 876 EVT DestVT = Node->getValueType(0); 877 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 878 // If the source type is not legal, see if there is a legal extload to 879 // an intermediate type that we can then extend further. 880 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 881 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 882 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 883 // If we are loading a legal type, this is a non-extload followed by a 884 // full extend. 885 ISD::LoadExtType MidExtType = 886 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 887 888 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 889 SrcVT, LD->getMemOperand()); 890 unsigned ExtendOp = 891 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 892 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 893 Chain = Load.getValue(1); 894 break; 895 } 896 897 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 898 // normal undefined upper bits behavior to allow using an in-reg extend 899 // with the illegal FP type, so load as an integer and do the 900 // from-integer conversion. 901 if (SrcVT.getScalarType() == MVT::f16) { 902 EVT ISrcVT = SrcVT.changeTypeToInteger(); 903 EVT IDestVT = DestVT.changeTypeToInteger(); 904 EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 905 906 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain, 907 Ptr, ISrcVT, LD->getMemOperand()); 908 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 909 Chain = Result.getValue(1); 910 break; 911 } 912 } 913 914 assert(!SrcVT.isVector() && 915 "Vector Loads are handled in LegalizeVectorOps"); 916 917 // FIXME: This does not work for vectors on most targets. Sign- 918 // and zero-extend operations are currently folded into extending 919 // loads, whether they are legal or not, and then we end up here 920 // without any support for legalizing them. 921 assert(ExtType != ISD::EXTLOAD && 922 "EXTLOAD should always be supported!"); 923 // Turn the unsupported load into an EXTLOAD followed by an 924 // explicit zero/sign extend inreg. 925 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 926 Node->getValueType(0), 927 Chain, Ptr, SrcVT, 928 LD->getMemOperand()); 929 SDValue ValRes; 930 if (ExtType == ISD::SEXTLOAD) 931 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 932 Result.getValueType(), 933 Result, DAG.getValueType(SrcVT)); 934 else 935 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); 936 Value = ValRes; 937 Chain = Result.getValue(1); 938 break; 939 } 940 } 941 } 942 943 // Since loads produce two values, make sure to remember that we legalized 944 // both of them. 945 if (Chain.getNode() != Node) { 946 assert(Value.getNode() != Node && "Load must be completely replaced"); 947 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 948 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 949 if (UpdatedNodes) { 950 UpdatedNodes->insert(Value.getNode()); 951 UpdatedNodes->insert(Chain.getNode()); 952 } 953 ReplacedNode(Node); 954 } 955 } 956 957 /// Return a legal replacement for the given operation, with all legal operands. 958 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 959 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 960 961 // Allow illegal target nodes and illegal registers. 962 if (Node->getOpcode() == ISD::TargetConstant || 963 Node->getOpcode() == ISD::Register) 964 return; 965 966 #ifndef NDEBUG 967 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 968 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 969 TargetLowering::TypeLegal && 970 "Unexpected illegal type!"); 971 972 for (const SDValue &Op : Node->op_values()) 973 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 974 TargetLowering::TypeLegal || 975 Op.getOpcode() == ISD::TargetConstant || 976 Op.getOpcode() == ISD::Register) && 977 "Unexpected illegal type!"); 978 #endif 979 980 // Figure out the correct action; the way to query this varies by opcode 981 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 982 bool SimpleFinishLegalizing = true; 983 switch (Node->getOpcode()) { 984 case ISD::INTRINSIC_W_CHAIN: 985 case ISD::INTRINSIC_WO_CHAIN: 986 case ISD::INTRINSIC_VOID: 987 case ISD::STACKSAVE: 988 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 989 break; 990 case ISD::GET_DYNAMIC_AREA_OFFSET: 991 Action = TLI.getOperationAction(Node->getOpcode(), 992 Node->getValueType(0)); 993 break; 994 case ISD::VAARG: 995 Action = TLI.getOperationAction(Node->getOpcode(), 996 Node->getValueType(0)); 997 if (Action != TargetLowering::Promote) 998 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 999 break; 1000 case ISD::FP_TO_FP16: 1001 case ISD::FP_TO_BF16: 1002 case ISD::SINT_TO_FP: 1003 case ISD::UINT_TO_FP: 1004 case ISD::EXTRACT_VECTOR_ELT: 1005 case ISD::LROUND: 1006 case ISD::LLROUND: 1007 case ISD::LRINT: 1008 case ISD::LLRINT: 1009 Action = TLI.getOperationAction(Node->getOpcode(), 1010 Node->getOperand(0).getValueType()); 1011 break; 1012 case ISD::STRICT_FP_TO_FP16: 1013 case ISD::STRICT_SINT_TO_FP: 1014 case ISD::STRICT_UINT_TO_FP: 1015 case ISD::STRICT_LRINT: 1016 case ISD::STRICT_LLRINT: 1017 case ISD::STRICT_LROUND: 1018 case ISD::STRICT_LLROUND: 1019 // These pseudo-ops are the same as the other STRICT_ ops except 1020 // they are registered with setOperationAction() using the input type 1021 // instead of the output type. 1022 Action = TLI.getOperationAction(Node->getOpcode(), 1023 Node->getOperand(1).getValueType()); 1024 break; 1025 case ISD::SIGN_EXTEND_INREG: { 1026 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1027 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1028 break; 1029 } 1030 case ISD::ATOMIC_STORE: 1031 Action = TLI.getOperationAction(Node->getOpcode(), 1032 Node->getOperand(2).getValueType()); 1033 break; 1034 case ISD::SELECT_CC: 1035 case ISD::STRICT_FSETCC: 1036 case ISD::STRICT_FSETCCS: 1037 case ISD::SETCC: 1038 case ISD::VP_SETCC: 1039 case ISD::BR_CC: { 1040 unsigned Opc = Node->getOpcode(); 1041 unsigned CCOperand = Opc == ISD::SELECT_CC ? 4 1042 : Opc == ISD::STRICT_FSETCC ? 3 1043 : Opc == ISD::STRICT_FSETCCS ? 3 1044 : (Opc == ISD::SETCC || Opc == ISD::VP_SETCC) ? 2 1045 : 1; 1046 unsigned CompareOperand = Opc == ISD::BR_CC ? 2 1047 : Opc == ISD::STRICT_FSETCC ? 1 1048 : Opc == ISD::STRICT_FSETCCS ? 1 1049 : 0; 1050 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1051 ISD::CondCode CCCode = 1052 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1053 Action = TLI.getCondCodeAction(CCCode, OpVT); 1054 if (Action == TargetLowering::Legal) { 1055 if (Node->getOpcode() == ISD::SELECT_CC) 1056 Action = TLI.getOperationAction(Node->getOpcode(), 1057 Node->getValueType(0)); 1058 else 1059 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1060 } 1061 break; 1062 } 1063 case ISD::LOAD: 1064 case ISD::STORE: 1065 // FIXME: Model these properly. LOAD and STORE are complicated, and 1066 // STORE expects the unlegalized operand in some cases. 1067 SimpleFinishLegalizing = false; 1068 break; 1069 case ISD::CALLSEQ_START: 1070 case ISD::CALLSEQ_END: 1071 // FIXME: This shouldn't be necessary. These nodes have special properties 1072 // dealing with the recursive nature of legalization. Removing this 1073 // special case should be done as part of making LegalizeDAG non-recursive. 1074 SimpleFinishLegalizing = false; 1075 break; 1076 case ISD::EXTRACT_ELEMENT: 1077 case ISD::FLT_ROUNDS_: 1078 case ISD::MERGE_VALUES: 1079 case ISD::EH_RETURN: 1080 case ISD::FRAME_TO_ARGS_OFFSET: 1081 case ISD::EH_DWARF_CFA: 1082 case ISD::EH_SJLJ_SETJMP: 1083 case ISD::EH_SJLJ_LONGJMP: 1084 case ISD::EH_SJLJ_SETUP_DISPATCH: 1085 // These operations lie about being legal: when they claim to be legal, 1086 // they should actually be expanded. 1087 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1088 if (Action == TargetLowering::Legal) 1089 Action = TargetLowering::Expand; 1090 break; 1091 case ISD::INIT_TRAMPOLINE: 1092 case ISD::ADJUST_TRAMPOLINE: 1093 case ISD::FRAMEADDR: 1094 case ISD::RETURNADDR: 1095 case ISD::ADDROFRETURNADDR: 1096 case ISD::SPONENTRY: 1097 // These operations lie about being legal: when they claim to be legal, 1098 // they should actually be custom-lowered. 1099 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1100 if (Action == TargetLowering::Legal) 1101 Action = TargetLowering::Custom; 1102 break; 1103 case ISD::READCYCLECOUNTER: 1104 // READCYCLECOUNTER returns an i64, even if type legalization might have 1105 // expanded that to several smaller types. 1106 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1107 break; 1108 case ISD::READ_REGISTER: 1109 case ISD::WRITE_REGISTER: 1110 // Named register is legal in the DAG, but blocked by register name 1111 // selection if not implemented by target (to chose the correct register) 1112 // They'll be converted to Copy(To/From)Reg. 1113 Action = TargetLowering::Legal; 1114 break; 1115 case ISD::UBSANTRAP: 1116 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1117 if (Action == TargetLowering::Expand) { 1118 // replace ISD::UBSANTRAP with ISD::TRAP 1119 SDValue NewVal; 1120 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1121 Node->getOperand(0)); 1122 ReplaceNode(Node, NewVal.getNode()); 1123 LegalizeOp(NewVal.getNode()); 1124 return; 1125 } 1126 break; 1127 case ISD::DEBUGTRAP: 1128 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1129 if (Action == TargetLowering::Expand) { 1130 // replace ISD::DEBUGTRAP with ISD::TRAP 1131 SDValue NewVal; 1132 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1133 Node->getOperand(0)); 1134 ReplaceNode(Node, NewVal.getNode()); 1135 LegalizeOp(NewVal.getNode()); 1136 return; 1137 } 1138 break; 1139 case ISD::SADDSAT: 1140 case ISD::UADDSAT: 1141 case ISD::SSUBSAT: 1142 case ISD::USUBSAT: 1143 case ISD::SSHLSAT: 1144 case ISD::USHLSAT: 1145 case ISD::FP_TO_SINT_SAT: 1146 case ISD::FP_TO_UINT_SAT: 1147 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1148 break; 1149 case ISD::SMULFIX: 1150 case ISD::SMULFIXSAT: 1151 case ISD::UMULFIX: 1152 case ISD::UMULFIXSAT: 1153 case ISD::SDIVFIX: 1154 case ISD::SDIVFIXSAT: 1155 case ISD::UDIVFIX: 1156 case ISD::UDIVFIXSAT: { 1157 unsigned Scale = Node->getConstantOperandVal(2); 1158 Action = TLI.getFixedPointOperationAction(Node->getOpcode(), 1159 Node->getValueType(0), Scale); 1160 break; 1161 } 1162 case ISD::MSCATTER: 1163 Action = TLI.getOperationAction(Node->getOpcode(), 1164 cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); 1165 break; 1166 case ISD::MSTORE: 1167 Action = TLI.getOperationAction(Node->getOpcode(), 1168 cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); 1169 break; 1170 case ISD::VP_SCATTER: 1171 Action = TLI.getOperationAction( 1172 Node->getOpcode(), 1173 cast<VPScatterSDNode>(Node)->getValue().getValueType()); 1174 break; 1175 case ISD::VP_STORE: 1176 Action = TLI.getOperationAction( 1177 Node->getOpcode(), 1178 cast<VPStoreSDNode>(Node)->getValue().getValueType()); 1179 break; 1180 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 1181 Action = TLI.getOperationAction( 1182 Node->getOpcode(), 1183 cast<VPStridedStoreSDNode>(Node)->getValue().getValueType()); 1184 break; 1185 case ISD::VECREDUCE_FADD: 1186 case ISD::VECREDUCE_FMUL: 1187 case ISD::VECREDUCE_ADD: 1188 case ISD::VECREDUCE_MUL: 1189 case ISD::VECREDUCE_AND: 1190 case ISD::VECREDUCE_OR: 1191 case ISD::VECREDUCE_XOR: 1192 case ISD::VECREDUCE_SMAX: 1193 case ISD::VECREDUCE_SMIN: 1194 case ISD::VECREDUCE_UMAX: 1195 case ISD::VECREDUCE_UMIN: 1196 case ISD::VECREDUCE_FMAX: 1197 case ISD::VECREDUCE_FMIN: 1198 case ISD::IS_FPCLASS: 1199 Action = TLI.getOperationAction( 1200 Node->getOpcode(), Node->getOperand(0).getValueType()); 1201 break; 1202 case ISD::VECREDUCE_SEQ_FADD: 1203 case ISD::VECREDUCE_SEQ_FMUL: 1204 case ISD::VP_REDUCE_FADD: 1205 case ISD::VP_REDUCE_FMUL: 1206 case ISD::VP_REDUCE_ADD: 1207 case ISD::VP_REDUCE_MUL: 1208 case ISD::VP_REDUCE_AND: 1209 case ISD::VP_REDUCE_OR: 1210 case ISD::VP_REDUCE_XOR: 1211 case ISD::VP_REDUCE_SMAX: 1212 case ISD::VP_REDUCE_SMIN: 1213 case ISD::VP_REDUCE_UMAX: 1214 case ISD::VP_REDUCE_UMIN: 1215 case ISD::VP_REDUCE_FMAX: 1216 case ISD::VP_REDUCE_FMIN: 1217 case ISD::VP_REDUCE_SEQ_FADD: 1218 case ISD::VP_REDUCE_SEQ_FMUL: 1219 Action = TLI.getOperationAction( 1220 Node->getOpcode(), Node->getOperand(1).getValueType()); 1221 break; 1222 default: 1223 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1224 Action = TLI.getCustomOperationAction(*Node); 1225 } else { 1226 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1227 } 1228 break; 1229 } 1230 1231 if (SimpleFinishLegalizing) { 1232 SDNode *NewNode = Node; 1233 switch (Node->getOpcode()) { 1234 default: break; 1235 case ISD::SHL: 1236 case ISD::SRL: 1237 case ISD::SRA: 1238 case ISD::ROTL: 1239 case ISD::ROTR: { 1240 // Legalizing shifts/rotates requires adjusting the shift amount 1241 // to the appropriate width. 1242 SDValue Op0 = Node->getOperand(0); 1243 SDValue Op1 = Node->getOperand(1); 1244 if (!Op1.getValueType().isVector()) { 1245 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); 1246 // The getShiftAmountOperand() may create a new operand node or 1247 // return the existing one. If new operand is created we need 1248 // to update the parent node. 1249 // Do not try to legalize SAO here! It will be automatically legalized 1250 // in the next round. 1251 if (SAO != Op1) 1252 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); 1253 } 1254 } 1255 break; 1256 case ISD::FSHL: 1257 case ISD::FSHR: 1258 case ISD::SRL_PARTS: 1259 case ISD::SRA_PARTS: 1260 case ISD::SHL_PARTS: { 1261 // Legalizing shifts/rotates requires adjusting the shift amount 1262 // to the appropriate width. 1263 SDValue Op0 = Node->getOperand(0); 1264 SDValue Op1 = Node->getOperand(1); 1265 SDValue Op2 = Node->getOperand(2); 1266 if (!Op2.getValueType().isVector()) { 1267 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); 1268 // The getShiftAmountOperand() may create a new operand node or 1269 // return the existing one. If new operand is created we need 1270 // to update the parent node. 1271 if (SAO != Op2) 1272 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); 1273 } 1274 break; 1275 } 1276 } 1277 1278 if (NewNode != Node) { 1279 ReplaceNode(Node, NewNode); 1280 Node = NewNode; 1281 } 1282 switch (Action) { 1283 case TargetLowering::Legal: 1284 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); 1285 return; 1286 case TargetLowering::Custom: 1287 LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); 1288 // FIXME: The handling for custom lowering with multiple results is 1289 // a complete mess. 1290 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { 1291 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1292 return; 1293 1294 if (Node->getNumValues() == 1) { 1295 // Verify the new types match the original. Glue is waived because 1296 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1297 assert((Res.getValueType() == Node->getValueType(0) || 1298 Node->getValueType(0) == MVT::Glue) && 1299 "Type mismatch for custom legalized operation"); 1300 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1301 // We can just directly replace this node with the lowered value. 1302 ReplaceNode(SDValue(Node, 0), Res); 1303 return; 1304 } 1305 1306 SmallVector<SDValue, 8> ResultVals; 1307 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { 1308 // Verify the new types match the original. Glue is waived because 1309 // ISD::ADDC can be legalized by replacing Glue with an integer type. 1310 assert((Res->getValueType(i) == Node->getValueType(i) || 1311 Node->getValueType(i) == MVT::Glue) && 1312 "Type mismatch for custom legalized operation"); 1313 ResultVals.push_back(Res.getValue(i)); 1314 } 1315 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); 1316 ReplaceNode(Node, ResultVals.data()); 1317 return; 1318 } 1319 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); 1320 LLVM_FALLTHROUGH; 1321 case TargetLowering::Expand: 1322 if (ExpandNode(Node)) 1323 return; 1324 LLVM_FALLTHROUGH; 1325 case TargetLowering::LibCall: 1326 ConvertNodeToLibcall(Node); 1327 return; 1328 case TargetLowering::Promote: 1329 PromoteNode(Node); 1330 return; 1331 } 1332 } 1333 1334 switch (Node->getOpcode()) { 1335 default: 1336 #ifndef NDEBUG 1337 dbgs() << "NODE: "; 1338 Node->dump( &DAG); 1339 dbgs() << "\n"; 1340 #endif 1341 llvm_unreachable("Do not know how to legalize this operator!"); 1342 1343 case ISD::CALLSEQ_START: 1344 case ISD::CALLSEQ_END: 1345 break; 1346 case ISD::LOAD: 1347 return LegalizeLoadOps(Node); 1348 case ISD::STORE: 1349 return LegalizeStoreOps(Node); 1350 } 1351 } 1352 1353 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1354 SDValue Vec = Op.getOperand(0); 1355 SDValue Idx = Op.getOperand(1); 1356 SDLoc dl(Op); 1357 1358 // Before we generate a new store to a temporary stack slot, see if there is 1359 // already one that we can use. There often is because when we scalarize 1360 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1361 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1362 // the vector. If all are expanded here, we don't want one store per vector 1363 // element. 1364 1365 // Caches for hasPredecessorHelper 1366 SmallPtrSet<const SDNode *, 32> Visited; 1367 SmallVector<const SDNode *, 16> Worklist; 1368 Visited.insert(Op.getNode()); 1369 Worklist.push_back(Idx.getNode()); 1370 SDValue StackPtr, Ch; 1371 for (SDNode *User : Vec.getNode()->uses()) { 1372 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1373 if (ST->isIndexed() || ST->isTruncatingStore() || 1374 ST->getValue() != Vec) 1375 continue; 1376 1377 // Make sure that nothing else could have stored into the destination of 1378 // this store. 1379 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1380 continue; 1381 1382 // If the index is dependent on the store we will introduce a cycle when 1383 // creating the load (the load uses the index, and by replacing the chain 1384 // we will make the index dependent on the load). Also, the store might be 1385 // dependent on the extractelement and introduce a cycle when creating 1386 // the load. 1387 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || 1388 ST->hasPredecessor(Op.getNode())) 1389 continue; 1390 1391 StackPtr = ST->getBasePtr(); 1392 Ch = SDValue(ST, 0); 1393 break; 1394 } 1395 } 1396 1397 EVT VecVT = Vec.getValueType(); 1398 1399 if (!Ch.getNode()) { 1400 // Store the value to a temporary stack slot, then LOAD the returned part. 1401 StackPtr = DAG.CreateStackTemporary(VecVT); 1402 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1403 MachinePointerInfo()); 1404 } 1405 1406 SDValue NewLoad; 1407 Align ElementAlignment = 1408 std::min(cast<StoreSDNode>(Ch)->getAlign(), 1409 DAG.getDataLayout().getPrefTypeAlign( 1410 Op.getValueType().getTypeForEVT(*DAG.getContext()))); 1411 1412 if (Op.getValueType().isVector()) { 1413 StackPtr = TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, 1414 Op.getValueType(), Idx); 1415 NewLoad = DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, 1416 MachinePointerInfo(), ElementAlignment); 1417 } else { 1418 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); 1419 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, 1420 MachinePointerInfo(), VecVT.getVectorElementType(), 1421 ElementAlignment); 1422 } 1423 1424 // Replace the chain going out of the store, by the one out of the load. 1425 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1426 1427 // We introduced a cycle though, so update the loads operands, making sure 1428 // to use the original store's chain as an incoming chain. 1429 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1430 NewLoad->op_end()); 1431 NewLoadOperands[0] = Ch; 1432 NewLoad = 1433 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1434 return NewLoad; 1435 } 1436 1437 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1438 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1439 1440 SDValue Vec = Op.getOperand(0); 1441 SDValue Part = Op.getOperand(1); 1442 SDValue Idx = Op.getOperand(2); 1443 SDLoc dl(Op); 1444 1445 // Store the value to a temporary stack slot, then LOAD the returned part. 1446 EVT VecVT = Vec.getValueType(); 1447 EVT SubVecVT = Part.getValueType(); 1448 SDValue StackPtr = DAG.CreateStackTemporary(VecVT); 1449 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1450 MachinePointerInfo PtrInfo = 1451 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1452 1453 // First store the whole vector. 1454 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); 1455 1456 // Then store the inserted part. 1457 SDValue SubStackPtr = 1458 TLI.getVectorSubVecPointer(DAG, StackPtr, VecVT, SubVecVT, Idx); 1459 1460 // Store the subvector. 1461 Ch = DAG.getStore( 1462 Ch, dl, Part, SubStackPtr, 1463 MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1464 1465 // Finally, load the updated vector. 1466 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); 1467 } 1468 1469 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1470 assert((Node->getOpcode() == ISD::BUILD_VECTOR || 1471 Node->getOpcode() == ISD::CONCAT_VECTORS) && 1472 "Unexpected opcode!"); 1473 1474 // We can't handle this case efficiently. Allocate a sufficiently 1475 // aligned object on the stack, store each operand into it, then load 1476 // the result as a vector. 1477 // Create the stack frame object. 1478 EVT VT = Node->getValueType(0); 1479 EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType() 1480 : Node->getOperand(0).getValueType(); 1481 SDLoc dl(Node); 1482 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1483 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1484 MachinePointerInfo PtrInfo = 1485 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1486 1487 // Emit a store of each element to the stack slot. 1488 SmallVector<SDValue, 8> Stores; 1489 unsigned TypeByteSize = MemVT.getSizeInBits() / 8; 1490 assert(TypeByteSize > 0 && "Vector element type too small for stack store!"); 1491 1492 // If the destination vector element type of a BUILD_VECTOR is narrower than 1493 // the source element type, only store the bits necessary. 1494 bool Truncate = isa<BuildVectorSDNode>(Node) && 1495 MemVT.bitsLT(Node->getOperand(0).getValueType()); 1496 1497 // Store (in the right endianness) the elements to memory. 1498 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1499 // Ignore undef elements. 1500 if (Node->getOperand(i).isUndef()) continue; 1501 1502 unsigned Offset = TypeByteSize*i; 1503 1504 SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, TypeSize::Fixed(Offset), dl); 1505 1506 if (Truncate) 1507 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1508 Node->getOperand(i), Idx, 1509 PtrInfo.getWithOffset(Offset), MemVT)); 1510 else 1511 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), 1512 Idx, PtrInfo.getWithOffset(Offset))); 1513 } 1514 1515 SDValue StoreChain; 1516 if (!Stores.empty()) // Not all undef elements? 1517 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1518 else 1519 StoreChain = DAG.getEntryNode(); 1520 1521 // Result is a load from the stack slot. 1522 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); 1523 } 1524 1525 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1526 /// containing the sign bit if the target has no integer value capable of 1527 /// holding all bits of the floating-point value. 1528 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1529 const SDLoc &DL, 1530 SDValue Value) const { 1531 EVT FloatVT = Value.getValueType(); 1532 unsigned NumBits = FloatVT.getScalarSizeInBits(); 1533 State.FloatVT = FloatVT; 1534 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1535 // Convert to an integer of the same size. 1536 if (TLI.isTypeLegal(IVT)) { 1537 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1538 State.SignMask = APInt::getSignMask(NumBits); 1539 State.SignBit = NumBits - 1; 1540 return; 1541 } 1542 1543 auto &DataLayout = DAG.getDataLayout(); 1544 // Store the float to memory, then load the sign part out as an integer. 1545 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1546 // First create a temporary that is aligned for both the load and store. 1547 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1548 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1549 // Then store the float to it. 1550 State.FloatPtr = StackPtr; 1551 MachineFunction &MF = DAG.getMachineFunction(); 1552 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1553 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1554 State.FloatPointerInfo); 1555 1556 SDValue IntPtr; 1557 if (DataLayout.isBigEndian()) { 1558 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1559 // Load out a legal integer with the same sign bit as the float. 1560 IntPtr = StackPtr; 1561 State.IntPointerInfo = State.FloatPointerInfo; 1562 } else { 1563 // Advance the pointer so that the loaded byte will contain the sign bit. 1564 unsigned ByteOffset = (NumBits / 8) - 1; 1565 IntPtr = 1566 DAG.getMemBasePlusOffset(StackPtr, TypeSize::Fixed(ByteOffset), DL); 1567 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1568 ByteOffset); 1569 } 1570 1571 State.IntPtr = IntPtr; 1572 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, 1573 State.IntPointerInfo, MVT::i8); 1574 State.SignMask = APInt::getOneBitSet(LoadTy.getScalarSizeInBits(), 7); 1575 State.SignBit = 7; 1576 } 1577 1578 /// Replace the integer value produced by getSignAsIntValue() with a new value 1579 /// and cast the result back to a floating-point type. 1580 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1581 const SDLoc &DL, 1582 SDValue NewIntValue) const { 1583 if (!State.Chain) 1584 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1585 1586 // Override the part containing the sign bit in the value stored on the stack. 1587 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1588 State.IntPointerInfo, MVT::i8); 1589 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1590 State.FloatPointerInfo); 1591 } 1592 1593 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1594 SDLoc DL(Node); 1595 SDValue Mag = Node->getOperand(0); 1596 SDValue Sign = Node->getOperand(1); 1597 1598 // Get sign bit into an integer value. 1599 FloatSignAsInt SignAsInt; 1600 getSignAsIntValue(SignAsInt, DL, Sign); 1601 1602 EVT IntVT = SignAsInt.IntValue.getValueType(); 1603 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1604 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1605 SignMask); 1606 1607 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1608 EVT FloatVT = Mag.getValueType(); 1609 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1610 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1611 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1612 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1613 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1614 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1615 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1616 } 1617 1618 // Transform Mag value to integer, and clear the sign bit. 1619 FloatSignAsInt MagAsInt; 1620 getSignAsIntValue(MagAsInt, DL, Mag); 1621 EVT MagVT = MagAsInt.IntValue.getValueType(); 1622 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); 1623 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, 1624 ClearSignMask); 1625 1626 // Get the signbit at the right position for MagAsInt. 1627 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; 1628 EVT ShiftVT = IntVT; 1629 if (SignBit.getScalarValueSizeInBits() < 1630 ClearedSign.getScalarValueSizeInBits()) { 1631 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); 1632 ShiftVT = MagVT; 1633 } 1634 if (ShiftAmount > 0) { 1635 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); 1636 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); 1637 } else if (ShiftAmount < 0) { 1638 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); 1639 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); 1640 } 1641 if (SignBit.getScalarValueSizeInBits() > 1642 ClearedSign.getScalarValueSizeInBits()) { 1643 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); 1644 } 1645 1646 // Store the part with the modified sign and convert back to float. 1647 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); 1648 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1649 } 1650 1651 SDValue SelectionDAGLegalize::ExpandFNEG(SDNode *Node) const { 1652 // Get the sign bit as an integer. 1653 SDLoc DL(Node); 1654 FloatSignAsInt SignAsInt; 1655 getSignAsIntValue(SignAsInt, DL, Node->getOperand(0)); 1656 EVT IntVT = SignAsInt.IntValue.getValueType(); 1657 1658 // Flip the sign. 1659 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1660 SDValue SignFlip = 1661 DAG.getNode(ISD::XOR, DL, IntVT, SignAsInt.IntValue, SignMask); 1662 1663 // Convert back to float. 1664 return modifySignAsInt(SignAsInt, DL, SignFlip); 1665 } 1666 1667 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1668 SDLoc DL(Node); 1669 SDValue Value = Node->getOperand(0); 1670 1671 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1672 EVT FloatVT = Value.getValueType(); 1673 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1674 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1675 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1676 } 1677 1678 // Transform value to integer, clear the sign bit and transform back. 1679 FloatSignAsInt ValueAsInt; 1680 getSignAsIntValue(ValueAsInt, DL, Value); 1681 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1682 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1683 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1684 ClearSignMask); 1685 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1686 } 1687 1688 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1689 SmallVectorImpl<SDValue> &Results) { 1690 Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1691 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1692 " not tell us which reg is the stack pointer!"); 1693 SDLoc dl(Node); 1694 EVT VT = Node->getValueType(0); 1695 SDValue Tmp1 = SDValue(Node, 0); 1696 SDValue Tmp2 = SDValue(Node, 1); 1697 SDValue Tmp3 = Node->getOperand(2); 1698 SDValue Chain = Tmp1.getOperand(0); 1699 1700 // Chain the dynamic stack allocation so that it doesn't modify the stack 1701 // pointer when other instructions are using the stack. 1702 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); 1703 1704 SDValue Size = Tmp2.getOperand(1); 1705 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1706 Chain = SP.getValue(1); 1707 Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue(); 1708 const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering(); 1709 unsigned Opc = 1710 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ? 1711 ISD::ADD : ISD::SUB; 1712 1713 Align StackAlign = TFL->getStackAlign(); 1714 Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size); // Value 1715 if (Alignment > StackAlign) 1716 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1717 DAG.getConstant(-Alignment.value(), dl, VT)); 1718 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1719 1720 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1721 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1722 1723 Results.push_back(Tmp1); 1724 Results.push_back(Tmp2); 1725 } 1726 1727 /// Emit a store/load combination to the stack. This stores 1728 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1729 /// a load from the stack slot to DestVT, extending it if needed. 1730 /// The resultant code need not be legal. 1731 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1732 EVT DestVT, const SDLoc &dl) { 1733 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode()); 1734 } 1735 1736 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, 1737 EVT DestVT, const SDLoc &dl, 1738 SDValue Chain) { 1739 EVT SrcVT = SrcOp.getValueType(); 1740 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1741 Align DestAlign = DAG.getDataLayout().getPrefTypeAlign(DestType); 1742 1743 // Don't convert with stack if the load/store is expensive. 1744 if ((SrcVT.bitsGT(SlotVT) && 1745 !TLI.isTruncStoreLegalOrCustom(SrcOp.getValueType(), SlotVT)) || 1746 (SlotVT.bitsLT(DestVT) && 1747 !TLI.isLoadExtLegalOrCustom(ISD::EXTLOAD, DestVT, SlotVT))) 1748 return SDValue(); 1749 1750 // Create the stack frame object. 1751 Align SrcAlign = DAG.getDataLayout().getPrefTypeAlign( 1752 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1753 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT.getStoreSize(), SrcAlign); 1754 1755 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1756 int SPFI = StackPtrFI->getIndex(); 1757 MachinePointerInfo PtrInfo = 1758 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1759 1760 // Emit a store to the stack slot. Use a truncstore if the input value is 1761 // later than DestVT. 1762 SDValue Store; 1763 1764 if (SrcVT.bitsGT(SlotVT)) 1765 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo, 1766 SlotVT, SrcAlign); 1767 else { 1768 assert(SrcVT.bitsEq(SlotVT) && "Invalid store"); 1769 Store = DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign); 1770 } 1771 1772 // Result is a load from the stack slot. 1773 if (SlotVT.bitsEq(DestVT)) 1774 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); 1775 1776 assert(SlotVT.bitsLT(DestVT) && "Unknown extension!"); 1777 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, 1778 DestAlign); 1779 } 1780 1781 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1782 SDLoc dl(Node); 1783 // Create a vector sized/aligned stack slot, store the value to element #0, 1784 // then load the whole vector back out. 1785 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1786 1787 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1788 int SPFI = StackPtrFI->getIndex(); 1789 1790 SDValue Ch = DAG.getTruncStore( 1791 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1792 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1793 Node->getValueType(0).getVectorElementType()); 1794 return DAG.getLoad( 1795 Node->getValueType(0), dl, Ch, StackPtr, 1796 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); 1797 } 1798 1799 static bool 1800 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1801 const TargetLowering &TLI, SDValue &Res) { 1802 unsigned NumElems = Node->getNumOperands(); 1803 SDLoc dl(Node); 1804 EVT VT = Node->getValueType(0); 1805 1806 // Try to group the scalars into pairs, shuffle the pairs together, then 1807 // shuffle the pairs of pairs together, etc. until the vector has 1808 // been built. This will work only if all of the necessary shuffle masks 1809 // are legal. 1810 1811 // We do this in two phases; first to check the legality of the shuffles, 1812 // and next, assuming that all shuffles are legal, to create the new nodes. 1813 for (int Phase = 0; Phase < 2; ++Phase) { 1814 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, 1815 NewIntermedVals; 1816 for (unsigned i = 0; i < NumElems; ++i) { 1817 SDValue V = Node->getOperand(i); 1818 if (V.isUndef()) 1819 continue; 1820 1821 SDValue Vec; 1822 if (Phase) 1823 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 1824 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 1825 } 1826 1827 while (IntermedVals.size() > 2) { 1828 NewIntermedVals.clear(); 1829 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 1830 // This vector and the next vector are shuffled together (simply to 1831 // append the one to the other). 1832 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1833 1834 SmallVector<int, 16> FinalIndices; 1835 FinalIndices.reserve(IntermedVals[i].second.size() + 1836 IntermedVals[i+1].second.size()); 1837 1838 int k = 0; 1839 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 1840 ++j, ++k) { 1841 ShuffleVec[k] = j; 1842 FinalIndices.push_back(IntermedVals[i].second[j]); 1843 } 1844 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 1845 ++j, ++k) { 1846 ShuffleVec[k] = NumElems + j; 1847 FinalIndices.push_back(IntermedVals[i+1].second[j]); 1848 } 1849 1850 SDValue Shuffle; 1851 if (Phase) 1852 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 1853 IntermedVals[i+1].first, 1854 ShuffleVec); 1855 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1856 return false; 1857 NewIntermedVals.push_back( 1858 std::make_pair(Shuffle, std::move(FinalIndices))); 1859 } 1860 1861 // If we had an odd number of defined values, then append the last 1862 // element to the array of new vectors. 1863 if ((IntermedVals.size() & 1) != 0) 1864 NewIntermedVals.push_back(IntermedVals.back()); 1865 1866 IntermedVals.swap(NewIntermedVals); 1867 } 1868 1869 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 1870 "Invalid number of intermediate vectors"); 1871 SDValue Vec1 = IntermedVals[0].first; 1872 SDValue Vec2; 1873 if (IntermedVals.size() > 1) 1874 Vec2 = IntermedVals[1].first; 1875 else if (Phase) 1876 Vec2 = DAG.getUNDEF(VT); 1877 1878 SmallVector<int, 16> ShuffleVec(NumElems, -1); 1879 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 1880 ShuffleVec[IntermedVals[0].second[i]] = i; 1881 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 1882 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 1883 1884 if (Phase) 1885 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1886 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 1887 return false; 1888 } 1889 1890 return true; 1891 } 1892 1893 /// Expand a BUILD_VECTOR node on targets that don't 1894 /// support the operation, but do support the resultant vector type. 1895 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 1896 unsigned NumElems = Node->getNumOperands(); 1897 SDValue Value1, Value2; 1898 SDLoc dl(Node); 1899 EVT VT = Node->getValueType(0); 1900 EVT OpVT = Node->getOperand(0).getValueType(); 1901 EVT EltVT = VT.getVectorElementType(); 1902 1903 // If the only non-undef value is the low element, turn this into a 1904 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 1905 bool isOnlyLowElement = true; 1906 bool MoreThanTwoValues = false; 1907 bool isConstant = true; 1908 for (unsigned i = 0; i < NumElems; ++i) { 1909 SDValue V = Node->getOperand(i); 1910 if (V.isUndef()) 1911 continue; 1912 if (i > 0) 1913 isOnlyLowElement = false; 1914 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 1915 isConstant = false; 1916 1917 if (!Value1.getNode()) { 1918 Value1 = V; 1919 } else if (!Value2.getNode()) { 1920 if (V != Value1) 1921 Value2 = V; 1922 } else if (V != Value1 && V != Value2) { 1923 MoreThanTwoValues = true; 1924 } 1925 } 1926 1927 if (!Value1.getNode()) 1928 return DAG.getUNDEF(VT); 1929 1930 if (isOnlyLowElement) 1931 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 1932 1933 // If all elements are constants, create a load from the constant pool. 1934 if (isConstant) { 1935 SmallVector<Constant*, 16> CV; 1936 for (unsigned i = 0, e = NumElems; i != e; ++i) { 1937 if (ConstantFPSDNode *V = 1938 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 1939 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 1940 } else if (ConstantSDNode *V = 1941 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 1942 if (OpVT==EltVT) 1943 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 1944 else { 1945 // If OpVT and EltVT don't match, EltVT is not legal and the 1946 // element values have been promoted/truncated earlier. Undo this; 1947 // we don't want a v16i8 to become a v16i32 for example. 1948 const ConstantInt *CI = V->getConstantIntValue(); 1949 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 1950 CI->getZExtValue())); 1951 } 1952 } else { 1953 assert(Node->getOperand(i).isUndef()); 1954 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 1955 CV.push_back(UndefValue::get(OpNTy)); 1956 } 1957 } 1958 Constant *CP = ConstantVector::get(CV); 1959 SDValue CPIdx = 1960 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 1961 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 1962 return DAG.getLoad( 1963 VT, dl, DAG.getEntryNode(), CPIdx, 1964 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 1965 Alignment); 1966 } 1967 1968 SmallSet<SDValue, 16> DefinedValues; 1969 for (unsigned i = 0; i < NumElems; ++i) { 1970 if (Node->getOperand(i).isUndef()) 1971 continue; 1972 DefinedValues.insert(Node->getOperand(i)); 1973 } 1974 1975 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 1976 if (!MoreThanTwoValues) { 1977 SmallVector<int, 8> ShuffleVec(NumElems, -1); 1978 for (unsigned i = 0; i < NumElems; ++i) { 1979 SDValue V = Node->getOperand(i); 1980 if (V.isUndef()) 1981 continue; 1982 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 1983 } 1984 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 1985 // Get the splatted value into the low element of a vector register. 1986 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 1987 SDValue Vec2; 1988 if (Value2.getNode()) 1989 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 1990 else 1991 Vec2 = DAG.getUNDEF(VT); 1992 1993 // Return shuffle(LowValVec, undef, <0,0,0,0>) 1994 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); 1995 } 1996 } else { 1997 SDValue Res; 1998 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 1999 return Res; 2000 } 2001 } 2002 2003 // Otherwise, we can't handle this case efficiently. 2004 return ExpandVectorBuildThroughStack(Node); 2005 } 2006 2007 SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) { 2008 SDLoc DL(Node); 2009 EVT VT = Node->getValueType(0); 2010 SDValue SplatVal = Node->getOperand(0); 2011 2012 return DAG.getSplatBuildVector(VT, DL, SplatVal); 2013 } 2014 2015 // Expand a node into a call to a libcall. If the result value 2016 // does not fit into a register, return the lo part and set the hi part to the 2017 // by-reg argument. If it does fit into a single register, return the result 2018 // and leave the Hi part unset. 2019 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2020 bool isSigned) { 2021 TargetLowering::ArgListTy Args; 2022 TargetLowering::ArgListEntry Entry; 2023 for (const SDValue &Op : Node->op_values()) { 2024 EVT ArgVT = Op.getValueType(); 2025 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2026 Entry.Node = Op; 2027 Entry.Ty = ArgTy; 2028 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2029 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); 2030 Args.push_back(Entry); 2031 } 2032 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2033 TLI.getPointerTy(DAG.getDataLayout())); 2034 2035 EVT RetVT = Node->getValueType(0); 2036 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2037 2038 // By default, the input chain to this libcall is the entry node of the 2039 // function. If the libcall is going to be emitted as a tail call then 2040 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2041 // node which is being folded has a non-entry input chain. 2042 SDValue InChain = DAG.getEntryNode(); 2043 2044 // isTailCall may be true since the callee does not reference caller stack 2045 // frame. Check if it's in the right position and that the return types match. 2046 SDValue TCChain = InChain; 2047 const Function &F = DAG.getMachineFunction().getFunction(); 2048 bool isTailCall = 2049 TLI.isInTailCallPosition(DAG, Node, TCChain) && 2050 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); 2051 if (isTailCall) 2052 InChain = TCChain; 2053 2054 TargetLowering::CallLoweringInfo CLI(DAG); 2055 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); 2056 CLI.setDebugLoc(SDLoc(Node)) 2057 .setChain(InChain) 2058 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2059 std::move(Args)) 2060 .setTailCall(isTailCall) 2061 .setSExtResult(signExtend) 2062 .setZExtResult(!signExtend) 2063 .setIsPostTypeLegalization(true); 2064 2065 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2066 2067 if (!CallInfo.second.getNode()) { 2068 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG)); 2069 // It's a tailcall, return the chain (which is the DAG root). 2070 return DAG.getRoot(); 2071 } 2072 2073 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG)); 2074 return CallInfo.first; 2075 } 2076 2077 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2078 RTLIB::Libcall LC, 2079 SmallVectorImpl<SDValue> &Results) { 2080 if (LC == RTLIB::UNKNOWN_LIBCALL) 2081 llvm_unreachable("Can't create an unknown libcall!"); 2082 2083 if (Node->isStrictFPOpcode()) { 2084 EVT RetVT = Node->getValueType(0); 2085 SmallVector<SDValue, 4> Ops(drop_begin(Node->ops())); 2086 TargetLowering::MakeLibCallOptions CallOptions; 2087 // FIXME: This doesn't support tail calls. 2088 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 2089 Ops, CallOptions, 2090 SDLoc(Node), 2091 Node->getOperand(0)); 2092 Results.push_back(Tmp.first); 2093 Results.push_back(Tmp.second); 2094 } else { 2095 SDValue Tmp = ExpandLibCall(LC, Node, false); 2096 Results.push_back(Tmp); 2097 } 2098 } 2099 2100 /// Expand the node to a libcall based on the result type. 2101 void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2102 RTLIB::Libcall Call_F32, 2103 RTLIB::Libcall Call_F64, 2104 RTLIB::Libcall Call_F80, 2105 RTLIB::Libcall Call_F128, 2106 RTLIB::Libcall Call_PPCF128, 2107 SmallVectorImpl<SDValue> &Results) { 2108 RTLIB::Libcall LC = RTLIB::getFPLibCall(Node->getSimpleValueType(0), 2109 Call_F32, Call_F64, Call_F80, 2110 Call_F128, Call_PPCF128); 2111 ExpandFPLibCall(Node, LC, Results); 2112 } 2113 2114 SDValue SelectionDAGLegalize::ExpandIntLibCall( 2115 SDNode *Node, bool isSigned, RTLIB::Libcall Call_I8, 2116 RTLIB::Libcall Call_I16, RTLIB::Libcall Call_I32, RTLIB::Libcall Call_I64, 2117 RTLIB::Libcall Call_I128, RTLIB::Libcall Call_IEXT) { 2118 RTLIB::Libcall LC; 2119 switch (Node->getSimpleValueType(0).SimpleTy) { 2120 2121 default: 2122 LC = Call_IEXT; 2123 break; 2124 2125 case MVT::i8: LC = Call_I8; break; 2126 case MVT::i16: LC = Call_I16; break; 2127 case MVT::i32: LC = Call_I32; break; 2128 case MVT::i64: LC = Call_I64; break; 2129 case MVT::i128: LC = Call_I128; break; 2130 } 2131 return ExpandLibCall(LC, Node, isSigned); 2132 } 2133 2134 /// Expand the node to a libcall based on first argument type (for instance 2135 /// lround and its variant). 2136 void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node, 2137 RTLIB::Libcall Call_F32, 2138 RTLIB::Libcall Call_F64, 2139 RTLIB::Libcall Call_F80, 2140 RTLIB::Libcall Call_F128, 2141 RTLIB::Libcall Call_PPCF128, 2142 SmallVectorImpl<SDValue> &Results) { 2143 EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType(); 2144 RTLIB::Libcall LC = RTLIB::getFPLibCall(InVT.getSimpleVT(), 2145 Call_F32, Call_F64, Call_F80, 2146 Call_F128, Call_PPCF128); 2147 ExpandFPLibCall(Node, LC, Results); 2148 } 2149 2150 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2151 void 2152 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2153 SmallVectorImpl<SDValue> &Results) { 2154 unsigned Opcode = Node->getOpcode(); 2155 bool isSigned = Opcode == ISD::SDIVREM; 2156 2157 RTLIB::Libcall LC; 2158 switch (Node->getSimpleValueType(0).SimpleTy) { 2159 2160 default: 2161 LC = isSigned ? RTLIB::SDIVREM_IEXT : RTLIB::UDIVREM_IEXT; 2162 break; 2163 2164 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2165 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2166 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2167 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2168 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2169 } 2170 2171 // The input chain to this libcall is the entry node of the function. 2172 // Legalizing the call will automatically add the previous call to the 2173 // dependence. 2174 SDValue InChain = DAG.getEntryNode(); 2175 2176 EVT RetVT = Node->getValueType(0); 2177 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2178 2179 TargetLowering::ArgListTy Args; 2180 TargetLowering::ArgListEntry Entry; 2181 for (const SDValue &Op : Node->op_values()) { 2182 EVT ArgVT = Op.getValueType(); 2183 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2184 Entry.Node = Op; 2185 Entry.Ty = ArgTy; 2186 Entry.IsSExt = isSigned; 2187 Entry.IsZExt = !isSigned; 2188 Args.push_back(Entry); 2189 } 2190 2191 // Also pass the return address of the remainder. 2192 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2193 Entry.Node = FIPtr; 2194 Entry.Ty = RetTy->getPointerTo(); 2195 Entry.IsSExt = isSigned; 2196 Entry.IsZExt = !isSigned; 2197 Args.push_back(Entry); 2198 2199 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2200 TLI.getPointerTy(DAG.getDataLayout())); 2201 2202 SDLoc dl(Node); 2203 TargetLowering::CallLoweringInfo CLI(DAG); 2204 CLI.setDebugLoc(dl) 2205 .setChain(InChain) 2206 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, 2207 std::move(Args)) 2208 .setSExtResult(isSigned) 2209 .setZExtResult(!isSigned); 2210 2211 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2212 2213 // Remainder is loaded back from the stack frame. 2214 SDValue Rem = 2215 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); 2216 Results.push_back(CallInfo.first); 2217 Results.push_back(Rem); 2218 } 2219 2220 /// Return true if sincos libcall is available. 2221 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2222 RTLIB::Libcall LC; 2223 switch (Node->getSimpleValueType(0).SimpleTy) { 2224 default: llvm_unreachable("Unexpected request for libcall!"); 2225 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2226 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2227 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2228 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2229 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2230 } 2231 return TLI.getLibcallName(LC) != nullptr; 2232 } 2233 2234 /// Only issue sincos libcall if both sin and cos are needed. 2235 static bool useSinCos(SDNode *Node) { 2236 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2237 ? ISD::FCOS : ISD::FSIN; 2238 2239 SDValue Op0 = Node->getOperand(0); 2240 for (const SDNode *User : Op0.getNode()->uses()) { 2241 if (User == Node) 2242 continue; 2243 // The other user might have been turned into sincos already. 2244 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2245 return true; 2246 } 2247 return false; 2248 } 2249 2250 /// Issue libcalls to sincos to compute sin / cos pairs. 2251 void 2252 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2253 SmallVectorImpl<SDValue> &Results) { 2254 RTLIB::Libcall LC; 2255 switch (Node->getSimpleValueType(0).SimpleTy) { 2256 default: llvm_unreachable("Unexpected request for libcall!"); 2257 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2258 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2259 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2260 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2261 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2262 } 2263 2264 // The input chain to this libcall is the entry node of the function. 2265 // Legalizing the call will automatically add the previous call to the 2266 // dependence. 2267 SDValue InChain = DAG.getEntryNode(); 2268 2269 EVT RetVT = Node->getValueType(0); 2270 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2271 2272 TargetLowering::ArgListTy Args; 2273 TargetLowering::ArgListEntry Entry; 2274 2275 // Pass the argument. 2276 Entry.Node = Node->getOperand(0); 2277 Entry.Ty = RetTy; 2278 Entry.IsSExt = false; 2279 Entry.IsZExt = false; 2280 Args.push_back(Entry); 2281 2282 // Pass the return address of sin. 2283 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2284 Entry.Node = SinPtr; 2285 Entry.Ty = RetTy->getPointerTo(); 2286 Entry.IsSExt = false; 2287 Entry.IsZExt = false; 2288 Args.push_back(Entry); 2289 2290 // Also pass the return address of the cos. 2291 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2292 Entry.Node = CosPtr; 2293 Entry.Ty = RetTy->getPointerTo(); 2294 Entry.IsSExt = false; 2295 Entry.IsZExt = false; 2296 Args.push_back(Entry); 2297 2298 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2299 TLI.getPointerTy(DAG.getDataLayout())); 2300 2301 SDLoc dl(Node); 2302 TargetLowering::CallLoweringInfo CLI(DAG); 2303 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( 2304 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, 2305 std::move(Args)); 2306 2307 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2308 2309 Results.push_back( 2310 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); 2311 Results.push_back( 2312 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); 2313 } 2314 2315 /// This function is responsible for legalizing a 2316 /// INT_TO_FP operation of the specified operand when the target requests that 2317 /// we expand it. At this point, we know that the result and operand types are 2318 /// legal for the target. 2319 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node, 2320 SDValue &Chain) { 2321 bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 2322 Node->getOpcode() == ISD::SINT_TO_FP); 2323 EVT DestVT = Node->getValueType(0); 2324 SDLoc dl(Node); 2325 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 2326 SDValue Op0 = Node->getOperand(OpNo); 2327 EVT SrcVT = Op0.getValueType(); 2328 2329 // TODO: Should any fast-math-flags be set for the created nodes? 2330 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); 2331 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64) && 2332 (DestVT.bitsLE(MVT::f64) || 2333 TLI.isOperationLegal(Node->isStrictFPOpcode() ? ISD::STRICT_FP_EXTEND 2334 : ISD::FP_EXTEND, 2335 DestVT))) { 2336 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " 2337 "expansion\n"); 2338 2339 // Get the stack frame index of a 8 byte buffer. 2340 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2341 2342 SDValue Lo = Op0; 2343 // if signed map to unsigned space 2344 if (isSigned) { 2345 // Invert sign bit (signed to unsigned mapping). 2346 Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo, 2347 DAG.getConstant(0x80000000u, dl, MVT::i32)); 2348 } 2349 // Initial hi portion of constructed double. 2350 SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2351 2352 // If this a big endian target, swap the lo and high data. 2353 if (DAG.getDataLayout().isBigEndian()) 2354 std::swap(Lo, Hi); 2355 2356 SDValue MemChain = DAG.getEntryNode(); 2357 2358 // Store the lo of the constructed double. 2359 SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot, 2360 MachinePointerInfo()); 2361 // Store the hi of the constructed double. 2362 SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), dl); 2363 SDValue Store2 = 2364 DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo()); 2365 MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 2366 2367 // load the constructed double 2368 SDValue Load = 2369 DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo()); 2370 // FP constant to bias correct the final result 2371 SDValue Bias = DAG.getConstantFP(isSigned ? 2372 BitsToDouble(0x4330000080000000ULL) : 2373 BitsToDouble(0x4330000000000000ULL), 2374 dl, MVT::f64); 2375 // Subtract the bias and get the final result. 2376 SDValue Sub; 2377 SDValue Result; 2378 if (Node->isStrictFPOpcode()) { 2379 Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other}, 2380 {Node->getOperand(0), Load, Bias}); 2381 Chain = Sub.getValue(1); 2382 if (DestVT != Sub.getValueType()) { 2383 std::pair<SDValue, SDValue> ResultPair; 2384 ResultPair = 2385 DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT); 2386 Result = ResultPair.first; 2387 Chain = ResultPair.second; 2388 } 2389 else 2390 Result = Sub; 2391 } else { 2392 Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2393 Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); 2394 } 2395 return Result; 2396 } 2397 2398 if (isSigned) 2399 return SDValue(); 2400 2401 // TODO: Generalize this for use with other types. 2402 if (((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) || 2403 (SrcVT == MVT::i64 && DestVT == MVT::f64)) { 2404 LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32/f64\n"); 2405 // For unsigned conversions, convert them to signed conversions using the 2406 // algorithm from the x86_64 __floatundisf in compiler_rt. That method 2407 // should be valid for i32->f32 as well. 2408 2409 // More generally this transform should be valid if there are 3 more bits 2410 // in the integer type than the significand. Rounding uses the first bit 2411 // after the width of the significand and the OR of all bits after that. So 2412 // we need to be able to OR the shifted out bit into one of the bits that 2413 // participate in the OR. 2414 2415 // TODO: This really should be implemented using a branch rather than a 2416 // select. We happen to get lucky and machinesink does the right 2417 // thing most of the time. This would be a good candidate for a 2418 // pseudo-op, or, even better, for whole-function isel. 2419 EVT SetCCVT = getSetCCResultType(SrcVT); 2420 2421 SDValue SignBitTest = DAG.getSetCC( 2422 dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2423 2424 EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout()); 2425 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 2426 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst); 2427 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 2428 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst); 2429 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 2430 2431 SDValue Slow, Fast; 2432 if (Node->isStrictFPOpcode()) { 2433 // In strict mode, we must avoid spurious exceptions, and therefore 2434 // must make sure to only emit a single STRICT_SINT_TO_FP. 2435 SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0); 2436 Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2437 { Node->getOperand(0), InCvt }); 2438 Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2439 { Fast.getValue(1), Fast, Fast }); 2440 Chain = Slow.getValue(1); 2441 // The STRICT_SINT_TO_FP inherits the exception mode from the 2442 // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can 2443 // never raise any exception. 2444 SDNodeFlags Flags; 2445 Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept()); 2446 Fast->setFlags(Flags); 2447 Flags.setNoFPExcept(true); 2448 Slow->setFlags(Flags); 2449 } else { 2450 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or); 2451 Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt); 2452 Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2453 } 2454 2455 return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast); 2456 } 2457 2458 // Don't expand it if there isn't cheap fadd. 2459 if (!TLI.isOperationLegalOrCustom( 2460 Node->isStrictFPOpcode() ? ISD::STRICT_FADD : ISD::FADD, DestVT)) 2461 return SDValue(); 2462 2463 // The following optimization is valid only if every value in SrcVT (when 2464 // treated as signed) is representable in DestVT. Check that the mantissa 2465 // size of DestVT is >= than the number of bits in SrcVT -1. 2466 assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >= 2467 SrcVT.getSizeInBits() - 1 && 2468 "Cannot perform lossless SINT_TO_FP!"); 2469 2470 SDValue Tmp1; 2471 if (Node->isStrictFPOpcode()) { 2472 Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other }, 2473 { Node->getOperand(0), Op0 }); 2474 } else 2475 Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2476 2477 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, 2478 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 2479 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2480 Four = DAG.getIntPtrConstant(4, dl); 2481 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2482 SignSet, Four, Zero); 2483 2484 // If the sign bit of the integer is set, the large number will be treated 2485 // as a negative number. To counteract this, the dynamic code adds an 2486 // offset depending on the data type. 2487 uint64_t FF; 2488 switch (SrcVT.getSimpleVT().SimpleTy) { 2489 default: 2490 return SDValue(); 2491 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2492 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2493 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2494 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2495 } 2496 if (DAG.getDataLayout().isLittleEndian()) 2497 FF <<= 32; 2498 Constant *FudgeFactor = ConstantInt::get( 2499 Type::getInt64Ty(*DAG.getContext()), FF); 2500 2501 SDValue CPIdx = 2502 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2503 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); 2504 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2505 Alignment = commonAlignment(Alignment, 4); 2506 SDValue FudgeInReg; 2507 if (DestVT == MVT::f32) 2508 FudgeInReg = DAG.getLoad( 2509 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2510 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2511 Alignment); 2512 else { 2513 SDValue Load = DAG.getExtLoad( 2514 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2515 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2516 Alignment); 2517 HandleSDNode Handle(Load); 2518 LegalizeOp(Load.getNode()); 2519 FudgeInReg = Handle.getValue(); 2520 } 2521 2522 if (Node->isStrictFPOpcode()) { 2523 SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other }, 2524 { Tmp1.getValue(1), Tmp1, FudgeInReg }); 2525 Chain = Result.getValue(1); 2526 return Result; 2527 } 2528 2529 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2530 } 2531 2532 /// This function is responsible for legalizing a 2533 /// *INT_TO_FP operation of the specified operand when the target requests that 2534 /// we promote it. At this point, we know that the result and operand types are 2535 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2536 /// operation that takes a larger input. 2537 void SelectionDAGLegalize::PromoteLegalINT_TO_FP( 2538 SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) { 2539 bool IsStrict = N->isStrictFPOpcode(); 2540 bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || 2541 N->getOpcode() == ISD::STRICT_SINT_TO_FP; 2542 EVT DestVT = N->getValueType(0); 2543 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2544 unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP; 2545 unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP; 2546 2547 // First step, figure out the appropriate *INT_TO_FP operation to use. 2548 EVT NewInTy = LegalOp.getValueType(); 2549 2550 unsigned OpToUse = 0; 2551 2552 // Scan for the appropriate larger type to use. 2553 while (true) { 2554 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2555 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2556 2557 // If the target supports SINT_TO_FP of this type, use it. 2558 if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) { 2559 OpToUse = SIntOp; 2560 break; 2561 } 2562 if (IsSigned) 2563 continue; 2564 2565 // If the target supports UINT_TO_FP of this type, use it. 2566 if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) { 2567 OpToUse = UIntOp; 2568 break; 2569 } 2570 2571 // Otherwise, try a larger type. 2572 } 2573 2574 // Okay, we found the operation and type to use. Zero extend our input to the 2575 // desired type then run the operation on it. 2576 if (IsStrict) { 2577 SDValue Res = 2578 DAG.getNode(OpToUse, dl, {DestVT, MVT::Other}, 2579 {N->getOperand(0), 2580 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2581 dl, NewInTy, LegalOp)}); 2582 Results.push_back(Res); 2583 Results.push_back(Res.getValue(1)); 2584 return; 2585 } 2586 2587 Results.push_back( 2588 DAG.getNode(OpToUse, dl, DestVT, 2589 DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2590 dl, NewInTy, LegalOp))); 2591 } 2592 2593 /// This function is responsible for legalizing a 2594 /// FP_TO_*INT operation of the specified operand when the target requests that 2595 /// we promote it. At this point, we know that the result and operand types are 2596 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2597 /// operation that returns a larger result. 2598 void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl, 2599 SmallVectorImpl<SDValue> &Results) { 2600 bool IsStrict = N->isStrictFPOpcode(); 2601 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || 2602 N->getOpcode() == ISD::STRICT_FP_TO_SINT; 2603 EVT DestVT = N->getValueType(0); 2604 SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0); 2605 // First step, figure out the appropriate FP_TO*INT operation to use. 2606 EVT NewOutTy = DestVT; 2607 2608 unsigned OpToUse = 0; 2609 2610 // Scan for the appropriate larger type to use. 2611 while (true) { 2612 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2613 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2614 2615 // A larger signed type can hold all unsigned values of the requested type, 2616 // so using FP_TO_SINT is valid 2617 OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT; 2618 if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2619 break; 2620 2621 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2622 OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT; 2623 if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy)) 2624 break; 2625 2626 // Otherwise, try a larger type. 2627 } 2628 2629 // Okay, we found the operation and type to use. 2630 SDValue Operation; 2631 if (IsStrict) { 2632 SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other); 2633 Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp); 2634 } else 2635 Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2636 2637 // Truncate the result of the extended FP_TO_*INT operation to the desired 2638 // size. 2639 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2640 Results.push_back(Trunc); 2641 if (IsStrict) 2642 Results.push_back(Operation.getValue(1)); 2643 } 2644 2645 /// Promote FP_TO_*INT_SAT operation to a larger result type. At this point 2646 /// the result and operand types are legal and there must be a legal 2647 /// FP_TO_*INT_SAT operation for a larger result type. 2648 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT_SAT(SDNode *Node, 2649 const SDLoc &dl) { 2650 unsigned Opcode = Node->getOpcode(); 2651 2652 // Scan for the appropriate larger type to use. 2653 EVT NewOutTy = Node->getValueType(0); 2654 while (true) { 2655 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy + 1); 2656 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2657 2658 if (TLI.isOperationLegalOrCustom(Opcode, NewOutTy)) 2659 break; 2660 } 2661 2662 // Saturation width is determined by second operand, so we don't have to 2663 // perform any fixup and can directly truncate the result. 2664 SDValue Result = DAG.getNode(Opcode, dl, NewOutTy, Node->getOperand(0), 2665 Node->getOperand(1)); 2666 return DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Result); 2667 } 2668 2669 /// Open code the operations for PARITY of the specified operation. 2670 SDValue SelectionDAGLegalize::ExpandPARITY(SDValue Op, const SDLoc &dl) { 2671 EVT VT = Op.getValueType(); 2672 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2673 unsigned Sz = VT.getScalarSizeInBits(); 2674 2675 // If CTPOP is legal, use it. Otherwise use shifts and xor. 2676 SDValue Result; 2677 if (TLI.isOperationLegalOrPromote(ISD::CTPOP, VT)) { 2678 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 2679 } else { 2680 Result = Op; 2681 for (unsigned i = Log2_32_Ceil(Sz); i != 0;) { 2682 SDValue Shift = DAG.getNode(ISD::SRL, dl, VT, Result, 2683 DAG.getConstant(1ULL << (--i), dl, ShVT)); 2684 Result = DAG.getNode(ISD::XOR, dl, VT, Result, Shift); 2685 } 2686 } 2687 2688 return DAG.getNode(ISD::AND, dl, VT, Result, DAG.getConstant(1, dl, VT)); 2689 } 2690 2691 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2692 LLVM_DEBUG(dbgs() << "Trying to expand node\n"); 2693 SmallVector<SDValue, 8> Results; 2694 SDLoc dl(Node); 2695 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2696 bool NeedInvert; 2697 switch (Node->getOpcode()) { 2698 case ISD::ABS: 2699 if ((Tmp1 = TLI.expandABS(Node, DAG))) 2700 Results.push_back(Tmp1); 2701 break; 2702 case ISD::CTPOP: 2703 if ((Tmp1 = TLI.expandCTPOP(Node, DAG))) 2704 Results.push_back(Tmp1); 2705 break; 2706 case ISD::CTLZ: 2707 case ISD::CTLZ_ZERO_UNDEF: 2708 if ((Tmp1 = TLI.expandCTLZ(Node, DAG))) 2709 Results.push_back(Tmp1); 2710 break; 2711 case ISD::CTTZ: 2712 case ISD::CTTZ_ZERO_UNDEF: 2713 if ((Tmp1 = TLI.expandCTTZ(Node, DAG))) 2714 Results.push_back(Tmp1); 2715 break; 2716 case ISD::BITREVERSE: 2717 if ((Tmp1 = TLI.expandBITREVERSE(Node, DAG))) 2718 Results.push_back(Tmp1); 2719 break; 2720 case ISD::BSWAP: 2721 if ((Tmp1 = TLI.expandBSWAP(Node, DAG))) 2722 Results.push_back(Tmp1); 2723 break; 2724 case ISD::PARITY: 2725 Results.push_back(ExpandPARITY(Node->getOperand(0), dl)); 2726 break; 2727 case ISD::FRAMEADDR: 2728 case ISD::RETURNADDR: 2729 case ISD::FRAME_TO_ARGS_OFFSET: 2730 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 2731 break; 2732 case ISD::EH_DWARF_CFA: { 2733 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, 2734 TLI.getPointerTy(DAG.getDataLayout())); 2735 SDValue Offset = DAG.getNode(ISD::ADD, dl, 2736 CfaArg.getValueType(), 2737 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 2738 CfaArg.getValueType()), 2739 CfaArg); 2740 SDValue FA = DAG.getNode( 2741 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), 2742 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); 2743 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), 2744 FA, Offset)); 2745 break; 2746 } 2747 case ISD::FLT_ROUNDS_: 2748 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 2749 Results.push_back(Node->getOperand(0)); 2750 break; 2751 case ISD::EH_RETURN: 2752 case ISD::EH_LABEL: 2753 case ISD::PREFETCH: 2754 case ISD::VAEND: 2755 case ISD::EH_SJLJ_LONGJMP: 2756 // If the target didn't expand these, there's nothing to do, so just 2757 // preserve the chain and be done. 2758 Results.push_back(Node->getOperand(0)); 2759 break; 2760 case ISD::READCYCLECOUNTER: 2761 // If the target didn't expand this, just return 'zero' and preserve the 2762 // chain. 2763 Results.append(Node->getNumValues() - 1, 2764 DAG.getConstant(0, dl, Node->getValueType(0))); 2765 Results.push_back(Node->getOperand(0)); 2766 break; 2767 case ISD::EH_SJLJ_SETJMP: 2768 // If the target didn't expand this, just return 'zero' and preserve the 2769 // chain. 2770 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 2771 Results.push_back(Node->getOperand(0)); 2772 break; 2773 case ISD::ATOMIC_LOAD: { 2774 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 2775 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 2776 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2777 SDValue Swap = DAG.getAtomicCmpSwap( 2778 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2779 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 2780 cast<AtomicSDNode>(Node)->getMemOperand()); 2781 Results.push_back(Swap.getValue(0)); 2782 Results.push_back(Swap.getValue(1)); 2783 break; 2784 } 2785 case ISD::ATOMIC_STORE: { 2786 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 2787 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 2788 cast<AtomicSDNode>(Node)->getMemoryVT(), 2789 Node->getOperand(0), 2790 Node->getOperand(1), Node->getOperand(2), 2791 cast<AtomicSDNode>(Node)->getMemOperand()); 2792 Results.push_back(Swap.getValue(1)); 2793 break; 2794 } 2795 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 2796 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 2797 // splits out the success value as a comparison. Expanding the resulting 2798 // ATOMIC_CMP_SWAP will produce a libcall. 2799 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 2800 SDValue Res = DAG.getAtomicCmpSwap( 2801 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 2802 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 2803 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); 2804 2805 SDValue ExtRes = Res; 2806 SDValue LHS = Res; 2807 SDValue RHS = Node->getOperand(1); 2808 2809 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); 2810 EVT OuterType = Node->getValueType(0); 2811 switch (TLI.getExtendForAtomicOps()) { 2812 case ISD::SIGN_EXTEND: 2813 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, 2814 DAG.getValueType(AtomicType)); 2815 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, 2816 Node->getOperand(2), DAG.getValueType(AtomicType)); 2817 ExtRes = LHS; 2818 break; 2819 case ISD::ZERO_EXTEND: 2820 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, 2821 DAG.getValueType(AtomicType)); 2822 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2823 ExtRes = LHS; 2824 break; 2825 case ISD::ANY_EXTEND: 2826 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); 2827 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); 2828 break; 2829 default: 2830 llvm_unreachable("Invalid atomic op extension"); 2831 } 2832 2833 SDValue Success = 2834 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); 2835 2836 Results.push_back(ExtRes.getValue(0)); 2837 Results.push_back(Success); 2838 Results.push_back(Res.getValue(1)); 2839 break; 2840 } 2841 case ISD::DYNAMIC_STACKALLOC: 2842 ExpandDYNAMIC_STACKALLOC(Node, Results); 2843 break; 2844 case ISD::MERGE_VALUES: 2845 for (unsigned i = 0; i < Node->getNumValues(); i++) 2846 Results.push_back(Node->getOperand(i)); 2847 break; 2848 case ISD::UNDEF: { 2849 EVT VT = Node->getValueType(0); 2850 if (VT.isInteger()) 2851 Results.push_back(DAG.getConstant(0, dl, VT)); 2852 else { 2853 assert(VT.isFloatingPoint() && "Unknown value type!"); 2854 Results.push_back(DAG.getConstantFP(0, dl, VT)); 2855 } 2856 break; 2857 } 2858 case ISD::STRICT_FP_ROUND: 2859 // When strict mode is enforced we can't do expansion because it 2860 // does not honor the "strict" properties. Only libcall is allowed. 2861 if (TLI.isStrictFPEnabled()) 2862 break; 2863 // We might as well mutate to FP_ROUND when FP_ROUND operation is legal 2864 // since this operation is more efficient than stack operation. 2865 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2866 Node->getValueType(0)) 2867 == TargetLowering::Legal) 2868 break; 2869 // We fall back to use stack operation when the FP_ROUND operation 2870 // isn't available. 2871 if ((Tmp1 = EmitStackConvert(Node->getOperand(1), Node->getValueType(0), 2872 Node->getValueType(0), dl, 2873 Node->getOperand(0)))) { 2874 ReplaceNode(Node, Tmp1.getNode()); 2875 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n"); 2876 return true; 2877 } 2878 break; 2879 case ISD::FP_ROUND: 2880 case ISD::BITCAST: 2881 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 2882 Node->getValueType(0), dl))) 2883 Results.push_back(Tmp1); 2884 break; 2885 case ISD::STRICT_FP_EXTEND: 2886 // When strict mode is enforced we can't do expansion because it 2887 // does not honor the "strict" properties. Only libcall is allowed. 2888 if (TLI.isStrictFPEnabled()) 2889 break; 2890 // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal 2891 // since this operation is more efficient than stack operation. 2892 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 2893 Node->getValueType(0)) 2894 == TargetLowering::Legal) 2895 break; 2896 // We fall back to use stack operation when the FP_EXTEND operation 2897 // isn't available. 2898 if ((Tmp1 = EmitStackConvert( 2899 Node->getOperand(1), Node->getOperand(1).getValueType(), 2900 Node->getValueType(0), dl, Node->getOperand(0)))) { 2901 ReplaceNode(Node, Tmp1.getNode()); 2902 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n"); 2903 return true; 2904 } 2905 break; 2906 case ISD::FP_EXTEND: 2907 if ((Tmp1 = EmitStackConvert(Node->getOperand(0), 2908 Node->getOperand(0).getValueType(), 2909 Node->getValueType(0), dl))) 2910 Results.push_back(Tmp1); 2911 break; 2912 case ISD::BF16_TO_FP: { 2913 // Always expand bf16 to f32 casts, they lower to ext + shift. 2914 SDValue Op = DAG.getNode(ISD::BITCAST, dl, MVT::i16, Node->getOperand(0)); 2915 Op = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op); 2916 Op = DAG.getNode( 2917 ISD::SHL, dl, MVT::i32, Op, 2918 DAG.getConstant(16, dl, 2919 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 2920 Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op); 2921 Results.push_back(Op); 2922 break; 2923 } 2924 case ISD::SIGN_EXTEND_INREG: { 2925 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 2926 EVT VT = Node->getValueType(0); 2927 2928 // An in-register sign-extend of a boolean is a negation: 2929 // 'true' (1) sign-extended is -1. 2930 // 'false' (0) sign-extended is 0. 2931 // However, we must mask the high bits of the source operand because the 2932 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. 2933 2934 // TODO: Do this for vectors too? 2935 if (ExtraVT.isScalarInteger() && ExtraVT.getSizeInBits() == 1) { 2936 SDValue One = DAG.getConstant(1, dl, VT); 2937 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); 2938 SDValue Zero = DAG.getConstant(0, dl, VT); 2939 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); 2940 Results.push_back(Neg); 2941 break; 2942 } 2943 2944 // NOTE: we could fall back on load/store here too for targets without 2945 // SRA. However, it is doubtful that any exist. 2946 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2947 unsigned BitsDiff = VT.getScalarSizeInBits() - 2948 ExtraVT.getScalarSizeInBits(); 2949 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 2950 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 2951 Node->getOperand(0), ShiftCst); 2952 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 2953 Results.push_back(Tmp1); 2954 break; 2955 } 2956 case ISD::UINT_TO_FP: 2957 case ISD::STRICT_UINT_TO_FP: 2958 if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) { 2959 Results.push_back(Tmp1); 2960 if (Node->isStrictFPOpcode()) 2961 Results.push_back(Tmp2); 2962 break; 2963 } 2964 LLVM_FALLTHROUGH; 2965 case ISD::SINT_TO_FP: 2966 case ISD::STRICT_SINT_TO_FP: 2967 if ((Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2))) { 2968 Results.push_back(Tmp1); 2969 if (Node->isStrictFPOpcode()) 2970 Results.push_back(Tmp2); 2971 } 2972 break; 2973 case ISD::FP_TO_SINT: 2974 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 2975 Results.push_back(Tmp1); 2976 break; 2977 case ISD::STRICT_FP_TO_SINT: 2978 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) { 2979 ReplaceNode(Node, Tmp1.getNode()); 2980 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n"); 2981 return true; 2982 } 2983 break; 2984 case ISD::FP_TO_UINT: 2985 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) 2986 Results.push_back(Tmp1); 2987 break; 2988 case ISD::STRICT_FP_TO_UINT: 2989 if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) { 2990 // Relink the chain. 2991 DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2); 2992 // Replace the new UINT result. 2993 ReplaceNodeWithValue(SDValue(Node, 0), Tmp1); 2994 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n"); 2995 return true; 2996 } 2997 break; 2998 case ISD::FP_TO_SINT_SAT: 2999 case ISD::FP_TO_UINT_SAT: 3000 Results.push_back(TLI.expandFP_TO_INT_SAT(Node, DAG)); 3001 break; 3002 case ISD::VAARG: 3003 Results.push_back(DAG.expandVAArg(Node)); 3004 Results.push_back(Results[0].getValue(1)); 3005 break; 3006 case ISD::VACOPY: 3007 Results.push_back(DAG.expandVACopy(Node)); 3008 break; 3009 case ISD::EXTRACT_VECTOR_ELT: 3010 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 3011 // This must be an access of the only element. Return it. 3012 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3013 Node->getOperand(0)); 3014 else 3015 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3016 Results.push_back(Tmp1); 3017 break; 3018 case ISD::EXTRACT_SUBVECTOR: 3019 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3020 break; 3021 case ISD::INSERT_SUBVECTOR: 3022 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3023 break; 3024 case ISD::CONCAT_VECTORS: 3025 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3026 break; 3027 case ISD::SCALAR_TO_VECTOR: 3028 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3029 break; 3030 case ISD::INSERT_VECTOR_ELT: 3031 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3032 Node->getOperand(1), 3033 Node->getOperand(2), dl)); 3034 break; 3035 case ISD::VECTOR_SHUFFLE: { 3036 SmallVector<int, 32> NewMask; 3037 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3038 3039 EVT VT = Node->getValueType(0); 3040 EVT EltVT = VT.getVectorElementType(); 3041 SDValue Op0 = Node->getOperand(0); 3042 SDValue Op1 = Node->getOperand(1); 3043 if (!TLI.isTypeLegal(EltVT)) { 3044 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3045 3046 // BUILD_VECTOR operands are allowed to be wider than the element type. 3047 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3048 // it. 3049 if (NewEltVT.bitsLT(EltVT)) { 3050 // Convert shuffle node. 3051 // If original node was v4i64 and the new EltVT is i32, 3052 // cast operands to v8i32 and re-build the mask. 3053 3054 // Calculate new VT, the size of the new VT should be equal to original. 3055 EVT NewVT = 3056 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3057 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3058 assert(NewVT.bitsEq(VT)); 3059 3060 // cast operands to new VT 3061 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3062 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3063 3064 // Convert the shuffle mask 3065 unsigned int factor = 3066 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3067 3068 // EltVT gets smaller 3069 assert(factor > 0); 3070 3071 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3072 if (Mask[i] < 0) { 3073 for (unsigned fi = 0; fi < factor; ++fi) 3074 NewMask.push_back(Mask[i]); 3075 } 3076 else { 3077 for (unsigned fi = 0; fi < factor; ++fi) 3078 NewMask.push_back(Mask[i]*factor+fi); 3079 } 3080 } 3081 Mask = NewMask; 3082 VT = NewVT; 3083 } 3084 EltVT = NewEltVT; 3085 } 3086 unsigned NumElems = VT.getVectorNumElements(); 3087 SmallVector<SDValue, 16> Ops; 3088 for (unsigned i = 0; i != NumElems; ++i) { 3089 if (Mask[i] < 0) { 3090 Ops.push_back(DAG.getUNDEF(EltVT)); 3091 continue; 3092 } 3093 unsigned Idx = Mask[i]; 3094 if (Idx < NumElems) 3095 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3096 DAG.getVectorIdxConstant(Idx, dl))); 3097 else 3098 Ops.push_back( 3099 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3100 DAG.getVectorIdxConstant(Idx - NumElems, dl))); 3101 } 3102 3103 Tmp1 = DAG.getBuildVector(VT, dl, Ops); 3104 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3105 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3106 Results.push_back(Tmp1); 3107 break; 3108 } 3109 case ISD::VECTOR_SPLICE: { 3110 Results.push_back(TLI.expandVectorSplice(Node, DAG)); 3111 break; 3112 } 3113 case ISD::EXTRACT_ELEMENT: { 3114 EVT OpTy = Node->getOperand(0).getValueType(); 3115 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3116 // 1 -> Hi 3117 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3118 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3119 TLI.getShiftAmountTy( 3120 Node->getOperand(0).getValueType(), 3121 DAG.getDataLayout()))); 3122 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3123 } else { 3124 // 0 -> Lo 3125 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3126 Node->getOperand(0)); 3127 } 3128 Results.push_back(Tmp1); 3129 break; 3130 } 3131 case ISD::STACKSAVE: 3132 // Expand to CopyFromReg if the target set 3133 // StackPointerRegisterToSaveRestore. 3134 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3135 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3136 Node->getValueType(0))); 3137 Results.push_back(Results[0].getValue(1)); 3138 } else { 3139 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3140 Results.push_back(Node->getOperand(0)); 3141 } 3142 break; 3143 case ISD::STACKRESTORE: 3144 // Expand to CopyToReg if the target set 3145 // StackPointerRegisterToSaveRestore. 3146 if (Register SP = TLI.getStackPointerRegisterToSaveRestore()) { 3147 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3148 Node->getOperand(1))); 3149 } else { 3150 Results.push_back(Node->getOperand(0)); 3151 } 3152 break; 3153 case ISD::GET_DYNAMIC_AREA_OFFSET: 3154 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3155 Results.push_back(Results[0].getValue(0)); 3156 break; 3157 case ISD::FCOPYSIGN: 3158 Results.push_back(ExpandFCOPYSIGN(Node)); 3159 break; 3160 case ISD::FNEG: 3161 Results.push_back(ExpandFNEG(Node)); 3162 break; 3163 case ISD::FABS: 3164 Results.push_back(ExpandFABS(Node)); 3165 break; 3166 case ISD::IS_FPCLASS: { 3167 auto CNode = cast<ConstantSDNode>(Node->getOperand(1)); 3168 auto Test = static_cast<FPClassTest>(CNode->getZExtValue()); 3169 if (SDValue Expanded = 3170 TLI.expandIS_FPCLASS(Node->getValueType(0), Node->getOperand(0), 3171 Test, Node->getFlags(), SDLoc(Node), DAG)) 3172 Results.push_back(Expanded); 3173 break; 3174 } 3175 case ISD::SMIN: 3176 case ISD::SMAX: 3177 case ISD::UMIN: 3178 case ISD::UMAX: { 3179 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3180 ISD::CondCode Pred; 3181 switch (Node->getOpcode()) { 3182 default: llvm_unreachable("How did we get here?"); 3183 case ISD::SMAX: Pred = ISD::SETGT; break; 3184 case ISD::SMIN: Pred = ISD::SETLT; break; 3185 case ISD::UMAX: Pred = ISD::SETUGT; break; 3186 case ISD::UMIN: Pred = ISD::SETULT; break; 3187 } 3188 Tmp1 = Node->getOperand(0); 3189 Tmp2 = Node->getOperand(1); 3190 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3191 Results.push_back(Tmp1); 3192 break; 3193 } 3194 case ISD::FMINNUM: 3195 case ISD::FMAXNUM: { 3196 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) 3197 Results.push_back(Expanded); 3198 break; 3199 } 3200 case ISD::FSIN: 3201 case ISD::FCOS: { 3202 EVT VT = Node->getValueType(0); 3203 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3204 // fcos which share the same operand and both are used. 3205 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3206 isSinCosLibcallAvailable(Node, TLI)) 3207 && useSinCos(Node)) { 3208 SDVTList VTs = DAG.getVTList(VT, VT); 3209 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3210 if (Node->getOpcode() == ISD::FCOS) 3211 Tmp1 = Tmp1.getValue(1); 3212 Results.push_back(Tmp1); 3213 } 3214 break; 3215 } 3216 case ISD::FMAD: 3217 llvm_unreachable("Illegal fmad should never be formed"); 3218 3219 case ISD::FP16_TO_FP: 3220 if (Node->getValueType(0) != MVT::f32) { 3221 // We can extend to types bigger than f32 in two steps without changing 3222 // the result. Since "f16 -> f32" is much more commonly available, give 3223 // CodeGen the option of emitting that before resorting to a libcall. 3224 SDValue Res = 3225 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3226 Results.push_back( 3227 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3228 } 3229 break; 3230 case ISD::STRICT_FP16_TO_FP: 3231 if (Node->getValueType(0) != MVT::f32) { 3232 // We can extend to types bigger than f32 in two steps without changing 3233 // the result. Since "f16 -> f32" is much more commonly available, give 3234 // CodeGen the option of emitting that before resorting to a libcall. 3235 SDValue Res = 3236 DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other}, 3237 {Node->getOperand(0), Node->getOperand(1)}); 3238 Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 3239 {Node->getValueType(0), MVT::Other}, 3240 {Res.getValue(1), Res}); 3241 Results.push_back(Res); 3242 Results.push_back(Res.getValue(1)); 3243 } 3244 break; 3245 case ISD::FP_TO_FP16: 3246 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); 3247 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3248 SDValue Op = Node->getOperand(0); 3249 MVT SVT = Op.getSimpleValueType(); 3250 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3251 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3252 // Under fastmath, we can expand this node into a fround followed by 3253 // a float-half conversion. 3254 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3255 DAG.getIntPtrConstant(0, dl)); 3256 Results.push_back( 3257 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); 3258 } 3259 } 3260 break; 3261 case ISD::ConstantFP: { 3262 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3263 // Check to see if this FP immediate is already legal. 3264 // If this is a legal constant, turn it into a TargetConstantFP node. 3265 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0), 3266 DAG.shouldOptForSize())) 3267 Results.push_back(ExpandConstantFP(CFP, true)); 3268 break; 3269 } 3270 case ISD::Constant: { 3271 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3272 Results.push_back(ExpandConstant(CP)); 3273 break; 3274 } 3275 case ISD::FSUB: { 3276 EVT VT = Node->getValueType(0); 3277 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3278 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3279 const SDNodeFlags Flags = Node->getFlags(); 3280 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3281 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3282 Results.push_back(Tmp1); 3283 } 3284 break; 3285 } 3286 case ISD::SUB: { 3287 EVT VT = Node->getValueType(0); 3288 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3289 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3290 "Don't know how to expand this subtraction!"); 3291 Tmp1 = DAG.getNOT(dl, Node->getOperand(1), VT); 3292 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3293 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3294 break; 3295 } 3296 case ISD::UREM: 3297 case ISD::SREM: 3298 if (TLI.expandREM(Node, Tmp1, DAG)) 3299 Results.push_back(Tmp1); 3300 break; 3301 case ISD::UDIV: 3302 case ISD::SDIV: { 3303 bool isSigned = Node->getOpcode() == ISD::SDIV; 3304 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3305 EVT VT = Node->getValueType(0); 3306 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3307 SDVTList VTs = DAG.getVTList(VT, VT); 3308 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3309 Node->getOperand(1)); 3310 Results.push_back(Tmp1); 3311 } 3312 break; 3313 } 3314 case ISD::MULHU: 3315 case ISD::MULHS: { 3316 unsigned ExpandOpcode = 3317 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; 3318 EVT VT = Node->getValueType(0); 3319 SDVTList VTs = DAG.getVTList(VT, VT); 3320 3321 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3322 Node->getOperand(1)); 3323 Results.push_back(Tmp1.getValue(1)); 3324 break; 3325 } 3326 case ISD::UMUL_LOHI: 3327 case ISD::SMUL_LOHI: { 3328 SDValue LHS = Node->getOperand(0); 3329 SDValue RHS = Node->getOperand(1); 3330 MVT VT = LHS.getSimpleValueType(); 3331 unsigned MULHOpcode = 3332 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; 3333 3334 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { 3335 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); 3336 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); 3337 break; 3338 } 3339 3340 SmallVector<SDValue, 4> Halves; 3341 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); 3342 assert(TLI.isTypeLegal(HalfType)); 3343 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, dl, LHS, RHS, Halves, 3344 HalfType, DAG, 3345 TargetLowering::MulExpansionKind::Always)) { 3346 for (unsigned i = 0; i < 2; ++i) { 3347 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); 3348 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); 3349 SDValue Shift = DAG.getConstant( 3350 HalfType.getScalarSizeInBits(), dl, 3351 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3352 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3353 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3354 } 3355 break; 3356 } 3357 break; 3358 } 3359 case ISD::MUL: { 3360 EVT VT = Node->getValueType(0); 3361 SDVTList VTs = DAG.getVTList(VT, VT); 3362 // See if multiply or divide can be lowered using two-result operations. 3363 // We just need the low half of the multiply; try both the signed 3364 // and unsigned forms. If the target supports both SMUL_LOHI and 3365 // UMUL_LOHI, form a preference by checking which forms of plain 3366 // MULH it supports. 3367 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3368 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3369 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3370 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3371 unsigned OpToUse = 0; 3372 if (HasSMUL_LOHI && !HasMULHS) { 3373 OpToUse = ISD::SMUL_LOHI; 3374 } else if (HasUMUL_LOHI && !HasMULHU) { 3375 OpToUse = ISD::UMUL_LOHI; 3376 } else if (HasSMUL_LOHI) { 3377 OpToUse = ISD::SMUL_LOHI; 3378 } else if (HasUMUL_LOHI) { 3379 OpToUse = ISD::UMUL_LOHI; 3380 } 3381 if (OpToUse) { 3382 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3383 Node->getOperand(1))); 3384 break; 3385 } 3386 3387 SDValue Lo, Hi; 3388 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3389 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3390 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3391 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3392 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3393 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, 3394 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { 3395 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3396 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3397 SDValue Shift = 3398 DAG.getConstant(HalfType.getSizeInBits(), dl, 3399 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3400 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3401 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3402 } 3403 break; 3404 } 3405 case ISD::FSHL: 3406 case ISD::FSHR: 3407 if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) 3408 Results.push_back(Expanded); 3409 break; 3410 case ISD::ROTL: 3411 case ISD::ROTR: 3412 if (SDValue Expanded = TLI.expandROT(Node, true /*AllowVectorOps*/, DAG)) 3413 Results.push_back(Expanded); 3414 break; 3415 case ISD::SADDSAT: 3416 case ISD::UADDSAT: 3417 case ISD::SSUBSAT: 3418 case ISD::USUBSAT: 3419 Results.push_back(TLI.expandAddSubSat(Node, DAG)); 3420 break; 3421 case ISD::SSHLSAT: 3422 case ISD::USHLSAT: 3423 Results.push_back(TLI.expandShlSat(Node, DAG)); 3424 break; 3425 case ISD::SMULFIX: 3426 case ISD::SMULFIXSAT: 3427 case ISD::UMULFIX: 3428 case ISD::UMULFIXSAT: 3429 Results.push_back(TLI.expandFixedPointMul(Node, DAG)); 3430 break; 3431 case ISD::SDIVFIX: 3432 case ISD::SDIVFIXSAT: 3433 case ISD::UDIVFIX: 3434 case ISD::UDIVFIXSAT: 3435 if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node), 3436 Node->getOperand(0), 3437 Node->getOperand(1), 3438 Node->getConstantOperandVal(2), 3439 DAG)) { 3440 Results.push_back(V); 3441 break; 3442 } 3443 // FIXME: We might want to retry here with a wider type if we fail, if that 3444 // type is legal. 3445 // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is 3446 // <= 128 (which is the case for all of the default Embedded-C types), 3447 // we will only get here with types and scales that we could always expand 3448 // if we were allowed to generate libcalls to division functions of illegal 3449 // type. But we cannot do that. 3450 llvm_unreachable("Cannot expand DIVFIX!"); 3451 case ISD::ADDCARRY: 3452 case ISD::SUBCARRY: { 3453 SDValue LHS = Node->getOperand(0); 3454 SDValue RHS = Node->getOperand(1); 3455 SDValue Carry = Node->getOperand(2); 3456 3457 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY; 3458 3459 // Initial add of the 2 operands. 3460 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB; 3461 EVT VT = LHS.getValueType(); 3462 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS); 3463 3464 // Initial check for overflow. 3465 EVT CarryType = Node->getValueType(1); 3466 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3467 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 3468 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3469 3470 // Add of the sum and the carry. 3471 SDValue One = DAG.getConstant(1, dl, VT); 3472 SDValue CarryExt = 3473 DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One); 3474 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt); 3475 3476 // Second check for overflow. If we are adding, we can only overflow if the 3477 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0. 3478 // If we are subtracting, we can only overflow if the initial sum is 0 and 3479 // the carry is set, resulting in a new sum of all 1s. 3480 SDValue Zero = DAG.getConstant(0, dl, VT); 3481 SDValue Overflow2 = 3482 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ) 3483 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ); 3484 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2, 3485 DAG.getZExtOrTrunc(Carry, dl, SetCCType)); 3486 3487 SDValue ResultCarry = 3488 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2); 3489 3490 Results.push_back(Sum2); 3491 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT)); 3492 break; 3493 } 3494 case ISD::SADDO: 3495 case ISD::SSUBO: { 3496 SDValue Result, Overflow; 3497 TLI.expandSADDSUBO(Node, Result, Overflow, DAG); 3498 Results.push_back(Result); 3499 Results.push_back(Overflow); 3500 break; 3501 } 3502 case ISD::UADDO: 3503 case ISD::USUBO: { 3504 SDValue Result, Overflow; 3505 TLI.expandUADDSUBO(Node, Result, Overflow, DAG); 3506 Results.push_back(Result); 3507 Results.push_back(Overflow); 3508 break; 3509 } 3510 case ISD::UMULO: 3511 case ISD::SMULO: { 3512 SDValue Result, Overflow; 3513 if (TLI.expandMULO(Node, Result, Overflow, DAG)) { 3514 Results.push_back(Result); 3515 Results.push_back(Overflow); 3516 } 3517 break; 3518 } 3519 case ISD::BUILD_PAIR: { 3520 EVT PairTy = Node->getValueType(0); 3521 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3522 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3523 Tmp2 = DAG.getNode( 3524 ISD::SHL, dl, PairTy, Tmp2, 3525 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3526 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3527 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3528 break; 3529 } 3530 case ISD::SELECT: 3531 Tmp1 = Node->getOperand(0); 3532 Tmp2 = Node->getOperand(1); 3533 Tmp3 = Node->getOperand(2); 3534 if (Tmp1.getOpcode() == ISD::SETCC) { 3535 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3536 Tmp2, Tmp3, 3537 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3538 } else { 3539 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3540 DAG.getConstant(0, dl, Tmp1.getValueType()), 3541 Tmp2, Tmp3, ISD::SETNE); 3542 } 3543 Tmp1->setFlags(Node->getFlags()); 3544 Results.push_back(Tmp1); 3545 break; 3546 case ISD::BR_JT: { 3547 SDValue Chain = Node->getOperand(0); 3548 SDValue Table = Node->getOperand(1); 3549 SDValue Index = Node->getOperand(2); 3550 3551 const DataLayout &TD = DAG.getDataLayout(); 3552 EVT PTy = TLI.getPointerTy(TD); 3553 3554 unsigned EntrySize = 3555 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3556 3557 // For power-of-two jumptable entry sizes convert multiplication to a shift. 3558 // This transformation needs to be done here since otherwise the MIPS 3559 // backend will end up emitting a three instruction multiply sequence 3560 // instead of a single shift and MSP430 will call a runtime function. 3561 if (llvm::isPowerOf2_32(EntrySize)) 3562 Index = DAG.getNode( 3563 ISD::SHL, dl, Index.getValueType(), Index, 3564 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); 3565 else 3566 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3567 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3568 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3569 Index, Table); 3570 3571 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3572 SDValue LD = DAG.getExtLoad( 3573 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3574 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); 3575 Addr = LD; 3576 if (TLI.isJumpTableRelative()) { 3577 // For PIC, the sequence is: 3578 // BRIND(load(Jumptable + index) + RelocBase) 3579 // RelocBase can be JumpTable, GOT or some sort of global base. 3580 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3581 TLI.getPICJumpTableRelocBase(Table, DAG)); 3582 } 3583 3584 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); 3585 Results.push_back(Tmp1); 3586 break; 3587 } 3588 case ISD::BRCOND: 3589 // Expand brcond's setcc into its constituent parts and create a BR_CC 3590 // Node. 3591 Tmp1 = Node->getOperand(0); 3592 Tmp2 = Node->getOperand(1); 3593 if (Tmp2.getOpcode() == ISD::SETCC && 3594 TLI.isOperationLegalOrCustom(ISD::BR_CC, 3595 Tmp2.getOperand(0).getValueType())) { 3596 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, Tmp2.getOperand(2), 3597 Tmp2.getOperand(0), Tmp2.getOperand(1), 3598 Node->getOperand(2)); 3599 } else { 3600 // We test only the i1 bit. Skip the AND if UNDEF or another AND. 3601 if (Tmp2.isUndef() || 3602 (Tmp2.getOpcode() == ISD::AND && 3603 isa<ConstantSDNode>(Tmp2.getOperand(1)) && 3604 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) 3605 Tmp3 = Tmp2; 3606 else 3607 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3608 DAG.getConstant(1, dl, Tmp2.getValueType())); 3609 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3610 DAG.getCondCode(ISD::SETNE), Tmp3, 3611 DAG.getConstant(0, dl, Tmp3.getValueType()), 3612 Node->getOperand(2)); 3613 } 3614 Results.push_back(Tmp1); 3615 break; 3616 case ISD::SETCC: 3617 case ISD::VP_SETCC: 3618 case ISD::STRICT_FSETCC: 3619 case ISD::STRICT_FSETCCS: { 3620 bool IsVP = Node->getOpcode() == ISD::VP_SETCC; 3621 bool IsStrict = Node->getOpcode() == ISD::STRICT_FSETCC || 3622 Node->getOpcode() == ISD::STRICT_FSETCCS; 3623 bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; 3624 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 3625 unsigned Offset = IsStrict ? 1 : 0; 3626 Tmp1 = Node->getOperand(0 + Offset); 3627 Tmp2 = Node->getOperand(1 + Offset); 3628 Tmp3 = Node->getOperand(2 + Offset); 3629 SDValue Mask, EVL; 3630 if (IsVP) { 3631 Mask = Node->getOperand(3 + Offset); 3632 EVL = Node->getOperand(4 + Offset); 3633 } 3634 bool Legalized = TLI.LegalizeSetCCCondCode( 3635 DAG, Node->getValueType(0), Tmp1, Tmp2, Tmp3, Mask, EVL, NeedInvert, dl, 3636 Chain, IsSignaling); 3637 3638 if (Legalized) { 3639 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3640 // condition code, create a new SETCC node. 3641 if (Tmp3.getNode()) { 3642 if (IsStrict) { 3643 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getVTList(), 3644 {Chain, Tmp1, Tmp2, Tmp3}, Node->getFlags()); 3645 Chain = Tmp1.getValue(1); 3646 } else if (IsVP) { 3647 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), 3648 {Tmp1, Tmp2, Tmp3, Mask, EVL}, Node->getFlags()); 3649 } else { 3650 Tmp1 = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Tmp1, 3651 Tmp2, Tmp3, Node->getFlags()); 3652 } 3653 } 3654 3655 // If we expanded the SETCC by inverting the condition code, then wrap 3656 // the existing SETCC in a NOT to restore the intended condition. 3657 if (NeedInvert) { 3658 if (!IsVP) 3659 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3660 else 3661 Tmp1 = 3662 DAG.getVPLogicalNOT(dl, Tmp1, Mask, EVL, Tmp1->getValueType(0)); 3663 } 3664 3665 Results.push_back(Tmp1); 3666 if (IsStrict) 3667 Results.push_back(Chain); 3668 3669 break; 3670 } 3671 3672 // FIXME: It seems Legalized is false iff CCCode is Legal. I don't 3673 // understand if this code is useful for strict nodes. 3674 assert(!IsStrict && "Don't know how to expand for strict nodes."); 3675 3676 // Otherwise, SETCC for the given comparison type must be completely 3677 // illegal; expand it into a SELECT_CC. 3678 // FIXME: This drops the mask/evl for VP_SETCC. 3679 EVT VT = Node->getValueType(0); 3680 EVT Tmp1VT = Tmp1.getValueType(); 3681 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3682 DAG.getBoolConstant(true, dl, VT, Tmp1VT), 3683 DAG.getBoolConstant(false, dl, VT, Tmp1VT), Tmp3); 3684 Tmp1->setFlags(Node->getFlags()); 3685 Results.push_back(Tmp1); 3686 break; 3687 } 3688 case ISD::SELECT_CC: { 3689 // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS 3690 Tmp1 = Node->getOperand(0); // LHS 3691 Tmp2 = Node->getOperand(1); // RHS 3692 Tmp3 = Node->getOperand(2); // True 3693 Tmp4 = Node->getOperand(3); // False 3694 EVT VT = Node->getValueType(0); 3695 SDValue Chain; 3696 SDValue CC = Node->getOperand(4); 3697 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3698 3699 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { 3700 // If the condition code is legal, then we need to expand this 3701 // node using SETCC and SELECT. 3702 EVT CmpVT = Tmp1.getValueType(); 3703 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3704 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3705 "expanded."); 3706 EVT CCVT = getSetCCResultType(CmpVT); 3707 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags()); 3708 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3709 break; 3710 } 3711 3712 // SELECT_CC is legal, so the condition code must not be. 3713 bool Legalized = false; 3714 // Try to legalize by inverting the condition. This is for targets that 3715 // might support an ordered version of a condition, but not the unordered 3716 // version (or vice versa). 3717 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType()); 3718 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { 3719 // Use the new condition code and swap true and false 3720 Legalized = true; 3721 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3722 Tmp1->setFlags(Node->getFlags()); 3723 } else { 3724 // If The inverse is not legal, then try to swap the arguments using 3725 // the inverse condition code. 3726 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3727 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { 3728 // The swapped inverse condition is legal, so swap true and false, 3729 // lhs and rhs. 3730 Legalized = true; 3731 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3732 Tmp1->setFlags(Node->getFlags()); 3733 } 3734 } 3735 3736 if (!Legalized) { 3737 Legalized = TLI.LegalizeSetCCCondCode( 3738 DAG, getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, 3739 /*Mask*/ SDValue(), /*EVL*/ SDValue(), NeedInvert, dl, Chain); 3740 3741 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3742 3743 // If we expanded the SETCC by inverting the condition code, then swap 3744 // the True/False operands to match. 3745 if (NeedInvert) 3746 std::swap(Tmp3, Tmp4); 3747 3748 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3749 // condition code, create a new SELECT_CC node. 3750 if (CC.getNode()) { 3751 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3752 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3753 } else { 3754 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3755 CC = DAG.getCondCode(ISD::SETNE); 3756 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3757 Tmp2, Tmp3, Tmp4, CC); 3758 } 3759 Tmp1->setFlags(Node->getFlags()); 3760 } 3761 Results.push_back(Tmp1); 3762 break; 3763 } 3764 case ISD::BR_CC: { 3765 // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS 3766 SDValue Chain; 3767 Tmp1 = Node->getOperand(0); // Chain 3768 Tmp2 = Node->getOperand(2); // LHS 3769 Tmp3 = Node->getOperand(3); // RHS 3770 Tmp4 = Node->getOperand(1); // CC 3771 3772 bool Legalized = TLI.LegalizeSetCCCondCode( 3773 DAG, getSetCCResultType(Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, 3774 /*Mask*/ SDValue(), /*EVL*/ SDValue(), NeedInvert, dl, Chain); 3775 (void)Legalized; 3776 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3777 3778 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3779 // node. 3780 if (Tmp4.getNode()) { 3781 assert(!NeedInvert && "Don't know how to invert BR_CC!"); 3782 3783 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3784 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3785 } else { 3786 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3787 Tmp4 = DAG.getCondCode(NeedInvert ? ISD::SETEQ : ISD::SETNE); 3788 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3789 Tmp2, Tmp3, Node->getOperand(4)); 3790 } 3791 Results.push_back(Tmp1); 3792 break; 3793 } 3794 case ISD::BUILD_VECTOR: 3795 Results.push_back(ExpandBUILD_VECTOR(Node)); 3796 break; 3797 case ISD::SPLAT_VECTOR: 3798 Results.push_back(ExpandSPLAT_VECTOR(Node)); 3799 break; 3800 case ISD::SRA: 3801 case ISD::SRL: 3802 case ISD::SHL: { 3803 // Scalarize vector SRA/SRL/SHL. 3804 EVT VT = Node->getValueType(0); 3805 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3806 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3807 unsigned NumElem = VT.getVectorNumElements(); 3808 3809 SmallVector<SDValue, 8> Scalars; 3810 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3811 SDValue Ex = 3812 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3813 Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl)); 3814 SDValue Sh = 3815 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), 3816 Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl)); 3817 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3818 VT.getScalarType(), Ex, Sh)); 3819 } 3820 3821 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); 3822 Results.push_back(Result); 3823 break; 3824 } 3825 case ISD::VECREDUCE_FADD: 3826 case ISD::VECREDUCE_FMUL: 3827 case ISD::VECREDUCE_ADD: 3828 case ISD::VECREDUCE_MUL: 3829 case ISD::VECREDUCE_AND: 3830 case ISD::VECREDUCE_OR: 3831 case ISD::VECREDUCE_XOR: 3832 case ISD::VECREDUCE_SMAX: 3833 case ISD::VECREDUCE_SMIN: 3834 case ISD::VECREDUCE_UMAX: 3835 case ISD::VECREDUCE_UMIN: 3836 case ISD::VECREDUCE_FMAX: 3837 case ISD::VECREDUCE_FMIN: 3838 Results.push_back(TLI.expandVecReduce(Node, DAG)); 3839 break; 3840 case ISD::GLOBAL_OFFSET_TABLE: 3841 case ISD::GlobalAddress: 3842 case ISD::GlobalTLSAddress: 3843 case ISD::ExternalSymbol: 3844 case ISD::ConstantPool: 3845 case ISD::JumpTable: 3846 case ISD::INTRINSIC_W_CHAIN: 3847 case ISD::INTRINSIC_WO_CHAIN: 3848 case ISD::INTRINSIC_VOID: 3849 // FIXME: Custom lowering for these operations shouldn't return null! 3850 // Return true so that we don't call ConvertNodeToLibcall which also won't 3851 // do anything. 3852 return true; 3853 } 3854 3855 if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) { 3856 // FIXME: We were asked to expand a strict floating-point operation, 3857 // but there is currently no expansion implemented that would preserve 3858 // the "strict" properties. For now, we just fall back to the non-strict 3859 // version if that is legal on the target. The actual mutation of the 3860 // operation will happen in SelectionDAGISel::DoInstructionSelection. 3861 switch (Node->getOpcode()) { 3862 default: 3863 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3864 Node->getValueType(0)) 3865 == TargetLowering::Legal) 3866 return true; 3867 break; 3868 case ISD::STRICT_FSUB: { 3869 if (TLI.getStrictFPOperationAction( 3870 ISD::STRICT_FSUB, Node->getValueType(0)) == TargetLowering::Legal) 3871 return true; 3872 if (TLI.getStrictFPOperationAction( 3873 ISD::STRICT_FADD, Node->getValueType(0)) != TargetLowering::Legal) 3874 break; 3875 3876 EVT VT = Node->getValueType(0); 3877 const SDNodeFlags Flags = Node->getFlags(); 3878 SDValue Neg = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(2), Flags); 3879 SDValue Fadd = DAG.getNode(ISD::STRICT_FADD, dl, Node->getVTList(), 3880 {Node->getOperand(0), Node->getOperand(1), Neg}, 3881 Flags); 3882 3883 Results.push_back(Fadd); 3884 Results.push_back(Fadd.getValue(1)); 3885 break; 3886 } 3887 case ISD::STRICT_SINT_TO_FP: 3888 case ISD::STRICT_UINT_TO_FP: 3889 case ISD::STRICT_LRINT: 3890 case ISD::STRICT_LLRINT: 3891 case ISD::STRICT_LROUND: 3892 case ISD::STRICT_LLROUND: 3893 // These are registered by the operand type instead of the value 3894 // type. Reflect that here. 3895 if (TLI.getStrictFPOperationAction(Node->getOpcode(), 3896 Node->getOperand(1).getValueType()) 3897 == TargetLowering::Legal) 3898 return true; 3899 break; 3900 } 3901 } 3902 3903 // Replace the original node with the legalized result. 3904 if (Results.empty()) { 3905 LLVM_DEBUG(dbgs() << "Cannot expand node\n"); 3906 return false; 3907 } 3908 3909 LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); 3910 ReplaceNode(Node, Results.data()); 3911 return true; 3912 } 3913 3914 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3915 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); 3916 SmallVector<SDValue, 8> Results; 3917 SDLoc dl(Node); 3918 // FIXME: Check flags on the node to see if we can use a finite call. 3919 unsigned Opc = Node->getOpcode(); 3920 switch (Opc) { 3921 case ISD::ATOMIC_FENCE: { 3922 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3923 // FIXME: handle "fence singlethread" more efficiently. 3924 TargetLowering::ArgListTy Args; 3925 3926 TargetLowering::CallLoweringInfo CLI(DAG); 3927 CLI.setDebugLoc(dl) 3928 .setChain(Node->getOperand(0)) 3929 .setLibCallee( 3930 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3931 DAG.getExternalSymbol("__sync_synchronize", 3932 TLI.getPointerTy(DAG.getDataLayout())), 3933 std::move(Args)); 3934 3935 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3936 3937 Results.push_back(CallResult.second); 3938 break; 3939 } 3940 // By default, atomic intrinsics are marked Legal and lowered. Targets 3941 // which don't support them directly, however, may want libcalls, in which 3942 // case they mark them Expand, and we get here. 3943 case ISD::ATOMIC_SWAP: 3944 case ISD::ATOMIC_LOAD_ADD: 3945 case ISD::ATOMIC_LOAD_SUB: 3946 case ISD::ATOMIC_LOAD_AND: 3947 case ISD::ATOMIC_LOAD_CLR: 3948 case ISD::ATOMIC_LOAD_OR: 3949 case ISD::ATOMIC_LOAD_XOR: 3950 case ISD::ATOMIC_LOAD_NAND: 3951 case ISD::ATOMIC_LOAD_MIN: 3952 case ISD::ATOMIC_LOAD_MAX: 3953 case ISD::ATOMIC_LOAD_UMIN: 3954 case ISD::ATOMIC_LOAD_UMAX: 3955 case ISD::ATOMIC_CMP_SWAP: { 3956 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3957 AtomicOrdering Order = cast<AtomicSDNode>(Node)->getMergedOrdering(); 3958 RTLIB::Libcall LC = RTLIB::getOUTLINE_ATOMIC(Opc, Order, VT); 3959 EVT RetVT = Node->getValueType(0); 3960 TargetLowering::MakeLibCallOptions CallOptions; 3961 SmallVector<SDValue, 4> Ops; 3962 if (TLI.getLibcallName(LC)) { 3963 // If outline atomic available, prepare its arguments and expand. 3964 Ops.append(Node->op_begin() + 2, Node->op_end()); 3965 Ops.push_back(Node->getOperand(1)); 3966 3967 } else { 3968 LC = RTLIB::getSYNC(Opc, VT); 3969 assert(LC != RTLIB::UNKNOWN_LIBCALL && 3970 "Unexpected atomic op or value type!"); 3971 // Arguments for expansion to sync libcall 3972 Ops.append(Node->op_begin() + 1, Node->op_end()); 3973 } 3974 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, 3975 Ops, CallOptions, 3976 SDLoc(Node), 3977 Node->getOperand(0)); 3978 Results.push_back(Tmp.first); 3979 Results.push_back(Tmp.second); 3980 break; 3981 } 3982 case ISD::TRAP: { 3983 // If this operation is not supported, lower it to 'abort()' call 3984 TargetLowering::ArgListTy Args; 3985 TargetLowering::CallLoweringInfo CLI(DAG); 3986 CLI.setDebugLoc(dl) 3987 .setChain(Node->getOperand(0)) 3988 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3989 DAG.getExternalSymbol( 3990 "abort", TLI.getPointerTy(DAG.getDataLayout())), 3991 std::move(Args)); 3992 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3993 3994 Results.push_back(CallResult.second); 3995 break; 3996 } 3997 case ISD::FMINNUM: 3998 case ISD::STRICT_FMINNUM: 3999 ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 4000 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 4001 RTLIB::FMIN_PPCF128, Results); 4002 break; 4003 case ISD::FMAXNUM: 4004 case ISD::STRICT_FMAXNUM: 4005 ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 4006 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 4007 RTLIB::FMAX_PPCF128, Results); 4008 break; 4009 case ISD::FSQRT: 4010 case ISD::STRICT_FSQRT: 4011 ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 4012 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 4013 RTLIB::SQRT_PPCF128, Results); 4014 break; 4015 case ISD::FCBRT: 4016 ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, 4017 RTLIB::CBRT_F80, RTLIB::CBRT_F128, 4018 RTLIB::CBRT_PPCF128, Results); 4019 break; 4020 case ISD::FSIN: 4021 case ISD::STRICT_FSIN: 4022 ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 4023 RTLIB::SIN_F80, RTLIB::SIN_F128, 4024 RTLIB::SIN_PPCF128, Results); 4025 break; 4026 case ISD::FCOS: 4027 case ISD::STRICT_FCOS: 4028 ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 4029 RTLIB::COS_F80, RTLIB::COS_F128, 4030 RTLIB::COS_PPCF128, Results); 4031 break; 4032 case ISD::FSINCOS: 4033 // Expand into sincos libcall. 4034 ExpandSinCosLibCall(Node, Results); 4035 break; 4036 case ISD::FLOG: 4037 case ISD::STRICT_FLOG: 4038 ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, 4039 RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results); 4040 break; 4041 case ISD::FLOG2: 4042 case ISD::STRICT_FLOG2: 4043 ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, 4044 RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results); 4045 break; 4046 case ISD::FLOG10: 4047 case ISD::STRICT_FLOG10: 4048 ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, 4049 RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results); 4050 break; 4051 case ISD::FEXP: 4052 case ISD::STRICT_FEXP: 4053 ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, 4054 RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results); 4055 break; 4056 case ISD::FEXP2: 4057 case ISD::STRICT_FEXP2: 4058 ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, 4059 RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results); 4060 break; 4061 case ISD::FTRUNC: 4062 case ISD::STRICT_FTRUNC: 4063 ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4064 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4065 RTLIB::TRUNC_PPCF128, Results); 4066 break; 4067 case ISD::FFLOOR: 4068 case ISD::STRICT_FFLOOR: 4069 ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4070 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4071 RTLIB::FLOOR_PPCF128, Results); 4072 break; 4073 case ISD::FCEIL: 4074 case ISD::STRICT_FCEIL: 4075 ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4076 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4077 RTLIB::CEIL_PPCF128, Results); 4078 break; 4079 case ISD::FRINT: 4080 case ISD::STRICT_FRINT: 4081 ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4082 RTLIB::RINT_F80, RTLIB::RINT_F128, 4083 RTLIB::RINT_PPCF128, Results); 4084 break; 4085 case ISD::FNEARBYINT: 4086 case ISD::STRICT_FNEARBYINT: 4087 ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4088 RTLIB::NEARBYINT_F64, 4089 RTLIB::NEARBYINT_F80, 4090 RTLIB::NEARBYINT_F128, 4091 RTLIB::NEARBYINT_PPCF128, Results); 4092 break; 4093 case ISD::FROUND: 4094 case ISD::STRICT_FROUND: 4095 ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4096 RTLIB::ROUND_F64, 4097 RTLIB::ROUND_F80, 4098 RTLIB::ROUND_F128, 4099 RTLIB::ROUND_PPCF128, Results); 4100 break; 4101 case ISD::FROUNDEVEN: 4102 case ISD::STRICT_FROUNDEVEN: 4103 ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32, 4104 RTLIB::ROUNDEVEN_F64, 4105 RTLIB::ROUNDEVEN_F80, 4106 RTLIB::ROUNDEVEN_F128, 4107 RTLIB::ROUNDEVEN_PPCF128, Results); 4108 break; 4109 case ISD::FPOWI: 4110 case ISD::STRICT_FPOWI: { 4111 RTLIB::Libcall LC = RTLIB::getPOWI(Node->getSimpleValueType(0)); 4112 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fpowi."); 4113 if (!TLI.getLibcallName(LC)) { 4114 // Some targets don't have a powi libcall; use pow instead. 4115 if (Node->isStrictFPOpcode()) { 4116 SDValue Exponent = 4117 DAG.getNode(ISD::STRICT_SINT_TO_FP, SDLoc(Node), 4118 {Node->getValueType(0), Node->getValueType(1)}, 4119 {Node->getOperand(0), Node->getOperand(2)}); 4120 SDValue FPOW = 4121 DAG.getNode(ISD::STRICT_FPOW, SDLoc(Node), 4122 {Node->getValueType(0), Node->getValueType(1)}, 4123 {Exponent.getValue(1), Node->getOperand(1), Exponent}); 4124 Results.push_back(FPOW); 4125 Results.push_back(FPOW.getValue(1)); 4126 } else { 4127 SDValue Exponent = 4128 DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node), Node->getValueType(0), 4129 Node->getOperand(1)); 4130 Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node), 4131 Node->getValueType(0), 4132 Node->getOperand(0), Exponent)); 4133 } 4134 break; 4135 } 4136 unsigned Offset = Node->isStrictFPOpcode() ? 1 : 0; 4137 bool ExponentHasSizeOfInt = 4138 DAG.getLibInfo().getIntSize() == 4139 Node->getOperand(1 + Offset).getValueType().getSizeInBits(); 4140 if (!ExponentHasSizeOfInt) { 4141 // If the exponent does not match with sizeof(int) a libcall to 4142 // RTLIB::POWI would use the wrong type for the argument. 4143 DAG.getContext()->emitError("POWI exponent does not match sizeof(int)"); 4144 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 4145 break; 4146 } 4147 ExpandFPLibCall(Node, LC, Results); 4148 break; 4149 } 4150 case ISD::FPOW: 4151 case ISD::STRICT_FPOW: 4152 ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, 4153 RTLIB::POW_F128, RTLIB::POW_PPCF128, Results); 4154 break; 4155 case ISD::LROUND: 4156 case ISD::STRICT_LROUND: 4157 ExpandArgFPLibCall(Node, RTLIB::LROUND_F32, 4158 RTLIB::LROUND_F64, RTLIB::LROUND_F80, 4159 RTLIB::LROUND_F128, 4160 RTLIB::LROUND_PPCF128, Results); 4161 break; 4162 case ISD::LLROUND: 4163 case ISD::STRICT_LLROUND: 4164 ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32, 4165 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80, 4166 RTLIB::LLROUND_F128, 4167 RTLIB::LLROUND_PPCF128, Results); 4168 break; 4169 case ISD::LRINT: 4170 case ISD::STRICT_LRINT: 4171 ExpandArgFPLibCall(Node, RTLIB::LRINT_F32, 4172 RTLIB::LRINT_F64, RTLIB::LRINT_F80, 4173 RTLIB::LRINT_F128, 4174 RTLIB::LRINT_PPCF128, Results); 4175 break; 4176 case ISD::LLRINT: 4177 case ISD::STRICT_LLRINT: 4178 ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32, 4179 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80, 4180 RTLIB::LLRINT_F128, 4181 RTLIB::LLRINT_PPCF128, Results); 4182 break; 4183 case ISD::FDIV: 4184 case ISD::STRICT_FDIV: 4185 ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4186 RTLIB::DIV_F80, RTLIB::DIV_F128, 4187 RTLIB::DIV_PPCF128, Results); 4188 break; 4189 case ISD::FREM: 4190 case ISD::STRICT_FREM: 4191 ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4192 RTLIB::REM_F80, RTLIB::REM_F128, 4193 RTLIB::REM_PPCF128, Results); 4194 break; 4195 case ISD::FMA: 4196 case ISD::STRICT_FMA: 4197 ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4198 RTLIB::FMA_F80, RTLIB::FMA_F128, 4199 RTLIB::FMA_PPCF128, Results); 4200 break; 4201 case ISD::FADD: 4202 case ISD::STRICT_FADD: 4203 ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4204 RTLIB::ADD_F80, RTLIB::ADD_F128, 4205 RTLIB::ADD_PPCF128, Results); 4206 break; 4207 case ISD::FMUL: 4208 case ISD::STRICT_FMUL: 4209 ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4210 RTLIB::MUL_F80, RTLIB::MUL_F128, 4211 RTLIB::MUL_PPCF128, Results); 4212 break; 4213 case ISD::FP16_TO_FP: 4214 if (Node->getValueType(0) == MVT::f32) { 4215 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4216 } 4217 break; 4218 case ISD::STRICT_FP16_TO_FP: { 4219 if (Node->getValueType(0) == MVT::f32) { 4220 TargetLowering::MakeLibCallOptions CallOptions; 4221 std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall( 4222 DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions, 4223 SDLoc(Node), Node->getOperand(0)); 4224 Results.push_back(Tmp.first); 4225 Results.push_back(Tmp.second); 4226 } 4227 break; 4228 } 4229 case ISD::FP_TO_FP16: { 4230 RTLIB::Libcall LC = 4231 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4232 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4233 Results.push_back(ExpandLibCall(LC, Node, false)); 4234 break; 4235 } 4236 case ISD::FP_TO_BF16: { 4237 RTLIB::Libcall LC = 4238 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::bf16); 4239 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_bf16"); 4240 Results.push_back(ExpandLibCall(LC, Node, false)); 4241 break; 4242 } 4243 case ISD::STRICT_SINT_TO_FP: 4244 case ISD::STRICT_UINT_TO_FP: 4245 case ISD::SINT_TO_FP: 4246 case ISD::UINT_TO_FP: { 4247 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatRes_XINT_TO_FP 4248 bool IsStrict = Node->isStrictFPOpcode(); 4249 bool Signed = Node->getOpcode() == ISD::SINT_TO_FP || 4250 Node->getOpcode() == ISD::STRICT_SINT_TO_FP; 4251 EVT SVT = Node->getOperand(IsStrict ? 1 : 0).getValueType(); 4252 EVT RVT = Node->getValueType(0); 4253 EVT NVT = EVT(); 4254 SDLoc dl(Node); 4255 4256 // Even if the input is legal, no libcall may exactly match, eg. we don't 4257 // have i1 -> fp conversions. So, it needs to be promoted to a larger type, 4258 // eg: i13 -> fp. Then, look for an appropriate libcall. 4259 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4260 for (unsigned t = MVT::FIRST_INTEGER_VALUETYPE; 4261 t <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4262 ++t) { 4263 NVT = (MVT::SimpleValueType)t; 4264 // The source needs to big enough to hold the operand. 4265 if (NVT.bitsGE(SVT)) 4266 LC = Signed ? RTLIB::getSINTTOFP(NVT, RVT) 4267 : RTLIB::getUINTTOFP(NVT, RVT); 4268 } 4269 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4270 4271 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4272 // Sign/zero extend the argument if the libcall takes a larger type. 4273 SDValue Op = DAG.getNode(Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, 4274 NVT, Node->getOperand(IsStrict ? 1 : 0)); 4275 TargetLowering::MakeLibCallOptions CallOptions; 4276 CallOptions.setSExt(Signed); 4277 std::pair<SDValue, SDValue> Tmp = 4278 TLI.makeLibCall(DAG, LC, RVT, Op, CallOptions, dl, Chain); 4279 Results.push_back(Tmp.first); 4280 if (IsStrict) 4281 Results.push_back(Tmp.second); 4282 break; 4283 } 4284 case ISD::FP_TO_SINT: 4285 case ISD::FP_TO_UINT: 4286 case ISD::STRICT_FP_TO_SINT: 4287 case ISD::STRICT_FP_TO_UINT: { 4288 // TODO - Common the code with DAGTypeLegalizer::SoftenFloatOp_FP_TO_XINT. 4289 bool IsStrict = Node->isStrictFPOpcode(); 4290 bool Signed = Node->getOpcode() == ISD::FP_TO_SINT || 4291 Node->getOpcode() == ISD::STRICT_FP_TO_SINT; 4292 4293 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4294 EVT SVT = Op.getValueType(); 4295 EVT RVT = Node->getValueType(0); 4296 EVT NVT = EVT(); 4297 SDLoc dl(Node); 4298 4299 // Even if the result is legal, no libcall may exactly match, eg. we don't 4300 // have fp -> i1 conversions. So, it needs to be promoted to a larger type, 4301 // eg: fp -> i32. Then, look for an appropriate libcall. 4302 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 4303 for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE; 4304 IntVT <= MVT::LAST_INTEGER_VALUETYPE && LC == RTLIB::UNKNOWN_LIBCALL; 4305 ++IntVT) { 4306 NVT = (MVT::SimpleValueType)IntVT; 4307 // The type needs to big enough to hold the result. 4308 if (NVT.bitsGE(RVT)) 4309 LC = Signed ? RTLIB::getFPTOSINT(SVT, NVT) 4310 : RTLIB::getFPTOUINT(SVT, NVT); 4311 } 4312 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4313 4314 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4315 TargetLowering::MakeLibCallOptions CallOptions; 4316 std::pair<SDValue, SDValue> Tmp = 4317 TLI.makeLibCall(DAG, LC, NVT, Op, CallOptions, dl, Chain); 4318 4319 // Truncate the result if the libcall returns a larger type. 4320 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, RVT, Tmp.first)); 4321 if (IsStrict) 4322 Results.push_back(Tmp.second); 4323 break; 4324 } 4325 4326 case ISD::FP_ROUND: 4327 case ISD::STRICT_FP_ROUND: { 4328 // X = FP_ROUND(Y, TRUNC) 4329 // TRUNC is a flag, which is always an integer that is zero or one. 4330 // If TRUNC is 0, this is a normal rounding, if it is 1, this FP_ROUND 4331 // is known to not change the value of Y. 4332 // We can only expand it into libcall if the TRUNC is 0. 4333 bool IsStrict = Node->isStrictFPOpcode(); 4334 SDValue Op = Node->getOperand(IsStrict ? 1 : 0); 4335 SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); 4336 EVT VT = Node->getValueType(0); 4337 assert(cast<ConstantSDNode>(Node->getOperand(IsStrict ? 2 : 1))->isZero() && 4338 "Unable to expand as libcall if it is not normal rounding"); 4339 4340 RTLIB::Libcall LC = RTLIB::getFPROUND(Op.getValueType(), VT); 4341 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4342 4343 TargetLowering::MakeLibCallOptions CallOptions; 4344 std::pair<SDValue, SDValue> Tmp = 4345 TLI.makeLibCall(DAG, LC, VT, Op, CallOptions, SDLoc(Node), Chain); 4346 Results.push_back(Tmp.first); 4347 if (IsStrict) 4348 Results.push_back(Tmp.second); 4349 break; 4350 } 4351 case ISD::FP_EXTEND: { 4352 Results.push_back( 4353 ExpandLibCall(RTLIB::getFPEXT(Node->getOperand(0).getValueType(), 4354 Node->getValueType(0)), 4355 Node, false)); 4356 break; 4357 } 4358 case ISD::STRICT_FP_EXTEND: 4359 case ISD::STRICT_FP_TO_FP16: { 4360 RTLIB::Libcall LC = 4361 Node->getOpcode() == ISD::STRICT_FP_TO_FP16 4362 ? RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16) 4363 : RTLIB::getFPEXT(Node->getOperand(1).getValueType(), 4364 Node->getValueType(0)); 4365 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to legalize as libcall"); 4366 4367 TargetLowering::MakeLibCallOptions CallOptions; 4368 std::pair<SDValue, SDValue> Tmp = 4369 TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1), 4370 CallOptions, SDLoc(Node), Node->getOperand(0)); 4371 Results.push_back(Tmp.first); 4372 Results.push_back(Tmp.second); 4373 break; 4374 } 4375 case ISD::FSUB: 4376 case ISD::STRICT_FSUB: 4377 ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4378 RTLIB::SUB_F80, RTLIB::SUB_F128, 4379 RTLIB::SUB_PPCF128, Results); 4380 break; 4381 case ISD::SREM: 4382 Results.push_back(ExpandIntLibCall( 4383 Node, true, RTLIB::SREM_I8, RTLIB::SREM_I16, RTLIB::SREM_I32, 4384 RTLIB::SREM_I64, RTLIB::SREM_I128, RTLIB::SREM_IEXT)); 4385 break; 4386 case ISD::UREM: 4387 Results.push_back(ExpandIntLibCall( 4388 Node, false, RTLIB::UREM_I8, RTLIB::UREM_I16, RTLIB::UREM_I32, 4389 RTLIB::UREM_I64, RTLIB::UREM_I128, RTLIB::UREM_IEXT)); 4390 break; 4391 case ISD::SDIV: 4392 Results.push_back(ExpandIntLibCall( 4393 Node, true, RTLIB::SDIV_I8, RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4394 RTLIB::SDIV_I64, RTLIB::SDIV_I128, RTLIB::SDIV_IEXT)); 4395 break; 4396 case ISD::UDIV: 4397 Results.push_back(ExpandIntLibCall( 4398 Node, false, RTLIB::UDIV_I8, RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4399 RTLIB::UDIV_I64, RTLIB::UDIV_I128, RTLIB::UDIV_IEXT)); 4400 break; 4401 case ISD::SDIVREM: 4402 case ISD::UDIVREM: 4403 // Expand into divrem libcall 4404 ExpandDivRemLibCall(Node, Results); 4405 break; 4406 case ISD::MUL: 4407 Results.push_back(ExpandIntLibCall( 4408 Node, false, RTLIB::MUL_I8, RTLIB::MUL_I16, RTLIB::MUL_I32, 4409 RTLIB::MUL_I64, RTLIB::MUL_I128, RTLIB::MUL_IEXT)); 4410 break; 4411 case ISD::CTLZ_ZERO_UNDEF: 4412 switch (Node->getSimpleValueType(0).SimpleTy) { 4413 default: 4414 llvm_unreachable("LibCall explicitly requested, but not available"); 4415 case MVT::i32: 4416 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); 4417 break; 4418 case MVT::i64: 4419 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); 4420 break; 4421 case MVT::i128: 4422 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); 4423 break; 4424 } 4425 break; 4426 } 4427 4428 // Replace the original node with the legalized result. 4429 if (!Results.empty()) { 4430 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); 4431 ReplaceNode(Node, Results.data()); 4432 } else 4433 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); 4434 } 4435 4436 // Determine the vector type to use in place of an original scalar element when 4437 // promoting equally sized vectors. 4438 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4439 MVT EltVT, MVT NewEltVT) { 4440 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4441 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4442 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4443 return MidVT; 4444 } 4445 4446 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4447 LLVM_DEBUG(dbgs() << "Trying to promote node\n"); 4448 SmallVector<SDValue, 8> Results; 4449 MVT OVT = Node->getSimpleValueType(0); 4450 if (Node->getOpcode() == ISD::UINT_TO_FP || 4451 Node->getOpcode() == ISD::SINT_TO_FP || 4452 Node->getOpcode() == ISD::SETCC || 4453 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4454 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4455 OVT = Node->getOperand(0).getSimpleValueType(); 4456 } 4457 if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP || 4458 Node->getOpcode() == ISD::STRICT_SINT_TO_FP || 4459 Node->getOpcode() == ISD::STRICT_FSETCC || 4460 Node->getOpcode() == ISD::STRICT_FSETCCS) 4461 OVT = Node->getOperand(1).getSimpleValueType(); 4462 if (Node->getOpcode() == ISD::BR_CC || 4463 Node->getOpcode() == ISD::SELECT_CC) 4464 OVT = Node->getOperand(2).getSimpleValueType(); 4465 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4466 SDLoc dl(Node); 4467 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 4468 switch (Node->getOpcode()) { 4469 case ISD::CTTZ: 4470 case ISD::CTTZ_ZERO_UNDEF: 4471 case ISD::CTLZ: 4472 case ISD::CTLZ_ZERO_UNDEF: 4473 case ISD::CTPOP: 4474 // Zero extend the argument unless its cttz, then use any_extend. 4475 if (Node->getOpcode() == ISD::CTTZ || 4476 Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) 4477 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4478 else 4479 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4480 4481 if (Node->getOpcode() == ISD::CTTZ) { 4482 // The count is the same in the promoted type except if the original 4483 // value was zero. This can be handled by setting the bit just off 4484 // the top of the original type. 4485 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), 4486 OVT.getSizeInBits()); 4487 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, 4488 DAG.getConstant(TopBit, dl, NVT)); 4489 } 4490 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4491 // already the correct result. 4492 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4493 if (Node->getOpcode() == ISD::CTLZ || 4494 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4495 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4496 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4497 DAG.getConstant(NVT.getSizeInBits() - 4498 OVT.getSizeInBits(), dl, NVT)); 4499 } 4500 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4501 break; 4502 case ISD::BITREVERSE: 4503 case ISD::BSWAP: { 4504 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4505 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4506 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4507 Tmp1 = DAG.getNode( 4508 ISD::SRL, dl, NVT, Tmp1, 4509 DAG.getConstant(DiffBits, dl, 4510 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4511 4512 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4513 break; 4514 } 4515 case ISD::FP_TO_UINT: 4516 case ISD::STRICT_FP_TO_UINT: 4517 case ISD::FP_TO_SINT: 4518 case ISD::STRICT_FP_TO_SINT: 4519 PromoteLegalFP_TO_INT(Node, dl, Results); 4520 break; 4521 case ISD::FP_TO_UINT_SAT: 4522 case ISD::FP_TO_SINT_SAT: 4523 Results.push_back(PromoteLegalFP_TO_INT_SAT(Node, dl)); 4524 break; 4525 case ISD::UINT_TO_FP: 4526 case ISD::STRICT_UINT_TO_FP: 4527 case ISD::SINT_TO_FP: 4528 case ISD::STRICT_SINT_TO_FP: 4529 PromoteLegalINT_TO_FP(Node, dl, Results); 4530 break; 4531 case ISD::VAARG: { 4532 SDValue Chain = Node->getOperand(0); // Get the chain. 4533 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4534 4535 unsigned TruncOp; 4536 if (OVT.isVector()) { 4537 TruncOp = ISD::BITCAST; 4538 } else { 4539 assert(OVT.isInteger() 4540 && "VAARG promotion is supported only for vectors or integer types"); 4541 TruncOp = ISD::TRUNCATE; 4542 } 4543 4544 // Perform the larger operation, then convert back 4545 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4546 Node->getConstantOperandVal(3)); 4547 Chain = Tmp1.getValue(1); 4548 4549 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4550 4551 // Modified the chain result - switch anything that used the old chain to 4552 // use the new one. 4553 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4554 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4555 if (UpdatedNodes) { 4556 UpdatedNodes->insert(Tmp2.getNode()); 4557 UpdatedNodes->insert(Chain.getNode()); 4558 } 4559 ReplacedNode(Node); 4560 break; 4561 } 4562 case ISD::MUL: 4563 case ISD::SDIV: 4564 case ISD::SREM: 4565 case ISD::UDIV: 4566 case ISD::UREM: 4567 case ISD::AND: 4568 case ISD::OR: 4569 case ISD::XOR: { 4570 unsigned ExtOp, TruncOp; 4571 if (OVT.isVector()) { 4572 ExtOp = ISD::BITCAST; 4573 TruncOp = ISD::BITCAST; 4574 } else { 4575 assert(OVT.isInteger() && "Cannot promote logic operation"); 4576 4577 switch (Node->getOpcode()) { 4578 default: 4579 ExtOp = ISD::ANY_EXTEND; 4580 break; 4581 case ISD::SDIV: 4582 case ISD::SREM: 4583 ExtOp = ISD::SIGN_EXTEND; 4584 break; 4585 case ISD::UDIV: 4586 case ISD::UREM: 4587 ExtOp = ISD::ZERO_EXTEND; 4588 break; 4589 } 4590 TruncOp = ISD::TRUNCATE; 4591 } 4592 // Promote each of the values to the new type. 4593 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4594 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4595 // Perform the larger operation, then convert back 4596 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4597 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4598 break; 4599 } 4600 case ISD::UMUL_LOHI: 4601 case ISD::SMUL_LOHI: { 4602 // Promote to a multiply in a wider integer type. 4603 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND 4604 : ISD::SIGN_EXTEND; 4605 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4606 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4607 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); 4608 4609 auto &DL = DAG.getDataLayout(); 4610 unsigned OriginalSize = OVT.getScalarSizeInBits(); 4611 Tmp2 = DAG.getNode( 4612 ISD::SRL, dl, NVT, Tmp1, 4613 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); 4614 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4615 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); 4616 break; 4617 } 4618 case ISD::SELECT: { 4619 unsigned ExtOp, TruncOp; 4620 if (Node->getValueType(0).isVector() || 4621 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4622 ExtOp = ISD::BITCAST; 4623 TruncOp = ISD::BITCAST; 4624 } else if (Node->getValueType(0).isInteger()) { 4625 ExtOp = ISD::ANY_EXTEND; 4626 TruncOp = ISD::TRUNCATE; 4627 } else { 4628 ExtOp = ISD::FP_EXTEND; 4629 TruncOp = ISD::FP_ROUND; 4630 } 4631 Tmp1 = Node->getOperand(0); 4632 // Promote each of the values to the new type. 4633 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4634 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4635 // Perform the larger operation, then round down. 4636 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4637 Tmp1->setFlags(Node->getFlags()); 4638 if (TruncOp != ISD::FP_ROUND) 4639 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4640 else 4641 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4642 DAG.getIntPtrConstant(0, dl)); 4643 Results.push_back(Tmp1); 4644 break; 4645 } 4646 case ISD::VECTOR_SHUFFLE: { 4647 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4648 4649 // Cast the two input vectors. 4650 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4651 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4652 4653 // Convert the shuffle mask to the right # elements. 4654 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4655 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4656 Results.push_back(Tmp1); 4657 break; 4658 } 4659 case ISD::VECTOR_SPLICE: { 4660 Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0)); 4661 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(1)); 4662 Tmp3 = DAG.getNode(ISD::VECTOR_SPLICE, dl, NVT, Tmp1, Tmp2, 4663 Node->getOperand(2)); 4664 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp3)); 4665 break; 4666 } 4667 case ISD::SELECT_CC: { 4668 SDValue Cond = Node->getOperand(4); 4669 ISD::CondCode CCCode = cast<CondCodeSDNode>(Cond)->get(); 4670 // Type of the comparison operands. 4671 MVT CVT = Node->getSimpleValueType(0); 4672 assert(CVT == OVT && "not handled"); 4673 4674 unsigned ExtOp = ISD::FP_EXTEND; 4675 if (NVT.isInteger()) { 4676 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4677 } 4678 4679 // Promote the comparison operands, if needed. 4680 if (TLI.isCondCodeLegal(CCCode, CVT)) { 4681 Tmp1 = Node->getOperand(0); 4682 Tmp2 = Node->getOperand(1); 4683 } else { 4684 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4685 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4686 } 4687 // Cast the true/false operands. 4688 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4689 Tmp4 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4690 4691 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, NVT, {Tmp1, Tmp2, Tmp3, Tmp4, Cond}, 4692 Node->getFlags()); 4693 4694 // Cast the result back to the original type. 4695 if (ExtOp != ISD::FP_EXTEND) 4696 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1); 4697 else 4698 Tmp1 = DAG.getNode(ISD::FP_ROUND, dl, OVT, Tmp1, 4699 DAG.getIntPtrConstant(0, dl)); 4700 4701 Results.push_back(Tmp1); 4702 break; 4703 } 4704 case ISD::SETCC: 4705 case ISD::STRICT_FSETCC: 4706 case ISD::STRICT_FSETCCS: { 4707 unsigned ExtOp = ISD::FP_EXTEND; 4708 if (NVT.isInteger()) { 4709 ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4710 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4711 } 4712 if (Node->isStrictFPOpcode()) { 4713 SDValue InChain = Node->getOperand(0); 4714 std::tie(Tmp1, std::ignore) = 4715 DAG.getStrictFPExtendOrRound(Node->getOperand(1), InChain, dl, NVT); 4716 std::tie(Tmp2, std::ignore) = 4717 DAG.getStrictFPExtendOrRound(Node->getOperand(2), InChain, dl, NVT); 4718 SmallVector<SDValue, 2> TmpChains = {Tmp1.getValue(1), Tmp2.getValue(1)}; 4719 SDValue OutChain = DAG.getTokenFactor(dl, TmpChains); 4720 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 4721 Results.push_back(DAG.getNode(Node->getOpcode(), dl, VTs, 4722 {OutChain, Tmp1, Tmp2, Node->getOperand(3)}, 4723 Node->getFlags())); 4724 Results.push_back(Results.back().getValue(1)); 4725 break; 4726 } 4727 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4728 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4729 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1, 4730 Tmp2, Node->getOperand(2), Node->getFlags())); 4731 break; 4732 } 4733 case ISD::BR_CC: { 4734 unsigned ExtOp = ISD::FP_EXTEND; 4735 if (NVT.isInteger()) { 4736 ISD::CondCode CCCode = 4737 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4738 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4739 } 4740 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4741 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4742 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4743 Node->getOperand(0), Node->getOperand(1), 4744 Tmp1, Tmp2, Node->getOperand(4))); 4745 break; 4746 } 4747 case ISD::FADD: 4748 case ISD::FSUB: 4749 case ISD::FMUL: 4750 case ISD::FDIV: 4751 case ISD::FREM: 4752 case ISD::FMINNUM: 4753 case ISD::FMAXNUM: 4754 case ISD::FPOW: 4755 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4756 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4757 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4758 Node->getFlags()); 4759 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4760 Tmp3, DAG.getIntPtrConstant(0, dl))); 4761 break; 4762 case ISD::STRICT_FADD: 4763 case ISD::STRICT_FSUB: 4764 case ISD::STRICT_FMUL: 4765 case ISD::STRICT_FDIV: 4766 case ISD::STRICT_FMINNUM: 4767 case ISD::STRICT_FMAXNUM: 4768 case ISD::STRICT_FREM: 4769 case ISD::STRICT_FPOW: 4770 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4771 {Node->getOperand(0), Node->getOperand(1)}); 4772 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4773 {Node->getOperand(0), Node->getOperand(2)}); 4774 Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4775 Tmp2.getValue(1)); 4776 Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4777 {Tmp3, Tmp1, Tmp2}); 4778 Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4779 {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)}); 4780 Results.push_back(Tmp1); 4781 Results.push_back(Tmp1.getValue(1)); 4782 break; 4783 case ISD::FMA: 4784 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4785 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4786 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4787 Results.push_back( 4788 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4789 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4790 DAG.getIntPtrConstant(0, dl))); 4791 break; 4792 case ISD::STRICT_FMA: 4793 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4794 {Node->getOperand(0), Node->getOperand(1)}); 4795 Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4796 {Node->getOperand(0), Node->getOperand(2)}); 4797 Tmp3 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4798 {Node->getOperand(0), Node->getOperand(3)}); 4799 Tmp4 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1), 4800 Tmp2.getValue(1), Tmp3.getValue(1)); 4801 Tmp4 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4802 {Tmp4, Tmp1, Tmp2, Tmp3}); 4803 Tmp4 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4804 {Tmp4.getValue(1), Tmp4, DAG.getIntPtrConstant(0, dl)}); 4805 Results.push_back(Tmp4); 4806 Results.push_back(Tmp4.getValue(1)); 4807 break; 4808 case ISD::FCOPYSIGN: 4809 case ISD::FPOWI: { 4810 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4811 Tmp2 = Node->getOperand(1); 4812 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4813 4814 // fcopysign doesn't change anything but the sign bit, so 4815 // (fp_round (fcopysign (fpext a), b)) 4816 // is as precise as 4817 // (fp_round (fpext a)) 4818 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4819 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4820 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4821 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4822 break; 4823 } 4824 case ISD::STRICT_FPOWI: 4825 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4826 {Node->getOperand(0), Node->getOperand(1)}); 4827 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4828 {Tmp1.getValue(1), Tmp1, Node->getOperand(2)}); 4829 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4830 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4831 Results.push_back(Tmp3); 4832 Results.push_back(Tmp3.getValue(1)); 4833 break; 4834 case ISD::FFLOOR: 4835 case ISD::FCEIL: 4836 case ISD::FRINT: 4837 case ISD::FNEARBYINT: 4838 case ISD::FROUND: 4839 case ISD::FROUNDEVEN: 4840 case ISD::FTRUNC: 4841 case ISD::FNEG: 4842 case ISD::FSQRT: 4843 case ISD::FSIN: 4844 case ISD::FCOS: 4845 case ISD::FLOG: 4846 case ISD::FLOG2: 4847 case ISD::FLOG10: 4848 case ISD::FABS: 4849 case ISD::FEXP: 4850 case ISD::FEXP2: 4851 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4852 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4853 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4854 Tmp2, DAG.getIntPtrConstant(0, dl))); 4855 break; 4856 case ISD::STRICT_FFLOOR: 4857 case ISD::STRICT_FCEIL: 4858 case ISD::STRICT_FRINT: 4859 case ISD::STRICT_FNEARBYINT: 4860 case ISD::STRICT_FROUND: 4861 case ISD::STRICT_FROUNDEVEN: 4862 case ISD::STRICT_FTRUNC: 4863 case ISD::STRICT_FSQRT: 4864 case ISD::STRICT_FSIN: 4865 case ISD::STRICT_FCOS: 4866 case ISD::STRICT_FLOG: 4867 case ISD::STRICT_FLOG2: 4868 case ISD::STRICT_FLOG10: 4869 case ISD::STRICT_FEXP: 4870 case ISD::STRICT_FEXP2: 4871 Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other}, 4872 {Node->getOperand(0), Node->getOperand(1)}); 4873 Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other}, 4874 {Tmp1.getValue(1), Tmp1}); 4875 Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other}, 4876 {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)}); 4877 Results.push_back(Tmp3); 4878 Results.push_back(Tmp3.getValue(1)); 4879 break; 4880 case ISD::BUILD_VECTOR: { 4881 MVT EltVT = OVT.getVectorElementType(); 4882 MVT NewEltVT = NVT.getVectorElementType(); 4883 4884 // Handle bitcasts to a different vector type with the same total bit size 4885 // 4886 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4887 // => 4888 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4889 4890 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4891 "Invalid promote type for build_vector"); 4892 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4893 4894 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4895 4896 SmallVector<SDValue, 8> NewOps; 4897 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4898 SDValue Op = Node->getOperand(I); 4899 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4900 } 4901 4902 SDLoc SL(Node); 4903 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4904 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4905 Results.push_back(CvtVec); 4906 break; 4907 } 4908 case ISD::EXTRACT_VECTOR_ELT: { 4909 MVT EltVT = OVT.getVectorElementType(); 4910 MVT NewEltVT = NVT.getVectorElementType(); 4911 4912 // Handle bitcasts to a different vector type with the same total bit size. 4913 // 4914 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4915 // => 4916 // v4i32:castx = bitcast x:v2i64 4917 // 4918 // i64 = bitcast 4919 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4920 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4921 // 4922 4923 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4924 "Invalid promote type for extract_vector_elt"); 4925 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4926 4927 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4928 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4929 4930 SDValue Idx = Node->getOperand(1); 4931 EVT IdxVT = Idx.getValueType(); 4932 SDLoc SL(Node); 4933 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4934 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4935 4936 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4937 4938 SmallVector<SDValue, 8> NewOps; 4939 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4940 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4941 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4942 4943 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4944 CastVec, TmpIdx); 4945 NewOps.push_back(Elt); 4946 } 4947 4948 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); 4949 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4950 break; 4951 } 4952 case ISD::INSERT_VECTOR_ELT: { 4953 MVT EltVT = OVT.getVectorElementType(); 4954 MVT NewEltVT = NVT.getVectorElementType(); 4955 4956 // Handle bitcasts to a different vector type with the same total bit size 4957 // 4958 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4959 // => 4960 // v4i32:castx = bitcast x:v2i64 4961 // v2i32:casty = bitcast y:i64 4962 // 4963 // v2i64 = bitcast 4964 // (v4i32 insert_vector_elt 4965 // (v4i32 insert_vector_elt v4i32:castx, 4966 // (extract_vector_elt casty, 0), 2 * z), 4967 // (extract_vector_elt casty, 1), (2 * z + 1)) 4968 4969 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4970 "Invalid promote type for insert_vector_elt"); 4971 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4972 4973 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4974 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4975 4976 SDValue Val = Node->getOperand(1); 4977 SDValue Idx = Node->getOperand(2); 4978 EVT IdxVT = Idx.getValueType(); 4979 SDLoc SL(Node); 4980 4981 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4982 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4983 4984 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4985 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4986 4987 SDValue NewVec = CastVec; 4988 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4989 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4990 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4991 4992 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4993 CastVal, IdxOffset); 4994 4995 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4996 NewVec, Elt, InEltIdx); 4997 } 4998 4999 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 5000 break; 5001 } 5002 case ISD::SCALAR_TO_VECTOR: { 5003 MVT EltVT = OVT.getVectorElementType(); 5004 MVT NewEltVT = NVT.getVectorElementType(); 5005 5006 // Handle bitcasts to different vector type with the same total bit size. 5007 // 5008 // e.g. v2i64 = scalar_to_vector x:i64 5009 // => 5010 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 5011 // 5012 5013 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 5014 SDValue Val = Node->getOperand(0); 5015 SDLoc SL(Node); 5016 5017 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 5018 SDValue Undef = DAG.getUNDEF(MidVT); 5019 5020 SmallVector<SDValue, 8> NewElts; 5021 NewElts.push_back(CastVal); 5022 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 5023 NewElts.push_back(Undef); 5024 5025 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 5026 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 5027 Results.push_back(CvtVec); 5028 break; 5029 } 5030 case ISD::ATOMIC_SWAP: { 5031 AtomicSDNode *AM = cast<AtomicSDNode>(Node); 5032 SDLoc SL(Node); 5033 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal()); 5034 assert(NVT.getSizeInBits() == OVT.getSizeInBits() && 5035 "unexpected promotion type"); 5036 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() && 5037 "unexpected atomic_swap with illegal type"); 5038 5039 SDValue NewAtomic 5040 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT, 5041 DAG.getVTList(NVT, MVT::Other), 5042 { AM->getChain(), AM->getBasePtr(), CastVal }, 5043 AM->getMemOperand()); 5044 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic)); 5045 Results.push_back(NewAtomic.getValue(1)); 5046 break; 5047 } 5048 } 5049 5050 // Replace the original node with the legalized result. 5051 if (!Results.empty()) { 5052 LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); 5053 ReplaceNode(Node, Results.data()); 5054 } else 5055 LLVM_DEBUG(dbgs() << "Could not promote node\n"); 5056 } 5057 5058 /// This is the entry point for the file. 5059 void SelectionDAG::Legalize() { 5060 AssignTopologicalOrder(); 5061 5062 SmallPtrSet<SDNode *, 16> LegalizedNodes; 5063 // Use a delete listener to remove nodes which were deleted during 5064 // legalization from LegalizeNodes. This is needed to handle the situation 5065 // where a new node is allocated by the object pool to the same address of a 5066 // previously deleted node. 5067 DAGNodeDeletedListener DeleteListener( 5068 *this, 5069 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); 5070 5071 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 5072 5073 // Visit all the nodes. We start in topological order, so that we see 5074 // nodes with their original operands intact. Legalization can produce 5075 // new nodes which may themselves need to be legalized. Iterate until all 5076 // nodes have been legalized. 5077 while (true) { 5078 bool AnyLegalized = false; 5079 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 5080 --NI; 5081 5082 SDNode *N = &*NI; 5083 if (N->use_empty() && N != getRoot().getNode()) { 5084 ++NI; 5085 DeleteNode(N); 5086 continue; 5087 } 5088 5089 if (LegalizedNodes.insert(N).second) { 5090 AnyLegalized = true; 5091 Legalizer.LegalizeOp(N); 5092 5093 if (N->use_empty() && N != getRoot().getNode()) { 5094 ++NI; 5095 DeleteNode(N); 5096 } 5097 } 5098 } 5099 if (!AnyLegalized) 5100 break; 5101 5102 } 5103 5104 // Remove dead nodes now. 5105 RemoveDeadNodes(); 5106 } 5107 5108 bool SelectionDAG::LegalizeOp(SDNode *N, 5109 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 5110 SmallPtrSet<SDNode *, 16> LegalizedNodes; 5111 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 5112 5113 // Directly insert the node in question, and legalize it. This will recurse 5114 // as needed through operands. 5115 LegalizedNodes.insert(N); 5116 Legalizer.LegalizeOp(N); 5117 5118 return LegalizedNodes.count(N); 5119 } 5120